Sample records for vapor bubble evolution

  1. Modeling of bubble dynamics in relation to medical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amendt, P.A.; London, R.A.; Strauss, M.

    1997-03-12

    In various pulsed-laser medical applications, strong stress transients can be generated in advance of vapor bubble formation. To better understand the evolution of stress transients and subsequent formation of vapor bubbles, two-dimensional simulations are presented in channel or cylindrical geometry with the LATIS (LAser TISsue) computer code. Differences with one-dimensional modeling are explored, and simulated experimental conditions for vapor bubble generation are presented and compared with data. 22 refs., 8 figs.

  2. Simulation studies of vapor bubble generation by short-pulse lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amendt, P.; London, R.A.; Strauss, M.

    1997-10-26

    Formation of vapor bubbles is characteristic of many applications of short-pulse lasers in medicine. An understanding of the dynamics of vapor bubble generation is useful for developing and optimizing laser-based medical therapies. To this end, experiments in vapor bubble generation with laser light deposited in an aqueous dye solution near a fiber-optic tip have been performed. Numerical hydrodynamic simulations have been developed to understand and extrapolate results from these experiments. Comparison of two-dimensional simulations with the experiment shows excellent agreement in tracking the bubble evolution. Another regime of vapor bubble generation is short-pulse laser interactions with melanosomes. Strong shock generationmore » and vapor bubble generation are common physical features of this interaction. A novel effect of discrete absorption by melanin granules within a melanosome is studied as a possible role in previously reported high Mach number shocks.« less

  3. Proposed method to estimate the liquid-vapor accommodation coefficient based on experimental sonoluminescence data.

    PubMed

    Puente, Gabriela F; Bonetto, Fabián J

    2005-05-01

    We used the temporal evolution of the bubble radius in single-bubble sonoluminescence to estimate the water liquid-vapor accommodation coefficient. The rapid changes in the bubble radius that occur during the bubble collapse and rebounds are a function of the actual value of the accommodation coefficient. We selected bubble radius measurements obtained from two different experimental techniques in conjunction with a robust parameter estimation strategy and we obtained that for water at room temperature the mass accommodation coefficient is in the confidence interval [0.217,0.329].

  4. The Collapse of Vapor Bubbles in a Spatially Non-Uniform Flow

    NASA Technical Reports Server (NTRS)

    Hao, Y.; Prosperetti, A.

    2000-01-01

    Pressure gradients act differently on liquid particles and suspended bubbles and are, therefore, capable of inducing a relative motion between the phases even when no relative velocity initially exists. As a consequence of the enhanced heat transfer in the presence of convection, this fact may have a major impact on the evolution of a vapor bubble. The effect is particularly strong in the case of a collapsing bubble for which, due to the conservation of the system's impulse, the induced relative velocity tends to be magnified when the bubble volume shrinks. A practical application could be, for instance, the enhancement of the condensation rate of bubbles downstream of a heated region, thereby reducing the quality of a flowing liquid-vapor mixture. A simple model of the process, in which the bubble is assumed to be spherical and the flow potential, is developed in the paper.

  5. Acoustically-Enhanced Direct Contact Vapor Bubble Condensation

    NASA Astrophysics Data System (ADS)

    Boziuk, Thomas; Smith, Marc; Glezer, Ari

    2017-11-01

    Rate-limited, direct contact vapor condensation of vapor bubbles that are formed by direct steam injection through a nozzle in a quiescent subcooled liquid bath is accelerated using ultrasonic (MHz-range) actuation. A submerged, low power actuator produces an acoustic beam whose radiation pressure deforms the liquid-vapor interface, leading to the formation of a liquid spear that penetrates the vapor bubble to form a vapor torus with a significantly larger surface area and condensation rate. Ultrasonic focusing along the spear leads to the ejection of small, subcooled droplets through the vapor volume that impact the vapor-liquid interface and further enhance the condensation. High-speed Schlieren imaging of the formation and collapse of the vapor bubbles in the absence and presence of actuation shows that the impulse associated with the collapse of the toroidal volume leads to the formation of a turbulent vortex ring in the liquid phase. Liquid motions near the condensing vapor volume are investigated in the absence and presence of acoustic actuation using high-magnification PIV and show the evolution of a liquid jet through the center of the condensing toroidal volume and the formation and advection of vortex ring structures whose impulse appear to increase with temperature difference between the liquid and vapor phases. High-speed image processing is used to assess the effect of the actuation on the temporal and spatial variations in the characteristic scales and condensation rates of the vapor bubbles.

  6. Heterogeneously entrapped, vapor-rich melt inclusions record pre-eruptive magmatic volatile contents

    NASA Astrophysics Data System (ADS)

    Steele-MacInnis, Matthew; Esposito, Rosario; Moore, Lowell R.; Hartley, Margaret E.

    2017-04-01

    Silicate melt inclusions (MI) commonly provide the best record of pre-eruptive H2O and CO2 contents of subvolcanic melts, but the concentrations of CO2 and H2O in the melt (glass) phase within MI can be modified by partitioning into a vapor bubble after trapping. Melt inclusions may also enclose vapor bubbles together with the melt (i.e., heterogeneous entrapment), affecting the bulk volatile composition of the MI, and its post-entrapment evolution. In this study, we use numerical modeling to examine the systematics of post-entrapment volatile evolution within MI containing various proportions of trapped vapor from zero to 95 volume percent. Modeling indicates that inclusions that trap only a vapor-saturated melt exhibit significant decrease in CO2 and moderate increase in H2O concentrations in the melt upon nucleation and growth of a vapor bubble. In contrast, inclusions that trap melt plus vapor exhibit subdued CO2 depletion at equivalent conditions. In the extreme case of inclusions that trap mostly the vapor phase (i.e., CO2-H2O fluid inclusions containing trapped melt), degassing of CO2 from the melt is negligible. In the latter scenario, the large fraction of vapor enclosed in the MI during trapping essentially serves as a buffer, preventing post-entrapment modification of volatile concentrations in the melt. Hence, the glass phase within such heterogeneously entrapped, vapor-rich MI records the volatile concentrations of the melt at the time of trapping. These numerical modeling results suggest that heterogeneously entrapped MI containing large vapor bubbles represent amenable samples for constraining pre-eruptive volatile concentrations of subvolcanic melts.

  7. Microspectroscopic imaging of solution plasma: How do its physical properties and chemical species evolve in atmospheric-pressure water vapor bubbles?

    NASA Astrophysics Data System (ADS)

    Yui, Hiroharu; Banno, Motohiro

    2018-01-01

    In this article, we review the development of scientific instruments for obtaining information on the evolution of physical properties and chemical species of solution plasma (SP). When a pulsed high voltage is applied between electrodes immersed in an aqueous solution, SP is formed in water vapor bubbles transiently generated in the solution under atmospheric pressure. To clarify how SP emerges in water vapor bubbles and is sustained in solutions, an instrument with micrometer spatial resolution and nanosecond temporal resolution is required. To meet these requirements, a microscopic system with a custom-made optical discharge cell was newly developed, where the working distance between the SP and the microscopic objective lens was minimized. A hollow electrode equipped in the discharge cell also enabled us to control the chemical composition in water vapor bubbles. To study the spatial and temporal evolutions of chemical species in micrometer and nano- to microsecond regions, a streak camera with a spectrometer and a CCD detector with a time-gated electronic device were combined with the microscope system. The developed instrument is expected to contribute to providing a new means of developing new schemes for chemical reactions and material syntheses.

  8. The behavior of vapor bubbles during boiling enhanced with acoustics and open microchannels

    NASA Astrophysics Data System (ADS)

    Boziuk, Thomas; Smith, Marc K.; Glezer, Ari

    2012-11-01

    Boiling heat transfer on a submerged heated surface is enhanced by combining a grid of surface micromachined open channels and ultrasonic acoustic actuation to control the formation and evolution of vapor bubbles and to inhibit the instability that leads to film boiling at the critical heat flux (CHF). The microchannels provide nucleation sites for vapor bubble formation and enable the entrainment of bulk subcooled fluid to these sites for sustained evaporation. Acoustic actuation excites interfacial oscillations of the detached bubbles and leads to accelerated condensation in the bulk fluid, thereby limiting the formation of vapor columns that precede the CHF instability. The combined effects of microchannels and acoustic actuation are investigated experimentally with emphasis on bubble nucleation, growth, detachment, and condensation. It is shown that this hybrid approach leads to a significant increase in the critical heat flux, a reduction of the vapor mass above the surface, and the breakup of low-frequency vapor slug formation. A large-scale model of the microchannel grid reveals details of the flow near the nucleation site and shows that the presence of the microchannels decreases the surface superheat at a given heat flux. Supported by ONR.

  9. Modeling of Vapor Bubble Growth Under Nucleate Boiling Conditions in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Buyevich, Yu A.; Webbon, Bruce W.

    1995-01-01

    A dynamic model is developed to describe the evolution of a vapor bubble growing at a nucleation site on a superheated surface under arbitrary gravity. The bubble is separated from the surface by a thin microlayer and grows due to the evaporation from the microlayer interface. The average thickness of the microlayer increases as the bubble expands along the surface if the evaporation rate is lower than some critical value. The corresponding threshold value of the surface temperature has to be associated with the burn-out crisis. Two main reasons make for bubble separation, which are the buoyancy force and a force caused by the vapor momentum that comes to the bubble with vapor molecules. The latter force is somewhat diminished if condensation takes place at the upper bubble surface in subcooled liquids. The action of the said forces is opposed by inertia of the additional mass of liquid as the bubble center rises above the surface and by inertia of liquid being expelled by the growing bubble in radial directions. An extra pressure force arises due to the liquid inflow into the microlayer with a finite velocity. The last force helps in holding the bubble close to the surface during an initial stage of bubble evolution. Two limiting regimes with distinctly different properties can be singled out, depending on which of the forces that favor bubble detachment dominates. Under conditions of moderately reduced gravity, the situation is much the same as in normal gravity, although the bubble detachment volume increases as gravity diminishes. In microgravity, the buoyancy force is negligible. Then the bubble is capable of staying near the surface for a long time, with intensive evaporation from the microlayer. It suggests a drastic change in the physical mechanism of heat removal as gravity falls below a certain sufficiently low level. Inferences of the model and conclusions pertaining to effects caused on heat transfer processes by changes in bubble hydrodynamics induced by gravity are discussed in connection with experimental evidence, both available in current and in as yet unpublished literature.

  10. Evolution of Vapor Bubbles Nucleation Sites in Low Gravity

    NASA Technical Reports Server (NTRS)

    Buyevich, Yu A.; Webbon, Bruce W.

    1995-01-01

    When liquid is expelled by a vapor bubble growing at a nucleation site on a superheated surface, a thin microlayer underneath the bubble is left behind. It is evaporated from the free microlayer surface that provides for bubble growth. The average thickness of the microlayer determining the evaporation rate increases with time if the latter does not exceed a threshold value associated with the burn-out crisis. The bubble is described as a spherical segment with its flattened part adjoining the microlayer. This introduces two independent variables - the radius of the spherical part of the bubble surface and the polar angle that defines the relative area of the flattened part. They are to be found out from a set of two strongly nonlinear equations resulting from mass and momentum conservation laws. The first one depends on both microlayer thickness and nonmonotonously changing bubble base area. The second involves two major factors favoring bubble detachment - the buoyancy and a force due to the initial momentum of vapor input into the bubble. The former force depends on gravity whereas the latter one does not. It is why the limiting regimes of bubble evolution that correspond to normal or moderately reduced gravity and to microgravity feature drastically different properties. In the first case, the buoyancy dominates and the bubble evolves in such a manner as to become a full sphere at a moment that can be viewed as that of detachment. The detachment volume grows as gravity decreases. In the second case, the buoyancy is negligible and the bubble stays near the surface, while its volume continues to increase for a sufficiently long time. The findings are discussed in connection with experimental data obtained under different gravity conditions, some unpublished experiments being included. They help to understand why the pool boiling heat transfer coefficient frequently increases as gravity falls down and eventually vanishes.

  11. Dynamics of acoustic droplet vaporization in gas embolotherapy

    NASA Astrophysics Data System (ADS)

    Qamar, Adnan; Wong, Zheng Z.; Fowlkes, J. Brian; Bull, Joseph L.

    2010-04-01

    Acoustic droplet vaporization is investigated in a theoretical model. This work is motivated by gas embolotherapy, a developmental cancer treatment involving tumor infarction with gas microbubbles that are selectively formed from liquid droplets. The results indicate that there exists a threshold value for initial droplet size below which the bubble evolution is oscillatory and above which it is smooth and asymptotic, and show that the vaporization process affects the subsequent microbubble expansion. Dampening of the bubble expansion is observed for higher viscosity and surface tension, with effects more pronounced for droplet size less than 6 μm in radius.

  12. The dynamics of histotripsy bubbles

    NASA Astrophysics Data System (ADS)

    Kreider, Wayne; Bailey, Michael R.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Crum, Lawrence A.

    2011-09-01

    Histotripsy describes treatments in which high-amplitude acoustic pulses are used to excite bubbles and erode tissue. Though tissue erosion can be directly attributed to bubble activity, the genesis and dynamics of bubbles remain unclear. Histotripsy lesions that show no signs of thermal coagulative damage have been generated with two different acoustic protocols: relatively long acoustic pulses that produce local boiling within milliseconds and relatively short pulses that are higher in amplitude but likely do not produce boiling. While these two approaches are often distinguished as `boiling' versus `cavitation', such labels can obscure similarities. In both cases, a bubble undergoes large changes in radius and vapor is transported into and out of the bubble as it oscillates. Moreover, observations from both approaches suggest that bubbles grow to a size at which they cease to collapse violently. In order to better understand the dynamics of histotripsy bubbles, a single-bubble model has been developed that couples acoustically excited bubble motions to the thermodynamic state of the surrounding liquid. Using this model for bubbles exposed to histotripsy sound fields, simulations suggest that two mechanisms can act separately or in concert to lead to the typically observed bubble growth. First, nonlinear acoustic propagation leads to the evolution of shocks and an asymmetry in the positive and negative pressures that drive bubble motion. This asymmetry can have a rectifying effect on bubble oscillations whereby the bubble grows on average during each acoustic cycle. Second, vapor transport to/from the bubble tends to produce larger bubbles, especially at elevated temperatures. Vapor transport by itself can lead to rectified bubble growth when the ambient temperature exceeds 100 °C (`boiling') or local heating in the vicinity of the bubble leads to a superheated boundary layer.

  13. Simulation and analysis of collapsing vapor-bubble clusters with special emphasis on potentially erosive impact loads at walls

    NASA Astrophysics Data System (ADS)

    Ogloblina, Daria; Schmidt, Steffen J.; Adams, Nikolaus A.

