Sample records for vanet connectivity analysis

  1. Enabling SDN in VANETs: What is the Impact on Security?

    PubMed Central

    Di Maio, Antonio; Palattella, Maria Rita; Soua, Ridha; Lamorte, Luca; Vilajosana, Xavier; Alonso-Zarate, Jesus; Engel, Thomas

    2016-01-01

    The demand for safe and secure journeys over roads and highways has been growing at a tremendous pace over recent decades. At the same time, the smart city paradigm has emerged to improve citizens’ quality of life by developing the smart mobility concept. Vehicular Ad hoc NETworks (VANETs) are widely recognized to be instrumental in realizing such concept, by enabling appealing safety and infotainment services. Such networks come with their own set of challenges, which range from managing high node mobility to securing data and user privacy. The Software Defined Networking (SDN) paradigm has been identified as a suitable solution for dealing with the dynamic network environment, the increased number of connected devices, and the heterogeneity of applications. While some preliminary investigations have been already conducted to check the applicability of the SDN paradigm to VANETs, and its presumed benefits for managing resources and mobility, it is still unclear what impact SDN will have on security and privacy. Security is a relevant issue in VANETs, because of the impact that threats can have on drivers’ behavior and quality of life. This paper opens a discussion on the security threats that future SDN-enabled VANETs will have to face, and investigates how SDN could be beneficial in building new countermeasures. The analysis is conducted in real use cases (smart parking, smart grid of electric vehicles, platooning, and emergency services), which are expected to be among the vehicular applications that will most benefit from introducing an SDN architecture. PMID:27929443

  2. Enabling SDN in VANETs: What is the Impact on Security?

    PubMed

    Di Maio, Antonio; Palattella, Maria Rita; Soua, Ridha; Lamorte, Luca; Vilajosana, Xavier; Alonso-Zarate, Jesus; Engel, Thomas

    2016-12-06

    The demand for safe and secure journeys over roads and highways has been growing at a tremendous pace over recent decades. At the same time, the smart city paradigm has emerged to improve citizens' quality of life by developing the smart mobility concept. Vehicular Ad hoc NETworks (VANETs) are widely recognized to be instrumental in realizing such concept, by enabling appealing safety and infotainment services. Such networks come with their own set of challenges, which range from managing high node mobility to securing data and user privacy. The Software Defined Networking (SDN) paradigm has been identified as a suitable solution for dealing with the dynamic network environment, the increased number of connected devices, and the heterogeneity of applications. While some preliminary investigations have been already conducted to check the applicability of the SDN paradigm to VANETs, and its presumed benefits for managing resources and mobility, it is still unclear what impact SDN will have on security and privacy. Security is a relevant issue in VANETs, because of the impact that threats can have on drivers' behavior and quality of life. This paper opens a discussion on the security threats that future SDN-enabled VANETs will have to face, and investigates how SDN could be beneficial in building new countermeasures. The analysis is conducted in real use cases (smart parking, smart grid of electric vehicles, platooning, and emergency services), which are expected to be among the vehicular applications that will most benefit from introducing an SDN architecture.

  3. Efficient and Stable Routing Algorithm Based on User Mobility and Node Density in Urban Vehicular Network.

    PubMed

    Al-Mayouf, Yusor Rafid Bahar; Ismail, Mahamod; Abdullah, Nor Fadzilah; Wahab, Ainuddin Wahid Abdul; Mahdi, Omar Adil; Khan, Suleman; Choo, Kim-Kwang Raymond

    2016-01-01

    Vehicular ad hoc networks (VANETs) are considered an emerging technology in the industrial and educational fields. This technology is essential in the deployment of the intelligent transportation system, which is targeted to improve safety and efficiency of traffic. The implementation of VANETs can be effectively executed by transmitting data among vehicles with the use of multiple hops. However, the intrinsic characteristics of VANETs, such as its dynamic network topology and intermittent connectivity, limit data delivery. One particular challenge of this network is the possibility that the contributing node may only remain in the network for a limited time. Hence, to prevent data loss from that node, the information must reach the destination node via multi-hop routing techniques. An appropriate, efficient, and stable routing algorithm must be developed for various VANET applications to address the issues of dynamic topology and intermittent connectivity. Therefore, this paper proposes a novel routing algorithm called efficient and stable routing algorithm based on user mobility and node density (ESRA-MD). The proposed algorithm can adapt to significant changes that may occur in the urban vehicular environment. This algorithm works by selecting an optimal route on the basis of hop count and link duration for delivering data from source to destination, thereby satisfying various quality of service considerations. The validity of the proposed algorithm is investigated by its comparison with ARP-QD protocol, which works on the mechanism of optimal route finding in VANETs in urban environments. Simulation results reveal that the proposed ESRA-MD algorithm shows remarkable improvement in terms of delivery ratio, delivery delay, and communication overhead.

  4. Efficient and Stable Routing Algorithm Based on User Mobility and Node Density in Urban Vehicular Network

    PubMed Central

    Al-Mayouf, Yusor Rafid Bahar; Ismail, Mahamod; Abdullah, Nor Fadzilah; Wahab, Ainuddin Wahid Abdul; Mahdi, Omar Adil; Khan, Suleman; Choo, Kim-Kwang Raymond

    2016-01-01

    Vehicular ad hoc networks (VANETs) are considered an emerging technology in the industrial and educational fields. This technology is essential in the deployment of the intelligent transportation system, which is targeted to improve safety and efficiency of traffic. The implementation of VANETs can be effectively executed by transmitting data among vehicles with the use of multiple hops. However, the intrinsic characteristics of VANETs, such as its dynamic network topology and intermittent connectivity, limit data delivery. One particular challenge of this network is the possibility that the contributing node may only remain in the network for a limited time. Hence, to prevent data loss from that node, the information must reach the destination node via multi-hop routing techniques. An appropriate, efficient, and stable routing algorithm must be developed for various VANET applications to address the issues of dynamic topology and intermittent connectivity. Therefore, this paper proposes a novel routing algorithm called efficient and stable routing algorithm based on user mobility and node density (ESRA-MD). The proposed algorithm can adapt to significant changes that may occur in the urban vehicular environment. This algorithm works by selecting an optimal route on the basis of hop count and link duration for delivering data from source to destination, thereby satisfying various quality of service considerations. The validity of the proposed algorithm is investigated by its comparison with ARP-QD protocol, which works on the mechanism of optimal route finding in VANETs in urban environments. Simulation results reveal that the proposed ESRA-MD algorithm shows remarkable improvement in terms of delivery ratio, delivery delay, and communication overhead. PMID:27855165

  5. Game-Theoretical Design of an Adaptive Distributed Dissemination Protocol for VANETs.

    PubMed

    Iza-Paredes, Cristhian; Mezher, Ahmad Mohamad; Aguilar Igartua, Mónica; Forné, Jordi

    2018-01-19

    Road safety applications envisaged for Vehicular Ad Hoc Networks (VANETs) depend largely on the dissemination of warning messages to deliver information to concerned vehicles. The intended applications, as well as some inherent VANET characteristics, make data dissemination an essential service and a challenging task in this kind of networks. This work lays out a decentralized stochastic solution for the data dissemination problem through two game-theoretical mechanisms. Given the non-stationarity induced by a highly dynamic topology, diverse network densities, and intermittent connectivity, a solution for the formulated game requires an adaptive procedure able to exploit the environment changes. Extensive simulations reveal that our proposal excels in terms of number of transmissions, lower end-to-end delay and reduced overhead while maintaining high delivery ratio, compared to other proposals.

  6. Game-Theoretical Design of an Adaptive Distributed Dissemination Protocol for VANETs

    PubMed Central

    Mezher, Ahmad Mohamad; Aguilar Igartua, Mónica

    2018-01-01

    Road safety applications envisaged for Vehicular Ad Hoc Networks (VANETs) depend largely on the dissemination of warning messages to deliver information to concerned vehicles. The intended applications, as well as some inherent VANET characteristics, make data dissemination an essential service and a challenging task in this kind of networks. This work lays out a decentralized stochastic solution for the data dissemination problem through two game-theoretical mechanisms. Given the non-stationarity induced by a highly dynamic topology, diverse network densities, and intermittent connectivity, a solution for the formulated game requires an adaptive procedure able to exploit the environment changes. Extensive simulations reveal that our proposal excels in terms of number of transmissions, lower end-to-end delay and reduced overhead while maintaining high delivery ratio, compared to other proposals. PMID:29351255

  7. EDDA: An Efficient Distributed Data Replication Algorithm in VANETs.

    PubMed

    Zhu, Junyu; Huang, Chuanhe; Fan, Xiying; Guo, Sipei; Fu, Bin

    2018-02-10

    Efficient data dissemination in vehicular ad hoc networks (VANETs) is a challenging issue due to the dynamic nature of the network. To improve the performance of data dissemination, we study distributed data replication algorithms in VANETs for exchanging information and computing in an arbitrarily-connected network of vehicle nodes. To achieve low dissemination delay and improve the network performance, we control the number of message copies that can be disseminated in the network and then propose an efficient distributed data replication algorithm (EDDA). The key idea is to let the data carrier distribute the data dissemination tasks to multiple nodes to speed up the dissemination process. We calculate the number of communication stages for the network to enter into a balanced status and show that the proposed distributed algorithm can converge to a consensus in a small number of communication stages. Most of the theoretical results described in this paper are to study the complexity of network convergence. The lower bound and upper bound are also provided in the analysis of the algorithm. Simulation results show that the proposed EDDA can efficiently disseminate messages to vehicles in a specific area with low dissemination delay and system overhead.

  8. EDDA: An Efficient Distributed Data Replication Algorithm in VANETs

    PubMed Central

    Zhu, Junyu; Huang, Chuanhe; Fan, Xiying; Guo, Sipei; Fu, Bin

    2018-01-01

    Efficient data dissemination in vehicular ad hoc networks (VANETs) is a challenging issue due to the dynamic nature of the network. To improve the performance of data dissemination, we study distributed data replication algorithms in VANETs for exchanging information and computing in an arbitrarily-connected network of vehicle nodes. To achieve low dissemination delay and improve the network performance, we control the number of message copies that can be disseminated in the network and then propose an efficient distributed data replication algorithm (EDDA). The key idea is to let the data carrier distribute the data dissemination tasks to multiple nodes to speed up the dissemination process. We calculate the number of communication stages for the network to enter into a balanced status and show that the proposed distributed algorithm can converge to a consensus in a small number of communication stages. Most of the theoretical results described in this paper are to study the complexity of network convergence. The lower bound and upper bound are also provided in the analysis of the algorithm. Simulation results show that the proposed EDDA can efficiently disseminate messages to vehicles in a specific area with low dissemination delay and system overhead. PMID:29439443

  9. Delay Analysis of Car-to-Car Reliable Data Delivery Strategies Based on Data Mulling with Network Coding

    NASA Astrophysics Data System (ADS)

    Park, Joon-Sang; Lee, Uichin; Oh, Soon Young; Gerla, Mario; Lun, Desmond Siumen; Ro, Won Woo; Park, Joonseok

    Vehicular ad hoc networks (VANET) aims to enhance vehicle navigation safety by providing an early warning system: any chance of accidents is informed through the wireless communication between vehicles. For the warning system to work, it is crucial that safety messages be reliably delivered to the target vehicles in a timely manner and thus reliable and timely data dissemination service is the key building block of VANET. Data mulling technique combined with three strategies, network codeing, erasure coding and repetition coding, is proposed for the reliable and timely data dissemination service. Particularly, vehicles in the opposite direction on a highway are exploited as data mules, mobile nodes physically delivering data to destinations, to overcome intermittent network connectivity cause by sparse vehicle traffic. Using analytic models, we show that in such a highway data mulling scenario the network coding based strategy outperforms erasure coding and repetition based strategies.

  10. A Game Theory Algorithm for Intra-Cluster Data Aggregation in a Vehicular Ad Hoc Network

    PubMed Central

    Chen, Yuzhong; Weng, Shining; Guo, Wenzhong; Xiong, Naixue

    2016-01-01

    Vehicular ad hoc networks (VANETs) have an important role in urban management and planning. The effective integration of vehicle information in VANETs is critical to traffic analysis, large-scale vehicle route planning and intelligent transportation scheduling. However, given the limitations in the precision of the output information of a single sensor and the difficulty of information sharing among various sensors in a highly dynamic VANET, effectively performing data aggregation in VANETs remains a challenge. Moreover, current studies have mainly focused on data aggregation in large-scale environments but have rarely discussed the issue of intra-cluster data aggregation in VANETs. In this study, we propose a multi-player game theory algorithm for intra-cluster data aggregation in VANETs by analyzing the competitive and cooperative relationships among sensor nodes. Several sensor-centric metrics are proposed to measure the data redundancy and stability of a cluster. We then study the utility function to achieve efficient intra-cluster data aggregation by considering both data redundancy and cluster stability. In particular, we prove the existence of a unique Nash equilibrium in the game model, and conduct extensive experiments to validate the proposed algorithm. Results demonstrate that the proposed algorithm has advantages over typical data aggregation algorithms in both accuracy and efficiency. PMID:26907272

  11. A Game Theory Algorithm for Intra-Cluster Data Aggregation in a Vehicular Ad Hoc Network.

    PubMed

    Chen, Yuzhong; Weng, Shining; Guo, Wenzhong; Xiong, Naixue

    2016-02-19

    Vehicular ad hoc networks (VANETs) have an important role in urban management and planning. The effective integration of vehicle information in VANETs is critical to traffic analysis, large-scale vehicle route planning and intelligent transportation scheduling. However, given the limitations in the precision of the output information of a single sensor and the difficulty of information sharing among various sensors in a highly dynamic VANET, effectively performing data aggregation in VANETs remains a challenge. Moreover, current studies have mainly focused on data aggregation in large-scale environments but have rarely discussed the issue of intra-cluster data aggregation in VANETs. In this study, we propose a multi-player game theory algorithm for intra-cluster data aggregation in VANETs by analyzing the competitive and cooperative relationships among sensor nodes. Several sensor-centric metrics are proposed to measure the data redundancy and stability of a cluster. We then study the utility function to achieve efficient intra-cluster data aggregation by considering both data redundancy and cluster stability. In particular, we prove the existence of a unique Nash equilibrium in the game model, and conduct extensive experiments to validate the proposed algorithm. Results demonstrate that the proposed algorithm has advantages over typical data aggregation algorithms in both accuracy and efficiency.

  12. Evaluation and development the routing protocol of a fully functional simulation environment for VANETs

    NASA Astrophysics Data System (ADS)

    Ali, Azhar Tareq; Warip, Mohd Nazri Mohd; Yaakob, Naimah; Abduljabbar, Waleed Khalid; Atta, Abdu Mohammed Ali

    2017-11-01

    Vehicular Ad-hoc Networks (VANETs) is an area of wireless technologies that is attracting a great deal of interest. There are still several areas of VANETS, such as security and routing protocols, medium access control, that lack large amounts of research. There is also a lack of freely available simulators that can quickly and accurately simulate VANETs. The main goal of this paper is to develop a freely available VANETS simulator and to evaluate popular mobile ad-hoc network routing protocols in several VANETS scenarios. The VANETS simulator consisted of a network simulator, traffic (mobility simulator) and used a client-server application to keep the two simulators in sync. The VANETS simulator also models buildings to create a more realistic wireless network environment. Ad-Hoc Distance Vector routing (AODV), Dynamic Source Routing (DSR) and Dynamic MANET On-demand (DYMO) were initially simulated in a city, country, and highway environment to provide an overall evaluation.

  13. Neighboring and connectivity-aware routing in VANETs.

    PubMed

    Ghafoor, Huma; Koo, Insoo; Gohar, Nasir-ud-Din

    2014-01-01

    A novel position-based routing protocol anchor-based connectivity-aware routing (ACAR) for vehicular ad hoc networks (VANETs) is proposed in this paper to ensure connectivity of routes with more successfully delivered packets. Both buses and cars are considered as vehicular nodes running in both clockwise and anticlockwise directions in a city scenario. Both directions are taken into account for faster communication. ACAR is a hybrid protocol, using both the greedy forwarding approach and the store-carry-and-forward approach to minimize the packet drop rate on the basis of certain assumptions. Our solution to situations that occur when the network is sparse and when any (source or intermediate) node has left its initial position makes this protocol different from those existing in the literature. We consider only vehicle-to-vehicle (V2V) communication in which both the source and destination nodes are moving vehicles. Also, no road-side units are considered. Finally, we compare our protocol with A-STAR (a plausible connectivity-aware routing protocol for city environments), and simulation results in NS-2 show improvement in the number of packets delivered to the destination using fewer hops. Also, we show that ACAR has more successfully-delivered long-distance packets with reasonable packet delay than A-STAR.

  14. Application distribution model and related security attacks in VANET

    NASA Astrophysics Data System (ADS)

    Nikaein, Navid; Kanti Datta, Soumya; Marecar, Irshad; Bonnet, Christian

    2013-03-01

    In this paper, we present a model for application distribution and related security attacks in dense vehicular ad hoc networks (VANET) and sparse VANET which forms a delay tolerant network (DTN). We study the vulnerabilities of VANET to evaluate the attack scenarios and introduce a new attacker`s model as an extension to the work done in [6]. Then a VANET model has been proposed that supports the application distribution through proxy app stores on top of mobile platforms installed in vehicles. The steps of application distribution have been studied in detail. We have identified key attacks (e.g. malware, spamming and phishing, software attack and threat to location privacy) for dense VANET and two attack scenarios for sparse VANET. It has been shown that attacks can be launched by distributing malicious applications and injecting malicious codes to On Board Unit (OBU) by exploiting OBU software security holes. Consequences of such security attacks have been described. Finally, countermeasures including the concepts of sandbox have also been presented in depth.

  15. PCPA: A Practical Certificateless Conditional Privacy Preserving Authentication Scheme for Vehicular Ad Hoc Networks

    PubMed Central

    2018-01-01

    Vehicle ad hoc networks (VANETs) is a promising network scenario for greatly improving traffic efficiency and safety, in which smart vehicles can communicate with other vehicles or roadside units. For the availability of VANETs, it is very important to deal with the security and privacy problems for VANETs. In this paper, based on certificateless cryptography and elliptic curve cryptography, we present a certificateless signature with message recovery (CLS-MR), which we believe are of independent interest. Then, a practical certificateless conditional privacy preserving authentication (PCPA) scheme is proposed by incorporating the proposed CLS-MR scheme. Furthermore, the security analysis shows that PCPA satisfies all security and privacy requirements. The evaluation results indicate that PCPA achieves low computation and communication costs because there is no need to use the bilinear pairing and map-to-point hash operations. Moreover, extensive simulations show that PCPA is feasible and achieves prominent performances in terms of message delay and message loss ratio, and thus is more suitable for the deployment and adoption of VANETs. PMID:29762511

  16. Fuzzy Logic-based Intelligent Scheme for Enhancing QoS of Vertical Handover Decision in Vehicular Ad-hoc Networks

    NASA Astrophysics Data System (ADS)

    Azzali, F.; Ghazali, O.; Omar, M. H.

    2017-08-01

    The design of next generation networks in various technologies under the “Anywhere, Anytime” paradigm offers seamless connectivity across different coverage. A conventional algorithm such as RSSThreshold algorithm, that only uses the received strength signal (RSS) as a metric, will decrease handover performance regarding handover latency, delay, packet loss, and handover failure probability. Moreover, the RSS-based algorithm is only suitable for horizontal handover decision to examine the quality of service (QoS) compared to the vertical handover decision in advanced technologies. In the next generation network, vertical handover can be started based on the user’s convenience or choice rather than connectivity reasons. This study proposes a vertical handover decision algorithm that uses a Fuzzy Logic (FL) algorithm, to increase QoS performance in heterogeneous vehicular ad-hoc networks (VANET). The study uses network simulator 2.29 (NS 2.29) along with the mobility traffic network and generator to implement simulation scenarios and topologies. This helps the simulation to achieve a realistic VANET mobility scenario. The required analysis on the performance of QoS in the vertical handover can thus be conducted. The proposed Fuzzy Logic algorithm shows improvement over the conventional algorithm (RSSThreshold) in the average percentage of handover QoS whereby it achieves 20%, 21% and 13% improvement on handover latency, delay, and packet loss respectively. This is achieved through triggering a process in layer two and three that enhances the handover performance.

  17. Modeling and dynamical topology properties of VANET based on complex networks theory

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Li, Jie

    2015-01-01

    Vehicular Ad hoc Network (VANET) is a special subset of multi-hop Mobile Ad hoc Networks in which vehicles can not only communicate with each other but also with the fixed equipments along the roads through wireless interfaces. Recently, it has been discovered that essential systems in real world share similar properties. When they are regarded as networks, among which the dynamic topology structure of VANET system is an important issue. Many real world networks are actually growing with preferential attachment like Internet, transportation system and telephone network. Those phenomena have brought great possibility in finding a strategy to calibrate and control the topology parameters which can help find VANET topology change regulation to relieve traffic jam, prevent traffic accident and improve traffic safety. VANET is a typical complex network which has its basic characteristics. In this paper, we focus on the macroscopic Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) inter-vehicle communication network with complex network theory. In particular, this paper is the first one to propose a method analyzing the topological structure and performance of VANET and present the communications in VANET from a new perspective. Accordingly, we propose degree distribution, clustering coefficient and the short path length of complex network to implement our strategy by numerical example and simulation. All the results demonstrate that VANET shows small world network features and is characterized by a truncated scale-free degree distribution with power-law degree distribution. The average path length of the network is simulated numerically, which indicates that the network shows small-world property and is rarely affected by the randomness. What's more, we carry out extensive simulations of information propagation and mathematically prove the power law property when γ > 2. The results of this study provide useful information for VANET optimization from a macroscopic perspective.

  18. Modeling and dynamical topology properties of VANET based on complex networks theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hong; Li, Jie, E-mail: prof.li@foxmail.com

    2015-01-15

    Vehicular Ad hoc Network (VANET) is a special subset of multi-hop Mobile Ad hoc Networks in which vehicles can not only communicate with each other but also with the fixed equipments along the roads through wireless interfaces. Recently, it has been discovered that essential systems in real world share similar properties. When they are regarded as networks, among which the dynamic topology structure of VANET system is an important issue. Many real world networks are actually growing with preferential attachment like Internet, transportation system and telephone network. Those phenomena have brought great possibility in finding a strategy to calibrate andmore » control the topology parameters which can help find VANET topology change regulation to relieve traffic jam, prevent traffic accident and improve traffic safety. VANET is a typical complex network which has its basic characteristics. In this paper, we focus on the macroscopic Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) inter-vehicle communication network with complex network theory. In particular, this paper is the first one to propose a method analyzing the topological structure and performance of VANET and present the communications in VANET from a new perspective. Accordingly, we propose degree distribution, clustering coefficient and the short path length of complex network to implement our strategy by numerical example and simulation. All the results demonstrate that VANET shows small world network features and is characterized by a truncated scale-free degree distribution with power-law degree distribution. The average path length of the network is simulated numerically, which indicates that the network shows small-world property and is rarely affected by the randomness. What’s more, we carry out extensive simulations of information propagation and mathematically prove the power law property when γ > 2. The results of this study provide useful information for VANET optimization from a macroscopic perspective.« less

  19. Design and Analysis of A Beacon-Less Routing Protocol for Large Volume Content Dissemination in Vehicular Ad Hoc Networks.

    PubMed

    Hu, Miao; Zhong, Zhangdui; Ni, Minming; Baiocchi, Andrea

    2016-11-01

    Large volume content dissemination is pursued by the growing number of high quality applications for Vehicular Ad hoc NETworks(VANETs), e.g., the live road surveillance service and the video-based overtaking assistant service. For the highly dynamical vehicular network topology, beacon-less routing protocols have been proven to be efficient in achieving a balance between the system performance and the control overhead. However, to the authors' best knowledge, the routing design for large volume content has not been well considered in the previous work, which will introduce new challenges, e.g., the enhanced connectivity requirement for a radio link. In this paper, a link Lifetime-aware Beacon-less Routing Protocol (LBRP) is designed for large volume content delivery in VANETs. Each vehicle makes the forwarding decision based on the message header information and its current state, including the speed and position information. A semi-Markov process analytical model is proposed to evaluate the expected delay in constructing one routing path for LBRP. Simulations show that the proposed LBRP scheme outperforms the traditional dissemination protocols in providing a low end-to-end delay. The analytical model is shown to exhibit a good match on the delay estimation with Monte Carlo simulations, as well.

  20. Design and Analysis of A Beacon-Less Routing Protocol for Large Volume Content Dissemination in Vehicular Ad Hoc Networks

    PubMed Central

    Hu, Miao; Zhong, Zhangdui; Ni, Minming; Baiocchi, Andrea

    2016-01-01

    Large volume content dissemination is pursued by the growing number of high quality applications for Vehicular Ad hoc NETworks(VANETs), e.g., the live road surveillance service and the video-based overtaking assistant service. For the highly dynamical vehicular network topology, beacon-less routing protocols have been proven to be efficient in achieving a balance between the system performance and the control overhead. However, to the authors’ best knowledge, the routing design for large volume content has not been well considered in the previous work, which will introduce new challenges, e.g., the enhanced connectivity requirement for a radio link. In this paper, a link Lifetime-aware Beacon-less Routing Protocol (LBRP) is designed for large volume content delivery in VANETs. Each vehicle makes the forwarding decision based on the message header information and its current state, including the speed and position information. A semi-Markov process analytical model is proposed to evaluate the expected delay in constructing one routing path for LBRP. Simulations show that the proposed LBRP scheme outperforms the traditional dissemination protocols in providing a low end-to-end delay. The analytical model is shown to exhibit a good match on the delay estimation with Monte Carlo simulations, as well. PMID:27809285

  1. Development of a low mobility IEEE 802.15.4 compliant VANET system for urban environments.

    PubMed

    Nazabal, Juan Antonio; Falcone, Francisco; Fernández-Valdivielso, Carlos; Matías, Ignacio Raúl

    2013-05-29

    The use of Vehicular Ad-Hoc Networks (VANETs) is growing nowadays and it includes both roadside-to-vehicle communication (RVC) and inter-vehicle communication (IVC). The purpose of VANETs is to exchange useful information between vehicles and the roadside infrastructures for making an intelligent use of them. There are several possible applications for this technology like: emergency warning system for vehicles, cooperative adaptive cruise control or collision avoidance, among others. The objective of this work is to develop a VANET prototype system for urban environments using IEEE 802.15.4 compliant devices. Simulation-based values of the estimated signal strength and radio link quality values are obtained and compared with measurements in outdoor conditions to validate an implemented VANET system. The results confirm the possibility of implementing low cost vehicular communication networks operating at moderate vehicular speeds.

  2. A Geographical Heuristic Routing Protocol for VANETs

    PubMed Central

    Urquiza-Aguiar, Luis; Tripp-Barba, Carolina; Aguilar Igartua, Mónica

    2016-01-01

    Vehicular ad hoc networks (VANETs) leverage the communication system of Intelligent Transportation Systems (ITS). Recently, Delay-Tolerant Network (DTN) routing protocols have increased their popularity among the research community for being used in non-safety VANET applications and services like traffic reporting. Vehicular DTN protocols use geographical and local information to make forwarding decisions. However, current proposals only consider the selection of the best candidate based on a local-search. In this paper, we propose a generic Geographical Heuristic Routing (GHR) protocol that can be applied to any DTN geographical routing protocol that makes forwarding decisions hop by hop. GHR includes in its operation adaptations simulated annealing and Tabu-search meta-heuristics, which have largely been used to improve local-search results in discrete optimization. We include a complete performance evaluation of GHR in a multi-hop VANET simulation scenario for a reporting service. Our study analyzes all of the meaningful configurations of GHR and offers a statistical analysis of our findings by means of MANOVA tests. Our results indicate that the use of a Tabu list contributes to improving the packet delivery ratio by around 5% to 10%. Moreover, if Tabu is used, then the simulated annealing routing strategy gets a better performance than the selection of the best node used with carry and forwarding (default operation). PMID:27669254

  3. A Geographical Heuristic Routing Protocol for VANETs.

    PubMed

    Urquiza-Aguiar, Luis; Tripp-Barba, Carolina; Aguilar Igartua, Mónica

    2016-09-23

    Vehicular ad hoc networks (VANETs) leverage the communication system of Intelligent Transportation Systems (ITS). Recently, Delay-Tolerant Network (DTN) routing protocols have increased their popularity among the research community for being used in non-safety VANET applications and services like traffic reporting. Vehicular DTN protocols use geographical and local information to make forwarding decisions. However, current proposals only consider the selection of the best candidate based on a local-search. In this paper, we propose a generic Geographical Heuristic Routing (GHR) protocol that can be applied to any DTN geographical routing protocol that makes forwarding decisions hop by hop. GHR includes in its operation adaptations simulated annealing and Tabu-search meta-heuristics, which have largely been used to improve local-search results in discrete optimization. We include a complete performance evaluation of GHR in a multi-hop VANET simulation scenario for a reporting service. Our study analyzes all of the meaningful configurations of GHR and offers a statistical analysis of our findings by means of MANOVA tests. Our results indicate that the use of a Tabu list contributes to improving the packet delivery ratio by around 5% to 10%. Moreover, if Tabu is used, then the simulated annealing routing strategy gets a better performance than the selection of the best node used with carry and forwarding (default operation).

  4. Reliable Multihop Broadcast Protocol with a Low-Overhead Link Quality Assessment for ITS Based on VANETs in Highway Scenarios

    PubMed Central

    Galaviz-Mosqueda, Alejandro; Villarreal-Reyes, Salvador; Galeana-Zapién, Hiram; Rubio-Loyola, Javier; Covarrubias-Rosales, David H.

    2014-01-01

    Vehicular ad hoc networks (VANETs) have been identified as a key technology to enable intelligent transport systems (ITS), which are aimed to radically improve the safety, comfort, and greenness of the vehicles in the road. However, in order to fully exploit VANETs potential, several issues must be addressed. Because of the high dynamic of VANETs and the impairments in the wireless channel, one key issue arising when working with VANETs is the multihop dissemination of broadcast packets for safety and infotainment applications. In this paper a reliable low-overhead multihop broadcast (RLMB) protocol is proposed to address the well-known broadcast storm problem. The proposed RLMB takes advantage of the hello messages exchanged between the vehicles and it processes such information to intelligently select a relay set and reduce the redundant broadcast. Additionally, to reduce the hello messages rate dependency, RLMB uses a point-to-zone link evaluation approach. RLMB performance is compared with one of the leading multihop broadcast protocols existing to date. Performance metrics show that our RLMB solution outperforms the leading protocol in terms of important metrics such as packet dissemination ratio, overhead, and delay. PMID:25133224

  5. TripSense: A Trust-Based Vehicular Platoon Crowdsensing Scheme with Privacy Preservation in VANETs

    PubMed Central

    Hu, Hao; Lu, Rongxing; Huang, Cheng; Zhang, Zonghua

    2016-01-01

    In this paper, we propose a trust-based vehicular platoon crowdsensing scheme, named TripSense, in VANET. The proposed TripSense scheme introduces a trust-based system to evaluate vehicles’ sensing abilities and then selects the more capable vehicles in order to improve sensing results accuracy. In addition, the sensing tasks are accomplished by platoon member vehicles and preprocessed by platoon head vehicles before the data are uploaded to server. Hence, it is less time-consuming and more efficient compared with the way where the data are submitted by individual platoon member vehicles. Hence it is more suitable in ephemeral networks like VANET. Moreover, our proposed TripSense scheme integrates unlinkable pseudo-ID techniques to achieve PM vehicle identity privacy, and employs a privacy-preserving sensing vehicle selection scheme without involving the PM vehicle’s trust score to keep its location privacy. Detailed security analysis shows that our proposed TripSense scheme not only achieves desirable privacy requirements but also resists against attacks launched by adversaries. In addition, extensive simulations are conducted to show the correctness and effectiveness of our proposed scheme. PMID:27258287

  6. Providing Location Security in Vehicular Ad Hoc Networks

    ERIC Educational Resources Information Center

    Yan, Gongjun

    2010-01-01

    Location is fundamental information in Vehicular Ad-hoc Networks (VANETs). Almost all VANET applications rely on location information. Therefore it is of importance to ensure location information integrity, meaning that location information is original (from the generator), correct (not bogus or fabricated) and unmodified (value not changed). We…

  7. VANET Clustering Based Routing Protocol Suitable for Deserts.

    PubMed

    Nasr, Mohammed Mohsen Mohammed; Abdelgader, Abdeldime Mohamed Salih; Wang, Zhi-Gong; Shen, Lian-Feng

    2016-04-06

    In recent years, there has emerged applications of vehicular ad hoc networks (VANETs) towards security, safety, rescue, exploration, military and communication redundancy systems in non-populated areas, besides its ordinary use in urban environments as an essential part of intelligent transportation systems (ITS). This paper proposes a novel algorithm for the process of organizing a cluster structure and cluster head election (CHE) suitable for VANETs. Moreover, it presents a robust clustering-based routing protocol, which is appropriate for deserts and can achieve high communication efficiency, ensuring reliable information delivery and optimal exploitation of the equipment on each vehicle. A comprehensive simulation is conducted to evaluate the performance of the proposed CHE and routing algorithms.

  8. VANET Clustering Based Routing Protocol Suitable for Deserts

    PubMed Central

    Mohammed Nasr, Mohammed Mohsen; Abdelgader, Abdeldime Mohamed Salih; Wang, Zhi-Gong; Shen, Lian-Feng

    2016-01-01

    In recent years, there has emerged applications of vehicular ad hoc networks (VANETs) towards security, safety, rescue, exploration, military and communication redundancy systems in non-populated areas, besides its ordinary use in urban environments as an essential part of intelligent transportation systems (ITS). This paper proposes a novel algorithm for the process of organizing a cluster structure and cluster head election (CHE) suitable for VANETs. Moreover, it presents a robust clustering-based routing protocol, which is appropriate for deserts and can achieve high communication efficiency, ensuring reliable information delivery and optimal exploitation of the equipment on each vehicle. A comprehensive simulation is conducted to evaluate the performance of the proposed CHE and routing algorithms. PMID:27058539

  9. A native Bayesian classifier based routing protocol for VANETS

    NASA Astrophysics Data System (ADS)

    Bao, Zhenshan; Zhou, Keqin; Zhang, Wenbo; Gong, Xiaolei

    2016-12-01

    Geographic routing protocols are one of the most hot research areas in VANET (Vehicular Ad-hoc Network). However, there are few routing protocols can take both the transmission efficient and the usage of ratio into account. As we have noticed, different messages in VANET may ask different quality of service. So we raised a Native Bayesian Classifier based routing protocol (Naive Bayesian Classifier-Greedy, NBC-Greedy), which can classify and transmit different messages by its emergency degree. As a result, we can balance the transmission efficient and the usage of ratio with this protocol. Based on Matlab simulation, we can draw a conclusion that NBC-Greedy is more efficient and stable than LR-Greedy and GPSR.

  10. Privacy preservation and authentication on secure geographical routing in VANET

    NASA Astrophysics Data System (ADS)

    Punitha, A.; Manickam, J. Martin Leo

    2017-05-01

    Vehicular Ad hoc Networks (VANETs) play an important role in vehicle-to-vehicle communication as it offers a high level of safety and convenience to drivers. In order to increase the level of security and safety in VANETs, in this paper, we propose a Privacy Preservation and Authentication on Secure Geographical Routing Protocol (PPASGR) for VANET. It provides security by detecting and preventing malicious nodes through two directional antennas such as forward (f-antenna) and backward (b-antenna). The malicious nodes are detected by direction detection, consistency detection and conflict detection. The location of the trusted neighbour is identified using TNT-based location verification scheme after the implementation of the Vehicle Tamper Proof Device (VTPD), Trusted Authority (TA) is generated that produces the anonymous credentials. Finally, VTPD generates pseudo-identity using TA which retrieves the real identity of the sender. Through this approach, the authentication, integrity and confidentiality for routing packets can be achieved. The simulation results show that the proposed approach reduces the packet drop due to attack and improves the packet delivery ratio.

  11. Vehicle monitoring under Vehicular Ad-Hoc Networks (VANET) parameters employing illumination invariant correlation filters for the Pakistan motorway police

    NASA Astrophysics Data System (ADS)

    Gardezi, A.; Umer, T.; Butt, F.; Young, R. C. D.; Chatwin, C. R.

    2016-04-01

    A spatial domain optimal trade-off Maximum Average Correlation Height (SPOT-MACH) filter has been previously developed and shown to have advantages over frequency domain implementations in that it can be made locally adaptive to spatial variations in the input image background clutter and normalised for local intensity changes. The main concern for using the SPOT-MACH is its computationally intensive nature. However in the past enhancements techniques were proposed for the SPOT-MACH to make its execution time comparable to its frequency domain counterpart. In this paper a novel approach is discussed which uses VANET parameters coupled with the SPOT-MACH in order to minimise the extensive processing of the large video dataset acquired from the Pakistan motorways surveillance system. The use of VANET parameters gives us an estimation criterion of the flow of traffic on the Pakistan motorway network and acts as a precursor to the training algorithm. The use of VANET in this scenario would contribute heavily towards the computational complexity minimization of the proposed monitoring system.

  12. Reliable Freestanding Position-Based Routing in Highway Scenarios

    PubMed Central

    Galaviz-Mosqueda, Gabriel A.; Aquino-Santos, Raúl; Villarreal-Reyes, Salvador; Rivera-Rodríguez, Raúl; Villaseñor-González, Luis; Edwards, Arthur

    2012-01-01

    Vehicular Ad Hoc Networks (VANETs) are considered by car manufacturers and the research community as the enabling technology to radically improve the safety, efficiency and comfort of everyday driving. However, before VANET technology can fulfill all its expected potential, several difficulties must be addressed. One key issue arising when working with VANETs is the complexity of the networking protocols compared to those used by traditional infrastructure networks. Therefore, proper design of the routing strategy becomes a main issue for the effective deployment of VANETs. In this paper, a reliable freestanding position-based routing algorithm (FPBR) for highway scenarios is proposed. For this scenario, several important issues such as the high mobility of vehicles and the propagation conditions may affect the performance of the routing strategy. These constraints have only been partially addressed in previous proposals. In contrast, the design approach used for developing FPBR considered the constraints imposed by a highway scenario and implements mechanisms to overcome them. FPBR performance is compared to one of the leading protocols for highway scenarios. Performance metrics show that FPBR yields similar results when considering freespace propagation conditions, and outperforms the leading protocol when considering a realistic highway path loss model. PMID:23202159

  13. A Secure and Privacy-Preserving Navigation Scheme Using Spatial Crowdsourcing in Fog-Based VANETs

    PubMed Central

    Wang, Lingling; Liu, Guozhu; Sun, Lijun

    2017-01-01

    Fog-based VANETs (Vehicular ad hoc networks) is a new paradigm of vehicular ad hoc networks with the advantages of both vehicular cloud and fog computing. Real-time navigation schemes based on fog-based VANETs can promote the scheme performance efficiently. In this paper, we propose a secure and privacy-preserving navigation scheme by using vehicular spatial crowdsourcing based on fog-based VANETs. Fog nodes are used to generate and release the crowdsourcing tasks, and cooperatively find the optimal route according to the real-time traffic information collected by vehicles in their coverage areas. Meanwhile, the vehicle performing the crowdsourcing task can get a reasonable reward. The querying vehicle can retrieve the navigation results from each fog node successively when entering its coverage area, and follow the optimal route to the next fog node until it reaches the desired destination. Our scheme fulfills the security and privacy requirements of authentication, confidentiality and conditional privacy preservation. Some cryptographic primitives, including the Elgamal encryption algorithm, AES, randomized anonymous credentials and group signatures, are adopted to achieve this goal. Finally, we analyze the security and the efficiency of the proposed scheme. PMID:28338620

  14. Reliable freestanding position-based routing in highway scenarios.

    PubMed

    Galaviz-Mosqueda, Gabriel A; Aquino-Santos, Raúl; Villarreal-Reyes, Salvador; Rivera-Rodríguez, Raúl; Villaseñor-González, Luis; Edwards, Arthur

    2012-10-24

    Vehicular Ad Hoc Networks (VANETs) are considered by car manufacturers and the research community as the enabling technology to radically improve the safety, efficiency and comfort of everyday driving. However, before VANET technology can fulfill all its expected potential, several difficulties must be addressed. One key issue arising when working with VANETs is the complexity of the networking protocols compared to those used by traditional infrastructure networks. Therefore, proper design of the routing strategy becomes a main issue for the effective deployment of VANETs. In this paper, a reliable freestanding position-based routing algorithm (FPBR) for highway scenarios is proposed. For this scenario, several important issues such as the high mobility of vehicles and the propagation conditions may affect the performance of the routing strategy. These constraints have only been partially addressed in previous proposals. In contrast, the design approach used for developing FPBR considered the constraints imposed by a highway scenario and implements mechanisms to overcome them. FPBR performance is compared to one of the leading protocols for highway scenarios. Performance metrics show that FPBR yields similar results when considering freespace propagation conditions, and outperforms the leading protocol when considering a realistic highway path loss model.

  15. A Secure and Privacy-Preserving Navigation Scheme Using Spatial Crowdsourcing in Fog-Based VANETs.

    PubMed

    Wang, Lingling; Liu, Guozhu; Sun, Lijun

    2017-03-24

    Fog-based VANETs (Vehicular ad hoc networks) is a new paradigm of vehicular ad hoc networks with the advantages of both vehicular cloud and fog computing. Real-time navigation schemes based on fog-based VANETs can promote the scheme performance efficiently. In this paper, we propose a secure and privacy-preserving navigation scheme by using vehicular spatial crowdsourcing based on fog-based VANETs. Fog nodes are used to generate and release the crowdsourcing tasks, and cooperatively find the optimal route according to the real-time traffic information collected by vehicles in their coverage areas. Meanwhile, the vehicle performing the crowdsourcing task can get a reasonable reward. The querying vehicle can retrieve the navigation results from each fog node successively when entering its coverage area, and follow the optimal route to the next fog node until it reaches the desired destination. Our scheme fulfills the security and privacy requirements of authentication, confidentiality and conditional privacy preservation. Some cryptographic primitives, including the Elgamal encryption algorithm, AES, randomized anonymous credentials and group signatures, are adopted to achieve this goal. Finally, we analyze the security and the efficiency of the proposed scheme.

  16. Vehicle Density Based Forwarding Protocol for Safety Message Broadcast in VANET

    PubMed Central

    Huang, Jiawei; Wang, Jianxin

    2014-01-01

    In vehicular ad hoc networks (VANETs), the medium access control (MAC) protocol is of great importance to provide time-critical safety applications. Contemporary multihop broadcast protocols in VANETs usually choose the farthest node in broadcast range as the forwarder to reduce the number of forwarding hops. However, in this paper, we demonstrate that the farthest forwarder may experience large contention delay in case of high vehicle density. We propose an IEEE 802.11-based multihop broadcast protocol VDF to address the issue of emergency message dissemination. To achieve the tradeoff between contention delay and forwarding hops, VDF adaptably chooses the forwarder according to the vehicle density. Simulation results show that, due to its ability to decrease the transmission collisions, the proposed protocol can provide significantly lower broadcast delay. PMID:25121125

  17. A Cooperative Downloading Method for VANET Using Distributed Fountain Code.

    PubMed

    Liu, Jianhang; Zhang, Wenbin; Wang, Qi; Li, Shibao; Chen, Haihua; Cui, Xuerong; Sun, Yi

    2016-10-12

    Cooperative downloading is one of the effective methods to improve the amount of downloaded data in vehicular ad hoc networking (VANET). However, the poor channel quality and short encounter time bring about a high packet loss rate, which decreases transmission efficiency and fails to satisfy the requirement of high quality of service (QoS) for some applications. Digital fountain code (DFC) can be utilized in the field of wireless communication to increase transmission efficiency. For cooperative forwarding, however, processing delay from frequent coding and decoding as well as single feedback mechanism using DFC cannot adapt to the environment of VANET. In this paper, a cooperative downloading method for VANET using concatenated DFC is proposed to solve the problems above. The source vehicle and cooperative vehicles encodes the raw data using hierarchical fountain code before they send to the client directly or indirectly. Although some packets may be lost, the client can recover the raw data, so long as it receives enough encoded packets. The method avoids data retransmission due to packet loss. Furthermore, the concatenated feedback mechanism in the method reduces the transmission delay effectively. Simulation results indicate the benefits of the proposed scheme in terms of increasing amount of downloaded data and data receiving rate.

  18. Efficient Secure and Privacy-Preserving Route Reporting Scheme for VANETs

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanfei; Pei, Qianwen; Dai, Feifei; Zhang, Lei

    2017-10-01

    Vehicular ad-hoc network (VANET) is a core component of intelligent traffic management system which could provide various of applications such as accident prediction, route reporting, etc. Due to the problems caused by traffic congestion, route reporting becomes a prospective application which can help a driver to get optimal route to save her travel time. Before enjoying the convenience of route reporting, security and privacy-preserving issues need to be concerned. In this paper, we propose a new secure and privacy-preserving route reporting scheme for VANETs. In our scheme, only an authenticated vehicle can use the route reporting service provided by the traffic management center. Further, a vehicle may receive the response from the traffic management center with low latency and without violating the privacy of the vehicle. Experiment results show that our scheme is much more efficiency than the existing one.

  19. A lightweight neighbor-info-based routing protocol for no-base-station taxi-call system.

    PubMed

    Zhu, Xudong; Wang, Jinhang; Chen, Yunchao

    2014-01-01

    Since the quick topology change and short connection duration, the VANET has had unstable routing and wireless signal quality. This paper proposes a kind of lightweight routing protocol-LNIB for call system without base station, which is applicable to the urban taxis. LNIB maintains and predicts neighbor information dynamically, thus finding the reliable path between the source and the target. This paper describes the protocol in detail and evaluates the performance of this protocol by simulating under different nodes density and speed. The result of evaluation shows that the performance of LNIB is better than AODV which is a classic protocol in taxi-call scene.

  20. Sensor Based Framework for Secure Multimedia Communication in VANET

    PubMed Central

    Rahim, Aneel; Khan, Zeeshan Shafi; Bin Muhaya, Fahad T.; Sher, Muhammad; Kim, Tai-Hoon

    2010-01-01

    Secure multimedia communication enhances the safety of passengers by providing visual pictures of accidents and danger situations. In this paper we proposed a framework for secure multimedia communication in Vehicular Ad-Hoc Networks (VANETs). Our proposed framework is mainly divided into four components: redundant information, priority assignment, malicious data verification and malicious node verification. The proposed scheme jhas been validated with the help of the NS-2 network simulator and the Evalvid tool. PMID:22163462

  1. A multimetric, map-aware routing protocol for VANETs in urban areas.

    PubMed

    Tripp-Barba, Carolina; Urquiza-Aguiar, Luis; Aguilar Igartua, Mónica; Rebollo-Monedero, David; de la Cruz Llopis, Luis J; Mezher, Ahmad Mohamad; Aguilar-Calderón, José Alfonso

    2014-01-28

    In recent years, the general interest in routing for vehicular ad hoc networks (VANETs) has increased notably. Many proposals have been presented to improve the behavior of the routing decisions in these very changeable networks. In this paper, we propose a new routing protocol for VANETs that uses four different metrics. which are the distance to destination, the vehicles' density, the vehicles' trajectory and the available bandwidth, making use of the information retrieved by the sensors of the vehicle, in order to make forwarding decisions, minimizing packet losses and packet delay. Through simulation, we compare our proposal to other protocols, such as AODV (Ad hoc On-Demand Distance Vector), GPSR (Greedy Perimeter Stateless Routing), I-GPSR (Improvement GPSR) and to our previous proposal, GBSR-B (Greedy Buffer Stateless Routing Building-aware). Besides, we present a performance evaluation of the individual importance of each metric to make forwarding decisions. Experimental results show that our proposed forwarding decision outperforms existing solutions in terms of packet delivery.

  2. A hierarchical detection method in external communication for self-driving vehicles based on TDMA.

    PubMed

    Alheeti, Khattab M Ali; Al-Ani, Muzhir Shaban; McDonald-Maier, Klaus

    2018-01-01

    Security is considered a major challenge for self-driving and semi self-driving vehicles. These vehicles depend heavily on communications to predict and sense their external environment used in their motion. They use a type of ad hoc network termed Vehicular ad hoc networks (VANETs). Unfortunately, VANETs are potentially exposed to many attacks on network and application level. This paper, proposes a new intrusion detection system to protect the communication system of self-driving cars; utilising a combination of hierarchical models based on clusters and log parameters. This security system is designed to detect Sybil and Wormhole attacks in highway usage scenarios. It is based on clusters, utilising Time Division Multiple Access (TDMA) to overcome some of the obstacles of VANETs such as high density, high mobility and bandwidth limitations in exchanging messages. This makes the security system more efficient, accurate and capable of real time detection and quick in identification of malicious behaviour in VANETs. In this scheme, each vehicle log calculates and stores different parameter values after receiving the cooperative awareness messages from nearby vehicles. The vehicles exchange their log data and determine the difference between the parameters, which is utilised to detect Sybil attacks and Wormhole attacks. In order to realize efficient and effective intrusion detection system, we use the well-known network simulator (ns-2) to verify the performance of the security system. Simulation results indicate that the security system can achieve high detection rates and effectively detect anomalies with low rate of false alarms.

  3. QoS-Oriented High Dynamic Resource Allocation in Vehicular Communication Networks

    PubMed Central

    2014-01-01

    Vehicular ad hoc networks (VANETs) are emerging as new research area and attracting an increasing attention from both industry and research communities. In this context, a dynamic resource allocation policy that maximizes the use of available resources and meets the quality of service (QoS) requirement of constraining applications is proposed. It is a combination of a fair packet scheduling policy and a new adaptive QoS oriented call admission control (CAC) scheme based on the vehicle density variation. This scheme decides whether the connection request is to be admitted into the system, while providing fair access and guaranteeing the desired throughput. The proposed algorithm showed good performance in testing in real world environment. PMID:24616639

  4. A Beacon Transmission Power Control Algorithm Based on Wireless Channel Load Forecasting in VANETs.

    PubMed

    Mo, Yuanfu; Yu, Dexin; Song, Jun; Zheng, Kun; Guo, Yajuan

    2015-01-01

    In a vehicular ad hoc network (VANET), the periodic exchange of single-hop status information broadcasts (beacon frames) produces channel loading, which causes channel congestion and induces information conflict problems. To guarantee fairness in beacon transmissions from each node and maximum network connectivity, adjustment of the beacon transmission power is an effective method for reducing and preventing channel congestion. In this study, the primary factors that influence wireless channel loading are selected to construct the KF-BCLF, which is a channel load forecasting algorithm based on a recursive Kalman filter and employs multiple regression equation. By pre-adjusting the transmission power based on the forecasted channel load, the channel load was kept within a predefined range; therefore, channel congestion was prevented. Based on this method, the CLF-BTPC, which is a transmission power control algorithm, is proposed. To verify KF-BCLF algorithm, a traffic survey method that involved the collection of floating car data along a major traffic road in Changchun City is employed. By comparing this forecast with the measured channel loads, the proposed KF-BCLF algorithm was proven to be effective. In addition, the CLF-BTPC algorithm is verified by simulating a section of eight-lane highway and a signal-controlled urban intersection. The results of the two verification process indicate that this distributed CLF-BTPC algorithm can effectively control channel load, prevent channel congestion, and enhance the stability and robustness of wireless beacon transmission in a vehicular network.

  5. A Beacon Transmission Power Control Algorithm Based on Wireless Channel Load Forecasting in VANETs

    PubMed Central

    Mo, Yuanfu; Yu, Dexin; Song, Jun; Zheng, Kun; Guo, Yajuan

    2015-01-01

    In a vehicular ad hoc network (VANET), the periodic exchange of single-hop status information broadcasts (beacon frames) produces channel loading, which causes channel congestion and induces information conflict problems. To guarantee fairness in beacon transmissions from each node and maximum network connectivity, adjustment of the beacon transmission power is an effective method for reducing and preventing channel congestion. In this study, the primary factors that influence wireless channel loading are selected to construct the KF-BCLF, which is a channel load forecasting algorithm based on a recursive Kalman filter and employs multiple regression equation. By pre-adjusting the transmission power based on the forecasted channel load, the channel load was kept within a predefined range; therefore, channel congestion was prevented. Based on this method, the CLF-BTPC, which is a transmission power control algorithm, is proposed. To verify KF-BCLF algorithm, a traffic survey method that involved the collection of floating car data along a major traffic road in Changchun City is employed. By comparing this forecast with the measured channel loads, the proposed KF-BCLF algorithm was proven to be effective. In addition, the CLF-BTPC algorithm is verified by simulating a section of eight-lane highway and a signal-controlled urban intersection. The results of the two verification process indicate that this distributed CLF-BTPC algorithm can effectively control channel load, prevent channel congestion, and enhance the stability and robustness of wireless beacon transmission in a vehicular network. PMID:26571042

  6. A hierarchical detection method in external communication for self-driving vehicles based on TDMA

    PubMed Central

    Al-ani, Muzhir Shaban; McDonald-Maier, Klaus

    2018-01-01

    Security is considered a major challenge for self-driving and semi self-driving vehicles. These vehicles depend heavily on communications to predict and sense their external environment used in their motion. They use a type of ad hoc network termed Vehicular ad hoc networks (VANETs). Unfortunately, VANETs are potentially exposed to many attacks on network and application level. This paper, proposes a new intrusion detection system to protect the communication system of self-driving cars; utilising a combination of hierarchical models based on clusters and log parameters. This security system is designed to detect Sybil and Wormhole attacks in highway usage scenarios. It is based on clusters, utilising Time Division Multiple Access (TDMA) to overcome some of the obstacles of VANETs such as high density, high mobility and bandwidth limitations in exchanging messages. This makes the security system more efficient, accurate and capable of real time detection and quick in identification of malicious behaviour in VANETs. In this scheme, each vehicle log calculates and stores different parameter values after receiving the cooperative awareness messages from nearby vehicles. The vehicles exchange their log data and determine the difference between the parameters, which is utilised to detect Sybil attacks and Wormhole attacks. In order to realize efficient and effective intrusion detection system, we use the well-known network simulator (ns-2) to verify the performance of the security system. Simulation results indicate that the security system can achieve high detection rates and effectively detect anomalies with low rate of false alarms. PMID:29315302

  7. IJS: An Intelligent Junction Selection Based Routing Protocol for VANET to Support ITS Services.

    PubMed

    Bhoi, Sourav Kumar; Khilar, Pabitra Mohan

    2014-01-01

    Selecting junctions intelligently for data transmission provides better intelligent transportation system (ITS) services. The main problem in vehicular communication is high disturbances of link connectivity due to mobility and less density of vehicles. If link conditions are predicted earlier, then there is a less chance of performance degradation. In this paper, an intelligent junction selection based routing protocol (IJS) is proposed to transmit the data in a quickest path, in which the vehicles are mostly connected and have less link connectivity problem. In this protocol, a helping vehicle is set at every junction to control the communication by predicting link failures or network gaps in a route. Helping vehicle at the junction produces a score for every neighboring junction to forward the data to the destination by considering the current traffic information and selects that junction which has minimum score. IJS protocol is implemented and compared with GyTAR, A-STAR, and GSR routing protocols. Simulation results show that IJS performs better in terms of average end-to-end delay, network gap encounter, and number of hops.

  8. IJS: An Intelligent Junction Selection Based Routing Protocol for VANET to Support ITS Services

    PubMed Central

    Khilar, Pabitra Mohan

    2014-01-01

    Selecting junctions intelligently for data transmission provides better intelligent transportation system (ITS) services. The main problem in vehicular communication is high disturbances of link connectivity due to mobility and less density of vehicles. If link conditions are predicted earlier, then there is a less chance of performance degradation. In this paper, an intelligent junction selection based routing protocol (IJS) is proposed to transmit the data in a quickest path, in which the vehicles are mostly connected and have less link connectivity problem. In this protocol, a helping vehicle is set at every junction to control the communication by predicting link failures or network gaps in a route. Helping vehicle at the junction produces a score for every neighboring junction to forward the data to the destination by considering the current traffic information and selects that junction which has minimum score. IJS protocol is implemented and compared with GyTAR, A-STAR, and GSR routing protocols. Simulation results show that IJS performs better in terms of average end-to-end delay, network gap encounter, and number of hops. PMID:27433485

  9. An Efficient and QoS Supported Multichannel MAC Protocol for Vehicular Ad Hoc Networks

    PubMed Central

    Tan, Guozhen; Yu, Chao

    2017-01-01

    Vehicular Ad Hoc Networks (VANETs) employ multichannel to provide a variety of safety and non-safety (transport efficiency and infotainment) applications, based on the IEEE 802.11p and IEEE 1609.4 protocols. Different types of applications require different levels Quality-of-Service (QoS) support. Recently, transport efficiency and infotainment applications (e.g., electronic map download and Internet access) have received more and more attention, and this kind of applications is expected to become a big market driver in a near future. In this paper, we propose an Efficient and QoS supported Multichannel Medium Access Control (EQM-MAC) protocol for VANETs in a highway environment. The EQM-MAC protocol utilizes the service channel resources for non-safety message transmissions during the whole synchronization interval, and it dynamically adjusts minimum contention window size for different non-safety services according to the traffic conditions. Theoretical model analysis and extensive simulation results show that the EQM-MAC protocol can support QoS services, while ensuring the high saturation throughput and low transmission delay for non-safety applications. PMID:28991217

  10. Lightweight and scalable secure communication in VANET

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoling; Lu, Yang; Zhu, Xiaojuan; Qiu, Shuwei

    2015-05-01

    To avoid a message to be tempered and forged in vehicular ad hoc network (VANET), the digital signature method is adopted by IEEE1609.2. However, the costs of the method are excessively high for large-scale networks. The paper efficiently copes with the issue with a secure communication framework by introducing some lightweight cryptography primitives. In our framework, point-to-point and broadcast communications for vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) are studied, mainly based on symmetric cryptography. A new issue incurred is symmetric key management. Thus, we develop key distribution and agreement protocols for two-party key and group key under different environments, whether a road side unit (RSU) is deployed or not. The analysis shows that our protocols provide confidentiality, authentication, perfect forward secrecy, forward secrecy and backward secrecy. The proposed group key agreement protocol especially solves the key leak problem caused by members joining or leaving in existing key agreement protocols. Due to aggregated signature and substitution of XOR for point addition, the average computation and communication costs do not significantly increase with the increase in the number of vehicles; hence, our framework provides good scalability.

  11. Protocol Independent Adaptive Route Update for VANET

    PubMed Central

    Rasheed, Asim; Qayyum, Amir

    2014-01-01

    High relative node velocity and high active node density have presented challenges to existing routing approaches within highly scaled ad hoc wireless networks, such as Vehicular Ad hoc Networks (VANET). Efficient routing requires finding optimum route with minimum delay, updating it on availability of a better one, and repairing it on link breakages. Current routing protocols are generally focused on finding and maintaining an efficient route, with very less emphasis on route update. Adaptive route update usually becomes impractical for dense networks due to large routing overheads. This paper presents an adaptive route update approach which can provide solution for any baseline routing protocol. The proposed adaptation eliminates the classification of reactive and proactive by categorizing them as logical conditions to find and update the route. PMID:24723807

  12. Synthesizing Existing CSMA and TDMA Based MAC Protocols for VANETs

    PubMed Central

    Huang, Jiawei; Li, Qi; Zhong, Shaohua; Liu, Lianhai; Zhong, Ping; Wang, Jianxin; Ye, Jin

    2017-01-01

    Many Carrier Sense Multiple Access (CSMA) and Time Division Multiple Access (TDMA) based medium access control (MAC) protocols for vehicular ad hoc networks (VANETs) have been proposed recently. Contrary to the common perception that they are competitors, we argue that the underlying strategies used in these MAC protocols are complementary. Based on this insight, we design CTMAC, a MAC protocol that synthesizes existing strategies; namely, random accessing channel (used in CSMA-style protocols) and arbitral reserving channel (used in TDMA-based protocols). CTMAC swiftly changes its strategy according to the vehicle density, and its performance is better than the state-of-the-art protocols. We evaluate CTMAC using at-scale simulations. Our results show that CTMAC reduces the channel completion time and increases the network goodput by 45% for a wide range of application workloads and network settings. PMID:28208590

  13. Performance Improvement in Geographic Routing for Vehicular Ad Hoc Networks

    PubMed Central

    Kaiwartya, Omprakash; Kumar, Sushil; Lobiyal, D. K.; Abdullah, Abdul Hanan; Hassan, Ahmed Nazar

    2014-01-01

    Geographic routing is one of the most investigated themes by researchers for reliable and efficient dissemination of information in Vehicular Ad Hoc Networks (VANETs). Recently, different Geographic Distance Routing (GEDIR) protocols have been suggested in the literature. These protocols focus on reducing the forwarding region towards destination to select the Next Hop Vehicles (NHV). Most of these protocols suffer from the problem of elevated one-hop link disconnection, high end-to-end delay and low throughput even at normal vehicle speed in high vehicle density environment. This paper proposes a Geographic Distance Routing protocol based on Segment vehicle, Link quality and Degree of connectivity (SLD-GEDIR). The protocol selects a reliable NHV using the criteria segment vehicles, one-hop link quality and degree of connectivity. The proposed protocol has been simulated in NS-2 and its performance has been compared with the state-of-the-art protocols: P-GEDIR, J-GEDIR and V-GEDIR. The empirical results clearly reveal that SLD-GEDIR has lower link disconnection and end-to-end delay, and higher throughput as compared to the state-of-the-art protocols. It should be noted that the performance of the proposed protocol is preserved irrespective of vehicle density and speed. PMID:25429415

  14. Performance improvement in geographic routing for Vehicular Ad Hoc Networks.

    PubMed

    Kaiwartya, Omprakash; Kumar, Sushil; Lobiyal, D K; Abdullah, Abdul Hanan; Hassan, Ahmed Nazar

    2014-11-25

    Geographic routing is one of the most investigated themes by researchers for reliable and efficient dissemination of information in Vehicular Ad Hoc Networks (VANETs). Recently, different Geographic Distance Routing (GEDIR) protocols have been suggested in the literature. These protocols focus on reducing the forwarding region towards destination to select the Next Hop Vehicles (NHV). Most of these protocols suffer from the problem of elevated one-hop link disconnection, high end-to-end delay and low throughput even at normal vehicle speed in high vehicle density environment. This paper proposes a Geographic Distance Routing protocol based on Segment vehicle, Link quality and Degree of connectivity (SLD-GEDIR). The protocol selects a reliable NHV using the criteria segment vehicles, one-hop link quality and degree of connectivity. The proposed protocol has been simulated in NS-2 and its performance has been compared with the state-of-the-art protocols: P-GEDIR, J-GEDIR and V-GEDIR. The empirical results clearly reveal that SLD-GEDIR has lower link disconnection and end-to-end delay, and higher throughput as compared to the state-of-the-art protocols. It should be noted that the performance of the proposed protocol is preserved irrespective of vehicle density and speed.

  15. Prediction based Greedy Perimeter Stateless Routing Protocol for Vehicular Self-organizing Network

    NASA Astrophysics Data System (ADS)

    Wang, Chunlin; Fan, Quanrun; Chen, Xiaolin; Xu, Wanjin

    2018-03-01

    PGPSR (Prediction based Greedy Perimeter Stateless Routing) is based on and extended the GPSR protocol to adapt to the high speed mobility of the vehicle auto organization network (VANET) and the changes in the network topology. GPSR is used in the VANET network environment, the network loss rate and throughput are not ideal, even cannot work. Aiming at the problems of the GPSR, the proposed PGPSR routing protocol, it redefines the hello and query packet structure, in the structure of the new node speed and direction information, which received the next update before you can take advantage of its speed and direction to predict the position of node and new network topology, select the right the next hop routing and path. Secondly, the update of the outdated node information of the neighbor’s table is deleted in time. The simulation experiment shows the performance of PGPSR is better than that of GPSR.

  16. Risk assessment, identification, and notification (RAIN) system : a novel approach for traffic management.

    DOT National Transportation Integrated Search

    2009-08-31

    Primary research focused on the design and development of an energy-efficient Risk Notification Message Dissemination Protocol (RNMDP) for vehicular ad hoc networks (VANETs). RNMDP propagates Risk Notification Messages (RNMs) from a location of origi...

  17. Accurate Traffic Flow Prediction in Heterogeneous Vehicular Networks in an Intelligent Transport System Using a Supervised Non-Parametric Classifier.

    PubMed

    El-Sayed, Hesham; Sankar, Sharmi; Daraghmi, Yousef-Awwad; Tiwari, Prayag; Rattagan, Ekarat; Mohanty, Manoranjan; Puthal, Deepak; Prasad, Mukesh

    2018-05-24

    Heterogeneous vehicular networks (HETVNETs) evolve from vehicular ad hoc networks (VANETs), which allow vehicles to always be connected so as to obtain safety services within intelligent transportation systems (ITSs). The services and data provided by HETVNETs should be neither interrupted nor delayed. Therefore, Quality of Service (QoS) improvement of HETVNETs is one of the topics attracting the attention of researchers and the manufacturing community. Several methodologies and frameworks have been devised by researchers to address QoS-prediction service issues. In this paper, to improve QoS, we evaluate various traffic characteristics of HETVNETs and propose a new supervised learning model to capture knowledge on all possible traffic patterns. This model is a refinement of support vector machine (SVM) kernels with a radial basis function (RBF). The proposed model produces better results than SVMs, and outperforms other prediction methods used in a traffic context, as it has lower computational complexity and higher prediction accuracy.

  18. The Traffic Adaptive Data Dissemination (TrAD) Protocol for both Urban and Highway Scenarios.

    PubMed

    Tian, Bin; Hou, Kun Mean; Zhou, Haiying

    2016-06-21

    The worldwide economic cost of road crashes and injuries is estimated to be US$518 billion per year and the annual congestion cost in France is estimated to be €5.9 billion. Vehicular Ad hoc Networks (VANETs) are one solution to improve transport features such as traffic safety, traffic jam and infotainment on wheels, where a great number of event-driven messages need to be disseminated in a timely way in a region of interest. In comparison with traditional wireless networks, VANETs have to consider the highly dynamic network topology and lossy links due to node mobility. Inter-Vehicle Communication (IVC) protocols are the keystone of VANETs. According to our survey, most of the proposed IVC protocols focus on either highway or urban scenarios, but not on both. Furthermore, too few protocols, considering both scenarios, can achieve high performance. In this paper, an infrastructure-less Traffic Adaptive data Dissemination (TrAD) protocol which takes into account road traffic and network traffic status for both highway and urban scenarios will be presented. TrAD has double broadcast suppression techniques and is designed to adapt efficiently to the irregular road topology. The performance of the TrAD protocol was evaluated quantitatively by means of realistic simulations taking into account different real road maps, traffic routes and vehicular densities. The obtained simulation results show that TrAD is more efficient in terms of packet delivery ratio, number of transmissions and delay in comparison with the performance of three well-known reference protocols. Moreover, TrAD can also tolerate a reasonable degree of GPS drift and still achieve efficient data dissemination.

  19. The Traffic Adaptive Data Dissemination (TrAD) Protocol for both Urban and Highway Scenarios

    PubMed Central

    Tian, Bin; Hou, Kun Mean; Zhou, Haiying

    2016-01-01

    The worldwide economic cost of road crashes and injuries is estimated to be US$518 billion per year and the annual congestion cost in France is estimated to be €5.9 billion. Vehicular Ad hoc Networks (VANETs) are one solution to improve transport features such as traffic safety, traffic jam and infotainment on wheels, where a great number of event-driven messages need to be disseminated in a timely way in a region of interest. In comparison with traditional wireless networks, VANETs have to consider the highly dynamic network topology and lossy links due to node mobility. Inter-Vehicle Communication (IVC) protocols are the keystone of VANETs. According to our survey, most of the proposed IVC protocols focus on either highway or urban scenarios, but not on both. Furthermore, too few protocols, considering both scenarios, can achieve high performance. In this paper, an infrastructure-less Traffic Adaptive data Dissemination (TrAD) protocol which takes into account road traffic and network traffic status for both highway and urban scenarios will be presented. TrAD has double broadcast suppression techniques and is designed to adapt efficiently to the irregular road topology. The performance of the TrAD protocol was evaluated quantitatively by means of realistic simulations taking into account different real road maps, traffic routes and vehicular densities. The obtained simulation results show that TrAD is more efficient in terms of packet delivery ratio, number of transmissions and delay in comparison with the performance of three well-known reference protocols. Moreover, TrAD can also tolerate a reasonable degree of GPS drift and still achieve efficient data dissemination. PMID:27338393

  20. BCDP: Budget Constrained and Delay-Bounded Placement for Hybrid Roadside Units in Vehicular Ad Hoc Networks

    PubMed Central

    Li, Peng; Huang, Chuanhe; Liu, Qin

    2014-01-01

    In vehicular ad hoc networks, roadside units (RSUs) placement has been proposed to improve the the overall network performance in many ITS applications. This paper addresses the budget constrained and delay-bounded placement problem (BCDP) for roadside units in vehicular ad hoc networks. There are two types of RSUs: cable connected RSU (c-RSU) and wireless RSU (w-RSU). c-RSUs are interconnected through wired lines, and they form the backbone of VANETs, while w-RSUs connect to other RSUs through wireless communication and serve as an economical extension of the coverage of c-RSUs. The delay-bounded coverage range and deployment cost of these two cases are totally different. We are given a budget constraint and a delay bound, the problem is how to find the optimal candidate sites with the maximal delay-bounded coverage to place RSUs such that a message from any c-RSU in the region can be disseminated to the more vehicles within the given budget constraint and delay bound. We first prove that the BCDP problem is NP-hard. Then we propose several algorithms to solve the BCDP problem. Simulation results show the heuristic algorithms can significantly improve the coverage range and reduce the total deployment cost, compared with other heuristic methods. PMID:25436656

  1. Vehicle infrastructure integration (VII) : exploring the application of disruptive technology to assist older drivers.

    DOT National Transportation Integrated Search

    2012-01-01

    This report discusses the approach and findings of a research project aimed at the evaluation of : an inter-vehicle communications scheme for Vehicular Ad hoc Networks (VANETs). : Because of the size, frequency, and expected number of receivers of pe...

  2. Privacy-Preserving Security for Vehicular Communications

    ERIC Educational Resources Information Center

    Weerasinghe, Hesiri Dhammika

    2011-01-01

    Because of the large number of deaths, severe injuries and huge financial loss due to auto accidents and poor traffic management, road safety and traffic management have become very important areas of interest among research community. As a result, Vehicular Ad-hoc Network (VANET) becomes a promising technology to improve road safety and quality…

  3. SPECS: Secure and Privacy Enhancing Communications Schemes for VANETs

    NASA Astrophysics Data System (ADS)

    Chim, T. W.; Yiu, S. M.; Hui, L. C. K.; Jiang, Zoe L.; Li, Victor O. K.

    Vehicular ad hoc network (VANET) is an emerging type of networks which facilitates vehicles on roads to communicate for driving safety. The basic idea is to allow arbitrary vehicles to broadcast ad hoc messages (e.g. traffic accidents) to other vehicles. However, this raises the concern of security and privacy. Messages should be signed and verified before they are trusted while the real identity of vehicles should not be revealed, but traceable by authorized party. Existing solutions either rely heavily on a tamper-proof hardware device, or cannot satisfy the privacy requirement and do not have an effective message verification scheme. In this paper, we provide a software-based solution which makes use of only two shared secrets to satisfy the privacy requirement and gives lower message overhead and at least 45% higher successful rate than previous solutions in the message verification phase using the bloom filter and the binary search techniques. We also provide the first group communication protocol to allow vehicles to authenticate and securely communicate with others in a group of known vehicles.

  4. Smart Bandwidth Assignation in an Underlay Cellular Network for Internet of Vehicles.

    PubMed

    de la Iglesia, Idoia; Hernandez-Jayo, Unai; Osaba, Eneko; Carballedo, Roberto

    2017-09-27

    The evolution of the IoT (Internet of Things) paradigm applied to new scenarios as VANETs (Vehicular Ad Hoc Networks) has gained momentum in recent years. Both academia and industry have triggered advanced studies in the IoV (Internet of Vehicles), which is understood as an ecosystem where different types of users (vehicles, elements of the infrastructure, pedestrians) are connected. How to efficiently share the available radio resources among the different types of eligible users is one of the important issues to be addressed. This paper briefly analyzes various concepts presented hitherto in the literature and it proposes an enhanced algorithm for ensuring a robust co-existence of the aforementioned system users. Therefore, this paper introduces an underlay RRM (Radio Resource Management) methodology which is capable of (1) improving cellular spectral efficiency while making a minimal impact on cellular communications and (2) ensuring the different QoS (Quality of Service) requirements of ITS (Intelligent Transportation Systems) applications. Simulation results, where we compare the proposed algorithm to the other two RRM, show the promising spectral efficiency performance of the proposed RRM methodology.

  5. Smart Bandwidth Assignation in an Underlay Cellular Network for Internet of Vehicles

    PubMed Central

    de la Iglesia, Idoia; Hernandez-Jayo, Unai

    2017-01-01

    The evolution of the IoT (Internet of Things) paradigm applied to new scenarios as VANETs (Vehicular Ad Hoc Networks) has gained momentum in recent years. Both academia and industry have triggered advanced studies in the IoV (Internet of Vehicles), which is understood as an ecosystem where different types of users (vehicles, elements of the infrastructure, pedestrians) are connected. How to efficiently share the available radio resources among the different types of eligible users is one of the important issues to be addressed. This paper briefly analyzes various concepts presented hitherto in the literature and it proposes an enhanced algorithm for ensuring a robust co-existence of the aforementioned system users. Therefore, this paper introduces an underlay RRM (Radio Resource Management) methodology which is capable of (1) improving cellular spectral efficiency while making a minimal impact on cellular communications and (2) ensuring the different QoS (Quality of Service) requirements of ITS (Intelligent Transportation Systems) applications. Simulation results, where we compare the proposed algorithm to the other two RRM, show the promising spectral efficiency performance of the proposed RRM methodology. PMID:28953256

  6. Smart Collision Avoidance and Hazard Routing Mechanism for Intelligent Transport Network

    NASA Astrophysics Data System (ADS)

    Singh, Gurpreet; Gupta, Pooja; Wahab, Mohd Helmy Abd

    2017-08-01

    The smart vehicular ad-hoc network is the network that consists of vehicles for smooth movement and better management of the vehicular connectivity across the given network. This research paper aims to propose a set of solution for the VANETs consisting of the automatic driven vehicles, also called as the autonomous car. Such vehicular networks are always prone to collision due to the natural or un-natural reasons which must be solved before the large-scale deployment of the autonomous transport systems. The newly designed intelligent transport movement control mechanism is based upon the intelligent data propagation along with the vehicle collision and traffic jam prevention schema [8], which may help the future designs of smart cities to become more robust and less error-prone. In the proposed model, the focus is on designing a new dynamic and robust hazard routing protocol for intelligent vehicular networks for improvement of the overall performance in various aspects. It is expected to improve the overall transmission delay as well as the number of collisions or adversaries across the vehicular network zone.

  7. Intelligent advisory speed limit dedication in highway using VANET.

    PubMed

    Jalooli, Ali; Shaghaghi, Erfan; Jabbarpour, Mohammad Reza; Noor, Rafidah Md; Yeo, Hwasoo; Jung, Jason J

    2014-01-01

    Variable speed limits (VSLs) as a mean for enhancing road traffic safety are studied for decades to modify the speed limit based on the prevailing road circumstances. In this study the pros and cons of VSL systems and their effects on traffic controlling efficiency are summarized. Despite the potential effectiveness of utilizing VSLs, we have witnessed that the effectiveness of this system is impacted by factors such as VSL control strategy used and the level of driver compliance. Hence, the proposed approach called Intelligent Advisory Speed Limit Dedication (IASLD) as the novel VSL control strategy which considers the driver compliance aims to improve the traffic flow and occupancy of vehicles in addition to amelioration of vehicle's travel times. The IASLD provides the advisory speed limit for each vehicle exclusively based on the vehicle's characteristics including the vehicle type, size, and safety capabilities as well as traffic and weather conditions. The proposed approach takes advantage of vehicular ad hoc network (VANET) to accelerate its performance, in the way that simulation results demonstrate the reduction of incident detection time up to 31.2% in comparison with traditional VSL strategy. The simulation results similarly indicate the improvement of traffic flow efficiency, occupancy, and travel time in different conditions.

  8. Highly Dynamic and Adaptive Traffic Congestion Avoidance in Real-Time Inspired by Honey Bee Behavior

    NASA Astrophysics Data System (ADS)

    Wedde, Horst F.; Lehnhoff, Sebastian; van Bonn, Bernhard; Bay, Z.; Becker, S.; Böttcher, S.; Brunner, C.; Büscher, A.; Fürst, T.; Lazarescu, A. M.; Rotaru, E.; Senge, S.; Steinbach, B.; Yilmaz, F.; Zimmermann, T.

    Traffic congestions have become a major problem in metropolitan areas world-wide, within and between cities, to an extent where they make driving and transportation times largely unpredictable. Due to the highly dynamic character of congestion building and dissolving this phenomenon appears even to resist a formal treatment. Static approaches, and even more their global management, have proven counterproductive in practice. Given the latest progress in VANET technology and the remarkable commercially driven efforts like in the European C2C consortium, or the VSC Project in the US, allow meanwhile to tackle various aspects of traffic regulation through VANET communication. In this paper we introduce a novel, completely decentralized multi-agent routing algorithm (termed BeeJamA) which we have derived from the foraging behavior of honey bees. It is highly dynamic, adaptive, robust, and scalable, and it allows for both avoiding congestions, and minimizing traveling times to individual destinations. Vehicle guidance is provided well ahead of every intersection, depending on the individual speeds. Thus strict deadlines are imposed on, and respected by, the BeeJamA algorithm. We report on extensive simulation experiments which show the superior performance of BeeJamA over conventional approaches.

  9. Intelligent Advisory Speed Limit Dedication in Highway Using VANET

    PubMed Central

    Md Noor, Rafidah; Yeo, Hwasoo; Jung, Jason J.

    2014-01-01

    Variable speed limits (VSLs) as a mean for enhancing road traffic safety are studied for decades to modify the speed limit based on the prevailing road circumstances. In this study the pros and cons of VSL systems and their effects on traffic controlling efficiency are summarized. Despite the potential effectiveness of utilizing VSLs, we have witnessed that the effectiveness of this system is impacted by factors such as VSL control strategy used and the level of driver compliance. Hence, the proposed approach called Intelligent Advisory Speed Limit Dedication (IASLD) as the novel VSL control strategy which considers the driver compliance aims to improve the traffic flow and occupancy of vehicles in addition to amelioration of vehicle's travel times. The IASLD provides the advisory speed limit for each vehicle exclusively based on the vehicle's characteristics including the vehicle type, size, and safety capabilities as well as traffic and weather conditions. The proposed approach takes advantage of vehicular ad hoc network (VANET) to accelerate its performance, in the way that simulation results demonstrate the reduction of incident detection time up to 31.2% in comparison with traditional VSL strategy. The simulation results similarly indicate the improvement of traffic flow efficiency, occupancy, and travel time in different conditions. PMID:24999493

  10. An Efficient Framework Model for Optimizing Routing Performance in VANETs.

    PubMed

    Al-Kharasani, Nori M; Zulkarnain, Zuriati Ahmad; Subramaniam, Shamala; Hanapi, Zurina Mohd

    2018-02-15

    Routing in Vehicular Ad hoc Networks (VANET) is a bit complicated because of the nature of the high dynamic mobility. The efficiency of routing protocol is influenced by a number of factors such as network density, bandwidth constraints, traffic load, and mobility patterns resulting in frequency changes in network topology. Therefore, Quality of Service (QoS) is strongly needed to enhance the capability of the routing protocol and improve the overall network performance. In this paper, we introduce a statistical framework model to address the problem of optimizing routing configuration parameters in Vehicle-to-Vehicle (V2V) communication. Our framework solution is based on the utilization of the network resources to further reflect the current state of the network and to balance the trade-off between frequent changes in network topology and the QoS requirements. It consists of three stages: simulation network stage used to execute different urban scenarios, the function stage used as a competitive approach to aggregate the weighted cost of the factors in a single value, and optimization stage used to evaluate the communication cost and to obtain the optimal configuration based on the competitive cost. The simulation results show significant performance improvement in terms of the Packet Delivery Ratio (PDR), Normalized Routing Load (NRL), Packet loss (PL), and End-to-End Delay (E2ED).

