USDA-ARS?s Scientific Manuscript database
Broiler chickens may serve as reservoirs for human colonization by vancomycin-resistant Enterococcus (VRE). We examined the effects of vancomycin and two commonly-used antimicrobial feed additives on VRE colonization in broiler chickens during grow-out. Chicks received unsupplemented feed or feed ...
[Vancomycin-resistant enterococcus--chronicle of a foretold problem].
Bonten, Marc J M; Willems, Rob J
2012-01-01
There have recently been 12 outbreaks of infection caused by vancomycin-resistant enterococci (VRE) in Dutch hospitals. Although the first VRE outbreaks were reported almost 12 years ago, such outbreaks remained uncommon and the question is why they are occurring now. Based on molecular epidemiological studies we have learned that a subpopulation of Enterococcus faecium, resistant to amoxicillin but susceptible to vancomycin, has become highly endemic in Dutch hospitals in the past 12 years. Initial analyses suggest that several transposons containing vancomycin-resistance genes have been introduced into this population, followed by nosocomial spread. We recommend that hospitals without detected VRE outbreaks screen high-risk patients for the presence of VRE. If transmission has already occurred in many hospitals, it will be extremely difficult (and costly) to eradicate VRE.
Kim, Min-Chan; Cha, Min-Hyeok; Ryu, Jae-Gee; Woo, Gun-Jo
2017-04-01
Increased enterococcal infections in hospitals and multidrug-resistant and vancomycin-resistant enterococci (VRE) isolated from humans, animals, and food sources raised public health concern on the presence of VRE in multiple sources. We performed a comparative analysis of the antimicrobial resistance and genetics of VRE isolates derived from fresh produce and human fecal samples. Of 389 Enterococcus isolates, 8 fecal and 3 produce isolates were resistant to vancomycin and teicoplanin; all harbored vanA gene. The VRE isolates showed multidrug-resistant properties. The isolates from fresh produce in this study showed to have the common shared characteristics with the isolates from humans by the results of antimicrobial resistance, multilocus sequence typing, and Tn 1546 transposon analysis. Therefore, VRE isolates from fresh produce are likely related to VRE derived from humans. The results suggested that VRE may contaminate vegetables through the environment, and the contaminated vegetables could then act as a vehicle for human infections. Ongoing nationwide surveillance of antibiotic resistance and the promotion of the proper use of antibiotics are necessary.
Yim, Juwon; Smith, Jordan R; Rybak, Michael J
2017-05-01
Enterococcus species are the second most common cause of nosocomial infections in the United States and are particularly concerning in critically ill patients with preexisting comorbid conditions. Rising resistance to antimicrobials that were historically used as front-line agents for treatment of enterococcal infections, such as ampicillin, vancomycin, and aminoglycosides, further complicates the treatment of these infections. Of particular concern are Enterococcus faecium strains that are associated with the highest rate of vancomycin resistance. The introduction of antimicrobial agents with specific activity against vancomycin-resistant Enterococcus (VRE) faecium including daptomycin, linezolid, quinupristin-dalfopristin, and tigecycline did not completely resolve this clinical dilemma. In this review, the mechanisms of action and resistance to currently available anti-VRE antimicrobial agents including newer agents such as oritavancin and dalbavancin will be presented. In addition, novel combination therapies including β-lactams and fosfomycin, and the promising results from in vitro, animal studies, and clinical experience in the treatment of VRE faecium will be discussed. © 2017 Pharmacotherapy Publications, Inc.
Jahansepas, Ali; Ahangarzadeh Rezaee, Mohammad; Hasani, Alka; Sharifi, Yaeghob; Rahnamaye Farzami, Marjan; Dolatyar, Alireza; Aghazadeh, Mohammad
2018-04-30
This study was conducted to investigate the phenotypic and genotypic characteristics of vancomycin-resistant Enterococcus faecalis and Enterococcus faecium. Antibiotic resistance and virulence genes in the aforementioned resistant isolates were studied using the epsilometer (E)-test and polymerase chain reaction (PCR). These isolates were subjected to typing by pulsed-field gel electrophoresis (PFGE). Thirty vancomycin-resistant enterococci (VRE; 18.75%) were isolated from a total of 160 various clinical specimens cultured for any bacterial growth. Of these, 11 (36.7%) isolates were identified as E. faecalis and 19 (63.3%) as E. faecium. Minimum inhibitory concentrations (MICs) of vancomycin, teicoplanin, and three alternative therapeutic options (linezolid, daptomycin, and quinupristin/dalfopristin) were determined using the E-test. Multiplex PCR was done for confirming species, identification of the resistant genotypes, and the detection of the virulence genes. Finally, the clonal relationship of all VRE strains was studied by PFGE. All VRE strains showed vancomycin MIC ≥256 μg/mL, and 27 (90%) isolates carried the vanA gene, whereas none of the isolates carried vanB. The most common resistance antibiotic pattern observed was toward rifampicin (n = 30 [100%]). Among all virulence genes studied, gelE (n = 28 [93.33%]) was found as the most prevalent virulent gene. VRE isolates exhibited 90%, 46.67%, 100%, and 66.67% resistance to teicoplanin, linezolid, quinupristin/dalfopristin, and daptomycin, respectively. Molecular typing demonstrated 16 PFGE types of VRE isolates (A-P). Although vanA was carried by most of the isolates, PFGE displayed small clonal dissemination among VR E. faecium and VR E. faecalis species.
Jenkins, S G; Raskoshina, L; Schuetz, A N
2011-11-01
A total of 142 stool specimens were evaluated for vancomycin-resistant enterococcus (VRE). Twenty-four-hour sensitivities and specificities, respectively, were 98% and 95% for Spectra VRE chromogenic agar (Remel, Lenexa, KS), 86% and 92% for bile esculin azide with vancomycin (BEAV; Remel), and 96.5% and 92% for Campylobacter agar (CAMPY; Remel). Spectra VRE and CAMPY are significantly more sensitive at 24 h than BEAV.
Sadeghifard, Nourkhoda; Soheili, Sara; Sekawi, Zamberi; Ghafourian, Sobhan
2014-01-01
The current study was conducted to investigate the relationship between vancomycin-resistant Enterococcus faecalis (VRE) and the presence of mazEF toxin-antitoxin (TA) system, which may be useful as target for novel antimicrobial therapy concepts. The susceptibility of E. faecalis was determined by MIC, and the presence of the mazEF TA system was evaluated by PCR. Among 200 E. faecalis isolates 39.5% showed resistance to vancomycin (VRE), while 60.5% were susceptible strains (VSE). The mazEF TA system was positive in all VRE isolates (100%), but less prevalent (38/121, 31.4%) among the 121 VSE strains. In conclusion, our study demonstrated a positive relationship between the presence of vancomycin resistance and mazEF TA system. This observation may introduce therapeutic options against a novel antimicrobial target in enterococci.
Getachew, Y; Hassan, L; Zakaria, Z; Zaid, C Z M; Yardi, A; Shukor, R A; Marawin, L T; Embong, F; Aziz, S A
2012-11-01
This study determined the risk factors and characteristics of vancomycin-resistant Enterococci (VRE) among individuals working with animals in Malaysia. Targeted cross-sectional studies accompanied with laboratory analysis for the identification and characterization of resistance and virulence genes and with genotype of VRE were performed. VRE were detected in 9·4% (95% CI: 6·46-13·12) of the sampled populations. Enterococcus faecium, Enterococcus faecalis and Enterococcus gallinarum were isolated, and vanA was detected in 70% of the isolates. Enterococcus faecalis with vanB was obtained from one foreign poultry worker. At least one virulence gene was detected in >50% of Ent. faecium and Ent. faecalis isolates. The esp and gelE genes were common among Ent. faecium (58·3%) and Ent. faecalis (78%), respectively. The VRE species showed diverse RAPD profiles with some clustering of strains based on the individual's background. However, the risk factors found to be significantly associated with the prevalence of VRE were age (OR: 5·39, 95% CI: 1·98-14·61) and previous hospitalization (OR: 4·06, 95% CI: 1·33-12·35). VRE species isolated from individuals in this study have high level of vancomycin resistance, were genetically diverse and possessed the virulence traits. Age of individuals and history of hospitalization rather than occupational background determined VRE colonization. This study provides comprehensive findings on the epidemiological and molecular features of VRE among healthy individuals working with animals. © 2012 The Authors Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.
Benamu, Esther; Deresinski, Stanley
2018-01-01
Vancomycin-resistant enterococcus (VRE) is now one of the leading causes of nosocomial infections in the United States. Hematopoietic stem cell transplantation (HSCT) recipients are at increased risk of VRE colonization and infection. VRE has emerged as a major cause of bacteremia in this population, raising important clinical questions regarding the role and impact of VRE colonization and infection in HSCT outcomes as well as the optimal means of prevention and treatment. We review here the published literature and scientific advances addressing these thorny issues and provide a rational framework for their approach. PMID:29333263
Somily, Ali M; Al-Mohizea, Maha M; Absar, Muhammed M; Fatani, Amal J; Ridha, Afaaf M; Al-Ahdal, Mohammed N; Senok, Abiola C; Al-Qahtani, Ahmed A
2016-08-01
Vancomycin-resistant enterococci (VRE) are a major cause of nosocomial infections with high mortality and morbidity. There is limited data on the molecular characterization of VRE in Saudi Arabia. This study was carried out to investigate the premise that a shift in VRE epidemiology is occurring in our setting. Enterococcus species identification and susceptibility testing plus VRE phenotypic confirmation by vancomycin and teicoplanin E-test were carried out. Vancomycin resistance genes were detected by PCR. Strain typing was conducted using PFGE. Among the strains of Enterococcus spp. investigated in this study, 17 (4.5%) were VRE. With the exception of one isolate from rectal swab, all others were clinical specimens with blood being the commonest source (n = 11; 64.7%), followed by urine (n = 3; 17.6%). The 17 VRE isolates were Enterococcus faecium (n/N = 13/17) and Enterococcus gallinarum (n/N = 4/17). Among E. faecium isolates, vanA(+)/vanB(+) (n/N = 8/13; 62%) exhibiting VanB phenotype were predominant. One of the five vanA(+)E. faecium isolates exhibited a VanB phenotype indicative of vanA genotype-VanB phenotype incongruence. E. gallinarum isolates exhibited a Van C phenotype although two were vanA(+)/vanC1(+). PFGE revealed a polyclonal distribution with eight pulsotypes. These findings indicate an evolving VRE epidemiology with vanA(+)/vanB(+) isolates and vanA genotype-VanB phenotype incongruence isolates, which were previously described as colonizers, are now causing clinical infection. Copyright © 2016 Elsevier Ltd. All rights reserved.
A new risk factor for neonatal vancomycin-resistant Enterococcus colonisation: bacterial probiotics.
Topcuoglu, Sevilay; Gursoy, Tugba; Ovalı, Fahri; Serce, Ozge; Karatekin, Guner
2015-08-01
Vancomycin-resistant Enterococcus (VRE) colonisation can be controlled with strict adherence to infection control measures. We describe a VRE outbreak coincident with bacterial probiotic trial. Relationship between probiotic and VRE colonisation, and other possible risk factors were investigated. Two hundred and ten infants with gestational age less than 32 weeks had been randomised for a trial with probiotic preparation containing Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus plantarum, Bifidobacterium lactis, fructooligosaccharide, galactooligosaccharide, colostrums and lactoferrin (NBL probiotic ATP®; Nobel, Istanbul, Turkey) between February 2012 and August 2013 when a VRE outbreak also took place. The existence of a relationship between this probiotic preparation and VRE colonisation was investigated. The begining and end of the outbreak were coincident with the beginning and end of the probiotic trial. Demographic and clinical features of neonates did not differ between VRE colonised (n = 94) and non-colonised infants (n = 116) except for vancomycin (p = 0.012) and probiotic (p < 0.001) use. Probiotic and vancomycin exposure were significant risk factors for VRE colonisation. The acquisition and transfer of resistance genes of bacteria may be mediated by probiotics. Therefore, the safety of probiotics is a concern and should be investigated further.
Sadeghifard, Nourkhoda; Soheili, Sara; Sekawi, Zamberi; Ghafourian, Sobhan
2014-01-01
The current study was conducted to investigate the relationship between vancomycin-resistant Enterococcus faecalis (VRE) and the presence of mazEF toxin-antitoxin (TA) system, which may be useful as target for novel antimicrobial therapy concepts. The susceptibility of E. faecalis was determined by MIC, and the presence of the mazEF TA system was evaluated by PCR. Among 200 E. faecalis isolates 39.5% showed resistance to vancomycin (VRE), while 60.5% were susceptible strains (VSE). The mazEF TA system was positive in all VRE isolates (100%), but less prevalent (38/121, 31.4%) among the 121 VSE strains. In conclusion, our study demonstrated a positive relationship between the presence of vancomycin resistance and mazEF TA system. This observation may introduce therapeutic options against a novel antimicrobial target in enterococci. PMID:24653969
Jenkins, S. G.; Raskoshina, L.; Schuetz, A. N.
2011-01-01
A total of 142 stool specimens were evaluated for vancomycin-resistant enterococcus (VRE). Twenty-four-hour sensitivities and specificities, respectively, were 98% and 95% for Spectra VRE chromogenic agar (Remel, Lenexa, KS), 86% and 92% for bile esculin azide with vancomycin (BEAV; Remel), and 96.5% and 92% for Campylobacter agar (CAMPY; Remel). Spectra VRE and CAMPY are significantly more sensitive at 24 h than BEAV. PMID:21880967
Sharifi, Yaeghob; Hasani, Alka; Ghotaslou, Reza; Varshochi, Mojtaba; Hasani, Akbar; Aghazadeh, Mohammad; Milani, Morteza
2012-01-01
Recent data indicates an increasing rate of vancomycin resistance in clinical enterococcal isolates worldwide. The nosocomial enterococci are likely to harbor virulence elements that increase their ability to colonize hospitalized patients. The aim of this study was to characterize virulence determinants in vancomycin-resistant enterococci (VRE) obtained from various clinical sources. During the years 2008 to 2010, a total of 48 VRE isolates were obtained from three University teaching hospitals in Northwest, Iran. Initially, phenotypic speciation was done and minimum inhibitory concentrations (MICs) of vancomycin were determined by agar dilution method and E-test. Then, species identification and resistance genotypes along with detection of virulence genes (asa1, esp, gelE, ace and cpd) of the isolates were performed by multiplex PCR. Thirty eight isolates were identified as vancomycin-resistant Enterococcus faecium (VREfm) and ten as E. faecalis (VREfs). Irrespective of the species, vanA gene (89.58%) was dominant and three phenotypically vancomycin susceptible E. faecium isolates carried the vanB gene. Among virulence genes investigated, the esp was found in 27(71%) VREfm strains, but did not in any VREfs. Other virulence determinants were highly detected in VREfs strains. Our data indicate a high prevalence of E. faecium harboring vancomycin resistance with vanA genotype and the two VRE species displayed different virulence genes. PMID:22582098
Detection of vancomycin resistances in enterococci within 3 1/2 hours
NASA Astrophysics Data System (ADS)
Schröder, U. -Ch.; Beleites, C.; Assmann, C.; Glaser, U.; Hübner, U.; Pfister, W.; Fritzsche, W.; Popp, J.; Neugebauer, U.
2015-02-01
Vancomycin resistant enterococci (VRE) constitute a challenging problem in health care institutions worldwide. Novel methods to rapidly identify resistances are highly required to ensure an early start of tailored therapy and to prevent further spread of the bacteria. Here, a spectroscopy-based rapid test is presented that reveals resistances of enterococci towards vancomycin within 3.5 hours. Without any specific knowledge on the strain, VRE can be recognized with high accuracy in two different enterococci species. By means of dielectrophoresis, bacteria are directly captured from dilute suspensions, making sample preparation very easy. Raman spectroscopic analysis of the trapped bacteria over a time span of two hours in absence and presence of antibiotics reveals characteristic differences in the molecular response of sensitive as well as resistant Enterococcus faecalis and Enterococcus faecium. Furthermore, the spectroscopic fingerprints provide an indication on the mechanisms of induced resistance in VRE.
Vancomycin resistant enterococci in farm animals – occurrence and importance
Nilsson, Oskar
2012-01-01
The view on enterococci has over the years shifted from harmless commensals to opportunistic but important pathogens mainly causing nosocomial infections. One important part of this development is the emergence of vancomycin resistance enterococci (VRE). The term VRE includes several combinations of bacterial species and resistance genes of which the most clinically important is Enterococcus faecium with vanA type vancomycin resistance. This variant is also the most common VRE among farm animals. The reason for VRE being present among farm animals is selection by extensive use of the vancomycin analog avoparcin for growth promotion. Once the use of avoparcin was discontinued, the prevalence of VRE among farm animals decreased. However, VRE are still present among farm animals and by spread via food products they could potentially have a negative impact on public health. This review is based on the PhD thesis Vancomycin Resistant Enterococci in Swedish Broilers – Emergence, Epidemiology and Elimination and makes a short summary of VRE in humans and food producing animals. The specific situation regarding VRE in Swedish broiler production is also mentioned. PMID:22957131
Yang, Jing-xian; Li, Tong; Ning, Yong-zhong; Shao, Dong-hua; Liu, Jing; Wang, Shu-qin; Liang, Guo-wei
2015-07-01
The incidence of vancomycin-resistant enterococcus (VRE) in China is increasing, the molecular epidemiology of VRE in China is only partly known. This study was conducted to assess the molecular characterization of resistance, virulence and clonality of 69 vancomycin-resistant Enterococcus faecium (VREfm) and seven vancomycin-resistant Enterococcus faecalis (VREfs) isolates obtained from a Chinese hospital between July 2011 and July 2013. The glycopeptide resistance genes (VanA and VanB) were screened by multiplex PCR. The presence of five putative virulence genes (esp, gelE, asa1, hyl and cylA) were evaluated by another multiplex PCR. Multilocus sequence typing (MLST) scheme was used to assess the clonality. All 76 VRE isolates exhibited VanA phenotype and harbored VanA gene. Esp was the only gene detected both in VREfm and VREfs strains, accounting for 89.9% and 42.9%, respectively. The hyl gene was merely positive in 27.5% of VREfm strains. MLST analysis demonstrated three STs (ST6, ST4 and ST470) in VREfs and twelve STs (ST78, ST571, ST17, ST564, ST389, ST18, ST547, ST341, ST414, ST343, ST262 and ST203) in VREfm, which were all designated as CC17 by eBURST algorithm. An outbreak of VREfm belonging to ST571 was found to happen within the neurology ward in this hospital. To our knowledge, this is the first report of ST6 (CC2) VREfs strains in China and the first outbreak report of VREfm strains belonging to ST571 around the world. Our data could offer important information for understanding the molecular features of VRE in China. Copyright © 2015 Elsevier B.V. All rights reserved.
Dahms, R; Carlson, M; Lohr, B; Beilman, G
2000-09-01
Vancomycin-resistant Enterococcus (VRE) has emerged as a significant nosocomial pathogen in the surgical intensive care unit (SICU). We wished to test the hypothesis that the use of selective digestive tract decontamination (SDD) in the SICU affects the frequency of VRE isolation. A retrospective review of hospital records and the SICU database was performed using patients admitted to the SICU service for three or more days from January 1, 1996 to December 31, 1999 at our large tertiary-care teaching hospital. During this time use of SDD in selected patient populations decreased due to physician preference. Information gathered included length of SICU stay, presence of VRE infection or colonization, and use and duration of SDD protocol, vancomycin, and ceftazidime. There were 110 newly diagnosed VRE cases in the SICU during this time period. During the same time period 54 patients received SDD. Eight patients who received SDD had positive VRE cultures and seven had the initial positive culture after receiving SDD. Overall, 9.1% of eligible SICU patients received SDD, 18.5% of patients in the SICU for over 3 days had VRE, 7.3% of VRE patients received SDD, and 13.0% of the SICU patients who received SDD subsequently developed VRE. SDD use was not associated with VRE in univariate analysis. Logistic regression analysis showed higher odds ratios for SDD use in combination with vancomycin than for vancomycin use alone (OR=4.3 vs. 10.9). Odds ratios were over three times higher for SDD plus vancomycin plus ceftazidime use when compared to vancomycin plus ceftazidime use alone (OR=70.5 vs. 19.8). We conclude that administration of SDD alone did not correlate with increased VRE isolation, but that SDD use in conjunction with vancomycin and ceftazidime was associated with VRE isolation.
Roberts, Marilyn C; No, David B; Marzluff, John M; Delap, Jack H; Turner, Robert
2016-10-15
Vancomycin-resistant enterococci [VRE] have been isolated from municipal, hospital and agricultural wastewater, recreational beaches, wild animals, birds and food animals around the world. In this study, American crows (Corvus brachyrhynchos) from sewage treatment plants (WWTP), dairy farms, and a large roost in a restored wetland with corresponding environmental samples were cultured for VRE. A total of 245 samples [156 crows, 89 environmental] were collected and screened for acquired vanA, vanB and/or intrinsic vanC1 genes. Samples were enriched overnight in BHI supplemented with 20μg/mL aztreonam, 4μg/mL vancomycin and plated on m-Enterococcus agar media supplemented with 6μg/mL vancomycin. Selected colonies were grown on BHI media supplemented with 18μg/mL vancomycin. Of these, 24.5% of the crow and 55% the environmental/cow samples were VRE positive as defined by Enterococcus spp. able to grow on media supplemented with 18μg/mL vancomycin. A total of 122 VRE isolates, 43 crow and 79 environmental isolates were screened, identified to species level using 16S sequencing and further characterized. Four vanA E. faecium and multiple vanC1 E. gallinarum were identified from crows isolated from three sites. E. faecium vanA and E. gallinarum vanC1 along with other Enterococcus spp. carrying vanA, vanB, vanC1 were isolated from three environments. All enterococci were multidrug resistant. Crows were more likely to carry vanA E. faecium than either the cow feces or wetland waters/soils. Comparing E. gallinarum vanC1 from crows and their environment would be useful in determining whether crows share VRE strains with their environment. Copyright © 2016 Elsevier B.V. All rights reserved.
Singh, Jasjit; Esparza, Samuel; Patterson, Melanie; Vogel, Kate; Patel, Bijal; Gornick, Wendi
2013-04-01
In February 2007, we experienced an abrupt 8-fold increase in vancomycin-resistant Enterococcus (VRE)-positive pediatric hematology/oncology patients in isolation per day, peaking at 12 patients in isolation per day in June 2007. We enforced and expanded infection prevention practices and initiated a rigorous 6-month clearance process. After noting an eventual decrease, we modified clearance to a 3-month process, maintaining <1 patient/day in isolation by June 2009, subjectively improving family and staff satisfaction after this 2-year process. VRE infection was relatively uncommon (7.8%), although continued VRE colonization portended an overall poorer prognosis.
Osman, Kamelia M; Ali, Mohamed N; Radwan, Ismail; ElHofy, Fatma; Abed, Ahmed H; Orabi, Ahmed; Fawzy, Nehal M
2016-01-01
Although normally regarded harmless commensals, enterococci may cause a range of different infections in humans, including urinary tract infections, sepsis, and endocarditis. The acquisition of vancomycin resistance by enterococci (VRE) has seriously affected the treatment and infection control of these organisms. VRE are frequently resistant to all antibiotics that are effective treatment for vancomycin-susceptible enterococci, which leaves clinicians treating VRE infections with limited therapeutic options. With VRE emerging as a global threat to public health, we aimed to isolate, identify enterococci species from tilapia and their resistance to van-mediated glycopeptide (vanA and vanC) as well as the presence of enterococcal surface protein (esp) using conventional and molecular methods. The cultural, biochemical (Vitek 2 system) and polymerase chain reaction results revealed eight Enterococcus isolates from the 80 fish samples (10%) to be further identified as E. faecalis (6/8, 75%) and E gallinarum (2/8, 25%). Intraperitoneal injection of healthy Nile tilapia with the eight Enterococcus isolates caused significant morbidity (70%) within 3 days and 100% mortality at 6 days post-injection with general signs of septicemia. All of the eight Enterococcus isolates were found to be resistant to tetracycline. The 6/6 E. faecalis isolates were susceptible for penicillin, nitrofurantoin, gentamicin, and streptomycin. On the other hand 5/6 were susceptible for ampicillin, vancomycin, chloramphenicol, and ciprofloxacin. The two isolates of E. gallinarum were sensitive to rifampicin and ciprofloxacin and resistant to vancomycin, chloramphenicol, and erythromycin. Molecular characterization proved that they all presented the prototypic vanC element. On the whole, one of the two vancomycin resistance gene was present in 3/8 of the enterococci isolates, while the esp virulence gene was present in 1/8 of the enterococci isolates. The results in this study emphasize the potential role that aquatic environments are correlated to proximity to anthropogenic activities in determining the antimicrobial resistance patterns of Enterococcus spp. recovered from fish in the river Nile in Giza, Elmounib, Egypt as a continuation of our larger study on the reservoirs of antibiotic resistance in the environment.
Braga, Teresa M; Pomba, Constança; Lopes, M Fátima Silva
2013-01-25
Environmental dust from animal breeding facilities was never screened for the presence of enterococci, nor of vancomycin-resistant enterococci (VRE), despite the possibility of being a vehicle of transmission of strains and antibiotic resistance genes between food-producing animals and man. Bio-security measures in pig facilities include disinfection with biocides to avoid the dissemination of opportunistic pathogenic bacteria, namely enterococci and in particular VRE. We thus undertook collection of enterococci and VRE in a representative number of breeding pig facilities in Portugal (n=171) and analyzed their susceptibility to benzalkonium chloride (BC) and chlorhexidine (CHX). A prevalence of 15% of VRE was found, with 6% high-level resistance found, and MIC values for CHX and BC were similar to those commonly found among enterococcal isolates from related environments, 8 μg/ml and 4 μg/ml, respectively. Among the isolated high-level vancomycin resistant Enterococcus faecium carrying the vanA genotype, we found multilocus sequence types closely related to pig and human isolates from European countries and Brazil. These results strongly advise constant surveillance of this environment and its inclusion in future epidemiologic studies on VRE. Copyright © 2012 Elsevier B.V. All rights reserved.
Raeisi, Javad; Saifi, Mahnaz; Pourshafie, Mohammad Reza; Habibi, Mehri; Mohajerani, Hamid Reza; Akbari, Neda
2017-01-01
Introduction Vancomycin Resistant Enterococci (VRE) can be found all over the world. Thus, rapid detection of the isolates could be of high importance in the treatment or prevention of the associated disease. Aim To measure the turanose fermentation in Enterococcus faecalis clinical isolates for rapid differentiation of VRE and Vancomycin-Susceptible E. faecalis (VSE) isolates. Materials and Methods Forty E. faecalis samples were isolated from 200 clinical samples in Tehran Medical Center, Iran, from October 2012 to December 2012. These isolates were detected according to the standard microbial and biochemical tests. Detection of VRE isolates was originally performed by disk diffusion using 1 μg vancomycin disk, followed by Polymerase Chain Reaction (PCR) amplification of the vanA gene. Finally, the turanose consumption in 1%, 0.7% and 0.5% dilutions was detected by a phenotypic method. Results Among the 40 E. faecalis isolates, 20 vancomycin-susceptible and 20 vancomycin-resistant E. faecalis were isolated according to the disk diffusion and PCR of the vanA gene. There was a considerable difference between VRE and VSE isolates in 0.7% dilution of turanose. However, there was no significant difference between VRE and VSE in 1% and 0.5% dilutions of turanose. Conclusion Since detection of VRE isolates is of high importance, especially in nosocomial infections, phenotypic methods may be highly useful for this purpose. In conclusion, our data indicate that VRE isolated from clinical samples could be distinguished from VSE isolates by turanose fermentation at dilution 0.7%. PMID:28511382
Descourouez, Jillian L; Jorgenson, Margaret R; Wergin, Justine E; Rose, Warren E
2013-03-01
Fosfomycin is a potential option for vancomycin-resistant enterococcus (VRE) infections despite limited in vitro and clinical data. In this study, 32 VRE isolates from renal transplant patients with urinary stent infections were susceptible to fosfomycin, daptomycin, and linezolid and resistant to amoxicillin, minocycline, and nitrofurantoin based on their MIC(50)s and MIC(90)s. Fosfomycin was bacteriostatic at 0.5 to 16× the MIC (32 to 2,048 μg/ml); synergy occurred when fosfomycin was combined with daptomycin (2.8 to 3.9 log(10) CFU/ml kill; P < 0.001) or amoxicillin (2.6 to 3.4; P < 0.05). These combinations may be potent options to treat VRE urinary infections pending investigation of clinical efficacy.
Taučer-Kapteijn, Maja; Hoogenboezem, Wim; Heiliegers, Laura; de Bolster, Danny; Medema, Gertjan
2016-07-01
The emergence of clinical enterococcal isolates that are resistant to both ampicillin and vancomycin is a cause of great concern, as therapeutic alternatives for the treatment of infections caused by such organisms are becoming limited. Aquatic environments could play a role in the dissemination of antibiotic resistant enterococci. This study investigated the presence of ampicillin and vancomycin resistant enterococci in the treated effluent of six wastewater treatment plants (WWTPs) and in surface water used as a source for drinking water production in the Netherlands. Membrane filtration in combination with selective media with ampicillin or vancomycin was applied to determine the presence of ampicillin resistant Enterococcus (ARE) and vancomycin resistant Enterococcus (VRE) species. Ampicillin resistant Enterococcus faecium (minimal inhibitory concentration (MIC) >16μg/mL; n=1033) was observed in all studied WWTP effluents. In surface water used for drinking water production (intake locations), no ARE or VRE were observed. At both types of location, intrinsic vancomycin resistant Pediococcus spp., Leuconostoc spp. and Lactobacillus spp. were isolated with the vancomycin medium. The ampicillin resistant E. faecium (AREfm) isolates (n=113) did not contain the vanA or vanB gene, but MIC testing for vancomycin showed intermediate vancomycin resistance (2-8μgmL(-1)) to occur in these AREfm strains. This study documents the discharge of ampicillin resistant E. faecium strains with intermediate vancomycin resistance by the WWTPs into the surface water, but no presence of these strains downstream at intake locations for drinking water production. Copyright © 2016 Elsevier GmbH. All rights reserved.
Raising the Alarmone: Within-Host Evolution of Antibiotic-Tolerant Enterococcus faecium
2017-01-01
ABSTRACT Enterococci are ancient commensal bacteria that recently emerged as leading causes of antibiotic-resistant, hospital-acquired infection. Vancomycin-resistant enterococci (VRE) epitomize why drug-resistant enterococcal infections are a problem: VRE readily colonize the antibiotic-perturbed gastrointestinal (GI) tract where they amplify to large numbers, and from there, they infect other body sites, including the bloodstream, urinary tract, and surgical wounds. VRE are resistant to many antimicrobials and host defenses, which facilitates establishment at the site of infection and confounds therapeutic clearance. Having evolved to colonize the GI tract, VRE are comparatively ill adapted to the human bloodstream. A recent study by Honsa and colleagues (E. S. Honsa et al., mBio 8:e02124-16, 2017, https://doi.org/10.1128/mBio.02124-16) found that a strain of vancomycin-resistant Enterococcus faecium evolved antibiotic tolerance within the bloodstream of an immunocompromised host by activating the stringent response through mutation of relA. Precisely how VRE colonize and infect and the selective pressures that led to the outgrowth of relA mutants are the subjects of ongoing research. PMID:28223450
Sng, L H; Cornish, N; Knapp, C C; Ludwig, M D; Hall, G S; Washington, J A
1998-04-01
Bacteremia due to a vancomycin-dependent enterococcus (VDE) occurred during long-term vancomycin therapy in a renal transplant recipient with underlying pancreatitis and a vancomycin-resistant enterococcal (VRE) wound infection and bacteremia. The VDE was isolated from blood during vancomycin therapy and grew only in the presence of vancomycin and D-alanine-D-alanine (DADA), a substance required for cell-wall synthesis. Colonies beyond the periphery of growth of the VDE around a vancomycin disk contained vancomycin-independent revertant mutants after 48 hours of incubation. Pulsed-field gel electrophoresis of the VDE, revertant mutant, the initial blood culture isolate of VRE, and an autopsy isolate showed that the four strains were identical. Antimicrobial susceptibility testing was performed using standard macrobroth and microbroth dilution methods. DADA was used as a growth supplement for macrobroth dilution susceptibility testing of the VDE isolate. Minimum inhibitory concentrations (MICs) were similar for the VRE isolate and the VDE revertant, which were both resistant to ampicillin, high-level gentamicin, ciprofloxacin, imipenem, vancomycin, and daptomycin, and were susceptible to fusidic acid, high-level streptomycin, rifampin, and a quinupristin-dalfopristin combination. The MICs of teicoplanin were 2 microg/mL or less and 16 microg/mL for the clinical VRE isolate and the VDE revertant, respectively. The autopsy isolate was resistant to all antimicrobials tested and showed a fourfold increase in MICs for quinupristin-dalfopristin compared with that of the original blood isolate. The VDE was susceptible to all drugs tested except vancomycin.
Alotaibi, Sulaiman M I; Ayibiekea, Alafate; Pedersen, Annemette Frøling; Jakobsen, Lotte; Pinholt, Mette; Gumpert, Heidi; Hammerum, Anette M; Westh, Henrik; Ingmer, Hanne
2017-12-01
In Danish hospitals, the number of infections caused by vancomycin-resistant Enterococcus faecium (VRE faecium) has dramatically increased in recent years. Hospital disinfectants are essential in eliminating pathogenic microorganisms, and reduced susceptibility may contribute to hospital-associated infections. We have addressed whether clinical VRE faecium display decreased biocide susceptibility when compared to vancomycin-sensitive Enterococcus faecium (VSE faecium) isolates. In total 12 VSE faecium and 37 VRE faecium isolates obtained from Danish hospitals over an extended time period were tested for susceptibility towards three commonly applied biocides, namely benzalkonium chloride, chlorhexidine and hydrogen peroxide. For benzalkonium chloride, 89 % of VRE faecium strains had a minimal inhibitory concentration (MIC) of 8 mg l -1 , whereas for VSE faecium, only 25 % of the strains had an MIC of 8 mg l -1 . For chlorhexidine, the MIC of 95 % of VRE faecium strains was 4 mg l -1 or higher, while only 33 % of VSE faecium strains displayed MIC values at the same level. In contrast, both VRE and VSE faecium displayed equal susceptibility to hydrogen peroxide, but a higher minimal bactericidal concentration (MBC) was found for the former. The efflux activity was also assessed, and this was generally higher for the VRE faecium strains compared to VSE faecium. VRE faecium from Danish hospitals demonstrated decreased susceptibility towards benzalkonium chloride and chlorhexidine compared to VSE faecium, where the use of chlorhexidine is particularly heavy in the hospital environment. These findings suggest that biocide tolerance may characterize VRE faecium isolated in Danish hospitals.
In vitro activity of salicylamide derivatives against vancomycin-resistant enterococci.
Pospisilova, Sarka; Michnova, Hana; Kauerova, Tereza; Pauk, Karel; Kollar, Peter; Vinsova, Jarmila; Imramovsky, Ales; Cizek, Alois; Jampilek, Josef
2018-07-01
A series of 13 salicylamide derivatives was assessed for antibacterial activity against three isolates of vancomycin-resistant Enterococcus faecalis (VRE) and Enterococcus faecalis ATCC 29212 as a quality standard. The minimum inhibitory concentration was determined by the broth microdilution method with subsequent subcultivation of aliquots to assess minimum bactericidal concentration. The growth kinetics was established by the time-kill assay. Ampicillin, ciprofloxacin, tetracycline and vancomycin were used as the reference antibacterial drugs. Three of the investigated compounds showed strong bacteriostatic activity against VRE (0.199-25 µM) comparable to or more potent than ampicillin and ciprofloxacin. In addition, these compounds were tested for synergistic effect with vancomycin, ciprofloxacin and tetracycline, while 5-chloro-2-hydroxy-N-[4-(trifluoromethyl)phenyl]benzamide showed the highest potency as well as synergistic activity with vancomycin against VRE 368. Screening of the cytotoxicity of the most effective compounds was performed using human monocytic leukemia THP-1 cells, and based on LD 50 values, it can be stated that the compounds have insignificant toxicity against human cells. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lellek, Heinrich; Franke, Gefion C; Ruckert, Carolin; Wolters, Manuel; Wolschke, Christiane; Christner, Martin; Büttner, Henning; Alawi, Malik; Kröger, Nicolaus; Rohde, Holger
2015-12-01
Infections due to vancomycin-resistant enterococci (VRE) are of significant importance in high-risk populations, and daptomycin is a bactericidal antibiotic to treat multidrug-resistant VRE in these patients. The emergence of daptomycin non-susceptibility invasive VRE during daptomycin therapy is a major clinical issue. Here the hypothesis was tested that systemic daptomycin therapy also induces the emergence of daptomycin non-susceptible (DNS-) isolates in colonizing VRE populations. 11 vancomycin-resistant Enterococcus faecium strain pairs recovered from rectal swabs were available for analysis. All initial isolates exhibited daptomycin MICs within the wild type MIC distribution of E. faecium (MIC≤4 mg/L). In follow-up isolates from five patients a 4-16-fold daptomycin MIC increase was detected. All patients carrying DNS-VRE received daptomycin (14-28 days) at 4 mg/kg body weight, while two patients in whom no DNS-VRE emerged were only treated with daptomycin for 1 and 4 days, respectively. Comparative whole genome sequencing identified DNS-VRE-specific single nucleotide polymorphisms (SNP), including mutations in cardiolipin synthase (Cls), and additional SNPs in independent genes potentially relevant for the DNS phenotype. Mutations within cls were also identified in three additional, colonizing DNS-VRE. Of these, at least one strain was transmitted within the hospital. In none of the VRE isolates tested, pre-existing or de novo mutations in the liaFSR operon were detected. This is the first report documenting the emergence of DNS-VRE in colonizing strains during daptomycin treatment, putting the patient at risk for subsequent DNS-VRE infections and priming the spread of DNS-VRE within the hospital environment. Copyright © 2015 Elsevier GmbH. All rights reserved.
Talebi, Malihe; Sadeghi, Javad; Rahimi, Fateh; Pourshafie, Mohammad Reza
2015-04-01
Vancomycin-resistant enterococci (VRE) are important nosocomial pathogens and food chain has been considered as an assumed source for dissemination of VRE to human. The presence of VRE isolates from food samples and typing of these isolates with Phene plate, a biochemical fingerprinting method, were investigated. Thirty samples of meat, chicken and cheese were analyzed for VRE during 2010. Antibiotic susceptibility tests and minimum inhibitory concentration (MIC) were also examined. VRE isolates were typed with the Phene plate system (PhPlate), a biochemical fingerprinting method. A total of 70 VRE isolates were obtained and identified as Enterococcus faecium by species-specific PCR. All the isolates carried vanA, while none of them harbored vanB. The VRE isolates included 35, 27, and 8 isolates from meat, chicken and cheese, respectively. Typing with the PhPlate revealed a diversity index of 0.78 for E. faecium, containing 10 common and four single types. The results of antibiotic susceptibility and MIC tests showed an increased resistance to ciprofloxacin, erythromycin, ampicillin and gentamicin, to which, 100%, 100%, 100%, and 95% of VRE isolates were resistant, respectively. Only 5% of the isolates were resistant to chloramphenicol and the MIC of the isolates for vancomycin and teicoplanin was ≥ 256 µg/mL and for gentamicin-resistant isolates it was 1024 µg/mL. Conventional and molecular identification tests exhibited that all the isolates were E. faecium carrying vanA. None of the isolates harbored vanB. The results showed that enterococci are common contaminants in food. Indeed, this study indicates a high prevalence of multidrug-resistant enterococci in food of animal origin in Iran. Isolating some persisting enterococcal isolates revealed that continuous surveillance of antimicrobial resistance in enterococci from food is essential.
Lozano, Carmen; Gonzalez-Barrio, David; Camacho, Maria Cruz; Lima-Barbero, Jose Francisco; de la Puente, Javier; Höfle, Ursula; Torres, Carmen
2016-11-01
The objectives were to evaluate the presence of vancomycin-resistant enterococci with acquired (VRE-a) and intrinsic (VRE-i) resistance mechanisms in fecal samples from different wild animals, and analyze their phenotypes and genotypes of antimicrobial resistance. A total of 348 cloacal/rectal samples from red-legged partridges (127), white storks (81), red kites (59), and wild boars (81) (June 2014/February 2015) were inoculated in Slanetz-Bartley agar supplemented with vancomycin (4 μg/mL). We investigated the susceptibility to 12 antimicrobials and the presence of 19 antimicrobial resistance and five virulence genes. In addition, we performed multilocus sequence typing, detection of IS16 and studied Tn1546 structure. One VRE-a isolate was identified in one wild boar. This isolate was identified as Enterococcus faecium, harbored vanA gene included into Tn1546 (truncated with IS1542/IS1216), and belonged to the new ST993. This isolate contained the erm(A), erm(B), tet(M), dfrG, and dfrK genes. Neither element IS16 nor the studied virulence genes were detected. Ninety-six VRE-i isolates were identified (89 Enterococcus gallinarum and seven Enterococcus casseliflavus), with the following prevalence: red kites (71.2 %), white storks (46.9 %), red-legged partridges (7.9 %), and wild boars (4.9 %). Most E. gallinarum isolates showed resistance to tetracycline (66.3 %) and/or erythromycin (46.1 %). High-level resistance to aminoglycosides was present among our VRE-i isolates: kanamycin (22.9 %), streptomycin (11.5 %), and gentamicin (9.4 %). In general, VRE-i isolates of red kites showed higher rates of resistance for non-glycopeptide agents than those of other animal species. The dissemination of acquired resistance mechanisms in natural environments could have implications in the global spread of resistance with public health implications.
2014-03-01
Micrococcus sp., Enterococcus faecalis, Enterococcus faecium, Vancomycin resistant Enterococcus, and Escherichia coli). During the second Quarter of...mm) 803 D10 Rhinoptera bonasus MRSA (9.5) MSSA (4.5) Bacillus cereus (6) Listeria monocytogenes (6) MRSA (2) Micrococcus sp (7) VRE (2) 803...E6 Rhinoptera bonasus MRSA (7.5) MSSA (8.5) VRE (4.5) Bacillus subtilis (10) MRSA (10) MRSA (10) Micrococcus (16) Listeria monocytogenes (13
Padmavathy, Kesavaram; Madhavan, Radha; Krithika, Nagarajan; Kiruthiga, Alexander
2015-01-01
Prolonged hospitalization and exposure to third generation cephalosporins are reported to facilitate the acquisition and colonization of Vancomycin Resistant Enterococci (VRE). Though VRE is not uncommon in India, urinary tract infection with a vanA genotype is a cause of serious concern as VRE co-exhibit resistance to aminoglycosides. In India, majority of the VRE isolates recovered from hospitalized patients include Enterococcus faecium. We report a case of catheter associated urinary tract infection by an endogenous, multidrug resistant E. faecalis of vanA genotype following prolonged hospitalization, ICU stay, catheterisation and exposure to 3G cephalosporin and metronidazole. The patient responded to linezolid therapy. PMID:26435949
Chang, Wen-Hsin; Yu, Ju-ching; Yang, Sung-Yi; Lin, Yi-Cheng; Wang, Chih-Hung; You, Huey-Ling; Wu, Jiunn-Jong; Lee, Gwo-Bin
2017-01-01
Vancomycin-resistant Enterococcus (VRE) is a kind of enterococci, which shows resistance toward antibiotics. It may last for a long period of time and meanwhile transmit the vancomycin-resistant gene (vanA) to other bacteria. In the United States alone, the resistant rate of Enterococcus to vancomycin increased from a mere 0.3% to a whopping 40% in the past two decades. Therefore, timely diagnosis and control of VRE is of great need so that clinicians can prevent patients from becoming infected. Nowadays, VRE is diagnosed by antibiotic susceptibility test or molecular diagnosis assays such as matrix-assisted laser desorption ionization/time-of-flight mass spectrometry and polymerase chain reaction. However, the existing diagnostic methods have some drawbacks, for example, time-consumption, no genetic information, or high false-positive rate. This study reports an integrated microfluidic system, which can automatically identify the vancomycin resistant gene (vanA) from live bacteria in clinical samples. A new approach using ethidium monoazide, nucleic acid specific probes, low temperature chemical lysis, and loop-mediated isothermal amplification (LAMP) has been presented. The experimental results showed that the developed system can detect the vanA gene from live Enterococcus in joint fluid samples with detection limit as low as 10 colony formation units/reaction within 1 h. This is the first time that an integrated microfluidic system has been demonstrated to detect vanA gene from live bacteria by using the LAMP approach. With its high sensitivity and accuracy, the proposed system may be useful to monitor antibiotic resistance genes from live bacteria in clinical samples in the near future. PMID:28798845
2017-11-10
ESBL Producing E.Coli; ESBL Producing K.Pneumoniae; Multidrug Resistant P.Aeruginosa; Carbapenem Resistant P.Aeruginosa; Methicillin Resistant Staphylococcus Aureus (MRSA); Vancomycin (Glycopeptide) Resistant Enterococcus (VRE)
Tedizolid susceptibility in linezolid- and vancomycin-resistant Enterococcus faecium isolates.
Klupp, E-M; Both, A; Belmar Campos, C; Büttner, H; König, C; Christopeit, M; Christner, M; Aepfelbacher, M; Rohde, H
2016-12-01
Vancomycin-resistant enterococci (VRE) are of ever-increasing importance, most notably in high-risk patient populations. Therapy options are often limited for these isolates, and apart from tigecycline and daptomycin, oxazolidinone linezolid is frequently administered. The broad usage of linezolid, however, has driven the emergence of linezolid-resistant VRE strains (LR-VRE), further shortening therapeutic options. Second-generation oxazolidinone tedizolid has the advantage of being active against a specific subset of LR-VRE, i.e. isolates expressing the plasmid-encoded chloramphenicol-florfenicol resistance (cfr) gene. Here we tested tedizolid activity in a collection of 30 LR Enterococcus faecium VRE (MIC range 32-256 mg/l) isolated between 2012 and 2015 from clinical and screening specimens. By pulsed field gel electrophoresis (PFGE) isolates were assigned to 16 clonal lineages. In three cases, linezolid-susceptible progenitor isolates of LR-VRE were isolated, thus demonstrating the de-novo emergence of the linezolid-resistant phenotype. PCR did not detect cfr, cfr(B) or novel oxazolidinone resistance gene optrA in LR-VRE. All isolates, however, carried mutations within the 23S rDNA. Compared to linezolid, tedizolid MICs were lower in all isolates (MIC range 2-32 mg/l), but remained above the FDA tedizolid breakpoint for E. faecalis at 0.5 mg/l. Thus, related to the predominant resistance mechanism, tedizolid is of limited value for treatment of most LR-VRE and represents a therapeutic option only for a limited subset of isolates.
Merrer, Jacques; Desbouchages, Laetitia; Serazin, Valérie; Razafimamonjy, Jimmy; Pauthier, François; Leneveu, Michel
2006-12-01
To assess the impact of antibiotic prophylaxis on the emergence of vancomycin-resistant strains of Enterococcus faecium, Enterococcus faecalis, and Staphylococcus aureus and the incidence of surgical site infection (SSI) after vancomycin or cefazolin prophylaxis for femoral neck fracture surgery. Prospective cohort study. A hospital with a high prevalence of methicillin-resistant S. aureus (MRSA) carriage. All patients admitted with a femoral neck fracture from March 1, 2004 through February 28, 2005 were prospectively identified and screened for MRSA and vancomycin-resistant (VRE) carriage at admission and at day 7. Deep incisional and organ/space SSIs were also recorded. Of 263 patients included in the study, 152 (58%) received cefazolin and 106 (40%) received vancomycin. At admission, the prevalence of MRSA carriage was 6.8%; it was 12% among patients with risk factors and 2.2% among patients with no risk factors (P=.002). At day 7 after surgery, there were 6 patients (2%) who had hospital-acquired MRSA, corresponding to 0.7% in the cefazolin group and 5% in the vancomycin group (P=.04); none of the MRSA isolates were resistant to glycopeptides. The rate of VRE carriage at admission was 0.4%. Three patients (1%) had acquired carriage of VRE (1 had E. faecium and 2 had E. faecalis); all 3 were in the cefazolin group (2% of patients) and none in the vancomycin group (P=.27). Eight SSIs (3%) occurred, 4% in the cefazolin group and 2% in the vancomycin group (P=.47). This preliminary study demonstrates that cefazolin and vancomycin prophylaxis have similar impacts on the emergence of glycopeptide-resistant pathogens. Neither MRSA infection nor increased rates of SSI with other bacteria were observed in the vancomycin group, suggesting that a larger multicenter study should be initiated.
Dubberke, Erik R; Mullane, Kathleen M; Gerding, Dale N; Lee, Christine H; Louie, Thomas J; Guthertz, Harriet; Jones, Courtney
2016-09-01
Background. Vancomycin-resistant Enterococcus (VRE) is a major healthcare-associated pathogen and a well known complication among transplant and immunocompromised patients. We report on stool VRE clearance in a post hoc analysis of the Phase 2 PUNCH CD study assessing a microbiota-based drug for recurrent Clostridium difficile infection (CDI). Methods. A total of 34 patients enrolled in the PUNCH CD study received 1 or 2 doses of RBX2660 (microbiota suspension). Patients were requested to voluntarily submit stool samples at baseline and at 7, 30, and 60 days and 6 months after the last administration of RBX2660. Stool samples were tested for VRE using bile esculin azide agar with 6 µg/mL vancomycin and Gram staining. Vancomycin resistance was confirmed by Etest. Results. VRE status (at least 1 test result) was available for 30 patients. All stool samples for 19 patients (63.3%, mean age 61.7 years, 68% female) tested VRE negative. Eleven patients (36.7%, mean age 75.5 years, 64% female) were VRE positive at the first test (baseline or 7-day follow-up). Of these patients, 72.7%, n = 8 converted to negative as of the last available follow-up (30 or 60 days or 6 months). Of the other 3: 1 died (follow-up data not available); 1 patient remained positive at all follow-ups; 1 patient retested positive at 6 months with negative tests during the interim. Conclusions. Although based on a small sample size, this secondary analysis demonstrated the possibility of successfully converting a high percentage of VRE-positive patients to negative in a recurrent CDI population with RBX2660.
Göker, Hakan; Karaaslan, Cigdem; Püsküllü, Mustafa Orhan; Yildiz, Sulhiye; Duydu, Yalcin; Üstündağ, Aylin; Yalcin, Can Özgür
2016-01-01
A series of novel polyhalogenated 2-phenylbenzimidazoles have been synthesized and evaluated for in vitro antistaphylococcal activity against drug-resistant bacterial strains (methicillin-resistant Staphylococcus aureus, and vancomycin-resistant Enterococcus faecium. Certain compounds inhibit bacterial growth perfectly. 11 was active than vancomycin (0.78 μg/mL) with the lowest MIC values with 0.19 μg/mL against methicillin-resistant Staphylococcus aureus, 8 and 35 exhibited best inhibitory activity against vancomycin-resistant Enterococcus faecium (1.56 μg/mL). The mechanism of action for this class of compounds appears to be different than clinically used antibiotics. These polyhalogenated benzimidazoles have potential for further investigation as a new class of potent anti-methicillin-resistant Staphylococcus aureus and anti-vancomycin-resistant Enterococcus faecium agents. © 2015 John Wiley & Sons A/S.
Stamper, Paul D; Shulder, Stephanie; Bekalo, Pearl; Manandhar, Deepika; Ross, Tracy L; Speser, Sharon; Kingery, Julie; Carroll, Karen C
2010-11-01
A study was performed on 517 surveillance rectal swabs to evaluate a selective and differential chromogenic medium, the BBL CHROMagar VanRE (CVRE), which enables recovery and identification of VanA- and VanB-containing Enterococcus faecium (ENFM) and Enterococcus faecalis (ENFS) isolates. Compared to BBL Enterococcosel agar, a bile-esculin-azide-vancomycin (BEAV) agar, the initial overall sensitivity, specificity, and positive and negative predictive values of CVRE for the detection of vancomycin-resistant ENFM and ENFS were 99.1% and 94.8% and 84.2% and 99.7%, respectively. Among our patient population, more vancomycin-resistant enterococci (VRE) were recovered with CVRE than BEAV.
Stamper, Paul D.; Shulder, Stephanie; Bekalo, Pearl; Manandhar, Deepika; Ross, Tracy L.; Speser, Sharon; Kingery, Julie; Carroll, Karen C.
2010-01-01
A study was performed on 517 surveillance rectal swabs to evaluate a selective and differential chromogenic medium, the BBL CHROMagar VanRE (CVRE), which enables recovery and identification of VanA- and VanB-containing Enterococcus faecium (ENFM) and Enterococcus faecalis (ENFS) isolates. Compared to BBL Enterococcosel agar, a bile-esculin-azide-vancomycin (BEAV) agar, the initial overall sensitivity, specificity, and positive and negative predictive values of CVRE for the detection of vancomycin-resistant ENFM and ENFS were 99.1% and 94.8% and 84.2% and 99.7%, respectively. Among our patient population, more vancomycin-resistant enterococci (VRE) were recovered with CVRE than BEAV. PMID:20739492
Arshadi, Maniya; Douraghi, Masoumeh; Shokoohizadeh, Leili; Moosavian, Seyed Mojtaba; Pourmand, Mohammad Reza
2017-10-01
This study aimed at determining the prevalence, antibiotic resistance patterns, and genetic linkage of Vancomycin Resistant Enterococcus faecium (VREfm) from different sources in the southwest of Iran. A total of 51 VREfm isolates were obtained and subjected to antibiotic susceptibility testing, carriage of virulence genes, and pulsed-field gel electrophoresis (PFGE) method. All the VRE isolates exhibited a high level of resistance to teicoplanin, ampicillin, erythromycin, ciprofloxacin, and gentamicin, also carried the vanA gene. A total of 59% and 34% of the VREfm strains harbored esp and hyl genes, respectively. The results from PFGE showed 31 PFGE patterns including 10 common types (CT) and 21 single types (ST) among the VRE isolates. Furthermore, isolates from different sources in each common type revealed cross transmission between clinical and environmental sources. Overall, the study showed a high prevalence of diverse VRE faecium strains with threatening resistance phenotypes in the environment and clinical sections among different ICU wards of Ahvaz hospitals. Copyright © 2017 Elsevier Ltd. All rights reserved.
León, Jorge; Aponte, Juan José; Rojas, Rosario; Cuadra, D'Lourdes; Ayala, Nathaly; Tomás, Gloria; Guerrero, Marco
2011-06-01
To determine the antimicrobial potential of marine actinomycetes against drug-resistant pathogens represented by strains of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VRE). Strains of actinomycetes (29) isolated from marine sediment were evaluated by their characteristics in two culture media and by testing their inhibitory capacity by in vitro antagonism against multi-drug resistant (MDR) pathogenic bacteria for MRSA and VRE. Organic extracts of 3 selected actinomicetes were processed to determine the minimum inhibitory concentration (MIC) of the active compound. Most isolated actinomycetes belong to a homogeneous group of write-gray actinomycetes with a good growth in Marine Agar. The inhibitory rates of the isolates were above 85% for both pathogens with inhibition zones greater than 69 and 78 mm in diameter for MRSA and VRE respectively. Dichloromethane extracts of 3 isolates (I-400A, B1-T61, M10-77) showed strong inhibitory activity of both pathogens, M10-77 being the highest actinomycete strain with antibiotic activity against methicillin-resistant S. aureus ATCC 43300 and vancomycin-resistant E. faecalis ATCC 51299 with a minimum inhibitory concentrations (MIC) of 7.9 and 31.7 μg/ml respectively. Phylogenetic analysis of M10-77 strain showed 99% similarity with the marine species Streptomyces erythrogriseus. Marine sediments of the central coast of Peru, are a source of actinomycetes strains showing high capacity to produce bioactive compounds able to inhibit pathogens classified as multi-drug-resistant such as methicillin-resistant S. aureus and vancomycin-resistant E. faecalis.
Oravcova, Veronika; Mihalcin, Matus; Zakova, Jana; Pospisilova, Lucie; Masarikova, Martina; Literak, Ivan
2017-12-31
Vancomycin-resistant enterococci (VRE) are pathogens of increasing medical importance. In Brno, Czech Republic, we collected 37 samples from the effluent of a wastewater treatment plant (WWTP), 21 surface swabs from hospital settings, and 59 fecal samples from hospitalized patients and staff. Moreover, we collected 284 gull cloacal swabs from the colony situated 35km downstream the WWTP. Samples were cultured selectively. Enterococci were identified using MALDI-TOF MS, phenotypically tested for susceptibility to antibiotics, and by PCR for occurrence of resistance and virulence genes. Pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST) were used to examine genotypic diversity. VRE carrying the vanA gene were found in 32 (86%, n=37) wastewater samples, from which we obtained 49 isolates: Enterococcus faecium (44) and Enterococcus gallinarum (2), Enterococcus casseliflavus (2), and Enterococcus raffinosus (1). From 33 (69%) of 48 inpatient stool samples, we obtained 39 vanA-carrying VRE, which belonged to E. faecium (33 isolates), Enterococcus faecalis (4), and Enterococcus raffinosus (2). Nearly one-third of the samples from hospital surfaces contained VRE with the vanA gene. VRE were not detected among gulls. Sixty-seven (84%, n=80) E. faecium isolates carried virulence genes hyl and/or esp. Virulence of E. faecalis was encoded by gelE, asa1, and cylA genes. A majority of the E. faecium isolates belonged to the clinically important sequence types ST17 (WWTP: 10 isolates; hospital: 4 isolates), ST18 (9;8), and ST78 (5;0). The remaining isolates belonged to ST555 (2;0), ST262 (1;6), ST273 (3;0), ST275 (1;0), ST549 (2;0), ST19 (0;1), ST323 (3;0), and ST884 (7;17). Clinically important enterococci carrying the vanA gene were almost continually detectable in the effluent of the WWTP, indicating insufficient removal of VRE during wastewater treatment and permanent shedding of these antibiotic resistant pathogens into the environment from this source. This represents a risk of their transmission to the environment. Copyright © 2017 Elsevier B.V. All rights reserved.
Aktürk, Hacer; Sütçü, Murat; Somer, Ayper; Karaman, Serap; Acar, Manolya; Ünüvar, Ayşegül; Anak, Sema; Karakaş, Zeynep; Özdemir, Aslı; Sarsar, Kutay; Aydın, Derya; Salman, Nuran
2016-09-05
To investigate the clinical impact of vancomycin-resistant enterococci (VRE) colonization in patients with hematologic malignancies and associated risk factors. Patients colonized and infected with VRE were identified from an institutional surveillance database between January 2010 and December 2013. A retrospective case-control study was performed to identify the risk factors associated with development of VRE infection in VRE-colonized patients. Fecal VRE colonization was documented in 72 of 229 children (31.4%). Seven VRE-colonized patients developed subsequent systemic VRE infection (9.7%). Types of VRE infections included bacteremia (n=5), urinary tract infection (n=1), and meningitis (n=1). Enterococcus faecium was isolated in all VRE infections. Multivariate analysis revealed severe neutropenia and previous bacteremia with another pathogen as independent risk factors for VRE infection development in colonized patients [odds ratio (OR): 35.4, confidence interval (CI): 1.7-72.3, p=0.02 and OR: 20.6, CI: 1.3-48.6, p=0.03, respectively]. No deaths attributable to VRE occurred. VRE colonization has important consequences in pediatric cancer patients.
Chan, Yean Yean; Abd Nasir, Mohd Hafiz B; Yahaya, Mohd Azli B; Salleh, Noor Mohamad Amin B; Md Dan, Azril Deenor B; Musa, Abd Majid B; Ravichandran, M
2008-02-29
A total of 225 samples from poultry farms and the surrounding environment were screened for vancomycin-resistant enterococci (VRE) and bifunctional aminoglycoside-resistant enterococci using conventional microbiological tests and a nanoplex polymerase chain reaction (PCR) assay. Three (1.3%) of the samples were found to contain vancomycin-resistant isolates (MIC>256 microg/mL) that had a vanA genotype. The three vanA positive VRE isolates were identified as different species. Only one isolate (Enterococcus faecium F 4/13_54) was sensitive to teicoplanin (MIC<0. 12-0.35 microg/mL); the other two VRE (E. faecalis A 21_35 and E. gallinarum F 5/10_1) were resistant to teicoplanin (MIC 3.6-->16 microg/mL). The vanC genotype was observed in nine (4%) of the samples collected. High-level gentamicin-resistant (HLGR) enterococci (with MIC ranging between 100 and 500 microg/mL) were detected in 44 samples. However, only 40 of these were found to possess the aac(6')-aph(2'') gene. The overall prevalence of VRE among the samples from the poultry farms and environment was 5.3%, but the prevalence of the clinically significant vanA VRE was 1.3%, and the prevalence of bifunctional aminoglycoside-resistant enterococci was slightly higher, at 19.5%.
Cassone, Marco; Mantey, Julia; Perri, Mary Beth; Gibson, Kristen; Lansing, Bonnie; McNamara, Sara; Patel, Payal K; Cheng, Vincent C C; Walters, Maroya S; Stone, Nimalie D; Zervos, Marcus J; Mody, Lona
2018-05-02
Most nursing facilities (NFs) lack methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) surveillance programs due to limited resources and high costs. We investigated the utility of environmental screening of high-touch surfaces in patient rooms as a way to circumvent these challenges. We compared MRSA and VRE culture data from high-touch surfaces in patients' rooms (14450 samples from 6 NFs) and ranked each site's performance in predicting patient colonization (7413 samples). The best-performing sites were included in a MRSA- and a VRE-specific panel that functioned as a proxy for patient colonization. Molecular typing was performed to confirm available concordant patient-environment pairs. We identified and validated a MRSA panel that consisted of the bed controls, nurse call button, bed rail, and TV remote control. The VRE panel included the toilet seat, bed controls, bed rail, TV remote control, and top of the side table. Panel colonization data tracked patient colonization. Negative predictive values were 89%-92% for MRSA and 82%-84% for VRE. Molecular typing confirmed a strong clonal type relationship in available concordant patient-environment pairs (98% for MRSA, 91% for VRE), pointing to common epidemiological patterns for environmental and patient isolates. Environmental panels used as a proxy for patient colonization and incorporated into facility surveillance protocols can guide decolonization strategies, improve awareness of MRSA and VRE burden, and inform efforts to reduce transmission. Targeted environmental screening may be a viable surveillance strategy for MRSA and VRE detection in NFs.
Cha, J O; Yoo, J I; Kim, H K; Kim, H S; Yoo, J S; Lee, Y S; Jung, Y H
2013-10-01
To investigate diversity in the vanA cluster in Enterococcus faecium isolates from nontertiary hospitals. We identified 43 vanA-positive Ent. faecium isolates, including two vancomycin-susceptible isolates, from hospitals between 2003 and 2006. Of these isolates, >85% were resistant to ampicillin, erythromycin and ciprofloxacin. The vanA cluster was classified into six types using overlapping PCR, but the prototype transposon Tn1546 was not found. Most vanA-positive vancomycin-resistant Enterococcus (VRE) carried IS1216V and belonged to Type III (58·1%) or Type II (20·9%). vanY, vanZ and IS1216V were observed in the left and right ends of Type III with long-range PCR. IS1216V was also observed within vanS and vanX in the two vancomycin-susceptible isolates and in two vancomycin-resistant isolates. No VRE isolates with VanB and VanD phenotypes contained point mutations in vanS, unlike in previous reports. Sequence types (STs) of all isolates belonged to clonal complex 17, and ST78 was predominant. Insertion sequences, especially IS1216V, cause structural variation in the vanA cluster. We report the first observation of vanY and vanZ at the left end of Tn1546 in clinical isolates. This is the first report of the frequency of vancomycin resistance and diversity of Tn1546 in vanA-positive Ent. faecium isolates from nontertiary hospitals. © 2013 The Society for Applied Microbiology.
Young, Suzanne; Nayak, Bina; Sun, Shan; Badgley, Brian D; Rohr, Jason R; Harwood, Valerie J
2016-09-15
Sewage spills can release antibiotic-resistant bacteria into surface waters, contributing to environmental reservoirs and potentially impacting human health. Vancomycin-resistant enterococci (VRE) are nosocomial pathogens that have been detected in environmental habitats, including soil, water, and beach sands, as well as wildlife feces. However, VRE harboring vanA genes that confer high-level resistance have infrequently been found outside clinical settings in the United States. This study found culturable Enterococcus faecium harboring the vanA gene in water and sediment for up to 3 days after a sewage spill, and the quantitative PCR (qPCR) signal for vanA persisted for an additional week. Culturable levels of enterococci in water exceeded recreational water guidelines for 2 weeks following the spill, declining about five orders of magnitude in sediments and two orders of magnitude in the water column over 6 weeks. Analysis of bacterial taxa via 16S rRNA gene sequencing showed changes in community structure through time following the sewage spill in sediment and water. The spread of opportunistic pathogens harboring high-level vancomycin resistance genes beyond hospitals and into the broader community and associated habitats is a potential threat to public health, requiring further studies that examine the persistence, occurrence, and survival of VRE in different environmental matrices. Vancomycin-resistant enterococci (VRE) are harmful bacteria that are resistant to the powerful antibiotic vancomycin, which is used as a last resort against many infections. This study followed the release of VRE in a major sewage spill and their persistence over time. Such events can act as a means of spreading vancomycin-resistant bacteria in the environment, which can eventually impact human health. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Young, Suzanne; Nayak, Bina; Sun, Shan; Badgley, Brian D.; Rohr, Jason R.
2016-01-01
ABSTRACT Sewage spills can release antibiotic-resistant bacteria into surface waters, contributing to environmental reservoirs and potentially impacting human health. Vancomycin-resistant enterococci (VRE) are nosocomial pathogens that have been detected in environmental habitats, including soil, water, and beach sands, as well as wildlife feces. However, VRE harboring vanA genes that confer high-level resistance have infrequently been found outside clinical settings in the United States. This study found culturable Enterococcus faecium harboring the vanA gene in water and sediment for up to 3 days after a sewage spill, and the quantitative PCR (qPCR) signal for vanA persisted for an additional week. Culturable levels of enterococci in water exceeded recreational water guidelines for 2 weeks following the spill, declining about five orders of magnitude in sediments and two orders of magnitude in the water column over 6 weeks. Analysis of bacterial taxa via 16S rRNA gene sequencing showed changes in community structure through time following the sewage spill in sediment and water. The spread of opportunistic pathogens harboring high-level vancomycin resistance genes beyond hospitals and into the broader community and associated habitats is a potential threat to public health, requiring further studies that examine the persistence, occurrence, and survival of VRE in different environmental matrices. IMPORTANCE Vancomycin-resistant enterococci (VRE) are harmful bacteria that are resistant to the powerful antibiotic vancomycin, which is used as a last resort against many infections. This study followed the release of VRE in a major sewage spill and their persistence over time. Such events can act as a means of spreading vancomycin-resistant bacteria in the environment, which can eventually impact human health. PMID:27422829
Getachew, Yitbarek; Zakaria, Zunita; Abdul Aziz, Saleha
2013-01-01
Vancomycin-resistant enterococci (VRE) have been reported to be present in humans, chickens, and pigs in Malaysia. In the present study, representative samples of VRE isolated from these populations were examined for similarities and differences by using the multilocus sequence typing (MLST) method. Housekeeping genes of Enterococcus faecium (n = 14) and Enterococcus faecalis (n = 11) isolates were sequenced and analyzed using the MLST databases eBURST and goeBURST. We found five sequence types (STs) of E. faecium and six STs of E. faecalis existing in Malaysia. Enterococcus faecium isolates belonging to ST203, ST17, ST55, ST79, and ST29 were identified, and E. faecium ST203 was the most common among humans. The MLST profiles of E. faecium from humans in this study were similar to the globally reported nosocomial-related strain lineage belonging to clonal complex 17 (CC17). Isolates from chickens and pigs have few similarities to those from humans, except for one isolate from a chicken, which was identified as ST203. E. faecalis isolates were more diverse and were identified as ST4, ST6, ST87, ST108, ST274, and ST244, which were grouped as specific to the three hosts. E. faecalis, belonging to the high-risk CC2 and CC87, were detected among isolates from humans. In conclusion, even though one isolate from a chicken was found clonal to that of humans, the MLST analysis of E. faecium and E. faecalis supports the findings of others who suggest VRE to be predominantly host specific and that clinically important strains are found mainly among humans. The infrequent detection of a human VRE clone in a chicken may in fact suggest a reverse transmission of VRE from humans to animals. PMID:23666337
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carey, Stephanie Ann; Goldstein, Rachel E. Rosenberg; Gibbs, Shawn G.
Reclaiming municipal wastewater for agricultural, environmental, and industrial purposes is increasing in the United States to combat dwindling freshwater supplies. However, there is a lack of data regarding the microbial quality of reclaimed water. In particular, no previous studies have evaluated the occurrence of vancomycin-resistant enterococci (VRE) in reclaimed water used at spray irrigation sites in the United States. To address this knowledge gap, we investigated the occurrence, concentration, and antimicrobial resistance patterns of VRE and vancomycin-susceptible enterococci at three U.S. spray irrigation sites that use reclaimed water. We collected 48 reclaimed water samples from one Mid-Atlantic and two Midwestmore » spray irrigation sites, as well as their respective wastewater treatment plants, in 2009 and 2010. Samples were analyzed for total enterococci and VRE using standard membrane filtration. Isolates were purified and then confirmed using biochemical tests and PCR. Antimicrobial susceptibility testing was conducted using the Sensititre® microbroth dilution system. Data were analyzed by two-sample proportion tests and one-way analysis of variance. We detected total enterococci and VRE in 71% (34/48) and 4% (2/48) of reclaimed water samples, respectively. Enterococcus faecalis was the most common species identified. At the Mid-Atlantic spray irrigation site, UV radiation decreased total enterococci to undetectable levels; however, subsequent storage in an open-air pond at this site resulted in increased concentrations of enterococci. E. faecalis isolates recovered from the Mid-Atlantic spray irrigation site expressed intrinsic resistance to quinupristin/dalfopristin; however, non-E. faecalis isolates expressed resistance to quinupristin/dalfopristin (52% of isolates), vancomycin (4%), tetracycline (13%), penicillin (4%) and ciprofloxacin (17%). Our findings show that VRE are present in low numbers in reclaimed water at point-of-use at the sampled spray irrigation sites; however, resistance to other antimicrobial classes is more prevalent, particularly among non-E. faecalis isolates. - Highlights: • Enterococci were recovered in 71% of reclaimed water samples. • Vancomycin-resistant enterococci were detected in 4% of reclaimed water samples. • UV radiation at irrigation sites reduced enterococci to undetectable levels. • Storage of reclaimed water in open-air ponds increased levels of enterococci.« less
Biswas, Priyanka Paul; Dey, Sangeeta; Sen, Aninda; Adhikari, Luna
2016-01-01
Background: The aim of this study was to find out the correlation between presence of virulence (gelatinase [gel E], enterococcal surface protein [esp], cytolysin A [cyl A], hyaluronidase [hyl], and aggregation substance [asa1]) and vancomycin-resistant genes (van A and van B) in enterococci, with their phenotypic expression. Materials and Methods: A total of 500 isolates (250 each clinical and fecal) were processed. Enterococci were isolated from various clinical samples and from fecal specimens of colonized patients. Various virulence determinants namely asa1, esp, hyl, gel E, and cyl were detected by phenotypic methods. Minimum inhibitory concentration (MIC) of vancomycin was determined by agar dilution method. Multiplex polymerase chain reaction (PCR) was used to detect the presence of virulence and van genes. Results: Out of all the samples processed, 12.0% (60/500) isolates carried van A or van B genes as confirmed by MIC test and PCR methods. Genes responsible for virulence were detected by multiplex PCR and at least one of the five was detected in all the clinical vancomycin-resistant enterococci (VRE) and vancomycin-sensitive enterococci (VSE). gel E, esp, and hyl genes were found to be significantly higher in clinical VRE. Of the fecal isolates, presence of gel E, esp, and asa1 was significantly higher in VRE as compared to VSE. The presence of hyl gene in the clinical VRE was found to be statistically significant (P = 0.043) as against the fecal VRE. Correlation between the presence of virulence genes and their expression as detected by phenotypic tests showed that while biofilm production was seen in 61.1% (22/36) of clinical VRE, the corresponding genes, i.e., asa1 and esp were detected in 30.5% (11/36) and 27.8% (10/36) of strains only. Conclusion: Enterococcus faecium isolates were found to carry esp gene, a phenomenon that has been described previously only for Enterococcus faecalis, but we were unable to correlate the presence of esp with their capacity to form biofilms. PMID:27013840
Bardossy, Ana Cecilia; Alsafadi, Muhammad Yasser; Starr, Patricia; Chami, Eman; Pietsch, Jennifer; Moreno, Daniela; Johnson, Laura; Alangaden, George; Zervos, Marcus; Reyes, Katherine
2017-12-01
There are limited controlled data demonstrating contact precautions (CPs) prevent methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) infections in endemic settings. We evaluated changes in hospital-acquired MRSA and VRE infections after discontinuing CPs for these organisms. This is a retrospective study done at an 800-bed teaching hospital in urban Detroit. CPs for MRSA and VRE were discontinued hospital-wide in 2013. Data on MRSA and VRE catheter-associated urinary tract infections (CAUTIs), ventilator-associated pneumonia (VAP), central line-associated bloodstream infections (CLABSIs), surgical site infections (SSIs), and hospital-acquired MRSA bacteremia (HA-MRSAB) rates were compared before and after CPs discontinuation. There were 36,907 and 40,439 patients hospitalized during the two 12-month periods: CPs and no CPs. Infection rates in the CPs and no-CPs periods were as follows: (1) MRSA infections: VAP, 0.13 versus 0.11 (P = .84); CLABSI, 0.11 versus 0.19 (P = .45); SSI, 0 versus 0.14 (P = .50); and CAUTI, 0.025 versus 0.033 (P = .84); (2) VRE infections: CAUTI, 0.27 versus 0.13 (P = .19) and CLABSI, 0.29 versus 0.3 (P = .94); and (3) HA-MRSAB rates: 0.14 versus 0.11 (P = .55), respectively. Discontinuation of CPs did not adversely impact endemic MRSA and VRE infection rates. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Yang, Jiyong; Jiang, Yufeng; Guo, Ling; Ye, LIyan; Ma, Yanning; Luo, Yanping
2016-06-01
Vancomycin-resistant Enterococcus (VRE) has been identified in China. However, little is known about the spread of VRE isolates. The genetic relatedness of vancomycin-resistant Enterococcus faecium (VREfm) isolates was analyzed by pulsed-field gel electrophoresis (PFGE), their antimicrobial susceptibilities were analyzed by E-test and the VITEK 2 AST-GP67 test Kit, and their sequence types (STs) were investigated by multilocus sequence typing (MLST). S1-PFGE was used for plasmid profiling, and PCR and subsequent sequencing were performed to identify the virulence genes. A total of 96 nonduplicated VREfm isolates were obtained and categorized into 38 PFGE types (type 1-38). The predominant MLST type was ST78, while ST17, ST341, and ST342 were also sporadically identified. All types of clinical VREfm strains harbored the vanA gene; however, they carried plasmids of different sizes. While 92.1%, 71.1%, and 60.5% of VREfm strains carried hyl, scm, and ecbA genes, respectively, all of them were positive for esp, acm, sgrA, pilA, and pilB genes. Clonal VREfm spread was observed, and nonplasmid-mediated horizontal transfer of vancomycin-resistant gene might have conveyed resistance to some vancomycin-susceptible E. faecium strains. E. faecium ST78 carrying vanA gene was the most prevalent clone in this study. The high prevalence of virulence genes, including esp, hyl, acm, scm, ecbA, sgrA, pilA, and pilB, confirmed their important roles in the emergence of VREfm ST78 in nosocomial infections.
Alatorre-Fernández, Pamela; Mayoral-Terán, Claudia; Velázquez-Acosta, Consuelo; Franco-Rodríguez, Cecilia; Flores-Moreno, Karen; Cevallos, Miguel Ángel; López-Vidal, Yolanda; Volkow-Fernández, Patricia
2017-03-01
Enterococcus faecium causes bloodstream infection (BSI) in patients with hematologic malignancies (HMs). We studied the clinical features and outcomes of patients with HM with vancomycin-sensitive E faecium (VSE) and vancomycin-resistant E faecium (VRE) BSI and determined the genetic relatedness of isolates and circumstances associated with the upsurge of E faecium BSI. Case-control study of patients with HM and E faecium-positive blood culture from January 2008-December 2012; cases were patients with VRE and controls were VSE isolates. The strains were tested for Van genes by polymerase chain reaction amplification and we performed pulsed-field gel electrophoresis to determine genetic relatedness. Fifty-eight episodes of E faecium BSI occurred: 35 sensitive and 23 resistant to vancomycin. Mortality was 46% and 57%, attributable 17% and 40%, respectively. Early stage HM was associated with VSE (P = .044), whereas an episode of BSI within the 3 months before the event (P = .039), prophylactic antibiotics (P = .013), and vancomycin therapy during the previous 3 months (P = .001) was associated with VRE. The VanA gene was identified in 97% of isolates studied. E faecium isolates were not clonal. E faecium BSI was associated with high mortality. This outbreak of VRE was not clonal; it was associated with antibiotic-use pressure and highly myelosuppressive chemotherapy. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Grabsch, E A; Mahony, A A; Cameron, D R M; Martin, R D; Heland, M; Davey, P; Petty, M; Xie, S; Grayson, M L
2012-12-01
Vancomycin-resistant enterococcus (VRE) colonization and infection have increased at our hospital, despite adherence to standard VRE control guidelines. We implemented a multi-modal, hospital-wide improvement programme including a bleach-based cleaning-disinfection programme ('Bleach-Clean'). VRE colonization, infection and environmental contamination were compared pre and post implementation. The programme included a new product (sodium hypochlorite 1000 ppm + detergent), standardized cleaning-disinfection practices, employment of cleaning supervisors, and modified protocols to rely on alcohol-based hand hygiene and sleeveless aprons instead of long-sleeved gowns and gloves. VRE was isolated using chromogenic agar and/or routine laboratory methods. Outcomes were assessed during the 6 months pre and 12 months post implementation, including proportions (per 100 patients screened) of VRE colonization in high-risk wards (HRWs: intensive care, liver transplant, renal, haematology/oncology); proportions of environmental contamination; and episodes of VRE bacteraemia throughout the entire hospital. Significant reductions in newly recognized VRE colonizations (208/1948 patients screened vs 324/4035, a 24.8% reduction, P = 0.001) and environmental contamination (66.4% reduction, P = 0.012) were observed, but the proportion of patients colonized on admission was stable. The total burden of inpatients with VRE in the HRWs also declined (median percentage of colonized inpatients per week, 19.4% vs 17.3%, P = 0.016). Hospital-wide VRE bacteraemia declined from 14/2935 patients investigated to 5/6194 (83.1% reduction; P < 0.001), but there was no change in vancomycin-susceptible enterococcal bacteraemia (P = 0.54). The Bleach-Clean programme was associated with marked reductions in new VRE colonizations in high-risk patients, and VRE bacteraemia across the entire hospital. These findings have important implications for VRE control in endemic healthcare settings. Copyright © 2012 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Ford, Clyde D; Lopansri, Bert K; Gazdik, Michaela A; Webb, Brandon; Snow, Gregory L; Hoda, Daanish; Adams, Barbara; Petersen, Finn Bo
2016-10-01
Contaminated surfaces and colonization pressure are risk factors for vancomycin-resistant Enterococcus (VRE) colonization in intensive care units (ICUs). Whether these apply to modern units dedicated to the care of hematologic malignancies and hematopoietic stem cell transplant (HSCT) procedures is unknown. We reviewed the records of 780 consecutive admissions for acute leukemia, autologous HSCT, or allogeneic HSCT in which the patient was at risk for hospital-acquired VRE and underwent weekly surveillance. We also obtained staff and room cultures, observed staff behavior, and performed VRE molecular strain typing on selected isolates. The overall rate of VRE colonization was 11.4 cases/1,000 patient days. Cultures of room surfaces revealed VRE isolates in 10% of terminally cleaned rooms. A prior VRE-colonized room occupant did not increase risk, and paired isolates from 20 patients and prior occupants were indistinguishable on molecular typing in only 1 pair. VRE colonization pressure was significantly associated with acquisition. Cultures of unit personnel and shared equipment were negative except for weighing scales. Observation of unit clinical personnel showed high compliance for hand sanitation and but less so for gowns. Conversely, ancillary staff showed poor compliance. Transmission of VRE from room surfaces seems to be an infrequent event. Encouraging adherence to surveillance, disinfection, and contact isolation protocols may decrease VRE colonization rates. Copyright © 2016. Published by Elsevier Inc.
Ford, Clyde D; Gazdik, Michaela A; Lopansri, Bert K; Webb, Brandon; Mitchell, Birgitta; Coombs, Jana; Hoda, Daanish; Petersen, Finn Bo
2017-02-01
The association between pre-hematopoietic stem cell transplantation (HSCT) vancomycin-resistant Enterococcus (VRE) colonization, HSCT-associated VRE bacteremia, and HSCT mortality is disputed. We studied 161 consecutive patients with acute leukemia who underwent HSCT at our hospital between 2006 and 2014, of whom 109 also received leukemia induction/consolidation on our unit. All inpatients had weekly VRE stool surveillance. Pre-HSCT colonization was not associated with increases in HSCT mortality but did identify a subgroup of HSCT recipients with a higher risk for VRE bacteremia and possibly bacteremia from other organisms. The major risk factor for pre-HSCT colonization was the number of hospital inpatient days between initial admission for leukemia and HSCT. One-third of evaluable patients colonized before HSCT were VRE-culture negative on admission for HSCT; these patients had an increased risk for subsequent VRE stool surveillance positivity but not VRE bacteremia. Molecular typing of VRE isolates obtained before and after HSCT showed that VRE strains frequently change. Postengraftment VRE bacteremia was associated with a much higher mortality than pre-engraftment VRE bacteremia. Pre-engraftment bacteremia from any organism was associated with an alternative donor and resulted in an increase in hospital length of stay and cost. Mortality was similar for pre-engraftment VRE bacteremia and pre-engraftment bacteremia due to other organisms, but mortality associated with post-engraftment VRE bacteremia was higher and largely explained by associated severe graft-versus-host disease and relapsed leukemia. These data emphasize the importance of distinguishing between VRE colonization before HSCT and at HSCT, between pre-engraftment and postengraftment VRE bacteremia, and between VRE bacteremia and bacteremia from other organisms. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Tan, Thean Yen; Jiang, Boran; Ng, Lily Siew Yong
2017-08-01
Screening for vancomycin-resistant enterococci (VRE) by culture takes days to generate results, while polymerase chain reaction (PCR) testing directly from clinical specimens lacks specificity. The aims of this study were to develop a real-time PCR to detect and identify Enterococcus faecium, Enterococcus faecalis, and vanA and vanB genes, and to evaluate the impact of this PCR on test-reporting times when performing it directly from suspect VRE isolates present on screening chromogenic media. The tetraplex PCR primers were designed to amplify E. faecium, E. faecalis, and vanA and vanB genes, with melt-curve analysis of PCR products. Following analytical and clinical validation of the molecular assay, PCR testing was performed for target colonies present on VRE chromogenic media. PCR results were evaluated against conventional phenotypic identification and susceptibility testing, with the time to result being monitored for both modalities. A total of 519 colonies from clinical specimens were tested concurrently by real-time PCR and phenotypic methods. In all, 223 isolates were identified with phenotypic vancomycin resistance (vanA, n = 108; vanB, n = 105; non-vanA/vanB = 10), with complete agreement between PCR and phenotypic testing for vancomycin-resistant E. faecium and E. faecalis. The majority (88.6%) of PCR results were reported, on average, 24.8 hours earlier than those of phenotypic testing, with 68% reduction in total costs. The use of culture on selective media, followed by direct colony PCR confirmation allows faster and economical VRE screening. Copyright © 2015. Published by Elsevier B.V.
Current and novel antibiotics against resistant Gram-positive bacteria.
Perez, Federico; Salata, Robert A; Bonomo, Robert A
2008-01-01
The challenge posed by resistance among Gram-positive bacteria, epitomized by methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE) and vancomycin-intermediate and -resistant S. aureus (VISA and VRSA) is being met by a new generation of antimicrobials. This review focuses on the new β-lactams with activity against MRSA (ceftobiprole and ceftaroline) and on the new glycopeptides (oritavancin, dalbavancin, and telavancin). It will also consider the role of vancomycin in an era of existing alternatives such as linezolid, daptomycin and tigecycline. Finally, compounds in early development are described, such as iclaprim, friulimicin, and retapamulin, among others.
Lewis, J D; Barros, A J; Sifri, C D
2018-02-10
Vancomycin-resistant Enterococcus faecium (VRE) infections are common in liver transplant recipients (LTRs). Daptomycin (DAP) is an important treatment for such infections; however, DAP-nonsusceptible VRE (DNS-VRE) are increasingly frequent. The purpose of this study was to compare clinical characteristics and outcomes of LTRs with infections due to DNS-VRE and DAP-susceptible VRE (DS-VRE). A single center, retrospective review of patients who underwent liver transplantation between January 1, 2010 and December 31, 2015 and developed infections due to DS-VRE or DNS-VRE post transplant was performed. Patients with DNS-VRE and DS-VRE infections were compared using univariate and logistic regression analysis. Fourteen LTRs developed DNS-VRE and 20 LTRs developed DS-VRE infection post-transplantation. No significant differences were observed in demographics, model for end-stage liver disease (MELD) scores, causes of end-stage liver disease, or rate of pre-transplant perirectal VRE colonization between groups. Bleeding complications and renal replacement therapy were more common in the DNS-VRE group than in the DS-VRE group. The duration of transplant hospitalization and post-transplant intensive care unit (ICU) admission was longer in the DNS-VRE group than in the DS-VRE group. The 30-day and 6-month mortality rate associated with DNS-VRE infection was similar to that associated with DS-VRE infection. Liver transplant recipients who develop DNS-VRE infection have higher bleeding complications and longer, more complex hospitalizations compared to those who develop DS-VRE infection post transplantation; however, mortality at 30 days and 6 months is not significantly worse. Further study is needed to determine optimal strategies for the prevention and treatment of DNS-VRE infections in LTRs. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Hermanovská, Lýdia; Bardoň, Jan; Čermák, Pavel
2016-06-01
Enterococci are part of the normal intestinal flora of humans and animals. Under certain circumstances, they are capable of extraintestinal conversion to opportunistic pathogens. They cause endogenous as well as exogenous community and nosocomial infections. The gastrointestinal tract of mammals provides them with favorable conditions for acquisition and spread of resistance genes, for example to vancomycin (van), from other symbiotic bacteria. Thus, vancomycin-resistant enterococci (VRE) become potential reservoirs and vectors of the van genes. Their occurrence in the population of the Czech Republic was first reported by Kolář et al. in 1997. Some variants of the vanA gene cluster carried on Tn1546 which encode resistance to vancomycin are identical in humans and in animals. It means that animals, especially cattle, poultry and pigs, could be an important reservoir of VRE for humans. Kolář and Bardoň detected VRE in animals in the Czech Republic for the first time in 2000. In Europe, the glycopeptide antibiotic avoparcin, used as a growth stimulator, is responsible for selection of VRE strains in animals. Strains of Enterococcus faecium from animals may offer genes of antimicrobial resistance to other enterococci or they can be directly dangerous to human. This is demonstrated by finding isolates of E. faecalis from human patients and from pigs having very similar profiles of resistance and virulence genes. The goal of the paper was to point out the similarity between isolates of human and animal strains of enterococci resistant to vancomycin, and the possibility of their bilateral transfer between humans and animals.
Tripathi, A; Shukla, S K; Singh, A; Prasad, K N
2016-01-01
To determine the prevalence, genotype, risk factors and mortality in patients having vancomycin-resistant Enterococcus faecalis (VR E. faecalis) and Enterococcus faecium (VR E. faecium) infection or colonisation. A total of 1488 clinical isolates of E. faecalis and E. faecium were tested for vancomycin resistance by phenotypic (disk diffusion, E-test and broth micro-dilution test) and genotypic polymerase chain reaction methods. Records of all 1488 patients who had E. faecalis or E. faecium infection or colonisation were reviewed for the identification of host, hospital and medication related risk factors associated with VR E. faecalis and VR E. faecium. Of 1488 isolates, 118 (7.9%) were vancomycin-resistant and their distributions were as follows: E. faecalis=72 (61%) and E. faecium=46 (39%). All 118 vancomycin-resistant isolates were vanA genotype (minimum inhibitory concentration [MIC] to vancomycin ≥64 μg/ml and MIC to teicoplanin≥32 μg/ml) and none of the isolates was vanB genotype. Multivariate logistic regression analysis identified ventilator support and hospital stay for ≥48 h as independent risk factors associated with VR E. faecalis and VR E. faecium infection or colonisation. Hospital stay≥48 h was the only independent risk factor for mortality in patients infected with vancomycin-resistant enterococci. Strategies to limit the nosocomial infection especially in patients on ventilator support can reduce VRE incidence and related mortality.
Martin, Elise M; Russell, Dana; Rubin, Zachary; Humphries, Romney; Grogan, Tristan R; Elashoff, David; Uslan, Daniel Z
2016-11-01
OBJECTIVE To evaluate the impact of discontinuation of contact precautions (CP) for methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) and expansion of chlorhexidine gluconate (CHG) use on the health system. DESIGN Retrospective, nonrandomized, observational, quasi-experimental study. SETTING Two California hospitals. PARTICIPANTS Inpatients. METHODS We compared hospital-wide laboratory-identified clinical culture rates (as a marker of healthcare-associated infections) 1 year before and after routine CP for endemic MRSA and VRE were discontinued and CHG bathing was expanded to all units. Culture data from patients and cost data on material utilization were collected. Nursing time spent donning personal protective equipment was assessed and quantified using time-driven activity-based costing. RESULTS Average positive culture rates before and after discontinuing CP were 0.40 and 0.32 cultures/100 admissions for MRSA (P=.09), and 0.48 and 0.40 cultures/100 admissions for VRE (P=.14). When combining isolation gown and CHG costs, the health system saved $643,776 in 1 year. Before the change, 28.5% intensive care unit and 19% medicine/surgery beds were on CP for MRSA/VRE. On the basis of average room entries and donning time, estimated nursing time spent donning personal protective equipment for MRSA/VRE before the change was 45,277 hours/year (estimated cost, $4.6 million). CONCLUSION Discontinuing routine CP for endemic MRSA and VRE did not result in increased rates of MRSA or VRE after 1 year. With cost savings on materials, decreased healthcare worker time, and no concomitant increase in possible infections, elimination of routine CP may add substantial value to inpatient care delivery. Infect Control Hosp Epidemiol 2016;1-8.
Ford, Clyde D; Lopansri, Bert K; Haydoura, Souha; Snow, Greg; Dascomb, Kristin K; Asch, Julie; Bo Petersen, Finn; Burke, John P
2015-01-01
OBJECTIVE To determine the frequency, risk factors, and outcomes for vancomycin-resistant Enterococcus (VRE) colonization and infection in patients with newly diagnosed acute leukemia. DESIGN Retrospective clinical study with VRE molecular strain typing. SETTING A regional referral center for acute leukemia. PATIENTS Two hundred fourteen consecutive patients with newly diagnosed acute leukemia between 2006 and 2012. METHODS All patients had a culture of first stool and weekly surveillance for VRE. Clinical data were abstracted from the Intermountain Healthcare electronic data warehouse. VRE molecular typing was performed utilizing the semi-automated DiversiLab System. RESULTS The rate of VRE colonization was directly proportional to length of stay and was higher in patients with acute lymphoblastic leukemia. Risk factors associated with colonization include administration of corticosteroids (P=0.004) and carbapenems (P=0.009). Neither a colonized prior room occupant nor an increased unit colonization pressure affected colonization risk. Colonized patients with acute myelogenous leukemia had an increased risk of VRE bloodstream infection (BSI, P=0.002). Other risk factors for VRE BSI include severe neutropenia (P=0.04) and diarrhea (P=0.008). Fifty-eight percent of BSI isolates were identical or related by molecular typing. Eighty-nine percent of bloodstream isolates were identical or related to stool isolates identified by surveillance cultures. VRE BSI was associated with increased costs (P=0.0003) and possibly mortality. CONCLUSIONS VRE colonization has important consequences for patients with acute myelogenous leukemia undergoing induction therapy. For febrile neutropenic patients with acute myelogenous leukemia, use of empirical antibiotic regimens that avoid carbapenems and include VRE coverage may be helpful in decreasing the risks associated with VRE BSI.