    2018-06-01

    Cavitation is a process where a liquid evaporates due to a pressure drop and re-condenses violently. Noise, material erosion and altered system dynamics characterize for such a process for which shock waves, rarefaction waves and vapor generation are typical phenomena. The current paper presents novel results for collapsing vapour-bubble clusters in a liquid environment close to a wall obtained by computational fluid mechanics (CFD) simulations. The driving pressure initially is 10 MPa in the liquid. Computations are carried out by using a fully compressible single-fluid flow model in combination with a conservative finite volume method (FVM). The investigated bubble clusters (referred to as "clouds") differ by their initial vapor volume fractions, initial stand-off distances to the wall and by initial bubble radii. The effects of collapse focusing due to bubble-bubble interaction are analysed by investigating the intensities and positions of individual bubble collapses, as well as by the resulting shock-induced pressure field at the wall. Stronger interaction of the bubbles leads to an intensification of the collapse strength for individual bubbles, collapse focusing towards the center of the cloud and enhanced re-evaporation. The obtained results reveal collapse features which are common for all cases, as well as case-specific differences during collapse-rebound cycles. Simultaneous measurements of maximum pressures at the wall and within the flow field and of the vapor volume evolution show that not only the primary collapse but also subsequent collapses are potentially relevant for erosion.

  14. Bubble generation during transformer overload

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oommen, T.V.

    1990-03-01

    Bubble generation in transformers has been demonstrated under certain overload conditions. The release of large quantities of bubbles would pose a dielectric breakdown hazard. A bubble prediction model developed under EPRI Project 1289-4 attempts to predict the bubble evolution temperature under different overload conditions. This report details a verification study undertaken to confirm the validity of the above model using coil structures subjected to overload conditions. The test variables included moisture in paper insulation, gas content in oil, and the type of oil preservation system. Two aged coils were also tested. The results indicated that the observed bubble temperatures weremore » close to the predicted temperatures for models with low initial gas content in the oil. The predicted temperatures were significantly lower than the observed temperatures for models with high gas content. Some explanations are provided for the anomalous behavior at high gas levels in oil. It is suggested that the dissolved gas content is not a significant factor in bubble evolution. The dominant factor in bubble evolution appears to be the water vapor pressure which must reach critical levels before bubbles can be released. Further study is needed to make a meaningful revision of the bubble prediction model. 8 refs., 13 figs., 11 tabs.« less

  15. Motion of liquid plugs between vapor bubbles in capillary tubes: a comparison between fluids

    NASA Astrophysics Data System (ADS)

    Bertossi, Rémi; Ayel, Vincent; Mehta, Balkrishna; Romestant, Cyril; Bertin, Yves; Khandekar, Sameer

    2017-11-01

    Pulsating heat pipes (PHP) are now well-known devices in which liquid/vapor slug flow oscillates in a capillary tube wound between hot and cold sources. In this context, this paper focuses on the motion of the liquid plug, trapped between vapor bubbles, moving in capillary tubes, to try to better understand the thermo-physical phenomena involved in such devices. This study is divided into three parts. In the first part, an experimental study presents the evolution of the vapor pressure during the evaporation process of a liquid thin film deposited from a liquid plug flowing in a heated capillary tube: it is found that the behavior of the generated and removed vapor can be very different, according to the thermophysical properties of the fluids. In the second part, a transient model allows to compare, in terms of pressure and duration, the motion of a constant-length liquid plug trapped between two bubbles subjected to a constant difference of vapor pressure: the results highlight that the performances of the four fluids are also very different. Finally, a third model that can be considered as an improvement of the second one, is also presented: here, the liquid slug is surrounded by two vapor bubbles, one subjected to evaporation, the pressure in both bubbles is now a result of the calculation. This model still allows comparing the behaviors of the fluid. Even if our models are quite far from a complete model of a real PHP, results do indicate towards the applicability of different fluids as suitable working fluids for PHPs, particularly in terms of the flow instabilities which they generate.

  16. Evolution of steam-water flow structure under subcooled water boiling at smooth and structured heating surfaces

    NASA Astrophysics Data System (ADS)

    Vasiliev, N. V.; Zeigarnik, Yu A.; Khodakov, K. A.

    2017-11-01

    Experimentally studying of subcooled water boiling in rectangular channel electrically heated from one side was conducted. Flat surfaces, both smooth and coated by microarc oxidation technology, were used as heating surfaces. The tests were conducted at atmospheric pressure in the range of mass flow rate from 650 to 1300 kg/(m2 s) and water subcooling relative to saturation temperature from 23 to 75 °C. Using high-speed filming a change in the two-phase flow structure and its statistic characteristics (nucleation sites density, vapor bubble distribution by size, etc.) were studied. With an increase in the heat flux density (with the mass flow rate and subcooling being the same) and amount and size of the vapor bubbles increased also. At a relatively high heat flux density, non-spherical vapor agglomerates appeared at the heating surface as a result of coalescence of small bubbles. They originated in chaotic manner in arbitrary points of the heating surface and then after random evolution in form and size collapsed. The agglomerate size reached several millimeters and their duration of life was several milliseconds. After formation of large vapor agglomerates, with a further small increase in heat flux density a burnout of the heating surface occurred. In most cases the same effect took place if the large agglomerates were retained for several minutes.

  17. Two reference time scales for studying the dynamic cavitation of liquid films

    NASA Technical Reports Server (NTRS)

    Sun, D. C.; Brewe, D. E.

    1992-01-01

    Two formulas, one for the characteristic time of filling a void with the vapor of the surrounding liquid, and one of filling the void by diffusion of the dissolved gas in the liquid, are derived. By comparing these time scales with that of the dynamic operation of oil film bearings, it is concluded that the evaporation process is usually fast enough to fill the cavitation bubble with oil vapor; whereas the diffusion process is much too slow for the dissolved air to liberate itself and enter the cavitation bubble. These results imply that the formation of a two phase fluid in dynamically loaded bearings, as often reported in the literature, is caused by air entrainment. They further indicate a way to simplify the treatment of the dynamic problem of bubble evolution.

  18. Vapor-Gas Bubble Evolution and Growth in Extremely Viscous Fluids Under Vacuum

    NASA Technical Reports Server (NTRS)

    Kizito, John; Balasubramaniam, R.; Nahra, Henry; Agui, Juan; Truong, Duc

    2008-01-01

    Formation of vapor and gas bubbles and voids is normal and expected in flow processes involving extremely viscous fluids in normal gravity. Practical examples of extremely viscous fluids are epoxy-like filler materials before the epoxy fluids cure to their permanent form to create a mechanical bond between two substrates. When these fluids flow with a free liquid interface exposed to vacuum, rapid bubble expansion process may ensue. Bubble expansion might compromise the mechanical bond strength. The potential sources for the origin of the gases might be incomplete out-gassing process prior to filler application; regasification due to seal leakage in the filler applicator; and/or volatiles evolved from cure reaction products formed in the hardening process. We embarked on a study that involved conducting laboratory experiments with imaging diagnostics in order to deduce the seriousness of bubbling caused by entrained air and volatile fluids under space vacuum and low gravity environment. We used clear fluids with the similar physical properties as the epoxy-like filler material to mimic the dynamics of bubbles. Another aspect of the present study was to determine the likelihood of bubbling resulting from dissolved gases nucleating from solution. These experimental studies of the bubble expansion are compared with predictions using a modified Rayleigh- Plesset equation, which models the bubble expansion.

  19. Vapor Bubbles

    NASA Astrophysics Data System (ADS)

    Prosperetti, Andrea

    2017-01-01

    This article reviews the fundamental physics of vapor bubbles in liquids. Work on bubble growth and condensation for stationary and translating bubbles is summarized and the differences with bubbles containing a permanent gas stressed. In particular, it is shown that the natural frequency of a vapor bubble is proportional not to the inverse radius, as for a gas bubble, but to the inverse radius raised to the power 2/3. Permanent gas dissolved in the liquid diffuses into the bubble with strong effects on its dynamics. The effects of the diffusion of heat and mass on the propagation of pressure waves in a vaporous bubbly liquid are discussed. Other topics briefly touched on include thermocapillary flow, plasmonic nanobubbles, and vapor bubbles in an immiscible liquid.

  20. Acoustically enhanced boiling heat transfer on a heated surface containing open microchannels

    NASA Astrophysics Data System (ADS)

    Boziuk, Thomas R.; Smith, Marc K.; Glezer, Ari

    2011-11-01

    Acoustic actuation is used to enhance boiling heat transfer on a submerged heated surface containing an array of open microchannels by controlling the formation and evolution of vapor bubbles and inhibiting the instability that leads to film boiling at the critical heat flux. The effect of actuation at millimeter and micrometer scales is investigated with emphasis on the behavior of bubble nucleation, growth, contact-line motion, condensation, and detachment. The results show that microchannels control the location of boiling and reduce the mean surface superheat. In addition, acoustic actuation increases the heat flux at a given surface temperature and leads to a significant increase in the critical heat flux, a reduction of the vapor mass above the surface, and the breakup of low-frequency vapor slug formation. Supported by ONR.

  1. Gas embolotherapy: Bubble evolution in acoustic droplet vaporization and design of a benchtop microvascular model

    NASA Astrophysics Data System (ADS)

    Wong, Zheng Zheng

    This work was motivated by an ongoing development of a potential embolotherapy technique to occlude blood flow to tumors using gas bubbles selectively formed by in vivo acoustic droplet vaporization (ADV) of liquid perfluorocarbon droplets. Mechanisms behind the ADV, transport and lodging of emboli need to be understood before gas embolotherapy can translate to the clinic. Evolution of a bubble from acoustic droplet vaporization in a rigid tube, under physiological and room temperature conditions, was observed via ultra-high speed imaging. Effective radii and radial expansion ratios were obtained by processing the images using Image] software. At physiological temperature, a radial expansion ratio of 5.05 was attained, consistent with theoretical prediction. The initial radial growth rate was linear, after which the growth rate increased proportionally with square root of time. Nondimensionalization revealed that the subsequent growth rate also varied inversely with square root of initial radius. Eventually growth became asymptotic. No collapse was observed. A theoretical model derived from a modified Bernoulli equation, and a computational model by Ye & Bull (2004), were compared respectively with experimental results. Initial growth rates were predicted correctly by both models. Experimental results showed heavy damping of growth rate as the bubble grew towards the wall, whereas both models predicted an overshoot in growth followed by multiple oscillations. The theoretical model broke down near the wall; the computational model gave a reasonable bubble shape near the wall but would require correct initial pressure values to be accurate. At room temperature, the expansion ratio shot to 1.43 initially and oscillated down to 1.11, far below the theoretical prediction. Failure of the bubble to expand fully could be due to unconsumed or condensed liquid perfluorocarbon. A new fabrication method via non-lithographic means was devised to make a circular-lumen microchannel out of PDMS, with a diameter as small as 80 microns to mimic the size of a medium arteriole. The microchannel was endothelialized successfully, with a fairly homogeneous distribution along the length. Cell viability assays confirmed the viability of cells maintained in the microchannel. Bubble motion experiments performed with the benchtop microvascular model demonstrated its feasibility.

  2. Numerical simulation of superheated vapor bubble rising in stagnant liquid

    NASA Astrophysics Data System (ADS)

    Samkhaniani, N.; Ansari, M. R.

    2017-09-01

    In present study, the rising of superheated vapor bubble in saturated liquid is simulated using volume of fluid method in OpenFOAM cfd package. The surface tension between vapor-liquid phases is considered using continuous surface force method. In order to reduce spurious current near interface, Lafaurie smoothing filter is applied to improve curvature calculation. Phase change is considered using Tanasawa mass transfer model. The variation of saturation temperature in vapor bubble with local pressure is considered with simplified Clausius-Clapeyron relation. The couple velocity-pressure equation is solved using PISO algorithm. The numerical model is validated with: (1) isothermal bubble rising and (2) one-dimensional horizontal film condensation. Then, the shape and life time history of single superheated vapor bubble are investigated. The present numerical study shows vapor bubble in saturated liquid undergoes boiling and condensation. It indicates bubble life time is nearly linear proportional with bubble size and superheat temperature.

  3. Computational investigations of streamers in a single bubble suspended in distilled water under atmospheric pressure conditions

    NASA Astrophysics Data System (ADS)

    Sharma, Ashish; Levko, Dmitry; Raja, Laxminarayan

    2016-09-01

    We present a computational model of nanosecond streamers generated in helium bubbles immersed in distilled water at the atmospheric pressure conditions. The model is based on the self-consistent, multispecies and the continuum description of plasma and takes into account the presence of water vapor in the gas bubble for a more accurate description of the kinetics of the discharge. We find that the dynamic characteristics of the streamer discharge are completely different at low and high over voltages. We observe that the polarity of the trigger voltage has a substantial effect on initiation, transition and evolution stages of streamers with the volumetric distribution of species in the streamer channel much more uniform for negative trigger voltages due to the presence of multiple streamers. We also find that the presence of water vapor significantly influences the distribution of the dominant species in the streamer trail and has a profound effect on the flux of the dominant species to the bubble wall. The research reported in this publication was supported by Competitive Research Funding from King Abdullah University of Science and Technology (KAUST).

  4. Role of entrapped vapor bubbles during microdroplet evaporation

    NASA Astrophysics Data System (ADS)

    Putnam, Shawn A.; Byrd, Larry W.; Briones, Alejandro M.; Hanchak, Michael S.; Ervin, Jamie S.; Jones, John G.

    2012-08-01

    On superheated surfaces, the air bubble trapped during impingement grows into a larger vapor bubble and oscillates at the frequency predicted for thermally induced capillary waves. In some cases, the entrapped vapor bubble penetrates the droplet interface, leaving a micron-sized coffee-ring pattern of pure fluid. Vapor bubble entrapment, however, does not influence the evaporation rate. This is also true on laser heated surfaces, where a laser can thermally excite capillary waves and induce bubble oscillations over a broad range of frequencies, suggesting that exciting perturbations in a pinned droplets interface is not an effective avenue for enhancing evaporative heat transfer.

  5. Corner-transport-upwind lattice Boltzmann model for bubble cavitation

    NASA Astrophysics Data System (ADS)

    Sofonea, V.; Biciuşcǎ, T.; Busuioc, S.; Ambruş, Victor E.; Gonnella, G.; Lamura, A.

    2018-02-01

    Aiming to study the bubble cavitation problem in quiescent and sheared liquids, a third-order isothermal lattice Boltzmann model that describes a two-dimensional (2D) fluid obeying the van der Waals equation of state, is introduced. The evolution equations for the distribution functions in this off-lattice model with 16 velocities are solved using the corner-transport-upwind (CTU) numerical scheme on large square lattices (up to 6144 ×6144 nodes). The numerical viscosity and the regularization of the model are discussed for first- and second-order CTU schemes finding that the latter choice allows to obtain a very accurate phase diagram of a nonideal fluid. In a quiescent liquid, the present model allows us to recover the solution of the 2D Rayleigh-Plesset equation for a growing vapor bubble. In a sheared liquid, we investigated the evolution of the total bubble area, the bubble deformation, and the bubble tilt angle, for various values of the shear rate. A linear relation between the dimensionless deformation coefficient D and the capillary number Ca is found at small Ca but with a different factor than in equilibrium liquids. A nonlinear regime is observed for Ca≳0.2 .