  11. An Efficient Framework Model for Optimizing Routing Performance in VANETs

    PubMed Central

    Zulkarnain, Zuriati Ahmad; Subramaniam, Shamala

    2018-01-01

    Routing in Vehicular Ad hoc Networks (VANET) is a bit complicated because of the nature of the high dynamic mobility. The efficiency of routing protocol is influenced by a number of factors such as network density, bandwidth constraints, traffic load, and mobility patterns resulting in frequency changes in network topology. Therefore, Quality of Service (QoS) is strongly needed to enhance the capability of the routing protocol and improve the overall network performance. In this paper, we introduce a statistical framework model to address the problem of optimizing routing configuration parameters in Vehicle-to-Vehicle (V2V) communication. Our framework solution is based on the utilization of the network resources to further reflect the current state of the network and to balance the trade-off between frequent changes in network topology and the QoS requirements. It consists of three stages: simulation network stage used to execute different urban scenarios, the function stage used as a competitive approach to aggregate the weighted cost of the factors in a single value, and optimization stage used to evaluate the communication cost and to obtain the optimal configuration based on the competitive cost. The simulation results show significant performance improvement in terms of the Packet Delivery Ratio (PDR), Normalized Routing Load (NRL), Packet loss (PL), and End-to-End Delay (E2ED). PMID:29462884

  12. Integration of Body Sensor Networks and Vehicular Ad-hoc Networks for Traffic Safety.

    PubMed

    Reyes-Muñoz, Angelica; Domingo, Mari Carmen; López-Trinidad, Marco Antonio; Delgado, José Luis

    2016-01-15

    The emergence of Body Sensor Networks (BSNs) constitutes a new and fast growing trend for the development of daily routine applications. However, in the case of heterogeneous BSNs integration with Vehicular ad hoc Networks (VANETs) a large number of difficulties remain, that must be solved, especially when talking about the detection of human state factors that impair the driving of motor vehicles. The main contributions of this investigation are principally three: (1) an exhaustive review of the current mechanisms to detect four basic physiological behavior states (drowsy, drunk, driving under emotional state disorders and distracted driving) that may cause traffic accidents is presented; (2) A middleware architecture is proposed. This architecture can communicate with the car dashboard, emergency services, vehicles belonging to the VANET and road or street facilities. This architecture seeks on the one hand to improve the car driving experience of the driver and on the other hand to extend security mechanisms for the surrounding individuals; and (3) as a proof of concept, an Android real-time attention low level detection application that runs in a next-generation smartphone is developed. The application features mechanisms that allow one to measure the degree of attention of a driver on the base of her/his EEG signals, establish wireless communication links via various standard wireless means, GPRS, Bluetooth and WiFi and issue alarms of critical low driver attention levels.

  13. Integration of Body Sensor Networks and Vehicular Ad-hoc Networks for Traffic Safety

    PubMed Central

    Reyes-Muñoz, Angelica; Domingo, Mari Carmen; López-Trinidad, Marco Antonio; Delgado, José Luis

    2016-01-01

    The emergence of Body Sensor Networks (BSNs) constitutes a new and fast growing trend for the development of daily routine applications. However, in the case of heterogeneous BSNs integration with Vehicular ad hoc Networks (VANETs) a large number of difficulties remain, that must be solved, especially when talking about the detection of human state factors that impair the driving of motor vehicles. The main contributions of this investigation are principally three: (1) an exhaustive review of the current mechanisms to detect four basic physiological behavior states (drowsy, drunk, driving under emotional state disorders and distracted driving) that may cause traffic accidents is presented; (2) A middleware architecture is proposed. This architecture can communicate with the car dashboard, emergency services, vehicles belonging to the VANET and road or street facilities. This architecture seeks on the one hand to improve the car driving experience of the driver and on the other hand to extend security mechanisms for the surrounding individuals; and (3) as a proof of concept, an Android real-time attention low level detection application that runs in a next-generation smartphone is developed. The application features mechanisms that allow one to measure the degree of attention of a driver on the base of her/his EEG signals, establish wireless communication links via various standard wireless means, GPRS, Bluetooth and WiFi and issue alarms of critical low driver attention levels. PMID:26784204

  14. A cooperative positioning algorithm for DSRC enabled vehicular networks

    NASA Astrophysics Data System (ADS)

    Efatmaneshnik, M.; Kealy, A.; Alam, N.; Dempster, A. G.

    2011-12-01

    Many of the safety related applications that can be facilitated by Dedicated Short Range Communications (DSRC), such as vehicle proximity warnings, automated braking (e.g. at level crossings), speed advisories, pedestrian alerts etc., rely on a robust vehicle positioning capability such as that provided by a Global Navigation Satellite System (GNSS). Vehicles in remote areas, entering tunnels, high rise areas or any high multipath/ weak signal environment will challenge the integrity of GNSS position solutions, and ultimately the safety application it underpins. To address this challenge, this paper presents an innovative application of Cooperative Positioning techniques within vehicular networks. CP refers to any method of integrating measurements from different positioning systems and sensors in order to improve the overall quality (accuracy and reliability) of the final position solution. This paper investigates the potential of the DSRC infrastructure itself to provide an inter-vehicular ranging signal that can be used as a measurement within the CP algorithm. In this paper, time-based techniques of ranging are introduced and bandwidth requirements are investigated and presented. The robustness of the CP algorithm to inter-vehicle connection failure as well as GNSS dropouts is also demonstrated using simulation studies. Finally, the performance of the Constrained Kalman Filter used to integrate GNSS measurements with DSRC derived range estimates within a typical VANET is described and evaluated.

  15. A Lightweight Radio Propagation Model for Vehicular Communication in Road Tunnels.

    PubMed

    Qureshi, Muhammad Ahsan; Noor, Rafidah Md; Shamim, Azra; Shamshirband, Shahaboddin; Raymond Choo, Kim-Kwang

    2016-01-01

    Radio propagation models (RPMs) are generally employed in Vehicular Ad Hoc Networks (VANETs) to predict path loss in multiple operating environments (e.g. modern road infrastructure such as flyovers, underpasses and road tunnels). For example, different RPMs have been developed to predict propagation behaviour in road tunnels. However, most existing RPMs for road tunnels are computationally complex and are based on field measurements in frequency band not suitable for VANET deployment. Furthermore, in tunnel applications, consequences of moving radio obstacles, such as large buses and delivery trucks, are generally not considered in existing RPMs. This paper proposes a computationally inexpensive RPM with minimal set of parameters to predict path loss in an acceptable range for road tunnels. The proposed RPM utilizes geometric properties of the tunnel, such as height and width along with the distance between sender and receiver, to predict the path loss. The proposed RPM also considers the additional attenuation caused by the moving radio obstacles in road tunnels, while requiring a negligible overhead in terms of computational complexity. To demonstrate the utility of our proposed RPM, we conduct a comparative summary and evaluate its performance. Specifically, an extensive data gathering campaign is carried out in order to evaluate the proposed RPM. The field measurements use the 5 GHz frequency band, which is suitable for vehicular communication. The results demonstrate that a close match exists between the predicted values and measured values of path loss. In particular, an average accuracy of 94% is found with R2 = 0.86.

  16. Spatial Characterization of Radio Propagation Channel in Urban Vehicle-to-Infrastructure Environments to Support WSNs Deployment

    PubMed Central

    Granda, Fausto; Azpilicueta, Leyre; Vargas-Rosales, Cesar; Lopez-Iturri, Peio; Aguirre, Erik; Astrain, Jose Javier; Villandangos, Jesus; Falcone, Francisco

    2017-01-01

    Vehicular ad hoc Networks (VANETs) enable vehicles to communicate with each other as well as with roadside units (RSUs). Although there is a significant research effort in radio channel modeling focused on vehicle-to-vehicle (V2V), not much work has been done for vehicle-to-infrastructure (V2I) using 3D ray-tracing tools. This work evaluates some important parameters of a V2I wireless channel link such as large-scale path loss and multipath metrics in a typical urban scenario using a deterministic simulation model based on an in-house 3D Ray-Launching (3D-RL) algorithm at 5.9 GHz. Results show the high impact that the spatial distance; link frequency; placement of RSUs; and factors such as roundabout, geometry and relative position of the obstacles have in V2I propagation channel. A detailed spatial path loss characterization of the V2I channel along the streets and avenues is presented. The 3D-RL results show high accuracy when compared with measurements, and represent more reliably the propagation phenomena when compared with analytical path loss models. Performance metrics for a real test scenario implemented with a VANET wireless sensor network implemented ad-hoc are also described. These results constitute a starting point in the design phase of Wireless Sensor Networks (WSNs) radio-planning in the urban V2I deployment in terms of coverage. PMID:28590429

  17. Spatial Characterization of Radio Propagation Channel in Urban Vehicle-to-Infrastructure Environments to Support WSNs Deployment.

    PubMed

    Granda, Fausto; Azpilicueta, Leyre; Vargas-Rosales, Cesar; Lopez-Iturri, Peio; Aguirre, Erik; Astrain, Jose Javier; Villandangos, Jesus; Falcone, Francisco

    2017-06-07

    Vehicular ad hoc Networks (VANETs) enable vehicles to communicate with each other as well as with roadside units (RSUs). Although there is a significant research effort in radio channel modeling focused on vehicle-to-vehicle (V2V), not much work has been done for vehicle-to-infrastructure (V2I) using 3D ray-tracing tools. This work evaluates some important parameters of a V2I wireless channel link such as large-scale path loss and multipath metrics in a typical urban scenario using a deterministic simulation model based on an in-house 3D Ray-Launching (3D-RL) algorithm at 5.9 GHz. Results show the high impact that the spatial distance; link frequency; placement of RSUs; and factors such as roundabout, geometry and relative position of the obstacles have in V2I propagation channel. A detailed spatial path loss characterization of the V2I channel along the streets and avenues is presented. The 3D-RL results show high accuracy when compared with measurements, and represent more reliably the propagation phenomena when compared with analytical path loss models. Performance metrics for a real test scenario implemented with a VANET wireless sensor network implemented ad-hoc are also described. These results constitute a starting point in the design phase of Wireless Sensor Networks (WSNs) radio-planning in the urban V2I deployment in terms of coverage.

  18. Intelligent Traffic Quantification System

    NASA Astrophysics Data System (ADS)

    Mohanty, Anita; Bhanja, Urmila; Mahapatra, Sudipta

    2017-08-01

    Currently, city traffic monitoring and controlling is a big issue in almost all cities worldwide. Vehicular ad-hoc Network (VANET) technique is an efficient tool to minimize this problem. Usually, different types of on board sensors are installed in vehicles to generate messages characterized by different vehicle parameters. In this work, an intelligent system based on fuzzy clustering technique is developed to reduce the number of individual messages by extracting important features from the messages of a vehicle. Therefore, the proposed fuzzy clustering technique reduces the traffic load of the network. The technique also reduces congestion and quantifies congestion.

  19. A Lightweight Radio Propagation Model for Vehicular Communication in Road Tunnels

    PubMed Central

    Shamim, Azra; Shamshirband, Shahaboddin; Raymond Choo, Kim-Kwang

    2016-01-01

    Radio propagation models (RPMs) are generally employed in Vehicular Ad Hoc Networks (VANETs) to predict path loss in multiple operating environments (e.g. modern road infrastructure such as flyovers, underpasses and road tunnels). For example, different RPMs have been developed to predict propagation behaviour in road tunnels. However, most existing RPMs for road tunnels are computationally complex and are based on field measurements in frequency band not suitable for VANET deployment. Furthermore, in tunnel applications, consequences of moving radio obstacles, such as large buses and delivery trucks, are generally not considered in existing RPMs. This paper proposes a computationally inexpensive RPM with minimal set of parameters to predict path loss in an acceptable range for road tunnels. The proposed RPM utilizes geometric properties of the tunnel, such as height and width along with the distance between sender and receiver, to predict the path loss. The proposed RPM also considers the additional attenuation caused by the moving radio obstacles in road tunnels, while requiring a negligible overhead in terms of computational complexity. To demonstrate the utility of our proposed RPM, we conduct a comparative summary and evaluate its performance. Specifically, an extensive data gathering campaign is carried out in order to evaluate the proposed RPM. The field measurements use the 5 GHz frequency band, which is suitable for vehicular communication. The results demonstrate that a close match exists between the predicted values and measured values of path loss. In particular, an average accuracy of 94% is found with R2 = 0.86. PMID:27031989

  20. Verifying Safety Messages Using Relative-Time and Zone Priority in Vehicular Ad Hoc Networks.

    PubMed

    Banani, Sam; Gordon, Steven; Thiemjarus, Surapa; Kittipiyakul, Somsak

    2018-04-13

    In high-density road networks, with each vehicle broadcasting multiple messages per second, the arrival rate of safety messages can easily exceed the rate at which digital signatures can be verified. Since not all messages can be verified, algorithms for selecting which messages to verify are required to ensure that each vehicle receives appropriate awareness about neighbouring vehicles. This paper presents a novel scheme to select important safety messages for verification in vehicular ad hoc networks (VANETs). The proposed scheme uses location and direction of the sender, as well as proximity and relative-time between vehicles, to reduce the number of irrelevant messages verified (i.e., messages from vehicles that are unlikely to cause an accident). Compared with other existing schemes, the analysis results show that the proposed scheme can verify messages from nearby vehicles with lower inter-message delay and reduced packet loss and thus provides high level of awareness of the nearby vehicles.

  1. Verifying Safety Messages Using Relative-Time and Zone Priority in Vehicular Ad Hoc Networks

    PubMed Central

    Banani, Sam; Thiemjarus, Surapa; Kittipiyakul, Somsak

    2018-01-01

    In high-density road networks, with each vehicle broadcasting multiple messages per second, the arrival rate of safety messages can easily exceed the rate at which digital signatures can be verified. Since not all messages can be verified, algorithms for selecting which messages to verify are required to ensure that each vehicle receives appropriate awareness about neighbouring vehicles. This paper presents a novel scheme to select important safety messages for verification in vehicular ad hoc networks (VANETs). The proposed scheme uses location and direction of the sender, as well as proximity and relative-time between vehicles, to reduce the number of irrelevant messages verified (i.e., messages from vehicles that are unlikely to cause an accident). Compared with other existing schemes, the analysis results show that the proposed scheme can verify messages from nearby vehicles with lower inter-message delay and reduced packet loss and thus provides high level of awareness of the nearby vehicles. PMID:29652840

  2. Road safety alerting system with radar and GPS cooperation in a VANET environment

    NASA Astrophysics Data System (ADS)

    Santamaria, Amilcare Francesco; Sottile, Cesare; De Rango, Floriano; Voznak, Miroslav

    2014-05-01

    New applications in wireless environments are increasing and keeping even more interests from the developer companies and researchers. In particular, in these last few years the government and institutional organization for road safety spent a lot of resources and money to promote Vehicular Ad-Hoc Network (VANET) technology, also car manufactures are giving a lot of contributions on this field as well. In our paper, we propose an innovative system to increase road safety, matching the requests of the market allowing a cooperation between on-board devices. The vehicles are equipped with On Board Unit (OBU) and On Board Radar Unit (OBRU), which can spread alerting messages around the network regarding warning and dangerous situations exploiting IEEE802.llp standard. Vehicles move along roads observing the environment, traffic and road conditions, and vehicles parameters as well. These information can be elaborated and shared between neighbors, Road Side Unit (RSU)s and, of course, with Internet, allowing inter-system communications exploiting an Road Traffic Manager (RTM). Radar systems task it the detection of the environment in order to increase the knowledge of current conditions of the roads, for example it is important to identify obstacles, road accidents, dangerous situations and so on. Once detected exploiting onboard devices, such as Global Position System (GPS) receiver it is possible to know the exact location of the caught event and after a data elaboration the information is spread along the network. Once the drivers are advised, they can make some precautionary actions such as reduction of traveling speed or modification of current road path. In this work the routing algorithms, which have the main goal to rapidly disseminate information, are also been investigated.

  3. Gis-Based Route Finding Using ANT Colony Optimization and Urban Traffic Data from Different Sources

    NASA Astrophysics Data System (ADS)

    Davoodi, M.; Mesgari, M. S.

    2015-12-01

    Nowadays traffic data is obtained from multiple sources including GPS, Video Vehicle Detectors (VVD), Automatic Number Plate Recognition (ANPR), Floating Car Data (FCD), VANETs, etc. All such data can be used for route finding. This paper proposes a model for finding the optimum route based on the integration of traffic data from different sources. Ant Colony Optimization is applied in this paper because the concept of this method (movement of ants in a network) is similar to urban road network and movements of cars. The results indicate that this model is capable of incorporating data from different sources, which may even be inconsistent.

  4. Performance Analysis of the IEEE 802.11p Multichannel MAC Protocol in Vehicular Ad Hoc Networks

    PubMed Central

    2017-01-01

    Vehicular Ad Hoc Networks (VANETs) employ multichannel to provide a variety of safety and non-safety applications, based on the IEEE 802.11p and IEEE 1609.4 protocols. The safety applications require timely and reliable transmissions, while the non-safety applications require efficient and high throughput. In the IEEE 1609.4 protocol, operating interval is divided into alternating Control Channel (CCH) interval and Service Channel (SCH) interval with an identical length. During the CCH interval, nodes transmit safety-related messages and control messages, and Enhanced Distributed Channel Access (EDCA) mechanism is employed to allow four Access Categories (ACs) within a station with different priorities according to their criticality for the vehicle’s safety. During the SCH interval, the non-safety massages are transmitted. An analytical model is proposed in this paper to evaluate performance, reliability and efficiency of the IEEE 802.11p and IEEE 1609.4 protocols. The proposed model improves the existing work by taking serval aspects and the character of multichannel switching into design consideration. Extensive performance evaluations based on analysis and simulation help to validate the accuracy of the proposed model and analyze the capabilities and limitations of the IEEE 802.11p and IEEE 1609.4 protocols, and enhancement suggestions are given. PMID:29231882

  5. Performance Analysis of the IEEE 802.11p Multichannel MAC Protocol in Vehicular Ad Hoc Networks.

    PubMed

    Song, Caixia

    2017-12-12

    Vehicular Ad Hoc Networks (VANETs) employ multichannel to provide a variety of safety and non-safety applications, based on the IEEE 802.11p and IEEE 1609.4 protocols. The safety applications require timely and reliable transmissions, while the non-safety applications require efficient and high throughput. In the IEEE 1609.4 protocol, operating interval is divided into alternating Control Channel (CCH) interval and Service Channel (SCH) interval with an identical length. During the CCH interval, nodes transmit safety-related messages and control messages, and Enhanced Distributed Channel Access (EDCA) mechanism is employed to allow four Access Categories (ACs) within a station with different priorities according to their criticality for the vehicle's safety. During the SCH interval, the non-safety massages are transmitted. An analytical model is proposed in this paper to evaluate performance, reliability and efficiency of the IEEE 802.11p and IEEE 1609.4 protocols. The proposed model improves the existing work by taking serval aspects and the character of multichannel switching into design consideration. Extensive performance evaluations based on analysis and simulation help to validate the accuracy of the proposed model and analyze the capabilities and limitations of the IEEE 802.11p and IEEE 1609.4 protocols, and enhancement suggestions are given.

  6. A bandwidth-efficient service for local information dissemination in sparse to dense roadways.

    PubMed

    Garcia-Lozano, Estrella; Campo, Celeste; Garcia-Rubio, Carlos; Cortes-Martin, Alberto; Rodriguez-Carrion, Alicia; Noriega-Vivas, Patricia

    2013-07-05

    Thanks to the research on Vehicular Ad Hoc Networks (VANETs), we will be able to deploy applications on roadways that will contribute to energy efficiency through a better planning of long trips. With this goal in mind, we have designed a gas/charging station advertising system, which takes advantage of the broadcast nature of the network. We have found that reducing the number of total sent packets is important, as it allows for a better use of the available bandwidth. We have designed improvements for a distance-based flooding scheme, so that it can support the advertising application with good results in sparse to dense roadway scenarios.

  7. A Bandwidth-Efficient Service for Local Information Dissemination in Sparse to Dense Roadways

    PubMed Central

    Garcia-Lozano, Estrella; Campo, Celeste; Garcia-Rubio, Carlos; Cortes-Martin, Alberto; Rodriguez-Carrion, Alicia; Noriega-Vivas, Patricia

    2013-01-01

    Thanks to the research on Vehicular Ad Hoc Networks (VANETs), we will be able to deploy applications on roadways that will contribute to energy efficiency through a better planning of long trips. With this goal in mind, we have designed a gas/charging station advertising system, which takes advantage of the broadcast nature of the network. We have found that reducing the number of total sent packets is important, as it allows for a better use of the available bandwidth. We have designed improvements for a distance-based flooding scheme, so that it can support the advertising application with good results in sparse to dense roadway scenarios. PMID:23881130

  8. Achieve Location Privacy-Preserving Range Query in Vehicular Sensing

    PubMed Central

    Lu, Rongxing; Ma, Maode; Bao, Haiyong

    2017-01-01

    Modern vehicles are equipped with a plethora of on-board sensors and large on-board storage, which enables them to gather and store various local-relevant data. However, the wide application of vehicular sensing has its own challenges, among which location-privacy preservation and data query accuracy are two critical problems. In this paper, we propose a novel range query scheme, which helps the data requester to accurately retrieve the sensed data from the distributive on-board storage in vehicular ad hoc networks (VANETs) with location privacy preservation. The proposed scheme exploits structured scalars to denote the locations of data requesters and vehicles, and achieves the privacy-preserving location matching with the homomorphic Paillier cryptosystem technique. Detailed security analysis shows that the proposed range query scheme can successfully preserve the location privacy of the involved data requesters and vehicles, and protect the confidentiality of the sensed data. In addition, performance evaluations are conducted to show the efficiency of the proposed scheme, in terms of computation delay and communication overhead. Specifically, the computation delay and communication overhead are not dependent on the length of the scalar, and they are only proportional to the number of vehicles. PMID:28786943

  9. Achieve Location Privacy-Preserving Range Query in Vehicular Sensing.

    PubMed

    Kong, Qinglei; Lu, Rongxing; Ma, Maode; Bao, Haiyong

    2017-08-08

    Modern vehicles are equipped with a plethora of on-board sensors and large on-board storage, which enables them to gather and store various local-relevant data. However, the wide application of vehicular sensing has its own challenges, among which location-privacy preservation and data query accuracy are two critical problems. In this paper, we propose a novel range query scheme, which helps the data requester to accurately retrieve the sensed data from the distributive on-board storage in vehicular ad hoc networks (VANETs) with location privacy preservation. The proposed scheme exploits structured scalars to denote the locations of data requesters and vehicles, and achieves the privacy-preserving location matching with the homomorphic Paillier cryptosystem technique. Detailed security analysis shows that the proposed range query scheme can successfully preserve the location privacy of the involved data requesters and vehicles, and protect the confidentiality of the sensed data. In addition, performance evaluations are conducted to show the efficiency of the proposed scheme, in terms of computation delay and communication overhead. Specifically, the computation delay and communication overhead are not dependent on the length of the scalar, and they are only proportional to the number of vehicles.

  10. The Local Integrity Approach for Urban Contexts: Definition and Vehicular Experimental Assessment

    PubMed Central

    Margaria, Davide; Falletti, Emanuela

    2016-01-01

    A novel cooperative integrity monitoring concept, called “local integrity”, suitable to automotive applications in urban scenarios, is discussed in this paper. The idea is to take advantage of a collaborative Vehicular Ad hoc NETwork (VANET) architecture in order to perform a spatial/temporal characterization of possible degradations of Global Navigation Satellite System (GNSS) signals. Such characterization enables the computation of the so-called “Local Protection Levels”, taking into account local impairments to the received signals. Starting from theoretical concepts, this paper describes the experimental validation by means of a measurement campaign and the real-time implementation of the algorithm on a vehicular prototype. A live demonstration in a real scenario has been successfully carried out, highlighting effectiveness and performance of the proposed approach. PMID:26821028

  11. Formal analysis and evaluation of the back-off procedure in IEEE802.11P VANET

    NASA Astrophysics Data System (ADS)

    Jin, Li; Zhang, Guoan; Zhu, Xiaojun

    2017-07-01

    The back-off procedure is one of the media access control technologies in 802.11P communication protocol. It plays an important role in avoiding message collisions and allocating channel resources. Formal methods are effective approaches for studying the performances of communication systems. In this paper, we establish a discrete time model for the back-off procedure. We use Markov Decision Processes (MDPs) to model the non-deterministic and probabilistic behaviors of the procedure, and use the probabilistic computation tree logic (PCTL) language to express different properties, which ensure that the discrete time model performs their basic functionality. Based on the model and PCTL specifications, we study the effect of contention window length on the number of senders in the neighborhood of given receivers, and that on the station’s expected cost required by the back-off procedure to successfully send packets. The variation of the window length may increase or decrease the maximum probability of correct transmissions within a time contention unit. We propose to use PRISM model checker to describe our proposed back-off procedure for IEEE802.11P protocol in vehicle network, and define different probability properties formulas to automatically verify the model and derive numerical results. The obtained results are helpful for justifying the values of the time contention unit.

  12. A Group Based Key Sharing and Management Algorithm for Vehicular Ad Hoc Networks

    PubMed Central

    Moharram, Mohammed Morsi; Azam, Farzana

    2014-01-01

    Vehicular ad hoc networks (VANETs) are one special type of ad hoc networks that involves vehicles on roads. Typically like ad hoc networks, broadcast approach is used for data dissemination. Blind broadcast to each and every node results in exchange of useless and irrelevant messages and hence creates an overhead. Unicasting is not preferred in ad-hoc networks due to the dynamic topology and the resource requirements as compared to broadcasting. Simple broadcasting techniques create several problems on privacy, disturbance, and resource utilization. In this paper, we propose media mixing algorithm to decide what information should be provided to each user and how to provide such information. Results obtained through simulation show that fewer number of keys are needed to share compared to simple broadcasting. Privacy is also enhanced through this approach. PMID:24587749

  13. Direction based Hazard Routing Protocol (DHRP) for disseminating road hazard information using road side infrastructures in VANETs.

    PubMed

    Berlin, M A; Anand, Sheila

    2014-01-01

    This paper presents Direction based Hazard Routing Protocol (DHRP) for disseminating information about fixed road hazards such as road blocks, tree fall, boulders on road, snow pile up, landslide, road maintenance work and other obstacles to the vehicles approaching the hazardous location. The proposed work focuses on dissemination of hazard messages on highways with sparse traffic. The vehicle coming across the hazard would report the presence of the hazard. It is proposed to use Road Side fixed infrastructure Units for reliable and timely delivery of hazard messages to vehicles. The vehicles can then take appropriate safety action to avoid the hazardous location. The proposed protocol has been implemented and tested using SUMO simulator to generate road traffic and NS 2.33 network simulator to analyze the performance of DHRP. The performance of the proposed protocol was also compared with simple flooding protocol and the results are presented.

  14. An ultrasonic sensor system based on a two-dimensional state method for highway vehicle violation detection applications.

    PubMed

    Liu, Jun; Han, Jiuqiang; Lv, Hongqiang; Li, Bing

    2015-04-16

    With the continuing growth of highway construction and vehicle use expansion all over the world, highway vehicle traffic rule violation (TRV) detection has become more and more important so as to avoid traffic accidents and injuries in intelligent transportation systems (ITS) and vehicular ad hoc networks (VANETs). Since very few works have contributed to solve the TRV detection problem by moving vehicle measurements and surveillance devices, this paper develops a novel parallel ultrasonic sensor system that can be used to identify the TRV behavior of a host vehicle in real-time. Then a two-dimensional state method is proposed, utilizing the spacial state and time sequential states from the data of two parallel ultrasonic sensors to detect and count the highway vehicle violations. Finally, the theoretical TRV identification probability is analyzed, and actual experiments are conducted on different highway segments with various driving speeds, which indicates that the identification accuracy of the proposed method can reach about 90.97%.

  15. An Ultrasonic Sensor System Based on a Two-Dimensional State Method for Highway Vehicle Violation Detection Applications

    PubMed Central

    Liu, Jun; Han, Jiuqiang; Lv, Hongqiang; Li, Bing

    2015-01-01

    With the continuing growth of highway construction and vehicle use expansion all over the world, highway vehicle traffic rule violation (TRV) detection has become more and more important so as to avoid traffic accidents and injuries in intelligent transportation systems (ITS) and vehicular ad hoc networks (VANETs). Since very few works have contributed to solve the TRV detection problem by moving vehicle measurements and surveillance devices, this paper develops a novel parallel ultrasonic sensor system that can be used to identify the TRV behavior of a host vehicle in real-time. Then a two-dimensional state method is proposed, utilizing the spacial state and time sequential states from the data of two parallel ultrasonic sensors to detect and count the highway vehicle violations. Finally, the theoretical TRV identification probability is analyzed, and actual experiments are conducted on different highway segments with various driving speeds, which indicates that the identification accuracy of the proposed method can reach about 90.97%. PMID:25894940

  16. An ultra-wide bandwidth-based range/GPS tight integration approach for relative positioning in vehicular ad hoc networks

    NASA Astrophysics Data System (ADS)

    Shen, Feng; Wayn Cheong, Joon; Dempster, Andrew G.

    2015-04-01

    Relative position awareness is a vital premise for the implementation of emerging intelligent transportation systems, such as collision warning. However, commercial global navigation satellite systems (GNSS) receivers do not satisfy the requirements of these applications. Fortunately, cooperative positioning (CP) techniques, through sharing the GNSS measurements between vehicles, can improve the performance of relative positioning in a vehicular ad hoc network (VANET). In this paper, while assuming there are no obstacles between vehicles, a new enhanced tightly coupled CP technique is presented by adding ultra-wide bandwidth (UWB)-based inter-vehicular range measurements. In the proposed CP method, each vehicle fuses the GPS measurements and the inter-vehicular range measurements. Based on analytical and experimental results, in the full GPS coverage environment, the new tight integration CP method outperforms the INS-aided tight CP method, tight CP method, and DGPS by 11%, 15%, and 24%, respectively; in the GPS outage scenario, the performance improvement achieves 60%, 65%, and 73%, respectively.

  17. A Bandwidth-Efficient Dissemination Scheme of Non-Safety Information in Urban VANETs †

    PubMed Central

    Garcia-Lozano, Estrella; Campo, Celeste; Garcia-Rubio, Carlos; Rodriguez-Carrion, Alicia

    2016-01-01

    The recent release of standards for vehicular communications will hasten the development of smart cities in the following years. Many applications for vehicular networks, such as blocked road warnings or advertising, will require multi-hop dissemination of information to all vehicles in a region of interest. However, these networks present special features and difficulties that may require special measures. The dissemination of information may cause broadcast storms. Urban scenarios are especially sensitive to broadcast storms because of the high density of vehicles in downtown areas. They also present numerous crossroads and signal blocking due to buildings, which make dissemination more difficult than in open, almost straight interurban roadways. In this article, we discuss several options to avoid the broadcast storm problem while trying to achieve the maximum coverage of the region of interest. Specifically, we evaluate through simulations different ways to detect and take advantage of intersections and a strategy based on store-carry-forward to overcome short disconnections between groups of vehicles. Our conclusions are varied, and we propose two different solutions, depending on the requirements of the application. PMID:27355956

  18. A Bandwidth-Efficient Dissemination Scheme of Non-Safety Information in Urban VANETs.

    PubMed

    Garcia-Lozano, Estrella; Campo, Celeste; Garcia-Rubio, Carlos; Rodriguez-Carrion, Alicia

    2016-06-27

    The recent release of standards for vehicular communications will hasten the development of smart cities in the following years. Many applications for vehicular networks, such as blocked road warnings or advertising, will require multi-hop dissemination of information to all vehicles in a region of interest. However, these networks present special features and difficulties that may require special measures. The dissemination of information may cause broadcast storms. Urban scenarios are especially sensitive to broadcast storms because of the high density of vehicles in downtown areas. They also present numerous crossroads and signal blocking due to buildings, which make dissemination more difficult than in open, almost straight interurban roadways. In this article, we discuss several options to avoid the broadcast storm problem while trying to achieve the maximum coverage of the region of interest. Specifically, we evaluate through simulations different ways to detect and take advantage of intersections and a strategy based on store-carry-forward to overcome short disconnections between groups of vehicles. Our conclusions are varied, and we propose two different solutions, depending on the requirements of the application.

  19. 76 FR 34286 - ITS Joint Program Office; Webinar on Connected Vehicle Infrastructure Deployment Analysis Report...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ... Deployment Analysis Report Review; Notice of Public Meeting AGENCY: Research and Innovative Technology... discuss the Connected Vehicle Infrastructure Deployment Analysis Report. The webinar will provide an... and Transportation Officials (AASHTO) Connected Vehicle Infrastructure Deployment Analysis Report...

  20. Laser based analysis using a passively Q-switched laser employing analysis electronics and a means for detecting atomic optical emission of the laser media

    DOEpatents

    Woodruff, Steven D.; Mcintyre, Dustin L.

    2016-03-29

    A device for Laser based Analysis using a Passively Q-Switched Laser comprising an optical pumping source optically connected to a laser media. The laser media and a Q-switch are positioned between and optically connected to a high reflectivity mirror (HR) and an output coupler (OC) along an optical axis. The output coupler (OC) is optically connected to the output lens along the optical axis. A means for detecting atomic optical emission comprises a filter and a light detector. The optical filter is optically connected to the laser media and the optical detector. A control system is connected to the optical detector and the analysis electronics. The analysis electronics are optically connected to the output lens. The detection of the large scale laser output production triggers the control system to initiate the precise timing and data collection from the detector and analysis.

  1. Advanced Connectivity Analysis (ACA): a Large Scale Functional Connectivity Data Mining Environment.

    PubMed

    Chen, Rong; Nixon, Erika; Herskovits, Edward

    2016-04-01

    Using resting-state functional magnetic resonance imaging (rs-fMRI) to study functional connectivity is of great importance to understand normal development and function as well as a host of neurological and psychiatric disorders. Seed-based analysis is one of the most widely used rs-fMRI analysis methods. Here we describe a freely available large scale functional connectivity data mining software package called Advanced Connectivity Analysis (ACA). ACA enables large-scale seed-based analysis and brain-behavior analysis. It can seamlessly examine a large number of seed regions with minimal user input. ACA has a brain-behavior analysis component to delineate associations among imaging biomarkers and one or more behavioral variables. We demonstrate applications of ACA to rs-fMRI data sets from a study of autism.

  2. Functional Connectivity Parcellation of the Human Thalamus by Independent Component Analysis.

    PubMed

    Zhang, Sheng; Li, Chiang-Shan R

    2017-11-01

    As a key structure to relay and integrate information, the thalamus supports multiple cognitive and affective functions through the connectivity between its subnuclei and cortical and subcortical regions. Although extant studies have largely described thalamic regional functions in anatomical terms, evidence accumulates to suggest a more complex picture of subareal activities and connectivities of the thalamus. In this study, we aimed to parcellate the thalamus and examine whole-brain connectivity of its functional clusters. With resting state functional magnetic resonance imaging data from 96 adults, we used independent component analysis (ICA) to parcellate the thalamus into 10 components. On the basis of the independence assumption, ICA helps to identify how subclusters overlap spatially. Whole brain functional connectivity of each subdivision was computed for independent component's time course (ICtc), which is a unique time series to represent an IC. For comparison, we computed seed-region-based functional connectivity using the averaged time course across all voxels within a thalamic subdivision. The results showed that, at p < 10 -6 , corrected, 49% of voxels on average overlapped among subdivisions. Compared with seed-region analysis, ICtc analysis revealed patterns of connectivity that were more distinguished between thalamic clusters. ICtc analysis demonstrated thalamic connectivity to the primary motor cortex, which has eluded the analysis as well as previous studies based on averaged time series, and clarified thalamic connectivity to the hippocampus, caudate nucleus, and precuneus. The new findings elucidate functional organization of the thalamus and suggest that ICA clustering in combination with ICtc rather than seed-region analysis better distinguishes whole-brain connectivities among functional clusters of a brain region.

  3. A Multi-User Game-Theoretical Multipath Routing Protocol to Send Video-Warning Messages over Mobile Ad Hoc Networks.

    PubMed

    Mezher, Ahmad Mohamad; Igartua, Mónica Aguilar; de la Cruz Llopis, Luis J; Pallarès Segarra, Esteve; Tripp-Barba, Carolina; Urquiza-Aguiar, Luis; Forné, Jordi; Sanvicente Gargallo, Emilio

    2015-04-17

    The prevention of accidents is one of the most important goals of ad hoc networks in smart cities. When an accident happens, dynamic sensors (e.g., citizens with smart phones or tablets, smart vehicles and buses, etc.) could shoot a video clip of the accident and send it through the ad hoc network. With a video message, the level of seriousness of the accident could be much better evaluated by the authorities (e.g., health care units, police and ambulance drivers) rather than with just a simple text message. Besides, other citizens would be rapidly aware of the incident. In this way, smart dynamic sensors could participate in reporting a situation in the city using the ad hoc network so it would be possible to have a quick reaction warning citizens and emergency units. The deployment of an efficient routing protocol to manage video-warning messages in mobile Ad hoc Networks (MANETs) has important benefits by allowing a fast warning of the incident, which potentially can save lives. To contribute with this goal, we propose a multipath routing protocol to provide video-warning messages in MANETs using a novel game-theoretical approach. As a base for our work, we start from our previous work, where a 2-players game-theoretical routing protocol was proposed to provide video-streaming services over MANETs. In this article, we further generalize the analysis made for a general number of N players in the MANET. Simulations have been carried out to show the benefits of our proposal, taking into account the mobility of the nodes and the presence of interfering traffic. Finally, we also have tested our approach in a vehicular ad hoc network as an incipient start point to develop a novel proposal specifically designed for VANETs.

  4. A brain-region-based meta-analysis method utilizing the Apriori algorithm.

    PubMed

    Niu, Zhendong; Nie, Yaoxin; Zhou, Qian; Zhu, Linlin; Wei, Jieyao

    2016-05-18

    Brain network connectivity modeling is a crucial method for studying the brain's cognitive functions. Meta-analyses can unearth reliable results from individual studies. Meta-analytic connectivity modeling is a connectivity analysis method based on regions of interest (ROIs) which showed that meta-analyses could be used to discover brain network connectivity. In this paper, we propose a new meta-analysis method that can be used to find network connectivity models based on the Apriori algorithm, which has the potential to derive brain network connectivity models from activation information in the literature, without requiring ROIs. This method first extracts activation information from experimental studies that use cognitive tasks of the same category, and then maps the activation information to corresponding brain areas by using the automatic anatomical label atlas, after which the activation rate of these brain areas is calculated. Finally, using these brain areas, a potential brain network connectivity model is calculated based on the Apriori algorithm. The present study used this method to conduct a mining analysis on the citations in a language review article by Price (Neuroimage 62(2):816-847, 2012). The results showed that the obtained network connectivity model was consistent with that reported by Price. The proposed method is helpful to find brain network connectivity by mining the co-activation relationships among brain regions. Furthermore, results of the co-activation relationship analysis can be used as a priori knowledge for the corresponding dynamic causal modeling analysis, possibly achieving a significant dimension-reducing effect, thus increasing the efficiency of the dynamic causal modeling analysis.

  5. Abnormal Connectional Fingerprint in Schizophrenia: A Novel Network Analysis of Diffusion Tensor Imaging Data

    PubMed Central

    Edwin Thanarajah, Sharmili; Han, Cheol E.; Rotarska-Jagiela, Anna; Singer, Wolf; Deichmann, Ralf; Maurer, Konrad; Kaiser, Marcus; Uhlhaas, Peter J.

    2016-01-01

    The graph theoretical analysis of structural magnetic resonance imaging (MRI) data has received a great deal of interest in recent years to characterize the organizational principles of brain networks and their alterations in psychiatric disorders, such as schizophrenia. However, the characterization of networks in clinical populations can be challenging, since the comparison of connectivity between groups is influenced by several factors, such as the overall number of connections and the structural abnormalities of the seed regions. To overcome these limitations, the current study employed the whole-brain analysis of connectional fingerprints in diffusion tensor imaging data obtained at 3 T of chronic schizophrenia patients (n = 16) and healthy, age-matched control participants (n = 17). Probabilistic tractography was performed to quantify the connectivity of 110 brain areas. The connectional fingerprint of a brain area represents the set of relative connection probabilities to all its target areas and is, hence, less affected by overall white and gray matter changes than absolute connectivity measures. After detecting brain regions with abnormal connectional fingerprints through similarity measures, we tested each of its relative connection probability between groups. We found altered connectional fingerprints in schizophrenia patients consistent with a dysconnectivity syndrome. While the medial frontal gyrus showed only reduced connectivity, the connectional fingerprints of the inferior frontal gyrus and the putamen mainly contained relatively increased connection probabilities to areas in the frontal, limbic, and subcortical areas. These findings are in line with previous studies that reported abnormalities in striatal–frontal circuits in the pathophysiology of schizophrenia, highlighting the potential utility of connectional fingerprints for the analysis of anatomical networks in the disorder. PMID:27445870

  6. Abnormal Connectional Fingerprint in Schizophrenia: A Novel Network Analysis of Diffusion Tensor Imaging Data.

    PubMed

    Edwin Thanarajah, Sharmili; Han, Cheol E; Rotarska-Jagiela, Anna; Singer, Wolf; Deichmann, Ralf; Maurer, Konrad; Kaiser, Marcus; Uhlhaas, Peter J

    2016-01-01

    The graph theoretical analysis of structural magnetic resonance imaging (MRI) data has received a great deal of interest in recent years to characterize the organizational principles of brain networks and their alterations in psychiatric disorders, such as schizophrenia. However, the characterization of networks in clinical populations can be challenging, since the comparison of connectivity between groups is influenced by several factors, such as the overall number of connections and the structural abnormalities of the seed regions. To overcome these limitations, the current study employed the whole-brain analysis of connectional fingerprints in diffusion tensor imaging data obtained at 3 T of chronic schizophrenia patients (n = 16) and healthy, age-matched control participants (n = 17). Probabilistic tractography was performed to quantify the connectivity of 110 brain areas. The connectional fingerprint of a brain area represents the set of relative connection probabilities to all its target areas and is, hence, less affected by overall white and gray matter changes than absolute connectivity measures. After detecting brain regions with abnormal connectional fingerprints through similarity measures, we tested each of its relative connection probability between groups. We found altered connectional fingerprints in schizophrenia patients consistent with a dysconnectivity syndrome. While the medial frontal gyrus showed only reduced connectivity, the connectional fingerprints of the inferior frontal gyrus and the putamen mainly contained relatively increased connection probabilities to areas in the frontal, limbic, and subcortical areas. These findings are in line with previous studies that reported abnormalities in striatal-frontal circuits in the pathophysiology of schizophrenia, highlighting the potential utility of connectional fingerprints for the analysis of anatomical networks in the disorder.

  7. VehiHealth: An Emergency Routing Protocol for Vehicular Ad Hoc Network to Support Healthcare System.

    PubMed

    Bhoi, S K; Khilar, P M

    2016-03-01

    Survival of a patient depends on effective data communication in healthcare system. In this paper, an emergency routing protocol for Vehicular Ad hoc Network (VANET) is proposed to quickly forward the current patient status information from the ambulance to the hospital to provide pre-medical treatment. As the ambulance takes time to reach the hospital, ambulance doctor can provide sudden treatment to the patient in emergency by sending patient status information to the hospital through the vehicles using vehicular communication. Secondly, the experienced doctors respond to the information by quickly sending a treatment information to the ambulance. In this protocol, data is forwarded through that path which has less link breakage problem between the vehicles. This is done by calculating an intersection value I v a l u e for the neighboring intersections by using the current traffic information. Then the data is forwarded through that intersection which has minimum I v a l u e . Simulation results show VehiHealth performs better than P-GEDIR, GyTAR, A-STAR and GSR routing protocols in terms of average end-to-end delay, number of link breakage, path length, and average response time.

  8. Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia.

    PubMed

    Damaraju, E; Allen, E A; Belger, A; Ford, J M; McEwen, S; Mathalon, D H; Mueller, B A; Pearlson, G D; Potkin, S G; Preda, A; Turner, J A; Vaidya, J G; van Erp, T G; Calhoun, V D

    2014-01-01

    Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differences in schizophrenia have been inconsistent between studies, with reports of hyperconnectivity and hypoconnectivity between the same brain regions. Using resting state eyes-closed functional imaging and independent component analysis on a multi-site data that included 151 schizophrenia patients and 163 age- and gender matched healthy controls, we decomposed the functional brain data into 100 components and identified 47 as functionally relevant intrinsic connectivity networks. We subsequently evaluated group differences in functional network connectivity, both in a static sense, computed as the pairwise Pearson correlations between the full network time courses (5.4 minutes in length), and a dynamic sense, computed using sliding windows (44 s in length) and k-means clustering to characterize five discrete functional connectivity states. Static connectivity analysis revealed that compared to healthy controls, patients show significantly stronger connectivity, i.e., hyperconnectivity, between the thalamus and sensory networks (auditory, motor and visual), as well as reduced connectivity (hypoconnectivity) between sensory networks from all modalities. Dynamic analysis suggests that (1), on average, schizophrenia patients spend much less time than healthy controls in states typified by strong, large-scale connectivity, and (2), that abnormal connectivity patterns are more pronounced during these connectivity states. In particular, states exhibiting cortical-subcortical antagonism (anti-correlations) and strong positive connectivity between sensory networks are those that show the group differences of thalamic hyperconnectivity and sensory hypoconnectivity. Group differences are weak or absent during other connectivity states. Dynamic analysis also revealed hypoconnectivity between the putamen and sensory networks during the same states of thalamic hyperconnectivity; notably, this finding cannot be observed in the static connectivity analysis. Finally, in post-hoc analyses we observed that the relationships between sub-cortical low frequency power and connectivity with sensory networks is altered in patients, suggesting different functional interactions between sub-cortical nuclei and sensorimotor cortex during specific connectivity states. While important differences between patients with schizophrenia and healthy controls have been identified, one should interpret the results with caution given the history of medication in patients. Taken together, our results support and expand current knowledge regarding dysconnectivity in schizophrenia, and strongly advocate the use of dynamic analyses to better account for and understand functional connectivity differences.

  9. Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia

    PubMed Central

    Damaraju, E.; Allen, E.A.; Belger, A.; Ford, J.M.; McEwen, S.; Mathalon, D.H.; Mueller, B.A.; Pearlson, G.D.; Potkin, S.G.; Preda, A.; Turner, J.A.; Vaidya, J.G.; van Erp, T.G.; Calhoun, V.D.

    2014-01-01

    Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differences in schizophrenia have been inconsistent between studies, with reports of hyperconnectivity and hypoconnectivity between the same brain regions. Using resting state eyes-closed functional imaging and independent component analysis on a multi-site data that included 151 schizophrenia patients and 163 age- and gender matched healthy controls, we decomposed the functional brain data into 100 components and identified 47 as functionally relevant intrinsic connectivity networks. We subsequently evaluated group differences in functional network connectivity, both in a static sense, computed as the pairwise Pearson correlations between the full network time courses (5.4 minutes in length), and a dynamic sense, computed using sliding windows (44 s in length) and k-means clustering to characterize five discrete functional connectivity states. Static connectivity analysis revealed that compared to healthy controls, patients show significantly stronger connectivity, i.e., hyperconnectivity, between the thalamus and sensory networks (auditory, motor and visual), as well as reduced connectivity (hypoconnectivity) between sensory networks from all modalities. Dynamic analysis suggests that (1), on average, schizophrenia patients spend much less time than healthy controls in states typified by strong, large-scale connectivity, and (2), that abnormal connectivity patterns are more pronounced during these connectivity states. In particular, states exhibiting cortical–subcortical antagonism (anti-correlations) and strong positive connectivity between sensory networks are those that show the group differences of thalamic hyperconnectivity and sensory hypoconnectivity. Group differences are weak or absent during other connectivity states. Dynamic analysis also revealed hypoconnectivity between the putamen and sensory networks during the same states of thalamic hyperconnectivity; notably, this finding cannot be observed in the static connectivity analysis. Finally, in post-hoc analyses we observed that the relationships between sub-cortical low frequency power and connectivity with sensory networks is altered in patients, suggesting different functional interactions between sub-cortical nuclei and sensorimotor cortex during specific connectivity states. While important differences between patients with schizophrenia and healthy controls have been identified, one should interpret the results with caution given the history of medication in patients. Taken together, our results support and expand current knowledge regarding dysconnectivity in schizophrenia, and strongly advocate the use of dynamic analyses to better account for and understand functional connectivity differences. PMID:25161896

  10. Facilitating Neuronal Connectivity Analysis of Evoked Responses by Exposing Local Activity with Principal Component Analysis Preprocessing: Simulation of Evoked MEG

    PubMed Central

    Gao, Lin; Zhang, Tongsheng; Wang, Jue; Stephen, Julia

    2014-01-01

    When connectivity analysis is carried out for event related EEG and MEG, the presence of strong spatial correlations from spontaneous activity in background may mask the local neuronal evoked activity and lead to spurious connections. In this paper, we hypothesized PCA decomposition could be used to diminish the background activity and further improve the performance of connectivity analysis in event related experiments. The idea was tested using simulation, where we found that for the 306-channel Elekta Neuromag system, the first 4 PCs represent the dominant background activity, and the source connectivity pattern after preprocessing is consistent with the true connectivity pattern designed in the simulation. Improving signal to noise of the evoked responses by discarding the first few PCs demonstrates increased coherences at major physiological frequency bands when removing the first few PCs. Furthermore, the evoked information was maintained after PCA preprocessing. In conclusion, it is demonstrated that the first few PCs represent background activity, and PCA decomposition can be employed to remove it to expose the evoked activity for the channels under investigation. Therefore, PCA can be applied as a preprocessing approach to improve neuronal connectivity analysis for event related data. PMID:22918837

  11. Facilitating neuronal connectivity analysis of evoked responses by exposing local activity with principal component analysis preprocessing: simulation of evoked MEG.

    PubMed

    Gao, Lin; Zhang, Tongsheng; Wang, Jue; Stephen, Julia

    2013-04-01

    When connectivity analysis is carried out for event related EEG and MEG, the presence of strong spatial correlations from spontaneous activity in background may mask the local neuronal evoked activity and lead to spurious connections. In this paper, we hypothesized PCA decomposition could be used to diminish the background activity and further improve the performance of connectivity analysis in event related experiments. The idea was tested using simulation, where we found that for the 306-channel Elekta Neuromag system, the first 4 PCs represent the dominant background activity, and the source connectivity pattern after preprocessing is consistent with the true connectivity pattern designed in the simulation. Improving signal to noise of the evoked responses by discarding the first few PCs demonstrates increased coherences at major physiological frequency bands when removing the first few PCs. Furthermore, the evoked information was maintained after PCA preprocessing. In conclusion, it is demonstrated that the first few PCs represent background activity, and PCA decomposition can be employed to remove it to expose the evoked activity for the channels under investigation. Therefore, PCA can be applied as a preprocessing approach to improve neuronal connectivity analysis for event related data.

  12. Statistical inference of dynamic resting-state functional connectivity using hierarchical observation modeling.

    PubMed

    Sojoudi, Alireza; Goodyear, Bradley G

    2016-12-01

    Spontaneous fluctuations of blood-oxygenation level-dependent functional magnetic resonance imaging (BOLD fMRI) signals are highly synchronous between brain regions that serve similar functions. This provides a means to investigate functional networks; however, most analysis techniques assume functional connections are constant over time. This may be problematic in the case of neurological disease, where functional connections may be highly variable. Recently, several methods have been proposed to determine moment-to-moment changes in the strength of functional connections over an imaging session (so called dynamic connectivity). Here a novel analysis framework based on a hierarchical observation modeling approach was proposed, to permit statistical inference of the presence of dynamic connectivity. A two-level linear model composed of overlapping sliding windows of fMRI signals, incorporating the fact that overlapping windows are not independent was described. To test this approach, datasets were synthesized whereby functional connectivity was either constant (significant or insignificant) or modulated by an external input. The method successfully determines the statistical significance of a functional connection in phase with the modulation, and it exhibits greater sensitivity and specificity in detecting regions with variable connectivity, when compared with sliding-window correlation analysis. For real data, this technique possesses greater reproducibility and provides a more discriminative estimate of dynamic connectivity than sliding-window correlation analysis. Hum Brain Mapp 37:4566-4580, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Database Creation and Statistical Analysis: Finding Connections Between Two or More Secondary Storage Device

    DTIC Science & Technology

    2017-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS DATABASE CREATION AND STATISTICAL ANALYSIS: FINDING CONNECTIONS BETWEEN TWO OR MORE SECONDARY...BLANK ii Approved for public release. Distribution is unlimited. DATABASE CREATION AND STATISTICAL ANALYSIS: FINDING CONNECTIONS BETWEEN TWO OR MORE...Problem and Motivation . . . . . . . . . . . . . . . . . . . 1 1.2 DOD Applicability . . . . . . . . . . . . . . . . .. . . . . . . 2 1.3 Research

  14. Studying hemispheric lateralization during a Stroop task through near-infrared spectroscopy-based connectivity

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Sun, Jinyan; Sun, Bailei; Luo, Qingming; Gong, Hui

    2014-05-01

    Near-infrared spectroscopy (NIRS) is a developing and promising functional brain imaging technology. Developing data analysis methods to effectively extract meaningful information from collected data is the major bottleneck in popularizing this technology. In this study, we measured hemodynamic activity of the prefrontal cortex (PFC) during a color-word matching Stroop task using NIRS. Hemispheric lateralization was examined by employing traditional activation and novel NIRS-based connectivity analyses simultaneously. Wavelet transform coherence was used to assess intrahemispheric functional connectivity. Spearman correlation analysis was used to examine the relationship between behavioral performance and activation/functional connectivity, respectively. In agreement with activation analysis, functional connectivity analysis revealed leftward lateralization for the Stroop effect and correlation with behavioral performance. However, functional connectivity was more sensitive than activation for identifying hemispheric lateralization. Granger causality was used to evaluate the effective connectivity between hemispheres. The results showed increased information flow from the left to the right hemispheres for the incongruent versus the neutral task, indicating a leading role of the left PFC. This study demonstrates that the NIRS-based connectivity can reveal the functional architecture of the brain more comprehensively than traditional activation, helping to better utilize the advantages of NIRS.

  15. High cycle fatigue crack modeling and analysis for deck truss flooring connection details : appendices.

    DOT National Transportation Integrated Search

    1997-07-01

    The appendix belongs to "High cycle fatigue crack modeling and analysis for deck truss flooring connection details : final report". : The Oregon Department of Transportation is responsible for many steel deck truss bridges containing connection detai...

  16. Development of large-scale functional brain networks in children.

    PubMed

    Supekar, Kaustubh; Musen, Mark; Menon, Vinod

    2009-07-01

    The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7-9 y) and 22 young-adults (ages 19-22 y). Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar "small-world" organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism.

  17. Development of Large-Scale Functional Brain Networks in Children

    PubMed Central

    Supekar, Kaustubh; Musen, Mark; Menon, Vinod

    2009-01-01

    The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7–9 y) and 22 young-adults (ages 19–22 y). Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar “small-world” organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism. PMID:19621066

  18. Advanced correlation grid: Analysis and visualisation of functional connectivity among multiple spike trains.

    PubMed

    Masud, Mohammad Shahed; Borisyuk, Roman; Stuart, Liz

    2017-07-15

    This study analyses multiple spike trains (MST) data, defines its functional connectivity and subsequently visualises an accurate diagram of connections. This is a challenging problem. For example, it is difficult to distinguish the common input and the direct functional connection of two spike trains. The new method presented in this paper is based on the traditional pairwise cross-correlation function (CCF) and a new combination of statistical techniques. First, the CCF is used to create the Advanced Correlation Grid (ACG) correlation where both the significant peak of the CCF and the corresponding time delay are used for detailed analysis of connectivity. Second, these two features of functional connectivity are used to classify connections. Finally, the visualization technique is used to represent the topology of functional connections. Examples are presented in the paper to demonstrate the new Advanced Correlation Grid method and to show how it enables discrimination between (i) influence from one spike train to another through an intermediate spike train and (ii) influence from one common spike train to another pair of analysed spike trains. The ACG method enables scientists to automatically distinguish between direct connections from spurious connections such as common source connection and indirect connection whereas existing methods require in-depth analysis to identify such connections. The ACG is a new and effective method for studying functional connectivity of multiple spike trains. This method can identify accurately all the direct connections and can distinguish common source and indirect connections automatically. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Analysis of the thermal balance characteristics for multiple-connected piezoelectric transformers.

    PubMed

    Park, Joung-Hu; Cho, Bo-Hyung; Choi, Sung-Jin; Lee, Sang-Min

    2009-08-01

    Because the amount of power that a piezoelectric transformer (PT) can handle is limited, multiple connections of PTs are necessary for the power-capacity improvement of PT-applications. In the connection, thermal imbalance between the PTs should be prevented to avoid the thermal runaway of each PT. The thermal balance of the multiple-connected PTs is dominantly affected by the electrothermal characteristics of individual PTs. In this paper, the thermal balance of both parallel-parallel and parallel-series connections are analyzed by electrical model parameters. For quantitative analysis, the thermal-balance effects are estimated by the simulation of the mechanical loss ratio between the PTs. The analysis results show that with PTs of similar characteristics, the parallel-series connection has better thermal balance characteristics due to the reduced mechanical loss of the higher temperature PT. For experimental verification of the analysis, a hardware-prototype test of a Cs-Lp type 40 W adapter system with radial-vibration mode PTs has been performed.

  20. Rural Connected Vehicle Gap Analysis : Factors Impeding Deployment and Recommendations for Moving Forward

    DOT National Transportation Integrated Search

    2017-08-25

    The intent of the Rural Connected Vehicle Gap Analysis project was to identify any current gaps in the connected vehicle program that may result in a reduced deployment potential in the rural areas of the United States. Through a workshop conducted a...

  1. Connected vehicle impacts on transportation planning analysis of the need for new and enhanced analysis tools, techniques and data : Highway Capacity Manual briefing.

    DOT National Transportation Integrated Search

    2016-03-02

    The principal objective of this project, Connected Vehicle Impacts on Transportation Planning, is to comprehensively assess how connected vehicles should be considered across the range of transportation planning processes and products developed...

  2. Connected vehicle impacts on transportation planning technical memorandum #3 : analysis of the need for new and enhanced analysis tools, techniques, and data.

    DOT National Transportation Integrated Search

    2015-06-01

    The principal objective of this project, Connected Vehicle Impacts on Transportation Planning, is to comprehensively assess how connected vehicles should be considered across the range of transportation planning processes and products developed...

  3. Task modulated brain connectivity of the amygdala: a meta-analysis of psychophysiological interactions.

    PubMed

    Di, Xin; Huang, Jia; Biswal, Bharat B

    2017-01-01

    Understanding functional connectivity of the amygdala with other brain regions, especially task modulated connectivity, is a critical step toward understanding the role of the amygdala in emotional processes and the interactions between emotion and cognition. The present study performed coordinate-based meta-analysis on studies of task modulated connectivity of the amygdala which used psychophysiological interaction (PPI) analysis. We first analyzed 49 PPI studies on different types of tasks using activation likelihood estimation (ALE) meta-analysis. Widespread cortical and subcortical regions showed consistent task modulated connectivity with the amygdala, including the medial frontal cortex, bilateral insula, anterior cingulate, fusiform gyrus, parahippocampal gyrus, thalamus, and basal ganglia. These regions were in general overlapped with those showed coactivations with the amygdala, suggesting that these regions and amygdala are not only activated together, but also show different levels of interactions during tasks. Further analyses with subsets of PPI studies revealed task specific functional connectivities with the amygdala that were modulated by fear processing, face processing, and emotion regulation. These results suggest a dynamic modulation of connectivity upon task demands, and provide new insights on the functions of the amygdala in different affective and cognitive processes. The meta-analytic approach on PPI studies may offer a framework toward systematical examinations of task modulated connectivity.

  4. Structural Analysis of the Redesigned Ice/Frost Ramp Bracket

    NASA Technical Reports Server (NTRS)

    Phillips, D. R.; Dawicke, D. S.; Gentz, S. J.; Roberts, P. W.; Raju, I. S.

    2007-01-01

    This paper describes the interim structural analysis of a redesigned Ice/Frost Ramp bracket for the Space Shuttle External Tank (ET). The proposed redesigned bracket consists of mounts for attachment to the ET wall, supports for the electronic/instrument cables and propellant repressurization lines that run along the ET, an upper plate, a lower plate, and complex bolted connections. The eight nominal bolted connections are considered critical in the summarized structural analysis. Each bolted connection contains a bolt, a nut, four washers, and a non-metallic spacer and block that are designed for thermal insulation. A three-dimensional (3D) finite element model of the bracket is developed using solid 10-node tetrahedral elements. The loading provided by the ET Project is used in the analysis. Because of the complexities associated with accurately modeling the bolted connections in the bracket, the analysis is performed using a global/local analysis procedure. The finite element analysis of the bracket identifies one of the eight bolted connections as having high stress concentrations. A local area of the bracket surrounding this bolted connection is extracted from the global model and used as a local model. Within the local model, the various components of the bolted connection are refined, and contact is introduced along the appropriate interfaces determined by the analysts. The deformations from the global model are applied as boundary conditions to the local model. The results from the global/local analysis show that while the stresses in the bolts are well within yield, the spacers fail due to compression. The primary objective of the interim structural analysis is to show concept viability for static thermal testing. The proposed design concept would undergo continued design optimization to address the identified analytical assumptions and concept shortcomings, assuming successful thermal testing.

  5. NeuroLines: A Subway Map Metaphor for Visualizing Nanoscale Neuronal Connectivity.

    PubMed

    Al-Awami, Ali K; Beyer, Johanna; Strobelt, Hendrik; Kasthuri, Narayanan; Lichtman, Jeff W; Pfister, Hanspeter; Hadwiger, Markus

    2014-12-01

    We present NeuroLines, a novel visualization technique designed for scalable detailed analysis of neuronal connectivity at the nanoscale level. The topology of 3D brain tissue data is abstracted into a multi-scale, relative distance-preserving subway map visualization that allows domain scientists to conduct an interactive analysis of neurons and their connectivity. Nanoscale connectomics aims at reverse-engineering the wiring of the brain. Reconstructing and analyzing the detailed connectivity of neurons and neurites (axons, dendrites) will be crucial for understanding the brain and its development and diseases. However, the enormous scale and complexity of nanoscale neuronal connectivity pose big challenges to existing visualization techniques in terms of scalability. NeuroLines offers a scalable visualization framework that can interactively render thousands of neurites, and that supports the detailed analysis of neuronal structures and their connectivity. We describe and analyze the design of NeuroLines based on two real-world use-cases of our collaborators in developmental neuroscience, and investigate its scalability to large-scale neuronal connectivity data.

  6. Connected vehicle impacts on transportation planning : analysis of the need for new and enhanced analysis tools, techniques and data, briefing for traffic simulation models.

    DOT National Transportation Integrated Search

    2016-03-11

    The principal objective of this project, Connected Vehicle Impacts on Transportation Planning, is to comprehensively assess how connected vehicles should be considered across the range of transportation planning processes and products developed...

  7. Connected vehicle impacts on transportation planning : analysis of the need for new and enhanced analysis tools, techniques and data—briefing for traffic simulation models.

    DOT National Transportation Integrated Search

    2016-03-11

    The principal objective of this project, Connected Vehicle Impacts on Transportation Planning, is to comprehensively assess how connected vehicles should be considered across the range of transportation planning processes and products developed...

  8. Minimum spanning tree analysis of the human connectome

    PubMed Central

    Sommer, Iris E.; Bohlken, Marc M.; Tewarie, Prejaas; Draaisma, Laurijn; Zalesky, Andrew; Di Biase, Maria; Brown, Jesse A.; Douw, Linda; Otte, Willem M.; Mandl, René C.W.; Stam, Cornelis J.

    2018-01-01

    Abstract One of the challenges of brain network analysis is to directly compare network organization between subjects, irrespective of the number or strength of connections. In this study, we used minimum spanning tree (MST; a unique, acyclic subnetwork with a fixed number of connections) analysis to characterize the human brain network to create an empirical reference network. Such a reference network could be used as a null model of connections that form the backbone structure of the human brain. We analyzed the MST in three diffusion‐weighted imaging datasets of healthy adults. The MST of the group mean connectivity matrix was used as the empirical null‐model. The MST of individual subjects matched this reference MST for a mean 58%–88% of connections, depending on the analysis pipeline. Hub nodes in the MST matched with previously reported locations of hub regions, including the so‐called rich club nodes (a subset of high‐degree, highly interconnected nodes). Although most brain network studies have focused primarily on cortical connections, cortical–subcortical connections were consistently present in the MST across subjects. Brain network efficiency was higher when these connections were included in the analysis, suggesting that these tracts may be utilized as the major neural communication routes. Finally, we confirmed that MST characteristics index the effects of brain aging. We conclude that the MST provides an elegant and straightforward approach to analyze structural brain networks, and to test network topological features of individual subjects in comparison to empirical null models. PMID:29468769

  9. Hierarchical multivariate covariance analysis of metabolic connectivity.

    PubMed

    Carbonell, Felix; Charil, Arnaud; Zijdenbos, Alex P; Evans, Alan C; Bedell, Barry J

    2014-12-01

    Conventional brain connectivity analysis is typically based on the assessment of interregional correlations. Given that correlation coefficients are derived from both covariance and variance, group differences in covariance may be obscured by differences in the variance terms. To facilitate a comprehensive assessment of connectivity, we propose a unified statistical framework that interrogates the individual terms of the correlation coefficient. We have evaluated the utility of this method for metabolic connectivity analysis using [18F]2-fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. As an illustrative example of the utility of this approach, we examined metabolic connectivity in angular gyrus and precuneus seed regions of mild cognitive impairment (MCI) subjects with low and high β-amyloid burdens. This new multivariate method allowed us to identify alterations in the metabolic connectome, which would not have been detected using classic seed-based correlation analysis. Ultimately, this novel approach should be extensible to brain network analysis and broadly applicable to other imaging modalities, such as functional magnetic resonance imaging (MRI).

  10. Network analysis of mesoscale optical recordings to assess regional, functional connectivity.

    PubMed

    Lim, Diana H; LeDue, Jeffrey M; Murphy, Timothy H

    2015-10-01

    With modern optical imaging methods, it is possible to map structural and functional connectivity. Optical imaging studies that aim to describe large-scale neural connectivity often need to handle large and complex datasets. In order to interpret these datasets, new methods for analyzing structural and functional connectivity are being developed. Recently, network analysis, based on graph theory, has been used to describe and quantify brain connectivity in both experimental and clinical studies. We outline how to apply regional, functional network analysis to mesoscale optical imaging using voltage-sensitive-dye imaging and channelrhodopsin-2 stimulation in a mouse model. We include links to sample datasets and an analysis script. The analyses we employ can be applied to other types of fluorescence wide-field imaging, including genetically encoded calcium indicators, to assess network properties. We discuss the benefits and limitations of using network analysis for interpreting optical imaging data and define network properties that may be used to compare across preparations or other manipulations such as animal models of disease.

  11. The mean-variance relationship reveals two possible strategies for dynamic brain connectivity analysis in fMRI.

    PubMed

    Thompson, William H; Fransson, Peter

    2015-01-01

    When studying brain connectivity using fMRI, signal intensity time-series are typically correlated with each other in time to compute estimates of the degree of interaction between different brain regions and/or networks. In the static connectivity case, the problem of defining which connections that should be considered significant in the analysis can be addressed in a rather straightforward manner by a statistical thresholding that is based on the magnitude of the correlation coefficients. More recently, interest has come to focus on the dynamical aspects of brain connectivity and the problem of deciding which brain connections that are to be considered relevant in the context of dynamical changes in connectivity provides further options. Since we, in the dynamical case, are interested in changes in connectivity over time, the variance of the correlation time-series becomes a relevant parameter. In this study, we discuss the relationship between the mean and variance of brain connectivity time-series and show that by studying the relation between them, two conceptually different strategies to analyze dynamic functional brain connectivity become available. Using resting-state fMRI data from a cohort of 46 subjects, we show that the mean of fMRI connectivity time-series scales negatively with its variance. This finding leads to the suggestion that magnitude- versus variance-based thresholding strategies will induce different results in studies of dynamic functional brain connectivity. Our assertion is exemplified by showing that the magnitude-based strategy is more sensitive to within-resting-state network (RSN) connectivity compared to between-RSN connectivity whereas the opposite holds true for a variance-based analysis strategy. The implications of our findings for dynamical functional brain connectivity studies are discussed.

  12. Quantifying Individual Brain Connectivity with Functional Principal Component Analysis for Networks.

    PubMed

    Petersen, Alexander; Zhao, Jianyang; Carmichael, Owen; Müller, Hans-Georg

    2016-09-01

    In typical functional connectivity studies, connections between voxels or regions in the brain are represented as edges in a network. Networks for different subjects are constructed at a given graph density and are summarized by some network measure such as path length. Examining these summary measures for many density values yields samples of connectivity curves, one for each individual. This has led to the adoption of basic tools of functional data analysis, most commonly to compare control and disease groups through the average curves in each group. Such group differences, however, neglect the variability in the sample of connectivity curves. In this article, the use of functional principal component analysis (FPCA) is demonstrated to enrich functional connectivity studies by providing increased power and flexibility for statistical inference. Specifically, individual connectivity curves are related to individual characteristics such as age and measures of cognitive function, thus providing a tool to relate brain connectivity with these variables at the individual level. This individual level analysis opens a new perspective that goes beyond previous group level comparisons. Using a large data set of resting-state functional magnetic resonance imaging scans, relationships between connectivity and two measures of cognitive function-episodic memory and executive function-were investigated. The group-based approach was implemented by dichotomizing the continuous cognitive variable and testing for group differences, resulting in no statistically significant findings. To demonstrate the new approach, FPCA was implemented, followed by linear regression models with cognitive scores as responses, identifying significant associations of connectivity in the right middle temporal region with both cognitive scores.

  13. Synchronization from Second Order Network Connectivity Statistics

    PubMed Central

    Zhao, Liqiong; Beverlin, Bryce; Netoff, Theoden; Nykamp, Duane Q.

    2011-01-01

    We investigate how network structure can influence the tendency for a neuronal network to synchronize, or its synchronizability, independent of the dynamical model for each neuron. The synchrony analysis takes advantage of the framework of second order networks, which defines four second order connectivity statistics based on the relative frequency of two-connection network motifs. The analysis identifies two of these statistics, convergent connections, and chain connections, as highly influencing the synchrony. Simulations verify that synchrony decreases with the frequency of convergent connections and increases with the frequency of chain connections. These trends persist with simulations of multiple models for the neuron dynamics and for different types of networks. Surprisingly, divergent connections, which determine the fraction of shared inputs, do not strongly influence the synchrony. The critical role of chains, rather than divergent connections, in influencing synchrony can be explained by their increasing the effective coupling strength. The decrease of synchrony with convergent connections is primarily due to the resulting heterogeneity in firing rates. PMID:21779239

  14. Digital image analysis to quantify carbide networks in ultrahigh carbon steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hecht, Matthew D.; Webler, Bryan A.; Picard, Yoosuf N., E-mail: ypicard@cmu.edu

    A method has been developed and demonstrated to quantify the degree of carbide network connectivity in ultrahigh carbon steels through digital image processing and analysis of experimental micrographs. It was shown that the network connectivity and carbon content can be correlated to toughness for various ultrahigh carbon steel specimens. The image analysis approach first involved segmenting the carbide network and pearlite matrix into binary contrast representations via a grayscale intensity thresholding operation. Next, the carbide network pixels were skeletonized and parceled into braches and nodes, allowing the determination of a connectivity index for the carbide network. Intermediate image processing stepsmore » to remove noise and fill voids in the network are also detailed. The connectivity indexes of scanning electron micrographs were consistent in both secondary and backscattered electron imaging modes, as well as across two different (50 × and 100 ×) magnifications. Results from ultrahigh carbon steels reported here along with other results from the literature generally showed lower connectivity indexes correlated with higher Charpy impact energy (toughness). A deviation from this trend was observed at higher connectivity indexes, consistent with a percolation threshold for crack propagation across the carbide network. - Highlights: • A method for carbide network analysis in steels is proposed and demonstrated. • ImageJ method extracts a network connectivity index from micrographs. • Connectivity index consistent in different imaging conditions and magnifications. • Impact energy may plateau when a critical network connectivity is exceeded.« less

  15. Social network models predict movement and connectivity in ecological landscapes

    USGS Publications Warehouse

    Fletcher, R.J.; Acevedo, M.A.; Reichert, Brian E.; Pias, Kyle E.; Kitchens, W.M.

    2011-01-01

    Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data.

  16. Inferring Functional Neural Connectivity with Phase Synchronization Analysis: A Review of Methodology

    PubMed Central

    Sun, Junfeng; Li, Zhijun; Tong, Shanbao

    2012-01-01

    Functional neural connectivity is drawing increasing attention in neuroscience research. To infer functional connectivity from observed neural signals, various methods have been proposed. Among them, phase synchronization analysis is an important and effective one which examines the relationship of instantaneous phase between neural signals but neglecting the influence of their amplitudes. In this paper, we review the advances in methodologies of phase synchronization analysis. In particular, we discuss the definitions of instantaneous phase, the indexes of phase synchronization and their significance test, the issues that may affect the detection of phase synchronization and the extensions of phase synchronization analysis. In practice, phase synchronization analysis may be affected by observational noise, insufficient samples of the signals, volume conduction, and reference in recording neural signals. We make comments and suggestions on these issues so as to better apply phase synchronization analysis to inferring functional connectivity from neural signals. PMID:22577470

  17. Classifying Different Emotional States by Means of EEG-Based Functional Connectivity Patterns

    PubMed Central

    Lee, You-Yun; Hsieh, Shulan

    2014-01-01

    This study aimed to classify different emotional states by means of EEG-based functional connectivity patterns. Forty young participants viewed film clips that evoked the following emotional states: neutral, positive, or negative. Three connectivity indices, including correlation, coherence, and phase synchronization, were used to estimate brain functional connectivity in EEG signals. Following each film clip, participants were asked to report on their subjective affect. The results indicated that the EEG-based functional connectivity change was significantly different among emotional states. Furthermore, the connectivity pattern was detected by pattern classification analysis using Quadratic Discriminant Analysis. The results indicated that the classification rate was better than chance. We conclude that estimating EEG-based functional connectivity provides a useful tool for studying the relationship between brain activity and emotional states. PMID:24743695

  18. Rotational Stiffness of Precast Beam-Column Connection using Finite Element Method

    NASA Astrophysics Data System (ADS)

    Hashim, N.; Agarwal, J.

    2018-04-01

    Current design practice in structural analysis is to assume the connection as pinned or rigid, however this cannot be relied upon for safety against collapse because during services the actual connection reacts differently where the connection has rotated in relevance. This situation may lead to different reactions and consequently affect design results and other frame responses. In precast concrete structures, connections play an important part in ensuring the safety of the whole structure. Thus, investigates on the actual connection behavior by construct the moment-rotation relationship is significant. Finite element (FE) method is chosen for modeling a 3-dimensional beam-column connection. The model is built in symmetry to reduce analysis time. Results demonstrate that precast billet connection is categorized as semi-rigid connection with Sini of 23,138kNm/rad. This is definitely different from the assumption of pinned or rigid connection used in design practice. Validation were made by comparing with mathematical equation and small differences were achieved that led to the conclusion where precast billet connection using FE method is acceptable.

  19. Mild cognitive impairment and fMRI studies of brain functional connectivity: the state of the art

    PubMed Central

    Farràs-Permanyer, Laia; Guàrdia-Olmos, Joan; Peró-Cebollero, Maribel

    2015-01-01

    In the last 15 years, many articles have studied brain connectivity in Mild Cognitive Impairment patients with fMRI techniques, seemingly using different connectivity statistical models in each investigation to identify complex connectivity structures so as to recognize typical behavior in this type of patient. This diversity in statistical approaches may cause problems in results comparison. This paper seeks to describe how researchers approached the study of brain connectivity in MCI patients using fMRI techniques from 2002 to 2014. The focus is on the statistical analysis proposed by each research group in reference to the limitations and possibilities of those techniques to identify some recommendations to improve the study of functional connectivity. The included articles came from a search of Web of Science and PsycINFO using the following keywords: f MRI, MCI, and functional connectivity. Eighty-one papers were found, but two of them were discarded because of the lack of statistical analysis. Accordingly, 79 articles were included in this review. We summarized some parts of the articles, including the goal of every investigation, the cognitive paradigm and methods used, brain regions involved, use of ROI analysis and statistical analysis, emphasizing on the connectivity estimation model used in each investigation. The present analysis allowed us to confirm the remarkable variability of the statistical analysis methods found. Additionally, the study of brain connectivity in this type of population is not providing, at the moment, any significant information or results related to clinical aspects relevant for prediction and treatment. We propose to follow guidelines for publishing fMRI data that would be a good solution to the problem of study replication. The latter aspect could be important for future publications because a higher homogeneity would benefit the comparison between publications and the generalization of results. PMID:26300802

  20. Connectivity: Performance Portable Algorithms for graph connectivity v. 0.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slota, George; Rajamanickam, Sivasankaran; Madduri, Kamesh

    Graphs occur in several places in real world from road networks, social networks and scientific simulations. Connectivity is a graph analysis software to graph connectivity in modern architectures like multicore CPUs, Xeon Phi and GPUs.

  1. Minimum spanning tree analysis of the human connectome.

    PubMed

    van Dellen, Edwin; Sommer, Iris E; Bohlken, Marc M; Tewarie, Prejaas; Draaisma, Laurijn; Zalesky, Andrew; Di Biase, Maria; Brown, Jesse A; Douw, Linda; Otte, Willem M; Mandl, René C W; Stam, Cornelis J

    2018-06-01

    One of the challenges of brain network analysis is to directly compare network organization between subjects, irrespective of the number or strength of connections. In this study, we used minimum spanning tree (MST; a unique, acyclic subnetwork with a fixed number of connections) analysis to characterize the human brain network to create an empirical reference network. Such a reference network could be used as a null model of connections that form the backbone structure of the human brain. We analyzed the MST in three diffusion-weighted imaging datasets of healthy adults. The MST of the group mean connectivity matrix was used as the empirical null-model. The MST of individual subjects matched this reference MST for a mean 58%-88% of connections, depending on the analysis pipeline. Hub nodes in the MST matched with previously reported locations of hub regions, including the so-called rich club nodes (a subset of high-degree, highly interconnected nodes). Although most brain network studies have focused primarily on cortical connections, cortical-subcortical connections were consistently present in the MST across subjects. Brain network efficiency was higher when these connections were included in the analysis, suggesting that these tracts may be utilized as the major neural communication routes. Finally, we confirmed that MST characteristics index the effects of brain aging. We conclude that the MST provides an elegant and straightforward approach to analyze structural brain networks, and to test network topological features of individual subjects in comparison to empirical null models. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  2. Granger causality network reconstruction of conductance-based integrate-and-fire neuronal systems.

    PubMed

    Zhou, Douglas; Xiao, Yanyang; Zhang, Yaoyu; Xu, Zhiqin; Cai, David

    2014-01-01

    Reconstruction of anatomical connectivity from measured dynamical activities of coupled neurons is one of the fundamental issues in the understanding of structure-function relationship of neuronal circuitry. Many approaches have been developed to address this issue based on either electrical or metabolic data observed in experiment. The Granger causality (GC) analysis remains one of the major approaches to explore the dynamical causal connectivity among individual neurons or neuronal populations. However, it is yet to be clarified how such causal connectivity, i.e., the GC connectivity, can be mapped to the underlying anatomical connectivity in neuronal networks. We perform the GC analysis on the conductance-based integrate-and-fire (I&F) neuronal networks to obtain their causal connectivity. Through numerical experiments, we find that the underlying synaptic connectivity amongst individual neurons or subnetworks, can be successfully reconstructed by the GC connectivity constructed from voltage time series. Furthermore, this reconstruction is insensitive to dynamical regimes and can be achieved without perturbing systems and prior knowledge of neuronal model parameters. Surprisingly, the synaptic connectivity can even be reconstructed by merely knowing the raster of systems, i.e., spike timing of neurons. Using spike-triggered correlation techniques, we establish a direct mapping between the causal connectivity and the synaptic connectivity for the conductance-based I&F neuronal networks, and show the GC is quadratically related to the coupling strength. The theoretical approach we develop here may provide a framework for examining the validity of the GC analysis in other settings.