Lee, Andie S; White, Elizabeth; Monahan, Leigh G; Jensen, Slade O; Chan, Raymond; van Hal, Sebastiaan J
2018-06-01
OBJECTIVETo describe the transmission dynamics of the emergence and persistence of vanA vancomycin-resistant enterococcus (VRE) in an intensive care unit (ICU) using whole-genome sequencing of patient and environmental isolates.DESIGNRetrospective cohort study.SETTINGICU in a tertiary referral center.PARTICIPANTSPatients admitted to the ICU over an 11-month period.METHODS VanA VRE isolated from patients (n=31) were sequenced using the Illumina MiSeq platform. Environmental samples from bed spaces, equipment, and waste rooms were collected. All vanA VRE-positive environmental samples (n=14) were also sequenced. Data were collected regarding patient ward and bed movements.RESULTSThe 31 patient vanA VRE isolates were from screening (n=19), urine (n=4), bloodstream (n=3), skin/wound (n=3), and intra-abdominal (n=2) sources. The phylogeny from sequencing data confirmed several VRE clusters, with 1 group accounting for 38 of 45 isolates (84%). Within this cluster, cross-transmission was extensive and complex across the ICU. Directionality indicated that colonized patients contaminated environmental sites. Similarly, environmental sources not only led to patient colonization but also to infection. Notably, shared equipment acted as a conduit for transmission between different ICU areas. Infected patients, however, were not linked to further VRE transmission.CONCLUSIONSGenomic sequencing confirmed a predominantly clonal outbreak of VRE with complex transmission dynamics. The environmental reservoir, particularly from shared equipment, played a key role in ongoing VRE spread. This study provides evidence to support the use of multifaceted strategies, with an emphasis on measures to reduce bacterial burden in the environment, for successful VRE control.Infect Control Hosp Epidemiol 2018;39:668-675.
Seol, Chang Ahn; Park, Jeong Su; Sung, Heungsup; Kim, Mi-Na
2014-06-01
A 53-year-old Vietnamese man with liver cirrhosis was transferred from a Vietnamese hospital to our tertiary care hospital in Korea in order to undergo a liver transplantation. Bacteremia due to vanA Enterococcus faecium was diagnosed, and stool surveillance cultures for vancomycin-resistant enterococci (VRE) were positive for both vanA and vanB E. faecium. Pulsed-field gel electrophoresis analysis revealed that the 2 vanA VRE isolates from the blood and stool were clonal, but the vanB VRE was unrelated to the vanA VRE. vanA and vanB VRE were ST64 and ST18, single-allele variations of clonal complex 17, respectively. This is the first case report of vanA VRE bacteremia in a Vietnamese patient and demonstrates the reemergence of vanB VRE since a single outbreak occurred 15years ago in Korea. The reemergence of vanB VRE emphasizes the importance of VRE genotyping to prevent the spread of new VRE strains. Copyright © 2014 Elsevier Inc. All rights reserved.
Naserpour Farivar, Taghi; Najafipour, Reza; Johari, Pouran; Aslanimehr, Masoumeh; Peymani, Amir; Jahani Hashemi, Hoasan; Mirzaui, Baman
2014-10-01
We developed and evaluated the utility of a quadruplex Taqman real-time PCR assay that allows simultaneous identification of vancomycin-resistant genotypes and clinically relevant enterococci. The specificity of the assay was tested using reference strains of vancomycin-resistant and susceptible enterococci. In total, 193 clinical isolates were identified and subsequently genotyped using a Quadruplex Taqman real-time PCR assay and melting curve analysis. Representative Quadruplex Taqman real-time PCR amplification curve were obtained for Enterococcus faecium, Enterococcus faecalis, vanA-containing E. faecium, vanB-containing E. faecalis. Phenotypic and genotypic analysis of the isolates gave same results for 82 enterococcal isolates, while in 5 isolates, they were inconsistent. We had three mixed strains, which were detected by the TaqMan real-time PCR assay and could not be identified correctly using phenotypic methods. Vancomycin resistant enterococci (VRE) genotyping and identification of clinically relevant enterococci were rapidly and correctly performed using TaqMan real-time multiplex real-time PCR assay.
Drews, Steven J; Richardson, Susan E; Wray, Rick; Freeman, Renee; Goldman, Carol; Streitenberger, Laurie; Stevens, Derek; Goia, Cristina; Kovach, Danuta; Brophy, Jason; Matlow, Anne G
2008-01-01
BACKGROUND The present study describes a vancomycin-resistant enterococci (VRE) outbreak investigation and a case-control study to identify risk factors for VRE acquisition in a tertiary care pediatric hospital. OBJECTIVE To report an outbreak investigation and a case-control study to identify risk factors for VRE colonization or infection in hospitalized children. METHODS Screening for VRE cases was performed by culture or polymerase chain reaction. A case-control study of VRE-colonized patients was undertaken. Environmental screening was performed using standard culture and susceptibility methods, with pulsed-field gel electrophoresis to determine relationships between VRE isolates. Statistical analysis was performed using SAS version 9.0 (SAS Institute Inc, USA). RESULTS Thirty-four VRE-positive cases were identified on 10 wards between February 28, 2005, and May 27, 2005. Pulsed-field gel electrophoresis analysis confirmed a single outbreak strain that was also isolated from a video game found on one affected ward. Multivariate analysis identified cephalosporin use as the major risk factor for VRE colonization. CONCLUSIONS In the present study outbreak, VRE colonization was significantly associated with cephalosporin use. Because shared recreational items and environmental surfaces may be colonized by VRE, they warrant particular attention in housekeeping protocols, particularly in pediatric institutions. PMID:19412380
Outbreak of vancomycin-resistant enterococcus colonization among pediatric oncology patients.
Nolan, Sheila M; Gerber, Jeffrey S; Zaoutis, Theoklis; Prasad, Priya; Rettig, Susan; Gross, Kimberly; McGowan, Karin L; Reilly, Anne F; Coffin, Susan E
2009-04-01
To detect the burden of vancomycin-resistant Enterococcus (VRE) colonization among pediatric oncology patients and to determine risk factors for VRE acquisition. Retrospective case-control study. The Children's Hospital of Philadelphia. Pediatric oncology patients hospitalized from June 2006 through December 2007. Prevalence surveys revealed an increased VRE burden among pediatric oncology patients. For the case-control study, the 16 case patients were pediatric oncology patients who had 1 stool sample negative for VRE at screening before having a stool sample positive for VRE at screening; the 62 control patients had 2 consecutive screenings in which stool samples were negative for VRE. Case and control patients were matched on the duration of the interval between screens. Analyses were performed to determine the association between multiple exposures and VRE acquisition. The prevalence survey revealed that 5 (9.6%) of 52 patients had unsuspected VRE colonization at the time of hospitalization. Multivariate analysis identified a lack of empirical contact precautions (odds ratio [OR], 17.16 [95% confidence interval {CI}, 1.49-198.21]; P= .02) and the presence of a gastrointestinal device (OR, 4.03 [95% CI, 1.04-15.56]; P= .04) as significant risk factors for acquisition of VRE. Observations in the interventional radiology department revealed that staff could not access the portions of the electronic medical record in which isolation precautions were documented. Simple interventions that granted access and that trained interventional radiology staff to review the need for precautions, coupled with enhanced infection control practices, interrupted ongoing transmission and reduced the proportion of VRE screens that were positive to 15 (1.2%) of 1,270. Inadequate communication with regard to infection control precautions can increase the risk of transmission of epidemiologically important organisms, particularly when patients receive care at multiple clinic locations. Adherence to infection control practices across the spectrum of care may limit the spread of resistant organisms.
Outbreak of Vancomycin-Resistant Enterococcus Colonization Among Pediatric Oncology Patients
Nolan, Sheila M.; Gerber, Jeffrey S.; Zaoutis, Theoklis; Prasad, Priya; Rettig, Susan; Gross, Kimberly; McGowan, Karin L.; Reilly, Anne F.; Coffin, Susan E.
2010-01-01
OBJECTIVE To detect the burden of vancomycin-resistant Enterococcus (VRE) colonization among pediatric oncology patients and to determine risk factors for VRE acquisition. DESIGN Retrospective case-control study. SETTING The Children’s Hospital of Philadelphia. PATIENTS Pediatric oncology patients hospitalized from June 2006 through December 2007. METHODS Prevalence surveys revealed an increased VRE burden among pediatric oncology patients. For the case-control study, the 16 case patients were pediatric oncology patients who had 1 stool sample negative for VRE at screening before having a stool sample positive for VRE at screening; the 62 control patients had 2 consecutive screenings in which stool samples were negative for VRE. Case and control patients were matched on the duration of the interval between screens. Analyses were performed to determine the association between multiple exposures and VRE acquisition. RESULTS The prevalence survey revealed that 5 (9.6%) of 52 patients had unsuspected VRE colonization at the time of hospitalization. Multivariate analysis identified a lack of empirical contact precautions (odds ratio [OR], 17.16 [95% confidence interval {CI}, 1.49–198.21]; P = .02) and the presence of a gastrointestinal device (OR, 4.03 [95% CI, 1.04–15.56]; P = .04) as significant risk factors for acquisition of VRE. Observations in the interventional radiology department revealed that staff could not access the portions of the electronic medical record in which isolation precautions were documented. Simple interventions that granted access and that trained interventional radiology staff to review the need for precautions, coupled with enhanced infection control practices, interrupted ongoing transmission and reduced the proportion of VRE screens that were positive to 15 (1.2%) of 1,270. CONCLUSIONS Inadequate communication with regard to infection control precautions can increase the risk of transmission of epidemiologically important organisms, particularly when patients receive care at multiple clinic locations. Adherence to infection control practices across the spectrum of care may limit the spread of resistant organisms. PMID:19239375
Cetinkaya, Yesim; Falk, Pamela S; Mayhall, C Glen
2002-10-15
There has been minimal investigation of medications that affect gastrointestinal function as potential risk factors for the acquisition of vancomycin-resistant enterococci (VRE). We performed a retrospective case-control study, with control subjects matched to case patients by time and location of hospitalization. Strict exclusion criteria were applied to ensure that only case patients with a known time of acquisition of VRE were included. Control patients were patients with > or =1 culture negative for VRE. The risk factors identified were use of vancomycin (odds ratio [OR], 3.2; 95% confidence interval [CI], 1.7-6.0; P=.0003), presence of central venous lines (OR, 2.2; 95% CI, 1.04-4.6; P=.04), and use of antacids (OR, 2.9; 95% CI, 1.5-5.6; P=.002). Two protective factors included gastrointestinal bleeding (OR, 0.26; 95% CI, 0.08-0.79; P=.02) and use of Vicodin (Knoll Labs; hydrocodone and acetaminophen; OR, 0.93; 95% CI, 0.90-0.97; P=.0003). Changes in gastrointestinal function, whether due to bleeding or to the effects of oral medications, may affect whether patients become colonized with VRE.
Talaga-Ćwiertnia, Katarzyna; Bulanda, Małgorzata
2018-01-01
Vancomycin-resistant Enterococcus faecium (VREfm) strains have become an important hospital pathogen due to their rapid spread, high mortality rate associated with infections and limited therapeutic options. Vancomycin resistance is predominantly mediated by VanA or VanB phenotypes, which differ as regards maintaining sensitivity to teicoplanin in the VanB phenotype. The majority of VREfm cases in the United States, Europe, Korea, South America and Africa are currently caused by the VanA phenotype. However, the epidemics in Australia and Singapore are chiefly brought about by the VanB phenotype. The rate of VREfm isolate spread varies greatly. The greatest percentage of VREfm is now recorded in the USA, Ireland and Australia. Supervision of VRE is implemented to varying degrees. Therefore, the epidemiological situation in some countries is difficult to assess due to limited data or lack thereof.
Bromomethylthioindole Inspired Carbazole Hybrids as Promising Class of Anti-MRSA Agents.
Cheng, Chia-Yi; Chang, Chun-Ping; Lauderdale, Tsai-Ling Yang; Yu, Guann-Yi; Lee, Jinq-Chyi; Jhang, Yi-Wun; Wu, Chien-Huang; Ke, Yi-Yu; Sadani, Amit A; Yeh, Ching-Fang; Huang, I-Wen; Kuo, Yi-Ping; Tsai, De-Jiun; Yeh, Teng-Kuang; Tseng, Chen-Tso; Song, Jen-Shin; Liu, Yu-Wei; Tsou, Lun K; Shia, Kak-Shan
2016-12-08
Series of N -substituted carbazole analogues bearing an indole ring were synthesized as anti-methicillin-resistant Staphylococcus aureus (MRSA) agents from a molecular hybridization approach. The representative compound 19 showed an MIC = 1 μg/mL against a panel of MRSA clinical isolates as it possessed comparable in vitro activities to that of vancomycin. Moreover, compound 19 also exhibited MIC = 1 μg/mL activities against a recent identified Z172 MRSA strain (vancomycin-intermediate and daptomycin-nonsusceptible phenotype) and the vancomycin-resistant Enterococcus faecalis (VRE) strain. In a mouse model with lethal infection of MRSA (4N216), a 75% survival rate was observed after a single dose of compound 19 was intravenously administered at 20 mg/kg. In light of their equipotent activities against different MRSA isolates and VRE strain, the data underscore the importance of designed hybrid series for the development of new N -substituted carbazoles as potential anti-MRSA agents.
Bearman, Gonzalo; Abbas, Salma; Masroor, Nadia; Sanogo, Kakotan; Vanhoozer, Ginger; Cooper, Kaila; Doll, Michelle; Stevens, Michael P; Edmond, Michael B
2018-06-01
OBJECTIVETo investigate the impact of discontinuing contact precautions among patients infected or colonized with methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant Enterococcus (VRE) on rates of healthcare-associated infection (HAI). Single-center, quasi-experimental study conducted between 2011 and 2016.METHODSWe employed an interrupted time series design to evaluate the impact of 7 horizontal infection prevention interventions across intensive care units (ICUs) and hospital wards at an 865-bed urban, academic medical center. These interventions included (1) implementation of a urinary catheter bundle in January 2011, (2) chlorhexidine gluconate (CHG) perineal care outside ICUs in June 2011, (3) hospital-wide CHG bathing outside of ICUs in March 2012, (4) discontinuation of contact precautions in April 2013 for MRSA and VRE, (5) assessments and feedback with bare below the elbows (BBE) and contact precautions in August 2014, (6) implementation of an ultraviolet-C disinfection robot in March 2015, and (7) 72-hour automatic urinary catheter discontinuation orders in March 2016. Segmented regression modeling was performed to assess the changes in the infection rates attributable to the interventions.RESULTSThe rate of HAI declined throughout the study period. Infection rates for MRSA and VRE decreased by 1.31 (P=.76) and 6.25 (P=.21) per 100,000 patient days, respectively, and the infection rate decreased by 2.44 per 10,000 patient days (P=.23) for device-associated HAI following discontinuation of contact precautions.CONCLUSIONThe discontinuation of contact precautions for patients infected or colonized with MRSA or VRE, when combined with horizontal infection prevention measures was not associated with an increased incidence of MRSA and VRE device-associated infections. This approach may represent a safe and cost-effective strategy for managing these patients.Infect Control Hosp Epidemiol 2018;39:676-682.
Shenoy, Erica S; Lee, Hang; Ryan, Erin E; Hou, Taige; Walensky, Rochelle P; Ware, Winston; Hooper, David C
2018-02-01
Hospitalized patients are assigned to available staffed beds based on patient acuity and services required. In hospitals with double-occupancy rooms, patients must be additionally matched by gender. Patients with methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant Enterococcus (VRE) must be bedded in single-occupancy rooms or cohorted with other patients with similar MRSA/VRE flags. We developed a discrete event simulation (DES) model of patient flow through an acute care hospital. Patients are matched to beds based on acuity, service, gender, and known MRSA/VRE colonization. Outcomes included time to bed arrival, length of stay, patient-bed acuity mismatches, occupancy, idle beds, acuity-related transfers, rooms with discordant MRSA/VRE colonization, and transmission due to discordant colonization. Observed outcomes were well-approximated by model-generated outcomes for time-to-bed arrival (6.7 v. 6.2 to 6.5 h) and length of stay (3.3 v. 2.9 to 3.0 days), with overlapping 90% coverage intervals. Patient-bed acuity mismatches, where patient acuity exceeded bed acuity and where patient acuity was lower than bed acuity, ranged from 0.6 to 0.9 and 8.6 to 11.1 mismatches per h, respectively. Values for observed occupancy, total idle beds, and acuity-related transfers compared favorably to model-predicted values (91% v. 86% to 87% occupancy, 15.1 v. 14.3 to 15.7 total idle beds, and 27.2 v. 22.6 to 23.7 transfers). Rooms with discordant colonization status and transmission due to discordance were modeled without an observed value for comparison. One-way and multi-way sensitivity analyses were performed for idle beds and rooms with discordant colonization. We developed and validated a DES model of patient flow incorporating MRSA/VRE flags. The model allowed for quantification of the substantial impact of MRSA/VRE flags on hospital efficiency and potentially avoidable nosocomial transmission.
Michael, K E; No, D; Roberts, M C
2017-02-01
Enterococcus spp. are a normal part of the gastrointestinal tract of humans and animals. They are also important pathogens, being responsible for 14% of US nosocomial infections from 2007 to 2010. To examine a laundry facility that processes clinical linens for the presence and seasonality of vancomycin-resistant Enterococcus spp. Surface samples were collected four times in 2015 from the dirty and clean areas of the laundry facility. Isolates were confirmed using biochemical assays, and antibiotic susceptibility testing was performed. Further investigations included molecular characterization by multi-locus sequence typing (MLST), detection of acquired vanA and vanB and/or intrinsic vanC1 genes by polymerase chain reaction, and eBURST analysis. Seventy-four vanA-positive multi-drug-resistant Enterococcus spp. were identified: 64/120 (53%) in the dirty area and 10/120 (8%) in the clean area. There were 14 ST types among the E. faecium isolates identified (ST16, 17, 18, 117, 186, 280, 324, 412, 584, 664, 665, 736, 750 and 1038). Both E. faecalis isolates were ST109. Isolation of vancomycin-resistant enterococci (VRE) isolates was significantly higher (53% vs 8%) in the dirty area of the facility compared with the clean area. This is the first study to examine an industrial laundry facility for the presence of VRE, and may be an unrecognized reservoir. Copyright © 2016 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Bromomethylthioindole Inspired Carbazole Hybrids as Promising Class of Anti-MRSA Agents
2016-01-01
Series of N-substituted carbazole analogues bearing an indole ring were synthesized as anti-methicillin-resistant Staphylococcus aureus (MRSA) agents from a molecular hybridization approach. The representative compound 19 showed an MIC = 1 μg/mL against a panel of MRSA clinical isolates as it possessed comparable in vitro activities to that of vancomycin. Moreover, compound 19 also exhibited MIC = 1 μg/mL activities against a recent identified Z172 MRSA strain (vancomycin-intermediate and daptomycin-nonsusceptible phenotype) and the vancomycin-resistant Enterococcus faecalis (VRE) strain. In a mouse model with lethal infection of MRSA (4N216), a 75% survival rate was observed after a single dose of compound 19 was intravenously administered at 20 mg/kg. In light of their equipotent activities against different MRSA isolates and VRE strain, the data underscore the importance of designed hybrid series for the development of new N-substituted carbazoles as potential anti-MRSA agents. PMID:27994762
Lim, Shu Yong; Yap, Kien-Pong; Teh, Cindy Shuan Ju; Jabar, Kartini Abdul; Thong, Kwai Lin
2017-04-01
Enterococcus faecium is both a commensal of the human intestinal tract and an opportunistic pathogen. The increasing incidence of enterococcal infections is mainly due to the ability of this organism to develop resistance to multiple antibiotics, including vancomycin. The aim of this study was to perform comparative genome analyses on four vancomycin-resistant Enterococcus faecium (VRE fm ) strains isolated from two fatal cases in a tertiary hospital in Malaysia. Two sequence types, ST80 and ST203, were identified which belong to the clinically important clonal complex (CC) 17. This is the first report on the emergence of ST80 strains in Malaysia. Three of the studied strains (VREr5, VREr6, VREr7) were each isolated from different body sites of a single patient (patient Y) and had different PFGE patterns. While VREr6 and VREr7 were phenotypically and genotypically similar, the initial isolate, VREr5, was found to be more similar to VRE2 isolated from another patient (patient X), in terms of the genome contents, sequence types and phylogenomic relationship. Both the clinical records and genome sequence data suggested that patient Y was infected by multiple strains from different clones and the strain that infected patient Y could have derived from the same clone from patient X. These multidrug resistant strains harbored a number of virulence genes such as the epa locus and pilus-associated genes which could enhance their persistence. Apart from that, a homolog of E. faecalis bee locus was identified in VREr5 which might be involved in biofilm formation. Overall, our comparative genomic analyses had provided insight into the genetic relatedness, as well as the virulence potential, of the four clinical strains. Copyright © 2016 Elsevier B.V. All rights reserved.
Friedman, N Deborah; Walton, Aaron L; Boyd, Sarah; Tremonti, Christopher; Low, Jillian; Styles, Kaylene; Harris, Owen; Alfredson, David; Athan, Eugene
2013-03-01
Environmental contamination is a reservoir for vancomycin-resistant enterococcus (VRE) in hospitals. Environmental sampling of surfaces was undertaken anytime before disinfection and 1 hour after disinfection utilizing a sodium dichloroisocyanurate-based, 3-staged protocol (phase 1) or benzalkonium chloride-based, single-stage clean (phase 2). VRE colonization and infection rates are presented from 2010 to 2011, and audits of cleaning completeness were also analyzed. Environmental samples collected before disinfection were significantly more likely to be contaminated with VRE during phase 1 than phase 2: 25.2% versus 4.6%, respectively; odds ratio (OR), 7.01 (P < .01). Environmental samples collected after disinfection were also significantly more likely to yield VRE during phase 1 compared with phase 2: 11.2% versus 1.1%, respectively; OR, 11.73 (P < .01). Rates of VRE colonization were higher during 2010 than 2011. Cleaning audits showed similar results over both time periods. During use of a chlorine-based, 3-staged protocol, significantly higher residual levels of VRE contamination were identified, compared with levels detected during use of a benzalkonium chloride-based product for disinfection. This reduction in VRE may be due to a new disinfection product, more attention to the thoroughness of cleaning, or other supplementary efforts in our institution. Copyright © 2013 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.
Molecular characterization of vancomycin-resistant Enterococcus faecium isolates from Bermuda
Akpaka, Patrick Eberechi; Kissoon, Shivnarine; Wilson, Clyde; Jayaratne, Padman; Smith, Ashley; Golding, George R.
2017-01-01
Molecular characteristics of vancomycin resistant enterococci isolates from Bermuda Island is currently unknown. This study was conducted to investigate phenotypic and genotypic characteristics of VRE isolates from Bermuda Island using the chromogenic agar, E-tests, polymerase chain reaction (PCR), pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Eighteen E. faecium isolates were completely analyzed and were all resistant to vancomycin, susceptible to linezolid and quinupristin/dalfopristin, positive for vanA and esp genes. The MLST analysis confirmed most isolates were of the sequence types linked to clonal complex 17 (CC17) that is widely associated with outbreaks in hospitals. Infection control measures, antibiotic stewardship, and surveillance activities will continue to be a priority in hospital on the Island. PMID:28267763
Molecular characterization of vancomycin-resistant Enterococcus faecium isolates from Bermuda.
Akpaka, Patrick Eberechi; Kissoon, Shivnarine; Wilson, Clyde; Jayaratne, Padman; Smith, Ashley; Golding, George R
2017-01-01
Molecular characteristics of vancomycin resistant enterococci isolates from Bermuda Island is currently unknown. This study was conducted to investigate phenotypic and genotypic characteristics of VRE isolates from Bermuda Island using the chromogenic agar, E-tests, polymerase chain reaction (PCR), pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Eighteen E. faecium isolates were completely analyzed and were all resistant to vancomycin, susceptible to linezolid and quinupristin/dalfopristin, positive for vanA and esp genes. The MLST analysis confirmed most isolates were of the sequence types linked to clonal complex 17 (CC17) that is widely associated with outbreaks in hospitals. Infection control measures, antibiotic stewardship, and surveillance activities will continue to be a priority in hospital on the Island.
Comparative Analysis of the First Complete Enterococcus faecium Genome
Lam, Margaret M. C.; Seemann, Torsten; Bulach, Dieter M.; Gladman, Simon L.; Chen, Honglei; Haring, Volker; Moore, Robert J.; Ballard, Susan; Grayson, M. Lindsay; Johnson, Paul D. R.; Howden, Benjamin P.
2012-01-01
Vancomycin-resistant enterococci (VRE) are one of the leading causes of nosocomial infections in health care facilities around the globe. In particular, infections caused by vancomycin-resistant Enterococcus faecium are becoming increasingly common. Comparative and functional genomic studies of E. faecium isolates have so far been limited owing to the lack of a fully assembled E. faecium genome sequence. Here we address this issue and report the complete 3.0-Mb genome sequence of the multilocus sequence type 17 vancomycin-resistant Enterococcus faecium strain Aus0004, isolated from the bloodstream of a patient in Melbourne, Australia, in 1998. The genome comprises a 2.9-Mb circular chromosome and three circular plasmids. The chromosome harbors putative E. faecium virulence factors such as enterococcal surface protein, hemolysin, and collagen-binding adhesin. Aus0004 has a very large accessory genome (38%) that includes three prophage and two genomic islands absent among 22 other E. faecium genomes. One of the prophage was present as inverted 50-kb repeats that appear to have facilitated a 683-kb chromosomal inversion across the replication terminus, resulting in a striking replichore imbalance. Other distinctive features include 76 insertion sequence elements and a single chromosomal copy of Tn1549 containing the vanB vancomycin resistance element. A complete E. faecium genome will be a useful resource to assist our understanding of this emerging nosocomial pathogen. PMID:22366422
Recovery of vancomycin-resistant enterococci on fingertips and environmental surfaces.
Noskin, G A; Stosor, V; Cooper, I; Peterson, L R
1995-10-01
To determine the recovery of vancomycin-resistant enterococci (VRE) on fingertips, gloved fingertips, and environmental surfaces commonly encountered in the healthcare setting, and to examine the importance of handwashing on the removal of these organisms. Two clinical isolates of VRE (Enterococcus faecalis and Enterococcus faecium) were inoculated onto the hands of healthy human volunteers and the following environmental surfaces: countertops, bedrails, telephones, and stethoscopes. Following inoculation, samples were obtained at various time intervals to determine rates of recovery of organisms. To evaluate the effects of handwashing on enterococcal recovery, two different soap preparations were tested. Hands were washed with water alone or with one of the soaps and water. The soap and water studies were performed with a 5-second and a 30-second wash. Both enterococcal strains survived for at least 60 minutes on gloved and ungloved fingertips. The E faecalis was recoverable from countertops for 5 days; the E faecium persisted for 7 days. For bedrails, both enterococcal species survived for 24 hours without significant reduction in colony counts. The bacteria persisted for 60 minutes on the telephone handpiece and for 30 minutes on the diaphragmatic surface of the stethoscope. A 5-second wash with water alone resulted in virtually no change in recovery of enterococci; a 30-second wash with water plus either soap was necessary to eradicate the bacteria from hands completely. VRE are capable of prolonged survival on hands, gloves, and environmental surfaces. Hands should be washed thoroughly and gloves removed following contact with patients infected or colonized with these multidrug-resistant bacteria. Finally, environmental surfaces may serve as potential reservoirs for nosocomial transmission of VRE and need to be considered when formulating institutional infection control policies.
Torell, Erik; Cars, Otto; Olsson-Liljequist, Barbro; Hoffman, Britt-Marie; Lindbäck, Johan; Burman, Lars G.
1999-01-01
Rates of colonization with enterococci with acquired resistance to vancomycin (vancomycin-resistant enterococci [VRE]) and ampicillin (ampicillin-resistant enterococci [ARE]) were determined by using fecal samples from 670 nonhospitalized individuals and 841 patients in 27 major hospitals. Of the hospitalized patients, 181 (21.5%) were carriers of ARE and 9 (1.1%) were carriers of VRE. In univariate analyses, length of hospital stay (odds ratio [OR], 4.6; 95% confidence interval [CI], 2.5 to 8.9) and antimicrobial therapy (OR, 4.7; 95% CI, 3.3 to 6.7) were associated with ARE colonization, as were prior treatment with penicillins (OR, 3.1; 95% CI, 1.8 to 5.5), cephalosporins (OR, 2.9; 95% CI, 1.7 to 5.0), or quinolones (OR, 2.7; 95% CI, 1.5 to 4.7). In logistic regression analysis, antimicrobial therapy for at least 5 days was independently associated with ARE carriage (adjusted OR, 3.8; 95% CI, 2.6 to 5.4). Over 90% of the ARE isolates were fluoroquinolone resistant, whereas 14% of the ampicillin-susceptible Enterococcus faecium isolates were fluoroquinolone resistant. ARE carriage rates correlated with the use of fluoroquinolones (P = 0.04) but not with the use of ampicillin (P = 0.68) or cephalosporins (P = 0.40). All nine VRE isolates were E. faecium vanB and were found in one hospital. Seven of these isolates were related according to their types as determined by pulsed-field gel electrophoresis. Among the nonhospitalized individuals, the ARE carriage rate was lower (6%; P < 0.05), and only one person, who had recently returned from Africa, harbored VRE (E. faecium vanA). The absence of VRE colonization in nonhospitalized individuals reflects an epidemiological situation in Sweden radically different from that in countries in continental Europe where glycopeptides have been widely used for nonmedical purposes. PMID:10523543
Cerrud-Rodriguez, Roberto Christian; Alcaraz-Alvarez, Diego; Chiong, Brian Bobby; Ahmed, Abdurhman
2017-11-09
We present the case report of an 80-year-old woman with chronic kidney disease stage G5 admitted to the hospital with fluid overload and hyperkalaemia. Sodium polystyrene sulfonate (SPS, Kayexalate) in sorbitol suspension was given orally to treat her hyperkalaemia, which precipitated an episode of SPS in sorbitol-induced ischaemic colitis with the subsequent complication of vancomycin-resistant Enterococcus (VRE) bacteraemia. SPS (Kayexalate) in sorbitol suspension has been implicated in the development of intestinal necrosis. Sorbitol, which is added as a cathartic agent to decrease the chance of faecal impaction, may be primarily responsible through several proposed mechanisms. The gold standard of diagnosis is the presence of SPS crystals in the colon biopsy. On a MEDLINE search, no previous reports of a VRE bacteraemia as a complication of biopsy-confirmed SPS in sorbitol ischaemic colitis were found. To the best of our knowledge, ours would be the first such case ever reported. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Heß, Stefanie; Gallert, Claudia
2016-11-01
Culture-based approaches are used to monitor, e.g., drinking water or bathing water quality and to investigate species diversity and antibiotic resistance levels in environmental samples. For health risk assessment, it is important to know whether the growing cultures display the actual abundance of, e.g., clinically relevant antibiotic resistance phenotypes such as vancomycin-resistant Enterococcus faecium/Enterococcus faecalis (VRE) or methicillin-resistant Staphylococcus aureus. In addition, it is important to know whether sub-inhibitory antibiotic concentrations, which are present in surface waters, favor the growth of antibiotic-resistant strains. Therefore, clinically relevant bacteria were isolated from different water sources and the growth behavior of 58 Escherichia coli, 71 Enterococcus, and 120 Staphylococcus isolates, belonging to different species and revealing different antibiotic resistance patterns, was studied with respect to "environmental" antibiotic concentrations. The finding that VRE could only be detected after specific enrichment can be explained by their slow growth compared to non-resistant strains. Interpreting their absence in standardized culture-based methods as nonexistent might be a fallacy. Sub-inhibitory antibiotic concentrations that were detected in sewage and receiving river water did not specifically promote antibiotic-resistant strains. Generally, those antibiotics that influenced cell metabolism directly led to slightly reduced growth rates and less than maximal optical densities after 48 h of incubation.
Honsa, Erin S; Cooper, Vaughn S; Mhaissen, Mohammed N; Frank, Matthew; Shaker, Jessica; Iverson, Amy; Rubnitz, Jeffrey; Hayden, Randall T; Lee, Richard E; Rock, Charles O; Tuomanen, Elaine I; Wolf, Joshua; Rosch, Jason W
2017-01-03
Serious bacterial infections in immunocompromised patients require highly effective antibacterial therapy for cure, and thus, this setting may reveal novel mechanisms by which bacteria circumvent antibiotics in the absence of immune pressure. Here, an infant with leukemia developed vancomycin-resistant Enterococcus faecium (VRE) bacteremia that persisted for 26 days despite appropriate antibiotic therapy. Sequencing of 22 consecutive VRE isolates identified the emergence of a single missense mutation (L152F) in relA, which constitutively activated the stringent response, resulting in elevated baseline levels of the alarmone guanosine tetraphosphate (ppGpp). Although the mutant remained susceptible to both linezolid and daptomycin in clinical MIC testing and during planktonic growth, it demonstrated tolerance to high doses of both antibiotics when growing in a biofilm. This biofilm-specific gain in resistance was reflected in the broad shift in transcript levels caused by the mutation. Only an experimental biofilm-targeting ClpP-activating antibiotic was able to kill the mutant strain in an established biofilm. The relA mutation was associated with a fitness trade-off, forming smaller and less-well-populated biofilms on biological surfaces. We conclude that clinically relevant relA mutations can emerge during prolonged VRE infection, causing baseline activation of the stringent response, subsequent antibiotic tolerance, and delayed eradication in an immunocompromised state. The increasing prevalence of antibiotic-resistant bacterial pathogens is a major challenge currently facing the medical community. Such pathogens are of particular importance in immunocompromised patients as these individuals may favor emergence of novel resistance determinants due to lack of innate immune defenses and intensive antibiotic exposure. During the course of chemotherapy, a patient developed prolonged bacteremia with vancomycin-resistant Enterococcus faecium that failed to clear despite multiple front-line antibiotics. The consecutive bloodstream isolates were sequenced, and a single missense mutation identified in the relA gene, the mediator of the stringent response. Strains harboring the mutation had elevated baseline levels of the alarmone and displayed heightened resistance to the bactericidal activity of multiple antibiotics, particularly in a biofilm. Using a new class of compounds that modulate ClpP activity, the biofilms were successfully eradicated. These data represent the first clinical emergence of mutations in the stringent response in vancomycin-resistant entereococci. Copyright © 2017 Honsa et al.
Freedberg, Daniel E; Zhou, Margaret J; Cohen, Margot E; Annavajhala, Medini K; Khan, Sabrina; Moscoso, Dagmara I; Brooks, Christian; Whittier, Susan; Chong, David H; Uhlemann, Anne-Catrin; Abrams, Julian A
2018-06-23
Loss of colonization resistance within the gastrointestinal microbiome facilitates the expansion of pathogens and has been associated with death and infection in select populations. We tested whether gut microbiome features at the time of intensive care unit (ICU) admission predict death or infection. This was a prospective cohort study of medical ICU adults. Rectal surveillance swabs were performed at admission, selectively cultured for vancomycin-resistant Enterococcus (VRE), and assessed using 16S rRNA gene sequencing. Patients were followed for 30 days for death or culture-proven bacterial infection. Of 301 patients, 123 (41%) developed culture-proven infections and 76 (25%) died. Fecal biodiversity (Shannon index) did not differ based on death or infection (p = 0.49). The presence of specific pathogens at ICU admission was associated with subsequent infection with the same organism for Escherichia coli, Pseudomonas spp., Klebsiella spp., and Clostridium difficile, and VRE at admission was associated with subsequent Enterococcus infection. In a multivariable model adjusting for severity of illness, VRE colonization and Enterococcus domination (≥ 30% 16S reads) were both associated with death or all-cause infection (aHR 1.46, 95% CI 1.06-2.00 and aHR 1.47, 95% CI 1.00-2.19, respectively); among patients without VRE colonization, Enterococcus domination was associated with excess risk of death or infection (aHR 2.13, 95% CI 1.06-4.29). Enterococcus status at ICU admission was associated with risk for death or all-cause infection, and rectal carriage of common ICU pathogens predicted specific infections. The gastrointestinal microbiome may have a role in risk stratification and early diagnosis of ICU infections.
Emergence of vanA Enterococcus faecium in Denmark, 2005-15.
Hammerum, Anette M; Baig, Sharmin; Kamel, Yasmin; Roer, Louise; Pinholt, Mette; Gumpert, Heidi; Holzknecht, Barbara; Røder, Bent; Justesen, Ulrik S; Samulioniené, Jurgita; Kjærsgaard, Mona; Østergaard, Claus; Holm, Anette; Dzajic, Esad; Søndergaard, Turid Snekloth; Gaini, Shahin; Edquist, Petra; Alm, Erik; Lilje, Berit; Westh, Henrik; Stegger, Marc; Hasman, Henrik
2017-08-01
To describe the changing epidemiology of vancomycin-resistant Enterococcus faecium and Enterococcus faecalis in clinical samples in Denmark 2005-15 according to species and van type, and, furthermore, to investigate the genetic relatedness of the clinical E. faecium isolates from 2015. During 2005-14, all clinical VRE isolates were tested for the presence of vanA/B/C genes by PCR. In 2015, all clinical VRE isolates were whole-genome sequenced. From the WGS data, the presence of van genes and MLST STs were extracted in silico . Core-genome MLST (cgMLST) analysis was performed for the vancomycin-resistant E. faecium isolates. During 2005-15, 1043 vanA E. faecium , 25 vanB E. faecium , 4 vanA E. faecalis and 28 vanB E. faecalis were detected. The number of VRE was <50 isolates/year until 2012 to > 200 isolates/year in 2013-15. In 2015, 368 vanA E. faecium and 1 vanB E. faecium were detected along with 1 vanA E. faecalis and 1 vanB E. faecalis . cgMLST subdivided the 368 vanA E. faecium isolates into 33 cluster types (CTs), whereas the vanB E. faecium isolate belonged to a different CT. ST203-CT859 was most prevalent (51%), followed by ST80-CT14 (22%), ST117-CT24 (6%), ST80-CT866 (4%) and ST80-CT860 (2%). Comparison with the cgMLST.org database, previous studies and personal communications with neighbouring countries revealed that the novel cluster ST203-CT859 emerged in December 2014 and spread to the south of Sweden and the Faroe Islands during 2015. VRE increased in Denmark during 2005-15 due to the emergence of several vanA E. faecium clones. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ulu-Kilic, Aysegul; Özhan, Esra; Altun, Dilek; Perçin, Duygu; Güneş, Tamer; Alp, Emine
2016-04-01
The screening of critically ill patients at high risk of vancomycin resistant enterococci (VRE) colonization, to detect and isolate colonized patients, is recommended to prevent and control the transmission of VRE. Screening asymptomatic carriers brings financial burden for institutions. In this study, we performed risk analysis for VRE colonization and determined the financial burden of screening in a middle-income country, Turkey. We retrospectively analyzed the VRE surveillance data from a pediatric hospital between 2010 and 2014. A case-control study was conducted to identify the risk factors of colonization. Total cost of VRE screening and additional costs for a VRE colonized patient (including active surveillance cultures and contact isolation) were calculated. During the 4-year period, 6,372 patients were screened for perirectal VRE colonization. The rate of culture-positive specimens among all patients screened was 239 (3.75%). The rate of VRE infection was 0.04% (n = 3) among all patients screened. Length of hospital stay, malignancy, and being transferred from another institution were independently associated risk factors for colonization. Annual estimated costs for the laboratory were projected as $19,074 (76,295/4) for all patients screened. Cost of contact isolation for each patient colonized in a ward and an intensive care unit was $270 and $718, respectively. In developing countries, institutions should identify their own high-risk patients; screening priorities should be based on prevalence of infection and hospital financial resources. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
van der Heijden, Karin M.; van der Heijden, Inneke M.; Galvao, Flavio H.; Lopes, Camila G.; Costa, Silvia F.; Abdala, Edson; D’Albuquerque, Luiz A.; Levin, Anna S.
2014-01-01
The objectives of this study were to develop a rat model of gastrointestinal colonization with vancomycin-resistant Enterococcus faecalis (VRE) and extended-spectrum beta-lactamase (ESBL)-producing E. coli and to evaluate intestinal translocation to blood and tissues after total and partial hepatic ischemia. Methods - We developed a model of rat colonization with VRE and ESBL-E coli. Then we studied four groups of colonized rats: Group I (with hepatic pedicle occlusion causing complete liver ischemia and intestinal stasis); Group II (with partial liver ischemia without intestinal stasis); Group III (surgical manipulation without hepatic ischemia or intestinal stasis); Group IV (anesthetized without surgical manipulation). After sacrifice, portal and systemic blood, large intestine, small intestine, spleen, liver, lungs, and cervical and mesenteric lymph nodes were cultured. Endotoxin concentrations in portal and systemic blood were determined. Results – The best inocula were: VRE: 2.4×1010 cfu and ESBL-E. coli: 1.12×1010 cfu. The best results occurred 24 hours after inoculation and antibiotic doses of 750 µg/mL of water for vancomycin and 2.1 mg/mL for ceftriaxone. There was a significantly higher proportion of positive cultures for ESBL-E. coli in the lungs in Groups I, II and III when compared with Group IV (67%; 60%; 75% and 13%, respectively; p:0.04). VRE growth was more frequent in mesenteric lymph nodes for Groups I (67%) and III (38%) than for Groups II (13%) and IV (none) (p:0.002). LPS was significantly higher in systemic blood of Group I (9.761±13.804 EU/mL−p:0.01). No differences for endotoxin occurred in portal blood. Conclusion –We developed a model of rats colonized with resistant bacteria useful to study intestinal translocation. Translocation occurred in surgical procedures with and without hepatic ischemia-reperfusion and probably occurred via the bloodstream. Translocation was probably lymphatic in the ischemia-reperfusion groups. Systemic blood endotoxin levels were higher in the group with complete hepatic ischemia. PMID:25255079
Beal, Stacy G.; Ciurca, Jane; Smith, Geremy; John, Jeffrey; Lee, Francesca; Doern, Christopher D.
2013-01-01
The Verigene Gram-positive blood culture (BC-GP) assay (Nanosphere, Northbrook, IL) is a molecular method for the rapid identification of Gram-positive organisms and resistance markers directly from blood culture bottles. A total of 148 VersaTREK REDOX 1 40-ml aerobic bottles demonstrating Gram-positive bacteria were tested. Results were compared with those from conventional biochemical and matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) identifications. We obtained isolates of methicillin-resistant Staphylococcus aureus (MRSA) (24), methicillin-susceptible Staphylococcus aureus (MSSA) (14), methicillin-resistant Staphylococcus epidermidis (MRSE) (17), methicillin-susceptible Staphylococcus epidermidis (MSSE) (9), other coagulase-negative staphylococci (19), Streptococcus salivarius (5), Streptococcus parasanguinis (2), Streptococcus sanguinis (1), Streptococcus cristatus (1), the Streptococcus bovis group (5), Streptococcus agalactiae (9), the Streptococcus anginosus group (1), Streptococcus pneumoniae (6), vancomycin-resistant Enterococcus faecium (VRE FCM) (16), vancomycin-susceptible Enterococcus faecalis (3), Aerococcus viridans (2), Bacillus (6), Corynebacterium (8), Lactobacillus (2), Micrococcus (2), Neisseria mucosa (1), Escherichia coli (3), Candida tropicalis (1), Propionibacterium (1), and Rothia (1). Overall agreement with the culture results was 95%. A total of 137 of 138 (99%) monomicrobial cultures were concordant. We tested 9 polymicrobial samples and found 33% agreement. A chart review of 31 patients with MRSA, MSSA, or VRE demonstrated that the Nanosphere BC-GP assay might have led to more appropriate antibiotic selection for these patients an average of 42 h earlier. Additionally, contact isolation could have been initiated an average of 37 h earlier for patients with MRSA or VRE. The BC-GP assay may have a positive impact on patient care, health care costs, and antibiotic stewardship. PMID:24048531
2010-09-19
estimated directly form the surveillance data Infection control measures were implemented in the form of health care worker hand - hygiene before and after...hospital infections , is used to motivate possibilities of modeling nosocomial infec- tion dynamics. This is done in the context of hospital monitoring and...model development. Key Words: Delay equations, discrete events, nosocomial infection dynamics, surveil- lance data, inverse problems, parameter
The oxadiazole antibacterials.
Janardhanan, Jeshina; Chang, Mayland; Mobashery, Shahriar
2016-10-01
The oxadiazoles are a class of antibacterials discovered by in silico docking and scoring of compounds against the X-ray structure of a penicillin-binding protein. These antibacterials exhibit activity against Gram-positive bacteria, including against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE). They show in vivo efficacy in murine models of peritonitis/sepsis and neutropenic thigh MRSA infection. They are bactericidal and orally bioavailable. The oxadiazoles show promise in treatment of MRSA infection. Copyright © 2016 Elsevier Ltd. All rights reserved.
Asadian, M; Sadeghi, J; Rastegar Lari, A; Razavi, Sh; Hasannejad Bibalan, M; Talebi, M
2016-03-01
Enterococci are known as a cause of nosocomial infections and this aptitude is intensified by the growth of antibiotic resistance. In the present study, Enterococcus faecium isolates from healthy volunteers were considered to determine the antibiotic resistance profiles and genetic correlation. A total 91 normal flora isolates of enterococci were included in this study. Identification of Enterococcus genus and species were done by biochemical and PCR methods, respectively. Sensitivity for 10 antibiotics was determined and genetic relatedness of all isolates was assessed using Repetitive Element Palindromic PCR (REP-PCR) followed by Pulse Field Gel Electrophoresis (PFGE) on the representative patterns. None of the isolates were resistant to teicoplanin, vancomycin, quinupristin-dalfopristin, linezolid, chloramphenicol, ampicillin and high-level gentamicin. On the other hand, the resistance rate was detected in 30.7%, 23%, and 3.29% of isolates for erythromycin, tetracycline and ciprofloxacin, respectively. The results of PFGE showed 19 (61.5% of our isolates) common types (CT) and 35 (38.5%) single types (ST) amongst the isolates. This is the first study to describe antibiotic resistance pattern and genetic relationship among normal flora enterococci in Iran. This study showed no prevalence of Vancomycin Resistant Enterococci (VRE) and high degrees of diversity among normal flora isolates by genotyping using PFGE. Copyright © 2015 Elsevier Ltd. All rights reserved.
McCracken, M; Wong, A; Mitchell, R; Gravel, D; Conly, J; Embil, J; Johnston, L; Matlow, A; Ormiston, D; Simor, A E; Smith, S; Du, T; Hizon, R; Mulvey, M R
2013-07-01
Vancomycin-resistant enterococci (VRE) can be associated with serious bacteraemia. The focus of this study was to characterize the molecular epidemiology of VRE from bacteraemia cases that were isolated from 1999 to 2009 as part of Canadian Nosocomial Infection Surveillance Program (CNISP) surveillance activities. From 1999 to 2009, enterococci were collected from across Canada in accordance with the CNISP VRE surveillance protocol. MICs were determined using broth microdilution. PCR was used to identify vanA, B, C, D, E, G and L genes. Genetic relatedness was examined using multilocus sequence typing (MLST). A total of 128 cases of bacteraemia were reported to CNISP from 1999 to 2009. In 2007, a significant increase in bacteraemia rates was observed in western and central Canada. Eighty-one of the 128 bacteraemia isolates were received for further characterization and were identified as Enterococcus faecium. The majority of isolates were from western Canada (60.5%), followed by central (37.0%) and eastern (2.5%) Canada. Susceptibilities were as follows: daptomycin, linezolid, tigecycline and chloramphenicol, 100%; quinupristin/dalfopristin, 96.3%; high-level gentamicin, 71.6%; tetracycline, 50.6%; high-level streptomycin, 44.4%; rifampicin, 21.0%; nitrofurantoin, 11.1%; clindamycin, 8.6%; ciprofloxacin, levofloxacin and moxifloxacin, 1.2%; and ampicillin, 0.0%. vanA contributed to vancomycin resistance in 90.1% of isolates and vanB in 9.9%. A total of 17 sequence types (STs) were observed. Beginning in 2006 there was a shift in ST from ST16, ST17, ST154 and ST80 to ST18, ST412, ST203 and ST584. The increase in bacteraemia observed since 2007 in western and central Canada appears to coincide with the shift of MLST STs. All VRE isolates remained susceptible to daptomycin, linezolid, chloramphenicol and tigecycline.
Deshpande, Abhishek; Hurless, Kelly; Cadnum, Jennifer L.; Chesnel, Laurent; Gao, Lihong; Chan, Luisa; Kundrapu, Sirisha; Polinkovsky, Alexander
2016-01-01
Surotomycin (formerly called CB-183,315) is a novel, orally administered cyclic lipopeptide antibacterial in development for the treatment of Clostridium difficile infection (CDI) that has potent activity against vancomycin-resistant enterococci (VRE) but limited activity against Gram-negative bacilli, including Bacteroides spp. We used a mouse model to investigate the impact of surotomycin exposure on the microbiome, and to test the consequences of the disruption on colonization by vancomycin-resistant enterococci (VRE) and extended-spectrum β-lactamase-producing Klebsiella pneumoniae (ESBL-KP), in comparison with the effects of oral vancomycin and metronidazole. Mice (8 per group) received saline, vancomycin, metronidazole, or surotomycin through an orogastric tube daily for 5 days and were challenged with 105 CFU of VRE or ESBL-KP administered through an orogastric tube on day 2 of treatment. The concentrations of the pathogens in stool were determined during and after treatment by plating on selective media. A second experiment was conducted to determine if the antibiotics would inhibit established VRE colonization. In comparison to controls, oral vancomycin promoted VRE and ESBL-KP overgrowth in stool (8 log10 to 10 log10 CFU/g; P < 0.001), whereas metronidazole did not (<4 log10 CFU/g; P > 0.5). Surotomycin promoted ESBL-KP overgrowth (>8 log10 CFU/g; P, <0.001 for comparison with saline controls) but not VRE overgrowth. Surotomycin suppressed preexisting VRE colonization, whereas metronidazole and vancomycin did not. These results suggest that treatment of CDI with surotomycin could reduce levels of VRE acquisition and overgrowth from those with agents such as vancomycin and metronidazole. However, surotomycin and vancomycin may promote colonization by antibiotic-resistant Gram-negative bacilli. PMID:26976870
OCCURRENCE OF INTRINSIC VANCOMYCIN RESISTANT ENTEROCOCCI IN ANIMAL FECES
A survey was conducted to determine the occurrence of vancomycin resistant enterococci (VRE) in animal and human fecal samples. Fecal samples from 14 animal species and humans were analyzed by quantitative culture for enterococci and VRE. Over 800 VRE isolates were characterize...
DETECTION OF INTRINSIC VANCOMYCIN RESISTANT ENTEROCOCCI IN ANIMAL AND HUMAN FECES
A survey was conducted to determine the occurrence of vancomycin resistant enterococci (VRE) in animal and human fecal samples. Fecal samples from 14 animal species and humans were analyzed by quantitative culture for enterococci and VRE. Over 800 VRE isolates were characterize...
Hashimoto, Y; Tanimoto, K; Ozawa, Y; Murata, T; Ike, Y
2000-04-15
The vancomycin-resistant enterococci GV1, GV2 and GV3, which were isolated from droppings from broiler farms in Japan have been characterized as VanA-type VRE, which express high-level vancomycin resistance (256 or 512 microg ml(-1), MIC) and low-level teicoplanin resistance (1 or 2 microg ml(-1), MIC). The vancomycin resistances were encoded on plasmids. The vancomycin resistance conjugative plasmid pMG2 was isolated from the GV2 strain. The VanA determinant of pMG2 showed the same genetic organization as that of the VanA genes encoded on the representative transposon Tn1546, which comprises vanRSHAXYZ. The nucleotide sequences of all the genes, except the gene related to the vanS gene on Tn1546, were completely identical to the genes encoded on Tn1546. Three amino acid substitutions in the N-terminal region of the deduced VanS were detected in the nucleotide sequence of vanS encoded on pMG2. There were also three amino acid substitutions in the vanS gene of the GV1 and GV3 strains in the same positions as in the vanS gene of pMG2. Vancomycin induced the increased teicoplanin resistance in these strains.
Pidgeon, Sean E; Pires, Marcos M
2017-07-21
Drug-resistant bacterial infections threaten to overburden our healthcare system and disrupt modern medicine. A large class of potent antibiotics, including vancomycin, operate by interfering with bacterial cell wall biosynthesis. Vancomycin-resistant enterococci (VRE) evade the blockage of cell wall biosynthesis by altering cell wall precursors, rendering them drug insensitive. Herein, we reveal the phenotypic plasticity and cell wall remodeling of VRE in response to vancomycin in live bacterial cells via a metabolic probe. A synthetic cell wall analog was designed and constructed to monitor cell wall structural alterations. Our results demonstrate that the biosynthetic pathway for vancomycin-resistant precursors can be hijacked by synthetic analogs to track the kinetics of phenotype induction. In addition, we leveraged this probe to interrogate the response of VRE cells to vancomycin analogs and a series of cell wall-targeted antibiotics. Finally, we describe a proof-of-principle strategy to visually inspect drug resistance induction. Based on our findings, we anticipate that our metabolic probe will play an important role in further elucidating the interplay among the enzymes involved in the VRE biosynthetic rewiring.
Mahony, Andrew A; Buultjens, Andrew H; Ballard, Susan A; Grabsch, Elizabeth A; Xie, Shirley; Seemann, Torsten; Stuart, Rhonda L; Kotsanas, Despina; Cheng, Allen; Heffernan, Helen; Roberts, Sally A; Coombs, Geoffrey W; Bak, Narin; Ferguson, John K; Carter, Glen C; Howden, Benjamin P; Stinear, Timothy P; Johnson, Paul D R
2018-01-01
Vancomycin-resistant Enterococcus faecium (VRE) is a leading cause of hospital-acquired infections. New, presumably better-adapted strains of VRE appear unpredictably; it is uncertain how they spread despite improved infection control. We aimed to investigate the relatedness of a novel sequence type (ST) of vanB E. faecium - ST796 - very near its time of origin from hospitals in three Australian states and New Zealand. Following near-simultaneous outbreaks of ST796 in multiple institutions, we gathered then tested colonization and bloodstream infection isolates' antimicrobial resistance (AMR) phenotypes, and phylogenomic relationships using whole genome sequencing (WGS). Patient meta-data was explored to trace the spread of ST796. A novel clone of vanB E. faecium (ST796) was first detected at one Australian hospital in late 2011, then in two New Zealand hospitals linked by inter-hospital transfers from separate Melbourne hospitals. ST796 also appeared in hospitals in South Australia and New South Wales and was responsible for at least one major colonization outbreak in a Neonatal Intensive Care Unit without identifiable links between centers. No exceptional AMR was detected in the isolates. While WGS analysis showed very limited diversity at the core genome, consistent with recent emergence of the clone, clustering by institution was observed. Evolution of new E. faecium clones, followed by recognized or unrecognized movement of colonized individuals then rapid intra-institutional cross-transmission best explain the multi-center, multistate and international outbreak we observed.
Klein, Günter; Pack, Alexander; Reuter, Gerhard
1998-01-01
The food chain, especially raw minced meat, is thought to be responsible for an increase in the incidence of vancomycin-resistant enterococci (VRE) in human nosocomial infections. Therefore, 555 samples from 115 batches of minced beef and pork from a European Union-licensed meat-processing plant were screened for the occurrence of VRE. The processed meat came from 45 different slaughterhouses in Germany. Enterococci were isolated directly from Enterococcosel selective agar plates and also from Enterococcosel selective agar plates supplemented with 32 mg of vancomycin per liter. In addition, peptone broth was used in a preenrichment procedure, and samples were subsequently plated onto Enterococcosel agar containing vancomycin. To determine resistance, 209 isolates from 275 samples were tested with the glycopeptides vancomycin, teicoplanin, and avoparcin and 19 other antimicrobial substances by using a broth microdilution test. When the direct method was used, VRE were found in 3 of 555 samples (0.5%) at a concentration of 1.0 log CFU/g of minced meat. When the preenrichment procedure was used, 8% of the samples were VRE positive. Our findings indicate that there is a low incidence of VRE in minced meat in Germany. In addition, the resistance patterns of the VRE isolates obtained were different from the resistance patterns of clinical isolates. A connection between the occurrence of VRE in minced meat and nosocomial infections could not be demonstrated on the basis of our findings. PMID:9572958
Maasjost, J; Mühldorfer, K; Cortez de Jäckel S; Hafez, H M
2015-03-01
Between 2010 and 2011, 145 Enterococcus isolates (Enterococcus faecalis, n = 127; Enterococcus faecium, n = 18) were collected during routine bacteriologic diagnostics from broilers, layers, and fattening turkeys in Germany showing various clinical signs. The susceptibility to 24 antimicrobial agents was investigated by broth microdilution test to determine minimum inhibitory concentrations (MICs). All E. faecalis isolates (n = 127) were susceptible to the beta-lactam antibiotics ampicillin, amoxicillin-clavulanic acid, and penicillin. Corresponding MIC with 50% inhibition (MIC50) and MIC with 90% inhibition (MIC90) values of these antimicrobial agents were at the lower end of the test range (≤ 4 μg/ml). In addition, no vancomycin-resistant enterococci (VRE) were found. High resistance rates were identified in both Enterococcus species for lincomycin (72%-99%) and tetracycline (67%-82%). Half or more than half of Enterococcus isolates were resistant to gentamicin (54%-72%) and the macrolide antibiotics erythromycin (44%-61%) and tylosin-tartate (44%-56%). Enterococcus faecalis isolated from fattening turkeys showed the highest prevalence of antimicrobial resistance compared to other poultry production systems. Eighty-nine out of 145 Enterococcus isolates were resistant to three or more antimicrobial classes. Again, turkeys stood out with 42 (8 1%) multiresistant isolates. The most-frequent resistance patterns of E. faecalis were gentamicin, lincomycin, and tetracycline in all poultry production systems.
RelA Mutant Enterococcus faecium with Multiantibiotic Tolerance Arising in an Immunocompromised Host
Honsa, Erin S.; Mhaissen, Mohammed N.; Frank, Matthew; Shaker, Jessica; Iverson, Amy; Rubnitz, Jeffrey; Hayden, Randall T.; Lee, Richard E.; Rock, Charles O.; Tuomanen, Elaine I.
2017-01-01
ABSTRACT Serious bacterial infections in immunocompromised patients require highly effective antibacterial therapy for cure, and thus, this setting may reveal novel mechanisms by which bacteria circumvent antibiotics in the absence of immune pressure. Here, an infant with leukemia developed vancomycin-resistant Enterococcus faecium (VRE) bacteremia that persisted for 26 days despite appropriate antibiotic therapy. Sequencing of 22 consecutive VRE isolates identified the emergence of a single missense mutation (L152F) in relA, which constitutively activated the stringent response, resulting in elevated baseline levels of the alarmone guanosine tetraphosphate (ppGpp). Although the mutant remained susceptible to both linezolid and daptomycin in clinical MIC testing and during planktonic growth, it demonstrated tolerance to high doses of both antibiotics when growing in a biofilm. This biofilm-specific gain in resistance was reflected in the broad shift in transcript levels caused by the mutation. Only an experimental biofilm-targeting ClpP-activating antibiotic was able to kill the mutant strain in an established biofilm. The relA mutation was associated with a fitness trade-off, forming smaller and less-well-populated biofilms on biological surfaces. We conclude that clinically relevant relA mutations can emerge during prolonged VRE infection, causing baseline activation of the stringent response, subsequent antibiotic tolerance, and delayed eradication in an immunocompromised state. PMID:28049149
Eckstein, Brittany C; Adams, Daniel A; Eckstein, Elizabeth C; Rao, Agam; Sethi, Ajay K; Yadavalli, Gopala K; Donskey, Curtis J
2007-01-01
Background Contaminated environmental surfaces may play an important role in transmission of some healthcare-associated pathogens. In this study, we assessed the adequacy of cleaning practices in rooms of patients with Clostridium difficile-associated diarrhea (CDAD) and vancomycin-resistant Enterococcus (VRE) colonization or infection and examined whether an intervention would result in improved decontamination of surfaces. Methods During a 6-week period, we cultured commonly touched surfaces (i.e. bedrails, telephones, call buttons, door knobs, toilet seats, and bedside tables) in rooms of patients with CDAD and VRE colonization or infection before and after housekeeping cleaning, and again after disinfection with 10% bleach performed by the research staff. After the housekeeping staff received education and feedback, additional cultures were collected before and after housekeeping cleaning during a 10-week follow-up period. Results Of the 17 rooms of patients with VRE colonization or infection, 16 (94%) had one or more positive environmental cultures before cleaning versus 12 (71%) after housekeeping cleaning (p = 0.125), whereas none had positive cultures after bleach disinfection by the research staff (p < 0.001). Of the 9 rooms of patients with CDAD, 100% had positive cultures prior to cleaning versus 7 (78%) after housekeeping cleaning (p = 0.50), whereas only 1 (11%) had positive cultures after bleach disinfection by research staff (p = 0.031). After an educational intervention, rates of environmental contamination after housekeeping cleaning were significantly reduced. Conclusion Our findings provide additional evidence that simple educational interventions directed at housekeeping staff can result in improved decontamination of environmental surfaces. Such interventions should include efforts to monitor cleaning and disinfection practices and provide feedback to the housekeeping staff. PMID:17584935
Grabsch, E A; Ghaly-Derias, S; Gao, W; Howden, B P
2008-12-01
The new chromogenic agar chromID VRE (cIDVRE; bioMérieux) was compared with bile esculin agar (BD) containing 6 mg/liter vancomycin for the detection of colonization with vanB-containing vancomycin-resistant enterococci (VRE). At 48 h of incubation, the results obtained with both media were comparable. However, cIDVRE detected significantly more VRE at 24 h (39.3% versus 21.3%, P = 0.003), and its use may facilitate the timely implementation of infection control procedures.
Hibberd, Patricia L.; Goldin, Barry; Thorpe, Cheleste; McDermott, Laura; Snydman, David R.
2015-01-01
Vancomycin-resistant enterococci (VRE) are endemic in health care settings. These organisms colonize the gastrointestinal tract and can lead to infection which is associated with increased mortality. There is no treatment for VRE colonization. We conducted a randomized, double-blind, placebo-controlled clinical trial to examine the safety and efficacy of administration of the probiotic Lactobacillus rhamnosus GG (LGG) for the reduction or elimination of intestinal colonization by VRE. Colonized adults were randomized to receive LGG or placebo for 14 days. Quantitative stool cultures for LGG and VRE were collected at baseline and days 7, 14, 21, 28, and 56. Day 14 stool samples from some subjects were analyzed by quantitative PCR (qPCR) for LGG. Patients were closely monitored for adverse events. Eleven subjects, of whom 5 received LGG and 6 received placebo, were analyzed. No differences in VRE colony counts were seen at any time points between groups. No decline in colony counts was seen over time in subjects who received LGG. LGG was detected by PCR in all samples tested from subjects who received LGG but was only isolated in culture from 2 of 5 subjects in the LGG group. No treatment-related adverse events were seen. We demonstrated that LGG could be administered safely to patients with comorbidities and is recoverable in some patients' stool cultures. Concomitant administration of antibiotics may have resulted in an inability to recover viable organisms from stool samples, but LGG DNA could still be detected by qPCR. LGG administration did not affect VRE colonization in this study. (This study was registered at Clinicaltrials.gov under registration no. NCT00756262.) PMID:26014940
Huebner, Nils-Olaf; Dittmann, Kathleen; Henck, Vivien; Wegner, Christian; Kramer, Axel
2016-09-02
One important aspect in combatting resistance to antibiotics is to increase the awareness and knowledge by epidemiological studies. We therefore conducted a German-wide point-prevalence survey for multidrug resistant bacterial organisms (MDROs) and Clostridium difficile (CD) to assess the epidemiology and structure quality of infection control in German hospitals. 1550 hospitals were asked to participate and to report surveillance data on the prevalence of Methicillin-resistant and Vancomycin resistant Staphylococcus aureus (MRSA, VRSA/GRSA), Vancomycin resistant Enterococcus faecalis/faecium (VRE), multiresistant strains of Escherichia coli (EC), Klebsiella spp. (KS), Enterobacter spp. (ES), Acinetobacter spp. (AB) and Pseudomonas spp. (PS). as well as CD infections. Surveys from 73,983 patients from 329 hospitals were eligible for analysis. MRSA was the most often reported pathogen (prevalence: 1.64 % [CI95: 1.46-1.82]), followed by 3 multidrug resistant EC (3MRGN-EC) (0.75 % [CI95: 0.60-0.89]), CD (0.74 % [CI95: 0.60-0.88]), VRE (0.25 % [CI95: 0.13-0.37]) und 3MRGN-KS (0.22 % [CI95: [0.15-0.29]). The majority of hospitals met the German recommendations for staffing with infection control personnel. The continuing increase in participating hospitals in this third survey in a row indicates a growing awareness to MDROs and our pragmatic approach. Our results confirm that MRSA, 3MRGN-EC, VRE and 3MRGN-KS remain the most prevalent MDROs in German hospitals.
Wang, Linda; Zöllner, Sebastian; Foxman, Betsy; Mobley, Harry L. T.; Mody, Lona
2011-01-01
Background. Methicillin-resistant Staphylococcus aureus (MRSA) remains sensitive to vancomycin; when vancomycin-resistant S. aureus (VRSA) emerges, treatment becomes more complex. VRSA emergence is attributed to conjugative transfer of the vancomycin-resistance gene cluster from vancomycin-resistant enterococci (VRE) to MRSA. Because cocolonization with MRSA and VRE precedes VRSA development, this study investigates the epidemiology of cocolonization in skilled nursing facility (SNF) residents at high risk for MRSA or VRE colonization. Methods. A prospective observational study conducted at 15 SNFs in southeast Michigan. Overall, 178 residents (90 with indwelling urinary catheters and/or feeding tubes and 88 device-free) were cultured monthly for MRSA and VRE, and clinical data were recorded. Results. The incidence of MRSA/VRE cocolonization among residents with indwelling devices was 6.5 per 100 resident-months; 5.2 (95% confidence interval [CI]: 1.49–18.1) times that among those without devices. MRSA/VRE cocolonization in the device group occurred most frequently in wounds (4.1 per 100 resident-months). In a logistic regression analysis limited to residents with devices, functional disability (rate ratio [RR], 1.3; 95% CI: 1.1–1.4) and wound presence (RR, 3.4; 95% CI: 1.4–8.6) were independent risk factors of cocolonization. Conclusions. In a population of SNF residents, individuals with indwelling devices who also had functional disability or wounds were at greatest risk of MRSA/VRE cocolonization. These individuals should be routinely monitored for the presence of VRSA colonization. PMID:22080118
Limayem, Alya; Donofrio, Robert Scott; Zhang, Chao; Haller, Edward; Johnson, Michael G
2015-01-01
The multidrug resistant Enterococcus faecium (MEF) strains originating from farm animals are proliferating at a substantial pace to impact downstream food chains and could reach hospitals. This study was conducted to elucidate the drug susceptibility profile of MEF strains collected from poultry products in Ann Arbor, MI area and clinical settings from Michigan State Lab and Moffitt Cancer Center (MCC) in Florida. Presumptive positive Enterococcus isolates at species level were identified by Matrix Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF) analysis. The antibiotic susceptibility profile for both poultry and clinical strains was determined by the Thermo Scientific's Sensititre conform to the National Committee for Clinical Laboratory Standards (NCCLS) and validated via quantitative real-time PCR (qPCR) methods. Out of 50 poultry samples (Turkey: n = 30; Chicken: n = 20), 36 samples were positive for Enterococcus species from which 20.83% were identified as E. faecium. All the E. faecium isolates were multidrug resistant and displayed resistance to the last alternative drug, quinupristin/dalfopristin (QD) used to treat vancomycin resistant E. faecium (VRE) in hospitals. Results indicate the presence of MEF strains in food animals and clinical settings that are also resistant to QD.
Polyclonal emergence of vanA vancomycin-resistant Enterococcus faecium in Australia.
van Hal, Sebastiaan J; Espedido, Björn A; Coombs, Geoffrey W; Howden, Benjamin P; Korman, Tony M; Nimmo, Graeme R; Gosbell, Iain B; Jensen, Slade O
2017-04-01
To investigate the genetic context associated with the emergence of vanA VRE in Australia. The whole genomes of 18 randomly selected vanA -positive Enterococcus faecium patient isolates, collected between 2011 and 2013 from hospitals in four Australian capitals, were sequenced and analysed. In silico typing and transposon/plasmid assembly revealed that the sequenced isolates represented (in most cases) different hospital-adapted STs and were associated with a variety of different Tn 1546 variants and plasmid backbone structures. The recent emergence of vanA VRE in Australia was polyclonal and not associated with the dissemination of a single 'dominant' ST or vanA -encoding plasmid. Interestingly, the factors contributing to this epidemiological change are not known and future studies may need to consider investigation of potential community sources. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Bodily, Mandy; McMullen, Kathleen M; Russo, Anthony J; Kittur, Nupur D; Hoppe-Bauer, Joan; Warren, David K
2013-08-01
Discontinuation of reflex testing of stool submitted for Clostridium difficile testing for vancomycin-resistant enterococci (VRE) led to an increase in the number of patients with healthcare-associated VRE bacteremia and bacteriuria (0.21 vs 0.36 cases per 1,000 patient-days; P<.01). Cost-benefit analysis showed reflex screening and isolation of VRE reduced hospital costs.
Vancomycin-Resistant Enterococci: Epidemiology, Infection Prevention, and Control.
Reyes, Katherine; Bardossy, Ana Cecilia; Zervos, Marcus
2016-12-01
Vancomycin-resistant enterococci (VRE) infections have acquired prominence as a leading cause of health care-associated infections. Understanding VRE epidemiology, transmission modes in health care settings, risk factors for colonization, and infection is essential to prevention and control of VRE infections. Infection control strategies are pivotal in management of VRE infections and should be based on patient characteristics, hospital needs, and available resources. Hand hygiene is basic to decrease acquisition of VRE. The effectiveness of surveillance and contact precautions is variable and controversial in endemic settings, but important during VRE outbreak investigations and control. Environmental cleaning, chlorhexidine bathing, and antimicrobial stewardship are vital in VRE prevention and control. Copyright © 2016 Elsevier Inc. All rights reserved.
Tomas, Myreen E; Mana, Thriveen S C; Wilson, Brigid M; Nerandzic, Michelle M; Joussef-Piña, Samira; Quiñones-Mateu, Miguel E; Donskey, Curtis J
2018-05-01
Vancomycin taper regimens are commonly used for the treatment of recurrent Clostridium difficile infections. One rationale for tapering and pulsing of the dose at the end of therapy is to reduce the selective pressure of vancomycin on the indigenous intestinal microbiota. Here, we used a mouse model to test the hypothesis that the indigenous microbiota that provide colonization resistance against C. difficile and vancomycin-resistant enterococci (VRE) is repopulated during tapering courses of vancomycin. Mice were treated orally with vancomycin daily for 10 days, vancomycin in a tapering dose for 42 days, fidaxomicin for 10 days, or saline. To assess colonization resistance, subsets of mice were challenged with 10 4 CFU of C. difficile or VRE at multiple time points during and after completion of treatment. The impact of the treatments on the microbiome was measured by cultures, real-time PCR for selected anaerobic bacteria, and deep sequencing. Vancomycin taper-treated mice developed alterations of the microbiota and disruption of colonization resistance that was persistent 18 days after treatment. In contrast, mice treated with a 10-day course of vancomycin exhibited recovery of the microbiota and of colonization resistance by 15 days after treatment, and fidaxomicin-treated mice maintained intact colonization resistance. These findings demonstrate that alteration of the indigenous microbiota responsible for colonization resistance to C. difficile and VRE persist during and after completion of tapering courses of vancomycin. Copyright © 2018 American Society for Microbiology.
Trubiano, Jason A; Worth, Leon J; Thursky, Karin A; Slavin, Monica A
2015-01-01
Infections due to resistant and multidrug resistant (MDR) organisms in haematology patients and haematopoietic stem cell transplant recipients are an increasingly complex problem of global concern. We outline the burden of illness and epidemiology of resistant organisms such as gram-negative pathogens, vancomycin-resistant Enterococcus faecium (VRE), and Clostridium difficile in haematology cohorts. Intervention strategies aimed at reducing the impact of these organisms are reviewed: infection prevention programmes, screening and fluoroquinolone prophylaxis. The role of newer therapies (e.g. linezolid, daptomycin and tigecycline) for treatment of resistant and MDR organisms in haematology populations is evaluated, in addition to the mobilization of older agents (e.g. colistin, pristinamycin and fosfomycin) and the potential benefit of combination regimens. PMID:24341410
Mishra, Nigam M; Stolarzewicz, Izabela; Cannaerts, David; Schuermans, Joris; Lavigne, Rob; Looz, Yannick; Landuyt, Bart; Schoofs, Liliane; Schols, Dominique; Paeshuyse, Jan; Hickenbotham, Peter; Clokie, Martha; Luyten, Walter; Van der Eycken, Erik V; Briers, Yves
2018-01-01
Vancomycin is a glycopeptide antibiotic that inhibits transpeptidation during cell wall synthesis by binding to the D-Ala-D-Ala termini of lipid II. For long, it has been used as a last resort antibiotic. However, since the emergence of the first vancomycin-resistant enterococci in 1987, vancomycin resistance has become widespread, especially in hospitals. We have synthesized and evaluated 110 vancomycin analogs modified at the C-terminal carboxyl group of the heptapeptide moiety with R 2 NHR 1 NH 2 substituents. Through iterative optimizations of the substituents, we identified vancomycin analogs that fully restore (or even exceed) the original inhibitory activity against vancomycin-resistant enterococci (VRE), vancomycin-intermediate (VISA) and vancomycin-resistant Staphylococcus aureus (VRSA) strains. The best analogs have improved growth inhibitory activity and in vitro therapeutic indices against a broad set of VRE and methicillin-resistant S. aureus (MRSA) isolates. They also exceed the activity of vancomycin against Clostridium difficile ribotypes. Vanc-39 and Vanc-42 have a low probability to provoke antibiotic resistance, and overcome different vancomycin resistance mechanisms (VanA, VanB, and VanC1).
Pathogens Present in Acute Mangled Extremities From Afghanistan and Subsequent Pathogen Recovery
2015-01-01
methicillin - resistant Staphylococcus aureus or vancomycin- resistant Enterococcus. Most wounds were colonized with low-virulence...there were no methicillin - resistant Staphylococcus aureus or vancomycin- resistant Enterococcus. Although Enterococcus was recovered at Role 3 and 4 in 9...available for furthermicrobiological analysis in this study.MDRwas defined asmethicillin- resistant Staphylococcus aureus , vancomycin- resistant
Silverman, Steven M; Moses, John E; Sharpless, K Barry
2017-01-01
Vancomycin has long been considered a drug of last resort. Its efficiency in treating multiple drug-resistant bacterial infections, particularly methicillin-resistant Staphylococcus aureus (MRSA), has had a profound effect on the treatment of life-threatening infections. However, the emergence of resistance to vancomycin is a cause for significant worldwide concern, prompting the urgent development of new effective treatments for antibiotic resistant bacterial infections. Harnessing the benefits of multivalency and cooperativity against vancomycin-resistant strains, we report a Click Chemistry approach towards reengineered vancomycin derivatives and the synthesis of a number of dimers with increased potency against MRSA and vancomycin resistant Enterococci (VRE; VanB). These semi-synthetic dimeric ligands were linked together with great efficiency using the powerful CuAAC reaction, demonstrating high levels of selectivity and purity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Faron, Matthew L.; Coon, Christopher; Liebregts, Theo; van Bree, Anita; Jansz, Arjan R.; Soucy, Genevieve; Korver, John
2016-01-01
Vancomycin-resistant enterococci (VRE) are an important cause of health care-acquired infections (HAIs). Studies have shown that active surveillance of high-risk patients for VRE colonization can aid in reducing HAIs; however, these screens generate a significant cost to the laboratory and health care system. Digital imaging capable of differentiating negative and “nonnegative” chromogenic agar can reduce the labor cost of these screens and potentially improve patient care. In this study, we evaluated the performance of the WASPLab Chromogenic Detection Module (CDM) (Copan, Brescia, Italy) software to analyze VRE chromogenic agar and compared the results to technologist plate reading. Specimens collected at 3 laboratories were cultured using the WASPLab CDM and plated to each site's standard-of-care chromogenic media, which included Colorex VRE (BioMed Diagnostics, White City, OR) or Oxoid VRE (Oxoid, Basingstoke, United Kingdom). Digital images were scored using the CDM software after 24 or 40 h of growth, and all manual reading was performed using digital images on a high-definition (HD) monitor. In total, 104,730 specimens were enrolled and automation agreed with manual analysis for 90.1% of all specimens tested, with sensitivity and specificity of 100% and 89.5%, respectively. Automation results were discordant for 10,348 specimens, and all discordant images were reviewed by a laboratory supervisor or director. After a second review, 499 specimens were identified as representing missed positive cultures falsely called negative by the technologist, 1,616 were identified as containing borderline color results (negative result but with no package insert color visible), and 8,234 specimens were identified as containing colorimetric pigmentation due to residual matrix from the specimen or yeast (Candida). Overall, the CDM was accurate at identifying negative VRE plates, which comprised 84% (87,973) of the specimens in this study. PMID:27413193
Nurses' experience with vancomycin-resistant enterococci (VRE).
Mitchell, Ann; Cummins, Teresa; Spearing, Natalie; Adams, June; Gilroy, Lisa
2002-01-01
The emergence and spread of resistant organisms, in particular vancomycin-resistant enterococci (VRE), is an issue facing all staff in acute hospitals. This study explored how nurses coped with the responsibility of halting further spread of this organism during an outbreak. VRE-positive patients were cohorted with nurses who cared for them in an endeavour to contain the spread of VRE. The majority of nurses found the situation extremely stressful because of the need to act as 'gatekeepers' responsible for educating and monitoring the practices of staff and visitors. The nurses reported that they felt they were inadequately supported, were blamed for the outbreak, and that they had an increased workload as they took on duties of other staff. The results reinforce the need for a multidisciplinary team approach to education and control of VRE, more support for nursing staff cohorted with VRE-positive patients, and stringent adherence to infection control measures by all hospital staff.
Vancomycin resistant enterococci (VRE) in Swedish sewage sludge.
Sahlström, Leena; Rehbinder, Verena; Albihn, Ann; Aspan, Anna; Bengtsson, Björn
2009-05-29
Antimicrobial resistance is a serious threat in veterinary medicine and human healthcare. Resistance genes can spread from animals, through the food-chain, and back to humans. Sewage sludge may act as the link back from humans to animals. The main aims of this study were to investigate the occurrence of vancomycin resistant enterococci (VRE) in treated sewage sludge, in a Swedish waste water treatment plant (WWTP), and to compare VRE isolates from sewage sludge with isolates from humans and chickens. During a four month long study, sewage sludge was collected weekly and cultured for VRE. The VRE isolates from sewage sludge were analysed and compared to each other and to human and chicken VRE isolates by biochemical typing (PhenePlate), PFGE and antibiograms. Biochemical typing (PhenePlate-FS) and pulsed field gel electrophoresis (PFGE) revealed prevalence of specific VRE strains in sewage sludge for up to 16 weeks. No connection was found between the VRE strains isolated from sludge, chickens and humans, indicating that human VRE did not originate from Swedish chicken. This study demonstrated widespread occurrence of VRE in sewage sludge in the studied WWTP. This implies a risk of antimicrobial resistance being spread to new farms and to the society via the environment if the sewage sludge is used on arable land.
Gilhuley, Kathleen; Cianciminio-Bordelon, Diane; Tang, Yi-Wei
2012-01-01
We compared the performance characteristics of culture and the Cepheid Xpert vanA assay for routine surveillance of vancomycin-resistant enterococci (VRE) from rectal swabs in patients at high risk for VRE carriage. The Cepheid Xpert vanA assay had a limit of detection of 100 CFU/ml and correctly detected 101 well-characterized clinical VRE isolates with no cross-reactivity in 27 non-VRE and related culture isolates. The clinical sensitivity, specificity, positive predictive value, and negative predictive value of the Xpert vanA PCR assay were 100%, 96.9%, 91.3%, and 100%, respectively, when tested on 300 consecutively collected rectal swabs. This assay provides excellent predictive values for prompt identification of VRE-colonized patients in hospitals with relatively high rates of VRE carriage. PMID:22972822
Knelson, Lauren P.; Williams, David A.; Gergen, Maria F.; Rutala, William A.; Weber, David J.; Sexton, Daniel J.; Anderson, Deverick J.
2014-01-01
A total of 1,023 environmental surfaces were sampled from 45 rooms with patients infected or colonized with methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant enterococci (VRE) before terminal room cleaning. Colonized patients had higher median total target colony-forming units (CFU) of MRSA or VRE than did infected patients (median, 25 CFU [interquartile range, 0–106 CFU] vs 0 CFU [interquartile range, 0–29 CFU]; P = .033). PMID:24915217
O'Driscoll, C; Murphy, V; Doyle, O; Wrenn, C; Flynn, A; O'Flaherty, N; Fenelon, L E; Schaffer, K; FitzGerald, S F
2015-12-01
An outbreak of linezolid-resistant vancomycin-resistant Enterococcus faecium (LRVREfm) occurred in the hepatology ward of a tertiary referral hospital in Ireland between February and September 2014. LRVREfm was isolated from 15 patients; pulsed-field gel electrophoresis confirmed spread of a single clone. This is the first report of an outbreak of linezolid-resistant vancomycin-resistant enterococcus in Ireland. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Infrequent occurrence of vancomycin-resistant enterococci in poultry from Malaysian wet markets.
Ong, C H S; Asaad, M; Lim, K C; Ngeow, Y F
2002-12-01
Fifty samples of chicken, duck and geese faeces were obtained from 13 wet markets in Kuala Lumpur to study the prevalence of vancomycin-resistant enterococci (VRE) among local market poultry. Biotyping of colonies grown on azide agar incubated at 45 degrees C yielded E. pseudoavium, E. faecalis, E. faecium and E. gallinarum from chicken faeces and E. malodoratus, E. faecalis, E. faecium, E. gallinarum, E. hirae/dispar, and E. durans from goose and duck faeces. On agar containing 6 mg/ l of vancomycin, one strain of E. flavescens was identified, giving a VRE detection rate of 2.0%. This isolate had a vancomycin M.I.C. of 8 mg/l as determined by the Etest, and the van C-3 gene that was identified by PCR followed by sequence analysis. The prevalence of VRE among poultry sold in local markets appears to be low, and may reflect the infrequent use of antimicrobials in our poultry farms. Nevertheless, the possibility of human acquisition of microbes via the food chain cautions against the use of antimicrobials in animal husbandry that may encourage the emergence and spread of multi-drug resistant organisms like the VRE among animal microbial flora.
[Microbiological and epidemiological characteristics of vancomycin-dependent enterococci].
Hwang, Keumrock; Sung, Heungsup; Namgoong, Seung; Yoon, Nam Surp; Kim, Mi-Na
2009-08-01
Vancomycin-dependent enterococci (VDE) are clinically equivalent to vancomycin-resistant enterococci (VRE), but more difficult to detect. This study was purposed to characterize VDE microbiologically and epidemiologically. The patients from whom VDE were detected from April 2007 to March 2008 were investigated. For available isolates, minimal inhibitory concentrations (MICs) of and the levels of dependence on vancomycin and teicoplanin were measured by E test (AB Biodisk, Sweden), and a test for reversion of VDE to non-dependent VRE (NDVRE) and pulsed field gel electrophoresis (PFGE) were performed. Patients' demographic and clinical findings were reviewed via electronic medical records. VDE were recovered from 6 (2.2%) of 272 patients carrying VRE during this study period. All patients were already colonized or infected by VRE and treated with vancomycin for 13 to 107 days. VDE were isolated from pleural fluid (one), urine (four), and stool (one). All isolates carried vanA with vancomycin MICs of >256 microg/mL, but two of them had intermediate susceptibilities to teicoplanin. Because 4 VDE isolates were reverted to NDVRE with single passage, vancomycin dependence was measurable for only two isolates as equal and above 0.064 and 0.5 microg/mL respectively, and was reverted after 5 and 7 passages, respectively. Six VDE isolates showed no related clones in PFGE analysis, and 3 of 4 available pairs of initial VRE isolates and subsequent VDE isolates were identical clones. VDE were not rare and seemed to emerge independently from VRE with a prolonged use of vancomycin. Vancomycin-dependence was reverted within several passages.
OCCURRENCE OF VANCOMYCIN RESISTANT ENTEROCOCCI IN ANIMAL FECES
A survey was conducted to determine the occurrence of vancomycin resistant Enterococci (VRE) in animal and human fecal samples. A selective agar mEI, and mEI supplemented with 4 micrograms/ml vancomycin was used in a membrane filtration procedure to determine quantitative levels ...
Mendes, Elisa Teixeira; Ranzani, Otavio T.; Marchi, Ana Paula; da Silva, Mariama Tomaz; Filho, José Ulysses Amigo; Alves, Tânia; Guimarães, Thais; Levin, Anna S.; Costa, Silvia Figueiredo
2016-01-01
Abstract Health care associated infections (HAIs) are currently among the major challenges to the care of hematopoietic stem cell transplantation (HSCT) patients. The objective of the present study was to evaluate the impact of 2% chlorhexidine (CHG) bathing on the incidence of colonization and infection with vancomycin-resistant Enterococcus (VRE), multidrug-resistant (MDR) gram-negative pathogens, and to evaluate their CHG minimum inhibitory concentration (MIC) after the intervention. A quasi-experimental study with duration of 9 years was conducted. VRE colonization and infection, HAI rates, and MDR gram-negative infection were evaluated by interrupted time series analysis. The antibacterial susceptibility profile and mechanism of resistance to CHG were analyzed in both periods by the agar dilution method in the presence or absence of the efflux pump inhibitor carbonyl cyanide-m-chlorophenyl hydrazone (CCCP) and presence of efflux pumps (qacA/E, qacA, qacE, cepA, AdeA, AdeB, and AdeC) by polymerase chain reaction (PCR). The VRE colonization and infection rates were significantly reduced in the postintervention period (P = 0.001). However, gram-negative MDR rates in the unit increased in the last years of the study. The CHG MICs for VRE increased during the period of exposure to the antiseptic. A higher MIC at baseline period was observed in MDR gram-negative strains. The emergence of a monoclonal Pseudomonas aeruginosa clone was observed in the second period. Concluding, CHG bathing was efficient regarding VRE colonization and infection, whereas no similar results were found with MDR gram-negative bacteria. PMID:27861350
Characterization of an anti-listerial enterocin from wheat silage based Enterococcus faecium.
Bal, Emel Banu Buyukunal; Isevi, Taner; Bal, Mehmet Ali
2012-10-01
Two Enterococcus faecium and one E. faecalis strains isolated and identified from wheat silage were characterized based on plasmid content, hemolytic activity, antibiotic resistance patterns, bacteriocin production potential, and presence of enterocin structural genes (entA, entB, entP, entL50B). Among the isolates, only the E. faecium U7 strain exhibited bacteriocin activity against Listeria monocytogenes ATCC 7644, and vancomycin resistant Enterococcus spp. (VRE). A combination of three structural genes (entA, entB, and entP) was detected in E. faecium U7. A relationship between the presence of enterocin structural genes, and bacteriocin activity was detected in E. faecium U7; therefore partially purified enterocin (PPE) was further investigated from the isolate. Several bands of different molecular weights were expressed from PPE extracts following tricine SDS-PAGE analysis. However, the only band showing bacteriocin activity was in an approximate 4-kDa region. PPE treatment with proteinase K, lysozyme, and α -amylase caused complete loss of bacteriocin activity. PPE heat treatment at various temperatures resulted in a notable reduction in bacteriocin expression. Enterocin U7 was relatively heat stable, and presumably exhibits a glucoprotein nature with distinct inhibitory properties. Specific bacterial inhibitory activity of enterocin U7, and the producer strain absence of β -hemolysis and vancomycin susceptibility features deserves further investigation to evaluate its potential application in silage inoculation and food preservation. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lee, Chang-Ro; Lee, Jung Hun; Park, Kwang Seung; Jeong, Byeong Chul; Lee, Sang Hee
2015-01-01
The increase of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) poses a worldwide and serious health threat. Although new antibiotics, such as daptomycin and linezolid, have been developed for the treatment of infections of Gram-positive pathogens, the emergence of daptomycin-resistant and linezolid-resistant strains during therapy has now increased clinical treatment failures. In the past few years, studies using quantitative proteomic methods have provided a considerable progress in understanding antibiotic resistance mechanisms. In this review, to understand the resistance mechanisms to four clinically important antibiotics (methicillin, vancomycin, linezolid, and daptomycin) used in the treatment of Gram-positive pathogens, we summarize recent advances in studies on resistance mechanisms using quantitative proteomic methods, and also examine proteins playing an important role in the bacterial mechanisms of resistance to the four antibiotics. Proteomic researches can identify proteins whose expression levels are changed in the resistance mechanism to only one antibiotic, such as LiaH in daptomycin resistance and PrsA in vancomycin resistance, and many proteins simultaneously involved in resistance mechanisms to various antibiotics. Most of resistance-related proteins, which are simultaneously associated with resistance mechanisms to several antibiotics, play important roles in regulating bacterial envelope biogenesis, or compensating for the fitness cost of antibiotic resistance. Therefore, proteomic data confirm that antibiotic resistance requires the fitness cost and the bacterial envelope is an important factor in antibiotic resistance. PMID:26322035
Grewal, Harjeet; Varshney, Kavita; Thomas, Lee C; Kok, Jen; Shetty, Amith
2013-06-01
Blood pressure (BP) cuffs are potential vectors for transmission of multi-resistant organisms (MROs). The present study aims to determine MRO colonisation rates in BP cuffs from areas of high patient flow as an assessment of the quality of disinfection and infection control practices. BP cuffs in the ED, high dependency unit (HDU) and operating theatres (OT) were prospectively examined after routine disinfection procedures. Swabs collected from the inner and outer surfaces of BP cuffs during inter-patient intervals were plated onto replicate organism detection and counting, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) chromogenic agar plates to detect rates of bacterial, MRSA and VRE colonisation, respectively. High bacterial colonisation rates were detected in BP cuffs from all three areas. BP cuffs from OT were significantly less colonised compared with cuffs from HDU and ED; 76% versus 96% and 100% (P < 0.0001) for inner surfaces and 86% versus 98% and 100% (P < 0.0001) for outer surfaces, respectively. Equivalent or higher bacterial growth was observed on the inner surface compared with outer surface in 54%, 84% and 86% of BP cuffs from OT, HDU and ED, respectively. MRSA was detected in 3 of 150 (2%) swabs collected, but no VRE was detected. Although MRSA and VRE were infrequently isolated, current disinfection and infection control protocols need to be improved given the greater recovery of organisms from the inner compared with outer surfaces of BP cuffs. © 2013 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.
Simjee, S; White, D G; McDermott, P F; Wagner, D D; Zervos, M J; Donabedian, S M; English, L L; Hayes, J R; Walker, R D
2002-12-01
Thirty-five enterococcal isolates were recovered from dogs diagnosed with urinary tract infections at the Michigan State University Veterinary Teaching Hospital over a 2-year period (1996 to 1998). Isolated species included Enterococcus faecium (n = 13), Enterococcus faecalis (n = 7), Enterococcus gallinarum (n = 11), and Enterococcus casseliflavus (n = 4). Antimicrobial susceptibility testing revealed several different resistance phenotypes, with the majority of the enterococcal isolates exhibiting resistance to three or more antibiotics. One E. faecium isolate, CVM1869, displayed high-level resistance to vancomycin (MIC > 32 micro g/ml) and gentamicin (MIC > 2,048 micro g/ml). Molecular analysis of this isolate revealed the presence of Tn1546 (vanA), responsible for high-level vancomycin resistance, and Tn5281 carrying aac6'-aph2", conferring high-level aminoglycoside resistance. Pulsed-field gel electrophoresis analysis revealed that CVM1869 was a canine E. faecium clone that had acquired Tn1546, perhaps from a human vancomycin-resistant E. faecium. Transposons Tn5281 and Tn1546 were located on two different conjugative plasmids. Sequence analysis revealed that in Tn1546, ORF1 had an 889-bp deletion and an IS1216V insertion at the 5' end and an IS1251 insertion between vanS and vanH. To date, this particular form of Tn1546 has only been described in human clinical vancomycin-resistant enterococcus isolates unique to the United States. Additionally, this is the first report of a vancomycin-resistant E. faecium isolated from a companion animal in the United States.