  6. Condensation on a noncollapsing vapor bubble in a subcooled liquid

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Simoneau, R. J.

    1979-01-01

    An experimental procedure is presented by which an estimate can be made of the condensation coefficient on a noncollapsing stationary vapor bubble in subcooled liquid nitrogen. Film boiling from a thin wire was used to generate vapor bubbles which remain fixed to the wire at their base. A balance was established between the evaporation in the thin annular region along the wire and the condensation in the vapor bubbles.

  7. Vapor bubble generation around gold nano-particles and its application to damaging of cells

    PubMed Central

    Kitz, M.; Preisser, S.; Wetterwald, A.; Jaeger, M.; Thalmann, G. N.; Frenz, M.

    2011-01-01

    We investigated vapor bubbles generated upon irradiation of gold nanoparticles with nanosecond laser pulses. Bubble formation was studied both with optical and acoustic means on supported single gold nanoparticles and single nanoparticles in suspension. Formation thresholds determined at different wavelengths indicate a bubble formation efficiency increasing with the irradiation wavelength. Vapor bubble generation in Bac-1 cells containing accumulations of the same particles was also investigated at different wavelengths. Similarly, they showed an increasing cell damage efficiency for longer wavelengths. Vapor bubbles generated by single laser pulses were about half the cell size when inducing acute damage. PMID:21339875

  8. Numerical study on the splitting of a vapor bubble in the ultrasonic assisted EDM process with the curved tool and workpiece.

    PubMed

    Shervani-Tabar, M T; Seyed-Sadjadi, M H; Shabgard, M R

    2013-01-01

    Electrical discharge machining (EDM) is a powerful and modern method of machining. In the EDM process, a vapor bubble is generated between the tool and the workpiece in the dielectric liquid due to an electrical discharge. In this process dynamic behavior of the vapor bubble affects machining process. Vibration of the tool surface affects bubble behavior and consequently affects material removal rate (MRR). In this paper, dynamic behavior of the vapor bubble in an ultrasonic assisted EDM process after the appearance of the necking phenomenon is investigated. It is noteworthy that necking phenomenon occurs when the bubble takes the shape of an hour-glass. After the appearance of the necking phenomenon, the vapor bubble splits into two parts and two liquid jets are developed on the boundaries of the upper and lower parts of the vapor bubble. The liquid jet developed on the upper part of the bubble impinges to the tool and the liquid jet developed on the lower part of the bubble impinges to the workpiece. These liquid jets cause evacuation of debris from the gap between the tool and the workpiece and also cause erosion of the workpiece and the tool. Curved tool and workpiece affect the shape and the velocity of the liquid jets during splitting of the vapor bubble. In this paper dynamics of the vapor bubble after its splitting near the curved tool and workpiece is investigated in three cases. In the first case surfaces of the tool and the workpiece are flat, in the second case surfaces of the tool and the workpiece are convex and in the third case surfaces of the tool and workpiece are concave. Numerical results show that in the third case, the velocity of liquid jets which are developed on the boundaries of the upper and lower parts of the vapor bubble after its splitting have the highest magnitude and their shape are broader than the other cases. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeishi, T.; Kotoh, K.; Kawabata, Y.

    The existence of tritium-contaminated oils from vacuum pumps used in tritium facilities, is becoming an important issue since there is no disposal way for tritiated waste oils. On recovery of tritiated water vapor in gas streams, it is well-known that the isotope exchange reaction between the gas phase and the liquid phase occurs effectively at room temperature. We have carried out experiments using bubbles to examine the tritium contamination and decontamination of a volume of rotary-vacuum-pump oil. The contamination of the pump oil was made by bubbling tritiated water vapor and tritiated hydrogen gas into the oil. Subsequently the decontaminationmore » was processed by bubbling pure water vapor and dry argon gas into the tritiated oil. Results show that the water vapor bubbling was more effective than dry argon gas. The experiment also shows that the water vapor bubbling in an oil bottle can remove and transfer tritium efficiently from the tritiated oil into another water-bubbling bottle.« less

  10. Nonlinear dynamics of a vapor bubble expanding in a superheated region of finite size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annenkova, E. A., E-mail: a-a-annenkova@yandex.ru; Kreider, W.; Sapozhnikov, O. A.

    2015-10-28

    Growth of a vapor bubble in a superheated liquid is studied theoretically. Contrary to the typical situation of boiling, when bubbles grow in a uniformly heated liquid, here the superheated region is considered in the form of a millimeter-sized spherical hot spot. An initial micron-sized bubble is positioned at the hot spot center and a theoretical model is developed that is capable of studying bubble growth caused by vapor pressure inside the bubble and corresponding hydrodynamic and thermal processes in the surrounding liquid. Such a situation is relevant to the dynamics of vapor cavities that are created in soft biologicalmore » tissue in the focal region of a high-intensity focused ultrasound beam with a shocked pressure waveform. Such beams are used in the recently proposed treatment called boiling histotripsy. Knowing the typical behavior of vapor cavities during boiling histotripsy could help to optimize the therapeutic procedure.« less

  11. Momentum effects in steady nucleate pool boiling during microgravity.

    PubMed

    Merte, Herman

    2004-11-01

    Pool boiling experiments were conducted in microgravity on five space shuttle flights, using a flat plate heater consisting of a semitransparent thin gold film deposited on a quartz substrate that also acted as a resistance thermometer. The test fluid was R-113, and the vapor bubble behavior at the heater surface was photographed from beneath as well as from the side. Each flight consisted of a matrix of three levels of heat flux and three levels of subcooling. In 26 of the total of 45 experiments conditions of steady-state pool boiling were achieved under certain combinations of heat flux and liquid subcooling. In many of the 26 cases, it was observed from the 16-mm movie films that a large vapor bubble formed, remaining slightly removed from the heater surface, and that subsequent vapor bubbles nucleate and grow on the heater surface. Coalescence occurs upon making contact with the large bubble, which thus acts as a vapor reservoir. Recently, measurements of the frequencies and sizes of the small vapor bubbles as they coalesced with the large bubble permitted computation of the associated momentum transfer. The transient forces obtained are presented here. Where these arise from the conversion of the surface energy in the small vapor bubble to kinetic energy acting away from the solid heater surface, they counter the Marangoni convection due to the temperature gradients normal to the heater surface. This Marangoni convection would otherwise impel the large vapor bubble toward the heater surface and result in dryout and unsteady heat transfer.

  12. Condensation of vapor bubble in subcooled pool

    NASA Astrophysics Data System (ADS)

    Horiuchi, K.; Koiwa, Y.; Kaneko, T.; Ueno, I.

    2017-02-01

    We focus on condensation process of vapor bubble exposed to a pooled liquid of subcooled conditions. Two different geometries are employed in the present research; one is the evaporation on the heated surface, that is, subcooled pool boiling, and the other the injection of vapor into the subcooled pool. The test fluid is water, and all series of the experiments are conducted under the atmospheric pressure condition. The degree of subcooling is ranged from 10 to 40 K. Through the boiling experiment, unique phenomenon known as microbubble emission boiling (MEB) is introduced; this phenomenon realizes heat flux about 10 times higher than the critical heat flux. Condensation of the vapor bubble is the key phenomenon to supply ambient cold liquid to the heated surface. In order to understand the condensing process in the MEB, we prepare vapor in the vapor generator instead of the evaporation on the heated surface, and inject the vapor to expose the vapor bubble to the subcooled liquid. Special attention is paid to the dynamics of the vapor bubble detected by the high-speed video camera, and on the enhancement of the heat transfer due to the variation of interface area driven by the condensation.

  13. Acoustic wave propagation in bubbly flow with gas, vapor or their mixtures.

    PubMed

    Zhang, Yuning; Guo, Zhongyu; Gao, Yuhang; Du, Xiaoze

    2018-01-01

    Presence of bubbles in liquids could significantly alter the acoustic waves in terms of wave speed and attenuation. In the present paper, acoustic wave propagation in bubbly flows with gas, vapor and gas/vapor mixtures is theoretically investigated in a wide range of parameters (including frequency, bubble radius, void fraction, and vapor mass fraction). Our finding reveals two types of wave propagation behavior depending on the vapor mass fraction. Furthermore, the minimum wave speed (required for the closure of cavitation modelling in the sonochemical reactor design) is analyzed and the influences of paramount parameters on it are quantitatively discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Numerical and experimental study of dissociation in an air-water single-bubble sonoluminescence system.

    PubMed

    Puente, Gabriela F; Urteaga, Raúl; Bonetto, Fabián J

    2005-10-01

    We performed a comprehensive numerical and experimental analysis of dissociation effects in an air bubble in water acoustically levitated in a spherical resonator. Our numerical approach is based on suitable models for the different effects considered. We compared model predictions with experimental results obtained in our laboratory in the whole phase parameter space, for acoustic pressures from the bubble dissolution limit up to bubble extinction. The effects were taken into account simultaneously to consider the transition from nonsonoluminescence to sonoluminescence bubbles. The model includes (1) inside the bubble, transient and spatially nonuniform heat transfer using a collocation points method, dissociation of O2 and N2, and mass diffusion of vapor in the noncondensable gases; (2) at the bubble interface, nonequilibrium evaporation and condensation of water and a temperature jump due to the accommodation coefficient; (3) in the liquid, transient and spatially nonuniform heat transfer using a collocation points method, and mass diffusion of the gas in the liquid. The model is completed with a Rayleigh-Plesset equation with liquid compressible terms and vapor mass transfer. We computed the boundary for the shape instability based on the temporal evolution of the computed radius. The model is valid for an arbitrary number of dissociable gases dissolved in the liquid. We also obtained absolute measurements for R(t) using two photodetectors and Mie scattering calculations. The robust technique used allows the estimation of experimental results of absolute R0 and P(a). The technique is based on identifying the bubble dissolution limit coincident with the parametric instability in (P(a),R0) parameter space. We take advantage of the fact that this point can be determined experimentally with high precision and replicability. We computed the equilibrium concentration of the different gaseous species and water vapor during collapse as a function of P(a) and R0. The model obtains from first principles the result that in sonoluminescence the bubble is practically 100% argon for air dissolved in water. Therefore, the dissociation reactions in air bubbles must be taken into account for quantitative computations of maximum temperatures. The agreement found between the numerical and experimental data is very good in the whole parameter space explored. We do not fit any parameter in the model. We believe that we capture all the relevant physics with the model.

  15. High-speed microjet generation using laser-induced vapor bubbles

    NASA Astrophysics Data System (ADS)

    Oudalov, Nikolai; Tagawa, Yoshiyuki; Peters, Ivo; Visser, Claas-Willem; van der Meer, Devaraj; Prosperetti, Andrea; Sun, Chao; Lohse, Detlef

    2011-11-01

    The generation and evolution of microjets are studied both experimentally and numerically. The jets are generated by focusing a laser pulse into a microscopic capillary tube (~50 μm) filled with water-based red dye. A vapor bubble is created instantly after shooting the laser (<1 μs), sending out a shockwave towards the curved free surface at which the high-speed microjet forms. The process of jet formation is captured using high-speed recordings at 1.0 × 106 fps. The velocity of the microjets can reach speeds of ~850 m/s while maintaining a very sharp geometry. The high-speed recordings enable us to study the effect of several parameters on the jet velocity, e.g. the absorbed energy and the distance between the laser spot and the free surface.The results show a clear dependence on these variables, even for supersonic speeds. Comparisons with numerical simulations confirm the nature of these dependencies.

  16. Dynamics of vapor bubbles growth at boiling resulting from enthalpy excess of the surrounding superheated liquid and sound pulses generated by bubbles

    NASA Astrophysics Data System (ADS)

    Dorofeev, B. M.; Volkova, V. I.

    2016-01-01

    The results of experiments investigating the exponential dependence of the vapor bubble radius on time at saturated boiling are generalized. Three different methods to obtain this dependence are suggested: (1) by the application of the transient heat conduction equation, (2) by using the correlations of energy conservation, and (3) by solving a similar electrodynamic problem. Based on the known experimental data, the accuracy of the dependence up to one percent and a few percent accuracy of its description based on the sound pressure generated by a vapor bubble have been determined. A significant divergence of the power dependence of the vapor bubble radius on time (with an exponent of 1/2) with the experimental results and its inadequacy for the description of the sound pulse generated by the bubble have been demonstrated.

  17. Liquid phase stabilization versus bubble formation at a nanoscale curved interface

    NASA Astrophysics Data System (ADS)

    Schiffbauer, Jarrod; Luo, Tengfei

    2018-03-01

    We investigate the nature of vapor bubble formation near a nanoscale-curved convex liquid-solid interface using two models: an equilibrium Gibbs model for homogenous nucleation, and a nonequilibrium dynamic van der Waals-diffuse-interface model for phase change in an initially cool liquid. Vapor bubble formation is shown to occur for sufficiently large radius of curvature and is suppressed for smaller radii. Solid-fluid interactions are accounted for and it is shown that liquid-vapor interfacial energy, and hence Laplace pressure, has limited influence over bubble formation. The dominant factor is the energetic cost of creating the solid-vapor interface from the existing solid-liquid interface, as demonstrated via both equilibrium and nonequilibrium arguments.

  18. Investigation of C-O-H-S fluids directly exsolved from melts associated with the Mt. Somma-Vesuvius magmas

    NASA Astrophysics Data System (ADS)

    Manning, C. E.; Esposito, R.; Lamadrid, H. M.; Redi, D.; Steele-MacInnis, M. J.; Bodnar, R. J.; De Vivo, B.; Cannatelli, C.; Lima, A.

    2016-12-01

    Undegassed deep melts can be trapped as melt inclusions (MI) hosted in phenocrysts growing in magma reservoirs. The host crystal acts as a pressure capsule, ideally preventing the melt from degassing. Sometimes, MI often contain a vapor bubble when observed at ambient conditions. Bubble-bearing MI represent a natural sample with which to investigate magmatic fluids that directly exsolve from a silicate melt. Some recent studies reported that most of the CO2 in bubble-bearing MI hosted in mafic minerals is stored in the vapor bubble. However, despite the detection of CO2 in bubbles, the expected accompanying H2O has not been found in mafic MI hosted in olivine. In this presentation, we describe the discovery of H2O in MI hosted in olivine associated with the Mt. Somma-Vesuvius (Italy) magmas. We reheated crystallized (or partially crystallized) olivine-hosted MI from various eruptions at Mt. Somma-Vesuvius. We quenched bubble-bearing MI from high T (1143-1238°C) to produce a bubble-bearing glass at room T. Using Raman spectroscopy, we detected liquid H2O at room T, vapor H2O at 150°C in the vapor bubbles of reheated MI, and native S and gypsum, in addition to CO2. In most MI, the H2O is hosted in sub-micron scale hydrous phases at the interface between the bubble and the glass and would not be detected during routine analysis. During MI heating experiments, the H2O is redissolved into the melt and then exsolves from the melt into the vapor bubble, where it remains after quenching, at least on the relatively short time scales of our observations. Our results suggest that a significant amount of H2O may be stored in vapor bubbles of bubble-bearing MI, especially for MI with (1) relatively low H2O content in the originally trapped melt, (2) relatively high proportion of H2O in the exsolved fluid, (3) relatively large volume % vapor bubble. In addition, we calculated that the composition of magmatic fluids directly exsolving from mafic melts associated with Mt. Somma-Vesuvius may contain up to 47 mole% H2O and up to 60 mole% S.