  3. Granger Causality Network Reconstruction of Conductance-Based Integrate-and-Fire Neuronal Systems

    PubMed Central

    Zhou, Douglas; Xiao, Yanyang; Zhang, Yaoyu; Xu, Zhiqin; Cai, David

    2014-01-01

    Reconstruction of anatomical connectivity from measured dynamical activities of coupled neurons is one of the fundamental issues in the understanding of structure-function relationship of neuronal circuitry. Many approaches have been developed to address this issue based on either electrical or metabolic data observed in experiment. The Granger causality (GC) analysis remains one of the major approaches to explore the dynamical causal connectivity among individual neurons or neuronal populations. However, it is yet to be clarified how such causal connectivity, i.e., the GC connectivity, can be mapped to the underlying anatomical connectivity in neuronal networks. We perform the GC analysis on the conductance-based integrate-and-fire (IF) neuronal networks to obtain their causal connectivity. Through numerical experiments, we find that the underlying synaptic connectivity amongst individual neurons or subnetworks, can be successfully reconstructed by the GC connectivity constructed from voltage time series. Furthermore, this reconstruction is insensitive to dynamical regimes and can be achieved without perturbing systems and prior knowledge of neuronal model parameters. Surprisingly, the synaptic connectivity can even be reconstructed by merely knowing the raster of systems, i.e., spike timing of neurons. Using spike-triggered correlation techniques, we establish a direct mapping between the causal connectivity and the synaptic connectivity for the conductance-based IF neuronal networks, and show the GC is quadratically related to the coupling strength. The theoretical approach we develop here may provide a framework for examining the validity of the GC analysis in other settings. PMID:24586285

  4. Sex differences in the development of neuroanatomical functional connectivity underlying intelligence found using Bayesian connectivity analysis.

    PubMed

    Schmithorst, Vincent J; Holland, Scott K

    2007-03-01

    A Bayesian method for functional connectivity analysis was adapted to investigate between-group differences. This method was applied in a large cohort of almost 300 children to investigate differences in boys and girls in the relationship between intelligence and functional connectivity for the task of narrative comprehension. For boys, a greater association was shown between intelligence and the functional connectivity linking Broca's area to auditory processing areas, including Wernicke's areas and the right posterior superior temporal gyrus. For girls, a greater association was shown between intelligence and the functional connectivity linking the left posterior superior temporal gyrus to Wernicke's areas bilaterally. A developmental effect was also seen, with girls displaying a positive correlation with age in the association between intelligence and the functional connectivity linking the right posterior superior temporal gyrus to Wernicke's areas bilaterally. Our results demonstrate a sexual dimorphism in the relationship of functional connectivity to intelligence in children and an increasing reliance on inter-hemispheric connectivity in girls with age.

  5. Principles of ipsilateral and contralateral cortico-cortical connectivity in the mouse.

    PubMed

    Goulas, Alexandros; Uylings, Harry B M; Hilgetag, Claus C

    2017-04-01

    Structural connectivity among cortical areas provides the substrate for information exchange in the cerebral cortex and is characterized by systematic patterns of presence or absence of connections. What principles govern this cortical wiring diagram? Here, we investigate the relation of physical distance and cytoarchitecture with the connectional architecture of the mouse cortex. Moreover, we examine the relation between patterns of ipsilateral and contralateral connections. Our analysis reveals a mirrored and attenuated organization of contralateral connections when compared with ipsilateral connections. Both physical distance and cytoarchitectonic similarity of cortical areas are related to the presence or absence of connections. Notably, our analysis demonstrates that the combination of these factors relates better to cortico-cortical connectivity than each factor in isolation and that the two factors relate differently to ipsilateral and contralateral connectivity. Physical distance is more tightly related to the presence or absence of ipsilateral connections, but its relevance greatly diminishes for contralateral connections, while the contribution of cytoarchitectonic similarity remains relatively stable. Our results, together with similar findings in the cat and macaque cortex, suggest that a common set of principles underlies the macroscale wiring of the mammalian cerebral cortex.

  6. Hierarchical multivariate covariance analysis of metabolic connectivity

    PubMed Central

    Carbonell, Felix; Charil, Arnaud; Zijdenbos, Alex P; Evans, Alan C; Bedell, Barry J

    2014-01-01

    Conventional brain connectivity analysis is typically based on the assessment of interregional correlations. Given that correlation coefficients are derived from both covariance and variance, group differences in covariance may be obscured by differences in the variance terms. To facilitate a comprehensive assessment of connectivity, we propose a unified statistical framework that interrogates the individual terms of the correlation coefficient. We have evaluated the utility of this method for metabolic connectivity analysis using [18F]2-fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. As an illustrative example of the utility of this approach, we examined metabolic connectivity in angular gyrus and precuneus seed regions of mild cognitive impairment (MCI) subjects with low and high β-amyloid burdens. This new multivariate method allowed us to identify alterations in the metabolic connectome, which would not have been detected using classic seed-based correlation analysis. Ultimately, this novel approach should be extensible to brain network analysis and broadly applicable to other imaging modalities, such as functional magnetic resonance imaging (MRI). PMID:25294129

  7. "Intermodal Passenger Connectivity Database : A measurement of connectivity in the U.S. Passenger Transportation System : [2014]"

    DOT National Transportation Integrated Search

    2014-12-01

    The Bureau of Transportation Statistics (BTS) leads in the collection, analysis, and dissemination of transportation data. The Intermodal Passenger Connectivity Database : (ICPD) is an ongoing data collection that measures the degree of connectivity ...

  8. Large-scale automated histology in the pursuit of connectomes.

    PubMed

    Kleinfeld, David; Bharioke, Arjun; Blinder, Pablo; Bock, Davi D; Briggman, Kevin L; Chklovskii, Dmitri B; Denk, Winfried; Helmstaedter, Moritz; Kaufhold, John P; Lee, Wei-Chung Allen; Meyer, Hanno S; Micheva, Kristina D; Oberlaender, Marcel; Prohaska, Steffen; Reid, R Clay; Smith, Stephen J; Takemura, Shinya; Tsai, Philbert S; Sakmann, Bert

    2011-11-09

    How does the brain compute? Answering this question necessitates neuronal connectomes, annotated graphs of all synaptic connections within defined brain areas. Further, understanding the energetics of the brain's computations requires vascular graphs. The assembly of a connectome requires sensitive hardware tools to measure neuronal and neurovascular features in all three dimensions, as well as software and machine learning for data analysis and visualization. We present the state of the art on the reconstruction of circuits and vasculature that link brain anatomy and function. Analysis at the scale of tens of nanometers yields connections between identified neurons, while analysis at the micrometer scale yields probabilistic rules of connection between neurons and exact vascular connectivity.

  9. Large-Scale Automated Histology in the Pursuit of Connectomes

    PubMed Central

    Bharioke, Arjun; Blinder, Pablo; Bock, Davi D.; Briggman, Kevin L.; Chklovskii, Dmitri B.; Denk, Winfried; Helmstaedter, Moritz; Kaufhold, John P.; Lee, Wei-Chung Allen; Meyer, Hanno S.; Micheva, Kristina D.; Oberlaender, Marcel; Prohaska, Steffen; Reid, R. Clay; Smith, Stephen J.; Takemura, Shinya; Tsai, Philbert S.; Sakmann, Bert

    2011-01-01

    How does the brain compute? Answering this question necessitates neuronal connectomes, annotated graphs of all synaptic connections within defined brain areas. Further, understanding the energetics of the brain's computations requires vascular graphs. The assembly of a connectome requires sensitive hardware tools to measure neuronal and neurovascular features in all three dimensions, as well as software and machine learning for data analysis and visualization. We present the state of the art on the reconstruction of circuits and vasculature that link brain anatomy and function. Analysis at the scale of tens of nanometers yields connections between identified neurons, while analysis at the micrometer scale yields probabilistic rules of connection between neurons and exact vascular connectivity. PMID:22072665

  10. Organizing principles for the cerebral cortex network of commissural and association connections.

    PubMed

    Swanson, Larry W; Hahn, Joel D; Sporns, Olaf

    2017-11-07

    Cognition is supported by a network of axonal connections between gray matter regions within and between right and left cerebral cortex. Global organizing principles of this circuitry were examined with network analysis tools applied to monosynaptic association (within one side) and commissural (between sides) connections between all 77 cortical gray matter regions in each hemisphere of the rat brain. The analysis used 32,350 connection reports expertly collated from published pathway tracing experiments, and 5,394 connections of a possible 23,562 were identified, for a connection density of 23%-of which 20% (1,084) were commissural. Network community detection yielded a stable bihemispheric six-module solution, with an identical set in each hemisphere of three modules topographically forming a lateral core and medial shell arrangement of cortical regions. Functional correlations suggest the lateral module deals preferentially with environmental sensory-motor interactions and the ventromedial module deals preferentially with visceral control, affect, and short-term memory, whereas the dorsomedial module resembles the default mode network. Analysis of commissural connections revealed a set of unexpected rules to help generate hypotheses. Most notably, there is an order of magnitude more heterotopic than homotopic projections; all cortical regions send more association than commissural connections, and for each region, the latter are always a subset of the former; the number of association connections from each cortical region strongly correlates with the number of its commissural connections; and the module (dorsomedial) lying closest to the corpus callosum has the most complete set of commissural connections-and apparently the most complex function. Copyright © 2017 the Author(s). Published by PNAS.

  11. Altered functional brain connectivity in children and young people with opsoclonus-myoclonus syndrome.

    PubMed

    Chekroud, Adam M; Anand, Geetha; Yong, Jean; Pike, Michael; Bridge, Holly

    2017-01-01

    Opsoclonus-myoclonus syndrome (OMS) is a rare, poorly understood condition that can result in long-term cognitive, behavioural, and motor sequelae. Several studies have investigated structural brain changes associated with this condition, but little is known about changes in function. This study aimed to investigate changes in brain functional connectivity in patients with OMS. Seven patients with OMS and 10 age-matched comparison participants underwent 3T magnetic resonance imaging (MRI) to acquire resting-state functional MRI data (whole-brain echo-planar images; 2mm isotropic voxels; multiband factor ×2) for a cross-sectional study. A seed-based analysis identified brain regions in which signal changes over time correlated with the cerebellum. Model-free analysis was used to determine brain networks showing altered connectivity. In patients with OMS, the motor cortex showed significantly reduced connectivity, and the occipito-parietal region significantly increased connectivity with the cerebellum relative to the comparison group. A model-free analysis also showed extensive connectivity within a visual network, including the cerebellum and basal ganglia, not present in the comparison group. No other networks showed any differences between groups. Patients with OMS showed reduced connectivity between the cerebellum and motor cortex, but increased connectivity with occipito-parietal regions. This pattern of change supports widespread brain involvement in OMS. © 2016 Mac Keith Press.

  12. Intra-mathematical connections made by high school students in performing Calculus tasks

    NASA Astrophysics Data System (ADS)

    García-García, Javier; Dolores-Flores, Crisólogo

    2018-02-01

    In this article, we report the results of research that explores the intra-mathematical connections that high school students make when they solve Calculus tasks, in particular those involving the derivative and the integral. We consider mathematical connections as a cognitive process through which a person relates or associates two or more ideas, concepts, definitions, theorems, procedures, representations and meanings among themselves, with other disciplines or with real life. Task-based interviews were used to collect data and thematic analysis was used to analyze them. Through the analysis of the productions of the 25 participants, we identified 223 intra-mathematical connections. The data allowed us to establish a mathematical connections system which contributes to the understanding of higher concepts, in our case, the Fundamental Theorem of Calculus. We found mathematical connections of the types: different representations, procedural, features, reversibility and meaning as a connection.

  13. Aberrant functional connectivity for diagnosis of major depressive disorder: a discriminant analysis.

    PubMed

    Cao, Longlong; Guo, Shuixia; Xue, Zhimin; Hu, Yong; Liu, Haihong; Mwansisya, Tumbwene E; Pu, Weidan; Yang, Bo; Liu, Chang; Feng, Jianfeng; Chen, Eric Y H; Liu, Zhening

    2014-02-01

    Aberrant brain functional connectivity patterns have been reported in major depressive disorder (MDD). It is unknown whether they can be used in discriminant analysis for diagnosis of MDD. In the present study we examined the efficiency of discriminant analysis of MDD by individualized computer-assisted diagnosis. Based on resting-state functional magnetic resonance imaging data, a new approach was adopted to investigate functional connectivity changes in 39 MDD patients and 37 well-matched healthy controls. By using the proposed feature selection method, we identified significant altered functional connections in patients. They were subsequently applied to our analysis as discriminant features using a support vector machine classification method. Furthermore, the relative contribution of functional connectivity was estimated. After subset selection of high-dimension features, the support vector machine classifier reached up to approximately 84% with leave-one-out training during the discrimination process. Through summarizing the classification contribution of functional connectivities, we obtained four obvious contribution modules: inferior orbitofrontal module, supramarginal gyrus module, inferior parietal lobule-posterior cingulated gyrus module and middle temporal gyrus-inferior temporal gyrus module. The experimental results demonstrated that the proposed method is effective in discriminating MDD patients from healthy controls. Functional connectivities might be useful as new biomarkers to assist clinicians in computer auxiliary diagnosis of MDD. © 2013 The Authors. Psychiatry and Clinical Neurosciences © 2013 Japanese Society of Psychiatry and Neurology.

  14. Brain resting-state networks in adolescents with high-functioning autism: Analysis of spatial connectivity and temporal neurodynamics.

    PubMed

    Bernas, Antoine; Barendse, Evelien M; Aldenkamp, Albert P; Backes, Walter H; Hofman, Paul A M; Hendriks, Marc P H; Kessels, Roy P C; Willems, Frans M J; de With, Peter H N; Zinger, Svitlana; Jansen, Jacobus F A

    2018-02-01

    Autism spectrum disorder (ASD) is mainly characterized by functional and communication impairments as well as restrictive and repetitive behavior. The leading hypothesis for the neural basis of autism postulates globally abnormal brain connectivity, which can be assessed using functional magnetic resonance imaging (fMRI). Even in the absence of a task, the brain exhibits a high degree of functional connectivity, known as intrinsic, or resting-state, connectivity. Global default connectivity in individuals with autism versus controls is not well characterized, especially for a high-functioning young population. The aim of this study is to test whether high-functioning adolescents with ASD (HFA) have an abnormal resting-state functional connectivity. We performed spatial and temporal analyses on resting-state networks (RSNs) in 13 HFA adolescents and 13 IQ- and age-matched controls. For the spatial analysis, we used probabilistic independent component analysis (ICA) and a permutation statistical method to reveal the RSN differences between the groups. For the temporal analysis, we applied Granger causality to find differences in temporal neurodynamics. Controls and HFA display very similar patterns and strengths of resting-state connectivity. We do not find any significant differences between HFA adolescents and controls in the spatial resting-state connectivity. However, in the temporal dynamics of this connectivity, we did find differences in the causal effect properties of RSNs originating in temporal and prefrontal cortices. The results show a difference between HFA and controls in the temporal neurodynamics from the ventral attention network to the salience-executive network: a pathway involving cognitive, executive, and emotion-related cortices. We hypothesized that this weaker dynamic pathway is due to a subtle trigger challenging the cognitive state prior to the resting state.

  15. Nonrandom network connectivity comes in pairs.

    PubMed

    Hoffmann, Felix Z; Triesch, Jochen

    2017-01-01

    Overrepresentation of bidirectional connections in local cortical networks has been repeatedly reported and is a focus of the ongoing discussion of nonrandom connectivity. Here we show in a brief mathematical analysis that in a network in which connection probabilities are symmetric in pairs, P ij = P ji , the occurrences of bidirectional connections and nonrandom structures are inherently linked; an overabundance of reciprocally connected pairs emerges necessarily when some pairs of neurons are more likely to be connected than others. Our numerical results imply that such overrepresentation can also be sustained when connection probabilities are only approximately symmetric.

  16. A novel method linking neural connectivity to behavioral fluctuations: Behavior-regressed connectivity.

    PubMed

    Passaro, Antony D; Vettel, Jean M; McDaniel, Jonathan; Lawhern, Vernon; Franaszczuk, Piotr J; Gordon, Stephen M

    2017-03-01

    During an experimental session, behavioral performance fluctuates, yet most neuroimaging analyses of functional connectivity derive a single connectivity pattern. These conventional connectivity approaches assume that since the underlying behavior of the task remains constant, the connectivity pattern is also constant. We introduce a novel method, behavior-regressed connectivity (BRC), to directly examine behavioral fluctuations within an experimental session and capture their relationship to changes in functional connectivity. This method employs the weighted phase lag index (WPLI) applied to a window of trials with a weighting function. Using two datasets, the BRC results are compared to conventional connectivity results during two time windows: the one second before stimulus onset to identify predictive relationships, and the one second after onset to capture task-dependent relationships. In both tasks, we replicate the expected results for the conventional connectivity analysis, and extend our understanding of the brain-behavior relationship using the BRC analysis, demonstrating subject-specific BRC maps that correspond to both positive and negative relationships with behavior. Comparison with Existing Method(s): Conventional connectivity analyses assume a consistent relationship between behaviors and functional connectivity, but the BRC method examines performance variability within an experimental session to understand dynamic connectivity and transient behavior. The BRC approach examines connectivity as it covaries with behavior to complement the knowledge of underlying neural activity derived from conventional connectivity analyses. Within this framework, BRC may be implemented for the purpose of understanding performance variability both within and between participants. Published by Elsevier B.V.

  17. Influence of Time-Series Normalization, Number of Nodes, Connectivity and Graph Measure Selection on Seizure-Onset Zone Localization from Intracranial EEG.

    PubMed

    van Mierlo, Pieter; Lie, Octavian; Staljanssens, Willeke; Coito, Ana; Vulliémoz, Serge

    2018-04-26

    We investigated the influence of processing steps in the estimation of multivariate directed functional connectivity during seizures recorded with intracranial EEG (iEEG) on seizure-onset zone (SOZ) localization. We studied the effect of (i) the number of nodes, (ii) time-series normalization, (iii) the choice of multivariate time-varying connectivity measure: Adaptive Directed Transfer Function (ADTF) or Adaptive Partial Directed Coherence (APDC) and (iv) graph theory measure: outdegree or shortest path length. First, simulations were performed to quantify the influence of the various processing steps on the accuracy to localize the SOZ. Afterwards, the SOZ was estimated from a 113-electrodes iEEG seizure recording and compared with the resection that rendered the patient seizure-free. The simulations revealed that ADTF is preferred over APDC to localize the SOZ from ictal iEEG recordings. Normalizing the time series before analysis resulted in an increase of 25-35% of correctly localized SOZ, while adding more nodes to the connectivity analysis led to a moderate decrease of 10%, when comparing 128 with 32 input nodes. The real-seizure connectivity estimates localized the SOZ inside the resection area using the ADTF coupled to outdegree or shortest path length. Our study showed that normalizing the time-series is an important pre-processing step, while adding nodes to the analysis did only marginally affect the SOZ localization. The study shows that directed multivariate Granger-based connectivity analysis is feasible with many input nodes (> 100) and that normalization of the time-series before connectivity analysis is preferred.

  18. EXPLORING FUNCTIONAL CONNECTIVITY IN FMRI VIA CLUSTERING.

    PubMed

    Venkataraman, Archana; Van Dijk, Koene R A; Buckner, Randy L; Golland, Polina

    2009-04-01

    In this paper we investigate the use of data driven clustering methods for functional connectivity analysis in fMRI. In particular, we consider the K-Means and Spectral Clustering algorithms as alternatives to the commonly used Seed-Based Analysis. To enable clustering of the entire brain volume, we use the Nyström Method to approximate the necessary spectral decompositions. We apply K-Means, Spectral Clustering and Seed-Based Analysis to resting-state fMRI data collected from 45 healthy young adults. Without placing any a priori constraints, both clustering methods yield partitions that are associated with brain systems previously identified via Seed-Based Analysis. Our empirical results suggest that clustering provides a valuable tool for functional connectivity analysis.

  19. Discriminative analysis of non-linear brain connectivity for leukoaraiosis with resting-state fMRI

    NASA Astrophysics Data System (ADS)

    Lai, Youzhi; Xu, Lele; Yao, Li; Wu, Xia

    2015-03-01

    Leukoaraiosis (LA) describes diffuse white matter abnormalities on CT or MR brain scans, often seen in the normal elderly and in association with vascular risk factors such as hypertension, or in the context of cognitive impairment. The mechanism of cognitive dysfunction is still unclear. The recent clinical studies have revealed that the severity of LA was not corresponding to the cognitive level, and functional connectivity analysis is an appropriate method to detect the relation between LA and cognitive decline. However, existing functional connectivity analyses of LA have been mostly limited to linear associations. In this investigation, a novel measure utilizing the extended maximal information coefficient (eMIC) was applied to construct non-linear functional connectivity in 44 LA subjects (9 dementia, 25 mild cognitive impairment (MCI) and 10 cognitively normal (CN)). The strength of non-linear functional connections for the first 1% of discriminative power increased in MCI compared with CN and dementia, which was opposed to its linear counterpart. Further functional network analysis revealed that the changes of the non-linear and linear connectivity have similar but not completely the same spatial distribution in human brain. In the multivariate pattern analysis with multiple classifiers, the non-linear functional connectivity mostly identified dementia, MCI and CN from LA with a relatively higher accuracy rate than the linear measure. Our findings revealed the non-linear functional connectivity provided useful discriminative power in classification of LA, and the spatial distributed changes between the non-linear and linear measure may indicate the underlying mechanism of cognitive dysfunction in LA.

  20. Increase of posterior connectivity in aging within the Ventral Attention Network: A functional connectivity analysis using independent component analysis.

    PubMed

    Deslauriers, Johnathan; Ansado, Jennyfer; Marrelec, Guillaume; Provost, Jean-Sébastien; Joanette, Yves

    2017-02-15

    Multiple studies have found neurofunctional changes in normal aging in a context of selective attention. Furthermore, many articles report intrahemispheric alteration in functional networks. However, little is known about age-related changes within the Ventral Attention Network (VAN), which underlies selective attention. The aim of this study is to examine age-related changes within the VAN, focusing on connectivity between its regions. Here we report our findings on the analysis of 27 participants' (13 younger and 14 older healthy adults) BOLD signals as well as their performance on a letter-matching task. We identified the VAN independently for both groups using spatial independent component analysis. Three main findings emerged: First, younger adults were faster and more accurate on the task. Second, older adults had greater connectivity among posterior regions (right temporoparietal junction, right superior parietal lobule, right middle temporal gyrus and left cerebellum crus I) than younger adults but lower connectivity among anterior regions (right anterior insula, right medial superior frontal gyrus and right middle frontal gyrus). Older adults also had more connectivity between anterior and posterior regions than younger adults. Finally, correlations between connectivity and response time on the task showed a trend toward connectivity in posterior regions for the older group and in anterior regions for the younger group. Thus, this study shows that intrahemispheric neurofunctional changes in aging also affect the VAN. The results suggest that, in contexts of selective attention, posterior regions increased in importance for older adults, while anterior regions had reduced centrality. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Default-Mode Network Functional Connectivity in Aphasia: Therapy-Induced Neuroplasticity

    ERIC Educational Resources Information Center

    Marcotte, Karine; Perlbarg, Vincent; Marrelec, Guillaume; Benali, Habib; Ansaldo, Ana Ines

    2013-01-01

    Previous research on participants with aphasia has mainly been based on standard functional neuroimaging analysis. Recent studies have shown that functional connectivity analysis can detect compensatory activity, not revealed by standard analysis. Little is known, however, about the default-mode network in aphasia. In the current study, we studied…

  2. Organizing principles for the cerebral cortex network of commissural and association connections

    PubMed Central

    Swanson, Larry W.; Hahn, Joel D.; Sporns, Olaf

    2017-01-01

    Cognition is supported by a network of axonal connections between gray matter regions within and between right and left cerebral cortex. Global organizing principles of this circuitry were examined with network analysis tools applied to monosynaptic association (within one side) and commissural (between sides) connections between all 77 cortical gray matter regions in each hemisphere of the rat brain. The analysis used 32,350 connection reports expertly collated from published pathway tracing experiments, and 5,394 connections of a possible 23,562 were identified, for a connection density of 23%—of which 20% (1,084) were commissural. Network community detection yielded a stable bihemispheric six-module solution, with an identical set in each hemisphere of three modules topographically forming a lateral core and medial shell arrangement of cortical regions. Functional correlations suggest the lateral module deals preferentially with environmental sensory-motor interactions and the ventromedial module deals preferentially with visceral control, affect, and short-term memory, whereas the dorsomedial module resembles the default mode network. Analysis of commissural connections revealed a set of unexpected rules to help generate hypotheses. Most notably, there is an order of magnitude more heterotopic than homotopic projections; all cortical regions send more association than commissural connections, and for each region, the latter are always a subset of the former; the number of association connections from each cortical region strongly correlates with the number of its commissural connections; and the module (dorsomedial) lying closest to the corpus callosum has the most complete set of commissural connections—and apparently the most complex function. PMID:29078382

  3. Sex differences in the structural connectome of the human brain.

    PubMed

    Ingalhalikar, Madhura; Smith, Alex; Parker, Drew; Satterthwaite, Theodore D; Elliott, Mark A; Ruparel, Kosha; Hakonarson, Hakon; Gur, Raquel E; Gur, Ruben C; Verma, Ragini

    2014-01-14

    Sex differences in human behavior show adaptive complementarity: Males have better motor and spatial abilities, whereas females have superior memory and social cognition skills. Studies also show sex differences in human brains but do not explain this complementarity. In this work, we modeled the structural connectome using diffusion tensor imaging in a sample of 949 youths (aged 8-22 y, 428 males and 521 females) and discovered unique sex differences in brain connectivity during the course of development. Connection-wise statistical analysis, as well as analysis of regional and global network measures, presented a comprehensive description of network characteristics. In all supratentorial regions, males had greater within-hemispheric connectivity, as well as enhanced modularity and transitivity, whereas between-hemispheric connectivity and cross-module participation predominated in females. However, this effect was reversed in the cerebellar connections. Analysis of these changes developmentally demonstrated differences in trajectory between males and females mainly in adolescence and in adulthood. Overall, the results suggest that male brains are structured to facilitate connectivity between perception and coordinated action, whereas female brains are designed to facilitate communication between analytical and intuitive processing modes.

  4. Alternations of functional connectivity in amblyopia patients: a resting-state fMRI study

    NASA Astrophysics Data System (ADS)

    Wang, Jieqiong; Hu, Ling; Li, Wenjing; Xian, Junfang; Ai, Likun; He, Huiguang

    2014-03-01

    Amblyopia is a common yet hard-to-cure disease in children and results in poor or blurred vision. Some efforts such as voxel-based analysis, cortical thickness analysis have been tried to reveal the pathogenesis of amblyopia. However, few studies focused on alterations of the functional connectivity (FC) in amblyopia. In this study, we analyzed the abnormalities of amblyopia patients by both the seed-based FC with the left/right primary visual cortex and the network constructed throughout the whole brain. Experiments showed the following results: (1)As for the seed-based FC analysis, FC between superior occipital gyrus and the primary visual cortex was found to significantly decrease in both sides. The abnormalities were also found in lingual gyrus. The results may reflect functional deficits both in dorsal stream and ventral stream. (2)Two increased functional connectivities and 64 decreased functional connectivities were found in the whole brain network analysis. The decreased functional connectivities most concentrate in the temporal cortex. The results suggest that amblyopia may be caused by the deficits in the visual information transmission.

  5. Resting State Network Topology of the Ferret Brain

    PubMed Central

    Zhou, Zhe Charles; Salzwedel, Andrew P.; Radtke-Schuller, Susanne; Li, Yuhui; Sellers, Kristin K.; Gilmore, John H.; Shih, Yen-Yu Ian; Fröhlich, Flavio; Gao, Wei

    2016-01-01

    Resting state functional magnetic resonance imaging (rsfMRI) has emerged as a versatile tool for non-invasive measurement of functional connectivity patterns in the brain. RsfMRI brain dynamics in rodents, non-human primates, and humans share similar properties; however, little is known about the resting state functional connectivity patterns in the ferret, an animal model with high potential for developmental and cognitive translational study. To address this knowledge-gap, we performed rsfMRI on anesthetized ferrets using a 9.4 tesla MRI scanner, and subsequently performed group-level independent component analysis (gICA) to identify functionally connected brain networks. Group-level ICA analysis revealed distributed sensory, motor, and higher-order networks in the ferret brain. Subsequent connectivity analysis showed interconnected higher-order networks that constituted a putative default mode network (DMN), a network that exhibits altered connectivity in neuropsychiatric disorders. Finally, we assessed ferret brain topological efficiency using graph theory analysis and found that the ferret brain exhibits small-world properties. Overall, these results provide additional evidence for pan-species resting-state networks, further supporting ferret-based studies of sensory and cognitive function. PMID:27596024

  6. Brain regions with abnormal network properties in severe epilepsy of Lennox-Gastaut phenotype: Multivariate analysis of task-free fMRI.

    PubMed

    Pedersen, Mangor; Curwood, Evan K; Archer, John S; Abbott, David F; Jackson, Graeme D

    2015-11-01

    Lennox-Gastaut syndrome, and the similar but less tightly defined Lennox-Gastaut phenotype, describe patients with severe epilepsy, generalized epileptic discharges, and variable intellectual disability. Our previous functional neuroimaging studies suggest that abnormal diffuse association network activity underlies the epileptic discharges of this clinical phenotype. Herein we use a data-driven multivariate approach to determine the spatial changes in local and global networks of patients with severe epilepsy of the Lennox-Gastaut phenotype. We studied 9 adult patients and 14 controls. In 20 min of task-free blood oxygen level-dependent functional magnetic resonance imaging data, two metrics of functional connectivity were studied: Regional homogeneity or local connectivity, a measure of concordance between each voxel to a focal cluster of adjacent voxels; and eigenvector centrality, a global connectivity estimate designed to detect important neural hubs. Multivariate pattern analysis of these data in a machine-learning framework was used to identify spatial features that classified disease subjects. Multivariate pattern analysis was 95.7% accurate in classifying subjects for both local and global connectivity measures (22/23 subjects correctly classified). Maximal discriminating features were the following: increased local connectivity in frontoinsular and intraparietal areas; increased global connectivity in posterior association areas; decreased local connectivity in sensory (visual and auditory) and medial frontal cortices; and decreased global connectivity in the cingulate cortex, striatum, hippocampus, and pons. Using a data-driven analysis method in task-free functional magnetic resonance imaging, we show increased connectivity in critical areas of association cortex and decreased connectivity in primary cortex. This supports previous findings of a critical role for these association cortical regions as a final common pathway in generating the Lennox-Gastaut phenotype. Abnormal function of these areas is likely to be important in explaining the intellectual problems characteristic of this disorder. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  7. National connected vehicle field infrastructure footprint analysis.

    DOT National Transportation Integrated Search

    2014-06-01

    The fundamental premise of the connected vehicle initiative is that enabling wireless connectivity among vehicles, the infrastructure, and mobile devices will bring about transformative changes in safety, mobility, and the environmental impacts in th...

  8. Dynamics of Intersubject Brain Networks during Anxious Anticipation

    PubMed Central

    Najafi, Mahshid; Kinnison, Joshua; Pessoa, Luiz

    2017-01-01

    How do large-scale brain networks reorganize during the waxing and waning of anxious anticipation? Here, threat was dynamically modulated during human functional MRI as two circles slowly meandered on the screen; if they touched, an unpleasant shock was delivered. We employed intersubject correlation analysis, which allowed the investigation of network-level functional connectivity across brains, and sought to determine how network connectivity changed during periods of approach (circles moving closer) and periods of retreat (circles moving apart). Analysis of positive connection weights revealed that dynamic threat altered connectivity within and between the salience, executive, and task-negative networks. For example, dynamic functional connectivity increased within the salience network during approach and decreased during retreat. The opposite pattern was found for the functional connectivity between the salience and task-negative networks: decreases during approach and increases during approach. Functional connections between subcortical regions and the salience network also changed dynamically during approach and retreat periods. Subcortical regions exhibiting such changes included the putative periaqueductal gray, putative habenula, and putative bed nucleus of the stria terminalis. Additional analysis of negative functional connections revealed dynamic changes, too. For example, negative weights within the salience network decreased during approach and increased during retreat, opposite what was found for positive weights. Together, our findings unraveled dynamic features of functional connectivity of large-scale networks and subcortical regions across participants while threat levels varied continuously, and demonstrate the potential of characterizing emotional processing at the level of dynamic networks. PMID:29209184

  9. Characterization of functional brain activity and connectivity using EEG and fMRI in patients with sickle cell disease.

    PubMed

    Case, Michelle; Zhang, Huishi; Mundahl, John; Datta, Yvonne; Nelson, Stephen; Gupta, Kalpna; He, Bin

    2017-01-01

    Sickle cell disease (SCD) is a red blood cell disorder that causes many complications including life-long pain. Treatment of pain remains challenging due to a poor understanding of the mechanisms and limitations to characterize and quantify pain. In the present study, we examined simultaneously recording functional MRI (fMRI) and electroencephalogram (EEG) to better understand neural connectivity as a consequence of chronic pain in SCD patients. We performed independent component analysis and seed-based connectivity on fMRI data. Spontaneous power and microstate analysis was performed on EEG-fMRI data. ICA analysis showed that patients lacked activity in the default mode network (DMN) and executive control network compared to controls. EEG-fMRI data revealed that the insula cortex's role in salience increases with age in patients. EEG microstate analysis showed patients had increased activity in pain processing regions. The cerebellum in patients showed a stronger connection to the periaqueductal gray matter (involved in pain inhibition), and negative connections to pain processing areas. These results suggest that patients have reduced activity of DMN and increased activity in pain processing regions during rest. The present findings suggest resting state connectivity differences between patients and controls can be used as novel biomarkers of SCD pain.

  10. Financial liberalization and stock market cross-correlation: MF-DCCA analysis based on Shanghai-Hong Kong Stock Connect

    NASA Astrophysics Data System (ADS)

    Ruan, Qingsong; Zhang, Shuhua; Lv, Dayong; Lu, Xinsheng

    2018-02-01

    Based on the implementation of Shanghai-Hong Kong Stock Connect in China, this paper examines the effects of financial liberalization on stock market comovement using both multifractal detrended fluctuation analysis (MF-DFA) and multifractal detrended cross-correlation analysis (MF-DCCA) methods. Results based on MF-DFA confirm the multifractality of Shanghai and Hong Kong stock markets, and the market efficiency of Shanghai stock market increased after the implementation of this connect program. Besides, analysis based on MF-DCCA has verified the existence of persistent cross-correlation between Shanghai and Hong Kong stock markets, and the cross-correlation gets stronger after the launch of this liberalization program. Finally, we find that fat-tail distribution is the main source of multifractality in the cross-correlations before the stock connect program, while long-range correlation contributes to the multifractality after this program.

  11. A Multi-User Game-Theoretical Multipath Routing Protocol to Send Video-Warning Messages over Mobile Ad Hoc Networks

    PubMed Central

    Mezher, Ahmad Mohamad; Igartua, Mónica Aguilar; de la Cruz Llopis, Luis J.; Segarra, Esteve Pallarès; Tripp-Barba, Carolina; Urquiza-Aguiar, Luis; Forné, Jordi; Gargallo, Emilio Sanvicente

    2015-01-01

    The prevention of accidents is one of the most important goals of ad hoc networks in smart cities. When an accident happens, dynamic sensors (e.g., citizens with smart phones or tablets, smart vehicles and buses, etc.) could shoot a video clip of the accident and send it through the ad hoc network. With a video message, the level of seriousness of the accident could be much better evaluated by the authorities (e.g., health care units, police and ambulance drivers) rather than with just a simple text message. Besides, other citizens would be rapidly aware of the incident. In this way, smart dynamic sensors could participate in reporting a situation in the city using the ad hoc network so it would be possible to have a quick reaction warning citizens and emergency units. The deployment of an efficient routing protocol to manage video-warning messages in mobile Ad hoc Networks (MANETs) has important benefits by allowing a fast warning of the incident, which potentially can save lives. To contribute with this goal, we propose a multipath routing protocol to provide video-warning messages in MANETs using a novel game-theoretical approach. As a base for our work, we start from our previous work, where a 2-players game-theoretical routing protocol was proposed to provide video-streaming services over MANETs. In this article, we further generalize the analysis made for a general number of N players in the MANET. Simulations have been carried out to show the benefits of our proposal, taking into account the mobility of the nodes and the presence of interfering traffic.Finally, we also have tested our approach in a vehicular ad hoc network as an incipient start point to develop a novel proposal specifically designed for VANETs. PMID:25897496

  12. Perfusion deficits and functional connectivity alterations in patients with post-traumatic stress disorder

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Li, Baojuan; Zhang, Xi; Zhang, Linchuan; Li, Liang; Lu, Hongbing

    2016-03-01

    To explore the alteration in cerebral blood flow (CBF) and functional connectivity between survivors with recent onset post-traumatic stress disorder (PTSD) and without PTSD, survived from the same coal mine flood disaster. In this study, a processing pipeline using arterial spin labeling (ASL) sequence was proposed. Considering low spatial resolution of ASL sequence, a linear regression method was firstly used to correct the partial volume (PV) effect for better CBF estimation. Then the alterations of CBF between two groups were analyzed using both uncorrected and PV-corrected CBF maps. Based on altered CBF regions detected from the CBF analysis as seed regions, the functional connectivity abnormities in PTSD patients was investigated. The CBF analysis using PV-corrected maps indicates CBF deficits in the bilateral frontal lobe, right superior frontal gyrus and right corpus callosum of PTSD patients, while only right corpus callosum was identified in uncorrected CBF analysis. Furthermore, the regional CBF of the right superior frontal gyrus exhibits significantly negative correlation with the symptom severity in PTSD patients. The resting-state functional connectivity indicates increased connectivity between left frontal lobe and right parietal lobe. These results indicate that PV-corrected CBF exhibits more subtle perfusion changes and may benefit further perfusion and connectivity analysis. The symptom-specific perfusion deficits and aberrant connectivity in above memory-related regions may be putative biomarkers for recent onset PTSD induced by a single prolonged trauma exposure and help predict the severity of PTSD.

  13. Landscape-level analysis of mountain goat population connectivity in Washington and southern British Columbia

    Treesearch

    Leslie C. Parks; David O. Wallin; Samuel A. Cushman; Brad H. McRae

    2015-01-01

    Habitat fragmentation and habitat loss diminish population connectivity, reducing genetic diversity and increasing extinction risk over time. Improving connectivity is widely recommended to preserve the long-term viability of populations, but this requires accurate knowledge of how landscapes influence connectivity. Detectability of landscape effects on gene...

  14. Functional connectivity between the cerebrum and cerebellum in social cognition: A multi-study analysis.

    PubMed

    Van Overwalle, Frank; Mariën, Peter

    2016-01-01

    This multi-study connectivity analysis explores the functional connectivity of the cerebellum with the cerebrum in social mentalizing, that is, understanding the mind of another person. The analysis covers 5 studies (n=92) involving abstract and complex forms of social mentalizing such as (a) person and group impression formation based on behavioral descriptions and (b) constructing personal counterfactual events (i.e., how the past could have turned out better). The results suggest that cerebellar activity during these social processes reflects a domain-specific mentalizing functionality that is strongly connected with a corresponding mentalizing network in the cerebrum. A significant pattern of connectivity was found linking the dorsal medial prefrontal cortex (mPFC) and the right temporo-parietal junction (TPJ) with the right posterior cerebellum, and linking the latter with the left TPJ. In addition, in the cerebrum, further connectivity was found through links of the bilateral TPJ with the dorsal mPFC, orbitofrontal cortex and between right and left TPJ. The discussion centers on the role of these cerebro-cerebellar connections in matching external information from the cerebrum with internal predictions generated by the cerebellum. These internal predictions might involve the sequencing of the person's behaviors. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Laterality effects in functional connectivity of the angular gyrus during rest and episodic retrieval.

    PubMed

    Bellana, Buddhika; Liu, Zhongxu; Anderson, John A E; Moscovitch, Morris; Grady, Cheryl L

    2016-01-08

    The angular gyrus (AG) is consistently reported in neuroimaging studies of episodic memory retrieval and is a fundamental node within the default mode network (DMN). Its specific contribution to episodic memory is debated, with some suggesting it is important for the subjective experience of episodic recollection, rather than retrieval of objective episodic details. Across studies of episodic retrieval, the left AG is recruited more reliably than the right. We explored functional connectivity of the right and left AG with the DMN during rest and retrieval to assess whether connectivity could provide insight into the nature of this laterality effect. Using data from the publically available 1000 Functional Connectome Project, 8min of resting fMRI data from 180 healthy young adults were analysed. Whole-brain functional connectivity at rest was measured using a seed-based Partial Least Squares (seed-PLS) approach (McIntosh and Lobaugh, 2004) with bilateral AG seeds. A subsequent analysis used 6-min of rest and 6-min of unconstrained, silent retrieval of autobiographical events from a new sample of 20 younger adults. Analysis of this dataset took a more targeted approach to functional connectivity analysis, consisting of univariate pairwise correlations restricted to nodes of the DMN. The seed-PLS analysis resulted in two Latent Variables that together explained ~86% of the shared cross-block covariance. The first LV revealed a common network consistent with the DMN and engaging the AG bilaterally, whereas the second LV revealed a less robust, yet significant, laterality effect in connectivity - the left AG was more strongly connected to the DMN. Univariate analyses of the second sample again revealed better connectivity between the left AG and the DMN at rest. However, during retrieval the left AG was more strongly connected than the right to non-medial temporal (MTL) nodes of the DMN, and MTL nodes were more strongly connected to the right AG. The multivariate analysis of resting connectivity revealed that the left and right AG show similar connectivity with the DMN. Only after accounting for this commonality were we able to detect a left laterality effect in DMN connectivity. Further probing with univariate connectivity analyses during retrieval demonstrates that the left preference we observe is restricted to the non-MTL regions of the DMN, whereas the right AG shows significantly better connectivity with the MTL. These data suggest bilateral involvement of the AG during retrieval, despite the focus on the left AG in the literature. Furthermore, the results suggest that the contribution of the left AG to retrieval may be separable from that of the MTL, consistent with a role for the left AG in the subjective aspects of recollection in memory, whereas the MTL and the right AG may contribute to objective recollection of specific memory details. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Assessing dynamic brain graphs of time-varying connectivity in fMRI data: application to healthy controls and patients with schizophrenia

    PubMed Central

    Yu, Qingbao; Erhardt, Erik B.; Sui, Jing; Du, Yuhui; He, Hao; Hjelm, Devon; Cetin, Mustafa S.; Rachakonda, Srinivas; Miller, Robyn L.; Pearlson, Godfrey; Calhoun, Vince D.

    2014-01-01

    Graph theory-based analysis has been widely employed in brain imaging studies, and altered topological properties of brain connectivity have emerged as important features of mental diseases such as schizophrenia. However, most previous studies have focused on graph metrics of stationary brain graphs, ignoring that brain connectivity exhibits fluctuations over time. Here we develop a new framework for accessing dynamic graph properties of time-varying functional brain connectivity in resting state fMRI data and apply it to healthy controls (HCs) and patients with schizophrenia (SZs). Specifically, nodes of brain graphs are defined by intrinsic connectivity networks (ICNs) identified by group independent component analysis (ICA). Dynamic graph metrics of the time-varying brain connectivity estimated by the correlation of sliding time-windowed ICA time courses of ICNs are calculated. First- and second-level connectivity states are detected based on the correlation of nodal connectivity strength between time-varying brain graphs. Our results indicate that SZs show decreased variance in the dynamic graph metrics. Consistent with prior stationary functional brain connectivity works, graph measures of identified first-level connectivity states show lower values in SZs. In addition, more first-level connectivity states are disassociated with the second-level connectivity state which resembles the stationary connectivity pattern computed by the entire scan. Collectively, the findings provide new evidence about altered dynamic brain graphs in schizophrenia which may underscore the abnormal brain performance in this mental illness. PMID:25514514

  17. Strategies Used by Foreign-Born Family Therapists to Connect Across Cultural Differences: A Thematic Analysis.

    PubMed

    Niño, Alba; Kissil, Karni; Davey, Maureen P

    2016-01-01

    With the growing diversity in the United States among both clinicians and clients, many therapeutic encounters are cross-cultural, requiring providers to connect across cultural differences. Foreign-born therapists have many areas of differences to work through. Thus, exploring how foreign-born family therapists in the United States connect to their clients can uncover helpful strategies that all therapists can use to establish stronger cross-cultural therapeutic connections. A thematic analysis was conducted to understand strategies 13 foreign-born therapists used during therapeutic encounters. Four themes were identified: making therapy a human-to-human connection, dealing with stereotypes, what really matters, and flexibility. Findings suggest that developing a deep therapeutic connection using emotional attunement and human-to-human engagement is crucial for successful cross-cultural therapy. Clinical and training implications are provided. © 2015 American Association for Marriage and Family Therapy.

  18. Disrupted functional brain connectivity in partial epilepsy: a resting-state fMRI study.

    PubMed

    Luo, Cheng; Qiu, Chuan; Guo, Zhiwei; Fang, Jiajia; Li, Qifu; Lei, Xu; Xia, Yang; Lai, Yongxiu; Gong, Qiyong; Zhou, Dong; Yao, Dezhong

    2011-01-01

    Examining the spontaneous activity to understand the neural mechanism of brain disorder is a focus in recent resting-state fMRI. In the current study, to investigate the alteration of brain functional connectivity in partial epilepsy in a systematical way, two levels of analyses (functional connectivity analysis within resting state networks (RSNs) and functional network connectivity (FNC) analysis) were carried out on resting-state fMRI data acquired from the 30 participants including 14 healthy controls(HC) and 16 partial epilepsy patients. According to the etiology, all patients are subdivided into temporal lobe epilepsy group (TLE, included 7 patients) and mixed partial epilepsy group (MPE, 9 patients). Using group independent component analysis, eight RSNs were identified, and selected to evaluate functional connectivity and FNC between groups. Compared with the controls, decreased functional connectivity within all RSNs was found in both TLE and MPE. However, dissociating patterns were observed within the 8 RSNs between two patient groups, i.e, compared with TLE, we found decreased functional connectivity in 5 RSNs increased functional connectivity in 1 RSN, and no difference in the other 2 RSNs in MPE. Furthermore, the hierarchical disconnections of FNC was found in two patient groups, in which the intra-system connections were preserved for all three subsystems while the lost connections were confined to intersystem connections in patients with partial epilepsy. These findings may suggest that decreased resting state functional connectivity and disconnection of FNC are two remarkable characteristics of partial epilepsy. The selective impairment of FNC implicated that it is unsuitable to understand the partial epilepsy only from global or local perspective. We presumed that studying epilepsy in the multi-perspective based on RSNs may be a valuable means to assess the functional changes corresponding to specific RSN and may contribute to the understanding of the neuro-pathophysiological mechanism of epilepsy.

  19. Structural brain network analysis in families multiply affected with bipolar I disorder.

    PubMed

    Forde, Natalie J; O'Donoghue, Stefani; Scanlon, Cathy; Emsell, Louise; Chaddock, Chris; Leemans, Alexander; Jeurissen, Ben; Barker, Gareth J; Cannon, Dara M; Murray, Robin M; McDonald, Colm

    2015-10-30

    Disrupted structural connectivity is associated with psychiatric illnesses including bipolar disorder (BP). Here we use structural brain network analysis to investigate connectivity abnormalities in multiply affected BP type I families, to assess the utility of dysconnectivity as a biomarker and its endophenotypic potential. Magnetic resonance diffusion images for 19 BP type I patients in remission, 21 of their first degree unaffected relatives, and 18 unrelated healthy controls underwent tractography. With the automated anatomical labelling atlas being used to define nodes, a connectivity matrix was generated for each subject. Network metrics were extracted with the Brain Connectivity Toolbox and then analysed for group differences, accounting for potential confounding effects of age, gender and familial association. Whole brain analysis revealed no differences between groups. Analysis of specific mainly frontal regions, previously implicated as potentially endophenotypic by functional magnetic resonance imaging analysis of the same cohort, revealed a significant effect of group in the right medial superior frontal gyrus and left middle frontal gyrus driven by reduced organisation in patients compared with controls. The organisation of whole brain networks of those affected with BP I does not differ from their unaffected relatives or healthy controls. In discreet frontal regions, however, anatomical connectivity is disrupted in patients but not in their unaffected relatives. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Brain-Wide Analysis of Functional Connectivity in First-Episode and Chronic Stages of Schizophrenia.

    PubMed

    Li, Tao; Wang, Qiang; Zhang, Jie; Rolls, Edmund T; Yang, Wei; Palaniyappan, Lena; Zhang, Lu; Cheng, Wei; Yao, Ye; Liu, Zhaowen; Gong, Xiaohong; Luo, Qiang; Tang, Yanqing; Crow, Timothy J; Broome, Matthew R; Xu, Ke; Li, Chunbo; Wang, Jijun; Liu, Zhening; Lu, Guangming; Wang, Fei; Feng, Jianfeng

    2017-03-01

    Published reports of functional abnormalities in schizophrenia remain divergent due to lack of staging point-of-view and whole-brain analysis. To identify key functional-connectivity differences of first-episode (FE) and chronic patients from controls using resting-state functional MRI, and determine changes that are specifically associated with disease onset, a clinical staging model is adopted. We analyze functional-connectivity differences in prodromal, FE (mostly drug naïve), and chronic patients from their matched controls from 6 independent datasets involving a total of 789 participants (343 patients). Brain-wide functional-connectivity analysis was performed in different datasets and the results from the datasets of the same stage were then integrated by meta-analysis, with Bonferroni correction for multiple comparisons. Prodromal patients differed from controls in their pattern of functional-connectivity involving the inferior frontal gyri (Broca's area). In FE patients, 90% of the functional-connectivity changes involved the frontal lobes, mostly the inferior frontal gyrus including Broca's area, and these changes were correlated with delusions/blunted affect. For chronic patients, functional-connectivity differences extended to wider areas of the brain, including reduced thalamo-frontal connectivity, and increased thalamo-temporal and thalamo-sensorimoter connectivity that were correlated with the positive, negative, and general symptoms, respectively. Thalamic changes became prominent at the chronic stage. These results provide evidence for distinct patterns of functional-dysconnectivity across FE and chronic stages of schizophrenia. Importantly, abnormalities in the frontal language networks appear early, at the time of disease onset. The identification of stage-specific pathological processes may help to understand the disease course of schizophrenia and identify neurobiological markers crucial for early diagnosis. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Scopolamine effects on functional brain connectivity: a pharmacological model of Alzheimer's disease.

    PubMed

    Bajo, R; Pusil, S; López, M E; Canuet, L; Pereda, E; Osipova, D; Maestú, F; Pekkonen, E

    2015-07-01

    Scopolamine administration may be considered as a psychopharmacological model of Alzheimer's disease (AD). Here, we studied a group of healthy elderly under scopolamine to test whether it elicits similar changes in brain connectivity as those observed in AD, thereby verifying a possible model of AD impairment. We did it by testing healthy elderly subjects in two experimental conditions: glycopyrrolate (placebo) and scopolamine administration. We then analyzed magnetoencephalographic (MEG) data corresponding to both conditions in resting-state with eyes closed. This analysis was performed in source space by combining a nonlinear frequency band-specific measure of functional connectivity (phase locking value, PLV) with network analysis methods. Under scopolamine, functional connectivity between several brain areas was significantly reduced as compared to placebo, in most frequency bands analyzed. Besides, regarding the two complex network indices studied (clustering and shortest path length), clustering significantly decreased in the alpha band while shortest path length significantly increased also in alpha band both after scopolamine administration. Overall our findings indicate that both PLV and graph analysis are suitable tools to measure brain connectivity changes induced by scopolamine, which causes alterations in brain connectivity apparently similar to those reported in AD.

  2. Cocaine dependence and thalamic functional connectivity: a multivariate pattern analysis.

    PubMed

    Zhang, Sheng; Hu, Sien; Sinha, Rajita; Potenza, Marc N; Malison, Robert T; Li, Chiang-Shan R

    2016-01-01

    Cocaine dependence is associated with deficits in cognitive control. Previous studies demonstrated that chronic cocaine use affects the activity and functional connectivity of the thalamus, a subcortical structure critical for cognitive functioning. However, the thalamus contains nuclei heterogeneous in functions, and it is not known how thalamic subregions contribute to cognitive dysfunctions in cocaine dependence. To address this issue, we used multivariate pattern analysis (MVPA) to examine how functional connectivity of the thalamus distinguishes 100 cocaine-dependent participants (CD) from 100 demographically matched healthy control individuals (HC). We characterized six task-related networks with independent component analysis of fMRI data of a stop signal task and employed MVPA to distinguish CD from HC on the basis of voxel-wise thalamic connectivity to the six independent components. In an unbiased model of distinct training and testing data, the analysis correctly classified 72% of subjects with leave-one-out cross-validation (p < 0.001), superior to comparison brain regions with similar voxel counts (p < 0.004, two-sample t test). Thalamic voxels that form the basis of classification aggregate in distinct subclusters, suggesting that connectivities of thalamic subnuclei distinguish CD from HC. Further, linear regressions provided suggestive evidence for a correlation of the thalamic connectivities with clinical variables and performance measures on the stop signal task. Together, these findings support thalamic circuit dysfunction in cognitive control as an important neural marker of cocaine dependence.

  3. Resting state network topology of the ferret brain.

    PubMed

    Zhou, Zhe Charles; Salzwedel, Andrew P; Radtke-Schuller, Susanne; Li, Yuhui; Sellers, Kristin K; Gilmore, John H; Shih, Yen-Yu Ian; Fröhlich, Flavio; Gao, Wei

    2016-12-01

    Resting state functional magnetic resonance imaging (rsfMRI) has emerged as a versatile tool for non-invasive measurement of functional connectivity patterns in the brain. RsfMRI brain dynamics in rodents, non-human primates, and humans share similar properties; however, little is known about the resting state functional connectivity patterns in the ferret, an animal model with high potential for developmental and cognitive translational study. To address this knowledge-gap, we performed rsfMRI on anesthetized ferrets using a 9.4T MRI scanner, and subsequently performed group-level independent component analysis (gICA) to identify functionally connected brain networks. Group-level ICA analysis revealed distributed sensory, motor, and higher-order networks in the ferret brain. Subsequent connectivity analysis showed interconnected higher-order networks that constituted a putative default mode network (DMN), a network that exhibits altered connectivity in neuropsychiatric disorders. Finally, we assessed ferret brain topological efficiency using graph theory analysis and found that the ferret brain exhibits small-world properties. Overall, these results provide additional evidence for pan-species resting-state networks, further supporting ferret-based studies of sensory and cognitive function. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Security credentials management system (SCMS) design and analysis for the connected vehicle system : draft.

    DOT National Transportation Integrated Search

    2013-12-27

    This report presents an analysis by Booz Allen Hamilton (Booz Allen) of the technical design for the Security Credentials Management System (SCMS) intended to support communications security for the connected vehicle system. The SCMS technical design...

  5. Analysis, inspection, and repair methods for pin connections on Illinois bridges

    DOT National Transportation Integrated Search

    1992-04-01

    This report documents methods used in Illinois for analysis, inspection, and repair of pin connections in bridges. Weldable foil strain gages were used to detect the effects of unknown levels of fixity in pins on cantilever truss bridges. Other metho...

  6. Detecting and Blocking Network Attacks at Ultra High Speeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paxson, Vern

    2010-11-29

    Stateful, in-depth, in-line traffic analysis for intrusion detection and prevention has grown increasingly more difficult as the data rates of modern networks rise. One point in the design space for high-performance network analysis - pursued by a number of commercial products - is the use of sophisticated custom hardware. For very high-speed processing, such systems often cast the entire analysis process in ASICs. This project pursued a different architectural approach, which we term Shunting. Shunting marries a conceptually quite simple hardware device with an Intrusion Prevention System (IPS) running on commodity PC hardware. The overall design goal is was tomore » keep the hardware both cheap and readily scalable to future higher speeds, yet also retain the unparalleled flexibility that running the main IPS analysis in a full general-computing environment provides. The Shunting architecture we developed uses a simple in-line hardware element that maintains several large state tables indexed by packet header fields, including IP/TCP flags, source and destination IP addresses, and connection tuples. The tables yield decision values the element makes on a packet-by-packet basis: forward the packet, drop it, or divert ('shunt') it through the IPS (the default). By manipulating table entries, the IPS can, on a fine-grained basis: (i) specify the traffic it wishes to examine, (ii) directly block malicious traffic, and (iii) 'cut through' traffic streams once it has had an opportunity to 'vet' them, or (iv) skip over large items within a stream before proceeding to further analyze it. For the Shunting architecture to yield benefits, it needs to operate in an environment for which the monitored network traffic has the property that - after proper vetting - much of it can be safely skipped. This property does not universally hold. For example, if a bank needs to examine all Web traffic involving its servers for regulatory compliance, then a monitor in front of one of the bank's server farms cannot safely omit a subset of the traffic from analysis. In this environment, Shunting cannot realize its main performance benefits, and the monitoring task likely calls for using custom hardware instead. However, in many other environments we find Shunting holds promise for delivering major performance gains. This arises due to the the widely documented 'heavy tail' nature of most forms of network traffic, which we might express as 'a few of the connections carry just about all the bytes.' The key additional insight is '... and very often for these few large connections, the very beginning of the connection contains nearly all the information of interest from a security analysis perspective.' We argue that this second claim holds because it is at the beginning of connections that authentication exchanges occur, data or file names and types are specified, request and reply status codes conveyed, and encryption is negotiated. Once these occur, we have seen most of the interesting facets of the dialog. Certainly the remainder of the connection might also yield some grist for analysis, but this is generally less likely, and thus if we want to lower analysis load at as small a loss as possible of information relevant to security analysis, we might best do so by skipping the bulk of large connections. In a different context, the 'Time Machine' work by Kornexl and colleagues likewise shows that in some environments we can realize major reductions in the volume of network traffic processed, by limiting the processing to the first 10-20 KB of each connection. As a concrete example, consider an IPS that monitors SSH traffic. When a new SSH connection arrives and the Shunt fails to find an entry for it in any of its tables (per-address, per-port, per-connection), it executes the default action of diverting the connection through the IPS. The IPS analyzes the beginning of the connection in this fashion. As long as it is satisified with the dialog, it reinjects the packets forwarded to it so that the connection can continue. If the connection successfully negotiates encryption, the IPS can no longer profitably analyze it, so it downloads a per-connection table entry to the Shunt specifying that the action for the connection in the future is 'forward.' For heavy-tailed connections, this means a very large majority of the connection's packets will now pass through the Shunt device without burdening the IPS with any further analysis load. On the other hand, if the IPS is dissatisfied with some element of the initial dialog, it downloads a 'drop' entry to terminate the connection. Note that by providing for reinjection, we can promote an intrusion detection system into an intrusion prevention system, one that does not merely detect attacks but can block them before they complete. Reinjection also allows the IPS to normalize traffic to remove ambiguities that attackers can leverage to evade the IPS.« less

  7. Risperidone Effects on Brain Dynamic Connectivity-A Prospective Resting-State fMRI Study in Schizophrenia.

    PubMed

    Lottman, Kristin K; Kraguljac, Nina V; White, David M; Morgan, Charity J; Calhoun, Vince D; Butt, Allison; Lahti, Adrienne C

    2017-01-01

    Resting-state functional connectivity studies in schizophrenia evaluating average connectivity over the entire experiment have reported aberrant network integration, but findings are variable. Examining time-varying (dynamic) functional connectivity may help explain some inconsistencies. We assessed dynamic network connectivity using resting-state functional MRI in patients with schizophrenia, while unmedicated ( n  = 34), after 1 week ( n  = 29) and 6 weeks of treatment with risperidone ( n  = 24), as well as matched controls at baseline ( n  = 35) and after 6 weeks ( n  = 19). After identifying 41 independent components (ICs) comprising resting-state networks, sliding window analysis was performed on IC timecourses using an optimal window size validated with linear support vector machines. Windowed correlation matrices were then clustered into three discrete connectivity states (a relatively sparsely connected state, a relatively abundantly connected state, and an intermediately connected state). In unmedicated patients, static connectivity was increased between five pairs of ICs and decreased between two pairs of ICs when compared to controls, dynamic connectivity showed increased connectivity between the thalamus and somatomotor network in one of the three states. State statistics indicated that, in comparison to controls, unmedicated patients had shorter mean dwell times and fraction of time spent in the sparsely connected state, and longer dwell times and fraction of time spent in the intermediately connected state. Risperidone appeared to normalize mean dwell times after 6 weeks, but not fraction of time. Results suggest that static connectivity abnormalities in schizophrenia may partly be related to altered brain network temporal dynamics rather than consistent dysconnectivity within and between functional networks and demonstrate the importance of implementing complementary data analysis techniques.

  8. Optimizing and Interpreting Insular Functional Connectivity Maps Obtained During Acute Experimental Pain: The Effects of Global Signal and Task Paradigm Regression.

    PubMed

    Ibinson, James W; Vogt, Keith M; Taylor, Kevin B; Dua, Shiv B; Becker, Christopher J; Loggia, Marco; Wasan, Ajay D

    2015-12-01

    The insula is uniquely located between the temporal and parietal cortices, making it anatomically well-positioned to act as an integrating center between the sensory and affective domains for the processing of painful stimulation. This can be studied through resting-state functional connectivity (fcMRI) imaging; however, the lack of a clear methodology for the analysis of fcMRI complicates the interpretation of these data during acute pain. Detected connectivity changes may reflect actual alterations in low-frequency synchronous neuronal activity related to pain, may be due to changes in global cerebral blood flow or the superimposed task-induced neuronal activity. The primary goal of this study was to investigate the effects of global signal regression (GSR) and task paradigm regression (TPR) on the changes in functional connectivity of the left (contralateral) insula in healthy subjects at rest and during acute painful electric nerve stimulation of the right hand. The use of GSR reduced the size and statistical significance of connectivity clusters and created negative correlation coefficients for some connectivity clusters. TPR with cyclic stimulation gave task versus rest connectivity differences similar to those with a constant task, suggesting that analysis which includes TPR is more accurately reflective of low-frequency neuronal activity. Both GSR and TPR have been inconsistently applied to fcMRI analysis. Based on these results, investigators need to consider the impact GSR and TPR have on connectivity during task performance when attempting to synthesize the literature.

  9. Neah Bay Antenna Connectivity Tests and Analysis: November 19, 2001

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Stewart, David; Edgein, Ken; Pansera, Vincent; Bell, Terry; Shell, Dan; Miller, Cecil

    2002-01-01

    The purpose of these tests was to determine the connectivity range and associated data rates for connection between the flat panel antennas on the Federal Building and the dipole and L-3 tracking antennas on the Neah Bay.

  10. Decreased intrinsic brain connectivity is associated with reduced clinical pain in fibromyalgia.

    PubMed

    Napadow, Vitaly; Kim, Jieun; Clauw, Daniel J; Harris, Richard E

    2012-07-01

    A major impediment to the development of novel treatment strategies for fibromyalgia (FM) is the lack of an objective marker that reflects spontaneously reported clinical pain in patients with FM. Studies of resting-state intrinsic brain connectivity in FM have demonstrated increased insular connectivity to the default mode network (DMN), a network whose activity is increased during nontask states. Moreover, increased insular connectivity to the DMN was associated with increased spontaneous pain levels. However, as these analyses were cross-sectional in nature, they provided no insight into dynamic changes in connectivity or their relationship to variations in self-reported clinical pain. The purpose of this study was to evaluate longitudinal changes in the intrinsic brain connectivity of FM patients treated with nonpharmacologic interventions known to modulate pain levels in this patient population, and to test the hypothesis that the reduction of DMN-insula connectivity following therapy would correlate with diminished pain. Seventeen FM patients underwent resting-state functional magnetic resonance imaging at baseline and following 4 weeks of a nonpharmacologic intervention to diminish pain. Intrinsic DMN connectivity was evaluated using probabilistic independent components analysis. Longitudinal changes in intrinsic DMN connectivity were evaluated by paired analysis, and correlations between longitudinal changes in clinical pain and changes in intrinsic DMN connectivity were investigated by multiple linear regression analysis. Changes in clinical pain were assessed with the short form of the McGill Pain Questionnaire (SF-MPQ). Clinical pain as assessed using the sensory scale of the SF-MPQ was reduced following therapy (P=0.02). Intrinsic DMN connectivity to the insula was reduced, and this reduction correlated with reductions in pain (corrected P<0.05). Our findings suggest that intrinsic brain connectivity can be used as a candidate objective marker that reflects changes in spontaneous chronic pain within individual FM patients. We propose that intrinsic connectivity measures could potentially be used in either research or clinical settings as a complementary, more objective outcome measure for use in FM. Copyright © 2012 by the American College of Rheumatology.

  11. A Survey on Urban Traffic Management System Using Wireless Sensor Networks.

    PubMed

    Nellore, Kapileswar; Hancke, Gerhard P

    2016-01-27

    Nowadays, the number of vehicles has increased exponentially, but the bedrock capacities of roads and transportation systems have not developed in an equivalent way to efficiently cope with the number of vehicles traveling on them. Due to this, road jamming and traffic correlated pollution have increased with the associated adverse societal and financial effect on different markets worldwide. A static control system may block emergency vehicles due to traffic jams. Wireless Sensor networks (WSNs) have gained increasing attention in traffic detection and avoiding road congestion. WSNs are very trendy due to their faster transfer of information, easy installation, less maintenance, compactness and for being less expensive compared to other network options. There has been significant research on Traffic Management Systems using WSNs to avoid congestion, ensure priority for emergency vehicles and cut the Average Waiting Time (AWT) of vehicles at intersections. In recent decades, researchers have started to monitor real-time traffic using WSNs, RFIDs, ZigBee, VANETs, Bluetooth devices, cameras and infrared signals. This paper presents a survey of current urban traffic management schemes for priority-based signalling, and reducing congestion and the AWT of vehicles. The main objective of this survey is to provide a taxonomy of different traffic management schemes used for avoiding congestion. Existing urban traffic management schemes for the avoidance of congestion and providing priority to emergency vehicles are considered and set the foundation for further research.

  12. Managing Emergency Situations in VANET Through Heterogeneous Technologies Cooperation.

    PubMed

    Santamaria, Amilcare Francesco; Tropea, Mauro; Fazio, Peppino; De Rango, Floriano

    2018-05-08

    Nowadays, the research on vehicular computing enhanced a very huge amount of services and protocols, aimed to vehicles security and comfort. The investigation of the IEEE802.11p, Wireless Access in Vehicular Environments (WAVE) and Dedicated Short Range Communication (DSRC) standards gave to the scientific world the chance to integrate new services, protocols, algorithms and devices inside vehicles. This opportunity attracted the attention of private/public organizations, which spent lot of resources and money to promote vehicular technologies. In this paper, the attention is focused on the design of a new approach for vehicular environments able to gather information during mobile node trips, for advising dangerous or emergency situations by exploiting on-board sensors. It is assumed that each vehicle has an integrated on-board unit composed of several sensors and Global Position System (GPS) device, able to spread alerting messages around the network, regarding warning and dangerous situations/conditions. On-board units, based on the standard communication protocols, share the collected information with the surrounding road-side units, while the sensing platform is able to recognize the environment that vehicles are passing through (obstacles, accidents, emergencies, dangerous situations, etc.). Finally, through the use of the GPS receiver, the exact location of the caught event is determined and spread along the network. In this way, if an accident occurs, the arriving cars will, probably, avoid delay and danger situations.

  13. Managing Emergency Situations in VANET Through Heterogeneous Technologies Cooperation

    PubMed Central

    Tropea, Mauro; De Rango, Floriano

    2018-01-01

    Nowadays, the research on vehicular computing enhanced a very huge amount of services and protocols, aimed to vehicles security and comfort. The investigation of the IEEE802.11p, Wireless Access in Vehicular Environments (WAVE) and Dedicated Short Range Communication (DSRC) standards gave to the scientific world the chance to integrate new services, protocols, algorithms and devices inside vehicles. This opportunity attracted the attention of private/public organizations, which spent lot of resources and money to promote vehicular technologies. In this paper, the attention is focused on the design of a new approach for vehicular environments able to gather information during mobile node trips, for advising dangerous or emergency situations by exploiting on-board sensors. It is assumed that each vehicle has an integrated on-board unit composed of several sensors and Global Position System (GPS) device, able to spread alerting messages around the network, regarding warning and dangerous situations/conditions. On-board units, based on the standard communication protocols, share the collected information with the surrounding road-side units, while the sensing platform is able to recognize the environment that vehicles are passing through (obstacles, accidents, emergencies, dangerous situations, etc.). Finally, through the use of the GPS receiver, the exact location of the caught event is determined and spread along the network. In this way, if an accident occurs, the arriving cars will, probably, avoid delay and danger situations. PMID:29738453

  14. A Survey on Urban Traffic Management System Using Wireless Sensor Networks

    PubMed Central

    Nellore, Kapileswar; Hancke, Gerhard P.

    2016-01-01

    Nowadays, the number of vehicles has increased exponentially, but the bedrock capacities of roads and transportation systems have not developed in an equivalent way to efficiently cope with the number of vehicles traveling on them. Due to this, road jamming and traffic correlated pollution have increased with the associated adverse societal and financial effect on different markets worldwide. A static control system may block emergency vehicles due to traffic jams. Wireless Sensor networks (WSNs) have gained increasing attention in traffic detection and avoiding road congestion. WSNs are very trendy due to their faster transfer of information, easy installation, less maintenance, compactness and for being less expensive compared to other network options. There has been significant research on Traffic Management Systems using WSNs to avoid congestion, ensure priority for emergency vehicles and cut the Average Waiting Time (AWT) of vehicles at intersections. In recent decades, researchers have started to monitor real-time traffic using WSNs, RFIDs, ZigBee, VANETs, Bluetooth devices, cameras and infrared signals. This paper presents a survey of current urban traffic management schemes for priority-based signalling, and reducing congestion and the AWT of vehicles. The main objective of this survey is to provide a taxonomy of different traffic management schemes used for avoiding congestion. Existing urban traffic management schemes for the avoidance of congestion and providing priority to emergency vehicles are considered and set the foundation for further research. PMID:26828489

  15. The influence of implant-abutment connection to peri-implant bone loss: A systematic review and meta-analysis.

    PubMed

    Caricasulo, Riccardo; Malchiodi, Luciano; Ghensi, Paolo; Fantozzi, Giuliano; Cucchi, Alessandro

    2018-05-15

    Different implant-abutment connections are available and it has been claimed they could have an effect on marginal bone loss. The aim of this review is to establish if implant connection configuration influences peri-implant bone loss (PBL) after functional loading. A specific question was formulated according to the Population, Intervention, Control, and Outcome (PICO): Does the type of implant-abutment connection (external, internal, or conical) have an influence on peri-implant bone loss? A PubMed/MEDLINE electronic search was conducted to identify English language publications published in international journals during the last decade (from 2006 to 2016). The search was conducted by using the Medical Subject Headings (MeSH) keywords "dental implants OR dental abutment AND external connection OR internal connection OR conical connection OR Morse Taper." Selected studies were randomized clinical trials and prospective studies; in vitro studies, case reports and retrospective studies were excluded. Titles and abstracts and, in the second phase, full texts, were evaluated autonomously and in duplicate by two reviewers. A total of 1649 articles were found, but only 14 studies met the pre-established inclusion criteria and were considered suitable for meta-analytic analysis. The network meta-analysis (NMA) suggested a significant difference between the external and the conical connections; this was less evident for the internal and conical ones. Platform-switching (PS) seemed to positively affect bone levels, non-regarding the implant-connection it was applied to. Within the limitations of this systematic review, it can be concluded that crestal bone levels are better maintained in the short-medium term when internal kinds of interface are adopted. In particular, conical connections seem to be more advantageous, showing lower peri-implant bone loss, but further studies are necessary to investigate the efficacy of implant-abutment connection on stability of crestal bone levels. © 2018 Wiley Periodicals, Inc.

  16. Connectome analysis for pre-operative brain mapping in neurosurgery

    PubMed Central

    Hart, Michael G.; Price, Stephen J.; Suckling, John

    2016-01-01

    Abstract Object: Brain mapping has entered a new era focusing on complex network connectivity. Central to this is the search for the connectome or the brains ‘wiring diagram’. Graph theory analysis of the connectome allows understanding of the importance of regions to network function, and the consequences of their impairment or excision. Our goal was to apply connectome analysis in patients with brain tumours to characterise overall network topology and individual patterns of connectivity alterations. Methods: Resting-state functional MRI data were acquired using multi-echo, echo planar imaging pre-operatively from five participants each with a right temporal–parietal–occipital glioblastoma. Complex networks analysis was initiated by parcellating the brain into anatomically regions amongst which connections were identified by retaining the most significant correlations between the respective wavelet decomposed time-series. Results: Key characteristics of complex networks described in healthy controls were preserved in these patients, including ubiquitous small world organization. An exponentially truncated power law fit to the degree distribution predicted findings of general network robustness to injury but with a core of hubs exhibiting disproportionate vulnerability. Tumours produced a consistent reduction in local and long-range connectivity with distinct patterns of connection loss depending on lesion location. Conclusions: Connectome analysis is a feasible and novel approach to brain mapping in individual patients with brain tumours. Applications to pre-surgical planning include identifying regions critical to network function that should be preserved and visualising connections at risk from tumour resection. In the future one could use such data to model functional plasticity and recovery of cognitive deficits. PMID:27447756

  17. Characterizing Variability of Modular Brain Connectivity with Constrained Principal Component Analysis

    PubMed Central

    Hirayama, Jun-ichiro; Hyvärinen, Aapo; Kiviniemi, Vesa; Kawanabe, Motoaki; Yamashita, Okito

    2016-01-01

    Characterizing the variability of resting-state functional brain connectivity across subjects and/or over time has recently attracted much attention. Principal component analysis (PCA) serves as a fundamental statistical technique for such analyses. However, performing PCA on high-dimensional connectivity matrices yields complicated “eigenconnectivity” patterns, for which systematic interpretation is a challenging issue. Here, we overcome this issue with a novel constrained PCA method for connectivity matrices by extending the idea of the previously proposed orthogonal connectivity factorization method. Our new method, modular connectivity factorization (MCF), explicitly introduces the modularity of brain networks as a parametric constraint on eigenconnectivity matrices. In particular, MCF analyzes the variability in both intra- and inter-module connectivities, simultaneously finding network modules in a principled, data-driven manner. The parametric constraint provides a compact module-based visualization scheme with which the result can be intuitively interpreted. We develop an optimization algorithm to solve the constrained PCA problem and validate our method in simulation studies and with a resting-state functional connectivity MRI dataset of 986 subjects. The results show that the proposed MCF method successfully reveals the underlying modular eigenconnectivity patterns in more general situations and is a promising alternative to existing methods. PMID:28002474

  18. Development and Plasticity of Cortical Processing Architectures

    NASA Astrophysics Data System (ADS)

    Singer, Wolf

    1995-11-01

    One of the basic functions of the cerebral cortex is the analysis and representation of relations among the components of sensory and motor patterns. It is proposed that the cortex applies two complementary strategies to cope with the combinatorial problem posed by the astronomical number of possible relations: (i) the analysis and representation of frequently occurring, behaviorally relevant relations by groups of cells with fixed but broadly tuned response properties; and (ii) the dynamic association of these cells into functionally coherent assemblies. Feedforward connections and reciprocal associative connections, respectively, are thought to underlie these two operations. The architectures of both types of connections are susceptible to experience-dependent modifications during development, but they become fixed in the adult. As development proceeds, feedforward connections also appear to lose much of their functional plasticity, whereas the synapses of the associative connections retain a high susceptibility to use-dependent modifications. The reduced plasticity of feedforward connections is probably responsible for the invariance of cognitive categories acquired early in development. The persistent adaptivity of reciprocal connections is a likely substrate for the ability to generate representations for new perceptual objects and motor patterns throughout life.

  19. Behavior of Double-Web Angles Beam to column connections

    NASA Astrophysics Data System (ADS)

    Fakih, K. Al; Chin, S. C.; Doh, S. I.

    2018-04-01

    This paper contains the study performed on the behavior of double-web angles by using finite element analysis computer package known as “Abaqus”. The aim of this present study was simulating the behavior of double-web angles (DWA) steel connections. The purpose of this article is to provide the basis for the fastest and most economical design and analysis and to ensure the required steel connection strength. This study, started used review method of behavior of steel beam-to-column bolted connections. Two models of different cross-section were examined under the effect of concentrated load and different boundary conditions. In all the studied case, material nonlinearity was accounted. A sample study on DWA connections was carried out using both material and geometric nonlinearities. This object will be of great value to anyone who wants to better understand the behavior of the steel beam to column connection. The results of the study have a field of reference for future research for members of the development of the steel connection approach with simulation model design.

  20. Stress Analysis for the Critical Metal Structure of Bridge Crane

    NASA Astrophysics Data System (ADS)

    Ling, Zhangwei; Wang, Min; Xia, Junfang; Wang, Songhua; Guo, Xiaolian

    2018-01-01

    Based on the type of connection between the main girder and end beam of electrical single beam crane, the finite element analysis model of a full portal crane was established. The stress distribution of the critical structure under different loading conditions was analyzed. The results shown that the maximum Mises stress and deflection of the main girder were within the allowable range. And the connecting location between end beam web and main girder had higher stress than other region, especially at the lower edge and upper edge of the end beam web and the area near the bolt hole of upper wing panel. Therefore it is important to inspect the connection status, the stress condition and the crack situation nearing connection location during the regular inspection process to ensure the safety of the connection between the main girder and end beam.

  1. The Semantic Network at Work and Rest: Differential Connectivity of Anterior Temporal Lobe Subregions.

    PubMed

    Jackson, Rebecca L; Hoffman, Paul; Pobric, Gorana; Lambon Ralph, Matthew A

    2016-02-03

    The anterior temporal lobe (ATL) makes a critical contribution to semantic cognition. However, the functional connectivity of the ATL and the functional network underlying semantic cognition has not been elucidated. In addition, subregions of the ATL have distinct functional properties and thus the potential differential connectivity between these subregions requires investigation. We explored these aims using both resting-state and active semantic task data in humans in combination with a dual-echo gradient echo planar imaging (EPI) paradigm designed to ensure signal throughout the ATL. In the resting-state analysis, the ventral ATL (vATL) and anterior middle temporal gyrus (MTG) were shown to connect to areas responsible for multimodal semantic cognition, including bilateral ATL, inferior frontal gyrus, medial prefrontal cortex, angular gyrus, posterior MTG, and medial temporal lobes. In contrast, the anterior superior temporal gyrus (STG)/superior temporal sulcus was connected to a distinct set of auditory and language-related areas, including bilateral STG, precentral and postcentral gyri, supplementary motor area, supramarginal gyrus, posterior temporal cortex, and inferior and middle frontal gyri. Complementary analyses of functional connectivity during an active semantic task were performed using a psychophysiological interaction (PPI) analysis. The PPI analysis highlighted the same semantic regions suggesting a core semantic network active during rest and task states. This supports the necessity for semantic cognition in internal processes occurring during rest. The PPI analysis showed additional connectivity of the vATL to regions of occipital and frontal cortex. These areas strongly overlap with regions found to be sensitive to executively demanding, controlled semantic processing. Previous studies have shown that semantic cognition depends on subregions of the anterior temporal lobe (ATL). However, the network of regions functionally connected to these subregions has not been demarcated. Here, we show that these ventrolateral anterior temporal subregions form part of a network responsible for semantic processing during both rest and an explicit semantic task. This demonstrates the existence of a core functional network responsible for multimodal semantic cognition regardless of state. Distinct connectivity is identified in the superior ATL, which is connected to auditory and language areas. Understanding the functional connectivity of semantic cognition allows greater understanding of how this complex process may be performed and the role of distinct subregions of the anterior temporal cortex. Copyright © 2016 Jackson et al.