Raad, Issam; Hachem, Ray; Hanna, Hend; Girgawy, Essam; Rolston, Kenneth; Whimbey, Estella; Husni, Rola; Bodey, Gerald
2001-01-01
Between February 1994 and November 1998, 56 oncology patients infected with vancomycin-resistant enterococci (VRE) were treated with quinopristin-dalfopristin (Q-D) plus minocycline (MIN). Infections included bacteremia, urinary tract infection, pneumonia, and wound infection. The response rate was 68%, and the most frequent adverse event was arthralgia or myalgia (36%). Q-D–MIN is effective for VRE infection in cancer patients but is associated with a substantial frequency of arthralgia or myalgia. PMID:11600379
Toner, Liam; Papa, Nathan; Aliyu, Sani H; Dev, Harveer; Lawrentschuk, Nathan; Al-Hayek, Samih
2016-03-01
Enterococci are a common cause of urinary tract infection and vancomycin-resistant strains are more difficult to treat. The purpose of this surveillance program was to assess the prevalence of and determine the risk factors for vancomycin resistance in adults among urinary isolates of Enterococcus sp. and to detail the antibiotic susceptibility profile, which can be used to guide empirical treatment. From 2005 to 2014 we retrospectively reviewed 5,528 positive Enterococcus sp. urine cultures recorded in a computerized laboratory results database at a tertiary teaching hospital in Cambridge, United Kingdom. Of these cultures, 542 (9.8%) were vancomycin resistant. No longitudinal trend was observed in the proportion of vancomycin-resistant strains over the course of the study. We observed emerging resistance to nitrofurantoin with rates climbing from near zero to 40%. Ampicillin resistance fluctuated between 50% and 90%. Low resistance was observed for linezolid and quinupristin/dalfopristin. Female sex and inpatient status were identified as risk factors for vancomycin resistance. The incidence of vancomycin resistance among urinary isolates was stable over the last decade. Although resistance to nitrofurantoin has increased, it still serves as an appropriate first choice in uncomplicated urinary tract infection caused by vancomycin-resistant Enterococcus sp.
Collins, Susan M.; Hacek, Donna M.; Degen, Lisa A.; Wright, Marc O.; Noskin, Gary A.; Peterson, Lance R.
2001-01-01
We surveyed environmental surfaces in our clinical microbiology laboratory to determine the prevalence of vancomycin-resistant enterococci (VRE) and multidrug-resistant Enterobacteriaceae (MDRE) during a routine working day. From a total of 193 surfaces, VRE were present on 20 (10%) and MDRE were present on 4 (2%) of the surfaces tested. In a subsequent survey after routine cleaning, all of the 24 prior positive surfaces were found to be negative. Thus, those in the laboratory should recognize that many surfaces may be contaminated by resistant organisms during routine processing of patient specimens. PMID:11574615
New antibiotics for bad bugs: where are we?
2013-01-01
Bacterial resistance to antibiotics is growing up day by day in both community and hospital setting, with a significant impact on the mortality and morbidity rates and the financial burden that is associated. In the last two decades multi drug resistant microorganisms (both hospital- and community-acquired) challenged the scientific groups into developing new antimicrobial compounds that can provide safety in use according to the new regulation, good efficacy patterns, and low resistance profile. In this review we made an evaluation of present data regarding the new classes and the new molecules from already existing classes of antibiotics and the ongoing trends in antimicrobial development. Infectious Diseases Society of America (IDSA) supported a proGram, called “the ′10 × ´20′ initiative”, to develop ten new systemic antibacterial drugs within 2020. The microorganisms mainly involved in the resistance process, so called the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and enterobacteriaceae) were the main targets. In the era of antimicrobial resistance the new antimicrobial agents like fifth generation cephalosporins, carbapenems, monobactams, β-lactamases inhibitors, aminoglycosides, quinolones, oxazolidones, glycopeptides, and tetracyclines active against Gram-positive pathogens, like vancomycin-resistant S. aureus (VRSA) and MRSA, penicillin-resistant streptococci, and vancomycin resistant Enterococcus (VRE) but also against highly resistant Gram-negative organisms are more than welcome. Of these compounds some are already approved by official agencies, some are still in study, but the need of new antibiotics still does not cover the increasing prevalence of antibiotic-resistant bacterial infections. Therefore the management of antimicrobial resistance should also include fostering coordinated actions by all stakeholders, creating policy guidance, support for surveillance and technical assistance. PMID:23984642
Lowden, Jonathan; Miller Neilan, Rachael; Yahdi, Mohammed
2014-03-01
The rising prevalence of vancomycin-resistant enterococci (VRE) is a major health problem in intensive care units (ICU) because of its association with increased mortality and high health care costs. We present a mathematical framework for determining cost-effective strategies for prevention and treatment of VRE in the ICU. A system of five ordinary differential equations describes the movement of ICU patients in and out of five VRE-related states. Two control variables representing the prevention and treatment of VRE are incorporated into the system. The basic reproductive number is derived and calculated for different levels of the two controls. An optimal control problem is formulated to minimize VRE-related deaths and costs associated with prevention and treatment controls over a finite time period. Numerical solutions illustrate optimal single and dual allocations of the controls for various cost values. Results show that preventive care has the greatest impact in reducing the basic reproductive number, while treatment of VRE infections has the most impact on reducing VRE-related deaths. Copyright © 2014 Elsevier Inc. All rights reserved.
Wan, Tsai-Wen; Hung, Wei-Chun; Tsai, Jui-Chang; Lin, Yu-Tzu; Lee, Hao; Hsueh, Po-Ren; Lee, Tai-Fen; Teng, Lee-Jene
2016-10-01
We determined the resistance determinants in 274 erythromycin-resistant methicillin-susceptible Staphylococcus aureus (MSSA) isolates during a 13-year period, 2000 to 2012. The resistance phenotypes, inducible macrolide-lincosamide-streptogramin (iMLS), constitutive MLS (cMLS), and macrolide-streptogramin (MS) resistance phenotypes, were examined by a double-disk diffusion D test. The ermB gene was more frequent (35%; 97/274) than ermC (27%; 75/274) or ermA (21%; 58/274). All 97 ermB-positive isolates harbored Tn551 and IS1216V The majority (89/97) of ermB-positive isolates displayed the cMLS phenotype and carried mobile element structure (MES)-like structures, which has been previously reported in sequence type 59 (ST59) methicillin-resistant S. aureus (MRSA). The remaining 8 ermB-carrying isolates, belonging to ST7 (n = 4), ST5 (n = 3), and ST59 (n = 1), were sasK intact and did not carry MES-like structures. Unlike a MES-like structure that was located on the chromosome, the ermB elements on sasK-intact isolates were located on plasmids by S1 nuclease pulsed-field gel electrophoresis (PFGE) analysis and conjugation tests. Sequence data for the ermB-containing region (14,566 bp) from ST59 NTUH_3874 revealed that the best match was a Tn1546-like element in plasmid pMCCL2 DNA (GenBank accession number AP009486) of Macrococcus caseolyticus Tn1546 is recognized as an enterococcal transposon and was known from the vancomycin resistance gene cluster in vancomycin-resistant Enterococcus (VRE). So far, acquisitions of Tn1546 in S. aureus have occurred in clonal complex 5 (CC5) MRSA, but not in MSSA. This is the first report that MSSA harbors an Enterococcus faecium-originated ermB-positive Tn1546-like element located on a plasmid. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Raven, Kathy E; Reuter, Sandra; Reynolds, Rosy; Brodrick, Hayley J; Russell, Julie E; Török, M Estée; Parkhill, Julian; Peacock, Sharon J
2016-10-01
Vancomycin-resistant Enterococcus faecium (VREfm) is an important cause of healthcare-associated infections worldwide. We undertook whole-genome sequencing (WGS) of 495 E. faecium bloodstream isolates from 2001-2011 in the United Kingdom and Ireland (UK&I) and 11 E. faecium isolates from a reference collection. Comparison between WGS and multilocus sequence typing (MLST) identified major discrepancies for 17% of isolates, with multiple instances of the same sequence type (ST) being located in genetically distant positions in the WGS tree. This confirms that WGS is superior to MLST for evolutionary analyses and is more accurate than current typing methods used during outbreak investigations. E. faecium has been categorized as belonging to three clades (Clades A1, hospital-associated; A2, animal-associated; and B, community-associated). Phylogenetic analysis of our isolates replicated the distinction between Clade A (97% of isolates) and Clade B but did not support the subdivision of Clade A into Clade A1 and A2. Phylogeographic analyses revealed that Clade A had been introduced multiple times into each hospital referral network or country, indicating frequent movement of E. faecium between regions that rarely share hospital patients. Numerous genetic clusters contained highly related vanA-positive and -negative E. faecium, which implies that control of vancomycin-resistant enterococci (VRE) in hospitals also requires consideration of vancomycin-susceptible E. faecium Our findings reveal the evolution and dissemination of hospital-associated E. faecium in the UK&I and provide evidence for WGS as an instrument for infection control. © 2016 Raven et al.; Published by Cold Spring Harbor Laboratory Press.
Raven, Kathy E.; Reuter, Sandra; Reynolds, Rosy; Brodrick, Hayley J.; Russell, Julie E.; Török, M. Estée; Parkhill, Julian; Peacock, Sharon J.
2016-01-01
Vancomycin-resistant Enterococcus faecium (VREfm) is an important cause of healthcare-associated infections worldwide. We undertook whole-genome sequencing (WGS) of 495 E. faecium bloodstream isolates from 2001–2011 in the United Kingdom and Ireland (UK&I) and 11 E. faecium isolates from a reference collection. Comparison between WGS and multilocus sequence typing (MLST) identified major discrepancies for 17% of isolates, with multiple instances of the same sequence type (ST) being located in genetically distant positions in the WGS tree. This confirms that WGS is superior to MLST for evolutionary analyses and is more accurate than current typing methods used during outbreak investigations. E. faecium has been categorized as belonging to three clades (Clades A1, hospital-associated; A2, animal-associated; and B, community-associated). Phylogenetic analysis of our isolates replicated the distinction between Clade A (97% of isolates) and Clade B but did not support the subdivision of Clade A into Clade A1 and A2. Phylogeographic analyses revealed that Clade A had been introduced multiple times into each hospital referral network or country, indicating frequent movement of E. faecium between regions that rarely share hospital patients. Numerous genetic clusters contained highly related vanA-positive and -negative E. faecium, which implies that control of vancomycin-resistant enterococci (VRE) in hospitals also requires consideration of vancomycin-susceptible E. faecium. Our findings reveal the evolution and dissemination of hospital-associated E. faecium in the UK&I and provide evidence for WGS as an instrument for infection control. PMID:27527616
Larsen, Bryan; Essmann, Michael K; Geletta, Simon; Duff, Barbara
2012-01-01
The object of this study was to quantify vancomycin-resistant enterococci in surface water from Central Iowa obtained from April 2007 to August 2007. Water from established sampling sites in four watersheds was plated on bile-esculin agar. Presumptively identified enterococci were categorized as "above the level of concern" if the sample contained ≥ 107 CFU per 100 ml. Confirmation of isolates as enterococci was based on growth at elevated temperature in high salt and on Enterococcus agar. Isolates that grew on 6 μg/ml vancomycin agar were deemed resistant. PCR analysis of resistant strains characterized vancomycin resistance genes. 77.2% of surface water samples from Central Iowa contained enterococci. Among enterococcal isolates, 10.4% grew on media containing 6 μg/ml vancomycin. PCR analysis of resistance genes showed a preponderance of VanC2/C3 in the area studied and VanB was not detected. Vancomycin-resistant Enterococcus is present in Central Iowa surface waters but resistance rarely involved VanA genotypes. Nevertheless, the potential for community-acquired infections remains a risk.
Nomura, Takahiro; Tanimoto, Koichi; Shibayama, Keigo; Arakawa, Yoshichika; Fujimoto, Shuhei; Ike, Yasuyoshi; Tomita, Haruyoshi
2012-12-01
Five VanN-type vancomycin-resistant Enterococcus faecium strains were isolated from a sample of domestic chicken meat in Japan. All isolates showed low-level resistance to vancomycin (MIC, 12 mg/liter) and had the same pulsed-field gel electrophoresis profile. The vancomycin resistance was encoded on a large plasmid (160 kbp) and was expressed constitutively. The VanN-type resistance operon was identical to the first resistance operon to be reported, with the exception of a 1-bp deletion in vanT(N) and a 1-bp substitution in vanS(N).
Jayaratne, Padman; Wilson, Clyde; Golding, George R.; Nicholson, Alison M.; Lewis, Delores B.; Hermelijn, Sandra M.
2017-01-01
Emergence of vancomycin-resistant Enterococci (VRE) that first appeared on the stage about three decades ago is now a major concern worldwide as it has globally reached every continent. Our aim was to simply undertake a multinational study to delineate the resistance and virulence genes of clinical isolates of VRE isolates from the Caribbean. We employed both conventional (standard microbiological methods including use of E-test strips, chromogenic agar) and molecular methods (polymerase chain reactions–PCR, pulsed-field gel electrophoresis–PFGE and multilocus sequence typing–MLST) to analyze and characterize 245 Enterococci species and 77 VRE isolates from twelve hospitals from eight countries in the Caribbean. The PCR confirmed and demonstrated the resistance and virulence genes (vanA and esp) among all confirmed VRE isolates. The PFGE delineated clonally related isolates from patients from the same country and other countries in the region. The main sequence types of the VRE isolates from the region included STs 412, 750, 203, 736 and 18, all from the common ancestor for clonal complex 17 (CC17). Despite this common ancestor and association of outbreaks of this lineage clones, there has been no reports of outbreaks of infection by VRE in several hospitals in the Caribbean. PMID:29020115
Vignaroli, Carla; Zandri, Giada; Aquilanti, Lucia; Pasquaroli, Sonia; Biavasco, Francesca
2011-05-01
Forty-eight isolates resistant to at least two antibiotics were selected from 53 antibiotic-resistant enterococci from chicken and pig meat and faeces and analysed for specific resistance determinants. Of the 48 multidrug-resistant (MDR) strains, 31 were resistant to two antibiotics (29 to erythromycin and tetracycline, 1 to erythromycin and vancomycin, 1 to vancomycin and tetracycline), 14 to three (erythromycin, tetracycline and vancomycin or ampicillin) and 3 to four (erythromycin, vancomycin, ampicillin and gentamicin). erm(B), tet(M), vanA and aac (6')-Ie aph (2'')-Ia were the antibiotic resistance genes most frequently detected. All 48 MDR enterococci were susceptible to linezolid and daptomycin. Enterococcus faecalis (16), Enterococcus faecium (8), Enterococcus mundtii (2) and Enterococcus gallinarum (1) were identified in meat, and E. faecium (13) and Enterococcus durans (13) in faeces. Clonal spread was not detected, suggesting a large role of gene transfer in the dissemination of antibiotic resistance. Conjugative transfer of resistance genes was more successful when donors were enterococcal strains isolated from faeces; co-transfer of vanA and erm(B) to a human E. faecium occurred from both E. faecium and E. durans pig faecal strains. These data show that multidrug resistance can be found in food and animal species other than E. faecium and E. faecalis, and that these species can efficiently transfer antibiotic resistance to human strains in inter-specific matings. In particular, the occurrence of MDR E. durans in the animal reservoir could have a role in the emergence of human enterococcal infections difficult to eradicate with antibiotics.
2017-03-01
Defense (DOD) and Department of the Navy (DON) active duty (AD) service members with deployment-related infections. In 2015, the annual VRE incidence rate...reporting of resistant strains.9 Additionally, active surveillance of high-risk patients has been cited as a pertinent control measure in healthcare...settings; one study demonstrated active surveillance with contact precautions prevented VRE infections in an intensive care unit (ICU) where 100% of
Dicks, Kristen V; Lofgren, Eric; Lewis, Sarah S; Moehring, Rebekah W; Sexton, Daniel J; Anderson, Deverick J
2016-07-01
OBJECTIVE To determine whether daily chlorhexidine gluconate (CHG) bathing of intensive care unit (ICU) patients leads to a decrease in hospital-acquired infections (HAIs), particularly infections caused by methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE). DESIGN Interrupted time series analysis. SETTING The study included 33 community hospitals participating in the Duke Infection Control Outreach Network from January 2008 through December 2013. PARTICIPANTS All ICU patients at study hospitals during the study period. METHODS Of the 33 hospitals, 17 hospitals implemented CHG bathing during the study period, and 16 hospitals that did not perform CHG bathing served as controls. Primary pre-specified outcomes included ICU central-line-associated bloodstream infections (CLABSIs), primary bloodstream infections (BSI), ventilator-associated pneumonia (VAP), and catheter-associated urinary tract infections (CAUTIs). MRSA and VRE HAIs were also evaluated. RESULTS Chlorhexidine gluconate (CHG) bathing was associated with a significant downward trend in incidence rates of ICU CLABSI (incidence rate ratio [IRR], 0.96; 95% confidence interval [CI], 0.93-0.99), ICU primary BSI (IRR, 0.96; 95% CI, 0.94-0.99), VRE CLABSIs (IRR, 0.97; 95% CI, 0.97-0.98), and all combined VRE infections (IRR, 0.96; 95% CI, 0.93-1.00). No significant trend in MRSA infection incidence rates was identified prior to or following the implementation of CHG bathing. CONCLUSIONS In this multicenter, real-world analysis of the impact of CHG bathing, hospitals that implemented CHG bathing attained a decrease in ICU CLABSIs, ICU primary BSIs, and VRE CLABSIs. CHG bathing did not affect rates of specific or overall infections due to MRSA. Our findings support daily CHG bathing of ICU patients. Infect Control Hosp Epidemiol 2016;37:791-797.
Lewis, Brittany B.; Buffie, Charlie G.; Carter, Rebecca A.; Leiner, Ingrid; Toussaint, Nora C.; Miller, Liza C.; Gobourne, Asia; Ling, Lilan; Pamer, Eric G.
2015-01-01
Antibiotic administration disrupts the intestinal microbiota, increasing susceptibility to pathogens such as Clostridium difficile. Metronidazole or oral vancomycin can cure C. difficile infection, and administration of these agents to prevent C. difficile infection in high-risk patients, although not sanctioned by Infectious Disease Society of America guidelines, has been considered. The relative impacts of metronidazole and vancomycin on the intestinal microbiota and colonization resistance are unknown. We investigated the effect of brief treatment with metronidazole and/or oral vancomycin on susceptibility to C. difficile, vancomycin-resistant Enterococcus, carbapenem-resistant Klebsiella pneumoniae, and Escherichia coli infection in mice. Although metronidazole resulted in transient loss of colonization resistance, oral vancomycin markedly disrupted the microbiota, leading to prolonged loss of colonization resistance to C. difficile infection and dense colonization by vancomycin-resistant Enterococcus, K. pneumoniae, and E. coli. Our results demonstrate that vancomycin, and to a lesser extent metronidazole, are associated with marked intestinal microbiota destruction and greater risk of colonization by nosocomial pathogens. PMID:25920320
Lemieux, Camille; Gardam, Michael; Evans, Gerald; John, Michael; Suh, Kathryn N; vanWalraven, Carl; Vicencio, Elisa; Coulby, Cameron; Roth, Virginia; Hota, Susy
2017-01-01
OBJECTIVE To assess clinically relevant outcomes after complete cessation of control measures for vancomycin-resistant enterococci (VRE). DESIGN Quasi-experimental ecological study over 3.5 years. METHODS All VRE screening and isolation practices at 4 large academic hospitals in Ontario, Canada, were stopped on July 1, 2012. In total, 618 anonymized abstracted charts of patients with VRE-positive clinical isolates identified between July 1, 2010, and December 31, 2013, were reviewed to determine whether the case was a true VRE infection, a VRE colonization or contaminant, or a true VRE bacteremia. All deaths within 30 days of the last VRE infection were also reviewed to determine whether the death was fully or partially attributable to VRE. All-cause mortality was evaluated over the study period. Generalized estimating equation methods were used to cluster outcome rates within hospitals, and negative binomial models were created for each outcome. RESULTS The incidence rate ratio (IRR) for VRE infections was 0.59 and the associated P value was .34. For VRE bacteremias, the IRR was 0.54 and P=.38; for all-cause mortality the IRR was 0.70 and P=.66; and for VRE attributable death, the IRR was 0.35 and P=.49. VRE control measures were not significantly associated with any of the outcomes. Rates of all outcomes appeared to increase during the 18-month period after cessation of VRE control measures, but none reached statistical significance. CONCLUSION Clinically significant VRE outcomes remain rare. Cessation of all control measures for VRE had no significant attributable adverse clinical impact. Infect Control Hosp Epidemiol 2016;1-7.
Fuzi, Miklos; Szabo, Dora; Csercsik, Rita
2017-01-01
The major international sequence types/lineages of methicillin-resistant Staphylococcus aureus (MRSA), extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae and ESBL-producing E. coli were demonstrated to have been advanced by favorable fitness balance associated with high-level resistance to fluoroquinolones. The paper shows that favorable fitness in the major STs/lineages of these pathogens was principally attained by the capacity of evolving mutations in the fluoroquinolone-binding serine residues of both the DNA gyrase and topoisomerase IV enzymes. The available information on fitness balance incurred by individual and various combinations of mutations in the enzymes is reviewed in multiple species. Moreover, strong circumstantial evidence is presented that major STs/lineages of other multi-drug resistant bacteria, primarily vancomycin-resistant Enterococcus faecium (VRE), emerged by a similar mechanism. The reason(s) why the major ST/lineage strains of various pathogens proved more adept at evolving favorable mutations than most isolates of the same species remains to be elucidated.
Fuzi, Miklos; Szabo, Dora; Csercsik, Rita
2017-01-01
The major international sequence types/lineages of methicillin-resistant Staphylococcus aureus (MRSA), extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae and ESBL-producing E. coli were demonstrated to have been advanced by favorable fitness balance associated with high-level resistance to fluoroquinolones. The paper shows that favorable fitness in the major STs/lineages of these pathogens was principally attained by the capacity of evolving mutations in the fluoroquinolone-binding serine residues of both the DNA gyrase and topoisomerase IV enzymes. The available information on fitness balance incurred by individual and various combinations of mutations in the enzymes is reviewed in multiple species. Moreover, strong circumstantial evidence is presented that major STs/lineages of other multi-drug resistant bacteria, primarily vancomycin-resistant Enterococcus faecium (VRE), emerged by a similar mechanism. The reason(s) why the major ST/lineage strains of various pathogens proved more adept at evolving favorable mutations than most isolates of the same species remains to be elucidated. PMID:29250038
Davido, B; Batista, R; Michelon, H; Lepainteur, M; Bouchand, F; Lepeule, R; Salomon, J; Vittecoq, D; Duran, C; Escaut, L; Sobhani, I; Paul, M; Lawrence, C; Perronne, C; Chast, F; Dinh, A
2017-04-01
Carbapenem-resistant Enterobacteriaceae (CRE) or vancomycin-resistant enterococci (VRE) carriage present a major public health challenge. Decolonization strategies are lacking. We aimed to evaluate the impact of faecal microbiota transplantation (FMT) on a cohort of patients with digestive tract colonization by CRE or VRE. Eight patients were included: six carrying CRE and two colonized by VRE. One month after FMT, two patients were free from CRE carriage, and another patient was free from VRE after three months. In our experience, this strategy is safe. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
2015-01-01
Bacterial antimicrobial resistance is an escalating public health threat, yet the current antimicrobial pipeline remains alarmingly depleted, making the development of new antimicrobials an urgent need. Here, we identify a novel, potent, imidazoline antimicrobial compound, SKI-356313, with bactericidal activity against Mycobacterium tuberculosis and Gram-positive cocci, including vancomycin-resistant Enterococcus faecium (VRE) and methicillin-resistant Staphylococcus aureus (MRSA). SKI-356313 is active in murine models of Streptococcus pneumoniae and MRSA infection and is potently bactericidal for both replicating and nonreplicating M. tuberculosis. Using a combination of genetics, whole genome sequencing, and a novel target ID approach using real time imaging of core macromolecular biosynthesis, we show that SKI-356313 inhibits DNA replication and displaces the replisome from the bacterial nucleoid. These results identify a new antimicrobial scaffold with a novel mechanism of action and potential therapeutic utility against nonreplicating M. tuberculosis and antibiotic resistant Gram-positive cocci. PMID:25222597
Brumfitt, W; Salton, M R J; Hamilton-Miller, J M T
2002-11-01
We have sought ways to circumvent resistance, by combining nisin with other antibiotics known to target bacterial cell wall biosynthesis. Twenty strains each of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) were tested in vitro by standardized methods against nisin alone and combined with bacitracin, ramoplanin and chloramphenicol. Ramoplanin was the most potent compound, and bacitracin had the least activity. Two-way synergy was observed with nisin and ramoplanin. However, chloramphenicol was clearly antagonistic to the activity of nisin. Observations of synergy between nisin and ramoplanin against MRSA and VRE offer a promising approach to the concept of combining nisin with inhibitors of cell wall peptidoglycan. Further investigations are needed in order to develop this approach as a clinical possibility.
McDermott, Hélène; Skally, Mairead; O'Rourke, James; Humphreys, Hilary; Fitzgerald-Hughes, Deirdre
2018-01-01
OBJECTIVE Among nosocomial bloodstream infections caused by enterococcal species, Ireland has the highest proportion caused by vancomycin-resistant enterococci (VRE) in Europe at 45.8%. The contribution of the near-patient environment to VRE transmission outside of outbreaks was investigated. DESIGN A prospective observational study was conducted during 7 sampling periods. METHODS Recovery of VRE isolates by swabbing the near-patient environment and patients in the intensive care unit (ICU) was conducted to identify reservoirs, clinical and molecular epidemiological associations, and the success of active surveillance cultures (ASCs). RESULTS Of 289 sampling occasions involving 157 patients and their bed spaces, VRE isolates were recovered from patient bed spaces, clinical samples, or both on 114 of 289 sampling occasions (39.4%). The patient and their bed space were positive for VRE on 34 of 114 VRE-associated sampling occasions (29.8%). Of 1,647 environment samples, 107 sites (6.5%) were VRE positive, with significantly greater VRE recovery from isolation rooms than from the open-plan area (9.1% vs 4.1%; P < .0001). The most frequently VRE-contaminated sites were the drip stand, bed control panel, and chart holders, which together accounted for 61% of contaminated sites. The use of ASCs resulted in a 172% increase in identification of VRE-colonized patients. Molecular typing revealed 2 environmental clusters, 1 cluster involving 3 patients and generally greater heterogeneity of patient isolates compared to environmental isolates. CONCLUSION Even outside of outbreaks, near-patient ICU environmental contamination with VRE is common. Better infection control policies that limit environmental transmission of VRE in the ICU and that are supported by molecular epidemiological studies, in real time, are needed. Infect Control Hosp Epidemiol 2018;39:40-45.
Liu, Jien-Wei; Ko, Wen-Chien; Huang, Cheng-Hua; Liao, Chun-Hsing; Lu, Chin-Te; Chuang, Yin-Ching; Tsao, Shih-Ming; Chen, Yao-Shen; Liu, Yung-Ching; Chen, Wei-Yu; Jang, Tsrang-Neng; Lin, Hsiu-Chen; Chen, Chih-Ming; Shi, Zhi-Yuan; Pan, Sung-Ching; Yang, Jia-Ling; Kung, Hsiang-Chi; Liu, Chun-Eng; Cheng, Yu-Jen; Chen, Yen-Hsu; Lu, Po-Liang; Sun, Wu; Wang, Lih-Shinn; Yu, Kwok-Woon; Chiang, Ping-Cherng; Lee, Ming-Hsun; Lee, Chun-Ming; Hsu, Gwo-Jong
2012-01-01
The Tigecycline In Vitro Surveillance in Taiwan (TIST) study, initiated in 2006, is a nationwide surveillance program designed to longitudinally monitor the in vitro activity of tigecycline against commonly encountered drug-resistant bacteria. This study compared the in vitro activity of tigecycline against 3,014 isolates of clinically important drug-resistant bacteria using the standard broth microdilution and disk diffusion methods. Species studied included methicillin-resistant Staphylococcus aureus (MRSA; n = 759), vancomycin-resistant Enterococcus faecium (VRE; n = 191), extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (n = 602), ESBL-producing Klebsiella pneumoniae (n = 736), and Acinetobacter baumannii (n = 726) that had been collected from patients treated between 2008 and 2010 at 20 hospitals in Taiwan. MICs and inhibition zone diameters were interpreted according to the currently recommended U.S. Food and Drug Administration (FDA) criteria and the European Committee on Antimicrobial Susceptibility Testing (EUCAST) criteria. The MIC90 values of tigecycline against MRSA, VRE, ESBL-producing E. coli, ESBL-producing K. pneumoniae, and A. baumannii were 0.5, 0.125, 0.5, 2, and 8 μg/ml, respectively. The total error rates between the two methods using the FDA criteria were high: 38.4% for ESBL-producing K. pneumoniae and 33.8% for A. baumannii. Using the EUCAST criteria, the total error rate was also high (54.6%) for A. baumannii isolates. The total error rates between these two methods were <5% for MRSA, VRE, and ESBL-producing E. coli. For routine susceptibility testing of ESBL-producing K. pneumoniae and A. baumannii against tigecycline, the broth microdilution method should be used because of the poor correlation of results between these two methods. PMID:22155819
[Studies for the development of novel anti-MRSA/VRE drugs].
Hashizume, Hideki
2012-01-01
The widespread emergence of multidrug-resistant Gram-positive pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) is a high threat for human health. In the course of screening for active compounds against the above drug-resistant bacteria from microbial metabolites, we discovered three kinds of novel compounds designated tripropeptins, pargamicin, and amycolamicin. Tripropeptin C (TPPC), major component of tripropeptins, is the most promising compound because it is efficacious against MRSA and VRE both in vitro and in a mouse septicemia model, and shows no cross-resistance to available drugs including vancomycin. Studies of incorporation of radioactive macromolecular precursors and accumulation of UDP-MurNAc-pentapeptide in the cytoplasm in S. aureus Smith revealed that TPPC is a cell wall synthesis inhibitor. Antimicrobial activity of TPPC was weakened by addition of prenylpyrophosphates but not with prenylphosphates, UDP-linked sugars, or the pentapeptide of peptidoglycan. Direct interaction between TPPC and undecaprenyl pyrophosphate (C(55)-PP) was observed by mass spectrometry and thin layer chromatography, and TPPC inhibits C(55)-PP phosphatase, which plays a crucial role in peptidoglycan synthesis at an IC(50) of 0.03-0.1 µM in vitro. From the analysis of accumulation of lipid carrier-related compounds, TPPC caused accumulation of C(55)-PP in situ, leading to the accumulation of a glycine-added lipid intermediate, suggesting a distinct mode of action from that of clinically important drugs such as vancomycin, daptomycin, and bacitracin. TPPC might represent a promising novel class of antibiotic against MRSA and VRE infections.
High-Level Fosfomycin Resistance in Vancomycin-Resistant Enterococcus faecium
Guo, Yan; Tomich, Adam D.; McElheny, Christi L.; Cooper, Vaughn S.; Tait-Kamradt, Amelia; Wang, Minggui; Hu, Fupin; Rice, Louis B.; Sluis-Cremer, Nicolas
2017-01-01
Of 890 vancomycin-resistant Enterococcus faecium isolates obtained by rectal screening from patients in Pittsburgh, Pennsylvania, USA, 4 had MICs >1,024 μg/mL for fosfomycin. These isolates had a Cys119Asp substitution in the active site of UDP-N-acetylglucosamine enolpyruvyl transferase. This substitution increased the fosfomycin MIC >4-fold and rendered this drug inactive in biochemical assays. PMID:29048285
Epidemiology and molecular typing of VRE bloodstream isolates in an Irish tertiary care hospital.
Ryan, L; O'Mahony, E; Wrenn, C; FitzGerald, S; Fox, U; Boyle, B; Schaffer, K; Werner, G; Klare, I
2015-10-01
Ireland has the highest rate of vancomycin-resistant Enterococcus faecium (VREfm) isolated from blood of nosocomial patients in Europe, which rose from 33% (110/330) in 2007 to 45% (178/392) in 2012. No other European country had a VREfm rate from blood cultures of >25%. Our aim was to elucidate the reasons for this significantly higher rate in Ireland. The epidemiology and molecular typing of VRE from bloodstream infections (BSIs) was examined in a tertiary care referral hospital and isolates were compared with those from other tertiary care referral centres in the region. The most common source of VRE BSIs was intra-abdominal sepsis, followed by line-related infection and febrile neutropenia. Most of the isolates were positive for vanA; 52% (43/83) possessed the esp gene and 12% (10/83) possessed the hyl gene. Genotyping by SmaI macrorestriction analysis (PFGE) of isolates revealed clonal relatedness between bloodstream isolates and environmental isolates. VRE BSI isolates from two other tertiary care hospitals in the Dublin region showed relatedness by PFGE analysis. MLST revealed four STs (ST17, ST18, ST78 and ST203), all belonging to the clonal complex of hospital-associated strains. Irish VRE BSI isolates have virulence factor profiles as previously reported from Europe. Typing analysis shows the spread of individual clones within the hospital and between regional tertiary care hospitals. Apart from transmission of VRE within the hospital and transfer of colonized patients between Irish hospitals, no other explanation for the persistently high VREfm BSI rate in Ireland has been found. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Ballard, S A; Grabsch, E A; Johnson, P D R; Grayson, M L
2005-01-01
We assessed the sensitivities and specificities of three previously described PCR primers on enrichment broth cultures of feces for the accurate detection of fecal carriage of vancomycin-resistant enterococci (VRE). In addition, we investigated specimens that were vanB PCR positive but VRE culture negative for the presence of other vanB-containing pathogens. Feces from 59 patients (12 patients carrying vanB Enterococcus faecium strains and 47 patients negative for VRE carriage) were cultured for 36 h in aerobic brain heart infusion (BHI) broth, anaerobic BHI (AnO(2)BHI) broth, or aerobic Enterococcosel (EC) broth. DNA was extracted from the cultures and tested for the presence of vanB by using the PCR primers of Dutka-Malen et al. (S. Dutka-Malen, S. Evers, and P. Courvalin, J. Clin. Microbiol. 33:24-27, 1995), Bell et al. (J. M. Bell, J. C. Paton, and J. Turnidge, J. Clin. Microbiol. 36:2187-2190, 1998), and Stinear et al. (T. P. Stinear, D. C. Olden, P. D. R. Johnson, J. K. Davies, and M. L. Grayson, Lancet 357:855-856, 2001). The sensitivity (specificity) of PCR compared with the results of culture on BHI, AnO(2)BHI, and EC broths were 67% (96%), 50% (94%), and 17% (100%), respectively, with the primers of Dutka-Malen et al.; 92% (60%), 92% (45%), and 92% (83%), respectively, with the primers of Bell et al.; and 92% (49%), 92% (43%), and 100% (51%) respectively, with the primers of Stinear et al. The primers of both Bell et al. and Stinear et al. were significantly more sensitive than those of Dutka-Malen et al. in EC broth (P = 0.001 and P < 0.001, respectively). The poor specificities for all primer pairs were due in part to the isolation and identification of six anaerobic gram-positive bacilli, Clostridium hathewayi (n = 3), a Clostridium innocuum-like organism (n = 1), Clostridium bolteae (n = 1), and Ruminococcus lactaris-like (n = 1), from five fecal specimens that were vanB positive but VRE culture negative. All six organisms were demonstrated to contain a vanB gene identical to that of VRE. VanB-containing bowel anaerobes may result in false-positive interpretation of PCR-positive fecal enrichment cultures as VRE, regardless of the primers and protocols used.
Cheng, Vincent Chi-Chung; Tai, Josepha Wai-Ming; Chen, Jonathan Hon-Kwan; So, Simon Yung-Chun; Ng, Wing-Chun; Hung, Ivan Fan-Ngan; Leung, Sally Sau-Man; Wong, Sally Cheuk-Ying; Chan, Tuen-Ching; Chan, Felix Hon-Wai; Ho, Pak-Leung; Yuen, Kwok-Yung
2014-10-01
The study describes a proactive infection control approach to prevent nosocomial transmission of vancomycin-resistant enterococci (VRE) and tests if this approach is effective for controlling multiple-drug resistant organisms in a nonendemic setting. In response to the increasing prevalence of VRE in Hong Kong since 2011, we adopted a multifaceted assertive approach in our health care network. This included active surveillance culture, extensive contact tracing, directly observed hand hygiene in conscious patients before they received meals and medications, stringent hand hygiene and environmental cleanliness, and an immediate feedback antimicrobial stewardship program. We report the occurrence of VRE outbreaks in our hospital after institution of these measures and compared with the concurrent occurrence in other public hospitals in Hong Kong. Between July 1, 2011 and November 13, 2013, VRE was identified in 0.32% (50/15,851) of admission episodes by active surveillance culture. The risk of VRE carriage was three times higher in patients with a history of hospitalization outside our hospital networks in the past 3 months (0.56% vs. 0.17%; p = 0.001) compared with those who were not. Extensive contact tracing involving 3277 patient episodes was performed in the investigation for the 25 VRE index patients upon whom implementation of contact precautions was delayed (more than 48 hours of hospitalization). One episode of VRE outbreak was identified in our hospital network, compared with the 77 VRE outbreaks reported in the other hospital networks (controls) without these proactive infection control measures. Our multifaceted assertive proactive infection control approach can minimize the nosocomial transmission and outbreak of VRE in a nonendemic area. Copyright © 2014. Published by Elsevier B.V.
The role of the surface environment in healthcare-associated infections.
Weber, David J; Anderson, Deverick; Rutala, William A
2013-08-01
This article reviews the evidence demonstrating the importance of contamination of hospital surfaces in the transmission of healthcare-associated pathogens and interventions scientifically demonstrated to reduce the levels of microbial contamination and decrease healthcare-associated infections. The contaminated surface environment in hospitals plays an important role in the transmission of methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus spp. (VRE), Clostridium difficile, Acinetobacter spp., and norovirus. Improved surface cleaning and disinfection can reduce transmission of these pathogens. 'No-touch' methods of room disinfection (i.e., devices which produce ultraviolet light or hydrogen peroxide) and 'self-disinfecting' surfaces (e.g., copper) also show promise to decrease contamination and reduce healthcare-associated infections. Hospital surfaces are frequently contaminated with important healthcare-associated pathogens. Contact with the contaminated environment by healthcare personnel is equally as likely as direct contact with a patient to lead to contamination of the healthcare provider's hands or gloves that may result in patient-to-patient transmission of nosocomial pathogens. Admission to a room previously occupied by a patient with MRSA, VRE, Acinetobacter, or C. difficile increases the risk for the subsequent patient admitted to the room to acquire the pathogen. Improved cleaning and disinfection of room surfaces decreases the risk of healthcare-associated infections.
Brudzynski, Katrina; Lannigan, Robert
2012-01-01
It has been recently reported that honey hydrogen peroxide in conjunction with unknown honey components produced cytotoxic effects resulting in bacterial growth inhibition and DNA degradation. The objective of this study was twofold: (a) to investigate whether the coupling chemistry involving hydrogen peroxide is responsible for a generation of hydroxyl radicals and (b) whether •OH generation affects growth of multi-drug resistant clinical isolates. The susceptibility of five different strains of methicillin-resistant Staphylococcus aureus (MRSA) and four strains of vancomycin-resistant Enterococcus faecium (VRE) isolates from infected wounds to several honeys was evaluated using broth microdilution assay. Isolates were identified to genus and species and their susceptibility to antibiotics was confirmed using an automated system (Vitek®, Biomérieux®). The presence of the mec(A) gene, nuc gene and van(A) and (B) genes were confirmed by polymerase chain reaction. Results showed that no clinical isolate was resistant to selected active honeys. The median difference in honeys MICs against these strains ranged between 12.5 and 6.25% v/v and was not different from the MIC against standard Escherichia coli and Bacillus subtilis. Generation of •OH during bacteria incubation with honeys was analyzed using 3′-(p-aminophenyl) fluorescein (APF) as the •OH trap. The •OH participation in growth inhibition was monitored directly by including APF in broth microdilution assay. The growth of MRSA and VRE was inhibited by •OH generation in a dose-dependent manner. Exposure of MRSA and VRE to honeys supplemented with Cu(II) augmented production of •OH by 30-fold and increased honey bacteriostatic potency from MIC90 6.25 to MIC90< 0.78% v/v. Pretreatment of honeys with catalase prior to their supplementation with Cu ions fully restored bacterial growth indicating that hydroxyl radicals were produced from H2O2 via the Fenton-type reaction. In conclusion, we have demonstrated for the first time that bacteriostatic effect of honeys on MRSA and VRE was dose-dependently related to generation of •OH from honey H2O2. PMID:22347223
Brudzynski, Katrina; Lannigan, Robert
2012-01-01
It has been recently reported that honey hydrogen peroxide in conjunction with unknown honey components produced cytotoxic effects resulting in bacterial growth inhibition and DNA degradation. The objective of this study was twofold: (a) to investigate whether the coupling chemistry involving hydrogen peroxide is responsible for a generation of hydroxyl radicals and (b) whether (•)OH generation affects growth of multi-drug resistant clinical isolates. The susceptibility of five different strains of methicillin-resistant Staphylococcus aureus (MRSA) and four strains of vancomycin-resistant Enterococcus faecium (VRE) isolates from infected wounds to several honeys was evaluated using broth microdilution assay. Isolates were identified to genus and species and their susceptibility to antibiotics was confirmed using an automated system (Vitek(®), Biomérieux(®)). The presence of the mec(A) gene, nuc gene and van(A) and (B) genes were confirmed by polymerase chain reaction. Results showed that no clinical isolate was resistant to selected active honeys. The median difference in honeys MICs against these strains ranged between 12.5 and 6.25% v/v and was not different from the MIC against standard Escherichia coli and Bacillus subtilis. Generation of (•)OH during bacteria incubation with honeys was analyzed using 3'-(p-aminophenyl) fluorescein (APF) as the (•)OH trap. The (•)OH participation in growth inhibition was monitored directly by including APF in broth microdilution assay. The growth of MRSA and VRE was inhibited by (•)OH generation in a dose-dependent manner. Exposure of MRSA and VRE to honeys supplemented with Cu(II) augmented production of (•)OH by 30-fold and increased honey bacteriostatic potency from MIC(90) 6.25 to MIC(90)< 0.78% v/v. Pretreatment of honeys with catalase prior to their supplementation with Cu ions fully restored bacterial growth indicating that hydroxyl radicals were produced from H(2)O(2) via the Fenton-type reaction. In conclusion, we have demonstrated for the first time that bacteriostatic effect of honeys on MRSA and VRE was dose-dependently related to generation of (•)OH from honey H(2)O(2).
Mohammad, Haroon; Younis, Waleed; Chen, Lu; Peters, Christine E; Pogliano, Joe; Pogliano, Kit; Cooper, Bruce; Zhang, Jianan; Mayhoub, Abdelrahman; Oldfield, Eric; Cushman, Mark; Seleem, Mohamed N
2017-03-23
The emergence of antibiotic-resistant bacterial species, such as vancomycin-resistant enterococci (VRE), necessitates the development of new antimicrobials. Here, we investigate the spectrum of antibacterial activity of three phenylthiazole-substituted aminoguanidines. These compounds possess potent activity against VRE, inhibiting growth of clinical isolates at concentrations as low as 0.5 μg/mL. The compounds exerted a rapid bactericidal effect, targeting cell wall synthesis. Transposon mutagenesis suggested three possible targets: YubA, YubB (undecaprenyl diphosphate phosphatase (UPPP)), and YubD. Both UPPP as well as undecaprenyl diphosphate synthase were inhibited by compound 1. YubA and YubD are annotated as transporters and may also be targets because 1 collapsed the proton motive force in membrane vesicles. Using Caenorhabditis elegans, we demonstrate that two compounds (1, 3, at 20 μg/mL) retain potent activity in vivo, significantly reducing the burden of VRE in infected worms. Taken altogether, the results indicate that compounds 1 and 3 warrant further investigation as novel antibacterial agents against drug-resistant enterococci.
Woodford, N; Morrison, D; Johnson, A P; Briant, V; George, R C; Cookson, B
1993-01-01
DNA probes specific for genes encoding rRNA and the glycopeptide resistance gene vanA were used to investigate a cluster of vancomycin-resistant (MICs, > 512 mg/liter) Enterococcus faecalis and Enterococcus faecium isolated from separate patients in a renal unit in a London hospital. When digested with BamHI, 12 of 13 vancomycin-resistant E. faecalis isolates exhibited a common restriction fragment length polymorphism pattern of rRNA genes (ribotype). A vanA probe hybridized with chromosomal DNA in these 12 isolates. The other isolate of vancomycin-resistant E. faecalis had a different ribotype and the vanA gene was located on plasmid DNA. These data suggest that cross-infection with a single strain of vancomycin-resistant E. faecalis occurred in most instances. In contrast, 23 vancomycin-resistant E. faecium isolates showed greater heterogeneity, comprising 8 ribotypes, suggesting that multiple strains were present in the unit. Twenty-one of these 23 isolates harbored a 24-MDa plasmid which hybridized with the vanA probe, implying that interstrain dissemination of a vancomycin resistance plasmid may have occurred among E. faecium isolates in the renal unit. Images PMID:8096216
2017-06-01
to assess prescription practices, the Standard Inpatient Data Record (SIDR) to determine healthcare-associated exposures, Defense Manpower Data...1 Results ...limitations were applied to this annual summary. As such, this report presents analytical results and discussion of CY 2016 data for VRE infections in the
Antimicrobial resistance profile of Enterococcus spp isolated from food in Southern Brazil
Riboldi, Gustavo Pelicioli; Frazzon, Jeverson; d’Azevedo, Pedro Alves; Frazzon, Ana Paula Guedes
2009-01-01
Fifty-six Enterococcus spp. strains were isolated from foods in Southern Brazil, confirmed by PCR and classified as Enterococcus faecalis (27), Enterococcus faecium (23) and Enterococcus spp (6). Antimicrobial susceptibility tests showed resistance phenotypes to a range of antibiotics widely administrated in humans such as gentamycin, streptomycin, ampicillin and vancomycin. PMID:24031330
Nerandzic, Michelle M; Cadnum, Jennifer L; Pultz, Michael J; Donskey, Curtis J
2010-07-08
Environmental surfaces play an important role in transmission of healthcare-associated pathogens. There is a need for new disinfection methods that are effective against Clostridium difficile spores, but also safe, rapid, and automated. The Tru-D Rapid Room Disinfection device is a mobile, fully-automated room decontamination technology that utilizes ultraviolet-C irradiation to kill pathogens. We examined the efficacy of environmental disinfection using the Tru-D device in the laboratory and in rooms of hospitalized patients. Cultures for C. difficile, methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococcus (VRE) were collected from commonly touched surfaces before and after use of Tru-D. On inoculated surfaces, application of Tru-D at a reflected dose of 22,000 microWs/cm(2) for approximately 45 minutes consistently reduced recovery of C. difficile spores and MRSA by >2-3 log10 colony forming units (CFU)/cm2 and of VRE by >3-4 log10 CFU/cm(2). Similar killing of MRSA and VRE was achieved in approximately 20 minutes at a reflected dose of 12,000 microWs/cm(2), but killing of C. difficile spores was reduced. Disinfection of hospital rooms with Tru-D reduced the frequency of positive MRSA and VRE cultures by 93% and of C. difficile cultures by 80%. After routine hospital cleaning of the rooms of MRSA carriers, 18% of sites under the edges of bedside tables (i.e., a frequently touched site not easily amenable to manual application of disinfectant) were contaminated with MRSA, versus 0% after Tru-D (P < 0.001). The system required <5 minutes to set up and did not require continuous monitoring. The Tru-D Rapid Room Disinfection device is a novel, automated, and efficient environmental disinfection technology that significantly reduces C. difficile, VRE and MRSA contamination on commonly touched hospital surfaces.
Search for Novel Antibacterial Compounds and Targets.
Kuroda, Teruo; Ogawa, Wakano
2017-01-01
Drug-resistant bacteria including methicillin-resistant Staphylococcus aureus (MRSA), multidrug-resistant Pseudomonas aeruginosa, and vancomycin-resistant enterococci (VRE) have been spreading; however, the development of new antibacterial drugs has not progressed accordingly. Novel antibacterial drugs or their candidate seeds need to be developed for effective antibiotic therapy. Under these conditions, the search for novel compounds and novel targets is important. In Okayama University, as a part of the Drug Discovery for Intractable Infectious Diseases project, we are proceeding with the development of antibacterial drugs for the treatment of drug-resistant bacterial infections. We found that riccardin C (a natural product of liverwort) and 6,6'-dihydroxythiobinupharidine (from the crude drug Senkotsu) exhibited strong antibacterial activities, particularly against Gram-positive bacteria. We showed that riccardin C induced cell membrane leakage and that 6,6'-dihydroxythiobinupharidine inhibited DNA topoisomerase IV. Moreover, 6,6'-dihydroxythiobinupharidine exerted synergistic effects with already known anti-MRSA drugs as well as with vancomycin for VRE.
A Bactericidal Guanidinomethyl Biaryl That Alters the Dynamics of Bacterial FtsZ Polymerization
Kaul, Malvika; Parhi, Ajit K.; Zhang, Yongzheng; LaVoie, Edmond J.; Tuske, Steve; Arnold, Eddy; Kerrigan, John E.; Pilch, Daniel S.
2014-01-01
The prevalence of multidrug resistance among clinically significant bacterial pathogens underscores a critical need for the development of new classes of antibiotics with novel mechanisms of action. Here we describe the synthesis and evaluation of a guanidinomethyl biaryl compound {1-((4′-(tert-butyl)-[1,1′-biphenyl]-3-yl)methyl)guanidine} that targets the bacterial cell division protein FtsZ. In vitro studies with various bacterial FtsZ proteins reveal that the compound alters the dynamics of FtsZ self-polymerization via a stimulatory mechanism, while minimally impacting the polymerization of tubulin, the closest mammalian homologue of FtsZ. The FtsZ binding site of the compound is identified through a combination of computational and mutational approaches. The compound exhibits a broad spectrum of bactericidal activity, including activity against the multidrug-resistant pathogens methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE), while also exhibiting a minimal potential to induce resistance. Taken together, our results highlight the compound as a promising new FtsZ-targeting bactericidal agent. PMID:23050700
Vancomycin-Resistant Enterococci (VRE):Overview
... Operations Administrative Services Office of Biodefense Research & Surety Communications Government Relations Cyber Infrastructure Computational Biology Equal Employment Opportunity Ethics Global Research Office of Mission Integration and Financial ...
Prematunge, Chatura; Policarpio, Michelle E; Johnstone, Jennie; Adomako, Kwaku; Nadolny, Emily; Lam, Freda; Li, Ye; Brown, Kevin A; Garber, Gary
2018-04-13
All Ontario hospitals are mandated to self-report vancomycin-resistant enterocococi (VRE) bacteremias to Ontario's Ministry of Health and Long-term Care for public reporting purposes. Independent quarterly audits of publicly reported VRE bacteremias between September 2013 and June 2015 were carried out by Public Health Ontario. VRE bacteremia case-reporting errors between January 2009 and August 2013 were identified by a single retrospective audit. Employing a quasiexperimental pre-post study design, the relative risk of VRE bacteremia reporting errors before and after quarterly audits were modeled using Poisson regression adjusting for hospital type, case counts reported to the Ministry of Health and Long-term Care, and autocorrelation via generalized estimating equation. Overall, 24.5% (126 out of 514) of VRE bacteremias were reported in error; 114 out of 367 (31%) VRE bacteremias reported before quarterly audits and 12 out of 147 (8.1%) reported after audits were found to be incorrect. In adjusted analysis, quarterly audits of VRE bacteremias were associated with significant reductions in reporting errors when compared with before quarterly auditing (relative risk, 0.17; 95% confidence interval, 0.05-0.63). Risk of reporting errors among community hospitals were greater than acute teaching hospitals of the region (relative risk, 4.39; 95% CI, 3.07-5.70). This study found independent quarterly audits of publicly reported VRE bacteremias to be associated with significant reductions in reporting errors. Public reporting systems should consider adopting routine data audits and hospital-targeted training to improve data accuracy. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.
Disinfecting the iPad: evaluating effective methods.
Howell, V; Thoppil, A; Mariyaselvam, M; Jones, R; Young, H; Sharma, S; Blunt, M; Young, P
2014-06-01
Tablet computers are increasingly used in healthcare, but they may carry nosocomial pathogens. There are few data available on how to clean an iPad effectively for use in the clinical setting. We aimed to identify the most effective method of decontaminating the Apple iPad, without causing damage, and establish the duration of any residual effect. Following contamination with a microbial broth (meticillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococcus (VRE) and Clostridium difficile), we examined efficacy of iPad disinfection in the laboratory using six different disinfectant wipes: Sani-Cloth CHG 2% (chlorhexidine 2%/alcohol 70%), Clorox, Tristel, Trigene, soap and water, and plain cloth. Following cleaning, iPads were recontaminated to examine residual activity. After 480 Sani-Cloth CHG 2% disinfecting episodes, functional and visual analysis of iPads was performed by blinded subjects. With the exception of Clostridium difficile, Sani-Cloth CHG 2% and Clorox wipes were most effective against MRSA and VRE, and they were significantly better than the Apple-recommended plain cloth (P ≤ 0.001). A substantial residual antimicrobial effect was seen for >6h after wiping the iPad with Sani-Cloth CHG 2% despite repeated recontamination and without further disinfection. The functionality or visual appearance of the iPad was not damaged by repeated use of Sani-Cloth CHG 2% wipes. Sani-Cloth CHG 2% wipes effectively disinfect the iPad against MRSA and VRE, with a residual antibacterial effect and without causing damage. Copyright © 2014 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Jelden, Katelyn C; Gibbs, Shawn G; Smith, Philip W; Hewlett, Angela L; Iwen, Peter C; Schmid, Kendra K; Lowe, John J
2016-09-01
The estimated 721,800 hospital acquired infections per year in the United States have necessitated development of novel environmental decontamination technologies such as ultraviolet germicidal irradiation (UVGI). This study evaluated the efficacy of a novel, portable UVGI generator (the TORCH, ChlorDiSys Solutions, Inc., Lebanon, NJ) to disinfect surface coupons composed of plastic from a bedrail, stainless steel, chrome-plated light switch cover, and a porcelain tile that were inoculated with methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant Enterococcus faecalis (VRE). Each surface type was placed at 6 different sites within a hospital room and treated by 10-min ultraviolet-C (UVC) exposures using the TORCH with doses ranging from 0-688 mJ/cm(2) between sites. Organism reductions were compared with untreated surface coupons as controls. Overall, UVGI significantly reduced MRSA by an average of 4.6 log10 (GSD: 1.7 log10, 77% inactivation, p < 0.0001) and VRE by an average of 3.9 log10 (GSD: 1.7 log10, 65% inactivation, p < 0.0001). MRSA on bedrail was reduced significantly (p < 0.0001) less than on other surfaces, while VRE was reduced significantly less on chrome (p = 0.0004) and stainless steel (p = 0.0012) than porcelain tile. Organisms out of direct line of sight of the UVC generator were reduced significantly less (p < 0.0001) than those directly in line of sight. UVGI was found an effective method to inactivate nosocomial pathogens on surfaces evaluated within the hospital environment in direct line of sight of UVGI treatment with variation between organism and surface types.
Freitas, Ana R; Tedim, Ana P; Francia, Maria V; Jensen, Lars B; Novais, Carla; Peixe, Luísa; Sánchez-Valenzuela, Antonio; Sundsfjord, Arnfinn; Hegstad, Kristin; Werner, Guido; Sadowy, Ewa; Hammerum, Anette M; Garcia-Migura, Lourdes; Willems, Rob J; Baquero, Fernando; Coque, Teresa M
2016-12-01
Vancomycin-resistant Enterococcus faecium (VREfm) have been increasingly reported since the 1980s. Despite the high number of published studies about VRE epidemiology, the dynamics and evolvability of these microorganisms are still not fully understood. A multilevel population genetic analysis of VREfm outbreak strains since 1986, representing the first comprehensive characterization of plasmid content in E. faecium, was performed to provide a detailed view of potential transmissible units. From a comprehensive MeSH search, we identified VREfm strains causing hospital outbreaks (1986-2012). In total, 53 VanA and 18 VanB isolates (27 countries, 5 continents) were analysed and 82 vancomycin-susceptible E. faecium (VSEfm) were included for comparison. Clonal relatedness was established by PFGE and MLST (goeBURST/Bayesian Analysis of Population Structure, BAPS). Characterization of van transposons (PCR mapping, RFLP, sequencing), plasmids (transfer, ClaI-RFLP, PCR typing of relaxases, replication-initiation proteins and toxin-antitoxin systems, hybridization, sequencing), bacteriocins and virulence determinants (PCR, hybridization, sequencing) was performed. VREfm were mainly associated with major human lineages ST17, ST18 and ST78. VREfm and VSEfm harboured plasmids of different families [RCR, small theta plasmids, RepA_N (pRUM/pLG1) and Inc18] able to yield mosaic elements. Tn1546-vanA was mainly located on pRUM/Axe-Txe (USA) and Inc18-pIP186 (Europe) plasmids. The VanB2 type (Tn5382/Tn1549) was predominant among VanB strains (chromosome and plasmids). Both strains and plasmids contributed to the spread and persistence of vancomycin resistance among E. faecium. Horizontal gene transfer events among genetic elements from different clonal lineages (same or different species) result in chimeras with different stability and host range, complicating the surveillance of epidemic plasmids. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Valle, Demetrio L.; Cabrera, Esperanza C.; Puzon, Juliana Janet M.; Rivera, Windell L.
2016-01-01
Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria. PMID:26741962
Valle, Demetrio L; Cabrera, Esperanza C; Puzon, Juliana Janet M; Rivera, Windell L
2016-01-01
Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria.
Durcik, Martina; Lovison, Denise; Skok, Žiga; Durante Cruz, Cristina; Tammela, Päivi; Tomašič, Tihomir; Benedetto Tiz, Davide; Draskovits, Gábor; Nyerges, Ákos; Pál, Csaba; Ilaš, Janez; Peterlin Mašič, Lucija; Kikelj, Danijel; Zidar, Nace
2018-06-25
The ATP binding site located on the subunit B of DNA gyrase is an attractive target for the development of new antibacterial agents. In recent decades, several small-molecule inhibitor classes have been discovered but none has so far reached the market. We present here the discovery of a promising new series of N-phenylpyrrolamides with low nanomolar IC 50 values against DNA gyrase, and submicromolar IC 50 values against topoisomerase IV from Escherichia coli and Staphylococcus aureus. The most potent compound in the series has an IC 50 value of 13 nM against E. coli gyrase. Minimum inhibitory concentrations (MICs) against Gram-positive bacteria are in the low micromolar range. The oxadiazolone derivative 11a, with an IC 50 value of 85 nM against E. coli DNA gyrase displays the most potent antibacterial activity, with MIC values of 1.56 μM against Enterococcus faecalis, and 3.13 μM against wild type S. aureus, methicillin-resistant S. aureus (MRSA) and vancomycin-resistant Enterococcus (VRE). The activity against wild type E. coli in the presence of efflux pump inhibitor phenylalanine-arginine β-naphthylamide (PAβN) is 4.6 μM. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Wardal, Ewa; Markowska, Katarzyna; Żabicka, Dorota; Wróblewska, Marta; Giemza, Małgorzata; Mik, Ewa; Połowniak-Pracka, Hanna; Woźniak, Agnieszka; Hryniewicz, Waleria; Sadowy, Ewa
2014-01-01
Vancomycin-resistant Enterococcus faecium represents a growing threat in hospital-acquired infections. Two outbreaks of this pathogen from neighboring Warsaw hospitals have been analyzed in this study. Pulsed-field gel electrophoresis (PFGE) of SmaI-digested DNA, multilocus VNTR analysis (MLVA), and multilocus sequence typing (MLST) revealed a clonal variability of isolates which belonged to three main lineages (17, 18, and 78) of nosocomial E. faecium. All isolates were multidrug resistant and carried several resistance, virulence, and plasmid-specific genes. Almost all isolates shared the same variant of Tn1546 transposon, characterized by the presence of insertion sequence ISEf1 and a point mutation in the vanA gene. In the majority of cases, this transposon was located on 50 kb or 100 kb pRUM-related plasmids, which lacked, however, the axe-txe toxin-antitoxin genes. 100 kb plasmid was easily transferred by conjugation and was found in various clonal backgrounds in both institutions, while 50 kb plasmid was not transferable and occurred solely in MT159/ST78 strains that disseminated clonally in one institution. Although molecular data indicated the spread of VRE between two institutions or a potential common source of this alert pathogen, epidemiological investigations did not reveal the possible route by which outbreak strains disseminated. PMID:25003118
Acharya, A; Khanal, A; Kanungo, R; Mohapatra, T
2007-12-01
Life threatening infections caused by enterococcus species with multidrug resistance has emerged as a threat to medical care in the present era. This study was conducted to characterize enterococcus species isolated from different clinical samples and to detect the pattern of susceptibility to some of the commonly used antibiotics in B.P Koirala Institute of Health Sciences (BPKIHS), a tertiary care hospital in eastern Nepal. Clinical samples submitted to the microbiology unit of Central Laboratory Service (CLS) for culture and sensitivity during March 2002 - February 2003 was analyzed. Enterococcus species were identified by colony characteristics, gram staining and relevant biochemical tests. Antibiotic susceptibility test was done by the Kirby Bauer disc diffusion technique. Of 50 Enterococcus species isolated, E. faecalis was the predominant isolate (48.0%) followed by E. faecium (32.0%) and E. avium (20.0%). Eighty-eight percent of E. faecalis showed sensitivity to cephotaxime and 87.0% to vancomycin. Multiple drug resistance was observed most commonly in E. faecium. Seventeen percent of E. faecium were resistant to vancomycin and 63.0% to ciprofloxacin and 44.0% to ampicillin. On the contrary E. avium rarely showed resistance to the antimicrobials tested including vancomycin. Enterococcal infections are common nowadays specially in hospitalized patients. Inappropriate use of antibiotics in clinical practice and poultry should be discouraged to prevent the emergence of multidrug resistant species.
Nateghian, A; Robinson, J L; Arjmandi, K; Vosough, P; Karimi, A; Behzad, A; Navidnia, M
2011-05-01
Risk factors for colonization with vancomycin-resistant enterococci (VRE) vary by population and locale. The objective of this study was to determine the prevalence of and risk factors for VRE colonization in children with acute lymphoblastic leukemia (ALL) in Tehran. Stools were collected from children with ALL at the Ali Asghar Children's Hospital and the Mahak Pediatric Oncology Center between March 2007 and October 2008. Demographic features and potential risk factors for VRE colonization, including duration of ALL, presence of severe neutropenia in the preceding month, receipt of antibiotics in the preceding 3 months, concurrent medical problems, days of hospitalization, and the need for intensive care since the time of diagnosis of ALL, were recorded. VRE was identified from stools in 33 of 130 children with ALL (25%). No clear risk factors were identified for VRE colonization in the current study, but there was a trend towards an increased prevalence in children admitted to the intensive care unit since their ALL diagnosis (p=0.07). The VanA genotype was found in 28 of the 33 stools (85%), with all other enterococci being VanB. The prevalence of VRE colonization in children with ALL in Tehran is high. Modifiable risk factors have not been identified. The implementation of routine surveillance for colonization and an increased emphasis on adherence to standard infection control precautions may prevent spread. Copyright © 2011 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Both, Anna; Franke, Gefion C; Mirwald, Nadine; Lütgehetmann, Marc; Christner, Martin; Klupp, Eva-Maria; Belmar Campos, Cristina; Büttner, Henning; Aepfelbacher, Martin; Rohde, Holger
2017-12-01
Given constantly high or even rising incidences of both colonization and infection with vancomycin-resistant enterococci (VRE), timely and accurate identification of carriers in high-risk patient populations is of evident clinical importance. In this study, a two-tier approach consisting of PCR-based screening and cultural confirmation of positive results is compared to the conventional approach solely based on culture on selective media. The 2-tier strategy was highly consistent with the conventional approach, and was found to possess high sensitivity and specificity (93.1% and 100%, respectively). The introduction of the PCR-based combined VRE screening approach significantly (P<0.0001) reduced median overall time to result by 44.3hours. The effect was found to be most pronounced in VRE negative samples. Positive vanA PCR was highly consistent with culture (PPV: 92.0%, 95% CI: 72.5-98.6%, NPV: 99.6%, 95% CI: 98.9-99.6%), thus allowing for preliminary reporting of VRE detection. In contrast, a vanB positive PCR does not allow for preliminary reporting (PPV: 58.5%, 95% CI: 44.2-71.6%, NPV: 99.8%, 95% CI: 99.2-100%). The introduction of a molecular assay for rapid detection of VRE from rectal swabs combined with cultural confirmation proved to be reliable and time saving, especially in a setting of low VRE prevalence and predominance of vanA positive strains. Copyright © 2017 Elsevier Inc. All rights reserved.
A potent synthetic inorganic antibiotic with activity against drug-resistant pathogens.
Hubick, Shelby; Jayaraman, Arumugam; McKeen, Alexander; Reid, Shelby; Alcorn, Jane; Stavrinides, John; Sterenberg, Brian T
2017-02-06
The acronymously named "ESKAPE" pathogens represent a group of bacteria that continue to pose a serious threat to human health, not only due to their propensity for repeated emergence, but also due to their ability to "eskape" antibiotic treatment. The evolution of multi-drug resistance in these pathogens alone has greatly outpaced the development of new therapeutics, necessitating an alternative strategy for antibiotic development that considers the evolutionary mechanisms driving antibiotic resistance. In this study, we synthesize a novel inorganic antibiotic, phosphopyricin, which has antibiotic activity against the Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE). We show that this potent antibiotic is bactericidal, and exhibits low toxicity in an acute dose assay in mice. As a synthetic compound that does not occur naturally, phosphopyricin would be evolutionarily foreign to microbes, thereby slowing the evolution of resistance. In addition, it loses antibiotic activity upon exposure to light, meaning that the active antibiotic will not accumulate in the general environment where strong selective pressures imposed by antibiotic residuals are known to accelerate resistance. Phosphopyricin represents an innovation in antimicrobials, having a synthetic core, and a photosensitive chemical architecture that would reduce accumulation in the environment.
A potent synthetic inorganic antibiotic with activity against drug-resistant pathogens
Hubick, Shelby; Jayaraman, Arumugam; McKeen, Alexander; Reid, Shelby; Alcorn, Jane; Stavrinides, John; Sterenberg, Brian T.
2017-01-01
The acronymously named “ESKAPE” pathogens represent a group of bacteria that continue to pose a serious threat to human health, not only due to their propensity for repeated emergence, but also due to their ability to “eskape” antibiotic treatment12. The evolution of multi-drug resistance in these pathogens alone has greatly outpaced the development of new therapeutics, necessitating an alternative strategy for antibiotic development that considers the evolutionary mechanisms driving antibiotic resistance. In this study, we synthesize a novel inorganic antibiotic, phosphopyricin, which has antibiotic activity against the Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE). We show that this potent antibiotic is bactericidal, and exhibits low toxicity in an acute dose assay in mice. As a synthetic compound that does not occur naturally, phosphopyricin would be evolutionarily foreign to microbes, thereby slowing the evolution of resistance. In addition, it loses antibiotic activity upon exposure to light, meaning that the active antibiotic will not accumulate in the general environment where strong selective pressures imposed by antibiotic residuals are known to accelerate resistance. Phosphopyricin represents an innovation in antimicrobials, having a synthetic core, and a photosensitive chemical architecture that would reduce accumulation in the environment. PMID:28165020
Surveillance for vancomycin-resistant enterococci: type, rates, costs, and implications.
Shadel, Brooke N; Puzniak, Laura A; Gillespie, Kathleen N; Lawrence, Steven J; Kollef, Marin; Mundy, Linda M
2006-10-01
To evaluate 2 active surveillance strategies for detection of enteric vancomycin-resistant enterococci (VRE) in an intensive care unit (ICU). Thirty-month prospective observational study. ICU at a university-affiliated referral center. All patients with an ICU stay of 24 hours or more were eligible for the study. Clinical active surveillance (CAS), involving culture of a rectal swab specimen for detection of VRE, was performed on admission, weekly while the patient was in the ICU, and at discharge. Laboratory-based active surveillance (LAS), involving culture of a stool specimen for detection of VRE, was performed on stool samples submitted for Clostridium difficile toxin detection. Enteric colonization with VRE was detected in 309 (17%) of 1,872 patients. The CAS method initially detected 280 (91%) of the 309 patients colonized with VRE, compared with 25 patients (8%) detected by LAS; colonization in 4 patients (1%) was initially detected by analysis of other clinical specimens. Most patients with colonization (76%) would have gone undetected by LAS alone, whereas use of the CAS method exclusively would have missed only 3 patients (1%) who were colonized. CAS cost Dollars 1,913 per month, or Dollars 57,395 for the 30-month study period. Cost savings of CAS from preventing cases of VRE colonization and bacteremia were estimated to range from Dollars 56,258 to Dollars 303,334 per month. A patient-based CAS strategy for detection of enteric colonization with VRE was superior to LAS. In this high-risk setting, CAS appeared to be the most efficient and cost-effective surveillance method. The modest costs of CAS were offset by the averted costs associated with the prevention of VRE colonization and bacteremia.
Halpin, Alison Laufer; de Man, Tom J B; Kraft, Colleen S; Perry, K Allison; Chan, Austin W; Lieu, Sung; Mikell, Jeffrey; Limbago, Brandi M; McDonald, L Clifford
2016-07-01
Composition and diversity of intestinal microbial communities (microbiota) are generally accepted as a risk factor for poor outcomes; however, we cannot yet use this information to prevent adverse outcomes. Stool was collected from 8 long-term acute care hospital patients experiencing diarrhea and 2 fecal microbiota transplant donors; 16S rDNA V1-V2 hypervariable regions were sequenced. Composition and diversity of each sample were described. Stool was also tested for Clostridium difficile, vancomycin-resistant enterococci (VRE), and carbapenem-resistant Enterobacteriaceae. Associations between microbiota diversity and demographic and clinical characteristics, including antibiotic use, were analyzed. Antibiotic exposure and Charlson Comorbidity Index were inversely correlated with diversity (Spearman = -0.7). Two patients were positive for VRE; both had microbiomes dominated by Enterococcus faecium, accounting for 67%-84% of their microbiome. Antibiotic exposure correlated with diversity; however, other environmental and host factors not easily obtainable in a clinical setting are also known to impact the microbiota. Therefore, direct measurement of microbiome disruption by sequencing, rather than reliance on surrogate markers, might be most predictive of adverse outcomes. If and when microbiome characterization becomes a standard diagnostic test, improving our understanding of microbiome dynamics will allow for interpretation of results to improve patient outcomes. Published by Elsevier Inc.
van Hal, Sebastiaan J; Beukers, Alicia G; Timms, Verlaine J; Ellem, Justin A; Taylor, Peter; Maley, Michael W; Newton, Peter J; Ferguson, John K; Lee, Andie; Chen, Sharon C-A; Sintchenko, Vitali
2018-03-16
VRE are prevalent among patients in ICUs. Non-typeable vanA VRE, due to loss of one of the genes used for MLST (pstS), have increased in Australia, suggestive of a new, hospital-acquired lineage. To understand the significance of this lineage and its transmission using WGS of strains isolated from patients in ICUs across New South Wales, Australia. A total of 240 Enterococcus faecium isolates collected between February and May 2016, and identified by conventional PCR as vanA positive, were sequenced. Isolates originated from 12 ICUs in New South Wales, grouped according to six local health districts, and represented both rectal screening swab (n = 229) and clinical (n = 11) isolates. ST analysis revealed the absence of the pstS gene in 84.2% (202 of 240) of vanA isolates. Two different non-typeable STs were present based on different allelic backbone patterns. Loss of the pstS gene appeared to be the result of multiple recombination events across this region. Evidence for pstS-negative lineage spread across all six local health districts was observed suggestive of inter-hospital transmission. In addition, multiple outbreaks were detected, some of which were protracted and lasted for the duration of the study. These findings confirmed the evolution, emergence and dissemination of non-typeable vanA E. faecium. This study has highlighted the utility of WGS when attempting to describe accurately the hospital-based pathogen epidemiology, which in turn will continue to inform optimal infection control measures necessary to halt the spread of this important nosocomial organism.
Schwaiger, Karin; Bauer, Johann; Hörmansdorfer, Stefan; Mölle, Gabriele; Preikschat, Petra; Kämpf, Peter; Bauer-Unkauf, Ilse; Bischoff, Meike; Hölzel, Christina
2012-08-01
Ampicillin and vancomycin are important antibiotics for the therapy of Enterococcus faecalis infections. The ampicillin resistance gene pbp5 is intrinsic in Enterococcus faecium. The vanC1 gene confers resistance to vancomycin and serves as a species marker for Enterococcus gallinarum. Both genes are chromosomally located. Resistance to ampicillin and vancomycin was determined in 484 E. faecalis of human and porcine origin by microdilution. Since E. faecalis are highly skilled to acquire resistance genes, all strains were investigated for the presence of pbp5 (and, in positive strains, for the penicillin-binding protein synthesis repressor gene psr) and vanC1 (and, in positive strains, for vanXYc and vanT) by using polymerase chain reaction (PCR). One porcine and one human isolate were phenotypically resistant to ampicillin; no strain was vancomycin resistant. Four E. faecalis (3/1 of porcine/human origin) carried pbp5 (MIC=1 mg/L), and four porcine strains were vanC1 positive (minimum inhibitory concentration [MIC]=1 mg/L). Real-time reverse transcriptase (RT)-PCR revealed that the genes were not expressed. The psr gene was absent in the four pbp5-positive strains; the vanXYc gene was absent in the four vanC1-positive strains. However, vanT of the vanC gene cluster was detected in two vanC1-positive strains. To our knowledge, this is the first report on the presence of pbp5, identical with the "E. faecium pbp5 gene," and of vanC1/vanT in E. faecalis. Even if resistance is not expressed in these strains, this study shows that E. faecalis have a strong ability to acquire resistance genes-and potentially to spread them to other bacteria. Therefore, close monitoring of this species should be continued.
Optimization of the central linker of dicationic bis-benzimidazole anti-MRSA and anti-VRE agents.
Hu, Laixing; Kully, Maureen L; Boykin, David W; Abood, Norman
2009-07-01
A series of bis-benzimidazole diamidine compounds containing different central linkers has been synthesized and evaluated for in vitro antibacterial activities, including drug-resistant bacterial strains. Seven compounds have shown potent antibacterial activities. The anti-MRSA and anti-VRE activities of compound 1h were more potent than that of the lead compound 1a and vancomycin.
Hu, Laixing; Kully, Maureen L; Boykin, David W; Abood, Norman
2009-03-01
A new class of novel bis-benzimidazole diamidine compounds have been synthesized and evaluated for in vitro antibacterial activities, including drug-resistant bacterial strains. Anti-MRSA and anti-VRE activities of the most potent compound 1 were more active than Vancomycin. The mechanism of action for this class of compounds appears to be different from existing antibiotics. Bis-benzimidazole diamidine compounds have potential for further investigation as a new class of potent anti-MRSA and anti-VRE agents.
Savor, Connie; Pfaller, Michael A.; Kruszynski, Julie A.; Hollis, Richard J.; Noskin, Gary A.; Peterson, Lance R.
1998-01-01
Genomic DNA extracted from 45 vancomycin-resistant Enterococcus faecium (VRE) isolates was cleaved with HindIII and HaeIII and subjected to agarose gel electrophoresis. The ability of this method (restriction endonuclease analysis [REA]) to distinguish strains at the subspecies level was compared with results previously determined by pulsed-field gel electrophoresis (PFGE). Chart reviews were performed to provide a clinical correlation of possible epidemiologic relatedness. A likely clinical association was found for 29 patients as part of two outbreaks. REA found 21 of 21 isolates were the same type in the first outbreak, with PFGE calling 19 strains the same type. In the second outbreak with eight patient isolates, HindIII found six were the same type and two were unique types. HaeIII found three strains were the same type, two strains were a separate type, and three more strains were unique types, while PFGE found three were the same type and five were unique types. No single “ideal” method can be used without clinical epidemiologic investigation, but any of these techniques is helpful in providing focus to infection control practitioners assessing possible outbreaks of nosocomial infection. PMID:9774587
Ng, Wen-Jie; Ken, Khai-Wei; Kumar, Roshani-Vijaya; Gunasagaran, Hemamalani; Chandramogan, Vanaysha; Lee, Ying-Yee
2014-01-01
Different researches on therapeutic effects of honey have been conducted in different regions; however the study on the potential antibacterial activity of Malaysian honey is still limited. In this study, antibacterial activities of different monofloral honey samples were tested against several common human pathogenic bacteria. The well-diffusion method, minimum inhibitory concentrations (MIC) and minimum bactericidal concentration (MBC) techniques were employed to investigate the putative antibacterial activity of Malaysian monofloral honey from Koompassia excelsa (Becc.) Taub (Tualang), Melaleuca cajuputi Powell (Gelam) and Durio zibethinus Murr. (Durian). Honey samples were tested against Staphylococcus aureus ATCC6518 and ATCC25923, Staphylococcus epidermidis ATCC12228, Enterococcus faecium LMG16192, Enterococcus faecalis LMG16216 and ATCC29212, Escherichia coli ATCC25922, Salmonella enterica serovar Typhimurium ATCC14028 and Klebsiella pneumoniae ATCC13883. Marked variations were observed in the antibacterial activity of these honey samples. Durian honey failed to produce substantial antibacterial activity, whereas Tualang and Gelam honey showed a spectrum of antibacterial activity with their growth inhibitory effects against all of the tested bacterial species including vancomycin-resistant enterococci (VRE). Present findings suggested Gelam honey possesses highest antibacterial effect among the tested Malaysian honey samples.
Intervention to Reduce Transmission of Resistant Bacteria in Intensive Care
Huskins, W. Charles; Huckabee, Charmaine M.; O’Grady, Naomi P.; Murray, Patrick; Kopetskie, Heather; Zimmer, Louise; Walker, Mary Ellen; Sinkowitz-Cochran, Ronda L.; Jernigan, John A.; Samore, Matthew; Wallace, Dennis; Goldmann, Donald A.
2012-01-01
BACKGROUND Intensive care units (ICUs) are high-risk settings for the transmission of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococcus (VRE). METHODS In a cluster-randomized trial, we evaluated the effect of surveillance for MRSA and VRE colonization and of the expanded use of barrier precautions (intervention) as compared with existing practice (control) on the incidence of MRSA or VRE colonization or infection in adult ICUs. Surveillance cultures were obtained from patients in all participating ICUs; the results were reported only to ICUs assigned to the intervention. In intervention ICUs, patients who were colonized or infected with MRSA or VRE were assigned to care with contact precautions; all the other patients were assigned to care with universal gloving until their discharge or until surveillance cultures obtained at admission were reported to be negative. RESULTS During a 6-month intervention period, there were 5434 admissions to 10 intervention ICUs, and 3705 admissions to 8 control ICUs. Patients who were colonized or infected with MRSA or VRE were assigned to barrier precautions more frequently in intervention ICUs than in control ICUs (a median of 92% of ICU days with either contact precautions or universal gloving [51% with contact precautions and 43% with universal gloving] in intervention ICUs vs. a median of 38% of ICU days with contact precautions in control ICUs, P<0.001). In intervention ICUs, health care providers used clean gloves, gowns, and hand hygiene less frequently than required for contacts with patients assigned to barrier precautions; when contact precautions were specified, gloves were used for a median of 82% of contacts, gowns for 77% of contacts, and hand hygiene after 69% of contacts, and when universal gloving was specified, gloves were used for a median of 72% of contacts and hand hygiene after 62% of contacts. The mean (±SE) ICU-level incidence of events of colonization or infection with MRSA or VRE per 1000 patient-days at risk, adjusted for baseline incidence, did not differ significantly between the intervention and control ICUs (40.4±3.3 and 35.6±3.7 in the two groups, respectively; P = 0.35). CONCLUSIONS The intervention was not effective in reducing the transmission of MRSA or VRE, although the use of barrier precautions by providers was less than what was required. (Funded by the National Institute of Allergy and Infectious Diseases and others; STAR*ICU ClinicalTrials.gov number, NCT00100386.) PMID:21488763
Zoutman, Dick E; Ford, B Douglas; Sopha, Keith
2014-04-01
Environmental contamination in hospitals with antibiotic-resistant organisms (AROs) is associated with patient contraction of AROs. This study examined the working relationship of Infection Prevention and Control (IPAC) and Environmental Services and the impact of that relationship on ARO rates. Lead infection control professionals completed an online survey that assessed the IPAC and Environmental Services working relationship in their acute care hospital in 2011. The survey assessed cleaning collaborations, staff training, hospital cleanliness, and nosocomial methicillin-resistant Staphylococcus aureus (MRSA) infection, vancomycin-resistant Enterococcus (VRE) infection, and Clostridium difficile infection (CDI). The survey was completed by 58.3% of hospitals (119 of 204). Two-thirds (65.8%; 77 of 117) of the respondents reported that their cleaners were adequately trained, and 62.4% (73 of 117) reported that their hospital was sufficiently clean. Greater cooperation between IPAC and Environmental Services was associated with lower rates of MRSA infection (r = -0.22; P = .02), and frequent collaboration regarding cleaning protocols was associated with lower rates of VRE infection (r = -0.20; P = .03) and CDI (r = -0.31; P < .001). Canadian IPAC programs generally had collaborative working relationships with Environmental Services, and this was associated with lower rates of ARO. Deficits in the adequacy of cleaning staff training and hospital cleanliness were identified. The promotion of collaborative working relationships and additional training for Environmental Services workers would be expected to lower ARO rates. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.
Furlaneto-Maia, Luciana; Rocha, Kátia Real; Siqueira, Vera Lúcia Dias; Furlaneto, Márcia Cristina
2014-01-01
Enterococci are increasingly responsible for nosocomial infections worldwide. This study was undertaken to compare the identification and susceptibility profile using an automated MicrosScan system, PCR-based assay and disk diffusion assay of Enterococcus spp. We evaluated 30 clinical isolates of Enterococcus spp. Isolates were identified by MicrosScan system and PCR-based assay. The detection of antibiotic resistance genes (vancomycin, gentamicin, tetracycline and erythromycin) was also determined by PCR. Antimicrobial susceptibilities to vancomycin (30 µg), gentamicin (120 µg), tetracycline (30 µg) and erythromycin (15 µg) were tested by the automated system and disk diffusion method, and were interpreted according to the criteria recommended in CLSI guidelines. Concerning Enterococcus identification the general agreement between data obtained by the PCR method and by the automatic system was 90.0% (27/30). For all isolates of E. faecium and E. faecalis we observed 100% agreement. Resistance frequencies were higher in E. faecium than E. faecalis. The resistance rates obtained were higher for erythromycin (86.7%), vancomycin (80.0%), tetracycline (43.35) and gentamicin (33.3%). The correlation between disk diffusion and automation revealed an agreement for the majority of the antibiotics with category agreement rates of > 80%. The PCR-based assay, the van(A) gene was detected in 100% of vancomycin resistant enterococci. This assay is simple to conduct and reliable in the identification of clinically relevant enterococci. The data obtained reinforced the need for an improvement of the automated system to identify some enterococci. PMID:24626409
Lloyd-Smith, Patrick
2017-12-01
Decisions regarding the optimal provision of infection prevention and control resources depend on accurate estimates of the attributable costs of health care-associated infections. This is challenging given the skewed nature of health care cost data and the endogeneity of health care-associated infections. The objective of this study is to determine the hospital costs attributable to vancomycin-resistant enterococci (VRE) while accounting for endogeneity. This study builds on an attributable cost model conducted by a retrospective cohort study including 1,292 patients admitted to an urban hospital in Vancouver, Canada. Attributable hospital costs were estimated with multivariate generalized linear models (GLMs). To account for endogeneity, a control function approach was used. The analysis sample included 217 patients with health care-associated VRE. In the standard GLM, the costs attributable to VRE are $17,949 (SEM, $2,993). However, accounting for endogeneity, the attributable costs were estimated to range from $14,706 (SEM, $7,612) to $42,101 (SEM, $15,533). Across all model specifications, attributable costs are 76% higher on average when controlling for endogeneity. VRE was independently associated with increased hospital costs, and controlling for endogeneity lead to higher attributable cost estimates. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Snyder, Graham M.; Thom, Kerri A.; Furuno, Jon P.; Perencevich, Eli N.; Roghmann, Mary-Claire; Strauss, Sandra M.; Netzer, Giora; Harris, Anthony D.
2008-01-01
Objective To assess the frequency of detection and risk factors for detection of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) by healthcare workers on infection control protective gown and gloves. Design We observed interactions between healthcare workers and patients during routine clinical activities. Cultures were taken of healthcare workers’ hands prior to entering the room, disposable infection control gown and gloves after completing patient care activities, and of hands immediately following removal of infection control protective gown and gloves. Setting A 29-bed medical intensive care unit at an urban tertiary-care academic hospital, the University of Maryland Medical Center. Results Seventeen percent (24/137, 95%CI ± 6.4%) of healthcare workers caring for a patient with MRSA and/or VRE acquired that organism on their gloves, gown or both. Contacting an endotracheal tube or tracheostomy (P < 0.05), contacting the head and/or neck of a patient (P < 0.05), and the presence of a percutaneous endoscopic gastrostomy/jejunostomy tube (P < 0.05) were associated with increased risk of detection of antibiotic-resistant organisms. Conclusions Gloves and gowns are frequently contaminated with MRSA and VRE during routine care duties. Contact with the head or neck, care for an endotracheal tube or tracheostomy, and the presence of an endotracheal tube or tracheostomy may increase the risk of detection of antibiotic-resistant organisms. PMID:18549314
Ip, Camilla L. C.; Ansari, M. Azim; Wilson, Daniel J.; Espedido, Bjorn A.; Jensen, Slade O.; Bowden, Rory
2016-01-01
Enterococcus faecium, a major cause of hospital-acquired infections, remains problematic because of its propensity to acquire resistance to vancomycin, which currently is considered first-line therapy. Here, we assess the evolution and resistance acquisition dynamics of E. faecium in a clinical context using a series of 132 bloodstream infection isolates from a single hospital. All isolates, of which 49 (37 %) were vancomycin-resistant, underwent whole-genome sequencing. E. faecium was found to be subject to high rates of recombination with little evidence of sequence importation from outside the local E. faecium population. Apart from disrupting phylogenetic reconstruction, recombination was frequent enough to invalidate MLST typing in the identification of clonal expansion and transmission events, suggesting that, where available, whole-genome sequencing should be used in tracing the epidemiology of E. faecium nosocomial infections and establishing routes of transmission. Several forms of the Tn1549-like element–vanB gene cluster, which was exclusively responsible for vancomycin resistance, appeared and spread within the hospital during the study period. Several transposon gains and losses and instances of in situ evolution were inferred and, although usually chromosomal, the resistance element was also observed on a plasmid background. There was qualitative evidence for clonal expansions of both vancomycin-resistant and vancomycin-susceptible E. faecium with evidence of hospital-specific subclonal expansion. Our data are consistent with continuing evolution of this established hospital pathogen and confirm hospital vancomycin-susceptible and vancomycin-resistant E. faecium patient transmission events, underlining the need for careful consideration before modifying current E. faecium infection control strategies. PMID:27713836
van Hal, Sebastiaan J; Ip, Camilla L C; Ansari, M Azim; Wilson, Daniel J; Espedido, Bjorn A; Jensen, Slade O; Bowden, Rory
2016-01-19
Enterococcus faecium , a major cause of hospital-acquired infections, remains problematic because of its propensity to acquire resistance to vancomycin, which currently is considered first-line therapy. Here, we assess the evolution and resistance acquisition dynamics of E. faecium in a clinical context using a series of 132 bloodstream infection isolates from a single hospital. All isolates, of which 49 (37 %) were vancomycin-resistant, underwent whole-genome sequencing. E. faecium was found to be subject to high rates of recombination with little evidence of sequence importation from outside the local E. faecium population. Apart from disrupting phylogenetic reconstruction, recombination was frequent enough to invalidate MLST typing in the identification of clonal expansion and transmission events, suggesting that, where available, whole-genome sequencing should be used in tracing the epidemiology of E. faecium nosocomial infections and establishing routes of transmission. Several forms of the Tn 1549 -like element- vanB gene cluster, which was exclusively responsible for vancomycin resistance, appeared and spread within the hospital during the study period. Several transposon gains and losses and instances of in situ evolution were inferred and, although usually chromosomal, the resistance element was also observed on a plasmid background. There was qualitative evidence for clonal expansions of both vancomycin-resistant and vancomycin-susceptible E. faecium with evidence of hospital-specific subclonal expansion. Our data are consistent with continuing evolution of this established hospital pathogen and confirm hospital vancomycin-susceptible and vancomycin-resistant E. faecium patient transmission events, underlining the need for careful consideration before modifying current E. faecium infection control strategies.
Wainwright, M; Phoenix, D A; Gaskell, M; Marshall, B
1999-12-01
The toxicities and phototoxicities of methylene blue and its two methylated derivatives were measured against one standard and three vancomycin-resistant pathogenic strains of Enterococcus spp. Each of the compounds was bactericidal and the derivatives exhibited photobactericidal activity on illumination at a 'light' dose of 6.3 J/cm(2) against one or more of the strains. Increased bactericidal and photobactericidal activity in the methylated derivatives is thought to be due to their higher hydrophobicities allowing greater interaction with the bacterial cell wall. In addition, the derivatives exhibited higher inherent photosensitizing efficacies.
[Vancomycin-resistant Staphylococcus aureus].
Rodríguez, Carlos Andrés; Vesga, Omar
2005-12-01
The evolution and molecular mechanisms of vancomycin resistance in Staphylococcus aureus were reviewed. Case reports and research studies on biochemestry, electron microscopy and molecular biology of Staphylococcus aureus were selected from Medline database and summarized in the following review. After almost 40 years of successful treatment of S. aureus with vancomycin, several cases of clinical failures have been reported (since 1997). S. aureus strains have appeared with intermediate susceptibility (MIC 8-16 microg/ml), as well as strains with heterogeneous resistance (global MIC < or =4 microg/ml), but with subpopulations of intermediate susceptibility. In these cases, resistance is mediated by cell wall thickening with reduced cross linking. This traps the antibiotic before it reaches its major target, the murein monomers in the cell membrane. In 2002, a total vancomycin resistant strain (MIC > or =32 microg/ml) was reported with vanA genes from Enterococcus spp. These genes induce the change of D-Ala-D-Ala terminus for D-Ala-D-lactate in the cell wall precursors, leading to loss of affinity for glycopeptides. Vancomycin resistance in S. aureus has appeared; it is mediated by cell wall modifications that trap the antibiotic before it reaches its action site. In strains with total resistance, Enterococcus spp. genes have been acquired that lead to modification of the glycopeptide target.