  19. Steady State Vapor Bubble in Pool Boiling

    PubMed Central

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C.; Maroo, Shalabh C.

    2016-01-01

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics. PMID:26837464

  20. Cavitations synthesis of carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Voropaev, S.

    2011-04-01

    Originally an idea of diamonds production by hydrodynamical cavitation was presented by academician E M Galimov. He supposed the possibility of nature diamonds formation at fast magma flowing in kimberlitic pipes during bubbles collapse. This hypothesis assumes a number of processes, which were not under consideration until now. It concerns cavitation under high pressure, growth and stability of the gas- and vapors bubbles, their evolution, and corresponding physical- and chemical processes inside. Experimental setup to reproduce the high pressure and temperature reaction centers by means of the cavitation following the above idea was created. A few crystalline nanocarbon forms were successfully recovered after treatment of benzene (C6H6).

  1. Transition process leading to microbubble emission boiling on horizontal circular heated surface in subcooled pool

    NASA Astrophysics Data System (ADS)

    Ueno, Ichiro; Ando, Jun; Horiuchi, Kazuna; Saiki, Takahito; Kaneko, Toshihiro

    2016-11-01

    Microbubble emission boiling (MEB) produces a higher heat flux than critical heat flux (CHF) and therefore has been investigated in terms of its heat transfer characteristics as well as the conditions under which MEB occurs. Its physical mechanism, however, is not yet clearly understood. We carried out a series of experiments to examine boiling on horizontal circular heated surfaces of 5 mm and of 10 mm in diameter, in a subcooled pool, paying close attention to the transition process to MEB. High-speed observation results show that, in the MEB regime, the growth, condensation, and collapse of the vapor bubbles occur within a very short time. In addition, a number of fine bubbles are emitted from the collapse of the vapor bubbles. By tracking these tiny bubbles, we clearly visualize that the collapse of the vapor bubbles drives the liquid near the bubbles towards the heated surface, such that the convection field around the vapor bubbles under MEB significantly differs from that under nucleate boiling. Moreover, the axial temperature gradient in a heated block (quasi-heat flux) indicates a clear difference between nucleate boiling and MEB. A combination of quasi-heat flux and the measurement of the behavior of the vapor bubbles allows us to discuss the transition to MEB. This work was financially supported by the 45th Research Grant in Natural Sciences from The Mitsubishi Foundation (2014 - 2015), and by Research Grant for Boiler and Pressurized Vessels from The Japan Boiler Association (2016).

  2. Theory of supercompression of vapor bubbles and nanoscale thermonuclear fusion

    NASA Astrophysics Data System (ADS)

    Nigmatulin, Robert I.; Akhatov, Iskander Sh.; Topolnikov, Andrey S.; Bolotnova, Raisa Kh.; Vakhitova, Nailya K.; Lahey, Richard T.; Taleyarkhan, Rusi P.

    2005-10-01

    This paper provides the theoretical basis for energetic vapor bubble implosions induced by a standing acoustic wave. Its primary goal is to describe, explain, and demonstrate the plausibility of the experimental observations by Taleyarkhan et al. [Science 295, 1868 (2002); Phys. Rev. E 69, 036109 (2004)] of thermonuclear fusion for imploding cavitation bubbles in chilled deuterated acetone. A detailed description and analysis of these data, including a resolution of the criticisms that have been raised, together with some preliminary HYDRO code simulations, has been given by Nigmatulin et al. [Vestnik ANRB (Ufa, Russia) 4, 3 (2002); J. Power Energy 218-A, 345 (2004)] and Lahey et al. [Adv. Heat Transfer (to be published)]. In this paper a hydrodynamic shock (i.e., HYDRO) code model of the spherically symmetric motion for a vapor bubble in an acoustically forced liquid is presented. This model describes cavitation bubble cluster growth during the expansion period, followed by a violent implosion during the compression period of the acoustic cycle. There are two stages of the bubble dynamics process. The first, low Mach number stage, comprises almost all the time of the acoustic cycle. During this stage, the radial velocities are much less than the sound speeds in the vapor and liquid, the vapor pressure is very close to uniform, and the liquid is practically incompressible. This process is characterized by the inertia of the liquid, heat conduction, and the evaporation or condensation of the vapor. The second, very short, high Mach number stage is when the radial velocities are the same order, or higher, than the sound speeds in the vapor and liquid. In this stage high temperatures, pressures, and densities of the vapor and liquid take place. The model presented herein has realistic equations of state for the compressible liquid and vapor phases, and accounts for nonequilibrium evaporation/condensation kinetics at the liquid/vapor interface. There are interacting shock waves in both phases, which converge toward and reflect from the center of the bubble, causing dissociation, ionization, and other related plasma physics phenomena during the final stage of bubble collapse. For a vapor bubble in a deuterated organic liquid (e.g., acetone), during the final stage of collapse there is a nanoscale region (diameter ˜100nm) near the center of the bubble in which, for a fraction of a picosecond, the temperatures and densities are extremely high (˜108K and ˜10g/cm3, respectively) such that thermonuclear fusion may take place. To quantify this, the kinetics of the local deuterium/deuterium (D/D) nuclear fusion reactions was used in the HYDRO code to determine the intensity of the fusion reactions. Numerical HYDRO code simulations of the bubble implosion process have been carried out for the experimental conditions used by Taleyarkhan et al. [Science 295, 1868 (2002); Phys. Rev. E 69, 036109 (2004)] at Oak Ridge National Laboratory. The results show good agreement with the experimental data on bubble fusion that was measured in chilled deuterated acetone.

  3. Expanding Taylor bubble under constant heat flux

    NASA Astrophysics Data System (ADS)

    Voirand, Antoine; Benselama, Adel M.; Ayel, Vincent; Bertin, Yves

    2016-09-01

    Modelization of non-isothermal bubbles expanding in a capillary, as a contribution to the understanding of the physical phenomena taking place in Pulsating Heat Pipes (PHPs), is the scope of this paper. The liquid film problem is simplified and solved, while the thermal problem takes into account a constant heat flux density applied at the capillary tube wall, exchanging with the liquid film surrounding the bubble and also with the capillary tube outside medium. The liquid slug dynamics is solved using the Lucas-Washburn equation. Mass and energy balance on the vapor phase allow governing equations of bubble expansion to be written. The liquid and vapor phases are coupled only through the saturation temperature associated with the vapor pressure, assumed to be uniform throughout the bubble. Results show an over-heating of the vapor phase, although the particular thermal boundary condition used here always ensures an evaporative mass flux at the liquid-vapor interface. Global heat exchange is also investigated, showing a strong decreasing of the PHP performance to convey heat by phase change means for large meniscus velocities.

  4. Interfacial Dynamics of Condensing Vapor Bubbles in an Ultrasonic Acoustic Field

    NASA Astrophysics Data System (ADS)

    Boziuk, Thomas; Smith, Marc; Glezer, Ari

    2016-11-01

    Enhancement of vapor condensation in quiescent subcooled liquid using ultrasonic actuation is investigated experimentally. The vapor bubbles are formed by direct injection from a pressurized steam reservoir through nozzles of varying characteristic diameters, and are advected within an acoustic field of programmable intensity. While kHz-range acoustic actuation typically couples to capillary instability of the vapor-liquid interface, ultrasonic (MHz-range) actuation leads to the formation of a liquid spout that penetrates into the vapor bubble and significantly increases its surface area and therefore condensation rate. Focusing of the ultrasonic beam along the spout leads to ejection of small-scale droplets from that are propelled towards the vapor liquid interface and result in localized acceleration of the condensation. High-speed video of Schlieren images is used to investigate the effects of the ultrasonic actuation on the thermal boundary layer on the liquid side of the vapor-liquid interface and its effect on the condensation rate, and the liquid motion during condensation is investigated using high-magnification PIV measurements. High-speed image processing is used to assess the effect of the actuation on the dynamics and temporal variation in characteristic scale (and condensation rate) of the vapor bubbles.

  5. Acoustic Behavior of Vapor Bubbles

    NASA Technical Reports Server (NTRS)

    Prosperetti, Andrea; Oguz, Hasan N.

    1996-01-01

    In a microgravity environment vapor bubbles generated at a boiling surface tend to remain near it for a long time. This affects the boiling heat transfer and in particular promotes an early transition to the highly inefficient film boiling regime. This paper describes the physical basis underlying attempts to remove the bubbles by means of pressure radiation forces.

  6. Characterization of Acoustic Droplet Vaporization Using MRI

    NASA Astrophysics Data System (ADS)

    Li, David; Allen, Steven; Hernandez-Garcia, Luis; Bull, Joseph

    2013-11-01

    Acoustic droplet vaporization (ADV) is the selective vaporization of liquid droplets to form larger gas bubbles. The ADV process is currently being researched for biomedical applications such as gas embolotherapy, drug delivery, and phase-change contrast agents. In this study an albumin encapsulated dodecafluoropentane (DDFP, CAS: 678-26-2) microdroplet suspension was vaporized using a single element focused (f/2, D = 19 mm) 3.5 MHz transducer (Panametrics A321S, Olympus, Waltham, MA). The resulting DDFP bubble clouds were imaged using both bright field microscopy and MRI (Varian 7T, Agilent Technologies Inc., Santa Clara, CA). Field distortions due to DDFP bubble generation were characterized against the bright field images as a function of acoustic power and bubble cloud size. Experimentally a direct correlation between bubble cloud dimensions generated and field distortions seen in the MRI was observed. Additionally, MR velocimetry was used to measure the flow field resulting from ADV. The field distortions due to the bubbles were further characterized by modeling Maxwell's equations using COMSOL (COMSOL Inc., Burlington, MA). The ability to characterize ADV with alternative imaging modalities may prove useful in further development of ADV based biomedical therapies.

  7. Bubble induced flow field modulation for pool boiling enhancement over a tubular surface

    NASA Astrophysics Data System (ADS)

    Raghupathi, P. A.; Joshi, I. M.; Jaikumar, A.; Emery, T. S.; Kandlikar, S. G.

    2017-06-01

    We demonstrate the efficacy of using a strategically placed enhancement feature to modify the trajectory of bubbles nucleating on a horizontal tubular surface to increase both the critical heat flux (CHF) and the heat transfer coefficient (HTC). The CHF on a plain tube is shown to be triggered by a local dryout at the bottom of the tube due to vapor agglomeration. To mitigate this effect and delay CHF, the nucleating bubble trajectory is modified by incorporating a bubble diverter placed axially at the bottom of the tube. The nucleating bubble at the base of the diverter experiences a tangential evaporation momentum force (EMF) which causes the bubble to grow sideways away from the tube and avoid localized bubble patches that are responsible for CHF initiation. High speed imaging confirmed the lateral displacement of the bubbles away from the diverter closely matched with the theoretical predictions using EMF and buoyancy forces. Since the EMF is stronger at higher heat fluxes, bubble displacement increases with heat flux and results in the formation of separate liquid-vapor pathways wherein the liquid enters almost unobstructed at the bottom and the vapor bubble leaves sideways. Experimental results yielded CHF and HTC enhancements of ˜60% and ˜75%, respectively, with the diverter configuration when compared to a plain tube. This work can be used for guidance in developing enhancement strategies to effectively modulate the liquid-vapor flow around the heater surface at various locations to enhance HTC and CHF.

  8. Numerical investigation of homogeneous cavitation nucleation in a microchannel

    NASA Astrophysics Data System (ADS)

    Lyu, Xiuxiu; Pan, Shucheng; Hu, Xiangyu; Adams, Nikolaus A.

    2018-06-01

    The physics of nucleation in water is an important issue for many areas, ranging from biomedical to engineering applications. Within the present study, we investigate numerically homogeneous nucleation in a microchannel induced by shock reflection to gain a better understanding of the mechanism of homogeneous nucleation. The liquid expands due to the reflected shock and homogeneous cavitation nuclei are generated. An Eulerian-Lagrangian approach is employed for modeling this process in a microchanel. Two-dimensional axisymmetric Euler equations are solved for obtaining the time evolution of shock, gas bubble, and the ambient fluid. The dynamics of dispersed vapor bubbles is coupled with the surrounding fluid in a Lagrangian framework, describing bubble location and bubble size variation. Our results reproduce nuclei distributions at different stages of homogeneous nucleation and are in good agreement with experimental results. We obtain numerical data for the negative pressure that water can sustain under the process of homogeneous nucleation. An energy transformation description for the homogeneous nucleation inside a microchannel flow is derived and analyzed in detail.

  9. Bubble diagnostics

    DOEpatents

    Visuri, Steven R.; Mammini, Beth M.; Da Silva, Luiz B.; Celliers, Peter M.

    2003-01-01

    The present invention is intended as a means of diagnosing the presence of a gas bubble and incorporating the information into a feedback system for opto-acoustic thrombolysis. In opto-acoustic thrombolysis, pulsed laser radiation at ultrasonic frequencies is delivered intraluminally down an optical fiber and directed toward a thrombus or otherwise occluded vessel. Dissolution of the occlusion is therefore mediated through ultrasonic action of propagating pressure or shock waves. A vapor bubble in the fluid surrounding the occlusion may form as a result of laser irradiation. This vapor bubble may be used to directly disrupt the occlusion or as a means of producing a pressure wave. It is desirable to detect the formation and follow the lifetime of the vapor bubble. Knowledge of the bubble formation and lifetime yields critical information as to the maximum size of the bubble, density of the absorbed radiation, and properties of the absorbing material. This information can then be used in a feedback system to alter the irradiation conditions.

  10. Theoretical modeling of the vapor cavitation in dynamically loaded journal bearings

    NASA Technical Reports Server (NTRS)

    Brewe, D. E.

    1985-01-01

    A theoretical investigation is made of the evolution of a vapor-bubble for a submerged journal bearing under dynamically loaded conditions using the Elrod algorithm. This method conserves mass throughout the computational domain. A comparison study is performed to determine some of the consequences of applying a nonconservative theory (pseudo-Gumbel BC) to a dynamic problem. A complete dynamic cycle of a journal whirling in a circular path is chosen for the basis of comparison. Significant differences are observed in the load components near the end of the cycle. Further, good agreement with experiment is found for stationary and nonstationary cavitation.