  2. The Semantic Network at Work and Rest: Differential Connectivity of Anterior Temporal Lobe Subregions

    PubMed Central

    Jackson, Rebecca L.; Hoffman, Paul; Pobric, Gorana

    2016-01-01

    The anterior temporal lobe (ATL) makes a critical contribution to semantic cognition. However, the functional connectivity of the ATL and the functional network underlying semantic cognition has not been elucidated. In addition, subregions of the ATL have distinct functional properties and thus the potential differential connectivity between these subregions requires investigation. We explored these aims using both resting-state and active semantic task data in humans in combination with a dual-echo gradient echo planar imaging (EPI) paradigm designed to ensure signal throughout the ATL. In the resting-state analysis, the ventral ATL (vATL) and anterior middle temporal gyrus (MTG) were shown to connect to areas responsible for multimodal semantic cognition, including bilateral ATL, inferior frontal gyrus, medial prefrontal cortex, angular gyrus, posterior MTG, and medial temporal lobes. In contrast, the anterior superior temporal gyrus (STG)/superior temporal sulcus was connected to a distinct set of auditory and language-related areas, including bilateral STG, precentral and postcentral gyri, supplementary motor area, supramarginal gyrus, posterior temporal cortex, and inferior and middle frontal gyri. Complementary analyses of functional connectivity during an active semantic task were performed using a psychophysiological interaction (PPI) analysis. The PPI analysis highlighted the same semantic regions suggesting a core semantic network active during rest and task states. This supports the necessity for semantic cognition in internal processes occurring during rest. The PPI analysis showed additional connectivity of the vATL to regions of occipital and frontal cortex. These areas strongly overlap with regions found to be sensitive to executively demanding, controlled semantic processing. SIGNIFICANCE STATEMENT Previous studies have shown that semantic cognition depends on subregions of the anterior temporal lobe (ATL). However, the network of regions functionally connected to these subregions has not been demarcated. Here, we show that these ventrolateral anterior temporal subregions form part of a network responsible for semantic processing during both rest and an explicit semantic task. This demonstrates the existence of a core functional network responsible for multimodal semantic cognition regardless of state. Distinct connectivity is identified in the superior ATL, which is connected to auditory and language areas. Understanding the functional connectivity of semantic cognition allows greater understanding of how this complex process may be performed and the role of distinct subregions of the anterior temporal cortex. PMID:26843633

  3. Socio-economic development and emotion-health connection revisited: a multilevel modeling analysis using data from 162 counties in China.

    PubMed

    Yu, Zonghuo; Wang, Fei

    2016-03-12

    Substantial research has shown that emotions play a critical role in physical health. However, most of these studies were conducted in industrialized countries, and it is still an open question whether the emotion-health connection is a "first-world problem". In the current study, we examined socio-economic development's influence on emotion-health connection by performing multilevel-modeling analysis in a dataset of 33,600 individuals from 162 counties in China. Results showed that both positive emotions and negative emotions predicted level of physical health and regional Gross Domestic Product Per Capita (GDPPC) had some impact on the association between emotion and health through accessibility of medical resources and educational status. But these impacts were suppressed, and the total effects of GDPPC on emotion-health connections were not significant. These results support the universality of emotion-health connection across levels of GDPPC and provide new insight into how socio-economic development might affect these connections.

  4. Dynamic Functional Connectivity States Between the Dorsal and Ventral Sensorimotor Networks Revealed by Dynamic Conditional Correlation Analysis of Resting-State Functional Magnetic Resonance Imaging.

    PubMed

    Syed, Maleeha F; Lindquist, Martin A; Pillai, Jay J; Agarwal, Shruti; Gujar, Sachin K; Choe, Ann S; Caffo, Brian; Sair, Haris I

    2017-12-01

    Functional connectivity in resting-state functional magnetic resonance imaging (rs-fMRI) has received substantial attention since the initial findings of Biswal et al. Traditional network correlation metrics assume that the functional connectivity in the brain remains stationary over time. However, recent studies have shown that robust temporal fluctuations of functional connectivity among as well as within functional networks exist, challenging this assumption. In this study, these dynamic correlation differences were investigated between the dorsal and ventral sensorimotor networks by applying the dynamic conditional correlation model to rs-fMRI data of 20 healthy subjects. k-Means clustering was used to determine an optimal number of discrete connectivity states (k = 10) of the sensorimotor system across all subjects. Our analysis confirms the existence of differences in dynamic correlation between the dorsal and ventral networks, with highest connectivity found within the ventral motor network.

  5. Patient-specific connectivity pattern of epileptic network in frontal lobe epilepsy

    PubMed Central

    Luo, Cheng; An, Dongmei; Yao, Dezhong; Gotman, Jean

    2014-01-01

    There is evidence that focal epilepsy may involve the dysfunction of a brain network in addition to the focal region. To delineate the characteristics of this epileptic network, we collected EEG/fMRI data from 23 patients with frontal lobe epilepsy. For each patient, EEG/fMRI analysis was first performed to determine the BOLD response to epileptic spikes. The maximum activation cluster in the frontal lobe was then chosen as the seed to identify the epileptic network in fMRI data. Functional connectivity analysis seeded at the same region was also performed in 63 healthy control subjects. Nine features were used to evaluate the differences of epileptic network patterns in three connection levels between patients and controls. Compared with control subjects, patients showed overall more functional connections between the epileptogenic region and the rest of the brain and higher laterality. However, the significantly increased connections were located in the neighborhood of the seed, but the connections between the seed and remote regions actually decreased. Comparing fMRI runs with interictal epileptic discharges (IEDs) and without IEDs, the patient-specific connectivity pattern was not changed significantly. These findings regarding patient-specific connectivity patterns of epileptic networks in FLE reflect local high connectivity and connections with distant regions differing from those of healthy controls. Moreover, the difference between the two groups in most features was observed in the strictest of the three connection levels. The abnormally high connectivity might reflect a predominant attribute of the epileptic network, which may facilitate propagation of epileptic activity among regions in the network. PMID:24936418

  6. Bayesian network analysis revealed the connectivity difference of the default mode network from the resting-state to task-state

    PubMed Central

    Wu, Xia; Yu, Xinyu; Yao, Li; Li, Rui

    2014-01-01

    Functional magnetic resonance imaging (fMRI) studies have converged to reveal the default mode network (DMN), a constellation of regions that display co-activation during resting-state but co-deactivation during attention-demanding tasks in the brain. Here, we employed a Bayesian network (BN) analysis method to construct a directed effective connectivity model of the DMN and compared the organizational architecture and interregional directed connections under both resting-state and task-state. The analysis results indicated that the DMN was consistently organized into two closely interacting subsystems in both resting-state and task-state. The directed connections between DMN regions, however, changed significantly from the resting-state to task-state condition. The results suggest that the DMN intrinsically maintains a relatively stable structure whether at rest or performing tasks but has different information processing mechanisms under varied states. PMID:25309414

  7. New whole-body sensory-motor gradients revealed using phase-locked analysis and verified using multivoxel pattern analysis and functional connectivity.

    PubMed

    Zeharia, Noa; Hertz, Uri; Flash, Tamar; Amedi, Amir

    2015-02-18

    Topographic organization is one of the main principles of organization in the human brain. Specifically, whole-brain topographic mapping using spectral analysis is responsible for one of the greatest advances in vision research. Thus, it is intriguing that although topography is a key feature also in the motor system, whole-body somatosensory-motor mapping using spectral analysis has not been conducted in humans outside M1/SMA. Here, using this method, we were able to map a homunculus in the globus pallidus, a key target area for deep brain stimulation, which has not been mapped noninvasively or in healthy subjects. The analysis clarifies contradictory and partial results regarding somatotopy in the caudal-cingulate zone and rostral-cingulate zone in the medial wall and in the putamen. Most of the results were confirmed at the single-subject level and were found to be compatible with results from animal studies. Using multivoxel pattern analysis, we could predict movements of individual body parts in these homunculi, thus confirming that they contain somatotopic information. Using functional connectivity, we demonstrate interhemispheric functional somatotopic connectivity of these homunculi, such that the somatotopy in one hemisphere could have been found given the connectivity pattern of the corresponding regions of interest in the other hemisphere. When inspecting the somatotopic and nonsomatotopic connectivity patterns, a similarity index indicated that the pattern of connected and nonconnected regions of interest across different homunculi is similar for different body parts and hemispheres. The results show that topographical gradients are even more widespread than previously assumed in the somatosensory-motor system. Spectral analysis can thus potentially serve as a gold standard for defining somatosensory-motor system areas for basic research and clinical applications. Copyright © 2015 the authors 0270-6474/15/352845-15$15.00/0.

  8. [Scale effect of Nanjing urban green infrastructure network pattern and connectivity analysis.

    PubMed

    Yu, Ya Ping; Yin, Hai Wei; Kong, Fan Hua; Wang, Jing Jing; Xu, Wen Bin

    2016-07-01

    Based on ArcGIS, Erdas, GuidosToolbox, Conefor and other software platforms, using morphological spatial pattern analysis (MSPA) and landscape connectivity analysis methods, this paper quantitatively analysed the scale effect, edge effect and distance effect of the Nanjing urban green infrastructure network pattern in 2013 by setting different pixel sizes (P) and edge widths in MSPA analysis, and setting different dispersal distance thresholds in landscape connectivity analysis. The results showed that the type of landscape acquired based on the MSPA had a clear scale effect and edge effect, and scale effects only slightly affected landscape types, whereas edge effects were more obvious. Different dispersal distances had a great impact on the landscape connectivity, 2 km or 2.5 km dispersal distance was a critical threshold for Nanjing. When selecting the pixel size 30 m of the input data and the edge wide 30 m used in the morphological model, we could get more detailed landscape information of Nanjing UGI network. Based on MSPA and landscape connectivity, analysis of the scale effect, edge effect, and distance effect on the landscape types of the urban green infrastructure (UGI) network was helpful for selecting the appropriate size, edge width, and dispersal distance when developing these networks, and for better understanding the spatial pattern of UGI networks and the effects of scale and distance on the ecology of a UGI network. This would facilitate a more scientifically valid set of design parameters for UGI network spatiotemporal pattern analysis. The results of this study provided an important reference for Nanjing UGI networks and a basis for the analysis of the spatial and temporal patterns of medium-scale UGI landscape networks in other regions.

  9. Noninvasive Electromagnetic Source Imaging and Granger Causality Analysis: An Electrophysiological Connectome (eConnectome) Approach

    PubMed Central

    Sohrabpour, Abbas; Ye, Shuai; Worrell, Gregory A.; Zhang, Wenbo

    2016-01-01

    Objective Combined source imaging techniques and directional connectivity analysis can provide useful information about the underlying brain networks in a non-invasive fashion. Source imaging techniques have been used successfully to either determine the source of activity or to extract source time-courses for Granger causality analysis, previously. In this work, we utilize source imaging algorithms to both find the network nodes (regions of interest) and then extract the activation time series for further Granger causality analysis. The aim of this work is to find network nodes objectively from noninvasive electromagnetic signals, extract activation time-courses and apply Granger analysis on the extracted series to study brain networks under realistic conditions. Methods Source imaging methods are used to identify network nodes and extract time-courses and then Granger causality analysis is applied to delineate the directional functional connectivity of underlying brain networks. Computer simulations studies where the underlying network (nodes and connectivity pattern) is known were performed; additionally, this approach has been evaluated in partial epilepsy patients to study epilepsy networks from inter-ictal and ictal signals recorded by EEG and/or MEG. Results Localization errors of network nodes are less than 5 mm and normalized connectivity errors of ~20% in estimating underlying brain networks in simulation studies. Additionally, two focal epilepsy patients were studied and the identified nodes driving the epileptic network were concordant with clinical findings from intracranial recordings or surgical resection. Conclusion Our study indicates that combined source imaging algorithms with Granger causality analysis can identify underlying networks precisely (both in terms of network nodes location and internodal connectivity). Significance The combined source imaging and Granger analysis technique is an effective tool for studying normal or pathological brain conditions. PMID:27740473

  10. Noninvasive Electromagnetic Source Imaging and Granger Causality Analysis: An Electrophysiological Connectome (eConnectome) Approach.

    PubMed

    Sohrabpour, Abbas; Ye, Shuai; Worrell, Gregory A; Zhang, Wenbo; He, Bin

    2016-12-01

    Combined source-imaging techniques and directional connectivity analysis can provide useful information about the underlying brain networks in a noninvasive fashion. Source-imaging techniques have been used successfully to either determine the source of activity or to extract source time-courses for Granger causality analysis, previously. In this work, we utilize source-imaging algorithms to both find the network nodes [regions of interest (ROI)] and then extract the activation time series for further Granger causality analysis. The aim of this work is to find network nodes objectively from noninvasive electromagnetic signals, extract activation time-courses, and apply Granger analysis on the extracted series to study brain networks under realistic conditions. Source-imaging methods are used to identify network nodes and extract time-courses and then Granger causality analysis is applied to delineate the directional functional connectivity of underlying brain networks. Computer simulations studies where the underlying network (nodes and connectivity pattern) is known were performed; additionally, this approach has been evaluated in partial epilepsy patients to study epilepsy networks from interictal and ictal signals recorded by EEG and/or Magnetoencephalography (MEG). Localization errors of network nodes are less than 5 mm and normalized connectivity errors of ∼20% in estimating underlying brain networks in simulation studies. Additionally, two focal epilepsy patients were studied and the identified nodes driving the epileptic network were concordant with clinical findings from intracranial recordings or surgical resection. Our study indicates that combined source-imaging algorithms with Granger causality analysis can identify underlying networks precisely (both in terms of network nodes location and internodal connectivity). The combined source imaging and Granger analysis technique is an effective tool for studying normal or pathological brain conditions.

  11. Hydrodynamic modeling of hydrologic surface connectivity within a coastal river-floodplain system

    NASA Astrophysics Data System (ADS)

    Castillo, C. R.; Guneralp, I.

    2017-12-01

    Hydrologic surface connectivity (HSC) within river-floodplain environments is a useful indicator of the overall health of riparian habitats because it allows connections amongst components/landforms of the riverine landscape system to be quantified. Overbank flows have traditionally been the focus for analyses concerned with river-floodplain connectivity, but recent works have identified the large significance from sub-bankfull streamflows. Through the use of morphometric analysis and a digital elevation model that is relative to the river water surface, we previously determined that >50% of the floodplain for Mission River on the Coastal Bend of Texas becomes connected to the river at streamflows well-below bankfull conditions. Guided by streamflow records, field-based inundation data, and morphometric analysis; we develop a two-dimensional hydrodynamic model for lower portions of Mission River Floodplain system. This model not only allows us to analyze connections induced by surface water inundation, but also other aspects of the hydrologic connectivity concept such as exchanges of sediment and energy between the river and its floodplain. We also aggregate hydrodynamic model outputs to an object/landform level in order to analyze HSC and associated attributes using measures from graph/network theory. Combining physically-based hydrodynamic models with object-based and graph theoretical analyses allow river-floodplain connectivity to be quantified in a consistent manner with measures/indicators commonly used in landscape analysis. Analyzes similar to ours build towards the establishment of a formal framework for analyzing river-floodplain interaction that will ultimately serve to inform the management of riverine/floodplain environments.

  12. Ictal connectivity in childhood absence epilepsy: Associations with outcome.

    PubMed

    Tenney, Jeffrey R; Kadis, Darren S; Agler, William; Rozhkov, Leonid; Altaye, Mekibib; Xiang, Jing; Vannest, Jennifer; Glauser, Tracy A

    2018-05-01

    The understanding of childhood absence epilepsy (CAE) has been revolutionized over the past decade, but the biological mechanisms responsible for variable treatment outcomes are unknown. Our purpose in this prospective observational study was to determine how pretreatment ictal network pathways, defined using a combined electroencephalography (EEG)-functional magnetic resonance imaging (EEG-fMRI) and magnetoencephalography (MEG) effective connectivity analysis, were related to treatment response. Sixteen children with newly diagnosed and drug-naive CAE had 31 typical absence seizures during EEG-fMRI and 74 during MEG. The spatial extent of the pretreatment ictal network was defined using fMRI hemodynamic response with an event-related independent component analysis (eICA). This spatially defined pretreatment ictal network supplied prior information for MEG-effective connectivity analysis calculated using phase slope index (PSI). Treatment outcome was assessed 2 years following diagnosis and dichotomized to ethosuximide (ETX)-treatment responders (N = 11) or nonresponders (N = 5). Effective connectivity of the pretreatment ictal network was compared to the treatment response. Patterns of pretreatment connectivity demonstrated strongest connections in the thalamus and posterior brain regions (parietal, posterior cingulate, angular gyrus, precuneus, and occipital) at delta frequencies and the frontal cortices at gamma frequencies (P < .05). ETX treatment nonresponders had pretreatment connectivity, which was decreased in the precuneus region and increased in the frontal cortex compared to ETX responders (P < .05). Pretreatment ictal connectivity differences in children with CAE were associated with response to antiepileptic treatment. This is a possible mechanism for the variable treatment response seen in patients sharing the same epilepsy syndrome. Wiley Periodicals, Inc. © 2018 International League Against Epilepsy.

  13. Exploring the Associations Between Intrinsic Brain Connectivity and Creative Ability Using Functional Connectivity Strength and Connectome Analysis.

    PubMed

    Gao, Zhenni; Zhang, Delong; Liang, Aiying; Liang, Bishan; Wang, Zengjian; Cai, Yuxuan; Li, Junchao; Gao, Mengxia; Liu, Xiaojin; Chang, Song; Jiao, Bingqing; Huang, Ruiwang; Liu, Ming

    2017-11-01

    The present study aimed to explore the association between resting-state functional connectivity and creativity ability. Toward this end, the figural Torrance Tests of Creative Thinking (TTCT) scores were collected from 180 participants. Based on the figural TTCT measures, we collected resting-state functional magnetic resonance imaging data for participants with two different levels of creativity ability (a high-creativity group [HG, n = 22] and a low-creativity group [LG, n = 20]). For the aspect of group difference, this study combined voxel-wise functional connectivity strength (FCS) and seed-based functional connectivity to identify brain regions with group-change functional connectivity. Furthermore, the connectome properties of the identified regions and their associations with creativity were investigated using the permutation test, discriminative analysis, and brain-behavior correlation analysis. The results indicated that there were 4 regions with group differences in FCS, and these regions were linked to 30 other regions, demonstrating different functional connectivity between the groups. Together, these regions form a creativity-related network, and we observed higher network efficiency in the HG compared with the LG. The regions involved in the creativity network were widely distributed across the modality-specific/supramodality cerebral cortex, subcortex, and cerebellum. Notably, properties of regions in the supramodality networks (i.e., the default mode network and attention network) carried creativity-level discriminative information and were significantly correlated with the creativity performance. Together, these findings demonstrate a link between intrinsic brain connectivity and creative ability, which should provide new insights into the neural basis of creativity.

  14. Thalamic functional connectivity predicts seizure laterality in individual TLE patients: application of a biomarker development strategy.

    PubMed

    Barron, Daniel S; Fox, Peter T; Pardoe, Heath; Lancaster, Jack; Price, Larry R; Blackmon, Karen; Berry, Kristen; Cavazos, Jose E; Kuzniecky, Ruben; Devinsky, Orrin; Thesen, Thomas

    2015-01-01

    Noninvasive markers of brain function could yield biomarkers in many neurological disorders. Disease models constrained by coordinate-based meta-analysis are likely to increase this yield. Here, we evaluate a thalamic model of temporal lobe epilepsy that we proposed in a coordinate-based meta-analysis and extended in a diffusion tractography study of an independent patient population. Specifically, we evaluated whether thalamic functional connectivity (resting-state fMRI-BOLD) with temporal lobe areas can predict seizure onset laterality, as established with intracranial EEG. Twenty-four lesional and non-lesional temporal lobe epilepsy patients were studied. No significant differences in functional connection strength in patient and control groups were observed with Mann-Whitney Tests (corrected for multiple comparisons). Notwithstanding the lack of group differences, individual patient difference scores (from control mean connection strength) successfully predicted seizure onset zone as shown in ROC curves: discriminant analysis (two-dimensional) predicted seizure onset zone with 85% sensitivity and 91% specificity; logistic regression (four-dimensional) achieved 86% sensitivity and 100% specificity. The strongest markers in both analyses were left thalamo-hippocampal and right thalamo-entorhinal cortex functional connection strength. Thus, this study shows that thalamic functional connections are sensitive and specific markers of seizure onset laterality in individual temporal lobe epilepsy patients. This study also advances an overall strategy for the programmatic development of neuroimaging biomarkers in clinical and genetic populations: a disease model informed by coordinate-based meta-analysis was used to anatomically constrain individual patient analyses.

  15. Effect of electrocardiogram interference on cortico-cortical connectivity analysis and a possible solution.

    PubMed

    Govindan, R B; Kota, Srinivas; Al-Shargabi, Tareq; Massaro, An N; Chang, Taeun; du Plessis, Adre

    2016-09-01

    Electroencephalogram (EEG) signals are often contaminated by the electrocardiogram (ECG) interference, which affects quantitative characterization of EEG. We propose null-coherence, a frequency-based approach, to attenuate the ECG interference in EEG using simultaneously recorded ECG as a reference signal. After validating the proposed approach using numerically simulated data, we apply this approach to EEG recorded from six newborns receiving therapeutic hypothermia for neonatal encephalopathy. We compare our approach with an independent component analysis (ICA), a previously proposed approach to attenuate ECG artifacts in the EEG signal. The power spectrum and the cortico-cortical connectivity of the ECG attenuated EEG was compared against the power spectrum and the cortico-cortical connectivity of the raw EEG. The null-coherence approach attenuated the ECG contamination without leaving any residual of the ECG in the EEG. We show that the null-coherence approach performs better than ICA in attenuating the ECG contamination without enhancing cortico-cortical connectivity. Our analysis suggests that using ICA to remove ECG contamination from the EEG suffers from redistribution problems, whereas the null-coherence approach does not. We show that both the null-coherence and ICA approaches attenuate the ECG contamination. However, the EEG obtained after ICA cleaning displayed higher cortico-cortical connectivity compared with that obtained using the null-coherence approach. This suggests that null-coherence is superior to ICA in attenuating the ECG interference in EEG for cortico-cortical connectivity analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. An ex-post evaluation approach to assess the impacts of accomplished urban structure shift on landscape connectivity.

    PubMed

    Huang, Junlong; He, Jianhua; Liu, Dianfeng; Li, Chun; Qian, Jing

    2018-05-01

    Many studies have been conducted to evaluate the effects of different urban structures on landscape connectivity, and most of them rely on the comparison approach or ex-ante scenario analysis. However, we still lack an ex-post method to capture the consequences of accomplished urban structure shift (from monocentric to polycentric), which is guided by the land use planning. To fill this gap, we develop an ex-post evaluation approach which integrates counterfactual analysis and landscape graphs. Counterfactual analysis is combined with cellular automata simulation model, to uncover what the city might look like, if it had continued to expand in a monocentric structure; and the landscape graphs enable us to reveal the possible landscape connectivity in actual and counterfactual scenarios. We select Nanjing city as the study area and 4 target species, to delve into the varying impacts of the urban structure shift on different taxonomic groups. Our case study demonstrates that: (1) the impact of urban structure shift is more relevant to the long disperser; (2) the actual landscape (polycentric) would facilitate the bird's dispersal, while (3) forest mammals have higher connectivity in the counterfactual scenario (monocentric), and the possible reasons are discussed. Finally, we demonstrate that the urban structure shift might not necessarily cause the connectivity decline, on condition that the key connectivity providers are identified by integrating ecological network analysis into the land use planning, and well preserved in the shift. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Graph-based analysis of connectivity in spatially-explicit population models: HexSim and the Connectivity Analysis Toolkit

    EPA Science Inventory

    Background / Question / Methods Planning for the recovery of threatened species is increasingly informed by spatially-explicit population models. However, using simulation model results to guide land management decisions can be difficult due to the volume and complexity of model...

  18. Analysis and Design of Connections, Openings and Attachments for Protective Construction

    DTIC Science & Technology

    1989-10-01

    precast connection details were subjected to cyclic simulated earthquake loads . The detail... column and beam flexural steel. At the onset of flexural yield under cyclical loading , crack sizes at the face of the joint increase and reinforcement... beam / column connections may be a necessity and can be placed without a great deal of difficulty. However, their placement in slab/wall connections

  19. Human brain networks in physiological aging: a graph theoretical analysis of cortical connectivity from EEG data.

    PubMed

    Vecchio, Fabrizio; Miraglia, Francesca; Bramanti, Placido; Rossini, Paolo Maria

    2014-01-01

    Modern analysis of electroencephalographic (EEG) rhythms provides information on dynamic brain connectivity. To test the hypothesis that aging processes modulate the brain connectivity network, EEG recording was conducted on 113 healthy volunteers. They were divided into three groups in accordance with their ages: 36 Young (15-45 years), 46 Adult (50-70 years), and 31 Elderly (>70 years). To evaluate the stability of the investigated parameters, a subgroup of 10 subjects underwent a second EEG recording two weeks later. Graph theory functions were applied to the undirected and weighted networks obtained by the lagged linear coherence evaluated by eLORETA on cortical sources. EEG frequency bands of interest were: delta (2-4 Hz), theta (4-8 Hz), alpha1 (8-10.5 Hz), alpha2 (10.5-13 Hz), beta1 (13-20 Hz), beta2 (20-30 Hz), and gamma (30-40 Hz). The spectral connectivity analysis of cortical sources showed that the normalized Characteristic Path Length (λ) presented the pattern Young > Adult>Elderly in the higher alpha band. Elderly also showed a greater increase in delta and theta bands than Young. The correlation between age and λ showed that higher ages corresponded to higher λ in delta and theta and lower in the alpha2 band; this pattern reflects the age-related modulation of higher (alpha) and decreased (delta) connectivity. The Normalized Clustering coefficient (γ) and small-world network modeling (σ) showed non-significant age-modulation. Evidence from the present study suggests that graph theory can aid in the analysis of connectivity patterns estimated from EEG and can facilitate the study of the physiological and pathological brain aging features of functional connectivity networks.

  20. Voxel-wise motion artifacts in population-level whole-brain connectivity analysis of resting-state FMRI.

    PubMed

    Spisák, Tamás; Jakab, András; Kis, Sándor A; Opposits, Gábor; Aranyi, Csaba; Berényi, Ervin; Emri, Miklós

    2014-01-01

    Functional Magnetic Resonance Imaging (fMRI) based brain connectivity analysis maps the functional networks of the brain by estimating the degree of synchronous neuronal activity between brain regions. Recent studies have demonstrated that "resting-state" fMRI-based brain connectivity conclusions may be erroneous when motion artifacts have a differential effect on fMRI BOLD signals for between group comparisons. A potential explanation could be that in-scanner displacement, due to rotational components, is not spatially constant in the whole brain. However, this localized nature of motion artifacts is poorly understood and is rarely considered in brain connectivity studies. In this study, we initially demonstrate the local correspondence between head displacement and the changes in the resting-state fMRI BOLD signal. Than, we investigate how connectivity strength is affected by the population-level variation in the spatial pattern of regional displacement. We introduce Regional Displacement Interaction (RDI), a new covariate parameter set for second-level connectivity analysis and demonstrate its effectiveness in reducing motion related confounds in comparisons of groups with different voxel-vise displacement pattern and preprocessed using various nuisance regression methods. The effect of using RDI as second-level covariate is than demonstrated in autism-related group comparisons. The relationship between the proposed method and some of the prevailing subject-level nuisance regression techniques is evaluated. Our results show that, depending on experimental design, treating in-scanner head motion as a global confound may not be appropriate. The degree of displacement is highly variable among various brain regions, both within and between subjects. These regional differences bias correlation-based measures of brain connectivity. The inclusion of the proposed second-level covariate into the analysis successfully reduces artifactual motion-related group differences and preserves real neuronal differences, as demonstrated by the autism-related comparisons.

  1. Effective Connectivity Modeling for fMRI: Six Issues and Possible Solutions Using Linear Dynamic Systems

    PubMed Central

    Smith, Jason F.; Pillai, Ajay; Chen, Kewei; Horwitz, Barry

    2012-01-01

    Analysis of directionally specific or causal interactions between regions in functional magnetic resonance imaging (fMRI) data has proliferated. Here we identify six issues with existing effective connectivity methods that need to be addressed. The issues are discussed within the framework of linear dynamic systems for fMRI (LDSf). The first concerns the use of deterministic models to identify inter-regional effective connectivity. We show that deterministic dynamics are incapable of identifying the trial-to-trial variability typically investigated as the marker of connectivity while stochastic models can capture this variability. The second concerns the simplistic (constant) connectivity modeled by most methods. Connectivity parameters of the LDSf model can vary at the same timescale as the input data. Further, extending LDSf to mixtures of multiple models provides more robust connectivity variation. The third concerns the correct identification of the network itself including the number and anatomical origin of the network nodes. Augmentation of the LDSf state space can identify additional nodes of a network. The fourth concerns the locus of the signal used as a “node” in a network. A novel extension LDSf incorporating sparse canonical correlations can select most relevant voxels from an anatomically defined region based on connectivity. The fifth concerns connection interpretation. Individual parameter differences have received most attention. We present alternative network descriptors of connectivity changes which consider the whole network. The sixth concerns the temporal resolution of fMRI data relative to the timescale of the inter-regional interactions in the brain. LDSf includes an “instantaneous” connection term to capture connectivity occurring at timescales faster than the data resolution. The LDS framework can also be extended to statistically combine fMRI and EEG data. The LDSf framework is a promising foundation for effective connectivity analysis. PMID:22279430

  2. Reduction of Interhemispheric Functional Brain Connectivity in Early Blindness: A Resting-State fMRI Study

    PubMed Central

    2017-01-01

    Objective The purpose of this study was to investigate the resting-state interhemispheric functional connectivity in early blindness by using voxel-mirrored homotopic connectivity (VMHC). Materials and Methods Sixteen early blind patients (EB group) and sixteen age- and gender-matched sighted control volunteers (SC group) were recruited in this study. We used VMHC to identify brain areas with significant differences in functional connectivity between different groups and used voxel-based morphometry (VBM) to calculate the individual gray matter volume (GMV). Results VMHC analysis showed a significantly lower connectivity in primary visual cortex, visual association cortex, and somatosensory association cortex in EB group compared to sighted controls. Additionally, VBM analysis revealed that GMV was reduced in the left lateral calcarine cortices in EB group compared to sighted controls, while it was increased in the left lateral middle occipital gyri. Statistical analysis showed the duration of blindness negatively correlated with VMHC in the bilateral middle frontal gyri, middle temporal gyri, and inferior temporal gyri. Conclusions Our findings help elucidate the pathophysiological mechanisms of EB. The interhemispheric functional connectivity was impaired in EB patients. Additionally, the middle frontal gyri, middle temporal gyri, and inferior temporal gyri may be potential target regions for rehabilitation. PMID:28656145

  3. Is Rest Really Rest? Resting State Functional Connectivity during Rest and Motor Task Paradigms.

    PubMed

    Jurkiewicz, Michael T; Crawley, Adrian P; Mikulis, David J

    2018-04-18

    Numerous studies have identified the default mode network (DMN) within the brain of healthy individuals, which has been attributed to the ongoing mental activity of the brain during the wakeful resting-state. While engaged during specific resting-state fMRI paradigms, it remains unclear as to whether traditional block-design simple movement fMRI experiments significantly influence the default mode network or other areas. Using blood-oxygen level dependent (BOLD) fMRI we characterized the pattern of functional connectivity in healthy subjects during a resting-state paradigm and compared this to the same resting-state analysis performed on motor task data residual time courses after regressing out the task paradigm. Using seed-voxel analysis to define the DMN, the executive control network (ECN), and sensorimotor, auditory and visual networks, the resting-state analysis of the residual time courses demonstrated reduced functional connectivity in the motor network and reduced connectivity between the insula and the ECN compared to the standard resting-state datasets. Overall, performance of simple self-directed motor tasks does little to change the resting-state functional connectivity across the brain, especially in non-motor areas. This would suggest that previously acquired fMRI studies incorporating simple block-design motor tasks could be mined retrospectively for assessment of the resting-state connectivity.

  4. A Procedure for Modeling Structural Component/Attachment Failure Using Transient Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.; Jegley, Dawn C. (Technical Monitor)

    2007-01-01

    Structures often comprise smaller substructures that are connected to each other or attached to the ground by a set of finite connections. Under static loading one or more of these connections may exceed allowable limits and be deemed to fail. Of particular interest is the structural response when a connection is severed (failed) while the structure is under static load. A transient failure analysis procedure was developed by which it is possible to examine the dynamic effects that result from introducing a discrete failure while a structure is under static load. The failure is introduced by replacing a connection load history by a time-dependent load set that removes the connection load at the time of failure. The subsequent transient response is examined to determine the importance of the dynamic effects by comparing the structural response with the appropriate allowables. Additionally, this procedure utilizes a standard finite element transient analysis that is readily available in most commercial software, permitting the study of dynamic failures without the need to purchase software specifically for this purpose. The procedure is developed and explained, demonstrated on a simple cantilever box example, and finally demonstrated on a real-world example, the American Airlines Flight 587 (AA587) vertical tail plane (VTP).

  5. Altered functional connectivity of the amygdaloid input nuclei in adolescents and young adults with autism spectrum disorder: a resting state fMRI study.

    PubMed

    Rausch, Annika; Zhang, Wei; Haak, Koen V; Mennes, Maarten; Hermans, Erno J; van Oort, Erik; van Wingen, Guido; Beckmann, Christian F; Buitelaar, Jan K; Groen, Wouter B

    2016-01-01

    Amygdala dysfunction is hypothesized to underlie the social deficits observed in autism spectrum disorders (ASD). However, the neurobiological basis of this hypothesis is underspecified because it is unknown whether ASD relates to abnormalities of the amygdaloid input or output nuclei. Here, we investigated the functional connectivity of the amygdaloid social-perceptual input nuclei and emotion-regulation output nuclei in ASD versus controls. We collected resting state functional magnetic resonance imaging (fMRI) data, tailored to provide optimal sensitivity in the amygdala as well as the neocortex, in 20 adolescents and young adults with ASD and 25 matched controls. We performed a regular correlation analysis between the entire amygdala (EA) and the whole brain and used a partial correlation analysis to investigate whole-brain functional connectivity uniquely related to each of the amygdaloid subregions. Between-group comparison of regular EA correlations showed significantly reduced connectivity in visuospatial and superior parietal areas in ASD compared to controls. Partial correlation analysis revealed that this effect was driven by the left superficial and right laterobasal input subregions, but not the centromedial output nuclei. These results indicate reduced connectivity of specifically the amygdaloid sensory input channels in ASD, suggesting that abnormal amygdalo-cortical connectivity can be traced down to the socio-perceptual pathways.

  6. Increased Hydrologic Connectivity: Consequences of Reduced Water Storage Capacity in the Delmarva Peninsula (U.S.)

    NASA Astrophysics Data System (ADS)

    Mclaughlin, D. L.; Jones, C. N.; Evenson, G. R.; Golden, H. E.; Lane, C.; Alexander, L. C.; Lang, M.

    2017-12-01

    Combined geospatial and modeling approaches are required to fully enumerate wetland hydrologic connectivity and downstream effects. Here, we utilized both geospatial analysis and hydrologic modeling to explore drivers and consequences of modified surface water connectivity in the Delmarva Peninsula, with particular focus on increased connectivity via pervasive wetland ditching. Our geospatial analysis quantified both historical and contemporary wetland storage capacity across the region, and suggests that over 70% of historical storage capacity has been lost due to this ditching. Building upon this analysis, we applied a catchment-scale model to simulate implications of reduced storage capacity on catchment-scale hydrology. In short, increased connectivity (and concomitantly reduced wetland water storage capacity) decreases catchment inundation extent and spatial heterogeneity, shortens cumulative residence times, and increases downstream flow variation with evident effects on peak and baseflow dynamics. As such, alterations in connectivity have implications for hydrologically mediated functions in catchments (e.g., nutrient removal) and downstream systems (e.g., maintenance of flow for aquatic habitat). Our work elucidates such consequences in Delmarva Peninsula while also providing new tools for broad application to target wetland restoration and conservation. Views expressed are those of the authors and do not necessarily reflect policies of the US EPA or US FWS.

  7. Identification of neuronal network properties from the spectral analysis of calcium imaging signals in neuronal cultures.

    PubMed

    Tibau, Elisenda; Valencia, Miguel; Soriano, Jordi

    2013-01-01

    Neuronal networks in vitro are prominent systems to study the development of connections in living neuronal networks and the interplay between connectivity, activity and function. These cultured networks show a rich spontaneous activity that evolves concurrently with the connectivity of the underlying network. In this work we monitor the development of neuronal cultures, and record their activity using calcium fluorescence imaging. We use spectral analysis to characterize global dynamical and structural traits of the neuronal cultures. We first observe that the power spectrum can be used as a signature of the state of the network, for instance when inhibition is active or silent, as well as a measure of the network's connectivity strength. Second, the power spectrum identifies prominent developmental changes in the network such as GABAA switch. And third, the analysis of the spatial distribution of the spectral density, in experiments with a controlled disintegration of the network through CNQX, an AMPA-glutamate receptor antagonist in excitatory neurons, reveals the existence of communities of strongly connected, highly active neurons that display synchronous oscillations. Our work illustrates the interest of spectral analysis for the study of in vitro networks, and its potential use as a network-state indicator, for instance to compare healthy and diseased neuronal networks.

  8. Integrating smart roadside initiative into the V2I component of the connected vehicle program : task 3.2.

    DOT National Transportation Integrated Search

    2015-01-01

    This document details an analysis that maps the current Connected Vehicle development effort to the SRI efforts currently underway. The document provides a mapping of how SRI incorporates into the Connected Vehicle program. This mapping is performed ...

  9. Using Dual Regression to Investigate Network Shape and Amplitude in Functional Connectivity Analyses

    PubMed Central

    Nickerson, Lisa D.; Smith, Stephen M.; Öngür, Döst; Beckmann, Christian F.

    2017-01-01

    Independent Component Analysis (ICA) is one of the most popular techniques for the analysis of resting state FMRI data because it has several advantageous properties when compared with other techniques. Most notably, in contrast to a conventional seed-based correlation analysis, it is model-free and multivariate, thus switching the focus from evaluating the functional connectivity of single brain regions identified a priori to evaluating brain connectivity in terms of all brain resting state networks (RSNs) that simultaneously engage in oscillatory activity. Furthermore, typical seed-based analysis characterizes RSNs in terms of spatially distributed patterns of correlation (typically by means of simple Pearson's coefficients) and thereby confounds together amplitude information of oscillatory activity and noise. ICA and other regression techniques, on the other hand, retain magnitude information and therefore can be sensitive to both changes in the spatially distributed nature of correlations (differences in the spatial pattern or “shape”) as well as the amplitude of the network activity. Furthermore, motion can mimic amplitude effects so it is crucial to use a technique that retains such information to ensure that connectivity differences are accurately localized. In this work, we investigate the dual regression approach that is frequently applied with group ICA to assess group differences in resting state functional connectivity of brain networks. We show how ignoring amplitude effects and how excessive motion corrupts connectivity maps and results in spurious connectivity differences. We also show how to implement the dual regression to retain amplitude information and how to use dual regression outputs to identify potential motion effects. Two key findings are that using a technique that retains magnitude information, e.g., dual regression, and using strict motion criteria are crucial for controlling both network amplitude and motion-related amplitude effects, respectively, in resting state connectivity analyses. We illustrate these concepts using realistic simulated resting state FMRI data and in vivo data acquired in healthy subjects and patients with bipolar disorder and schizophrenia. PMID:28348512

  10. Information seeking for making evidence-informed decisions: a social network analysis on the staff of a public health department in Canada.

    PubMed

    Yousefi-Nooraie, Reza; Dobbins, Maureen; Brouwers, Melissa; Wakefield, Patricia

    2012-05-16

    Social network analysis is an approach to study the interactions and exchange of resources among people. It can help understanding the underlying structural and behavioral complexities that influence the process of capacity building towards evidence-informed decision making. A social network analysis was conducted to understand if and how the staff of a public health department in Ontario turn to peers to get help incorporating research evidence into practice. The staff were invited to respond to an online questionnaire inquiring about information seeking behavior, identification of colleague expertise, and friendship status. Three networks were developed based on the 170 participants. Overall shape, key indices, the most central people and brokers, and their characteristics were identified. The network analysis showed a low density and localized information-seeking network. Inter-personal connections were mainly clustered by organizational divisions; and people tended to limit information-seeking connections to a handful of peers in their division. However, recognition of expertise and friendship networks showed more cross-divisional connections. Members of the office of the Medical Officer of Health were located at the heart of the department, bridging across divisions. A small group of professional consultants and middle managers were the most-central staff in the network, also connecting their divisions to the center of the information-seeking network. In each division, there were some locally central staff, mainly practitioners, who connected their neighboring peers; but they were not necessarily connected to other experts or managers. The methods of social network analysis were useful in providing a systems approach to understand how knowledge might flow in an organization. The findings of this study can be used to identify early adopters of knowledge translation interventions, forming Communities of Practice, and potential internal knowledge brokers.

  11. Multimodal effective connectivity analysis reveals seizure focus and propagation in musicogenic epilepsy.

    PubMed

    Klamer, Silke; Rona, Sabine; Elshahabi, Adham; Lerche, Holger; Braun, Christoph; Honegger, Jürgen; Erb, Michael; Focke, Niels K

    2015-06-01

    Dynamic causal modeling (DCM) is a method to non-invasively assess effective connectivity between brain regions. 'Musicogenic epilepsy' is a rare reflex epilepsy syndrome in which seizures can be elicited by musical stimuli and thus represents a unique possibility to investigate complex human brain networks and test connectivity analysis tools. We investigated effective connectivity in a case of musicogenic epilepsy using DCM for fMRI, high-density (hd-) EEG and MEG and validated results with intracranial EEG recordings. A patient with musicogenic seizures was examined using hd-EEG/fMRI and simultaneous '256-channel hd-EEG'/'whole head MEG' to characterize the epileptogenic focus and propagation effects using source analysis techniques and DCM. Results were validated with invasive EEG recordings. We recorded one seizure with hd-EEG/fMRI and four auras with hd-EEG/MEG. During the seizures, increases of activity could be observed in the right mesial temporal region as well as bilateral mesial frontal regions. Effective connectivity analysis of fMRI and hd-EEG/MEG indicated that right mesial temporal neuronal activity drives changes in the frontal areas consistently in all three modalities, which was confirmed by the results of invasive EEG recordings. Seizures thus seem to originate in the right mesial temporal lobe and propagate to mesial frontal regions. Using DCM for fMRI, hd-EEG and MEG we were able to correctly localize focus and propagation of epileptic activity and thereby characterize the underlying epileptic network in a patient with musicogenic epilepsy. The concordance between all three functional modalities validated by invasive monitoring is noteworthy, both for epileptic activity spread as well as for effective connectivity analysis in general. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Research on comprehensive decision-making of PV power station connecting system

    NASA Astrophysics Data System (ADS)

    Zhou, Erxiong; Xin, Chaoshan; Ma, Botao; Cheng, Kai

    2018-04-01

    In allusion to the incomplete indexes system and not making decision on the subjectivity and objectivity of PV power station connecting system, based on the combination of improved Analytic Hierarchy Process (AHP), Criteria Importance Through Intercriteria Correlation (CRITIC) as well as grey correlation degree analysis (GCDA) is comprehensively proposed to select the appropriate system connecting scheme of PV power station. Firstly, indexes of PV power station connecting system are divided the recursion order hierarchy and calculated subjective weight by the improved AHP. Then, CRITIC is adopted to determine the objective weight of each index through the comparison intensity and conflict between indexes. The last the improved GCDA is applied to screen the optimal scheme, so as to, from the subjective and objective angle, select the connecting system. Comprehensive decision of Xinjiang PV power station is conducted and reasonable analysis results are attained. The research results might provide scientific basis for investment decision.

  13. Classification of functional interactions from multi-electrodes data using conditional modularity analysis

    NASA Astrophysics Data System (ADS)

    Makhtar, Siti Noormiza; Senik, Mohd Harizal

    2018-02-01

    The availability of massive amount of neuronal signals are attracting widespread interest in functional connectivity analysis. Functional interactions estimated by multivariate partial coherence analysis in the frequency domain represent the connectivity strength in this study. Modularity is a network measure for the detection of community structure in network analysis. The discovery of community structure for the functional neuronal network was implemented on multi-electrode array (MEA) signals recorded from hippocampal regions in isoflurane-anaesthetized Lister-hooded rats. The analysis is expected to show modularity changes before and after local unilateral kainic acid (KA)-induced epileptiform activity. The result is presented using color-coded graphic of conditional modularity measure for 19 MEA nodes. This network is separated into four sub-regions to show the community detection within each sub-region. The results show that classification of neuronal signals into the inter- and intra-modular nodes is feasible using conditional modularity analysis. Estimation of segregation properties using conditional modularity analysis may provide further information about functional connectivity from MEA data.

  14. Blade loss transient dynamics analysis, volume 1. Task 2: TETRA 2 theoretical development

    NASA Technical Reports Server (NTRS)

    Gallardo, Vincente C.; Black, Gerald

    1986-01-01

    The theoretical development of the forced steady state analysis of the structural dynamic response of a turbine engine having nonlinear connecting elements is discussed. Based on modal synthesis, and the principle of harmonic balance, the governing relations are the compatibility of displacements at the nonlinear connecting elements. There are four displacement compatibility equations at each nonlinear connection, which are solved by iteration for the principle harmonic of the excitation frequency. The resulting computer program, TETRA 2, combines the original TETRA transient analysis (with flexible bladed disk) with the steady state capability. A more versatile nonlinear rub or bearing element which contains a hardening (or softening) spring, with or without deadband, is also incorporated.

  15. Population connectivity of the plating coral Agaricia lamarcki from southwest Puerto Rico

    NASA Astrophysics Data System (ADS)

    Hammerman, Nicholas M.; Rivera-Vicens, Ramon E.; Galaska, Matthew P.; Weil, Ernesto; Appledoorn, Richard S.; Alfaro, Monica; Schizas, Nikolaos V.

    2018-03-01

    Identifying genetic connectivity and discrete population boundaries is an important objective for management of declining Caribbean reef-building corals. A double digest restriction-associated DNA sequencing protocol was utilized to generate 321 single nucleotide polymorphisms to estimate patterns of horizontal and vertical gene flow in the brooding Caribbean plate coral, Agaricia lamarcki. Individual colonies ( n = 59) were sampled from eight locations throughout southwestern Puerto Rico from six shallow ( 10-20 m) and two mesophotic habitats ( 30-40 m). Descriptive summary statistics (fixation index, F ST), analysis of molecular variance, and analysis through landscape and ecological associations and discriminant analysis of principal components estimated high population connectivity with subtle subpopulation structure among all sampling localities.

  16. A Selective Review of Simulated Driving Studies: Combining Naturalistic and Hybrid Paradigms, Analysis Approaches, and Future Directions

    PubMed Central

    Calhoun, V. D.; Pearlson, G. D.

    2011-01-01

    Naturalistic paradigms such as movie watching or simulated driving that mimic closely real-world complex activities are becoming more widely used in functional magnetic resonance imaging (fMRI) studies both because of their ability to robustly stimulate brain connectivity and the availability of analysis methods which are able to capitalize on connectivity within and among intrinsic brain networks identified both during a task and in resting fMRI data. In this paper we review over a decade of work from our group and others on the use of simulated driving paradigms to study both the healthy brain as well as the effects of acute alcohol administration on functional connectivity during such paradigms. We briefly review our initial work focused on the configuration of the driving simulator and the analysis strategies. We then describe in more detail several recent studies from our group including a hybrid study examining distracted driving and compare resulting data with those from a separate visual oddball task. The analysis of these data were performed primarily using a combination of group independent component analysis (ICA) and the general linear model (GLM) and in the various studies we highlight novel findings which result from an analysis of either 1) within-network connectivity, 2) inter-network connectivity, also called functional network connectivity, or 3) the degree to which the modulation of the various intrinsic networks were associated with the alcohol administration and the task context. Despite the fact that the behavioral effects of alcohol intoxication are relatively well known, there is still much to discover on how acute alcohol exposure modulates brain function in a selective manner, associated with behavioral alterations. Through the above studies, we have learned more regarding the impact of acute alcohol intoxication on organization of the brain’s intrinsic connectivity networks during performance of a complex, real-world cognitive operation. Lessons learned from the above studies have broader applicability to designing ecologically valid, complex, functional MRI cognitive paradigms and incorporating pharmacologic challenges into such studies. Overall, the use of hybrid driving studies is a particularly promising area of neuroscience investigation. PMID:21718791

  17. Network architecture of the cerebral nuclei (basal ganglia) association and commissural connectome.

    PubMed

    Swanson, Larry W; Sporns, Olaf; Hahn, Joel D

    2016-10-04

    The cerebral nuclei form the ventral division of the cerebral hemisphere and are thought to play an important role in neural systems controlling somatic movement and motivation. Network analysis was used to define global architectural features of intrinsic cerebral nuclei circuitry in one hemisphere (association connections) and between hemispheres (commissural connections). The analysis was based on more than 4,000 reports of histologically defined axonal connections involving all 45 gray matter regions of the rat cerebral nuclei and revealed the existence of four asymmetrically interconnected modules. The modules form four topographically distinct longitudinal columns that only partly correspond to previous interpretations of cerebral nuclei structure-function organization. The network of connections within and between modules in one hemisphere or the other is quite dense (about 40% of all possible connections), whereas the network of connections between hemispheres is weak and sparse (only about 5% of all possible connections). Particularly highly interconnected regions (rich club and hubs within it) form a topologically continuous band extending through two of the modules. Connection path lengths among numerous pairs of regions, and among some of the network's modules, are relatively long, thus accounting for low global efficiency in network communication. These results provide a starting point for reexamining the connectional organization of the cerebral hemispheres as a whole (right and left cerebral cortex and cerebral nuclei together) and their relation to the rest of the nervous system.

  18. Recommended Practice for Securing Control System Modems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James R. Davidson; Jason L. Wright

    2008-01-01

    This paper addresses an often overlooked “backdoor” into critical infrastructure control systems created by modem connections. A modem’s connection to the public telephone system is similar to a corporate network connection to the Internet. By tracing typical attack paths into the system, this paper provides the reader with an analysis of the problem and then guides the reader through methods to evaluate existing modem security. Following the analysis, a series of methods for securing modems is provided. These methods are correlated to well-known networking security methods.

  19. Multivariate Classification of Major Depressive Disorder Using the Effective Connectivity and Functional Connectivity

    PubMed Central

    Geng, Xiangfei; Xu, Junhai; Liu, Baolin; Shi, Yonggang

    2018-01-01

    Major depressive disorder (MDD) is a mental disorder characterized by at least 2 weeks of low mood, which is present across most situations. Diagnosis of MDD using rest-state functional magnetic resonance imaging (fMRI) data faces many challenges due to the high dimensionality, small samples, noisy and individual variability. To our best knowledge, no studies aim at classification with effective connectivity and functional connectivity measures between MDD patients and healthy controls. In this study, we performed a data-driving classification analysis using the whole brain connectivity measures which included the functional connectivity from two brain templates and effective connectivity measures created by the default mode network (DMN), dorsal attention network (DAN), frontal-parietal network (FPN), and silence network (SN). Effective connectivity measures were extracted using spectral Dynamic Causal Modeling (spDCM) and transformed into a vectorial feature space. Linear Support Vector Machine (linear SVM), non-linear SVM, k-Nearest Neighbor (KNN), and Logistic Regression (LR) were used as the classifiers to identify the differences between MDD patients and healthy controls. Our results showed that the highest accuracy achieved 91.67% (p < 0.0001) when using 19 effective connections and 89.36% when using 6,650 functional connections. The functional connections with high discriminative power were mainly located within or across the whole brain resting-state networks while the discriminative effective connections located in several specific regions, such as posterior cingulate cortex (PCC), ventromedial prefrontal cortex (vmPFC), dorsal cingulate cortex (dACC), and inferior parietal lobes (IPL). To further compare the discriminative power of functional connections and effective connections, a classification analysis only using the functional connections from those four networks was conducted and the highest accuracy achieved 78.33% (p < 0.0001). Our study demonstrated that the effective connectivity measures might play a more important role than functional connectivity in exploring the alterations between patients and health controls and afford a better mechanistic interpretability. Moreover, our results showed a diagnostic potential of the effective connectivity for the diagnosis of MDD patients with high accuracies allowing for earlier prevention or intervention. PMID:29515348

  20. Analysis of globally connected active rotators with excitatory and inhibitory connections using the Fokker-Planck equation

    NASA Astrophysics Data System (ADS)

    Kanamaru, Takashi; Sekine, Masatoshi

    2003-03-01

    The globally connected active rotators with excitatory and inhibitory connections are analyzed using the nonlinear Fokker-Planck equation. The bifurcation diagram of the system is obtained numerically, and both periodic solutions and chaotic solutions are found. By observing the interspike interval, the coefficient of variance, and the correlation coefficient of the system, the relationship of our model to the biological data is discussed.

  1. Altered functional connectivity of the language network in ASD: Role of classical language areas and cerebellum☆

    PubMed Central

    Verly, Marjolein; Verhoeven, Judith; Zink, Inge; Mantini, Dante; Peeters, Ronald; Deprez, Sabine; Emsell, Louise; Boets, Bart; Noens, Ilse; Steyaert, Jean; Lagae, Lieven; De Cock, Paul; Rommel, Nathalie; Sunaert, Stefan

    2014-01-01

    The development of language, social interaction and communicative skills is remarkably different in the child with autism spectrum disorder (ASD). Atypical brain connectivity has frequently been reported in this patient population. However, the neural correlates underlying their disrupted language development and functioning are still poorly understood. Using resting state fMRI, we investigated the functional connectivity properties of the language network in a group of ASD patients with clear comorbid language impairment (ASD-LI; N = 19) and compared them to the language related connectivity properties of 23 age-matched typically developing children. A verb generation task was used to determine language components commonly active in both groups. Eight joint language components were identified and subsequently used as seeds in a resting state analysis. Interestingly, both the interregional and the seed-based whole brain connectivity analysis showed preserved connectivity between the classical intrahemispheric language centers, Wernicke's and Broca's areas. In contrast however, a marked loss of functional connectivity was found between the right cerebellar region and the supratentorial regulatory language areas. Also, the connectivity between the interhemispheric Broca regions and modulatory control dorsolateral prefrontal region was found to be decreased. This disruption of normal modulatory control and automation function by the cerebellum may underlie the abnormal language function in children with ASD-LI. PMID:24567909

  2. Field protocol and GIS analysis of connectivity in semiarid headwaters: metrics and evidences from Carcavo Basin (SE Spain)

    NASA Astrophysics Data System (ADS)

    Marchamalo, Miguel; Hooke, Janet; Gonzalez-Rodrigo, Beatriz; Sandercock, Peter

    2017-04-01

    Soil erosion and land degradation are severe problems in headwaters of ephemeral streams in semiarid Mediterranean regions, particularly in marginal upland areas over erodible parent material. Field-based information is required about the main pathways of sediment movement, the identification of sources and sinks and the influence of relevant factors. The EU-funded project RECONDES approached this reality by monitoring connectivity pathways of water and sediment movement in the landscape with the aim of identifying hotspots that could then be strategically targeted to reduce soil erosion and off-site effects. A protocol including field work and GIS analysis was developed and applied to a set of microcatchments in Carcavo Basin (Spain). The philosophy of the protocol was based on the repeated mapping after rainfall events so that frequency of activity of pathways could be evaluated. Connectivity was evaluated for each site and event using specific metrics: maximum mapped connectivity (corresponding to the largest recorded event), density of connected pathway links (m/ha) and frequency of activity (times active/total). Repeated connectivity mapping allowed identifying hotspots of erosion. The effect of structural and functional factors on connectivity was investigated. Field data is also valuable for validating future connectivity models in semiarid landscapes under highly variable and unpredictable conditions.

  3. Parallel-Connected Photovoltaic Inverters: Zero Frequency Sequence Harmonic Analysis and Solution

    NASA Astrophysics Data System (ADS)

    Carmeli, Maria Stefania; Mauri, Marco; Frosio, Luisa; Bezzolato, Alberto; Marchegiani, Gabriele

    2013-05-01

    High-power photovoltaic (PV) plants are usually constituted of the connection of different PV subfields, each of them with its interface transformer. Different solutions have been studied to improve the efficiency of the whole generation system. In particular, transformerless configurations are the more attractive one from efficiency and costs point of view. This paper focuses on transformerless PV configurations characterised by the parallel connection of interface inverters. The problem of zero sequence current due to both the parallel connection and the presence of undesirable parasitic earth capacitances is considered and a solution, which consists of the synchronisation of pulse-width modulation triangular carrier, is proposed and theoretically analysed. The theoretical analysis has been validated through simulation and experimental results.

  4. A techno-economic assessment of grid connected photovoltaic system for hospital building in Malaysia

    NASA Astrophysics Data System (ADS)

    Mat Isa, Normazlina; Tan, Chee Wei; Yatim, AHM

    2017-07-01

    Conventionally, electricity in hospital building are supplied by the utility grid which uses mix fuel including coal and gas. Due to enhancement in renewable technology, many building shall moving forward to install their own PV panel along with the grid to employ the advantages of the renewable energy. This paper present an analysis of grid connected photovoltaic (GCPV) system for hospital building in Malaysia. A discussion is emphasized on the economic analysis based on Levelized Cost of Energy (LCOE) and total Net Present Post (TNPC) in regards with the annual interest rate. The analysis is performed using Hybrid Optimization Model for Electric Renewables (HOMER) software which give optimization and sensitivity analysis result. An optimization result followed by the sensitivity analysis also being discuss in this article thus the impact of the grid connected PV system has be evaluated. In addition, the benefit from Net Metering (NeM) mechanism also discussed.

  5. A New Approach to Investigate the Association between Brain Functional Connectivity and Disease Characteristics of Attention-Deficit/Hyperactivity Disorder: Topological Neuroimaging Data Analysis.

    PubMed

    Kyeong, Sunghyon; Park, Seonjeong; Cheon, Keun-Ah; Kim, Jae-Jin; Song, Dong-Ho; Kim, Eunjoo

    2015-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is currently diagnosed by a diagnostic interview, mainly based on subjective reports from parents or teachers. It is necessary to develop methods that rely on objectively measureable neurobiological data to assess brain-behavior relationship in patients with ADHD. We investigated the application of a topological data analysis tool, Mapper, to analyze the brain functional connectivity data from ADHD patients. To quantify the disease severity using the neuroimaging data, the decomposition of individual functional networks into normal and disease components by the healthy state model (HSM) was performed, and the magnitude of the disease component (MDC) was computed. Topological data analysis using Mapper was performed to distinguish children with ADHD (n = 196) from typically developing controls (TDC) (n = 214). In the topological data analysis, the partial clustering results of patients with ADHD and normal subjects were shown in a chain-like graph. In the correlation analysis, the MDC showed a significant increase with lower intelligence scores in TDC. We also found that the rates of comorbidity in ADHD significantly increased when the deviation of the functional connectivity from HSM was large. In addition, a significant correlation between ADHD symptom severity and MDC was found in part of the dataset. The application of HSM and topological data analysis methods in assessing the brain functional connectivity seem to be promising tools to quantify ADHD symptom severity and to reveal the hidden relationship between clinical phenotypic variables and brain connectivity.

  6. ABERRANT RESTING-STATE BRAIN ACTIVITY IN POSTTRAUMATIC STRESS DISORDER: A META-ANALYSIS AND SYSTEMATIC REVIEW.

    PubMed

    Koch, Saskia B J; van Zuiden, Mirjam; Nawijn, Laura; Frijling, Jessie L; Veltman, Dick J; Olff, Miranda

    2016-07-01

    About 10% of trauma-exposed individuals develop PTSD. Although a growing number of studies have investigated resting-state abnormalities in PTSD, inconsistent results suggest a need for a meta-analysis and a systematic review. We conducted a systematic literature search in four online databases using keywords for PTSD, functional neuroimaging, and resting-state. In total, 23 studies matched our eligibility criteria. For the meta-analysis, we included 14 whole-brain resting-state studies, reporting data on 663 participants (298 PTSD patients and 365 controls). We used the activation likelihood estimation approach to identify concurrence of whole-brain hypo- and hyperactivations in PTSD patients during rest. Seed-based studies could not be included in the quantitative meta-analysis. Therefore, a separate qualitative systematic review was conducted on nine seed-based functional connectivity studies. The meta-analysis showed consistent hyperactivity in the ventral anterior cingulate cortex and the parahippocampus/amygdala, but hypoactivity in the (posterior) insula, cerebellar pyramis and middle frontal gyrus in PTSD patients, compared to healthy controls. Partly concordant with these findings, the systematic review on seed-based functional connectivity studies showed enhanced salience network (SN) connectivity, but decreased default mode network (DMN) connectivity in PTSD. Combined, these altered resting-state connectivity and activity patterns could represent neurobiological correlates of increased salience processing and hypervigilance (SN), at the cost of awareness of internal thoughts and autobiographical memory (DMN) in PTSD. However, several discrepancies between findings of the meta-analysis and systematic review were observed, stressing the need for future studies on resting-state abnormalities in PTSD patients. © 2016 Wiley Periodicals, Inc.

  7. Complex Systems Analysis | Energy Analysis | NREL

    Science.gov Websites

    Generators, Transmission Infrastructure. A Power Plant drawing is above the text boxes. Solar Arrays drawing Flexibility and Storage. An Industry plant drawing and a house with the label Monitor Energy Use is connected to Transmission Infrastructure. A Geothermal Power Plant drawing and a Rooftop PV drawing is connect

  8. Analysis of Connected and Automated Vehicle Technologies Highlights

    Science.gov Websites

    Uncertainty in Potential Effects on Fuel Use, Miles Traveled | News | NREL Analysis of Connected and Automated Vehicle Technologies Highlights Uncertainty in Potential Effects on Fuel Use, Miles Potential Effects on Fuel Use, Miles Traveled December 13, 2016 A joint study from the U.S. Department of

  9. Connecting Language Proficiency to (Self-Reported) Teaching Ability: A Review and Analysis of Research

    ERIC Educational Resources Information Center

    Faez, Farahnaz; Karas, Michael

    2017-01-01

    This article provides a review and analysis of current research examining the connection between teacher language proficiency and their self-reported beliefs about their pedagogical abilities. Generally speaking, (English) language teachers require an advanced level of proficiency in order to be successful language teachers, but pedagogical skills…

  10. A Qualitative Analysis of the Lesbian Connection's Discussion Forum

    ERIC Educational Resources Information Center

    Erwin,Terry McVannel

    2006-01-01

    Letters submitted to the discussion forum of the Lesbian Connection between 2000 and 2002 were analyzed to identify issues of importance to lesbians. The analysis revealed 5 discussion categories: (a) isolation, safety, and aging; (b) children; (c) lesbian relationships and sexuality; (d) physical and mental health; and (e) political issues. The…

  11. Nested Neural Networks

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1992-01-01

    Report presents analysis of nested neural networks, consisting of interconnected subnetworks. Analysis based on simplified mathematical models more appropriate for artificial electronic neural networks, partly applicable to biological neural networks. Nested structure allows for retrieval of individual subpatterns. Requires fewer wires and connection devices than fully connected networks, and allows for local reconstruction of damaged subnetworks without rewiring entire network.

  12. Flexible modulation of network connectivity related to cognition in Alzheimer's disease.

    PubMed

    McLaren, Donald G; Sperling, Reisa A; Atri, Alireza

    2014-10-15

    Functional neuroimaging tools, such as fMRI methods, may elucidate the neural correlates of clinical, behavioral, and cognitive performance. Most functional imaging studies focus on regional task-related activity or resting state connectivity rather than how changes in functional connectivity across conditions and tasks are related to cognitive and behavioral performance. To investigate the promise of characterizing context-dependent connectivity-behavior relationships, this study applies the method of generalized psychophysiological interactions (gPPI) to assess the patterns of associative-memory-related fMRI hippocampal functional connectivity in Alzheimer's disease (AD) associated with performance on memory and other cognitively demanding neuropsychological tests and clinical measures. Twenty-four subjects with mild AD dementia (ages 54-82, nine females) participated in a face-name paired-associate encoding memory study. Generalized PPI analysis was used to estimate the connectivity between the hippocampus and the whole brain during encoding. The difference in hippocampal-whole brain connectivity between encoding novel and encoding repeated face-name pairs was used in multiple-regression analyses as an independent predictor for 10 behavioral, neuropsychological and clinical tests. The analysis revealed connectivity-behavior relationships that were distributed, dynamically overlapping, and task-specific within and across intrinsic networks; hippocampal-whole brain connectivity-behavior relationships were not isolated to single networks, but spanned multiple brain networks. Importantly, these spatially distributed performance patterns were unique for each measure. In general, out-of-network behavioral associations with encoding novel greater than repeated face-name pairs hippocampal-connectivity were observed in the default-mode network, while correlations with encoding repeated greater than novel face-name pairs hippocampal-connectivity were observed in the executive control network (p<0.05, cluster corrected). Psychophysiological interactions revealed significantly more extensive and robust associations between paired-associate encoding task-dependent hippocampal-whole brain connectivity and performance on memory and behavioral/clinical measures than previously revealed by standard activity-behavior analysis. Compared to resting state and task-activation methods, gPPI analyses may be more sensitive to reveal additional complementary information regarding subtle within- and between-network relations. The patterns of robust correlations between hippocampal-whole brain connectivity and behavioral measures identified here suggest that there are 'coordinated states' in the brain; that the dynamic range of these states is related to behavior and cognition; and that these states can be observed and quantified, even in individuals with mild AD. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Discriminant analysis of resting-state functional connectivity patterns on the Grassmann manifold

    NASA Astrophysics Data System (ADS)

    Fan, Yong; Liu, Yong; Jiang, Tianzi; Liu, Zhening; Hao, Yihui; Liu, Haihong

    2010-03-01

    The functional networks, extracted from fMRI images using independent component analysis, have been demonstrated informative for distinguishing brain states of cognitive functions and neurological diseases. In this paper, we propose a novel algorithm for discriminant analysis of functional networks encoded by spatial independent components. The functional networks of each individual are used as bases for a linear subspace, referred to as a functional connectivity pattern, which facilitates a comprehensive characterization of temporal signals of fMRI data. The functional connectivity patterns of different individuals are analyzed on the Grassmann manifold by adopting a principal angle based subspace distance. In conjunction with a support vector machine classifier, a forward component selection technique is proposed to select independent components for constructing the most discriminative functional connectivity pattern. The discriminant analysis method has been applied to an fMRI based schizophrenia study with 31 schizophrenia patients and 31 healthy individuals. The experimental results demonstrate that the proposed method not only achieves a promising classification performance for distinguishing schizophrenia patients from healthy controls, but also identifies discriminative functional networks that are informative for schizophrenia diagnosis.

  14. The intrinsic resting state voice network in Parkinson's disease

    PubMed Central

    New, Anneliese B.; Parkinson, Amy L.; Eickhoff, Claudia R.; Reetz, Kathrin; Hoffstaedter, Felix; Mathys, Christian; Sudmeyer, Martin; Michely, Jochen; Caspers, Julian; Grefkes, Christian; Larson, Charles R.; Ramig, Loraine O.; Fox, Peter T.; Eickhoff, Simon B.

    2015-01-01

    Abstract Over 90 percent of patients with Parkinson's disease experience speech‐motor impairment, namely, hypokinetic dysarthria characterized by reduced pitch and loudness. Resting‐state functional connectivity analysis of blood oxygen level‐dependent functional magnetic resonance imaging is a useful measure of intrinsic neural functioning. We utilized resting‐state functional connectivity modeling to analyze the intrinsic connectivity in patients with Parkinson's disease within a vocalization network defined by a previous meta‐analysis of speech (Brown et al., 2009). Functional connectivity of this network was assessed in 56 patients with Parkinson's disease and 56 gender‐, age‐, and movement‐matched healthy controls. We also had item 5 and 18 of the UPDRS, and the PDQ‐39 Communication subscale available for correlation with the voice network connectivity strength in patients. The within‐group analyses of connectivity patterns demonstrated a lack of subcortical–cortical connectivity in patients with Parkinson's disease. At the cortical level, we found robust (homotopic) interhemispheric connectivity but only inconsistent evidence for many intrahemispheric connections. When directly contrasted to the control group, we found a significant reduction of connections between the left thalamus and putamen, and cortical motor areas, as well as reduced right superior temporal gyrus connectivity. Furthermore, most symptom measures correlated with right putamen, left cerebellum, left superior temporal gyrus, right premotor, and left Rolandic operculum connectivity in the voice network. The results reflect the importance of (right) subcortical nodes and the superior temporal gyrus in Parkinson's disease, enhancing our understanding of the neurobiological underpinnings of vocalization impairment in Parkinson's disease. Hum Brain Mapp 36:1951–1962, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.. PMID:25627959

  15. Mapping thalamocortical functional connectivity in chronic and early stages of psychotic disorders

    PubMed Central

    Woodward, Neil D.; Heckers, Stephan

    2015-01-01

    Objective There is considerable evidence that the thalamus is abnormal in psychotic disorders. Resting-state fMRI (RS-fMRI) has revealed an intriguing pattern of thalamic dysconnectivity in psychosis characterized by reduced prefrontal cortex (PFC) connectivity and increased somatomotor-thalamic connectivity. However, critical knowledge gaps remain with respect to the onset, anatomical specificity, and clinical correlates of thalamic dysconnectivity in psychosis. Method RS-fMRI was collected on 105 healthy subjects and 148 individuals with psychosis, including 53 early stage psychosis patients. Using all 253 subjects, the thalamus was parceled into functional regions-of-interest (ROIs) on the basis of connectivity with six a-priori defined cortical ROIs covering most of the cortical mantle. Functional connectivity between each cortical ROI and its corresponding thalamic ROI was quantified and compared across groups. Significant differences in the ROI-to-ROI analysis were followed up with voxel-wise seed-based analyses to further localize thalamic dysconnectivity. Results ROI analysis revealed reduced PFC-thalamic connectivity and increased somatomotor-thalamic connectivity in both chronic and early stages psychosis patients. PFC hypo-connectivity and motor cortex hyper-connectivity correlated in patients suggesting they result from a common pathophysiological mechanism. Seed-based analyses revealed thalamic hypo-connectivity in psychosis localized to dorsolateral PFC, medial PFC, and cerebellar areas of the well-described ‘executive control’ network. Across all subjects, thalamic connectivity with areas of the fronto-parietal network correlated with cognitive functioning, including verbal learning and memory. Conclusions Thalamocortical dysconnectivity is present in both chronic and early stages of psychosis, includes reduced thalamic connectivity with the executive control network, and is related to cognitive impairment. PMID:26248537

  16. Altered functional connectivity to stressful stimuli in prenatally cocaine-exposed adolescents.

    PubMed

    Zakiniaeiz, Yasmin; Yip, Sarah W; Balodis, Iris M; Lacadie, Cheryl M; Scheinost, Dustin; Constable, R Todd; Mayes, Linda C; Sinha, Rajita; Potenza, Marc N

    2017-11-01

    Prenatal cocaine exposure (PCE) is linked to addiction and obesity vulnerability. Neural responses to stressful and appetitive cues in adolescents with PCE versus those without have been differentially linked to substance-use initiation. However, no prior studies have assessed cue-reactivity responses among PCE adolescents using a connectivity-based approach. Twenty-two PCE and 22 non-prenatally drug-exposed (NDE) age-, sex-, IQ- and BMI-matched adolescents participated in individualized guided imagery with appetitive (favorite-food), stressful and neutral-relaxing cue scripts during functional magnetic resonance imaging. Subjective favorite-food craving scores were collected before and after script exposure. A data-driven voxel-wise intrinsic connectivity distribution analysis was used to identify between-group differences and examine relationships with craving scores. A group-by-cue interaction effect identified a parietal lobe cluster where PCE versus NDE adolescents showed less connectivity during stressful and more connectivity during neutral-relaxing conditions. Follow-up seed-based connectivity analyses revealed that, among PCE adolescents, the parietal seed was positively connected to inferior parietal and sensory areas and negatively connected to corticolimbic during both stress and neutral-relaxing conditions. For NDE, greater parietal connectivity to parietal, cingulate and sensory areas and lesser parietal connectivity to medial prefrontal areas were found during stress compared to neutral-relaxing cueing. Craving scores inversely correlated with corticolimbic connectivity in PCE, but not NDE adolescents, during the favorite-food condition. Findings from this first data-driven intrinsic connectivity analysis of PCE influences on adolescent brain function indicate differences relating to PCE status and craving. These findings provide insight into the developmental impact of in utero drug exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Task-Rest Modulation of Basal Ganglia Connectivity in Mild to Moderate Parkinson’s Disease

    PubMed Central

    Müller-Oehring, Eva M.; Sullivan, Edith V.; Pfefferbaum, Adolf; Huang, Neng C.; Poston, Kathleen L.; Bronte-Stewart, Helen M.; Schulte, Tilman

    2014-01-01

    Parkinson’s disease (PD) is associated with abnormal synchronization in basal ganglia-thalamo-cortical loops. We tested whether early PD patients without demonstrable cognitive impairment exhibit abnormal modulation of functional connectivity at rest, while engaged in a task, or both. PD and healthy controls underwent two functional MRI scans: a resting-state scan and a Stroop Match-to-Sample task scan. Rest-task modulation of basal ganglia (BG) connectivity was tested using seed-to-voxel connectivity analysis with task and rest time series as conditions. Despite substantial overlap of BG–cortical connectivity patterns in both groups, connectivity differences between groups had clinical and behavioral correlates. During rest, stronger putamen–medial parietal and pallidum–occipital connectivity in PD than controls was associated with worse task performance and more severe PD symptoms suggesting that abnormalities in resting-state connectivity denote neural network dedifferentiation. During the executive task, PD patients showed weaker BG-cortical connectivity than controls, i.e., between caudate–supramarginal gyrus and pallidum–inferior prefrontal regions, that was related to more severe PD symptoms and worse task performance. Yet, task processing also evoked stronger striatal–cortical connectivity, specifically between caudate–prefrontal, caudate–precuneus, and putamen–motor/premotor regions in PD relative to controls, which was related to less severe PD symptoms and better performance on the Stroop task. Thus, stronger task-evoked striatal connectivity in PD demonstrated compensatory neural network enhancement to meet task demands and improve performance levels. fMRI-based network analysis revealed that despite resting-state BG network compromise in PD, BG connectivity to prefrontal, premotor, and precuneus regions can be adequately invoked during executive control demands enabling near normal task performance. PMID:25280970

  18. Sliding-window analysis tracks fluctuations in amygdala functional connectivity associated with physiological arousal and vigilance during fear conditioning.

    PubMed

    Baczkowski, Blazej M; Johnstone, Tom; Walter, Henrik; Erk, Susanne; Veer, Ilya M

    2017-06-01

    We evaluated whether sliding-window analysis can reveal functionally relevant brain network dynamics during a well-established fear conditioning paradigm. To this end, we tested if fMRI fluctuations in amygdala functional connectivity (FC) can be related to task-induced changes in physiological arousal and vigilance, as reflected in the skin conductance level (SCL). Thirty-two healthy individuals participated in the study. For the sliding-window analysis we used windows that were shifted by one volume at a time. Amygdala FC was calculated for each of these windows. Simultaneously acquired SCL time series were averaged over time frames that corresponded to the sliding-window FC analysis, which were subsequently regressed against the whole-brain seed-based amygdala sliding-window FC using the GLM. Surrogate time series were generated to test whether connectivity dynamics could have occurred by chance. In addition, results were contrasted against static amygdala FC and sliding-window FC of the primary visual cortex, which was chosen as a control seed, while a physio-physiological interaction (PPI) was performed as cross-validation. During periods of increased SCL, the left amygdala became more strongly coupled with the bilateral insula and anterior cingulate cortex, core areas of the salience network. The sliding-window analysis yielded a connectivity pattern that was unlikely to have occurred by chance, was spatially distinct from static amygdala FC and from sliding-window FC of the primary visual cortex, but was highly comparable to that of the PPI analysis. We conclude that sliding-window analysis can reveal functionally relevant fluctuations in connectivity in the context of an externally cued task. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Functional connectivity decreases in autism in emotion, self, and face circuits identified by Knowledge-based Enrichment Analysis.

    PubMed

    Cheng, Wei; Rolls, Edmund T; Zhang, Jie; Sheng, Wenbo; Ma, Liang; Wan, Lin; Luo, Qiang; Feng, Jianfeng

    2017-03-01

    A powerful new method is described called Knowledge based functional connectivity Enrichment Analysis (KEA) for interpreting resting state functional connectivity, using circuits that are functionally identified using search terms with the Neurosynth database. The method derives its power by focusing on neural circuits, sets of brain regions that share a common biological function, instead of trying to interpret single functional connectivity links. This provides a novel way of investigating how task- or function-related networks have resting state functional connectivity differences in different psychiatric states, provides a new way to bridge the gap between task and resting-state functional networks, and potentially helps to identify brain networks that might be treated. The method was applied to interpreting functional connectivity differences in autism. Functional connectivity decreases at the network circuit level in 394 patients with autism compared with 473 controls were found in networks involving the orbitofrontal cortex, anterior cingulate cortex, middle temporal gyrus cortex, and the precuneus, in networks that are implicated in the sense of self, face processing, and theory of mind. The decreases were correlated with symptom severity. Copyright © 2017. Published by Elsevier Inc.

  20. An analysis of general chain systems

    NASA Technical Reports Server (NTRS)

    Passerello, C. E.; Huston, R. L.

    1972-01-01

    A general analysis of dynamic systems consisting of connected rigid bodies is presented. The number of bodies and their manner of connection is arbitrary so long as no closed loops are formed. The analysis represents a dynamic finite element method, which is computer-oriented and designed so that nonworking, interval constraint forces are automatically eliminated. The method is based upon Lagrange's form of d'Alembert's principle. Shifter matrix transformations are used with the geometrical aspects of the analysis. The method is illustrated with a space manipulator.

  1. Analysis of Wood Structure Connections Using Cylindrical Steel and Carbon Fiber Dowel Pins

    NASA Astrophysics Data System (ADS)

    Vodiannikov, Mikhail A.; Kashevarova, Galina G., Dr.

    2017-06-01

    In this paper, the results of the statistical analysis of corrosion processes and moisture saturation of glued laminated timber structures and their joints in corrosive environment are shown. This paper includes calculation results for dowel connections of wood structures using steel and carbon fiber reinforced plastic cylindrical dowel pins in accordance with applicable regulatory documents by means of finite element analysis in ANSYS software, as well as experimental findings. Dependence diagrams are shown; comparative analysis of the results obtained is conducted.

  2. [Mathematic analysis of risk factors influence on occupational respiratory diseases development].

    PubMed

    Budkar', L N; Bugaeva, I V; Obukhova, T Iu; Tereshina, L G; Karpova, E A; Shmonina, O G

    2010-01-01

    Analysis covered 1348 case histories of workers exposed to industrial dust in Urals region. The analysis applied mathematical processing of survival theory and correlation analysis. The authors studied influence of various factors: dust concentration, connective tissue dysplasia, smoking habits--on duration for diseases caused by dust to appear. Findings are that occupational diseases develop reliably faster with higher ambient dust concentrations and with connective tissue dysplasia syndrome. Smoking habits do not alter duration of pneumoconiosis development, but reliably increases development of occupational dust bronchitis.

  3. Exploring the molecular mechanisms of Traditional Chinese Medicine components using gene expression signatures and connectivity map.