N-halamine-based rechargeable antimicrobial and biofilm-controlling polyurethane
Sun, Xinbo; Cao, Zhengbing; Porteous, Nuala; Sun, Yuyu
2012-01-01
An N-halamine precursor, 5, 5-dimethyl hydantoin (DMH), was covalently linked to the surface of polyurethane (PU) with 1,6-hexamethylene diisocyanate (HDI) as a coupling agent. The reaction pathways were investigated using propyl isocyanate (PI) as a model compound, and the results suggested that the imide and amide groups of DMH had very similar reactivity toward the isocyanate groups on PU surfaces activated with HDI. After bleach treatment, the covalently bound DMH moieties were transformed into N-halamines. The new N-halmaine-based PU provided potent antimicrobial effects against Staphylococcus aureus (S. aureus, Gram-positive), Escherichia coli (E. coli, Gram-negative), methicillin-resistant staphylococcus aureus (MRSA, drug resistant Gram-positive bacteria), vancomycin-resistant enterococcus (VRE, drug resistant Gram-positive bacteria), and Candida albicans (C. ablicans, fungi), and successfully prevented bacterial and fungal biofilm formation. The antimicrobial and biofilm-controlling effects were stable for longer than 6 months under normal storage in open air. Furthermore, if the functions were lost due to prolonged use, they could be recharged by another chlorination treatment. The recharging could be repeated as needed to achieve long-term protection against microbial contamination and biofilm-formation. PMID:22244984
Garcia-Garrote, Fernando; Cercenado, Emilia; Bouza, Emilio
2000-01-01
We evaluated the new automated VITEK 2 system (bioMérieux) for the identification and antimicrobial susceptibility testing of enterococci. The results obtained with the VITEK 2 system were compared to those obtained by reference methods: standard identification by the scheme of Facklam and Sahm [R. R. Facklam and D. F. Sahm, p. 308–314, in P. R. Murray et al., ed., Manual of Clinical Microbiology, 6th ed., 1995] and with the API 20 STREP system and, for antimicrobial susceptibility testing, broth microdilution and agar dilution methods by the procedures of the National Committee for Clinical Laboratory Standards. The presence of vanA and vanB genes was determined by PCR. A total of 150 clinical isolates were studied, corresponding to 60 Enterococcus faecalis, 55 Enterococcus faecium, 26 Enterococcus gallinarum, 5 Enterococcus avium, 2 Enterococcus durans, and 2 Enterococcus raffinosus isolates. Among those isolates, 131 (87%) were correctly identified to the species level with the VITEK 2 system. Approximately half of the misidentifications were for E. faecium with low-level resistance to vancomycin, identified as E. gallinarum or E. casseliflavus; however, a motility test solved the discrepancies and increased the agreement to 94%. Among the strains studied, 66% were vancomycin resistant (57 VanA, 16 VanB, and 26 VanC strains), 23% were ampicillin resistant (MICs, ≥16 μg/ml), 31% were high-level gentamicin resistant, and 45% were high-level streptomycin resistant. Percentages of agreement for susceptibility and resistance to ampicillin, vancomycin, and teicoplanin and for high-level gentamicin resistance and high-level streptomycin resistance were 93, 95, 97, 97, and 96%, respectively. The accuracy of identification and antimicrobial susceptibility testing of enterococci with the VITEK 2 system, together with the significant reduction in handling time, will have a positive impact on the work flow of the clinical microbiology laboratory. PMID:10834961
Hossion, Abugafar M L; Otsuka, Nao; Kandahary, Rafiya K; Tsuchiya, Tomofusa; Ogawa, Wakano; Iwado, Akimasa; Zamami, Yoshito; Sasaki, Kenji
2010-09-01
A series of novel quercetin diacylglucosides were designed and first synthesized by Steglich esterification on the basis of MRSA strains inhibiting natural compound A. The in vitro inhibition of different multi-drug resistant bacterial strains and Escherichia coli DNA gyrase B was investigated. In the series, compound 10h was up to 128-fold more potent against vancomycin-resistant enterococci and more effective than A, which represents a promising new candidate as a potent anti-MRSA and anti-VRE agent. Copyright 2010. Published by Elsevier Ltd.
Chlorhexidine Induces VanA-Type Vancomycin Resistance Genes in Enterococci
Bhardwaj, Pooja; Ziegler, Elizabeth
2016-01-01
Chlorhexidine is a bisbiguanide antiseptic used for infection control. Vancomycin-resistant E. faecium (VREfm) is among the leading causes of hospital-acquired infections. VREfm may be exposed to chlorhexidine at supra- and subinhibitory concentrations as a result of chlorhexidine bathing and chlorhexidine-impregnated central venous catheter use. We used RNA sequencing to investigate how VREfm responds to chlorhexidine gluconate exposure. Among the 35 genes upregulated ≥10-fold after 15 min of exposure to the MIC of chlorhexidine gluconate were those encoding VanA-type vancomycin resistance (vanHAX) and those associated with reduced daptomycin susceptibility (liaXYZ). We confirmed that vanA upregulation was not strain or species specific by querying other VanA-type VRE. VanB-type genes were not induced. The vanH promoter was found to be responsive to subinhibitory chlorhexidine gluconate in VREfm, as was production of the VanX protein. Using vanH reporter experiments with Bacillus subtilis and deletion analysis in VREfm, we found that this phenomenon is VanR dependent. Deletion of vanR did not result in increased chlorhexidine susceptibility, demonstrating that vanHAX induction is not protective against chlorhexidine. As expected, VanA-type VRE is more susceptible to ceftriaxone in the presence of sub-MIC chlorhexidine. Unexpectedly, VREfm is also more susceptible to vancomycin in the presence of subinhibitory chlorhexidine, suggesting that chlorhexidine-induced gene expression changes lead to additional alterations in cell wall synthesis. We conclude that chlorhexidine induces expression of VanA-type vancomycin resistance genes and genes associated with daptomycin nonsusceptibility. Overall, our results indicate that the impacts of subinhibitory chlorhexidine exposure on hospital-associated pathogens should be further investigated in laboratory studies. PMID:26810654
Smith, Tiffeny T; Tamma, Pranita D; Do, Tiffany B; Dzintars, Kathryn E; Zhao, Yuan; Cosgrove, Sara E; Avdic, Edina
2018-06-01
We assessed risk factors for and outcomes of linezolid-resistant vancomycin-resistant Enterococcus faecium (LRVREF) bacteremia over 7 years. Thirty-four LRVREF cases were matched to 68 linezolid-susceptible VREF controls. The odds of bacteremia with LRVREF increased by 7% for each additional day of prior linezolid exposure. Copyright © 2018 Elsevier Inc. All rights reserved.
Lee, Todd A; Hacek, Donna M; Stroupe, Kevin T; Collins, Susan M; Peterson, Lance R
2005-01-01
To evaluate the cost-effectiveness and detection sensitivity associated with three active surveillance strategies for the identification of patients harboring vancomycin-resistant enterococci (VRE) to determine which is the most medically and economically useful. Culture for VRE from 200 consecutive stool specimens submitted for Clostridium difficile culture. Following this, risk factors were assessed for patients whose culture yielded VRE, and a cost-effectiveness evaluation was performed using a decision analytic model with a probabilistic analysis. A 688-bed, tertiary-care facility in Chicago, Illinois, with approximately 39,000 annual admissions, 7,000 newborn deliveries, 56,000 emergency department visits, and 115,000 home care and 265,000 outpatient visits. All stool specimens submitted to the clinical microbiology laboratory for C. difficile culture from hospital inpatients. From 200 stool samples submitted for C. difficile testing, we identified 5 patients with VRE in non-high-risk areas not screened as part of our routine patient surveillance. Medical record review revealed that all 5 had been hospitalized within the prior 2 years. Three of 5 had a history of renal impairment. The strategy that would involve screening the greatest number of patients (all those with a history of hospital admission in the prior 2 years) resulted in highest screening cost per patient admitted (dollars 2.48), lower per patient admission costs (dollars 480), and the best survival rates. An expanded VRE surveillance program that encompassed all patients hospitalized within the prior 2 years was a cost-effective screening strategy compared with a more traditional one focused on high-risk units.
McGann, Patrick; Bunin, Jessica L; Snesrud, Erik; Singh, Seema; Maybank, Rosslyn; Ong, Ana C; Kwak, Yoon I; Seronello, Scott; Clifford, Robert J; Hinkle, Mary; Yamada, Stephen; Barnhill, Jason; Lesho, Emil
2016-07-01
Whole genome sequencing (WGS) is increasingly employed in clinical settings, though few assessments of turnaround times (TAT) have been performed in real-time. In this study, WGS was used to investigate an unfolding outbreak of vancomycin resistant Enterococcus faecium (VRE) among 3 patients in the ICU of a tertiary care hospital. Including overnight culturing, a TAT of just 48.5 h for a comprehensive report was achievable using an Illumina Miseq benchtop sequencer. WGS revealed that isolates from patient 2 and 3 differed from that of patient 1 by a single nucleotide polymorphism (SNP), indicating nosocomial transmission. However, the unparalleled resolution provided by WGS suggested that nosocomial transmission involved two separate events from patient 1 to patient 2 and 3, and not a linear transmission suspected by the time line. Rapid TAT's are achievable using WGS in the clinical setting and can provide an unprecedented level of resolution for outbreak investigations. Published by Elsevier Inc.
Goodman, Eric R.; Platt, Richard; Bass, Richard; Onderdonk, Andrew B.; Yokoe, Deborah S.; Huang, Susan S.
2009-01-01
OBJECTIVES To evaluate the adequacy of discharge room cleaning and the impact of a cleaning intervention on the presence of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) on environmental surfaces in intensive care unit (ICU) rooms. DESIGN Prospective environmental study. SETTING AND SAMPLE Convenience sample of ICU rooms in an academic hospital. METHODS AND INTERVENTION The intervention consisted of (1) a change from the use of pour bottles to bucket immersion for applying disinfectant to cleaning cloths, (2) an educational campaign, and (3) feedback regarding adequacy of discharge cleaning. Cleaning of 15 surfaces was evaluated by inspecting for removal of a preapplied mark, visible only with an ultraviolet lamp (“black light”). Six surfaces were cultured for MRSA or VRE contamination. Outcomes of mark removal and culture positivity were evaluated by χ2 testing and generalized linear mixed models, clustering by room. RESULTS The black-light mark was removed from 44% of surfaces at baseline, compared with 71% during the intervention (P <.001). The intervention increased the likelihood of removal of black-light marks after discharge cleaning (odds ratio, 4.4; P < .001), controlling for ICU type (medical vs surgical) and type of surface. The intervention reduced the likelihood of an environmental culture positive for MRSA or VRE (proportion of cultures positive, 45% at baseline vs 27% during the intervention; adjusted odds ratio, 0.4; P = .02). Broad, flat surfaces were more likely to be cleaned than were doorknobs and sink or toilet handles. CONCLUSIONS Increasing the volume of disinfectant applied to environmental surfaces, providing education for Environmental Services staff, and instituting feedback with a black-light marker improved cleaning and reduced the frequency of MRSA and VRE contamination. PMID:18624666
d-Ala-d-Ser VanN-Type Transferable Vancomycin Resistance in Enterococcus faecium▿
Lebreton, François; Depardieu, Florence; Bourdon, Nancy; Fines-Guyon, Marguerite; Berger, Pierre; Camiade, Sabine; Leclercq, Roland; Courvalin, Patrice; Cattoir, Vincent
2011-01-01
Enterococcus faecium UCN71, isolated from a blood culture, was resistant to low levels of vancomycin (MIC, 16 μg/ml) but susceptible to teicoplanin (MIC, 0.5 μg/ml). No amplification was observed with primers specific for the previously described glycopeptide resistance ligase genes, but a PCR product corresponding to a gene called vanN was obtained using degenerate primers and was sequenced. The deduced VanN protein was related (65% identity) to the d-alanine:d-serine VanL ligase. The organization of the vanN gene cluster, determined using degenerate primers and by thermal asymmetric interlaced (TAIL)-PCR, was similar to that of the vanC operons. A single promoter upstream from the resistance operon was identified by rapid amplification of cDNA ends (RACE)-PCR. The presence of peptidoglycan precursors ending in d-serine and d,d-peptidase activities in the absence of vancomycin indicated constitutive expression of the resistance operon. VanN-type resistance was transferable by conjugation to E. faecium. This is the first report of transferable d-Ala-d-Ser-type resistance in E. faecium. PMID:21807981
Thieno[2,3-d]pyrimidinedione derivatives as antibacterial agents
Dewal, Mahender B.; Wani, Amit S.; Vidaillac, Celine; Oupicky, David; Rybak, Michael J.
2012-01-01
Several thieno[2,3-d]pyrimidinediones have been synthesized and examined for antibacterial activity against a range of Gram-positive and Gram-negative pathogens. Two compounds displayed potent activity (2–16 mg/L) against multi-drug resistant Gram-positive organisms, including methicillin, vancomycin-intermediate, and vancomycin-resistant Staphylococcus aureus (MRSA, VISA, VRSA) and vancomycin-resistant enterococci (VRE). Only one of these agents possessed moderate activity (16–32 mg/L) against Gram-negative strains. An examination of the cytotoxicity of these agents revealed that they displayed low toxicity (40–50 mg/L) against mammalian cell and very low hemolytic activity (2–7%). Taken together, these studies suggest that thieno[2,3-d]pyrimidinediones are interesting scaffolds for the development of novel Gram-positive antibacterial agents. PMID:22405289
Hasman, Henrik; Aarestrup, Frank M; Dalsgaard, Anders; Guardabassi, Luca
2006-04-01
The aim of the study was to determine whether glycopeptide resistance gene clusters from soil bacteria could be heterologously expressed in Enterococcus faecalis and adapt to the new host following exposure to vancomycin. The vanHAX clusters from Paenibacillus thiaminolyticus PT-2B1, Paenibacillus apiarius PA-B2B and Amycolatopsis coloradensis DSM 44225 were separately cloned in an appropriately constructed shuttle vector containing the two-component regulatory system (vanRS) of Tn1546. The complete vanA(PT) operon (vanRSHAXY) from P. thiaminolyticus PT-2B1 was cloned in the same shuttle vector lacking enterococcal vanRS. All plasmid constructs were electroporated into E. faecalis JH2-2 and the MICs of vancomycin and teicoplanin were determined for each recombinant strain before and following exposure to sublethal concentrations of vancomycin. The vanHAX clusters from P. thiaminolyticus and P. apiarius conferred high-level vancomycin resistance (MIC > or = 125 mg/L) in E. faecalis JH2-2. In contrast, cloning of the vanHAX cluster from A. coloradensis did not result in a significant increase of vancomycin resistance (MIC = 0.7 mg/L). Resistance to vancomycin was not observed after cloning the complete vanA(PT) operon from P. thiaminolyticus (MIC = 2 mg/L), but this recombinant rapidly adapted to high concentrations of vancomycin (MIC = 500 mg/L) following exposure to sub-lethal concentrations of this antibiotic. The results showed that vanA(PT) in P. thiaminolyticus is a possible ancestor of vanA-mediated glycopeptide resistance in enterococci. Experimental evidence supported the hypothesis that enterococci did not acquire glycopeptide resistance directly from glycopeptide-producing organisms such as A. coloradensis.
Doernberg, Sarah B; Lodise, Thomas P; Thaden, Joshua T; Munita, Jose M; Cosgrove, Sara E; Arias, Cesar A; Boucher, Helen W; Corey, G Ralph; Lowy, Franklin D; Murray, Barbara; Miller, Loren G; Holland, Thomas L
2017-03-15
Antimicrobial resistance in gram-positive bacteria remains a challenge in infectious diseases. The mission of the Gram-Positive Committee of the Antibacterial Resistance Leadership Group (ARLG) is to advance knowledge in the prevention, management, and treatment of these challenging infections to improve patient outcomes. Our committee has prioritized projects involving methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) due to the scope of the medical threat posed by these pathogens. Approved ARLG projects involving gram-positive pathogens include (1) a pharmacokinetics/pharmacodynamics study to evaluate the impact of vancomycin dosing on patient outcome in MRSA bloodstream infection (BSI); (2) defining, testing, and validating innovative assessments of patient outcomes for clinical trials of MRSA-BSI; (3) testing new strategies for "step-down" antibiotic therapy for MRSA-BSI; (4) management of staphylococcal BSIs in neonatal intensive care units; and (5) defining the impact of VRE bacteremia and daptomycin susceptibility on patient outcomes. This article outlines accomplishments, priorities, and challenges for research of infections caused by gram-positive organisms. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Boyd, David A.; Willey, Barbara M.; Fawcett, Darlene; Gillani, Nazira; Mulvey, Michael R.
2008-01-01
Enterococcus faecalis N06-0364, exhibiting a vancomycin MIC of 8 μg/ml, was found to harbor a novel d-Ala-d-Ser gene cluster, designated vanL. The vanL gene cluster was similar in organization to the vanC operon, but the VanT serine racemase was encoded by two separate genes, vanTmL (membrane binding) and vanTrL (racemase). PMID:18458129
NASA Astrophysics Data System (ADS)
Xu, Jiancheng; Wang, Liqiang; Wang, Kai; Zhou, Qi
This study was to investigate the antimicrobial resistance of Enterococcus spp. isolated in 8 consecutive years in the First Bethune Hospital. Disk diffusion test was used to study the antimicrobial resistance. The data were analyzed by WHONET 5 software according to Clinical and Laboratory Standards Institute (CLSI). Most of 1446 strains of Enterococcus spp. were collected from urine 640 (44.3%), sputum 315 (21.8%), secretions and pus 265 (18.3%) during the past 8 years. The rates of high-level aminoglycoside resistance in Enterococcus faecalis and Enterococcus faecium were 57.4%∼75.9% and 69.0%∼93.8% during the past 8 years, respectively. No Enterococcus spp. was resistant to vancomycin. The antimicrobial resistance of Enterococcus spp. had increased in recent 8 years. The change of the antimicrobial resistance should be investigated in order to direct rational drug usage in the clinic and prevent bacterial strain of drug resistance from being transmitted.
Wang, Li-jun; Lu, Xin-xin; Wu, Wei; Sui, Wen-jun; Zhang, Gui
2014-01-01
In order to evaluate a rapid matrix-assisted laser desorption ionization-time of flight mass spectrometry (MAIDI-TOF MS) assay in screening vancomycin-resistant Enterococcus faecium, a total of 150 E. faecium clinical strains were studied, including 60 vancomycin-resistant E. faecium (VREF) isolates and 90 vancomycin-susceptible (VSEF) strains. Vancomycin resistance genes were detected by sequencing. E. faecium were identified by MALDI-TOF MS. A genetic algorithm model with ClinProTools software was generated using spectra of 30 VREF isolates and 30 VSEF isolates. Using this model, 90 test isolates were discriminated between VREF and VSEF. The results showed that all sixty VREF isolates carried the vanA gene. The performance of VREF detection by the genetic algorithm model of MALDI-TOF MS compared to the sequencing method was sensitivity = 80%, specificity = 90%, false positive rate =10%, false negative rate =10%, positive predictive value = 80%, negative predictive value= 90%. MALDI-TOF MS can be used as a screening test for discrimination between vanA-positive E. faecium and vanA-negative E. faecium.
Erginkaya, Z; Turhan, E U; Tatlı, D
2018-01-01
In this study, the antibiotic resistance (AR) of lactic acid bacteria (LAB) isolated from traditional Turkish fermented dairy products was investigated. Yogurt, white cheese, tulum cheese, cokelek, camız cream and kefir as dairy products were collected from various supermarkets. Lactic acid bacteria such as Lactobacillus spp., Streptococcus spp., Bifidobacterium spp., and Enterecoccus spp. were isolated from these dairy products. Lactobacillus spp. were resistant to vancomycin (58%), erythromycin (10.8%), tetracycline (4.3%), gentamicin (28%), and ciprofloxacin (26%). Streptococcus spp. were resistant to vancomycin (40%), erythromycin (10%), chloramphenicol (10%), gentamicin (20%), and ciprofloxacin (30%). Bifidobacterium spp. were resistant to vancomycin (60%), E 15 (6.6%), gentamicin (20%), and ciprofloxacin (33%). Enterococcus spp. were resistant to vancomycin (100%), erythromycin (100%), rifampin (100%), and ciprofloxacin (100%). As a result, LAB islated from dairy products in this study showed mostly resistance to vancomycin.
Pogorzelska, Monika; Stone, PatriciaW.; Larson, Elaine L.
2012-01-01
Background The study objective is to describe infection control policies aimed at multidrug-resistant organisms (MDRO) in California hospitals and assess the relationship among these policies, structural characteristics, and rates of methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant Enterococcus (VRE) bloodstream infections and Clostridium difficile infections. Methods Data on infection control policies, structural characteristics, and MDRO rates were collected through a 2010 survey of California infection control departments. Bivariate and multivariable Poisson and negative binomial regressions were conducted. Results One hundred eighty hospitals provided data (response rate, 54%). Targeted MRSA screening upon admission was reported by the majority of hospitals (87%). The majority of hospitals implemented contact precautions for confirmed MDRO and C difficile patients; presumptive isolation/contact precautions for patients with pending screens were less frequently implemented. Few infection control policies were associated with lower MDRO rates. Hospitals with a certified infection control director had significantly lower rates of MRSA bloodstream infections (P < .05). Conclusion Although most California hospitals are involved in activities to decrease MDRO, there is variation in specific activities utilized with the most focus placed on MRSA. This study highlights the importance of certification and its significant impact on infection rates. Additional research is needed to confirm these findings. PMID:22381222
Multiresistant Bacteria Isolated from Chicken Meat in Austria
Zarfel, Gernot; Galler, Herbert; Luxner, Josefa; Petternel, Christian; Reinthaler, Franz F.; Haas, Doris; Kittinger, Clemens; Grisold, Andrea J.; Pless, Peter; Feierl, Gebhard
2014-01-01
Multidrug resistant bacteria (MDR bacteria), such as extended spectrum beta-lactamase (ESBL) Enterobacteriaceae, methicillin resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococci (VRE), pose a challenge to the human health care system. In recent years, these MDR bacteria have been detected increasingly outside the hospital environment. Also the contamination of food with MDR bacteria, particularly of meat and meat products, is a concern. The aim of the study was to evaluate the occurrence of MDR bacteria in chicken meat on the Austrian market. For this study, 50 chicken meat samples were analysed. All samples originated from chickens slaughtered in Austrian slaughterhouses and were marked as produced in Austria. Samples were analysed for the presence of ESBL Enterobacteriaceae, methicillin resistant Staphylococci and VRE. Resistance genes of the isolated bacteria were characterised by PCR and sequencing. In the present study 26 ESBL producing E. coli, five mecA gene harbouring Staphylococci (but no MRSA), and four VRE were detected in chicken meat samples of Austrian origin. In 24 (48%) of the samples no ESBL Enterobacteriaceae, MRSA, methicillin resistant coagulase negative Staphylococcus (MRCNS) or VRE could be detected. None of the samples contained all three types of investigated multiresistant bacteria. In concordance to previous studies, CTX-M-1 and SHV-12 were the dominant ESBL genes. PMID:25485979
Antibiotic susceptibility of enterococci isolated from traditional fermented meat products.
Barbosa, J; Ferreira, V; Teixeira, P
2009-08-01
Antibiotic susceptibility was evaluated for 182 Enterococcus spp. isolated from Alheira, Chouriça de Vinhais and Salpicão de Vinhais, fermented meat products produced in the North of Portugal. Previously, a choice was made from a group of 1060 isolates, using phenotypic and genotypic tests. From these, 76 were previously identified as Enterococcus faecalis, 44 as Enterococcus faecium, one as Enterococcus casseliflavus and 61 as Enteroccocus spp. In order to encompass several of the known chemical and functional classes of antibiotics, resistance to ampicillin, penicillin G, ciprofloxacin, chloramphenicol, erythromycin, nitrofurantoin, rifampicin, tetracycline and vancomycin was evaluated. All the isolates were sensitive to antibiotics of clinical importance, such as penicillins and vancomycin. Some differences in Minimal Inhibitory Concentrations (MICs) of antibiotics, could be associated with the enterococcal species.
Houben, J H
2003-11-15
Experiments with 148 isolates of vancomycin-resistant enterococci (VRE) were performed to assess their potential to persist and grow in fermented sausages and pasteurised meat products. All strains were meat isolates and Van-type A, except a single VanC1 strain. In total, 143 strains of Enterococcus faecium were involved. Eight selected strains were examined for their potential to grow at high salt and nitrite levels and at reduced pH. The same isolates were used in experiments with fermented sausages. All available strains were subjected to heating tests in meat suspensions with added curing ingredients. All but one of the eight tested isolates grew at pH 4.0 in tryptone soya broth (TSB). With the combination of 8% w/w NaCl, 400 ppm NaNO2 and 0.5% w/w glucose in the meat suspension, all isolates grew at 37 degrees C, whereas none grew at 7 degrees C even after 56 days. With the addition of 10% w/w NaCl, 200 ppm NaNO2 and 0.5% w/w glucose, still one E. faecium isolate grew at 37 degrees C, although very slowly. Overall, the strains tolerated high salt and nitrite concentrations and reduced pH very well, even beyond levels applied in the regular production of fermented and/or pasteurised meat products. The tested strains could be isolated after the fermentation and further ripening of "boerenmetworst" and "snijworst". Overall, their colony counts decreased on average about 1 log-unit over a period of 60 days after batter manufacture. All 148 isolates demonstrated a relatively weak thermal resistance compared to results for selected vancomycin-sensitive enterococci strains reported in the literature and to results collected under identical experimental conditions in this laboratory. None of the strains (log inoculation level about 5-6 ml(-1) for each isolate) could be cultured after heating at 70 degrees C for 10 min.
Selim, Samy
2011-01-01
Eleven essential oils (EOs) were evaluated for their antibacterial properties, against Vancomycin-Resistant Enterococci (VRE) and E. coli O157:H7. EOs were introduced into Brain Heart Infusion agar (BHI) (15ml) at a concentration of 0.25 to 2% (vol/vol) to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for each pathogen evaluated. Results showed that the most active essential oils against bacteria tested were thyme oil, with MIC90 and MBC90 for the VRA strains of 0.25% and 0.5%, respectively. Eucalyptus, juniper and clove oils were the least potent agent, with MIC90 and MBC90 of 2%. Furthermore, the inhibitory effect of these EO were evaluated against VRE and E. coli O157:H7, experimentally inoculated (103 cfu/g) in Feta soft cheese and minced beef meat, which was mixed with different concentrations (0.1%, 0.5% and 1%) of the EO and stored at 7 °C for 14 days. Out of eucalyptus, juniper, mint, rosemary, sage, clove and thyme oils tested against target bacteria sage and thyme showed the best results. Clove and mint did not show any effect on VRE and E. coli O157:H7 in both kinds of studied foods. The addition of thyme oil at concentrations of 0.5 and 1% caused best significant reduction in the growth rate of VRE and E. coli O157:H7 in cheese and meat at 7 oC. It is concluded that selected plant EOs can act as potent inhibitors of both microorganisms in a food product. The results revealed the potential of thyme oil as a natural preservative in feta soft cheese and minced beef meat against VRE and E. coli O157:H7 contamination. PMID:24031620
Phocoenamicins B and C, New Antibacterial Spirotetronates Isolated from a Marine Micromonospora sp.
Pérez-Bonilla, Mercedes; Oves-Costales, Daniel; Kokkini, Maria; Martín, Jesús; Vicente, Francisca; Genilloud, Olga
2018-01-01
Phocoenamicins B and C (1 and 2), together with the known spirotetronate phocoenamicin (3), were isolated from cultures of Micromonospora sp. The acetone extract from a culture of this strain, isolated from marine sediments collected in the Canary Islands, displayed activity against methicillin-resistant Staphylococcus aureus (MRSA), Mycobacterium tuberculosis H37Ra and Mycobacterium bovis. Bioassay-guided fractionation of this extract using SP207ss column chromatography and preparative reversed-phased HPLC led to the isolation of the new compounds 1 and 2 belonging to the spirotetronate class of polyketides. Their structures were determined using a combination of HRMS, 1D and 2D NMR experiments and comparison with the spectra reported for phocoenamicin. Antibacterial activity tests of the pure compounds against these pathogens revealed minimal inhibitory concentration (MIC) values ranging from 4 to 64 µg/mL for MRSA, and 16 to 32 µg/mL for M. tuberculosis H37Ra, with no significant activity found against M. bovis and vancomycin-resistant Enterococcus faecium (VRE) at concentrations below 128 µg/mL, and weak activity detected against Bacillus subtilis grown on agar plates. PMID:29547589
Enterococcal Endocarditis: Can We Win the War?
Munita, Jose M.
2015-01-01
Treatment of enterococcal infections has long been recognized as an important clinical challenge, particularly in the setting of infective endocarditis (IE). Furthermore, the increase prevalence of isolates exhibiting multidrug resistance (MDR) to traditional anti-enterococcal antibiotics such as ampicillin, vancomycin and aminoglycosides (high-level resistance) poses immense therapeutic dilemmas in hospitals around the world. Unlike IE caused by most isolates of Enterococcus faecalis, which still retain susceptibility to ampicillin and vancomycin, the emergence and dissemination of a hospital-associated genetic clade of multidrug resistant Enterococcus faecium, markedly limits the therapeutic options. The best treatment of IE MDR enterococcal endocarditis is unknown and the paucity of antibiotics with bactericidal activity against these organisms is a cause of serious concern. Although it appears that we are winning the war against E. faecalis, the battle rages on against isolates of multidrug-resistant E. faecium. PMID:22661339
Money and transmission of bacteria
2013-01-01
Money is one of the most frequently passed items in the world. The aim of this study was to ascertain the survival status of bacteria including Staphylococcus aureus, Escherichia coli, and Vancomycin- Resistant Enterococci (VRE) on banknotes from different countries and the transmission of bacteria to people who come in contact with the banknotes. The survival rate was highest for the Romanian Leu yielding all three microorganisms used after both three and six hours of drying. Furthermore, the Leu was the only banknote to yield VRE after one day of drying. Other currencies either enabled the survival of Extended-Spectrum Beta-Lactamases (ESBL) and VRE (e.g. Euro), but not of MRSA, or the other way round (e.g. US Dollar). While a variety of factors such as community hygiene levels, people’s behaviour, and antimicrobial resistance rates at community level obviously have influence on the transmission of resistant microorganisms, the type of banknote-paper may be an additional variable to consider. PMID:23985137
Kellogg, Stephanie L; Little, Jaime L; Hoff, Jessica S; Kristich, Christopher J
2017-05-01
Enterococci are serious opportunistic pathogens that are resistant to many cell wall-targeting antibiotics. The CroRS two-component signaling system responds to antibiotic-mediated cell wall stress and is critical for resistance to cell wall-targeting antibiotics in Enterococcus faecalis Here, we identify and characterize an orthologous two-component system found in Enterococcus faecium that is functionally equivalent to the CroRS system of E. faecalis Deletion of croRS in E. faecium resulted in marked susceptibility to cell wall-targeting agents including cephalosporins and bacitracin, as well as moderate susceptibility to ampicillin and vancomycin. As in E. faecalis , exposure to bacitracin and vancomycin stimulates signaling through the CroRS system in E. faecium Moreover, the CroRS system is critical in E. faecium for enhanced beta-lactam resistance mediated by overexpression of Pbp5. Expression of a Pbp5 variant that confers enhanced beta-lactam resistance cannot overcome the requirement for CroRS function. Thus, the CroRS system is a conserved signaling system that responds to cell wall stress to promote intrinsic resistance to important cell wall-targeting antibiotics in clinically relevant enterococci. Copyright © 2017 American Society for Microbiology.
Kellogg, Stephanie L.; Little, Jaime L.; Hoff, Jessica S.
2017-01-01
ABSTRACT Enterococci are serious opportunistic pathogens that are resistant to many cell wall-targeting antibiotics. The CroRS two-component signaling system responds to antibiotic-mediated cell wall stress and is critical for resistance to cell wall-targeting antibiotics in Enterococcus faecalis. Here, we identify and characterize an orthologous two-component system found in Enterococcus faecium that is functionally equivalent to the CroRS system of E. faecalis. Deletion of croRS in E. faecium resulted in marked susceptibility to cell wall-targeting agents including cephalosporins and bacitracin, as well as moderate susceptibility to ampicillin and vancomycin. As in E. faecalis, exposure to bacitracin and vancomycin stimulates signaling through the CroRS system in E. faecium. Moreover, the CroRS system is critical in E. faecium for enhanced beta-lactam resistance mediated by overexpression of Pbp5. Expression of a Pbp5 variant that confers enhanced beta-lactam resistance cannot overcome the requirement for CroRS function. Thus, the CroRS system is a conserved signaling system that responds to cell wall stress to promote intrinsic resistance to important cell wall-targeting antibiotics in clinically relevant enterococci. PMID:28223383
Novel quercetin glycosides as potent anti-MRSA and anti-VRE agents.
Hossion, Abugafar M L; Sasaki, Kenji
2013-12-01
Each year in the United States, at least 2 million people become infected with bacteria that are resistant to antibiotics and at least 23,000 people die each year as a direct result of these infections (Threat report 2013). Vancomycin is an FDA approved antibiotic and is growing importance in the treatment of hospital infections, with particular emphasis on its value to fight against methicillin-resistant Staphylococcus aureus (MRSA). The increasing use of vancomycin to treat infections caused by the Gram-positive MRSA in the 1970s selected for drug-resistant enterococci, less potent than staphylococci but opportunistic in the space vacated by other bacteria and in patients with compromised immune systems. The dramatic rise of antibiotic-resistant bacteria over the past two decades has stressed the need for completely novel classes of antibacterial agents. This paper reports the recent patent review on the strategy for finding novel quercetinglycoside type antibacterial agents against vancomycin-resistant bacterial strains.
Zhou, Xuewei; García-Cobos, Silvia; Ruijs, Gijs J H M; Kampinga, Greetje A; Arends, Jan P; Borst, Dirk M; Möller, Lieke V; Holman, Nicole D; Schuurs, Theo A; Bruijnesteijn van Coppenraet, Lesla E; Weel, Jan F; van Zeijl, Jan H; Köck, Robin; Rossen, John W A; Friedrich, Alexander W
2017-01-01
Objectives: To reveal the prevalence and epidemiology of extended-spectrum β-lactamase (ESBL)- and/or plasmid AmpC (pAmpC)- and carbapenemase (CP) producing Enterobacteriaceae and vancomycin-resistant enterococci (VRE) across the Northern Dutch-German border region. Methods: A point-prevalence study on ESBL/pAmpC/CP producing Enterobacteriaceae and VRE was carried out in hospitalized patients in the Northern Netherlands ( n = 445, 2012-2013) and Germany ( n = 242, 2012). Healthy individuals from the Dutch community ( n = 400, 2010-2012) were also screened. In addition, a genome-wide gene-by-gene approach was applied to study the epidemiology of ESBL- Escherichia coli and VRE. Results: A total of 34 isolates from 27 patients (6.1%) admitted to Dutch hospitals were ESBL/pAmpC positive and 29 ESBL- E. coli , three pAmpC- E. coli , one ESBL- Enterobacter cloacae , and one pAmpC- Proteus mirabilis were found. In the German hospital, 18 isolates (16 E. coli and 2 Klebsiella pneumoniae ) from 17 patients (7.7%) were ESBL positive. In isolates from the hospitalized patients CTX-M-15 was the most frequently detected ESBL-gene. In the Dutch community, 11 individuals (2.75%) were ESBL/pAmpC positive: 10 ESBL - E. coli (CTX-M-1 being the most prevalent gene) and one pAmpC E. coli . Six Dutch (1.3%) and four German (3.9%) hospitalized patients were colonized with VRE. Genetic relatedness by core genome multi-locus sequence typing (cgMLST) was found between two ESBL- E. coli isolates from Dutch and German cross-border hospitals and between VRE isolates from different hospitals within the same region. Conclusion: The prevalence of ESBL/pAmpC- Enterobacteriaceae was similar in hospitalized patients across the Dutch-German border region, whereas VRE prevalence was slightly higher on the German side. The overall prevalence of the studied pathogens was lower in the community than in hospitals in the Northern Netherlands. Cross-border transmission of ESBL- E. coli and VRE seems unlikely based on cgMLST analysis, however continuous monitoring is necessary to control their spread and stay informed about their epidemiology.
Xu, Zhenbo; Xie, Jinhong; Peters, Brian M; Li, Bing; Li, Lin; Yu, Guangchao; Shirtliff, Mark E
2017-02-01
A longitudinal surveillance aimed to investigate the antibiogram of three genus of important Gram-positive pathogens in Southern China during 2001-2015. A total of 3849 Staphylococcus, Enterococcus and Streptococcus strains were isolated from Southern China during 2001-2015. Bacteria identification was performed by colony morphology, Gram staining, the API commercial kit and the Vitek 2 automated system. Antimicrobial susceptibility testing was determined by disk diffusion method and MIC method. As sampling site was concerned, 51.4% of Staphylococcus strains were isolated from sputum, whereas urinary tract remained the dominant infection site among Enterococcus and Streptococcus. According to the antimicrobial susceptibility, three genus of important Gram-positive pathogens showed high resistance against erythromycin, tetracycline, ciprofloxacin and clindamycin. Resistance rates to penicillins (penicillin, oxacillin, ampicillin) were high as well, with the exception of E. faecalis and Streptococcus. Overall, resistance rates against methicillin (oxacillin) were 63.2% in S. aureus and 76.2% in coagulase-negative Staphylococcus (CNS), along with continuous increases during the study. VRSA and vancomycin-resistant coagulase-negative Staphylococcus only appeared in 2011-2015. Sight decline was obtained for the vancomycin resistance of E. faecalis, while vancomycin-resistant E. faecium only appeared in 2011-2015, with its intermediate rate decreasing. Significant decrease in penicillin-resistant Streptococcus pneumonia (PRSP) was observed during studied period. Glycopeptide antibiotic remained highly effective to Staphylococcus, Enterococcus and Streptococcus (resistance rates <5%). Despite decline obtained for some antibiotic agents resistance during 2001-2015, antimicrobial resistance among Gram-positive pathogens still remained high in Southern China. This study may aid in the guidance for appropriate therapeutic strategy of infections caused by nosocomial pathogens. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liu, Y; Liu, K; Lai, J; Wu, C; Shen, J; Wang, Y
2013-02-01
To evaluate the prevalence and antimicrobial resistance of Enterococcus species from chickens and pigs in Beijing and Shandong Province, China. Swab samples were collected from four farms in Beijing and two in Shandong Province in 2009 and tested for Enterococcus. Minimum inhibitory concentrations of antimicrobial agents were determined using broth microdilution or agar screening methods. A total of 453 Enterococcus isolates were recovered, belonging to six different Enterococcus species. All isolates were sensitive to vancomycin. Resistance to tetracycline (92.5%), amikacin (89.4%), erythromycin (72.8%) and rifampin (58.1%), and high-level streptomycin resistance (HLSR, 50.3%) were prevalent, while resistance to penicillins (7.9% to penicillin and 4.2% to ampicillin) was rare. The resistance rates to phenicols (chloramphenicol and florfenicol) and enrofloxacin, and high-level gentamicin resistance (HLGR) were approximately 30%. The vast majority of the Enterococcus isolates were classified as multidrug-resistant organisms. Resistance of Enterococcus sp. to most antimicrobials was more prevalent in China than in European or other Asian countries. Our findings reveal a high level of antimicrobial resistance in Enterococcus isolates from food animals in China and underline the need for prudent use of antibiotics in chicken and pig production to minimize the spread of antibiotic-resistant enterococci. © 2012 The Society for Applied Microbiology.
Impact of universal gowning and gloving on health care worker clothing contamination.
Williams, Calvin; McGraw, Patty; Schneck, Elyse E; LaFae, Anna; Jacob, Jesse T; Moreno, Daniela; Reyes, Katherine; Cubillos, G Fernando; Kett, Daniel H; Estrella, Ronald; Morgan, Daniel J; Harris, Anthony D; Drees, Marci
2015-04-01
To determine whether gowning and gloving for all patient care reduces contamination of healthcare worker (HCW) clothing, compared to usual practice. Cross-sectional surveys. Five study sites were recruited from intensive care units (ICUs) randomized to the intervention arm of the Benefits of Universal Gown and Glove (BUGG) study. All HCWs performing direct patient care in the study ICUs were eligible to participate. Surveys were performed first during the BUGG intervention study period (July-September 2012) with universal gowning/gloving and again after BUGG study conclusion (October-December 2012), with resumption of usual care. During each phase, HCW clothing was sampled at the beginning and near the end of each shift. Cultures were performed using broth enrichment followed by selective media. Acquisition was defined as having a negative clothing culture for samples taken at the beginning of a shift and positive clothing culture at for samples taken at the end of the shift. A total of 348 HCWs participated (21-92 per site), including 179 (51%) during the universal gowning/gloving phase. Overall, 51 (15%) HCWs acquired commonly pathogenic bacteria on their clothing: 13 (7.1%) HCWs acquired bacteria during universal gowning/gloving, and 38 (23%) HCWs acquired bacteria during usual care (odds ratio [OR], 0.3; 95% confidence interval [CI], 0.2-0.6). Pathogens identified included S. aureus (25 species, including 7 methicillin-resistant S. aureus [MRSA]), Enterococcus spp. (25, including 1 vancomycin-resistant Enterococcus [VRE]), Pseudomonas spp. (4), Acinetobacter spp. (4), and Klebsiella (2). Nearly 25% of HCWs practicing usual care (gowning and gloving only for patients with known resistant bacteria) contaminate their clothing during their shift. This contamination was reduced by 70% by gowning and gloving for all patient interactions.
Vancomycin-resistant enterococci - hospital
Arias CA, Murray BE. Enterococcus species, Streptococcus gallolyticus group, and Leuconostoc species. In: Bennett JE, Dolin R, Blaser MJ, eds. Mandell, Douglas, and Bennett's Principles and Practice of Infectious ...
Adesida, Solayide A; Ezenta, Cynthia C; Adagbada, Ajoke O; Aladesokan, Amudat A; Coker, Akitoye O
2017-01-01
Enterococci are indigenous flora of the gastro-intestinal tracts of animals and humans. Recently, interest in two major species, E. faecium and E. faecalis , has heightened because of their ability to cause serious infections and their intrinsic resistance to antimicrobials. This study was aimed at determining the prevalence of E . faecium and E . faecalis in human faecal samples and evaluating the susceptibility of the isolates to antibiotics. One hundred faecal samples were collected from apparently healthy individuals and analysed using conventionalbacteriological methods. The susceptibility profile of the isolates to nine antibiotics were determined using disk diffusion method. Seventy-three (73) Enterococcus were phenotypically identified and 65 of the isolates were differentiated into 36 (55.4%) E. faecium and 29 (44.6%) E. faecalis . Eight (8) isolates could not be identified by the conventional biochemical methods employed. No dual colonization by the E. faecalis and E. faecium was observed and isolation rate was not dependent on sex of the participants. All the isolates were resistant to ceftriaxone, cefuroxime and ceftizoxime. Enterococcus faecium exhibited resistance toerythromycin (88.9%), gentamicin (77.8%), amoxicillin-clavulanate (63.9%), ofloxacin (44.4%), teicoplanin (19.4%) and vancomycin (16.7%). Enterococcus faecalis showed the least resistance to vancomycin (13.8%) and teicoplanin (27.7%). Remarkable multiple antibiotic resistances to the classes of antibiotic tested were observed among the two species. The high carriage rate of antibiotic resistant E. faecium and E. faecalis in this study provides information on the local antibiotic patterns of our enterococci isolates thereby suggesting that they could present as important reservoir and vehicle for dissemination of resistant genes in our community.
Boyce, John M; Farrel, Patricia A; Towle, Dana; Fekieta, Renee; Aniskiewicz, Michael
2016-06-01
OBJECTIVE To evaluate ultraviolet C (UV-C) irradiance, UV-C dosage, and antimicrobial effect achieved by a mobile continuous UV-C device. DESIGN Prospective observational study. METHODS We used 6 UV light sensors to determine UV-C irradiance (W/cm2) and UV-C dosage (µWsec/cm2) at various distances from and orientations relative to the UV-C device during 5-minute and 15-minute cycles in an ICU room and a surgical ward room. In both rooms, stainless-steel disks inoculated with methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), and Clostridium difficile spores were placed next to sensors, and UV-C dosages and log10 reductions of target organisms achieved during 5-minute and 15-minute cycles were determined. Mean irradiance and dosage readings were compared using ANOVA. RESULTS Mean UV-C irradiance was nearly 1.0E-03 W/cm2 in direct sight at a distance of 1.3 m (4 ft) from the device but was 1.12E-05 W/cm2 on a horizontal surface in a shaded area 3.3 m (10 ft) from the device (P4 to 1-3 for MRSA, >4 to 1-2 for VRE and >4 to 0 log10 for C. difficile spores, depending on the distance from, and orientation relative to, the device with 5-minute and 15-minute cycles. CONCLUSION UV-C irradiance, dosage, and antimicrobial effect received from a mobile UV-C device varied substantially based on location in a room relative to the UV-C device. Infect Control Hosp Epidemiol 2016;37:667-672.
Poyart, C; Pierre, C; Quesne, G; Pron, B; Berche, P; Trieu-Cuot, P
1997-01-01
Streptococcus bovis NEM760 was isolated from a stool swab collected on admission from a patient as surveillance for vancomycin-resistant enterococci. Strain NEM760 was identified as S. bovis by conventional biochemical methods and partial sequence analysis of its 16S rRNA. This strain was resistant to a low level of vancomycin (MIC, 64 micrograms/ml) but was susceptible to teicoplanin (MIC, 1 micrograms/ml), and vancomycin induced resistance to both glycopeptides. The presence of a vanB-related gene in NEM760 was demonstrated in a PCR assay which enabled specific amplification of a 635-hp internal segment of vanB. Sequence analysis of the corresponding PCR product revealed that it was highly homologous (96% identity) to the prototype vanB sequence of Enterococcus faecalis V583. The VanB resistance of determinant of S. bovis NEM760 was transferred by conjugation to E. faecalis and Enterococcus faecium at a similar frequency of 2 x 10(-5) per donor. SmaI-digested genomic DNAs of independently obtained transconjugants of E. faecalis and E. faecium were analyzed by pulsed-field gel electrophoresis and Southern hybridization with a vanB DNA probe. The electrophoretic and hybridization patterns obtained with all transconjugants of the same species were indistinguishable and revealed vanB-containing chromosomal insertions of approximately 100 kb. These results suggest that the genes mediating VanB-type resistance in S. bovis NEM760 are part of large transferable genetic elements. The results presented in the report demonstrate for the first time the role of streptococci in the dissemination of vancomycin resistance among gram-positive bacteria. PMID:8980749
2013-03-01
530-E6 MSSA, MRSA, E. coli, VRE, E. faecalis, B. subtilis 530-E7 MSSA, MRSA, E. coli, VRE, E. faecalis, B. subtilis B. anthracis, Micrococcus sp...530-E10 MSSA, MRSA, E. coli, VRE, E. faecalis, B. subtilis Micrococcus sp. 530-A5 VRE 530-B12 VRE 530-C12 VRE B. anthracis 530-D12 VRE 530-E12...VRE Micrococcus sp. 530-F11 VRE Micrococcus sp. 530-F12 VRE Enterococcus. faecium Figure 9. Pathogen overlay assay plates showing
Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections.
Flores-Mireles, Ana L; Walker, Jennifer N; Potretzke, Aaron; Schreiber, Henry L; Pinkner, Jerome S; Bauman, Tyler M; Park, Alyssa M; Desai, Alana; Hultgren, Scott J; Caparon, Michael G
2016-10-25
Gram-positive bacteria in the genus Enterococcus are a frequent cause of catheter-associated urinary tract infection (CAUTI), a disease whose treatment is increasingly challenged by multiantibiotic-resistant strains. We have recently shown that E. faecalis uses the Ebp pilus, a heteropolymeric surface fiber, to bind the host protein fibrinogen as a critical step in CAUTI pathogenesis. Fibrinogen is deposited on catheters due to catheter-induced inflammation and is recognized by the N-terminal domain of EbpA (EbpA NTD ), the Ebp pilus's adhesin. In a murine model, vaccination with EbpA NTD confers significant protection against CAUTI. Here, we explored the mechanism of protection using passive transfer of immune sera to show that antisera blocking EbpA NTD -fibrinogen interactions not only is prophylactic but also can act therapeutically to reduce bacterial titers of an existing infection. Analysis of 55 clinical CAUTI, bloodstream, and gastrointestinal isolates, including E. faecalis, E. faecium, and vancomycin-resistant enterococci (VRE), revealed a diversity of levels of EbpA expression and fibrinogen-binding efficiency in vitro Strikingly, analysis of 10 strains representative of fibrinogen-binding diversity demonstrated that, irrespective of EbpA levels, EbpA NTD antibodies were universally protective. The results indicate that, despite diversity in levels of fibrinogen binding, strategies that target the disruption of EbpA NTD -fibrinogen interactions have considerable promise for treatment of CAUTI. Urinary catheterization is a routine medical procedure, and it has been estimated that 30 million Foley catheters are used annually in the United States. Importantly, placement of a urinary catheter renders the patient susceptible to developing a catheter-associated urinary tract infection, accounting for 1 million cases per year. Additionally, these infections can lead to serious complications, including bloodstream infection and death. Enterococcus strains are a common cause of these infections, and management of enterococcal infections has been more difficult in recent years due to the development of antibiotic resistance and the ability of strains to disseminate, resulting in a major threat in hospital settings. In this study, we developed an antibiotic-sparing treatment that is effective against diverse enterococcal isolates, including vancomycin-resistant enterococci, during catheter-associated urinary tract infections. Copyright © 2016 Flores-Mireles et al.
Airborne Multidrug-Resistant Bacteria Isolated from a Concentrated Swine Feeding Operation
Chapin, Amy; Rule, Ana; Gibson, Kristen; Buckley, Timothy; Schwab, Kellogg
2005-01-01
The use of nontherapeutic levels of antibiotics in swine production can select for antibiotic resistance in commensal and pathogenic bacteria in swine. As a result, retail pork products, as well as surface and groundwaters contaminated with swine waste, have been shown to be sources of human exposure to antibiotic-resistant bacteria. However, it is unclear whether the air within swine operations also serves as a source of exposure to antibiotic-resistant bacterial pathogens. To investigate this issue, we sampled the air within a concentrated swine feeding operation with an all-glass impinger. Samples were analyzed using a method for the isolation of Enterococcus. A total of 137 presumptive Enterococcus isolates were identified to species level using standard biochemical tests and analyzed for resistance to erythromycin, clindamycin, virginiamycin, tetracycline, and vancomycin using the agar dilution method. Thirty-four percent of the isolates were confirmed as Enterococcus, 32% were identified as coagulase-negative staphylococci, and 33% were identified as viridans group streptococci. Regardless of bacterial species, 98% of the isolates expressed high-level resistance to at least two antibiotics commonly used in swine production. None of the isolates were resistant to vancomycin, an antibiotic that has never been approved for use in livestock in the United States. In conclusion, high-level multidrug-resistant Enterococcus, coagulase-negative staphylococci, and viridans group streptococci were detected in the air of a concentrated swine feeding operation. These findings suggest that the inhalation of air from these facilities may serve as an exposure pathway for the transfer of multidrug-resistant bacterial pathogens from swine to humans. PMID:15687049
Dalpke, Alexander H; Hofko, Marjeta; Zimmermann, Stefan
2016-09-01
Vancomycin-resistant enterococci (VRE) are an important cause of health care-associated infections, resulting in significant mortality and a significant economic burden in hospitals. Active surveillance for at-risk populations contributes to the prevention of infections with VRE. The availability of a combination of automation and molecular detection procedures for rapid screening would be beneficial. Here, we report on the development of a laboratory-developed PCR for detection of VRE which runs on the fully automated Becton Dickinson (BD) Max platform, which combines DNA extraction, PCR setup, and real-time PCR amplification. We evaluated two protocols: one using a liquid master mix and the other employing commercially ordered dry-down reagents. The BD Max VRE PCR was evaluated in two rounds with 86 and 61 rectal elution swab (eSwab) samples, and the results were compared to the culture results. The sensitivities of the different PCR formats were 84 to 100% for vanA and 83.7 to 100% for vanB; specificities were 96.8 to 100% for vanA and 81.8 to 97% for vanB The use of dry-down reagents and the ExK DNA-2 kit for extraction showed that the samples were less inhibited (3.3%) than they were by the use of the liquid master mix (14.8%). Adoption of a cutoff threshold cycle of 35 for discrimination of vanB-positive samples allowed an increase of specificity to 87.9%. The performance of the BD Max VRE assay equaled that of the BD GeneOhm VanR assay, which was run in parallel. The use of dry-down reagents simplifies the assay and omits any need to handle liquid PCR reagents. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Inaba, Hiroto; Gaur, Aditya H; Cao, Xueyuan; Flynn, Patricia M; Pounds, Stanley B; Avutu, Viswatej; Marszal, Lindsay N; Howard, Scott C; Pui, Ching-Hon; Ribeiro, Raul C; Hayden, Randall T; Rubnitz, Jeffrey E
2014-01-01
BACKGROUND Intensive chemotherapy for pediatric acute myeloid leukemia (AML) incurs the risk of infectious complications, but the benefits of antibiotic prophylaxis remain unclear. METHODS In 103 children treated on the AML02 protocol between October 2002 and October 2008 at St. Jude Children’s Research Hospital, we retrospectively assessed the effect of antibiotic prophylaxis on the frequency of febrile neutropenia, clinically or microbiologically confirmed infections (including bacteremia), and antibiotic resistance, and on the results of nasal and rectal surveillance cultures. Initially, patients received no prophylaxis or oral cephalosporin (Group A). Then the protocol was amended to give intravenous cefepime alone or intravenous vancomycin plus either oral cephalosporin, oral ciprofloxacin, or intravenous cefepime (Group B). RESULTS There were 334 infectious episodes. Group A had a significantly greater frequency of documented infections and bacteremia (both P < .0001) (including gram-positive and gram-negative bacteremia, P = .0003 and .001, respectively) than Group B, especially viridans streptococcal bacteremia (P = .001). The incidence of febrile neutropenia without documented infection was not different between the two groups. Five cases of bacteremia with vancomycin-resistant enterococci (VRE) occurred in group B (vs. none in Group A), without related mortality. Two of these cases were preceded by positive VRE rectal surveillance cultures. CONCLUSIONS Outpatient intravenous antibiotic prophylaxis is feasible in children with AML and reduces the frequency of documented infection but not of febrile neutropenia. Despite emergence of VRE bacteremia, the benefits favor antibiotic prophylaxis. Creative approaches to shorten the duration of prophylaxis and thereby minimize resistance should be explored. PMID:24677028
Donado-Godoy, Pilar; Byrne, Barbara A; León, Maribel; Castellanos, Ricardo; Vanegas, Consuelo; Coral, Adriana; Arevalo, Alejandra; Clavijo, Viviana; Vargas, Mercedes; Romero Zuñiga, Juan J; Tafur, McAllister; Pérez-Gutierrez, Enrique; Smith, Woutrina A
2015-04-01
As a step toward implementing the Colombian Integrated Program for Antimicrobial Resistance Surveillance (COIPARS), this study aimed to establish the baseline antimicrobial resistance patterns of Salmonella serovars, Escherichia coli, and Enterococcus spp. isolates in retail poultry meat from independent stores and from a main chain distributor center. MICs of the isolates were determined for antimicrobials used both in humans and animals, using an automated system. Salmonella serovars were isolated from 26% of the meat samples and E. coli from 83%, whereas Enterococcus faecalis and Enterococcus faecium were detected in 81 and 13% of the meat samples, respectively. A principal finding of concern in this study was that almost 98% of isolates tested were multidrug resistant. Ceftiofur, enrofloxacin, nalidixic acid, and tetracycline were the antimicrobials that showed the highest frequency of resistance among Salmonella and E. coli isolates. For enterococci, 61.5% of E. faecium isolates were found to be resistant to quinupristin-dalfopristin; this is significant because it is used to treat nosocomial infections when vancomycin resistance is present. Vancomycin resistance was detected in 4% of the E. faecalis isolates. The results of our study highlight the need for rapid implementation of an integrated program for surveillance of antimicrobial resistance by the Colombian authorities in order to monitor trends, raise awareness, and help promote practices to safeguard later generation antimicrobial agents.
Lankford, Mary G; Collins, Susan; Youngberg, Larry; Rooney, Denise M; Warren, John R; Noskin, Gary A
2006-06-01
Contaminated environmental surfaces, equipment, and health care workers' hands have been linked to outbreaks of infection or colonization because of vancomycin-resistant enterococci (VRE) and Pseudomonas aeruginosa (PSAE). Upholstery, walls, and flooring may enhance bacterial survival, providing infectious reservoirs. Investigate recovery of VRE and PSAE, determine efficacy of disinfection, and evaluate VRE transmission from surfaces. Upholstery, flooring, and wall coverings were inoculated with VRE and PSAE and assessed for recovery at 24 hours, 72 hours, and 7 days. Inoculated surfaces were cleaned utilizing manufacturers' recommendations of natural, commercial, or hospital-approved products and methods, and samples were obtained. To assess potential for transmission, volunteers touched VRE-inoculated surfaces and imprinted palms onto contact-impression plates. Twenty-four hours following inoculation, all surfaces had recovery of VRE; 13 (92.9%) of 14 surfaces had persistent PSAE. After cleaning, VRE was recovered from 7 (50%) surfaces, PSAE from 5 (35.7%) surfaces. After inoculation followed by palmar contact, VRE was recovered from all surfaces touched. Bacteria commonly encountered in hospitals are capable of prolonged survival and may promote cross transmission. Selection of surfaces for health care environments should include product application and complexity of manufacturers' recommendations for disinfection. Recovery of organisms on surfaces and hands emphasizes importance of hand hygiene compliance prior to patient contact.
Accuracy of the VITEK 2 System To Detect Glycopeptide Resistance in Enterococci
van den Braak, Nicole; Goessens, Wil; van Belkum, Alex; Verbrugh, Henri A.; Endtz, Hubert P.
2001-01-01
We evaluated the accuracy of the VITEK 2 fully automated system to detect and identify glycopeptide-resistant enterococci (GRE) compared to a reference agar dilution method. The sensitivity of vancomycin susceptibility testing with VITEK 2 for the detection of vanA, vanB, and vanC1 strains was 100%. The sensitivity of vancomycin susceptibility testing of vanC2 strains was 77%. The sensitivity of teicoplanin susceptibility testing of vanA strains was 90%. Of 80 vanC enterococci, 78 (98%) were correctly identified by VITEK 2 as Enterococcus gallinarum/Enterococcus casseliflavus. Since the identification and susceptibility data are produced within 3 and 8 h, respectively, VITEK 2 appears a fast and reliable method for detection of GRE in microbiology laboratories. PMID:11136798
Antimicrobial resistance of Enterococcus isolates in Turkey: A meta-analysis of current studies.
Kilbas, Imdat; Ciftci, Ihsan Hakki
2018-03-01
In this study, a meta-analysis of Enterococcus isolates collected in 2000-2015 in Turkey and their susceptibility/resistance to antibiotics, clinical indications for initial drug treatment, and identification of alternative treatments was conducted. The meta-analysis examined antibiotic susceptibility/resistance in Enterococcus spp. isolates. The study was planned and conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Statements on antimicrobial resistance were grouped according to the antimicrobial stewardship programme (ASP). The mean resistance rates of Enterococcus faecalis to vancomycin (VAN) and linezolid (LNZ) were 1.0±2.2% and 1.9±2.6%, respectively, whereas the mean resistance rates of Enterococcus faecium to VAN and LNZ were 10.3±11.3% and 2.4±0%, respectively. This study is the first meta-analysis of the resistance of clinical Enterococcus isolates in Turkey to antimicrobial agents, which is a major problem stemming from the excessive usage of antibiotics. The development of antibiotic resistance in Turkey has changed over time. To support the practice of evidence-based medicine, more notifications about Enterococcus resistance status are needed, especially notifications following ASP rules. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.
Vancomycin-Resistant Gram-Positive Cocci Isolated from the Saliva of Wild Songbirds
Ishihara, Shingo; Bitner, Jessica J.; Farley, Greg H.
2014-01-01
We analyzed highly vancomycin-resistant Gram-positive bacteria isolated from the saliva of migratory songbirds captured, sampled, and released from a birdbanding station in western Kansas. Individual bacterial isolates were identified by partial 16S rRNA sequencing. Most of the bacteria in this study were shown to be Staphylococcus succinus with the majority being isolated from the American Robin. Some of these bacteria were shown to carry vanA, vanB, and vanC vancomycin-resistance genes and have the ability to form biofilms. One of the van gene-carrying isolates is also coagulase positive, which is normally considered a virulence factor. Other organisms isolated included Staphylococcus saprophyticus as well as Enterococcus gallinarum. Given the wide range of the American Robin and ease of horizontal gene transfer between Gram-positive cocci, we postulate that these organisms could serve as a reservoir of vancomycin-resistance genes capable of transferring to human pathogens. PMID:23224296
Vancomycin-resistant gram-positive cocci isolated from the saliva of wild songbirds.
Ishihara, Shingo; Bitner, Jessica J; Farley, Greg H; Gillock, Eric T
2013-04-01
We analyzed highly vancomycin-resistant Gram-positive bacteria isolated from the saliva of migratory songbirds captured, sampled, and released from a bird-banding station in western Kansas. Individual bacterial isolates were identified by partial 16S rRNA sequencing. Most of the bacteria in this study were shown to be Staphylococcus succinus with the majority being isolated from the American Robin. Some of these bacteria were shown to carry vanA, vanB, and vanC vancomycin-resistance genes and have the ability to form biofilms. One of the van gene-carrying isolates is also coagulase positive, which is normally considered a virulence factor. Other organisms isolated included Staphylococcus saprophyticus as well as Enterococcus gallinarum. Given the wide range of the American Robin and ease of horizontal gene transfer between Gram-positive cocci, we postulate that these organisms could serve as a reservoir of vancomycin-resistance genes capable of transferring to human pathogens.
Ngbede, Emmanuel Ochefije; Raji, Mashood Abiola; Kwanashie, Clara Nna; Kwaga, Jacob Kwada Paghi
2017-03-01
This study investigated the occurrence, antimicrobial resistance and virulence of Enterococcus from poultry and cattle farms. Three hundred and ninety samples: cloacal/rectal swabs (n = 260) and manure (n = 130] were processed for recovery of Enterococcus species. Standard bacteriological methods were used to isolate, identify and characterize Enterococcus species for antimicrobial susceptibility and expression of virulence traits. Detection of antibiotic resistance and virulence genes was carried out by polymerase chain reaction. Enterococcus was recovered from 167 (42.8%) of the 390 samples tested with a predominance of Enterococcus faecium (27.7%). Other species detected were Enterococcus gallinarum, Enterococcus faecalis, Enterococcus hirae, Enterococcus raffinosus, Enterococcus avium, Enterococcus casseliflavus, Enterococcus mundtii and Enterococcus durans. All the isolates tested were susceptible to vancomycin, but resistance to tetracycline, erythromycin, ampicillin and gentamicin was also observed among 61.0, 61.0, 45.1 and 32.7% of the isolates, respectively. Sixty (53.1%) of the isolates were multidrug resistant presenting as 24 different resistance patterns with resistance to gentamicin-erythromycin-streptomycin-tetracycline (CN-ERY-STR-TET) being the most common (n = 11) pattern. In addition to expression of virulence traits (haemolysin, gelatinase, biofilm production), antibiotic resistance (tetK, tetL, tetM, tetO and ermB) and virulence (asa1, gelE, cylA) genes were detected among the isolates. Also, in vitro transfer of resistance determinants was observed among 75% of the isolates tested. Our data revealed poultry, cattle and manure in this area are hosts to varying Enterococcus species harbouring virulence and resistance determinants that can be transferred to other organisms and also are important for causing nosocomial infection.
Gouliouris, Theodore; Warne, Ben; Cartwright, Edward J P; Bedford, Luke; Weerasuriya, Chathika K; Raven, Kathy E; Brown, Nick M; Török, M Estée; Limmathurotsakul, Direk; Peacock, Sharon J
2018-03-13
VRE bacteraemia has a high mortality and continues to defy control. Antibiotic risk factors for VRE bacteraemia have not been adequately defined. We aimed to determine the risk factors for VRE bacteraemia focusing on duration of antibiotic exposure. A retrospective matched nested case-control study was conducted amongst hospitalized patients at Cambridge University Hospitals NHS Foundation Trust (CUH) from 1 January 2006 to 31 December 2012. Cases who developed a first episode of VRE bacteraemia were matched 1:1 to controls by length of stay, year, specialty and ward type. Independent risk factors for VRE bacteraemia were evaluated using conditional logistic regression. Two hundred and thirty-five cases were compared with 220 controls. Duration of exposure to parenteral vancomycin, fluoroquinolones and meropenem was independently associated with VRE bacteraemia. Compared with patients with no exposure to vancomycin, those who received courses of 1-3 days, 4-7 days or >7 days had a stepwise increase in risk of VRE bacteraemia [conditional OR (cOR) 1.2 (95% CI 0.4-3.8), 3.8 (95% CI 1.2-11.7) and 6.6 (95% CI 1.9-22.8), respectively]. Other risk factors were: presence of a central venous catheter (CVC) [cOR 8.7 (95% CI 2.6-29.5)]; neutropenia [cOR 15.5 (95% CI 4.2-57.0)]; hypoalbuminaemia [cOR 8.5 (95% CI 2.4-29.5)]; malignancy [cOR 4.4 (95% CI 1.6-12.0)]; gastrointestinal disease [cOR 12.4 (95% CI 4.2-36.8)]; and hepatobiliary disease [cOR 7.9 (95% CI 2.1-29.9)]. Longer exposure to vancomycin, fluoroquinolones or meropenem was associated with VRE bacteraemia. Antimicrobial stewardship interventions targeting high-risk antibiotics are required to complement infection control procedures against VRE bacteraemia.
Thayer, Desiree A; Wong, Chi-Huey
2006-09-18
Many natural products contain carbohydrate moieties that contribute to their biological activity. Manipulation of the carbohydrate domain of natural products through multiple glycosylations to identify new derivatives with novel biological activities has been a difficult and impractical process. We report a practical one-pot enzymatic approach with regeneration of cosubstrates to synthesize analogues of vancomycin that contain an N-alkyl glucosamine, which exhibited marked improvement in antibiotic activity against a vancomycin-resistant strain of Enterococcus.
Use of a fluorescent chemical as a quality indicator for a hospital cleaning program.
Blue, Jennifer; O'Neill, Cindy; Speziale, Paul; Revill, Jeff; Ramage, Lee; Ballantyne, Lisa
2008-01-01
Hamilton Health Sciences is a large teaching hospital with over 1,000 beds and consists of three acute care sites, one Regional Cancer Center and two Rehabilitation/Chronic Care facilities. An environmental cleaning pilot project was initiated at the acute care Henderson site, following an outbreak of vancomycin-resistant Enterococcus (VRE). Healthcare-associated infections (HAI) due to antibiotic-resistant organisms are increasing in Southern Ontario. Environmental cleaning plays a key role in eradicating resistant organisms that live in hospital environments, thereby helping to reduce HAIs. The environmental cleaning practices on the Orthopaedic Unit were identified as a contributing factor to the VRE outbreak after visual assessments were completed using a Brevis GlitterBug product, a chemical that fluoresces under an ultraviolet (UV) lamp. These findings led to a hospital-wide cleaning improvement initiative on all units except critical care areas. The GlitterBug potion was employed by Infection Control and Customer Support Services (CSS) as a tool to evaluate the daily cleaning of patient washrooms as well as discharge cleaning of contact precaution isolation rooms. Over a four-week period, the GlitterBug potion was applied to seven frequently touched standard targets in randomly selected patient bathrooms on each unit and 14 frequently touched targets prior to cleaning in the rooms used for isolation. The targets were then evaluated using the UV lamp to detect objects that were not cleaned and the results were recorded on a standardized form. The rate of targets cleaned versus the targets missed was calculated. The overall rate for daily cleaning of bathrooms and cleaning of isolation rooms was poor with only 23% of the targets cleaned. Based on these findings, several interventions were implemented. This resulted in a significant improvement in cleaning practices during the pilot project. Greater than 80% of the targets were cleaned compared to the baseline findings of 23%. Subsequently, nosocomial cases of VRE have declined despite the increased prevalence of VRE in the Hamilton and surrounding regions. The GlitterBug product is an effective tool to evaluate environmental cleaning and adherence to policies and procedures and this method was superior to previous visual inspection methods. The use of GlitterBug potion improved physical cleaning and enhanced staff contribution. The Brevis GlitterBug product was incorporated into the CSS environmental cleaning program at Hamilton Health Sciences as a quality indicator to monitor environmental cleaning practices.
Survival of Enterococci and Staphylococci on Hospital Fabrics and Plastic
Neely, Alice N.; Maley, Matthew P.
2000-01-01
The transfer of gram-positive bacteria, particularly multiresistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE), among patients is a growing concern. One critical aspect of bacterial transfer is the ability of the microorganism to survive on various common hospital surfaces. The purpose of this study was to determine the survival of 22 gram-positive bacteria (vancomycin-sensitive and -resistant enterococci and methicillin-sensitive and -resistant staphylococci) on five common hospital materials: smooth 100% cotton (clothing), 100% cotton terry (towels), 60% cotton–40% polyester blend (scrub suits and lab coats), 100% polyester (privacy drapes), and 100% polypropylene plastic (splash aprons). Swatches were inoculated with 104 to 105 CFU of a microorganism, assayed daily by placing the swatches in nutritive media, and examining for growth after 48 h. All isolates survived for at least 1 day, and some survived for more than 90 days on the various materials. Smaller inocula (102) survived for shorter times but still generally for days. Antibiotic sensitivity had no consistent effect on survival. The long survival of these bacteria, including MRSA and VRE, on commonly used hospital fabrics, such as scrub suits, lab coats, and hospital privacy drapes, underscores the need for meticulous contact control procedures and careful disinfection to limit the spread of these bacteria. PMID:10655374
Vancomycin-Resistance Enterococci Infections in the Department of the Defense: Annual Report 2014
2015-07-22
change in 2014 as VRE continues to predominately affect elderly females and manifest as urinary tract infections ( UTIs ). In addition, antibiotic...urinary tract infections ( UTIs ). In addition, antibiotic susceptibility patterns did not substantially change in 2014. Daptomycin, linezolid and...the infection continues to predominately affect elderly females and manifest as UTIs . In addition, antibiotic susceptibility patterns did not
Olofsson, Tobias C; Butler, Èile; Markowicz, Pawel; Lindholm, Christina; Larsson, Lennart; Vásquez, Alejandra
2016-10-01
Could honeybees' most valuable contribution to mankind besides pollination services be alternative tools against infections? Today, due to the emerging antibiotic-resistant pathogens, we are facing a new era of searching for alternative tools against infections. Natural products such as honey have been applied against human's infections for millennia without sufficient scientific evidence. A unique lactic acid bacterial (LAB) microbiota was discovered by us, which is in symbiosis with honeybees and present in large amounts in fresh honey across the world. This work investigates if the LAB symbionts are the source to the unknown factors contributing to honey's properties. Hence, we tested the LAB against severe wound pathogens such as methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa and vancomycin-resistant Enterococcus (VRE) among others. We demonstrate a strong antimicrobial activity from each symbiont and a synergistic effect, which counteracted all the tested pathogens. The mechanisms of action are partly shown by elucidating the production of active compounds such as proteins, fatty acids, anaesthetics, organic acids, volatiles and hydrogen peroxide. We show that the symbionts produce a myriad of active compounds that remain in variable amounts in mature honey. Further studies are now required to investigate if these symbionts have a potential in clinical applications as alternative tools against topical human and animal infections. © 2014 The Authors. International Wound Journal published by Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Fantin, B; Leclercq, R; Arthur, M; Duval, J; Carbon, C
1991-01-01
Emergence of vancomycin-resistant strains among enterococci raises a new clinical challenge. Rabbits with aortic endocarditis were infected with Enterococcus faecium BM4172, a clinical strain resistant to low levels of vancomycin (MIC, 16 micrograms/ml) and susceptible to teicoplanin (MIC, 1 micrograms/ml), and against its susceptible variant E. faecium BM4172S obtained in vitro by insertional mutagenesis (MICs, 2 and 0.5 micrograms/ml, respectively). Control animals retained 8 to 10.5 log10 CFU/g of vegetation. We evaluated in this model the efficacy of vancomycin (30 mg/kg of body weight; mean peak and trough serum levels, 27 and 5 micrograms/ml, respectively), teicoplanin (standard dose, 10 mg/kg; mean peak and trough levels, 23 and 9 micrograms/ml, respectively; and high dose, 20 mg/kg; mean peak and trough levels, 63 and 25 micrograms/ml, respectively), gentamicin (6 mg/kg; mean peak and trough levels, 8.6 and less than 0.1 micrograms/ml, respectively), alone or in combination, given every 12 h intramuscularly for 5 days. Teicoplanin standard dose was as active as vancomycin against both strains. Vancomycin was not effective against E. faecium BM4172 but was highly effective against E. faecium BM4172S (7.5 +/- 1.1 log10 CFU/g of vegetation versus 4.9 +/- 1.0 log10 CFU/g of vegetation for vancomycin against E. faecium BM4172 and E. faecium BM4172S, respectively; P = 0.0012). A high dose of teicoplanin was more effective than vancomycin against E. faecium BM4172 (4.4 +/- 1.8 log10 CFU/g of vegetation versus 7.5 +/- 1.1 log10 CFU/g of vegetation for teicoplanin high dose and vancomycin, respectively; P less than 0.05). Against E. faecium BM4172 glycopeptide-gentamicin combinations were the most effective regimens in vitro and in vivo (2.8 +/- 0.7 and 3.5 +/- 1.3 log10 CFU/g of vegetation for vancomycin plus gentamicin and teicoplanin standard dose plus gentamicin, respectively; P < 0.05 versus single-drug regimens). We concluded that high-dose teicoplanin or the combination of a glycopeptide antibiotic plus gentamicin was effective against experimental infection due to E. faecium with low-level resistance to vancomycin. PMID:1834013
Bloodstream Infections in Hospitalized Children: Epidemiology and Antimicrobial Susceptibilities.
Larru, Beatriz; Gong, Wu; Vendetti, Neika; Sullivan, Kaede V; Localio, Russell; Zaoutis, Theoklis E; Gerber, Jeffrey S
2016-05-01
Bloodstream infection is a major cause of morbidity and mortality. Much of our understanding of the epidemiology and resistance patterns of bloodstream infections comes from studies of hospitalized adults. We evaluated the epidemiology and antimicrobial resistance of bloodstream infections occurring during an 11-year period in a large, tertiary care children's hospital in the US. All positive blood cultures were identified retrospectively from clinical microbiology laboratory records. We excluded repeat positive cultures with the same organism from the same patient within 30 days and polymicrobial infections. We identified 8196 unique episodes of monomicrobial bacteremia in 5508 patients. Overall, 46% were community onset, 72% were Gram-positive bacteria, 22% Gram-negative bacteria and 5% Candida spp. Coagulase negative Staphylococcus was the most common isolated organism. ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) accounted for 20% of episodes. No S. aureus isolate was resistant to vancomycin or linezolid, and no increase in vancomycin minimum inhibitory concentration among methicillin-resistant S. aureus was observed during the study period. Clinically significant increases in vancomycin-resistant Enterococcus, ceftazidime-resistant P. aeruginosa or carbapenem-resistant Enterobacteriaceae were not observed during the study period; however, rates of methicillin-resistant S. aureus increased over time (P < 0.01). Gram-positive and ESKAPE organisms are leading causes of bacteremia in hospitalized children. Although antimicrobial resistance patterns were favorable compared with prior reports of hospitalized adults, multicenter studies with continuous surveillance are needed to identify trends in the emergence of antimicrobial resistance in this setting.
Evolutionary origins of the emergent ST796 clone of vancomycin resistant Enterococcus faecium
Buultjens, Andrew H.; Lam, Margaret M.C.; Ballard, Susan; Monk, Ian R.; Mahony, Andrew A.; Grabsch, Elizabeth A.; Grayson, M. Lindsay; Pang, Stanley; Coombs, Geoffrey W.; Robinson, J. Owen; Seemann, Torsten; Howden, Benjamin P.
2017-01-01
From early 2012, a novel clone of vancomycin resistant Enterococcus faecium (assigned the multi locus sequence type ST796) was simultaneously isolated from geographically separate hospitals in south eastern Australia and New Zealand. Here we describe the complete genome sequence of Ef_aus0233, a representative ST796 E. faecium isolate. We used PacBio single molecule real-time sequencing to establish a high quality, fully assembled genome comprising a circular chromosome of 2,888,087 bp and five plasmids. Comparison of Ef_aus0233 to other E. faecium genomes shows Ef_aus0233 is a member of the epidemic hospital-adapted lineage and has evolved from an ST555-like ancestral progenitor by the accumulation or modification of five mosaic plasmids and five putative prophage, acquisition of two cryptic genomic islands, accrued chromosomal single nucleotide polymorphisms and a 80 kb region of recombination, also gaining Tn1549 and Tn916, transposons conferring resistance to vancomycin and tetracycline respectively. The genomic dissection of this new clone presented here underscores the propensity of the hospital E. faecium lineage to change, presumably in response to the specific conditions of hospital and healthcare environments. PMID:28149688
Bocanegra-Ibarias, Paola; Flores-Treviño, Samantha; Camacho-Ortiz, Adrián; Morfin-Otero, Rayo; Villarreal-Treviño, Licet; Llaca-Díaz, Jorge; Martínez-Landeros, Erik Alan; Rodríguez-Noriega, Eduardo; Calzada-Güereca, Andrés; Maldonado-Garza, Héctor Jesús; Garza-González, Elvira
2016-01-01
Enterococcus faecium has emerged as a multidrug-resistant nosocomial pathogen involved in outbreaks worldwide. Our aim was to determine the antimicrobial susceptibility, biofilm production, and clonal relatedness of vancomycin-resistant E. faecium (VREF) clinical isolates from two hospitals in Mexico. Consecutive clinical isolates (n=56) were collected in two tertiary care hospitals in Mexico from 2011 to 2014. VREF isolates were characterized by phenotypic and molecular methods including pulsed-field gel electrophoresis (PFGE). VREF isolates were highly resistant to vancomycin, erythromycin, norfloxacin, high-level streptomycin, and teicoplanin, and showed lower resistance to tetracycline, nitrofurantoin and quinupristin-dalfopristin. None of the isolates were resistant to linezolid. The vanA gene was detected in all isolates. Two VanB phenotype-vanA genotype isolates, highly resistant to vancomycin and susceptible to teicoplanin, were detected. Furthermore, 17.9% of the isolates were classified as biofilm producers, and the espfm gene was found in 98.2% of the isolates. A total of 37 distinct PFGE patterns and 6 clones (25% of the isolates as clone A, 5.4% as clone B, and 3.6% each as clone C, D, E, and F) were detected. Clone A was detected in 5 different wards of the same hospital during 14 months of surveillance. The high resistance to most antimicrobial agents and the moderate cross-transmission of VREF detected accentuates the need for continuous surveillance of E. faecium in the hospital setting. This is also the first reported incidence of the E. faecium VanB phenotype-vanA genotype in the Americas. Copyright © 2015 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
Rizzotti, Lucia; Rossi, Franca; Torriani, Sandra
2016-12-01
In this study nine strains of Enterococcus faecalis and 12 strains of Enterococcus faecium, isolated from different sample types in the swine meat chain and previously characterized for the presence of antibiotic resistance genes, were examined for phenotypic tolerance to seven biocides (chlorexidine, benzalkonium chloride, triclosan, sodium hypochlorite, 2-propanol, formaldehyde and hydrogen peroxide) and resistance to nine antibiotics (ampicillin, vancomycin, gentamicin, kanamycin, streptomycin, erythromycin, clindamycin, tetracycline and chloramphenicol). Moreover, the presence of efflux system encoding genes qacA/B, qacC, qacE, qacEΔ1, emeA, and stress response genes, sigV and gsp65, involved in the tolerance to biocides, was analysed. Most strains were not tolerant to the biocides, but showed minimum inhibitory concentrations (MICs) higher than the recommended cut-off values for all the antibiotics tested, except for vancomycin and chloramphenicol. Only weak correlations, if any, were found between biocide and antibiotic resistance data. One E. faecalis strain was tolerant to triclosan and one E. faecium strain, with higher tolerance to chlorexidine than the other strains tested, was found to carry a qacA/B gene. Our results indicated that phenotypic resistance to antibiotics is very frequent in enterococcal isolates from the swine meat chain, but phenotypic tolerance to biocides is not common. On the other hand, the gene qacA/B was found for the first time in the species E. faecium, an indication of the necessity to adopt measures suitable to control the spread of biocide resistance determinants among enterococci. Copyright © 2016 Elsevier Ltd. All rights reserved.
Okamura, Shinya; Nishiyama, Eri; Yamazaki, Tomohiro; Otsuka, Nao; Taniguchi, Shoko; Ogawa, Wakano; Hatano, Tsutomu; Tsuchiya, Tomofusa; Kuroda, Teruo
2015-06-01
Multidrug-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin resistant enterococci (VRE), cause serious infections at clinical sites, for which the development of new drugs is necessary. We screened candidates for new antibiotics and investigated its action mechanism. An antimicrobial compound was isolated from an extract of Nuphar japonicum. Its chemical structure was determined by NMR, MS, and optical rotation. We measured its minimum inhibitory concentration (MIC) using the microdilution method. The effects of the compound on DNA gyrase and DNA topoisomerase IV were investigated with DNA supercoiling, decatenation, and cleavage assay. We isolated and identified 6,6'-dihydroxythiobinupharidine as the antimicrobial compound. The MIC of this compound was 1-4 μg/mL against various MRSA and VRE strains. We also demonstrated that this compound inhibited DNA topoisomerase IV (IC50 was 10-15 μM), but not DNA gyrase in S. aureus, both of which are known to be the targets of quinolone antibiotics and necessary for DNA replication. However, this compound only exhibited slight cross-resistance to norfloxacin-resistant S. aureus, which indicated that DTBN might inhibit other targets besides topoisomerase IV. These results suggest that 6,6'-dihydroxythiobinupharidine may be a potent candidate or seed for novel antibacterial agents. DTBN from N. japonicum showed anti-MRSA and anti-VRE activities. DTBN might be involved in the inhibition of DNA topoisomerase IV. DTBN might be useful as a seed compound. The information on the inhibition mechanism of DTBN will be useful for the modification of DTBN towards developing novel anti-MRSA and anti-VRE drug. Copyright © 2015 Elsevier B.V. All rights reserved.
Awosile, Babafela; German, Gregory; Rodriguez-Lecompte, Juan Carlos; Saab, Matthew E; Heider, Luke C; McClure, J Trenton
2018-04-05
The aim of this study was to determine the frequency of fecal carriage of vancomycin-resistant Enterococcus spp. and Escherichia coli with reduced susceptibilities to extended-spectrum cephalosporins (ESCs) and quinolones in humans on Prince Edward Island, Canada. Convenience fecal samples from individuals on Prince Edward Island were screened phenotypically using selective culture and genotypically using multiplex polymerase chain reactions to detect E. coli and Enterococcus spp. resistant to critically important antimicrobials. Twenty-six (5.3%) of 489 individuals had E. coli with reduced susceptibility to ESCs. Twenty-five (96.2%) of the 26 isolates harbored bla TEM , 18 (69.2%) harbored bla CMY-2 , 16 (61.5%) harbored bla CTX-M groups, 2 (7.7%) harbored bla SHV genes. None of the ESC-resistant E. coli was positive for carbapenem resistance. Twenty-one (8.3%) of 253 individuals had E. coli isolates with reduced quinolone susceptibility. All 21 isolates were positive for at least 1 qnr gene, with 3 (14.3%) isolates positive for qnrB, 5 (23.8%) positive for qnrS, and 13 (61.9%) positive for both qnrB and qnrS genes. All the enterococci isolates were vancomycin-susceptible. Higher susceptibility to the critically important antimicrobials was found in this study. This study can serve as a baseline for future antimicrobial resistance surveillance within this region.
Castro-Nallar, Eduardo; Valenzuela, Sandro L.; Baquedano, Sebastián; Sánchez, Carolina; Fernández, Fabiola
2017-01-01
ABSTRACT We present draft genome sequences of five Enterococcus species from patients suspected of Clostridium difficile infection. Genome completeness was confirmed by presence of bacterial orthologs (97%). Gene searches using Hidden-Markov models revealed that the isolates harbor between seven and 11 genes involved in antibiotic resistance to tetracyclines, beta-lactams, and vancomycin. PMID:28522725
Park, I S; Lin, C H; Walsh, C T
1997-09-16
The VanC phenotype for clinical resistance of enterococci to vancomycin is exhibited by Enterococcus gallinarum and Enterococcus casseliflavus. Based on the detection of the cell precursor UDP-N-acetylmuramic acid pentapeptide intermediate terminating in D-Ala-D-Ser instead of D-Ala-D-Ala, it has been predicted that the VanC ligase would be a D-Ala-D-Ser rather than a D-Ala-D-Ala ligase. Overproduction of the E. casseliflavus ATCC 25788 vanC2 gene in Escherichia coli and its purification to homogeneity allowed demonstration of ATP-dependent D-Ala-D-Ser ligase activity. The kcat/Km2 (Km2 = Km for D-Ser or C-terminal D-Ala) ratio for D-Ala-D-Ser/D-Ala-D-Ala dipeptide formation is 270/0.69 for a 400-fold selection against D-Ala in the C-terminal position. VanC2 also has substantial D-Ala-D-Asn ligase activity (kcat/Km2 = 74 mM-1min-1).
Faour Kassem, Diana; Shahar, Naama; Ocampo, Smadar; Bader, Tarif; Zonis, Zeev; Glikman, Daniel
2017-05-01
As the civil war in Syria enters its fifth year, the Israeli government continues to provide humanitarian aid to Syrian civilians in Israeli hospitals. Many wounded Syrian children are treated at the Galilee Medical Center (GMC). Due to the patients' incomplete medical history and increasing infection rates in Syria, contact isolation and screening cultures for multi-drug resistant bacteria (MDR's) are conducted upon admission for all Syrian children. To describe the rate of MDR carriage in Syrian children and compare it to hospitalized Israeli children. Prospective collection of screening culture data of Syrian patients admitted to GMC between 6/2013-11/2014 and comparison with Israeli children admitted between 1-3/2014. Extended-spectrum beta- lactamase-producing Enterobateriaceae (ESBL), Vancomycin-resistant Enterococcus (VRE), Carbapenem-resistant Enterobacteriaceae (CRE), and Methicillin-resistant Staphylococcus aureus (MRSA) were considered MDR's. Of 47 pediatric Syrian patients, 41 were severely wounded. MDR's were found in 37 (79%) children; most of the isolates were ESBL+ Escherichia coli. Over half of the ESBL's were resistant to additional antibiotics such as sulfa and quinolones; no resistance to amikacin was found. In comparison, in 6 of 40 (15%) Israeli children, MDR's (all ESBL's) were found (p<0.001). In hospitalized Syrian children, contact isolation and screening cultures for MDR's have an important role in the prevention of nosocomial transmission and establishment of empiric antimicrobial protocols. In suspected infections in Syrian children, amikacin and carbapenems are the antimicrobials of choice. MDR's are carried to a lesser extent in Israeli children but due to their importance, further largescale research is needed.
Lemmen, S W; Häfner, H; Zolldann, D; Stanzel, S; Lütticken, R
2004-03-01
We prospectively studied the difference in detection rates of multi-resistant Gram-positive and multi-resistant Gram-negative bacteria in the inanimate environment of patients harbouring these organisms. Up to 20 different locations around 190 patients were surveyed. Fifty-four patients were infected or colonized with methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant enterococci (VRE) and 136 with multi-resistant Gram-negative bacteria. The environmental detection rate for MRSA or VRE was 24.7% (174/705 samples) compared with 4.9% (89/1827 samples) for multi-resistant Gram-negative bacteria (P<0.001). Gram-positive bacteria were isolated more frequently than Gram-negatives from the hands of patients (P<0.001) and hospital personnel (P=0.1145). Environmental contamination did not differ between the intensive care units (ICUs) and the general wards (GWs), which is noteworthy because our ICUs are routinely disinfected twice a day, whereas GWs are cleaned just once a day with detergent. Current guidelines for the prevention of spread of multi-resistant bacteria in the hospital setting do not distinguish between Gram-positive and Gram-negative isolates. Our results suggest that the inanimate environment serves as a secondary source for MRSA and VRE, but less so for Gram-negative bacteria. Thus, strict contact isolation in a single room with complete barrier precautions is recommended for MRSA or VRE; however, for multi-resistant Gram-negative bacteria, contact isolation with barrier precautions for close contact but without a single room seems sufficient. This benefits not only the patients, but also the hospital by removing some of the strain placed on already over-stretched resources.
Giske, Christian G.; Haldorsen, Bjørg; Matuschek, Erika; Schønning, Kristian; Leegaard, Truls M.; Kahlmeter, Gunnar
2014-01-01
Different antimicrobial susceptibility testing methods to detect low-level vancomycin resistance in enterococci were evaluated in a Scandinavian multicenter study (n = 28). A phenotypically and genotypically well-characterized diverse collection of Enterococcus faecalis (n = 12) and Enterococcus faecium (n = 18) strains with and without nonsusceptibility to vancomycin was examined blindly in Danish (n = 5), Norwegian (n = 13), and Swedish (n = 10) laboratories using the EUCAST disk diffusion method (n = 28) and the CLSI agar screen (n = 18) or the Vitek 2 system (bioMérieux) (n = 5). The EUCAST disk diffusion method (very major error [VME] rate, 7.0%; sensitivity, 0.93; major error [ME] rate, 2.4%; specificity, 0.98) and CLSI agar screen (VME rate, 6.6%; sensitivity, 0.93; ME rate, 5.6%; specificity, 0.94) performed significantly better (P = 0.02) than the Vitek 2 system (VME rate, 13%; sensitivity, 0.87; ME rate, 0%; specificity, 1). The performance of the EUCAST disk diffusion method was challenged by differences in vancomycin inhibition zone sizes as well as the experience of the personnel in interpreting fuzzy zone edges as an indication of vancomycin resistance. Laboratories using Oxoid agar (P < 0.0001) or Merck Mueller-Hinton (MH) agar (P = 0.027) for the disk diffusion assay performed significantly better than did laboratories using BBL MH II medium. Laboratories using Difco brain heart infusion (BHI) agar for the CLSI agar screen performed significantly better (P = 0.017) than did those using Oxoid BHI agar. In conclusion, both the EUCAST disk diffusion and CLSI agar screening methods performed acceptably (sensitivity, 0.93; specificity, 0.94 to 0.98) in the detection of VanB-type vancomycin-resistant enterococci with low-level resistance. Importantly, use of the CLSI agar screen requires careful monitoring of the vancomycin concentration in the plates. Moreover, disk diffusion methodology requires that personnel be trained in interpreting zone edges. PMID:24599985
Wong, Titus; Woznow, Tracey; Petrie, Mike; Murzello, Elena; Muniak, Allison; Kadora, Amin; Bryce, Elizabeth
2016-04-01
Two ultraviolet-C (UVC)-emitting devices were evaluated for effectiveness in reducing methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and Clostridium difficile (CD). Six surfaces in rooms previously occupied by patients with MRSA, VRE, or CD were cultured before and after cleaning and after UVC disinfection. In a parallel laboratory study, MRSA and VRE suspended in trypticase soy broth were inoculated onto stainless steel carriers in triplicate, placed in challenging room areas, subjected to UVC, and subcultured to detect growth. Sixty-one rooms and 360 surfaces were assessed. Before cleaning, MRSA was found in 34.4%, VRE was found in 29.5%, and CD was found in 31.8% of rooms. Cleaning reduced MRSA-, VRE-, and CD-contaminated rooms to 27.9%, 29.5%, and 22.7%, respectively (not statistically significant). UVC disinfection further reduced MRSA-, VRE-, and CD-contaminated rooms to 3.3% (P = .0003), 4.9% (P = .0003), and 0% (P = .0736), respectively. Surface colony counts (excluding floors) decreased from 88.0 to 19.6 colony forming units (CFU) (P < .0001) after manual cleaning; UVC disinfection further reduced it to 1.3 CFU (P = .0013). In a multivariable model of the carrier study, the odds of detecting growth in broth suspensions after UVC disinfection were 7 times higher with 1 machine (odds ratio, 6.96; 95% confidence interval, 3.79-13.4) for a given organism, surface, and concentration. UVC devices are effective adjuncts to manual cleaning but vary in their ability to disinfect high concentrations of organisms in the presence of protein. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Prevalence and antibiotic resistance of Enterococcus strains isolated from poultry.