  11. Bubble formation during pulsed laser ablation: mechanism and implications

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Ton G. J. M.; Jansen, E. Duco; Motamedi, Massoud; Welch, Ashley J.; Borst, Cornelius

    1993-07-01

    Holmium ((lambda) equals 2.09 micrometers ) and excimer ((lambda) equals 308 nm) lasers are used for ablation of tissue. In a previous study it was demonstrated that both excimer and holmium laser pulses produce fast expanding and collapsing vapor bubbles. To investigate whether the excimer induced bubble is caused by vaporization of water, the threshold fluence for bubble formation at a bare fiber tip in water was compared between the excimer laser (pulse length 115 ns) and the Q-switched and free-running holmium lasers (pulse length 1 microsecond(s) to 250 microsecond(s) , respectively). To induce bubble formation by excimer laser light in water, the absorber oxybuprocaine-hydrochloride (OBP-HCl) was added to the water. Fast flash photography was used to measure the threshold fluence as a function of the water temperature (6 - 90 degree(s)C) at environmental pressure. The ultraviolet excimer laser light is strongly absorbed by blood. Therefore, to document the implications of bubble formation at fluences above the tissue ablation threshold, excimer laser pulses were delivered in vitro in hemoglobin solution and in vivo in the femoral artery of the rabbit. We conclude that the principal content of the fast bubble induced by a 308 nm excimer laser pulse is water vapor. Therefore, delivery of excimer laser pulses in a water or blood environment will cause fast expanding water vapor bubbles, which may induce mechanical damage to adjacent tissue.

  12. Numerical simulation and experimental validation of the dynamics of multiple bubble merger during pool boiling under microgravity conditions.

    PubMed

    Abarajith, H S; Dhir, V K; Warrier, G; Son, G

    2004-11-01

    Numerical simulation and experimental validation of the growth and departure of multiple merging bubbles and associated heat transfer on a horizontal heated surface during pool boiling under variable gravity conditions have been performed. A finite difference scheme is used to solve the equations governing mass, momentum, and energy in the vapor liquid phases. The vapor-liquid interface is captured by a level set method that is modified to include the influence of phase change at the liquid-vapor interface. Water is used as test liquid. The effects of reduced gravity condition and orientation of the bubbles on the bubble diameter, interfacial structure, bubble merger time, and departure time, as well as local heat fluxes, are studied. In the experiments, multiple vapor bubbles are produced on artificial cavities in the 2-10 micrometer diameter range, microfabricated on the polished silicon wafer with given spacing. The wafer was heated electrically from the back with miniature strain gage type heating elements in order to control the nucleation superheat. The experiments conducted in normal Earth gravity and in the low gravity environment of KC-135 aircraft are used to validate the numerical simulations.

  13. Thermally activated vapor bubble nucleation: The Landau-Lifshitz-Van der Waals approach

    NASA Astrophysics Data System (ADS)

    Gallo, Mirko; Magaletti, Francesco; Casciola, Carlo Massimo

    2018-05-01

    Vapor bubbles are formed in liquids by two mechanisms: evaporation (temperature above the boiling threshold) and cavitation (pressure below the vapor pressure). The liquid resists in these metastable (overheating and tensile, respectively) states for a long time since bubble nucleation is an activated process that needs to surmount the free energy barrier separating the liquid and the vapor states. The bubble nucleation rate is difficult to assess and, typically, only for extremely small systems treated at an atomistic level of detail. In this work a powerful approach, based on a continuum diffuse interface modeling of the two-phase fluid embedded with thermal fluctuations (fluctuating hydrodynamics), is exploited to study the nucleation process in homogeneous conditions, evaluating the bubble nucleation rates and following the long-term dynamics of the metastable system, up to the bubble coalescence and expansion stages. In comparison with more classical approaches, this methodology allows us on the one hand to deal with much larger systems observed for a much longer time than possible with even the most advanced atomistic models. On the other, it extends continuum formulations to thermally activated processes, impossible to deal with in a purely determinist setting.

  14. "Pressure Blocking" Effect in the Growing Vapor Bubble in a Highly Superheated Liquid

    NASA Astrophysics Data System (ADS)

    Zudin, Yu. B.; Zenin, V. V.

    2016-09-01

    The problem on the growth of a vapor bubble in a liquid whose superheating enthalpy exceeds the phase transition heat has been considered. A physical model of the "pressure blocking" in the bubble is presented. The problem for the conditions of the experiment on the effervescence of a butane drop has been solved numerically. An algorithm for constructing an analytical solution of the problem on the bubble growth in a highly superheated liquid is proposed.

  15. Non-equilibrium phase stabilization versus bubble nucleation at a nanoscale-curved Interface

    NASA Astrophysics Data System (ADS)

    Schiffbauer, Jarrod; Luo, Tengfei

    Using continuum dynamic van der Waals theory in a radial 1D geometry with a Lennard-Jones fluid model, we investigate the nature of vapor bubble nucleation near a heated, nanoscale-curved convex interface. Vapor bubble nucleation and growth are observed for interfaces with sufficiently large radius of curvature while phase stabilization of a superheated fluid layer occurs at interfaces with smaller radius. The hypothesis that the high Laplace pressure required for stable equilibrium of very small bubbles is responsible for phase stability is tested by effectively varying the parameter which controls liquid-vapor surface tension. In doing so, the liquid-vapor surface tension- hence Laplace pressure-is shown to have limited effect on phase stabilization vs. bubble nucleation. However, the strong dependence of nucleation on leading-order momentum transport, i.e. viscous dissipation, near the heated inner surface is demonstrated. We gratefully acknowledge ND Energy for support through the ND Energy Postdoctoral Fellowship program and the Army Research Office, Grant No. W911NF-16-1-0267, managed by Dr. Chakrapani Venanasi.

  16. Surfactants for Bubble Removal against Buoyancy

    PubMed Central

    Raza, Md. Qaisar; Kumar, Nirbhay; Raj, Rishi

    2016-01-01

    The common phenomenon of buoyancy-induced vapor bubble lift-off from a heated surface is of importance to many areas of science and technology. In the absence of buoyancy in zero gravity of space, non-departing bubbles coalesce to form a big dry patch on the heated surface and heat transfer deteriorates despite the high latent heat of vaporization of water. The situation is worse on an inverted heater in earth gravity where both buoyancy and surface tension act upwards to oppose bubble removal. Here we report a robust passive technique which uses surfactants found in common soaps and detergents to avoid coalescence and remove bubbles downwards, away from an inverted heater. A force balance model is developed to demonstrate that the force of repulsion resulting from the interaction of surfactants adsorbed at the neighboring liquid-vapor interfaces of the thin liquid film contained between bubbles is strong enough to overcome buoyancy and surface tension. Bubble removal frequencies in excess of ten Hz resulted in more than twofold enhancement in heat transfer in comparison to pure water. We believe that this novel bubble removal mechanism opens up opportunities for designing boiling-based systems for space applications. PMID:26743179

  17. Surfactants for Bubble Removal against Buoyancy

    NASA Astrophysics Data System (ADS)

    Raza, Md. Qaisar; Kumar, Nirbhay; Raj, Rishi

    2016-01-01

    The common phenomenon of buoyancy-induced vapor bubble lift-off from a heated surface is of importance to many areas of science and technology. In the absence of buoyancy in zero gravity of space, non-departing bubbles coalesce to form a big dry patch on the heated surface and heat transfer deteriorates despite the high latent heat of vaporization of water. The situation is worse on an inverted heater in earth gravity where both buoyancy and surface tension act upwards to oppose bubble removal. Here we report a robust passive technique which uses surfactants found in common soaps and detergents to avoid coalescence and remove bubbles downwards, away from an inverted heater. A force balance model is developed to demonstrate that the force of repulsion resulting from the interaction of surfactants adsorbed at the neighboring liquid-vapor interfaces of the thin liquid film contained between bubbles is strong enough to overcome buoyancy and surface tension. Bubble removal frequencies in excess of ten Hz resulted in more than twofold enhancement in heat transfer in comparison to pure water. We believe that this novel bubble removal mechanism opens up opportunities for designing boiling-based systems for space applications.

  18. The Fate of Volatiles in Subaqueous Explosive Eruptions: An Analysis of Steam Condensation in the Water Column

    NASA Astrophysics Data System (ADS)

    Cahalan, R. C.; Dufek, J.

    2015-12-01

    A model has been developed to determine the theoretical limits of steam survival in a water column during a subaqueous explosive eruption. Understanding the role of steam dynamics in particle transport and the evolution of the thermal budget is critical to addressing the first order questions of subaqueous eruption mechanics. Ash transport in subaqueous eruptions is initially coupled to the fate of volatile transport. The survival of steam bubbles to the water surface could enable non-wetted ash transport from the vent to a subaerial ash cloud. Current eruption models assume a very simple plume mixing geometry, that cold water mixes with the plume immediately after erupting, and that the total volume of steam condenses in the initial phase of mixing. This limits the survival of steam to within tens of meters above the vent. Though these assumptions may be valid, they are unproven, and the calculations based on them do not take into account any kinetic constraints on condensation. The following model has been developed to evaluate the limits of juvenile steam survival in a subaqueous explosive eruption. This model utilizes the analytical model for condensation of steam injected into a sub-cooled pool produced in Park et al. (2007). Necessary parameterizations require an iterative internal calculation of the steam saturation temperature and vapor density for each modeled time step. The contribution of volumetric expansion due to depressurization of a rising bubble is calculated and used in conjunction with condensation rate to calculate the temporal evolution of bubble volume and radius. Using steam bubble volume with the BBO equation for Lagrangian transport in a fluid, the bubble rise velocity is calculated and used to evaluate the rise distance. The steam rise model proves a useful tool to compare the effects of steam condensation, volumetric expansion, volume flux, and water depth on the dynamics of juvenile steam. The modeled results show that a sufficiently high volatile flux could lead to the survival of steam bubbles from >1km depths to the ocean surface, though low to intermediate fluxes lead to fairly rapid condensation. Building on this result we also present the results of simulations of multiphase steam jets and consider the likelihood of collapse inside a vapor envelope.

  19. Steady boiling of vapor bubbles in rectangular channels

    NASA Astrophysics Data System (ADS)

    Ajaev, Vladimir S.; Homsy, George M.

    2000-11-01

    We consider vapor bubbles in microchannels in which the vapor is produced by a heater element and condenses in cooler parts of the interface. The free boundary problem is formulated for a long steady-state bubble in a rectangular channel with a heated bottom. The shape of the liquid-vapor interface is described using lubrication-type equations in the regime in which the vapor phase fills most of the cross-section. Contact lines may be present, marking the transitions between molecularly thin films and macroscopic ones. The main parameters are the differences between heater, saturation, and top wall temperatures. The equations are solved numerically over a range of parameter values with an integral condition requiring the evaporation near the heater to balance condensation in colder areas of the interface. Depending on the temperature, the side walls can be either dry or covered with a liquid film; we identify criteria for these two different regimes. The asymptotic method breaks down in the limit when capillary condensation becomes important near the bubble top and a different approach is used to determine the shape of the bubble in this limit. Solutions here involve localized regions of large mass fluxes, which are asymptotically matched to capillary-statics regions where the heat transfer is negligible.

  20. Influence of the Fluid on the Parameters and Limits of Bubble Detonation

    NASA Astrophysics Data System (ADS)

    Pinaev, A. V.; Prokhorov, E. S.

    2017-12-01

    The compression and inflammation of reactive gas bubbles in bubble detonation waves have been studied, and the considerable influence of the fluid (liquid or vapor) on the detonation parameters has been found. It has been shown numerically that the final values of the pressure and temperature significantly decrease if the temperature dependence of the adiabatic index is taken into account at the compression stage. The parameters of reactive gas combustion products in the bubble have been calculated in terms of an equilibrium model, and the influence of the fluid that remains in the bubble in the form of microdroplets and vapor on these parameters has been investigated.

  1. Dryout and Rewetting in the Pool Boiling Experiment Flown on STS-72 (PBE-2 B) and STS-77 (PBE-2 A)

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.; Lee, Ho Sung; Keller, Robert B.

    1998-01-01

    Experiments were conducted in the microgravity of space in which a pool of liquid (R-113), initially at a precisely defined pressure and temperature, is subjected to a step imposed heat flux from a semi-transparent thin-film heater forming part of one wall of the container such that boiling is initiated and maintained for a defined period of time at a constant pressure level. A total of nine tests were conducted at three levels of heat flux and three levels of subcooling in each of the two space experiments in a GAS canister on the STS-77, -72, respectively. Three (3) modes of propagation of boiling across the heater surface and subsequent vapor bubble growths were observed, in addition to the two (2) modes observed in the previous microgravity pool boiling space flights on STS-47, -57, and -60. Of particular interest were the extremely dynamic or "explosive" growths, which were determined to be the consequence of the large increase in the liquid-vapor interface area associated with the appearance of a corrugated or rough interface. Predictions of circumstances for its onset have been carried out. Assumptions were necessary regarding the character of disturbances necessary for the instabilities to grow. Also, a new vapor bubble phenomena was observed in which small vapor bubbles migrated toward a larger bubble, eventually coalescing with this larger bubble. The heat transfer was enhanced approximately 30% as a result of these migrating bubbles, which is believed to be a vapor bubble manifestation of Marangoni convection and/or molecular momentum effects, sometimes referred to as vapor recoil. The circumstances of heat flux and liquid subcooling necessary to produce heater surface dryout for an initially stagnant liquid subjected to an imposed heat flux have been more closely identified.

  2. Laser irradiated fluorescent perfluorocarbon microparticles in 2-D and 3-D breast cancer cell models

    NASA Astrophysics Data System (ADS)

    Niu, Chengcheng; Wang, Long; Wang, Zhigang; Xu, Yan; Hu, Yihe; Peng, Qinghai

    2017-03-01

    Perfluorocarbon (PFC) droplets were studied as new generation ultrasound contrast agents via acoustic or optical droplet vaporization (ADV or ODV). Little is known about the ODV irradiated vaporization mechanisms of PFC-microparticle complexs and the stability of the new bubbles produced. In this study, fluorescent perfluorohexane (PFH) poly(lactic-co-glycolic acid) (PLGA) particles were used as a model to study the process of particle vaporization and bubble stability following excitation in two-dimensional (2-D) and three-dimensional (3-D) cell models. We observed localization of the fluorescent agent on the microparticle coating material initially and after vaporization under fluorescence microscopy. Furthermore, the stability and growth dynamics of the newly created bubbles were observed for 11 min following vaporization. The particles were co-cultured with 2-D cells to form 3-D spheroids and could be vaporized even when encapsulated within the spheroids via laser irradiation, which provides an effective basis for further work.

  3. Surface tension effects on the behavior of a cavity growing, collapsing, and rebounding near a rigid wall.

    PubMed

    Zhang, Zhen-yu; Zhang, Hui-sheng

    2004-11-01

    Surface tension effects on the behavior of a pure vapor cavity or a cavity containing some noncondensible contents, which is growing, collapsing, and rebounding axisymmetrically near a rigid wall, are investigated numerically by the boundary integral method for different values of dimensionless stand-off parameter gamma, buoyancy parameter delta, and surface tension parameter beta. It is found that at the late stage of the collapse, if the resultant action of the Bjerknes force and the buoyancy force is not small, surface tension will not have significant effects on bubble behavior except that the bubble collapse time is shortened and the liquid jet becomes wider. If the resultant action of the two force is small enough, surface tension will have significant and in some cases substantial effects on bubble behavior, such as changing the direction of the liquid jet, making a new liquid jet appear, in some cases preventing the bubble from rebound before jet impact, and in other cases causing the bubble to rebound or even recollapse before jet impact. The mechanism of surface tension effects on the collapsing behavior of a cavity has been analyzed. The mechanisms of some complicated phenomena induced by surface tension effects are illustrated by analysis of the computed velocity fields and pressure contours of the liquid flow outside the bubble at different stages of the bubble evolution.