    PubMed

    Yoo, Minjae; Shin, Jimin; Kim, Hyunmin; Kim, Jihye; Kang, Jaewoo; Tan, Aik Choon

    2018-04-04

    Traditional Chinese Medicine (TCM) has been practiced over thousands of years in China and other Asian countries for treating various symptoms and diseases. However, the underlying molecular mechanisms of TCM are poorly understood, partly due to the "multi-component, multi-target" nature of TCM. To uncover the molecular mechanisms of TCM, we perform comprehensive gene expression analysis using connectivity map. We interrogated gene expression signatures obtained 102 TCM components using the next generation Connectivity Map (CMap) resource. We performed systematic data mining and analysis on the mechanism of action (MoA) of these TCM components based on the CMap results. We clustered the 102 TCM components into four groups based on their MoAs using next generation CMap resource. We performed gene set enrichment analysis on these components to provide additional supports for explaining these molecular mechanisms. We also provided literature evidence to validate the MoAs identified through this bioinformatics analysis. Finally, we developed the Traditional Chinese Medicine Drug Repurposing Hub (TCM Hub) - a connectivity map resource to facilitate the elucidation of TCM MoA for drug repurposing research. TCMHub is freely available in http://tanlab.ucdenver.edu/TCMHub. Molecular mechanisms of TCM could be uncovered by using gene expression signatures and connectivity map. Through this analysis, we identified many of the TCM components possess diverse MoAs, this may explain the applications of TCM in treating various symptoms and diseases. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Frequency distribution of causal connectivity in rat sensorimotor network: resting-state fMRI analyses.

    PubMed

    Shim, Woo H; Baek, Kwangyeol; Kim, Jeong Kon; Chae, Yongwook; Suh, Ji-Yeon; Rosen, Bruce R; Jeong, Jaeseung; Kim, Young R

    2013-01-01

    Resting-state functional MRI (fMRI) has emerged as an important method for assessing neural networks, enabling extensive connectivity analyses between multiple brain regions. Among the analysis techniques proposed, partial directed coherence (PDC) provides a promising tool to unveil causal connectivity networks in the frequency domain. Using the MRI time series obtained from the rat sensorimotor system, we applied PDC analysis to determine the frequency-dependent causality networks. In particular, we compared in vivo and postmortem conditions to establish the statistical significance of directional PDC values. Our results demonstrate that two distinctive frequency populations drive the causality networks in rat; significant, high-frequency causal connections clustered in the range of 0.2-0.4 Hz, and the frequently documented low-frequency connections <0.15 Hz. Frequency-dependence and directionality of the causal connection are characteristic between sensorimotor regions, implying the functional role of frequency bands to transport specific resting-state signals. In particular, whereas both intra- and interhemispheric causal connections between heterologous sensorimotor regions are robust over all frequency levels, the bilaterally homologous regions are interhemispherically linked mostly via low-frequency components. We also discovered a significant, frequency-independent, unidirectional connection from motor cortex to thalamus, indicating dominant cortical inputs to the thalamus in the absence of external stimuli. Additionally, to address factors underlying the measurement error, we performed signal simulations and revealed that the interactive MRI system noise alone is a likely source of the inaccurate PDC values. This work demonstrates technical basis for the PDC analysis of resting-state fMRI time series and the presence of frequency-dependent causality networks in the sensorimotor system.

  5. Functional connectivity mapping of regions associated with self- and other-processing.

    PubMed

    Murray, Ryan J; Debbané, Martin; Fox, Peter T; Bzdok, Danilo; Eickhoff, Simon B

    2015-04-01

    Neuroscience literature increasingly suggests a conceptual self composed of interacting neural regions, rather than independent local activations, yet such claims have yet to be investigated. We, thus, combined task-dependent meta-analytic connectivity modeling (MACM) with task-independent resting-state (RS) connectivity analysis to delineate the neural network of the self, across both states. Given psychological evidence implicating the self's interdependence on social information, we also delineated the neural network underlying conceptual other-processing. To elucidate the relation between the self-/other-networks and their function, we mined the MACM metadata to generate a cognitive-behavioral profile for an empirically identified region specific to conceptual self, the pregenual anterior cingulate (pACC), and conceptual other, posterior cingulate/precuneus (PCC/PC). Mining of 7,200 published, task-dependent, neuroimaging studies, using healthy human subjects, yielded 193 studies activating the self-related seed and were conjoined with RS connectivity analysis to delineate a differentiated self-network composed of the pACC (seed) and anterior insula, relative to other functional connectivity. Additionally, 106 studies activating the other-related seed were conjoined with RS connectivity analysis to delineate a differentiated other-network of PCC/PC (seed) and angular gyrus/temporoparietal junction, relative to self-functional connectivity. The self-network seed related to emotional conflict resolution and motivational processing, whereas the other-network seed related to socially oriented processing and contextual information integration. Notably, our findings revealed shared RS connectivity between ensuing self-/other-networks within the ventromedial prefrontal cortex and medial orbitofrontal cortex, suggesting self-updating via integration of self-relevant social information. We, therefore, present initial neurobiological evidence corroborating the increasing claims of an intricate self-network, the architecture of which may promote social value processing. © 2014 Wiley Periodicals, Inc.

  6. Drill pipe threaded nipple connection design development

    NASA Astrophysics Data System (ADS)

    Saruev, A. L.; Saruev, L. A.; Vasenin, S. S.

    2015-11-01

    The paper presents the analysis of the behavior of the drill pipe nipple connection under the additional load generated by power pulses. The strain wave propagation through the nipple thread connection of drill pipes to the bottomhole is studied in this paper. The improved design of the nipple thread connection is suggested using the obtained experimental and theoretical data. The suggested connection design allows not only the efficient transmission of strain wave energy to a drill bit but also the automation of making-up and breaking-out drill pipes.

  7. Long-range fluctuations and multifractality in connectivity density time series of a wind speed monitoring network

    NASA Astrophysics Data System (ADS)

    Laib, Mohamed; Telesca, Luciano; Kanevski, Mikhail

    2018-03-01

    This paper studies the daily connectivity time series of a wind speed-monitoring network using multifractal detrended fluctuation analysis. It investigates the long-range fluctuation and multifractality in the residuals of the connectivity time series. Our findings reveal that the daily connectivity of the correlation-based network is persistent for any correlation threshold. Further, the multifractality degree is higher for larger absolute values of the correlation threshold.

  8. Directional connectivity of resting state human fMRI data using cascaded ICA-PDC analysis.

    PubMed

    Silfverhuth, Minna J; Remes, Jukka; Starck, Tuomo; Nikkinen, Juha; Veijola, Juha; Tervonen, Osmo; Kiviniemi, Vesa

    2011-11-01

    Directional connectivity measures, such as partial directed coherence (PDC), give us means to explore effective connectivity in the human brain. By utilizing independent component analysis (ICA), the original data-set reduction was performed for further PDC analysis. To test this cascaded ICA-PDC approach in causality studies of human functional magnetic resonance imaging (fMRI) data. Resting state group data was imaged from 55 subjects using a 1.5 T scanner (TR 1800 ms, 250 volumes). Temporal concatenation group ICA in a probabilistic ICA and further repeatability runs (n = 200) were overtaken. The reduced data-set included the time series presentation of the following nine ICA components: secondary somatosensory cortex, inferior temporal gyrus, intracalcarine cortex, primary auditory cortex, amygdala, putamen and the frontal medial cortex, posterior cingulate cortex and precuneus, comprising the default mode network components. Re-normalized PDC (rPDC) values were computed to determine directional connectivity at the group level at each frequency. The integrative role was suggested for precuneus while the role of major divergence region may be proposed to primary auditory cortex and amygdala. This study demonstrates the potential of the cascaded ICA-PDC approach in directional connectivity studies of human fMRI.

  9. Elementary Students' Retention of Environmental Science Knowledge: Connected Science Instruction versus Direct Instruction

    ERIC Educational Resources Information Center

    Upadhyay, Bhaskar; DeFranco, Cristina

    2008-01-01

    This study compares 3rd-grade elementary students' gain and retention of science vocabulary over time in two different classes--"connected science instruction" versus "direct instruction." Data analysis yielded that students who received connected science instruction showed less gain in science knowledge in the short term compared to students who…

  10. Joint Analysis of Band-Specific Functional Connectivity and Signal Complexity in Autism

    ERIC Educational Resources Information Center

    Ghanbari, Yasser; Bloy, Luke; Edgar, J. Christopher; Blaskey, Lisa; Verma, Ragini; Roberts, Timothy P. L.

    2015-01-01

    Examination of resting state brain activity using electrophysiological measures like complexity as well as functional connectivity is of growing interest in the study of autism spectrum disorders (ASD). The present paper jointly examined complexity and connectivity to obtain a more detailed characterization of resting state brain activity in ASD.…

  11. Identifying Seizure Onset Zone From the Causal Connectivity Inferred Using Directed Information

    NASA Astrophysics Data System (ADS)

    Malladi, Rakesh; Kalamangalam, Giridhar; Tandon, Nitin; Aazhang, Behnaam

    2016-10-01

    In this paper, we developed a model-based and a data-driven estimator for directed information (DI) to infer the causal connectivity graph between electrocorticographic (ECoG) signals recorded from brain and to identify the seizure onset zone (SOZ) in epileptic patients. Directed information, an information theoretic quantity, is a general metric to infer causal connectivity between time-series and is not restricted to a particular class of models unlike the popular metrics based on Granger causality or transfer entropy. The proposed estimators are shown to be almost surely convergent. Causal connectivity between ECoG electrodes in five epileptic patients is inferred using the proposed DI estimators, after validating their performance on simulated data. We then proposed a model-based and a data-driven SOZ identification algorithm to identify SOZ from the causal connectivity inferred using model-based and data-driven DI estimators respectively. The data-driven SOZ identification outperforms the model-based SOZ identification algorithm when benchmarked against visual analysis by neurologist, the current clinical gold standard. The causal connectivity analysis presented here is the first step towards developing novel non-surgical treatments for epilepsy.

  12. Creativity and the default network: A functional connectivity analysis of the creative brain at rest☆

    PubMed Central

    Beaty, Roger E.; Benedek, Mathias; Wilkins, Robin W.; Jauk, Emanuel; Fink, Andreas; Silvia, Paul J.; Hodges, Donald A.; Koschutnig, Karl; Neubauer, Aljoscha C.

    2014-01-01

    The present research used resting-state functional magnetic resonance imaging (fMRI) to examine whether the ability to generate creative ideas corresponds to differences in the intrinsic organization of functional networks in the brain. We examined the functional connectivity between regions commonly implicated in neuroimaging studies of divergent thinking, including the inferior prefrontal cortex and the core hubs of the default network. Participants were prescreened on a battery of divergent thinking tests and assigned to high- and low-creative groups based on task performance. Seed-based functional connectivity analysis revealed greater connectivity between the left inferior frontal gyrus (IFG) and the entire default mode network in the high-creative group. The right IFG also showed greater functional connectivity with bilateral inferior parietal cortex and the left dorsolateral prefrontal cortex in the high-creative group. The results suggest that the ability to generate creative ideas is characterized by increased functional connectivity between the inferior prefrontal cortex and the default network, pointing to a greater cooperation between brain regions associated with cognitive control and low-level imaginative processes. PMID:25245940

  13. Transdiagnostic differences in the resting-state functional connectivity of the prefrontal cortex in depression and schizophrenia.

    PubMed

    Chen, Xi; Liu, Chang; He, Hui; Chang, Xin; Jiang, Yuchao; Li, Yingjia; Duan, Mingjun; Li, Jianfu; Luo, Cheng; Yao, Dezhong

    2017-08-01

    Depression and schizophrenia are two of the most serious psychiatric disorders. They share similar symptoms but the pathology-specific commonalities and differences remain unknown. This study was conducted to acquire a full picture of the functional alterations in schizophrenia and depression patients. The resting-state fMRI data from 20 patients with schizophrenia, 20 patients with depression and 20 healthy control subjects were collected. A data-driven approach that included local functional connectivity density (FCD) analysis combined with multivariate pattern analysis (MVPA) was used to compare the three groups. Based on the results of the MVPA, the local FCD value in the orbitofrontal cortex (OFC) can differentiate depression patients from schizophrenia patients. The patients with depression had a higher local FCD value in the medial and anterior parts of the OFC than the subjects in the other two groups, which suggested altered abstract and reward reinforces processing in depression patients. Subsequent functional connectivity analysis indicated that the connection in the prefrontal cortex was significantly lower in people with schizophrenia compared to people with depression and healthy controls. The systematically different medications for schizophrenia and depression may have different effects on functional connectivity. These results suggested that the resting-state functional connectivity pattern in the prefrontal cortex may be a transdiagnostic difference between depression and schizophrenia patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Design and Analysis of a Forging Die for Manufacturing of Multiple Connecting Rods

    NASA Astrophysics Data System (ADS)

    Megharaj, C. E.; Nagaraj, P. M.; Jeelan Pasha, K.

    2016-09-01

    This paper demonstrates to utilize the hammer capacity by modifying the die design such that forging hammer can manufacture more than one connecting rod in a given forging cycle time. To modify the die design study is carried out to understand the parameters that are required for forging die design. By considering these parameters, forging die is designed using design modelling tool solid edge. This new design now can produce two connecting rods in same capacity hammer. The new design is required to validate by verifying complete filing of metal in die cavities without any defects in it. To verify this, analysis tool DEFORM 3D is used in this project. Before start of validation process it is require to convert 3D generated models in to. STL file format to import the models into the analysis tool DEFORM 3D. After importing these designs they are analysed for material flow into the cavities and energy required to produce two connecting rods in new forging die design. It is found that the forging die design is proper without any defects and also energy graph shows that the forging energy required to produce two connecting rods is within the limit of that hammer capacity. Implementation of this project increases the production of connecting rods by 200% in less than previous cycle time.

  15. Mutual connectivity analysis (MCA) using generalized radial basis function neural networks for nonlinear functional connectivity network recovery in resting-state functional MRI

    NASA Astrophysics Data System (ADS)

    D'Souza, Adora M.; Abidin, Anas Zainul; Nagarajan, Mahesh B.; Wismüller, Axel

    2016-03-01

    We investigate the applicability of a computational framework, called mutual connectivity analysis (MCA), for directed functional connectivity analysis in both synthetic and resting-state functional MRI data. This framework comprises of first evaluating non-linear cross-predictability between every pair of time series prior to recovering the underlying network structure using community detection algorithms. We obtain the non-linear cross-prediction score between time series using Generalized Radial Basis Functions (GRBF) neural networks. These cross-prediction scores characterize the underlying functionally connected networks within the resting brain, which can be extracted using non-metric clustering approaches, such as the Louvain method. We first test our approach on synthetic models with known directional influence and network structure. Our method is able to capture the directional relationships between time series (with an area under the ROC curve = 0.92 +/- 0.037) as well as the underlying network structure (Rand index = 0.87 +/- 0.063) with high accuracy. Furthermore, we test this method for network recovery on resting-state fMRI data, where results are compared to the motor cortex network recovered from a motor stimulation sequence, resulting in a strong agreement between the two (Dice coefficient = 0.45). We conclude that our MCA approach is effective in analyzing non-linear directed functional connectivity and in revealing underlying functional network structure in complex systems.

  16. Mutual Connectivity Analysis (MCA) Using Generalized Radial Basis Function Neural Networks for Nonlinear Functional Connectivity Network Recovery in Resting-State Functional MRI.

    PubMed

    DSouza, Adora M; Abidin, Anas Zainul; Nagarajan, Mahesh B; Wismüller, Axel

    2016-03-29

    We investigate the applicability of a computational framework, called mutual connectivity analysis (MCA), for directed functional connectivity analysis in both synthetic and resting-state functional MRI data. This framework comprises of first evaluating non-linear cross-predictability between every pair of time series prior to recovering the underlying network structure using community detection algorithms. We obtain the non-linear cross-prediction score between time series using Generalized Radial Basis Functions (GRBF) neural networks. These cross-prediction scores characterize the underlying functionally connected networks within the resting brain, which can be extracted using non-metric clustering approaches, such as the Louvain method. We first test our approach on synthetic models with known directional influence and network structure. Our method is able to capture the directional relationships between time series (with an area under the ROC curve = 0.92 ± 0.037) as well as the underlying network structure (Rand index = 0.87 ± 0.063) with high accuracy. Furthermore, we test this method for network recovery on resting-state fMRI data, where results are compared to the motor cortex network recovered from a motor stimulation sequence, resulting in a strong agreement between the two (Dice coefficient = 0.45). We conclude that our MCA approach is effective in analyzing non-linear directed functional connectivity and in revealing underlying functional network structure in complex systems.

  17. Scientific & Intelligence Exascale Visualization Analysis System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Money, James H.

    SIEVAS provides an immersive visualization framework for connecting multiple systems in real time for data science. SIEVAS provides the ability to connect multiple COTS and GOTS products in a seamless fashion for data fusion, data analysis, and viewing. It provides this capability by using a combination of micro services, real time messaging, and web service compliant back-end system.

  18. Data Analysis Measurement: Having a Solar Blast! NASA Connect: Program 7 in the 2001-2002 Video Series. [Videotape].

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.

    NASA Connect is an interdisciplinary, instructional distance learning program targeting students in grades 6-8. This videotape explains how engineers and researchers at the National Aeronautics and Space Administration (NASA) use data analysis and measurement to predict solar storms, anticipate how they will affect the Earth, and improve…

  19. Aberrant EEG functional connectivity and EEG power spectra in resting state post-traumatic stress disorder: a sLORETA study.

    PubMed

    Imperatori, Claudio; Farina, Benedetto; Quintiliani, Maria Isabella; Onofri, Antonio; Castelli Gattinara, Paola; Lepore, Marta; Gnoni, Valentina; Mazzucchi, Edoardo; Contardi, Anna; Della Marca, Giacomo

    2014-10-01

    The aim of the present study was to explore the modifications of EEG power spectra and EEG connectivity of resting state (RS) condition in patients with post-traumatic stress disorder (PTSD). Seventeen patients and seventeen healthy subjects matched for age and gender were enrolled. EEG was recorded during 5min of RS. EEG analysis was conducted by means of the standardized Low Resolution Electric Tomography software (sLORETA). In power spectra analysis PTSD patients showed a widespread increase of theta activity (4.5-7.5Hz) in parietal lobes (Brodmann Area, BA 7, 4, 5, 40) and in frontal lobes (BA 6). In the connectivity analysis PTSD patients also showed increase of alpha connectivity (8-12.5Hz) between the cortical areas explored by Pz-P4 electrode. Our results could reflect the alteration of memory systems and emotional processing consistently altered in PTSD patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Estimating the epidemic threshold on networks by deterministic connections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Kezan, E-mail: lkzzr@sohu.com; Zhu, Guanghu; Fu, Xinchu

    2014-12-15

    For many epidemic networks some connections between nodes are treated as deterministic, while the remainder are random and have different connection probabilities. By applying spectral analysis to several constructed models, we find that one can estimate the epidemic thresholds of these networks by investigating information from only the deterministic connections. Nonetheless, in these models, generic nonuniform stochastic connections and heterogeneous community structure are also considered. The estimation of epidemic thresholds is achieved via inequalities with upper and lower bounds, which are found to be in very good agreement with numerical simulations. Since these deterministic connections are easier to detect thanmore » those stochastic connections, this work provides a feasible and effective method to estimate the epidemic thresholds in real epidemic networks.« less

  1. Bimanual Motor Coordination in Older Adults Is Associated with Increased Functional Brain Connectivity – A Graph-Theoretical Analysis

    PubMed Central

    Heitger, Marcus H.; Goble, Daniel J.; Dhollander, Thijs; Dupont, Patrick; Caeyenberghs, Karen; Leemans, Alexander; Sunaert, Stefan; Swinnen, Stephan P.

    2013-01-01

    In bimanual coordination, older and younger adults activate a common cerebral network but the elderly also have additional activation in a secondary network of brain areas to master task performance. It remains unclear whether the functional connectivity within these primary and secondary motor networks differs between the old and the young and whether task difficulty modulates connectivity. We applied graph-theoretical network analysis (GTNA) to task-driven fMRI data in 16 elderly and 16 young participants using a bimanual coordination task including in-phase and anti-phase flexion/extension wrist movements. Network nodes for the GTNA comprised task-relevant brain areas as defined by fMRI activation foci. The elderly matched the motor performance of the young but showed an increased functional connectivity in both networks across a wide range of connectivity metrics, i.e., higher mean connectivity degree, connection strength, network density and efficiency, together with shorter mean communication path length between the network nodes and also a lower betweenness centrality. More difficult movements showed an increased connectivity in both groups. The network connectivity of both groups had “small world” character. The present findings indicate (a) that bimanual coordination in the aging brain is associated with a higher functional connectivity even between areas also activated in young adults, independently from task difficulty, and (b) that adequate motor coordination in the context of task-driven bimanual control in older adults may not be solely due to additional neural recruitment but also to aging-related changes of functional relationships between brain regions. PMID:23637982

  2. Differential reward network functional connectivity in cannabis dependent and non-dependent users☆

    PubMed Central

    Filbey, Francesca M.; Dunlop, Joseph

    2015-01-01

    Background Emergent studies show that similar to other substances of abuse, cue-reactivity to cannabis is also associated with neural response in the brain’s reward pathway (Filbey et al., 2009). However, the inter-relatedness of brain regions during cue-reactivity in cannabis users remains unknown. Methods In this study, we conducted a series of investigations to determine functional connectivity during cue-reactivity in 71 cannabis users. First, we used psychophysiological interaction (PPI) analysis to examine coherent neural response to cannabis cues. Second, we evaluated whether these patterns of network functional connectivity differentiated dependent and non-dependent users. Finally, as an exploratory analysis, we determined the directionality of these connections via Granger connectivity analyses. Results PPI analyses showed reward network functional connectivity with the nucleus accumbens (NAc) seed region during cue exposure. Between-group contrasts found differential effects of dependence status. Dependent users (N = 31) had greater functional connectivity with amygdala and anterior cingulate gyrus (ACG) seeds while the non-dependent users (N = 24) had greater functional connectivity with the NAc, orbitofrontal cortex (OFC) and hippocampus seeds. Granger analyses showed that hippocampal and ACG activation preceded neural response in reward areas. Conclusions Both PPI and Granger analyses demonstrated strong functional coherence in reward regions during exposure to cannabis cues in current cannabis users. Functional connectivity (but not regional activation) in the reward network differentiated dependent from non-dependent cannabis users. Our findings suggest that repeated cannabis exposure causes observable changes in functional connectivity in the reward network and should be considered in intervention strategies. PMID:24838032

  3. When brain neuroscience meets hydrology: timeseries analysis methods for capturing structural and functional aspects of hydrologic connectivity

    NASA Astrophysics Data System (ADS)

    Ali, G.; Rinderer, M.

    2016-12-01

    In hydrology, several connectivity definitions exist that hinder intercomparison between different studies. Yet, consensus exists on the distinction between structural connectivity (i.e., physical adjacency of landscape elements that is thought to influence material transfer) and functional or effective connectivity (i.e., interaction or causality between spatial adjacency characteristics and temporally varying factors, leading to the connected flow of material). While hydrologists have succeeded in deriving measures of structural connectivity (SC), the quantification of functional (FC) or effective connectivity (EC) is elusive. Here we borrowed timeseries analysis methods from brain neuroscience to quantify EC and FC among groundwater (n = 34) and stream discharge (n = 1) monitoring sites in a 20-ha Swiss catchment where topography is assumed to be a major driver of connectivity. Influence maps created from elevation data were used to assess SC. FC was assessed by cross-correlation, total and partial mutual information and EC quantified via total and partial entropy, Granger causality and a phase slope index. Results show that generally, a fair percentage of structural connections were also expressed as functional or effective connections. Some FC and EC measures had clear advantages over others, for instance in terms of making a distinction between Darcian fluxes of water and pressure wave-driven processes. False-positive estimations, i.e., the detection of FC and EC despite the absence of SC, were also encountered and used to invalidate the applicability of some brain-connectivity measures in a hydrological context. While our goal was not to identify the best measure of FC or EC, our study showed that the application of brain neuroscience methods for assessing FC and EC in hydrology was possible as long as SC measures were used as constraints for (or prior beliefs about) the establishment of FC and EC.

  4. Parallel Alterations of Functional Connectivity during Execution and Imagination after Motor Imagery Learning

    PubMed Central

    Zhang, Rushao; Hui, Mingqi; Long, Zhiying; Zhao, Xiaojie; Yao, Li

    2012-01-01

    Background Neural substrates underlying motor learning have been widely investigated with neuroimaging technologies. Investigations have illustrated the critical regions of motor learning and further revealed parallel alterations of functional activation during imagination and execution after learning. However, little is known about the functional connectivity associated with motor learning, especially motor imagery learning, although benefits from functional connectivity analysis attract more attention to the related explorations. We explored whether motor imagery (MI) and motor execution (ME) shared parallel alterations of functional connectivity after MI learning. Methodology/Principal Findings Graph theory analysis, which is widely used in functional connectivity exploration, was performed on the functional magnetic resonance imaging (fMRI) data of MI and ME tasks before and after 14 days of consecutive MI learning. The control group had no learning. Two measures, connectivity degree and interregional connectivity, were calculated and further assessed at a statistical level. Two interesting results were obtained: (1) The connectivity degree of the right posterior parietal lobe decreased in both MI and ME tasks after MI learning in the experimental group; (2) The parallel alterations of interregional connectivity related to the right posterior parietal lobe occurred in the supplementary motor area for both tasks. Conclusions/Significance These computational results may provide the following insights: (1) The establishment of motor schema through MI learning may induce the significant decrease of connectivity degree in the posterior parietal lobe; (2) The decreased interregional connectivity between the supplementary motor area and the right posterior parietal lobe in post-test implicates the dissociation between motor learning and task performing. These findings and explanations further revealed the neural substrates underpinning MI learning and supported that the potential value of MI learning in motor function rehabilitation and motor skill learning deserves more attention and further investigation. PMID:22629308

  5. Challenges in measuring individual differences in functional connectivity using fMRI: The case of healthy aging

    PubMed Central

    Tsvetanov, Kamen A.; Cam‐CAN; Henson, Richard N.

    2017-01-01

    Abstract Many studies report individual differences in functional connectivity, such as those related to age. However, estimates of connectivity from fMRI are confounded by other factors, such as vascular health, head motion and changes in the location of functional regions. Here, we investigate the impact of these confounds, and pre‐processing strategies that can mitigate them, using data from the Cambridge Centre for Ageing & Neuroscience (www.cam-can.com). This dataset contained two sessions of resting‐state fMRI from 214 adults aged 18–88. Functional connectivity between all regions was strongly related to vascular health, most likely reflecting respiratory and cardiac signals. These variations in mean connectivity limit the validity of between‐participant comparisons of connectivity estimates, and were best mitigated by regression of mean connectivity over participants. We also showed that high‐pass filtering, instead of band‐pass filtering, produced stronger and more reliable age‐effects. Head motion was correlated with gray‐matter volume in selected brain regions, and with various cognitive measures, suggesting that it has a biological (trait) component, and warning against regressing out motion over participants. Finally, we showed that the location of functional regions was more variable in older adults, which was alleviated by smoothing the data, or using a multivariate measure of connectivity. These results demonstrate that analysis choices have a dramatic impact on connectivity differences between individuals, ultimately affecting the associations found between connectivity and cognition. It is important that fMRI connectivity studies address these issues, and we suggest a number of ways to optimize analysis choices. Hum Brain Mapp 38:4125–4156, 2017. © 2017 Wiley Periodicals, Inc. PMID:28544076

  6. A Composite Network Approach for Assessing Multi-Species Connectivity: An Application to Road Defragmentation Prioritisation

    PubMed Central

    Saura, Santiago; Rondinini, Carlo

    2016-01-01

    One of the biggest challenges in large-scale conservation is quantifying connectivity at broad geographic scales and for a large set of species. Because connectivity analyses can be computationally intensive, and the planning process quite complex when multiple taxa are involved, assessing connectivity at large spatial extents for many species turns to be often intractable. Such limitation results in that conducted assessments are often partial by focusing on a few key species only, or are generic by considering a range of dispersal distances and a fixed set of areas to connect that are not directly linked to the actual spatial distribution or mobility of particular species. By using a graph theory framework, here we propose an approach to reduce computational effort and effectively consider large assemblages of species in obtaining multi-species connectivity priorities. We demonstrate the potential of the approach by identifying defragmentation priorities in the Italian road network focusing on medium and large terrestrial mammals. We show that by combining probabilistic species graphs prior to conducting the network analysis (i) it is possible to analyse connectivity once for all species simultaneously, obtaining conservation or restoration priorities that apply for the entire species assemblage; and that (ii) those priorities are well aligned with the ones that would be obtained by aggregating the results of separate connectivity analysis for each of the individual species. This approach offers great opportunities to extend connectivity assessments to large assemblages of species and broad geographic scales. PMID:27768718

  7. Network architecture of the cerebral nuclei (basal ganglia) association and commissural connectome

    PubMed Central

    Swanson, Larry W.; Sporns, Olaf; Hahn, Joel D.

    2016-01-01

    The cerebral nuclei form the ventral division of the cerebral hemisphere and are thought to play an important role in neural systems controlling somatic movement and motivation. Network analysis was used to define global architectural features of intrinsic cerebral nuclei circuitry in one hemisphere (association connections) and between hemispheres (commissural connections). The analysis was based on more than 4,000 reports of histologically defined axonal connections involving all 45 gray matter regions of the rat cerebral nuclei and revealed the existence of four asymmetrically interconnected modules. The modules form four topographically distinct longitudinal columns that only partly correspond to previous interpretations of cerebral nuclei structure–function organization. The network of connections within and between modules in one hemisphere or the other is quite dense (about 40% of all possible connections), whereas the network of connections between hemispheres is weak and sparse (only about 5% of all possible connections). Particularly highly interconnected regions (rich club and hubs within it) form a topologically continuous band extending through two of the modules. Connection path lengths among numerous pairs of regions, and among some of the network’s modules, are relatively long, thus accounting for low global efficiency in network communication. These results provide a starting point for reexamining the connectional organization of the cerebral hemispheres as a whole (right and left cerebral cortex and cerebral nuclei together) and their relation to the rest of the nervous system. PMID:27647882

  8. Factoring the brain signatures of anesthesia concentration and level of arousal across individuals.

    PubMed

    Barttfeld, Pablo; Bekinschtein, Tristan A; Salles, Alejo; Stamatakis, Emmanuel A; Adapa, Ram; Menon, David K; Sigman, Mariano

    2015-01-01

    Combining resting-state functional magnetic resonance imaging (fMRI) connectivity and behavioral analysis during sedation, we factored out general effects of the anesthetic drug propofol and a specific index of conscious report, participants' level of responsiveness. The factorial analysis shows that increasing concentration of propofol in blood specifically decreases the connectivity strength of fronto-parietal cortical loops. In contrast, loss of responsiveness is indexed by a functional disconnection between the thalamus and the frontal cortex, balanced by an increase in connectivity strength of the thalamus to the occipital and temporal regions of the cortex.

  9. Factoring the brain signatures of anesthesia concentration and level of arousal across individuals

    PubMed Central

    Barttfeld, Pablo; Bekinschtein, Tristan A.; Salles, Alejo; Stamatakis, Emmanuel A.; Adapa, Ram; Menon, David K.; Sigman, Mariano

    2015-01-01

    Combining resting-state functional magnetic resonance imaging (fMRI) connectivity and behavioral analysis during sedation, we factored out general effects of the anesthetic drug propofol and a specific index of conscious report, participants’ level of responsiveness. The factorial analysis shows that increasing concentration of propofol in blood specifically decreases the connectivity strength of fronto-parietal cortical loops. In contrast, loss of responsiveness is indexed by a functional disconnection between the thalamus and the frontal cortex, balanced by an increase in connectivity strength of the thalamus to the occipital and temporal regions of the cortex. PMID:26509121

  10. Functional connectivity analysis of resting-state fMRI networks in nicotine dependent patients

    NASA Astrophysics Data System (ADS)

    Smith, Aria; Ehtemami, Anahid; Fratte, Daniel; Meyer-Baese, Anke; Zavala-Romero, Olmo; Goudriaan, Anna E.; Schmaal, Lianne; Schulte, Mieke H. J.

    2016-03-01

    Brain imaging studies identified brain networks that play a key role in nicotine dependence-related behavior. Functional connectivity of the brain is dynamic; it changes over time due to different causes such as learning, or quitting a habit. Functional connectivity analysis is useful in discovering and comparing patterns between functional magnetic resonance imaging (fMRI) scans of patients' brains. In the resting state, the patient is asked to remain calm and not do any task to minimize the contribution of external stimuli. The study of resting-state fMRI networks have shown functionally connected brain regions that have a high level of activity during this state. In this project, we are interested in the relationship between these functionally connected brain regions to identify nicotine dependent patients, who underwent a smoking cessation treatment. Our approach is on the comparison of the set of connections between the fMRI scans before and after treatment. We applied support vector machines, a machine learning technique, to classify patients based on receiving the treatment or the placebo. Using the functional connectivity (CONN) toolbox, we were able to form a correlation matrix based on the functional connectivity between different regions of the brain. The experimental results show that there is inadequate predictive information to classify nicotine dependent patients using the SVM classifier. We propose other classification methods be explored to better classify the nicotine dependent patients.

  11. A multivariate pattern analysis study of the HIV-related white matter anatomical structural connections alterations

    NASA Astrophysics Data System (ADS)

    Tang, Zhenchao; Liu, Zhenyu; Li, Ruili; Cui, Xinwei; Li, Hongjun; Dong, Enqing; Tian, Jie

    2017-03-01

    It's widely known that HIV infection would cause white matter integrity impairments. Nevertheless, it is still unclear that how the white matter anatomical structural connections are affected by HIV infection. In the current study, we employed a multivariate pattern analysis to explore the HIV-related white matter connections alterations. Forty antiretroviraltherapy- naïve HIV patients and thirty healthy controls were enrolled. Firstly, an Automatic Anatomical Label (AAL) atlas based white matter structural network, a 90 × 90 FA-weighted matrix, was constructed for each subject. Then, the white matter connections deprived from the structural network were entered into a lasso-logistic regression model to perform HIV-control group classification. Using leave one out cross validation, a classification accuracy (ACC) of 90% (P=0.002) and areas under the receiver operating characteristic curve (AUC) of 0.96 was obtained by the classification model. This result indicated that the white matter anatomical structural connections contributed greatly to HIV-control group classification, providing solid evidence that the white matter connections were affected by HIV infection. Specially, 11 white matter connections were selected in the classification model, mainly crossing the regions of frontal lobe, Cingulum, Hippocampus, and Thalamus, which were reported to be damaged in previous HIV studies. This might suggest that the white matter connections adjacent to the HIV-related impaired regions were prone to be damaged.

  12. Estimating time-dependent connectivity in marine systems

    USGS Publications Warehouse

    Defne, Zafer; Ganju, Neil K.; Aretxabaleta, Alfredo

    2016-01-01

    Hydrodynamic connectivity describes the sources and destinations of water parcels within a domain over a given time. When combined with biological models, it can be a powerful concept to explain the patterns of constituent dispersal within marine ecosystems. However, providing connectivity metrics for a given domain is a three-dimensional problem: two dimensions in space to define the sources and destinations and a time dimension to evaluate connectivity at varying temporal scales. If the time scale of interest is not predefined, then a general approach is required to describe connectivity over different time scales. For this purpose, we have introduced the concept of a “retention clock” that highlights the change in connectivity through time. Using the example of connectivity between protected areas within Barnegat Bay, New Jersey, we show that a retention clock matrix is an informative tool for multitemporal analysis of connectivity.

  13. Discourse Connectives in L1 and L2 Argumentative Writing

    ERIC Educational Resources Information Center

    Hu, Chunyu; Li, Yuanyuan

    2015-01-01

    Discourse connectives (DCs) are multi-functional devices used to connect discourse segments and fulfill interpersonal levels of discourse. This study investigates the use of selected 80 DCs within 11 categories in the argumentative essays produced by L1 and L2 university students. The analysis is based on the International Corpus Network of Asian…

  14. Evaluating population connectivity for species of conservation concern in the American Great Plains

    Treesearch

    Samuel A. Cushman; Erin L. Landguth; Curtis H. Flather

    2013-01-01

    Habitat loss and fragmentation are widely recognized as among the most important threats to global biodiversity. New analytical approaches are providing an improved ability to predict the effects of landscape change on population connectivity at vast spatial extents. This paper presents an analysis of population connectivity for three species of conservation concern [...

  15. Food as a Theme in Social Studies Classes: Connecting Daily Life to Technology, Economy, and Culture

    ERIC Educational Resources Information Center

    Resor, Cynthia Williams

    2010-01-01

    Connecting wider economic, technological, or cultural trends to the everyday life of students can be a challenge. Food can serve as a course-long theme that helps students comprehend the essential connection between personal actions and national or international trends and develop skills of critical analysis. The author describes four activities…

  16. Hierarchical Processing of Auditory Objects in Humans

    PubMed Central

    Kumar, Sukhbinder; Stephan, Klaas E; Warren, Jason D; Friston, Karl J; Griffiths, Timothy D

    2007-01-01

    This work examines the computational architecture used by the brain during the analysis of the spectral envelope of sounds, an important acoustic feature for defining auditory objects. Dynamic causal modelling and Bayesian model selection were used to evaluate a family of 16 network models explaining functional magnetic resonance imaging responses in the right temporal lobe during spectral envelope analysis. The models encode different hypotheses about the effective connectivity between Heschl's Gyrus (HG), containing the primary auditory cortex, planum temporale (PT), and superior temporal sulcus (STS), and the modulation of that coupling during spectral envelope analysis. In particular, we aimed to determine whether information processing during spectral envelope analysis takes place in a serial or parallel fashion. The analysis provides strong support for a serial architecture with connections from HG to PT and from PT to STS and an increase of the HG to PT connection during spectral envelope analysis. The work supports a computational model of auditory object processing, based on the abstraction of spectro-temporal “templates” in the PT before further analysis of the abstracted form in anterior temporal lobe areas. PMID:17542641

  17. An Evaluation of Collagen Metabolism in Non Human Primates Associated with the Bion 11 Space Program-Markers of Urinary Collagen Turnover and Muscle Connective Tissue

    NASA Technical Reports Server (NTRS)

    Vailas, Arthur C.; Martinez, Daniel A.

    1999-01-01

    Patients exhibiting changes in connective tissue and bone metabolism also show changes in urinary by-products of tissue metabolism. Furthermore, the changes in urinary connective tissue and bone metabolites precede alterations at the tissue macromolecular level. Astronauts and Cosmonauts have also shown suggestive increases in urinary by-products of mineralized and non-mineralized tissue degradation. Thus, the idea of assessing connective tissue and bone response in spaceflight monkeys by measurement of biomarkers in urine has merit. Other investigations of bone and connective histology, cytology and chemistry in the Bion 11 monkeys will allow for further validation of the relationship of urinary biomarkers and tissue response. In future flights the non-invasive procedure of urinary analysis may be useful in early detection of changes in these tissues. The purpose of this grant investigation was to evaluate mineralized and non-mineralized connective tissue responses of non-human primates to microgravity by the non-invasive analysis of urinary biomarkers. Secondly, we also wanted to assess muscle connective tissue adaptive changes in three weight-bearing skeletal muscles: the soleus, media] gastrocnemius and tibialis anterior by obtaining pre-flight and post-flight small biopsy specimens in collaboration with Dr. V. Reggie Edgerton's laboratory at the University of California at Los Angeles.

  18. Network Sampling and Classification:An Investigation of Network Model Representations

    PubMed Central

    Airoldi, Edoardo M.; Bai, Xue; Carley, Kathleen M.

    2011-01-01

    Methods for generating a random sample of networks with desired properties are important tools for the analysis of social, biological, and information networks. Algorithm-based approaches to sampling networks have received a great deal of attention in recent literature. Most of these algorithms are based on simple intuitions that associate the full features of connectivity patterns with specific values of only one or two network metrics. Substantive conclusions are crucially dependent on this association holding true. However, the extent to which this simple intuition holds true is not yet known. In this paper, we examine the association between the connectivity patterns that a network sampling algorithm aims to generate and the connectivity patterns of the generated networks, measured by an existing set of popular network metrics. We find that different network sampling algorithms can yield networks with similar connectivity patterns. We also find that the alternative algorithms for the same connectivity pattern can yield networks with different connectivity patterns. We argue that conclusions based on simulated network studies must focus on the full features of the connectivity patterns of a network instead of on the limited set of network metrics for a specific network type. This fact has important implications for network data analysis: for instance, implications related to the way significance is currently assessed. PMID:21666773

  19. Replicability of time-varying connectivity patterns in large resting state fMRI samples.

    PubMed

    Abrol, Anees; Damaraju, Eswar; Miller, Robyn L; Stephen, Julia M; Claus, Eric D; Mayer, Andrew R; Calhoun, Vince D

    2017-12-01

    The past few years have seen an emergence of approaches that leverage temporal changes in whole-brain patterns of functional connectivity (the chronnectome). In this chronnectome study, we investigate the replicability of the human brain's inter-regional coupling dynamics during rest by evaluating two different dynamic functional network connectivity (dFNC) analysis frameworks using 7 500 functional magnetic resonance imaging (fMRI) datasets. To quantify the extent to which the emergent functional connectivity (FC) patterns are reproducible, we characterize the temporal dynamics by deriving several summary measures across multiple large, independent age-matched samples. Reproducibility was demonstrated through the existence of basic connectivity patterns (FC states) amidst an ensemble of inter-regional connections. Furthermore, application of the methods to conservatively configured (statistically stationary, linear and Gaussian) surrogate datasets revealed that some of the studied state summary measures were indeed statistically significant and also suggested that this class of null model did not explain the fMRI data fully. This extensive testing of reproducibility of similarity statistics also suggests that the estimated FC states are robust against variation in data quality, analysis, grouping, and decomposition methods. We conclude that future investigations probing the functional and neurophysiological relevance of time-varying connectivity assume critical importance. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Replicability of time-varying connectivity patterns in large resting state fMRI samples

    PubMed Central

    Abrol, Anees; Damaraju, Eswar; Miller, Robyn L.; Stephen, Julia M.; Claus, Eric D.; Mayer, Andrew R.; Calhoun, Vince D.

    2018-01-01

    The past few years have seen an emergence of approaches that leverage temporal changes in whole-brain patterns of functional connectivity (the chronnectome). In this chronnectome study, we investigate the replicability of the human brain’s inter-regional coupling dynamics during rest by evaluating two different dynamic functional network connectivity (dFNC) analysis frameworks using 7 500 functional magnetic resonance imaging (fMRI) datasets. To quantify the extent to which the emergent functional connectivity (FC) patterns are reproducible, we characterize the temporal dynamics by deriving several summary measures across multiple large, independent age-matched samples. Reproducibility was demonstrated through the existence of basic connectivity patterns (FC states) amidst an ensemble of inter-regional connections. Furthermore, application of the methods to conservatively configured (statistically stationary, linear and Gaussian) surrogate datasets revealed that some of the studied state summary measures were indeed statistically significant and also suggested that this class of null model did not explain the fMRI data fully. This extensive testing of reproducibility of similarity statistics also suggests that the estimated FC states are robust against variation in data quality, analysis, grouping, and decomposition methods. We conclude that future investigations probing the functional and neurophysiological relevance of time-varying connectivity assume critical importance. PMID:28916181

  1. Distinct Aging Effects on Functional Networks in Good and Poor Cognitive Performers

    PubMed Central

    Lee, Annie; Tan, Mingzhen; Qiu, Anqi

    2016-01-01

    Brain network hubs are susceptible to normal aging processes and disruptions of their functional connectivity are detrimental to decline in cognitive functions in older adults. However, it remains unclear how the functional connectivity of network hubs cope with cognitive heterogeneity in an aging population. This study utilized cognitive and resting-state functional magnetic resonance imaging data, cluster analysis, and graph network analysis to examine age-related alterations in the network hubs’ functional connectivity of good and poor cognitive performers. Our results revealed that poor cognitive performers showed age-dependent disruptions in the functional connectivity of the right insula and posterior cingulate cortex (PCC), while good cognitive performers showed age-related disruptions in the functional connectivity of the left insula and PCC. Additionally, the left PCC had age-related declines in the functional connectivity with the left medial prefrontal cortex (mPFC) and anterior cingulate cortex (ACC). Most interestingly, good cognitive performers showed age-related declines in the functional connectivity of the left insula and PCC with their right homotopic structures. These results may provide insights of neuronal correlates for understanding individual differences in aging. In particular, our study suggests prominent protection roles of the left insula and PCC and bilateral ACC in good performers. PMID:27667972

  2. Structural brain connectivity and cognitive ability differences: A multivariate distance matrix regression analysis.

    PubMed

    Ponsoda, Vicente; Martínez, Kenia; Pineda-Pardo, José A; Abad, Francisco J; Olea, Julio; Román, Francisco J; Barbey, Aron K; Colom, Roberto

    2017-02-01

    Neuroimaging research involves analyses of huge amounts of biological data that might or might not be related with cognition. This relationship is usually approached using univariate methods, and, therefore, correction methods are mandatory for reducing false positives. Nevertheless, the probability of false negatives is also increased. Multivariate frameworks have been proposed for helping to alleviate this balance. Here we apply multivariate distance matrix regression for the simultaneous analysis of biological and cognitive data, namely, structural connections among 82 brain regions and several latent factors estimating cognitive performance. We tested whether cognitive differences predict distances among individuals regarding their connectivity pattern. Beginning with 3,321 connections among regions, the 36 edges better predicted by the individuals' cognitive scores were selected. Cognitive scores were related to connectivity distances in both the full (3,321) and reduced (36) connectivity patterns. The selected edges connect regions distributed across the entire brain and the network defined by these edges supports high-order cognitive processes such as (a) (fluid) executive control, (b) (crystallized) recognition, learning, and language processing, and (c) visuospatial processing. This multivariate study suggests that one widespread, but limited number, of regions in the human brain, supports high-level cognitive ability differences. Hum Brain Mapp 38:803-816, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Registering Cortical Surfaces Based on Whole-Brain Structural Connectivity and Continuous Connectivity Analysis

    PubMed Central

    Gutman, Boris; Leonardo, Cassandra; Jahanshad, Neda; Hibar, Derrek; Eschen-burg, Kristian; Nir, Talia; Villalon, Julio; Thompson, Paul

    2014-01-01

    We present a framework for registering cortical surfaces based on tractography-informed structural connectivity. We define connectivity as a continuous kernel on the product space of the cortex, and develop a method for estimating this kernel from tractography fiber models. Next, we formulate the kernel registration problem, and present a means to non-linearly register two brains’ continuous connectivity profiles. We apply theoretical results from operator theory to develop an algorithm for decomposing the connectome into its shared and individual components. Lastly, we extend two discrete connectivity measures to the continuous case, and apply our framework to 98 Alzheimer’s patients and controls. Our measures show significant differences between the two groups. PMID:25320795

  4. On Connected Target k-Coverage in Heterogeneous Wireless Sensor Networks.

    PubMed

    Yu, Jiguo; Chen, Ying; Ma, Liran; Huang, Baogui; Cheng, Xiuzhen

    2016-01-15

    Coverage and connectivity are two important performance evaluation indices for wireless sensor networks (WSNs). In this paper, we focus on the connected target k-coverage (CTC k) problem in heterogeneous wireless sensor networks (HWSNs). A centralized connected target k-coverage algorithm (CCTC k) and a distributed connected target k-coverage algorithm (DCTC k) are proposed so as to generate connected cover sets for energy-efficient connectivity and coverage maintenance. To be specific, our proposed algorithms aim at achieving minimum connected target k-coverage, where each target in the monitored region is covered by at least k active sensor nodes. In addition, these two algorithms strive to minimize the total number of active sensor nodes and guarantee that each sensor node is connected to a sink, such that the sensed data can be forwarded to the sink. Our theoretical analysis and simulation results show that our proposed algorithms outperform a state-of-art connected k-coverage protocol for HWSNs.

  5. Using Social Network Analysis to Examine How Perceived Beliefs Affect Service Quality in Public Higher Education Institutions

    ERIC Educational Resources Information Center

    Robinson-Neal, Andree

    2009-01-01

    In business, educational, and other organizations, team members often connect with one another in informal groups in order to fill certain needs (Accel-Team, 2006). Such needs include the ability to connect with others who share worldviews, opinions, or beliefs. When social network analysis (SNA) or concept mapping is used to examine interpersonal…

  6. Grid connected integrated community energy system. Phase II: final state 2 report. Cost benefit analysis, operating costs and computer simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-03-22

    A grid-connected Integrated Community Energy System (ICES) with a coal-burning power plant located on the University of Minnesota campus is planned. The cost benefit analysis performed for this ICES, the cost accounting methods used, and a computer simulation of the operation of the power plant are described. (LCL)

  7. Efficient techniques for forced response involving linear modal components interconnected by discrete nonlinear connection elements

    NASA Astrophysics Data System (ADS)

    Avitabile, Peter; O'Callahan, John

    2009-01-01

    Generally, response analysis of systems containing discrete nonlinear connection elements such as typical mounting connections require the physical finite element system matrices to be used in a direct integration algorithm to compute the nonlinear response analysis solution. Due to the large size of these physical matrices, forced nonlinear response analysis requires significant computational resources. Usually, the individual components of the system are analyzed and tested as separate components and their individual behavior may essentially be linear when compared to the total assembled system. However, the joining of these linear subsystems using highly nonlinear connection elements causes the entire system to become nonlinear. It would be advantageous if these linear modal subsystems could be utilized in the forced nonlinear response analysis since much effort has usually been expended in fine tuning and adjusting the analytical models to reflect the tested subsystem configuration. Several more efficient techniques have been developed to address this class of problem. Three of these techniques given as: equivalent reduced model technique (ERMT);modal modification response technique (MMRT); andcomponent element method (CEM); are presented in this paper and are compared to traditional methods.

  8. Evaluating the intersection of a regional wildlife connectivity network with highways.

    PubMed

    Cushman, Samuel A; Lewis, Jesse S; Landguth, Erin L

    2013-01-01

    Reliable predictions of regional-scale population connectivity are needed to prioritize conservation actions. However, there have been few examples of regional connectivity models that are empirically derived and validated. The central goals of this paper were to (1) evaluate the effectiveness of factorial least cost path corridor mapping on an empirical resistance surface in reflecting the frequency of highway crossings by American black bear, (2) predict the location and predicted intensity of use of movement corridors for American black bear, and (3) identify where these corridors cross major highways and rank the intensity of these crossings. We used factorial least cost path modeling coupled with resistant kernel analysis to predict a network of movement corridors across a 30.2 million hectare analysis area in Montana and Idaho, USA. Factorial least cost path corridor mapping was associated with the locations of actual bear highway crossings. We identified corridor-highway intersections and ranked these based on corridor strength. We found that a major wildlife crossing overpass structure was located close to one of the most intense predicted corridors, and that the vast majority of the predicted corridor network was "protected" under federal management. However, narrow, linear corridors connecting the Greater Yellowstone Ecosystem to the rest of the analysis area had limited protection by federal ownership, making these additionally vulnerable to habitat loss and fragmentation. Factorial least cost path modeling coupled with resistant kernel analysis provides detailed, synoptic information about connectivity across populations that vary in distribution and density in complex landscapes. Specifically, our results could be used to quantify the structure of the connectivity network, identify critical linkage nodes and core areas, map potential barriers and fracture zones, and prioritize locations for mitigation, restoration and conservation actions.

  9. Information seeking for making evidence-informed decisions: a social network analysis on the staff of a public health department in Canada

    PubMed Central

    2012-01-01

    Background Social network analysis is an approach to study the interactions and exchange of resources among people. It can help understanding the underlying structural and behavioral complexities that influence the process of capacity building towards evidence-informed decision making. A social network analysis was conducted to understand if and how the staff of a public health department in Ontario turn to peers to get help incorporating research evidence into practice. Methods The staff were invited to respond to an online questionnaire inquiring about information seeking behavior, identification of colleague expertise, and friendship status. Three networks were developed based on the 170 participants. Overall shape, key indices, the most central people and brokers, and their characteristics were identified. Results The network analysis showed a low density and localized information-seeking network. Inter-personal connections were mainly clustered by organizational divisions; and people tended to limit information-seeking connections to a handful of peers in their division. However, recognition of expertise and friendship networks showed more cross-divisional connections. Members of the office of the Medical Officer of Health were located at the heart of the department, bridging across divisions. A small group of professional consultants and middle managers were the most-central staff in the network, also connecting their divisions to the center of the information-seeking network. In each division, there were some locally central staff, mainly practitioners, who connected their neighboring peers; but they were not necessarily connected to other experts or managers. Conclusions The methods of social network analysis were useful in providing a systems approach to understand how knowledge might flow in an organization. The findings of this study can be used to identify early adopters of knowledge translation interventions, forming Communities of Practice, and potential internal knowledge brokers. PMID:22591757

  10. AASHTO connected vehicle infrastructure deployment analysis.

    DOT National Transportation Integrated Search

    2011-06-17

    This report describes a deployment scenario for Connected Vehicle infrastructure by state and local transportation agencies, together with a series of strategies and actions to be performed by AASHTO to support application development and deployment.

  11. Automated and connected vehicle implications and analysis.

    DOT National Transportation Integrated Search

    2017-05-01

    Automated and connected vehicles (ACV) and, in particular, autonomous vehicles have captured : the interest of the public, industry and transportation authorities. ACVs can significantly reduce : accidents, fuel consumption, pollution and the costs o...

  12. A Stimulus-Locked Vector Autoregressive Model for Slow Event-Related fMRI Designs

    PubMed Central

    Siegle, Greg

    2009-01-01

    Summary Neuroscientists have become increasingly interested in exploring dynamic relationships among brain regions. Such a relationship, when directed from one region toward another, is denoted by “effective connectivity.” An fMRI experimental paradigm which is well-suited for examination of effective connectivity is the slow event-related design. This design presents stimuli at sufficient temporal spacing for determining within-trial trajectories of BOLD activation, allowing for the analysis of stimulus-locked temporal covariation of brain responses in multiple regions. This may be especially important for emotional stimuli processing, which can evolve over the course of several seconds, if not longer. However, while several methods have been devised for determining fMRI effective connectivity, few are adapted to event-related designs, which include non-stationary BOLD responses and multiple levels of nesting. We propose a model tailored for exploring effective connectivity of multiple brain regions in event-related fMRI designs - a semi-parametric adaptation of vector autoregressive (VAR) models, termed “stimulus-locked VAR” (SloVAR). Connectivity coefficients vary as a function of time relative to stimulus onset, are regularized via basis expansions, and vary randomly across subjects. SloVAR obtains flexible, data-driven estimates of effective connectivity and hence is useful for building connectivity models when prior information on dynamic regional relationships is sparse. Indices derived from the coefficient estimates can also be used to relate effective connectivity estimates to behavioral or clinical measures. We demonstrate the SloVAR model on a sample of clinically depressed and normal controls, showing that early but not late cortico-amygdala connectivity appears crucial to emotional control and early but not late cortico-cortico connectivity predicts depression severity in the depressed group, relationships that would have been missed in a more traditional VAR analysis. PMID:19236927

  13. Predicting the cumulative effect of multiple disturbances on seagrass connectivity.

    PubMed

    Grech, Alana; Hanert, Emmanuel; McKenzie, Len; Rasheed, Michael; Thomas, Christopher; Tol, Samantha; Wang, Mingzhu; Waycott, Michelle; Wolter, Jolan; Coles, Rob

    2018-03-15

    The rate of exchange, or connectivity, among populations effects their ability to recover after disturbance events. However, there is limited information on the extent to which populations are connected or how multiple disturbances affect connectivity, especially in coastal and marine ecosystems. We used network analysis and the outputs of a biophysical model to measure potential functional connectivity and predict the impact of multiple disturbances on seagrasses in the central Great Barrier Reef World Heritage Area (GBRWHA), Australia. The seagrass networks were densely connected, indicating that seagrasses are resilient to the random loss of meadows. Our analysis identified discrete meadows that are important sources of seagrass propagules and that serve as stepping stones connecting various different parts of the network. Several of these meadows were close to urban areas or ports and likely to be at risk from coastal development. Deep water meadows were highly connected to coastal meadows and may function as a refuge, but only for non-foundation species. We evaluated changes to the structure and functioning of the seagrass networks when one or more discrete meadows were removed due to multiple disturbance events. The scale of disturbance required to disconnect the seagrass networks into two or more components was on average >245 km, about half the length of the metapopulation. The densely connected seagrass meadows of the central GBRWHA are not limited by the supply of propagules; therefore, management should focus on improving environmental conditions that support natural seagrass recruitment and recovery processes. Our study provides a new framework for assessing the impact of global change on the connectivity and persistence of coastal and marine ecosystems. Without this knowledge, management actions, including coastal restoration, may prove unnecessary and be unsuccessful. © 2018 John Wiley & Sons Ltd.

  14. Aberrant functional connectivity between motor and language networks in rolandic epilepsy.

    PubMed

    Besseling, René M H; Overvliet, Geke M; Jansen, Jacobus F A; van der Kruijs, Sylvie J M; Vles, Johannes S H; Ebus, Saskia C M; Hofman, Paul A M; de Louw, Anton J A; Aldenkamp, Albert P; Backes, Walter H

    2013-12-01

    Rolandic epilepsy (RE) is an idiopathic focal childhood epilepsy with a well-established neuropsychological profile of language impairment. The aim of this study is to provide a functional correlate that links rolandic (sensorimotor) pathology to language problems using functional MRI. Twenty-three children with RE (8-14 years old) and 21 matched controls underwent extensive language assessment (Clinical Evaluation of Language Fundamentals). fMRI was performed at rest and using word generation, reading, and finger tapping paradigms. Since no activation group differences were found, regions of interest (ROIs) were defined at pooled (patients and controls combined) activation maxima and in contralateral homotopic cortex, and used to assess language lateralization as well as for a resting-state connectivity analysis. Furthermore, the association between connection strength and language performance was investigated. Reduced language performance was found in the children with RE. Bilateral activation was found for both language tasks with some predominance of the left hemisphere in both groups. Compared to controls, patient connectivity was decreased between the left sensorimotor area and right inferior frontal gyrus (p<0.01). For this connection, lower connectivity was associated with lower language scores in the patient group (r=0.49, p=0.02), but not in the controls. Language laterality analysis revealed bilateral language representation in the age range under study (8-14 years). As a consequence, the connection of reduced functional connectivity we found represents an impaired interplay between motor and language networks, and aberrant functional connectivity associated with poorer language performance. These findings provide a first neuronal correlate in terms of aberrant resting-state functional connectivity for language impairment in RE. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. An Efficient and Reliable Statistical Method for Estimating Functional Connectivity in Large Scale Brain Networks Using Partial Correlation

    PubMed Central

    Wang, Yikai; Kang, Jian; Kemmer, Phebe B.; Guo, Ying

    2016-01-01

    Currently, network-oriented analysis of fMRI data has become an important tool for understanding brain organization and brain networks. Among the range of network modeling methods, partial correlation has shown great promises in accurately detecting true brain network connections. However, the application of partial correlation in investigating brain connectivity, especially in large-scale brain networks, has been limited so far due to the technical challenges in its estimation. In this paper, we propose an efficient and reliable statistical method for estimating partial correlation in large-scale brain network modeling. Our method derives partial correlation based on the precision matrix estimated via Constrained L1-minimization Approach (CLIME), which is a recently developed statistical method that is more efficient and demonstrates better performance than the existing methods. To help select an appropriate tuning parameter for sparsity control in the network estimation, we propose a new Dens-based selection method that provides a more informative and flexible tool to allow the users to select the tuning parameter based on the desired sparsity level. Another appealing feature of the Dens-based method is that it is much faster than the existing methods, which provides an important advantage in neuroimaging applications. Simulation studies show that the Dens-based method demonstrates comparable or better performance with respect to the existing methods in network estimation. We applied the proposed partial correlation method to investigate resting state functional connectivity using rs-fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC) study. Our results show that partial correlation analysis removed considerable between-module marginal connections identified by full correlation analysis, suggesting these connections were likely caused by global effects or common connection to other nodes. Based on partial correlation, we find that the most significant direct connections are between homologous brain locations in the left and right hemisphere. When comparing partial correlation derived under different sparse tuning parameters, an important finding is that the sparse regularization has more shrinkage effects on negative functional connections than on positive connections, which supports previous findings that many of the negative brain connections are due to non-neurophysiological effects. An R package “DensParcorr” can be downloaded from CRAN for implementing the proposed statistical methods. PMID:27242395

  16. Track-weighted functional connectivity (TW-FC): a tool for characterizing the structural-functional connections in the brain.

    PubMed

    Calamante, Fernando; Masterton, Richard A J; Tournier, Jacques-Donald; Smith, Robert E; Willats, Lisa; Raffelt, David; Connelly, Alan

    2013-04-15

    MRI provides a powerful tool for studying the functional and structural connections in the brain non-invasively. The technique of functional connectivity (FC) exploits the intrinsic temporal correlations of slow spontaneous signal fluctuations to characterise brain functional networks. In addition, diffusion MRI fibre-tracking can be used to study the white matter structural connections. In recent years, there has been considerable interest in combining these two techniques to provide an overall structural-functional description of the brain. In this work we applied the recently proposed super-resolution track-weighted imaging (TWI) methodology to demonstrate how whole-brain fibre-tracking data can be combined with FC data to generate a track-weighted (TW) FC map of FC networks. The method was applied to data from 8 healthy volunteers, and illustrated with (i) FC networks obtained using a seeded connectivity-based analysis (seeding in the precuneus/posterior cingulate cortex, PCC, known to be part of the default mode network), and (ii) with FC networks generated using independent component analysis (in particular, the default mode, attention, visual, and sensory-motor networks). TW-FC maps showed high intensity in white matter structures connecting the nodes of the FC networks. For example, the cingulum bundles show the strongest TW-FC values in the PCC seeded-based analysis, due to their major role in the connection between medial frontal cortex and precuneus/posterior cingulate cortex; similarly the superior longitudinal fasciculus was well represented in the attention network, the optic radiations in the visual network, and the corticospinal tract and corpus callosum in the sensory-motor network. The TW-FC maps highlight the white matter connections associated with a given FC network, and their intensity in a given voxel reflects the functional connectivity of the part of the nodes of the network linked by the structural connections traversing that voxel. They therefore contain a different (and novel) image contrast from that of the images used to generate them. The results shown in this study illustrate the potential of the TW-FC approach for the fusion of structural and functional data into a single quantitative image. This technique could therefore have important applications in neuroscience and neurology, such as for voxel-based comparison studies. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. An Efficient and Reliable Statistical Method for Estimating Functional Connectivity in Large Scale Brain Networks Using Partial Correlation.

    PubMed

    Wang, Yikai; Kang, Jian; Kemmer, Phebe B; Guo, Ying

    2016-01-01

    Currently, network-oriented analysis of fMRI data has become an important tool for understanding brain organization and brain networks. Among the range of network modeling methods, partial correlation has shown great promises in accurately detecting true brain network connections. However, the application of partial correlation in investigating brain connectivity, especially in large-scale brain networks, has been limited so far due to the technical challenges in its estimation. In this paper, we propose an efficient and reliable statistical method for estimating partial correlation in large-scale brain network modeling. Our method derives partial correlation based on the precision matrix estimated via Constrained L1-minimization Approach (CLIME), which is a recently developed statistical method that is more efficient and demonstrates better performance than the existing methods. To help select an appropriate tuning parameter for sparsity control in the network estimation, we propose a new Dens-based selection method that provides a more informative and flexible tool to allow the users to select the tuning parameter based on the desired sparsity level. Another appealing feature of the Dens-based method is that it is much faster than the existing methods, which provides an important advantage in neuroimaging applications. Simulation studies show that the Dens-based method demonstrates comparable or better performance with respect to the existing methods in network estimation. We applied the proposed partial correlation method to investigate resting state functional connectivity using rs-fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC) study. Our results show that partial correlation analysis removed considerable between-module marginal connections identified by full correlation analysis, suggesting these connections were likely caused by global effects or common connection to other nodes. Based on partial correlation, we find that the most significant direct connections are between homologous brain locations in the left and right hemisphere. When comparing partial correlation derived under different sparse tuning parameters, an important finding is that the sparse regularization has more shrinkage effects on negative functional connections than on positive connections, which supports previous findings that many of the negative brain connections are due to non-neurophysiological effects. An R package "DensParcorr" can be downloaded from CRAN for implementing the proposed statistical methods.

  18. Combined Use of Systematic Conservation Planning, Species Distribution Modelling, and Connectivity Analysis Reveals Severe Conservation Gaps in a Megadiverse Country (Peru)

    PubMed Central

    Fajardo, Javier; Lessmann, Janeth; Bonaccorso, Elisa; Devenish, Christian; Muñoz, Jesús

    2014-01-01

    Conservation planning is crucial for megadiverse countries where biodiversity is coupled with incomplete reserve systems and limited resources to invest in conservation. Using Peru as an example of a megadiverse country, we asked whether the national system of protected areas satisfies biodiversity conservation needs. Further, to complement the existing reserve system, we identified and prioritized potential conservation areas using a combination of species distribution modeling, conservation planning and connectivity analysis. Based on a set of 2,869 species, including mammals, birds, amphibians, reptiles, butterflies, and plants, we used species distribution models to represent species' geographic ranges to reduce the effect of biased sampling and partial knowledge about species' distributions. A site-selection algorithm then searched for efficient and complementary proposals, based on the above distributions, for a more representative system of protection. Finally, we incorporated connectivity among areas in an innovative post-hoc analysis to prioritize those areas maximizing connectivity within the system. Our results highlight severe conservation gaps in the Coastal and Andean regions, and we propose several areas, which are not currently covered by the existing network of protected areas. Our approach helps to find areas that contribute to creating a more representative, connected and efficient network. PMID:25479411

  19. Eloquent silences: A musical and lexical analysis of conversation between oncologists and their patients.

    PubMed

    Bartels, Josef; Rodenbach, Rachel; Ciesinski, Katherine; Gramling, Robert; Fiscella, Kevin; Epstein, Ronald

    2016-10-01

    Silences in doctor-patient communication can be "connectional" and communicative, in contrast to silences that indicate awkwardness or distraction. Musical and lexical analyses can identify and characterize connectional silences in consultations between oncologists and patients. Two medical students and a professor of voice screened all 1211 silences over 2s in length from 124 oncology office visits. We developed a "strength of connection" taxonomy and examined ten connectional silences for lexical and musical features including pitch, volume, and speaker turn-taking rhythm. We identified connectional silences with good reliability. Typical dialog rhythms surrounding connectional silences are characterized by relatively equal turn lengths and frequent short vocalizations. We found no pattern of volume and pitch variability around these silences. Connectional silences occurred in a wide variety of lexical contexts. Particular patterns of dialog rhythm mark connectional silences. Exploring structures of connectional silence extends our understanding of the audio-linguistic conditions that mark patient-clinician connection. Communicating with an awareness of pitch, rhythm, and silence - in addition to lexical content - can facilitate shared understanding and emotional connection. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. The Internet of Toys: A Posthuman and Multimodal Analysis of Connected Play

    ERIC Educational Resources Information Center

    Marsh, Jackie

    2017-01-01

    Background: The study reported in this article focuses on an exploration of the role and nature of play in young children's use of toys that connect physical and digital domains. Purpose: The purpose of the article is to explore the nature of the connections that are made in play that transverses physical and virtual domains. The article draws on…

  1. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Synchronization in Complex Networks with Multiple Connections

    NASA Astrophysics Data System (ADS)

    Wu, Qing-Chu; Fu, Xin-Chu; Sun, Wei-Gang

    2010-01-01

    In this paper a class of networks with multiple connections are discussed. The multiple connections include two different types of links between nodes in complex networks. For this new model, we give a simple generating procedure. Furthermore, we investigate dynamical synchronization behavior in a delayed two-layer network, giving corresponding theoretical analysis and numerical examples.

  2. Influence of parafunctional loading and prosthetic connection on stress distribution: a 3D finite element analysis.

    PubMed

    Torcato, Leonardo Bueno; Pellizzer, Eduardo Piza; Verri, Fellippo Ramos; Falcón-Antenucci, Rosse Mary; Santiago Júnior, Joel Ferreira; de Faria Almeida, Daniel Augusto

    2015-11-01

    Clinicians should consider parafunctional occlusal load when planning treatment. Prosthetic connections can reduce the stress distribution on an implant-supported prosthesis. The purpose of this 3-dimensional finite element study was to assess the influence of parafunctional loading and prosthetic connections on stress distribution. Computer-aided design software was used to construct 3 models. Each model was composed of a bone and an implant (external hexagon, internal hexagon, or Morse taper) with a crown. Finite element analysis software was used to generate the finite element mesh and establish the loading and boundary conditions. A normal force (200-N axial load and 100-N oblique load) and parafunctional force (1000-N axial and 500-N oblique load) were applied. Results were visualized as the maximum principal stress. Three-way analysis of variance and Tukey test were performed, and the percentage of contribution of each variable to the stress concentration was calculated from sum-of squares-analysis. Stress was concentrated around the implant at the cortical bone, and models with the external hexagonal implant showed the highest stresses (P<.001). Oblique loads produced high tensile stress concentrations on the site opposite the load direction. Internal connection implants presented the most favorable biomechanical situation, whereas the least favorable situation was the biomechanical behavior of external connection implants. Parafunctional loading increased the magnitude of stress by 3 to 4 times. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  3. Effective connectivity of facial expression network by using Granger causality analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Li, Xiaoting

    2013-10-01

    Functional magnetic resonance imaging (fMRI) is an advanced non-invasive data acquisition technique to investigate the neural activity in human brain. In addition to localize the functional brain regions that is activated by specific cognitive task, fMRI can also be utilized to measure the task-related functional interactions among the active regions of interest (ROI) in the brain. Among the variety of analysis tools proposed for modeling the connectivity of brain regions, Granger causality analysis (GCA) measure the directions of information interactions by looking for the lagged effect among the brain regions. In this study, we use fMRI and Granger Causality analysis to investigate the effective connectivity of brain network induced by viewing several kinds of expressional faces. We focus on four kinds of facial expression stimuli: fearful, angry, happy and neutral faces. Five face selective regions of interest are localized and the effective connectivity within these regions is measured for the expressional faces. Our result based on 8 subjects showed that there is significant effective connectivity from STS to amygdala, from amygdala to OFA, aFFA and pFFA, from STS to aFFA and from pFFA to aFFA. This result suggested that there is an information flow from the STS to the amygdala when perusing expressional faces. This emotional expressional information flow that is conveyed by STS and amygdala, flow back to the face selective regions in occipital-temporal lobes, which constructed a emotional face processing network.

  4. Directionality analysis on functional magnetic resonance imaging during motor task using Granger causality.

    PubMed

    Anwar, A R; Muthalib, M; Perrey, S; Galka, A; Granert, O; Wolff, S; Deuschl, G; Raethjen, J; Heute, U; Muthuraman, M

    2012-01-01

    Directionality analysis of signals originating from different parts of brain during motor tasks has gained a lot of interest. Since brain activity can be recorded over time, methods of time series analysis can be applied to medical time series as well. Granger Causality is a method to find a causal relationship between time series. Such causality can be referred to as a directional connection and is not necessarily bidirectional. The aim of this study is to differentiate between different motor tasks on the basis of activation maps and also to understand the nature of connections present between different parts of the brain. In this paper, three different motor tasks (finger tapping, simple finger sequencing, and complex finger sequencing) are analyzed. Time series for each task were extracted from functional magnetic resonance imaging (fMRI) data, which have a very good spatial resolution and can look into the sub-cortical regions of the brain. Activation maps based on fMRI images show that, in case of complex finger sequencing, most parts of the brain are active, unlike finger tapping during which only limited regions show activity. Directionality analysis on time series extracted from contralateral motor cortex (CMC), supplementary motor area (SMA), and cerebellum (CER) show bidirectional connections between these parts of the brain. In case of simple finger sequencing and complex finger sequencing, the strongest connections originate from SMA and CMC, while connections originating from CER in either direction are the weakest ones in magnitude during all paradigms.

  5. Social network analysis of children with autism spectrum disorder: Predictors of fragmentation and connectivity in elementary school classrooms

    PubMed Central

    Anderson, Ariana; Locke, Jill; Kretzmann, Mark; Kasari, Connie

    2016-01-01

    Although children with autism spectrum disorder are frequently included in mainstream classrooms, it is not known how their social networks change compared to typically developing children and whether the factors predictive of this change may be unique. This study identified and compared predictors of social connectivity of children with and without autism spectrum disorder using a social network analysis. Participants included 182 children with autism spectrum disorder and 152 children without autism spectrum disorder, aged 5–12 years in 152 general education K-5 classrooms. General linear models were used to compare how age, classroom size, gender, baseline connectivity, diagnosis, and intelligence quotient predicted changes in social connectivity (closeness). Gender and classroom size had a unique interaction in predicting final social connectivity and the change in connectivity for children with autism spectrum disorder; boys who were placed in larger classrooms showed increased social network fragmentation. This increased fragmentation for boys when placed in larger classrooms was not seen in typically developing boys. These results have implications regarding placement, intervention objectives, and ongoing school support that aimed to increase the social success of children with autism spectrum disorder in public schools. PMID:26567264

  6. Opposing Amygdala and Ventral Striatum Connectivity During Emotion Identification

    PubMed Central

    Satterthwaite, Theodore D.; Wolf, Daniel H.; Pinkham, Amy E.; Ruparel, Kosha; Elliott, Mark A.; Valdez, Jeffrey N.; Overton, Eve; Seubert, Janina; Gur, Raquel E.; Gur, Ruben C.; Loughead, James

    2011-01-01

    Lesion and electrophysiological studies in animals provide evidence of opposing functions for subcortical nuclei such as the amygdala and ventral striatum, but the implications of these findings for emotion identification in humans remain poorly described. Here we report a high-resolution fMRI study in a sample of 39 healthy subjects who performed a well-characterized emotion identification task. As expected, the amygdala responded to THREAT (angry or fearful) faces more than NON-THREAT (sad or happy) faces. A functional connectivity analysis of the time series from an anatomically defined amygdala seed revealed a strong anti-correlation between the amygdala and the ventral striatum /ventral pallidum, consistent with an opposing role for these regions in during emotion identification. A second functional connectivity analysis (psychophysiological interaction) investigating relative connectivity on THREAT vs. NON-THREAT trials demonstrated that the amygdala had increased connectivity with the orbitofrontal cortex during THREAT trials, whereas the ventral striatum demonstrated increased connectivity with the posterior hippocampus on NON-THREAT trials. These results indicate that activity in the amygdala and ventral striatum may be inversely related, and that both regions may provide opposing affective bias signals during emotion identification. PMID:21600684

  7. Long-term effects of musical training and functional plasticity in salience system.

    PubMed

    Luo, Cheng; Tu, Shipeng; Peng, Yueheng; Gao, Shan; Li, Jianfu; Dong, Li; Li, Gujing; Lai, Yongxiu; Li, Hong; Yao, Dezhong

    2014-01-01

    Musicians undergoing long-term musical training show improved emotional and cognitive function, which suggests the presence of neuroplasticity. The structural and functional impacts of the human brain have been observed in musicians. In this study, we used data-driven functional connectivity analysis to map local and distant functional connectivity in resting-state functional magnetic resonance imaging data from 28 professional musicians and 28 nonmusicians. Compared with nonmusicians, musicians exhibited significantly greater local functional connectivity density in 10 regions, including the bilateral dorsal anterior cingulate cortex, anterior insula, and anterior temporoparietal junction. A distant functional connectivity analysis demonstrated that most of these regions were included in salience system, which is associated with high-level cognitive control and fundamental attentional process. Additionally, musicians had significantly greater functional integration in this system, especially for connections to the left insula. Increased functional connectivity between the left insula and right temporoparietal junction may be a response to long-term musical training. Our findings indicate that the improvement of salience network is involved in musical training. The salience system may represent a new avenue for exploration regarding the underlying foundations of enhanced higher-level cognitive processes in musicians.

  8. Creativity and the default network: A functional connectivity analysis of the creative brain at rest.

    PubMed

    Beaty, Roger E; Benedek, Mathias; Wilkins, Robin W; Jauk, Emanuel; Fink, Andreas; Silvia, Paul J; Hodges, Donald A; Koschutnig, Karl; Neubauer, Aljoscha C

    2014-11-01

    The present research used resting-state functional magnetic resonance imaging (fMRI) to examine whether the ability to generate creative ideas corresponds to differences in the intrinsic organization of functional networks in the brain. We examined the functional connectivity between regions commonly implicated in neuroimaging studies of divergent thinking, including the inferior prefrontal cortex and the core hubs of the default network. Participants were prescreened on a battery of divergent thinking tests and assigned to high- and low-creative groups based on task performance. Seed-based functional connectivity analysis revealed greater connectivity between the left inferior frontal gyrus (IFG) and the entire default mode network in the high-creative group. The right IFG also showed greater functional connectivity with bilateral inferior parietal cortex and the left dorsolateral prefrontal cortex in the high-creative group. The results suggest that the ability to generate creative ideas is characterized by increased functional connectivity between the inferior prefrontal cortex and the default network, pointing to a greater cooperation between brain regions associated with cognitive control and low-level imaginative processes. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Whole brain resting-state analysis reveals decreased functional connectivity in major depression.

    PubMed

    Veer, Ilya M; Beckmann, Christian F; van Tol, Marie-José; Ferrarini, Luca; Milles, Julien; Veltman, Dick J; Aleman, André; van Buchem, Mark A; van der Wee, Nic J; Rombouts, Serge A R B

    2010-01-01

    Recently, both increases and decreases in resting-state functional connectivity have been found in major depression. However, these studies only assessed functional connectivity within a specific network or between a few regions of interest, while comorbidity and use of medication was not always controlled for. Therefore, the aim of the current study was to investigate whole-brain functional connectivity, unbiased by a priori definition of regions or networks of interest, in medication-free depressive patients without comorbidity. We analyzed resting-state fMRI data of 19 medication-free patients with a recent diagnosis of major depression (within 6 months before inclusion) and no comorbidity, and 19 age- and gender-matched controls. Independent component analysis was employed on the concatenated data sets of all participants. Thirteen functionally relevant networks were identified, describing the entire study sample. Next, individual representations of the networks were created using a dual regression method. Statistical inference was subsequently done on these spatial maps using voxel-wise permutation tests. Abnormal functional connectivity was found within three resting-state networks in depression: (1) decreased bilateral amygdala and left anterior insula connectivity in an affective network, (2) reduced connectivity of the left frontal pole in a network associated with attention and working memory, and (3) decreased bilateral lingual gyrus connectivity within ventromedial visual regions. None of these effects were associated with symptom severity or gray matter density. We found abnormal resting-state functional connectivity not previously associated with major depression, which might relate to abnormal affect regulation and mild cognitive deficits, both associated with the symptomatology of the disorder.

  10. Whole Brain Resting-State Analysis Reveals Decreased Functional Connectivity in Major Depression

    PubMed Central

    Veer, Ilya M.; Beckmann, Christian F.; van Tol, Marie-José; Ferrarini, Luca; Milles, Julien; Veltman, Dick J.; Aleman, André; van Buchem, Mark A.; van der Wee, Nic J.; Rombouts, Serge A.R.B.