Stępień-Pyśniak, Dagmara; Marek, Agnieszka; Banach, Tomasz; Adaszek, Łukasz; Pyzik, Ewelina; Wilczyński, Jarosław; Winiarczyk, Stanisław
2016-06-01
The aim of this study was to evaluate the frequency of occurrence of bacteria of the genus Enterococcus in poultry, to identify them by means of matrixassisted laser desorption/ionisation time-of-flight mass spectrometry (MALDITOF MS), and to analyse the antimicrobial susceptibility of the isolated strains to the drugs most frequently used in poultry. The material for the bacteriological tests was obtained mainly from the heart (97%) of the birds investigated. Of a total of 2,970 samples tested, 911 (30.7%) tested positive for Enterococcus spp. Enterococci were detected in broilers (88.1%), laying hens (5.3%), turkeys (3.9%), breeding hens (2.2%), and geese (0.4%). The most commonly identified species were Enterococcus (E.) faecalis (74.7%), E. faecium (10.1%), E. gallinarum (5.5%), E. hirae (4.6%), and E. cecorum (4.1%). The most frequent resistance properties were resistance to sulphamethoxazole/trimethoprim (88%), tylosin (71.4%), enrofloxacin (69.4%), doxycycline (67.3%), and lincomycin/spectinomycin (56.1%). Only one vancomycin-resistant Enterococcus, E. cecorum from a broiler, was found.
Panesso, Diana; Abadía-Patiño, Lorena; Vanegas, Natasha; Reynolds, Peter E.; Courvalin, Patrice; Arias, Cesar A.
2005-01-01
The vanC glycopeptide resistance gene cluster encodes enzymes required for synthesis of peptidoglycan precursors ending in d-Ala-d-Ser. Enterococcus gallinarum BM4174 and SC1 are constitutively and inducibly resistant to vancomycin, respectively. Analysis of peptidoglycan precursors in both strains indicated that UDP-MurNAc-tetrapeptide and UDP-MurNAc-pentapeptide[d-Ser] were synthesized in E. gallinarum SC1 only in the presence of vancomycin (4 μg/ml), whereas the “resistance” precursors accumulated in the cytoplasm of BM4174 cells under both inducing and noninducing conditions. Northern hybridization and reverse transcription-PCR experiments revealed that all the genes from the cluster, vanC-1, vanXYC, vanT, vanRC, and vanSC, were transcribed from a single promoter. In the inducible SC1 isolate, transcriptional regulation appeared to be responsible for inducible expression of resistance. Promoter mapping in E. gallinarum BM4174 revealed that the transcriptional start site was located 30 nucleotides upstream from vanC-1 and that the −10 promoter consensus sequence had high identity with that of the vanA cluster. Comparison of the deduced sequence of the vanSC genes from isolates with constitutive and inducible resistance revealed several amino acid substitutions located in the X box (R200L) and in the region between the F and G2 boxes (D312N, D312A, and G320S) of the putative sensor kinase proteins from isolates with constitutive resistance. PMID:15728903
Jelden, Katelyn C; Gibbs, Shawn G; Smith, Philip W; Hewlett, Angela L; Iwen, Peter C; Schmid, Kendra K; Lowe, John J
2017-06-01
An ultraviolet germicidal irradiation (UVGI) generator (the TORCH, ClorDiSys Solutions, Inc.) was used to compare the disinfection of surface coupons (plastic from a bedrail, stainless steel, and chrome-plated light switch cover) in a hospital room with walls coated with ultraviolet (UV)-reflective paint (Lumacept) or standard paint. Each surface coupon was inoculated with methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant Enterococcus faecalis (VRE), placed at 6 different sites within a hospital room coated with UV-reflective paint or standard paint, and treated by 10 min UVC exposure (UVC dose of 0-688 mJ/cm 2 between sites with standard paint and 0-553 mJ/cm 2 with UV-reflective paint) in 8 total trials. Aggregated MRSA concentrations on plastic bedrail surface coupons were reduced on average by 3.0 log 10 (1.8 log 10 Geometric Standard Deviation [GSD]) with standard paint and 4.3 log 10 (1.3 log 10 GSD) with UV-reflective paint (p = 0.0005) with no significant reduction differences between paints on stainless steel and chrome. Average VRE concentrations were reduced by ≥4.9 log 10 (<1.2 log 10 GSD) on all surface types with UV-reflective paint and ≤4.1 log 10 (<1.7 log 10 GSD) with standard paint (p < 0.05). At 5 aggregated sites directly exposed to UVC light, MRSA concentrations on average were reduced by 5.2 log 10 (1.4 log 10 GSD) with standard paint and 5.1 log 10 (1.2 log 10 GSD) with UV-reflective paint (p = 0.017) and VRE by 4.4 log 10 (1.4 log 10 GSD) with standard paint and 5.3 log 10 (1.1 log 10 GSD) with UV-reflective paint (p < 0.0001). At one indirectly exposed site on the opposite side of the hospital bed from the UVGI generator, MRSA concentrations on average were reduced by 1.3 log 10 (1.7 log 10 GSD) with standard paint and 4.7 log 10 (1.3 log 10 GSD) with UV-reflective paint (p < 0.0001) and VRE by 1.2 log 10 (1.5 log 10 GSD) with standard paint and 4.6 log 10 (1.1 log 10 GSD) with UV-reflective paint (p < 0.0001). Coating hospital room walls with UV-reflective paint enhanced UVGI disinfection of nosocomial bacteria on various surfaces compared to standard paint, particularly at a surface placement site indirectly exposed to UVC light.
Hanchi, Hasna; Hammami, Riadh; Gingras, Hélène; Kourda, Rim; Bergeron, Michel G; Ben Hamida, Jeannette; Ouellette, Marc; Fliss, Ismail
2017-03-01
The aim of this study was to evaluate the efficacy of durancin 61A alone or in combination with nisin, pediocin PA-1, reuterin, microcin J25, vancomycin or tetracycline as an inhibitor of resistant clinical pathogens and to shed light on its mode of action. Durancin and reuterin were effective inhibitors of Clostridium difficile, vancomycin-resistant Enterococcus faecium and methicillin-resistant Staphylococcus aureus. The combination of durancin and reuterin was highly synergistic against C. difficile (fractional inhibitory concentration index = 0.2). Durancin/vancomycin combination was synergistic against S. aureus ATCC ® 700699 (fractional inhibitory concentration index = 0.3). Conclusion & future perspective: Durancin 61A alone or combined with other bacteriocins or antibiotics may therefore provide a possible therapeutic option for the treatment of infections by these pathogens.
[Effect of tigecycline on selected multiresistant bacteria].
Kolár, Milan; Hanulík, Vojtech; Chromá, Magdalena
2009-02-01
Currently, one of the most serious problems in medicine is the increasing resistance of pathogenic bacteria to antimicrobial drugs. Bacterial resistance may potentially be solved in particular by decreasing the consumption of antibiotics and increasing the quality of their use. Equally important, however, is the development of new antimicrobial drugs and their use in clinical practice. One of the new antibiotic agents is tigecycline of the glycylcycline group. The presented work aimed at assessing its in vitro effect on selected multiresistant bacteria. Clinical samples were collected from patients hospitalized in the University Hospital Olomouc to isolate ESBL- and AmpC beta-lactamase-producing enterobacteria, methicillin-resistant Staphylococcus aureus (MRSA) strains and vancomycin-resistant enterococci (VRE). In the isolates, susceptibility to tigecycline was determined by the standard microdilution method. A total of 350 isolates were tested (100 MRSA, 10 0 VRE, 100 ESBL-positive and 50 AmpC-positive enterobacteria). In the cases of VRE and MRSA, no resistance to tigecycline was detected and the minimum inhibitory concentrations (MIC) did not exceed 0.25 mg/l and 0.5 mg/l, respectively. In ESBL-positive enterobacteria, 97% susceptibility (MIC range = or <0.06 to 4 mg/l) was detected; in AmpC-positive enterobacteria, the MIC range was = or <0.03-2 mg/l and susceptibility reached 98 %. Tigecycline may be considered a suitable alternative in the treatment of infections caused by the above-mentioned multiresistant strains.
Cleaning the grey zones of hospitals: A prospective, crossover, interventional study.
Semret, Makeda; Dyachenko, Alina; Ramman-Haddad, Leila; Belzile, Eric; McCusker, Jane
2016-12-01
Environmental cleaning is a fundamental principle of infection prevention in hospitals, but its role in reducing transmission of health care-acquired pathogens has been difficult to prove experimentally. In this study we analyze the influence of cleaning previously uncleaned patient care items, grey zones (GZ), on health care-acquired transmission rates. The intervention consisted of specific GZ cleaning by an extra cleaner (in addition to routine cleaning) on 2 structurally different acute care medical wards for a period of 6 months each, in a crossover design. Data on health care-acquired transmissions of vancomycin-resistant enterococci (VRE), methicillin-resistant Staphylococcus aureus, and Clostridium difficile were collected during both periods. Adjusted incidence rate ratios (IRRs) using Poisson regression were calculated to compare transmission of pathogens between both periods on both wards. During the intervention VRE transmission was significantly decreased (2-fold) on the ward where patients had fewer roommates; cleaning of GZ did not have any effect on the ward with multiple-occupancy rooms. There was no impact on methicillin-resistant S aureus transmission and only a nonsignificant decrease in transmission of C difficile. Our data provide evidence that targeted cleaning interventions can reduce VRE transmission when rooming conditions are optimized; such interventions can be cost-effective when the burden of VRE is significant. Enhanced cleaning interventions are less beneficial in the context of room sharing where many other factors contribute to transmission of pathogens. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Bertrand, X; Thouverez, M; Bailly, P; Cornette, C; Talon, D
2000-06-01
We carried out a surveillance study of Enterococcus faecium isolates in the Franche-Comtéregion of France over three years. Clinical and epidemiological strains were characterized by antibiotype and genotype (pulsed field gel electrophoresis, PFGE). Three case-control studies were performed to identify risk factors for colonization/infection with three defined resistant phenotypes (amoxycillin, high-level gentamicin and high-level kanamycin). The crude incidence of colonization/infection was 0.156%, and 68.8% of cases were classified as hospital-acquired. Incidence did not differ according to the type of hospitalization (middle term or acute care). The urinary tract was the major site of infection. Resistance rates were: 45.8% (amoxycillin), 18.7% (high-level gentamicin), 61.4% (high-level kanamycin) and 3.1% (vancomycin). No isolate produced b-lactamase and one isolate carried the vanA gene. PFGE revealed two major epidemic patterns each including resistant strains isolated in different hospitals and during different periods in the study. Previous antimicrobial treatment was not identified as a risk factor for colonization/infection with any resistant phenotype. Despite the low frequency of vancomycin-resistant isolates in this study, resistant strains were widely disseminated and had characteristics enabling them to persist and spread. If these strains acquired the vanA gene, the risk of an outbreak would be large. So, the prevalence of vancomycin-resistant E. faecium in hospitals should be carefully monitored in the future. Copyright 2000 The Hospital Infection Society.
Lee, Kyungwon; Lim, Chang Hyun; Cho, Ji Hyun; Lee, Wee Gyo; Uh, Young; Kim, Hwi Jun; Yong, Dongeun
2006-01-01
A nationwide antimicrobial resistance surveillance has been conducted since 1997 in Korea. In this study, susceptibility test data generated in 2004 by KONSAR group hospitals were analyzed and compared to those at a commercial laboratory. In hospitals, the rank orders of organisms in 2004 were identical to those in 2003. The most prevalent species was Staphylococcus aureus (20.2%) in hospitals, but Escherichia coli (29.7%) in the commercial laboratory. The proportions of Enterococcus faecium to all isolates of Enterococcus faecalis plus E. faecium were 47.2% in hospitals and 24.9% in the commercial laboratory. The mean resistance rates of significant antimicrobial-organism combinations in hospitals were: oxacillin-resistant S. aureus (68%), oxacillin-resistant (penicillin-nonsusceptible) Streptococcus pneumoniae (68%), vancomycin-resistant E. faecium (25%), cefotaxime-resistant E. coli (14%), ceftazidime- and cefoxitin-resistant Klebsiella pneumoniae (34% and 32%, respectively), and imipenem-resistant Acinetobacter spp. and Pseudomonas aeruginosa (17% and 24%, respectively). In conclusion, oxacillin-resistant staphylococci, expanded-spectrum cephalosporin-resistant K. pneumoniae, and imipenem-resistant Acinetobacter spp. and P. aeruginosa were prevalent in 2004. Increasing trends were observed for vancomycin-resistant E. faecium, cefoxitin-resistant E. coli and K. pneumoniae, and imipenem-resistant Acinetobacter spp. and P. aeruginosa. Certain antimicrobial-organism combinations were also prevalent among the commercial laboratory-tested strains. PMID:17066507
Toru, Milkiyas; Beyene, Getnet; Kassa, Tesfaye; Gizachew, Zeleke; Howe, Rawleigh; Yeshitila, Biruk
2018-05-08
This study was done to determine the prevalence and phenotypic characterization of Enterococcus species isolated from clinical samples of pediatric patients in Jimma University Specialized Hospital, Southwest Ethiopia. The overall prevalence of Enterococci species was 5.5% (22/403). Five (22.7%) of Enterococci species were vancomycin resistant. Haemolysin, gelatinase and biofilm production was seen among 45.5, 68.2 and 77.3% of isolates respectively. The overall rate of antibiotic resistance was 95.5% (21/22). High resistance was observed against norfloxacin (87.5%), and tetracycline (77.3%). Whereas, low resistance (36.5%) was observed against ciprofloxacin and eighteen (80.8%) of the isolates were multi-drug resistant.
Adams, Hannah M; Li, Xiang; Mascio, Carmela; Chesnel, Laurent; Palmer, Kelli L
2015-07-01
Clostridium difficile infection (CDI) is an urgent public health concern causing considerable clinical and economic burdens. CDI can be treated with antibiotics, but recurrence of the disease following successful treatment of the initial episode often occurs. Surotomycin is a rapidly bactericidal cyclic lipopeptide antibiotic that is in clinical trials for CDI treatment and that has demonstrated superiority over vancomycin in preventing CDI relapse. Surotomycin is a structural analogue of the membrane-active antibiotic daptomycin. Previously, we utilized in vitro serial passage experiments to derive C. difficile strains with reduced surotomycin susceptibilities. The parent strains used included ATCC 700057 and clinical isolates from the restriction endonuclease analysis (REA) groups BI and K. Serial passage experiments were also performed with vancomycin-resistant and vancomycin-susceptible Enterococcus faecium and Enterococcus faecalis. The goal of this study is to identify mutations associated with reduced surotomycin susceptibility in C. difficile and enterococci. Illumina sequence data generated for the parent strains and serial passage isolates were compared. We identified nonsynonymous mutations in genes coding for cardiolipin synthase in C. difficile ATCC 700057, enoyl-(acyl carrier protein) reductase II (FabK) and cell division protein FtsH2 in C. difficile REA type BI, and a PadR family transcriptional regulator in C. difficile REA type K. Among the 4 enterococcal strain pairs, 20 mutations were identified, and those mutations overlap those associated with daptomycin resistance. These data give insight into the mechanism of action of surotomycin against C. difficile, possible mechanisms for resistance emergence during clinical use, and the potential impacts of surotomycin therapy on intestinal enterococci. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Antimicrobial Resistance of Enterococcus Species Isolated from Chicken in Turkey
Sanlibaba, Pınar; Tezel, Basar Uymaz; Senturk, Esra
2018-01-01
Abstract The aim of the present work was to provide information about Enterococcus strains isolated from pre-packaged chicken samples in Ankara (Turkey), focusing on their prevalence, phenotypic and genotypic characteristics, and antibiotic resistance. We report the first study on the occurrence of antibiotic resistant enterococci in pre-packaged chicken samples in Ankara. A total of 97 suspicious enterococcal isolates were identified from 122 chicken samples. All isolates were identified to species level by phenotypic and molecular methods. In the 16S rDNA sequence analysis, Enterococcus faecium (61.85%) and Enterococcus faecalis (38.15%) were found to be the most frequently detected Enterococcus spp. Of the 97 isolates tested for hemolytic activity, 12.37% enterococcal strains were β-hemolytic. β-Hemolysin was most prevalent among E. faecium (58.33%) compared to E. faecalis (41.66%). Disk diffusion method was used for determining of antibiotic resistance. The analysis of the antimicrobial resistance of the 97 Enterococcus isolates revealed that the resistance to kanamycin (98.96%), rifampicin (80.41%) and ampicillin (60.82%) was most frequent. Furthermore, resistance to erythromycin (38.14%) and ciprofloxacin (34.02%) was also observed. The frequencies of resistance to tetracycline (9.27%), penicillin G (8.24%), and chloramphenicol (3.09%), gentamicin (2.06%) and streptomycin (1.03%) were low. None of the isolates was resistant to vancomycin. Multi-drug resistance was found in 97.93% of Enterococcus strains. E. faecium strains showed a more resistant phenotype than E. faecalis strains according to the antibiotic resistance levels. The results of this study indicated that chicken meat is a potential reservoir for the transmission of antibiotic resistance from animals to humans. PMID:29805287
Pesavento, G; Calonico, C; Ducci, B; Magnanini, A; Lo Nostro, A
2014-08-01
Food specimens were analyzed in order to research Enterococcus spp.: 636 samples of raw meat (227 beef, 238 poultry, and 171 pork), 278 samples of cheese (110 fresh soft cheese and 168 mozzarella cheese), 214 samples of ready-to-eat salads, and 187 samples of ham. 312 strains of Enterococcus spp samples were isolated, then identified and submitted to susceptibility tests against 11 antimicrobial agents. The predominant species were Enterococcus faecalis in raw meat and Enterococcus faecium in retail products. Low percentages of microorganisms were resistant to vancomycin (3.53%), teicoplanin (2.24%), linezolid (0.32%), and amoxicillin in combination with clavulanic acid (0.32%). A high percentage of resistance was noted in E. faecalis at high level gentamicin (21.9%) and tetracycline (60.6%). In general, strains of E. faecalis were more resistant than E. faecium. Enterococci should be considered not only potential pathogens, but also a reservoir of genes encoding antibiotic resistance which can be transferred to other microorganisms. Continuous monitoring of their incidence and emerging resistance is important in order to identify foods which potentially represent a real risk to the population, and to ensure effective treatment of human enterococcal infections. Copyright © 2014 Elsevier Ltd. All rights reserved.
MiBAlert-a new information tool to fight multidrug-resistant bacteria in the hospital setting.
Olesen, Bente; Anhøj, Jacob; Rasmussen, Kenneth Palle; Mølbak, Kåre; Voldstedlund, Marianne
2016-11-01
Although the timely isolation of patients is an essential intervention to limit spread of drug-resistant bacteria, information about the colonization status is often unavailable or lost when patients are readmitted or transferred between hospitals. Therefore, carriers of drug resistant bacteria are not recognized sufficiently early, and proper and timely isolation precautions are not taken. Consequently, resistant bacteria of public health concerns including vancomycin resistant enterococci (VRE) and methicillin resistant Staphylococcus aureus (MRSA) can spread epidemically. To ensure timely identification and proper isolation of such patients we developed an automatic real-time alert of carriers of drug resistant bacteria. The aim of this paper is to describe the system, called MiBAlert, and share the initial experiences in connection with an outbreak of VRE in the greater Copenhagen area (the Capital region), Denmark. We obtained data on cases of VRE from hospitals in Copenhagen during the period when the first version of MiBAlert was implemented and log-data on the use of MiBAlert. Furthermore, a survey was conducted among 88 staff members to investigate their experiences of MiBAlert. The alert is a tool directed toward healthcare personnel accessing the electronic health record (EHR) and those further involved in the care and treatment of the patient. It is based on a web service using data from the national microbiological database, MiBa. MiBAlert is a real-time electronic non-intrusive alert generated automatically in the header of the EHR each time record is accessed. On February 15, 2015 a pilot version of MiBAlert was launched. All positive tests for VRE throughout 1year were shown with alert status by MiBAlert visible to all medical staff with access to EHR. The alert system was automatically updated directly in the EHR across the five hospitals in the Capital region. We found that the system performed satisfactorily, being operational 24/7 all 135 trial days, apart from 72min, for all the hospitals. Of the staff who responded to the survey, 82% considered that MiBAlert overall improved compliance with isolation precautions regarding VRE-positive patients. We found a marked decline of new patients infected or colonized with VRE concomitant with the implementation of MiBAlert and the survey results. We found that MiBAlert was a valuable tool in a bundle approach to counter a multiple hospital outbreak of VRE, and that it has a great potential to improve the control of other drug-resistant bacteria. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Novel type of VanB2 teicoplanin-resistant hospital-associated Enterococcus faecium.
Santona, Antonella; Paglietti, Bianca; Al-Qahtani, Ahmed A; Bohol, Marie Fe F; Senok, Abiola; Deligios, Massimo; Rubino, Salvatore; Al-Ahdal, Mohammed N
2014-08-01
Seven high-risk clones of vancomycin-resistant Enterococcus faecium (VREF) belonging to clonal complex 17 were identified using multilocus sequence typing (MLST) among clinical isolates from Saudi Arabia. Among these isolates, a new hospital-associated sequence type (ST795), VanB(2)-type teicoplanin-resistant strain was detected. Its unusual phenotype resulted from a new combination of mutations in the ddl, vanS and vanW genes, which confirmed the trend of evolution in VanB-type resistance. Furthermore, characteristics of adaptation and persistence in the hospital environment of ST795 were emphasised by the presence of genes and clusters recognised to be specific for hospital-associated VREF. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Activity of plant flavonoids against antibiotic-resistant bacteria.
Xu, H X; Lee, S F
2001-02-01
Thirty eight plant-derived flavonoids representing seven different structural groups were tested for activities against antibiotic-resistant bacteria using the disc-diffusion assay and broth dilution assay. Among the flavonoids examined, four flavonols (myricetin, datiscetin, kaempferol and quercetin) and two -flavones (flavone and luteolin) exhibited inhibitory activity against methicillin-resistant Staphylococcus aureus (MRSA). Myricetin was also found to inhibit the growth of multidrug-resistant Burkholderia -cepacia, vancomycin-resistant enterococci (VRE) and other medically important organisms such as -Klebsiella pneumoniae and Staphylococcus epidermidis. Myricetin was bactericidal to B. cepacia. The results of the radiolabel incorporation assay showed that myricetin inhibited protein synthesis by -B. cepacia. The structure-activity relationship of these flavonoids is discussed. Copyright 2001 John Wiley & Sons, Ltd.
Delpech, Gastón; Pourcel, Gisela; Schell, Celia; De Luca, María; Basualdo, Juan; Bernstein, Judith; Grenovero, Silvia; Sparo, Mónica
2012-10-01
Enterococci are part of the indigenous microbiota of human gastrointestinal tract and food of animal origin. Enterococci inhabiting non-human reservoirs play a critical role in the acquisition and dissemination of antimicrobial resistance determinants. The aim of this work was to investigate the antimicrobial resistance in Enterococcus faecalis and Enterococcus faecium strains recovered from artisanal food of animal origin. Samples of goat cheese (n = 42), cow cheese (n = 40), artisanal salami (n = 30), and minced meat for the manufacture of hamburgers (n = 60) were analyzed. Phenotypic and genotypic tests for species-level identification of the recovered isolates were carried out. Minimum inhibitory concentration (MIC) study for in vitro quantitative antimicrobial resistance assessment was performed, and 71 E. faecalis and 22 E. faecium were isolated. The recovered enterococci showed different multi-drug resistance patterns that included tretracycline, erythromycin, ciprofloxacin, linezolid, penicillin, ampicillin, vancomycin, teicoplanin, gentamicin (high-level resistance), and streptomycin (high-level resistance). VanA-type E. faecium were detected. β-lactamase activity was not observed. Artisanal foods of animal origin act as a non-human reservoir of E. faecalis and E. faecuim strains, expressing multi-resistance to antimicrobials. In conclusion, the implementation of a continuous antimicrobial resistance surveillance in enterococci isolated from artisanal food of animal origin is important.
Repurposing Clinical Molecule Ebselen to Combat Drug Resistant Pathogens.
Thangamani, Shankar; Younis, Waleed; Seleem, Mohamed N
2015-01-01
Without a doubt, our current antimicrobials are losing the battle in the fight against newly-emerged multidrug-resistant pathogens. There is a pressing, unmet need for novel antimicrobials and novel approaches to develop them; however, it is becoming increasingly difficult and costly to develop new antimicrobials. One strategy to reduce the time and cost associated with antimicrobial innovation is drug repurposing, which is to find new applications outside the scope of the original medical indication of the drug. Ebselen, an organoselenium clinical molecule, possesses potent antimicrobial activity against clinical multidrug-resistant Gram-positive pathogens, including Staphylococcus, Streptococcus, and Enterococcus, but not against Gram-negative pathogens. Moreover, the activity of ebselen against Gram-positive pathogens exceeded those activities determined for vancomycin and linezolid, drugs of choice for treatment of Enterococcus and Staphylococcus infections. The minimum inhibitory concentrations of ebselen at which 90% of clinical isolates of Enterococcus and Staphylococcus were inhibited (MIC90) were found to be 0.5 and 0.25 mg/L, respectively. Ebselen showed significant clearance of intracellular methicillin-resistant S. aureus (MRSA) in comparison to vancomycin and linezolid. We demonstrated that ebselen inhibits the bacterial translation process without affecting mitochondrial biogenesis. Additionally, ebselen was found to exhibit excellent activity in vivo in a Caenorhabditis elegans MRSA-infected whole animal model. Finally, ebselen showed synergistic activities with conventional antimicrobials against MRSA. Taken together, our results demonstrate that ebselen, with its potent antimicrobial activity and safety profiles, can be potentially used to treat multidrug resistant Gram-positive bacterial infections alone or in combination with other antibiotics and should be further clinically evaluated.
The first report of the vanC₁ gene in Enterococcus faecium isolated from a human clinical specimen.
Sun, Mingyue; Wang, Yue; Chen, Zhongju; Zhu, Xuhui; Tian, Lei; Sun, Ziyong
2014-09-01
The vanC₁ gene, which is chromosomally located, confers resistance to vancomycin and serves as a species marker for Enterococcus gallinarum. Enterococcus faecium TJ4031 was isolated from a blood culture and harbours the vanC₁gene. Polymerase chain reaction (PCR) assays were performed to detect vanXYc and vanTc genes. Only the vanXYc gene was found in the E. faecium TJ4031 isolate. The minimum inhibitory concentrations of vancomycin and teicoplanin were 2 µg/mL and 1 µg/mL, respectively. Real-time reverse transcription-PCR results revealed that the vanC₁ and vanXYc genes were not expressed. Pulsed-field gel electrophoresis and southern hybridisation results showed that the vanC₁ gene was encoded in the chromosome. E. faecalis isolated from animals has been reported to harbour vanC₁gene. However, this study is the first to report the presence of the vanC₁gene in E. faecium of human origin. Additionally, our research showed the vanC₁gene cannot serve as a species-specific gene of E. gallinarum and that it is able to be transferred between bacteria. Although the resistance marker is not expressed in the strain, our results showed that E. faecium could acquire the vanC₁gene from different species.
Okorochenkov, Sergei A; Zheltukhina, Galina A; Mirchink, Elena P; Isakova, Elena B; Feofanov, Alexey V; Nebolsin, Vladimir E
2013-10-01
The increasing prevalence of antibiotic-resistant bacterial strains has necessitated the synthesis of novel antibacterial agents. It was previously shown that naturally occurring metalloporphyrin hemin possesses dark antibacterial activity against Gram-positive bacteria. To improve hemin antibacterial activity, we synthesized a number of hemin conjugates with amino acids and branched peptides. Arginine-containing hemin conjugates demonstrated high antibacterial activity against Gram-positive bacteria including methicillin- and vancomycin-resistant strains in vitro. Most of the synthesized conjugates showed low toxicity against human erythrocytes and leukocytes. © 2013 John Wiley & Sons A/S.
Feng, Guangxue; Yuan, Youyong; Fang, Hu; Zhang, Ruoyu; Xing, Bengang; Zhang, Guanxin; Zhang, Deqing; Liu, Bin
2015-08-11
We report the design and synthesis of a red fluorescent AIE light-up probe for selective recognition, naked-eye detection, and image-guided photodynamic killing of Gram-positive bacteria, including vancomycin-resistant Enterococcus strains.
In vitro activity of flomoxef and cefazolin in combination with vancomycin.
Simon, C; Simon, M
1991-01-01
207 clinical isolates from strains of patients from the University Children's Hospital of Kiel were investigated for their in vitro activity with the agar dilution method against flomoxef and cefazolin (alone and partially in combination with vancomycin). Staphylococci were also tested with other cephalosporins (cefoxitin, cefamandole, cefotaxime, cefotetan and latamoxef). Flomoxef and cefazolin always acted more vigorously on staphylococci than the other cephalosporins. Resistance of Staphylococcus aureus strains against flomoxef and cefazolin did not occur but was found in 15 and 5 of 98 Staphylococcus epidermidis strains, respectively. Enterococcus faecalis strains were always resistant against both drugs; Streptococcus faecium strains were only moderately sensitive. Combined testing of flomoxef or cefazolin with vancomycin showed synergism in almost all staphylococcal strains. Synergism was stronger when S. epidermidis strains were only weakly sensitive to or resistant against flomoxef and cefazolin in comparison to highly sensitive strains. Flomoxef (or cefazolin) acted synergistically in combination with vancomycin on E. faecalis and S. faecium with the exception of two strains of E. faecalis which showed an additive effect of both drugs.
Synthetic membrane-targeted antibiotics.
Vooturi, S K; Firestine, S M
2010-01-01
Antimicrobial resistance continues to evolve and presents serious challenges in the therapy of both nosocomial and community-acquired infections. The rise of resistant strains like methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Staphylococcus aureus (VRSA) and vancomycin-resistant enterococci (VRE) suggests that antimicrobial resistance is an inevitable evolutionary response to antimicrobial use. This highlights the tremendous need for antibiotics against new bacterial targets. Agents that target the integrity of bacterial membrane are relatively novel in the clinical armamentarium. Daptomycin, a lipopeptide is a classical example of membrane-bound antibiotic. Nature has also utilized this tactic. Antimicrobial peptides (AMPs), which are found in all kingdoms, function primarily by permeabilizing the bacterial membrane. AMPs have several advantages over existing antibiotics including a broad spectrum of activity, rapid bactericidal activity, no cross-resistance with the existing antibiotics and a low probability for developing resistance. Currently, a small number of peptides have been developed for clinical use but therapeutic applications are limited because of poor bioavailability and high manufacturing cost. However, their broad specificity, potent activity and lower probability for resistance have spurred the search for synthetic mimetics of antimicrobial peptides as membrane-active antibiotics. In this review, we will discuss the different classes of synthetic membrane-bound antibiotics published since 2004.
Carter, Glen P; Harjani, Jitendra R; Li, Lucy; Pitcher, Noel P; Nong, Yi; Riley, Thomas V; Williamson, Deborah A; Stinear, Timothy P; Baell, Jonathan B; Howden, Benjamin P
2018-06-01
Enterococcus faecium is an important nosocomial pathogen. It has a high propensity for horizontal gene transfer, which has resulted in the emergence of MDR strains that are difficult to treat. The most notorious of these, vancomycin-resistant E. faecium, are usually treated with linezolid or daptomycin. Resistance has, however, been reported, meaning that new therapeutics are urgently needed. The 1,2,4-oxadiazoles are a recently discovered family of antimicrobials that are active against Gram-positive pathogens and therefore have therapeutic potential for treating E. faecium. However, only limited data are available on the activity of these antimicrobials against E. faecium. To determine whether the 1,2,4-oxadiazole antimicrobials are active against MDR and daptomycin-non-susceptible E. faecium. The activity of the 1,2,4-oxadiazole antimicrobials against vancomycin-susceptible, vancomycin-resistant and daptomycin-non-susceptible E. faecium was determined using susceptibility testing, time-kill assays and synergy assays. Toxicity was also evaluated against human cells by XTT and haemolysis assays. The 1,2,4-oxadiazoles are active against a range of MDR E. faecium, including isolates that display non-susceptibility to vancomycin and daptomycin. This class of antimicrobial displays rapid bactericidal activity and demonstrates superior killing of E. faecium compared with daptomycin. Finally, the 1,2,4-oxadiazoles act synergistically with daptomycin against E. faecium, with subinhibitory concentrations reducing the MIC of daptomycin for non-susceptible isolates to a level below the clinical breakpoint. The 1,2,4-oxadiazoles are active against MDR and daptomycin-non-susceptible E. faecium and hold great promise as future therapeutics for treating infections caused by these difficult-to-treat isolates.
Raven, Kathy E; Gouliouris, Theodore; Brodrick, Hayley; Coll, Francesc; Brown, Nicholas M; Reynolds, Rosy; Reuter, Sandra; Török, M Estée; Parkhill, Julian; Peacock, Sharon J
2017-04-01
Vancomycin-resistant Enterococcus faecium (VREfm) is a leading cause of nosocomial infection. Here, we describe the utility of whole-genome sequencing in defining nosocomial VREfm transmission. A retrospective study at a single hospital in the United Kingdom identified 342 patients with E. faecium bloodstream infection over 7 years. Of these, 293 patients had a stored isolate and formed the basis for the study. The first stored isolate from each case was sequenced (200 VREfm [197 vanA, 2 vanB, and 1 isolate containing both vanA and vanB], 93 vancomycin-susceptible E. faecium) and epidemiological data were collected. Genomes were also available for E. faecium associated with bloodstream infections in 15 patients in neighboring hospitals, and 456 patients across the United Kingdom and Ireland. The majority of infections in the 293 patients were hospital-acquired (n = 249) or healthcare-associated (n = 42). Phylogenetic analysis showed that 291 of 293 isolates resided in a hospital-associated clade that contained numerous discrete clusters of closely related isolates, indicative of multiple introductions into the hospital followed by clonal expansion associated with transmission. Fine-scale analysis of 6 exemplar phylogenetic clusters containing isolates from 93 patients (32%) identified complex transmission routes that spanned numerous wards and years, extending beyond the detection of conventional infection control. These contained both vancomycin-resistant and -susceptible isolates. We also identified closely related isolates from patients at Cambridge University Hospitals NHS Foundation Trust and regional and national hospitals, suggesting interhospital transmission. These findings provide important insights for infection control practice and signpost areas for interventions. We conclude that sequencing represents a powerful tool for the enhanced surveillance and control of nosocomial E. faecium transmission and infection. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.
Kaur, Gurpreet; Singh, Tejinder Pal; Malik, Ravinder Kumar; Bhardwaj, Arun; De, Sachinandan
2014-02-01
The bacteriocin susceptibility of Listeria monocytogenes MTCC 657, Enterococcus faecium DSMZ 20477, E. faecium VRE, and E. faecalis ATCC 29212 and their corresponding bacteriocin resistant variants was assessed. The single and combined effect of nisin and pediocin 34 and enterocin FH99 bacteriocins produced by Pediococcus pentosaceus 34, and E. faecium FH99, respectively, was determined. Pediocin34 proved to be more effective in inhibiting L. monocytogenes MTCC 657. A greater antibacterial effect was observed against E. faecium DSMZ 20477 and E. faecium (VRE) when the a combination of nisin, pediocin 34 and enterocin FH99 were used whereas in case of L. monocytogenes MTCC 657 a combination of pediocin 34 and enterocin FH99 was more effective in reducing the survival of pathogen. Bacteriocin cross-resistance and the antibiotic susceptibility of wild type and their corresponding resistant variants were assessed and results showed that resistance to a bacteriocin may extend to other bacteriocins within the same class and also the acquired resistance to bacteriocins can modify the antibiotic susceptibility/resistance profile of the bacterial species used in the study. According to the hydrophobicity nisin resistant variant of L. monocytogenes was more hydrophobic (p < 0.001), whereas the pediocin 34 and enterocin FH99 resistant variants were less hydrophobic than the wild type strain. Nisin, pediocin 34 and enterocin FH99 resistant variants of E. faecium DSMZ 20477 and E. faecium VRE were less hydrophobic than their wild type counterparts. Nisin resistant E. faecalis ATCC 29212 was less hydrophobic than its wild type counterpart.
Carroll, Makeda; Rangaiahagari, Ashok; Musabeyezu, Emmanuel; Singer, Donald; Ogbuagu, Onyema
2016-12-07
Antimicrobial resistance (AMR) is a global public health threat. There is limited information from Rwanda on AMR trends. This longitudinal study aimed to describe temporal trends of antibiotic susceptibility among common bacteria. We collated the antimicrobial susceptibility results of bacteria cultured from clinical specimens collected from inpatients and outpatients and submitted to the microbiology laboratory at King Faisal Hospital, Kigali, Rwanda, from January 1, 2009, to December 31, 2013. Differences in antimicrobial susceptibility between the first and fifth year of the study for each bacterial species was assessed using χ 2 test. Of 5,296 isolates collected, 46.7% were Escherichia coli, 18.4% were Klebsiella spp., 5.9% were Acinetobacter spp., 7.1% were Pseudomonas spp., 11.7% were Staphylococcus aureus, and 10.3% were Enterococcus spp. Colistin and imipenem had greatest activity against gram-negative bacteria. Acinetobacter spp. showed the greatest resistance profile to antimicrobials tested, relative to other gram-negative bacteria. Vancomycin retained excellent activity against S. aureus and Enterococcus species (average susceptibility was 100% and 99.4%, respectively). Trend analysis determined that resistance to imipenem increased significantly among Klebsiella, E. coli, Pseudomonas, and Acinetobacter isolates; there was also rising resistance to colistin among E. coli and Pseudomonas species. Only E. coli demonstrated increased resistance to gentamicin. For gram-positive pathogens, vancomycin susceptibility increased over time for Enterococcus species, but was unchanged for S. aureus Our data suggest that resistance to imipenem and colistin are rising among gram-negative bacteria in Rwanda. Proper infection control practices and antimicrobial stewardship will be important to address this emerging threat. © The American Society of Tropical Medicine and Hygiene.
Bobenchik, April M.; Hindler, Janet A.; Giltner, Carmen L.; Saeki, Sandra
2014-01-01
Vitek 2 (bioMérieux, Inc., Durham, NC) is a widely used commercial antimicrobial susceptibility testing system. We compared MIC results obtained by Vitek 2 to those obtained by the Clinical and Laboratory Standards Institute (CLSI) broth microdilution (BMD) reference method for 134 staphylococcal and 84 enterococcal clinical isolates. Nineteen agents were evaluated, including all those available on Vitek 2 for testing staphylococci and enterococci. The resistance phenotypes tested included methicillin-resistant Staphylococcus aureus (MRSA) (n = 58), S. aureus with inducible clindamycin resistance (ICR) (n = 30), trimethoprim-sulfamethoxazole-resistant MRSA (n = 10), vancomycin-resistant Enterococcus (n = 37), high-level gentamicin-resistant Enterococcus (n = 15), linezolid-resistant Enterococcus (n = 5), and daptomycin-nonsusceptible Enterococcus faecalis (n = 6). For the staphylococci, there was 98.9% categorical agreement (CA). There was one very major error (VME) for gentamicin in a Staphylococcus hominis isolate, six VMEs for inducible clindamycin in S. aureus isolates, and two major errors (ME) for daptomycin in an S. aureus and a Staphylococcus epidermidis isolate. For enterococci, there was 97.3% CA. Two VMEs were observed for daptomycin in isolates of E. faecalis and 2 ME, 1 for high-level gentamicin resistance and 1 for nitrofurantoin, in E. faecium isolates. Overall, there was 98.3% CA and 99% essential agreement for the testing of staphylococci and enterococci by the Vitek 2. With the exception of detecting ICR in S. aureus, Vitek 2 performed reliably for antimicrobial susceptibility testing of staphylococci and enterococci. PMID:24478467
Characterization of Class IIa Bacteriocin Resistance in Enterococcus faecium.
Geldart, Kathryn; Kaznessis, Yiannis N
2017-04-01
Vancomycin-resistant enterococci, particularly resistant Enterococcus faecium , pose an escalating threat in nosocomial environments because of their innate resistance to many antibiotics, including vancomycin, a treatment of last resort. Many class IIa bacteriocins strongly target these enterococci and may offer a potential alternative for the management of this pathogen. However, E. faecium 's resistance to these peptides remains relatively uncharacterized. Here, we explored the development of resistance of E. faecium to a cocktail of three class IIa bacteriocins: enterocin A, enterocin P, and hiracin JM79. We started by quantifying the frequency of resistance to these peptides in four clinical isolates of E. faecium We then investigated the levels of resistance of E. faecium 6E6 mutants as well as their fitness in different carbon sources. In order to elucidate the mechanism of resistance of E. faecium to class IIa bacteriocins, we completed whole-genome sequencing of resistant mutants and performed reverse transcription-quantitative PCR (qRT-PCR) of a suspected target mannose phosphotransferase (ManPTS). We then verified this ManPTS's role in bacteriocin susceptibility by showing that expression of the ManPTS in Lactococcus lactis results in susceptibility to the peptide cocktail. Based on the evidence found from these studies, we conclude that, in accord with other studies in E. faecalis and Listeria monocytogenes , resistance to class IIa bacteriocins in E. faecium 6E6 is likely caused by the disruption of a particular ManPTS, which we believe we have identified. Copyright © 2017 American Society for Microbiology.
Characterization of Class IIa Bacteriocin Resistance in Enterococcus faecium
Geldart, Kathryn
2017-01-01
ABSTRACT Vancomycin-resistant enterococci, particularly resistant Enterococcus faecium, pose an escalating threat in nosocomial environments because of their innate resistance to many antibiotics, including vancomycin, a treatment of last resort. Many class IIa bacteriocins strongly target these enterococci and may offer a potential alternative for the management of this pathogen. However, E. faecium's resistance to these peptides remains relatively uncharacterized. Here, we explored the development of resistance of E. faecium to a cocktail of three class IIa bacteriocins: enterocin A, enterocin P, and hiracin JM79. We started by quantifying the frequency of resistance to these peptides in four clinical isolates of E. faecium. We then investigated the levels of resistance of E. faecium 6E6 mutants as well as their fitness in different carbon sources. In order to elucidate the mechanism of resistance of E. faecium to class IIa bacteriocins, we completed whole-genome sequencing of resistant mutants and performed reverse transcription-quantitative PCR (qRT-PCR) of a suspected target mannose phosphotransferase (ManPTS). We then verified this ManPTS's role in bacteriocin susceptibility by showing that expression of the ManPTS in Lactococcus lactis results in susceptibility to the peptide cocktail. Based on the evidence found from these studies, we conclude that, in accord with other studies in E. faecalis and Listeria monocytogenes, resistance to class IIa bacteriocins in E. faecium 6E6 is likely caused by the disruption of a particular ManPTS, which we believe we have identified. PMID:28115354
Schouten, M A; Hoogkamp-Korstanje, J A
1997-08-01
The in-vitro activity of quinupristin-dalfopristin was compared with those of vancomycin, teicoplanin, erythromycin, clarithromycin, rifampicin, imipenem, meropenem, ciprofloxacin and sparfloxacin against 414 bloodstream isolates of Gram-positive cocci. Quinupristin-dalfopristin inhibited strains of Streptococcus pyogenes and Streptococcus agalactiae at 0.12 mg/L, methicillin- and/or erythromycin-resistant Staphylococcus aureus and Staphylococcus epidermidis at 0.5 mg/L, Staphylococcus haemolyticus, Enterococcus faecium, Streptococcus pneumoniae, Streptococcus mitis, Streptococcus bovis, Streptococcus sanguis and Streptococcus anginosus at 1 mg/L and Enterococcus faecalis at 8 mg/L.
Arias, C A; Peña, J; Panesso, D; Reynolds, P
2003-03-01
Enterococcus gallinarum BM4175 (a vancomycin-susceptible derivative of BM4174 obtained by insertional inactivation of vanC-1) was transformed with plasmid constructs pCA10 (containing the genes necessary for resistance, vanC-1-XYc-T), pJP1 (with a fragment lacking the DNA encoding the transmembrane region of VanT, -vanC-1-XYc-T((Delta))(2-322)-) and with plasmids containing fragments encoding either the transmembrane (mvanT(1-322)) or racemase (svanT(323-698)) domains of VanT under the control of a constitutive promoter. Accumulated peptidoglycan precursors were measured in all strains in the presence of L-Ser, D-Ser (50 mM) or in the absence of any growth supplement. Uptake of 0.1 mM L-[(14)C]serine was also determined in BM4174, BM4175 and BM4175/pCA10. Vancomycin resistance was restored in BM4175 transformed with pCA10(C-1-XYc-T), and the profile of peptidoglycan precursors was similar to wild-type E. gallinarum BM4174. Transformation of E. gallinarum BM4175 with plasmid pJP1(vanC-1-XYc-T((Delta))(2-322)) resulted in: (i) vancomycin MICs remaining within susceptible levels (< or =4 mg/L) in the absence of any growth supplement, but increasing to 8 mg/L when either L-Ser or D-Ser was added to the medium; and (ii) the relative amounts of accumulated UDP-MurNAc-pentapeptide[D-Ser] and tetrapeptide precursors decreasing substantially compared with BM4175/pCA10 and BM4174. The effect on the appearance of tetrapeptide appeared to be host dependent, since a substantial amount was present when the same plasmid construct pJP1(vanC-1-XYc-T((Delta))(2-322)) was electroporated into Enterococcus faecalis JH2-2. The uptake of L-[(14)C]Ser at 240 s was decreased by approximately 40% in BM4175 compared with BM4174. Plasmid pCA10(C-1-XY(C)-T) restored uptake of L-[(14)C]Ser at 180 and 240 s in BM4175. The results suggest that the transmembrane domain of VanT is likely to be involved in the transport of L-Ser, and that in its absence the resistance phenotype is compromised.
Antimicrobial resistance and virulence genes in enterococci from wild game meat in Spain.
Guerrero-Ramos, Emilia; Cordero, Jorge; Molina-González, Diana; Poeta, Patrícia; Igrejas, Gilberto; Alonso-Calleja, Carlos; Capita, Rosa
2016-02-01
A total of 55 enterococci (45 Enterococcus faecium, 7 Enterococcus faecalis, and three Enterococcus durans) isolated from the meat of wild game animals (roe deer, boar, rabbit, pheasant, and pigeon) in North-Western Spain were tested for susceptibility to 14 antimicrobials by the disc diffusion method. All strains showed a multi-resistant phenotype (resistance to between three and 10 antimicrobials). The strains exhibited high percentages of resistance to erythromycin (89.1%), tetracycline (67.3%), ciprofloxacin (92.7%), nitrofurantoin (67.3%), and quinupristin-dalfopristin (81.8%). The lowest values (9.1%) were observed for high-level resistance to gentamicin, kanamycin, and streptomycin. The average number of resistances per strain was 5.8 for E. faecium isolates, 7.9 for E. faecalis, and 5.7 for E. durans. Genes encoding antimicrobial resistance and virulence were studied by polymerase chain reaction. A total of 15 (57.7%) of the 26 vancomycin-resistant isolates harboured the vanA gene. Other resistance genes detected included vanB, erm(B) and/or erm(C), tet(L) and/or tet(M), acc(6')-aph(2″), and aph(3')-IIIa in strains resistant to vancomycin, erythromycin, tetracycline, gentamicin, and kanamycin, respectively. Specific genes of the Tn5397 transposon were detected in 54.8% of the tet(M)-positive enterococci. Nine virulence factors (gelE, agg, ace, cpd, frs, esp, hyl, efaAfs and efaAfm) were studied. All virulence genes, with the exception of the frs gene, were found to be present in the enterococcal isolates. At least one virulence gene was detected in 20.0% of E. faecium, 71.4% of E. faecalis and 33.3% of E. durans isolates, with ace and cpd being the most frequently detected genes (6 isolates each). This suggests that wild game meat might play a role in the spreading through the food chain of enterococci with antimicrobial resistance and virulence determinants to humans. Copyright © 2015 Elsevier Ltd. All rights reserved.
Biocompatible Injectable Hydrogel with Potent Wound Healing and Antibacterial Properties.
Hoque, Jiaul; Prakash, Relekar G; Paramanandham, Krishnamoorthy; Shome, Bibek R; Haldar, Jayanta
2017-04-03
Two component injectable hydrogels that cross-link in situ have been used as noninvasive wound-filling devices, i.e., sealants. These materials carry a variety of functions at the wound sites, such as sealing leaks, ceasing unwanted bleeding, binding tissues together, and assisting in wound healing processes. However, commonly used sealants typically lack antibacterial properties. Since bacterial infection at the wound site is very common, bioadhesive materials with intrinsic antibacterial properties are urgently required. Herein, we report a biocompatible injectable hydrogel with inherent bioadhesive, antibacterial, and hemostatic capabilities suitable for wound sealing applications. The hydrogels were developed in situ from an antibacterial polymer, N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride (HTCC), and a bioadhesive polymer, polydextran aldehyde. The gels were shown to be active against both Gram-positive and Gram-negative bacteria, including drug-resistant ones such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecium (VRE), and β-lactam-resistant Klebsiela pneumoniae. Mechanistic studies revealed that the gels killed bacteria upon contact by disrupting the membrane integrity of the pathogen. Importantly, the gels were shown to be efficacious in preventing sepsis in a cecum ligation and puncture (CLP) model in mice. While only 12.5% of animals survived in the case of mice with punctured cecam but with no gel on the punctured area (control), 62.5% mice survived when the adhesive gel was applied to the punctured area. Furthermore, the gels were also shown to be effective in facilitating wound healing in rats and ceasing bleeding from a damaged liver in mice. Notably, the gel showed negligible toxicity toward human red blood cells (only 2-3% hemolysis) and no inflammation to the surrounding tissue upon subcutaneous implantation in mice, thus proving it as a safe and effective antibacterial sealant.
Vancomycin-induced thrombocytopenia in a 60-year-old man: a case report.
Shah, Ravish A; Musthaq, Adnan; Khardori, Nancy
2009-06-26
Vancomycin, a glycopeptide antibiotic, is used to treat resistant gram-positive infections. There has been a 10- to 20-fold increase in its use over the past 25 years. Although ototoxicity and nephrotoxicity are well known side effects of vancomycin, it can also induce platelet reactive antibodies leading to life-threatening thrombocytopenia. Vancomycin is often clinically overlooked as a cause of thrombocytopenia, especially in a scenario of sepsis or when there is use of heparin. We report a proven case of vancomycin-induced thrombocytopenia and its reversal after discontinuation of vancomycin. A 60-year-old man with a history of hypertension, congestive heart failure and dyslipidemia was admitted for a right shoulder rotator cuff tear. He underwent right-shoulder arthroscopy and rotator cuff repair. About three weeks later, he developed pain, swelling and purulent drainage from his right shoulder. Arthroscopic irrigation and drainage was then performed. Intraoperative fluid revealed the presence of Methicillin susceptible Staphylococcus aureus, vancomycin-sensitive Enterococcus spp. and Serratia marcescens. The patient had no known allergies. After reviewing his antimicrobial susceptibility, he was started on vancomycin 1500 mgs intravenously every 12 hours (to treat both Staphylococcus aureus and Enterococcus spp) and ciprofloxacin 750 mgs by oral induction every 12 hours. The patient's condition improved following antibiotic treatment. He was discharged and allowed to go home on IV vancomycin and oral ciprofloxacin. The patient's platelet count on the day of starting vancomycin therapy was 253 x 10(3)/mm(3). At weeks one, two and three, the counts were 231 x 10(3)/mm(3), 272 x 10(3)/mm and 6 x 103/mm(3), respectively. The patient was admitted for further work-up of the thrombocytopenia. He was later shown to have vancomycin-induced platelet-reactive antibodies, causing significant thrombocytopenia, and then reversal after his vancomycin medication was discontinued. Thrombocytopenia is a potentially life-threatening condition. Vancomycin is often clinically overlooked as a cause of thrombocytopenia, especially in a scenario of sepsis or when there is use of heparin. Simple laboratory testing with drug-dependent antibodies can be helpful in identifying vancomycin as a cause of thrombocytopenia.
In-Use Evaluation of Peracetic Acid for High-Level Disinfection of Endoscopes.
Chenjiao, Wu; Hongyan, Zhang; Qing, Gu; Xiaoqi, Zhong; Liying, Gu; Ying, Fang
2016-01-01
Many high-level disinfectants have been used for disinfection of endoscopes such as 2% glutaraldehyde (GA), 0.55% ortho-phthalaldehyde (OPA), and peracetic acid (PAA). Both GA and OPA are widely used in disinfection of endoscopes and have been previously discussed, but there is little research on the practical use of PAA as an endoscope disinfectant. An experimental model of a flexible gastrointestinal endoscope being contaminated with 9 strains of microorganism was designed. After the cleaning and disinfecting procedure was completed, we evaluated the biocidal activity (850 ppm PAA, 2% GA, and 0.55% OPA) on our flexible gastrointestinal endoscope model. We also evaluated sterilization effectiveness of PAA on other bacteria, including some antibiotic-resistant bacteria (methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, and Clostridium difficile). The residual bacterial colony count number of the PAA-disinfected endoscope was significantly lower than that of the GA- and OPA-disinfected endoscopes. The biocidal effect and efficiency of the endoscope disinfection by PAA appeared to be better than either the GA- or OPA-disinfected endoscope. PAA has demonstrated a good sterilization effect on other bacterial species; of particular note are common antibiotic-resistant bacteria such as methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, and Clostridium difficile. The results of this study demonstrate that PAA is a fast and effective high-level disinfectant for use in the reprocessing of flexible endoscopes.
Bacterial contamination of computer touch screens.
Gerba, Charles P; Wuollet, Adam L; Raisanen, Peter; Lopez, Gerardo U
2016-03-01
The goal of this study was to determine the occurrence of opportunistic bacterial pathogens on the surfaces of computer touch screens used in hospitals and grocery stores. Opportunistic pathogenic bacteria were isolated on touch screens in hospitals; Clostridium difficile and vancomycin-resistant Enterococcus and in grocery stores; methicillin-resistant Staphylococcus aureus. Enteric bacteria were more common on grocery store touch screens than on hospital computer touch screens. Published by Elsevier Inc.
Dutta, Ireena; Reynolds, Peter E.
2002-01-01
The vanC-2 cluster of Enterococcus casseliflavus ATCC 25788 consisted of five genes (vanC-2, vanXYC-2, vanTC-2, vanRC-2, and vanSC-2) and shared the same organization as the vanC cluster of E. gallinarum BM4174. The proteins encoded by these genes displayed a high degree of amino acid identity to the proteins encoded within the vanC gene cluster. The putative d,d-dipeptidase-d,d-carboxypeptidase, VanXYC-2, exhibited 81% amino acid identity to VanXYC, and VanTC-2 displayed 65% amino acid identity to the serine racemase, VanT. VanRC-2 and VanSC-2 displayed high degrees of identity to VanRC and VanSC, respectively, and contained the conserved residues identified as important to their function as a response regulator and histidine kinase, respectively. Resistance to vancomycin was expressed inducibly in E. casseliflavus ATCC 25788 and required an extended period of induction. Analysis of peptidoglycan precursors revealed that UDP-N-acetylmuramyl-l-Ala-δ-d-Glu-l-Lys-d-Ala-d-Ser could not be detected until several hours after the addition of vancomycin, and its appearance coincided with the resumption of growth. The introduction of additional copies of the vanTC-2 gene, encoding a putative serine racemase, and the presence of supplementary d-serine in the growth medium both significantly reduced the period before growth resumed after addition of vancomycin. This suggested that the availability of d-serine plays an important role in the induction process. PMID:12234834
Methicillin-resistant Staphylococcus aureus: clinical manifestations and antimicrobial therapy.
Cunha, B A
2005-07-01
Methicillin-resistant Staphylococcus aureus (MRSA) is a common skin coloniser and less commonly causes infection. MRSA colonisation should be contained by infection control measures and not treated. MRSA infections cause the same spectrum of infection as MSSA infections, i.e., skin/soft tissue infections, bone/joint infections, central IV line infections, and acute bacterial endocarditis (native valve/prosthetic valve). There is a discrepancy between in-vitro sensitivity and in-vivo effectiveness with MRSA. To treat MRSA infections, clinicians should select an MRSA drug with proven in-vivo effectiveness, i.e., daptomycin. Linezolid, quinupristin/dalfopristin, minocycline, or vancomycin, and not rely on in-vitro susceptibility data. For MRSA, doxycycline cannot be substituted for minocycline. Linezolid and minocycline are available for oral administration and both are also effective in treating MRSA CNS infections. Vancomycin is being used less due to side effects, (increasing MICs/resistance, VISA/VRSA), and increased VRE prevalence. The most potent anti-MRSA drug at the present time is daptomycin. Daptomycin is useful when rapid/effective therapy of MRSA bacteraemia/endocarditis is necessary. Daptomycin is also useful to treat persistent MRSA bacteraemias/MRSA treatment failures with other drugs, i.e., vancomycin. There is no difference in virulence between MSSA and MRSA infections if treatment is started early and with an agent that has in-vivo effectiveness.
Hölzel, Christina; Bauer, Johann; Stegherr, Eva-Maria; Schwaiger, Karin
2014-04-01
The three chromosomally located clustered genes vanC1, vanXYc, and vanT confer intrinsic resistance to vancomycin and are used for species identification of Enterococcus gallinarum. In this study, 28 strains belonging to the E. gallinarum/casseliflavus group isolated from cloacal swabs from laying hens were screened for the presence of vanC1. As confirmed by species-specific multiplex PCR, 11 vanC1-positive strains were identified as E. gallinarum. Surprisingly, one yellow pigmented strain, verified as E. casseliflavus by species-specific multiplex PCR, was also vanC1 positive; vanXYc and vanT were additionally detectable in this strain. To our knowledge, this is the first report of vanC1, vanXYc, and vanT in E. casseliflavus. The minimum inhibitory concentration of vancomycin was 4 mg/L. Real-time reverse transcription-PCR revealed that none of the clustered genes was expressed in this strain. Even if the genes seem not to be active, there is a certain risk that they will be transferred to other bacteria where they might be functionally expressed. Therefore, it may be advisable to expand the search for vanC1, vanXYc, and vanT from E. gallinarum to other (enterococcal) species. This study confirms that enterococci live up to their name as being reservoir bacteria and should therefore always be closely monitored.
Fitness costs of various mobile genetic elements in Enterococcus faecium and Enterococcus faecalis
Starikova, Irina; Al-Haroni, Mohammed; Werner, Guido; Roberts, Adam P.; Sørum, Vidar; Nielsen, Kaare M.; Johnsen, Pål J.
2013-01-01
Objectives To determine the fitness effects of various mobile genetic elements (MGEs) in Enterococcus faecium and Enterococcus faecalis when newly acquired. We also tested the hypothesis that the biological cost of vancomycin resistance plasmids could be mitigated during continuous growth in the laboratory. Methods Different MGEs, including two conjugative transposons (CTns) of the Tn916 family (18 and 33 kb), a pathogenicity island (PAI) of 200 kb and vancomycin-resistance (vanA) plasmids (80–200 kb) of various origins and classes, were transferred into common ancestral E. faecium and E. faecalis strains by conjugation assays and experimentally evolved (vanA plasmids only). Transconjugants were characterized by PFGE, S1 nuclease assays and Southern blotting hybridization analyses. Single specific primer PCR was performed to determine the target sites for the insertion of the CTns. The fitness costs of various MGEs in E. faecium and E. faecalis were estimated in head-to-head competition experiments, and evolved populations were generated in serial transfer assays. Results The biological cost of a newly acquired PAI and two CTns were both host- and insertion-locus-dependent. Newly acquired vanA plasmids may severely reduce host fitness (25%–27%), but these costs were rapidly mitigated after only 400 generations of continuous growth in the absence of antibiotic selection. Conclusions Newly acquired MGEs may impose an immediate biological cost in E. faecium. However, as demonstrated for vanA plasmids, the initial costs of MGE carriage may be mitigated during growth and beneficial plasmid–host association can rapidly emerge. PMID:23833178
New Acquisition of Antibiotic-Resistant Organisms in Skilled Nursing Facilities
Fisch, Jay; Lansing, Bonnie; Wang, Linda; Symons, Kathleen; Cherian, Kay; McNamara, Sara
2012-01-01
The epidemiology of new acquisition of antibiotic-resistant organisms (AROs) in community-based skilled nursing facilities (SNFs) is not well studied. To define the incidence, persistence of, and time to new colonization with methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and ceftazidime-resistant (CAZr) and ciprofloxacin-resistant (CIPr) Gram-negative bacteria (GNB) in SNFs, SNF residents were enrolled and specimens from the nares, oropharynx, groin, perianal area, and wounds were prospectively cultured monthly. Standard microbiological tests were used to identify MRSA, VRE, and CAZr and CIPr GNB. Residents with at least 3 months of follow-up were included in the analysis. Colonized residents were categorized as having either preexisting or new acquisition. The time to colonization for new acquisition of AROs was calculated. Eighty-two residents met the eligibility criteria. New acquisition of AROs was common. For example, of the 59 residents colonized with CIPr GNB, 28 (47%) were colonized with CIPr GNB at the start of the study (96% persistent and 4% intermittent), and 31 (53%) acquired CIPr GNB at the facility (61% persistent). The time to new acquisition was shortest for CIPr GNB, at a mean of 75.5 days; the time to new acquisition for MRSA was 126.6 days (P = 0.007 versus CIPr GNB), that for CAZr was 176.0 days (P = 0.0001 versus CIPr GNB), and that for VRE was 186.0 days (P = 0.0004 versus CIPr GNB). Functional status was significantly associated with new acquisition of AROs (odds ratio [OR], 1.24; P = 0.01). New acquisition of AROs, in particular CIPr GNB and MRSA, is common in SNFs. CIPr GNB are acquired rapidly. Additional longitudinal studies to investigate risk factors for ARO acquisition are required. PMID:22378900
Fernandes, Meg da Silva; Fujimoto, Graciela; de Souza, Leandro Pio; Kabuki, Dirce Yorika; da Silva, Márcio José; Kuaye, Arnaldo Yoshiteru
2015-04-01
In this work, the sources of contamination by Enterococcus spp. in a ricotta processing line were evaluated. The isolated strains were tested for virulence genes (gelE, cylA,B, M, esp, agg, ace, efaA, vanB), expression of virulence factors (hemolysin and gelatinase), and the resistance to 10 different antibiotics. Enterococcus faecium and Enterococcus faecalis were subjected to discriminatory identification by intergenic spacer region (ITS)-polymerase chain reaction and sequencing of the ITS region. The results showed that Enterococcus spp. was detected in the raw materials, environment samples and the final product. None of the 107 Enterococcus isolates were completely free from all virulence genes considered. A fraction of 21.5% of the isolates containing all of the genes of the cylA, B, M operon also expressed β-hemolysis. Most of the isolates showed the gelE gene, but only 9.3% were able to hydrolyze gelatin. In addition, 23.5% of the observed Enterococcus isolates had the vanB gene but were susceptible to vancomycin in vitro. The dissemination of antibiotic-resistant enterococci was revealed in this study: 19.3% of the E. faecium samples and 78.0% of the E. faecalis samples were resistant to at least one of the antibiotics tested. Sequencing of region discriminated 5 and 7 distinct groups among E. faecalis and E. faecium, respectively. Although some similarity was observed among some of the isolates, all E. faecalis and E. faecium isolates had genetic differences both in the ITS region and in the virulence profile, which makes them different from each other. © 2015 Institute of Food Technologists®
Mendu, Damodara Rao; Fleisher, Martin; McCash, Samuel I; Pessin, Melissa S; Ramanathan, Lakshmi V
2015-02-20
D-lactic acidosis, also referred as D-lactate encephalopathy, has been reported in patients with short bowl syndrome (SBS). The neurologic symptoms include altered mental status, slurred speech, and ataxia. Onset of neurological symptoms is accompanied by metabolic acidosis and high anion gap. We present here a case of D-lactic acidosis in a patient with acute lymphoblastic leukemia (ALL) who developed severe neurological symptoms and metabolic acidosis due to vancomycin-resistant enterococci (VRE) infection, and elevated D-lactic acid. Copyright © 2014 Elsevier B.V. All rights reserved.
Hassan, Reem Mostafa; Ghaith, Doaa Mohammad; Ismail, Dalia Kadry; Zafer, Mai Mahmoud
2018-03-01
The incidence of reduced susceptibility to tigecycline (TIG) is increasing. This study aimed to analyse the in vitro activity of TIG against Enterococcus spp. isolates recovered from hospitalised patients and to evaluate the effect of omeprazole on the in vitro antimicrobial activity of TIG against several enterococcal species. A total of 67 Enterococcus clinical isolates were identified by MALDI-TOF/MS and multiplex PCR. Minimum inhibitory concentrations (MICs) of TIG alone and in combination with omeprazole (10, 30 and 60mg/L) were determined by broth microdilution. Antibiotic susceptibility to other antibiotics was determined by disk diffusion. The presence of van, tet(X) and tet(X1) genes was tested by multiplex PCR. Of the 67 Enterococcus isolates, 2 (3.0%) were resistant to TIG and 13 (19.4%) were intermediate-resistant according to EUCAST. The frequencies of resistance to norfloxacin (80.6%), doxycycline (80.6%), levofloxacin (74.6%) and ciprofloxacin (71.6%) were highest, whilst that of vancomycin (25.4%) was lowest. The vanA gene was detected in 11 Enterococcus isolates (8 Enterococcus faecalis, 3 Enterococcus faecium), vanB in 3 Enterococcus isolates (2 E. faecium, 1 E. faecalis) and vanC-2/3 in 3 Enterococcus casseliflavus. Nine isolates (13.4%) were positive for tet(X1). TIG resistance occurred both in patients receiving or not TIG and/or omeprazole. Omeprazole increased TIG MICs by 4-128-fold. The possibility of selection of TIG-non-susceptible Enterococcus in the gut may occur with long-term use of omeprazole. Omeprazole influenced TIG activity in a concentration-dependent manner. To our knowledge; this is the first report of TIG-non-susceptible Enterococcus spp. in Egypt. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.
[Clinical features of Enterococcus faecium meningitis in children].
Wang, Li-Yuan; Cai, Xiao-Tang; Wang, Zhi-Ling; Liu, Shun-Li; Xie, Yong-Mei; Zhou, Hui
2018-03-01
To summarize the clinical features of Enterococcus faecium meningitis in children. The clinical data of nine children with Enterococcus faecium meningitis were analyzed. In all the nine children, Enterococcus faecium was isolated from blood, cerebrospinal fluid, or peripherally inserted central catheters; 6 (67%) patients were neonates, 2 (22%) patients were younger than 6 months, and 1 (11%) patient was three years and four months of age. In those patients, 56% had high-risk factors before onset, which included intestinal infection, resettlement of drainage tube after surgery for hydrocephalus, skull fracture, perinatal maternal infection history, and catheter-related infection. The main symptoms were fever and poor response. In those patients, 22% had seizures; no child had meningeal irritation sign or disturbance of consciousness. The white blood cell count and level of C-reactive protein were normal or increased; the nucleated cell count in cerebrospinal fluid was normal or mildly elevated; the protein level was substantially elevated; the glucose level was decreased. The drug sensitivity test showed that bacteria were all sensitive to vancomycin and the vancomycin treatment was effective. Only one child had the complication of hydrocephalus. Enterococcus faecium meningitis occurs mainly in neonates and infants. The patients have atypical clinical features. A high proportion of patients with Enterococcus faecium meningitis have high-risk factors. Enterococcus faecium is sensitive to vancomycin.
Molecular Epidemiology of Enterococcal Bacteremia in Australia
Pearson, Julie C.; Daley, Denise A.; Le, Tam; Robinson, Owen J.; Gottlieb, Thomas; Howden, Benjamin P.; Johnson, Paul D. R.; Bennett, Catherine M.; Stinear, Timothy P.; Turnidge, John D.
2014-01-01
Enterococci are a major cause of health care-associated infections and account for approximately 10% of all bacteremias globally. The aim of this study was to determine the proportion of enterococcal bacteremia isolates in Australia that are antimicrobial resistant, with particular emphasis on susceptibility to ampicillin and the glycopeptides, and to characterize the molecular epidemiology of the Enterococcus faecalis and Enterococcus faecium isolates. From 1 January to 31 December 2011, 1,079 unique episodes of bacteremia were investigated, of which 95.8% were caused by either E. faecalis (61.0%) or E. faecium (34.8%). The majority of bacteremias were health care associated, and approximately one-third were polymicrobial. Ampicillin resistance was detected in 90.4% of E. faecium isolates but was not detected in E. faecalis isolates. Vancomycin nonsusceptibility was reported in 0.6% and 36.5% of E. faecalis and E. faecium isolates, respectively. Unlike Europe and the United States, where vancomycin resistance in E. faecium is predominately due to the acquisition of the vanA operon, 98.4% of E. faecium isolates harboring van genes carried the vanB operon, and 16.1% of the vanB E. faecium isolates had vancomycin MICs at or below the susceptible breakpoint of the CLSI. Although molecular typing identified 126 E. faecalis pulsed-field gel electrophoresis pulsotypes, >50% belonged to two pulsotypes that were isolated across Australia. E. faecium consisted of 73 pulsotypes from which 43 multilocus sequence types were identified. Almost 90% of the E. faecium isolates were identified as CC17 clones, of which approximately half were characterized as ST203, which was isolated Australia-wide. In conclusion, the Australian Enterococcal Sepsis Outcome Programme (AESOP) study has shown that although they are polyclonal, enterococcal bacteremias in Australia are frequently caused by ampicillin-resistant vanB E. faecium. PMID:24391201
Bender, Eduardo André; de Freitas, Ana Lúcia Peixoto; Reiter, Keli Cristine; Lutz, Larissa; Barth, Afonso Luís
2009-01-01
In the past two decades the members of the genus Enterococcus have emerged as important nosocomial pathogens worldwide. In the present study, we evaluated the antimicrobial resistance and genotypic characteristics of 203 Enterococcus spp. recovered from different clinical sources from two hospitals in Porto Alegre, Rio Grande do Sul, Brazil. The species were identified by conventional biochemical tests and by an automated system. The genetic diversity of E. faecalis presenting high-level aminoglycoside resistance (HLAR) was assessed by pulsed-field gel electrophoresis of chromosomal DNA after SmaI digestion. The E. faecalis was the most frequent specie (93.6%), followed by E. faecium (4.4%). The antimicrobial resistance profile was: 2.5% to ampicillin, 0.5% to vancomycin, 0.5% teicoplanin, 33% to chloramphenicol, 2% to nitrofurantoin, 66.1% to erythromycin, 66.5% to tetracycline, 24.6% to rifampicin, 30% to ciprofloxacin and 87.2% to quinupristin-dalfopristin. A total of 10.3% of the isolates proved to be HLAR to both gentamicin and streptomycin (HLR-ST/GE), with 23.6% resistant only to gentamicin (HLR-GE) and 37.4% only to streptomycin (HLR-ST). One predominant clonal group was found among E. faecalis HLR-GE/ST. The prevalence of resistance among beta-lactam antibiotics and glycopeptides was very low. However, in this study there was an increased number of HLR Enterococcus which may be spreading intra and inter-hospital. PMID:24031416
Turnidge, John; Bell, Jan; Biedenbach, Douglas J; Jones, Ronald N
2002-07-01
Worldwide surveillance of antimicrobial resistance among urinary tract pathogens is useful to determine important trends and geographical variation for common Gram-positive and -negative species. The most common causative uropathogens often have intrinsic or acquired resistance mechanisms which include ESBL production among enteric bacilli, multi-drug resistant staphylococci and non-fermentative Gram-negative bacilli such as Pseudomonas aeruginosa and Acinetobacter spp. and vancomycin-resistant Enterococcus spp. This study evaluates pathogen frequency and the resistance rates among urinary tract infection (UTI) pathogens in 14 medical centres in the Asia-Pacific region between 1998 and 1999. The isolates were referred to a central monitor for reference NCCLS broth microdilution testing, identification confirmation and patient demographic analysis. Over 50% of the 958 pathogens were Escherichia coli and Klebsiella spp. followed by P. aeruginosa, Enterococcus spp. and Enterobacter spp. Susceptibility for the three enteric bacilli was high for carbapenems (100%), 'fourth-generation' cephalosporins (cefepime 94.9-98.6%) and amikacin (> or = 93.0%). Beta-lactamase inhibitor compounds were more active against E. coli (piperacillin/tazobactam; > 90% susceptible) than the other two enteric species and all other tested agents had a narrower spectra of activity. The rank order of anti-pseudomonal agents was amikacin (91.5% susceptible)> imipenem > piperacillin/tazobactam > tobramycin > ceftazidime and cefepime (77.4 and 76.4% susceptible, respectively). Susceptibility to quinolones for the P. aeruginosa isolates was only 63.2-67.0%. Only one vancomycin-intermediate Enterococcus spp. (van C phenotype) was detected among the 103 strains tested. Newer fluoroquinolones (gatifloxacin; MIC(50), mg/l) were more potent against enterococci than ciprofloxacin (MIC(50), 2 mg/l) and high-level resistance to aminoglycosides was common (41.7%). The data presented are compared to studies of similar design from other areas which are part of the SENTRY surveillance network.
Acanthamoeba and bacteria produce antimicrobials to target their counterpart
2014-01-01
Background In the microbial ecosystem, microbes compete for space and nutrients. Consequently, some have developed the ability to kill or inhibit the growth of other competing microbes by producing antimicrobial substances. As the ‘producer’ species are generally immune to these substances, their compounds act on the competing microbial species and give the producer more space and access to nutrients for growth. Many currently used antibiotics were developed by exploiting this potential of certain microbes. Findings Here, the free-living amoeba, Acanthamoeba castellanii, was investigated for its antibacterial activity against representative Gram positive and Gram negative bacteria, while bacterial isolates were tested for their anti-amoebic properties. Conditioned medium from A. castellanii showed remarkable bactericidal properties against methicillin-resistant Staphylococcus aureus (MRSA) exhibiting almost 100% kill rate, but had limited effect against Acinetobacter sp., Pseudomonas aeruginosa and vancomycin-resistant Enterococcus faecalis (VRE). Similarly, the conditioned medium of E. coli K1 and Enterobacter sp., exhibited potent anti-Acanthamoebic effects in a concentration-dependent manner. Conditioned media of Acanthamoeba, E. coli K1 and Enterobacter sp. showed no cytotoxicity in vitro when tested against human brain microvascular endothelial cells. Active molecule/s in aforementioned amoebic and two bacterial conditioned media were 5 – 10 kDa, and <5 kDa respectively. Conclusions A. castellanii conditioned medium showed potent bactericidal properties against MRSA. The active molecule(s) are heat- and pronase-resistant, and in the 5 to 10 kDa molecular mass range. Contrary to this, E. coli K1 and Enterobacter sp., conditioned medium showed anti-amoebic effects that are <5 kDa in molecular mass, suggestive of active metabolites. PMID:24479709
2013-01-01
Background In this report we have explored the genomic and microbiological basis for a sustained increase in bloodstream infections at a major Australian hospital caused by Enterococcus faecium multi-locus sequence type (ST) 203, an outbreak strain that has largely replaced a predecessor ST17 sequence type. Results To establish a ST203 reference sequence we fully assembled and annotated the genome of Aus0085, a 2009 vancomycin-resistant Enterococcus faecium (VREfm) bloodstream isolate, and the first example of a completed ST203 genome. Aus0085 has a 3.2 Mb genome, comprising a 2.9 Mb circular chromosome and six circular plasmids (2 kb–130 kb). Twelve percent of the 3222 coding sequences (CDS) in Aus0085 are not present in ST17 E. faecium Aus0004 and ST18 E. faecium TX16. Extending this comparison to an additional 12 ST17 and 14 ST203 E. faecium hospital isolate genomes revealed only six genomic regions spanning 41 kb that were present in all ST203 and absent from all ST17 genomes. The 40 CDS have predicted functions that include ion transport, riboflavin metabolism and two phosphotransferase systems. Comparison of the vancomycin resistance-conferring Tn1549 transposon between Aus0004 and Aus0085 revealed differences in transposon length and insertion site, and van locus sequence variation that correlated with a higher vancomycin MIC in Aus0085. Additional phenotype comparisons between ST17 and ST203 isolates showed that while there were no differences in biofilm-formation and killing of Galleria mellonella, ST203 isolates grew significantly faster and out-competed ST17 isolates in growth assays. Conclusions Here we have fully assembled and annotated the first ST203 genome, and then characterized the genomic differences between ST17 and ST203 E. faecium. We also show that ST203 E. faecium are faster growing and can out-compete ST17 E. faecium. While a causal genetic basis for these phenotype differences is not provided here, this study revealed conserved genetic differences between the two clones, differences that can now be tested to explain the molecular basis for the success and emergence of ST203 E. faecium. PMID:24004955
Radhouani, Hajer; Poeta, Patrícia; Pinto, Luís; Miranda, Júlio; Coelho, Céline; Carvalho, Carlos; Rodrigues, Jorge; López, María; Torres, Carmen; Vitorino, Rui; Domingues, Pedro; Igrejas, Gilberto
2010-09-21
Enterococci have emerged as the third most common cause of nosocomial infections, requiring bactericidal antimicrobial therapy. Although vancomycin resistance is a major problem in clinics and has emerged in an important extend in farm animals, few studies have examined it in wild animals. To determine the prevalence of vanA-containing Enterococcus strains among faecal samples of Seagulls (Larus cachinnans) of Berlengas Natural Reserve of Portugal, we developed a proteomic approach integrated with genomic data. The purpose was to detect the maximum number of proteins that vary in different enterococci species which are thought to be connected in some, as yet unknown, way to antibiotic resistance. From the 57 seagull samples, 54 faecal samples showed the presence of Enterococcus isolates (94.7%). For the enterococci, E. faecium was the most prevalent species in seagulls (50%), followed by E. faecalis and E. durans (10.4%), and E. hirae (6.3%). VanA-containing enterococcal strains were detected in 10.5% of the 57 seagull faecal samples studied. Four of the vanA-containing enterococci were identified as E. faecium and two as E. durans. The tet(M) gene was found in all five tetracycline-resistant vanA strains. The erm(B) gene was demonstrated in all six erythromycin-resistant vanA strains. The hyl virulence gene was detected in all four vanA-containing E. faecium isolates in this study, and two of them harboured the purK1 allele. In addition these strains also showed ampicillin and ciprofoxacin resistance. The whole-cell proteomic profile of vanA-containing Enterococcus strains was applied to evaluate the discriminatory power of this technique for their identification. The major differences among species-specific profiles were found in the positions corresponding to 97-45 kDa. Sixty individualized protein spots for each vanA isolate was identified and suitable for peptide mass fingerprinting measures by spectrometry measuring (MALDI/TOF MS) and their identification through bioinformatic databases query. The proteins were classified in different groups according to their biological function: protein biosynthesis, ATP synthesis, glycolysis, conjugation and antibiotic resistance. Taking into account the origin of these strains and its relation to infectious processes in humans and animals, it is important to explore the proteome of new strains which might serve as protein biomarkers for biological activity. The comprehensive description of proteins isolated from vancomycin-resistant Enterococcus faecium and E. durans may provide new targets for development of antimicrobial agents. This knowledge may help to identify new biomarkers of antibiotic resistance and virulence factors.
2010-01-01
Background Enterococci have emerged as the third most common cause of nosocomial infections, requiring bactericidal antimicrobial therapy. Although vancomycin resistance is a major problem in clinics and has emerged in an important extend in farm animals, few studies have examined it in wild animals. To determine the prevalence of vanA-containing Enterococcus strains among faecal samples of Seagulls (Larus cachinnans) of Berlengas Natural Reserve of Portugal, we developed a proteomic approach integrated with genomic data. The purpose was to detect the maximum number of proteins that vary in different enterococci species which are thought to be connected in some, as yet unknown, way to antibiotic resistance. Results From the 57 seagull samples, 54 faecal samples showed the presence of Enterococcus isolates (94.7%). For the enterococci, E. faecium was the most prevalent species in seagulls (50%), followed by E. faecalis and E. durans (10.4%), and E. hirae (6.3%). VanA-containing enterococcal strains were detected in 10.5% of the 57 seagull faecal samples studied. Four of the vanA-containing enterococci were identified as E. faecium and two as E. durans. The tet(M) gene was found in all five tetracycline-resistant vanA strains. The erm(B) gene was demonstrated in all six erythromycin-resistant vanA strains. The hyl virulence gene was detected in all four vanA-containing E. faecium isolates in this study, and two of them harboured the purK1 allele. In addition these strains also showed ampicillin and ciprofoxacin resistance. The whole-cell proteomic profile of vanA-containing Enterococcus strains was applied to evaluate the discriminatory power of this technique for their identification. The major differences among species-specific profiles were found in the positions corresponding to 97-45 kDa. Sixty individualized protein spots for each vanA isolate was identified and suitable for peptide mass fingerprinting measures by spectrometry measuring (MALDI/TOF MS) and their identification through bioinformatic databases query. The proteins were classified in different groups according to their biological function: protein biosynthesis, ATP synthesis, glycolysis, conjugation and antibiotic resistance. Taking into account the origin of these strains and its relation to infectious processes in humans and animals, it is important to explore the proteome of new strains which might serve as protein biomarkers for biological activity. Conclusions The comprehensive description of proteins isolated from vancomycin-resistant Enterococcus faecium and E. durans may provide new targets for development of antimicrobial agents. This knowledge may help to identify new biomarkers of antibiotic resistance and virulence factors. PMID:20858227
Dutta, Ireena; Reynolds, Peter E
2002-10-01
The vanC-2 cluster of Enterococcus casseliflavus ATCC 25788 consisted of five genes (vanC-2, vanXY(C-2), vanT(C-2), vanR(C-2), and vanS(C-2)) and shared the same organization as the vanC cluster of E. gallinarum BM4174. The proteins encoded by these genes displayed a high degree of amino acid identity to the proteins encoded within the vanC gene cluster. The putative D,D-dipeptidase-D,D-carboxypeptidase, VanXY(C-2), exhibited 81% amino acid identity to VanXY(C), and VanT(C-2) displayed 65% amino acid identity to the serine racemase, VanT. VanR(C-2) and VanS(C-2) displayed high degrees of identity to VanR(C) and VanS(C), respectively, and contained the conserved residues identified as important to their function as a response regulator and histidine kinase, respectively. Resistance to vancomycin was expressed inducibly in E. casseliflavus ATCC 25788 and required an extended period of induction. Analysis of peptidoglycan precursors revealed that UDP-N-acetylmuramyl-L-Ala-delta-D-Glu-L-Lys-D-Ala-D-Ser could not be detected until several hours after the addition of vancomycin, and its appearance coincided with the resumption of growth. The introduction of additional copies of the vanT(C-2) gene, encoding a putative serine racemase, and the presence of supplementary D-serine in the growth medium both significantly reduced the period before growth resumed after addition of vancomycin. This suggested that the availability of D-serine plays an important role in the induction process.
Hanaki, H; Akagi, H; Masaru, Y; Otani, T; Hyodo, A; Hiramatsu, K
1995-01-01
TOC-39, a new parenteral cephalosporin, is a hydroxyimino-type cephem antibiotic with vinylthio-pyridyl moiety at the 3 position. TOC-39 was evaluated for antibacterial activity against various clinically isolated strains. TOC-39 had excellent activity, stronger than that of methicillin, oxacillin, the cephalosporins tested, imipenem, gentamicin, minocycline, tobramycin, ofloxacin, and ciprofloxacin against methicillin-resistant Staphylococcus aureus (MRSA) and had an MIC comparable to that of vancomycin (the MICs of TOC-39 and vancomycin for 90% of the strains tested were 3.13 and 1.56 micrograms/ml, respectively). Against Enterococcus faecalis strains, which are resistant to cephalosporins, TOC-39 was twice as active as ampicillin. Against methicillin-susceptible S. aureus, coagulase-negative Staphylococcus spp., and Streptococcus pneumoniae, TOC-39 was twice as active as or more active than cefotiam, ceftazidime, flomoxef, and cefpirome. Against Streptococcus pyogenes, TOC-39 was superior to cefotiam, ceftazidime, and flomoxef and was similar to cefpirome. In addition, the activity of TOC-39 was equal to or greater than that of cefotiam, ceftazidime, flomoxef, and cefpirome against Haemophilus influenzae, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, and Morganella morganii. In terms of bactericidal effect against MRSA, TOC-39 was superior to vancomycin. No mutant resistant to TOC-39 or vancomycin was obtained from susceptible MRSA strains. In murine systemic infection models, TOC-39 showed potent activity against S. aureus and E. coli. Against highly MRSA, the activity of TOC-39 was comparable to that of vancomycin. PMID:7625799
Peterson, William J.; Maya, Ivan D.; Carlton, Donna; Estrada, Erin; Allon, Michael
2008-01-01
Background Catheter-related bacteremia (CRB) is a frequent complication of tunneled dialysis catheters, and Enterococcus is a common infecting organism. CRB may be treated by instilling an antibiotic lock into the catheter lumen, in conjunction with systemic antibiotics. The efficacy of this approach in Enterococcus bacteremia is unknown. Design Quality improvement report. Setting and participants 64 catheter-dependent hemodialysis outpatients with vancomycin-sensitive Enterococcus bacteremia treated with a uniform antibiotic lock protocol. Clinical outcomes were tracked prospectively. Quality improvement plans Patients received intravenous vancomycin for 3 weeks, in conjunction with a vancomycin lock instilled into both catheter lumens after each dialysis session. Measures Treatment failure was defined as persistent fever 48 hours after initiation of antibiotics or recurrent Enterococcus bacteremia within 90 days. A clinical cure was defined as fever resolution without recurrent bacteremia. Major infection-related complications within 6 months were documented. Results Treatment failure occurred in 25 patients (39%), due to persistent fever in 10, and recurrent bacteremia in 15. Treatment success occurred in 39 patients (61%). A serious complication of Enterococcus CRB occurred in 4 of 64 patients (6%), endocarditis in 1 and osteomyelitis in 3. The frequency of serious complications was 16% (4/25) in patients with treatment failure, as compared with 0% (0/39) in those with treatment success (P=0.01). Limitations This was a single-center study. We did not measure serum vancomycin levels. Conclusions An antibiotic lock protocol permits catheter salvage in 61% of hemodialysis patients with Enterococcus CRB. Serious complications occur in 6% of patients, and are more common in those with treatment failure. PMID:18848379
Kim, Y-J; Park, J-H; Seo, K-H
2018-01-01
Antibiotic-resistant bacteria in poultry meat are a threat to public health. In this study, we compared the Enterococcus spp. loads and antibiotic-resistance profiles between carcasses of conventionally and organically raised chickens. A total of 144 chicken carcasses (72 conventional and 72 organic) was collected from local retail markets in Seoul, South Korea. Overall, 77.7% (112 of 144; 75% conventional and 80% organic) of chicken carcasses were positive for Enterococcus. The mean loads of Enterococcus spp. were greater in conventional chicken carcasses, at 2.9 ± 0.4 log CFU/mL, than those in organic chicken carcasses, at 1.78 ± 0.3 log CFU/mL (p < 0.05). A total of 104 isolates (52 from conventional and 52 from organic chicken carcasses) was randomly selected for further analysis. The predominant species was Enterococcus faecalis in both conventional and organic chicken carcasses (57.7 and 76.9%, respectively; P > 0.05). Rates of resistance to ciprofloxacin and erythromycin, which are used in veterinary medicine in South Korea, were significantly higher in conventional chicken carcasses than in organic chicken carcasses. However, we found no difference between the rates of resistance to antibiotics such as vancomycin and tigecycline, which were not registered for use in veterinary medicine in South Korea, of Enterococcus isolates from conventional and organic chicken carcasses. In addition, although multidrug resistant isolates were obtained from both types of chicken samples, the prevalence of samples positive for Enterococcus was significantly higher in conventional chicken carcasses than in organic chicken carcasses (P < 0.05). The most common multidrug resistance pattern was erythromycin-tetracycline-rifampicin in conventional chicken carcasses and quinupristin-dalfopristin-tetracycline-rifampicin in organic chicken carcasses. A high level of gentamicin resistance was observed in isolates from not only conventional (5.8%) but also organic chicken (1.9%) carcasses, with no significant difference in rates between them (P > 0.05). Despite this, our results suggest that organic food certification is effective in reducing fecal contamination and the burden of antibiotic-resistant Enterococcus spp. in chicken carcasses. © 2017 Poultry Science Association Inc.
Frequency and antimicrobial susceptibility of aerobic bacterial vaginal isolates.
Tariq, Nabia; Jaffery, Tara; Ayub, Rukhsana; Alam, Ali Yawar; Javid, Mahmud Haider; Shafique, Shamsa
2006-03-01
To determine the frequency and antimicrobial susceptibility of aerobic bacterial isolates from high vaginal swab cultures. Cross-sectional survey. Shifa International Hospital, Islamabad, from January 2003 to February 2004. The subjects included 136 symptomatic women attending Obstetrics and Gynecology Out-Patient Department. A proforma was filled to document the demographic details, presenting complaint and examination findings. High vaginal swabs were taken for gram staining, culture and antimicrobial sensitivity testing using standard microbiologic techniques. Normal flora was isolated in 30% of the cases, followed by Candida spp. (21.3%), Enterococcus spp. (14.7%), E.coli (10.2%), Beta hemolytic Streptococcus spp. (7.3%), Staphylococcus spp. (4.4%), Enterobacter spp. (4.4%), while Streptococcus pyogenes, Staphylococcus epidermidis and Klebsiella spp. were isolated 1.5% each. Enterococcus, Staphylococcus and Streptococcus were mostly sensitive to penicillin and amoxicillin while E.coli and Klebsiella were sensitive to (piperacillin-Tazobactum, Imipenem and vancomycin. Enterococci species showed significant resistance to aminoglycoside antibiotics (68.8% to 81.3%) resistance to vancomycin was 5%. Thirty percent of symptomatic patients had normal flora on culture. Candida spp was the most frequent pathogen isolated. Co-amoxiclav should be used as empiric therapy until culture-sensitivity report is available.
Khalkhali, Soodabeh; Mojgani, Naheed
2017-01-01
Background and Objectives: Human milk is a continuous supply of Lactic Acid bacteria (LAB), including enterococci with probiotic potentials. The aim of this study was to analyze two Enterococcus species, isolated from human milk for their probiotic potential, bacteriocin producing ability and virulence traits. Materials and Methods: Enterococcus faecium TA0033 and E. faecalis TA102 were tested for acid and bile tolerance, survival in simulated gastric and intestinal conditions. The antibacterial spectrum of the isolates was tested by agar well diffusion assay. The antagonistic agent was characterized by physico-chemical methods. The enterocin structural genes, virulence determinants, vancomycin resistance and biogenic amine genes, such as hdc1, hdc2, tdc, ldc and odc were also determined. Results: The tested isolates survived acidic conditions, high bile salt (1%), simulated gastric and intestinal conditions. The culture supernatant fluids of the two isolates inhibited the growth of Escherichia coli, Listeria monocytogenes, Salmonella typhi, Staphylococcus aureus, Shigella dysenteriae and Streptococcus agalactiae. The antagonistic activity was lost in the presence of proteolytic enzymes but tolerated the action of catalase, lysozyme and lipase. In contrast to enterocin TA102, enterocin TA0033 possessed bactericidal mode of action. Bacteriocin structural genes, entA and entB were present in the genome of the two isolates, while E. faecalis TA102 additionally harboured entP and bac31 genes. The phenotypic and genotypic virulence assessment studies indicated hyaluronidase (hyl) production and vancomycin resistance in E. faecalis TA102 while, none of the isolates harboured the biogenic amine genes. Conclusion: The presence of virulence genes in E. faecalis TA102 calls for careful monitoring of Enterococcus isolates for their safety parameters. PMID:29238458
Ghosh, A.N.; Bhatta, D.R.; Ansari, M.T.; Tiwari, H.K.; Mathuria, J.P.; Gaur, A.; Supram, H.S.; Gokhale, S.