  4. Linear Stability Analysis of an Acoustically Vaporized Droplet

    NASA Astrophysics Data System (ADS)

    Siddiqui, Junaid; Qamar, Adnan; Samtaney, Ravi

    2015-11-01

    Acoustic droplet vaporization (ADV) is a phase transition phenomena of a superheat liquid (Dodecafluoropentane, C5F12) droplet to a gaseous bubble, instigated by a high-intensity acoustic pulse. This approach was first studied in imaging applications, and applicable in several therapeutic areas such as gas embolotherapy, thrombus dissolution, and drug delivery. High-speed imaging and theoretical modeling of ADV has elucidated several physical aspects, ranging from bubble nucleation to its subsequent growth. Surface instabilities are known to exist and considered responsible for evolving bubble shapes (non-spherical growth, bubble splitting and bubble droplet encapsulation). We present a linear stability analysis of the dynamically evolving interfaces of an acoustically vaporized micro-droplet (liquid A) in an infinite pool of a second liquid (liquid B). We propose a thermal ADV model for the base state. The linear analysis utilizes spherical harmonics (Ynm, of degree m and order n) and under various physical assumptions results in a time-dependent ODE of the perturbed interface amplitudes (one at the vapor/liquid A interface and the other at the liquid A/liquid B interface). The perturbation amplitudes are found to grow exponentially and do not depend on m. Supported by KAUST Baseline Research Funds.

  5. Segregating gas from melt: an experimental study of the Ostwald ripening of vapor bubbles in magmas

    USGS Publications Warehouse

    Lautze, Nicole C.; Sisson, Thomas W.; Mangan, Margaret T.; Grove, Timothy L.

    2011-01-01

    Diffusive coarsening (Ostwald ripening) of H2O and H2O-CO2 bubbles in rhyolite and basaltic andesite melts was studied with elevated temperature–pressure experiments to investigate the rates and time spans over which vapor bubbles may enlarge and attain sufficient buoyancy to segregate in magmatic systems. Bubble growth and segregation are also considered in terms of classical steady-state and transient (non-steady-state) ripening theory. Experimental results are consistent with diffusive coarsening as the dominant mechanism of bubble growth. Ripening is faster in experiments saturated with pure H2O than in those with a CO2-rich mixed vapor probably due to faster diffusion of H2O than CO2 through the melt. None of the experimental series followed the time1/3 increase in mean bubble radius and time-1 decrease in bubble number density predicted by classical steady-state ripening theory. Instead, products are interpreted as resulting from transient regime ripening. Application of transient regime theory suggests that bubbly magmas may require from days to 100 years to reach steady-state ripening conditions. Experimental results, as well as theory for steady-state ripening of bubbles that are immobile or undergoing buoyant ascent, indicate that diffusive coarsening efficiently eliminates micron-sized bubbles and would produce mm-sized bubbles in 102–104 years in crustal magma bodies. Once bubbles attain mm-sizes, their calculated ascent rates are sufficient that they could transit multiple kilometers over hundreds to thousands of years through mafic and silicic melt, respectively. These results show that diffusive coarsening can facilitate transfer of volatiles through, and from, magmatic systems by creating bubbles sufficiently large for rapid ascent.

  6. CVB: The Constrained Vapor Bubble 40 mm Capillary Experiment on the ISS

    NASA Technical Reports Server (NTRS)

    Wayner, Peter C., Jr.; Kundan, Akshay; Plawsky, Joel

    2013-01-01

    Discuss the Constrained Vapor Bubble (CVB) 40mm Fin experiment on the ISS and how it aims to achieve a better understanding of the physics of evaporation and condensation and how they affect cooling processes in microgravity using a remotely controlled microscope and a small cooling device

  7. Morphological bubble evolution induced by air diffusion on submerged hydrophobic structures

    NASA Astrophysics Data System (ADS)

    Lv, Pengyu; Xiang, Yaolei; Xue, Yahui; Lin, Hao; Duan, Huiling

    2017-03-01

    Bubbles trapped in the cavities always play important roles in the underwater applications of structured hydrophobic surfaces. Air exchange between bubbles and surrounding water has a significant influence on the morphological bubble evolution, which in turn frequently affects the functionalities of the surfaces, such as superhydrophobicity and drag reduction. In this paper, air diffusion induced bubble evolution on submerged hydrophobic micropores under reduced pressures is investigated experimentally and theoretically. The morphological behaviors of collective and single bubbles are observed using confocal microscopy. Four representative evolution phases of bubbles are captured in situ. After depressurization, bubbles will not only grow and coalesce but also shrink and split although the applied pressure remains negative. A diffusion-based model is used to analyze the evolution behavior and the results are consistent with the experimental data. A criterion for bubble growth and shrinkage is also derived along with a phase diagram, revealing that the competition of effective gas partial pressures across the two sides of the diffusion layer dominates the bubble evolution process. Strategies for controlling the bubble evolution behavior are also proposed based on the phase diagram. The current work provides a further understanding of the general behavior of bubble evolution induced by air diffusion and can be employed to better designs of functional microstructured hydrophobic surfaces.

  8. Effect of metabolic gases and water vapor, perfluorocarbon emulsions, and nitric oxide on tissue bubbles during decompression sickness.

    PubMed

    Randsøe, Thomas

    2016-05-01

    In aviation and diving, fast decrease in ambient pressure, such as during accidental loss of cabin pressure or when a diver decompresses too fast to sea level, may cause nitrogen (N2) bubble formation in blood and tissue resulting in decompression sickness (DCS). Conventional treatment of DCS is oxygen (O2) breathing combined with recompression.  However, bubble kinetic models suggest, that metabolic gases, i.e. O2 and carbon dioxide (CO2), and water vapor contribute significantly to DCS bubble volume and growth at hypobaric altitude exposures. Further, perfluorocarbon emulsions (PFC) and nitric oxide (NO) donors have, on an experimental basis, demonstrated therapeutic properties both as treatment and prophylactic intervention against DCS. The effect was ascribed to solubility of respiratory gases in PFC, plausible NO elicited nuclei demise and/or N2 washout through enhanced blood flow rate. Accordingly, by means of monitoring injected bubbles in exposed adipose tissue or measurements of spinal evoked potentials (SEPs) in anaesthetized rats, the aim of this study was to: 1) evaluate the contribution of metabolic gases and water vapor to bubble volume at different barometrical altitude exposures, 2) clarify the O2 contribution and N2 solubility from bubbles during administration of PFC at normo- and hypobaric conditions and, 3) test the effect of different NO donors on SEPs during DCS upon a hyperbaric air dive and, to study the influence of  NO on tissue bubbles at high altitude exposures. The results support the bubble kinetic models and indicate that metabolic gases and water vapor contribute significantly to bubble volume at 25 kPa (~10,376 m above sea level) and constitute a threshold for bubble stabilization or decay at the interval of 47-36 kPa (~6,036 and ~7,920 m above sea level). The effect of the metabolic gases and water vapor seemed to compromise the therapeutic properties of both PFC and NO at altitude, while PFC significantly increased bubble disappearance rate at sea level following a hyperbaric airdive. We found no protective effect of NO donors during DCS from diving. On the contrary, there was a tendency towards a poorer outcome when decompression was combined with NO donor administration. This observation is seemingly contradictive to recent publications and may be explained by the multifactorial effect of NO in combination with a fast decompression profile, speeding up the N2 release from tissues and thereby aggravating the DCS symptoms.

  9. A Tissue-Mimicking Ultrasound Test Object Using Droplet Vaporization to Create Point Targets

    PubMed Central

    Carneal, Catherine M.; Kripfgans, Oliver D.; Krücker, Jochen; Carson, Paul L.; Fowlkes, J. Brian

    2012-01-01

    Ultrasound test objects containing reference point targets could be useful for evaluating ultrasound systems and phase aberration correction methods. Polyacrylamide gels containing albumin-stabilized droplets (3.6 µm mean diameter) of dodecafluoropentane (DDFP) are being developed for this purpose. Perturbation by ultrasound causes spontaneous vaporization of the superheated droplets to form gas bubbles, a process termed acoustic droplet vaporization (ADV). The resulting bubbles (20 to 160 µm diameter) are small compared with acoustic wavelengths in diagnostic ultrasound and are theoretically suitable for use as point targets (phase errors <20° for typical f-numbers). Bubbles distributed throughout the material are convenient for determining the point spread function in an imaging plane or volume. Cooling the gel causes condensation of the DDFP droplets, which may be useful for storage. Studying ADV in such viscoelastic media could provide insight into potential bioeffects from rapid bubble formation. PMID:21937339

  10. Occlusion and rupture of ex vivo capillary bifurcation due to acoustic droplet vaporization

    NASA Astrophysics Data System (ADS)

    Feng, Yi; Qin, Dui; Zhang, Jun; Zhang, Lei; Bouakaz, Ayache; Wan, Mingxi

    2018-06-01

    Gas embolotherapy (GE) consists in the occlusion of tumor blood vessels using gas emboli induced by acoustic droplet vaporization (ADV), to create tumor starvation and localized drug delivery. Therefore, the occlusion and rupture of capillary bifurcation due to ADV was investigated in an ex vivo rat mesentery model using a confocal acousto-optical high-speed microscope system. Following ADV bubble formation, coalescence, and translational movement, the growing bubbles lodged in and then occluded two different capillary bifurcations. Capillary rupture was induced at the bubble lodging area, immediately followed by gas extravasation and bubble dislodging. Before and after bubble lodgment/occlusion, a local microvessel invagination was observed due to the interactions between ADV bubbles and the microvessel itself, indicating a contribution to the capillary rupture. Understanding the transient dynamics of ADV bubble, the bubble-microvessel interaction and the consequent mechanical bio-effects in GE is of the paramount importance for developing and applying this approach in clinical practice.

  11. Laser induced bubbles inside liquids: Transient optical properties and effects on a beam propagation

    NASA Astrophysics Data System (ADS)

    Lazic, V.; Jovicevic, S.; Carpanese, M.

    2012-07-01

    Light transmission through a laser formed bubble (LFB) following ablation of a metallic target inside water was studied. During the early expansion and late collapsing phases, the refraction index nb of the hot high-pressure vapor bubble is higher than 1.23 and close to that of the surrounding liquid. The cavity growth lowers nb down to 1.00 and causes strong defocusing of the incident laser beam with consequent enlargement of the ablation crater diameter, here overcoming factor two. Inhomogeneous water vapor clustering inside the cool expanded bubble further perturbs the light transmission and induces irregular ablation by the successive laser pulse.

  12. Vapor bubble evolution on a heated surface containing open microchannels

    NASA Astrophysics Data System (ADS)

    Forster, Christopher J.; Glezer, Ari; Smith, Marc K.

    2011-11-01

    Power electronics require cooling technologies capable of high heat fluxes at or below the operating temperatures of these devices. Boiling heat transfer is an effective choice for such cooling, but it is limited by the critical heat flux (CHF), which is typically near 125 W/cm2 for pool boiling of water on a flat plate at standard pressure and gravity. One method of increasing CHF is to incorporate an array of microchannels into the heated surface. Microchannels have been experimentally shown to improve CHF, and the goal of this study is to determine the primary mechanisms associated with the microchannels that allow for the increased CHF. While the use of various microstructures is not new, the emphasis of previous work has been on heat transfer aspects, as opposed to the fluid dynamics inside and in the vicinity of the microchannels. This work considers the non-isothermal fluid motion during bubble growth and departure by varying channel geometry, spacing, and heat flux input using a level-set method including vaporization and condensation. These results and the study of the underlying mechanisms will aid in the design optimization of microchannel-based cooling devices. Supported by ONR.

  13. Determination of the Accommodation Coefficient Using Vapor/gas Bubble Dynamics in an Acoustic Field

    NASA Technical Reports Server (NTRS)

    Gumerov, Nail A.; Hsiao, Chao-Tsung; Goumilevski, Alexei G.; Allen, Jeff (Technical Monitor)

    2001-01-01

    Nonequilibrium liquid/vapor phase transformations can occur in superheated or subcooled liquids in fast processes such as in evaporation in a vacuum. The rate at which such a phase transformation occurs depends on the "condensation" or "accommodation" coefficient, Beta, which is a property of the interface. Existing measurement techniques for Beta are complex and expensive. The development of a relatively inexpensive and reliable technique for measurement of Beta for a wide range of substances and temperatures is of great practical importance. The dynamics of a bubble in an acoustic field strongly depends on the value of Beta. It is known that near the saturation temperature, small vapor bubbles grow under the action of an acoustic field due to "rectified heat transfer." This finding can be used as the basis for an effective measurement technique of Beta. We developed a theory of vapor bubble behavior in an isotropic acoustic wave and in a plane standing acoustic wave. A numerical code was developed which enables simulation of a variety of experimental situations and accurately takes into account slowly evolving temperature. A parametric study showed that the measurement of Beta can be made over a broad range of frequencies and bubble sizes. We found several interesting regimes and conditions which can be efficiently used for measurements of Beta. Measurements of Beta can be performed in both reduced and normal gravity environments.

  14. Effects of non-condensable gas on the dynamic oscillations of cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Zhang, Yuning

    2016-11-01

    Cavitation is an essential topic of multiphase flow with a broad range of applications. Generally, there exists non-condensable gas in the liquid and a complex vapor/gas mixture bubble will be formed. A rigorous prediction of the dynamic behavior of the aforementioned mixture bubble is essential for the development of a complete cavitation model. In the present paper, effects of non-condensable gas on the dynamic oscillations of the vapor/gas mixture bubble are numerically investigated in great detail. For the completeness, a large parameter zone (e.g. bubble radius, frequency and ratio between gas and vapor) is investigated with many demonstrating examples. The mechanisms of mass diffusion are categorized into different groups with their characteristics and dominated regions given. Influences of non-condensable gas on the wave propagation (e.g. wave speed and attenuation) in the bubbly liquids are also briefly discussed. Specifically, the minimum wave speed is quantitatively predicted in order to close the pressure-density coupling relationship usually employed for the cavitation modelling. Finally, the application of the present finding on the development of cavitation model is demonstrated with a brief discussion of its influence on the cavitation dynamics. This work was financially supported by the National Natural Science Foundation of China (Project No.: 51506051).