    2010-01-01

    Recently, both increases and decreases in resting-state functional connectivity have been found in major depression. However, these studies only assessed functional connectivity within a specific network or between a few regions of interest, while comorbidity and use of medication was not always controlled for. Therefore, the aim of the current study was to investigate whole-brain functional connectivity, unbiased by a priori definition of regions or networks of interest, in medication-free depressive patients without comorbidity. We analyzed resting-state fMRI data of 19 medication-free patients with a recent diagnosis of major depression (within 6 months before inclusion) and no comorbidity, and 19 age- and gender-matched controls. Independent component analysis was employed on the concatenated data sets of all participants. Thirteen functionally relevant networks were identified, describing the entire study sample. Next, individual representations of the networks were created using a dual regression method. Statistical inference was subsequently done on these spatial maps using voxel-wise permutation tests. Abnormal functional connectivity was found within three resting-state networks in depression: (1) decreased bilateral amygdala and left anterior insula connectivity in an affective network, (2) reduced connectivity of the left frontal pole in a network associated with attention and working memory, and (3) decreased bilateral lingual gyrus connectivity within ventromedial visual regions. None of these effects were associated with symptom severity or gray matter density. We found abnormal resting-state functional connectivity not previously associated with major depression, which might relate to abnormal affect regulation and mild cognitive deficits, both associated with the symptomatology of the disorder. PMID:20941370

  11. Aberrant default-mode network-hippocampus connectivity after sad memory-recall in remitted-depression

    PubMed Central

    Mocking, Roel J T; van Wingen, Guido; Martens, Suzanne; Ruhé, Henricus G; Schene, Aart H

    2017-01-01

    Abstract Rumination and cognitive reactivity (dysfunctional cognitions after sad mood-induction) remain high in remitted Major Depressive Disorder (MDD) and can contribute to new episodes. These factors have been linked to increased fMRI resting-state functional-connectivity within the Default-Mode Network (DMN). It remains unclear whether (I) increased DMN-connectivity persists during MDD-remission, and (II) whether sad mood-induction differentially affects DMN-connectivity in remitted-MDD vs controls. Moreover, DMN-connectivity studies in remitted-MDD were previously confounded by antidepressant-use. Sixty-two MDD-patients remitted from ≥2 episodes, psychotropic-medication free, and 41 controls, participated in two 5-min neutral and sad mood-inductions by autobiographical-recall and neutral/sad music, each followed by 8-min resting-state fMRI-scanning. We identified DMN-components using Independent Component Analysis and entered subject- and sessions-specific components into a repeated measures analysis of variance. Connectivity-differences were extracted and correlated with baseline cognitive reactivity and rumination as measures of vulnerability for recurrence. After sad vs neutral mood-induction, controls, but not remitted-MDD, showed an increase in connectivity between the posterior-DMN and a cluster consisting mostly of the hippocampus (P = 0.006). Less posterior-DMN-hippocampal connectivity was associated with higher cognitive reactivity (r = −0.21, P = 0.046) and rumination (r = −0.27, P = 0.017). After recalling sad autobiographical-memories, aberrant posterior-DMN-hippocampal connectivity, associated with cognitive reactivity and rumination, remains a neural vulnerability in MDD-remission. PMID:28981917

  12. Aberrant default-mode network-hippocampus connectivity after sad memory-recall in remitted-depression.

    PubMed

    Figueroa, Caroline A; Mocking, Roel J T; van Wingen, Guido; Martens, Suzanne; Ruhé, Henricus G; Schene, Aart H

    2017-11-01

    Rumination and cognitive reactivity (dysfunctional cognitions after sad mood-induction) remain high in remitted Major Depressive Disorder (MDD) and can contribute to new episodes. These factors have been linked to increased fMRI resting-state functional-connectivity within the Default-Mode Network (DMN). It remains unclear whether (I) increased DMN-connectivity persists during MDD-remission, and (II) whether sad mood-induction differentially affects DMN-connectivity in remitted-MDD vs controls. Moreover, DMN-connectivity studies in remitted-MDD were previously confounded by antidepressant-use. Sixty-two MDD-patients remitted from ≥2 episodes, psychotropic-medication free, and 41 controls, participated in two 5-min neutral and sad mood-inductions by autobiographical-recall and neutral/sad music, each followed by 8-min resting-state fMRI-scanning. We identified DMN-components using Independent Component Analysis and entered subject- and sessions-specific components into a repeated measures analysis of variance. Connectivity-differences were extracted and correlated with baseline cognitive reactivity and rumination as measures of vulnerability for recurrence. After sad vs neutral mood-induction, controls, but not remitted-MDD, showed an increase in connectivity between the posterior-DMN and a cluster consisting mostly of the hippocampus (P = 0.006). Less posterior-DMN-hippocampal connectivity was associated with higher cognitive reactivity (r = -0.21, P = 0.046) and rumination (r = -0.27, P = 0.017). After recalling sad autobiographical-memories, aberrant posterior-DMN-hippocampal connectivity, associated with cognitive reactivity and rumination, remains a neural vulnerability in MDD-remission. © The Author (2017). Published by Oxford University Press.

  13. Decreased functional connectivity to posterior cingulate cortex in major depressive disorder.

    PubMed

    Yang, Rui; Gao, Chengge; Wu, Xiaoping; Yang, Junle; Li, Shengbin; Cheng, Hu

    2016-09-30

    The default mode network (DMN) and its interaction with other key networks such as the salience network and executive network are keys to understand psychiatric and neurological disorders including major depressive disorder (MDD). In this study, we combined independent component analysis and seed based connectivity analysis to study the posterior default mode network between 20 patients with MDD and 25 normal controls, as well as pre-treatment and post-treatment conditions of the patients. Both correlated and anti-correlated networks centered at the posterior cingulate cortex (PCC) were examined (PCC+ and PCC-). Our results showed aberrant functional connectivity of the PCC+ and PCC- networks between patients and normal controls. Specifically, normal controls exhibited significantly higher connectivity between the PCC and frontal/temporal regions for the PCC+ network and stronger connectivity strength between the PCC and the insula/middle frontal cortex for the PCC- network. The overall connectivity strength of the PCC+ and PCC- networks was also significantly lower in MDD. Because the PCC is a hub in the DMN that interacts with other networks, our result suggested a stronger interaction between the DMN and the salience network but a weak interaction between the DMN and the executive network in MDD. The treatment using sertraline did increase the functional connectivity strength, especially in the PCC+ network. Despite a large inter-subject variability in the overall connectivity strengths and change of the PCC network in response to the treatment, a high correlation between change of connectivity strength and the Hamilton depression score was observed for both the PCC+ and PCC- network. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Nicotine restores functional connectivity of the ventral attention network in schizophrenia.

    PubMed

    Smucny, Jason; Olincy, Ann; Tregellas, Jason R

    2016-09-01

    While previous work has suggested that nicotine may transiently improve attention deficits in schizophrenia, the neuronal mechanisms are poorly understood. This study is the first to examine the effects of nicotine on connectivity within the ventral attention network (VAN) during a selective attention task in schizophrenia. Using a crossover design, 17 nonsmoking patients with schizophrenia and 20 age/gender-matched nonsmoking healthy controls performed a go/no-go task with environmental noise distractors during application of a 7 mg nicotine or placebo patch. Psychophysiological interaction analysis was performed to analyze task-associated changes in connectivity between a ventral parietal cortex (VPC) seed and the inferior frontal gyrus (IFG), key components of the human VAN. Effects of nicotine on resting state VAN connectivity were also examined. A significant diagnosis × drug interaction was observed on task-associated connectivity between the VPC seed and the left IFG (F(1,35) = 8.03, p < 0.01). This effect was driven by decreased connectivity after placebo in patients and greater connectivity after nicotine. Resting state connectivity analysis showed a significant main effect of diagnosis between the seed and right IFG (F = 4.25, p = 0.023) due to increased connectivity in patients during placebo, but no drug × diagnosis interactions or main effects of drug. This study is the first to demonstrate that 1) the VAN is disconnected in schizophrenia during selective attention, and 2) nicotine may normalize this pathological state. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Intrinsic Brain Connectivity in Chronic Pain: A Resting-State fMRI Study in Patients with Rheumatoid Arthritis

    PubMed Central

    Flodin, Pär; Martinsen, Sofia; Altawil, Reem; Waldheim, Eva; Lampa, Jon; Kosek, Eva; Fransson, Peter

    2016-01-01

    Background: Rheumatoid arthritis (RA) is commonly accompanied by pain that is discordant with the degree of peripheral pathology. Very little is known about the cerebral processes involved in pain processing in RA. Here we investigated resting-state brain connectivity associated with prolonged pain in RA. Methods: 24 RA subjects and 19 matched controls were compared with regard to both behavioral measures of pain perception and resting-resting state fMRI data acquired subsequently to fMRI sessions involving pain stimuli. The resting-state fMRI brain connectivity was investigated using 159 seed regions located in cardinal pain processing brain regions. Additional principal component based multivariate pattern analysis of the whole brain connectivity pattern was carried out in a data driven analysis to localize group differences in functional connectivity. Results: When RA patients were compared to controls, we observed significantly lower pain resilience for pressure on the affected finger joints (i.e., P50-joint) and an overall heightened level of perceived global pain in RA patients. Relative to controls, RA patients displayed increased brain connectivity predominately for the supplementary motor areas, mid-cingulate cortex, and the primary sensorimotor cortex. Additionally, we observed an increase in brain connectivity between the insula and prefrontal cortex as well as between anterior cingulate cortex and occipital areas for RA patients. None of the group differences in brain connectivity were significantly correlated with behavioral parameters. Conclusion: Our study provides experimental evidence of increased connectivity between frontal midline regions that are implicated in affective pain processing and bilateral sensorimotor regions in RA patients. PMID:27014038

  16. Disruption of functional networks in dyslexia: A whole-brain, data-driven analysis of connectivity

    PubMed Central

    Finn, Emily S.; Shen, Xilin; Holahan, John M.; Scheinost, Dustin; Lacadie, Cheryl; Papademetris, Xenophon; Shaywitz, Sally E.; Shaywitz, Bennett A.; Constable, R. Todd

    2013-01-01

    Background Functional connectivity analyses of fMRI data are a powerful tool for characterizing brain networks and how they are disrupted in neural disorders. However, many such analyses examine only one or a small number of a priori seed regions. Studies that consider the whole brain frequently rely on anatomic atlases to define network nodes, which may result in mixing distinct activation timecourses within a single node. Here, we improve upon previous methods by using a data-driven brain parcellation to compare connectivity profiles of dyslexic (DYS) versus non-impaired (NI) readers in the first whole-brain functional connectivity analysis of dyslexia. Methods Whole-brain connectivity was assessed in children (n = 75; 43 NI, 32 DYS) and adult (n = 104; 64 NI, 40 DYS) readers. Results Compared to NI readers, DYS readers showed divergent connectivity within the visual pathway and between visual association areas and prefrontal attention areas; increased right-hemisphere connectivity; reduced connectivity in the visual word-form area (part of the left fusiform gyrus specialized for printed words); and persistent connectivity to anterior language regions around the inferior frontal gyrus. Conclusions Together, findings suggest that NI readers are better able to integrate visual information and modulate their attention to visual stimuli, allowing them to recognize words based on their visual properties, while DYS readers recruit altered reading circuits and rely on laborious phonology-based “sounding out” strategies into adulthood. These results deepen our understanding of the neural basis of dyslexia and highlight the importance of synchrony between diverse brain regions for successful reading. PMID:24124929

  17. Seizure-Onset Mapping Based on Time-Variant Multivariate Functional Connectivity Analysis of High-Dimensional Intracranial EEG: A Kalman Filter Approach.

    PubMed

    Lie, Octavian V; van Mierlo, Pieter

    2017-01-01

    The visual interpretation of intracranial EEG (iEEG) is the standard method used in complex epilepsy surgery cases to map the regions of seizure onset targeted for resection. Still, visual iEEG analysis is labor-intensive and biased due to interpreter dependency. Multivariate parametric functional connectivity measures using adaptive autoregressive (AR) modeling of the iEEG signals based on the Kalman filter algorithm have been used successfully to localize the electrographic seizure onsets. Due to their high computational cost, these methods have been applied to a limited number of iEEG time-series (<60). The aim of this study was to test two Kalman filter implementations, a well-known multivariate adaptive AR model (Arnold et al. 1998) and a simplified, computationally efficient derivation of it, for their potential application to connectivity analysis of high-dimensional (up to 192 channels) iEEG data. When used on simulated seizures together with a multivariate connectivity estimator, the partial directed coherence, the two AR models were compared for their ability to reconstitute the designed seizure signal connections from noisy data. Next, focal seizures from iEEG recordings (73-113 channels) in three patients rendered seizure-free after surgery were mapped with the outdegree, a graph-theory index of outward directed connectivity. Simulation results indicated high levels of mapping accuracy for the two models in the presence of low-to-moderate noise cross-correlation. Accordingly, both AR models correctly mapped the real seizure onset to the resection volume. This study supports the possibility of conducting fully data-driven multivariate connectivity estimations on high-dimensional iEEG datasets using the Kalman filter approach.

  18. Resting State Functional Connectivity in Mild Traumatic Brain Injury at the Acute Stage: Independent Component and Seed-Based Analyses

    PubMed Central

    Iraji, Armin; Benson, Randall R.; Welch, Robert D.; O'Neil, Brian J.; Woodard, John L.; Imran Ayaz, Syed; Kulek, Andrew; Mika, Valerie; Medado, Patrick; Soltanian-Zadeh, Hamid; Liu, Tianming; Haacke, E. Mark

    2015-01-01

    Abstract Mild traumatic brain injury (mTBI) accounts for more than 1 million emergency visits each year. Most of the injured stay in the emergency department for a few hours and are discharged home without a specific follow-up plan because of their negative clinical structural imaging. Advanced magnetic resonance imaging (MRI), particularly functional MRI (fMRI), has been reported as being sensitive to functional disturbances after brain injury. In this study, a cohort of 12 patients with mTBI were prospectively recruited from the emergency department of our local Level-1 trauma center for an advanced MRI scan at the acute stage. Sixteen age- and sex-matched controls were also recruited for comparison. Both group-based and individual-based independent component analysis of resting-state fMRI (rsfMRI) demonstrated reduced functional connectivity in both posterior cingulate cortex (PCC) and precuneus regions in comparison with controls, which is part of the default mode network (DMN). Further seed-based analysis confirmed reduced functional connectivity in these two regions and also demonstrated increased connectivity between these regions and other regions of the brain in mTBI. Seed-based analysis using the thalamus, hippocampus, and amygdala regions further demonstrated increased functional connectivity between these regions and other regions of the brain, particularly in the frontal lobe, in mTBI. Our data demonstrate alterations of multiple brain networks at the resting state, particularly increased functional connectivity in the frontal lobe, in response to brain concussion at the acute stage. Resting-state functional connectivity of the DMN could serve as a potential biomarker for improved detection of mTBI in the acute setting. PMID:25285363

  19. Altered task-based and resting-state amygdala functional connectivity following real-time fMRI amygdala neurofeedback training in major depressive disorder.

    PubMed

    Young, Kymberly D; Siegle, Greg J; Misaki, Masaya; Zotev, Vadim; Phillips, Raquel; Drevets, Wayne C; Bodurka, Jerzy

    2018-01-01

    We have previously shown that in participants with major depressive disorder (MDD) trained to upregulate their amygdala hemodynamic response during positive autobiographical memory (AM) recall with real-time fMRI neurofeedback (rtfMRI-nf) training, depressive symptoms diminish. Here, we assessed the effect of rtfMRI-nf on amygdala functional connectivity during both positive AM recall and rest. The current manuscript consists of a secondary analysis on data from our published clinical trial of neurofeedback. Patients with MDD completed two rtfMRI-nf sessions (18 received amygdala rtfMRI-nf, 16 received control parietal rtfMRI-nf). One-week prior-to and following training participants also completed a resting-state fMRI scan. A GLM-based functional connectivity analysis was applied using a seed ROI in the left amygdala. We compared amygdala functional connectivity changes while recalling positive AMs from the baseline run to the final transfer run during rtfMRI-nf training, as well during rest from the baseline to the one-week follow-up visit. Finally, we assessed the correlation between change in depression scores and change in amygdala connectivity, as well as correlations between amygdala regulation success and connectivity changes. Following training, amygdala connectivity during positive AM recall increased with widespread regions in the frontal and limbic network. During rest, amygdala connectivity increased following training within the fronto-temporal-limbic network. During both task and resting-state analyses, amygdala-temporal pole connectivity decreased. We identified increased amygdala-precuneus and amygdala-inferior frontal gyrus connectivity during positive memory recall and increased amygdala-precuneus and amygdala-thalamus connectivity during rest as functional connectivity changes that explained significant variance in symptom improvement. Amygdala-precuneus connectivity changes also explain a significant amount of variance in neurofeedback regulation success. Neurofeedback training to increase amygdala hemodynamic activity during positive AM recall increased amygdala connectivity with regions involved in self-referential, salience, and reward processing. Results suggest future targets for neurofeedback interventions, particularly interventions involving the precuneus.

  20. Wavelet analysis in two-dimensional tomography

    NASA Astrophysics Data System (ADS)

    Burkovets, Dimitry N.

    2002-02-01

    The diagnostic possibilities of wavelet-analysis of coherent images of connective tissue in its pathological changes diagnostics. The effectiveness of polarization selection in obtaining wavelet-coefficients' images is also shown. The wavelet structures, characterizing the process of skin psoriasis, bone-tissue osteoporosis have been analyzed. The histological sections of physiological normal and pathologically changed samples of connective tissue of human skin and spongy bone tissue have been analyzed.

  1. Effective Connectivity of Cortical Sensorimotor Networks During Finger Movement Tasks: A Simultaneous fNIRS, fMRI, EEG Study.

    PubMed

    Anwar, A R; Muthalib, M; Perrey, S; Galka, A; Granert, O; Wolff, S; Heute, U; Deuschl, G; Raethjen, J; Muthuraman, Muthuraman

    2016-09-01

    Recently, interest has been growing to understand the underlying dynamic directional relationship between simultaneously activated regions of the brain during motor task performance. Such directionality analysis (or effective connectivity analysis), based on non-invasive electrophysiological (electroencephalography-EEG) and hemodynamic (functional near infrared spectroscopy-fNIRS; and functional magnetic resonance imaging-fMRI) neuroimaging modalities can provide an estimate of the motor task-related information flow from one brain region to another. Since EEG, fNIRS and fMRI modalities achieve different spatial and temporal resolutions of motor-task related activation in the brain, the aim of this study was to determine the effective connectivity of cortico-cortical sensorimotor networks during finger movement tasks measured by each neuroimaging modality. Nine healthy subjects performed right hand finger movement tasks of different complexity (simple finger tapping-FT, simple finger sequence-SFS, and complex finger sequence-CFS). We focused our observations on three cortical regions of interest (ROIs), namely the contralateral sensorimotor cortex (SMC), the contralateral premotor cortex (PMC) and the contralateral dorsolateral prefrontal cortex (DLPFC). We estimated the effective connectivity between these ROIs using conditional Granger causality (GC) analysis determined from the time series signals measured by fMRI (blood oxygenation level-dependent-BOLD), fNIRS (oxygenated-O2Hb and deoxygenated-HHb hemoglobin), and EEG (scalp and source level analysis) neuroimaging modalities. The effective connectivity analysis showed significant bi-directional information flow between the SMC, PMC, and DLPFC as determined by the EEG (scalp and source), fMRI (BOLD) and fNIRS (O2Hb and HHb) modalities for all three motor tasks. However the source level EEG GC values were significantly greater than the other modalities. In addition, only the source level EEG showed a significantly greater forward than backward information flow between the ROIs. This simultaneous fMRI, fNIRS and EEG study has shown through independent GC analysis of the respective time series that a bi-directional effective connectivity occurs within a cortico-cortical sensorimotor network (SMC, PMC and DLPFC) during finger movement tasks.

  2. Altered functional connectivity links in neuroleptic-naïve and neuroleptic-treated patients with schizophrenia, and their relation to symptoms including volition

    PubMed Central

    Pu, Weidan; Rolls, Edmund T.; Guo, Shuixia; Liu, Haihong; Yu, Yun; Xue, Zhimin; Feng, Jianfeng; Liu, Zhening

    2014-01-01

    In order to analyze functional connectivity in untreated and treated patients with schizophrenia, resting-state fMRI data were obtained for whole-brain functional connectivity analysis from 22 first-episode neuroleptic-naïve schizophrenia (NNS), 61 first-episode neuroleptic-treated schizophrenia (NTS) patients, and 60 healthy controls (HC). Reductions were found in untreated and treated patients in the functional connectivity between the posterior cingulate gyrus and precuneus, and this was correlated with the reduction in volition from the Positive and Negative Symptoms Scale (PANSS), that is in the willful initiation, sustenance, and control of thoughts, behavior, movements, and speech, and with the general and negative symptoms. In addition in both patient groups interhemispheric functional connectivity was weaker between the orbitofrontal cortex, amygdala and temporal pole. These functional connectivity changes and the related symptoms were not treated by the neuroleptics. Differences between the patient groups were that there were more strong functional connectivity links in the NNS patients (including in hippocampal, frontal, and striatal circuits) than in the NTS patients. These findings with a whole brain analysis in untreated and treated patients with schizophrenia provide evidence on some of the brain regions implicated in the volitional, other general, and negative symptoms, of schizophrenia that are not treated by neuroleptics so have implications for the development of other treatments; and provide evidence on some brain systems in which neuroleptics do alter the functional connectivity. PMID:25389520

  3. Altered topography of intrinsic functional connectivity in childhood risk for social anxiety

    PubMed Central

    Taber-Thomas, Bradley C.; Morales, Santiago; Hillary, Frank G.; Pérez-Edgar, Koraly E.

    2016-01-01

    Background Extreme shyness in childhood arising from behavioral inhibition (BI) is among the strongest risk factors for developing social anxiety. Although no imaging studies of intrinsic brain networks in BI children have been reported, adults with a history of BI exhibit altered functioning of frontolimbic circuits and enhanced processing of salient, personally-relevant information. BI in childhood may be marked by increased coupling of salience (insula) and default (ventromedial prefrontal cortex) network hubs. Methods We tested this potential relation in 42 children ages 9 to 12, oversampled for high-BI. Participants provided resting-state functional magnetic resonance imaging. A novel topographical pattern analysis of salience network intrinsic functional connectivity was conducted, and the impact of salience-default coupling on the relation between BI and social anxiety symptoms was assessed via moderation analysis. Results High-BI children exhibit altered salience network topography, marked by reduced insula connectivity to dorsal anterior cingulate and increased insula connectivity to ventromedial prefrontal cortex. Whole-brain analyses revealed increased connectivity of salience, executive, and sensory networks with default network hubs in children higher in BI. Finally, the relation between insula-ventromedial prefrontal connectivity and social anxiety symptoms was strongest among the highest BI children. Conclusions BI is associated with an increase in connectivity to default network hubs that may bias processing toward personally-relevant information during development. These altered patterns of connectivity point to potential biomarkers of the neural profile of risk for anxiety in childhood. PMID:27093074

  4. Intrinsic, stimulus-driven and task-dependent connectivity in human auditory cortex.

    PubMed

    Häkkinen, Suvi; Rinne, Teemu

    2018-06-01

    A hierarchical and modular organization is a central hypothesis in the current primate model of auditory cortex (AC) but lacks validation in humans. Here we investigated whether fMRI connectivity at rest and during active tasks is informative of the functional organization of human AC. Identical pitch-varying sounds were presented during a visual discrimination (i.e. no directed auditory attention), pitch discrimination, and two versions of pitch n-back memory tasks. Analysis based on fMRI connectivity at rest revealed a network structure consisting of six modules in supratemporal plane (STP), temporal lobe, and inferior parietal lobule (IPL) in both hemispheres. In line with the primate model, in which higher-order regions have more longer-range connections than primary regions, areas encircling the STP module showed the highest inter-modular connectivity. Multivariate pattern analysis indicated significant connectivity differences between the visual task and rest (driven by the presentation of sounds during the visual task), between auditory and visual tasks, and between pitch discrimination and pitch n-back tasks. Further analyses showed that these differences were particularly due to connectivity modulations between the STP and IPL modules. While the results are generally in line with the primate model, they highlight the important role of human IPL during the processing of both task-irrelevant and task-relevant auditory information. Importantly, the present study shows that fMRI connectivity at rest, during presentation of sounds, and during active listening provides novel information about the functional organization of human AC.

  5. Comparative effect of implant-abutment connections, abutment angulations, and screw lengths on preloaded abutment screw using three-dimensional finite element analysis: An in vitro study.

    PubMed

    Kanneganti, Krishna Chaitanya; Vinnakota, Dileep Nag; Pottem, Srinivas Rao; Pulagam, Mahesh

    2018-01-01

    The purpose of this study is to compare the effect of implant-abutment connections, abutment angulations, and screw lengths on screw loosening (SL) of preloaded abutment using three dimensional (3D) finite element analysis. 3D models of implants (conical connection with hex/trilobed connections), abutments (straight/angulated), abutment screws (short/long), and crown and bone were designed using software Parametric Technology Corporation Creo and assembled to form 8 simulations. After discretization, the contact stresses developed for 150 N vertical and 100 N oblique load applications were analyzed, using ABAQUS. By assessing damage initiation and shortest fatigue load on screw threads, the SL for 2.5, 5, and 10 lakh cyclic loads were estimated, using fe-safe program. The obtained values were compared for influence of connection design, abutment angulation, and screw length. In straight abutment models, conical connection showed more damage (14.3%-72.3%) when compared to trilobe (10.1%-65.73%) at 2.5, 5, and 10 lakh cycles for both vertical and oblique loads, whereas in angulated abutments, trilobe (16.1%-76.9%) demonstrated more damage compared to conical (13.5%-70%). Irrespective of the connection type and abutment angulation, short screws showed more percentage of damage compared to long screws. The present study suggests selecting appropriate implant-abutment connection based on the abutment angulation, as well as preferring long screws with more number of threads for effective preload retention by the screws.

  6. Alveolar ridge augmentation by connective tissue grafting using a pouch method and modified connective tissue technique: A prospective study.

    PubMed

    Agarwal, Ashish; Gupta, Narinder Dev

    2015-01-01

    Localized alveolar ridge defect may create physiological and pathological problems. Developments in surgical techniques have made it simpler to change the configuration of a ridge to create a more aesthetic and more easily cleansable shape. The purpose of this study was to compare the efficacy of alveolar ridge augmentation using a subepithelial connective tissue graft in pouch and modified connective tissue graft technique. In this randomized, double blind, parallel and prospective study, 40 non-smoker individuals with 40 class III alveolar ridge defects in maxillary anterior were randomly divided in two groups. Group I received modified connective tissue graft, while group II were treated with subepithelial connective tissue graft in pouch technique. The defect size was measured in its horizontal and vertical dimension by utilizing a periodontal probe in a stone cast at base line, after 3 months, and 6 months post surgically. Analysis of variance and Bonferroni post-hoc test were used for statistical analysis. A two-tailed P < 0.05 was considered to be statistically significant. Mean values in horizontal width after 6 months were 4.70 ± 0.87 mm, and 4.05 ± 0.89 mm for group I and II, respectively. Regarding vertical heights, obtained mean values were 4.75 ± 0.97 mm and 3.70 ± 0.92 mm for group I and group II, respectively. Within the limitations of this study, connective tissue graft proposed significantly more improvement as compare to connective tissue graft in pouch.

  7. Experimental study on the connection property of full-scale composite member

    NASA Astrophysics Data System (ADS)

    Panpan, Cao; Qing, Sun

    2018-01-01

    The excellent properties of composite result in its increasingly application in electric power construction, however there are less experimental studies on full-scale composite member connection property. Full-scale experiments of the connection property between E-glass fiber/epoxy reinforced polymer member and steel casing in practical engineering have been conducted. Based on the axial compression test of the designed specimens, the failure process and failure characteristics were observed, the load-displacement curves and strain distribution of the specimens were obtained. The finite element analysis was used to get the tensile connection strength of the component. The connection property of the components was analyzed to provide basis of the casing connection of GFRP application in practical engineering.

  8. Altered Effective Connectivity Network of the Basal Ganglia in Low-Grade Hepatic Encephalopathy: A Resting-State fMRI Study with Granger Causality Analysis

    PubMed Central

    Zhong, Jianhui; Zhang, Zhiqiang; Ni, Ling; Jiao, Qing; Liao, Wei; Zheng, Gang; Lu, Guangming

    2013-01-01

    Background The basal ganglia often show abnormal metabolism and intracranial hemodynamics in cirrhotic patients with hepatic encephalopathy (HE). Little is known about how the basal ganglia affect other brain system and is affected by other brain regions in HE. The purpose of this study was to investigate whether the effective connectivity network associated with the basal ganglia is disturbed in HE patients by using resting-state functional magnetic resonance imaging (rs-fMRI). Methodology/Principal Findings Thirty five low-grade HE patients and thirty five age- and gender- matched healthy controls participated in the rs-fMRI scans. The effective connectivity networks associated with the globus pallidus, the primarily affected region within basal ganglia in HE, were characterized by using the Granger causality analysis and compared between HE patients and healthy controls. Pearson correlation analysis was performed between the abnormal effective connectivity and venous blood ammonia levels and neuropsychological performances of all HE patients. Compared with the healthy controls, patients with low-grade HE demonstrated mutually decreased influence between the globus pallidus and the anterior cingulate cortex (ACC), cuneus, bi-directionally increased influence between the globus pallidus and the precuneus, and either decreased or increased influence from and to the globus pallidus in many other frontal, temporal, parietal gyri, and cerebellum. Pearson correlation analyses revealed that the blood ammonia levels in HE patients negatively correlated with effective connectivity from the globus pallidus to ACC, and positively correlated with that from the globus pallidus to precuneus; and the number connectivity test scores in patients negatively correlated with the effective connectivity from the globus pallidus to ACC, and from superior frontal gyrus to globus pallidus. Conclusions/Significance Low-grade HE patients had disrupted effective connectivity network of basal ganglia. Our findings may help to understand the neurophysiological mechanisms underlying the HE. PMID:23326484

  9. Use of linkage mapping and centrality analysis across habitat gradients to conserve connectivity of gray wolf populations in western North America.

    PubMed

    Carroll, Carlos; McRae, Brad H; Brookes, Allen

    2012-02-01

    Centrality metrics evaluate paths between all possible pairwise combinations of sites on a landscape to rank the contribution of each site to facilitating ecological flows across the network of sites. Computational advances now allow application of centrality metrics to landscapes represented as continuous gradients of habitat quality. This avoids the binary classification of landscapes into patch and matrix required by patch-based graph analyses of connectivity. It also avoids the focus on delineating paths between individual pairs of core areas characteristic of most corridor- or linkage-mapping methods of connectivity analysis. Conservation of regional habitat connectivity has the potential to facilitate recovery of the gray wolf (Canis lupus), a species currently recolonizing portions of its historic range in the western United States. We applied 3 contrasting linkage-mapping methods (shortest path, current flow, and minimum-cost-maximum-flow) to spatial data representing wolf habitat to analyze connectivity between wolf populations in central Idaho and Yellowstone National Park (Wyoming). We then applied 3 analogous betweenness centrality metrics to analyze connectivity of wolf habitat throughout the northwestern United States and southwestern Canada to determine where it might be possible to facilitate range expansion and interpopulation dispersal. We developed software to facilitate application of centrality metrics. Shortest-path betweenness centrality identified a minimal network of linkages analogous to those identified by least-cost-path corridor mapping. Current flow and minimum-cost-maximum-flow betweenness centrality identified diffuse networks that included alternative linkages, which will allow greater flexibility in planning. Minimum-cost-maximum-flow betweenness centrality, by integrating both land cost and habitat capacity, allows connectivity to be considered within planning processes that seek to maximize species protection at minimum cost. Centrality analysis is relevant to conservation and landscape genetics at a range of spatial extents, but it may be most broadly applicable within single- and multispecies planning efforts to conserve regional habitat connectivity. ©2011 Society for Conservation Biology.

  10. Spatial-temporal-spectral EEG patterns of BOLD functional network connectivity dynamics

    NASA Astrophysics Data System (ADS)

    Lamoš, Martin; Mareček, Radek; Slavíček, Tomáš; Mikl, Michal; Rektor, Ivan; Jan, Jiří

    2018-06-01

    Objective. Growing interest in the examination of large-scale brain network functional connectivity dynamics is accompanied by an effort to find the electrophysiological correlates. The commonly used constraints applied to spatial and spectral domains during electroencephalogram (EEG) data analysis may leave part of the neural activity unrecognized. We propose an approach that blindly reveals multimodal EEG spectral patterns that are related to the dynamics of the BOLD functional network connectivity. Approach. The blind decomposition of EEG spectrogram by parallel factor analysis has been shown to be a useful technique for uncovering patterns of neural activity. The simultaneously acquired BOLD fMRI data were decomposed by independent component analysis. Dynamic functional connectivity was computed on the component’s time series using a sliding window correlation, and between-network connectivity states were then defined based on the values of the correlation coefficients. ANOVA tests were performed to assess the relationships between the dynamics of between-network connectivity states and the fluctuations of EEG spectral patterns. Main results. We found three patterns related to the dynamics of between-network connectivity states. The first pattern has dominant peaks in the alpha, beta, and gamma bands and is related to the dynamics between the auditory, sensorimotor, and attentional networks. The second pattern, with dominant peaks in the theta and low alpha bands, is related to the visual and default mode network. The third pattern, also with peaks in the theta and low alpha bands, is related to the auditory and frontal network. Significance. Our previous findings revealed a relationship between EEG spectral pattern fluctuations and the hemodynamics of large-scale brain networks. In this study, we suggest that the relationship also exists at the level of functional connectivity dynamics among large-scale brain networks when no standard spatial and spectral constraints are applied on the EEG data.

  11. Sources of Disconnection in Neurocognitive Aging: Cerebral White Matter Integrity, Resting-state Functional Connectivity, and White Matter Hyperintensity Volume

    PubMed Central

    Madden, David J.; Parks, Emily L.; Tallman, Catherine W.; Boylan, Maria A.; Hoagey, David A.; Cocjin, Sally B.; Packard, Lauren E.; Johnson, Micah A.; Chou, Ying-hui; Potter, Guy G.; Chen, Nan-kuei; Siciliano, Rachel E.; Monge, Zachary A.; Honig, Jesse A.; Diaz, Michele T.

    2017-01-01

    Age-related decline in fluid cognition can be characterized as a disconnection among specific brain structures, leading to a decline in functional efficiency. The potential sources of disconnection, however, are unclear. We investigated imaging measures of cerebral white matter integrity, resting-state functional connectivity, and white matter hyperintensity (WMH) volume as mediators of the relation between age and fluid cognition, in 145 healthy, community-dwelling adults 19–79 years of age. At a general level of analysis, with a single composite measure of fluid cognition and single measures of each of the three imaging modalities, age exhibited an independent influence on the cognitive and imaging measures, and the imaging variables did not mediate the age-cognition relation. At a more specific level of analysis, resting-state functional connectivity of sensorimotor networks was a significant mediator of the age-related decline in executive function. These findings suggest that different levels of analysis lead to different models of neurocognitive disconnection, and that resting-state functional connectivity, in particular, may contribute to age-related decline in executive function. PMID:28389085

  12. Opportunities and methodological challenges in EEG and MEG resting state functional brain network research.

    PubMed

    van Diessen, E; Numan, T; van Dellen, E; van der Kooi, A W; Boersma, M; Hofman, D; van Lutterveld, R; van Dijk, B W; van Straaten, E C W; Hillebrand, A; Stam, C J

    2015-08-01

    Electroencephalogram (EEG) and magnetoencephalogram (MEG) recordings during resting state are increasingly used to study functional connectivity and network topology. Moreover, the number of different analysis approaches is expanding along with the rising interest in this research area. The comparison between studies can therefore be challenging and discussion is needed to underscore methodological opportunities and pitfalls in functional connectivity and network studies. In this overview we discuss methodological considerations throughout the analysis pipeline of recording and analyzing resting state EEG and MEG data, with a focus on functional connectivity and network analysis. We summarize current common practices with their advantages and disadvantages; provide practical tips, and suggestions for future research. Finally, we discuss how methodological choices in resting state research can affect the construction of functional networks. When taking advantage of current best practices and avoid the most obvious pitfalls, functional connectivity and network studies can be improved and enable a more accurate interpretation and comparison between studies. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Functional connectivity changes detected with magnetoencephalography after mild traumatic brain injury

    PubMed Central

    Dimitriadis, Stavros I.; Zouridakis, George; Rezaie, Roozbeh; Babajani-Feremi, Abbas; Papanicolaou, Andrew C.

    2015-01-01

    Mild traumatic brain injury (mTBI) may affect normal cognition and behavior by disrupting the functional connectivity networks that mediate efficient communication among brain regions. In this study, we analyzed brain connectivity profiles from resting state Magnetoencephalographic (MEG) recordings obtained from 31 mTBI patients and 55 normal controls. We used phase-locking value estimates to compute functional connectivity graphs to quantify frequency-specific couplings between sensors at various frequency bands. Overall, normal controls showed a dense network of strong local connections and a limited number of long-range connections that accounted for approximately 20% of all connections, whereas mTBI patients showed networks characterized by weak local connections and strong long-range connections that accounted for more than 60% of all connections. Comparison of the two distinct general patterns at different frequencies using a tensor representation for the connectivity graphs and tensor subspace analysis for optimal feature extraction showed that mTBI patients could be separated from normal controls with 100% classification accuracy in the alpha band. These encouraging findings support the hypothesis that MEG-based functional connectivity patterns may be used as biomarkers that can provide more accurate diagnoses, help guide treatment, and monitor effectiveness of intervention in mTBI. PMID:26640764

  14. Shape Analysis of Planar Multiply-Connected Objects Using Conformal Welding.

    PubMed

    Lok Ming Lui; Wei Zeng; Shing-Tung Yau; Xianfeng Gu

    2014-07-01

    Shape analysis is a central problem in the field of computer vision. In 2D shape analysis, classification and recognition of objects from their observed silhouettes are extremely crucial but difficult. It usually involves an efficient representation of 2D shape space with a metric, so that its mathematical structure can be used for further analysis. Although the study of 2D simply-connected shapes has been subject to a corpus of literatures, the analysis of multiply-connected shapes is comparatively less studied. In this work, we propose a representation for general 2D multiply-connected domains with arbitrary topologies using conformal welding. A metric can be defined on the proposed representation space, which gives a metric to measure dissimilarities between objects. The main idea is to map the exterior and interior of the domain conformally to unit disks and circle domains (unit disk with several inner disks removed), using holomorphic 1-forms. A set of diffeomorphisms of the unit circle S(1) can be obtained, which together with the conformal modules are used to define the shape signature. A shape distance between shape signatures can be defined to measure dissimilarities between shapes. We prove theoretically that the proposed shape signature uniquely determines the multiply-connected objects under suitable normalization. We also introduce a reconstruction algorithm to obtain shapes from their signatures. This completes our framework and allows us to move back and forth between shapes and signatures. With that, a morphing algorithm between shapes can be developed through the interpolation of the Beltrami coefficients associated with the signatures. Experiments have been carried out on shapes extracted from real images. Results demonstrate the efficacy of our proposed algorithm as a stable shape representation scheme.

  15. A network approach to policy framing: A case study of the National Aboriginal and Torres Strait Islander Health Plan.

    PubMed

    Browne, Jennifer; de Leeuw, Evelyne; Gleeson, Deborah; Adams, Karen; Atkinson, Petah; Hayes, Rick

    2017-01-01

    Aboriginal health policy in Australia represents a unique policy subsystem comprising a diverse network of Aboriginal-specific and "mainstream" organisations, often with competing interests. This paper describes the network structure of organisations attempting to influence national Aboriginal health policy and examines how the different subgroups within the network approached the policy discourse. Public submissions made as part of a policy development process for the National Aboriginal and Torres Strait Islander Health Plan were analysed using a novel combination of network analysis and qualitative framing analysis. Other organisational actors in the network in each submission were identified, and relationships between them determined; these were used to generate a network map depicting the ties between actors. A qualitative framing analysis was undertaken, using inductive coding of the policy discourses in the submissions. The frames were overlaid with the network map to identify the relationship between the structure of the network and the way in which organisations framed Aboriginal health problems. Aboriginal organisations were central to the network and strongly connected with each other. The network consisted of several densely connected subgroups, whose central nodes were closely connected to one another. Each subgroup deployed a particular policy frame, with a frame of "system dysfunction" also adopted by all but one subgroup. Analysis of submissions revealed that many of the stakeholders in Aboriginal health policy actors are connected to one another. These connections help to drive the policy discourse. The combination of network and framing analysis illuminates competing interests within a network, and can assist advocacy organisations to identify which network members are most influential. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Multiscale modeling of brain dynamics: from single neurons and networks to mathematical tools.

    PubMed

    Siettos, Constantinos; Starke, Jens

    2016-09-01

    The extreme complexity of the brain naturally requires mathematical modeling approaches on a large variety of scales; the spectrum ranges from single neuron dynamics over the behavior of groups of neurons to neuronal network activity. Thus, the connection between the microscopic scale (single neuron activity) to macroscopic behavior (emergent behavior of the collective dynamics) and vice versa is a key to understand the brain in its complexity. In this work, we attempt a review of a wide range of approaches, ranging from the modeling of single neuron dynamics to machine learning. The models include biophysical as well as data-driven phenomenological models. The discussed models include Hodgkin-Huxley, FitzHugh-Nagumo, coupled oscillators (Kuramoto oscillators, Rössler oscillators, and the Hindmarsh-Rose neuron), Integrate and Fire, networks of neurons, and neural field equations. In addition to the mathematical models, important mathematical methods in multiscale modeling and reconstruction of the causal connectivity are sketched. The methods include linear and nonlinear tools from statistics, data analysis, and time series analysis up to differential equations, dynamical systems, and bifurcation theory, including Granger causal connectivity analysis, phase synchronization connectivity analysis, principal component analysis (PCA), independent component analysis (ICA), and manifold learning algorithms such as ISOMAP, and diffusion maps and equation-free techniques. WIREs Syst Biol Med 2016, 8:438-458. doi: 10.1002/wsbm.1348 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  17. Disconnection and hyper-connectivity underlie reorganization after TBI: A rodent functional connectomic analysis

    PubMed Central

    Harris, N.G.; Verley, D.R.; Gutman, B.A.; Thompson, P.M.; Yeh, H.J.; Brown, J.A.

    2016-01-01

    While past neuroimaging methods have contributed greatly to our understanding of brain function after traumatic brain injury (TBI), resting state functional MRI (rsfMRI) connectivity methods have more recently provided a far more unbiased approach with which to monitor brain circuitry compared to task-based approaches. However, current knowledge on the physiologic underpinnings of the correlated blood oxygen level dependent signal, and how changes in functional connectivity relate to reorganizational processes that occur following injury is limited. The degree and extent of this relationship remain to be determined in order that rsfMRI methods can be fully adapted for determining the optimal timing and type of rehabilitative interventions that can be used post-TBI to achieve the best outcome. Very few rsfMRI studies exist after experimental TBI and therefore we chose to acquire rsfMRI data before and at 7, 14 and 28 days after experimental TBI using a well-known, clinically-relevant, unilateral controlled cortical impact injury (CCI) adult rat model of TBI. This model was chosen since it has widespread axonal injury, a well-defined time-course of reorganization including spine, dendrite, axonal and cortical map changes, as well as spontaneous recovery of sensorimotor function by 28 d post-injury from which to interpret alterations in functional connectivity. Data were co-registered to a parcellated rat template to generate adjacency matrices for network analysis by graph theory. Making no assumptions about direction of change, we used two-tailed statistical analysis over multiple brain regions in a data-driven approach to access global and regional changes in network topology in order to assess brain connectivity in an unbiased way. Our main hypothesis was that deficits in functional connectivity would become apparent in regions known to be structurally altered or deficient in axonal connectivity in this model. The data show the loss of functional connectivity predicted by the structural deficits, not only within the primary sensorimotor injury site and pericontused regions, but the normally connected homotopic cortex, as well as subcortical regions, all of which persisted chronically. Especially novel in this study is the unanticipated finding of widespread increases in connection strength that dwarf both the degree and extent of the functional disconnections, and which persist chronically in some sensorimotor and subcortically connected regions. Exploratory global network analysis showed changes in network parameters indicative of possible acutely increased random connectivity and temporary reductions in modularity that were matched by local increases in connectedness and increased efficiency among more weakly connected regions. The global network parameters: shortest path-length, clustering coefficient and modularity that were most affected by trauma also scaled with the severity of injury, so that the corresponding regional measures were correlated to the injury severity most notably at 7 and 14 days and especially within, but not limited to, the contralateral cortex. These changes in functional network parameters are discussed in relation to the known time-course of physiologic and anatomic data that underlie structural and functional reorganization in this experiment model of TBI. PMID:26730520

  18. Disconnection and hyper-connectivity underlie reorganization after TBI: A rodent functional connectomic analysis.

    PubMed

    Harris, N G; Verley, D R; Gutman, B A; Thompson, P M; Yeh, H J; Brown, J A

    2016-03-01

    While past neuroimaging methods have contributed greatly to our understanding of brain function after traumatic brain injury (TBI), resting state functional MRI (rsfMRI) connectivity methods have more recently provided a far more unbiased approach with which to monitor brain circuitry compared to task-based approaches. However, current knowledge on the physiologic underpinnings of the correlated blood oxygen level dependent signal, and how changes in functional connectivity relate to reorganizational processes that occur following injury is limited. The degree and extent of this relationship remain to be determined in order that rsfMRI methods can be fully adapted for determining the optimal timing and type of rehabilitative interventions that can be used post-TBI to achieve the best outcome. Very few rsfMRI studies exist after experimental TBI and therefore we chose to acquire rsfMRI data before and at 7, 14 and 28 days after experimental TBI using a well-known, clinically-relevant, unilateral controlled cortical impact injury (CCI) adult rat model of TBI. This model was chosen since it has widespread axonal injury, a well-defined time-course of reorganization including spine, dendrite, axonal and cortical map changes, as well as spontaneous recovery of sensorimotor function by 28 d post-injury from which to interpret alterations in functional connectivity. Data were co-registered to a parcellated rat template to generate adjacency matrices for network analysis by graph theory. Making no assumptions about direction of change, we used two-tailed statistical analysis over multiple brain regions in a data-driven approach to access global and regional changes in network topology in order to assess brain connectivity in an unbiased way. Our main hypothesis was that deficits in functional connectivity would become apparent in regions known to be structurally altered or deficient in axonal connectivity in this model. The data show the loss of functional connectivity predicted by the structural deficits, not only within the primary sensorimotor injury site and pericontused regions, but the normally connected homotopic cortex, as well as subcortical regions, all of which persisted chronically. Especially novel in this study is the unanticipated finding of widespread increases in connection strength that dwarf both the degree and extent of the functional disconnections, and which persist chronically in some sensorimotor and subcortically connected regions. Exploratory global network analysis showed changes in network parameters indicative of possible acutely increased random connectivity and temporary reductions in modularity that were matched by local increases in connectedness and increased efficiency among more weakly connected regions. The global network parameters: shortest path-length, clustering coefficient and modularity that were most affected by trauma also scaled with the severity of injury, so that the corresponding regional measures were correlated to the injury severity most notably at 7 and 14 days and especially within, but not limited to, the contralateral cortex. These changes in functional network parameters are discussed in relation to the known time-course of physiologic and anatomic data that underlie structural and functional reorganization in this experiment model of TBI. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. SCoT: a Python toolbox for EEG source connectivity.

    PubMed

    Billinger, Martin; Brunner, Clemens; Müller-Putz, Gernot R

    2014-01-01

    Analysis of brain connectivity has become an important research tool in neuroscience. Connectivity can be estimated between cortical sources reconstructed from the electroencephalogram (EEG). Such analysis often relies on trial averaging to obtain reliable results. However, some applications such as brain-computer interfaces (BCIs) require single-trial estimation methods. In this paper, we present SCoT-a source connectivity toolbox for Python. This toolbox implements routines for blind source decomposition and connectivity estimation with the MVARICA approach. Additionally, a novel extension called CSPVARICA is available for labeled data. SCoT estimates connectivity from various spectral measures relying on vector autoregressive (VAR) models. Optionally, these VAR models can be regularized to facilitate ill posed applications such as single-trial fitting. We demonstrate basic usage of SCoT on motor imagery (MI) data. Furthermore, we show simulation results of utilizing SCoT for feature extraction in a BCI application. These results indicate that CSPVARICA and correct regularization can significantly improve MI classification. While SCoT was mainly designed for application in BCIs, it contains useful tools for other areas of neuroscience. SCoT is a software package that (1) brings combined source decomposition and connectivtiy estimation to the open Python platform, and (2) offers tools for single-trial connectivity estimation. The source code is released under the MIT license and is available online at github.com/SCoT-dev/SCoT.

  20. An Evaluation of Collagen Metabolism in Non Human Primates Associated with the Bion 11 Space Program-Markers of Urinary Collagen Turnover and Muscle Connective Tissue

    NASA Technical Reports Server (NTRS)

    Vailas, Arthur C.; Martinez, Daniel A.

    1999-01-01

    Patients exhibiting changes in connective tissue and bone metabolism also show changes in urinary by-products of tissue metabolism. Furthermore, the changes in urinary connective tissue and bone metabolites precede alterations at the tissue macromolecular level. Astronauts and Cosmonauts have also shown suggestive increases in urinary by-products of mineralized and non-mineralized tissue degradation. Thus, the idea of assessing connective tissue and bone response in spaceflight monkeys by measurement of biomarkers in urine has merit. Other investigations of bone and connective histology, cytology and chemistry in the Bion 11 monkeys will allow for further validation of the relationship of urinary biomarkers and tissue response. In future flights the non-invasive procedure of urinary analysis may be useful in early detection of changes in these tissues. Purpose: The purpose of this grant investigation was to evaluate mineralized and non-mineralized connective tissue responses of non-human primates to microgravity by the non-invasive analysis of urinary biomarkers. Secondly, we also wanted to assess muscle connective tissue adaptive changes in three weight-bearing skeletal muscles: the soleus, medial gastrocnemius and tibialis anterior by obtaining pre-flight and post-flight small biopsy specimens in collaboration with Dr. V. Reggie Edgerton's laboratory at the University of California at Los Angeles.

  1. Linked Sex Differences in Cognition and Functional Connectivity in Youth.

    PubMed

    Satterthwaite, Theodore D; Wolf, Daniel H; Roalf, David R; Ruparel, Kosha; Erus, Guray; Vandekar, Simon; Gennatas, Efstathios D; Elliott, Mark A; Smith, Alex; Hakonarson, Hakon; Verma, Ragini; Davatzikos, Christos; Gur, Raquel E; Gur, Ruben C

    2015-09-01

    Sex differences in human cognition are marked, but little is known regarding their neural origins. Here, in a sample of 674 human participants ages 9-22, we demonstrate that sex differences in cognitive profiles are related to multivariate patterns of resting-state functional connectivity MRI (rsfc-MRI). Males outperformed females on motor and spatial cognitive tasks; females were faster in tasks of emotion identification and nonverbal reasoning. Sex differences were also prominent in the rsfc-MRI data at multiple scales of analysis, with males displaying more between-module connectivity, while females demonstrated more within-module connectivity. Multivariate pattern analysis using support vector machines classified subject sex on the basis of their cognitive profile with 63% accuracy (P < 0.001), but was more accurate using functional connectivity data (71% accuracy; P < 0.001). Moreover, the degree to which a given participant's cognitive profile was "male" or "female" was significantly related to the masculinity or femininity of their pattern of brain connectivity (P = 2.3 × 10(-7)). This relationship was present even when considering males and female separately. Taken together, these results demonstrate for the first time that sex differences in patterns of cognition are in part represented on a neural level through divergent patterns of brain connectivity. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Compensatory Hyperconnectivity in Developing Brains of Young Children With Type 1 Diabetes.

    PubMed

    Saggar, Manish; Tsalikian, Eva; Mauras, Nelly; Mazaika, Paul; White, Neil H; Weinzimer, Stuart; Buckingham, Bruce; Hershey, Tamara; Reiss, Allan L

    2017-03-01

    Sustained dysregulation of blood glucose (hyper- or hypoglycemia) associated with type 1 diabetes (T1D) has been linked to cognitive deficits and altered brain anatomy and connectivity. However, a significant gap remains with respect to how T1D affects spontaneous at-rest connectivity in young developing brains. Here, using a large multisite study, resting-state functional MRI data were examined in young children with T1D ( n = 57; mean age = 7.88 years; 27 females) as compared with age-matched control subjects without diabetes ( n = 26; mean age = 7.43 years; 14 females). Using both model-driven seed-based analysis and model-free independent component analysis and controlling for age, data acquisition site, and sex, converging results were obtained, suggesting increased connectivity in young children with T1D as compared with control subjects without diabetes. Further, increased connectivity in children with T1D was observed to be positively associated with cognitive functioning. The observed positive association of connectivity with cognitive functioning in T1D, without overall group differences in cognitive function, suggests a putative compensatory role of hyperintrinsic connectivity in the brain in children with this condition. Altogether, our study attempts to fill a critical gap in knowledge regarding how dysglycemia in T1D might affect the brain's intrinsic connectivity at very young ages. © 2017 by the American Diabetes Association.

  3. SCoT: a Python toolbox for EEG source connectivity

    PubMed Central

    Billinger, Martin; Brunner, Clemens; Müller-Putz, Gernot R.

    2014-01-01

    Analysis of brain connectivity has become an important research tool in neuroscience. Connectivity can be estimated between cortical sources reconstructed from the electroencephalogram (EEG). Such analysis often relies on trial averaging to obtain reliable results. However, some applications such as brain-computer interfaces (BCIs) require single-trial estimation methods. In this paper, we present SCoT—a source connectivity toolbox for Python. This toolbox implements routines for blind source decomposition and connectivity estimation with the MVARICA approach. Additionally, a novel extension called CSPVARICA is available for labeled data. SCoT estimates connectivity from various spectral measures relying on vector autoregressive (VAR) models. Optionally, these VAR models can be regularized to facilitate ill posed applications such as single-trial fitting. We demonstrate basic usage of SCoT on motor imagery (MI) data. Furthermore, we show simulation results of utilizing SCoT for feature extraction in a BCI application. These results indicate that CSPVARICA and correct regularization can significantly improve MI classification. While SCoT was mainly designed for application in BCIs, it contains useful tools for other areas of neuroscience. SCoT is a software package that (1) brings combined source decomposition and connectivtiy estimation to the open Python platform, and (2) offers tools for single-trial connectivity estimation. The source code is released under the MIT license and is available online at github.com/SCoT-dev/SCoT. PMID:24653694

  4. Characterizing Individual Differences in Functional Connectivity Using Dual-Regression and Seed-Based Approaches

    PubMed Central

    Smith, David V.; Utevsky, Amanda V.; Bland, Amy R.; Clement, Nathan; Clithero, John A.; Harsch, Anne E. W.; Carter, R. McKell; Huettel, Scott A.

    2014-01-01

    A central challenge for neuroscience lies in relating inter-individual variability to the functional properties of specific brain regions. Yet, considerable variability exists in the connectivity patterns between different brain areas, potentially producing reliable group differences. Using sex differences as a motivating example, we examined two separate resting-state datasets comprising a total of 188 human participants. Both datasets were decomposed into resting-state networks (RSNs) using a probabilistic spatial independent components analysis (ICA). We estimated voxelwise functional connectivity with these networks using a dual-regression analysis, which characterizes the participant-level spatiotemporal dynamics of each network while controlling for (via multiple regression) the influence of other networks and sources of variability. We found that males and females exhibit distinct patterns of connectivity with multiple RSNs, including both visual and auditory networks and the right frontal-parietal network. These results replicated across both datasets and were not explained by differences in head motion, data quality, brain volume, cortisol levels, or testosterone levels. Importantly, we also demonstrate that dual-regression functional connectivity is better at detecting inter-individual variability than traditional seed-based functional connectivity approaches. Our findings characterize robust—yet frequently ignored—neural differences between males and females, pointing to the necessity of controlling for sex in neuroscience studies of individual differences. Moreover, our results highlight the importance of employing network-based models to study variability in functional connectivity. PMID:24662574

  5. Specialization and integration of functional thalamocortical connectivity in the human infant.

    PubMed

    Toulmin, Hilary; Beckmann, Christian F; O'Muircheartaigh, Jonathan; Ball, Gareth; Nongena, Pumza; Makropoulos, Antonios; Ederies, Ashraf; Counsell, Serena J; Kennea, Nigel; Arichi, Tomoki; Tusor, Nora; Rutherford, Mary A; Azzopardi, Denis; Gonzalez-Cinca, Nuria; Hajnal, Joseph V; Edwards, A David

    2015-05-19

    Connections between the thalamus and cortex develop rapidly before birth, and aberrant cerebral maturation during this period may underlie a number of neurodevelopmental disorders. To define functional thalamocortical connectivity at the normal time of birth, we used functional MRI (fMRI) to measure blood oxygen level-dependent (BOLD) signals in 66 infants, 47 of whom were at high risk of neurocognitive impairment because of birth before 33 wk of gestation and 19 of whom were term infants. We segmented the thalamus based on correlation with functionally defined cortical components using independent component analysis (ICA) and seed-based correlations. After parcellating the cortex using ICA and segmenting the thalamus based on dominant connections with cortical parcellations, we observed a near-facsimile of the adult functional parcellation. Additional analysis revealed that BOLD signal in heteromodal association cortex typically had more widespread and overlapping thalamic representations than primary sensory cortex. Notably, more extreme prematurity was associated with increased functional connectivity between thalamus and lateral primary sensory cortex but reduced connectivity between thalamus and cortex in the prefrontal, insular and anterior cingulate regions. This work suggests that, in early infancy, functional integration through thalamocortical connections depends on significant functional overlap in the topographic organization of the thalamus and that the experience of premature extrauterine life modulates network development, altering the maturation of networks thought to support salience, executive, integrative, and cognitive functions.

  6. Specialization and integration of functional thalamocortical connectivity in the human infant

    PubMed Central

    Toulmin, Hilary; Beckmann, Christian F.; O'Muircheartaigh, Jonathan; Ball, Gareth; Nongena, Pumza; Makropoulos, Antonios; Ederies, Ashraf; Counsell, Serena J.; Kennea, Nigel; Arichi, Tomoki; Tusor, Nora; Rutherford, Mary A.; Azzopardi, Denis; Gonzalez-Cinca, Nuria; Hajnal, Joseph V.; Edwards, A. David

    2015-01-01

    Connections between the thalamus and cortex develop rapidly before birth, and aberrant cerebral maturation during this period may underlie a number of neurodevelopmental disorders. To define functional thalamocortical connectivity at the normal time of birth, we used functional MRI (fMRI) to measure blood oxygen level-dependent (BOLD) signals in 66 infants, 47 of whom were at high risk of neurocognitive impairment because of birth before 33 wk of gestation and 19 of whom were term infants. We segmented the thalamus based on correlation with functionally defined cortical components using independent component analysis (ICA) and seed-based correlations. After parcellating the cortex using ICA and segmenting the thalamus based on dominant connections with cortical parcellations, we observed a near-facsimile of the adult functional parcellation. Additional analysis revealed that BOLD signal in heteromodal association cortex typically had more widespread and overlapping thalamic representations than primary sensory cortex. Notably, more extreme prematurity was associated with increased functional connectivity between thalamus and lateral primary sensory cortex but reduced connectivity between thalamus and cortex in the prefrontal, insular and anterior cingulate regions. This work suggests that, in early infancy, functional integration through thalamocortical connections depends on significant functional overlap in the topographic organization of the thalamus and that the experience of premature extrauterine life modulates network development, altering the maturation of networks thought to support salience, executive, integrative, and cognitive functions. PMID:25941391

  7. Hydrologic Connectivity: a Framework to Understand Threshold Behaviour in Semi-Arid Landscapes.

    NASA Astrophysics Data System (ADS)

    Saco, Patricia; Rodriguez, Jose; Keesstra, Saskia; Moreno-de las Heras, Mariano; Sandi, Steven; Baartman, Jantiene; Cerdà, Artemi

    2017-04-01

    Anthropogenic activities and climate change are imposing an unprecedented pressure on arid and semi-arid ecosystems, where shortage of water can trigger shifts in landscapes' structures and function leading to degradation and desertification. Hydrological connectivity is a useful framework for understanding water redistribution and scaling issues associated to runoff and sediment production, since human and/or natural disturbances alter the surface water availability and pathways increasing/decreasing connectivity. In this presentation, we illustrate the use of the connectivity framework for several examples of dryland systems that are analysed at a variety of spatial and temporal scales. In doing so, we draw particular attention to the analysis of co-evolution of system structures and function, and how they drive threshold behaviour leading to desertification and degradation. We first analyse the case of semi-arid rangelands, where feedbacks between decline in vegetation density and landscape erosion reinforces degradation processes driven by changes in connectivity until a threshold is crossed above which the return to a functional system is unlikely. We then focus on semi-arid wetlands, where decreases in water volumes promotes dryland vegetation encroachment that changes drainage conditions and connectivity potentially reinforcing redistribution of flow paths to other wetland areas. The examples presented highlight the need to incorporate a co-evolutionary framework for the analysis of changing connectivity patterns and the emergence of thresholds in arid and semi-arid systems.

  8. Disturbed default mode network connectivity patterns in Alzheimer's disease associated with visual processing.

    PubMed

    Krajcovicova, Lenka; Mikl, Michal; Marecek, Radek; Rektorova, Irena

    2014-01-01

    Changes in connectivity of the posterior node of the default mode network (DMN) were studied when switching from baseline to a cognitive task using functional magnetic resonance imaging. In all, 15 patients with mild to moderate Alzheimer's disease (AD) and 18 age-, gender-, and education-matched healthy controls (HC) participated in the study. Psychophysiological interactions analysis was used to assess the specific alterations in the DMN connectivity (deactivation-based) due to psychological effects from the complex visual scene encoding task. In HC, we observed task-induced connectivity decreases between the posterior cingulate and middle temporal and occipital visual cortices. These findings imply successful involvement of the ventral visual pathway during the visual processing in our HC cohort. In AD, involvement of the areas engaged in the ventral visual pathway was observed only in a small volume of the right middle temporal gyrus. Additional connectivity changes (decreases) in AD were present between the posterior cingulate and superior temporal gyrus when switching from baseline to task condition. These changes are probably related to both disturbed visual processing and the DMN connectivity in AD and reflect deficits and compensatory mechanisms within the large scale brain networks in this patient population. Studying the DMN connectivity using psychophysiological interactions analysis may provide a sensitive tool for exploring early changes in AD and their dynamics during the disease progression.

  9. Synchrony dynamics underlying effective connectivity reconstruction of neuronal circuits

    NASA Astrophysics Data System (ADS)

    Yu, Haitao; Guo, Xinmeng; Qin, Qing; Deng, Yun; Wang, Jiang; Liu, Jing; Cao, Yibin

    2017-04-01

    Reconstruction of effective connectivity between neurons is essential for neural systems with function-related significance, characterizing directionally causal influences among neurons. In this work, causal interactions between neurons in spinal dorsal root ganglion, activated by manual acupuncture at Zusanli acupoint of experimental rats, are estimated using Granger causality (GC) method. Different patterns of effective connectivity are obtained for different frequencies and types of acupuncture. Combined with synchrony analysis between neurons, we show a dependence of effective connection on the synchronization dynamics. Based on the experimental findings, a neuronal circuit model with synaptic connections is constructed. The variation of neuronal effective connectivity with respect to its structural connectivity and synchronization dynamics is further explored. Simulation results show that reciprocally causal interactions with statistically significant are formed between well-synchronized neurons. The effective connectivity may be not necessarily equivalent to synaptic connections, but rather depend on the synchrony relationship. Furthermore, transitions of effective interaction between neurons are observed following the synchronization transitions induced by conduction delay and synaptic conductance. These findings are helpful to further investigate the dynamical mechanisms underlying the reconstruction of effective connectivity of neuronal population.

  10. Analysis of autonomous vehicle policies.

    DOT National Transportation Integrated Search

    2017-01-01

    The rapid development and adoption of connected and autonomous vehicles will transform the U.S. transportation system over the next 30 years. Although the widespread use of fully connected and autonomous vehicles is still several years away, it is no...

  11. Road weather connected vehicle applications : benefit-cost analysis interim report.

    DOT National Transportation Integrated Search

    2013-01-01

    RWMP is currently engaged in a project to evaluate the potential benefits of road weather connected vehicle applications. Of particular interest are the potential improvements in safety, reductions in travel time, improved travel reliability, reducti...

  12. Certificate management entities for a connected vehicle environment : public workshop read-ahead document.

    DOT National Transportation Integrated Search

    2012-04-06

    This document presents an overview of work conducted to date around development and analysis of organizational and operational models for certificate management in the connected vehicle environment. Functions, organizational models, technical backgro...

  13. The Robustness Analysis of Wireless Sensor Networks under Uncertain Interference

    PubMed Central

    Deng, Changjian

    2013-01-01

    Based on the complex network theory, robustness analysis of condition monitoring wireless sensor network under uncertain interference is present. In the evolution of the topology of sensor networks, the density weighted algebraic connectivity is taken into account, and the phenomenon of removing and repairing the link and node in the network is discussed. Numerical simulation is conducted to explore algebraic connectivity characteristics and network robustness performance. It is found that nodes density has the effect on algebraic connectivity distribution in the random graph model; high density nodes carry more connections, use more throughputs, and may be more unreliable. Moreover, the results show that, when network should be more error tolerant or robust by repairing nodes or adding new nodes, the network should be better clustered in median and high scale wireless sensor networks and be meshing topology in small scale networks. PMID:24363613

  14. Limbic hyperconnectivity in the vegetative state.

    PubMed

    Di Perri, Carol; Bastianello, Stefano; Bartsch, Andreas J; Pistarini, Caterina; Maggioni, Giorgio; Magrassi, Lorenzo; Imberti, Roberto; Pichiecchio, Anna; Vitali, Paolo; Laureys, Steven; Di Salle, Francesco

    2013-10-15

    To investigate functional connectivity between the default mode network (DMN) and other networks in disorders of consciousness. We analyzed MRI data from 11 patients in a vegetative state and 7 patients in a minimally conscious state along with age- and sex-matched healthy control subjects. MRI data analysis included nonlinear spatial normalization to compensate for disease-related anatomical distortions. We studied brain connectivity data from resting-state MRI temporal series, combining noninferential (independent component analysis) and inferential (seed-based general linear model) methods. In DMN hypoconnectivity conditions, a patient's DMN functional connectivity shifts and paradoxically increases in limbic structures, including the orbitofrontal cortex, insula, hypothalamus, and the ventral tegmental area. Concurrently with DMN hypoconnectivity, we report limbic hyperconnectivity in patients in vegetative and minimally conscious states. This hyperconnectivity may reflect the persistent engagement of residual neural activity in self-reinforcing neural loops, which, in turn, could disrupt normal patterns of connectivity.

  15. Finite element analysis of composite beam-to-column connection with cold-formed steel section

    NASA Astrophysics Data System (ADS)

    Firdaus, Muhammad; Saggaff, Anis; Tahir, Mahmood Md

    2017-11-01

    Cold-formed steel (CFS) sections are well known due to its lightweight and high structural performance which is very popular for building construction. Conventionally, they are used as purlins and side rails in the building envelopes of the industrial buildings. Recent research development on cold-formed steel has shown that the usage is expanded to the use in composite construction. This paper presents the modelling of the proposed composite connection of beam-to-column connection where cold-formed steel of lipped steel section is positioned back-to-back to perform as beam. Reinforcement bars is used to perform the composite action anchoring to the column and part of it is embedded into a slab. The results of the finite element and numerical analysis has showed good agreement. The results show that the proposed composite connection contributes to significant increase to the moment capacity.

  16. Abnormal network connectivity in frontotemporal dementia: evidence for prefrontal isolation.

    PubMed

    Farb, Norman A S; Grady, Cheryl L; Strother, Stephen; Tang-Wai, David F; Masellis, Mario; Black, Sandra; Freedman, Morris; Pollock, Bruce G; Campbell, Karen L; Hasher, Lynn; Chow, Tiffany W

    2013-01-01

    Degraded social function, disinhibition, and stereotypy are defining characteristics of frontotemporal dementia (FTD), manifesting in both the behavioral variant of frontotemporal dementia (bvFTD) and semantic dementia (SD) subtypes. Recent neuroimaging research also associates FTD with alterations in the brain's intrinsic connectivity networks. The present study explored the relationship between neural network connectivity and specific behavioral symptoms in FTD. Resting-state functional magnetic resonance imaging was employed to investigate neural network changes in bvFTD and SD. We used independent components analysis (ICA) to examine changes in frontolimbic network connectivity, as well as several metrics of local network strength, such as the fractional amplitude of low-frequency fluctuations, regional homogeneity, and seed-based functional connectivity. For each analysis, we compared each FTD subgroup to healthy controls, characterizing general and subtype-unique network changes. The relationship between abnormal connectivity in FTD and behavior disturbances was explored. Across multiple analytic approaches, both bvFTD and SD were associated with disrupted frontolimbic connectivity and elevated local connectivity within the prefrontal cortex. Even after controlling for structural atrophy, prefrontal hyperconnectivity was robustly associated with apathy scores. Frontolimbic disconnection was associated with lower disinhibition scores, suggesting that abnormal frontolimbic connectivity contributes to positive symptoms in dementia. Unique to bvFTD, stereotypy was associated with elevated default network connectivity in the right angular gyrus. The behavioral variant was also associated with marginally higher apathy scores and a more diffuse pattern of prefrontal hyperconnectivity than SD. The present findings support a theory of FTD as a disorder of frontolimbic disconnection leading to unconstrained prefrontal connectivity. Prefrontal hyperconnectivity may represent a compensatory response to the absence of affective feedback during the planning and execution of behavior. Increased reliance upon prefrontal processes in isolation from subcortical structures appears to be maladaptive and may drive behavioral withdrawal that is commonly observed in later phases of neurodegeneration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Altered Whole-Brain and Network-Based Functional Connectivity in Parkinson's Disease.

    PubMed

    de Schipper, Laura J; Hafkemeijer, Anne; van der Grond, Jeroen; Marinus, Johan; Henselmans, Johanna M L; van Hilten, Jacobus J

    2018-01-01

    Background: Functional imaging methods, such as resting-state functional magnetic resonance imaging, reflect changes in neural connectivity and may help to assess the widespread consequences of disease-specific network changes in Parkinson's disease. In this study we used a relatively new graph analysis approach in functional imaging: eigenvector centrality mapping. This model-free method, applied to all voxels in the brain, identifies prominent regions in the brain network hierarchy and detects localized differences between patient populations. In other neurological disorders, eigenvector centrality mapping has been linked to changes in functional connectivity in certain nodes of brain networks. Objectives: Examining changes in functional brain connectivity architecture on a whole brain and network level in patients with Parkinson's disease. Methods: Whole brain resting-state functional architecture was studied with a recently introduced graph analysis approach (eigenvector centrality mapping). Functional connectivity was further investigated in relation to eight known resting-state networks. Cross-sectional analyses included group comparison of functional connectivity measures of Parkinson's disease patients ( n = 107) with control subjects ( n = 58) and correlations with clinical data, including motor and cognitive impairment and a composite measure of predominantly non-dopaminergic symptoms. Results: Eigenvector centrality mapping revealed that frontoparietal regions were more prominent in the whole-brain network function in patients compared to control subjects, while frontal and occipital brain areas were less prominent in patients. Using standard resting-state networks, we found predominantly increased functional connectivity, namely within sensorimotor system and visual networks in patients. Regional group differences in functional connectivity of both techniques between patients and control subjects partly overlapped for highly connected posterior brain regions, in particular in the posterior cingulate cortex and precuneus. Clinico-functional imaging relations were not found. Conclusions: Changes on the level of functional brain connectivity architecture might provide a different perspective of pathological consequences of Parkinson's disease. The involvement of specific, highly connected (hub) brain regions may influence whole brain functional network architecture in Parkinson's disease.

  18. Project-Based Teaching: Helping Students Make Project Connections

    NASA Astrophysics Data System (ADS)

    Johnson, Heather Jo Pusich

    Project-based curriculum materials are designed to support students in engaging with scientific content and practices in meaningful ways, with the goal of improving students' science learning. However, students need to understand the connections between what they are doing on a day-to-day basis with respect to the goals of the overall project for students to get the motivational and cognitive benefits of a project-based approach. In this dissertation, I looked at the challenges that four ninth grade science teachers faced as they helped students to make these connections using a project-based environmental science curriculum. The analysis revealed that in general when the curriculum materials made connections explicit, teachers were better able to articulate the relationship between the lesson and the project during enactment. However, whether the connections were explicit or implicit in the materials, enactments of the same lesson across teachers revealed that teachers leveraged different aspects of the project context in different ways depending on their knowledge, beliefs, and goals about project-based teaching. The quantitative analysis of student data indicated that when teacher enactments supported project goals explicitly, students made stronger connections between a lesson and the project goal. Therefore, a teacher's ability to make clear connections during classroom instruction is essential. Furthermore, when students made connections between each lesson and the larger project goals their attitudes toward the lesson were more positive and they performed better on the final assessment. These findings suggest that connections between individual lessons and the goals of the project are critical to the effectiveness of project-based learning. This study highlights that while some teachers were able to forge these connections successfully as a result of leveraging cognitive resources, teachers' beliefs, knowledge and goals about project-based teaching are variable. As such, teachers adopting project-based curriculum materials need more support - through educative curriculum materials, coaching, or ongoing professional development - to help them support project connections consistently and explicitly in their teaching practice.

  19. Comparison of external and internal implant-abutment connections for implant supported prostheses. A systematic review and meta-analysis.

    PubMed

    Lemos, Cleidiel Aparecido Araujo; Verri, Fellippo Ramos; Bonfante, Estevam Augusto; Santiago Júnior, Joel Ferreira; Pellizzer, Eduardo Piza

    2018-03-01

    The systematic review and meta-analysis aimed to answer the PICO question: "Do patients that received external connection implants show similar marginal bone loss, implant survival and complication rates as internal connection implants?". Meta-analyses of marginal bone loss, survival rates of implants and complications rates were performed for the included studies. Study eligibility criteria included (1) randomized controlled trials (RCTs) and/or prospective, (2) studies with at least 10 patients, (3) direct comparison between connection types and (4) publications in English language. The Cochrane risk of bias tool was used to assess the quality and risk of bias in RCTs, while Newcastle-Ottawa scale was used for non-RCTs. A comprehensive search strategy was designed to identify published studies on PubMed/MEDLINE, Scopus, and The Cochrane Library databases up to October 2017. The search identified 661 references. Eleven studies (seven RCTs and four prospective studies) were included, with a total of 530 patients (mean age, 53.93 years), who had received a total of 1089 implants (461 external-connection and 628 internal-connection implants). The internal-connection implants exhibited lower marginal bone loss than external-connection implants (P<0.00001; Mean Difference (MD): 0.44mm; 95% Confidence interval (CI): 0.26-0.63mm). No significant difference was observed in implant survival (P=0.65; Risk Ratio (RR): 0.83; 95% CI: 0.38-1.84), and complication rates (P=0.43; RR: 1.15; 95% CI: 0.81-1.65). Internal connections had lower marginal bone loss when compared to external connections. However, the implant-abutment connection had no influence on the implant's survival and complication rates. Based on the GRADE approach the evidence was classified as very low to moderate due to the study design, inconsistency, and publication bias. Thus, future research is highly encouraged. Internal connection implants should be preferred over external connection implants, especially when different risk factors that may contribute to increased marginal bone loss are present. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Chimera-like states in structured heterogeneous networks

    NASA Astrophysics Data System (ADS)

    Li, Bo; Saad, David

    2017-04-01

    Chimera-like states are manifested through the coexistence of synchronous and asynchronous dynamics and have been observed in various systems. To analyze the role of network topology in giving rise to chimera-like states, we study a heterogeneous network model comprising two groups of nodes, of high and low degrees of connectivity. The architecture facilitates the analysis of the system, which separates into a densely connected coherent group of nodes, perturbed by their sparsely connected drifting neighbors. It describes a synchronous behavior of the densely connected group and scaling properties of the induced perturbations.

  1. Apatitic connecting rings in moulds of Baculites sp. from the middle part of the Smoky Hill Member, Niobrara Chalk (Santonian), of western Kansas

    USGS Publications Warehouse

    Hasenmueller, W.A.; Hattin, D.E.

    1985-01-01

    Moulds of Baculites sp. are common in the Smoky Hill Member but only five known specimens contain connecting rings that have been preserved because of mineralisation by carbonate apatite. Analysis of four of these specimens suggests that the connecting rings were originally composed of organic material and were mineralised during early diagenesis. Thin sections and scanning electron microscopy demonstrate that the connecting rings had a two-layered structure consisting of a thick siphuncular wall and a thin pellicle. ?? 1985.

  2. Analysis of series resonant converter with series-parallel connection

    NASA Astrophysics Data System (ADS)

    Lin, Bor-Ren; Huang, Chien-Lan

    2011-02-01

    In this study, a parallel inductor-inductor-capacitor (LLC) resonant converter series-connected on the primary side and parallel-connected on the secondary side is presented for server power supply systems. Based on series resonant behaviour, the power metal-oxide-semiconductor field-effect transistors are turned on at zero voltage switching and the rectifier diodes are turned off at zero current switching. Thus, the switching losses on the power semiconductors are reduced. In the proposed converter, the primary windings of the two LLC converters are connected in series. Thus, the two converters have the same primary currents to ensure that they can supply the balance load current. On the output side, two LLC converters are connected in parallel to share the load current and to reduce the current stress on the secondary windings and the rectifier diodes. In this article, the principle of operation, steady-state analysis and design considerations of the proposed converter are provided and discussed. Experiments with a laboratory prototype with a 24 V/21 A output for server power supply were performed to verify the effectiveness of the proposed converter.

  3. Mueller matrix approach for probing multifractality in the underlying anisotropic connective tissue

    NASA Astrophysics Data System (ADS)

    Das, Nandan Kumar; Dey, Rajib; Ghosh, Nirmalya

    2016-09-01

    Spatial variation of refractive index (RI) in connective tissues exhibits multifractality, which encodes useful morphological and ultrastructural information about the disease. We present a spectral Mueller matrix (MM)-based approach in combination with multifractal detrended fluctuation analysis (MFDFA) to exclusively pick out the signature of the underlying connective tissue multifractality through the superficial epithelium layer. The method is based on inverse analysis on selected spectral scattering MM elements encoding the birefringence information on the anisotropic connective tissue. The light scattering spectra corresponding to the birefringence carrying MM elements are then subjected to the Born approximation-based Fourier domain preprocessing to extract ultrastructural RI fluctuations of anisotropic tissue. The extracted RI fluctuations are subsequently analyzed via MFDFA to yield the multifractal tissue parameters. The approach was experimentally validated on a simple tissue model comprising of TiO2 as scatterers of the superficial isotropic layer and rat tail collagen as an underlying anisotropic layer. Finally, the method enabled probing of precancer-related subtle alterations in underlying connective tissue ultrastructural multifractality from intact tissues.

  4. Quantitative Analysis Method of Output Loss due to Restriction for Grid-connected PV Systems

    NASA Astrophysics Data System (ADS)

    Ueda, Yuzuru; Oozeki, Takashi; Kurokawa, Kosuke; Itou, Takamitsu; Kitamura, Kiyoyuki; Miyamoto, Yusuke; Yokota, Masaharu; Sugihara, Hiroyuki

    Voltage of power distribution line will be increased due to reverse power flow from grid-connected PV systems. In the case of high density grid connection, amount of voltage increasing will be higher than the stand-alone grid connection system. To prevent the over voltage of power distribution line, PV system's output will be restricted if the voltage of power distribution line is close to the upper limit of the control range. Because of this interaction, amount of output loss will be larger in high density case. This research developed a quantitative analysis method for PV systems output and losses to clarify the behavior of grid connected PV systems. All the measured data are classified into the loss factors using 1 minute average of 1 second data instead of typical 1 hour average. Operation point on the I-V curve is estimated to quantify the loss due to the output restriction using module temperature, array output voltage, array output current and solar irradiance. As a result, loss due to output restriction is successfully quantified and behavior of output restriction is clarified.

  5. Changes in functional and structural brain connectome along the Alzheimer's disease continuum.

    PubMed

    Filippi, Massimo; Basaia, Silvia; Canu, Elisa; Imperiale, Francesca; Magnani, Giuseppe; Falautano, Monica; Comi, Giancarlo; Falini, Andrea; Agosta, Federica

    2018-05-09

    The aim of this study was two-fold: (i) to investigate structural and functional brain network architecture in patients with Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI), stratified in converters (c-aMCI) and non-converters (nc-aMCI) to AD; and to assess the relationship between healthy brain network functional connectivity and the topography of brain atrophy in patients along the AD continuum. Ninety-four AD patients, 47 aMCI patients (25 c-aMCI within 36 months) and 53 age- and sex-matched healthy controls were studied. Graph analysis and connectomics assessed global and local, structural and functional topological network properties and regional connectivity. Healthy topological features of brain regions were assessed based on their connectivity with the point of maximal atrophy (epicenter) in AD and aMCI patients. Brain network graph analysis properties were severely altered in AD patients. Structural brain network was already altered in c-aMCI patients relative to healthy controls in particular in the temporal and parietal brain regions, while functional connectivity did not change. Structural connectivity alterations distinguished c-aMCI from nc-aMCI cases. In both AD and c-aMCI, the point of maximal atrophy was located in left hippocampus (disease-epicenter). Brain regions most strongly connected with the disease-epicenter in the healthy functional connectome were also the most atrophic in both AD and c-aMCI patients. Progressive degeneration in the AD continuum is associated with an early breakdown of anatomical brain connections and follows the strongest connections with the disease-epicenter. These findings support the hypothesis that the topography of brain connectional architecture can modulate the spread of AD through the brain.