2013-01-01
Introduction: WHONET is a freely downloadable, Windows-based database software which is used for the management and analysis of microbiology data, with a special focus on the analysis of antimicrobial susceptibility test results. Urinary Tract Infections (UTI) are a common medical problem and they are responsible for notable morbidity among young and sexually active women. Objectives: The major objective of this study was the utilization and application of the WHONET program for the Antimicrobial Resistance (AMR) surveillance of uropathogens. Methods: A total of 3209 urine samples were collected from patients who visited Manipal Teaching Hospital with a clinical suspicion of UTI, during December 2010 to July 2011. The isolation and characterization of the isolates were done by conventional methods. Antimicrobial Susceptibility Testing (AST) was performed by Kirby Bauer’s disc diffusion method. The data entry and analysis were done by using the WHONET 5.6 software. Results: Out of the 3209 specimens, 497 bacterial isolates were obtained and they were subjected to AST. Escherichia coli (66.2%) was the commonest bacterial isolate, followed by Enterococcus species (9.3%), Staphylococcus aureus (5.0%), and Klebsiella pneumoniae (4.2%). Among the gram-negative enteric bacilli, a high prevalence of resistance was observed against ampicillin and ciprofloxacin. The gram negative nonfermenters exhibited a high degree of resistance to ceftazidime. Staphylococcus species. showed a moderately high resistance to co-trimoxazole. One isolate was Vancomycin Resistant Enterococci (VRE). Conclusion: This study, a first of its kind which was done in Nepal, was carried out by using the WHONET software to monitor, analyze and share the antimicrobial susceptibility data at various levels. This study was also aimed at building a surveillance network in Nepal, with the National Public Health Laboratory, Nepal, acting as a nodal centre. This would help in the formulation of antibiotic policies and in identifying hospital and community outbreaks at the nodal centre, as well as in sharing information with the clinicians at the local level. PMID:23814725
Ghosh, A N; Bhatta, D R; Ansari, M T; Tiwari, H K; Mathuria, J P; Gaur, A; Supram, H S; Gokhale, S
2013-05-01
WHONET is a freely downloadable, Windows-based database software which is used for the management and analysis of microbiology data, with a special focus on the analysis of antimicrobial susceptibility test results. Urinary Tract Infections (UTI) are a common medical problem and they are responsible for notable morbidity among young and sexually active women. The major objective of this study was the utilization and application of the WHONET program for the Antimicrobial Resistance (AMR) surveillance of uropathogens. A total of 3209 urine samples were collected from patients who visited Manipal Teaching Hospital with a clinical suspicion of UTI, during December 2010 to July 2011. The isolation and characterization of the isolates were done by conventional methods. Antimicrobial Susceptibility Testing (AST) was performed by Kirby Bauer's disc diffusion method. The data entry and analysis were done by using the WHONET 5.6 software. Out of the 3209 specimens, 497 bacterial isolates were obtained and they were subjected to AST. Escherichia coli (66.2%) was the commonest bacterial isolate, followed by Enterococcus species (9.3%), Staphylococcus aureus (5.0%), and Klebsiella pneumoniae (4.2%). Among the gram-negative enteric bacilli, a high prevalence of resistance was observed against ampicillin and ciprofloxacin. The gram negative nonfermenters exhibited a high degree of resistance to ceftazidime. Staphylococcus species. showed a moderately high resistance to co-trimoxazole. One isolate was Vancomycin Resistant Enterococci (VRE). This study, a first of its kind which was done in Nepal, was carried out by using the WHONET software to monitor, analyze and share the antimicrobial susceptibility data at various levels. This study was also aimed at building a surveillance network in Nepal, with the National Public Health Laboratory, Nepal, acting as a nodal centre. This would help in the formulation of antibiotic policies and in identifying hospital and community outbreaks at the nodal centre, as well as in sharing information with the clinicians at the local level.
2012-03-01
Staphylococcus epidermidis, Micrococcus sp., Enterococcus faecalis, Listeria monocytogenes, Shigella boydii, Shigella sonnei, Shigella flexneri...MSSA, VRE B. cereus, MSSA, MRSA, Micrococcus , E. faecalis, L. monocytogenes, Shigella, E. coli, S. enterica, Acinetobacter 505 G1 B. subtilis 505...subtilis B. cereus 506 B3 VRE B. cereus, MSSA, MRSA, Micrococcus , E. faecalis, L. monocytogenes, Shigella, E. coli, S. enterica, Acinetobacter
Cluster of linezolid-resistant Enterococcus faecium ST117 in Norwegian hospitals.
Hegstad, Kristin; Longva, Jørn-Åge; Hide, Reidar; Aasnæs, Bettina; Lunde, Tracy M; Simonsen, Gunnar Skov
2014-10-01
A linezolid-resistant, vancomycin-susceptible Enterococcus faecium strain was isolated from 3 patients who had not received linezolid. The first patient was hospitalized in the same hospitals and wards as the 2 following patients. The E. faecium isolates were resistant to linezolid (minimum inhibitory concentration 8-32 mg/l), ampicillin, and high levels of gentamicin. Resistance to linezolid was associated with a G2576T mutation in 23S rDNA. The cfr linezolid resistance gene was not detected. The 3 isolates showed identical DNA fingerprints by pulsed-field gel electrophoresis, belonged to ST117, and harboured virulence genes esp, hyl, acm, efaAfm, srgA, ecbA, scm, pilA, pilB, and pstD typically associated with high-risk E. faecium genotypes. The linezolid-resistant E. faecium high-risk clone caused bacteraemia in the first 2 cancer patients and survived in the hospital environment for more than a year before appearing in the urethral catheter of the third patient.
Wang, Shanshan; Guo, Yinjuan; Lv, Jingnan; Qi, Xiuqin; Li, Dan; Chen, Zengqiang; Zhang, Xueqing; Wang, Liangxing; Yu, Fangyou
2016-10-21
Quinupristin/dalfopristin (Q/D) is a valuable alternative antibiotic to vancomycin for the treatment of multi-drug resistant Enterococcus faecium infections. However, resistance to Q/D in E. faecium clinical isolates and nosocomial dissemination of Q/D-resistant E. faecium have been reported in several countries and should be of concern. From January 2012 to December 2015, 911 E. faecium clinical isolates were isolated from various specimens of inpatients at the first Affiliated Hospital of Wenzhou Medical University located in Wenzhou, east China. Of 911 E. faecium clinical isolates, 9 (1.0 %, 9/911) were resistant to Q/D, with the Q/D MIC values of 64 mg/L(1), 32 mg/L(1), 16 mg/L(3), 8 mg/L(1) and 4 mg/L(3) determined by broth microdilution. All Q/D-resistant isolates were susceptible to vancomycin, tigecycline and teicoplanin but resistant to penicillin, ampicillin and erythromycin. vatE was only found in one Q/D-resistant E. faecium isolate while vatD was not detected in any of the isolates tested. 8 of 9 Q/D-resistant E. faecium isolates were found be positive for both ermB and msrC. The combinations of Q/D resistance determinants were ermB-msrC (7 isolates) and ermB-msrC-vatE (one isolate). ST78, ST761, ST94, ST21 and ST323 accounted for 4, 2, 1, 1 and 1 isolate, respectively, among which ST78 was the prevalent ST. Q/D-resistant E. faecium clinical isolates were first described in China. Carriage of vatE, ermB and msrC was responsible for Q/D resistance.
Virulence and antimicrobial resistance of Enterococcus faecium isolated from water samples.
Enayati, M; Sadeghi, J; Nahaei, M R; Aghazadeh, M; Pourshafie, M R; Talebi, M
2015-10-01
The aim of this study was to determine the incidence of Enterococcus species and six virulence factors of Enterococcus faecium which were isolated from surface water and wells. Fifteen different water samples, which were used for drinking as well as agricultural irrigation, were collected from nine private wells and surface water from six rivers located at the east of Tehran. The Ent. faecium isolates were tested for their resistance to 10 antibiotics and their virulence factors were detected using multiplex PCR for esp, acm, gelE, asa1, cylA and hyl genes. The most predominant species in 315 isolates were Ent. faecium (n = 118) followed by Enterococcus galinarom (n = 110), Enterococcus mundeti (n = 18), Enterococcus hirea (n = 37) and Enterococcus casselifelavus (n = 32). The resistance rates were observed in 41·5, 27·1, 12·7, 6·8 and 1·7% isolates for tetracycline, erythromycin, ampicillin, ciprofloxacin and chloramphenicol respectively. None of the Ent. faecium isolates were resistant to vancomycin, teicoplanin, linezolid, gentamicin and quinuspristin-dalfopristin. Virulence determinant was found in 84·7, 33·9, 16·1 and 2·5% of isolates for acm, asa1, esp, cylA respectively. None of the isolates carried hyl and gelE gene. The presence of virulence factors and antibiotic resistance indicated that water might be an important source of dissemination of virulent enterococci. Contamination of drinking or recreational water by human or animal faecal waste is a major public health threat. In this study, we determine the incidence of Enterococcus species and six virulence factors of Enterococcus faecium which were isolated from surface water and wells. Results from this study suggest that the presence of Ent. faecium in natural and well waters was found to be significant in rural areas of Tehran. Resistant to erythromycin among Ent. faecium was relatively high and the incidence of acm and asa1 among our isolates was common overall. © 2015 The Society for Applied Microbiology.
Fang, Chong; Stiegeler, Emanuel; Cook, Gregory M.; Mascher, Thorsten; Gebhard, Susanne
2014-01-01
To combat antibiotic resistance of Enterococcus faecalis, a better understanding of the molecular mechanisms, particularly of antibiotic detection, signal transduction and gene regulation is needed. Because molecular studies in this bacterium can be challenging, we aimed at exploiting the genetically highly tractable Gram-positive model organism Bacillus subtilis as a heterologous host. Two fundamentally different regulators of E. faecalis resistance against cell wall antibiotics, the bacitracin sensor BcrR and the vancomycin-sensing two-component system VanSB-VanRB, were produced in B. subtilis and their functions were monitored using target promoters fused to reporter genes (lacZ and luxABCDE). The bacitracin resistance system BcrR-BcrAB of E. faecalis was fully functional in B. subtilis, both regarding regulation of bcrAB expression and resistance mediated by the transporter BcrAB. Removal of intrinsic bacitracin resistance of B. subtilis increased the sensitivity of the system. The lacZ and luxABCDE reporters were found to both offer sensitive detection of promoter induction on solid media, which is useful for screening of large mutant libraries. The VanSB-VanRB system displayed a gradual dose-response behaviour to vancomycin, but only when produced at low levels in the cell. Taken together, our data show that B. subtilis is a well-suited host for the molecular characterization of regulatory systems controlling resistance against cell wall active compounds in E. faecalis. Importantly, B. subtilis facilitates the careful adjustment of expression levels and genetic background required for full functionality of the introduced regulators. PMID:24676422
Fang, Chong; Stiegeler, Emanuel; Cook, Gregory M; Mascher, Thorsten; Gebhard, Susanne
2014-01-01
To combat antibiotic resistance of Enterococcus faecalis, a better understanding of the molecular mechanisms, particularly of antibiotic detection, signal transduction and gene regulation is needed. Because molecular studies in this bacterium can be challenging, we aimed at exploiting the genetically highly tractable Gram-positive model organism Bacillus subtilis as a heterologous host. Two fundamentally different regulators of E. faecalis resistance against cell wall antibiotics, the bacitracin sensor BcrR and the vancomycin-sensing two-component system VanSB-VanRB, were produced in B. subtilis and their functions were monitored using target promoters fused to reporter genes (lacZ and luxABCDE). The bacitracin resistance system BcrR-BcrAB of E. faecalis was fully functional in B. subtilis, both regarding regulation of bcrAB expression and resistance mediated by the transporter BcrAB. Removal of intrinsic bacitracin resistance of B. subtilis increased the sensitivity of the system. The lacZ and luxABCDE reporters were found to both offer sensitive detection of promoter induction on solid media, which is useful for screening of large mutant libraries. The VanSB-VanRB system displayed a gradual dose-response behaviour to vancomycin, but only when produced at low levels in the cell. Taken together, our data show that B. subtilis is a well-suited host for the molecular characterization of regulatory systems controlling resistance against cell wall active compounds in E. faecalis. Importantly, B. subtilis facilitates the careful adjustment of expression levels and genetic background required for full functionality of the introduced regulators.
Surprising Alteration of Antibacterial Activity of 5″-Modified Neomycin against Resistant Bacteria
Zhang, Jianjun; Chiang, Fang-I; Wu, Long; Czyryca, Przemyslaw Greg; Li, Ding; Chang, Cheng-Wei Tom
2009-01-01
A facile synthetic protocol for the production of neomycin B derivatives with various modifications at the 5″ position has been developed. Structural activity relationship (SAR) against aminoglycoside resistant bacteria equipped with various aminoglycoside-modifying enzymes (AME's) was investigated. Enzymatic and molecular modeling studies reveal that the superb substrate promiscuity of AME's allows the resistant bacteria to cope with diverse structural modifications despite the observation that several derivatives show enhanced antibacterial activity than the parent neomycin. Surprisingly, when testing synthetic neomycin derivatives against other human pathogens, two leads exhibit prominent activity against both Methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) that are known to exert high level of resistance against clinically used aminoglycosides. These findings can be extremely useful in developing new aminoglycoside antibiotics against resistant bacteria. Our result also suggests that new biological and antimicrobial activities can be obtained by chemical modifications of old drugs. PMID:19012394
Emergence of endemic MLST non-typeable vancomycin-resistant Enterococcus faecium.
Carter, Glen P; Buultjens, Andrew H; Ballard, Susan A; Baines, Sarah L; Tomita, Takehiro; Strachan, Janet; Johnson, Paul D R; Ferguson, John K; Seemann, Torsten; Stinear, Timothy P; Howden, Benjamin P
2016-12-01
Enterococcus faecium is a major nosocomial pathogen causing significant morbidity and mortality worldwide. Assessment of E. faecium using MLST to understand the spread of this organism is an important component of hospital infection control measures. Recent studies, however, suggest that MLST might be inadequate for E. faecium surveillance. To use WGS to characterize recently identified vancomycin-resistant E. faecium (VREfm) isolates non-typeable by MLST that appear to be causing a multi-jurisdictional outbreak in Australia. Illumina NextSeq and Pacific Biosciences SMRT sequencing platforms were used to determine the genome sequences of 66 non-typeable E. faecium (NTEfm) isolates. Phylogenetic and bioinformatics analyses were subsequently performed using a number of in silico tools. Sixty-six E. faecium isolates were identified by WGS from multiple health jurisdictions in Australia that could not be typed by MLST due to a missing pstS allele. SMRT sequencing and complete genome assembly revealed a large chromosomal rearrangement in representative strain DMG1500801, which likely facilitated the deletion of the pstS region. Phylogenomic analysis of this population suggests that deletion of pstS within E. faecium has arisen independently on at least three occasions. Importantly, the majority of these isolates displayed a vancomycin-resistant genotype. We have identified NTEfm isolates that appear to be causing a multi-jurisdictional outbreak in Australia. Identification of these isolates has important implications for MLST-based typing activities designed to monitor the spread of VREfm and provides further evidence supporting the use of WGS for hospital surveillance of E. faecium. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Liu, H; Fei, C N; Zhang, Y; Liu, G W; Liu, J; Dong, J
2017-06-01
Multi-drug-resistant Gram-negative bacteria (MDRGNB) have become an important cause of nosocomial infection in intensive care units (ICUs). To investigate the molecular epidemiology of MDRGNB isolated from medical personnel (MP) and non-medical personnel (NMP) at 69 ICUs in Tianjin, China. From April 2007 to October 2015, 2636 nasal and hand swab samples from 1185 MP and 133 NMP were cultured for GNB (including MDRGNB), meticillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). The susceptibilities of GNB to 14 antimicrobial agents were determined, and 80 MDRGNB were characterized using pulsed-field gel electrophoresis (PFGE) and dendrogram analysis. In total, 301 GNB were identified in 269 MP, including 109 MDRGNB isolates in 104 MP. Forty-two GNB were isolated from 39 NMP, which included 20 NMP with MDRGNB. Overall, 8.8% of MP were colonized with MDRGNB, which greatly exceeded colonization rates with MRSA (0.9%) and VRE (0.1%). Three pairs of Klebsiella pneumoniae and one pair of Enterobacter aerogenes were indistinguishable from each other, but the majority of isolate tests had distinct PFGE profiles. The prevalence of MDRGNB was high among ICU MP in Tianjin, and greatly exceeded that of VRE and MRSA. There was no difference in the rates of nasal carriage of MDRGNB between MP and NMP, but NMP were significantly more likely to have hand colonization with MDRGNB. PFGE profiles showed that there was only limited sharing of strains of MDR E. aerogenes and K. pneumoniae between personnel. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Gousia, Panagiota; Economou, Vangelis; Bozidis, Petros; Papadopoulou, Chrissanthy
2015-03-01
In the present study, 500 raw beef, pork, and chicken meat samples and 100 pooled egg samples were analyzed for the presence of vancomycin-resistant enterococci, vancomycin-resistance phenotypes, and resistance genes. Of 141 isolates of enterococci, 88 strains of Enterococcus faecium and 53 strains of E. faecalis were identified. The most prevalent species was E. faecium. Resistance to ampicillin (n = 93, 66%), ciprofloxacin (n = 74, 52.5%), erythromycin (n = 73, 51.8%), penicillin (n = 59, 41.8%) and tetracycline (n = 52, 36.9%) was observed, while 53.2% (n = 75) of the isolates were multiresistant and 15.6% (n = 22) were susceptible to all antibiotics. Resistance to vancomycin was exhibited in 34.1% (n = 30) of the E. faecium isolates (n = 88) and 1.9% (n = 1) of the E. faecalis isolates (n = 53) using the disc-diffusion test and the E-test. All isolates were tested for vanA and vanB using real-time polymerase chain reaction (PCR) and multiplex PCR, and for vanC, vanD, vanE, vanG genes using multiplex PCR only. Among E. faecalis isolates, no resistance genes were identified. Among the E. faecium isolates, 28 carried the vanA gene when tested by multiplex PCR and 29 when tested with real-time PCR. No isolate carrying the vanC, vanD, vanE, or vanG genes was identified. Melting-curve analysis of the positive real-time PCR E. faecium isolates showed that 22 isolates carried the vanA gene only, 2 isolates the vanB2,3 genes only, and seven isolates carried both the vanA and vanB2,3 genes. Enterococci should be considered a significant zoonotic pathogen and a possible reservoir of genes encoding resistance potentially transferred to other bacterial species.
Rathnayake, I U; Hargreaves, M; Huygens, F
2012-07-01
This study compared virulence and antibiotic resistance traits in clinical and environmental Enterococcus faecalis and Enterococcus faecium isolates. E. faecalis isolates harboured a broader spectrum of virulence determinants compared to E. faecium isolates. The virulence traits Cyl-A, Cyl-B, Cyl-M, gel-E, esp and acm were tested and environmental isolates predominantly harboured gel-E (80% of E. faecalis and 31.9% of E. faecium) whereas esp was more prevalent in clinical isolates (67.8% of E. faecalis and 70.4% of E. faecium). E. faecalis and E. faecium isolated from water had different antibiotic resistance patterns compared to those isolated from clinical samples. Linezolid resistance was not observed in any isolates tested and vancomycin resistance was observed only in clinical isolates. Resistance to other antibiotics (tetracycline, gentamicin, ciprofloxacin and ampicillin) was detected in both clinical and water isolates. Clinical isolates were more resistant to all the antibiotics tested compared to water isolates. Multi-drug resistance was more prevalent in clinical isolates (71.2% of E. faecalis and 70.3% of E. faecium) compared to water isolates (only 5.7% E. faecium). tet L and tet M genes were predominantly identified in tetracycline-resistant isolates. All water and clinical isolates resistant to ciprofloxacin and ampicillin contained mutations in the gyrA, parC and pbp5 genes. A significant correlation was found between the presence of virulence determinants and antibiotic resistance in all the isolates tested in this study (p<0.05). The presence of antibiotic resistant enterococci, together with associated virulence traits, in surface recreational water could be a public health risk. Copyright © 2012 Elsevier GmbH. All rights reserved.
Zhou, Zhongxin; Wei, Dafu; Lu, Yanhua
2015-01-01
More information regarding the bactericidal properties of polyhexamethylene guanidine hydrochloride (PHMG) against clinically important antibiotic-resistant ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens needs to be provided for its uses in infection control. The bactericidal properties of PHMG and chlorhexidine digluconate (CHG) were compared based on their minimum inhibitory concentrations (MICs), minimum bactericidal concentrations, and time-course-killing curves against clinically important antibiotic-susceptible and antibiotic-resistant ESKAPE pathogens. Results showed that PHMG exhibited significantly higher bactericidal activities against methicillin-resistant Staphylococcus aureus, carbapenem-resistant Klebsiella pneumoniae, and ceftazidime-resistant Enterobacter spp. than CHG. A slight bactericidal advantage over CHG was obtained against vancomycin-resistant Enterococcus faecium, ciprofloxacin- and levofloxacin-resistant Acinetobacter spp., and multidrug-resistant Pseudomonas aeruginosa. In previous reports, PHMG had higher antimicrobial activity against almost all tested Gram-negative bacteria and several Gram-positive bacteria than CHG using MIC test. These studies support the further development of covalently bound PHMG in sterile-surface materials and the incorporation of PHMG in novel disinfectant formulas. © 2014 International Union of Biochemistry and Molecular Biology, Inc.
Outcomes of Aminopenicillin Therapy for Vancomycin-Resistant Enterococcal Urinary Tract Infections.
Cole, Kelli A; Kenney, Rachel M; Perri, Mary Beth; Dumkow, Lisa E; Samuel, Linoj P; Zervos, Marcus J; Davis, Susan L
2015-12-01
Vancomycin-resistant urinary tract infections are often challenging to treat. This retrospective cohort study compared outcomes between patients treated for vancomycin-resistant enterococcal urinary tract infection with an aminopenicillin and those treated with a non-β-lactam antibiotic. Inpatients treated with an enterococcus-active agent for their first symptomatic vancomycin-resistant enterococcal urinary tract infection between 1 January 2012 and 31 December 2013 were considered for inclusion. Patients with colonization, on hospice, or receiving comfort care only were excluded. The primary endpoint of clinical cure was defined as resolution of clinical symptoms, or symptom improvement to the extent that no additional antibacterial drug therapy was necessary, and lack of microbiologic persistence. Secondary endpoints of 30-day readmission or retreatment and 30-day all-cause mortality were also compared. A total of 316 urinary isolates were screened, and 61 patients with symptomatic urinary tract infection were included. Twenty (35%) of the 57 isolates tested were ampicillin susceptible. Thirty-one patients received an aminopenicillin, and 30 received a non-β-lactam. Rates of clinical cure for aminopenicillin versus non-β-lactam treatment were 26/31 (83.9%) and 22/30 (73.3%) (P = 0.315), respectively. Rates of 30-day readmission (6/31, or 19.4%, versus 9/30, or 30%, respectively; P = 0.334), 30-day retreatment (4/31, or 12.9%, versus 4/30, 13.3%, respectively; P = 0.960), and 30-day all-cause mortality (2/31, or 6.5%, versus 1/30, or 3.3%, respectively; P = 0.573) were also not significantly different between groups. Aminopenicillins may be a viable option for treating vancomycin-resistant urinary tract infection regardless of the organism's ampicillin susceptibility. Prospective validation with larger cohorts of patients should be considered. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Rutala, William A; Kanamori, Hajime; Gergen, Maria; Sickbert-Bennett, Emily; Anderson, Deverick; Sexton, Daniel; Weber, David J
2017-01-01
Abstract Background Healthcare room environmental surfaces can be frequently and continuously contaminated with multidrug-resistant organisms (MDROs) that can persist in the environment for a prolonged time. Here, we used a dilute hydrogen peroxide (DHP) gas system for continuous room decontamination and experimentally examined the germicidal efficacy of the new technology against MDROs. Methods DHP units were installed in ceilings of a model room and the hallway in front of the room. We tested three test organisms; methicillin-resistant staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), and MDR-Acinetobacter baumannii. An estimated 100–500 CFU for each test organism was inoculated and spread separately on each Formica sheet then exposed to DHP gas released into the room air. Triplicate samples were collected at times 0, 1, 3, 5, 6, 7, 24, and 48 hours. Following incubation, the colony forming units (CFU) of the test organisms on each Rodac plate were counted. Two separate experimental trials were performed for all time points. Statistical significance between intervention and control groups at each time point was determined by the Wilcoxon test, and P < 0.05 was considered significant. Results There were no statistical differences in survival between DHP intervention and control groups except data at very few time points for each organism (i.e., for MRSA in Figure 1, P = 0.0063 at 24 hours; for VRE in Figure 2, P = 0.0163 at 1 hour, P = 0.0163 at 3 hours; for MDR-Acinetobacter in in Figure 3, P = 0.0369 at 24 hours). The survival curves between both groups for each organism intersected at around 24 hours. The DHP units maintained a germicidal concentration (<0.3ppm for all runs) that was inadequate, despite attempts to control factors that could interfere with the hydrogen peroxide gas concentration. Conclusion Our preliminary study using DHP demonstrated inactivity against MDROs on room surfaces, likely because we were unable to generate a sufficient germicidal level under our test conditions with the particular DHP units. Additional technologic modifications would be required to maintain stable and effective DHP level for continuous room decontamination in patient rooms. Disclosures D. Sexton, Centers for Disease Control and Prevention: Grant Investigator, Grant recipient. Centers for Disease Control and Prevention Foundation: Grant Investigator, Grant recipient. UpToDate: Collaborator, Royalty Recipient. D. J. Weber, PDI: Consultant, Consulting fee.
Sánchez Valenzuela, Antonio; Lavilla Lerma, Leyre; Benomar, Nabil; Gálvez, Antonio; Pérez Pulido, Rubén; Abriouel, Hikmate
2013-02-01
A collection of 55 enterococci (41 Enterococcus faecium and 14 E. faecalis strains) isolated from various traditional fermented foodstuffs of both animal and vegetable origins, and water was evaluated for resistance against 15 antibiotics. Lower incidence of resistance was observed with gentamicin, ampicillin, penicillin and teicoplanin. However, a high incidence of antibiotic resistance was detected for rifampicin (12 out of 14 of isolates), ciprofloxacin (9/14), and quinupristin/dalfopristin (8/14) in E. faecalis strains. Enterococcus faecium isolates were resistant to rifampicin (25/41), ciprofloxacin (23/41), erythromycin (18/41), levofloxacin (16/41), and nitrofurantoin (15/41). One Enterococcus faecalis and two E. faecium strains were resistant to vancomycin (MIC>16 μg/mL). Among 55 isolates, 27 (19 E. faecium and eight E. faecalis) were resistant to at least three antibiotics. High level of multidrug resistance to clinically important antibiotics was detected in E. faecalis strains (57% of E. faecalis versus 46% of E. faecium), which showed resistance to six to seven antibiotics, especially those isolated from foods of animal origin. So, it is necessary to re-evaluate the use of therapeutic antibiotics in stock farms at both regional and international levels due to the high number of multiple resistant (MR) bacteria. Fifty-six MR E. faecalis and E. faecium strains selected from this and previous studies (Valenzuela et al., 2008, 2010) were screened by polymerase chain reaction for antibiotic resistance genes, revealing the presence of tet(L), tet(M), ermB, cat, efrA, efrB, mphA, or msrA/B genes. The ABC Multidrug Efflux Pump EfrAB was detected in 96% of E. faecalis strains and also in 13% of E. faecium strains; this is the first report describing EfrAB in this enterococcal species. The efflux pump-associated msrA/B gene was detected in 66.66% of E. faecium strains, but not in E. faecalis strains.
Marrow, Judilee; Whittington, Julia K; Mitchell, Mark; Hoyer, Lois L; Maddox, Carol
2009-04-01
Due to their predatory nature, raptor species may serve as important indicators of environmental contamination with antimicrobial-resistant bacteria. Raptors prey on small rodents and birds that have diverse habitat ranges, including urban and rural environments, and their intestinal microflora can reflect that of the animals on which they feed. Enterococcus spp. were selected as target organisms because they have been isolated from the avian gastrointestinal tract, can be conferred by prey items, and because they are capable of multiple resistance patterns. They are also a concerning source of human antimicrobial resistance. In this study fecal cultures were obtained from 15 May 2004 to 31 August 2004, from 21 free-living raptors and four captive raptors. Enterococcus was isolated from 21 (84%) of the 25 birds, and 54 isolates were chosen for further study based upon unique colony morphology. The most common isolate recovered was Enterococcus faecalis (95%, 95% confidence interval [CI]: 89-100). One bird in the study was determined to have Enterococcus gallinarum. Two distinct ribotypes of E. faecalis were identified, one with unique bands at 11 and 13 kb and the other with unique bands at 14 and 20 kb. Both ribotypes were found in free-living and captive birds. The Enterococcus isolates in this study demonstrated a variety of antimicrobial-resistance characteristics, including almost complete resistance to amikacin, first-generation cephalosporins, spectinomycin, and sulphadimethoxime. Isolates demonstrated variable resistance to chloramphenicol, gentamicin, enrofloxacin, erythromycin, and ticarcillin. No phenotypically vancomycin-resistant E. faecalis isolates were recovered from any of the raptors; three isolates had intermediate level susceptibility. A significantly higher number of isolates collected from captive birds demonstrated resistance to chloramphenicol than those obtained from free-living birds. This trend was not duplicated with any of the remaining 18 antimicrobial drugs tested. The results of this study suggest that raptors in central Illinois are coming into contact with antimicrobials, prey exposed to antimicrobials, or bacteria that are capable of transferring resistance genes. Further study is needed to determine the source of antimicrobial-resistant Enterococcus in free-living raptors but the limited data reflecting few differences between birds with and without antimicrobial exposure suggests that treatment and release of treated wild raptors is not contributing significantly to antimicrobial resistance in the environment.
Tanner, Benjamin D
2009-02-01
Surface-mediated infectious disease transmission is a major concern in various settings, including schools, hospitals, and food-processing facilities. Chemical disinfectants are frequently used to reduce contamination, but many pose significant risks to humans, surfaces, and the environment, and all must be properly applied in strict accordance with label instructions to be effective. This study set out to determine the capability of a novel chemical-free, saturated steam vapor disinfection system to kill microorganisms, reduce surface-mediated infection risks, and serve as an alternative to chemical disinfectants. High concentrations of Escherichia coli, Shigella flexneri, vancomycin-resistant Enterococcus faecalis (VRE), methicillin-resistant Staphylococcus aureus (MRSA), Salmonella enterica, methicillin-sensitive Staphylococcus aureus, MS2 coliphage (used as a surrogate for nonenveloped viruses including norovirus), Candida albicans, Aspergillus niger, and the endospores of Clostridium difficile were dried individually onto porous clay test surfaces. Surfaces were treated with the saturated steam vapor disinfection system for brief periods and then numbers of surviving microorganisms were determined. Infection risks were calculated from the kill-time data using microbial dose-response relationships published in the scientific literature, accounting for surface-to-hand and hand-to-mouth transfer efficiencies. A diverse assortment of pathogenic microorganisms was rapidly killed by the steam disinfection system; all of the pathogens tested were completely inactivated within 5 seconds. Risks of infection from the contaminated surfaces decreased rapidly with increasing periods of treatment by the saturated steam vapor disinfection system. The saturated steam vapor disinfection system tested for this study is chemical-free, broadly active, rapidly efficacious, and therefore represents a novel alternative to liquid chemical disinfectants.
Vancomycin tolerance in enterococci.
Saribas, Suat; Bagdatli, Yasar
2004-11-01
Tolerance can be defined as the ability of bacteria to grow in the presence of high concentrations of bactericide antimicrobics, so that the killing action of the drug is avoided but the minimal inhibitory concentration (MIC) remains the same. We investigated vancomycin tolerance in the Enterococcus faecium and Enterococcus faecalis strains isolated from different clinical specimens. Vancomycin was obtained from Sigma Chemical Co. We studied 100 enterococci strains. Fifty-six and 44 of Enterococcus strains were idendified as E. feacalis and E. faecium, respectively. To determine MICs and minimal bactericidal concentration (MBC), we inoculated strains from an overnight agar culture to Muller-Hinton broth and incubated them for 4-6 h at 37 degrees C with shaking to obtain a logarithmic phase culture. The inoculum was controlled by performing a colony count for each test. We determined MBC values and MBC/MIC ratios to study tolerance to vancomycin. Vancomycin tolerance was defined as a high MBC value and an MBC/MIC ratio > or =32. Fifty-six and 44 of the Enterococcus strains were identified as E. faecium and E. faecalis, respectively. Thirty-one E. faecium and 48 E. faecalis were found to be susceptible to vancomycin and these susceptible strains were included in this study. The MICs of susceptible strains ranged from < or =1 to 4 mg/l, the MBCs were > or =512 mg/l. Tolerance was detected in all E. faecalis and E. faecium strains. The standard E. faecalis 21913 strain also exhibited tolerance according to the high MBC value and the MBC/MIC ratio. We defined the tolerant strains as having no bactericidal effect and MBC/MIC > or =32. We found that a 100% tolerance was present in susceptible strains. One of the hypotheses for tolerance is that tolerant cells fail to mobilize or create the autolysins needed for enlargement and division. Our data suggests that tolerance may compromise glycopeptide therapy of serious enterococci infections. To add an aminoglycoside to the glycopeptide therapy unless MBCs are unavailable can be useful in the effective treatment of serious Enterococcus infections.
Boulianne, Martine; Arsenault, Julie; Daignault, Danielle; Archambault, Marie; Letellier, Ann; Dutil, Lucie
2016-01-01
An observational study was conducted of chicken and turkey flocks slaughtered at federal processing plants in the province of Quebec, Canada. The objectives were to estimate prevalence of drug use at hatchery and on farm and to identify antimicrobial resistance (AMR) in cecal Escherichia coli and Enterococcus spp. isolates and factors associated with AMR. Eighty-two chicken flocks and 59 turkey flocks were sampled. At the hatchery, the most used antimicrobial was ceftiofur in chickens (76% of flocks) and spectinomycin in turkeys (42% of flocks). Virginiamycin was the antimicrobial most frequently added to the feed in both chicken and turkey flocks. At least 1 E. coli isolate resistant to third-generation cephalosporins was present in all chicken flocks and in a third of turkey flocks. Resistance to tetracycline, streptomycin, and sulfisoxazole was detected in > 90% of flocks for E. coli isolates. Antimicrobial resistance (AMR) was observed to bacitracin, erythromycin, lincomycin, quinupristin-dalfopristin, and tetracycline in both chicken and turkey flocks for Enterococcus spp. isolates. No resistance to vancomycin was observed. The use of ceftiofur at hatchery was significantly associated with the proportion of ceftiofur-resistant E. coli isolates in chicken flocks. In turkey flocks, ceftiofur resistance was more frequent when turkeys were placed on litter previously used by chickens. Associations between drug use and resistance were observed with tetracycline (turkey) in E. coli isolates and with bacitracin (chicken and turkey), gentamicin (turkey), and tylosin (chicken) in Enterococcus spp. isolates. Further studies are needed to provide producers and veterinarians with alternative management practices and tools in order to reduce the use of antimicrobial feed additives in poultry. PMID:26733732
Boulianne, Martine; Arsenault, Julie; Daignault, Danielle; Archambault, Marie; Letellier, Ann; Dutil, Lucie
2016-01-01
An observational study was conducted of chicken and turkey flocks slaughtered at federal processing plants in the province of Quebec, Canada. The objectives were to estimate prevalence of drug use at hatchery and on farm and to identify antimicrobial resistance (AMR) in cecal Escherichia coli and Enterococcus spp. isolates and factors associated with AMR. Eighty-two chicken flocks and 59 turkey flocks were sampled. At the hatchery, the most used antimicrobial was ceftiofur in chickens (76% of flocks) and spectinomycin in turkeys (42% of flocks). Virginiamycin was the antimicrobial most frequently added to the feed in both chicken and turkey flocks. At least 1 E. coli isolate resistant to third-generation cephalosporins was present in all chicken flocks and in a third of turkey flocks. Resistance to tetracycline, streptomycin, and sulfisoxazole was detected in > 90% of flocks for E. coli isolates. Antimicrobial resistance (AMR) was observed to bacitracin, erythromycin, lincomycin, quinupristin-dalfopristin, and tetracycline in both chicken and turkey flocks for Enterococcus spp. isolates. No resistance to vancomycin was observed. The use of ceftiofur at hatchery was significantly associated with the proportion of ceftiofur-resistant E. coli isolates in chicken flocks. In turkey flocks, ceftiofur resistance was more frequent when turkeys were placed on litter previously used by chickens. Associations between drug use and resistance were observed with tetracycline (turkey) in E. coli isolates and with bacitracin (chicken and turkey), gentamicin (turkey), and tylosin (chicken) in Enterococcus spp. isolates. Further studies are needed to provide producers and veterinarians with alternative management practices and tools in order to reduce the use of antimicrobial feed additives in poultry.
Antimicrobial resistance status of Enterococcus from Australian cattle populations at slaughter
McMillan, Kate E.; Duffy, Lesley L.; Fegan, Narelle; Jordan, David; Mellor, Glen E.
2017-01-01
Antimicrobial agents are used in cattle production systems for the prevention and control of bacterial associated diseases. A consequence of their use is the potential development of antimicrobial resistance (AMR). Enterococcus faecium and Enterococcus faecalis that are resistant to antimicrobials are of increased concern to public health officials throughout the world as they may compromise the ability of various treatment regimens to control disease and infection in human medicine. Australia is a major exporter of beef; however it does not have an ongoing surveillance system for AMR in cattle or foods derived from these animals. This study examined 910 beef cattle, 290 dairy cattle and 300 veal calf faecal samples collected at slaughter for the presence of enterococci. Enterococcus were isolated from 805 (88.5%) beef cattle faeces, 244 (84.1%) dairy cattle faeces and 247 (82.3%) veal calf faeces with a total of 800 enterococci subsequently selected for AMR testing. The results of AMR testing identified high levels of resistance to antimicrobials that are not critically or highly important to human medicine with resistance to flavomycin (80.2%) and lincomycin (85.4–94.2%) routinely observed. Conversely, resistance to antibiotics considered critically or highly important to human medicine such as tigecycline, daptomycin, vancomycin and linezolid was not present in this study. There is minimal evidence that Australian cattle production practices are responsible for disproportionate contributions to AMR development and in general resistance to antimicrobials of critical and high importance in human medicine was low regardless of the isolate source. The low level of antimicrobial resistance in Enterococcus from Australian cattle is likely to result from comprehensive controls around the use of antimicrobials in food-production animals in Australia. Nevertheless, continued monitoring of the effects of all antimicrobial use is required to support Australia’s reputation as a supplier of safe and healthy food. PMID:28542602
Antimicrobial resistance status of Enterococcus from Australian cattle populations at slaughter.
Barlow, Robert S; McMillan, Kate E; Duffy, Lesley L; Fegan, Narelle; Jordan, David; Mellor, Glen E
2017-01-01
Antimicrobial agents are used in cattle production systems for the prevention and control of bacterial associated diseases. A consequence of their use is the potential development of antimicrobial resistance (AMR). Enterococcus faecium and Enterococcus faecalis that are resistant to antimicrobials are of increased concern to public health officials throughout the world as they may compromise the ability of various treatment regimens to control disease and infection in human medicine. Australia is a major exporter of beef; however it does not have an ongoing surveillance system for AMR in cattle or foods derived from these animals. This study examined 910 beef cattle, 290 dairy cattle and 300 veal calf faecal samples collected at slaughter for the presence of enterococci. Enterococcus were isolated from 805 (88.5%) beef cattle faeces, 244 (84.1%) dairy cattle faeces and 247 (82.3%) veal calf faeces with a total of 800 enterococci subsequently selected for AMR testing. The results of AMR testing identified high levels of resistance to antimicrobials that are not critically or highly important to human medicine with resistance to flavomycin (80.2%) and lincomycin (85.4-94.2%) routinely observed. Conversely, resistance to antibiotics considered critically or highly important to human medicine such as tigecycline, daptomycin, vancomycin and linezolid was not present in this study. There is minimal evidence that Australian cattle production practices are responsible for disproportionate contributions to AMR development and in general resistance to antimicrobials of critical and high importance in human medicine was low regardless of the isolate source. The low level of antimicrobial resistance in Enterococcus from Australian cattle is likely to result from comprehensive controls around the use of antimicrobials in food-production animals in Australia. Nevertheless, continued monitoring of the effects of all antimicrobial use is required to support Australia's reputation as a supplier of safe and healthy food.
Abele-Horn, Marianne; Hommers, Leif; Trabold, René; Frosch, Matthias
2006-01-01
We evaluated the ability of the new VITEK 2 version 4.01 software to identify and detect glycopeptide-resistant enterococci compared to that of the reference broth microdilution method and to classify them into the vanA, vanB, vanC1, and vanC2 genotypes. Moreover, the accuracy of antimicrobial susceptibility testing with agents with improved potencies against glycopeptide-resistant enterococci was determined. A total of 121 enterococci were investigated. The new VITEK 2 software was able to identify 114 (94.2%) enterococcal strains correctly to the species level and to classify 119 (98.3%) enterococci correctly to the glycopeptide resistance genotype level. One Enterococcus casseliflavus strain and six Enterococcus faecium vanA strains with low-level resistance to vancomycin were identified with low discrimination, requiring additional tests. One of the vanA strains was misclassified as the vanB type, and one glycopeptide-susceptible E. facium wild type was misclassified as the vanA type. The overall essential agreements for antimicrobial susceptibility testing results were 94.2% for vancomycin, 95.9% for teicoplanin, 100% for quinupristin-dalfopristin and moxifloxacin, and 97.5% for linezolid. The rates of minor errors were 9% for teicoplanin and 5% for the other antibiotic agents. The identification and susceptibility data were produced within 4 h to 6 h 30 min and 8 h 15 min to 12 h 15 min. In conclusion, use of VITEK 2 version 4.01 software appears to be a reliable method for the identification and detection of glycopeptide-resistant enterococci as well as an improvement over the use of the former VITEK 2 database. However, a significant reduction in the detection time would be desirable. PMID:16390951
Jones, Ronald N; Moet, Gary J; Sader, Helio S; Fritsche, Thomas R
2004-05-01
To evaluate the potency of a novel peptide deformylase inhibitor, NVP PDF-713, against Gram-positive organisms having resistances to linezolid or quinupristin/dalfopristin. A total of 45 strains from three genera (six species groups) were tested by reference broth microdilution methods. The mechanism of resistance to the oxazolidinone was determined by sequencing of the gene encoding the ribosomal target. NVP PDF-713 retained activity against linezolid-resistant staphylococci (MIC range 0.25-2 mg/L), Streptococcus oralis (MIC 0.5 mg/L), Enterococcus faecalis (MIC range 2-4 mg/L) and Enterococcus faecium (MIC range 0.5-4 mg/L). Quinupristin/dalfopristin-resistant E. faecium (MIC range 1-2 mg/L) and staphylococci (MIC range 0.12-2 mg/L) were also inhibited by NVP PDF-713. Many (10 of 13 strains) of the linezolid-resistant enterococci were resistant to vancomycin and these clinical strains had a G2576U ribosomal target mutation. NVP PDF-713 appears to be a promising clinical candidate among the peptide deformylase inhibitors for the treatment of infections caused by Gram-positive organisms that possess resistances to oxazolidinones or streptogramin combinations.
da Silva, Vânia Lúcia; Caçador, Natália Cândido; dos Santos Fernandes da Silva, Carolina; Fontes, Cláudia Oliveira; Garcia, Gizele Duarte; Nicoli, Jacques Robert; Diniz, Cláudio Galuppo
2012-01-01
Enterococcus are emerging as important putative pathogens resistant to chemicals that are widely released into the environment, and urban pigeons might act as a natural reservoir contributing to the spread of resistant strains. This study aimed to evaluate the occurrence of Enterococcus in pigeon feces and their antimicrobial and toxic metal susceptibility. Bacteria were isolated and identified from 150 fresh feces by phenotypic and genetic techniques. Antimicrobial and toxic metal susceptibility was determined by the agar dilution method, and the multiple antibiotic resistance index (MAR) was calculated. Out of 120 isolates, no resistance was observed against penicillin and vancomycin, but was observed against gentamicin (55.8%), chloramphenicol (21.7%), tetracycline (13.3%), ciprofloxacin (8.4%) and rifampin (2.5%). 18.3% presented a MAR index ≥0.2, ranging between 0.14 to 0.57, indicating resistance to more than one antimicrobial. All samples were tolerant to >1024 μg mL−1 zinc and chromium. Minimal inhibitory concentration (MIC) of 1,024 μg mL−1 was observed for copper (100%) and nickel (71.4%). Mercury inhibited 88.4% at 32 μg mL−1 and the MIC for cadmium ranged from 0.125–128 μg mL−1. Since pigeons were found to harbor drug-resistant Enterococcus, our data support that their presence in the urban environment may contribute to the spread of resistance, with an impact on public health. PMID:22791051
Chen, Xiaofang; Hu, Xinxin; Wu, Yanbin; Liu, Yonghua; Bian, Cong; Nie, Tongying; You, Xuefu; Hu, Laixing
2017-02-15
A series of 4,4'-bis-[2-(6-N-substituted-amidino)indolyl] diphenyl ether have been synthesized and tested for their in vitro antibacterial activity including a range of Gram-positive and Gram-negative pathogens and cytotoxicity. Most of these compounds have mainly shown anti-Gram positive bacteria activities especially against drug resistant bacterial strains MRSA, MRSE and VRE. The anti-MRSA and anti-MRSE activities of compound 7a and 7j were more potent than that of the lead compound 2, levofloxacin and vancomycin. Interestingly, 7j had greatly improved anti negative bacterial activity, especially for the producing NDM-1 Klebsiella pneumonia strain and less toxic than that of the lead compound 2. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sallam, Mariam Madkour; Abou-Aisha, Khaled; El-Azizi, Mohamed
2016-01-01
Background Gram-positive bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA) and enterococci, have shown a remarkable ability to develop resistance to antimicrobial agents. Objective We aimed to assess possible enhancement of the antimicrobial activity of vancomycin, amoxicillin, clarithromycin, and azithromycin by human polyclonal intravenous immunoglobulin G (IVIG) against 34 multidrug-resistant (MDR) bacterial isolates, including MRSA, Enterococcus faecium, and Enterococcus faecalis. Materials and methods Double combinations of the antibiotics with the IVIG were assessed by checkerboard assay, where the interaction was evaluated with respect to the minimum inhibitory concentration (MIC) of the antibiotics. The results of the checkerboard assay were verified in vitro using time-kill assay and in vivo using an invasive sepsis murine model. Results The checkerboard assay showed that IVIG enhanced the antimicrobial activity of amoxicillin and clarithromycin against isolates from the three groups of bacteria, which were resistant to the same antibiotics when tested in the absence of IVIG. The efficacy of vancomycin against 15% of the tested isolates was enhanced when it was combined with the antibodies. Antagonism was demonstrated in 47% of the E. faecalis isolates when clarithromycin was combined with the IVIG. Synergism was proved in the time-kill assay when amoxicillin was combined with the antibodies; meanwhile, antagonism was not demonstrated in all tested combinations, even in combinations that showed such response in checkerboard assay. Conclusion The suggested approach is promising and could be helpful to enhance the antimicrobial activity of not only effective antibiotics but also antibiotics that have been proven to be ineffective against MDR bacteria. To our knowledge, this combinatorial approach against MDR bacteria, such as MRSA and enterococci, has not been investigated before. PMID:27994476
Ronald, Allan R; Pattullo, Andrew LS
1990-01-01
A case of Enterococcus faecalis endocarditis followed endoscopic retrograde cholangiopancreatography and percutaneous extraction of a biliary calculus is reported. The most likely cause of endocarditis, though unproven, is the latter procedure, as the bile is often infected during biliary tract obstruction, and bacteremia is frequent during percutaneous manipulations. Initial therapy with vancomycin was unsuccessful in clearing the bacteremia, possibly due to vancomycin tolerance of the isolate and lack of an aminoglycoside in the initial regimen. Cure was obtained when therapy with ampicillin and gentamicin was undertaken. PMID:22553458
Panesso, Diana; Reyes, Jinnethe; Rincón, Sandra; Díaz, Lorena; Galloway-Peña, Jessica; Zurita, Jeannete; Carrillo, Carlos; Merentes, Altagracia; Guzmán, Manuel; Adachi, Javier A.; Murray, Barbara E.; Arias, Cesar A.
2010-01-01
Enterococcus faecium has emerged as an important nosocomial pathogen worldwide, and this trend has been associated with the dissemination of a genetic lineage designated clonal cluster 17 (CC17). Enterococcal isolates were collected prospectively (2006 to 2008) from 32 hospitals in Colombia, Ecuador, Perú, and Venezuela and subjected to antimicrobial susceptibility testing. Genotyping was performed with all vancomycin-resistant E. faecium (VREfm) isolates by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing. All VREfm isolates were evaluated for the presence of 16 putative virulence genes (14 fms genes, the esp gene of E. faecium [espEfm], and the hyl gene of E. faecium [hylEfm]) and plasmids carrying the fms20-fms21 (pilA), hylEfm, and vanA genes. Of 723 enterococcal isolates recovered, E. faecalis was the most common (78%). Vancomycin resistance was detected in 6% of the isolates (74% of which were E. faecium). Eleven distinct PFGE types were found among the VREfm isolates, with most belonging to sequence types 412 and 18. The ebpAEfm-ebpBEfm-ebpCEfm (pilB) and fms11-fms19-fms16 clusters were detected in all VREfm isolates from the region, whereas espEfm and hylEfm were detected in 69% and 23% of the isolates, respectively. The fms20-fms21 (pilA) cluster, which encodes a putative pilus-like protein, was found on plasmids from almost all VREfm isolates and was sometimes found to coexist with hylEfm and the vanA gene cluster. The population genetics of VREfm in South America appear to resemble those of such strains in the United States in the early years of the CC17 epidemic. The overwhelming presence of plasmids encoding putative virulence factors and vanA genes suggests that E. faecium from the CC17 genogroup may disseminate in the region in the coming years. PMID:20220167
Arias, C A; Martín-Martinez, M; Blundell, T L; Arthur, M; Courvalin, P; Reynolds, P E
1999-03-01
Sequence determination of a region downstream from the vanXYc gene in Enterococcus gallinarum BM4174 revealed an open reading frame, designated vanT, that encodes a 698-amino-acid polypeptide with an amino-terminal domain containing 10 predicted transmembrane segments. The protein contained a highly conserved pyridoxal phosphate attachment site in the C-terminal domain, typical of alanine racemases. The protein was overexpressed in Escherichia coli, and serine racemase activity was detected in the membrane but not in the cytoplasmic fraction after centrifugation of sonicated cells, whereas alanine racemase activity was located almost exclusively in the cytoplasm. When the protein was overexpressed as a polypeptide lacking the predicted transmembrane domain, serine racemase activity was detected in the cytoplasm. The serine racemase activity was partially (64%) inhibited by D-cycloserine, whereas host alanine racemase activity was almost totally inhibited (97%). Serine racemase activity was also detected in membrane preparations of constitutively vancomycin-resistant E. gallinarum BM4174 but not in BM4175, in which insertional inactivation of the vanC-1 D-Ala:D-Ser ligase gene probably had a polar effect on expression of the vanXYc and vanT genes. Comparative modelling of the deduced C-terminal domain was based on the alignment of VanT with the Air alanine racemase from Bacillus stearothermophilus. The model revealed that almost all critical amino acids in the active site of Air were conserved in VanT, indicating that the C-terminal domain of VanT is likely to adopt a three-dimensional structure similar to that of Air and that the protein could exist as a dimer. These results indicate that the source of D-serine for peptidoglycan synthesis in vancomycin-resistant enterococci expressing the VanC phenotype involves racemization of L- to D-serine by a membrane-bound serine racemase.
Dada, Ayokunle Christopher; Ahmad, Asmat; Usup, Gires; Heng, Lee Yook; Hamid, Rahimi
2013-09-01
We report the first study on the occurrence of high-level aminoglycoside-resistant (HLAR) Enterococci in coastal bathing waters and beach sand in Malaysia. None of the encountered isolates were resistant to high levels of gentamicin (500 μg/mL). However, high-level resistance to kanamycin (2,000 μg/mL) was observed in 14.2 % of tested isolates, the highest proportions observed being among beach sand isolates. High-level resistance to kanamycin was higher among Enterococcus faecalis and Enterococcus faecium than Enterococcus spp. Chi-square analysis showed no significant association between responses to tested antibiotics and the species allocation or source of isolation of all tested Enterococci. The species classification of encountered Enterococci resistance to vancomycin was highest among Enterococcus spp. (5.89 %) followed by E. faecium (4.785) and least among E. faecalis. A total of 160 isolates were also tested for virulence characteristics. On the whole, caseinase production was profoundly highest (15.01 %) while the least prevalent virulence characteristic observed among tested beach Enterococci was haemolysis of rabbit blood (3.65 %). A strong association was observed between the source of isolation and responses for each of caseinase (C = 0.47, V = 0.53) and slime (C = 0.50, V = 0.58) assays. Analysis of obtained spearman's coefficient showed a strong correlation between caseinase and each of the slime production (p = 0.04), gelatinase (p = 0.0035) and haemolytic activity on horse blood (p = 0.004), respectively. Suggestively, these are the main virulent characteristics of the studied beach Enterococci. Our findings suggest that recreational beaches may contribute to the dissemination of Enterococci with HLAR and virulence characteristics.
Wiemken, Timothy L; Furmanek, Stephen P; Mattingly, William A; Wright, Marc-Oliver; Persaud, Annuradha K; Guinn, Brian E; Carrico, Ruth M; Arnold, Forest W; Ramirez, Julio A
2018-02-01
Although not all health care-associated infections (HAIs) are preventable, reducing HAIs through targeted intervention is key to a successful infection prevention program. To identify areas in need of targeted intervention, robust statistical methods must be used when analyzing surveillance data. The objective of this study was to compare and contrast statistical process control (SPC) charts with Twitter's anomaly and breakout detection algorithms. SPC and anomaly/breakout detection (ABD) charts were created for vancomycin-resistant Enterococcus, Acinetobacter baumannii, catheter-associated urinary tract infection, and central line-associated bloodstream infection data. Both SPC and ABD charts detected similar data points as anomalous/out of control on most charts. The vancomycin-resistant Enterococcus ABD chart detected an extra anomalous point that appeared to be higher than the same time period in prior years. Using a small subset of the central line-associated bloodstream infection data, the ABD chart was able to detect anomalies where the SPC chart was not. SPC charts and ABD charts both performed well, although ABD charts appeared to work better in the context of seasonal variation and autocorrelation. Because they account for common statistical issues in HAI data, ABD charts may be useful for practitioners for analysis of HAI surveillance data. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Freitas, Ana R.; Tedim, Ana P.; Novais, Carla; Ruiz-Garbajosa, Patricia; Werner, Guido; Laverde-Gomez, Jenny A.; Cantón, Rafael; Peixe, Luísa; Baquero, Fernando; Coque, Teresa M.
2010-01-01
Enterococcus faecium has increasingly been reported as a nosocomial pathogen since the early 1990s, presumptively associated with the expansion of a human-associated Enterococcus faecium polyclonal subcluster known as clonal complex 17 (CC17) that has progressively acquired different antibiotic resistance (ampicillin and vancomycin) and virulence (espEfm, hylEfm, and fms) traits. We analyzed the presence and the location of a putative glycoside hydrolase hylEfm gene among E. faecium strains obtained from hospitalized patients (255 patients; outbreak, bacteremic, and/or disseminated isolates from 23 countries and five continents; 1986 to 2009) and from nonclinical origins (isolates obtained from healthy humans [25 isolates], poultry [30], swine [90], and the environment [55]; 1999 to 2007). Clonal relatedness was established by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Plasmid analysis included determination of content and size (S1-PFGE), transferability (filter mating), screening of Rep initiator proteins (PCR), and location of vanA, vanB, ermB, and hylEfm genes (S1/I-CeuI hybridization). Most E. faecium isolates contained large plasmids (>150 kb) and showed variable contents of van, hylEfm, or espEfm. The hylEfm gene was associated with megaplasmids (170 to 375 kb) of worldwide spread (ST16, ST17, and ST18) or locally predominant (ST192, ST203, ST280, and ST412) ampicillin-resistant CC17 clones collected in the five continents since the early 1990s. All but one hylEfm-positive isolate belonged to the CC17 polyclonal subcluster. The presence of hylEfm megaplasmids among CC17 from Europe, Australia, Asia, and Africa since at least the mid-1990s was documented. This study further demonstrates the pandemic expansion of particular CC17 clones before acquisition of vancomycin resistance and putative virulence traits and describes the presence of megaplasmids in most of the contemporary E. faecium isolates with different origins. PMID:20385861
Genotyping of clinical and environmental multidrug resistant Enterococcus faecium strains.
Shokoohizadeh, Leili; Mobarez, Ashraf Mohabati; Alebouyeh, Masoud; Zali, Mohammad Reza; Ranjbar, Reza
2017-01-01
Multidrug resistant (MDR) Enterococcus faecium is a nosocomial pathogen and clonal complex 17 (CC17) is the main genetic subpopulation of E. faecium in hospitals worldwide. There has thus far been no report of major E. faecium clones in Iranian hospitals. The present study analyzed strains of MDR E. faecium obtained from patients and the Intensive Care Unit environments using pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) to determine the antibiotic resistance patterns and genetic features of the dominant. clones of E. faecium. PFGE and MLST analysis revealed the presence of 17and 15 different subtypes, respectively. Of these, 18 (86%) isolates belonged toCC17. Most strains in this clonal complex harbored the esp gene and exhibited resistance to vancomycin, teicoplanin, ampicillin, ciprofloxacin, gentamicin, and erythromycin. The MLST results revealed 12 new sequence types (ST) for the first time. Approximately 50% of the STs were associated with ST203. Detection of E. faecium strains belonging to CC17 on medical equipment and in clinical specimens verified the circulation of high-risk MDR clones among the patients and in hospital environments in Iran.
Beal, A; Mahida, N; Staniforth, K; Vaughan, N; Clarke, M; Boswell, T
2016-06-01
There is growing interest in the use of no-touch automated room decontamination devices within healthcare settings. Xenex PX-UV is an automated room disinfection device using pulsed ultraviolet (UV) C radiation with a short cycle time. To investigate the microbiological efficacy of this device when deployed for terminal decontamination of isolation rooms within a clinical haematology unit. The device was deployed in isolation rooms in a clinical haematology unit. Contact plates were applied to common touch points to determine aerobic total colony counts (TCCs) and samples collected using Polywipe™ sponges for detection of vancomycin-resistant enterococci (VRE). The device was easy to transport, easy to use, and it disinfected rooms rapidly. There was a 76% reduction in the TCCs following manual cleaning, with an additional 14% reduction following UV disinfection, resulting in an overall reduction of 90% in TCCs. There was a 38% reduction in the number of sites where VRE was detected, from 26 of 80 sites following manual cleaning to 16 of 80 sites with additional UV disinfection. The Xenex PX-UV device can offer a simple and rapid additional decontamination step for terminal disinfection of patient rooms. However, the microbiological efficacy against VRE was somewhat limited. Copyright © 2016 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Matono, Takashi; Hayakawa, Kayoko; Hirai, Risen; Tanimura, Akira; Yamamoto, Kei; Fujiya, Yoshihiro; Mawatari, Momoko; Kutsuna, Satoshi; Takeshita, Nozomi; Mezaki, Kazuhisa; Ohmagari, Norio; Miyoshi-Akiyama, Tohru
2016-04-01
An increasing number of reports have documented the emergence of daptomycin-nonsusceptible Enterococcus in patients during daptomycin therapy. Even though several mechanisms for daptomycin-nonsusceptibility have been suggested, the potential genetic mutations which might contribute to the daptomycin-nonsusceptibility are not fully understood. We isolated a vancomycin-susceptible, daptomycin nonsusceptible Enterococcus faecium strain from a patient with acute lymphocytic leukemia who received high-dose daptomycin therapy for E. faecium endocarditis. Whole-genome sequencing analysis revealed mutations within genes encoding DNA repair proteins MutL and RecJ of the daptomycin-nonsusceptible Enterococcus strain which might have facilitated its emergence. We identified the mutations of DNA mismatch repair genes in a clinical isolate of daptomycin nonsusceptible E. faecium which emerged in spite of high-dose daptomycin therapy. The finding implicates the possible association of DNA repair mechanism and daptomycin resistance. Careful monitoring is necessary to avoid the emergence of daptomycin non-susceptible isolates of E. faecium and particularly in cases of long-term daptomycin use or in immunocompromised patients.
Tyson, Gregory H; Nyirabahizi, Epiphanie; Crarey, Emily; Kabera, Claudine; Lam, Claudia; Rice-Trujillo, Crystal; McDermott, Patrick F; Tate, Heather
2018-01-01
Bacteria of the genus Enterococcus are important human pathogens that are frequently resistant to a number of clinically important antibiotics. They are also used as markers of animal fecal contamination of human foods and are employed as sentinel organisms for tracking trends in resistance to antimicrobials with Gram-positive activity. As part of the National Antimicrobial Resistance Monitoring System (NARMS), we evaluated several retail meat commodities for the presence of enterococci from 2002 to 2014, and we found 92.0% to be contaminated. The majority of isolates were either Enterococcus faecalis (64.0%) or Enterococcus faecium (28.6%), and the antimicrobial resistance of each isolate was assessed by broth microdilution. The resistance prevalences for several drugs, including erythromycin and gentamicin, were significantly higher among poultry isolates, compared to retail beef or pork isolates. None of the isolates was resistant to the clinically important human drug vancomycin, only 1 isolate was resistant to linezolid, and resistance to tigecycline was below 1%. In contrast, a majority of both E. faecalis (67.5%) and E. faecium (53.7%) isolates were resistant to tetracycline. Overall, the robust NARMS testing system employed consistent sampling practices and methods throughout the testing period, with the only significant trend in resistance prevalence being decreased E. faecium resistance to penicillin. These data provide excellent baseline levels of resistance that can be used to measure future changes in resistance prevalence that may result from alterations in the use of antimicrobials in food animal production. IMPORTANCE Enterococci, including E. faecalis and E. faecium , are present in the guts of food-producing animals and are used as a measure of fecal contamination of meat. We used the large consistent sampling methods of NARMS to assess the prevalence of Enterococcus strains isolated from retail meats, and we found over 90% of meats to be contaminated with enterococci. We also assessed the resistance of the Enterococcus strains, commonly used as a measure of resistance to agents with Gram-positive activity, in foods. Resistance prevalence was over 25% for some antimicrobials and sample sources but was less than 1% for several of the most important therapeutic agents used in human medicine. This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.
Li, Jianghua; Zhang, Kaixi; Ruan, Lin; Chin, Seow Fong; Wickramasinghe, Nirmani; Liu, Hanbin; Ravikumar, Vikashini; Ren, Jinghua; Duan, Hongwei; Yang, Liang; Chan-Park, Mary B
2018-06-26
Biofilms and the rapid evolution of multidrug resistance complicate the treatment of bacterial infections. Antibiofilm agents such as metallic-inorganic nanoparticles or peptides act by exerting antibacterial effects and, hence, do not combat biofilms of antibiotics-resistant strains. In this Letter, we show that the block copolymer DA95B5, dextran- block-poly((3-acrylamidopropyl) trimethylammonium chloride (AMPTMA)- co-butyl methacrylate (BMA)), effectively removes preformed biofilms of various clinically relevant multidrug-resistant Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (VRE V583), and Enteroccocus faecalis (OG1RF). DA95B5 self-assembles into core-shell nanoparticles with a nonfouling dextran shell and a cationic core. These nanoparticles diffuse into biofilms and attach to bacteria but do not kill them; instead, they promote the gradual dispersal of biofilm bacteria, probably because the solubility of the bacteria-nanoparticle complex is enhanced by the nanoparticle dextran shell. DA95B5, when applied as a solution to a hydrogel pad dressing, shows excellent in vivo MRSA biofilm removal efficacy of 3.6 log reduction in a murine excisional wound model, which is significantly superior to that for vancomycin. Furthermore, DA95B5 has very low in vitro hemolysis and negligible in vivo acute toxicity. This new strategy for biofilm removal (nanoscale bacterial debridement) is orthogonal to conventional rapidly developing resistance traits in bacteria so that it is as effective toward resistant strains as it is toward sensitive strains and may have widespread applications.
Blaschke, Anne J.; Heyrend, Caroline; Byington, Carrie L.; Fisher, Mark A.; Barker, Elizabeth; Garrone, Nicholas F.; Thatcher, Stephanie A.; Pavia, Andrew T.; Barney, Trenda; Alger, Garrison D.; Daly, Judy A.; Ririe, Kirk M.; Ota, Irene; Poritz, Mark A.
2012-01-01
Sepsis is a leading cause of death. Rapid and accurate identification of pathogens and antimicrobial resistance directly from blood culture could improve patient outcomes. The FilmArray® (FA; Idaho Technology, Inc., Salt Lake City, UT) Blood Culture (BC) panel can identify > 25 pathogens and 4 antibiotic resistance genes from positive blood cultures in 1 hour. We compared a development version of the panel to conventional culture and susceptibility testing on 102 archived blood cultures from adults and children with bacteremia. Of 109 pathogens identified by culture, 95% were identified by FA. Among 111 prospectively collected blood cultures, the FA identified 84 of 92 pathogens (91%) covered by the panel. Among 25 Staphylococcus aureus and 21 Enterococcus species detected, FA identified all culture-proven MRSA and VRE. The FA BC panel is an accurate method for the rapid identification of pathogens and resistance genes from blood culture. PMID:22999332
Garrison, Mark W; Mutters, Reinier; Dowzicky, Michael J
2009-11-01
The Tigecycline Evaluation and Surveillance Trial began in 2004 to monitor the in vitro activity of tigecycline and comparator agents against a global collection of Gram-negative and Gram-positive pathogens. Against Gram negatives (n = 63 699), tigecycline MIC(90)'s ranged from 0.25 to 2 mg/L for Escherichia coli, Haemophilus influenzae, Acinetobacter baumannii, Klebsiella oxytoca, Enterobacter cloacae, Klebsiella pneumoniae, and Serratia marcescens (but was > or =32 for Pseudomonas aeruginosa). Against Gram-positive organisms (n = 32 218), tigecycline MIC(90)'s were between 0.06 and 0.25 mg/L for Streptococcus pneumoniae, Enterococcus faecium, Streptococcus agalactiae, Staphylococcus aureus, and Enterococcus faecalis. The in vitro activity of tigecycline was maintained against resistant phenotypes, including multidrug-resistant A. baumannii (9.2% of isolates), extended-spectrum beta-lactamase-producing E. coli (7.0%) and K. pneumoniae (14.0%), beta-lactamase-producing H. influenzae (22.2%), methicillin-resistant S. aureus (44.5%), vancomycin-resistant E. faecium (45.9%) and E. faecalis (2.8%), and penicillin-resistant S. pneumoniae (13.8%). Tigecycline represents a welcome addition to the armamentarium against difficult to treat organisms.
Pinchman, Joseph R; Boger, Dale L
2013-05-23
The selective functionalization of vancomycin aglycon derivatives through conversion of the E-ring aryl chloride to a reactive boronic acid and its use in the synthesis of a systematic series of vancomycin E-ring analogues are described. The series was used to examine the E-ring chloride impact in binding d-Ala-d-Ala and on antimicrobial activity. In contrast to the reduced activity of the unsubstituted E-ring derivatives, hydrophobic and relatively nonpolar substituents approach or match the chloro-substituted vancomycin and were insensitive to the electronic character of the substituent (e.g., Cl vs CN/OMe), whereas highly polar substituents fail to provide the enhancements. Moreover, the active permethylated vancomycin aglycon derivatives exhibit VanB VRE antimicrobial activity at levels that approach (typically within 2-fold) their activity against sensitive bacteria. The robust borylation reaction also enabled the functionalization of a minimally protected vancomycin aglycon (N-Boc-vancomycin aglycon) and provides a direct method for the preparation of previously inaccessible analogues.
Jayaraman, Sudha P; Klompas, Michael; Bascom, Molli; Liu, Xiaoxia; Piszcz, Regina; Rogers, Selwyn O; Askari, Reza
2014-10-01
Our institution had a major outbreak of multi-drug-resistant Acinetobacter (MDRA) in its general surgical and trauma intensive care units (ICUs) in 2011, requiring implementation of an aggressive infection-control response. We hypothesized that poor hand-hygiene compliance (HHC) may have contributed to the outbreak of MDRA. A response to the outbreak including aggressive environmental cleaning, cohorting, and increased hand hygiene compliance monitoring may have led to an increase in HHC after the outbreak and to a consequent decrease in the rates of infection by the nosocomial pathogens methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and Clostridium difficile. Hand-hygiene compliance, tracked in monthly audits by trained and anonymous observers, was abstracted from an infection control database. The incidences of nosocomial MRSA, VRE, and C. difficile were calculated from a separate prospectively collected data base for 6 mo before and 12 mo after the 2011 outbreak of MDRA in the institution's general surgical and trauma ICUs, and data collected prospectively from two unaffected ICUs (the thoracic surgical ICU and medical intensive care unit [MICU]). We created a composite endpoint of "any resistant pathogen," defined as MRSA, VRE, or C. difficile, and compared incidence rates over time, using the Wilcoxon signed rank test and Pearson product-moment correlation coefficient to measure the correlations among these rates. Rates of HHC before and after the outbreak of MDRA were consistently high in both the general surgical (median rates: 100% before and 97.6% after the outbreak, p=0.93) and trauma ICUs (median rates: 90% before and 96.75% after the outbreak, p=0.14). In none of the ICUs included in the study did the rates of HHC increase in response to the outbreak of MDRA. The incidence of "any resistant pathogen" decreased in the general surgical ICU after the outbreak (from 6.7/1,000 patient-days before the outbreak to 2.7/1,000 patient-days after the outbreak, p=0.04), but this decrease did not correlate with HHC (trauma ICU: Pearson correlation [ρ]=-0.34, p=0.28; general surgical ICU: ρ=0.52, p=0.08). The 2011 outbreak of MDRA at our institution occurred despite high rates of HHC. Notwithstanding stable rates of HHC, the rates of infection with MRSA, VRE and C. difficile decreased in the general surgical ICU after the outbreak. This suggests that infection control tactics other than HHC play a crucial role in preventing the transmission of nosocomial pathogens, especially when rates of HHC have been maximized.
Assessment of Environmental Contamination with Pathogenic Bacteria at a Hospital Laundry Facility.
Michael, Karen E; No, David; Daniell, William E; Seixas, Noah S; Roberts, Marilyn C
2017-11-10
Little is known about exposure to pathogenic bacteria among industrial laundry workers who work with soiled clinical linen. To study worker exposures, an assessment of surface contamination was performed at an industrial laundry facility serving hospitals in Seattle, WA, USA. Surface swab samples (n = 240) from the environment were collected during four site visits at 3-month intervals. These samples were cultured for Clostridium difficile, methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant enterococci (VRE). Voluntary participation of 23 employees consisted of nasal swabs for detection of MRSA, observations during work, and questionnaires. Contamination with all three pathogens was observed in both dirty (laundry handling prior to washing) and clean areas (subsequent to washing). The dirty area had higher odds of overall contamination (≥1 pathogen) than the clean area (odds ratio, OR = 18.0, 95% confidence interval 8.9-36.5, P < 0.001). The odds of contamination were high for each individual pathogen: C. difficile, OR = 15.5; MRSA, OR = 14.8; and VRE, OR = 12.6 (each, P < 0.001). The highest odds of finding surface contamination occurred in the primary and secondary sort areas where soiled linens were manually sorted by employees (OR = 63.0, P < 0.001). The study substantiates that the laundry facility environment can become contaminated by soiled linens. Workers who handle soiled linen may have a higher risk of exposure to C. difficile, MRSA, and VRE than those who handle clean linens. Improved protocols for prevention and reduction of environmental contamination were implemented because of this study. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Structural and Functional Adaptation of Vancomycin Resistance VanT Serine Racemases
Meziane-Cherif, Djalal; Stogios, Peter J.; Evdokimova, Elena; Egorova, Olga
2015-01-01
ABSTRACT Vancomycin resistance in Gram-positive bacteria results from the replacement of the d-alanyl–d-alanine target of peptidoglycan precursors with d-alanyl–d-lactate or d-alanyl–d-serine (d-Ala-d-Ser), to which vancomycin has low binding affinity. VanT is one of the proteins required for the production of d-Ala-d-Ser-terminating precursors by converting l-Ser to d-Ser. VanT is composed of two domains, an N-terminal membrane-bound domain, likely involved in l-Ser uptake, and a C-terminal cytoplasmic catalytic domain which is related to bacterial alanine racemases. To gain insight into the molecular function of VanT, the crystal structure of the catalytic domain of VanTG from VanG-type resistant Enterococcus faecalis BM4518 was determined. The structure showed significant similarity to type III pyridoxal 5′-phosphate (PLP)-dependent alanine racemases, which are essential for peptidoglycan synthesis. Comparative structural analysis between VanTG and alanine racemases as well as site-directed mutagenesis identified three specific active site positions centered around Asn696 which are responsible for the l-amino acid specificity. This analysis also suggested that VanT racemases evolved from regular alanine racemases by acquiring additional selectivity toward serine while preserving that for alanine. The 4-fold-lower relative catalytic efficiency of VanTG against l-Ser versus l-Ala implied that this enzyme relies on its membrane-bound domain for l-Ser transport to increase the overall rate of d-Ser production. These findings illustrate how vancomycin pressure selected for molecular adaptation of a housekeeping enzyme to a bifunctional enzyme to allow for peptidoglycan remodeling, a strategy increasingly observed in antibiotic-resistant bacteria. PMID:26265719
Structural and functional adaptation of vancomycin resistance VanT serine racemases
Meziane-Cherif, Djalal; Stogios, Peter J.; Evdokimova, Elena; ...
2015-08-11
Vancomycin resistance in Gram-positive bacteria results from the replacement of the D-alanyl–D-alanine target of peptidoglycan precursors with D-alanyl–D-lactate or D-alanyl–D-serine (D-Ala-D-Ser), to which vancomycin has low binding affinity. VanT is one of the proteins required for the production of D-Ala-D-Ser-terminating precursors by converting L-Ser to D-Ser. VanT is composed of two domains, an N-terminal membrane-bound domain, likely involved in L-Ser uptake, and a C-terminal cytoplasmic catalytic domain which is related to bacterial alanine racemases. To gain insight into the molecular function of VanT, the crystal structure of the catalytic domain of VanT G from VanG-type resistant Enterococcus faecalis BM4518more » was determined. The structure showed significant similarity to type III pyridoxal 5'-phosphate (PLP)-dependent alanine racemases, which are essential for peptidoglycan synthesis. Comparative structural analysis between VanT G and alanine racemases as well as site-directed mutagenesis identified three specific active site positions centered around Asn 696 which are responsible for theL-amino acid specificity. This analysis also suggested that VanT racemases evolved from regular alanine racemases by acquiring additional selectivity toward serine while preserving that for alanine. The 4-fold-lower relative catalytic efficiency of VanT G against L-Ser versus L-Ala implied that this enzyme relies on its membrane-bound domain for L-Ser transport to increase the overall rate of D-Ser production. These findings illustrate how vancomycin pressure selected for molecular adaptation of a housekeeping enzyme to a bifunctional enzyme to allow for peptidoglycan remodeling, a strategy increasingly observed in antibiotic-resistant bacteria.« less
Antibiotic activity of Emerimicin IV isolated from Emericellopsis minima from Talcahuano Bay, Chile.
Inostroza, Alejandro; Lara, Liliana; Paz, Cristian; Perez, Andrés; Galleguillos, Felipe; Hernandez, Victor; Becerra, José; González-Rocha, Gerardo; Silva, Mario
2018-06-01
Due to the increasing emergence of resistance of bacterial pathogens to current antibiotics, we have examined the marine fungi present in sea sediments obtained 200 m offshore to discover new antibacterial compounds active against multidrug-resistant bacteria. One strain, identified as Emericellopsis minima, was isolated from sediments of Talcahuano Bay (Chile). From the liquid culture of E. minima, we isolated Emerimicin IV, a unique fungal peptaibol that exhibited antibacterial activity. The structure of this compound was assigned by interpretation of 1 H NMR and HR-LCMS data. Emerimicin IV showed bacteriostatic activity against clinical isolates of methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis with MIC values ranging between 100 and 12.5 μg/mL.
Lüddeke, Frauke; Heß, Stefanie; Gallert, Claudia; Winter, Josef; Güde, Hans; Löffler, Herbert
2015-02-01
Elimination of bacteria by ozonation in combination with charcoal or slow sand filtration for advanced sewage treatment to improve the quality of treated sewage and to reduce the potential risk for human health of receiving surface waters was investigated in pilot scale at the sewage treatment plant Eriskirch, Baden-Wuerttemberg/Germany. To determine the elimination of sewage bacteria, inflowing and leaving wastewater of different treatment processes was analysed in a culture-based approach for its content of Escherichia coli, enterococci and staphylococci and their resistance against selected antibiotics over a period of 17 month. For enterococci, single species and their antibiotic resistances were identified. In comparison to the established flocculation filtration at Eriskirch, ozonation plus charcoal or sand filtration (pilot-scale) reduced the concentrations of total and antibiotic resistant E. coli, enterococci and staphylococci. However, antibiotic resistant E. coli and staphylococci apparently survived ozone treatment better than antibiotic sensitive strains. Neither vancomycin resistant enterococci nor methicillin resistant Staphylococcus aureus (MRSA) were detected. The decreased percentage of antibiotic resistant enterococci after ozonation may be explained by a different ozone sensitivity of species: Enterococcus faecium and Enterococcus faecalis, which determined the resistance-level, seemed to be more sensitive for ozone than other Enterococcus-species. Overall, ozonation followed by charcoal or sand filtration led to 0.8-1.1 log-units less total and antibiotic resistant E. coli, enterococci and staphylococci, as compared to the respective concentrations in treated sewage by only flocculation filtration. Thus, advanced wastewater treatment by ozonation plus charcoal or sand filtration after common sewage treatment is an effective tool for further elimination of microorganisms from sewage before discharge in surface waters. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wang, Huan; Lee, Mijoon; Peng, Zhihong; Blázquez, Blas; Lastochkin, Elena; Kumarasiri, Malika; Bouley, Renee; Chang, Mayland; Mobashery, Shahriar
2015-01-01
Rapid emergence of antibiotic resistance is one of the most challenging global public health concerns. In particular, vancomycin-resistant Enterococcus faecium infections have been increasing in frequency, representing 25% of enterococci infections in intensive care units. A novel class of 1,2,4-triazolo[1,5-a]pyrimidines active against E. faecium is reported herein. We used a three-component Biginelli-like heterocyclization reaction for the synthesis of a series of these derivatives based on reactions of aldehydes, β-dicarbonyl compounds, and 3-alkylthio-5-amino-1,2,4-tria-zoles. The resulting compounds were assayed for antimicrobial activity against the ESKAPE panel of bacteria, followed by investigation of their in vitro activities. These analyses identified a subset of 1,2,4-triazolo[1,5-a]pyrimidines that had good narrow-spectrum antibacterial activity against E. faecium and exhibited metabolic stability with low intrinsic clearance. Macromolecular synthesis assays revealed cell-wall biosynthesis as the target of these antibiotics. PMID:25923368
Linezolid: a pharmacoeconomic review of its use in serious Gram-positive infections.
Plosker, Greg L; Figgitt, David P
2005-01-01
Linezolid (Zyvox), the first available oxazolidinone antibacterial agent, has good activity against Gram-positive pathogens, including multidrug-resistant organisms such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium. Randomised multicentre trials in patients with various types of serious Gram-positive infections showed that clinical cure rates with linezolid were similar to those with vancomycin or teicoplanin. In some subgroup analyses, which must be interpreted with a degree of caution, clinical advantages were noted for linezolid (e.g. versus vancomycin in confirmed MRSA nosocomial pneumonia and MRSA-complicated skin and soft tissue infections). Although generally well tolerated, gastrointestinal adverse effects are relatively common with linezolid and it has been associated with thrombocytopenia and myelosuppression. The oral bioavailability of linezolid is approximately 100%, thus allowing sequential intravenous-to-oral administration without changing the drug or dosage regimen. Healthcare resource use data from various countries indicate that this practical advantage translates into at least a trend towards reduced length of hospital stay compared with vancomycin, which may offset its several-fold higher acquisition cost. Modelled analyses from the US, despite some limitations, indicate that, compared with vancomycin, linezolid is associated with lower total hospitalisation costs for the treatment of patients with cellulitis and has a favourable incremental cost-effectiveness ratio of approximately US30,000 dollars per QALY gained (2001 value) for patients with ventilator-associated pneumonia. Broadly similar results have also been reported in modelled analyses from other countries. In conclusion, for patients with serious Gram-positive infections, including those caused by suspected or proven multidrug-resistant pathogens such as MRSA, linezolid is an effective and generally well tolerated therapeutic option. Linezolid is currently the only antibacterial agent with good activity against MRSA that can be administered orally (as well as intravenously). It may be particularly useful as an alternative to vancomycin in patients who have impaired renal function, poor or no intravenous access, require outpatient therapy, or who have been unable to tolerate glycopeptides. Healthcare resource use studies and pharmacoeconomic analyses generally support the use of linezolid in some subgroups of patients, although results should be interpreted with due consideration of the study limitations.
2013-01-01
Background Enterococcus faecium has recently emerged as a multidrug-resistant nosocomial pathogen involved in outbreaks worldwide. A high rate of resistance to different antibiotics has been associated with virulent clonal complex 17 isolates carrying the esp and hyl genes and the purK1 allele. Results Twelve clinical vancomycin-resistant Enterococcus faecium (VREF) isolates were obtained from pediatric patients at the Hospital Infantil de México Federico Gómez (HIMFG). Among these VREF isolates, 58.3% (7/12) were recovered from urine, while 41.7% (5/12) were recovered from the bloodstream. The VREF isolates showed a 100% rate of resistance to ampicillin, amoxicillin-clavulanate, ciprofloxacin, clindamycin, chloramphenicol, streptomycin, gentamicin, rifampicin, erythromycin and teicoplanin. In addition, 16.7% (2/12) of the isolates were resistant to linezolid, and 66.7% (8/12) were resistant to tetracycline and doxycycline. PCR analysis revealed the presence of the vanA gene in all 12 VREF isolates, esp in 83.3% (10/12) of the isolates and hyl in 50% (6/12) of the isolates. Phylogenetic analysis via molecular typing was performed using pulsed-field gel electrophoresis (PFGE) and demonstrated 44% similarity among the VREF isolates. MLST analysis identified four different sequence types (ST412, ST757, ST203 and ST612). Conclusion This study provides the first report of multidrug-resistant VREF isolates belonging to clonal complex 17 from a tertiary care center in Mexico City. Multidrug resistance and genetic determinants of virulence confer advantages among VREF in the colonization of their host. Therefore, the prevention and control of the spread of nosocomial infections caused by VREF is crucial for identifying new emergent subclones that could be challenging to treat in subsequent years. PMID:24330424
Vianna, Pedro G; Dale, Charles R; Simmons, Sarah; Stibich, Mark; Licitra, Carmelo M
2016-03-01
The role of contaminated environments in the spread of hospital-associated infections has been well documented. This study reports the impact of a pulsed xenon ultraviolet no-touch disinfection system on infection rates in a community care facility. This study was conducted in a community hospital in Southern Florida. Beginning November 2012, a pulsed xenon ultraviolet disinfection system was implemented as an adjunct to traditional cleaning methods on discharge of select rooms. The technology uses a xenon flashlamp to generate germicidal light that damages the DNA of organisms in the hospital environment. The device was implemented in the intensive care unit (ICU), with a goal of using the pulsed xenon ultraviolet system for disinfecting all discharges and transfers after standard cleaning and prior to occupation of the room by the next patient. For all non-ICU discharges and transfers, the pulsed xenon ultraviolet system was only used for Clostridium difficile rooms. Infection data were collected for methicillin-resistant Staphylococcus aureus, C difficile, and vancomycin-resistant Enterococci (VRE). The intervention period was compared with baseline using a 2-sample Wilcoxon rank-sum test. In non-ICU areas, a significant reduction was found for C difficile. There was a nonsignificant decrease in VRE and a significant increase in methicillin-resistant S aureus. In the ICU, all infections were reduced, but only VRE was significant. This may be because of the increased role that environment plays in the transmission of this pathogen. Overall, there were 36 fewer infections in the whole facility and 16 fewer infections in the ICU during the intervention period than would have been expected based on baseline data. Implementation of pulsed xenon ultraviolet disinfection is associated with significant decreases in facility-wide and ICU infection rates. These outcomes suggest that enhanced environmental disinfection plays a role in the risk mitigation of hospital-acquired infections. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Kim, Si-Hyun; Park, Chulmin; Chun, Hye-Sun; Choi, Jae-Ki; Lee, Hyo-Jin; Cho, Sung-Yeon; Park, Sun Hee; Choi, Su-Mi; Choi, Jung-Hyun; Yoo, Jin-Hong
2016-01-01
With the rise in multidrug-resistant (MDR) bacterial infections, there has been increasing interest in combinations of ≥2 antimicrobial agents with synergistic effects. We established an MDR bacterial strain library to screen for in vitro antimicrobial synergy by using a broth microdilution checkerboard method and high-throughput luciferase-based bacterial cell viability assay. In total, 39 MDR bacterial strains, including 23 carbapenem-resistant gram-negative bacteria, 9 vancomycin-intermediate Staphylococcus aureus, and 7 vancomycin-resistant Enterococcus faecalis, were used to screen for potential antimicrobial synergies. Synergies were more frequently identified with combinations of imipenem plus trimethoprim–sulfamethoxazole for carbapenem-resistant Acinetobacter baumannii in the library. To verify this finding, we tested 34 A. baumannii clinical isolates resistant to both imipenem and trimethoprim–sulfamethoxazole by the checkerboard method. The imipenem plus trimethoprim–sulfamethoxazole combination showed synergy in the treatment of 21 (62%) of the clinical isolates. The results indicate that pilot screening for antimicrobial synergy in the MDR bacterial strain library could be valuable in the selection of combination therapeutic regimens to treat MDR bacterial infections. Further studies are warranted to determine whether this screening system can be useful to screen for the combined effects of conventional antimicrobials and new-generation antimicrobials or nonantimicrobials. PMID:26974861
Warrack, S; Panjikar, P; Duster, M; Safdar, N
2014-12-01
Methicillin-resistant Staphylococcus aureus (MRSA) is a pathogen of major public health importance. Colonisation precedes infection; thus reducing MRSA carriage may be of benefit for reducing infection. Probiotics represent a novel approach to reducing MRSA carriage. We undertook a pilot feasibility randomised controlled trial of the tolerability and acceptability of probiotics for reducing nasal and intestinal carriage of MRSA. In addition, subjects were screened for vancomycin-resistant enterocococci (VRE). Subjects with a history of MRSA were recruited from a large, academic medical center and randomised to take either a placebo or probiotic (Lactobacillus rhamnosus HN001). Subjects returned to the clinic after four weeks for further testing to determine adherence to the probiotic regimen and colonisation of MRSA. 48 subjects were enrolled and randomised. Nearly 25% were transplant recipients and 30% had diabetes. The probiotic was well tolerated in the study population though minor side effects, such as nausea and bloating, were observed. A majority of the subjects randomised to HN001 had good adherence to the regimen. At the four week time point among subjects randomised to the probiotic, MRSA was detected in 67 and 50% of subjects colonised in the nares and the gastrointestinal tract, respectively. Three subjects who initially tested positive for VRE were negative after four weeks of probiotic exposure. Probiotics were well tolerated in our study population of largely immunocompromised subjects with multiple comorbidities. Adherence to the intervention was good. Probiotics should be studied further for their potential to reduce colonisation by multidrug resistant bacteria.
Reitzel, Ruth A.; Hirsh-Ginsberg, Cheryl; Murray, Kimberly; Chaftari, Anne-Marie; Hachem, Ray; Raad, Issam
2016-01-01
The rapid, broad-spectrum, biofilm-eradicating activity of the combination of 0.01% nitroglycerin, 7% citrate, and 20% ethanol and its potential as a nonantibiotic, antimicrobial catheter lock solution (ACLS) were previously reported. Here, a nitroglycerin-citrate-ethanol (NiCE) ACLS optimized for clinical assessment was developed by reducing the nitroglycerin and citrate concentrations and increasing the ethanol concentration. Biofilm-eradicating activity was sustained when the ethanol concentration was increased from 20 to 22% which fully compensated for reducing the citrate concentration from 7% to 4% as well as the nitroglycerin concentration from 0.01% to 0.0015% or 0.003%. The optimized formulations demonstrated complete and rapid (2 h) eradication of methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-intermediate Staphylococcus aureus (VISA), methicillin-resistant Staphylococcus epidermidis (MRSE), vancomycin-resistant enterococci (VRE), multidrug-resistant (MDR) Pseudomonas aeruginosa, MDR Klebsiella pneumoniae, MDR Enterobacter cloacae, MDR Acinetobacter baumannii, MDR Escherichia coli, MDR Stenotrophomonas maltophilia, Candida albicans, and Candida glabrata biofilms. The optimized NiCE lock solutions demonstrated anticoagulant activities comparable to those of heparin lock solutions. NiCE lock solution was significantly more effective than taurolidine-citrate-heparin lock solution in eradicating biofilms of Staphylococcus aureus and Candida glabrata. The optimized, nonantibiotic, heparin-free NiCE lock solution demonstrates rapid broad-spectrum biofilm eradication as well as effective anticoagulant activity, making NiCE a high-quality ACLS candidate for clinical assessment. PMID:27297475
Sletvold, H; Johnsen, P J; Hamre, I; Simonsen, G S; Sundsfjord, A; Nielsen, K M
2008-07-01
Glycopeptide resistant Enterococcus faecium (GREF) persists on Norwegian poultry farms despite the ban on the growth promoter avoparcin. The biological basis for long-term persistence of avoparcin resistance is not fully understood. This study presents the complete DNA sequence of the E. faecium R-plasmid pVEF3 and functional studies of some plasmid-encoded traits (a toxin-antitoxin (TA) system and an ABC transporter) that may be of importance for plasmid persistence. The pVEF3 (63.1 kbp), isolated from an E. faecium strain of poultry origin sampled in Norway in 1999, has 71 coding sequences including the vanA avoparcin/vancomycin resistance encoding gene cluster. pVEF3 encodes the TA system omega-epsilon-zeta, and plasmid stability tests and transcription analysis show that omega-epsilon-zeta is functional in Enterococcus faecalis OGIX, although with decreasing effect over time. The predicted ABC transporter was not found to confer reduced susceptibility to any of the 28 substances tested. The TA system identified in the pVEF-type plasmids may contribute to vanA plasmid persistence on Norwegian poultry farms. However, size and compositional heterogeneity among E. faecium vanA plasmids suggest that additional plasmid maintenance systems in combination with host specific factors and frequent horizontal gene transfer and rearrangement causes the observed plasmid composition and distribution patterns.
Senel, Saliha; Karacan, Candemir; Erkek, Nilgun; Gol, Nese
2010-01-01
To assess the prevalence of urinary tract pathogens and their resistance patterns against antimicrobial agents in a single center. In children <16 years of age admitted for urinary tract infection (UTI) to the Dr. Sami Ulus Teaching and Training Hospital from January 2004 to December 2008, positive urine cultures were reviewed. A total of 3,485 positive urine cultures were identified, of which 2,379 (68%) were from females and 106 (32%) from males. Their mean age was 63.5 +/- 40.7 months. Escherichia coli was the most common causative agent both in total and among different age groups. Ampicillin had the highest resistance rate from all the pathogens isolated (63.8%), followed by piperacillin (51.8%) and trimethoprim-sulfamethoxazole (TMP-SMX; 48.6%). Cephalotin also had a high resistance rate (32.7%). The least resistance was for imipenem, amikacin, netilmicin and ciprofloxacin (0.13, 1.7, 2.4 and 7.5%, respectively). None of the Klebsiella and Pseudomonas isolates were resistant to imipenem. None of the Staphylococcus aureus isolates were resistant to teicoplanin and vancomycin. Vancomycin-resistant Enterococcus spp. were isolated from two cultures. E. coli was the most common causative agent of UTI in children. Ampicillin, TMP-SMX or cephalothin and piperacillin had the highest resistance rates against urinary tract pathogens in our center. Copyright 2010 S. Karger AG, Basel.
Cold air plasma to decontaminate inanimate surfaces of the hospital environment.