  15. Molecular Dynamics Investigation of Each Bubble Behavior in Coarsening of Cavitation Bubbles in a Finite Space

    NASA Astrophysics Data System (ADS)

    Tsuda, Shin-Ichi; Nakano, Yuta; Watanabe, Satoshi

    2017-11-01

    Recently, several studies using Molecular Dynamics (MD) simulation have been conducted for investigation of Ostwald ripening of cavitation bubbles in a finite space. The previous studies focused a characteristic length of bubbles as one of the spatially-averaged quantities, but each bubble behavior was not been investigated in detail. The objective of this study is clarification of the characteristics of each bubble behavior in Ostwald ripening, and we conducted MD simulation of a Lennard-Jones fluid in a semi-confined space. As a result, the time dependency of the characteristic length of bubbles as a spatially-averaged quantity suggested that the driving force of the Ostwald ripening is Evaporation/Condensation (EC) across liquid-vapor surface, which is the same result as the previous works. The radius change of the relatively larger bubbles also showed the same tendency to a classical EC model. However, the sufficiently smaller bubbles than the critical size, e.g., the bubbles just before collapsing, showed a different characteristic from the classical EC model. Those smaller bubbles has a tendency to be limited by mechanical non-equilibrium in which viscosity of liquid is dominant rather than by EC across liquid-vapor surface. This work was supported by JSPS KAKENHI Grant Number JP16K06085.

  16. A New Unsteady Model for Dense Cloud Cavitation in Cryogenic Fluids

    NASA Technical Reports Server (NTRS)

    Hosangadi, A.; Ahuja, V.

    2005-01-01

    A new unsteady, cavitation model is presented wherein the phase change process (bubble growth/collapse) is coupled to the acoustic field in a cryogenic fluid. It predicts the number density and radius of bubbles in vapor clouds by tracking both the aggregate surface area and volume fraction of the cloud. Hence, formulations for the dynamics of individual bubbles (e.g. Rayleigh-Plesset equation) may be integrated within the macroscopic context of a dense vapor cloud i.e. a cloud that occupies a significant fraction of available volume and contains numerous bubbles. This formulation has been implemented within the CRUNCH CFD, which has a compressible real fluid formulation, a multi-element, unstructured grid framework, and has been validated extensively for liquid rocket turbopump inducers. Detailed unsteady simulations of a cavitating ogive in liquid nitrogen are presented where time-averaged mean cavity pressure and temperature depressions due to cavitation are compared with experimental data. The model also provides the spatial and temporal history of the bubble size distribution in the vapor clouds that are shed, an important physical parameter that is difficult to measure experimentally and is a significant advancement in the modeling of dense cloud cavitation.

  17. In vivo droplet vaporization for occlusion therapy and phase aberration correction.

    PubMed

    Kripfgans, Oliver D; Fowlkes, J Brian; Woydt, Michael; Eldevik, Odd P; Carson, Paul L

    2002-06-01

    The objective was to determine whether a transpulmonary droplet emulsion (90%, <6 microm diameter) could be used to form large gas bubbles (>30 microm) temporarily in vivo. Such bubbles could occlude a targeted capillary bed when used in a large number density. Alternatively, for a very sparse population of droplets, the resulting gas bubbles could serve as point beacons for phase aberration corrections in ultrasonic imaging. Gas bubbles can be made in vivo by acoustic droplet vaporization (ADV) of injected, superheated, dodecafluoropentane droplets. Droplets vaporize in an acoustic field whose peak rarefactional pressure exceeds a well-defined threshold. In this new work, it has been found that intraarterial and intravenous injections can be used to introduce the emulsion into the blood stream for subsequent ADV (B- and M-mode on a clinical scanner) in situ. Intravenous administration results in a lower gas bubble yield, possibly because of filtering in the lung, dilution in the blood volume, or other circulatory effects. Results show that for occlusion purposes, a reduction in regional blood flow of 34% can be achieved. Individual point beacons with a +24 dB backscatter amplitude relative to white matter were created by intravenous injection and ADV.

  18. Determining the Enthalpy of Vaporization of Salt Solutions Using the Cooling Effect of a Bubble Column Evaporator

    ERIC Educational Resources Information Center

    Fan, Chao; Pashley, Richard M.

    2016-01-01

    The enthalpy of vaporization (?H[subscript vap]) of salt solutions is not easily measured, as a certain quantity of pure water has to be evaporated from a solution, at constant composition, and at a fixed temperature and pressure; then the corresponding heat input has to be measured. However, a simple bubble column evaporator (BCE) was used as a…

  19. A numerical framework for bubble transport in a subcooled fluid flow

    NASA Astrophysics Data System (ADS)

    Jareteg, Klas; Sasic, Srdjan; Vinai, Paolo; Demazière, Christophe

    2017-09-01

    In this paper we present a framework for the simulation of dispersed bubbly two-phase flows, with the specific aim of describing vapor-liquid systems with condensation. We formulate and implement a framework that consists of a population balance equation (PBE) for the bubble size distribution and an Eulerian-Eulerian two-fluid solver. The PBE is discretized using the Direct Quadrature Method of Moments (DQMOM) in which we include the condensation of the bubbles as an internal phase space convection. We investigate the robustness of the DQMOM formulation and the numerical issues arising from the rapid shrinkage of the vapor bubbles. In contrast to a PBE method based on the multiple-size-group (MUSIG) method, the DQMOM formulation allows us to compute a distribution with dynamic bubble sizes. Such a property is advantageous to capture the wide range of bubble sizes associated with the condensation process. Furthermore, we compare the computational performance of the DQMOM-based framework with the MUSIG method. The results demonstrate that DQMOM is able to retrieve the bubble size distribution with a good numerical precision in only a small fraction of the computational time required by MUSIG. For the two-fluid solver, we examine the implementation of the mass, momentum and enthalpy conservation equations in relation to the coupling to the PBE. In particular, we propose a formulation of the pressure and liquid continuity equations, that was shown to correctly preserve mass when computing the vapor fraction with DQMOM. In addition, the conservation of enthalpy was also proven. Therefore a consistent overall framework that couples the PBE and two-fluid solvers is achieved.

  20. Thulium fiber laser induced vapor bubbles using bare, tapered, ball, hollow steel, and muzzle brake fiber optic tips

    NASA Astrophysics Data System (ADS)

    Gonzalez, David A.; Hardy, Luke A.; Hutchens, Thomas C.; Irby, Pierce B.; Fried, Nathaniel M.

    2018-02-01

    This study characterizes laser-induced vapor bubbles for five distal fiber optic tip configurations, to provide insight into stone retropulsion experienced during laser ablation of kidney stones. A TFL with 1908-nm wavelength delivered 34 mJ energy per pulse at 500-μs pulse duration through five different fibers: 100-μm-core/170-μm-OD bare fiber tip, 150-μm- to 300-μm-core tapered fiber tip, 100-μm-core/300-μm-OD ball tip fiber, 100-μm-core/340- μm-OD hollow steel tip fiber, and 100-μm-core/560-μm-OD muzzle brake fiber tip. A high speed camera with 10- μm spatial and 9.5-μs temporal resolution imaged vapor bubble dynamics. A needle hydrophone measured pressure transients in forward (0°) and side (90°) directions while placed at a 6.8 +/- 0.4 mm distance from fiber tip. Maximum bubble dimensions (width/length) averaged 0.7/1.5, 1.0/1.6, 0.5/1.1, 0.8/1.9, and 0.7/1.5 mm, for bare, tapered, ball, hollow steel, and muzzle tips, respectively (n=5). The hollow steel tip exhibited the most elongated vapor bubble shape, translating into increased forward pressure in this study and consistent with higher stone retropulsion in previous reports. Relative pressures (a.u.) in (forward/side) directions averaged 1.7/1.6, 2.0/2.0, 1.4/1.2, 6.8/1.1, and 0.3/1.2, for each fiber tip (n=5). For hollow steel tip, forward pressure was 4× higher than for bare fiber. For the muzzle brake fiber tip, forward pressure was 5× lower than for bare fiber. Bubble dimensions and pressure measurements demonstrated that the muzzle tip reduced forward pressure by partially venting vapors through side holes, consistent with lower stone retropulsion observed in previous reports.

  1. Observation of vapor bubble of non-azeotropic binary mixture in microgravity with a two-wavelength interferometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, Yoshiyuki; Iwasaki, Akira

    1999-07-01

    Although non-azeotropic mixtures are considered to be promising working fluids in advanced energy conversion systems, the primary technical problems in the heat transfer degradation in phase change processes cause economical handicap to wide-spread applications. The boiling behavior of mixtures still remains a number of basic questions being not answered yet, and the present authors believe that the most essential information for the boiling process in non-azeotropic mixtures is how temperature and concentration profiles are developed around the bubbles. The present study attempts at understanding fundamental heat and mass transfer mechanisms in nucleate pool boiling of non-azeotropic binary mixtures, and withmore » the knowledge to develop a passive boiling heat transfer enhancement eventually. To this end, the authors have employed microgravity environment for rather detailed observation around vapor bubbles in the course of boiling inception and bubble growth. A two-wavelength Mach-Zehnder interferometer has been developed, which withstands mechanical shock caused by gravity change from very low gravity of the order of 10{sup {minus}5} g to relatively high gravity of approximately 8 g exposed during deceleration period. A series of experiments on single vapor bubbles for CFC113 single component and CFC12/CFC112 non-azeotropic binary mixture have been conducted under a high quality microgravity conditions available in 10-second free-fall facility of Japan Microgravity Center (JAMIC). The results for single component liquid showed a strong influence due to Marangoni effect caused by the temperature profile around the bubble. The results for non-azeotropic binary mixture showed, however, considerably different behavior from single component liquid. Both temperature and concentration profiles around a single vapor bubble were evaluated from the interferograms. The temperature and concentration layers established around the bubbles were nearly one order of magnitude larger than those predicted by thermal diffusion and mass diffusion. The temperature and concentration profiles evaluated from the present experiments suggest the role of Marangoni effects due to both concentration profile and temperature profile around the bubble interface.« less

  2. Late-Holocene climate evolution at the WAIS Divide site, West Antarctica: Bubble number-density estimates

    USGS Publications Warehouse

    Fegyveresi, John M.; Alley, R.B.; Spencer, M.K.; Fitzpatrick, J.J.; Steig, E.J.; White, J.W.C.; McConnell, J.R.; Taylor, K.C.

    2011-01-01

    A surface cooling of ???1.7??C occurred over the ???two millennia prior to ???1700 CE at the West Antarctic ice sheet (WAIS) Divide site, based on trends in observed bubble number-density of samples from the WDC06A ice core, and on an independently constructed accumulation-rate history using annual-layer dating corrected for density variations and thinning from ice flow. Density increase and grain growth in polar firn are both controlled by temperature and accumulation rate, and the integrated effects are recorded in the number-density of bubbles as the firn changes to ice. Numberdensity is conserved in bubbly ice following pore close-off, allowing reconstruction of either paleotemperature or paleo-accumulation rate if the other is known. A quantitative late-Holocene paleoclimate reconstruction is presented for West Antarctica using data obtained from the WAIS Divide WDC06A ice core and a steady-state bubble number-density model. The resultant temperature history agrees closely with independent reconstructions based on stable-isotopic ratios of ice. The ???1.7??C cooling trend observed is consistent with a decrease in Antarctic summer duration from changing orbital obliquity, although it remains possible that elevation change at the site contributed part of the signal. Accumulation rate and temperature dropped together, broadly consistent with control by saturation vapor pressure.

  3. Bubble Dynamics in Polymer Solutions Undergoing Shear.

    DTIC Science & Technology

    1985-04-01

    cavitation bubble in water has been established as the fundamental theoretical approach to understanding this phenomenon. LA_ Laser -induced...cavitation inception. 1-2 Polymer effects on cavity appearance. 2-1 Spherical laser -induced bubble dynamics. 2-2 Vapor cavity jet formation. 2-3 Bubble...distilled water. 2-6B Nonspherical bubble dynamics in dilute polymer. 3-1 Closed-loop hydraulic cavitation tunnel. 3-2 Laser system optical components. 3-3

  4. Further experimentation on bubble generation during transformer overload

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oommen, T.V.

    1992-03-01

    This report covers additional work done during 1990 and 1991 on gas bubble generation under overload conditions. To improve visual bubble detection, a single disc coil was used. To further improve detection, a corona device was also used which signaled the onset of corona activity in the early stages of bubble formation. A total of fourteen model tests were conducted, half of which used the Inertaire system, and the remaining, a conservator (COPS). Moisture content of paper in the coil varied from 1.0% to 8.0%; gas (nitrogen) content varied from 1.0% to 8.8%. The results confirmed earlier observations that themore » mathematical bubble prediction model was not valid for high gas content model with relatively low moisture levels in the coil. An empirical relationship was formulated to accurately predict bubble evolution temperatures from known moisture and gas content values. For low moisture content models (below 2%), the simple Piper relationship was sufficient to predict bubble evolution temperatures, regardless of gas content. Moisture in the coil appears to be the key factor in bubble generation. Gas blanketed (Inertaire) systems do not appear to be prone to premature bubble generation from overloads as previously thought. The new bubble prediction model reveals that for a coil with 2% moisture, the bubble evolution temperature would be about 140{degrees}C. Since old transformers in service may have as much as 2% moisture in paper, the 140{degrees}C bubble evolution temperature may be taken as the lower limit of bubble evolution temperature under overload conditions for operating transformers. Drier insulation would raise the bubble evolution temperature.« less

  5. Near Surface Vapor Bubble Layers in Buoyant Low Stretch Burning of Polymethylmethacrylate

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L.; Tien, J. S.

    1999-01-01

    Large-scale buoyant low stretch stagnation point diffusion flames over solid fuel (polymethylmethacrylate) were studied for a range of aerodynamic stretch rates of 2-12/ sec which are of the same order as spacecraft ventilation-induced stretch in a microgravity environment. An extensive layer of polymer material above the glass transition temperature is observed. Unique phenomena associated with this extensive glass layer included substantial swelling of the burning surface, in-depth bubble formation, and migration and/or elongation of the bubbles normal to the hot surface. The bubble layer acted to insulate the polymer surface by reducing the effective conductivity of the solid. The reduced in-depth conduction stabilized the flame for longer than expected from theory neglecting the bubble layer. While buoyancy acts to move the bubbles deeper into the molten polymer, thermocapillary forces and surface regression both act to bring the bubbles to the burning surface. Bubble layers may thus be very important in low gravity (low stretch) burning of materials. As bubbles reached the burning surface, monomer fuel vapors jetted from the surface, enhancing burning by entraining ambient air flow. Popping of these bubbles at the surface can expel burning droplets of the molten material, which may increase the fire propagation hazards at low stretch rates.

  6. Secondary plasma formation after single pulse laser ablation underwater and its advantages for laser induced breakdown spectroscopy (LIBS).