  6. Experimental and Numerical Assessment of a New Alternative of RBS Moment Connection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirghaderi, Rasoul; Imanpour, Ali; Keshavarzi, Farhad

    2008-07-08

    Reduced beam section (RBS) connection has been known as a famous connection for steel moment-resisting seismic frames in high-rise buildings, because of their economical advantages and seismic ductility. In the ordinary RBS connection, often portions of the beam flanges are selectively trimmed in the region adjacent to the beam-to-column connection, and beam section is weakened in the plastic hinge region; section weakening concept in the plastic hinge region of beam cause to reduction of beam plastic section modulus in this region, and force plastic hinge to occur within the reduced section.This paper presents a new alternative of RBS connection thatmore » has been used aforesaid weakening concept in it, with this difference that corrugated steel plate webs instead of beam flange cutting has been used in limited specific length near the column face. Corrugated steel plates because of their accordion effect don't have bending rigidity, then using of these plates in plastic hinge region reduces the beam plastic section modulus and plastic hinge is formed in corrugated region. For investigating the seismic behavior and performance of new RBS moment connection, experimental specimen of new RBS connection were subjected to cyclic load, and finite element analysis were executed. The result of cyclic test and numerical analysis specified that the corrugated webs improved the plastic stability and provided capability of large plastic rotation at the plastic hinge location without any appreciable buckling and brittle fractures in this region. The test observations also showed that the specimens' plastic rotations exceeded 0.04 rad without any local and global buckling. All of the analytical results for proposed connection are generally in good agreement with the test observations.« less

  7. Scalloped Implant-Abutment Connection Compared to Conventional Flat Implant-Abutment Connection: a Systematic Review and Meta-Analysis

    PubMed Central

    Christensen, Ann-Eva; Lorenzen, Henning

    2017-01-01

    ABSTRACT Objectives The objective was to test the hypothesis of no difference in implant treatment outcome after installation of implants with a scalloped implant-abutment connection compared to a flat implant-abutment connection. Material and Methods A MEDLINE (PubMed), Embase and Cochrane library search in combination with a hand-search of relevant journals was conducted. No language or year of publication restriction was applied. Results The search provided 298 titles. Three studies fulfilled the inclusion criteria. The included studies were characterized by low or moderate risk of bias. Survival of suprastructures has never been compared within the same study. High implant survival rate was reported in all the included studies. Significantly more peri-implant marginal bone loss, higher probing depth score, bleeding score and gingival score was observed around implants with a scalloped implant-abutment connection. There were no significant differences between the two treatment modalities regarding professional or patient-reported outcome measures. Meta-analysis disclosed a mean difference of peri-implant marginal bone loss of 1.56 mm (confidence interval: 0.87 to 2.25), indicating significant more bone loss around implants with a scalloped implant-abutment connection. Conclusions A scalloped implant-abutment connection seems to be associated with higher peri-implant marginal bone loss compared to a flat implant-abutment connection. Therefore, the hypothesis of the present systematic review must be rejected. However, further long-term randomized controlled trials assessing implant treatment outcome with the two treatment modalities are needed before definite conclusions can be provided about the beneficial use of implants with a scalloped implant-abutment connection on preservation of the peri-implant marginal bone level. PMID:28496962

  8. Scalloped Implant-Abutment Connection Compared to Conventional Flat Implant-Abutment Connection: a Systematic Review and Meta-Analysis.

    PubMed

    Starch-Jensen, Thomas; Christensen, Ann-Eva; Lorenzen, Henning

    2017-01-01

    The objective was to test the hypothesis of no difference in implant treatment outcome after installation of implants with a scalloped implant-abutment connection compared to a flat implant-abutment connection. A MEDLINE (PubMed), Embase and Cochrane library search in combination with a hand-search of relevant journals was conducted. No language or year of publication restriction was applied. The search provided 298 titles. Three studies fulfilled the inclusion criteria. The included studies were characterized by low or moderate risk of bias. Survival of suprastructures has never been compared within the same study. High implant survival rate was reported in all the included studies. Significantly more peri-implant marginal bone loss, higher probing depth score, bleeding score and gingival score was observed around implants with a scalloped implant-abutment connection. There were no significant differences between the two treatment modalities regarding professional or patient-reported outcome measures. Meta-analysis disclosed a mean difference of peri-implant marginal bone loss of 1.56 mm (confidence interval: 0.87 to 2.25), indicating significant more bone loss around implants with a scalloped implant-abutment connection. A scalloped implant-abutment connection seems to be associated with higher peri-implant marginal bone loss compared to a flat implant-abutment connection. Therefore, the hypothesis of the present systematic review must be rejected. However, further long-term randomized controlled trials assessing implant treatment outcome with the two treatment modalities are needed before definite conclusions can be provided about the beneficial use of implants with a scalloped implant-abutment connection on preservation of the peri-implant marginal bone level.

  9. Disruption of functional networks in dyslexia: a whole-brain, data-driven analysis of connectivity.

    PubMed

    Finn, Emily S; Shen, Xilin; Holahan, John M; Scheinost, Dustin; Lacadie, Cheryl; Papademetris, Xenophon; Shaywitz, Sally E; Shaywitz, Bennett A; Constable, R Todd

    2014-09-01

    Functional connectivity analyses of functional magnetic resonance imaging data are a powerful tool for characterizing brain networks and how they are disrupted in neural disorders. However, many such analyses examine only one or a small number of a priori seed regions. Studies that consider the whole brain frequently rely on anatomic atlases to define network nodes, which might result in mixing distinct activation time-courses within a single node. Here, we improve upon previous methods by using a data-driven brain parcellation to compare connectivity profiles of dyslexic (DYS) versus non-impaired (NI) readers in the first whole-brain functional connectivity analysis of dyslexia. Whole-brain connectivity was assessed in children (n = 75; 43 NI, 32 DYS) and adult (n = 104; 64 NI, 40 DYS) readers. Compared to NI readers, DYS readers showed divergent connectivity within the visual pathway and between visual association areas and prefrontal attention areas; increased right-hemisphere connectivity; reduced connectivity in the visual word-form area (part of the left fusiform gyrus specialized for printed words); and persistent connectivity to anterior language regions around the inferior frontal gyrus. Together, findings suggest that NI readers are better able to integrate visual information and modulate their attention to visual stimuli, allowing them to recognize words on the basis of their visual properties, whereas DYS readers recruit altered reading circuits and rely on laborious phonology-based "sounding out" strategies into adulthood. These results deepen our understanding of the neural basis of dyslexia and highlight the importance of synchrony between diverse brain regions for successful reading. © 2013 Society of Biological Psychiatry Published by Society of Biological Psychiatry All rights reserved.

  10. Default mode of brain function in monkeys.

    PubMed

    Mantini, Dante; Gerits, Annelis; Nelissen, Koen; Durand, Jean-Baptiste; Joly, Olivier; Simone, Luciano; Sawamura, Hiromasa; Wardak, Claire; Orban, Guy A; Buckner, Randy L; Vanduffel, Wim

    2011-09-07

    Human neuroimaging has revealed a specific network of brain regions-the default-mode network (DMN)-that reduces its activity during goal-directed behavior. So far, evidence for a similar network in monkeys is mainly indirect, since, except for one positron emission tomography study, it is all based on functional connectivity analysis rather than activity increases during passive task states. Here, we tested whether a consistent DMN exists in monkeys using its defining property. We performed a meta-analysis of functional magnetic resonance imaging data collected in 10 awake monkeys to reveal areas in which activity consistently decreases when task demands shift from passive tasks to externally oriented processing. We observed task-related spatially specific deactivations across 15 experiments, implying in the monkey a functional equivalent of the human DMN. We revealed by resting-state connectivity that prefrontal and medial parietal regions, including areas 9/46d and 31, respectively, constitute the DMN core, being functionally connected to all other DMN areas. We also detected two distinct subsystems composed of DMN areas with stronger functional connections between each other. These clusters included areas 24/32, 8b, and TPOC and areas 23, v23, and PGm, respectively. Such a pattern of functional connectivity largely fits, but is not completely consistent with anatomical tract tracing data in monkeys. Also, analysis of afferent and efferent connections between DMN areas suggests a multisynaptic network structure. Like humans, monkeys increase activity during passive epochs in heteromodal and limbic association regions, suggesting that they also default to internal modes of processing when not actively interacting with the environment.

  11. Default Mode of Brain Function in Monkeys

    PubMed Central

    Mantini, Dante; Gerits, Annelis; Nelissen, Koen; Durand, Jean-Baptiste; Joly, Olivier; Simone, Luciano; Sawamura, Hiromasa; Wardak, Claire; Orban, Guy A.; Buckner, Randy L.; Vanduffel, Wim

    2013-01-01

    Human neuroimaging has revealed a specific network of brain regions—the default-mode network (DMN)—that reduces its activity during goal-directed behavior. So far, evidence for a similar network in monkeys is mainly indirect, since, except for one positron emission tomography study, it is all based on functional connectivity analysis rather than activity increases during passive task states. Here, we tested whether a consistent DMN exists in monkeys using its defining property. We performed a meta-analysis of functional magnetic resonance imaging data collected in 10 awake monkeys to reveal areas in which activity consistently decreases when task demands shift from passive tasks to externally oriented processing. We observed task-related spatially specific deactivations across 15 experiments, implying in the monkey a functional equivalent of the human DMN. We revealed by resting-state connectivity that prefrontal and medial parietal regions, including areas 9/46d and 31, respectively, constitute the DMN core, being functionally connected to all other DMN areas. We also detected two distinct subsystems composed of DMN areas with stronger functional connections between each other. These clusters included areas 24/32, 8b, and TPOC and areas 23, v23, and PGm, respectively. Such a pattern of functional connectivity largely fits, but is not completely consistent with anatomical tract tracing data in monkeys. Also, analysis of afferent and efferent connections between DMN areas suggests a multisynaptic network structure. Like humans, monkeys increase activity during passive epochs in heteromodal and limbic association regions, suggesting that they also default to internal modes of processing when not actively interacting with the environment. PMID:21900574

  12. Local and Global Gestalt Laws: A Neurally Based Spectral Approach.

    PubMed

    Favali, Marta; Citti, Giovanna; Sarti, Alessandro

    2017-02-01

    This letter presents a mathematical model of figure-ground articulation that takes into account both local and global gestalt laws and is compatible with the functional architecture of the primary visual cortex (V1). The local gestalt law of good continuation is described by means of suitable connectivity kernels that are derived from Lie group theory and quantitatively compared with long-range connectivity in V1. Global gestalt constraints are then introduced in terms of spectral analysis of a connectivity matrix derived from these kernels. This analysis performs grouping of local features and individuates perceptual units with the highest salience. Numerical simulations are performed, and results are obtained by applying the technique to a number of stimuli.

  13. The relationship between nature connectedness and happiness: a meta-analysis

    PubMed Central

    Capaldi, Colin A.; Dopko, Raelyne L.; Zelenski, John M.

    2014-01-01

    Research suggests that contact with nature can be beneficial, for example leading to improvements in mood, cognition, and health. A distinct but related idea is the personality construct of subjective nature connectedness, a stable individual difference in cognitive, affective, and experiential connection with the natural environment. Subjective nature connectedness is a strong predictor of pro-environmental attitudes and behaviors that may also be positively associated with subjective well-being. This meta-analysis was conducted to examine the relationship between nature connectedness and happiness. Based on 30 samples (n = 8523), a fixed-effect meta-analysis found a small but significant effect size (r = 0.19). Those who are more connected to nature tended to experience more positive affect, vitality, and life satisfaction compared to those less connected to nature. Publication status, year, average age, and percentage of females in the sample were not significant moderators. Vitality had the strongest relationship with nature connectedness (r = 0.24), followed by positive affect (r = 0.22) and life satisfaction (r = 0.17). In terms of specific nature connectedness measures, associations were the strongest between happiness and inclusion of nature in self (r = 0.27), compared to nature relatedness (r = 0.18) and connectedness to nature (r = 0.18). This research highlights the importance of considering personality when examining the psychological benefits of nature. The results suggest that closer human-nature relationships do not have to come at the expense of happiness. Rather, this meta-analysis shows that being connected to nature and feeling happy are, in fact, connected. PMID:25249992

  14. Altered structural connectivity of pain-related brain network in burning mouth syndrome-investigation by graph analysis of probabilistic tractography.

    PubMed

    Wada, Akihiko; Shizukuishi, Takashi; Kikuta, Junko; Yamada, Haruyasu; Watanabe, Yusuke; Imamura, Yoshiki; Shinozaki, Takahiro; Dezawa, Ko; Haradome, Hiroki; Abe, Osamu

    2017-05-01

    Burning mouth syndrome (BMS) is a chronic intraoral pain syndrome featuring idiopathic oral pain and burning discomfort despite clinically normal oral mucosa. The etiology of chronic pain syndrome is unclear, but preliminary neuroimaging research has suggested the alteration of volume, metabolism, blood flow, and diffusion at multiple brain regions. According to the neuromatrix theory of Melzack, pain sense is generated in the brain by the network of multiple pain-related brain regions. Therefore, the alteration of pain-related network is also assumed as an etiology of chronic pain. In this study, we investigated the brain network of BMS brain by using probabilistic tractography and graph analysis. Fourteen BMS patients and 14 age-matched healthy controls underwent 1.5T MRI. Structural connectivity was calculated in 83 anatomically defined regions with probabilistic tractography of 60-axis diffusion tensor imaging and 3D T1-weighted imaging. Graph theory network analysis was used to evaluate the brain network at local and global connectivity. In BMS brain, a significant difference of local brain connectivity was recognized at the bilateral rostral anterior cingulate cortex, right medial orbitofrontal cortex, and left pars orbitalis which belong to the medial pain system; however, no significant difference was recognized at the lateral system including the somatic sensory cortex. A strengthened connection of the anterior cingulate cortex and medial prefrontal cortex with the basal ganglia, thalamus, and brain stem was revealed. Structural brain network analysis revealed the alteration of the medial system of the pain-related brain network in chronic pain syndrome.

  15. Neurobiological changes of schizotypy: evidence from both volume-based morphometric analysis and resting-state functional connectivity.

    PubMed

    Wang, Yi; Yan, Chao; Yin, Da-zhi; Fan, Ming-xia; Cheung, Eric F C; Pantelis, Christos; Chan, Raymond C K

    2015-03-01

    The current study sought to examine the underlying brain changes in individuals with high schizotypy by integrating networks derived from brain structural and functional imaging. Individuals with high schizotypy (n = 35) and low schizotypy (n = 34) controls were screened using the Schizotypal Personality Questionnaire and underwent brain structural and resting-state functional magnetic resonance imaging on a 3T scanner. Voxel-based morphometric analysis and graph theory-based functional network analysis were conducted. Individuals with high schizotypy showed reduced gray matter (GM) density in the insula and the dorsolateral prefrontal gyrus. The graph theoretical analysis showed that individuals with high schizotypy showed similar global properties in their functional networks as low schizotypy individuals. Several hubs of the functional network were identified in both groups, including the insula, the lingual gyrus, the postcentral gyrus, and the rolandic operculum. More hubs in the frontal lobe and fewer hubs in the occipital lobe were identified in individuals with high schizotypy. By comparing the functional connectivity between clusters with abnormal GM density and the whole brain, individuals with high schizotypy showed weaker functional connectivity between the left insula and the putamen, but stronger connectivity between the cerebellum and the medial frontal gyrus. Taken together, our findings suggest that individuals with high schizotypy present changes in terms of GM and resting-state functional connectivity, especially in the frontal lobe. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. The connectome of the basal ganglia.

    PubMed

    Schmitt, Oliver; Eipert, Peter; Kettlitz, Richard; Leßmann, Felix; Wree, Andreas

    2016-03-01

    The basal ganglia of the laboratory rat consist of a few core regions that are specifically interconnected by efferents and afferents of the central nervous system. In nearly 800 reports of tract-tracing investigations the connectivity of the basal ganglia is documented. The readout of connectivity data and the collation of all the connections of these reports in a database allows to generate a connectome. The collation, curation and analysis of such a huge amount of connectivity data is a great challenge and has not been performed before (Bohland et al. PloS One 4:e7200, 2009) in large connectomics projects based on meta-analysis of tract-tracing studies. Here, the basal ganglia connectome of the rat has been generated and analyzed using the consistent cross-platform and generic framework neuroVIISAS. Several advances of this connectome meta-study have been made: the collation of laterality data, the network-analysis of connectivity strengths and the assignment of regions to a hierarchically organized terminology. The basal ganglia connectome offers differences in contralateral connectivity of motoric regions in contrast to other regions. A modularity analysis of the weighted and directed connectome produced a specific grouping of regions. This result indicates a correlation of structural and functional subsystems. As a new finding, significant reciprocal connections of specific network motifs in this connectome were detected. All three principal basal ganglia pathways (direct, indirect, hyperdirect) could be determined in the connectome. By identifying these pathways it was found that there exist many further equivalent pathways possessing the same length and mean connectivity weight as the principal pathways. Based on the connectome data it is unknown why an excitation pattern may prefer principal rather than other equivalent pathways. In addition to these new findings the local graph-theoretical features of regions of the connectome have been determined. By performing graph theoretical analyses it turns out that beside the caudate putamen further regions like the mesencephalic reticular formation, amygdaloid complex and ventral tegmental area are important nodes in the basal ganglia connectome. The connectome data of this meta-study of tract-tracing reports of the basal ganglia are available for further network studies, the integration into neocortical connectomes and further extensive investigations of the basal ganglia dynamics in population simulations.

  17. Multifractal analysis of visibility graph-based Ito-related connectivity time series.

    PubMed

    Czechowski, Zbigniew; Lovallo, Michele; Telesca, Luciano

    2016-02-01

    In this study, we investigate multifractal properties of connectivity time series resulting from the visibility graph applied to normally distributed time series generated by the Ito equations with multiplicative power-law noise. We show that multifractality of the connectivity time series (i.e., the series of numbers of links outgoing any node) increases with the exponent of the power-law noise. The multifractality of the connectivity time series could be due to the width of connectivity degree distribution that can be related to the exit time of the associated Ito time series. Furthermore, the connectivity time series are characterized by persistence, although the original Ito time series are random; this is due to the procedure of visibility graph that, connecting the values of the time series, generates persistence but destroys most of the nonlinear correlations. Moreover, the visibility graph is sensitive for detecting wide "depressions" in input time series.

  18. Electroconvulsive therapy selectively enhanced feedforward connectivity from fusiform face area to amygdala in major depressive disorder.

    PubMed

    Wang, Jiaojian; Wei, Qiang; Bai, Tongjian; Zhou, Xiaoqin; Sun, Hui; Becker, Benjamin; Tian, Yanghua; Wang, Kai; Kendrick, Keith

    2017-12-01

    Electroconvulsive therapy (ECT) has been widely used to treat the major depressive disorder (MDD), especially for treatment-resistant depression. However, the neuroanatomical basis of ECT remains an open problem. In our study, we combined the voxel-based morphology (VBM), resting-state functional connectivity (RSFC) and granger causality analysis (GCA) to identify the longitudinal changes of structure and function in 23 MDD patients before and after ECT. In addition, multivariate pattern analysis using linear support vector machine (SVM) was applied to classify 23 depressed patients from 25 gender, age and education matched healthy controls. VBM analysis revealed the increased gray matter volume of left superficial amygdala after ECT. The following RSFC and GCA analyses further identified the enhanced functional connectivity between left amygdala and left fusiform face area (FFA) and effective connectivity from FFA to amygdala after ECT, respectively. Moreover, SVM-based classification achieved an accuracy of 83.33%, a sensitivity of 82.61% and a specificity of 84% by leave-one-out cross-validation. Our findings indicated that ECT may facilitate the neurogenesis of amygdala and selectively enhance the feedforward cortical-subcortical connectivity from FFA to amygdala. This study may shed new light on the pathological mechanism of MDD and may provide the neuroanatomical basis for ECT. © The Author (2017). Published by Oxford University Press.

  19. Bayesian network analysis reveals alterations to default mode network connectivity in individuals at risk for Alzheimer's disease.

    PubMed

    Li, Rui; Yu, Jing; Zhang, Shouzi; Bao, Feng; Wang, Pengyun; Huang, Xin; Li, Juan

    2013-01-01

    Alzheimer's disease (AD) is associated with abnormal functioning of the default mode network (DMN). Functional connectivity (FC) changes to the DMN have been found in patients with amnestic mild cognitive impairment (aMCI), which is the prodromal stage of AD. However, whether or not aMCI also alters the effective connectivity (EC) of the DMN remains unknown. We employed a combined group independent component analysis (ICA) and Bayesian network (BN) learning approach to resting-state functional MRI (fMRI) data from 17 aMCI patients and 17 controls, in order to establish the EC pattern of DMN, and to evaluate changes occurring in aMCI. BN analysis demonstrated heterogeneous regional convergence degree across DMN regions, which were organized into two closely interacting subsystems. Compared to controls, the aMCI group showed altered directed connectivity weights between DMN regions in the fronto-parietal, temporo-frontal, and temporo-parietal pathways. The aMCI group also exhibited altered regional convergence degree in the right inferior parietal lobule. Moreover, we found EC changes in DMN regions in aMCI were correlated with regional FC levels, and the connectivity metrics were associated with patients' cognitive performance. This study provides novel sights into our understanding of the functional architecture of the DMN and adds to a growing body of work demonstrating the importance of the DMN as a mechanism of aMCI.

  20. Comparison of connectivity analyses for resting state EEG data

    NASA Astrophysics Data System (ADS)

    Olejarczyk, Elzbieta; Marzetti, Laura; Pizzella, Vittorio; Zappasodi, Filippo

    2017-06-01

    Objective. In the present work, a nonlinear measure (transfer entropy, TE) was used in a multivariate approach for the analysis of effective connectivity in high density resting state EEG data in eyes open and eyes closed. Advantages of the multivariate approach in comparison to the bivariate one were tested. Moreover, the multivariate TE was compared to an effective linear measure, i.e. directed transfer function (DTF). Finally, the existence of a relationship between the information transfer and the level of brain synchronization as measured by phase synchronization value (PLV) was investigated. Approach. The comparison between the connectivity measures, i.e. bivariate versus multivariate TE, TE versus DTF, TE versus PLV, was performed by means of statistical analysis of indexes based on graph theory. Main results. The multivariate approach is less sensitive to false indirect connections with respect to the bivariate estimates. The multivariate TE differentiated better between eyes closed and eyes open conditions compared to DTF. Moreover, the multivariate TE evidenced non-linear phenomena in information transfer, which are not evidenced by the use of DTF. We also showed that the target of information flow, in particular the frontal region, is an area of greater brain synchronization. Significance. Comparison of different connectivity analysis methods pointed to the advantages of nonlinear methods, and indicated a relationship existing between the flow of information and the level of synchronization of the brain.

  1. CMS Connect

    NASA Astrophysics Data System (ADS)

    Balcas, J.; Bockelman, B.; Gardner, R., Jr.; Hurtado Anampa, K.; Jayatilaka, B.; Aftab Khan, F.; Lannon, K.; Larson, K.; Letts, J.; Marra Da Silva, J.; Mascheroni, M.; Mason, D.; Perez-Calero Yzquierdo, A.; Tiradani, A.

    2017-10-01

    The CMS experiment collects and analyzes large amounts of data coming from high energy particle collisions produced by the Large Hadron Collider (LHC) at CERN. This involves a huge amount of real and simulated data processing that needs to be handled in batch-oriented platforms. The CMS Global Pool of computing resources provide +100K dedicated CPU cores and another 50K to 100K CPU cores from opportunistic resources for these kind of tasks and even though production and event processing analysis workflows are already managed by existing tools, there is still a lack of support to submit final stage condor-like analysis jobs familiar to Tier-3 or local Computing Facilities users into these distributed resources in an integrated (with other CMS services) and friendly way. CMS Connect is a set of computing tools and services designed to augment existing services in the CMS Physics community focusing on these kind of condor analysis jobs. It is based on the CI-Connect platform developed by the Open Science Grid and uses the CMS GlideInWMS infrastructure to transparently plug CMS global grid resources into a virtual pool accessed via a single submission machine. This paper describes the specific developments and deployment of CMS Connect beyond the CI-Connect platform in order to integrate the service with CMS specific needs, including specific Site submission, accounting of jobs and automated reporting to standard CMS monitoring resources in an effortless way to their users.

  2. Independent Peer Review of Communications, Navigation, and Networking re-Configurable Testbed (CoNNeCT) Project Antenna Pointing Subsystem (APS) Integrated Gimbal Assembly (IGA) Structural Analysis

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Larsen, Curtis E.; Pellicciotti, Joseph W.

    2010-01-01

    Glenn Research Center Chief Engineer's Office requested an independent review of the structural analysis and modeling of the Communications, Navigation, and Networking re-Configurable Testbed (CoNNeCT) Project Antenna Pointing Subsystem (APS) Integrated Gimbal Assembly (IGA) to be conducted by the NASA Engineering and Safety Center (NESC). At this time, the IGA had completed its critical design review (CDR). The assessment was to be a peer review of the NEi-NASTRAN1 model of the APS Antenna, and not a peer review of the design and the analysis that had been completed by the GRC team for CDR. Thus, only a limited amount of information was provided on the structural analysis. However, the NESC team had difficulty separating analysis concerns from modeling issues. The team studied the NASTRAN model, but did not fully investigate how the model was used by the CoNNeCT Project and how the Project was interpreting the results. The team's findings, observations, and NESC recommendations are contained in this report.

  3. Template based rotation: A method for functional connectivity analysis with a priori templates☆

    PubMed Central

    Schultz, Aaron P.; Chhatwal, Jasmeer P.; Huijbers, Willem; Hedden, Trey; van Dijk, Koene R.A.; McLaren, Donald G.; Ward, Andrew M.; Wigman, Sarah; Sperling, Reisa A.

    2014-01-01

    Functional connectivity magnetic resonance imaging (fcMRI) is a powerful tool for understanding the network level organization of the brain in research settings and is increasingly being used to study large-scale neuronal network degeneration in clinical trial settings. Presently, a variety of techniques, including seed-based correlation analysis and group independent components analysis (with either dual regression or back projection) are commonly employed to compute functional connectivity metrics. In the present report, we introduce template based rotation,1 a novel analytic approach optimized for use with a priori network parcellations, which may be particularly useful in clinical trial settings. Template based rotation was designed to leverage the stable spatial patterns of intrinsic connectivity derived from out-of-sample datasets by mapping data from novel sessions onto the previously defined a priori templates. We first demonstrate the feasibility of using previously defined a priori templates in connectivity analyses, and then compare the performance of template based rotation to seed based and dual regression methods by applying these analytic approaches to an fMRI dataset of normal young and elderly subjects. We observed that template based rotation and dual regression are approximately equivalent in detecting fcMRI differences between young and old subjects, demonstrating similar effect sizes for group differences and similar reliability metrics across 12 cortical networks. Both template based rotation and dual-regression demonstrated larger effect sizes and comparable reliabilities as compared to seed based correlation analysis, though all three methods yielded similar patterns of network differences. When performing inter-network and sub-network connectivity analyses, we observed that template based rotation offered greater flexibility, larger group differences, and more stable connectivity estimates as compared to dual regression and seed based analyses. This flexibility owes to the reduced spatial and temporal orthogonality constraints of template based rotation as compared to dual regression. These results suggest that template based rotation can provide a useful alternative to existing fcMRI analytic methods, particularly in clinical trial settings where predefined outcome measures and conserved network descriptions across groups are at a premium. PMID:25150630

  4. Neuroanatomic connectivity of the human ascending arousal system critical to consciousness and its disorders.

    PubMed

    Edlow, Brian L; Takahashi, Emi; Wu, Ona; Benner, Thomas; Dai, Guangping; Bu, Lihong; Grant, Patricia Ellen; Greer, David M; Greenberg, Steven M; Kinney, Hannah C; Folkerth, Rebecca D

    2012-06-01

    The ascending reticular activating system (ARAS) mediates arousal, an essential component of human consciousness. Lesions of the ARAS cause coma, the most severe disorder of consciousness. Because of current methodological limitations, including of postmortem tissue analysis, the neuroanatomic connectivity of the human ARAS is poorly understood. We applied the advanced imaging technique of high angular resolution diffusion imaging (HARDI) to elucidate the structural connectivity of the ARAS in 3 adult human brains, 2 of which were imaged postmortem. High angular resolution diffusion imaging tractography identified the ARAS connectivity previously described in animals and also revealed novel human pathways connecting the brainstem to the thalamus, the hypothalamus, and the basal forebrain. Each pathway contained different distributions of fiber tracts from known neurotransmitter-specific ARAS nuclei in the brainstem. The histologically guided tractography findings reported here provide initial evidence for human-specific pathways of the ARAS. The unique composition of neurotransmitter-specific fiber tracts within each ARAS pathway suggests structural specializations that subserve the different functional characteristics of human arousal. This ARAS connectivity analysis provides proof of principle that HARDI tractography may affect the study of human consciousness and its disorders, including in neuropathologic studies of patients dying in coma and the persistent vegetative state.

  5. Disrupted Cerebro-cerebellar Intrinsic Functional Connectivity in Young Adults with High-functioning Autism Spectrum Disorder: A Data-driven, Whole-brain, High Temporal Resolution fMRI Study.

    PubMed

    Arnold Anteraper, Sheeba; Guell, Xavier; D'Mello, Anila; Joshi, Neha; Whitfield-Gabrieli, Susan; Joshi, Gagan

    2018-06-13

    To examine the resting-state functional-connectivity (RsFc) in young adults with high-functioning autism spectrum disorder (HF-ASD) using state-of-the-art fMRI data acquisition and analysis techniques. Simultaneous multi-slice, high temporal resolution fMRI acquisition; unbiased whole-brain connectome-wide multivariate pattern analysis (MVPA) techniques for assessing RsFc; and post-hoc whole-brain seed-to-voxel analyses using MVPA results as seeds. MVPA revealed two clusters of abnormal connectivity in the cerebellum. Whole-brain seed-based functional connectivity analyses informed by MVPA-derived clusters showed significant under connectivity between the cerebellum and social, emotional, and language brain regions in the HF-ASD group compared to healthy controls. The results we report are coherent with existing structural, functional, and RsFc literature in autism, extend previous literature reporting cerebellar abnormalities in the neuropathology of autism, and highlight the cerebellum as a potential target for therapeutic, diagnostic, predictive, and prognostic developments in ASD. The description of functional connectivity abnormalities using whole-brain, data-driven analyses as reported in the present study may crucially advance the development of ASD biomarkers, targets for therapeutic interventions, and neural predictors for measuring treatment response.

  6. Alveolar ridge augmentation by connective tissue grafting using a pouch method and modified connective tissue technique: A prospective study

    PubMed Central

    Agarwal, Ashish; Gupta, Narinder Dev

    2015-01-01

    Background: Localized alveolar ridge defect may create physiological and pathological problems. Developments in surgical techniques have made it simpler to change the configuration of a ridge to create a more aesthetic and more easily cleansable shape. The purpose of this study was to compare the efficacy of alveolar ridge augmentation using a subepithelial connective tissue graft in pouch and modified connective tissue graft technique. Materials and Methods: In this randomized, double blind, parallel and prospective study, 40 non-smoker individuals with 40 class III alveolar ridge defects in maxillary anterior were randomly divided in two groups. Group I received modified connective tissue graft, while group II were treated with subepithelial connective tissue graft in pouch technique. The defect size was measured in its horizontal and vertical dimension by utilizing a periodontal probe in a stone cast at base line, after 3 months, and 6 months post surgically. Analysis of variance and Bonferroni post-hoc test were used for statistical analysis. A two-tailed P < 0.05 was considered to be statistically significant. Results: Mean values in horizontal width after 6 months were 4.70 ± 0.87 mm, and 4.05 ± 0.89 mm for group I and II, respectively. Regarding vertical heights, obtained mean values were 4.75 ± 0.97 mm and 3.70 ± 0.92 mm for group I and group II, respectively. Conclusion: Within the limitations of this study, connective tissue graft proposed significantly more improvement as compare to connective tissue graft in pouch. PMID:26759591

  7. Cannabinoid Modulation of Functional Connectivity within Regions Processing Attentional Salience

    PubMed Central

    Bhattacharyya, Sagnik; Falkenberg, Irina; Martin-Santos, Rocio; Atakan, Zerrin; Crippa, Jose A; Giampietro, Vincent; Brammer, Mick; McGuire, Philip

    2015-01-01

    There is now considerable evidence to support the hypothesis that psychotic symptoms are the result of abnormal salience attribution, and that the attribution of salience is largely mediated through the prefrontal cortex, the striatum, and the hippocampus. Although these areas show differential activation under the influence of delta-9-tetrahydrocannabinol (delta-9-THC) and cannabidiol (CBD), the two major derivatives of cannabis sativa, little is known about the effects of these cannabinoids on the functional connectivity between these regions. We investigated this in healthy occasional cannabis users by employing event-related functional magnetic resonance imaging (fMRI) following oral administration of delta-9-THC, CBD, or a placebo capsule. Employing a seed cluster-based functional connectivity analysis that involved using the average time series from each seed cluster for a whole-brain correlational analysis, we investigated the effect of drug condition on functional connectivity between the seed clusters and the rest of the brain during an oddball salience processing task. Relative to the placebo condition, delta-9-THC and CBD had opposite effects on the functional connectivity between the dorsal striatum, the prefrontal cortex, and the hippocampus. Delta-9-THC reduced fronto-striatal connectivity, which was related to its effect on task performance, whereas this connection was enhanced by CBD. Conversely, mediotemporal-prefrontal connectivity was enhanced by delta-9-THC and reduced by CBD. Our results suggest that the functional integration of brain regions involved in salience processing is differentially modulated by single doses of delta-9-THC and CBD and that this relates to the processing of salient stimuli. PMID:25249057

  8. Altered resting-state functional connectivity in post-traumatic stress disorder: a perfusion MRI study

    NASA Astrophysics Data System (ADS)

    Li, Baojuan; Liu, Jian; Liu, Yang; Lu, Hong-Bing; Yin, Hong

    2013-03-01

    The majority of studies on posttraumatic stress disorder (PTSD) so far have focused on delineating patterns of activations during cognitive processes. Recently, more and more researches have started to investigate functional connectivity in PTSD subjects using BOLD-fMRI. Functional connectivity analysis has been demonstrated as a powerful approach to identify biomarkers of different brain diseases. This study aimed to detect resting-state functional connectivity abnormities in patients with PTSD using arterial spin labeling (ASL) fMRI. As a completely non-invasive technique, ASL allows quantitative estimates of cerebral blood flow (CBF). Compared with BOLD-fMRI, ASL fMRI has many advantages, including less low-frequency signal drifts, superior functional localization, etc. In the current study, ASL images were collected from 10 survivors in mining disaster with recent onset PTSD and 10 survivors without PTSD. Decreased regional CBF in the right middle temporal gyrus, lingual gyrus, and postcentral gyrus was detected in the PTSD patients. Seed-based resting-state functional connectivity analysis was performed using an area in the right middle temporal gyrus as region of interest. Compared with the non-PTSD group, the PTSD subjects demonstrated increased functional connectivity between the right middle temporal gyrus and the right superior temporal gyrus, the left middle temporal gyrus. Meanwhile, decreased functional connectivity between the right middle temporal gyrus and the right postcentral gyrus, the right superior parietal lobule was also found in the PTSD patients. This is the first study which investigated resting-state functional connectivity in PTSD using ASL images. The results may provide new insight into the neural substrates of PTSD.

  9. Identifying dynamic functional connectivity biomarkers using GIG-ICA: application to schizophrenia, schizoaffective disorder and psychotic bipolar disorder

    PubMed Central

    Du, Yuhui; Pearlson, Godfrey D; Lin, Dongdong; Sui, Jing; Chen, Jiayu; Salman, Mustafa; Tamminga, Carol A.; Ivleva, Elena I.; Sweeney, John A.; Keshavan, Matcheri S.; Clementz, Brett A.; Bustillo, Juan; Calhoun, Vince D.

    2017-01-01

    Functional magnetic resonance imaging (fMRI) studies have shown altered brain dynamic functional connectivity (DFC) in mental disorders. Here we aim to explore DFC across a spectrum of symptomatically-related disorders including bipolar disorder with psychosis (BPP), schizoaffective disorder (SAD) and schizophrenia (SZ). We introduce a group information guided independent component analysis (GIG-ICA) procedure to estimate both group-level and subject-specific connectivity states from DFC. Using resting-state fMRI data of 238 healthy controls (HCs), 140 BPP, 132 SAD and 113 SZ patients, we identified measures differentiating groups from the whole-brain DFC and traditional static functional connectivity (SFC), separately. Results show that DFC provided more informative measures than SFC. Diagnosis-related connectivity states were evident using DFC analysis. For the dominant state consistent across groups, we found 22 instances of hypoconnectivity (with decreasing trends from HC to BPP to SAD to SZ) mainly involving post-central, frontal and cerebellar cortices as well as 34 examples of hyperconnectivity (with increasing trends HC through SZ) primarily involving thalamus and temporal cortices. Hypoconnectivities/hyperconnectivities also showed negative/positive correlations, respectively, with clinical symptom scores. Specifically, hypoconnectivities linking postcentral and frontal gyri were significantly negatively correlated with the PANSS positive/negative scores. For frontal connectivities, BPP resembled HC while SAD and SZ were more similar. Three connectivities involving the left cerebellar crus differentiated SZ from other groups and one connection linking frontal and fusiform cortices showed a SAD-unique change. In summary, our method is promising for assessing DFC and may yield imaging biomarkers for quantifying the dimension of psychosis. PMID:28294459

  10. Cannabinoid modulation of functional connectivity within regions processing attentional salience.

    PubMed

    Bhattacharyya, Sagnik; Falkenberg, Irina; Martin-Santos, Rocio; Atakan, Zerrin; Crippa, Jose A; Giampietro, Vincent; Brammer, Mick; McGuire, Philip

    2015-05-01

    There is now considerable evidence to support the hypothesis that psychotic symptoms are the result of abnormal salience attribution, and that the attribution of salience is largely mediated through the prefrontal cortex, the striatum, and the hippocampus. Although these areas show differential activation under the influence of delta-9-tetrahydrocannabinol (delta-9-THC) and cannabidiol (CBD), the two major derivatives of cannabis sativa, little is known about the effects of these cannabinoids on the functional connectivity between these regions. We investigated this in healthy occasional cannabis users by employing event-related functional magnetic resonance imaging (fMRI) following oral administration of delta-9-THC, CBD, or a placebo capsule. Employing a seed cluster-based functional connectivity analysis that involved using the average time series from each seed cluster for a whole-brain correlational analysis, we investigated the effect of drug condition on functional connectivity between the seed clusters and the rest of the brain during an oddball salience processing task. Relative to the placebo condition, delta-9-THC and CBD had opposite effects on the functional connectivity between the dorsal striatum, the prefrontal cortex, and the hippocampus. Delta-9-THC reduced fronto-striatal connectivity, which was related to its effect on task performance, whereas this connection was enhanced by CBD. Conversely, mediotemporal-prefrontal connectivity was enhanced by delta-9-THC and reduced by CBD. Our results suggest that the functional integration of brain regions involved in salience processing is differentially modulated by single doses of delta-9-THC and CBD and that this relates to the processing of salient stimuli.

  11. Analytical and numerical investigation of bolted steel ring flange connection for offshore wind monopile foundations

    NASA Astrophysics Data System (ADS)

    Madsen, C. A.; Kragh-Poulsen, J.-C.; Thage, K. J.; Andreassen, M. J.

    2017-12-01

    The monopile foundation is the dominant solution for support of wind turbines in offshore wind farms. It is normally grouted to the transition piece which connects the foundation to the turbine. Currently, the bolted steel ring flange connection is investigated as an alternative. The monopile--transition piece connection has specific problems, such as out-of-verticality and installation damage from driving the MP into the seabed and it is not fully known how to design for these. This paper presents the status of the ongoing development work and an estimate of what still needs to be covered in order to use the connection in practice. This involves presentation of an analytical and non-linear FE analysis procedure for the monopile-transition piece connection composed of two L flanges connected with preloaded bolts. The connection is verified for ultimate and fatigue limit states based on an integrated load simulation carried out by the turbine manufacturer.

  12. Characterizing the Connectivity and Cumulative Effects of Wetlands on Downstream Hydrology: A Modeling Analysis

    EPA Science Inventory

    Geographically isolated wetlands (GIWs) are depressional landscape features entirely surrounded by uplands. While “GIW” may imply functional isolation from other surface waters, these systems exhibit a gradient of hydrologic, biological, and/or chemical connectivity. ...

  13. 78 FR 58449 - Generator Requirements at the Transmission Interface

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... Connection Requirements), FAC-003-3 (Transmission Vegetation Management), PRC-004- 2.1a (Analysis and... and Generation Protection System Maintenance and Testing). The modifications improve reliability... Standards FAC-001-1 (Facility Connection Requirements), FAC-003-3 (Transmission Vegetation Management), PRC...

  14. Interface Technology for Geometrically Nonlinear Analysis of Multiple Connected Subdomains

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.

    1997-01-01

    Interface technology for geometrically nonlinear analysis is presented and demonstrated. This technology is based on an interface element which makes use of a hybrid variational formulation to provide for compatibility between independently modeled connected subdomains. The interface element developed herein extends previous work to include geometric nonlinearity and to use standard linear and nonlinear solution procedures. Several benchmark nonlinear applications of the interface technology are presented and aspects of the implementation are discussed.

  15. Bearing-Load Modeling and Analysis Study for Mechanically Connected Structures

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.

    2006-01-01

    Bearing-load response for a pin-loaded hole is studied within the context of two-dimensional finite element analyses. Pin-loaded-hole configurations are representative of mechanically connected structures, such as a stiffener fastened to a rib of an isogrid panel, that are idealized as part of a larger structural component. Within this context, the larger structural component may be idealized as a two-dimensional shell finite element model to identify load paths and high stress regions. Finite element modeling and analysis aspects of a pin-loaded hole are considered in the present paper including the use of linear and nonlinear springs to simulate the pin-bearing contact condition. Simulating pin-connected structures within a two-dimensional finite element analysis model using nonlinear spring or gap elements provides an effective way for accurate prediction of the local effective stress state and peak forces.

  16. Analysis of the connection of the timber-fiber concrete composite structure

    NASA Astrophysics Data System (ADS)

    Holý, Milan; Vráblík, Lukáš; Petřík, Vojtěch

    2017-09-01

    This paper deals with an implementation of the material parameters of the connection to complex models for analysis of the timber-fiber concrete composite structures. The aim of this article is to present a possible way of idealization of the continuous contact model that approximates the actual behavior of timber-fiber reinforced concrete structures. The presented model of the connection was derived from push-out shear tests. It was approved by use of the nonlinear numerical analysis, that it can be achieved a very good compliance between results of numerical simulations and results of the experiments by a suitable choice of the material parameters of the continuous contact. Finally, an application for an analytical calculation of timber-fiber concrete composite structures is developed for the practical use in engineering praxis. The input material parameters for the analytical model was received using data from experiments.

  17. Conference report: Clinical and Pharmaceutical Solutions through analysis (CPSA USA 2013): connecting patients and subject numbers through analysis.

    PubMed

    Needham, Shane; Premkumar, Noel; Weng, Naidong; Lee, Mike

    2014-02-01

    The 16th Annual Symposium on Clinical and Pharmaceutical Solutions through Analysis (CPSA) 7-10 October 2013, Sheraton Bucks County Hotel, Langhorne, PA, USA. The 2013 CPSA brought together the various US FDA regulated analytical fields affecting a 'patient' for the first time - bioanalysts supporting IND and NDAs, clinical diagnostic and pathology laboratory personnel, and clinical researchers that provide insights into new biomarkers. Although the regulatory requirements are different for each of the above disciplines, the unique analytical perspectives that affect the patient were shared - and the goal of the 2013 CPSA - 'Connecting Patients and Subject Numbers Through Analysis' was achieved.

  18. Long-Term Functional Outcomes and Correlation with Regional Brain Connectivity by MRI Diffusion Tractography Metrics in a Near-Term Rabbit Model of Intrauterine Growth Restriction

    PubMed Central

    Illa, Miriam; Eixarch, Elisenda; Batalle, Dafnis; Arbat-Plana, Ariadna; Muñoz-Moreno, Emma; Figueras, Francesc; Gratacos, Eduard

    2013-01-01

    Background Intrauterine growth restriction (IUGR) affects 5–10% of all newborns and is associated with increased risk of memory, attention and anxiety problems in late childhood and adolescence. The neurostructural correlates of long-term abnormal neurodevelopment associated with IUGR are unknown. Thus, the aim of this study was to provide a comprehensive description of the long-term functional and neurostructural correlates of abnormal neurodevelopment associated with IUGR in a near-term rabbit model (delivered at 30 days of gestation) and evaluate the development of quantitative imaging biomarkers of abnormal neurodevelopment based on diffusion magnetic resonance imaging (MRI) parameters and connectivity. Methodology At +70 postnatal days, 10 cases and 11 controls were functionally evaluated with the Open Field Behavioral Test which evaluates anxiety and attention and the Object Recognition Task that evaluates short-term memory and attention. Subsequently, brains were collected, fixed and a high resolution MRI was performed. Differences in diffusion parameters were analyzed by means of voxel-based and connectivity analysis measuring the number of fibers reconstructed within anxiety, attention and short-term memory networks over the total fibers. Principal Findings The results of the neurobehavioral and cognitive assessment showed a significant higher degree of anxiety, attention and memory problems in cases compared to controls in most of the variables explored. Voxel-based analysis (VBA) revealed significant differences between groups in multiple brain regions mainly in grey matter structures, whereas connectivity analysis demonstrated lower ratios of fibers within the networks in cases, reaching the statistical significance only in the left hemisphere for both networks. Finally, VBA and connectivity results were also correlated with functional outcome. Conclusions The rabbit model used reproduced long-term functional impairments and their neurostructural correlates of abnormal neurodevelopment associated with IUGR. The description of the pattern of microstructural changes underlying functional defects may help to develop biomarkers based in diffusion MRI and connectivity analysis. PMID:24143189

  19. Intrinsic Resting-State Functional Connectivity in the Human Spinal Cord at 3.0 T.

    PubMed

    San Emeterio Nateras, Oscar; Yu, Fang; Muir, Eric R; Bazan, Carlos; Franklin, Crystal G; Li, Wei; Li, Jinqi; Lancaster, Jack L; Duong, Timothy Q

    2016-04-01

    To apply resting-state functional magnetic resonance (MR) imaging to map functional connectivity of the human spinal cord. Studies were performed in nine self-declared healthy volunteers with informed consent and institutional review board approval. Resting-state functional MR imaging was performed to map functional connectivity of the human cervical spinal cord from C1 to C4 at 1 × 1 × 3-mm resolution with a 3.0-T clinical MR imaging unit. Independent component analysis (ICA) was performed to derive resting-state functional MR imaging z-score maps rendered on two-dimensional and three-dimensional images. Seed-based analysis was performed for cross validation with ICA networks by using Pearson correlation. Reproducibility analysis of resting-state functional MR imaging maps from four repeated trials in a single participant yielded a mean z score of 6 ± 1 (P < .0001). The centroid coordinates across the four trials deviated by 2 in-plane voxels ± 2 mm (standard deviation) and up to one adjacent image section ± 3 mm. ICA of group resting-state functional MR imaging data revealed prominent functional connectivity patterns within the spinal cord gray matter. There were statistically significant (z score > 3, P < .001) bilateral, unilateral, and intersegmental correlations in the ventral horns, dorsal horns, and central spinal cord gray matter. Three-dimensional surface rendering provided visualization of these components along the length of the spinal cord. Seed-based analysis showed that many ICA components exhibited strong and significant (P < .05) correlations, corroborating the ICA results. Resting-state functional MR imaging connectivity networks are qualitatively consistent with known neuroanatomic and functional structures in the spinal cord. Resting-state functional MR imaging of the human cervical spinal cord with a 3.0-T clinical MR imaging unit and standard MR imaging protocols and hardware reveals prominent functional connectivity patterns within the spinal cord gray matter, consistent with known functional and anatomic layouts of the spinal cord.

  20. Long-term functional outcomes and correlation with regional brain connectivity by MRI diffusion tractography metrics in a near-term rabbit model of intrauterine growth restriction.

    PubMed

    Illa, Miriam; Eixarch, Elisenda; Batalle, Dafnis; Arbat-Plana, Ariadna; Muñoz-Moreno, Emma; Figueras, Francesc; Gratacos, Eduard

    2013-01-01

    Intrauterine growth restriction (IUGR) affects 5-10% of all newborns and is associated with increased risk of memory, attention and anxiety problems in late childhood and adolescence. The neurostructural correlates of long-term abnormal neurodevelopment associated with IUGR are unknown. Thus, the aim of this study was to provide a comprehensive description of the long-term functional and neurostructural correlates of abnormal neurodevelopment associated with IUGR in a near-term rabbit model (delivered at 30 days of gestation) and evaluate the development of quantitative imaging biomarkers of abnormal neurodevelopment based on diffusion magnetic resonance imaging (MRI) parameters and connectivity. At +70 postnatal days, 10 cases and 11 controls were functionally evaluated with the Open Field Behavioral Test which evaluates anxiety and attention and the Object Recognition Task that evaluates short-term memory and attention. Subsequently, brains were collected, fixed and a high resolution MRI was performed. Differences in diffusion parameters were analyzed by means of voxel-based and connectivity analysis measuring the number of fibers reconstructed within anxiety, attention and short-term memory networks over the total fibers. The results of the neurobehavioral and cognitive assessment showed a significant higher degree of anxiety, attention and memory problems in cases compared to controls in most of the variables explored. Voxel-based analysis (VBA) revealed significant differences between groups in multiple brain regions mainly in grey matter structures, whereas connectivity analysis demonstrated lower ratios of fibers within the networks in cases, reaching the statistical significance only in the left hemisphere for both networks. Finally, VBA and connectivity results were also correlated with functional outcome. The rabbit model used reproduced long-term functional impairments and their neurostructural correlates of abnormal neurodevelopment associated with IUGR. The description of the pattern of microstructural changes underlying functional defects may help to develop biomarkers based in diffusion MRI and connectivity analysis.

  1. Higher Dimensional Meta-State Analysis Reveals Reduced Resting fMRI Connectivity Dynamism in Schizophrenia Patients.

    PubMed

    Miller, Robyn L; Yaesoubi, Maziar; Turner, Jessica A; Mathalon, Daniel; Preda, Adrian; Pearlson, Godfrey; Adali, Tulay; Calhoun, Vince D

    2016-01-01

    Resting-state functional brain imaging studies of network connectivity have long assumed that functional connections are stationary on the timescale of a typical scan. Interest in moving beyond this simplifying assumption has emerged only recently. The great hope is that training the right lens on time-varying properties of whole-brain network connectivity will shed additional light on previously concealed brain activation patterns characteristic of serious neurological or psychiatric disorders. We present evidence that multiple explicitly dynamical properties of time-varying whole-brain network connectivity are strongly associated with schizophrenia, a complex mental illness whose symptomatic presentation can vary enormously across subjects. As with so much brain-imaging research, a central challenge for dynamic network connectivity lies in determining transformations of the data that both reduce its dimensionality and expose features that are strongly predictive of important population characteristics. Our paper introduces an elegant, simple method of reducing and organizing data around which a large constellation of mutually informative and intuitive dynamical analyses can be performed. This framework combines a discrete multidimensional data-driven representation of connectivity space with four core dynamism measures computed from large-scale properties of each subject's trajectory, ie., properties not identifiable with any specific moment in time and therefore reasonable to employ in settings lacking inter-subject time-alignment, such as resting-state functional imaging studies. Our analysis exposes pronounced differences between schizophrenia patients (Nsz = 151) and healthy controls (Nhc = 163). Time-varying whole-brain network connectivity patterns are found to be markedly less dynamically active in schizophrenia patients, an effect that is even more pronounced in patients with high levels of hallucinatory behavior. To the best of our knowledge this is the first demonstration that high-level dynamic properties of whole-brain connectivity, generic enough to be commensurable under many decompositions of time-varying connectivity data, exhibit robust and systematic differences between schizophrenia patients and healthy controls.

  2. Higher Dimensional Meta-State Analysis Reveals Reduced Resting fMRI Connectivity Dynamism in Schizophrenia Patients

    PubMed Central

    Miller, Robyn L.; Yaesoubi, Maziar; Turner, Jessica A.; Mathalon, Daniel; Preda, Adrian; Pearlson, Godfrey; Adali, Tulay; Calhoun, Vince D.

    2016-01-01

    Resting-state functional brain imaging studies of network connectivity have long assumed that functional connections are stationary on the timescale of a typical scan. Interest in moving beyond this simplifying assumption has emerged only recently. The great hope is that training the right lens on time-varying properties of whole-brain network connectivity will shed additional light on previously concealed brain activation patterns characteristic of serious neurological or psychiatric disorders. We present evidence that multiple explicitly dynamical properties of time-varying whole-brain network connectivity are strongly associated with schizophrenia, a complex mental illness whose symptomatic presentation can vary enormously across subjects. As with so much brain-imaging research, a central challenge for dynamic network connectivity lies in determining transformations of the data that both reduce its dimensionality and expose features that are strongly predictive of important population characteristics. Our paper introduces an elegant, simple method of reducing and organizing data around which a large constellation of mutually informative and intuitive dynamical analyses can be performed. This framework combines a discrete multidimensional data-driven representation of connectivity space with four core dynamism measures computed from large-scale properties of each subject’s trajectory, ie., properties not identifiable with any specific moment in time and therefore reasonable to employ in settings lacking inter-subject time-alignment, such as resting-state functional imaging studies. Our analysis exposes pronounced differences between schizophrenia patients (Nsz = 151) and healthy controls (Nhc = 163). Time-varying whole-brain network connectivity patterns are found to be markedly less dynamically active in schizophrenia patients, an effect that is even more pronounced in patients with high levels of hallucinatory behavior. To the best of our knowledge this is the first demonstration that high-level dynamic properties of whole-brain connectivity, generic enough to be commensurable under many decompositions of time-varying connectivity data, exhibit robust and systematic differences between schizophrenia patients and healthy controls. PMID:26981625

  3. Altered caudate connectivity is associated with executive dysfunction after traumatic brain injury

    PubMed Central

    De Simoni, Sara; Jenkins, Peter O; Bourke, Niall J; Fleminger, Jessica J; Jolly, Amy E; Patel, Maneesh C; Leech, Robert; Sharp, David J

    2018-01-01

    Abstract Traumatic brain injury often produces executive dysfunction. This characteristic cognitive impairment often causes long-term problems with behaviour and personality. Frontal lobe injuries are associated with executive dysfunction, but it is unclear how these injuries relate to corticostriatal interactions that are known to play an important role in behavioural control. We hypothesized that executive dysfunction after traumatic brain injury would be associated with abnormal corticostriatal interactions, a question that has not previously been investigated. We used structural and functional MRI measures of connectivity to investigate this. Corticostriatal functional connectivity in healthy individuals was initially defined using a data-driven approach. A constrained independent component analysis approach was applied in 100 healthy adult dataset from the Human Connectome Project. Diffusion tractography was also performed to generate white matter tracts. The output of this analysis was used to compare corticostriatal functional connectivity and structural integrity between groups of 42 patients with traumatic brain injury and 21 age-matched controls. Subdivisions of the caudate and putamen had distinct patterns of functional connectivity. Traumatic brain injury patients showed disruption to functional connectivity between the caudate and a distributed set of cortical regions, including the anterior cingulate cortex. Cognitive impairments in the patients were mainly seen in processing speed and executive function, as well as increased levels of apathy and fatigue. Abnormalities of caudate functional connectivity correlated with these cognitive impairments, with reductions in right caudate connectivity associated with increased executive dysfunction, information processing speed and memory impairment. Structural connectivity, measured using diffusion tensor imaging between the caudate and anterior cingulate cortex was impaired and this also correlated with measures of executive dysfunction. We show for the first time that altered subcortical connectivity is associated with large-scale network disruption in traumatic brain injury and that this disruption is related to the cognitive impairments seen in these patients. PMID:29186356

  4. Frontal dysconnectivity in 22q11.2 deletion syndrome: an atlas-based functional connectivity analysis.

    PubMed

    Mattiaccio, Leah M; Coman, Ioana L; Thompson, Carlie A; Fremont, Wanda P; Antshel, Kevin M; Kates, Wendy R

    2018-01-20

    22q11.2 deletion syndrome (22q11DS) is a neurodevelopmental syndrome associated with deficits in cognitive and emotional processing. This syndrome represents one of the highest risk factors for the development of schizophrenia. Previous studies of functional connectivity (FC) in 22q11DS report aberrant connectivity patterns in large-scale networks that are associated with the development of psychotic symptoms. In this study, we performed a functional connectivity analysis using the CONN toolbox to test for differential connectivity patterns between 54 individuals with 22q11DS and 30 healthy controls, between the ages of 17-25 years old. We mapped resting-state fMRI data onto 68 atlas-based regions of interest (ROIs) generated by the Desikan-Killany atlas in FreeSurfer, resulting in 2278 ROI-to-ROI connections for which we determined total linear temporal associations between each. Within the group with 22q11DS only, we further tested the association between prodromal symptoms of psychosis and FC. We observed that relative to controls, individuals with 22q11DS displayed increased FC in lobar networks involving the frontal-frontal, frontal-parietal, and frontal-occipital ROIs. In contrast, FC between ROIs in the parietal-temporal and occipital lobes was reduced in the 22q11DS group relative to healthy controls. Moreover, positive psychotic symptoms were positively associated with increased functional connections between the left precuneus and right superior frontal gyrus, as well as reduced functional connectivity between the bilateral pericalcarine. Positive symptoms were negatively associated with increased functional connectivity between the right pericalcarine and right postcentral gyrus. Our results suggest that functional organization may be altered in 22q11DS, leading to disruption in connectivity between frontal and other lobar substructures, and potentially increasing risk for prodromal psychosis.

  5. Characterizing individual differences in functional connectivity using dual-regression and seed-based approaches.

    PubMed

    Smith, David V; Utevsky, Amanda V; Bland, Amy R; Clement, Nathan; Clithero, John A; Harsch, Anne E W; McKell Carter, R; Huettel, Scott A

    2014-07-15

    A central challenge for neuroscience lies in relating inter-individual variability to the functional properties of specific brain regions. Yet, considerable variability exists in the connectivity patterns between different brain areas, potentially producing reliable group differences. Using sex differences as a motivating example, we examined two separate resting-state datasets comprising a total of 188 human participants. Both datasets were decomposed into resting-state networks (RSNs) using a probabilistic spatial independent component analysis (ICA). We estimated voxel-wise functional connectivity with these networks using a dual-regression analysis, which characterizes the participant-level spatiotemporal dynamics of each network while controlling for (via multiple regression) the influence of other networks and sources of variability. We found that males and females exhibit distinct patterns of connectivity with multiple RSNs, including both visual and auditory networks and the right frontal-parietal network. These results replicated across both datasets and were not explained by differences in head motion, data quality, brain volume, cortisol levels, or testosterone levels. Importantly, we also demonstrate that dual-regression functional connectivity is better at detecting inter-individual variability than traditional seed-based functional connectivity approaches. Our findings characterize robust-yet frequently ignored-neural differences between males and females, pointing to the necessity of controlling for sex in neuroscience studies of individual differences. Moreover, our results highlight the importance of employing network-based models to study variability in functional connectivity. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. A SVM-based quantitative fMRI method for resting-state functional network detection.

    PubMed

    Song, Xiaomu; Chen, Nan-kuei

    2014-09-01

    Resting-state functional magnetic resonance imaging (fMRI) aims to measure baseline neuronal connectivity independent of specific functional tasks and to capture changes in the connectivity due to neurological diseases. Most existing network detection methods rely on a fixed threshold to identify functionally connected voxels under the resting state. Due to fMRI non-stationarity, the threshold cannot adapt to variation of data characteristics across sessions and subjects, and generates unreliable mapping results. In this study, a new method is presented for resting-state fMRI data analysis. Specifically, the resting-state network mapping is formulated as an outlier detection process that is implemented using one-class support vector machine (SVM). The results are refined by using a spatial-feature domain prototype selection method and two-class SVM reclassification. The final decision on each voxel is made by comparing its probabilities of functionally connected and unconnected instead of a threshold. Multiple features for resting-state analysis were extracted and examined using an SVM-based feature selection method, and the most representative features were identified. The proposed method was evaluated using synthetic and experimental fMRI data. A comparison study was also performed with independent component analysis (ICA) and correlation analysis. The experimental results show that the proposed method can provide comparable or better network detection performance than ICA and correlation analysis. The method is potentially applicable to various resting-state quantitative fMRI studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Nano-volume drop patterning for rapid on-chip neuronal connect-ability assays.

    PubMed

    Petrelli, Alessia; Marconi, Emanuele; Salerno, Marco; De Pietri Tonelli, Davide; Berdondini, Luca; Dante, Silvia

    2013-11-21

    The ability of neurons to extend projections and to form physical connections among them (i.e., "connect-ability") is altered in several neuropathologies. The quantification of these alterations is an important read-out to investigate pathogenic mechanisms and for research and development of neuropharmacological therapies, however current morphological analysis methods are very time-intensive. Here, we present and characterize a novel on-chip approach that we propose as a rapid assay. Our approach is based on the definition on a neuronal cell culture substrate of discrete patterns of adhesion protein spots (poly-d-lysine, 23 ± 5 μm in diameter) characterized by controlled inter-spot separations of increasing distance (from 40 μm to 100 μm), locally adsorbed in an adhesion-repulsive agarose layer. Under these conditions, the connect-ability of wild type primary neurons from rodents is shown to be strictly dependent on the inter-spot distance, and can be rapidly documented by simple optical read-outs. Moreover, we applied our approach to identify connect-ability defects in neurons from a mouse model of 22q11.2 deletion syndrome/DiGeorge syndrome, by comparative trials with wild type preparations. The presented results demonstrate the sensitivity and reliability of this novel on-chip-based connect-ability approach and validate the use of this method for the rapid assessment of neuronal connect-ability defects in neuropathologies.

  8. An Information Transmission Measure for the Analysis of Effective Connectivity among Cortical Neurons

    PubMed Central

    Law, Andrew J.; Sharma, Gaurav; Schieber, Marc H.

    2014-01-01

    We present a methodology for detecting effective connections between simultaneously recorded neurons using an information transmission measure to identify the presence and direction of information flow from one neuron to another. Using simulated and experimentally-measured data, we evaluate the performance of our proposed method and compare it to the traditional transfer entropy approach. In simulations, our measure of information transmission outperforms transfer entropy in identifying the effective connectivity structure of a neuron ensemble. For experimentally recorded data, where ground truth is unavailable, the proposed method also yields a more plausible connectivity structure than transfer entropy. PMID:21096617

  9. Social network of an internationally connected nurse leader.

    PubMed

    Benton, David

    2016-03-01

    Over the past decade, there has been a proliferation of social media sites offering the opportunity for colleagues to connect with each other locally, nationally and internationally. Meanwhile, nurses have been increasingly using social network analytical techniques to look at team functioning and communication pathways. This article uses the author's LinkedIn social network to illustrate how analysis can offer insights into the connections, and how the results can be used to professional advantage.

  10. High cycle fatigue crack modeling and analysis for deck truss flooring connection details : final report.

    DOT National Transportation Integrated Search

    1997-07-01

    The Oregon Department of Transportation is responsible for many steel deck truss bridges containing connection details that are fatigue prone. A typical bridge, the Winchester Bridge in Roseburg, Oregon, was analyzed to assess the loading conditions,...

  11. Connected commercial vehicles — retrofit safety device kit project : model deployment operational analysis report.

    DOT National Transportation Integrated Search

    2014-03-01

    Connected vehicle wireless data communications can enable safety applications that may reduce injuries and fatalities. Cooperative vehicle-to-vehicle (V2V) safety applications will be effective only if a high fraction of vehicles are equipped. Deploy...

  12. Digital image rectification tool for metrification of gusset plate connections in steel truss bridges.

    DOT National Transportation Integrated Search

    2009-03-01

    A method was developed to obtain dimensional data from photographs for analyzing steel truss gusset plate : connections. The method relies on a software application to correct photographic distortion and to scale the : photographs for analysis. The a...

  13. Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI

    PubMed Central

    Xu, Tingting; Cullen, Kathryn R.; Mueller, Bryon; Schreiner, Mindy W.; Lim, Kelvin O.; Schulz, S. Charles; Parhi, Keshab K.

    2016-01-01

    Borderline personality disorder (BPD) is associated with symptoms such as affect dysregulation, impaired sense of self, and self-harm behaviors. Neuroimaging research on BPD has revealed structural and functional abnormalities in specific brain regions and connections. However, little is known about the topological organizations of brain networks in BPD. We collected resting-state functional magnetic resonance imaging (fMRI) data from 20 patients with BPD and 10 healthy controls, and constructed frequency-specific functional brain networks by correlating wavelet-filtered fMRI signals from 82 cortical and subcortical regions. We employed graph-theory based complex network analysis to investigate the topological properties of the brain networks, and employed network-based statistic to identify functional dysconnections in patients. In the 0.03–0.06 Hz frequency band, compared to controls, patients with BPD showed significantly larger measures of global network topology, including the size of largest connected graph component, clustering coefficient, small-worldness, and local efficiency, indicating increased local cliquishness of the functional brain network. Compared to controls, patients showed lower nodal centrality at several hub nodes but greater centrality at several non-hub nodes in the network. Furthermore, an interconnected subnetwork in 0.03–0.06 Hz frequency band was identified that showed significantly lower connectivity in patients. The links in the subnetwork were mainly long-distance connections between regions located at different lobes; and the mean connectivity of this subnetwork was negatively correlated with the increased global topology measures. Lastly, the key network measures showed high correlations with several clinical symptom scores, and classified BPD patients against healthy controls with high accuracy based on linear discriminant analysis. The abnormal topological properties and connectivity found in this study may add new knowledge to the current understanding of functional brain networks in BPD. However, due to limitation of small sample sizes, the results of the current study should be viewed as exploratory and need to be validated on large samples in future works. PMID:26977400

  14. Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI.

    PubMed

    Xu, Tingting; Cullen, Kathryn R; Mueller, Bryon; Schreiner, Mindy W; Lim, Kelvin O; Schulz, S Charles; Parhi, Keshab K

    2016-01-01

    Borderline personality disorder (BPD) is associated with symptoms such as affect dysregulation, impaired sense of self, and self-harm behaviors. Neuroimaging research on BPD has revealed structural and functional abnormalities in specific brain regions and connections. However, little is known about the topological organizations of brain networks in BPD. We collected resting-state functional magnetic resonance imaging (fMRI) data from 20 patients with BPD and 10 healthy controls, and constructed frequency-specific functional brain networks by correlating wavelet-filtered fMRI signals from 82 cortical and subcortical regions. We employed graph-theory based complex network analysis to investigate the topological properties of the brain networks, and employed network-based statistic to identify functional dysconnections in patients. In the 0.03-0.06 Hz frequency band, compared to controls, patients with BPD showed significantly larger measures of global network topology, including the size of largest connected graph component, clustering coefficient, small-worldness, and local efficiency, indicating increased local cliquishness of the functional brain network. Compared to controls, patients showed lower nodal centrality at several hub nodes but greater centrality at several non-hub nodes in the network. Furthermore, an interconnected subnetwork in 0.03-0.06 Hz frequency band was identified that showed significantly lower connectivity in patients. The links in the subnetwork were mainly long-distance connections between regions located at different lobes; and the mean connectivity of this subnetwork was negatively correlated with the increased global topology measures. Lastly, the key network measures showed high correlations with several clinical symptom scores, and classified BPD patients against healthy controls with high accuracy based on linear discriminant analysis. The abnormal topological properties and connectivity found in this study may add new knowledge to the current understanding of functional brain networks in BPD. However, due to limitation of small sample sizes, the results of the current study should be viewed as exploratory and need to be validated on large samples in future works.

  15. Statistical parsimony networks and species assemblages in Cephalotrichid nemerteans (nemertea).

    PubMed

    Chen, Haixia; Strand, Malin; Norenburg, Jon L; Sun, Shichun; Kajihara, Hiroshi; Chernyshev, Alexey V; Maslakova, Svetlana A; Sundberg, Per

    2010-09-21

    It has been suggested that statistical parsimony network analysis could be used to get an indication of species represented in a set of nucleotide data, and the approach has been used to discuss species boundaries in some taxa. Based on 635 base pairs of the mitochondrial protein-coding gene cytochrome c oxidase I (COI), we analyzed 152 nemertean specimens using statistical parsimony network analysis with the connection probability set to 95%. The analysis revealed 15 distinct networks together with seven singletons. Statistical parsimony yielded three networks supporting the species status of Cephalothrix rufifrons, C. major and C. spiralis as they currently have been delineated by morphological characters and geographical location. Many other networks contained haplotypes from nearby geographical locations. Cladistic structure by maximum likelihood analysis overall supported the network analysis, but indicated a false positive result where subnetworks should have been connected into one network/species. This probably is caused by undersampling of the intraspecific haplotype diversity. Statistical parsimony network analysis provides a rapid and useful tool for detecting possible undescribed/cryptic species among cephalotrichid nemerteans based on COI gene. It should be combined with phylogenetic analysis to get indications of false positive results, i.e., subnetworks that would have been connected with more extensive haplotype sampling.

  16. Employing linear tetranuclear [Zn4(COO)4(OH)2] clusters as building subunits to construct a new Zn(II) coordination polymer with tunable luminescent properties

    NASA Astrophysics Data System (ADS)

    Li, Wu-Wu; Zhang, Zun-Ting

    2016-02-01

    A new Zn(II) coordination polymer, [Zn2(btc) (biimpy) (OH)]n (1 H3btc = 1,3,5-benzenetricarboxylic acid, biimpy = 2,6-bis(1-imdazoly)pyridine) has been successfully synthesized and characterized by elemental analysis, powder single crystal X-ray diffraction analyses. Compound 1 features a 3D framework employing linear tetranuclear [Zn4(COO)4(OH)2] cluster as building subunits. Topological analysis reveals it represents a (3,10)-connected structural topology by viewing btc3-, linear tetranuclear clusters and biimpy as 3-connected nodes, 10-connected nodes, linear linkers, respectively. Moreover, the thermal stability and luminescent property of compound 1 have been well investigated.

  17. IMAGING OF BRAIN FUNCTION BASED ON THE ANALYSIS OF FUNCTIONAL CONNECTIVITY - IMAGING ANALYSIS OF BRAIN FUNCTION BY FMRI AFTER ACUPUNCTURE AT LR3 IN HEALTHY INDIVIDUALS.

    PubMed

    Zheng, Yu; Wang, Yuying; Lan, Yujun; Qu, Xiaodong; Lin, Kelin; Zhang, Jiping; Qu, Shanshan; Wang, Yanjie; Tang, Chunzhi; Huang, Yong

    2016-01-01

    This Study observed the relevant brain areas activated by acupuncture at the Taichong acupoint (LR3) and analyzed the functional connectivity among brain areas using resting state functional magnetic resonance imaging (fMRI) to explore the acupoint specificity of the Taichong acupoint. A total of 45 healthy subjects were randomly divided into the Taichong (LR3) group, sham acupuncture group and sham acupoint group. Subjects received resting state fMRI before acupuncture, after true (sham) acupuncture in each group. Analysis of changes in connectivity among the brain areas was performed using the brain functional connectivity method. The right cerebrum temporal lobe was selected as the seed point to analyze the functional connectivity. It had a functional connectivity with right cerebrum superior frontal gyrus, limbic lobe cingulate gyrus and left cerebrum inferior temporal gyrus (BA 37), inferior parietal lobule compared by before vs. after acupuncture at LR3, and right cerebrum sub-lobar insula and left cerebrum middle frontal gyrus, medial frontal gyrus compared by true vs. sham acupuncture at LR3, and right cerebrum occipital lobe cuneus, occipital lobe sub-gyral, parietal lobe precuneus and left cerebellum anterior lobe culmen by acupuncture at LR3 vs. sham acupoint. Acupuncture at LR3 mainly specifically activated the brain functional network that participates in visual function, associative function, and emotion cognition, which are similar to the features on LR3 in tradition Chinese medicine. These brain areas constituted a neural network structure with specific functions that had specific reference values for the interpretation of the acupoint specificity of the Taichong acupoint.

  18. Multimodal Imaging of Brain Connectivity Using the MIBCA Toolbox: Preliminary Application to Alzheimer's Disease

    NASA Astrophysics Data System (ADS)

    Ribeiro, André Santos; Lacerda, Luís Miguel; Silva, Nuno André da; Ferreira, Hugo Alexandre

    2015-06-01

    The Multimodal Imaging Brain Connectivity Analysis (MIBCA) toolbox is a fully automated all-in-one connectivity analysis toolbox that offers both pre-processing, connectivity, and graph theory analysis of multimodal images such as anatomical, diffusion, and functional MRI, and PET. In this work, the MIBCA functionalities were used to study Alzheimer's Disease (AD) in a multimodal MR/PET approach. Materials and Methods: Data from 12 healthy controls, and 36 patients with EMCI, LMCI and AD (12 patients for each group) were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu), including T1-weighted (T1-w), Diffusion Tensor Imaging (DTI) data, and 18F-AV-45 (florbetapir) dynamic PET data from 40-60 min post injection (4x5 min). Both MR and PET data were automatically pre-processed for all subjects using MIBCA. T1-w data was parcellated into cortical and subcortical regions-of-interest (ROIs), and the corresponding thicknesses and volumes were calculated. DTI data was used to compute structural connectivity matrices based on fibers connecting pairs of ROIs. Lastly, dynamic PET images were summed, and the relative Standard Uptake Values calculated for each ROI. Results: An overall higher uptake of 18F-AV-45, consistent with an increased deposition of beta-amyloid, was observed for the AD group. Additionally, patients showed significant cortical atrophy (thickness and volume) especially in the entorhinal cortex and temporal areas, and a significant increase in Mean Diffusivity (MD) in the hippocampus, amygdala and temporal areas. Furthermore, patients showed a reduction of fiber connectivity with the progression of the disease, especially for intra-hemispherical connections. Conclusion: This work shows the potential of the MIBCA toolbox for the study of AD, as findings were shown to be in agreement with the literature. Here, only structural changes and beta-amyloid accumulation were considered. Yet, MIBCA is further able to process fMRI and different radiotracers, thus leading to integration of functional information, and supporting the research for new multimodal biomarkers for AD and other neurodegenerative diseases.

  19. Spinal Cord Stimulation (SCS) and Functional Magnetic Resonance Imaging (fMRI): Modulation of Cortical Connectivity With Therapeutic SCS.

    PubMed

    Deogaonkar, Milind; Sharma, Mayur; Oluigbo, Chima; Nielson, Dylan M; Yang, Xiangyu; Vera-Portocarrero, Louis; Molnar, Gregory F; Abduljalil, Amir; Sederberg, Per B; Knopp, Michael; Rezai, Ali R

    2016-02-01

    The neurophysiological basis of pain relief due to spinal cord stimulation (SCS) and the related cortical processing of sensory information are not completely understood. The aim of this study was to use resting state functional magnetic resonance imaging (rs-fMRI) to detect changes in cortical networks and cortical processing related to the stimulator-induced pain relief. Ten patients with complex regional pain syndrome (CRPS) or neuropathic leg pain underwent thoracic epidural spinal cord stimulator implantation. Stimulation parameters associated with "optimal" pain reduction were evaluated prior to imaging studies. Rs-fMRI was obtained on a 3 Tesla, Philips Achieva MRI. Rs-fMRI was performed with stimulator off (300TRs) and stimulator at optimum (Opt, 300 TRs) pain relief settings. Seed-based analysis of the resting state functional connectivity was conducted using seeds in regions established as participating in pain networks or in the default mode network (DMN) in addition to the network analysis. NCUT (normalized cut) parcellation was used to generate 98 cortical and subcortical regions of interest in order to expand our analysis of changes in functional connections to the entire brain. We corrected for multiple comparisons by limiting the false discovery rate to 5%. Significant differences in resting state connectivity between SCS off and optimal state were seen between several regions related to pain perception, including the left frontal insula, right primary and secondary somatosensory cortices, as well as in regions involved in the DMN, such as the precuneus. In examining changes in connectivity across the entire brain, we found decreased connection strength between somatosensory and limbic areas and increased connection strength between somatosensory and DMN with optimal SCS resulting in pain relief. This suggests that pain relief from SCS may be reducing negative emotional processing associated with pain, allowing somatosensory areas to become more integrated into default mode activity. SCS reduces the affective component of pain resulting in optimal pain relief. Study shows a decreased connectivity between somatosensory and limbic areas associated with optimal pain relief due to SCS. © 2015 International Neuromodulation Society.

  20. Exploring the Epileptic Brain Network Using Time-Variant Effective Connectivity and Graph Theory.

    PubMed

    Storti, Silvia Francesca; Galazzo, Ilaria Boscolo; Khan, Sehresh; Manganotti, Paolo; Menegaz, Gloria

    2017-09-01

    The application of time-varying measures of causality between source time series can be very informative to elucidate the direction of communication among the regions of an epileptic brain. The aim of the study was to identify the dynamic patterns of epileptic networks in focal epilepsy by applying multivariate adaptive directed transfer function (ADTF) analysis and graph theory to high-density electroencephalographic recordings. The cortical network was modeled after source reconstruction and topology modulations were detected during interictal spikes. First a distributed linear inverse solution, constrained to the individual grey matter, was applied to the averaged spikes and the mean source activity over 112 regions, as identified by the Harvard-Oxford Atlas, was calculated. Then, the ADTF, a dynamic measure of causality, was used to quantify the connectivity strength between pairs of regions acting as nodes in the graph, and the measure of node centrality was derived. The proposed analysis was effective in detecting the focal regions as well as in characterizing the dynamics of the spike propagation, providing evidence of the fact that the node centrality is a reliable feature for the identification of the epileptogenic zones. Validation was performed by multimodal analysis as well as from surgical outcomes. In conclusion, the time-variant connectivity analysis applied to the epileptic patients can distinguish the generator of the abnormal activity from the propagation spread and identify the connectivity pattern over time.

  1. A Baseline for the Multivariate Comparison of Resting-State Networks

    PubMed Central

    Allen, Elena A.; Erhardt, Erik B.; Damaraju, Eswar; Gruner, William; Segall, Judith M.; Silva, Rogers F.; Havlicek, Martin; Rachakonda, Srinivas; Fries, Jill; Kalyanam, Ravi; Michael, Andrew M.; Caprihan, Arvind; Turner, Jessica A.; Eichele, Tom; Adelsheim, Steven; Bryan, Angela D.; Bustillo, Juan; Clark, Vincent P.; Feldstein Ewing, Sarah W.; Filbey, Francesca; Ford, Corey C.; Hutchison, Kent; Jung, Rex E.; Kiehl, Kent A.; Kodituwakku, Piyadasa; Komesu, Yuko M.; Mayer, Andrew R.; Pearlson, Godfrey D.; Phillips, John P.; Sadek, Joseph R.; Stevens, Michael; Teuscher, Ursina; Thoma, Robert J.; Calhoun, Vince D.