Cahill, Orla J; Claro, Tânia; O'Connor, Niall; Cafolla, Anthony A; Stevens, Niall T; Daniels, Stephen; Humphreys, Hilary
2014-03-01
The hospital environment harbors bacteria that may cause health care-associated infections. Microorganisms, such as multiresistant bacteria, can spread around the patient's inanimate environment. Some recently introduced biodecontamination approaches in hospitals have significant limitations due to the toxic nature of the gases and the length of time required for aeration. This study evaluated the in vitro use of cold air plasma as an efficient alternative to traditional methods of biodecontamination of hospital surfaces. Cultures of methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli, and Acinetobacter baumannii were applied to different materials similar to those found in the hospital environment. Artificially contaminated sections of marmoleum, mattress, polypropylene, powder-coated mild steel, and stainless steel were then exposed to a cold air pressure plasma single jet for 30 s, 60 s, and 90 s, operating at approximately 25 W and 12 liters/min flow rate. Direct plasma exposure successfully reduced the bacterial load by log 3 for MRSA, log 2.7 for VRE, log 2 for ESBL-producing E. coli, and log 1.7 for A. baumannii. The present report confirms the efficient antibacterial activity of a cold air plasma single-jet plume on nosocomial bacterially contaminated surfaces over a short period of time and highlights its potential for routine biodecontamination in the clinical environment.
Talei, Gholam-Reza; Mohammadi, Mohsen; Bahmani, Mahmoud; Kopaei, Mahmoud Rafieian
2017-01-01
Background: Infectious diseases have always been an important health issue in human communities. In the recent years, much research has been conducted on antimicrobial effects of nature-based compounds because of increased prevalence of antibiotic resistance. The present study was conducted to investigate synergistic effect of Carum copticum and Mentha piperita essential oils with ciprofloxacin, vancomycin, and gentamicin on Gram-negative and Gram-positive bacteria. Materials and Methods: In this experimental study, the synergistic effects of C. copticum and M. piperita essential oils with antibiotics on Staphylococcus aureus (ATCC 25923), Enterococcus faecalis (ATCC 29212), Escherichia coli (ATCC 8739), Pseudomonas aeruginosa (ATCC 9027), Staphylococcus epidermidis (ATCC 14990), and Listeria monocytogenes (ATCC 7644) were studied according to broth microdilution and the MIC and fractional inhibitory concentration (FIC) of these two essential oils determined. Results: C. copticum essential oil at 30 μg/ml could inhibit S. aureus, and in combination with vancomycin, decreased MIC from 0.5 to 0.12 μg/ml. Moreover, the FIC was derived 0.24 μg/ml which represents a potent synergistic effect with vancomycin against S. aureus growth. C. copticum essential oil alone or combined with other antibiotics is effective in treating bacterial infections. Conclusions: In addition, C. copticum essential oil can strengthen the activities of certain antibiotics, which makes it possible to use this essential oil, especially in drug resistance or to lower dosage or toxicity of the drugs. PMID:28929050
Superhydrophilicity and antibacterial property of a Cu-dotted oxide coating surface
2010-01-01
Background Aluminum-made settings are widely used in healthcare, schools, public facilities and transit systems. Frequently-touched surfaces of those settings are likely to harbour bacteria and be a potential source of infection. One method to utilize the effectiveness of copper (Cu) in eliminating pathogens for these surfaces would be to coat the aluminum (Al) items with a Cu coating. However, such a combination of Cu and Al metals is susceptible to galvanic corrosion because of their different electrochemical potentials. Methods In this work, a new approach was proposed in which electrolytic plasma oxidation (EPO) of Al was used to form an oxide surface layer followed by electroplating of Cu metal on the top of the oxide layer. The oxide was designed to function as a corrosion protective and biocompatible layer, and the Cu in the form of dots was utilized as an antibacterial material. The antibacterial property enhanced by superhydrophilicity of the Cu-dotted oxide coating was evaluated. Results A superhydrophilic surface was successfully prepared using electrolytic plasma oxidation of aluminum (Al) followed by electroplating of copper (Cu) in a Cu-dotted form. Both Cu plate and Cu-dotted oxide surfaces had excellent antimicrobial activities against E. coli ATCC 25922, methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300 and vancomycin-resistant Enterococcus faecium (VRE) ATCC 51299. However, its Cu-dotted surface morphology allowed the Cu-dotted oxide surface to be more antibacterial than the smooth Cu plate surface. The enhanced antibacterial property was attributed to the superhydrophilic behaviour of the Cu-dotted oxide surface that allowed the bacteria to have a more effective killing contact with Cu due to spreading of the bacterial suspension media. Conclusion The superhydrophilic Cu-dotted oxide coating surface provided an effective method of controlling bacterial growth and survival on contact surfaces and thus reduces the risk of infection and spread of bacteria-related diseases particularly in moist or wet environments. PMID:20843373
Dzoyem, Jean P; Nkuete, Antoine H L; Kuete, Victor; Tala, Michel F; Wabo, Hippolyte K; Guru, Santosh K; Rajput, Vikrant S; Sharma, Akash; Tane, Pierre; Khan, Inshad A; Saxena, Anil K; Laatsch, Hartmut; Tan, Ning-Hua
2012-05-01
The present study was designed to investigate the antimicrobial activity and the cytotoxicity of the methanol extract (PLA) as well as fractions (PLA1-4) and compounds [cardamomin (1), (±)-polygohomoisoflavanone (2), (S)-(-)-pinostrobin (3), 2',4'-dihydroxy-3',6'-dimethoxychalcone (4), (2S)-(-)-5-hydroxy-6,7-dimethoxyflavanone (5), and (2S)-(-)-5,7-dimethoxyflavanone (6)] obtained from leaves of Polygonum limbatum. The microbroth dilution was used to determine the minimal inhibitory concentration (MIC) of the samples against 11 microbial strains including Candida albicans, C. krusei, C. tropicalis, Aspergillus fumigatus, Pseudomonas aeruginosa, Escherichia coli, vancomycin-resistant Enterococcus faecalis (VRE), Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), S.epidermidis, and Mycobacterium tuberculosis H37Rv. The sulphorhodamine B cell growth inhibition assay was used to assess the cytotoxicity of the above samples on lung A549 adenocarcinoma, breast carcinoma MCF-7, prostate carcinoma PC-3, cervical carcinoma HeLa, and the acute monocytic leukemia cell line THP-1. The results of the MIC determination indicated that, apart from fraction PLA3, all other fractions as well as PLA and compound 3 were selectively active. MIC values were noted on 100 % of the 11 tested microorganisms for fraction PLA3, 72.7 % for PLA, fraction PLA2, and compound 4, 63.6 % for PLA1, and 54.5 % for fraction PLA4. The results of the cytotoxicity assay revealed that, except for A459 cells, more than 50 % inhibition of the proliferation was obtained with each of the tested samples on at least one of the four other cell lines. IC₅₀ values below 4 µg/mL were obtained with 1 and 4 on THP-1 cells. The overall results of the present study provided baseline information for the possible use of Polygonum limbatum as well as some of the isolated compounds for the control of cancer diseases and mostly leukemia. Georg Thieme Verlag KG Stuttgart · New York.
Oravcová, Veronika; Peixe, Luísa; Coque, Teresa M; Novais, Carla; Francia, Maria V; Literák, Ivan; Freitas, Ana R
2018-06-02
The most prevalent type of acquired vancomycin resistance in Enterococcus faecium (VREfm) is encoded by the vanA transposon Tn1546, mainly located on transferable plasmids. vanA plasmids have been characterized in VREfm from a variety of sources but not wild birds. The aim of this study was to analyse the genetic context of VREfm strains recovered from wild corvid birds and to compare their plasmid and strain characteristics with human strains. To achieve that, 75 VREfm isolates, including strains from wild birds recovered during wide surveillance studies performed in Europe, Canada and the United States (2010-2013), and clinical and wastewater strains from Czech Republic, a region lacking data about vanA plasmids, were analysed. Their population structure, presence of major putative virulence markers and characterization of vanA transposons and plasmids were established. VREfm from wild birds were mainly associated with major human lineages (ST18 and ST78) circulating in hospitals worldwide and were enriched in putative virulence markers that are highly associated with clinical E. faecium from human infections. They also carried plasmids of the same families usually found in the clinical setting [RCR, small theta plasmids, RepA_N (pRUM/pLG1) and Inc18]. The clinically widespread IS1251-carrying Tn1546 type "F" was predominant and Tn1546-vanA was mainly located on pRUM/Axe-Txe (USA) and Inc18- or pLG1-like (Europe) plasmids. VREfm from hospitals and wastewaters carried Tn1546-vanA in different plasmid types including mosaic pRUM-Inc18 plasmids, not identified in wild birds. This is the first characterization of vanA plasmids obtained from wild birds. A similar plasmid pool seems to exist in different clonal E. faecium backgrounds of humans and wild birds. The isolation of VREfm strains from wild birds that belong to human E. faecium adapted lineages and carry virulence genes, Tn1546 and plasmid variants widespread in the clinical setting is of concern and highlight their role as potential drivers of the global dissemination of vancomycin resistance. Copyright © 2018 Elsevier Ltd. All rights reserved.
Clark, Nancye; Patel, Jean B.
2013-01-01
Vancomycin-resistant Staphylococcus aureus (VRSA) is thought to result from the in vivo conjugative transfer of a vanA plasmid from an Enterococcus sp. to S. aureus. We studied bacterial isolates from VRSA cases that occurred in the United States to identify microbiological factors which may contribute to this plasmid transfer. First, vancomycin-susceptible, methicillin-resistant S. aureus (MRSA) isolates from five VRSA cases were tested for their ability to accept foreign DNA by conjugation in mating experiments with Enterococcus faecalis JH2-2 containing pAM378, a pheromone-response conjugative plasmid. All of the MRSA isolates accepted the plasmid DNA with similar transfer efficiencies (∼10−7/donor CFU) except for one isolate, MRSA8, for which conjugation was not successful. The MRSA isolates were also tested as recipients in mating experiments between an E. faecalis isolate with an Inc18-like vanA plasmid that was isolated from a VRSA case patient. Conjugative transfer was successful for 3/5 MRSA isolates. Successful MRSA recipients carried a pSK41-like plasmid, a staphylococcal conjugative plasmid, whereas the two unsuccessful MRSA recipients did not carry pSK41. The transfer of a pSK41-like plasmid from a successful MRSA recipient to the two unsuccessful recipients resulted in conjugal transfer of the Inc18-like vanA plasmid from E. faecalis at a frequency of 10−7/recipient CFU. In addition, conjugal transfer could be achieved for pSK41-negative MRSA in the presence of a cell-free culture filtrate from S. aureus carrying a pSK41-like plasmid at a frequency of 10−8/recipient CFU. These results indicated that a pSK41-like plasmid can facilitate the transfer of an Inc18-like vanA plasmid from E. faecalis to S. aureus, possibly via an extracellular factor produced by pSK41-carrying isolates. PMID:23089754
Glisovic, Sanja; Eintracht, Shaun; Longtin, Yves; Oughton, Matthew; Brukner, Ivan
Rectal swabs are routinely used by public health authorities to screen for multi-drug resistant enteric bacteria including vancomycin-resistant enterococci (VRE) and carbapenem-resistant enterobacteriaceae (CRE). Screening sensitivity can be influenced by the quality of the swabbing, whether performed by the patient (self-swabbing) or a healthcare practitioner. One common exclusion criterion for rectal swabs is absence of "visible soiling" from fecal matter. In our institution, this criterion excludes almost 10% of rectal swabs received in the microbiology laboratory. Furthermore, over 30% of patients in whom rectal swabs are cancelled will not be re-screened within the next 48h, resulting in delays in removing infection prevention measures. We describe two quantitative polymerase chain reaction (qPCR)-based assays, human RNAse P and eubacterial 16S rDNA, which might serve as suitable controls for sampling adequacy. However, lower amounts of amplifiable human DNA make the 16s rDNA assay a better candidate for sample adequacy control. Copyright © 2017. Published by Elsevier Ltd.
Novel anti-infective compounds from marine bacteria.
Rahman, Hafizur; Austin, Brian; Mitchell, Wilfrid J; Morris, Peter C; Jamieson, Derek J; Adams, David R; Spragg, Andrew Mearns; Schweizer, Michael
2010-03-05
As a result of the continuous evolution of microbial pathogens towards antibiotic-resistance, there have been demands for the development of new and effective antimicrobial compounds. Since the 1960s, the scientific literature has accumulated many publications about novel pharmaceutical compounds produced by a diverse range of marine bacteria. Indeed, marine micro-organisms continue to be a productive and successful focus for natural products research, with many newly isolated compounds possessing potentially valuable pharmacological activities. In this regard, the marine environment will undoubtedly prove to be an increasingly important source of novel antimicrobial metabolites, and selective or targeted approaches are already enabling the recovery of a significant number of antibiotic-producing micro-organisms. The aim of this review is to consider advances made in the discovery of new secondary metabolites derived from marine bacteria, and in particular those effective against the so called "superbugs", including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin resistant enterococci (VRE), which are largely responsible for the increase in numbers of hospital acquired, i.e., nosocomial, infections.
Effect of United States buckwheat honey on antibiotic-resistant hospital acquired pathogens
Hammond, Eric Nee-Armah; Duster, Megan; Musuuza, Jackson Ssentalo; Safdar, Nasia
2016-01-01
Introduction Due to an upsurge in antibiotic-resistant infections and lack of therapeutic options, new approaches are needed for treatment. Honey may be one such potential therapeutic option. We investigated the susceptibility of hospital acquired pathogens to four honeys from Wisconsin, United States, and then determined if the antibacterial effect of each honey against these pathogens is primarily due to the high sugar content. Methods Thirteen pathogens including: four Clostridium difficile, two Methicillin-resistant Staphylococcus aureus, two Pseudomonas aeruginosa, one Methicillin-Susceptible Staphylococcus aureus, two Vancomycin-resistance Enterococcus, one Enterococcus faecalis and one Klebsiella pneumoniae were exposed to 1-50% (w/v) four Wisconsin honeys and Artificial honey to determine their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) using the broth dilution method. Results Buckwheat honey predominantly exhibited a bactericidal mode of action against the tested pathogens, and this varied with each pathogen. C. difficile isolates were more sensitive to the Wisconsin buckwheat honey as compared to the other pathogens. Artificial honey at 50% (w/v) failed to kill any of the pathogens. The high sugar content of Wisconsin buckwheat honey is not the only factor responsible for its bactericidal activity. Conclusion Wisconsin buckwheat honey has the potential to be an important addition to therapeutic armamentarium against resistant pathogens and should be investigated further. PMID:28292167
Thompson, Mickala M; Hassoun, Ali
2017-07-01
Infective endocarditis (IE) one-year mortality rates approach 40%. Here, we report two native valve Enterococcus faecalis IE cases in patients successfully treated with telavancin. An 88-year-old with mitral valve endocarditis and a penicillin allergy, initially treated with intravenous vancomycin, was switched to telavancin. A 69-year-old, who previously received amoxicillin and intravenous vancomycin for presumed enterococcal bacteraemia, was diagnosed with dual valve endocarditis for which he received telavancin. Both received six weeks of telavancin. Neither had telavancin-related adverse events, evidence of infection at six months, nor required telavancin dosing adjustments. Documented use of novel treatments for serious enterococcal infections is needed.
Fogarty, Lisa R.; Duris, Joseph W.; Crowley, Suzanne L.; Hardigan, Nicole
2007-01-01
Water samples collected from 20 stream sites in Oakland and Macomb Counties, Mich., were analyzed to learn more about the occurrence of cephalosporin-resistant Escherichia coli (E. coli) and vancomycin-resistant enterococci (VRE) and the co-occurrence of antibiotics and mercury in area streams. Fecal indicator bacteria concentrations exceeded the Michigan recreational water-quality standard of 300 E. coli colony forming units (CFU) per 100 milliliters of water in 19 of 35 stream-water samples collected in Oakland County. A gene commonly associated with enterococci from humans was detected in samples from Paint Creek at Rochester and Evans Ditch at Southfield, indicating that human fecal waste is a possible source of fecal contamination at these sites. E. coli resistant to the cephalosporin antibiotics (cefoxitin and/ or ceftriaxone) were found at all sites on at least one occasion. The highest percentages of E. coli isolates resistant to cefoxitin and ceftriaxone were 71 percent (Clinton River at Auburn Hills) and 19 percent (Sashabaw Creek near Drayton Plains), respectively. Cephalosporin-resistant E. coli was detected more frequently in samples from intensively urbanized or industrialized areas than in samples from less urbanized areas. VRE were not detected in any sample collected in this study. Multiple antibiotics (azithromycin, erythromycin, ofloxacin, sulfamethoxazole, and trimethoprim) were detected in water samples from the Clinton River at Auburn Hills, and tylosin (an antibiotic used in veterinary medicine and livestock production that belongs to the macrolide group, along with erythromycin) was detected in one water sample from Paint Creek at Rochester. Concentrations of total mercury were as high as 19.8 nanograms per liter (Evans Ditch at Southfield). There was no relation among percentage of antibiotic-resistant bacteria and measured concentrations of antibiotics or mercury in the water. Genetic elements capable of exchanging multiple antibiotic-resistance genes (class I integrons) were detected in several samples, indicating that the resistance carried by these organisms may be transferable to other bacteria, including disease-causing bacteria.
Lodise, Thomas P; Low, Donald E
2012-07-30
Ceftaroline fosamil is a cephalosporin antibacterial approved by the US Food and Drug Administration (FDA) for use in the treatment of acute bacterial skin and skin structure infections (ABSSSI) and community-acquired bacterial pneumonia (CABP). After intravenous administration, ceftaroline fosamil is rapidly converted to its bioactive metabolite, ceftaroline. Ceftaroline has broad-spectrum in vitro activity against Gram-positive and Gram-negative bacteria, including contemporary resistant Gram-positive phenotypes, such as methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Streptococcus pneumoniae. Because of its unique spectrum of activity, the Clinical and Laboratory Standards Institute (CLSI) designated ceftaroline as a member of a new subclass of β-lactam antimicrobials, cephalosporins with anti-MRSA activity. The activity of ceftaroline against S. aureus extends to heteroresistant vancomycin-intermediate, vancomycin-intermediate, vancomycin-resistant and daptomycin-nonsusceptible isolates. Ceftaroline has low minimum inhibitory concentrations (MICs) for all tested species of streptococci, and has potent activity against S. pneumoniae isolates with varying degrees of penicillin resistance. The activity of ceftaroline is limited against Enterococcus faecalis and Enterococcus faecium and against anaerobes such as Bacteroides fragilis. The in vitro activity of ceftaroline includes many Gram-negative pathogens, but does not extend to bacteria that produce extended-spectrum β-lactamases, class B metallo-β-lactamases or AmpC cephalosporinases, or to most nonfermentative Gram-negative bacilli. Ceftaroline fosamil has been studied for the treatment of complicated skin and skin structure infections (cSSSI) and community-acquired pneumonia (CAP) in phase III randomized, double-blind, international, multicentre noninferiority clinical trials. Two identical trials (CANVAS 1 and CANVAS 2) compared the efficacy of ceftaroline fosamil with that of vancomycin plus aztreonam in 1378 adults with cSSSI. Results demonstrated that ceftaroline was noninferior to vancomycin plus aztreonam, with 91.6% in the ceftaroline fosamil group (pooled analysis) achieving clinical response compared with 92.7% in the vancomycin plus aztreonam group (difference -1.1%, 95% CI -4.2, 2.0). An additional analysis evaluated clinical cure in a subgroup of patients who met the FDA guidance definition of ABSSSI at treatment day 3. Clinical response, defined as cessation of lesion spread and absence of fever, was 74.0% in the ceftaroline fosamil group compared with 66.2% in the vancomycin plus aztreonam group (treatment difference 7.8%, 95% CI 1.3, 14.0). Clinical efficacy of ceftaroline fosamil in 1240 hospitalized adults with CAP was compared with that of ceftriaxone in two additional phase III trials (FOCUS 1 and FOCUS 2). Of note, because ceftriaxone does not have activity against MRSA, patients with confirmed or suspected MRSA CAP were excluded from the FOCUS trials. Results demonstrated that ceftaroline was noninferior to ceftriaxone, with 84.3% in the ceftaroline fosamil group achieving clinical cure compared with 77.7% in the ceftriaxone group (difference 6.7%, 95% CI 1.6, 11.8). An additional analysis of the trials was conducted in patients with moderate to severe CAP and at least one proven typical bacterial pathogen at baseline (i.e. CABP). Day 4 clinical response rates were 69.5% for ceftaroline and 59.4% for ceftriaxone (difference 10.1%, 95% CI -0.6, 20.6). In the phase III trials, adverse event rates were similar between groups. Overall, ceftaroline is well tolerated, which is consistent with the good safety and tolerability profile of the cephalosporin class. In summary, ceftaroline fosamil is a broad-spectrum parenteral cephalosporin with excellent in vitro activity against resistant Gram-positive pathogens, including MRSA, as well as many common Gram-negative organisms. It is a welcome treatment option for ABSSSI and CABP.
Paganelli, Fernanda L; van de Kamer, Tim; Brouwer, Ellen C; Leavis, Helen L; Woodford, Neil; Bonten, Marc J M; Willems, Rob J L; Hendrickx, Antoni P A
2017-03-01
Enterococcus faecium is a multidrug-resistant (MDR) nosocomial pathogen causing significant morbidity in debilitated patients. New antimicrobials are needed to treat antibiotic-resistant E. faecium infections in hospitalised patients. E. faecium incorporates lipoteichoic acid (LTA) (1,3-polyglycerol-phosphate linked to glycolipid) in its cell wall. The small-molecule inhibitor 1771 [2-oxo-2-(5-phenyl-1,3,4-oxadiazol-2-ylamino)ethyl 2-naphtho[2,1-b]furan-1-ylacetate] specifically blocks the activity of Staphylococcus aureus LtaS synthase, which polymerises 1,3-glycerolphosphate into LTA polymers. Here we characterised the effects of the small-molecule inhibitor 1771 on the growth of E. faecium isolates, alone (28 strains) or in combination with the antibiotics vancomycin, daptomycin, ampicillin, gentamicin or linezolid (15 strains), and on biofilm formation (16 strains). Inhibition of LTA synthesis at the surface of the cell by compound 1771 in combination with current antibiotic therapy abrogates enterococcal growth in vitro but does not affect mature E. faecium biofilms. Targeting LTA synthesis may provide new possibilities to treat MDR E. faecium infections. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Characterization of Enterococcus faecium bacteriophage IME-EFm5 and its endolysin LysEFm5.
Gong, Pengjuan; Cheng, Mengjun; Li, Xinwei; Jiang, Haiyan; Yu, Chuang; Kahaer, Nadire; Li, Juecheng; Zhang, Lei; Xia, Feifei; Hu, Liyuan; Sun, Changjiang; Feng, Xin; Lei, Liancheng; Han, Wenyu; Gu, Jingmin
2016-05-01
Due to the worldwide prevalence of antibiotic resistant strains, phages therapy has been revitalized recently. In this study, an Enterococcus faecium phage named IME-EFm5 was isolated from hospital sewage. Whole genomic sequence analysis demonstrated that IME-EFm5 belong to the Siphoviridae family, and has a double-stranded genome of 42,265bp (with a 35.51% G+C content) which contains 70 putative coding sequences. LysEFm5, the endolysin of IME-EFm5, contains an amidase domain in its N-terminal and has a wider bactericidal spectrum than its parental phage IME-EFm5, including 7 strains of vancomycin-resistant E. faecium. The mutagenesis analysis revealed that the zinc ion binding residues (H27, H132, and C140), E90, and T138 are required for the catalysis of LysEFm5. However, the antibacterial activity of LysEFm5 is zinc ion independent, which is inconsistent with most of other amidase members. The phage lysin LysEFm5 might be an alternative treatment strategy for infections caused by multidrug-resistant E. faecium. Copyright © 2016 Elsevier Inc. All rights reserved.
Multidrug-Resistant Enterococcal Infections: New Compounds, Novel Antimicrobial Therapies?
van Harten, Roel M; Willems, Rob J L; Martin, Nathaniel I; Hendrickx, Antoni P A
2017-06-01
Over the past two decades infections due to antibiotic-resistant bacteria have escalated world-wide, affecting patient morbidity, mortality, and health care costs. Among these bacteria, Enterococcus faecium and Enterococcus faecalis represent opportunistic nosocomial pathogens that cause difficult-to-treat infections because of intrinsic and acquired resistance to a plethora of antibiotics. In recent years, a number of novel antimicrobial compound classes have been discovered and developed that target Gram-positive bacteria, including E. faecium and E. faecalis. These new antibacterial agents include teixobactin (targeting lipid II and lipid III), lipopeptides derived from nisin (targeting lipid II), dimeric vancomycin analogues (targeting lipid II), sortase transpeptidase inhibitors (targeting the sortase enzyme), alanine racemase inhibitors, lipoteichoic acid synthesis inhibitors (targeting LtaS), various oxazolidinones (targeting the bacterial ribosome), and tarocins (interfering with teichoic acid biosynthesis). The targets of these novel compounds and mode of action make them very promising for further antimicrobial drug development and future treatment of Gram-positive bacterial infections. Here we review current knowledge of the most favorable anti-enterococcal compounds along with their implicated modes of action and efficacy in animal models to project their possible future use in the clinical setting. Copyright © 2017 Elsevier Ltd. All rights reserved.
Prospects for new antibacterials: can we do better?
Georgopapadakou, Nafsika H
2014-02-01
Bacterial resistance to antibacterial drugs has been increasing relentlessly over the past two decades. This includes common residents of the human body: Staphylococcus aureus (methicillin resistant or MRSA) Enteroccus faecalis and E. faecium (vancomycin resistant or VRE): Enterobacteriaceae (multiresistant, carbapenems included or CRE). It also includes environmental, opportunistic, but intrinsically multiresistant species: Pseudomonas aeruginosa and Acinetobacter baumannii. Financial considerations have curtailed R&D activity in the antibacterial field in all, but a couple of large pharmaceutical companies and small biotech companies have largely been unable to fill the drug discovery gap. Antibacterials currently under development have targeted, almost exclusively, Gram-positive bacteria; hence, greater effort must be directed against Gram-negative bacteria, particularly enterobacteria. There also has to be more transparency and care in clinical development. To get ahead of the problem of resistance, we must look for first-in-class antibacterials and new targets. The need to innovate is best addressed through partnerships between drug-makers and public institutions. Such partnerships would provide a long-term view and stability to projects, but also balance the interests of corporate and public stakeholders.
Antimicrobial Use and Antimicrobial Resistance: A Population Perspective
Samore, Matthew H.
2002-01-01
The need to stem the growing problem of antimicrobial resistance has prompted multiple, sometimes conflicting, calls for changes in the use of antimicrobial agents. One source of disagreement concerns the major mechanisms by which antibiotics select resistant strains. For infections like tuberculosis, in which resistance can emerge in treated hosts through mutation, prevention of antimicrobial resistance in individual hosts is a primary method of preventing the spread of resistant organisms in the community. By contrast, for many other important resistant pathogens, such as penicillin-resistant Streptococcus pneumoniae, methicillin-resistant Staphylococcus aureus, and vancomycin-resistant Enterococcus faecium resistance is mediated by the acquisition of genes or gene fragments by horizontal transfer; resistance in the treated host is a relatively rare event. For these organisms, indirect, population-level mechanisms of selection account for the increase in the prevalence of resistance. These mechanisms can operate even when treatment has a modest, or even negative, effect on an individual host’s colonization with resistant organisms. PMID:11971765
2013-01-01
Background Recent studies have shown that mammalian milk represents a continuous supply of commensal bacteria, including enterococci. The objectives of this study were to evaluate the presence of enterococci in milk of different species and to screen them for several genetic and phenotypic traits of clinical significance among enterococci. Results Samples were obtained from, at least, nine porcine, canine, ovine, feline and human healthy hosts. Enterococci could be isolated, at a concentration of 1.00 × 102 -1.16 × 103 CFU/ml, from all the porcine samples and, also from 85, 50, 25 and 25% of the human, canine, feline and ovine ones, respectively. They were identified as Enterococcus faecalis, Enterococcus faecium, Enterococcus hirae, Enterococcus casseliflavus and Enterococcus durans. Among the 120 initial enterococcal isolates, 36 were selected on the basis of their different PFGE profiles and further characterized. MLST analysis revealed a wide diversity of STs among the E. faecalis and E. faecium strains, including some frequently associated to hospital infections and novel STs. All the E. faecalis strains possessed some of the potential virulence determinants (cad, ccf, cob, cpd, efaAfs, agg2, gelE, cylA, espfs) assayed while the E. faecium ones only harboured the efaAfm gene. All the tested strains were susceptible to tigecycline, linezolid and vancomycin, and produced tyramine. Their susceptibility to the rest of the antimicrobials and their ability to produce other biogenic amines varied depending on the strain. Enterococci strains isolated from porcine samples showed the widest spectrum of antibiotic resistance. Conclusions Enterococci isolated from milk of different mammals showed a great genetic diversity. The wide distribution of virulence genes and/or antibiotic resistance among the E. faecalis and E. faecium isolates indicates that they can constitute a reservoir of such traits and a risk to animal and human health. PMID:24325647
Reitzel, Ruth A; Rosenblatt, Joel; Hirsh-Ginsberg, Cheryl; Murray, Kimberly; Chaftari, Anne-Marie; Hachem, Ray; Raad, Issam
2016-09-01
The rapid, broad-spectrum, biofilm-eradicating activity of the combination of 0.01% nitroglycerin, 7% citrate, and 20% ethanol and its potential as a nonantibiotic, antimicrobial catheter lock solution (ACLS) were previously reported. Here, a nitroglycerin-citrate-ethanol (NiCE) ACLS optimized for clinical assessment was developed by reducing the nitroglycerin and citrate concentrations and increasing the ethanol concentration. Biofilm-eradicating activity was sustained when the ethanol concentration was increased from 20 to 22% which fully compensated for reducing the citrate concentration from 7% to 4% as well as the nitroglycerin concentration from 0.01% to 0.0015% or 0.003%. The optimized formulations demonstrated complete and rapid (2 h) eradication of methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-intermediate Staphylococcus aureus (VISA), methicillin-resistant Staphylococcus epidermidis (MRSE), vancomycin-resistant enterococci (VRE), multidrug-resistant (MDR) Pseudomonas aeruginosa, MDR Klebsiella pneumoniae, MDR Enterobacter cloacae, MDR Acinetobacter baumannii, MDR Escherichia coli, MDR Stenotrophomonas maltophilia, Candida albicans, and Candida glabrata biofilms. The optimized NiCE lock solutions demonstrated anticoagulant activities comparable to those of heparin lock solutions. NiCE lock solution was significantly more effective than taurolidine-citrate-heparin lock solution in eradicating biofilms of Staphylococcus aureus and Candida glabrata The optimized, nonantibiotic, heparin-free NiCE lock solution demonstrates rapid broad-spectrum biofilm eradication as well as effective anticoagulant activity, making NiCE a high-quality ACLS candidate for clinical assessment. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Structural and Functional Adaptation of Vancomycin Resistance VanT Serine Racemases.
Meziane-Cherif, Djalal; Stogios, Peter J; Evdokimova, Elena; Egorova, Olga; Savchenko, Alexei; Courvalin, Patrice
2015-08-11
Vancomycin resistance in Gram-positive bacteria results from the replacement of the D-alanyl-D-alanine target of peptidoglycan precursors with D-alanyl-D-lactate or D-alanyl-D-serine (D-Ala-D-Ser), to which vancomycin has low binding affinity. VanT is one of the proteins required for the production of D-Ala-D-Ser-terminating precursors by converting L-Ser to D-Ser. VanT is composed of two domains, an N-terminal membrane-bound domain, likely involved in L-Ser uptake, and a C-terminal cytoplasmic catalytic domain which is related to bacterial alanine racemases. To gain insight into the molecular function of VanT, the crystal structure of the catalytic domain of VanTG from VanG-type resistant Enterococcus faecalis BM4518 was determined. The structure showed significant similarity to type III pyridoxal 5'-phosphate (PLP)-dependent alanine racemases, which are essential for peptidoglycan synthesis. Comparative structural analysis between VanTG and alanine racemases as well as site-directed mutagenesis identified three specific active site positions centered around Asn696 which are responsible for the L-amino acid specificity. This analysis also suggested that VanT racemases evolved from regular alanine racemases by acquiring additional selectivity toward serine while preserving that for alanine. The 4-fold-lower relative catalytic efficiency of VanTG against L-Ser versus L-Ala implied that this enzyme relies on its membrane-bound domain for L-Ser transport to increase the overall rate of d-Ser production. These findings illustrate how vancomycin pressure selected for molecular adaptation of a housekeeping enzyme to a bifunctional enzyme to allow for peptidoglycan remodeling, a strategy increasingly observed in antibiotic-resistant bacteria. Vancomycin is one of the drugs of last resort against Gram-positive antibiotic-resistant pathogens. However, bacteria have evolved a sophisticated mechanism which remodels the drug target, the D-alanine ending precursors in cell wall synthesis, into precursors terminating with D-lactate or D-serine, to which vancomycin has less affinity. D-Ser is synthesized by VanT serine racemase, which has two unusual characteristics: (i) it is one of the few serine racemases identified in bacteria and (ii) it contains a membrane-bound domain involved in L-Ser uptake. The structure of the catalytic domain of VanTG showed high similarity to alanine racemases, and we identified three specific active site substitutions responsible for L-Ser specificity. The data provide the molecular basis for VanT evolution to a bifunctional enzyme coordinating both transport and racemization. Our findings also illustrate the evolution of the essential alanine racemase into a vancomycin resistance enzyme in response to antibiotic pressure. Copyright © 2015 Meziane-Cherif et al.
The Prophylactic Effect of Probiotic Enterococcus lactis IW5 against Different Human Cancer Cells
Nami, Yousef; Haghshenas, Babak; Haghshenas, Minoo; Abdullah, Norhafizah; Yari Khosroushahi, Ahmad
2015-01-01
Enterococcus lactis IW5 was obtained from human gut and the potential probiotic characteristics of this organism were then evaluated. Results showed that this strain was highly resistant to low pH and high bile salt and adhered strongly to Caco-2 human epithelial colorectal cell lines. The supernatant of E. lactis IW5 strongly inhibited the growth of several pathogenic bacteria and decreased the viability of different cancer cells, such as HeLa, MCF-7, AGS, HT-29, and Caco-2. Conversely, E. lactis IW5 did not inhibit the viability of normal FHs-74 cells. This strain did not generate toxic enzymes, including β-glucosidase, β-glucuronidase, and N-acetyl-β-glucosaminidase and was highly susceptible to ampicillin, gentamycin, penicillin, vancomycin, clindamycin, sulfamethoxazol, and chloramphenicol but resistant to erythromycin and tetracyclin. This study provided evidence for the effect of E. lactis IW5 on cancer cells. Therefore, E. lactis IW5, as a bioactive therapeutics, should be subjected to other relevant tests to verify the therapeutic suitability of this strain for clinical applications. PMID:26635778
Adaptation of Enterococcus faecalis to daptomycin reveals an ordered progression to resistance.
Miller, Corwin; Kong, Jiayi; Tran, Truc T; Arias, Cesar A; Saxer, Gerda; Shamoo, Yousif
2013-11-01
With increasing numbers of hospital-acquired antibiotic resistant infections each year and staggering health care costs, there is a clear need for new antimicrobial agents, as well as novel strategies to extend their clinical efficacy. While genomic studies have provided a wealth of information about the alleles associated with adaptation to antibiotics, they do not provide essential information about the relative importance of genomic changes, their order of appearance, or potential epistatic relationships between adaptive changes. Here we used quantitative experimental evolution of a single polymorphic population in continuous culture with whole-genome sequencing and allelic frequency measurements to study daptomycin (DAP) resistance in the vancomycin-resistant clinical pathogen Enterococcus faecalis S613. Importantly, we sustained both planktonic and nonplanktonic (i.e., biofilm) populations in coculture as the concentration of antibiotic was raised, facilitating the development of more ecological complexity than is typically observed in laboratory evolution. Quantitative experimental evolution revealed a clear order and hierarchy of genetic changes leading to resistance, the signaling and metabolic pathways responsible, and the relative importance of these mutations to the evolution of DAP resistance. Despite the relative simplicity of this ex vivo approach compared to the ecological complexity of the human body, we showed that experimental evolution allows for rapid identification of clinically relevant adaptive molecular pathways and new targets for drug design in pathogens.
2011-01-01
Background Enterococcus faecalis and Enterococcus faecium are associated with faecal pollution of water, linked to swimmer-associated gastroenteritis and demonstrate a wide range of antibiotic resistance. The Coomera River is a main water source for the Pimpama-Coomera watershed and is located in South East Queensland, Australia, which is used intensively for agriculture and recreational purposes. This study investigated the diversity of E. faecalis and E. faecium using Single Nucleotide Polymorphisms (SNPs) and associated antibiotic resistance profiles. Results Total enterococcal counts (cfu/ml) for three/six sampling sites were above the United States Environmental Protection Agency (USEPA) recommended level during rainfall periods and fall into categories B and C of the Australian National Health and Medical Research Council (NHMRC) guidelines (with a 1-10% gastrointestinal illness risk). E. faecalis and E. faecium isolates were grouped into 29 and 23 SNP profiles (validated by MLST analysis) respectively. This study showed the high diversity of E. faecalis and E. faecium over a period of two years and both human-related and human-specific SNP profiles were identified. 81.8% of E. faecalis and 70.21% of E. faecium SNP profiles were associated with genotypic and phenotypic antibiotic resistance. Gentamicin resistance was higher in E. faecalis (47% resistant) and harboured the aac(6')-aph(2') gene. Ciprofloxacin resistance was more common in E. faecium (12.7% resistant) and gyrA gene mutations were detected in these isolates. Tetracycline resistance was less common in both species while tet(L) and tet(M) genes were more prevalent. Ampicillin resistance was only found in E. faecium isolates with mutations in the pbp5 gene. Vancomycin resistance was not detected in any of the isolates. We found that antibiotic resistance profiles further sub-divided the SNP profiles of both E. faecalis and E. faecium. Conclusions The distribution of E. faecalis and E. faecium genotypes is highly diverse in the Coomera River. The SNP genotyping method is rapid and robust and can be applied to study the diversity of E. faecalis and E. faecium in waterways. It can also be used to test for human-related and human-specific enterococci in water. The resolving power can be increased by including antibiotic-resistant profiles which can be used as a possible source tracking tool. This warrants further investigation. PMID:21910889
Endophytic fungi: a reservoir of antibacterials
Deshmukh, Sunil K.; Verekar, Shilpa A.; Bhave, Sarita V.
2015-01-01
Multidrug drug resistant bacteria are becoming increasingly problematic particularly in the under developed countries of the world. The most important microorganisms that have seen a geometric rise in numbers are Methicillin resistant Staphylococcus aureus, Vancomycin resistant Enterococcus faecium, Penicillin resistant Streptococcus pneumonia and multiple drug resistant tubercule bacteria to name a just few. New drug scaffolds are essential to tackle this every increasing problem. These scaffolds can be sourced from nature itself. Endophytic fungi are an important reservoir of therapeutically active compounds. This review attempts to present some data relevant to the problem. New, very specific and effective antibiotics are needed but also at an affordable price! A Herculean task for researchers all over the world! In the Asian subcontinent indigenous therapeutics that has been practiced over the centuries such as Ayurveda have been effective as “handed down data” in family generations. May need a second, third and more “in-depth investigations?” PMID:25620957
Surveillance of multidrug resistant uropathogenic bacteria in hospitalized patients in Indian
Mishra, Monali Priyadarsini; Debata, Nagen Kumar; Padhy, Rabindra Nath
2013-01-01
Objective To record surveillance, antibiotic resistance of uropathogens of hospitalized patients over a period of 18 months. Methods Urine samples from wards and cabins were used for isolating urinary tract infection (UTI)-causing bacteria that were cultured on suitable selective media and identified by biochemical tests; and their antibiograms were ascertained by Kirby-Bauer's disc diffusion method, in each 6-month interval of the study period, using 18 antibiotics of five different classes. Results From wards and cabins, 1 245 samples were collected, from which 996 strains of bacteria belonging to 11 species were isolated, during April 2011 to September 2012. Two Gram-positive, Staphylococcus aureus (S. aureus) and Enterococcus faecalis (E. faecalis), and nine Gram-negative bacteria, Acinetobacter baumannii, Citrobacter sp., Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, Klebsiella oxytoca, Proteus mirabilis, Proteus vulgaris and Pseudomonas aeruginosa were isolated. Both S. aureus and E. faecalis were vancomycin resistant, and resistant-strains of all pathogens increased in each 6-month period of study. Particularly, all Gram-negatives were resistant to nitrofurantoin and co-trimoxazole, the most preferred antibiotics of empiric therapy for UTI. Conclusions Antibiograms of 11 UTI-causing bacteria recorded in this study indicated moderately higher numbers of strains resistant to each antibiotic studied, generating the fear of precipitating fervent episodes in public health particularly with bacteria, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and S. aureus. Moreover, vancomycin resistance in strains of S. aureus and E. faecalis is a matter of concern. PMID:23620859
Sun, Ning; Du, Ruo-Lan; Zheng, Yuan-Yuan; Guo, Qi; Cai, Sen-Yuan; Liu, Zhi-Hua; Fang, Zhi-Yuan; Yuan, Wen-Chang; Liu, Ting; Li, Xiao-Mei; Lu, Yu-Jing; Wong, Kwok-Yin
2018-12-01
The increasing incidence of multidrug resistant bacterial infection renders an urgent need for the development of new antibiotics. To develop small molecules disturbing FtsZ activity has been recognized as promising approach to search for antibacterial of high potency systematically. Herein, a series of novel quinolinium derivatives were synthesized and their antibacterial activities were investigated. The compounds show strong antibacterial activities against different bacteria strains including MRSA, VRE and NDM-1 Escherichia coli. Among these derivatives, a compound bearing a 4-fluorophenyl group (A2) exhibited a superior antibacterial activity and its MICs to the drug-resistant strains are found lower than those of methicillin and vancomycin. The biological results suggest that these quinolinium derivatives can disrupt the GTPase activity and dynamic assembly of FtsZ, and thus inhibit bacterial cell division and then cause bacterial cell death. These compounds deserve further evaluation for the development of new antibacterial agents targeting FtsZ.
[Does the emergence of antibiotic resistance announce the return of the dark ages?].
Elhani, Dalèle
2011-01-01
Antibiotic revolution changed the course of modern medicine, by decreasing mortality due to bacterial infections. However, bacteria have developed several ways of resistance against all antibiotics used. In view of the rise of resistance and of its dissemination to different bacterial families, new effective antibiotics are scare and the return in the pre-antibiotic era seems to be a reality for some parts of the world. This review revises the worrying phenomenon of antibiotic resistance focusing on some examples of "superbugs", which represent a daily challenge for the medical profession, such as methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, extended spectrum ß-lactamae-producing Enterobacteriaceae as well as carbapenem-resistant Pseudomonas aeruginosa. Facing the emergence of the multiresistant strains, the priority is obviously to control the spread of these microorganisms. It is only through the prudent use of antimicrobial drugs and the introduction of new and effective antibiotics that the antibiotic resistance will be slowed down and that we continue to treat bacterial infections.
Yang, Bo; Yang, Fujia; Wang, Shanmei; Wang, Qian; Liu, Zhirui; Feng, Wei; Sun, Fengjun; Xia, Peiyuan
2018-05-01
The objective of this study was to analyse the distribution and antimicrobial resistance of bacterial uropathogens isolated from outpatients at Henan Provincial People's Hospital. A total of 1419 samples from 823 newly diagnosed and 596 recurrent UTI outpatients culture positive. Escherichia coli was the most common uropathogen. Compared with the recurrent group, the newly diagnosed group had a higher isolation rate of E. coli and Enterobacter cloacae but a lower isolation rate of Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter spp. Except for P. aeruginosa, the resistance of Gram-negative bacteria to most antibiotics was less than 30%. All Enterococcus and Staphylococcus spp. were sensitive to linezolid, vancomycin and teicoplanin. Both Gram-negative and -positive bacteria exhibited high susceptibility to fosfomycin. Uropathogens isolated from recurrent outpatients had higher resistance rates than did those isolated from newly diagnosed outpatients. Our study indicated that fosfomycin might be an excellent treatment option for outpatients with UTIs.
Novel use of antimicrobial hand sanitizer in treatment of nosocomial acinetobacter infection.
Donahue, Meghan; Watson, Luke R; Torress-Cook, Alfonso; Watson, Paul A
2009-01-01
Colonization of wounds with multidrug-resistant organisms is a difficult orthopedic problem. Acinetobacter infections are especially difficult because they are resistant to all currently available antibiotics. We present the use of a novel skin sanitizer, Stay Byotrol Clean (Byotrol Inc, Spartanburg, South Carolina), to treat a multidrug-resistant wound infection. A 31-year-old T10 paraplegic man presented with chronic bilateral stage IV decubitus trochanteric ulcers. Cultures grew methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus. The ulcers were initially treated with irrigation and debridement and vancomycin, levaquin, and cefepime. After 4 months of aggressive treatment, the cultures continued to be positive for Escherichia coli and Acinetobacter baumannii. The patient was started on amikacin and tigecycline. Despite 1 additional month of aggressive wound care, debridements, and intravenous antibiotics, the cultures continued to grow A baumannii and Pseudomonas aerug. The A baumannii was resistant to all available antibiotics tested. The ulcers were then treated with daily application of Stay Byotrol Clean hand and skin sanitizer. Four days later, cultures were negative for any bacterial growth, with no A baumannii. After 1 week, the ulcers showed new granulation tissue with no visible necrotic tissue. After 3 months of treatment, the ulcers had healed. Stay Byotrol Clean is nonirritating and contains no iodine or alcohol. It is currently being used for decolonization of patients on admission to the hospital, however, there is great potential for its use in wound treatment, preoperative surgical sterilization, and orthopedic devices.
Ibarguren, Carolina; Raya, Raúl R; Apella, María C; Audisio, M Carina
2010-02-01
Four Enterococcus faecium strains, isolated from honeycombs (C1 and M2d strains) and feral combs (Mori1 and M1b strains) secreted antimicrobial substances active against fourteen different Listeria spp. strains. The antimicrobial compound(s) present in the cell free supernatant were highly thermostable (121 degrees C for 15 min) and inactivated by proteolytic enzymes, but not by alpha-amylase and lipase, thus suggesting a peptidic nature. Since the structural bacteriocin gene determinants of enterocins A and B were PCR amplified from the four E. faecium isolates, only the bacteriocin produced by strain C1 was further characterized: it showed a broad band of approximately 4.0-7.0 kDa in SDS-PAGE and was bactericidal (4 log decrease) against L. monocytogenes 99/287. L. monocytogenes 99/287R, a clone spontaneously resistant to the enterocin produced by E. avium DSMZ17511 (ex PA1), was not inhibited by the enterocin-like compounds produced by strain C1. However, it was inhibited in mixed culture fermentations by E. faecium C1 and a bacteriostatic effect was observed. The bacteriocin-producer Enterococcus strains were not haemolytic; gelatinase negative and sensitive to vancomycin and other clinically relevant antibiotics.
Buchan, Blake W.; Ginocchio, Christine C.; Manii, Ryhana; Cavagnolo, Robert; Pancholi, Preeti; Swyers, Lettie; Thomson, Richard B.; Anderson, Christopher; Kaul, Karen; Ledeboer, Nathan A.
2013-01-01
Background A multicenter study was conducted to evaluate the diagnostic accuracy (sensitivity and specificity) of the Verigene Gram-Positive Blood Culture Test (BC-GP) test to identify 12 Gram-positive bacterial gene targets and three genetic resistance determinants directly from positive blood culture broths containing Gram-positive bacteria. Methods and Findings 1,252 blood cultures containing Gram-positive bacteria were prospectively collected and tested at five clinical centers between April, 2011 and January, 2012. An additional 387 contrived blood cultures containing uncommon targets (e.g., Listeria spp., S. lugdunensis, vanB-positive Enterococci) were included to fully evaluate the performance of the BC-GP test. Sensitivity and specificity for the 12 specific genus or species targets identified by the BC-GP test ranged from 92.6%–100% and 95.4%–100%, respectively. Identification of the mecA gene in 599 cultures containing S. aureus or S. epidermidis was 98.6% sensitive and 94.3% specific compared to cefoxitin disk method. Identification of the vanA gene in 81 cultures containing Enterococcus faecium or E. faecalis was 100% sensitive and specific. Approximately 7.5% (87/1,157) of single-organism cultures contained Gram-positive bacteria not present on the BC-GP test panel. In 95 cultures containing multiple organisms the BC-GP test was in 71.6% (68/95) agreement with culture results. Retrospective analysis of 107 separate blood cultures demonstrated that identification of methicillin resistant S. aureus and vancomycin resistant Enterococcus spp. was completed an average of 41.8 to 42.4 h earlier using the BC-GP test compared to routine culture methods. The BC-GP test was unable to assign mecA to a specific organism in cultures containing more than one Staphylococcus isolate and does not identify common blood culture contaminants such as Micrococcus, Corynebacterium, and Bacillus. Conclusions The BC-GP test is a multiplex test capable of detecting most leading causes of Gram-positive bacterial blood stream infections as well as genetic markers of methicillin and vancomycin resistance directly from positive blood cultures. Please see later in the article for the Editors' Summary PMID:23843749
Nallapareddy, Sreedhar R; Weinstock, George M; Murray, Barbara E
2003-03-01
A collagen-binding adhesin of Enterococcus faecium, Acm, was identified. Acm shows 62% similarity to the Staphylococcus aureus collagen adhesin Cna over the entire protein and is more similar to Cna (60% and 75% similarity with Cna A and B domains respectively) than to the Enterococcus faecalis collagen-binding adhesin, Ace, which shares homology with Acm only in the A domain. Despite the detection of acm in 32 out of 32 E. faecium isolates, only 11 of these (all clinical isolates, including four vancomycin-resistant endocarditis isolates and seven other isolates) exhibited binding to collagen type I (CI). Although acm from three CI-binding vancomycin-resistant E. faecium clinical isolates showed 100% identity, analysis of acm genes and their promoter regions from six non-CI-binding strains identified deletions or mutations that introduced stop codons and/or IS elements within the gene or the promoter region in five out of six strains, suggesting that the presence of an intact functional acm gene is necessary for binding of E. faecium strains to CI. Recombinant Acm A domain showed specific and concentration-dependent binding to collagen, and this protein competed with E. faecium binding to immobilized CI. Consistent with the adherence phenotype and sequence data, probing with Acm-specific IgGs purified from anti-recombinant Acm A polyclonal rabbit serum confirmed the surface expression of Acm in three out of three collagen-binding clinical isolates of E. faecium tested, but in none of the strains with a non-functional pseudo acm gene. Introduction of a functional acm gene into two non-CI-binding natural acm mutant strains conferred a CI-binding phenotype, further confirming that native Acm is sufficient for the binding of E. faecium to CI. These results demonstrate that acm, which encodes a potential virulence factor, is functional only in certain infection-derived clinical isolates of E. faecium, and suggest that Acm is the primary adhesin responsible for the ability of E. faecium to bind collagen.
Galloway-Peña, Jessica R.; Nallapareddy, Sreedhar R.; Arias, Cesar A.; Eliopoulos, George M.; Murray, Barbara E.
2009-01-01
Background The Enterococcus faecium genogroup, referred to as clonal complex 17 (CC17), seems to possess multiple determinants that increase its ability to survive and cause disease in nosocomial environments. Methods Using 53 clinical and geographically diverse US E. faecium isolates dating from 1971 to 1994 we determined the multi-locus sequence type, the presence of 16 putative virulence genes (hylEfm, espEfm and fms genes), resistance to ampicillin (AMPR), vancomycin (VANR) and high-levels of gentamicin and streptomycin. Results Overall, 16 different sequence types (STs), mostly CC17 isolates, were identified in 9 different regions of the US. The earliest CC17 isolates were part of an outbreak in 1982 in Richmond, VA. Characteristics of CC17 isolates included increases in AMPR, the presence of hylEfm and espEfm, emergence of VANR and the presence of at least 13/14 fms genes. Eight out of forty-one of the early AMPR isolates, however, were not within CC17. Conclusions While not all early US AMPR isolates were clonally related, E. faecium CC17 isolates have been circulating in the US since at least 1982 and appear to have progressively acquired additional virulence and antibiotic resistance determinants, perhaps explaining the recent success of this species in the hospital environment. PMID:19821720
Bao, Aorigele; Zhong, Jie; Zeng, Xian-Chun; Nie, Yao; Zhang, Lei; Peng, Zhao Feng
2015-10-01
Antibiotic-resistant bacteria, such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus, pose serious threat to human health. The outbreak of antibiotic-resistant pathogens in recent years emphasizes once again the urgent need for the development of new antimicrobial agents. Here, we discovered a novel antimicrobial peptide from the scorpion Opistophthalmus glabrifrons, which was referred to as Opisin. Opisin consists of 19 amino acid residues without disulfide bridges. It is a cationic, amphipathic, and α-helical molecule. Protein sequence homology search revealed that Opisin shares 42.1-5.3% sequence identities to the 17/18-mer antimicrobial peptides from scorpions. Antimicrobial assay showed that Opisin is able to potently inhibit the growth of the tested Gram-positive bacteria with the minimal inhibitory concentration (MIC) values of 4.0-10.0 μM; in contrast, it possesses much lower activity against the tested Gram-negative bacteria and a fungus. It is interesting to see that Opisin is able to strongly inhibit the growth of methicillin- and vancomycin-resistant pathogens with the MICs ranging from 2.0 to 4.0 μM and from 4.0 to 6.0 μM, respectively. We found that at a concentration of 5 × MIC, Opisin completely killed all the cultured methicillin-resistant Staphylococcus aureus. These results suggest that Opisin is a promising therapeutic candidate for the treatment of the antibiotic-resistant bacterial infections. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.
Mitchell, Stephanie L; Mattei, Lisa M; Alby, Kevin
2017-08-01
Vancomycin-dependent enterococci are a relatively uncommon phenotype recovered in the clinical laboratory. Recognition and recovery of these isolates are important, to provide accurate identification and susceptibility information to treating physicians. Herein, we describe the recovery of a vancomycin-dependent and revertant E. faecium isolates harboring vanB operon from a patient with bacteremia. Using whole genome sequencing, we found a unique single nucleotide polymorphism (S186N) in the D-Ala-D-Ala ligase (ddl) conferring vancomycin-dependency. Additionally, we found that a majority of in vitro revertants mutated outside ddl, with some strains harboring mutations in vanS, while others likely containing novel mechanisms of reversion. Copyright © 2017 Elsevier B.V. All rights reserved.
[Stethoscope or staphyloscope?: Potential vector in nosocomial infections].
Zúniga, Andrés; Mañalich, Jaime; Cortés, Rosario
2016-02-01
Healthcare-associated infections (HCAI) are a problem worldwide. In our country, the estimated incidence of HCAI is 70,000 per year. This results in an increase in the average length of hospital stay by 10 days per patient, an estimated annual cost of US $ 70 million and an overstay of 700 thousand bed days a year. For over 30 years stethoscopes have been considered as potential HCAI vectors, since pathogens like methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus strains adhere and colonize them. These organisms can be transmitted between patients if the instruments are not sanitized. Several studies conclude that disinfecting the stethoscope with isopropyl alcohol eliminates up to 99% of bacteria. Simple, economic measures such as implementation of guidelines for stethoscope disinfection are a clear opportunity for preventing infections.
Kenters, Nikki; Huijskens, Elisabeth G W; de Wit, Sophie C J; van Rosmalen, Joost; Voss, Andreas
2017-08-01
Hospital rooms play an important role in the transmission of several health care-associated pathogens. During the last few years, a number of innovative cleaning-disinfecting products have been brought to market. In this study, commercially available products combining cleaning and disinfection were compared, using 2 different application methods. The aim was to determine which product was most effective in simultaneous cleaning and disinfection of surfaces. Seven cleaning-disinfecting wipes and sprays based on different active ingredients were tested for their efficacy in removal of microbial burden and proteins. Efficacy was tested with known Dutch outbreak strains: vancomycin-resistant enterococci (VRE), Klebsiella pneumoniae OXA-48, or Acinetobacter baumannii. For all bacteria, ready-to-use cleaning-disinfecting products reduced the microbial count with a log 10 reduction >5 with a 5-minute exposure time, with the exception of a spray based on hydrogen peroxide. Omitting the aforementioned hydrogen peroxide spray, there were no significant differences between use of a wipe or spray in bacterial load reduction. Using adenosine triphosphate (ATP) measurements, a significant difference in log 10 relative light units (RLU) reduction between various bacteria (P ≤ .001) was observed. In general, a >5 log 10 reduction of colony forming units (CFU) for tested wipes and sprays was obtained for all tested bacteria strains, with exception of hydrogen peroxide spray and VRE. Although ATP may show a difference between pre- and postcleaning, RLU reduction does not correlate with actual CFU reductions. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Solomon, Fithamlak Bisetegen; Wadilo, Fiseha Wada; Arota, Amsalu Amache; Abraham, Yishak Leka
2017-04-12
Hospitals provide a reservoir of microorganisms, many of which are multi-resistant to antibiotics. Emergence of multi-drug resistant strains in a hospital environment, particularly in developing countries is an increasing problem to infection treatment. This study aims at assessing antibiotic resistant airborne bacterial isolates. A cross-sectional study was conducted at Wolaita Sodo university teaching and referral Hospital. Indoor air samples were collected by using passive air sampling method. Sample processing and antimicrobial susceptibility testing were done following standard bacteriological techniques. The data was analyzed using SPSS version 20. Medically important bacterial pathogens, Coagulase negative staphylococci (29.6%), Staphylococcus aureus (26.3%), Enterococci species, Enterococcus faecalis and Enterococcus faecium (16.5%), Acinetobacter species (9.5%), Escherichia coli (5.8%) and Pseudomonas aeruginosa (5.3%) were isolated. Antibiotic resistance rate ranging from 7.5 to 87.5% was detected for all isolates. Acinetobacter species showed a high rate of resistance for trimethoprim-sulfamethoxazole, gentamicin (78.2%) and ciprofloxacin (82.6%), 28 (38.9%) of S. aureus isolates were meticillin resistant, and 7.5% Enterococci isolates of were vancomycin resistant. 75.3% of all bacterial pathogen were multi-drug resistant. Among them, 74.6% were gram positive and 84% were gram negative. Multi-drug resistance were observed among 84.6% of P. aeruginosa, of 82.5% Enterococcii, E. coli 78.6%, S. aureus 76.6%, and Coagulase negative staphylococci of 73.6%. Indoor environment of the hospital was contaminated with airborne microbiotas, which are common cause of post-surgical site infection in the study area. Bacterial isolates were highly resistant to commonly used antibiotics with high multi-drug resistance percentage. So air quality of hospital environment, in restricted settings deserves attention, and requires long-term surveillance to protect both patients and healthcare workers.
Kara, Ahu; Devrim, İlker; Bayram, Nuri; Katipoğlu, Nagehan; Kıran, Ezgi; Oruç, Yeliz; Demiray, Nevbahar; Apa, Hurşit; Gülfidan, Gamze
2015-01-01
Vancomycin-resistant enterococci colonization has been reported to increase the risk of developing infections, including bloodstream infections. In this study, we aimed to share our experience with the vancomycin-resistant enterococci bloodstream infections following gastrointestinal vancomycin-resistant enterococci colonization in pediatric population during a period of 18 months. A retrospective cohort of children admitted to a 400-bed tertiary teaching hospital in Izmir, Turkey whose vancomycin-resistant enterococci colonization was newly detected during routine surveillances for gastrointestinal vancomycin-resistant enterococci colonization during the period of January 2009 and December 2012 were included in this study. All vancomycin-resistant enterococci isolates found within 18 months after initial detection were evaluated for evidence of infection. Two hundred and sixteen patients with vancomycin-resistant enterococci were included in the study. Vancomycin-resistant enterococci colonization was detected in 136 patients (62.3%) while they were hospitalized at intensive care units; while the remaining majority (33.0%) were hospitalized at hematology-oncology department. Vancomycin-resistant enterococci bacteremia was present only in three (1.55%) patients. All these patients were immunosuppressed due to human immunodeficiency virus (one patient) and intensive chemotherapy (two patients). In conclusion, our study found that 1.55% of vancomycin-resistant enterococci-colonized children had developed vancomycin-resistant enterococci bloodstream infection among the pediatric intensive care unit and hematology/oncology patients; according to our findings, we suggest that immunosupression is the key point for developing vancomycin-resistant enterococci bloodstream infections. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.
Alvarez-Cisneros, Y M; Fernández, F J; Sainz-Espuñez, T; Ponce-Alquicira, E
2017-02-01
Enterococcus faecium MXVK29 has the ability to produce an antimicrobial compound that belongs to Class IIa of the Klaenhammer classification, and could be used as part of a biopreservation technology through direct inoculation of the strain as a starter or protective culture. However, Enterococcus is considered as an opportunistic pathogen, hence, the purpose of this work was to study the food safety determinants of E. faecium MXVK29. The strain was sensitive to all of the antibiotics tested (penicillin, tetracycline, vancomycin, erythromycin, chloramphenicol, gentamicin, neomycin, kanamycin and netilmicin) and did not demonstrate histamine, cadaverine or putrescine formation. Furthermore, tyrosine-decarboxylase activity was detected by qualitative assays and PCR. Among the virulence factors analysed for the strain, only the genes encoding the sexual pheromone cCF10 precursor lipoprotein (ccf) and cell-wall adhesion (efaA fm ) were amplified. The presence of these genes has low impact on pathogenesis, as there are no other genes encoding for virulence factors, such as aggregation proteins. Therefore, Enterococcus faecium could be employed as part of a bioconservation method, because it does not produce risk factors for consumer's health; in addition, it could be used as part of the hurdle technology in foods. The use of molecular techniques has allowed, in recent years, to detect pathogenicity genes present in the genome of starter cultures used in food processing and preservation. The presence of these genes is undesirable, because horizontal transfer may occur with the natural biota of consumers. For this reason, it is important to analyse the presence of pathogenicity genes in such cultures. In this work, virulence factors and antibiotic resistance of Enterococcus faecium strain MXVK29, producing an antimicrobial compound with high antilisterial activity, were analysed. The results indicate that the strain is safe to be used in food processing as starter culture. © 2016 The Society for Applied Microbiology.
A 1.5 hour procedure for identification of Enterococcus Species directly from blood cultures.
Morgan, Margie A; Marlowe, Elizabeth; Novak-Weekly, Susan; Miller, J M; Painter, T M; Salimnia, Hossein; Crystal, Benjamin
2011-02-10
Enterococci are a common cause of bacteremia with E. faecalis being the predominant species followed by E. faecium. Because resistance to ampicillin and vancomycin in E. faecalis is still uncommon compared to resistance in E. faecium, the development of rapid tests allowing differentiation between enterococcal species is important for appropriate therapy and resistance surveillance. The E. faecalis OE PNA FISH assay (AdvanDx, Woburn, MA) uses species-specific peptide nucleic acid (PNA) probes in a fluorescence in situ hybridization format and offers a time to results of 1.5 hours and the potential of providing important information for species-specific treatment. Multicenter studies were performed to assess the performance of the 1.5 hour E. faecalis/OE PNA FISH procedure compared to the original 2.5 hour assay procedure and to standard bacteriology methods for the identification of enterococci directly from a positive blood culture bottle.
A 1.5 Hour Procedure for Identification of Enterococcus Species Directly from Blood Cultures
Morgan, Margie A.; Marlowe, Elizabeth; Novak-Weekly, Susan; Miller, J.M.; Painter, T.M.; Salimnia, Hossein; Crystal, Benjamin
2011-01-01
Enterococci are a common cause of bacteremia with E. faecalis being the predominant species followed by E. faecium. Because resistance to ampicillin and vancomycin in E. faecalis is still uncommon compared to resistance in E. faecium, the development of rapid tests allowing differentiation between enterococcal species is important for appropriate therapy and resistance surveillance. The E. faecalis OE PNA FISH assay (AdvanDx, Woburn, MA) uses species-specific peptide nucleic acid (PNA) probes in a fluorescence in situ hybridization format and offers a time to results of 1.5 hours and the potential of providing important information for species-specific treatment. Multicenter studies were performed to assess the performance of the 1.5 hour E. faecalis/OE PNA FISH procedure compared to the original 2.5 hour assay procedure and to standard bacteriology methods for the identification of enterococci directly from a positive blood culture bottle. PMID:21339730
Antimicrobial drug use and resistance in dogs
Prescott, John F.; Hanna, W. J. Brad; Reid-Smith, Richard; Drost, Kelli
2002-01-01
Fifteen years (1984–1998) of records from a Veterinary Teaching Hospital were analyzed to determine whether antimicrobial drug resistance in coagulase-positive Staphylococcus spp. (S. aureus, S. intermedius) isolated from clinical infections in dogs has increased, and whether there has been a change in the species of bacteria isolated from urinary tract infections in dogs. In coagulase-positive Staphylococcus spp., a complex pattern showing both increases and decreases of resistance to different classes of antimicrobial drugs was observed, reflecting the changing use of different antimicrobial drug classes in the hospital over a similar period (1990–1999). In canine urinary tract infections identified from 1984 to 1998, an increase in the incidence of multiresistant Enterococcus spp. was apparent, with marginal increases also in incidence in Enterobacter spp. and in Pseudomonas aeruginosa, both of which, like Enterococcus spp., are innately antimicrobial-resistant bacteria. A survey of directors of veterinary teaching hospitals in Canada and the United States identified only 3 hospitals that had any policy on use of “last resort” antimicrobial drugs (amikacin, imipenem, vancomycin). Evidence is briefly reviewed that owners may be at risk when dogs are treated with antimicrobial drugs, as well as evidence that some resistant bacteria may be acquired by dogs as a result of antimicrobial drug use in agriculture. Based in part on gaps in our knowledge, recommendations are made on prudent use of antimicrobial drugs in companion animals, as well as on the need to develop science-based infection control programs in veterinary hospitals. PMID:11842592
Fass, R J
1991-01-01
The in vitro activity of RP 59500, a semisynthetic pristinamycin, was compared with the activities of vancomycin, oxacillin, ampicillin, gentamicin, ciprofloxacin, and rifampin against five Staphylococcus species, five Streptococcus species, and four Enterococcus species. For staphylococci, MICs were 0.13 to 1 microgram/ml and the MICs for 90% of the strains tested (MIC90s) were 0.13 to 0.5 microgram/ml; there were no differences between oxacillin-susceptible and -resistant strains. For streptococci, MICs were 0.03 to 4 micrograms/ml and MIC90s were 0.25 to 2 micrograms/ml; viridans group streptococci were the least susceptible streptococci. For enterococci, MICs were 0.25 to 32 micrograms/ml and MIC90s were 2 to 4 micrograms/ml; Enterococcus faecalis was the least susceptible. Vancomycin was the only comparative drug with consistent activity against all species of gram-positive cocci. With RP 59500, raising the inoculum 100-fold, lowering the pH of cation-adjusted Mueller-Hinton broth to 5.5, or omitting cation supplementation had little effect on MICs, but 50% serum increased MICs 2 to 4 dilution steps. The differences between MBCs and MICs were greater for staphylococci and enterococci than for streptococci. Time-kill studies with 24 strains indicated that RP 59500 concentrations 2-, 4-, and 16-fold greater than the MICs usually killed bacteria of each species at similar rates; reductions in CFU per milliliter were less than those observed with oxacillin or vancomycin against staphylococci and less than those observed with ampicillin against enterococci. RP 59500 antagonized the bactericidal activities of oxacillin and gentamicin against Staphylococcus aureus ATCC 29213 and that of ampicillin against E. faecalis ATCC 29212. Against the latter, combination with gentamicin was indifferent. RP 59500 has a broad spectrum of in vitro activity against gram-positive cocci; combining it with other drugs is not advantageous. PMID:1903912
Sakagami, Yoshikazu; Komemushi, Sadao; Tsukamoto, Goro; Kondo, Hirosato; Yoshikawa, Akiko; Muraoka, Osamu
2008-09-01
Anti-VRE and anti-MRSA activities of new quinolone derivatives [The two quinolone derivatives are 8- [3-[(ethylamino) methyl]-1-pyrrodinyl] -7-fluoro-9, 1-[(N-methylimino)methano]-5-oxo-5H-thiazolo[3,2-a]quinolone-4-carboxylic acid (compound A) and 7-fluoro-8-morpholino-9,1-[(N-methylimino) methanol-5-oxo-5H-thiazolo [3,2-a] quinolone-4-carboxylic acid (compound B)] and their synergism with commercial antibiotics were investigated. Compound A exhibited potent antibacterial activity against VRE and MRSA among the five new quinolone compounds tested, and showed superior activity to pefloxacin, ofloxacin and levofloxacin, which are clinically in use these days. With respect to the anti-VRE activity, compound A showed synergism with fosfomycin (FOM), and partial synergism with ampicillin (ABPC), gentaicin (GM), minocycline (MINO) and vancomycin hydrochloride (VCM). Partial synergism in anti-VRE activity was also observed between compound B and GM, MINO, FOM and VCM. Compound A also showed synergism with MINO and FOM in anti-MASA activity. Partial synergism was observed with ABPC, GM and VCM. Synergism with ABPC was not detected in anti-MRSA activity. On the other hand, the synergism of compound B with FOM, and the partial synergisms with ABPC, GM and MINO were also found against MRSA. No synergism with ABPC was found against MRSA. These results suggested that compound A and B could possibly reduce the daily administration dose of these antibiotics in the treatment of nosocomial infections, and also reduce the possibility of the occurrence of nosocomial infections caused by VRE and/or MRSA.
Characterization of bacterial isolates from the microbiota of mothers' breast milk and their infants
Kozak, Kimberly; Charbonneau, Duane; Sanozky-Dawes, Rosemary; Klaenhammer, Todd
2015-01-01
This investigation assessed the potential of isolating novel probiotics from mothers and their infants. A subset of 21 isolates among 126 unique bacteria from breast milk and infant stools from 15 mother-infant pairs were examined for simulated GI transit survival, adherence to Caco-2 cells, bacteriocin production, and lack of antibiotic resistance. Of the 21 selected isolates a Lactobacillus crispatus isolate and 3 Lactobacillus gasseri isolates demonstrated good profiles of in vitro GI transit tolerance and Caco-2 cell adherence. Bacteriocin production was observed only by L. gasseri and Enterococcus faecalis isolates. Antibiotic resistance was widespread, although not universal, among isolates from infants. Highly similar isolates (≥ 97% similarity by barcode match) of Bifidobacterium longum subsp. infantis (1 match), Lactobacillus fermentum (2 matches), Lactobacillus gasseri (6 matches), and Enterococcus faecalis (1 match) were isolated from 5 infant–mother pairs. Antibiotic resistance profiles between these isolate matches were similar, except in one case where the L. gasseri isolate from the infant exhibited resistance to erythromycin and tetracycline, not observed in matching mother isolate. In a second case, L. gasseri isolates differed in resistance to ampicillin, chloramphenicol and vancomycin between the mother and infant. In this study, gram positive bacteria isolated from mothers' breast milk as well as their infants exhibited diversity in GI transit survival and acid inhibition of pathogens, but demonstrated limited ability to produce bacteriocins. Mothers and their infants offer the potential for identification of probiotics; however, even in the early stages of development, healthy infants contain isolates with antibiotic resistance. PMID:26727418
Kozak, Kimberly; Charbonneau, Duane; Sanozky-Dawes, Rosemary; Klaenhammer, Todd
2015-01-01
This investigation assessed the potential of isolating novel probiotics from mothers and their infants. A subset of 21 isolates among 126 unique bacteria from breast milk and infant stools from 15 mother-infant pairs were examined for simulated GI transit survival, adherence to Caco-2 cells, bacteriocin production, and lack of antibiotic resistance. Of the 21 selected isolates a Lactobacillus crispatus isolate and 3 Lactobacillus gasseri isolates demonstrated good profiles of in vitro GI transit tolerance and Caco-2 cell adherence. Bacteriocin production was observed only by L. gasseri and Enterococcus faecalis isolates. Antibiotic resistance was widespread, although not universal, among isolates from infants. Highly similar isolates (≥ 97% similarity by barcode match) of Bifidobacterium longum subsp. infantis (1 match), Lactobacillus fermentum (2 matches), Lactobacillus gasseri (6 matches), and Enterococcus faecalis (1 match) were isolated from 5 infant-mother pairs. Antibiotic resistance profiles between these isolate matches were similar, except in one case where the L. gasseri isolate from the infant exhibited resistance to erythromycin and tetracycline, not observed in matching mother isolate. In a second case, L. gasseri isolates differed in resistance to ampicillin, chloramphenicol and vancomycin between the mother and infant. In this study, gram positive bacteria isolated from mothers' breast milk as well as their infants exhibited diversity in GI transit survival and acid inhibition of pathogens, but demonstrated limited ability to produce bacteriocins. Mothers and their infants offer the potential for identification of probiotics; however, even in the early stages of development, healthy infants contain isolates with antibiotic resistance.
Ben Braïek, Olfa; Morandi, Stefano; Cremonesi, Paola; Smaoui, Slim; Hani, Khaled; Ghrairi, Taoufik
2018-04-01
The aims of this study are to isolate new bacteriocinogenic lactic acid bacterial strains from white (Penaeus vannamei) and pink (Palaemon serratus) raw shrimps and evaluate their technological and probiotic potentialities. Seven strains were selected, among fifty active isolates, as producing interesting antimicrobial activity. Identified as Enterococcus lactis, these isolates were able to produce enterocins A, B and/or P. The safety aspect, assessed by microbiological and molecular tests, demonstrated that the strains were susceptible to relevant antibiotics such as vancomycin, negative for haemolysin and gelatinase activities, and did not harbour virulence and antibiotic resistance genes. The assessment of potential probiotic and technological properties showed a low or no lipolytic activity, moderate milk-acidifying ability, high reducing power, proteolytic activity and tolerance to bile (P < 0.05) and good autoaggregation and coaggregation capacities. Two strains designated as CQ and C43 exhibiting high enzymatic activities and bile salt hydrolase activity were found to display high survival under simulated in vitro oral cavity and gastrointestinal tract conditions caused by presence of lysozyme, pepsin, pancreatin, bile salts and acidic pH. This study highlights safe Enterococcus lactis strains with great technological and probiotic potentials for future application as new starter, adjunct, protective or probiotic cultures in food industry. Copyright © 2018 Elsevier Ltd. All rights reserved.
Murphy, Colleen P; Reid-Smith, Richard J; Boerlin, Patrick; Weese, J Scott; Prescott, John F; Janecko, Nicol; Hassard, Lori; McEwen, Scott A
2010-09-01
Hospital-based infection control in veterinary medicine is emerging and the role of the environment in hospital-acquired infections (HAI) in veterinary hospitals is largely unknown. This study was initiated to determine the recovery of Escherichia coli and selected veterinary and zoonotic pathogens from the environments of 101 community veterinary hospitals. The proportion of hospitals with positive environmental swabs were: E. coli--92%, Clostridium difficile--58%, methicillin-resistant Staphylococcus aureus (MRSA)--9%, CMY-2 producing E. coli--9%, methicillin-resistant Staphylococcus pseudintermedius--7%, and Salmonella--2%. Vancomycin-resistant Enterococcus spp., canine parvovirus, and feline calicivirus were not isolated. Prevalence of antimicrobial resistance in E. coli isolates was low. Important potential veterinary and human pathogens were recovered including Canadian epidemic strains MRSA-2 and MRSA-5, and C. difficile ribotype 027. There is an environmental reservoir of pathogens in veterinary hospitals; therefore, additional studies are required to characterize risk factors associated with HAI in companion animals, including the role of the environment.
In vitro activity of daptomycin against clinical isolates of Gram-positive bacteria.
Piper, Kerryl E; Steckelberg, James M; Patel, Robin
2005-08-01
We determined the activity of daptomycin, a recently FDA-approved antimicrobial agent, against clinical isolates of Gram-positive bacteria, including viridans group streptococci (16 Streptococcus mitis species group, 12 S. mutans species group, 9 S. anginosus species group, 8 S. sanguinis species group, 5 S. salivarius species group) from patients with infective endocarditis, 32 methicillin-resistant Staphylococcus aureus, 32 high-level penicillin-resistant Streptococcus pneumoniae, 38 vancomycin-resistant enterococci (including 1 linezolid-resistant isolate), and the following unusual Gram-positive bacteria: 3 Listeria monocytogenes, 4 Erysipelothrix rhusiopathiae, 9 Corynebacterium species, 10 Abiotrophia/Granulicatella species, 2 Rothia (Stomatococcus) mucilaginosus, and 4 Gemella morbillorum. Daptomycin minimum inhibitory concentration (MIC)(90) values for the viridans group streptococci, methicillin-resistant S. aureus, penicillin-resistant S. pneumoniae, and Enterococcus species were 0.5, 0.5, < or =0.125, and 4 microg/ml, respectively. The daptomycin MIC range for the unusual Gram-positive bacteria was < or =0.125-2 microg/ml. We conclude that daptomycin has in vitro activity against viridans group streptococci associated with endocarditis as well as against several types of unusual Gram-positive bacteria that can cause endocarditis.
van Schaik, Willem
2015-06-05
In recent decades, the emergence and spread of antibiotic resistance among bacterial pathogens has become a major threat to public health. Bacteria can acquire antibiotic resistance genes by the mobilization and transfer of resistance genes from a donor strain. The human gut contains a densely populated microbial ecosystem, termed the gut microbiota, which offers ample opportunities for the horizontal transfer of genetic material, including antibiotic resistance genes. Recent technological advances allow microbiota-wide studies into the diversity and dynamics of the antibiotic resistance genes that are harboured by the gut microbiota ('the gut resistome'). Genes conferring resistance to antibiotics are ubiquitously present among the gut microbiota of humans and most resistance genes are harboured by strictly anaerobic gut commensals. The horizontal transfer of genetic material, including antibiotic resistance genes, through conjugation and transduction is a frequent event in the gut microbiota, but mostly involves non-pathogenic gut commensals as these dominate the microbiota of healthy individuals. Resistance gene transfer from commensals to gut-dwelling opportunistic pathogens appears to be a relatively rare event but may contribute to the emergence of multi-drug resistant strains, as is illustrated by the vancomycin resistance determinants that are shared by anaerobic gut commensals and the nosocomial pathogen Enterococcus faecium.
van Schaik, Willem
2015-01-01
In recent decades, the emergence and spread of antibiotic resistance among bacterial pathogens has become a major threat to public health. Bacteria can acquire antibiotic resistance genes by the mobilization and transfer of resistance genes from a donor strain. The human gut contains a densely populated microbial ecosystem, termed the gut microbiota, which offers ample opportunities for the horizontal transfer of genetic material, including antibiotic resistance genes. Recent technological advances allow microbiota-wide studies into the diversity and dynamics of the antibiotic resistance genes that are harboured by the gut microbiota (‘the gut resistome’). Genes conferring resistance to antibiotics are ubiquitously present among the gut microbiota of humans and most resistance genes are harboured by strictly anaerobic gut commensals. The horizontal transfer of genetic material, including antibiotic resistance genes, through conjugation and transduction is a frequent event in the gut microbiota, but mostly involves non-pathogenic gut commensals as these dominate the microbiota of healthy individuals. Resistance gene transfer from commensals to gut-dwelling opportunistic pathogens appears to be a relatively rare event but may contribute to the emergence of multi-drug resistant strains, as is illustrated by the vancomycin resistance determinants that are shared by anaerobic gut commensals and the nosocomial pathogen Enterococcus faecium. PMID:25918444
Kim, Jung Wook; Chung, Gyung Tae; Yoo, Jung Sik; Lee, Yeong Seon; Yoo, Jae Il
2012-10-01
The aim of this study was to investigate the molecular characteristics of induced vancomycin resistance in Staphylococcus haemolyticus. Autolytic properties and phenotypic characteristics of passage-selected vancomycin-resistant S. haemolyticus strains were examined. In addition, expression of autolysis-related genes (atl, lrgAB, sarA and lytS) was investigated using the RNase protection assay (RPA). The RPA results indicated that only the expression of the atl gene was significantly upregulated (2.5- to 6-fold increase) in vancomycin-intermediate and vancomycin-resistant strains. The vancomycin-resistant strains exhibited lower expression of murein hydrolase proteins and reduced autolytic activity compared with the parent strain. In addition, a reduced growth rate, cell wall thickening and higher survival rate in the presence of lysostaphin were observed in vancomycin-intermediate and vancomycin-resistant induced strains compared with the parent strain. In conclusion, altered autolytic properties, in particular upregulation of the atl gene, may contribute to vancomycin resistance in S. haemolyticus.
[Enterococcus faecium lung abscess: one case report and literature review].
Fang, Xiang-Qun; Liu, You-Ning
2010-02-01
to study the diagnosis and treatment of enterococcus faecium lung abscess. a retrospective analysis of one case of Enterococcus faecium lung abscess and literature review was conducted. this patient suffered from cough and sputum over 6 months and complicated with hemoptysis over 3 months. Pulmonary embolism and lung cancer were suspected initially. After 2 times of CT-guided percutaneous transthoracic needle aspiration biopsy the diagnosis of pneumonia was made in other hospitals. However, the consolidation in the lung progressed and cavity appeared although antibiotic therapy was conducted. After admission to our hospital, CT-guided percutaneous transthoracic needle aspiration biopsy was made and the lung tissue was sent for bacterial culture. Enterococcus faecium was cultured and it was susceptible to vancomycin, teicoplanin and linezolid. The disease improved significantly after treatment with these 3 antibiotics in turn. In addition, 13 cases of enterococcus pneumonia or lung abscess were reviewed, including 3 cases of enterococcus faecium lung abscess. enterococcus faecium is rarely a pathogen for lung abscess. The diagnosis of enterococcus faecium lung abscess could be confirmed by lung biopsy and bacterial culture of lung tissue which could also provide the susceptibility of antibiotics and guide the antibiotic therapy.
Arias, C A; Weisner, J; Blackburn, J M; Reynolds, P E
2000-07-01
Vancomycin resistance in Enterococcus gallinarum results from the production of UDP-MurNAc-pentapeptide[D-Ser]. VanT, a membrane-bound serine racemase, is one of three proteins essential for this resistance. To investigate the selectivity of racemization of L-Ser or L-Ala by VanT, a strain of Escherichia coli TKL-10 that requires D-Ala for growth at 42 degrees C was used as host for transformation experiments using plasmids containing the full-length vanT from Ent. gallinarum or the alanine racemase gene (alr) of Bacillus stearothermophilus: both plasmids were able to complement E. coli TKL-10 at 42 degrees C. No alanine or serine racemase activities were detected in the host strain E. coli TKL-10 grown at 30, 34 or 37 degrees C. Serine and alanine racemase activities were found almost exclusively (96%) in the membrane fraction of E. coli TKL-10/pCA4(vanT): the alanine racemase activity of VanT was 14% of the serine racemase activity in both E. coli TKL-10/pCA4(vanT) and E. coli XL-1 Blue/pCA4(vanT). Alanine racemase activity was present mainly (95%) in the cytoplasmic fraction of E. coli TKL-10/pJW40(alr), with a trace (1.6%) of serine racemase activity. Additionally, DNA encoding the soluble domain of VanT was cloned and expressed in E. coli M15 as a His-tagged polypeptide and purified: this polypeptide also exhibited both serine and alanine racemase activities; the latter was approximately 18% of the serine racemase activity, similar to that of the full-length, membrane-bound enzyme. N-terminal sequencing of the purified His-tagged polypeptide revealed a single amino acid sequence, indicating that the formation of heterodimers between subunits of His-tagged C-VanT and endogenous alanine racemases from E. coli was unlikely. The authors conclude that the membrane-bound serine racemase VanT also has alanine racemase activity but is able to racemize serine more efficiently than alanine, and that the cytoplasmic domain is responsible for the racemase activity.
Asokan, G V; Kasimanickam, R K
2013-01-01
Most emerging infectious diseases are zoonoses, which could severely hamper reaching the targets of millennium development goals (MDG). Five out of the total eight MDG's are strongly associated with the Emerging Infectious Diseases (EIDs). Recent emergence and dissemination of drug-resistant pathogens has accelerated and prevent reaching the targets of MDG, with shrinking of therapeutic arsenal, mostly due to antimicrobial resistance (AMR). World Health Organization (WHO has identified AMR as 1 of the 3 greatest threats to global health. Until now, methicillin-resistant staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) have been observed in hospital-acquired infections. In India, within a span of three years, New Delhi metallo-β-lactamase prevalence has risen from three percent in hospitals to twenty- fifty percent and is found to be colistin resistant as well. Routine use of antimicrobials in animal husbandry accounts for more than 50% in tonnage of all antimicrobial production to promote growth and prophylaxis. This has consequences to human health and environmental contamination with a profound impact on the environmental microbiome, resulting in resistance. Antibiotic development is now considered a global health crisis. The average time required to receive regulatory approval is 7.2 years. Moreover, the clinical approval success is only 16%. To overcome resistance in antimicrobials, intersectoral partnerships among medical, veterinary, and environmental disciplines, with specific epidemiological, diagnostic, and therapeutic approaches are needed. Joint efforts under "One Health", beyond individual professional boundaries are required to stop antimicrobial resistance against zoonoses (EID) and reach the MDG.
Antibiotic Resistance and the Risk of Recurrent Bacteremia.
Woudt, Sjoukje H S; de Greeff, Sabine C; Schoffelen, Annelot F; Vlek, Anne L M; Bonten, Marc J M
2018-05-17
Direct health effects of antibiotic resistance are difficult to assess. We quantified the risk of recurrent bacteremia associated with resistance. We extracted antimicrobial susceptibility testing data on blood isolates from the Dutch surveillance system for antimicrobial resistance between 2008 and 2017. First and first recurrent (4-30 days) bacteremia episodes were categorized as susceptible, single nonsusceptible, or co-nonsusceptible to third-generation cephalosporins without or with carbapenems (Enterobacteriaceae), ceftazidime without or with carbapenems (Pseudomonas species), aminopenicillins without or with vancomycin (Enterococcus species), or as methicillin-sensitive/-resistant S. aureus (MSSA/MRSA). We calculated risks of recurrent bacteremia after nonsusceptible vs susceptible first bacteremia, estimated the crude population attributable effect of resistance for the Netherlands, and calculated risks of nonsusceptible recurrent bacteremia after a susceptible first episode. Risk ratios for recurrent bacteremia after a single- and co-nonsusceptible first episode, respectively, vs susceptible first episode, were 1.7 (95% confidence interval [CI], 1.5-2.0) and 5.2 (95% CI, 2.1-12.4) for Enterobacteriaceae, 1.3 (95% CI, 0.5-3.1) and 5.0 (95% CI, 2.9-8.5) for Pseudomonas species, 1.4 (95% CI, 1.2-1.7) and 1.6 (95% CI, 0.6-4.2) for Enterococcus species, and 1.6 (95% CI, 1.1-2.4) for MRSA vs MSSA. The estimated population annual number of recurrent bacteremias associated with nonsusceptibility was 40. The risk of nonsusceptible recurrent bacteremia after a susceptible first episode was at most 0.4% (Pseudomonas species). Although antibiotic nonsusceptibility was consistently associated with higher risks of recurrent bacteremia, the estimated annual number of additional recurrent episodes in the Netherlands (40) was rather limited.
Hörner, Andreas; Hörner, Rosmari; Salla, Adenilde; Nunes, Melise Silveira; Garzon, Litiérri Razia; Rampelotto, Roberta Filipini; Martini, Rosiéli; Santos, Silvana Oliveira dos; Gindri, Lívia; Rodrigues, Mônica de Abreu; Giacomolli, Cláudia
2015-01-01
Staphylococcal scalded skin syndrome is an exfoliative skin disease. Reports of this syndrome in newborns caused by methicillin-resistant Staphylococcus aureus are rare but, when present, rapid diagnosis and treatment is required in order to decrease morbidity and mortality. A premature newly born girl weighing 1,520 g, born with a gestational age of 29 weeks and 4 days, developed staphylococcal scalded skin syndrome on the fifth day of life. Cultures on blood samples collected on the first and fourth days were negative, but Pseudomonas aeruginosa and Enterococcus sp. (vancomycin-sensitive) developed in blood cultures performed on the day of death (seventh day), and Pseudomonas aeruginosa and Serratia marcescens were identified in cultures on nasopharyngeal, buttock and abdominal secretions. In addition to these two Gram-negative bacilli, methicillin-resistant Staphylococcus aureus was isolated in a culture on the umbilical stump (seventh day). The diagnosis of staphylococcal scalded skin syndrome was based on clinical criteria.
Total synthesis of marinomycin A using salicylate as a molecular switch to mediate dimerization
NASA Astrophysics Data System (ADS)
Evans, P. Andrew; Huang, Mu-Hua; Lawler, Michael J.; Maroto, Sergio
2012-08-01
Antibiotics play a significant role in human health because of their ability to treat life-threatening bacterial infections. The growing problems with antibiotic resistance have made the development of new antibiotics a World Health Organization priority. Marinomycin A is a member of a new class of bis-salicylate-containing polyene macrodiolides, which have potent antibiotic activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. Herein, we describe a triply convergent synthesis of this agent using the salicylate as a novel molecular switch for the chemoselective construction of the macrodiolide. This strategy raises new questions regarding the biosynthetic role of the salicylate and its potential impact on the mechanism of action of these types of agents. For instance, in contrast to penicillin, which enhances the electrophilicity of the cyclic amide through ring strain, salicylates reduce the electrophilicity of the aryl ester through an intramolecular resonance-assisted hydrogen bond to provide an amide surrogate.