    2011-01-01

    As the size of functional and structural MRI datasets expands, it becomes increasingly important to establish a baseline from which diagnostic relevance may be determined, a processing strategy that efficiently prepares data for analysis, and a statistical approach that identifies important effects in a manner that is both robust and reproducible. In this paper, we introduce a multivariate analytic approach that optimizes sensitivity and reduces unnecessary testing. We demonstrate the utility of this mega-analytic approach by identifying the effects of age and gender on the resting-state networks (RSNs) of 603 healthy adolescents and adults (mean age: 23.4 years, range: 12–71 years). Data were collected on the same scanner, preprocessed using an automated analysis pipeline based in SPM, and studied using group independent component analysis. RSNs were identified and evaluated in terms of three primary outcome measures: time course spectral power, spatial map intensity, and functional network connectivity. Results revealed robust effects of age on all three outcome measures, largely indicating decreases in network coherence and connectivity with increasing age. Gender effects were of smaller magnitude but suggested stronger intra-network connectivity in females and more inter-network connectivity in males, particularly with regard to sensorimotor networks. These findings, along with the analysis approach and statistical framework described here, provide a useful baseline for future investigations of brain networks in health and disease. PMID:21442040

  2. Multimodal MR-imaging reveals large-scale structural and functional connectivity changes in profound early blindness

    PubMed Central

    Bauer, Corinna M.; Hirsch, Gabriella V.; Zajac, Lauren; Koo, Bang-Bon; Collignon, Olivier

    2017-01-01

    In the setting of profound ocular blindness, numerous lines of evidence demonstrate the existence of dramatic anatomical and functional changes within the brain. However, previous studies based on a variety of distinct measures have often provided inconsistent findings. To help reconcile this issue, we used a multimodal magnetic resonance (MR)-based imaging approach to provide complementary structural and functional information regarding this neuroplastic reorganization. This included gray matter structural morphometry, high angular resolution diffusion imaging (HARDI) of white matter connectivity and integrity, and resting state functional connectivity MRI (rsfcMRI) analysis. When comparing the brains of early blind individuals to sighted controls, we found evidence of co-occurring decreases in cortical volume and cortical thickness within visual processing areas of the occipital and temporal cortices respectively. Increases in cortical volume in the early blind were evident within regions of parietal cortex. Investigating white matter connections using HARDI revealed patterns of increased and decreased connectivity when comparing both groups. In the blind, increased white matter connectivity (indexed by increased fiber number) was predominantly left-lateralized, including between frontal and temporal areas implicated with language processing. Decreases in structural connectivity were evident involving frontal and somatosensory regions as well as between occipital and cingulate cortices. Differences in white matter integrity (as indexed by quantitative anisotropy, or QA) were also in general agreement with observed pattern changes in the number of white matter fibers. Analysis of resting state sequences showed evidence of both increased and decreased functional connectivity in the blind compared to sighted controls. Specifically, increased connectivity was evident between temporal and inferior frontal areas. Decreases in functional connectivity were observed between occipital and frontal and somatosensory-motor areas and between temporal (mainly fusiform and parahippocampus) and parietal, frontal, and other temporal areas. Correlations in white matter connectivity and functional connectivity observed between early blind and sighted controls showed an overall high degree of association. However, comparing the relative changes in white matter and functional connectivity between early blind and sighted controls did not show a significant correlation. In summary, these findings provide complimentary evidence, as well as highlight potential contradictions, regarding the nature of regional and large scale neuroplastic reorganization resulting from early onset blindness. PMID:28328939

  3. Altered resting-state functional connectivity in patients with chronic bilateral vestibular failure.

    PubMed

    Göttlich, Martin; Jandl, Nico M; Wojak, Jann F; Sprenger, Andreas; von der Gablentz, Janina; Münte, Thomas F; Krämer, Ulrike M; Helmchen, Christoph

    2014-01-01

    Patients with bilateral vestibular failure (BVF) suffer from gait unsteadiness, oscillopsia and impaired spatial orientation. Brain imaging studies applying caloric irrigation to patients with BVF have shown altered neural activity of cortical visual-vestibular interaction: decreased bilateral neural activity in the posterior insula and parietal operculum and decreased deactivations in the visual cortex. It is unknown how this affects functional connectivity in the resting brain and how changes in connectivity are related to vestibular impairment. We applied a novel data driven approach based on graph theory to investigate altered whole-brain resting-state functional connectivity in BVF patients (n= 22) compared to age- and gender-matched healthy controls (n= 25) using resting-state fMRI. Changes in functional connectivity were related to subjective (vestibular scores) and objective functional parameters of vestibular impairment, specifically, the adaptive changes during active (self-guided) and passive (investigator driven) head impulse test (HIT) which reflects the integrity of the vestibulo-ocular reflex (VOR). BVF patients showed lower bilateral connectivity in the posterior insula and parietal operculum but higher connectivity in the posterior cerebellum compared to controls. Seed-based analysis revealed stronger connectivity from the right posterior insula to the precuneus, anterior insula, anterior cingulate cortex and the middle frontal gyrus. Excitingly, functional connectivity in the supramarginal gyrus (SMG) of the inferior parietal lobe and posterior cerebellum correlated with the increase of VOR gain during active as compared to passive HIT, i.e., the larger the adaptive VOR changes the larger was the increase in regional functional connectivity. Using whole brain resting-state connectivity analysis in BVF patients we show that enduring bilateral deficient or missing vestibular input leads to changes in resting-state connectivity of the brain. These changes in the resting brain are robust and task-independent as they were found in the absence of sensory stimulation and without a region-related a priori hypothesis. Therefore they may indicate a fundamental disease-related change in the resting brain. They may account for the patients' persistent deficits in visuo-spatial attention, spatial orientation and unsteadiness. The relation of increasing connectivity in the inferior parietal lobe, specifically SMG, to improvement of VOR during active head movements reflects cortical plasticity in BVF and may play a clinical role in vestibular rehabilitation.

  4. Hyperventilation in Patients With Focal Epilepsy: Electromagnetic Tomography, Functional Connectivity and Graph Theory - A Possible Tool in Epilepsy Diagnosis?

    PubMed

    Mazzucchi, Edoardo; Vollono, Catello; Losurdo, Anna; Testani, Elisa; Gnoni, Valentina; Di Blasi, Chiara; Giannantoni, Nadia M; Lapenta, Leonardo; Brunetti, Valerio; Della Marca, Giacomo

    2017-01-01

    Hyperventilation (HV) is a commonly used electroencephalogram activation method. We analyzed EEG recordings in 22 normal subjects and 22 patients with focal epilepsy of unknown cause. We selected segments before (PRE), during (HYPER), and 5 minutes after (POST) HV. To analyze the neural generators of EEG signal, we used standard low-resolution electromagnetic tomography (sLORETA software). We then computed EEG lagged coherence, an index of functional connectivity, between 19 regions of interest. A weighted graph was built for each band in every subject, and characteristic path length (L) and clustering coefficient (C) have been computed. Statistical comparisons were performed by means of analysis of variance (Group X Condition X Band) for mean lagged coherence, L and C. Hyperventilation significantly increases EEG neural generators (P < 0.001); the effect is particularly evident in cingulate cortex. Functional connectivity was increased by HV in delta, theta, alpha, and beta bands in the Epileptic group (P < 0.01) and only in theta band in Control group. Intergroup analysis of mean lagged coherence, C and L, showed significant differences for Group (P < 0.001), Condition (P < 0.001), and Band (P < 0.001). Analysis of variance for L also showed significant interactions: Group X Condition (P = 0.003) and Group X Band (P < 0.001). In our relatively small group of epileptic patients, HV is associated with activation of cingulate cortex; moreover, it modifies brain connectivity. The significant differences in mean lagged coherence, path length, and clustering coefficient permit to hypothesize that this activation method leads to different brain connectivity patterns in patients with epilepsy when compared with normal subjects. If confirmed by other studies involving larger populations, this analysis could become a diagnostic tool in epilepsy.

  5. Sensitivity analysis of water consumption in an office building

    NASA Astrophysics Data System (ADS)

    Suchacek, Tomas; Tuhovcak, Ladislav; Rucka, Jan

    2018-02-01

    This article deals with sensitivity analysis of real water consumption in an office building. During a long-term real study, reducing of pressure in its water connection was simulated. A sensitivity analysis of uneven water demand was conducted during working time at various provided pressures and at various time step duration. Correlations between maximal coefficients of water demand variation during working time and provided pressure were suggested. The influence of provided pressure in the water connection on mean coefficients of water demand variation was pointed out, altogether for working hours of all days and separately for days with identical working hours.

  6. Psychophysiological whole-brain network clustering based on connectivity dynamics analysis in naturalistic conditions.

    PubMed

    Raz, Gal; Shpigelman, Lavi; Jacob, Yael; Gonen, Tal; Benjamini, Yoav; Hendler, Talma

    2016-12-01

    We introduce a novel method for delineating context-dependent functional brain networks whose connectivity dynamics are synchronized with the occurrence of a specific psychophysiological process of interest. In this method of context-related network dynamics analysis (CRNDA), a continuous psychophysiological index serves as a reference for clustering the whole-brain into functional networks. We applied CRNDA to fMRI data recorded during the viewing of a sadness-inducing film clip. The method reliably demarcated networks in which temporal patterns of connectivity related to the time series of reported emotional intensity. Our work successfully replicated the link between network connectivity and emotion rating in an independent sample group for seven of the networks. The demarcated networks have clear common functional denominators. Three of these networks overlap with distinct empathy-related networks, previously identified in distinct sets of studies. The other networks are related to sensorimotor processing, language, attention, and working memory. The results indicate that CRNDA, a data-driven method for network clustering that is sensitive to transient connectivity patterns, can productively and reliably demarcate networks that follow psychologically meaningful processes. Hum Brain Mapp 37:4654-4672, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. The visual white matter: The application of diffusion MRI and fiber tractography to vision science

    PubMed Central

    Rokem, Ariel; Takemura, Hiromasa; Bock, Andrew S.; Scherf, K. Suzanne; Behrmann, Marlene; Wandell, Brian A.; Fine, Ione; Bridge, Holly; Pestilli, Franco

    2017-01-01

    Visual neuroscience has traditionally focused much of its attention on understanding the response properties of single neurons or neuronal ensembles. The visual white matter and the long-range neuronal connections it supports are fundamental in establishing such neuronal response properties and visual function. This review article provides an introduction to measurements and methods to study the human visual white matter using diffusion MRI. These methods allow us to measure the microstructural and macrostructural properties of the white matter in living human individuals; they allow us to trace long-range connections between neurons in different parts of the visual system and to measure the biophysical properties of these connections. We also review a range of findings from recent studies on connections between different visual field maps, the effects of visual impairment on the white matter, and the properties underlying networks that process visual information supporting visual face recognition. Finally, we discuss a few promising directions for future studies. These include new methods for analysis of MRI data, open datasets that are becoming available to study brain connectivity and white matter properties, and open source software for the analysis of these data. PMID:28196374

  8. Identifying dynamic functional connectivity biomarkers using GIG-ICA: Application to schizophrenia, schizoaffective disorder, and psychotic bipolar disorder.

    PubMed

    Du, Yuhui; Pearlson, Godfrey D; Lin, Dongdong; Sui, Jing; Chen, Jiayu; Salman, Mustafa; Tamminga, Carol A; Ivleva, Elena I; Sweeney, John A; Keshavan, Matcheri S; Clementz, Brett A; Bustillo, Juan; Calhoun, Vince D

    2017-05-01

    Functional magnetic resonance imaging (fMRI) studies have shown altered brain dynamic functional connectivity (DFC) in mental disorders. Here, we aim to explore DFC across a spectrum of symptomatically-related disorders including bipolar disorder with psychosis (BPP), schizoaffective disorder (SAD), and schizophrenia (SZ). We introduce a group information guided independent component analysis procedure to estimate both group-level and subject-specific connectivity states from DFC. Using resting-state fMRI data of 238 healthy controls (HCs), 140 BPP, 132 SAD, and 113 SZ patients, we identified measures differentiating groups from the whole-brain DFC and traditional static functional connectivity (SFC), separately. Results show that DFC provided more informative measures than SFC. Diagnosis-related connectivity states were evident using DFC analysis. For the dominant state consistent across groups, we found 22 instances of hypoconnectivity (with decreasing trends from HC to BPP to SAD to SZ) mainly involving post-central, frontal, and cerebellar cortices as well as 34 examples of hyperconnectivity (with increasing trends HC through SZ) primarily involving thalamus and temporal cortices. Hypoconnectivities/hyperconnectivities also showed negative/positive correlations, respectively, with clinical symptom scores. Specifically, hypoconnectivities linking postcentral and frontal gyri were significantly negatively correlated with the PANSS positive/negative scores. For frontal connectivities, BPP resembled HC while SAD and SZ were more similar. Three connectivities involving the left cerebellar crus differentiated SZ from other groups and one connection linking frontal and fusiform cortices showed a SAD-unique change. In summary, our method is promising for assessing DFC and may yield imaging biomarkers for quantifying the dimension of psychosis. Hum Brain Mapp 38:2683-2708, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Beyond the word and image: II- Structural and functional connectivity of a common semantic system.

    PubMed

    Jouen, A L; Ellmore, T M; Madden-Lombardi, C J; Pallier, C; Dominey, P F; Ventre-Dominey, J

    2018-02-01

    Understanding events requires interplaying cognitive processes arising in neural networks whose organisation and connectivity remain subjects of controversy in humans. In the present study, by combining diffusion tensor imaging and functional interaction analysis, we aim to provide new insights on the organisation of the structural and functional pathways connecting the multiple nodes of the identified semantic system -shared by vision and language (Jouen et al., 2015). We investigated a group of 19 healthy human subjects during experimental tasks of reading sentences or seeing pictures. The structural connectivity was realised by deterministic tractography using an algorithm to extract white matter fibers terminating in the selected regions of interest (ROIs) and the functional connectivity by independent component analysis to measure correlated activities among these ROIs. The major connections link ventral neural stuctures including the parietal and temporal cortices through inferior and middle longitudinal fasciculi, the retrosplenial and parahippocampal cortices through the cingulate bundle, and the temporal and prefrontal structures through the uncinate fasciculus. The imageability score provided when the subject was reading a sentence was significantly correlated with the factor of anisotropy of the left parieto-temporal connections of the middle longitudinal fasciculus. A large part of this ventrally localised structural connectivity corresponds to functional interactions between the main parietal, temporal and frontal nodes. More precisely, the strong coactivation both in the anterior temporal pole and in the region of the temporo-parietal cortex suggests dual and cooperating roles for these areas within the semantic system. These findings are discussed in terms of two semantics-related sub-systems responsible for conceptual representation. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. fMRI neurofeedback of amygdala response to aversive stimuli enhances prefrontal-limbic brain connectivity.

    PubMed

    Paret, Christian; Ruf, Matthias; Gerchen, Martin Fungisai; Kluetsch, Rosemarie; Demirakca, Traute; Jungkunz, Martin; Bertsch, Katja; Schmahl, Christian; Ende, Gabriele

    2016-01-15

    Down-regulation of the amygdala with real-time fMRI neurofeedback (rtfMRI NF) potentially allows targeting brain circuits of emotion processing and may involve prefrontal-limbic networks underlying effective emotion regulation. Little research has been dedicated to the effect of rtfMRI NF on the functional connectivity of the amygdala and connectivity patterns in amygdala down-regulation with neurofeedback have not been addressed yet. Using psychophysiological interaction analysis of fMRI data, we present evidence that voluntary amygdala down-regulation by rtfMRI NF while viewing aversive pictures was associated with increased connectivity of the right amygdala with the ventromedial prefrontal cortex (vmPFC) in healthy subjects (N=16). In contrast, a control group (N=16) receiving sham feedback did not alter amygdala connectivity (Group×Condition t-contrast: p<.05 at cluster-level). Task-dependent increases in amygdala-vmPFC connectivity were predicted by picture arousal (β=.59, p<.05). A dynamic causal modeling analysis with Bayesian model selection aimed at further characterizing the underlying causal structure and favored a bottom-up model assuming predominant information flow from the amygdala to the vmPFC (xp=.90). The results were complemented by the observation of task-dependent alterations in functional connectivity of the vmPFC with the visual cortex and the ventrolateral PFC in the experimental group (Condition t-contrast: p<.05 at cluster-level). Taken together, the results underscore the potential of amygdala fMRI neurofeedback to influence functional connectivity in key networks of emotion processing and regulation. This may be beneficial for patients suffering from severe emotion dysregulation by improving neural self-regulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Self-reference, emotion inhibition and somatosensory disturbance: preliminary investigation of network perturbations in conversion disorder.

    PubMed

    Monsa, R; Peer, M; Arzy, S

    2018-06-01

    Conversion disorder (CD), or functional neurological disorder, is manifested as a neurological disturbance that is not macroscopically visible on clinical structural neuroimaging and is instead ascribed to underlying psychological stress. Known for many years in neuropsychiatry, a comprehensive explanation of the way in which psychological stress leads to a neurological deficit of a structural-like origin is still lacking. We applied whole-brain network-based data-driven analyses on resting-state functional magnetic resonance imaging, recorded in seven patients with acute-onset, stroke-like CD with unilateral paresis and hypoesthesia as compared with 15 age-matched healthy controls. We used a clustering analysis to measure functional connectivity (FC) strength within 10 different brain networks, as well as between these networks. Finally, we tested FC of specific brain regions that are known to be involved in CD. We found a significant increase in FC strength only within the default-mode network (DMN), which manages self-referential processing. Examination of inter-connectivity between networks showed a structure of disturbed connectivity, which included decreased connectivity between the DMN and limbic/salience network, increased connectivity between the limbic/salience network and body-related temporo-parieto-occipital junction network, decreased connectivity between the temporo-parieto-occipital junction and memory-related medial temporal lobe, and decreased connectivity between the medial temporal lobe and sensorimotor network. Region-specific FC analysis showed increased connectivity between the hippocampus and DMN. These preliminary results of disturbances in brain networks related to memory, emotions and self-referential processing, and networks involved in motor planning and execution, suggest a role of these cognitive functions in the psychopathology of CD. © 2018 EAN.

  12. Exploring connectivity with large-scale Granger causality on resting-state functional MRI.

    PubMed

    DSouza, Adora M; Abidin, Anas Z; Leistritz, Lutz; Wismüller, Axel

    2017-08-01

    Large-scale Granger causality (lsGC) is a recently developed, resting-state functional MRI (fMRI) connectivity analysis approach that estimates multivariate voxel-resolution connectivity. Unlike most commonly used multivariate approaches, which establish coarse-resolution connectivity by aggregating voxel time-series avoiding an underdetermined problem, lsGC estimates voxel-resolution, fine-grained connectivity by incorporating an embedded dimension reduction. We investigate application of lsGC on realistic fMRI simulations, modeling smoothing of neuronal activity by the hemodynamic response function and repetition time (TR), and empirical resting-state fMRI data. Subsequently, functional subnetworks are extracted from lsGC connectivity measures for both datasets and validated quantitatively. We also provide guidelines to select lsGC free parameters. Results indicate that lsGC reliably recovers underlying network structure with area under receiver operator characteristic curve (AUC) of 0.93 at TR=1.5s for a 10-min session of fMRI simulations. Furthermore, subnetworks of closely interacting modules are recovered from the aforementioned lsGC networks. Results on empirical resting-state fMRI data demonstrate recovery of visual and motor cortex in close agreement with spatial maps obtained from (i) visuo-motor fMRI stimulation task-sequence (Accuracy=0.76) and (ii) independent component analysis (ICA) of resting-state fMRI (Accuracy=0.86). Compared with conventional Granger causality approach (AUC=0.75), lsGC produces better network recovery on fMRI simulations. Furthermore, it cannot recover functional subnetworks from empirical fMRI data, since quantifying voxel-resolution connectivity is not possible as consequence of encountering an underdetermined problem. Functional network recovery from fMRI data suggests that lsGC gives useful insight into connectivity patterns from resting-state fMRI at a multivariate voxel-resolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Understanding the Spatial Scale of Genetic Connectivity at Sea: Unique Insights from a Land Fish and a Meta-Analysis.

    PubMed

    Cooke, Georgina M; Schlub, Timothy E; Sherwin, William B; Ord, Terry J

    2016-01-01

    Quantifying the spatial scale of population connectivity is important for understanding the evolutionary potential of ecologically divergent populations and for designing conservation strategies to preserve those populations. For marine organisms like fish, the spatial scale of connectivity is generally set by a pelagic larval phase. This has complicated past estimates of connectivity because detailed information on larval movements are difficult to obtain. Genetic approaches provide a tractable alternative and have the added benefit of estimating directly the reproductive isolation of populations. In this study, we leveraged empirical estimates of genetic differentiation among populations with simulations and a meta-analysis to provide a general estimate of the spatial scale of genetic connectivity in marine environments. We used neutral genetic markers to first quantify the genetic differentiation of ecologically-isolated adult populations of a land dwelling fish, the Pacific leaping blenny (Alticus arnoldorum), where marine larval dispersal is the only probable means of connectivity among populations. We then compared these estimates to simulations of a range of marine dispersal scenarios and to collated FST and distance data from the literature for marine fish across diverse spatial scales. We found genetic connectivity at sea was extensive among marine populations and in the case of A. arnoldorum, apparently little affected by the presence of ecological barriers. We estimated that ~5000 km (with broad confidence intervals ranging from 810-11,692 km) was the spatial scale at which evolutionarily meaningful barriers to gene flow start to occur at sea, although substantially shorter distances are also possible for some taxa. In general, however, such a large estimate of connectivity has important implications for the evolutionary and conservation potential of many marine fish communities.

  14. Thalamotemporal impairment in temporal lobe epilepsy: a combined MRI analysis of structure, integrity, and connectivity.

    PubMed

    Keller, Simon S; O'Muircheartaigh, Jonathan; Traynor, Catherine; Towgood, Karren; Barker, Gareth J; Richardson, Mark P

    2014-02-01

    Thalamic abnormality in temporal lobe epilepsy (TLE) is well known from imaging studies, but evidence is lacking regarding connectivity profiles of the thalamus and their involvement in the disease process. We used a novel multisequence magnetic resonance imaging (MRI) protocol to elucidate the relationship between mesial temporal and thalamic pathology in TLE. For 23 patients with TLE and 23 healthy controls, we performed T1 -weighted (for analysis of tissue structure), diffusion tensor imaging (tissue connectivity), and T1 and T2 relaxation (tissue integrity) MRI across the whole brain. We used connectivity-based segmentation to determine connectivity patterns of thalamus to ipsilateral cortical regions (occipital, parietal, prefrontal, postcentral, precentral, and temporal). We subsequently determined volumes, mean tractography streamlines, and mean T1 and T2 relaxometry values for each thalamic segment preferentially connecting to a given cortical region, and of the hippocampus and entorhinal cortex. As expected, patients had significant volume reduction and increased T2 relaxation time in ipsilateral hippocampus and entorhinal cortex. There was bilateral volume loss, mean streamline reduction, and T2 increase of the thalamic segment preferentially connected to temporal lobe, corresponding to anterior, dorsomedial, and pulvinar thalamic regions, with no evidence of significant change in any other thalamic segments. Left and right thalamotemporal segment volume and T2 were significantly correlated with volume and T2 of ipsilateral (epileptogenic), but not contralateral (nonepileptogenic), mesial temporal structures. These convergent and robust data indicate that thalamic abnormality in TLE is restricted to the area of the thalamus that is preferentially connected to the epileptogenic temporal lobe. The degree of thalamic pathology is related to the extent of mesial temporal lobe damage in TLE. © 2014 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.

  15. The Mouse Cortical Connectome, Characterized by an Ultra-Dense Cortical Graph, Maintains Specificity by Distinct Connectivity Profiles.

    PubMed

    Gămănuţ, Răzvan; Kennedy, Henry; Toroczkai, Zoltán; Ercsey-Ravasz, Mária; Van Essen, David C; Knoblauch, Kenneth; Burkhalter, Andreas

    2018-02-07

    The inter-areal wiring pattern of the mouse cerebral cortex was analyzed in relation to a refined parcellation of cortical areas. Twenty-seven retrograde tracer injections were made in 19 areas of a 47-area parcellation of the mouse neocortex. Flat mounts of the cortex and multiple histological markers enabled detailed counts of labeled neurons in individual areas. The observed log-normal distribution of connection weights to each cortical area spans 5 orders of magnitude and reveals a distinct connectivity profile for each area, analogous to that observed in macaques. The cortical network has a density of 97%, considerably higher than the 66% density reported in macaques. A weighted graph analysis reveals a similar global efficiency but weaker spatial clustering compared with that reported in macaques. The consistency, precision of the connectivity profile, density, and weighted graph analysis of the present data differ significantly from those obtained in earlier studies in the mouse. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Altered effective connectivity of default model brain network underlying amnestic MCI

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Wang, Yonghui; Tian, Jie

    2012-02-01

    Mild cognitive impairment (MCI) is the transitional, heterogeneous continuum from healthy elderly to Alzheimer's disease (AD). Previous studies have shown that brain functional activity in the default mode network (DMN) is impaired in MCI patients. However, the altered effective connectivity of the DMN in MCI patients remains largely unknown. The present study combined an independent component analysis (ICA) approach with Granger causality analysis (mGCA) to investigate the effective connectivity within the DMN in 12 amnestic MCI patients and 12 age-matched healthy elderly. Compared to the healthy control, the MCI exhibited decreased functional activity in the posterior DMN regions, as well as a trend towards activity increases in anterior DMN regions. Results from mGCA further supported this conclusion that the causal influence projecting to the precuneus/PCC became much weaker in MCI, while stronger interregional interactions emerged within the frontal-parietal cortices. These findings suggested that abnormal effective connectivity within the DMN may elucidate the dysfunctional and compensatory processes in MCI brain networks.

  17. Functional connectivity analysis of the neural bases of emotion regulation: A comparison of independent component method with density-based k-means clustering method.

    PubMed

    Zou, Ling; Guo, Qian; Xu, Yi; Yang, Biao; Jiao, Zhuqing; Xiang, Jianbo

    2016-04-29

    Functional magnetic resonance imaging (fMRI) is an important tool in neuroscience for assessing connectivity and interactions between distant areas of the brain. To find and characterize the coherent patterns of brain activity as a means of identifying brain systems for the cognitive reappraisal of the emotion task, both density-based k-means clustering and independent component analysis (ICA) methods can be applied to characterize the interactions between brain regions involved in cognitive reappraisal of emotion. Our results reveal that compared with the ICA method, the density-based k-means clustering method provides a higher sensitivity of polymerization. In addition, it is more sensitive to those relatively weak functional connection regions. Thus, the study concludes that in the process of receiving emotional stimuli, the relatively obvious activation areas are mainly distributed in the frontal lobe, cingulum and near the hypothalamus. Furthermore, density-based k-means clustering method creates a more reliable method for follow-up studies of brain functional connectivity.

  18. Empirical analysis on the connection between power-law distributions and allometries for urban indicators

    NASA Astrophysics Data System (ADS)

    Alves, L. G. A.; Ribeiro, H. V.; Lenzi, E. K.; Mendes, R. S.

    2014-09-01

    We report on the existing connection between power-law distributions and allometries. As it was first reported in Gomez-Lievano et al. (2012) for the relationship between homicides and population, when these urban indicators present asymptotic power-law distributions, they can also display specific allometries among themselves. Here, we present an extensive characterization of this connection when considering all possible pairs of relationships from twelve urban indicators of Brazilian cities (such as child labor, illiteracy, income, sanitation and unemployment). Our analysis reveals that all our urban indicators are asymptotically distributed as power laws and that the proposed connection also holds for our data when the allometric relationship displays enough correlations. We have also found that not all allometric relationships are independent and that they can be understood as a consequence of the allometric relationship between the urban indicator and the population size. We further show that the residuals fluctuations surrounding the allometries are characterized by an almost constant variance and log-normal distributions.

  19. Temporal and spectral characteristics of dynamic functional connectivity between resting-state networks reveal information beyond static connectivity

    PubMed Central

    Yeh, Hsiang J.; Guindani, Michele; Vannucci, Marina; Haneef, Zulfi; Stern, John M.

    2018-01-01

    Estimation of functional connectivity (FC) has become an increasingly powerful tool for investigating healthy and abnormal brain function. Static connectivity, in particular, has played a large part in guiding conclusions from the majority of resting-state functional MRI studies. However, accumulating evidence points to the presence of temporal fluctuations in FC, leading to increasing interest in estimating FC as a dynamic quantity. One central issue that has arisen in this new view of connectivity is the dramatic increase in complexity caused by dynamic functional connectivity (dFC) estimation. To computationally handle this increased complexity, a limited set of dFC properties, primarily the mean and variance, have generally been considered. Additionally, it remains unclear how to integrate the increased information from dFC into pattern recognition techniques for subject-level prediction. In this study, we propose an approach to address these two issues based on a large number of previously unexplored temporal and spectral features of dynamic functional connectivity. A Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model is used to estimate time-varying patterns of functional connectivity between resting-state networks. Time-frequency analysis is then performed on dFC estimates, and a large number of previously unexplored temporal and spectral features drawn from signal processing literature are extracted for dFC estimates. We apply the investigated features to two neurologic populations of interest, healthy controls and patients with temporal lobe epilepsy, and show that the proposed approach leads to substantial increases in predictive performance compared to both traditional estimates of static connectivity as well as current approaches to dFC. Variable importance is assessed and shows that there are several quantities that can be extracted from dFC signal which are more informative than the traditional mean or variance of dFC. This work illuminates many previously unexplored facets of the dynamic properties of functional connectivity between resting-state networks, and provides a platform for dynamic functional connectivity analysis that facilitates its usage as an investigative measure for healthy as well as abnormal brain function. PMID:29320526

  20. Evaluation of structural connectivity changes in betel-quid chewers using generalized q-sampling MRI.

    PubMed

    Weng, Jun-Cheng; Kao, Te-Wei; Huang, Guo-Joe; Tyan, Yeu-Sheng; Tseng, Hsien-Chun; Ho, Ming-Chou

    2017-07-01

    Betel quid (BQ) is a common addictive substance in many Asian countries. However, few studies have focused on the influences of BQ on the brain. It remains unclear how BQ can affect structural brain abnormalities in BQ chewers. We aimed to use generalized q-sampling imaging (GQI) to evaluate the impact of the neurological structure of white matter caused by BQ. The study population comprised 16 BQ chewers, 15 tobacco and alcohol controls, and 17 healthy controls. We used GQI with voxel-based statistical analysis (VBA) to evaluate structural brain and connectivity abnormalities in the BQ chewers compared to the tobacco and alcohol controls and the healthy controls. Graph theoretical analysis (GTA) and network-based statistical (NBS) analysis were also performed to identify the structural network differences among the three groups. Using GQI, we found increases in diffusion anisotropy in the right anterior cingulate cortex (ACC), the midbrain, the bilateral angular gyrus, the right superior temporal gyrus (rSTG), the bilateral superior occipital gyrus, the left middle occipital gyrus, the bilateral superior and inferior parietal lobule, and the bilateral postcentral and precentral gyrus in the BQ chewers when compared to the tobacco and alcohol controls and the healthy controls. In GTA and NBS analyses, we found more connections in connectivity among the BQ chewers, particularly in the bilateral anterior cingulum. Our results provided further evidence indicating that BQ chewing may lead to brain structure and connectivity changes in BQ chewers.

  1. Understanding the Connection Between Traumatic Brain Injury and Alzheimer’s Disease: A Population Based Medical Record Review Analysis

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0573 TITLE: Understanding the Connection Between Traumatic Brain Injury and Alzheimer’s Disease: A Population-Based...Sep 2015 - 14 Sep 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Understanding the Connection Between Traumatic Brain Injury and Alzheimer’s Disease...TERMS Population; epidemiology; dementia; neurocognitive disorders; brain injuries; Parkinsonian disorders 16. SECURITY CLASSIFICATION OF: U 17

  2. 3VSR: Three Valued Secure Routing for Vehicular Ad Hoc Networks using Sensing Logic in Adversarial Environment

    PubMed Central

    Wang, Liangmin

    2018-01-01

    Today IoT integrate thousands of inter networks and sensing devices e.g., vehicular networks, which are considered to be challenging due to its high speed and network dynamics. The goal of future vehicular networks is to improve road safety, promote commercial or infotainment products and to reduce the traffic accidents. All these applications are based on the information exchange among nodes, so not only reliable data delivery but also the authenticity and credibility of the data itself are prerequisite. To cope with the aforementioned problem, trust management come up as promising candidate to conduct node’s transaction and interaction management, which requires distributed mobile nodes cooperation for achieving design goals. In this paper, we propose a trust-based routing protocol i.e., 3VSR (Three Valued Secure Routing), which extends the widely used AODV (Ad hoc On-demand Distance Vector) routing protocol and employs the idea of Sensing Logic-based trust model to enhance the security solution of VANET (Vehicular Ad-Hoc Network). The existing routing protocol are mostly based on key or signature-based schemes, which off course increases computation overhead. In our proposed 3VSR, trust among entities is updated frequently by means of opinion derived from sensing logic due to vehicles random topologies. In 3VSR the theoretical capabilities are based on Dirichlet distribution by considering prior and posterior uncertainty of the said event. Also by using trust recommendation message exchange, nodes are able to reduce computation and routing overhead. The simulated results shows that the proposed scheme is secure and practical. PMID:29538314

  3. 3VSR: Three Valued Secure Routing for Vehicular Ad Hoc Networks using Sensing Logic in Adversarial Environment.

    PubMed

    Sohail, Muhammad; Wang, Liangmin

    2018-03-14

    Today IoT integrate thousands of inter networks and sensing devices e.g., vehicular networks, which are considered to be challenging due to its high speed and network dynamics. The goal of future vehicular networks is to improve road safety, promote commercial or infotainment products and to reduce the traffic accidents. All these applications are based on the information exchange among nodes, so not only reliable data delivery but also the authenticity and credibility of the data itself are prerequisite. To cope with the aforementioned problem, trust management come up as promising candidate to conduct node's transaction and interaction management, which requires distributed mobile nodes cooperation for achieving design goals. In this paper, we propose a trust-based routing protocol i.e., 3VSR (Three Valued Secure Routing), which extends the widely used AODV (Ad hoc On-demand Distance Vector) routing protocol and employs the idea of Sensing Logic-based trust model to enhance the security solution of VANET (Vehicular Ad-Hoc Network). The existing routing protocol are mostly based on key or signature-based schemes, which off course increases computation overhead. In our proposed 3VSR, trust among entities is updated frequently by means of opinion derived from sensing logic due to vehicles random topologies. In 3VSR the theoretical capabilities are based on Dirichlet distribution by considering prior and posterior uncertainty of the said event. Also by using trust recommendation message exchange, nodes are able to reduce computation and routing overhead. The simulated results shows that the proposed scheme is secure and practical.

  4. Road Accident Prevention with Instant Emergency Warning Message Dissemination in Vehicular Ad-Hoc Network.

    PubMed

    Gokulakrishnan, P; Ganeshkumar, P

    2015-01-01

    A Road Accident Prevention (RAP) scheme based on Vehicular Backbone Network (VBN) structure is proposed in this paper for Vehicular Ad-hoc Network (VANET). The RAP scheme attempts to prevent vehicles from highway road traffic accidents and thereby reduces death and injury rates. Once the possibility of an emergency situation (i.e. an accident) is predicted in advance, instantly RAP initiates a highway road traffic accident prevention scheme. The RAP scheme constitutes the following activities: (i) the Road Side Unit (RSU) constructs a Prediction Report (PR) based on the status of the vehicles and traffic in the highway roads, (ii) the RSU generates an Emergency Warning Message (EWM) based on an abnormal PR, (iii) the RSU forms a VBN structure and (iv) the RSU disseminates the EWM to the vehicles that holds the high Risk Factor (RF) and travels in High Risk Zone (HRZ). These vehicles might reside either within the RSU's coverage area or outside RSU's coverage area (reached using VBN structure). The RAP scheme improves the performance of EWM dissemination in terms of increase in notification and decrease in end-to-end delay. The RAP scheme also reduces infrastructure cost (number of RSUs) by formulating and deploying the VBN structure. The RAP scheme with VBN structure improves notification by 19 percent and end-to-end delay by 14.38 percent for a vehicle density of 160 vehicles. It is also proved from the simulation experiment that the performance of RAP scheme is promising in 4-lane highway roads.

  5. Road Accident Prevention with Instant Emergency Warning Message Dissemination in Vehicular Ad-Hoc Network

    PubMed Central

    P, Gokulakrishnan; P, Ganeshkumar

    2015-01-01

    A Road Accident Prevention (RAP) scheme based on Vehicular Backbone Network (VBN) structure is proposed in this paper for Vehicular Ad-hoc Network (VANET). The RAP scheme attempts to prevent vehicles from highway road traffic accidents and thereby reduces death and injury rates. Once the possibility of an emergency situation (i.e. an accident) is predicted in advance, instantly RAP initiates a highway road traffic accident prevention scheme. The RAP scheme constitutes the following activities: (i) the Road Side Unit (RSU) constructs a Prediction Report (PR) based on the status of the vehicles and traffic in the highway roads, (ii) the RSU generates an Emergency Warning Message (EWM) based on an abnormal PR, (iii) the RSU forms a VBN structure and (iv) the RSU disseminates the EWM to the vehicles that holds the high Risk Factor (RF) and travels in High Risk Zone (HRZ). These vehicles might reside either within the RSU’s coverage area or outside RSU’s coverage area (reached using VBN structure). The RAP scheme improves the performance of EWM dissemination in terms of increase in notification and decrease in end-to-end delay. The RAP scheme also reduces infrastructure cost (number of RSUs) by formulating and deploying the VBN structure. The RAP scheme with VBN structure improves notification by 19 percent and end-to-end delay by 14.38 percent for a vehicle density of 160 vehicles. It is also proved from the simulation experiment that the performance of RAP scheme is promising in 4-lane highway roads. PMID:26636576

  6. Modeling motor connectivity using TMS/PET and structural equation modeling

    PubMed Central

    Laird, Angela R.; Robbins, Jacob M.; Li, Karl; Price, Larry R.; Cykowski, Matthew D.; Narayana, Shalini; Laird, Robert W.; Franklin, Crystal; Fox, Peter T.

    2010-01-01

    Structural equation modeling (SEM) was applied to positron emission tomographic (PET) images acquired during transcranial magnetic stimulation (TMS) of the primary motor cortex (M1hand). TMS was applied across a range of intensities, and responses both at the stimulation site and remotely connected brain regions covaried with stimulus intensity. Regions of interest (ROIs) were identified through an activation likelihood estimation (ALE) meta-analysis of TMS studies. That these ROIs represented the network engaged by motor planning and execution was confirmed by an ALE meta-analysis of finger movement studies. Rather than postulate connections in the form of an a priori model (confirmatory approach), effective connectivity models were developed using a model-generating strategy based on improving tentatively specified models. This strategy exploited the experimentally-imposed causal relations: (1) that response variations were caused by stimulation variations, (2) that stimulation was unidirectionally applied to the M1hand region, and (3) that remote effects must be caused, either directly or indirectly, by the M1hand excitation. The path model thus derived exhibited an exceptional level of goodness (χ2=22.150, df = 38, P = 0.981, TLI=1.0). The regions and connections derived were in good agreement with the known anatomy of the human and primate motor system. The model-generating SEM strategy thus proved highly effective and successfully identified a complex set of causal relationships of motor connectivity. PMID:18387823

  7. Trade-off of cerebello-cortical and cortico-cortical functional networks for planning in 6-year-old children.

    PubMed

    Kipping, Judy A; Margulies, Daniel S; Eickhoff, Simon B; Lee, Annie; Qiu, Anqi

    2018-08-01

    Childhood is a critical period for the development of cognitive planning. There is a lack of knowledge on its neural mechanisms in children. This study aimed to examine cerebello-cortical and cortico-cortical functional connectivity in association with planning skills in 6-year-olds (n = 76). We identified the cerebello-cortical and cortico-cortical functional networks related to cognitive planning using activation likelihood estimation (ALE) meta-analysis on existing functional imaging studies on spatial planning, and data-driven independent component analysis (ICA) of children's resting-state functional MRI (rs-fMRI). We investigated associations of cerebello-cortical and cortico-cortical functional connectivity with planning ability in 6-year-olds, as assessed using the Stockings of Cambridge task. Long-range functional connectivity of two cerebellar networks (lobules VI and lateral VIIa) with the prefrontal and premotor cortex were greater in children with poorer planning ability. In contrast, cortico-cortical association networks were not associated with the performance of planning in children. These results highlighted the key contribution of the lateral cerebello-frontal functional connectivity, but not cortico-cortical association functional connectivity, for planning ability in 6-year-olds. Our results suggested that brain adaptation to the acquisition of planning ability during childhood is partially achieved through the engagement of the cerebello-cortical functional connectivity. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. The Effect of DEM Source and Grid Size on the Index of Connectivity in Savanna Catchments

    NASA Astrophysics Data System (ADS)

    Jarihani, Ben; Sidle, Roy; Bartley, Rebecca; Roth, Christian

    2017-04-01

    The term "hydrological connectivity" is increasingly used instead of sediment delivery ratio to describe the linkage between the sources of water and sediment within a catchment to the catchment outlet. Sediment delivery ratio is an empirical parameter that is highly site-specific and tends to lump all processes, whilst hydrological connectivity focuses on the spatially-explicit hydrologic drivers of surficial processes. Detailed topographic information plays a fundamental role in geomorphological interpretations as well as quantitative modelling of sediment fluxes and connectivity. Geomorphometric analysis permits a detailed characterization of drainage area and drainage pattern together with the possibility of characterizing surface roughness. High resolution topographic data (i.e., LiDAR) are not available for all areas; however, remotely sensed topographic data from multiple sources with different grid sizes are used to undertake geomorphologic analysis in data-sparse regions. The Index of Connectivity (IC), a geomorphometric model based only on DEM data, is applied in two small savanna catchments in Queensland, Australia. The influence of the scale of the topographic data is explored by using DEMs from LiDAR ( 1 m), WorldDEM ( 10 m), raw SRTM and hydrologically corrected SRTM derived data ( 30 m) to calculate the index of connectivity. The effect of the grid size is also investigated by resampling the high resolution LiDAR DEM to multiple grid sizes (e.g. 5, 10, 20 m) and comparing the extracted IC.

  9. How Analysts Cognitively “Connect the Dots”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradel, Lauren; Self, Jessica S.; Endert, Alexander

    2013-06-04

    As analysts attempt to make sense of a collection of documents, such as intelligence analysis reports, they may wish to “connect the dots” between pieces of information that may initially seem unrelated. This process of synthesizing information between information requires users to make connections between pairs of documents, creating a conceptual story. We conducted a user study to analyze the process by which users connect pairs of documents and how they spatially arrange information. Users created conceptual stories that connected the dots using organizational strategies that ranged in complexity. We propose taxonomies for cognitive connections and physical structures used whenmore » trying to “connect the dots” between two documents. We compared the user-created stories with a data-mining algorithm that constructs chains of documents using co-occurrence metrics. Using the insight gained into the storytelling process, we offer design considerations for the existing data mining algorithm and corresponding tools to combine the power of data mining and the complex cognitive processing of analysts.« less

  10. Decreased cerebellar-cerebral connectivity contributes to complex task performance

    PubMed Central

    Knops, André

    2016-01-01

    The cerebellum's role in nonmotor processes is now well accepted, but cerebellar interaction with cerebral targets is not well understood. Complex cognitive tasks activate cerebellar, parietal, and frontal regions, but the effective connectivity between these regions has never been tested. To this end, we used psycho-physiological interactions (PPI) analysis to test connectivity changes of cerebellar and parietal seed regions in complex (2-digit by 1-digit multiplication, e.g., 12 × 3) vs. simple (1-digit by 1-digit multiplication, e.g., 4 × 3) task conditions (“complex − simple”). For cerebellar seed regions (lobule VI, hemisphere and vermis), we found significantly decreased cerebellar-parietal, cerebellar-cingulate, and cerebellar-frontal connectivity in complex multiplication. For parietal seed regions (PFcm, PFop, PFm) we found significantly increased parietal-parietal and parietal-frontal connectivity in complex multiplication. These results suggest that decreased cerebellar-cerebral connectivity contributes to complex task performance. Interestingly, BOLD activity contrasts revealed partially overlapping parietal areas of increased BOLD activity but decreased cerebellar-parietal PPI connectivity. PMID:27334957

  11. Networking Matters: A Social Network Analysis of the Association of Program Directors of Internal Medicine.

    PubMed

    Warm, Eric; Arora, Vineet M; Chaudhry, Saima; Halvorsen, Andrew; Schauer, Daniel; Thomas, Kris; McDonald, Furman S

    2018-03-22

    Networking has positive effects on career development; however, personal characteristics of group members such as gender or diversity may foster or hinder member connectedness. Social network analysis explores interrelationships between people in groups by measuring the strength of connection between all possible pairs in a given network. Social network analysis has rarely been used to examine network connections among members in an academic medical society. This study seeks to ascertain the strength of connection between program directors in the Association of Program Directors in Internal Medicine (APDIM) and its Education Innovations Project subgroup and to examine possible associations between connectedness and characteristics of program directors and programs. We hypothesize that connectedness will be measurable within a large academic medical society and will vary significantly for program directors with certain measurable characteristics (e.g., age, gender, rank, location, burnout levels, desire to resign). APDIM program directors described levels of connectedness to one another on the 2012 APDIM survey. Using social network analysis, we ascertained program director connectedness by measuring out-degree centrality, in-degree centrality, and eigenvector centrality, all common measures of connectedness. Higher centrality was associated with completion of the APDIM survey, being in a university-based program, Educational Innovations Project participation, and higher academic rank. Centrality did not vary by gender; international medical graduate status; previous chief resident status; program region; or levels of reported program director burnout, callousness, or desire to resign. In this social network analysis of program directors within a large academic medical society, we found that connectedness was related to higher academic rank and certain program characteristics but not to other program director characteristics like gender or international medical graduate status. Further research is needed to optimize our understanding of connection in organizations such as these and to determine which strategies promote valuable connections.

  12. Direct modulation of aberrant brain network connectivity through real-time NeuroFeedback.

    PubMed

    Ramot, Michal; Kimmich, Sara; Gonzalez-Castillo, Javier; Roopchansingh, Vinai; Popal, Haroon; White, Emily; Gotts, Stephen J; Martin, Alex

    2017-09-16

    The existence of abnormal connectivity patterns between resting state networks in neuropsychiatric disorders, including Autism Spectrum Disorder (ASD), has been well established. Traditional treatment methods in ASD are limited, and do not address the aberrant network structure. Using real-time fMRI neurofeedback, we directly trained three brain nodes in participants with ASD, in which the aberrant connectivity has been shown to correlate with symptom severity. Desired network connectivity patterns were reinforced in real-time, without participants' awareness of the training taking place. This training regimen produced large, significant long-term changes in correlations at the network level, and whole brain analysis revealed that the greatest changes were focused on the areas being trained. These changes were not found in the control group. Moreover, changes in ASD resting state connectivity following the training were correlated to changes in behavior, suggesting that neurofeedback can be used to directly alter complex, clinically relevant network connectivity patterns.

  13. Gene expression of Caenorhabditis elegans neurons carries information on their synaptic connectivity.

    PubMed

    Kaufman, Alon; Dror, Gideon; Meilijson, Isaac; Ruppin, Eytan

    2006-12-08

    The claim that genetic properties of neurons significantly influence their synaptic network structure is a common notion in neuroscience. The nematode Caenorhabditis elegans provides an exciting opportunity to approach this question in a large-scale quantitative manner. Its synaptic connectivity network has been identified, and, combined with cellular studies, we currently have characteristic connectivity and gene expression signatures for most of its neurons. By using two complementary analysis assays we show that the expression signature of a neuron carries significant information about its synaptic connectivity signature, and identify a list of putative genes predicting neural connectivity. The current study rigorously quantifies the relation between gene expression and synaptic connectivity signatures in the C. elegans nervous system and identifies subsets of neurons where this relation is highly marked. The results presented and the genes identified provide a promising starting point for further, more detailed computational and experimental investigations.

  14. Resting-State Functional Connectivity in Autism Spectrum Disorders: A Review

    PubMed Central

    Hull, Jocelyn V.; Jacokes, Zachary J.; Torgerson, Carinna M.; Irimia, Andrei; Van Horn, John Darrell

    2017-01-01

    Ongoing debate exists within the resting-state functional MRI (fMRI) literature over how intrinsic connectivity is altered in the autistic brain, with reports of general over-connectivity, under-connectivity, and/or a combination of both. Classifying autism using brain connectivity is complicated by the heterogeneous nature of the condition, allowing for the possibility of widely variable connectivity patterns among individuals with the disorder. Further differences in reported results may be attributable to the age and sex of participants included, designs of the resting-state scan, and to the analysis technique used to evaluate the data. This review systematically examines the resting-state fMRI autism literature to date and compares studies in an attempt to draw overall conclusions that are presently challenging. We also propose future direction for rs-fMRI use to categorize individuals with autism spectrum disorder, serve as a possible diagnostic tool, and best utilize data-sharing initiatives. PMID:28101064

  15. One-year test-retest reliability of intrinsic connectivity network fMRI in older adults

    PubMed Central

    Guo, Cong C.; Kurth, Florian; Zhou, Juan; Mayer, Emeran A.; Eickhoff, Simon B; Kramer, Joel H.; Seeley, William W.

    2014-01-01

    “Resting-state” or task-free fMRI can assess intrinsic connectivity network (ICN) integrity in health and disease, suggesting a potential for use of these methods as disease-monitoring biomarkers. Numerous analytical options are available, including model-driven ROI-based correlation analysis and model-free, independent component analysis (ICA). High test-retest reliability will be a necessary feature of a successful ICN biomarker, yet available reliability data remains limited. Here, we examined ICN fMRI test-retest reliability in 24 healthy older subjects scanned roughly one year apart. We focused on the salience network, a disease-relevant ICN not previously subjected to reliability analysis. Most ICN analytical methods proved reliable (intraclass coefficients > 0.4) and could be further improved by wavelet analysis. Seed-based ROI correlation analysis showed high map-wise reliability, whereas graph theoretical measures and temporal concatenation group ICA produced the most reliable individual unit-wise outcomes. Including global signal regression in ROI-based correlation analyses reduced reliability. Our study provides a direct comparison between the most commonly used ICN fMRI methods and potential guidelines for measuring intrinsic connectivity in aging control and patient populations over time. PMID:22446491

  16. Improving social connection through a communities-of-practice-inspired cognitive work analysis approach.

    PubMed

    Euerby, Adam; Burns, Catherine M

    2014-03-01

    Increasingly, people work in socially networked environments. With growing adoption of enterprise social network technologies, supporting effective social community is becoming an important factor in organizational success. Relatively few human factors methods have been applied to social connection in communities. Although team methods provide a contribution, they do not suit design for communities. Wenger's community of practice concept, combined with cognitive work analysis, provided one way of designing for community. We used a cognitive work analysis approach modified with principles for supporting communities of practice to generate a new website design. Over several months, the community using the site was studied to examine their degree of social connectedness and communication levels. Social network analysis and communications analysis, conducted at three different intervals, showed increases in connections between people and between people and organizations, as well as increased communication following the launch of the new design. In this work, we suggest that human factors approaches can be effective in social environments, when applied considering social community principles. This work has implications for the development of new human factors methods as well as the design of interfaces for sociotechnical systems that have community building requirements.

  17. Testing the Prey-Trap Hypothesis at Two Wildlife Conservancies in Kenya.

    PubMed

    Dupuis-Desormeaux, Marc; Davidson, Zeke; Mwololo, Mary; Kisio, Edwin; Taylor, Sam; MacDonald, Suzanne E

    2015-01-01

    Protecting an endangered and highly poached species can conflict with providing an open and ecologically connected landscape for coexisting species. In Kenya, about half of the black rhino (Diceros bicornis) live in electrically fenced private conservancies. Purpose-built fence-gaps permit some landscape connectivity for elephant while restricting rhino from escaping. We monitored the usage patterns at these gaps by motion-triggered cameras and found high traffic volumes and predictable patterns of prey movement. The prey-trap hypothesis (PTH) proposes that predators exploit this predictable prey movement. We tested the PTH at two semi-porous reserves using two different methods: a spatial analysis and a temporal analysis. Using spatial analysis, we mapped the location of predation events with GPS and looked for concentration of kill sites near the gaps as well as conducting clustering and hot spot analysis to determine areas of statistically significant predation clustering. Using temporal analysis, we examined the time lapse between the passage of prey and predator and searched for evidence of active prey seeking and/or predator avoidance. We found no support for the PTH and conclude that the design of the fence-gaps is well suited to promoting connectivity in these types of conservancies.

  18. SPICODYN: A Toolbox for the Analysis of Neuronal Network Dynamics and Connectivity from Multi-Site Spike Signal Recordings.

    PubMed

    Pastore, Vito Paolo; Godjoski, Aleksandar; Martinoia, Sergio; Massobrio, Paolo

    2018-01-01

    We implemented an automated and efficient open-source software for the analysis of multi-site neuronal spike signals. The software package, named SPICODYN, has been developed as a standalone windows GUI application, using C# programming language with Microsoft Visual Studio based on .NET framework 4.5 development environment. Accepted input data formats are HDF5, level 5 MAT and text files, containing recorded or generated time series spike signals data. SPICODYN processes such electrophysiological signals focusing on: spiking and bursting dynamics and functional-effective connectivity analysis. In particular, for inferring network connectivity, a new implementation of the transfer entropy method is presented dealing with multiple time delays (temporal extension) and with multiple binary patterns (high order extension). SPICODYN is specifically tailored to process data coming from different Multi-Electrode Arrays setups, guarantying, in those specific cases, automated processing. The optimized implementation of the Delayed Transfer Entropy and the High-Order Transfer Entropy algorithms, allows performing accurate and rapid analysis on multiple spike trains from thousands of electrodes.

  19. Detecting Functional Connectivity During Audiovisual Integration with MEG: A Comparison of Connectivity Metrics.

    PubMed

    Ard, Tyler; Carver, Frederick W; Holroyd, Tom; Horwitz, Barry; Coppola, Richard

    2015-08-01

    In typical magnetoencephalography and/or electroencephalography functional connectivity analysis, researchers select one of several methods that measure a relationship between regions to determine connectivity, such as coherence, power correlations, and others. However, it is largely unknown if some are more suited than others for various types of investigations. In this study, the authors investigate seven connectivity metrics to evaluate which, if any, are sensitive to audiovisual integration by contrasting connectivity when tracking an audiovisual object versus connectivity when tracking a visual object uncorrelated with the auditory stimulus. The authors are able to assess the metrics' performances at detecting audiovisual integration by investigating connectivity between auditory and visual areas. Critically, the authors perform their investigation on a whole-cortex all-to-all mapping, avoiding confounds introduced in seed selection. The authors find that amplitude-based connectivity measures in the beta band detect strong connections between visual and auditory areas during audiovisual integration, specifically between V4/V5 and auditory cortices in the right hemisphere. Conversely, phase-based connectivity measures in the beta band as well as phase and power measures in alpha, gamma, and theta do not show connectivity between audiovisual areas. The authors postulate that while beta power correlations detect audiovisual integration in the current experimental context, it may not always be the best measure to detect connectivity. Instead, it is likely that the brain utilizes a variety of mechanisms in neuronal communication that may produce differential types of temporal relationships.

  20. Landscape-scale food webs of fish nursery habitat along a river-coast mixing zone

    EPA Science Inventory

    We used carbon and nitrogen stable isotope analysis to study connections between allochthonous energy use and ecological connectivity of fish larvae in a complex coastal mosaic. We quantified fish larvae support by autochthonous and allochthonous material in three coastal river-w...

  1. Connecting the Dots: Rediscovering Continuity

    ERIC Educational Resources Information Center

    Camenga, Kristin A.; Yates, Rebekah B. Johnson

    2014-01-01

    The topic of continuity is typically not introduced until calculus and then reexamined in real analysis. Recognizing the connections between secondary school mathematics and the advanced mathematics studied at the college level allows teachers to better identify mathematical concepts in student ideas, motivate students by piquing their curiosity,…

  2. Analysis and Design of a Distributed System for Management and Distribution of Natural Language Assertions

    DTIC Science & Technology

    2010-09-01

    5 2. SCIL Architecture ...............................................................................6 3. Assertions...137 x THIS PAGE INTENTIONALLY LEFT BLANK xi LIST OF FIGURES Figure 1. SCIL architecture...Database Connectivity LAN Local Area Network ODBC Open Database Connectivity SCIL Social-Cultural Content in Language UMD

  3. Analysis of the Connect Oregon program through two project selection cycles : final report, August 2009.

    DOT National Transportation Integrated Search

    2009-08-01

    The Oregon Legislature passed a law establishing the Multimodal Transportation Fund in 2005. The fund was part of what : became known as the ConnectOregon program, with the purpose of making public and private investments in aviation, : marine, rail,...

  4. Connections between Graphical Gaussian Models and Factor Analysis

    ERIC Educational Resources Information Center

    Salgueiro, M. Fatima; Smith, Peter W. F.; McDonald, John W.

    2010-01-01

    Connections between graphical Gaussian models and classical single-factor models are obtained by parameterizing the single-factor model as a graphical Gaussian model. Models are represented by independence graphs, and associations between each manifest variable and the latent factor are measured by factor partial correlations. Power calculations…

  5. Emotional Intelligence and Nurse Recruitment: Rasch and confirmatory factor analysis of the trait emotional intelligence questionnaire short form.

    PubMed

    Snowden, Austyn; Watson, Roger; Stenhouse, Rosie; Hale, Claire

    2015-12-01

    To examine the construct validity of the Trait Emotional Intelligence Questionnaire Short form. Emotional intelligence involves the identification and regulation of our own emotions and the emotions of others. It is therefore a potentially useful construct in the investigation of recruitment and retention in nursing and many questionnaires have been constructed to measure it. Secondary analysis of existing dataset of responses to Trait Emotional Intelligence Questionnaire Short form using concurrent application of Rasch analysis and confirmatory factor analysis. First year undergraduate nursing and computing students completed Trait Emotional Intelligence Questionnaire-Short Form in September 2013. Responses were analysed by synthesising results of Rasch analysis and confirmatory factor analysis. Participants (N = 938) completed Trait Emotional Intelligence Questionnaire Short form. Rasch analysis showed the majority of the Trait Emotional Intelligence Questionnaire-Short Form items made a unique contribution to the latent trait of emotional intelligence. Five items did not fit the model and differential item functioning (gender) accounted for this misfit. Confirmatory factor analysis revealed a four-factor structure consisting of: self-confidence, empathy, uncertainty and social connection. All five misfitting items from the Rasch analysis belonged to the 'social connection' factor. The concurrent use of Rasch and factor analysis allowed for novel interpretation of Trait Emotional Intelligence Questionnaire Short form. Much of the response variation in Trait Emotional Intelligence Questionnaire Short form can be accounted for by the social connection factor. Implications for practice are discussed. © 2015 John Wiley & Sons Ltd.

  6. Analysis of the relationship between lung cancer drug response level and atom connectivity dynamics based on trimmed Delaunay triangulation

    NASA Astrophysics Data System (ADS)

    Zou, Bin; Wang, Debby D.; Ma, Lichun; Chen, Lijiang; Yan, Hong

    2016-05-01

    Epidermal growth factor receptor (EGFR) mutation is a pathogenic factor of non-small cell lung cancer (NSCLC). Tyrosine kinase inhibitors (TKIs), such as gefitinib, are widely used in NSCLC treatment. In this work, we investigated the relationship between the number of EGFR residues connected with gefitinib and the response level for each EGFR mutation type. Three-dimensional trimmed Delaunay triangulation was applied to construct connections between EGFR residues and gefitinib atoms. Through molecular dynamics (MD) simulations, we discovered that when the number of EGFR residues connected with gefitinib increases, the response level of the corresponding EGFR mutation tends to descend.

  7. Combining System Safety and Reliability to Ensure NASA CoNNeCT's Success

    NASA Technical Reports Server (NTRS)

    Havenhill, Maria; Fernandez, Rene; Zampino, Edward

    2012-01-01

    Hazard Analysis, Failure Modes and Effects Analysis (FMEA), the Limited-Life Items List (LLIL), and the Single Point Failure (SPF) List were applied by System Safety and Reliability engineers on NASA's Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT) Project. The integrated approach involving cross reviews of these reports by System Safety, Reliability, and Design engineers resulted in the mitigation of all identified hazards. The outcome was that the system met all the safety requirements it was required to meet.

  8. Modulating Intrinsic Connectivity: Adjacent Subregions within Supplementary Motor Cortex, Dorsolateral Prefrontal Cortex, and Parietal Cortex Connect to Separate Functional Networks during Task and Also Connect during Rest

    PubMed Central

    Roth, Jennifer K.; Johnson, Marcia K.; Tokoglu, Fuyuze; Murphy, Isabella; Constable, R. Todd

    2014-01-01

    Supplementary motor area (SMA), the inferior frontal junction (IFJ), superior frontal junction (SFJ) and parietal cortex are active in many cognitive tasks. In a previous study, we found that subregions of each of these major areas were differentially active in component processes of executive function during working memory tasks. In the present study, each of these subregions was used as a seed in a whole brain functional connectivity analysis of working memory and resting state data. These regions show functional connectivity to different networks, thus supporting the parcellation of these major regions into functional subregions. Many regions showing significant connectivity during the working memory residual data (with task events regressed from the data) were also significantly connected during rest suggesting that these network connections to subregions within major regions of cortex are intrinsic. For some of these connections, task demands modulate activity in these intrinsic networks. Approximately half of the connections significant during task were significant during rest, indicating that some of the connections are intrinsic while others are recruited only in the service of the task. Furthermore, the network connections to traditional ‘task positive’ and ‘task negative’ (a.k.a ‘default mode’) regions shift from positive connectivity to negative connectivity depending on task demands. These findings demonstrate that such task-identified subregions are part of distinct networks, and that these networks have different patterns of connectivity for task as they do during rest, engaging connections both to task positive and task negative regions. These results have implications for understanding the parcellation of commonly active regions into more specific functional networks. PMID:24637793

  9. Functional Connectivity with Distinct Neural Networks Tracks Fluctuations in Gain/Loss Framing Susceptibility

    PubMed Central

    Smith, David V.; Sip, Kamila E.; Delgado, Mauricio R.

    2016-01-01

    Multiple large-scale neural networks orchestrate a wide range of cognitive processes. For example, interoceptive processes related to self-referential thinking have been linked to the default-mode network (DMN); whereas exteroceptive processes related to cognitive control have been linked to the executive-control network (ECN). Although the DMN and ECN have been postulated to exert opposing effects on cognition, it remains unclear how connectivity with these spatially overlapping networks contribute to fluctuations in behavior. While previous work has suggested the medial prefrontal cortex (MPFC) is involved in behavioral change following feedback, these observations could be linked to interoceptive processes tied to DMN or exteroceptive processes tied to ECN because MPFC is positioned in both networks. To address this problem, we employed independent component analysis combined with dual-regression functional connectivity analysis. Participants made a series of financial decisions framed as monetary gains or losses. In some sessions, participants received feedback from a peer observing their choices; in other sessions, feedback was not provided. Following feedback, framing susceptibility—indexed as the increase in gambling behavior in loss frames compared to gain frames—was heightened in some participants and diminished in others. We examined whether these individual differences were linked to differences in connectivity by contrasting sessions containing feedback against those that did not contain feedback. We found two key results. As framing susceptibility increased, the MPFC increased connectivity with DMN; in contrast, temporal-parietal junction decreased connectivity with the ECN. Our results highlight how functional connectivity patterns with distinct neural networks contribute to idiosyncratic behavioral changes. PMID:25858445

  10. Constructing fMRI connectivity networks: a whole brain functional parcellation method for node definition.

    PubMed

    Maggioni, Eleonora; Tana, Maria Gabriella; Arrigoni, Filippo; Zucca, Claudio; Bianchi, Anna Maria

    2014-05-15

    Functional Magnetic Resonance Imaging (fMRI) is used for exploring brain functionality, and recently it was applied for mapping the brain connection patterns. To give a meaningful neurobiological interpretation to the connectivity network, it is fundamental to properly define the network framework. In particular, the choice of the network nodes may affect the final connectivity results and the consequent interpretation. We introduce a novel method for the intra subject topological characterization of the nodes of fMRI brain networks, based on a whole brain parcellation scheme. The proposed whole brain parcellation algorithm divides the brain into clusters that are homogeneous from the anatomical and functional point of view, each of which constitutes a node. The functional parcellation described is based on the Tononi's cluster index, which measures instantaneous correlation in terms of intrinsic and extrinsic statistical dependencies. The method performance and reliability were first tested on simulated data, then on a real fMRI dataset acquired on healthy subjects during visual stimulation. Finally, the proposed algorithm was applied to epileptic patients' fMRI data recorded during seizures, to verify its usefulness as preparatory step for effective connectivity analysis. For each patient, the nodes of the network involved in ictal activity were defined according to the proposed parcellation scheme and Granger Causality Analysis (GCA) was applied to infer effective connectivity. We showed that the algorithm 1) performed well on simulated data, 2) was able to produce reliable inter subjects results and 3) led to a detailed definition of the effective connectivity pattern. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Superior Temporal Sulcus Disconnectivity During Processing of Metaphoric Gestures in Schizophrenia

    PubMed Central

    Straube, Benjamin; Green, Antonia; Sass, Katharina; Kircher, Tilo

    2014-01-01

    The left superior temporal sulcus (STS) plays an important role in integrating audiovisual information and is functionally connected to disparate regions of the brain. For the integration of gesture information in an abstract sentence context (metaphoric gestures), intact connectivity between the left STS and the inferior frontal gyrus (IFG) should be important. Patients with schizophrenia have problems with the processing of metaphors (concretism) and show aberrant structural connectivity of long fiber bundles. Thus, we tested the hypothesis that patients with schizophrenia differ in the functional connectivity of the left STS to the IFG for the processing of metaphoric gestures. During functional magnetic resonance imaging data acquisition, 16 patients with schizophrenia (P) and a healthy control group (C) were shown videos of an actor performing gestures in a concrete (iconic, IC) and abstract (metaphoric, MP) sentence context. A psychophysiological interaction analysis based on the seed region from a previous analysis in the left STS was performed. In both groups we found common positive connectivity for IC and MP of the STS seed region to the left middle temporal gyrus (MTG) and left ventral IFG. The interaction of group (C>P) and gesture condition (MP>IC) revealed effects in the connectivity to the bilateral IFG and the left MTG with patients exhibiting lower connectivity for the MP condition. In schizophrenia the left STS is misconnected to the IFG, particularly during the processing of MP gestures. Dysfunctional integration of gestures in an abstract sentence context might be the basis of certain interpersonal communication problems in the patients. PMID:23956120

  12. The Analysis of Alpha Beta Pruning and MTD(f) Algorithm to Determine the Best Algorithm to be Implemented at Connect Four Prototype

    NASA Astrophysics Data System (ADS)

    Tommy, Lukas; Hardjianto, Mardi; Agani, Nazori

    2017-04-01

    Connect Four is a two-player game which the players take turns dropping discs into a grid to connect 4 of one’s own discs next to each other vertically, horizontally, or diagonally. At Connect Four, Computer requires artificial intelligence (AI) in order to play properly like human. There are many AI algorithms that can be implemented to Connect Four, but the suitable algorithms are unknown. The suitable algorithm means optimal in choosing move and its execution time is not slow at search depth which is deep enough. In this research, analysis and comparison between standard alpha beta (AB) Pruning and MTD(f) will be carried out at the prototype of Connect Four in terms of optimality (win percentage) and speed (execution time and the number of leaf nodes). Experiments are carried out by running computer versus computer mode with 12 different conditions, i.e. varied search depth (5 through 10) and who moves first. The percentage achieved by MTD(f) based on experiments is win 45,83%, lose 37,5% and draw 16,67%. In the experiments with search depth 8, MTD(f) execution time is 35, 19% faster and evaluate 56,27% fewer leaf nodes than AB Pruning. The results of this research are MTD(f) is as optimal as AB Pruning at Connect Four prototype, but MTD(f) on average is faster and evaluates fewer leaf nodes than AB Pruning. The execution time of MTD(f) is not slow and much faster than AB Pruning at search depth which is deep enough.

  13. Functional connectivity with distinct neural networks tracks fluctuations in gain/loss framing susceptibility.

    PubMed

    Smith, David V; Sip, Kamila E; Delgado, Mauricio R

    2015-07-01

    Multiple large-scale neural networks orchestrate a wide range of cognitive processes. For example, interoceptive processes related to self-referential thinking have been linked to the default-mode network (DMN); whereas exteroceptive processes related to cognitive control have been linked to the executive-control network (ECN). Although the DMN and ECN have been postulated to exert opposing effects on cognition, it remains unclear how connectivity with these spatially overlapping networks contribute to fluctuations in behavior. While previous work has suggested the medial-prefrontal cortex (MPFC) is involved in behavioral change following feedback, these observations could be linked to interoceptive processes tied to DMN or exteroceptive processes tied to ECN because MPFC is positioned in both networks. To address this problem, we employed independent component analysis combined with dual-regression functional connectivity analysis. Participants made a series of financial decisions framed as monetary gains or losses. In some sessions, participants received feedback from a peer observing their choices; in other sessions, feedback was not provided. Following feedback, framing susceptibility-indexed as the increase in gambling behavior in loss frames compared to gain frames-was heightened in some participants and diminished in others. We examined whether these individual differences were linked to differences in connectivity by contrasting sessions containing feedback against those that did not contain feedback. We found two key results. As framing susceptibility increased, the MPFC increased connectivity with DMN; in contrast, temporal-parietal junction decreased connectivity with the ECN. Our results highlight how functional connectivity patterns with distinct neural networks contribute to idiosyncratic behavioral changes. © 2015 Wiley Periodicals, Inc.

  14. A New Analysis of Resting State Connectivity and Graph Theory Reveals Distinctive Short-Term Modulations due to Whisker Stimulation in Rats.

    PubMed

    Kreitz, Silke; de Celis Alonso, Benito; Uder, Michael; Hess, Andreas

    2018-01-01

    Resting state (RS) connectivity has been increasingly studied in healthy and diseased brains in humans and animals. This paper presents a new method to analyze RS data from fMRI that combines multiple seed correlation analysis with graph-theory (MSRA). We characterize and evaluate this new method in relation to two other graph-theoretical methods and ICA. The graph-theoretical methods calculate cross-correlations of regional average time-courses, one using seed regions of the same size (SRCC) and the other using whole brain structure regions (RCCA). We evaluated the reproducibility, power, and capacity of these methods to characterize short-term RS modulation to unilateral physiological whisker stimulation in rats. Graph-theoretical networks found with the MSRA approach were highly reproducible, and their communities showed large overlaps with ICA components. Additionally, MSRA was the only one of all tested methods that had the power to detect significant RS modulations induced by whisker stimulation that are controlled by family-wise error rate (FWE). Compared to the reduced resting state network connectivity during task performance, these modulations implied decreased connectivity strength in the bilateral sensorimotor and entorhinal cortex. Additionally, the contralateral ventromedial thalamus (part of the barrel field related lemniscal pathway) and the hypothalamus showed reduced connectivity. Enhanced connectivity was observed in the amygdala, especially the contralateral basolateral amygdala (involved in emotional learning processes). In conclusion, MSRA is a powerful analytical approach that can reliably detect tiny modulations of RS connectivity. It shows a great promise as a method for studying RS dynamics in healthy and pathological conditions.

  15. A New Analysis of Resting State Connectivity and Graph Theory Reveals Distinctive Short-Term Modulations due to Whisker Stimulation in Rats

    PubMed Central

    Kreitz, Silke; de Celis Alonso, Benito; Uder, Michael; Hess, Andreas

    2018-01-01

    Resting state (RS) connectivity has been increasingly studied in healthy and diseased brains in humans and animals. This paper presents a new method to analyze RS data from fMRI that combines multiple seed correlation analysis with graph-theory (MSRA). We characterize and evaluate this new method in relation to two other graph-theoretical methods and ICA. The graph-theoretical methods calculate cross-correlations of regional average time-courses, one using seed regions of the same size (SRCC) and the other using whole brain structure regions (RCCA). We evaluated the reproducibility, power, and capacity of these methods to characterize short-term RS modulation to unilateral physiological whisker stimulation in rats. Graph-theoretical networks found with the MSRA approach were highly reproducible, and their communities showed large overlaps with ICA components. Additionally, MSRA was the only one of all tested methods that had the power to detect significant RS modulations induced by whisker stimulation that are controlled by family-wise error rate (FWE). Compared to the reduced resting state network connectivity during task performance, these modulations implied decreased connectivity strength in the bilateral sensorimotor and entorhinal cortex. Additionally, the contralateral ventromedial thalamus (part of the barrel field related lemniscal pathway) and the hypothalamus showed reduced connectivity. Enhanced connectivity was observed in the amygdala, especially the contralateral basolateral amygdala (involved in emotional learning processes). In conclusion, MSRA is a powerful analytical approach that can reliably detect tiny modulations of RS connectivity. It shows a great promise as a method for studying RS dynamics in healthy and pathological conditions. PMID:29875622

  16. Multiple Resting-State Networks Are Associated With Tremors and Cognitive Features in Essential Tremor.

    PubMed

    Fang, Weidong; Chen, Huiyue; Wang, Hansheng; Zhang, Han; Liu, Mengqi; Puneet, Munankami; Lv, Fajin; Cheng, Oumei; Wang, Xuefeng; Lu, Xiurong; Luo, Tianyou

    2015-12-01

    The heterogeneous clinical features of essential tremor indicate that the dysfunctions of this syndrome are not confined to motor networks, but extend to nonmotor networks. Currently, these neural network dysfunctions in essential tremor remain unclear. In this study, independent component analysis of resting-state functional MRI was used to study these neural network mechanisms. Thirty-five essential tremor patients and 35 matched healthy controls with clinical and neuropsychological tests were included, and eight resting-state networks were identified. After considering the structure and head-motion factors and testing the reliability of the selected resting-state networks, we assessed the functional connectivity changes within or between resting-state networks. Finally, image-behavior correlation analysis was performed. Compared to healthy controls, essential tremor patients displayed increased functional connectivity in the sensorimotor and salience networks and decreased functional connectivity in the cerebellum network. Additionally, increased functional network connectivity was observed between anterior and posterior default mode networks, and a decreased functional network connectivity was noted between the cerebellum network and the sensorimotor and posterior default mode networks. Importantly, the functional connectivity changes within and between these resting-state networks were correlated with the tremor severity and total cognitive scores of essential tremor patients. The findings of this study provide the first evidence that functional connectivity changes within and between multiple resting-state networks are associated with tremors and cognitive features of essential tremor, and this work demonstrates a potential approach for identifying the underlying neural network mechanisms of this syndrome. © 2015 International Parkinson and Movement Disorder Society.

  17. Earthquake Complex Network applied along the Chilean Subduction Zone.

    NASA Astrophysics Data System (ADS)

    Martin, F.; Pasten, D.; Comte, D.

    2017-12-01

    In recent years the earthquake complex networks have been used as a useful tool to describe and characterize the behavior of seismicity. The earthquake complex network is built in space, dividing the three dimensional space in cubic cells. If the cubic cell contains a hypocenter, we call this cell like a node. The connections between nodes follows the time sequence of the occurrence of the seismic events. In this sense, we have a spatio-temporal configuration of a specific region using the seismicity in that zone. In this work, we are applying complex networks to characterize the subduction zone along the coast of Chile using two networks: a directed and an undirected network. The directed network takes in consideration the time-direction of the connections, that is very important for the connectivity of the network: we are considering the connectivity, ki of the i-th node, like the number of connections going out from the node i and we add the self-connections (if two seismic events occurred successive in time in the same cubic cell, we have a self-connection). The undirected network is the result of remove the direction of the connections and the self-connections from the directed network. These two networks were building using seismic data events recorded by CSN (Chilean Seismological Center) in Chile. This analysis includes the last largest earthquakes occurred in Iquique (April 2014) and in Illapel (September 2015). The result for the directed network shows a change in the value of the critical exponent along the Chilean coast. The result for the undirected network shows a small-world behavior without important changes in the topology of the network. Therefore, the complex network analysis shows a new form to characterize the Chilean subduction zone with a simple method that could be compared with another methods to obtain more details about the behavior of the seismicity in this region.

  18. DiseaseConnect: a comprehensive web server for mechanism-based disease–disease connections

    PubMed Central

    Liu, Chun-Chi; Tseng, Yu-Ting; Li, Wenyuan; Wu, Chia-Yu; Mayzus, Ilya; Rzhetsky, Andrey; Sun, Fengzhu; Waterman, Michael; Chen, Jeremy J. W.; Chaudhary, Preet M.; Loscalzo, Joseph; Crandall, Edward; Zhou, Xianghong Jasmine

    2014-01-01

    The DiseaseConnect (http://disease-connect.org) is a web server for analysis and visualization of a comprehensive knowledge on mechanism-based disease connectivity. The traditional disease classification system groups diseases with similar clinical symptoms and phenotypic traits. Thus, diseases with entirely different pathologies could be grouped together, leading to a similar treatment design. Such problems could be avoided if diseases were classified based on their molecular mechanisms. Connecting diseases with similar pathological mechanisms could inspire novel strategies on the effective repositioning of existing drugs and therapies. Although there have been several studies attempting to generate disease connectivity networks, they have not yet utilized the enormous and rapidly growing public repositories of disease-related omics data and literature, two primary resources capable of providing insights into disease connections at an unprecedented level of detail. Our DiseaseConnect, the first public web server, integrates comprehensive omics and literature data, including a large amount of gene expression data, Genome-Wide Association Studies catalog, and text-mined knowledge, to discover disease–disease connectivity via common molecular mechanisms. Moreover, the clinical comorbidity data and a comprehensive compilation of known drug–disease relationships are additionally utilized for advancing the understanding of the disease landscape and for facilitating the mechanism-based development of new drug treatments. PMID:24895436

  19. A review of variables of urban street connectivity for spatial connection

    NASA Astrophysics Data System (ADS)

    Mohamad, W. S. N. W.; Said, I.

    2014-02-01

    Several studies on street connectivity in cities and towns have been modeled on topology, morphology, technology and psychology of people living in the urban environment. Street connectivity means the connection of streets that offers people alternative routes. However, there emerge difficulties to determine the suitable variables and analysis to be chosen in defining the accurate result for studies street connectivity. The aim of this paper is to identify variables of street connectivity by applying GIS and Space Syntax. This paper reviews the variables of street connectivity from 15 past articles done in 1990s to early 2000s from journals of nine disciplines on Environment and Behavior, Planning and Design, Computers, Environment and Urban Systems, Applied Earth Observation and Geo-information, Environment and Planning, Physica A: Statistical Mechanics and its Applications, Environmental Psychology, Social Science and Medicine and Building and Environment. From the review, there are four variables found for street connectivity: link (streets-streets, street-nodes or node-streets, nodes-nodes), accessibility, least-angle, and centrality. Space syntax and GIS are suitable tools to analyze the four variables relating to systematic street systems for pedestrians. This review implies that planners of the street systems, in the aspect of street connectivity in cities and towns, should consider these four variables.

  20. Efficiency of weak brain connections support general cognitive functioning.

    PubMed

    Santarnecchi, Emiliano; Galli, Giulia; Polizzotto, Nicola Riccardo; Rossi, Alessandro; Rossi, Simone

    2014-09-01

    Brain network topology provides valuable information on healthy and pathological brain functioning. Novel approaches for brain network analysis have shown an association between topological properties and cognitive functioning. Under the assumption that "stronger is better", the exploration of brain properties has generally focused on the connectivity patterns of the most strongly correlated regions, whereas the role of weaker brain connections has remained obscure for years. Here, we assessed whether the different strength of connections between brain regions may explain individual differences in intelligence. We analyzed-functional connectivity at rest in ninety-eight healthy individuals of different age, and correlated several connectivity measures with full scale, verbal, and performance Intelligent Quotients (IQs). Our results showed that the variance in IQ levels was mostly explained by the distributed communication efficiency of brain networks built using moderately weak, long-distance connections, with only a smaller contribution of stronger connections. The variability in individual IQs was associated with the global efficiency of a pool of regions in the prefrontal lobes, hippocampus, temporal pole, and postcentral gyrus. These findings challenge the traditional view of a prominent role of strong functional brain connections in brain topology, and highlight the importance of both strong and weak connections in determining the functional architecture responsible for human intelligence variability. Copyright © 2014 Wiley Periodicals, Inc.

Top