Nithya, Babu Rajendran; Gladstone, Beryl Primrose; Rodríguez-Baño, Jesús; Sifakis, Frangiscos; Voss, Andreas; Carmeli, Yehuda; Burkert, Francesco Robert; Gkolia, Panagiota; Tacconelli, Evelina
2017-01-01
Introduction Improving our understanding of outbreaks due to antibiotic-resistant bacteria (ARB) and their control is critical in the current public health scenario. The threat of outbreaks due to ARB requires multifaceted efforts. However, a global overview of epidemiological characteristics of outbreaks due to ARB and effective infection control measures is missing. In this paper, we describe the protocol of a systematic review aimed at mapping and characterising the epidemiological aspects of outbreaks due to ARB and infection control measures in European countries. Methods and analysis The databases MEDLINE, Web of Knowledge and Cochrane library will be searched using a 3-step search strategy. Selection of articles for inclusion will be performed by 2 reviewers using predefined eligibility criteria. All study designs will be included if they report an outbreak and define the microbiological methods used for microorganism identification. The target bacteria will be methicillin-resistant and vancomycin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, ceftazidime-resistant and carbapenem-resistant Acinetobacter baumannii, ceftazidime-resistant and carbapenem-resistant Pseudomonas aeruginosa, ciprofloxacin-resistant Escherichia coli, extended-spectrum β-lactamase-producing E. coli and Klebsiella pneumoniae, carbapenem-resistant and carbapenamase-producing Enterobacteriaceae. Data will be extracted using a tailored pilot tested form and the quality of reporting will be assessed using the ORION (Outbreak Reports and Intervention Studies Of Nosocomial infections) tool. Data will be synthesised and reported by the type of ARB, setting and country. Infection control measures and bundles of measures will be described. The effectiveness will be reported as defined by the authors. Regression analysis will be used to define independent factors associated with outbreaks' control. Heterogeneity between studies will be assessed by forest plots and I² statistics. Ethics and dissemination Ethical approval is not applicable for this study. Findings will be disseminated through journal publication and conference presentations and talks. PMID:28057656
A Bioengineered Nisin Derivative to Control Biofilms of Staphylococcus pseudintermedius
Field, Des; Gaudin, Noémie; Lyons, Francy; O'Connor, Paula M.; Cotter, Paul D.; Hill, Colin; Ross, R. Paul
2015-01-01
Antibiotic resistance and the shortage of novel antimicrobials are among the biggest challenges facing society. One of the major factors contributing to resistance is the use of frontline clinical antibiotics in veterinary practice. In order to properly manage dwindling antibiotic resources, we must identify antimicrobials that are specifically targeted to veterinary applications. Nisin is a member of the lantibiotic family of antimicrobial peptides that exhibit potent antibacterial activity against many gram-positive bacteria, including human and animal pathogens such as Staphylococcus, Bacillus, Listeria, and Clostridium. Although not currently used in human medicine, nisin is already employed commercially as an anti-mastitis product in the veterinary field. Recently we have used bioengineering strategies to enhance the activity of nisin against several high profile targets, including multi-drug resistant clinical pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) and also against staphylococci and streptococci associated with bovine mastitis. However, newly emerging pathogens such as methicillin resistant Staphylococcus pseudintermedius (MRSP) pose a significant threat in terms of veterinary health and as a reservoir for antibiotic resistance determinants. In this study we created a nisin derivative with enhanced antimicrobial activity against S. pseudintermedius. In addition, the novel nisin derivative exhibits an enhanced ability to impair biofilm formation and to reduce the density of established biofilms. The activities of this peptide represent a significant improvement over that of the wild-type nisin peptide and merit further investigation with a view to their use to treat S. pseudintermedius infections. PMID:25789988
Hombach, Michael; Jetter, Marion; Blöchliger, Nicolas; Kolesnik-Goldmann, Natalia; Keller, Peter M; Böttger, Erik C
2018-01-01
Abstract Background We investigated the feasibility of rapid disc diffusion antibiotic susceptibility testing (rAST) with reading of inhibition zones after 6 and/or 8 h of incubation for Enterococcus faecalis, Enterococcus faecium, Pseudomonas aeruginosa and Acinetobacter baumannii. In addition, we evaluated discrimination of resistant populations from the WT populations at early timepoints and the requirement for clinical breakpoint adaptations for proper interpretation of rAST data. Methods In total, 815 clinical strains [E. faecalis (n = 135), E. faecium (n = 227), P. aeruginosa (n = 295) and A. baumannii (n = 158)] were included in this study. Disc diffusion plates were streaked, incubated and imaged using the WASPLabTM automation system. WT populations and non-WT populations were defined using epidemiological cut-offs. Results and conclusions rAST at 6 and 8 h was possible for A. baumannii and enterococci with readability of inhibition zones >90%. Overall categorical agreement of rAST at 6 h with AST at 18 h was 97.2%, 97.4% and 95.3% for E. faecalis, E. faecium and A. baumannii, respectively. With few exceptions, major categorization error rates were <1% for A. baumannii, and vancomycin-resistant E. faecium were clearly separated from the WT at 6 h. For P. aeruginosa the average readability of inhibition zones was 68.9% at 8 h and we found an overall categorical agreement of 94.8%. Adaptations of clinical breakpoints and/or introduction of technical buffer zones, preferably based on aggregated population data from various epidemiological settings, are required for proper interpretation of rAST. PMID:29186434
Nakamura, Jun; Yamashiro, Hidenori; Hayashi, Sayaka; Yamamoto, Mami; Miura, Kenji; Xu, Shu; Doi, Takayuki; Maki, Hideki; Yoshida, Osamu; Arimoto, Hirokazu
2012-10-01
Covalently linked vancomycin dimers have attracted a great deal of attention among researchers because of their enhanced antibacterial activity against vancomycin-resistant strains. However, the lack of a clear insight into the mechanisms of action of these dimers hampers rational optimization of their antibacterial potency. Here, we describe the synthesis and antibacterial activity of novel vancomycin dimers with a constrained molecular conformation achieved by two tethers between vancomycin units. Conformational restriction is a useful strategy for studying the relationship between the molecular topology and biological activity of compounds. In this study, two vancomycin units were linked at three distinct positions of the glycopeptide (vancosamine residue (V), C terminus (C), and N terminus (N)) to form two types of novel vancomycin cyclic dimers. Active NC-VV-linked dimers with a stable conformation as indicated by molecular mechanics calculations selectively suppressed the peptidoglycan polymerization reaction of vancomycin-resistant Staphylococcus aureus in vitro. In addition, double-disk diffusion tests indicated that the antibacterial activity of these dimers against vancomycin-resistant enterococci might arise from the inhibition of enzymes responsible for peptidoglycan polymerization. These findings provide a new insight into the biological targets of vancomycin dimers and the conformational requirements for efficient antibacterial activity against vancomycin-resistant strains. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Moolchandani, Kailash; Deepashree, R; Sistla, Sujatha; Harish, BN; Mandal, Jharna
2017-01-01
Introduction Hospital Acquired Infections (HAIs) are the rising threat in the health care facilities across the globe. As most Intesive Care Unit (ICU) patients are frequently on broad spectrum antimicrobials, this induces selective antibiotic pressure which leads to development of Antimicrobial Resistance (AMR) among the microorganisms of ICUs. Aim To study the occurrence of different types of HAIs in patients admitted to various ICUs of JIPMER and the AMR pattern of the bacterial pathogens isolated from them. Materials and Methods The record based retrospective data of culture reports of the patients admitted to all the ICUs of JIPMER during the period from April 2015 to March 2016 were collected. A total of 3,090 isolates were obtained from the clinical specimens of 1,244 patients. Data on various factors like demographic characters, type of ICU, infecting organism, site of infection, type of HAI’s and AMR including co-resistance were collected and analysed using Microsoft Excel. Results Most common culture positive clinical specimen received was tracheal aspirate (29.9%) followed by exudate (22.7%). Acinetobacter spp from tracheal aspirate and Pseudomonas spp from blood specimens were the most common organisms isolated; whereas Escherichia coli was the predominant organism found in urine, exudate and sterile fluid specimens. About 22.2% infections were HAIs, out of which pneumonia (6.24%) was the most common. Analysis of antimicrobial susceptibility pattern revealed that most of Gram-Negative Bacilli (GNB) was Multi Drug Resistant (MDR) i.e., resistant to three or more class of antibiotics such as cephalosporins, carbapenems, aminoglycosides, tetracyclines and fluoroquinolones. The prevalence of Methicillin- resistant Staphylococcus aureus (MRSA) and Vancomycin- resistant Enterococci (VRE) were found to be 40.6% and 11.9% respectively. Conclusion The increasing trend AMR among the hospital acquired pathogens such as MDR-GNBs, MRSA and VRE pose a great threat to HCWs as well as to the other critically ill patients of the ICUs. Study on AMR surveillance is the need of the hour as it helps the centers to generate local antibiogram which further helps in formulating the national data. It also guides the clinicians to choose appropriate empirical therapy and assist escalation and de-escalation wherever possible. Hence, such studies will be a stepping stone in establishing antimicrobial stewardship and regulate the antimicrobial use. PMID:28384858
Metabolic Mitigation of Staphylococcus aureus Vancomycin Intermediate-Level Susceptibility.
Gardner, Stewart G; Marshall, Darrell D; Daum, Robert S; Powers, Robert; Somerville, Greg A
2018-01-01
Staphylococcus aureus is a major human pathogen whose infections are increasingly difficult to treat due to increased antibiotic resistance, including resistance to vancomycin. Vancomycin-intermediate S. aureus (VISA) strains develop resistance to vancomycin through adaptive changes that are incompletely understood. Central to this adaptation are metabolic changes that permit growth in the presence of vancomycin. To define the metabolic changes associated with adaptive resistance to vancomycin in S. aureus , the metabolomes of a vancomycin-sensitive and VISA strain pair isolated from the same patient shortly after vancomycin therapy began and following vancomycin treatment failure were analyzed. The metabolic adaptations included increases in acetogenesis, carbon flow through the pentose phosphate pathway, wall teichoic acid and peptidoglycan precursor biosynthesis, purine biosynthesis, and decreased tricarboxylic acid (TCA) cycle activity. The significance of these metabolic pathways for vancomycin-intermediate susceptibility was determined by assessing the synergistic potential of human-use-approved inhibitors of these pathways in combination with vancomycin against VISA strains. Importantly, inhibitors of amino sugar and purine biosynthesis acted synergistically with vancomycin to kill a diverse set of VISA strains, suggesting that combinatorial therapy could augment the efficacy of vancomycin even in patients infected with VISA strains. Copyright © 2017 American Society for Microbiology.
Murphy, Colleen P.; Reid-Smith, Richard J.; Boerlin, Patrick; Weese, J. Scott; Prescott, John F.; Janecko, Nicol; Hassard, Lori; McEwen, Scott A.
2010-01-01
Hospital-based infection control in veterinary medicine is emerging and the role of the environment in hospital-acquired infections (HAI) in veterinary hospitals is largely unknown. This study was initiated to determine the recovery of Escherichia coli and selected veterinary and zoonotic pathogens from the environments of 101 community veterinary hospitals. The proportion of hospitals with positive environmental swabs were: E. coli — 92%, Clostridium difficile — 58%, methicillin-resistant Staphylococcus aureus (MRSA) — 9%, CMY-2 producing E. coli — 9%, methicillin-resistant Staphylococcus pseudintermedius — 7%, and Salmonella — 2%. Vancomycin-resistant Enterococcus spp., canine parvovirus, and feline calicivirus were not isolated. Prevalence of antimicrobial resistance in E. coli isolates was low. Important potential veterinary and human pathogens were recovered including Canadian epidemic strains MRSA-2 and MRSA-5, and C. difficile ribotype 027. There is an environmental reservoir of pathogens in veterinary hospitals; therefore, additional studies are required to characterize risk factors associated with HAI in companion animals, including the role of the environment. PMID:21119862
Oliveira, Manuela; Tavares, Marta; Gomes, Diana; Touret, Tiago; São Braz, Berta; Tavares, Luís; Semedo-Lemsaddek, Teresa
2016-06-01
Periodontal disease - PD - is one of the most widespread diseases in dogs, but the role of this odontogenic infection in the dissemination of pathogenic bacteria present in the oral mucosa to other animals or pet owners is understudied. Trying to unveil the putative pathogenicity of enterococci present in the gums of dogs diagnosed with PD, thirty-two animals were investigated during routine visits to a private veterinary clinic. Seventy-one enterococci were recovered and characterized regarding species, genomic variability, virulence traits, antimicrobial resistance and biofilm-forming ability. Isolates were mainly identified as Enterococcus faecalis, with the large majority (95%) being able to produce biofilm. Regarding antibiotic resistance, all dog-enterococci were susceptible to ampicillin, amoxicillin/clavulanate, gentamicin-120, imipenem and vancomycin; while distinct levels of resistance were observed for chloramphenicol (10%), erythromycin (20%), streptomycin-300 (35%) and tetracycline (95%). For virulence traits incidence levels of 35% were observed for β-hemolysis and 25% for cylA, 25% for gelatinase and 35% for gelE; 85% harbor efaAfs and ebpABC; while ace, agg and esp are present respectively in 50, 30 and 10% of the dog-enterococci; efaAfm and acm were detected in all the Enterococcus faecium. Overall, the widespread prevalence of PD in dogs, associated with the close contact between companion animals, other animals and humans, may act as source for the dissemination of opportunistic pathogenic bacteria. Hence, aforementioned data on virulence and resistance features, emphasizes the need for active surveillance measures, such as the diagnose of PD in companion animals during routine visits to the veterinary clinic. Copyright © 2016 Elsevier Ltd. All rights reserved.
vanC Cluster of Vancomycin-Resistant Enterococcus gallinarum BM4174
Arias, Cesar A.; Courvalin, Patrice; Reynolds, Peter E.
2000-01-01
Glycopeptide-resistant enterococci of the VanC type synthesize UDP-muramyl-pentapeptide[d-Ser] for cell wall assembly and prevent synthesis of peptidoglycan precursors ending in d-Ala. The vanC cluster of Enterococcus gallinarum BM4174 consists of five genes: vanC-1, vanXYC, vanT, vanRC, and vanSC. Three genes are sufficient for resistance: vanC-1 encodes a ligase that synthesizes the dipeptide d-Ala-d-Ser for addition to UDP-MurNAc-tripeptide, vanXYC encodes a d,d-dipeptidase–carboxypeptidase that hydrolyzes d-Ala-d-Ala and removes d-Ala from UDP-MurNAc-pentapeptide[d-Ala], and vanT encodes a membrane-bound serine racemase that provides d-Ser for the synthetic pathway. The three genes are clustered: the start codons of vanXYC and vanT overlap the termination codons of vanC-1 and vanXYC, respectively. Two genes which encode proteins with homology to the VanS-VanR two-component regulatory system were present downstream from the resistance genes. The predicted amino acid sequence of VanRC exhibited 50% identity to VanR and 33% identity to VanRB. VanSC had 40% identity to VanS over a region of 308 amino acids and 24% identity to VanSB over a region of 285 amino acids. All residues with important functions in response regulators and histidine kinases were conserved in VanRC and VanSC, respectively. Induction experiments based on the determination of d,d-carboxypeptidase activity in cytoplasmic extracts confirmed that the genes were expressed constitutively. Using a promoter-probing vector, regions upstream from the resistance and regulatory genes were identified that have promoter activity. PMID:10817725
Nurses’ uniforms: How many bacteria do they carry after one shift?
Sanon, Marie-Anne; Watkins, Sally
2013-01-01
This pilot study investigated the pathogens that nurses are potentially bringing into the public and their home when they wear work uniforms outside of the work environment. To achieve this, sterilized uniforms were distributed to 10 nurses at a local hospital in Washington State at the beginning of their shift. Worn uniforms were collected at the end of the shifts and sent to a laboratory for analysis. Four tests were conducted: 1) a heterotrophic growth plate count, 2) methicillin-resistant Staphylococcus aureus (MRSA) growth, 3) vancomycin-resistant Enterococci (VRE), and 4) identification of the heterotrophic plate counts. Each participant completed a questionnaire and a survey. The results showed that the average bacteria colony growth per square inch was 1,246 and 5,795 for day and night shift, respectively. After 48 h, MRSA positives were present on 4 of the day shift and 3 of the night shift uniforms. Additional bacteria identified include: Bacillus sp., Micrococcus luteus, Staphylococcus aureus, Staphylococcus epidermidis, and Micrococcus roseus. The significant presence of bacteria on the uniforms 48 h after the shift ended necessitates further study, discussions and policy consideration regarding wearing health care uniforms outside of the work environment. PMID:25285235
Nurses' uniforms: How many bacteria do they carry after one shift?
Sanon, Marie-Anne; Watkins, Sally
2012-12-01
This pilot study investigated the pathogens that nurses are potentially bringing into the public and their home when they wear work uniforms outside of the work environment. To achieve this, sterilized uniforms were distributed to 10 nurses at a local hospital in Washington State at the beginning of their shift. Worn uniforms were collected at the end of the shifts and sent to a laboratory for analysis. Four tests were conducted: 1) a heterotrophic growth plate count, 2) methicillin-resistant Staphylococcus aureus (MRSA) growth, 3) vancomycin-resistant Enterococci (VRE), and 4) identification of the heterotrophic plate counts. Each participant completed a questionnaire and a survey. The results showed that the average bacteria colony growth per square inch was 1,246 and 5,795 for day and night shift, respectively. After 48 h, MRSA positives were present on 4 of the day shift and 3 of the night shift uniforms. Additional bacteria identified include: Bacillus sp., Micrococcus luteus, Staphylococcus aureus, Staphylococcus epidermidis, and Micrococcus roseus. The significant presence of bacteria on the uniforms 48 h after the shift ended necessitates further study, discussions and policy consideration regarding wearing health care uniforms outside of the work environment.
Wei, Lei; Wu, Qingping; Zhang, Jumei; Guo, Weipeng; Chen, Moutong; Xue, Liang; Wang, Juan; Ma, Lianying
2017-01-01
Enterococcus faecalis is an important opportunistic pathogen which is frequently detected in mineral water and spring water for human consumption and causes human urinary tract infections, endocarditis and neonatal sepsis. The aim of this study was to determine the prevalence, virulence genes, antimicrobial resistance and genetic diversity of E. faecalis from mineral water and spring water in China. Of 314 water samples collected from January 2013 to January 2014, 48 samples (15.3%) were contaminated E. faecalis . The highest contamination rate occurred in activated carbon filtered water of spring water (34.5%), followed by source water of spring water (32.3%) and source water of mineral water (6.4%). The virulence gene test of 58 E. faecalis isolates showed that the detection rates of asa1 , ace , cylA , gelE and hyl were 79.3, 39.7, 0, 100, 0%, respectively. All 58 E. faecalis isolates were not resistant to 12 kinds of antibiotics (penicillin, ampicillin, linezolid, quinupristin/dalfopristin, vancomycin, gentamicin, streptomycin, ciprofloxacin, levofloxacin, norfloxacin, nitrofurantoin, and tetracycline). Enterobacterial repetitive intergenic consensus-PCR classified 58 isolates and three reference strains into nine clusters with a similarity of 75%. This study is the first to investigate the prevalence of E. faecalis in mineral water and spring water in China. The results of this study suggested that spring water could be potential vehicles for transmission of E. faecalis .
Boztug, Heidrun; Mühlegger, Nora; Pötschger, Ulrike; Attarbaschi, Andishe; Peters, Christina; Mann, Georg; Dworzak, Michael
2017-01-01
Intensive chemotherapy directed against acute myeloid leukemia of childhood is followed by profound neutropenia and high risk for bacterial and fungal infections, including viridans group streptococci as a common cause for gram-positive septicemia. Few retrospective studies have shown the efficacy of various antibiotic prophylactic regimens in children. We retrospectively studied 50 pediatric patients treated on the AML-BFM 2004 protocol between 2005 and 2015 at St. Anna Children's Hospital and assessed the effect of antibiotic prophylaxis on the frequency of febrile neutropenia and bacterial sepsis. Fifty pediatric patients underwent 199 evaluable chemotherapy cycles. Viridans sepsis occurred after none of 98 cycles with prophylactic administration of teicoplanin/vancomycin in comparison to 12 cases of viridans sepsis among 79 cycles without systemic antibacterial prophylaxis (0 vs. 15 %, p < 0.0001). In addition, there were significantly fewer episodes of febrile neutropenia in the teicoplanin/vancomycin group (44 % vs. no prophylaxis 82 %, p < 0.0001). Severity of infection seemed to be worse when no antibiotic prophylaxis had been administered with a higher rate of intensive care unit treatment (0/98, 0 %, vs. 4/79, 5 %, p = 0.038). So far, no increase of vancomycin-resistant enterococcus isolates in surveillance cultures was noticed. Antibiotic prophylaxis with teicoplanin (or vancomycin) appears safe and feasible and resulted in eradication of viridans sepsis and decreased incidence of febrile neutropenia in pediatric AML patients. The possibility to administer teicoplanin on alternate days on an outpatient basis or at home could contribute to patient's quality of life and decrease health care costs.
Fogarty, Lisa R.; Duris, Joseph W.; Aichele, Stephen S.
2005-01-01
A preliminary study was done in Oakland County, Michigan, to determine the concentration of fecal indicator bacteria (fecal coliform bacteria and enterococci), antibiotic resistance patterns of these two groups, and the presence of potentially pathogenic Escherichia coli (E. coli). For selected sites, specific members of these groups [E. coli, Enterococcus faecium (E. faecium) and Enterococcus faecalis (E. faecalis)] were isolated and tested for levels of resistance to specific antibiotics used to treat human infections by pathogens in these groups and for their potential to transfer these resistances. In addition, water samples from all sites were tested for indicators of potentially pathogenic E. coli by three assays: a growth-based assay for sorbitol-negative E. coli, an immunological assay for E. coli O157, and a molecular assay for three virulence and two serotype genes. Samples were also collected from two non-urbanized sites outside of Oakland County. Results from the urbanized Oakland County area were compared to those from these two non-urbanized sites. Fecal indicator bacteria concentrations exceeded State of Michigan recreational water-quality standards and (or) recommended U.S. Environmental Protection Agency (USEPA) standards in samples from all but two Oakland County sites. Multiple-antibiotic-resistant fecal coliform bacteria were found at all sites, including two reference sites from outside the county. Two sites (Stony Creek and Paint Creek) yielded fecal coliform isolates resistant to all tested antibiotics. Patterns indicative of extended-spectrum-β-lactamase (ESBL)- producing fecal coliform bacteria were found at eight sites in Oakland County and E. coli resistant to clinically significant antibiotics were recovered from the River Rouge, Clinton River, and Paint Creek. Vancomycin-resistant presumptive enterococci were found at six sites in Oakland County and were not found at the reference sites. Evidence of acquired antibiotic resistances was detected in bacteria from multiple sites in Oakland County but not detected in bacteria from the reference sites. Integrons capable of transferring resistance were detected in isolates from the River Rouge and Clinton River. E. faecium and E. faecalis identified in samples collected from Kearsley Creek and Evans Ditch were resistant to high levels of vancomycin and carried transferable genes responsible for resistance. Several sites in Oakland County had indicators of pathogenic E. coli in August and (or) September 2003. Two samples from the Clinton River in August tested positive for all three E. coli O157 tests. Both the August and September samples from one River Rouge site were positive for the immunological and molecular assay for E. coli O157. A combination of virulence genes commonly associated with human illness was detected at five sites in August and seven sites in September. Antibiotic-resistance profiles of clinical concern along with genes capable of transferring the resistance were found at several sites throughout Oakland County; samples from many of these sites also contained potentially pathogenic E. coli.
Moreno, M A; Domínguez, L; Teshager, T; Herrero, I A; Porrero, M C
2000-05-01
Antimicrobial resistance is a problem in modern public health and antimicrobial use and especially misuse, the most important selecting force for bacterial antibiotic resistance. As this resistance must be monitored we have designed the Spanish network 'Red de Vigilancia de Resistencias Antibióticas en Bacterias de Origen Veterinario'. This network covers the three critical points of veterinary responsibility, bacteria from sick animals, bacteria from healthy animals and bacteria from food animals. Key bacteria, antimicrobials and animal species have been defined for each of these groups along with laboratory methods for testing antimicrobial susceptibility and for data analysis and reporting. Surveillance of sick animals was first implemented using Escherichia coli as the sentinel bacterium. Surveillance of E. coli and Enterococcus faecium from healthy pigs was implemented in 1998. In July 1999, data collection on Salmonella spp. was initiated in poultry slaughterhouses. Additionally, the prevalence of vancomycin resistant E. faecium was also monitored. This network has specific topics of interest related to methods of determining resistance, analysis and reporting of data, methods of use for veterinary practitioners and collaboration with public health authorities.
Al-Ani, Issam; Zimmermann, Stefan; Reichling, Jürgen; Wink, Michael
2015-02-15
The goal of this study was to investigate the antimicrobial activity of bee venom and its main component, melittin, alone or in two-drug and three-drug combinations with antibiotics (vancomycin, oxacillin, and amikacin) or antimicrobial plant secondary metabolites (carvacrol, benzyl isothiocyanate, the alkaloids sanguinarine and berberine) against drug-sensitive and antibiotic-resistant microbial pathogens. The secondary metabolites were selected corresponding to the molecular targets to which they are directed, being different from those of melittin and the antibiotics. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were evaluated by the standard broth microdilution method, while synergistic or additive interactions were assessed by checkerboard dilution and time-kill curve assays. Bee venom and melittin exhibited a broad spectrum of antibacterial activity against 51 strains of both Gram-positive and Gram-negative bacteria with strong anti-MRSA and anti-VRE activity (MIC values between 6 and 800 µg/ml). Moreover, bee venom and melittin showed significant antifungal activity (MIC values between 30 and 100 µg/ml). Carvacrol displayed bactericidal activity, while BITC exhibited bacteriostatic activity against all MRSA and VRE strains tested (reference strains and clinical isolates), both compounds showed a remarkable fungicidal activity with minimum fungicidal concentration (MFC) values between 30 and 200 µg/ml. The DNA intercalating alkaloid sanguinarine showed bactericidal activity against MRSA NCTC 10442 (MBC 20 µg/ml), while berberine exhibited bacteriostatic activity against MRSA NCTC 10442 (MIC 40 µg/ml). Checkerboard dilution tests mostly revealed synergism of two-drug combinations against all the tested microorganisms with FIC indexes between 0.24 and 0.50, except for rapidly growing mycobacteria in which combinations exerted an additive effect (FICI = 0.75-1). In time-kill assays all three-drug combinations exhibited a powerful bactericidal synergistic effect against MRSA NCTC 10442, VRE ATCC 51299, and E. coli ATCC 25922 with a reduction of more than 3log10 in the colony count after 24 h. Our findings suggest that bee venom and melittin synergistically enhanced the bactericidal effect of several antimicrobial agents when applied in combination especially when the drugs affect several and differing molecular targets. These results could lead to the development of novel or complementary antibacterial drugs against MDR pathogens. Copyright © 2015 Elsevier GmbH. All rights reserved.
Matsuda, Mari; Iguchi, Shigekazu; Mizutani, Tomonori; Hiramatsu, Keiichi; Tega-Ishii, Michiru; Sansaka, Kaori; Negishi, Kenta; Shimada, Kimie; Umemura, Jun; Notake, Shigeyuki; Yanagisawa, Hideji; Yabusaki, Reiko; Araoka, Hideki; Yoneyama, Akiko
2017-01-01
Background. Early detection of Gram-positive bacteremia and timely appropriate antimicrobial therapy are required for decreasing patient mortality. The purpose of our study was to evaluate the performance of the Verigene Gram-positive blood culture assay (BC-GP) in two special healthcare settings and determine the potential impact of rapid blood culture testing for Gram-positive bacteremia within the Japanese healthcare delivery system. Furthermore, the study included simulated blood cultures, which included a library of well-characterized methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) isolates reflecting different geographical regions in Japan. Methods. A total 347 BC-GP assays were performed on clinical and simulated blood cultures. BC-GP results were compared to results obtained by reference methods for genus/species identification and detection of resistance genes using molecular and MALDI-TOF MS methodologies. Results. For identification and detection of resistance genes at two clinical sites and simulated blood cultures, overall concordance of BC-GP with reference methods was 327/347 (94%). The time for identification and antimicrobial resistance detection by BC-GP was significantly shorter compared to routine testing especially at the cardiology hospital, which does not offer clinical microbiology services on weekends and holidays. Conclusion. BC-GP generated accurate identification and detection of resistance markers compared with routine laboratory methods for Gram-positive organisms in specialized clinical settings providing more rapid results than current routine testing. PMID:28316631
2014-01-01
SUMMARY There is increasing interest in the role of cleaning for managing hospital-acquired infections (HAI). Pathogens such as vancomycin-resistant enterococci (VRE), methicillin-resistant Staphylococcus aureus (MRSA), multiresistant Gram-negative bacilli, norovirus, and Clostridium difficile persist in the health care environment for days. Both detergent- and disinfectant-based cleaning can help control these pathogens, although difficulties with measuring cleanliness have compromised the quality of published evidence. Traditional cleaning methods are notoriously inefficient for decontamination, and new approaches have been proposed, including disinfectants, steam, automated dispersal systems, and antimicrobial surfaces. These methods are difficult to evaluate for cost-effectiveness because environmental data are not usually modeled against patient outcome. Recent studies have reported the value of physically removing soil using detergent, compared with more expensive (and toxic) disinfectants. Simple cleaning methods should be evaluated against nonmanual disinfection using standardized sampling and surveillance. Given worldwide concern over escalating antimicrobial resistance, it is clear that more studies on health care decontamination are required. Cleaning schedules should be adapted to reflect clinical risk, location, type of site, and hand touch frequency and should be evaluated for cost versus benefit for both routine and outbreak situations. Forthcoming evidence on the role of antimicrobial surfaces could supplement infection prevention strategies for health care environments, including those targeting multidrug-resistant pathogens. PMID:25278571
Dancer, Stephanie J
2014-10-01
There is increasing interest in the role of cleaning for managing hospital-acquired infections (HAI). Pathogens such as vancomycin-resistant enterococci (VRE), methicillin-resistant Staphylococcus aureus (MRSA), multiresistant Gram-negative bacilli, norovirus, and Clostridium difficile persist in the health care environment for days. Both detergent- and disinfectant-based cleaning can help control these pathogens, although difficulties with measuring cleanliness have compromised the quality of published evidence. Traditional cleaning methods are notoriously inefficient for decontamination, and new approaches have been proposed, including disinfectants, steam, automated dispersal systems, and antimicrobial surfaces. These methods are difficult to evaluate for cost-effectiveness because environmental data are not usually modeled against patient outcome. Recent studies have reported the value of physically removing soil using detergent, compared with more expensive (and toxic) disinfectants. Simple cleaning methods should be evaluated against nonmanual disinfection using standardized sampling and surveillance. Given worldwide concern over escalating antimicrobial resistance, it is clear that more studies on health care decontamination are required. Cleaning schedules should be adapted to reflect clinical risk, location, type of site, and hand touch frequency and should be evaluated for cost versus benefit for both routine and outbreak situations. Forthcoming evidence on the role of antimicrobial surfaces could supplement infection prevention strategies for health care environments, including those targeting multidrug-resistant pathogens. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
dos Santos, Karina Maria Olbrich; Vieira, Antônio Diogo Silva; Salles, Hévila Oliveira; Oliveira, Jacqueline da Silva; Rocha, Cíntia Renata Costa; Borges, Maria de Fátima; Bruno, Laura Maria; Franco, Bernadette Dora Gombossy de Melo; Todorov, Svetoslav Dimitrov
2015-01-01
This study aimed to characterize the safety and technological properties of Enterococcus faecium strains isolated from Brazilian Coalho cheeses. High levels of co-aggregation were observed between Enterococcus faecium strains EM485 and EM925 and both Escherichia coli and Clostridium perfringens . Both strains presented low levels of hydrophobicity. E. faecium EM485 and EM925 were both able to grow in the presence of 0.5% of the sodium salts of taurocholic acid (TC), taurodeoxycholic acid (TDC), glycocholic acid (GC), and glycodeoxycholic acid (GDC), although they showed the ability to deconjugate only GDC and TDC. Both strains showed good survival when exposed to conditions simulating the gastro intestinal tract (GIT). When tested for the presence of virulence genes, only tyrosine decarboxylase and vancomycin B generated positive PCR results. PMID:26221113
Dos Santos, Karina Maria Olbrich; Vieira, Antônio Diogo Silva; Salles, Hévila Oliveira; Oliveira, Jacqueline da Silva; Rocha, Cíntia Renata Costa; Borges, Maria de Fátima; Bruno, Laura Maria; Franco, Bernadette Dora Gombossy de Melo; Todorov, Svetoslav Dimitrov
2015-03-01
This study aimed to characterize the safety and technological properties of Enterococcus faecium strains isolated from Brazilian Coalho cheeses. High levels of co-aggregation were observed between Enterococcus faecium strains EM485 and EM925 and both Escherichia coli and Clostridium perfringens . Both strains presented low levels of hydrophobicity. E. faecium EM485 and EM925 were both able to grow in the presence of 0.5% of the sodium salts of taurocholic acid (TC), taurodeoxycholic acid (TDC), glycocholic acid (GC), and glycodeoxycholic acid (GDC), although they showed the ability to deconjugate only GDC and TDC. Both strains showed good survival when exposed to conditions simulating the gastro intestinal tract (GIT). When tested for the presence of virulence genes, only tyrosine decarboxylase and vancomycin B generated positive PCR results.
Vancomycin Resistance in Staphylococcus aureus
McGuinness, Will A.; Malachowa, Natalia; DeLeo, Frank R.
2017-01-01
The evolution of Staphylococcus aureus during the modern antibiotic era has been delineated by distinct strain emergence events, many of which include acquisition of antibiotic resistance. The relative high burden of methicillin-resistant S. aureus (MRSA) in healthcare and community settings is a major concern worldwide. Vancomycin, a glycopeptide antibiotic that inhibits cell wall biosynthesis, remains a drug of choice for treatment of severe MRSA infections. S. aureus strains exhibiting increased resistance to vancomycin, known as vancomycin intermediate-resistant S. aureus (VISA) (MIC = 4-8 µg/mL), were discovered in the 1990s. The molecular basis of resistance in VISA is polygenic and involves stepwise mutations in genes encoding molecules predominantly involved in cell envelope biosynthesis. S. aureus isolates with complete resistance to vancomycin (MIC ≥ 16 µg/mL) are termed vancomycin-resistant S. aureus (VRSA)—they were first reported in the U.S. in 2002. Resistance in VRSA is conferred by the vanA gene and operon, which is present on a plasmid. Although treatment of VRSA infections is challenging, the total number of human VRSA infections to date is limited (14 in the U.S.). By comparison, the burden of VISA is relatively high and the molecular mechanisms of resistance are less well-defined. VISA are associated with persistent infections, vancomycin treatment failure, and poor clinical outcomes. Here, we review in brief progress made toward understanding the acquisition of antibiotic resistance in S. aureus, with an emphasis on the molecular mechanisms underlying vancomycin resistance. PMID:28656013
Vancomycin Resistance in Staphylococcus aureus .
McGuinness, Will A; Malachowa, Natalia; DeLeo, Frank R
2017-06-01
The evolution of Staphylococcus aureus during the modern antibiotic era has been delineated by distinct strain emergence events, many of which include acquisition of antibiotic resistance. The relative high burden of methicillin-resistant S. aureus (MRSA) in healthcare and community settings is a major concern worldwide. Vancomycin, a glycopeptide antibiotic that inhibits cell wall biosynthesis, remains a drug of choice for treatment of severe MRSA infections. S. aureus strains exhibiting increased resistance to vancomycin, known as vancomycin intermediate-resistant S. aureus (VISA) (MIC = 4-8 µg/mL), were discovered in the 1990s. The molecular basis of resistance in VISA is polygenic and involves stepwise mutations in genes encoding molecules predominantly involved in cell envelope biosynthesis. S. aureus isolates with complete resistance to vancomycin (MIC ≥ 16 µg/mL) are termed vancomycin-resistant S. aureus (VRSA)-they were first reported in the U.S. in 2002. Resistance in VRSA is conferred by the vanA gene and operon, which is present on a plasmid. Although treatment of VRSA infections is challenging, the total number of human VRSA infections to date is limited (14 in the U.S.). By comparison, the burden of VISA is relatively high and the molecular mechanisms of resistance are less well-defined. VISA are associated with persistent infections, vancomycin treatment failure, and poor clinical outcomes. Here, we review in brief progress made toward understanding the acquisition of antibiotic resistance in S. aureus , with an emphasis on the molecular mechanisms underlying vancomycin resistance.
Gerlich, Miriam G; Piegsa, Jens; Schäfer, Christian; Hübner, Nils-Olaf; Wilke, Florian; Reuter, Susanne; Engel, Georg; Ewert, Ralf; Claus, Franziska; Hübner, Claudia; Ried, Walter; Flessa, Steffen; Kramer, Axel; Hoffmann, Wolfgang
2015-10-22
Nosocomial infections are the most common complication during inpatient hospital care. An increasing proportion of these infections are caused by multidrug-resistant organisms (MDROs). This report describes an intervention study which was designed to address the practical problems encountered in trying to avoid and treat infections caused by MDROs. The aim of the HARMONIC (Harmonized Approach to avert Multidrug-resistant Organisms and Nosocomial Infections) study is to provide comprehensive support to hospitals in a defined study area in north-east Germany, to meet statutory requirements. To this end, a multimodal system of hygiene management was implemented in the participating hospitals. HARMONIC is a controlled intervention study conducted in eight acute care hospitals in the 'Health Region Baltic Sea Coast' in Germany. The intervention measures include the provision of written recommendations on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (VRE) and multi-resistant Gram-negative bacteria (MRGN), supplemented by regional recommendations for antibiotic prescriptions. In addition, there is theoretical and practical training of health care workers (HCWs) in the prevention and handling of MDROs, as well as targeted and critically gauged applications of antibiotics. The main outcomes of the implementation and analysis of the HARMONIC study are: (i) screening rates for MRSA, VRE and MRGN in high-risk patients, (ii) the frequency of MRSA decolonization, (iii) the level of knowledge of HCWs concerning MDROs, and (iv) specific types and amounts of antibiotics used. The data are predominantly obtained by paper-based questionnaires and documentation sheets. A computer-assisted workflow-based documentation system was developed in order to provide support to the participating facilities. The investigation includes three nested studies on risk profiles of MDROs, health-related quality of life, and cost analysis. A six-month follow-up study investigates the quality of life after discharge, the long-term costs of the treatment of infections caused by MDROs, and the sustainability of MRSA eradication. The aim of this study is to implement and evaluate an area-wide harmonized hygiene program to control the nosocomial spreading of MDROs. Comparability between the intervention and control group is ensured by matching the hospitals according to size (number of discharges per year/number of beds) and level of care (standard or maximum). The results of the study may provide important indications for the implementation of regional MDRO management programs.
Wille, I; Mayr, A; Kreidl, P; Brühwasser, C; Hinterberger, G; Fritz, A; Posch, W; Fuchs, S; Obwegeser, A; Orth-Höller, D; Lass-Flörl, C
2018-01-01
In intensive care units (ICUs), inanimate surfaces and equipment may be contaminated by nosocomial pathogens, including multi-drug-resistant micro-organisms. To assess the degree of environmental contamination close to and distant from patients, and contamination of healthcare workers' (HCWs) hands with nosocomial pathogens under real-life conditions and to investigate potential transmission events. Over the course of three weeks, agar contact samples were taken close to and distant from patient areas and from HCWs' hands in eight ICUs of a tertiary care hospital in Innsbruck, Austria. Each ICU was visited once without announcement. Species identification and antimicrobial susceptibility testing were performed according to standard methods, and corresponding strains from patient, environment and hand samples were genotyped using pulsed-field gel electrophoresis. Among 523 samples, HCWs' hands were most frequently contaminated with potentially pathogenic bacteria (15.2%), followed by areas close to patients (10.9%) and areas distant from patients (9.1%). Gram-positive bacteria were identified most often (67.8%), with Enterococcus spp. being the most prevalent species (70% vancomycin sensitive and 30% vancomycin resistant) followed by Staphylococcus aureus, of which 64% were classified as meticillin-resistant Staphylococcus aureus. Molecular typing documented identical strains among patient, environment and hand isolates. This study found widespread contamination of the ICU environment with clinically relevant pathogens, including multi-drug-resistant micro-organisms, despite cleaning and disinfection. The bioburden might not be restricted to areas close to patients. The role of extended environmental disinfection of areas distant from patients in order to improve infection prevention needs further discussion. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Serotonin toxicity as a consequence of linezolid use in revision hip arthroplasty.
Mason, Lyndon W; Randhawa, Kiran S; Carpenter, Eleanor C
2008-11-01
Linezolid is the first in a new group of antibiotics called oxazolidinones. As a potent antimicrobial, it has activity against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus, penicillin-resistant Streptococcus pneumoniae, and macrolide-resistant streptococci. There are several documented case reports of serotonin toxicity when used with selective serotonin reuptake inhibitors. The symptoms of serotonin syndrome are alteration of mental state, autonomic dysfunction, and neuromuscular disorders. This article presents a case of an interaction of the serotonin reuptake inhibitor venlafaxine and linezolid and the possible diagnostic problems that can occur. A 58-year-old woman presented with signs of systemic infection. Her medical history included bladder resection for transitional cell carcinoma, bilateral total hip arthroplasty (THA), and depression, for which she was on venlafaxine. Serological and imaging investigations revealed MRSA infection of the bilateral THA. The patient was started on vancomycin and rifampicin intravenously. As intravenous access was becoming problematic and long-term antibiotics were needed, treatment was changed to oral linezolid and oral rifampicin. Four days after the commencement of linezolid, the patient was acutely disorientated with generalized cerebellar signs and no autonomic dysfunction. A computed tomography scan of the head and lumbar puncture revealed no abnormal findings. A diagnosis of serotonin toxicity was made. The patient recovered when linezolid and venlafaxine were discontinued and supportive measures were provided. Linezolid is a popular choice of antibiotic, especially for the treatment of orthopedic-related MRSA infections. Patients who commonly require linezolid as an antimicrobial are those with complex infections where other antibiotic treatment has failed. It is therefore important to be vigilant with linezolid use. Physicians should be aware of the nonspecific presentation of serotonin symptoms and the treatment.
Eick, Sigrun; Hofpeter, Kevin; Sculean, Anton; Ender, Claudia; Klimas, Susann; Vogt, Sebastian; Nietzsche, Sandor
2017-01-01
The purpose of this study was to determine activity of fosfomycin/gentamicin and daptomycin/gentamicin-containing PMMA bone-cement against Staphylococcus aureus (MRSA, MSSA), Staphylococcus epidermidis , Enterococcus faecium (VRE), and E. coli (ESBL; only fosfomycin). Test specimens of the bone cement were formed and bacteria in two concentrations were added one time or repeatedly up to 96 h. All fosfomycin-containing cement killed ultimately all MSSA, Staphylococcus epidermidis, and E. coli within 24 h; growth of MRSA was suppressed up to 48 h. Activity of daptomycin-containing cement depended on the concentration; the highest concentrated bone cement used (1.5 g daptomycin/40 g of powder) was active against all one-time added bacteria. When bacteria were added repeatedly to fosfomycin-containing cement, growth was suppressed up to 96 h and that of MRSA and VRE only up to 24 h. The highest concentration of daptomycin suppressed the growth of repeated added bacteria up to 48 h (VRE) until 96 h (MSSA, MRSA). In conclusion, PMMA bone cement with 1.5 g of daptomycin and 0.5 g of gentamicin may be an alternative in treatment of periprosthetic infections caused by Gram-positive bacteria.
Hofpeter, Kevin; Sculean, Anton; Ender, Claudia; Klimas, Susann; Vogt, Sebastian; Nietzsche, Sandor
2017-01-01
The purpose of this study was to determine activity of fosfomycin/gentamicin and daptomycin/gentamicin-containing PMMA bone-cement against Staphylococcus aureus (MRSA, MSSA), Staphylococcus epidermidis, Enterococcus faecium (VRE), and E. coli (ESBL; only fosfomycin). Test specimens of the bone cement were formed and bacteria in two concentrations were added one time or repeatedly up to 96 h. All fosfomycin-containing cement killed ultimately all MSSA, Staphylococcus epidermidis, and E. coli within 24 h; growth of MRSA was suppressed up to 48 h. Activity of daptomycin-containing cement depended on the concentration; the highest concentrated bone cement used (1.5 g daptomycin/40 g of powder) was active against all one-time added bacteria. When bacteria were added repeatedly to fosfomycin-containing cement, growth was suppressed up to 96 h and that of MRSA and VRE only up to 24 h. The highest concentration of daptomycin suppressed the growth of repeated added bacteria up to 48 h (VRE) until 96 h (MSSA, MRSA). In conclusion, PMMA bone cement with 1.5 g of daptomycin and 0.5 g of gentamicin may be an alternative in treatment of periprosthetic infections caused by Gram-positive bacteria. PMID:28484708
Luther, Megan K; Mermel, Leonard A; LaPlante, Kerry L
2016-03-01
Results of a study of the activity of antibiotic lock solutions of vancomycin and telavancin against biofilm-forming strains of Staphylococcus epidermidis, Enterococcus faecalis, and Staphylococcus aureus are reported. An established in vitro central venous catheter model was used to evaluate lock solutions containing vancomycin (5 mg/mL) or telavancin (5 mg/mL), with and without preservative-containing heparin sodium (with 0.45% benzyl alcohol) 2500 units/mL, heparin, and 0.9% sodium chloride solution. Lock solutions were introduced after 24-hour bacterial growth in catheters incubated at 35 °C. After 72 hours of exposure to the lock solutions, catheters were drained, flushed, and cut into segments for quantification of colony-forming units. Against S. epidermidis, vancomycin and telavancin (with or without heparin) had similar activity. Against E. faecalis, vancomycin alone was more active than telavancin alone (p < 0.01). Against S. aureus, vancomycin plus heparin had activity similar to that of vancomycin alone; both lock agents had greater activity than telavancin (p < 0.02). The addition of heparin was associated with reduced activity of the vancomycin lock solution against S. epidermidis and E. faecalis (p < 0.01). Telavancin activity was not significantly changed with the addition of heparin. In a central venous catheter model, vancomycin and telavancin activity was similar in reducing biofilm-producing S. epidermidis. However, vancomycin was more active than telavancin against E. faecalis and S. aureus. None of the tested agents eradicated biofilm-forming strains. The addition of preservative-containing heparin sodium 2500 units/mL to vancomycin was associated with reduced activity against S. epidermidis and E. faecalis. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Unal, Nevzat; Yanik, Keramettin; Karadag, Adil; Odabaşı, Hakan; Esen, Saban; Günaydin, Murat
2014-01-01
The novel polymeric guanidine Akacid Plus® is a member of the cationic family of disinfectants. The aim of the present study was to evaluate the activity of Akacid Plus® against bacteria which cause nosocomial infections and remain viable after contaminating the environment and determine the effects of organic materials to the activity. Closed room and control room were created for experimental disinfection. Bacterial suspensions of 0.5 McFarland were prepared from methicillin-resistant Staphylococcus aureus (MRSA), Acinetobacter baumannii and vancomycine-resistant Enterococcus faecium (VRE) strains. A 0.1 mL of each suspension was applied on the chipboard (25 cm(2)) and tile (25 cm(2)) test surfaces without albumin and with 2% albumin to simulate organic dirt, and the test surfaces were placed in the test and control rooms after drying. Before testing, cotton swab premoistened with serum physiologic was used to obtain samples from various surfaces in the environment and the samples were transferred onto 5% sheep blood agar for incubation at 37°C. Akacid Plus® solution at a concentration of 0.5% was nebulized with an aerosol applicator (Prowi-06, Germany) for 45 minutes. After a 2-hour waiting period, 1 mL neutralizing broth (Dey-Engley Neutralizing Broth, Fluka) was transferred on the test surfaces, and samples were collected with a swab from the test surfaces and various surfaces in the testing room and inoculated on 5% sheep blood agar for incubation at 37oC for 24 hours. At the end of the incubation period, number of colonies were evaluated on the control and test plates. Although coagulase-negative staphylococci, Bacillus spp., and fungi were grown in cultured samples obtained from the environment of experimental laboratory, no growth was observed in the test plates after room disinfection with Akacid Plus®. After room disinfection, MRSA and A. baumannii were not detectable in the cultured media prepared from the test surfaces with or without albumin. The bacterial count for vancomyine-resistant E. faecium was reduced from 10(7) to 5×10(2) on surfaces without albumin and from 10(7) to 2.5×10(3) on surfaces with albumin. All test plates prepared from the surfaces in the control room showed abundant growth of the microorganism. The nebulization of Akacid plus® solution at a concentration of 0.5% proved to be an efficient means of disinfection for the removal of pathogenic microorganisms that cause hospital outbreaks and use of isolation measures.
NASA Astrophysics Data System (ADS)
Shirwaiker, Rohan A.
There have been growing concerns in the global healthcare system about the eradication of pathogens in hospitals and other health-critical environments. The problem has been aggravated by the overuse of antibiotics and antimicrobial agents leading to the emergence of antibiotic-resistant superbugs such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) which are difficult to kill. Lower immunity of sick patients coupled with the escalating concurrent problem of antibiotic-resistant pathogens has resulted in increasing incidences of hospital acquired (nosocomial) infections. There is an immediate need to control the transmission of such infections, primarily in healthcare environments, by creating touch-contact and work surfaces (e.g., door knobs, push plates, countertops) that utilize alternative antibacterial materials like the heavy metal, silver. Recent research has shown that it is silver in its ionic (Ag+ ) and not elemental form that is antibacterial. Thus, silver-based antibacterial surfaces have to release silver ions directly into the pathogenic environment (generally, an aqueous media) in order to be effective. This dissertation presents the study and analysis of a new silver-based surface system that utilizes low intensity direct electric current (LIDC) for generation of silver ions to primarily inhibit indirect contact transmission of infections. The broader objective of this research is to understand the design, and characterization of the electrically activated silver ion-based antibacterial surface system. The specific objectives of this dissertation include: (1) Developing a comprehensive system design, and identifying and studying its critical design parameters and functional mechanisms. (2) Evaluating effects of the critical design parameters on the antibacterial efficacy of the proposed surface system. (3) Developing a response surface model for the surface system performance. These objectives are achieved by formulating the system design, fabricating prototypes with appropriate design parameters, evaluating the prototypes using various physical and electrical characterization techniques, and characterizing the antibacterial efficacy of the prototypes using statistical experiments. The major contributions of this dissertation include: (1) Design of a systems focused approach that quantifies the potential effectiveness of silver ions under various configurations of the surface system design. (2) Development of meso and micro-scale fabrication methodologies for prototype fabrication. (3) Development of microbiological testing protocols utilizing variance reduction techniques to test the antibacterial efficacy of system prototypes. (4) Development of empirical models for the surface system using factorial design of experiments (DOE). Basic results from the research demonstrate significant antibacterial efficacy of the surface system against four dangerous bacteria including Staph aureus, Escherichia coli, Pseudomonas aeruginosa, and Enterococcus faecalis which are together responsible for more than 80% of nosocomial infections. Results of the DOE characterization study indicate the statistically significant contributions of three system parameters -- size of features, electric current, and type of bacteria -- to the antibacterial performance of the system. This dissertation synergistically utilizes knowledge and principles from three broader areas of research -- industrial engineering, materials science and microbiology -- to model, design, fabricate and characterize an electrically activated silver-ion based antibacterial surface system with practical applications in improving human health and healthcare systems. The research is aimed at promoting novel integrative research and development of technologies utilizing antibacterial properties of silver and other heavy metals.
Characterization of functional properties of Enterococcus faecium strains isolated from human gut.
İspirli, Hümeyra; Demirbaş, Fatmanur; Dertli, Enes
2015-11-01
The aim of this work was to characterize the functional properties of Enterococcus faecium strains identified after isolation from human faeces. Of these isolates, strain R13 showed the best resistance to low pH, bile salts, and survival in the simulated in vitro digestion assay, and demonstrated an important level of adhesion to hexadecane as a potential probiotic candidate. Analysis of the antibiotic resistance of E. faecium strains indicated that in general these isolates were sensitive to the tested antibiotics and no strain appeared to be resistant to vancomycin. Examination of the virulence determinants for E. faecium strains demonstrated that all strains contained the virulence genes common in gut- and food-originated enterococci, and strain R13 harboured the lowest number of virulence genes. Additionally, no strain contained the genes related to cytolysin metabolism and showed hemolytic activity. The antimicrobial role of E. faecium strains was tested against several pathogens, in which different levels of inhibitory effects were observed, and strain R13 was inhibitory to all tested pathogens. PCR screening of genes encoding enterocin A and B indicated the presence of these genes in E. faecium strains. Preliminary characterization of bacteriocins revealed that their activity was lost after proteolytic enzyme treatments, but no alteration in antimicrobial activity was observed at different pHs (3.5 to 9.5) and after heat treatments. In conclusion, this study revealed the functional characteristics of E. faecium R13 as a gut isolate, and this strain could be developed as a new probiotic after further tests.
Fallah, F; Yousefi, M; Pourmand, M R; Hashemi, A; Nazari Alam, A; Afshar, D
2017-07-01
Urinary tract infection (UTI) is one of the most frequent types of nosocomial and community acquired infections in humans. Management of multidrug-resistant Enterococci UTI due to the limited therapeutic options is a great challenge for physicians and clinical microbiologists. The role of bacterial biofilms in recurrent urinary tract infections and antimicrobial resistance has great importance for public health. The aim of this study was to investigate the antibiotic susceptibility pattern as well as the phenotypic and genotypic biofilm formation ability of Enterococci isolates from patients with UTI. A total of 57 isolates of Enterococci were collected from patients with UTI. Enterococcus species were identified using conventional microbiological methods. The antibiotic susceptibility patterns of the isolates were determined by the Kirby-Bauer disk-diffusion. The Modified Congo red agar (MCRA) and Microtiter plate methods used to assess the ability of biofilm formation. All enterococcal isolates were examined for determination of biofilm-related genes, esp, asa1 and ebpR using PCR method. Of 57 enterococcal isolates, 85.9% were recognized as E. faecalis and 14.1% of them were E. faecium. According to our results, linezolid, chloramphenicol and nitrofurantoin were the most effective agents against Enterococcus species. Overall, 26.5% of E. faecalis and 75% of E. faecium isolates were biofilm producers, respectively. Resistance to some antibiotics including penicillin G, ampicillin, vancomycin, nitrofurantoin and chloramphenicol, and ciprofloxacin was significantly higher among biofilm producers than non-biofilm producers Enterococci. The esp, asa1 and ebpR genes were present in 84.2%, 91.2% and 100% isolates. In this study, there was not a significant relationship between presence of these genes and biofilm formation. Our findings reinforce the role of biofilm formation in resistance to antimicrobial agents. Quinupristin/dalfopristin, tetracycline and rifampin may be used as an effective treatment for UTI caused by biofilm producers Enterococci. Our results suggest that biofilm formation is complex and depends on various factors but not just esp, asa1 and ebpR genes in Enterococcus strains. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zeng, Jie; Deng, Wanyan; Yang, Wenmin; Luo, Hongping; Duan, Xiangke; Xie, Longxiang; Li, Ping; Wang, Rui; Fu, Tiwei; Abdalla, Abualgasim Elgaili; Xie, Jianping
2016-01-01
Novel factors involved in Mycobacteria antibiotics resistance are crucial for better targets to combat the ever-increasing drug resistant strains. Mycobacterium tuberculosis Rv1152, a novel GntR family transcriptional regulator and a promising vancomycin adjuvant target, was firstly characterized in our study. Overexpression of Rv1152 in Mycobacterium smegmatis decreased bacterial susceptibility to vancomycin. Moreover, a deficiency in MSMEG_5174, an Rv1152 homolog made M. smegmatis more sensitive to vancomycin, which was reverted by complementing the MSMEG_5174 deficiency with Rv1152 of M. tuberculosis. Rv1152 negatively regulated four vancomycin responsive genes, namely genes encoding the ribosome binding protein Hsp, small unit of sulfate adenylyltransferase CysD, L-lysine-epsilon aminotransferase Lat, and protease HtpX. Taken together, Rv1152 controls the expression of genes required for the susceptibility to vancomycin. This is the first report that links the GntR family transcriptional factor with vancomycin susceptibility. Inhibitors of Rv1152 might be ideal vancomycin adjuvants for controlling multi-drug resistant Mycobacterial infections. PMID:27349953
Lebreton, François; van Schaik, Willem; Sanguinetti, Maurizio; Posteraro, Brunella; Torelli, Riccardo; Le Bras, Florian; Verneuil, Nicolas; Zhang, Xinglin; Giard, Jean-Christophe; Dhalluin, Anne; Willems, Rob J. L.; Leclercq, Roland; Cattoir, Vincent
2012-01-01
Oxidative stress serves as an important host/environmental signal that triggers a wide range of responses in microorganisms. Here, we identified an oxidative stress sensor and response regulator in the important multidrug-resistant nosocomial pathogen Enterococcus faecium belonging to the MarR family and called AsrR (antibiotic and stress response regulator). The AsrR regulator used cysteine oxidation to sense the hydrogen peroxide which results in its dissociation to promoter DNA. Transcriptome analysis showed that the AsrR regulon was composed of 181 genes, including representing functionally diverse groups involved in pathogenesis, antibiotic and antimicrobial peptide resistance, oxidative stress, and adaptive responses. Consistent with the upregulated expression of the pbp5 gene, encoding a low-affinity penicillin-binding protein, the asrR null mutant was found to be more resistant to β-lactam antibiotics. Deletion of asrR markedly decreased the bactericidal activity of ampicillin and vancomycin, which are both commonly used to treat infections due to enterococci, and also led to over-expression of two major adhesins, acm and ecbA, which resulted in enhanced in vitro adhesion to human intestinal cells. Additional pathogenic traits were also reinforced in the asrR null mutant including greater capacity than the parental strain to form biofilm in vitro and greater persistance in Galleria mellonella colonization and mouse systemic infection models. Despite overexpression of oxidative stress-response genes, deletion of asrR was associated with a decreased oxidative stress resistance in vitro, which correlated with a reduced resistance to phagocytic killing by murine macrophages. Interestingly, both strains showed similar amounts of intracellular reactive oxygen species. Finally, we observed a mutator phenotype and enhanced DNA transfer frequencies in the asrR deleted strain. These data indicate that AsrR plays a major role in antimicrobial resistance and adaptation for survival within the host, thereby contributes importantly to the opportunistic traits of E. faecium. PMID:22876178
Falzone, Maria; Crespo, Emmanuel; Jones, Klarissa; Khan, Gulaba; Korn, Victoria L; Patel, Amreen; Patel, Mira; Patel, Krishnaben; Perkins, Carrie; Siddiqui, Sana; Stenger, Drew; Yu, Eileen; Gelber, Michael; Scheffler, Robert; Nayda, Vasyl; Ravin, Ariela; Komal, Ronica; Rudolf, Jeffrey D; Shen, Ben; Gullo, Vincent; Demain, Arnold L
2017-07-01
Streptomyces platensis MA7327 is a bacterium producing interesting antibiotics, which act by the novel mechanism of inhibiting fatty acid biosynthesis. The antibiotics produced by this actinomycete are platensimycin and platencin plus some minor related antibiotics. Platensimycin and platencin have activity against antibiotic-resistant bacteria such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus; they also lack toxicity in animal models. Platensimycin also has activity against diabetes in a mouse model. We have been interested in studying the effects of primary metabolites on production of these antibiotics in our chemically defined production medium. In the present work, we tested 32 primary metabolites for their effect. They included 20 amino acids, 7 vitamins and 5 nucleic acid derivatives. Of these, only l-aspartic acid showed stimulation of antibiotic production. We conclude that the stimulatory effect of aspartic acid is due to its role as a precursor involved in the biosynthesis of aspartate-4-semialdehyde, which is the starting point for the biosynthesis of the 3-amino-2,4-dihydroxy benzoic acid portion of the platensimycin molecule.
Falzone, Maria; Crespo, Emmanuel; Jones, Klarissa; Khan, Gulaba; Korn, Victoria L; Patel, Amreen; Patel, Mira; Patel, Krishnaben; Perkins, Carrie; Siddiqui, Sana; Stenger, Drew; Yu, Eileen; Gelber, Michael; Scheffler, Robert; Nayda, Vasyl; Ravin, Ariela; Komal, Ronica; Rudolf, Jeffrey D; Shen, Ben; Gullo, Vincent; Demain, Arnold L
2017-01-01
Streptomyces platensis MA7327 is a bacterium producing interesting antibiotics, which act by the novel mechanism of inhibiting fatty acid biosynthesis. The antibiotics produced by this actinomycete are platensimycin and platencin plus some minor related antibiotics. Platensimycin and platencin have activity against antibiotic-resistant bacteria such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus; they also lack toxicity in animal models. Platensimycin also has activity against diabetes in a mouse model. We have been interested in studying the effects of primary metabolites on production of these antibiotics in our chemically defined production medium. In the present work, we tested 32 primary metabolites for their effect. They included 20 amino acids, 7 vitamins and 5 nucleic acid derivatives. Of these, only L-aspartic acid showed stimulation of antibiotic production. We conclude that the stimulatory effect of aspartic acid is due to its role as a precursor involved in the biosynthesis of aspartate-4-semialdehyde, which is the starting point for the biosynthesis of the 3-amino-2,4-dihydroxy benzoic acid portion of the platensimycin molecule. PMID:28465627
Bush, Karen; Heep, Markus; Macielag, Mark J; Noel, Gary J
2007-04-01
Ceftobiprole is the first of the investigational beta-lactam antibiotics with in vitro activity against methicillin-resistant staphylococci to reach and complete Phase III therapeutic trials. Its antibacterial spectrum includes methicillin-resistant Staphylococcus aureus (MRSA), Enterococcus faecalis, penicillin-resistant streptococci and many Gram-negative pathogens. It has demonstrated in vivo activity against many experimental infections caused by these pathogens. Ceftobiprole has completed Phase III clinical trials for complicated skin and skin structure infections, is being studied in Phase III pneumonia trials and has demonstrated non-inferiority compared with vancomycin in a Phase III complicated skin and skin structure infections trial, resulting in > 90% clinical cures of infections caused by MRSA. Other anti-MRSA beta-lactams in therapeutic clinical trials include the carbapenem CS-023/RO-4908463 and the cephalosporin ceftaroline (PPI-0903). The future of all of these agents will depend on their clinical efficacy, safety and their ability to be accepted as beta-lactams for the reliable treatment of a broad spectrum of infections, including those caused by MRSA.
Uppu, Divakara S S M; Samaddar, Sandip; Ghosh, Chandradhish; Paramanandham, Krishnamoorthy; Shome, Bibek R; Haldar, Jayanta
2016-01-01
Bacterial biofilms represent the root-cause of chronic or persistent infections in humans. Gram-negative bacterial infections due to nosocomial and opportunistic pathogens such as Acinetobacter baumannii are more difficult to treat because of their inherent and rapidly acquiring resistance to antibiotics. Due to biofilm formation, A. baumannii has been noted for its apparent ability to survive on artificial surfaces for an extended period of time, therefore allowing it to persist in the hospital environment. Here we report, maleic anhydride based novel cationic polymers appended with amide side chains that disrupt surface established multi-drug resistant A. baumannii biofilms. More importantly, these polymers significantly (p < 0.0001) decrease the bacterial burden in mice with chronic A. baumannii burn wound infection. The polymers also show potent antibacterial efficacy against methicillin resistant Staphylococcus aureus (MRSA), vancomycin resistant Enterococci (VRE) and multi-drug resistant clinical isolates of A. baumannii with minimal toxicity to mammalian cells. We observe that optimal hydrophobicity dependent on the side chain chemical structure of these polymers dictate the selective toxicity to bacteria. Polymers interact with the bacterial cell membranes by causing membrane depolarization, permeabilization and energy depletion. Bacteria develop rapid resistance to erythromycin and colistin whereas no detectable development of resistance occurs against these polymers even after several passages. These results suggest the potential use of these polymeric biomaterials in disinfecting biomedical device surfaces after the infection has become established and also for the topical treatment of chronic bacterial infections. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ceftobiprole: a review of a broad-spectrum and anti-MRSA cephalosporin.
Zhanel, George G; Lam, Ashley; Schweizer, Frank; Thomson, Kristjan; Walkty, Andrew; Rubinstein, Ethan; Gin, Alfred S; Hoban, Daryl J; Noreddin, Ayman M; Karlowsky, James A
2008-01-01
Ceftobiprole, an investigational cephalosporin, is currently in phase III clinical development. Ceftobiprole is a broad-spectrum cephalosporin with demonstrated in vitro activity against Gram-positive cocci, including meticillin-resistant Staphylococcus aureus (MRSA) and meticillin-resistant S. epidermidis, penicillin-resistant S. pneumoniae, Enterococcus faecalis, Gram-negative bacilli including AmpC-producing Escherichia coli and Pseudomonas aeruginosa, but excluding extended-spectrum beta-lactamase-producing strains. Like cefotaxime, ceftriaxone, ceftazidime, and cefepime, ceftobiprole demonstrates limited activity against anaerobes such as Bacteroides fragilis and non-fragilis Bacteroides spp. In single-step and serial passage in vitro resistance development studies, ceftobiprole demonstrated a low propensity to select for resistant subpopulations. Ceftobiprole, like cefepime, is a weak inducer and a poor substrate for AmpC beta-lactamases.Ceftobiprole medocaril, the prodrug of ceftobiprole, is converted by plasma esterases to ceftobiprole in <30 minutes. Peak serum concentrations of ceftobiprole observed at the end of a single 30-minute infusion were 35.5 mug/mL for a 500-mg dose and 59.6 mug/mL for a 750-mg dose. The volume of distribution of ceftobiprole is 0.26 L/kg ( approximately 18 L), protein binding is 16%, and its serum half-life is approximately 3.5 hours. Ceftobiprole is renally excreted ( approximately 70% in the active form) and systemic clearance correlates with creatinine clearance, meaning that dosage adjustment is required in patients with renal dysfunction. Ceftobiprole has a modest post-antibiotic effect (PAE) of approximately 0.5 hours for MRSA and a longer PAE of approximately 2 hours for penicillin-resistant pneumococci. Ceftobiprole, when administered intravenously at 500 mg once every 8 hours (2-hour infusion), has a >90% probability of achieving f T(>MIC) (free drug concentration exceeds the minimum inhibitory concentration [MIC]) for 40% and 60%, respectively, of the dosing interval for isolates with ceftobiprole MIC < or =4 and < or =2 mg/L, respectively.Currently, only limited clinical trial data are published for ceftobiprole. In a phase III trial, 784 patients with Gram-positive skin infections were randomized to treatment with either ceftobiprole 500 mg or vancomycin 1 g, each administered twice daily for 7-14 days; 93.3% of patients were clinically cured with ceftobiprole compared with 93.5% receiving vancomycin, and the eradication rate for MRSA infections was 91.8% for ceftobiprole compared with 90% for vancomycin. A phase III, randomized, double-blind, multicenter trial compared ceftobiprole 500 mg every 8 hours with vancomycin 1 g every 12 hours plus ceftazidime 1 g every 8 hours in patients with complicated skin and skin structure infections. Of the 828 patients enrolled, 31% had diabetic foot infections, 30% had abscesses, and 22% had wounds. No difference in clinical cure was reported in the clinically evaluable, intent-to-treat and microbiologically evaluable populations with cure rates of 90.5%, 81.9%, and 90.8%, respectively, in the ceftobiprole-treated patients and 90.2%, 80.8%, and 90.5%, respectively, in the vancomycin plus ceftazidime-treated group. Microbiologic eradication of Gram-positive cocci meticillin-susceptible S. aureus (MSSA) [ceftobiprole 91% vs vancomycin plus ceftazidime 92%] and MRSA (ceftobiprole 87% vs vancomycin plus ceftazidime 80%), as well as Gram-negative bacilli, E. coli (ceftobiprole 89% vs vancomycin plus ceftazidime 92%), and P. aeruginosa (ceftobiprole 87% vs vancomycin plus ceftazidime 100%), was not significantly different between groups. Similar cures rates in the microbiologically evaluable population occurred in both groups for Panton-Valentine leukocidin (PVL)-positive MSSA and PVL-positive MRSA.Currently, ceftobiprole has completed phase III trials for complicated skin and skin structure infections due to MRSA and nosocomial pneumonia due to suspected or proven MRSA; phase III trials are also ongoing in community-acquired pneumonia. Ceftobiprole has so far demonstrated a good safety profile in preliminary studies with similar tolerability to comparators. The broad-spectrum activity of ceftobiprole may allow it to be used as monotherapy in situations where a combination of antibacterials might be required. Further clinical studies are needed to determine the efficacy and safety of ceftobiprole and to define its role in patient care.
Klose, Viviana; Mohnl, Michaela; Plail, Regina; Schatzmayr, Gerd; Loibner, Andreas-Paul
2006-05-01
Competitive exclusion treatment is able to increase the pathogen colonization resistance of day-old chicks by applying probiotic bacteria stabilizing the indigenous microflora. In order to develop a safe microbial feed additive, various bacterial strains were isolated out of the gastrointestinal tract of healthy chickens. One hundred twenty-one representatives were selected based on differences in whole-cell protein patterns and screened for antagonistic properties. Five effective strains (Pediococcus acidilactici, Enterococcus faecium, Bifidobacterium animalis ssp. animalis, Lactobacillus reuteri, and Lactobacillus salivarius ssp. salivarius) exhibited in vitro the ability to inhibit a range of common pathogens and were evaluated with regard to the risks associated with genetic transfer of antibiotic resistances from animals to humans via the food chain. The probiotic strains were sensitive to several clinically effective antibiotics, though some of them showed single resistances. None of the vancomycin-resistant (R) strains carried the enterococcal vanA gene. Two tetracycline R strains were shown to harbor a tet(M)-associated resistance. The strains contained no extrachromosomal DNA and were not able to transfer the resistance by means of conjugation. On basis of the collected data the presence of easy transferable resistances was excluded and the chicken strains were considered to be suitable for the use as feed additive.
Holzknecht, B J; Dargis, R; Pedersen, M; Pinholt, M; Christensen, J J
2018-03-23
To investigate the usefulness of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) typing as a first-line epidemiological tool in a nosocomial outbreak of vancomycin-resistant Enterococcus faecium (VREfm). Fifty-five VREfm isolates, previously characterized by whole-genome sequencing (WGS), were included and analysed by MALDI-TOF MS. To take peak reproducibility into account, ethanol/formic acid extraction and other steps of the protocol were conducted in triplicate. Twenty-seven spectra were generated per isolate, and spectra were visually inspected to determine discriminatory peaks. The presence or absence of these was recorded in a peak scheme. Nine discriminatory peaks were identified. A characteristic pattern of these could distinguish between the three major WGS groups: WGS I, WGS II and WGS III. Only one of 38 isolates belonging to WGS I, WGS II or WGS III was misclassified. However, ten of the 17 isolates not belonging to WGS I, II or III displayed peak patterns indistinguishable from those of the outbreak strain. Using visual inspection of spectra, MALDI-TOF MS typing proved to be useful in differentiating three VREfm outbreak clones from each other. However, as non-outbreak isolates could not be reliably differentiated from outbreak clones, the practical value of this typing method for VREfm outbreak management was limited in our setting. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Babu Rajendran, Nithya; Gladstone, Beryl Primrose; Rodríguez-Baño, Jesús; Sifakis, Frangiscos; Voss, Andreas; Carmeli, Yehuda; Burkert, Francesco Robert; Gkolia, Panagiota; Tacconelli, Evelina
2017-01-05
Improving our understanding of outbreaks due to antibiotic-resistant bacteria (ARB) and their control is critical in the current public health scenario. The threat of outbreaks due to ARB requires multifaceted efforts. However, a global overview of epidemiological characteristics of outbreaks due to ARB and effective infection control measures is missing. In this paper, we describe the protocol of a systematic review aimed at mapping and characterising the epidemiological aspects of outbreaks due to ARB and infection control measures in European countries. The databases MEDLINE, Web of Knowledge and Cochrane library will be searched using a 3-step search strategy. Selection of articles for inclusion will be performed by 2 reviewers using predefined eligibility criteria. All study designs will be included if they report an outbreak and define the microbiological methods used for microorganism identification. The target bacteria will be methicillin-resistant and vancomycin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, ceftazidime-resistant and carbapenem-resistant Acinetobacter baumannii, ceftazidime-resistant and carbapenem-resistant Pseudomonas aeruginosa, ciprofloxacin-resistant Escherichia coli, extended-spectrum β-lactamase-producing E. coli and Klebsiella pneumoniae, carbapenem-resistant and carbapenamase-producing Enterobacteriaceae. Data will be extracted using a tailored pilot tested form and the quality of reporting will be assessed using the ORION (Outbreak Reports and Intervention Studies Of Nosocomial infections) tool. Data will be synthesised and reported by the type of ARB, setting and country. Infection control measures and bundles of measures will be described. The effectiveness will be reported as defined by the authors. Regression analysis will be used to define independent factors associated with outbreaks' control. Heterogeneity between studies will be assessed by forest plots and I² statistics. Ethical approval is not applicable for this study. Findings will be disseminated through journal publication and conference presentations and talks. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Koburger, T; Hübner, N-O; Braun, M; Siebert, J; Kramer, A
2010-08-01
This study presents a comparative investigation of the antimicrobial efficacy of the antiseptics PVP-iodine, triclosan, chlorhexidine, octenidine and polyhexanide used for pre-surgical antisepsis and antiseptic treatment of skin, wounds and mucous membranes based on internationally accepted standards. MICs and MBCs were determined in accordance with DIN 58940-7 and 58940-8 using Staphylococcus aureus (including methicillin-resistant Staphylococcus aureus), Enterococcus faecalis (including vancomycin-resistant Enterococcus), Streptococcus pneumoniae, Escherichia coli, Pseudomonas aeruginosa, Clostridium perfringens, Haemophilus influenzae and Candida albicans. The microbicidal efficacy was determined in accordance with DIN EN 1040 and 1275 using S. aureus, P. aeruginosa and C. albicans. For chlorhexidine, octenidine and polyhexanide, MIC(48) and MBC(24) ranged from 16 to 32 mg/L. Maximum values for triclosan ranged from 256 to 512 mg/L, with an efficacy gap against P. aeruginosa, while the maximum values of PVP-iodine were 1024 mg/L, with a gap against S. pneumoniae. Comparing the minimal effective concentrations, octenidine was most effective. After 1 min, only octenidine and PVP-iodine fulfil the requirements for antiseptics. Tests under standardized and harmonized conditions help to choose the most efficacious agent. When a prolonged contact time is feasible, ranking of agents would be polyhexanide = octenidine > chlorhexidine > triclosan > PVP-iodine. This is consistent with the recommendations for antisepsis of acute wounds. Polyhexanide seems to be preferable for chronic wounds due to its higher tolerability. If an immediate effect is required, ranking would be octenidine = PVP-iodine> polyhexanide > chlorhexidine > triclosan.
Etiology and antimicrobial resistance patterns in pediatric urinary tract infection.
Wang, Jun; He, Lijiao; Sha, Jintong; Zhu, Haobo; Huang, Liqu; Zhu, Xiaojiang; Dong, Jun; Li, Guogen; Ge, Zheng; Lu, Rugang; Ma, Geng; Shi, Yaqi; Guo, Yunfei
2018-02-02
Urinary tract infection (UTI) is one of most common pediatric infections. The aim of this study was to investigate the etiology and antimicrobial resistance patterns in children hospitalized at Children's Hospital of Nanjing Medical University. We conducted a retrospective, descriptive study of all UTI from 1 January 2013 to 30 November 2016 in children discharged from Nanjing Children's Hospital. The isolated pathogens and their resistance patterns were examined using midstream urine culture. A total of 2,316 children with UTI were included in the study. The occurrence rates of isolated pathogens were as follows: Enterococcus spp., 35.15%; Escherichia coli, 22.32%; Staphylococcus aureus spp., 7.73%; Streptococcus spp., 7.51%; and Klebsiella spp., 6.95%. Uropathogens had a low susceptibility to linezolid (3.47%), vancomycin (0.92%), imipenem (5.74%), and amikacin (3.17%), but they had a high susceptibility to erythromycin (90.52%), penicillin G (74.01%), cefotaxime (71.41%), cefazolin (73.41%), cefuroxime (72.52%), and aztreonam (70.11%). There is high antibiotic resistance in hospitalized children with UTI. Susceptibility testing should be carried out on all clinical isolates, and the empirical antibiotic treatment should be altered accordingly. © 2018 Japan Pediatric Society.
Hassan, Marwa M; Ranzoni, Andrea; Phetsang, Wanida; Blaskovich, Mark A T; Cooper, Matthew A
2017-02-15
Many bacterial pathogens have now acquired resistance toward commonly used antibiotics, such as the glycopeptide antibiotic vancomycin. In this study, we show that immobilization of vancomycin onto a nanometer-scale solid surface with controlled local density can potentiate antibiotic action and increase target affinity of the drug. Magnetic nanoparticles were conjugated with vancomycin and used as a model system to investigate the relationship between surface density and drug potency. We showed remarkable improvement in minimum inhibitory concentration against vancomycin-resistant strains with values of 13-28 μg/mL for conjugated vancomycin compared to 250-4000 μg/mL for unconjugated vancomycin. Higher surface densities resulted in enhanced affinity toward the bacterial target compared to that of unconjugated vancomycin, as measured by a competition experiment using a surrogate ligand for bacterial Lipid II, N-Acetyl-l-Lys-d-Ala-d-Ala. High density vancomycin nanoparticles required >64 times molar excess of ligand (relative to the vancomycin surface density) to abrogate antibacterial activity compared to only 2 molar excess for unconjugated vancomycin. Further, the drug-nanoparticle conjugates caused rapid permeabilization of the bacterial cell wall within 2 h, whereas no effect was seen with unconjugated vancomycin, suggesting additional modes of action for the nanoparticle-conjugated drug. Hence, immobilization of readily available antibiotics on nanocarriers may present a general strategy for repotentiating drugs that act on bacterial membranes or membrane-bound targets but have lost effectiveness against resistant bacterial strains.
Daptomycin experience in critical care patients: results from a registry.
Brown, Jack E; Fominaya, Cory; Christensen, Keith J; McConnell, Scott A; Lamp, Kenneth C
2012-04-01
Vancomycin is often the drug of choice in critically ill patients with gram-positive infections, although circumstances often prevent its use. In these situations, clinicians are frequently left with limited data regarding alternative agents. To describe patients with reported sepsis receiving daptomycin in a critical care unit. This multicenter, noncomparative, noninterventional study identified patients in critical care units, using the Cubicin Outcomes Registry and Experience (CORE) 2005-2009 registry. A descriptive account of patient characteristics, infectious etiology, outcomes at the end of daptomycin therapy, and 30-day mortality is reported. Nonevaluable patients were excluded from the efficacy analysis but included in the safety analysis. We identified 128 patients, 98 (77%) of whom were evaluable for efficacy. Patient characteristics for the efficacy population were 55 (56%) males, 30 (31%) aged 66 years or older, 38 (39%) had creatinine clearance less than 30 mL/min, and 27 (28%) were on dialysis. Common underlying diseases included acute or chronic renal failure 44 (45%), hypertension 40 (41%), and diabetes 27 (28%). Seventy-two (73%) patients were bacteremic. The most common pathogens found were methicillin-resistant Staphylococcus aureus (32%), vancomycin-resistant Enterococcus faecium (21%), and coagulase-negative staphylococci (20%). Prior to daptomycin, antibiotics were used in 84 (86%) patients, most commonly vancomycin (65/84; 77%). The median (range) initial daptomycin dose was 6 mg/kg (3-10) and duration of 10 days (1-58). Overall success rate was 70% (31% cured; 39% improved). Twelve adverse events possibly related to daptomycin were reported in 9 of 128 (7%) patients in the safety population; 4 of these in 4 (3%) patients were serious. The mortality rate within 30 days of completing daptomycin was 42 of 128 (33%) patients. These data provide preliminary results on the use of daptomycin in critically ill patients with complicated conditions. Controlled studies are needed to best evaluate daptomycin use in these patients.
Chen, Xin; Shi, Jiawei; Chen, Rui; Wen, Yaoan; Shi, Yu; Zhu, Zhe; Guo, Songwen; Li, Ling
2015-01-01
Plectasin (PS) is the first defensin to be isolated from a fungus, the saprophytic ascomycete Pseudoplectania nigrella, and active against Streptococcus pneumoniae and S. aureus, including antibiotic-resistant pathogens. To establish a bacterium-based production system, we compared the efficiency of four molecular chaperones and corresponding cleavage to the expression and purification of plectasin. The results showed that the yield of plectasin combined with thioredoxin A (TrxA) and small ubiquitin-related modifier (SUMO) was at a higher level (0.0356 and 0.0358 g L(-1), respectively) than that with intein (0.0238 g L(-1)) and glutathione-S-transferase (GST) (0.0243 g L(-1)). TrxA-plectasin, SUMO-plectasin, and 2-plectasin were cleaved at the correct site and purified, but their considerable amount was not cleaved and remained as a fusion peptide. The antimicrobial activity of plectasin cleaved from SUMO--plectasin against methicillin-resistant Staphylococcus aureus (MRSA), penicillin-resistant S. pneumoniae (PRSP), and vancomycin-resistant enterococci (VRE)--was stronger than ampicillin (Amp) for the same amount of substance (P ≤ 0.05). This is the first study to complete and compare the effect of different molecular chaperones and corresponding cleavage with the expression and purification of plectasin in the Escherichia coli expression system, which laid the foundation for future research and may develop the application and production of plectasin. © 2014 International Union of Biochemistry and Molecular Biology, Inc.
Gong, Y L; Yang, Z C; Yin, S P; Liu, M X; Zhang, C; Luo, X Q; Peng, Y Z
2016-09-20
To analyze the distribution and drug resistance of pathogen isolated from severely burned patients with bloodstream infection, so as to provide reference for the clinical treatment of these patients. Blood samples of 162 severely burned patients (including 120 patients with extremely severe burn) with bloodstream infection admitted into our burn ICU from January 2011 to December 2014 were collected. Pathogens were cultured by fully automatic blood culture system, and API bacteria identification panels were used to identify pathogen. Kirby-Bauer paper disk diffusion method was used to detect the drug resistance of major Gram-negative and -positive bacteria to 37 antibiotics including ampicillin, piperacillin and teicoplanin, etc. (resistance to vancomycin was detected by E test), and drug resistance of fungi to 5 antibiotics including voriconazole and amphotericin B, etc. Modified Hodge test was used to further identify imipenem and meropenem resistant Klebsiella pneumonia. D test was used to detect erythromycin-induced clindamycin resistant Staphylococcus aureus. The pathogen distribution and drug resistance rate were analyzed by WHONET 5.5. Mortality rate and infected pathogens of patients with extremely severe burn and patients with non-extremely severe burn were recorded. Data were processed with Wilcoxon rank sum test. (1) Totally 1 658 blood samples were collected during the four years, and 339 (20.4%) strains of pathogens were isolated. The isolation rate of Gram-negative bacteria, Gram-positive bacteria, and fungi were 68.4% (232/339), 24.5% (83/339), and 7.1% (24/339), respectively. The top three pathogens with isolation rate from high to low were Acinetobacter baumannii, Staphylococcus aureus, and Pseudomonas aeruginosa in turn. (2) Except for the low drug resistance rate to polymyxin B and minocycline, drug resistance rate of Acinetobacter baumannii to the other antibiotics were relatively high (81.0%-100.0%). Pseudomonas aeruginosa was sensitive to polymyxin B but highly resistant to other antibiotics (57.7%-100.0%). Enterobacter cloacae was sensitive to imipenem and meropenem, while its drug resistance rates to ciprofloxacin, levofloxacin, cefoperazone/sulbactam, cefepime, piperacillin/tazobactam were 25.0%-49.0%, and those to the other antibiotics were 66.7%-100.0%. Drug resistance rates of Klebsiella pneumoniae to cefoperazone/sulbactam, imipenem, and meropenem were low (5.9%-15.6%, two imipenem- and meropenem-resistant strains were identified by modified Hodge test), while its drug resistance rates to amoxicillin/clavulanic acid, piperacillin/tazobactam, cefepime, cefoxitin, amikacin, levofloxacin were 35.3%-47.1%, and those to the other antibiotics were 50.0%-100.0%. (3) Drug resistance rates of methicillin-resistant Staphylococcus aureus (MRSA) to most of the antibiotics were higher than those of the methicillin-sensitive Staphylococcus aureus (MSSA). MRSA was sensitive to linezolid, vancomycin, and teicoplanin, while its drug resistance rates to compound sulfamethoxazole, clindamycin, minocycline, and erythromycin were 5.3%-31.6%, and those to the other antibiotics were 81.6%-100.0%. Except for totally resistant to penicillin G and tetracycline, MSSA was sensitive to the other antibiotics. Fourteen Staphylococcus aureus strains were resistant to erythromycin-induced clindamycin. Enterococcus was sensitive to vancomycin and teicoplanin, while its drug resistance rates to linezolid, chloramphenicol, nitrofurantoin, and high unit gentamicin were low (10.0%-30.0%), and those to ciprofloxacin, erythromycin, minocycline, and ampicillin were high (60.0%-80.0%). Enterococcus was fully resistant to rifampicin. (4) Fungi was sensitive to amphotericin B, and drug resistance rates of fungi to voriconazole, fluconazole, itraconazole, and ketoconazole were 7.2%-12.5%. (5) The mortality of patients with extremely severe burn was higher than that of patients with non-extremely severe burn. The variety of infected pathogens in patients with extremely severe burn significantly outnumbered that in patients with non-extremely severe burn (Z=-2.985, P=0.005). The variety of pathogen in severely burned patients with bloodstream infection is wide, with the main pathogens as Acinetobacter baumannii, Staphylococcus aureus, and Pseudomonas aeruginosa, and the drug resistance situation is grim. The types of infected pathogen in patients with extremely severe burn are more complex, and the mortality of these patients is higher when compared with that of patients with non-extremely severe burn.
Cafiso, Viviana; Bertuccio, Taschia; Spina, Daniela; Purrello, Simona; Campanile, Floriana; Di Pietro, Cinzia; Purrello, Michele; Stefani, Stefania
2012-01-01
Glycopeptides are still the gold standard to treat MRSA (Methicillin Resistant Staphylococcus aureus) infections, but their widespread use has led to vancomycin-reduced susceptibility [heterogeneous Vancomycin-Intermediate-Staphylococcus aureus (hVISA) and Vancomycin-Intermediate-Staphylococcus aureus (VISA)], in which different genetic loci (regulatory, autolytic, cell-wall turnover and cell-envelope positive charge genes) are involved. In addition, reduced susceptibility to vancomycin can influence the development of resistance to daptomycin. Although the phenotypic and molecular changes of hVISA/VISA have been the focus of different papers, the molecular mechanisms responsible for these different phenotypes and for the vancomycin and daptomycin cross-resistance are not clearly understood. The aim of our study was to investigate, by real time RT-PCR, the relative quantitative expression of genes involved in autolysis (atl-lytM), cell-wall turnover (sceD), membrane charges (mprF-dltA) and regulatory mechanisms (agr-locus-graRS-walKR), in hVISA and VISA cultured with or without vancomycin and daptomycin, in order to better understand the molecular basis of vancomycin-reduced susceptibility and the modulating activity of vancomycin and daptomycin on the expression of genes implicated in their reduced susceptibility mechanisms. Our results show that hVISA and VISA present common features that distinguish them from Vancomycin-Susceptible Staphylococcus aureus (VSSA), responsible for the intermediate glycopeptide resistance i.e. an increased cell-wall turnover, an increased positive cell-wall charge responsible for a repulsion mechanism towards vancomycin and daptomycin, and reduced agr-functionality. Indeed, VISA emerges from hVISA when VISA acquires a reduced autolysis caused by a down-regulation of autolysin genes, atl/lytM, and a reduction of the net negative cell-envelope charge via dltA over-expression. Vancomycin and daptomycin, acting in a similar manner in hVISA and VISA, can influence their cross-resistance mechanisms promoting VISA behavior in hVISA and enhancing the cell-wall pathways responsible for the intermediate vancomycin resistance in VISA. Daptomycin can also induce a charge repulsion mechanism both in hVISA and VISA increasing the activity of the mprF.
Gebreselassie, Solomon
2002-04-01
Gram positive bacteria are frequently emerging as antibiotic resistant pathogens, causing serious infections than ever before in the ill and debilitated patients. The pattern of isolation and the antimicrobial susceptibilities of common Gram positive cocci including Staphylococcus aureus, coagulase negative staphylococcus (CoNS), Streptococcus pyogenes, Enterococcus species and Streptococcus pneumoniae was investigated between January 1997 and June 2000 in Jimma Hospital. Of the 500 specimens collected from children and adults, 116 (23.2%) consisted of one or more of the above organisms. The following strains: Staphylococcus aureus, 47 (40.5%), CoNS, 36 (31.0%), Streptococcus pneumoniae, 26 (22.4%) Streptococcus pyogenes, 5 (4.3%) and Streptococcus faecalis, 2(1.7%) were isolated from different specimens including pus, sputum, urine, stool, blood and oro/nasopharyngeal swabs of patients. The in vitro activities of 14 different antibiotics including penicillin G, ampicillin, cloxacillin, cephalothin, gentamicin, kanamycin, tetracycline, chloramphenicol, erythromycin, trimethoprim-sulfamethoxazole, streptomycin, methicillin, vancomycin and clindamycin was determined against the clinical bacterial isolates. The antimicrobial activities were evaluated by agar diffusion technique using Mueller-Hinton agar according to NCCLS recommendations. The majority of the pathogens, 59(50.9%) were recovered from upper respiratory tract infections and 17 (14.6%) from the lower respiratory tract. The resistance patterns of S. aureus, CoNS, S. pneumoniae and enterococci to penicillin was 91.5%, 94.4%, 7.7% and 100% respectively. Penicillin, ampicillin and cloxacillin showed low effects (< 60%) on both S. aureus and CoNS. Multi-drug resistance was observed in all the gram-positive isolates, especially higher in staphylococcus species. All isolates of S. aureus (100%) were susceptible to vancomycin, clindamycin and gentamicin. In order to reduce morbidity and mortality due to antibiotic resistance susceptibility testing should be performed for the proper management of bacterial infections. This entails the need for national surveillance to monitor antibiotic resistance in bacteria by susceptibility testing using reliable methods.
Ramaswamy, Divya Pradeep; Amodio-Groton, Maria; Scholand, Stephen J
2013-07-16
Vancomycin-resistant enterococci are a leading cause of hospital-acquired urinary tract infection and a growing concern for the clinician. The aim of this study was to evaluate the effectiveness of daptomycin in the treatment of patients with vancomycin-resistant enterococcal urinary tract infection treated in our 200-bed community-based institution. Patients with confirmed symptomatic vancomycin-resistant enterococcal urinary tract infection identified by infectious disease consultation between January 1, 2007, and December 8, 2009, vancomycin-resistant enterococci-positive urine culture, and urinary symptoms and/or pyuria on urinalysis, and treated with daptomycin, were included in this case series. Daptomycin was generally administered at a planned dosage regimen of ≥ 5 mg/kg every 24 hours in patients with normal to moderately impaired kidney function or every 48 hours in patients with severe kidney disease. Microbiologic cure was defined as eradication of vancomycin-resistant enterococci in urine cultures taken after the completion of daptomycin treatment. Clinical cure was defined by symptom resolution, as assessed by the infectious disease clinician caring for the patient. Included in this case series are 10 patients who received daptomycin for confirmed vancomycin-resistant enterococcal urinary tract infection. Patients had a history of extensive hospital stays. Chart review revealed that all levels of kidney function (3, 2, 3, and 2 patients with kidney disease classified as normal, mild, moderate, and severe/kidney failure, respectively) were represented in the sample and that patients with (n = 5) or without (n = 5) previous urinary tract infection and with (n = 3) or without (n = 7) Foley catheters were included. Treatment with daptomycin achieved clinical cure and vancomycin-resistant enterococcal eradication in all cases in this series. Treatment with daptomycin was well tolerated and effective in all patients in this series, regardless of renal function, history of urinary tract infection, or Foley catheter use. This study adds to emerging clinical evidence that daptomycin is a valuable treatment for vancomycin-resistant enterococcal urinary tract infection.
Bozdogan, Bülent; Ednie, Lois; Credito, Kim; Kosowska, Klaudia; Appelbaum, Peter C.
2004-01-01
Antimicrobial susceptibilities and genetic relatedness of the vancomycin-resistant Staphylococcus aureus strain (VRSA) isolated at Hershey, Pa. (VRSA Hershey), and its vancomycin-susceptible and high-level-resistant derivatives were studied and compared to 32 methicillin-resistant S. aureus strains (MRSA) isolated from patients and medical staff in contact with the VRSA patient. Derivatives of VRSA were obtained by subculturing six VRSA colonies from the original culture with or without vancomycin. Ten days of drug-free subculture caused the loss of vanA in two vancomycin-susceptible derivatives for which vancomycin MICs were 1 to 4 μg/ml. Multistep selection of three VRSA clones with vancomycin for 10 days increased vancomycin MICs from 32 to 1,024 to 2,048 μg/ml. MICs of teicoplanin, dalbavancin, and oritavancin were also increased from 4, 0.5, and 0.12 to 64, 1, and 32 μg/ml, respectively. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing analysis indicated that VRSA Hershey was the vanA-acquired variety of a common MRSA clone in our hospital with sequence type 5 (ST5). Three of five vancomycin-intermediate S. aureus strains tested from geographically different areas were also ST5, and the Michigan VRSA was ST371, a one-allele variant of ST5. Derivatives of VRSA Hershey had differences in PFGE profiles and the size of SmaI fragment that carries the vanA gene cluster, indicating instability of this cluster in VRSA Hershey. However induction with vancomycin increased glycopeptide MICs and stabilized the resistance. PMID:15561854
Bozdogan, Bülent; Ednie, Lois; Credito, Kim; Kosowska, Klaudia; Appelbaum, Peter C
2004-12-01
Antimicrobial susceptibilities and genetic relatedness of the vancomycin-resistant Staphylococcus aureus strain (VRSA) isolated at Hershey, Pa. (VRSA Hershey), and its vancomycin-susceptible and high-level-resistant derivatives were studied and compared to 32 methicillin-resistant S. aureus strains (MRSA) isolated from patients and medical staff in contact with the VRSA patient. Derivatives of VRSA were obtained by subculturing six VRSA colonies from the original culture with or without vancomycin. Ten days of drug-free subculture caused the loss of vanA in two vancomycin-susceptible derivatives for which vancomycin MICs were 1 to 4 microg/ml. Multistep selection of three VRSA clones with vancomycin for 10 days increased vancomycin MICs from 32 to 1,024 to 2,048 microg/ml. MICs of teicoplanin, dalbavancin, and oritavancin were also increased from 4, 0.5, and 0.12 to 64, 1, and 32 microg/ml, respectively. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing analysis indicated that VRSA Hershey was the vanA-acquired variety of a common MRSA clone in our hospital with sequence type 5 (ST5). Three of five vancomycin-intermediate S. aureus strains tested from geographically different areas were also ST5, and the Michigan VRSA was ST371, a one-allele variant of ST5. Derivatives of VRSA Hershey had differences in PFGE profiles and the size of SmaI fragment that carries the vanA gene cluster, indicating instability of this cluster in VRSA Hershey. However induction with vancomycin increased glycopeptide MICs and stabilized the resistance.