    PubMed

    Gavrilović, M R; Cvejić, M; Lazic, V; Jovićević, S

    2016-06-07

    In this work we present studies of spatial and temporal plasma evolution after single pulse ablation of an aluminium target in water. The laser ablation was performed using 20 ns long pulses emitted at 1064 nm. The plasma characterization was performed by fast photography, the Schlieren technique, shadowgraphy and optical emission spectroscopy. The experimental results indicate the existence of two distinct plasma stages: the first stage has a duration of approximately 500 ns from the laser pulse, and is followed by a new plasma growth starting from the crater center. The secondary plasma slowly evolves inside the growing vapor bubble, and its optical emission lasts over several tens of microseconds. Later, the hot glowing particles, trapped inside the vapor cavity, were detected during the whole cycle of the bubble, where the first collapse occurs after 475 μs from the laser pulse. Differences in the plasma properties during the two evolution phases are discussed, with an accent on the optical emission since its detection is of primary importance for LIBS. Here we demonstrate that the LIBS signal quality in single pulse excitation underwater can be greatly enhanced by detecting only the secondary plasma emission, and also by applying long acquisition gates (in the order of 10-100 μs). The presented results are of great importance for LIBS measurements inside a liquid environment, since they prove that a good analytical signal can be obtained by using nanosecond pulses from a single commercial laser source and by employing cost effective, not gated detectors.

  7. Evolution of melt-vapor surface tension in silicic volcanic systems: Experiments with hydrous melts

    USGS Publications Warehouse

    Mangan, M.; Sisson, T.

    2005-01-01

    We evaluate the melt-vapor surface tension (??) of natural, water-saturated dacite melt at 200 MPa, 950-1055??C, and 4.8-5.7 wt % H2O. We experimentally determine the critical supersaturation pressure for bubble nucleation as a function of dissolved water and then solve for ?? at those conditions using classical nucleation theory. The solutions obtained give dacite melt-vapor surface tensions that vary inversely with dissolved water from 0.042 (??0.003) J m-2 at 5.7 wt% H2O to 0.060 (??0.007) J m-2 at 5.2 wt% H2O to 0.073 (??0.003) J m-2 at 4.8 wt% H2O. Combining our dacite results with data from published hydrous haplogranite and high-silica rhyolite experiments reveals that melt-vapor surface tension also varies inversely with the concentration of mafic melt components (e.g., CaO, FeOtotal, MgO). We develop a thermodynamic context for these observations in which melt-vapor surface tension is represented by a balance of work terms controlled by melt structure. Overall, our results suggest that cooling, crystallization, and vapor exsolution cause systematic changes in ?? that should be considered in dynamic modeling of magmatic processes.

  8. Single-bubble dynamics in pool boiling of one-component fluids.

    PubMed

    Xu, Xinpeng; Qian, Tiezheng

    2014-06-01

    We numerically investigate the pool boiling of one-component fluids with a focus on the effects of surface wettability on the single-bubble dynamics. We employed the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)], a diffuse-interface model for liquid-vapor flows involving liquid-vapor transition in nonuniform temperature fields. We first perform simulations for bubbles on homogeneous surfaces. We find that an increase in either the contact angle or the surface superheating can enhance the bubble spreading over the heating surface and increase the bubble departure diameter as well and therefore facilitate the transition into film boiling. We then examine the dynamics of bubbles on patterned surfaces, which incorporate the advantages of both hydrophobic and hydrophilic surfaces. The central hydrophobic region increases the thermodynamic probability of bubble nucleation while the surrounding hydrophilic region hinders the continuous bubble spreading by pinning the contact line at the hydrophobic-hydrophilic intersection. This leads to a small bubble departure diameter and therefore prevents the transition from nucleate boiling into film boiling. With the bubble nucleation probability increased and the bubble departure facilitated, the efficiency of heat transfer on such patterned surfaces is highly enhanced, as observed experimentally [Int. J. Heat Mass Transfer 57, 733 (2013)]. In addition, the stick-slip motion of contact line on patterned surfaces is demonstrated in one-component fluids, with the effect weakened by surface superheating.

  9. Further experimentation on bubble generation during transformer overload. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oommen, T.V.

    1992-03-01

    This report covers additional work done during 1990 and 1991 on gas bubble generation under overload conditions. To improve visual bubble detection, a single disc coil was used. To further improve detection, a corona device was also used which signaled the onset of corona activity in the early stages of bubble formation. A total of fourteen model tests were conducted, half of which used the Inertaire system, and the remaining, a conservator (COPS). Moisture content of paper in the coil varied from 1.0% to 8.0%; gas (nitrogen) content varied from 1.0% to 8.8%. The results confirmed earlier observations that themore » mathematical bubble prediction model was not valid for high gas content model with relatively low moisture levels in the coil. An empirical relationship was formulated to accurately predict bubble evolution temperatures from known moisture and gas content values. For low moisture content models (below 2%), the simple Piper relationship was sufficient to predict bubble evolution temperatures, regardless of gas content. Moisture in the coil appears to be the key factor in bubble generation. Gas blanketed (Inertaire) systems do not appear to be prone to premature bubble generation from overloads as previously thought. The new bubble prediction model reveals that for a coil with 2% moisture, the bubble evolution temperature would be about 140{degrees}C. Since old transformers in service may have as much as 2% moisture in paper, the 140{degrees}C bubble evolution temperature may be taken as the lower limit of bubble evolution temperature under overload conditions for operating transformers. Drier insulation would raise the bubble evolution temperature.« less

  10. Experiments on the effects of nanoparticles on subcooled nucleate pool boiling

    NASA Astrophysics Data System (ADS)

    Kangude, Prasad; Bhatt, Dhairya; Srivastava, Atul

    2018-05-01

    The effect of nanoparticles on a single bubble-based nucleate pool boiling phenomenon under subcooled conditions has been studied. Water (as the base fluid) and two different concentrations of water-silica nanofluids (0.005% and 0.01% V/V) have been employed as the working fluids. The boiling experiments have been conducted in a specially designed chamber, wherein an ITO-coated heater substrate has been used to induce single bubble nucleation. Measurements have been performed in a completely non-intrusive manner using one of the refractive index-based diagnostics techniques, namely, rainbow schlieren deflectometry. Thus, the thermal gradients prevailing in the boiling chamber have directly been mapped as a two-dimensional distribution of hue values that are recorded in the form of rainbow schlieren images. The schlieren-based measurements clearly revealed the plausible influence of nanoparticles on the strength of temperature gradients prevailing in the boiling chamber. As compared to the base fluid, the experiments with dilute nanofluids showed that the suspended nanoparticles tend to diffuse (homogenize) the strength of temperature gradients, both in the vicinity of the heated substrate and in the thermal boundary layer enveloping the vapor bubble. An overall reduction in the bubble volume and dynamic contact angle was seen with increasing concentrations of dilute nanofluids. In addition, the vapor bubble was found to assume a more spherical shape at higher concentrations of dilute nanofluids in comparison to its shape with water-based experiments. Clear oscillations of the vapor bubble in the subcooled pool of liquids (water and/or nanofluids) were observed, the frequency of which was found to be significantly reduced as the nanoparticle concentration was increased from 0% (water) to 0.01% (V/V). A force balance analysis has been performed to elucidate the plausible mechanisms explaining the observed trends of the oscillation frequencies of the vapor bubble.

  11. A Generalized Eulerian-Lagrangian Analysis, with Application to Liquid Flows with Vapor Bubbles

    NASA Technical Reports Server (NTRS)

    Dejong, Frederik J.; Meyyappan, Meyya

    1993-01-01

    Under a NASA MSFC SBIR Phase 2 effort an analysis has been developed for liquid flows with vapor bubbles such as those in liquid rocket engine components. The analysis is based on a combined Eulerian-Lagrangian technique, in which Eulerian conservation equations are solved for the liquid phase, while Lagrangian equations of motion are integrated in computational coordinates for the vapor phase. The novel aspect of the Lagrangian analysis developed under this effort is that it combines features of the so-called particle distribution approach with those of the so-called particle trajectory approach and can, in fact, be considered as a generalization of both of those traditional methods. The result of this generalization is a reduction in CPU time and memory requirements. Particle time step (stability) limitations have been eliminated by semi-implicit integration of the particle equations of motion (and, for certain applications, the particle temperature equation), although practical limitations remain in effect for reasons of accuracy. The analysis has been applied to the simulation of cavitating flow through a single-bladed section of a labyrinth seal. Models for the simulation of bubble formation and growth have been included, as well as models for bubble drag and heat transfer. The results indicate that bubble formation is more or less 'explosive'. for a given flow field, the number density of bubble nucleation sites is very sensitive to the vapor properties and the surface tension. The bubble motion, on the other hand, is much less sensitive to the properties, but is affected strongly by the local pressure gradients in the flow field. In situations where either the material properties or the flow field are not known with sufficient accuracy, parametric studies can be carried out rapidly to assess the effect of the important variables. Future work will include application of the analysis to cavitation in inducer flow fields.

  12. Visualization of irrigant flow and cavitation induced by Er:YAG laser within a root canal model.

    PubMed

    Matsumoto, Himeka; Yoshimine, Yoshito; Akamine, Akifumi

    2011-06-01

    Laser-activated irrigation (LAI) has recently been introduced as an innovative method for root canal irrigation. However, there is limited information about the cleaning mechanism of an Er:YAG laser. In this study, we visualized the action of laser-induced bubbles and fluid flow in vitro to better understand the physical mechanisms underlying LAI. An Er:YAG laser was equipped with a novel cone-shaped tip with a lateral emission rate of approximately 80%. Laser light was emitted at a pulse energy of 30, 50, or 70 mJ (output energy: 11, 18, or 26 mJ) and a repetition rate of 1 or 20 pulses per second, without air or water spray. Fluid flow dynamics in a root canal model were observed by using glass-bead tracers under a high-speed camera. Moreover, laser-induced bubble patterns were visualized in both free water and the root canal model. Tracers revealed high-speed motion of the fluid. A full cycle of expansion and implosion of vapor and secondary cavitation bubbles were clearly observed. In free water, the vapor bubble expanded for 220 microseconds, and its shape resembled that of an apple. In the root canal model, the vapor bubble expanded in a vertical direction along the canal wall, and bubble expansion continued for ≥700 microseconds. Furthermore, cavitation bubbles were created much more frequently in the canal model than in free water. These results suggest that the cleaning mechanism of an Er:YAG laser within the root canal might depend on rapid fluid motion caused by expansion and implosion of laser-induced bubbles. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Numerical Analysis of the Influence of Low Frequency Vibration on Bubble Growth

    PubMed Central

    Han, D.; Kedzierski, Mark A.

    2017-01-01

    Numerical simulation of bubble growth during pool boiling under the influence of low frequency vibration was performed to understand the influence of common vibrations such as those induced by wind, highway transportation, and nearby mechanical devices on the performance of thermal systems that rely on boiling. The simulations were done for saturated R123 boiling at 277.6 K with a 15 K wall superheat. The numerical volume-of-fluid method (fixed grid) was used to define the liquid-vapor interface. The basic bubble growth characteristics including the bubble departure diameter and the bubble departure time were determined as a function of the bubble contact angle (20°–80°), the vibration displacement (10 µm–50 µm), the vibration frequency (5 Hz–25 Hz), and the initial vibration direction (positive or negative). The bubble parameters were shown to be strongly dependent on the bubble contact angle at the surface. For example, both the bubble departure diameter and the bubble departure time increased with the contact angle. At the same vibration frequency and the initial vibration direction, the bubble departure diameter and the bubble departure time both decreased with increasing vibration displacement. In addition, the vibration frequency had a greater effect on the bubble growth characteristics than did the vibration displacement. The vibration frequency effect was strongly influenced by the initial vibration direction. The pressure contour, the volume fraction of vapor phase, the temperature profile, and the velocity vector were investigated to understand these dynamic bubble behaviors. The limitation of the computational fluid dynamics approach was also described. PMID:28747812

  14. Targeted Nanoparticle Thermometry: A Method to Measure Local Temperature at the Nanoscale Point Where Water Vapor Nucleation Occurs.

    PubMed

    Alaulamie, Arwa A; Baral, Susil; Johnson, Samuel C; Richardson, Hugh H

    2017-01-01

    An optical nanothermometer technique based on laser trapping, moving and targeted attaching an erbium oxide nanoparticle cluster is developed to measure the local temperature. The authors apply this new nanoscale temperature measuring technique (limited by the size of the nanoparticles) to measure the temperature of vapor nucleation in water. Vapor nucleation is observed after superheating water above the boiling point for degassed and nondegassed water. The average nucleation temperature for water without gas is 560 K but this temperature is lowered by 100 K when gas is introduced into the water. The authors are able to measure the temperature inside the bubble during bubble formation and find that the temperature inside the bubble spikes to over 1000 K because the heat source (optically-heated nanorods) is no longer connected to liquid water and heat dissipation is greatly reduced. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effects of van der Waals forces and salt ions on the growth of water films on ice and the detachment of CO2 bubbles

    NASA Astrophysics Data System (ADS)

    Thiyam, P.; Lima, E. R. A.; Malyi, O. I.; Parsons, D. F.; Buhmann, S. Y.; Persson, C.; Boström, M.

    2016-02-01

    We study the effect of salts on the thickness of wetting films on melting ice and interactions acting on CO2 bubble near ice-water and vapor-water interfaces. Governing mechanisms are the Lifshitz and the double-layer interactions in the respective three-layer geometries. We demonstrate that the latter depend on the Casimir-Polder interaction of the salt ions dissolved in water with the respective ice, vapor and CO2 interfaces, as calculated using different models for their effective polarizability in water. Significant variation in the predicted thickness of the equilibrium water film is observed for different salt ions and when using different models for the ions' polarizabilities. We find that CO2 bubbles are attracted towards the ice-water interface and repelled from the vapor-water interface.

  16. Effect of vibration amplitude on vapor cavitation in journal bearings

    NASA Astrophysics Data System (ADS)

    Brewe, D. E.; Jacobson, B. O.

    Computational movies were used to analyze the formation and collapse of vapor cavitation bubbles in a submerged journal bearing. The effect of vibration amplitude on vapor cavitation was studied for a journal undergoing circular whirl. The boundary conditions were implemented using Elrod's algorithm, which conserves mass flow through the cavitation bubble as well as through the oil-film region of the bearing. The vibration amplitudes for the different cases studied resulted in maximum eccentricity ratios ranging from 0.4 to 0.9. The minimum eccentricity ratio reached in each case was 0.1. For the least vibration amplitude studied in which the eccentricity ratio varied between 0.1 and 0.4, no vapor cavitation occurred. The largest vibration amplitude (i.e., eccentricity ratios of 0.1 to 0.9) resulted in vapor cavitation present 76 percent of one complete orbit.

  17. Systems and methods for generation of hydrogen peroxide vapor

    DOEpatents

    Love, Adam H; Eckels, Joel Del; Vu, Alexander K; Alcaraz, Armando; Reynolds, John G

    2014-12-02

    A system according to one embodiment includes a moisture trap for drying air; at least one of a first container and a second container; and a mechanism for at least one of: bubbling dried air from the moisture trap through a hydrogen peroxide solution in the first container for producing a hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above a hydrogen peroxide solution in the second container for producing a hydrogen peroxide vapor. A method according one embodiment includes at least one of bubbling dried air through a hydrogen peroxide solution in a container for producing a first hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above the hydrogen peroxide solution in a container for producing a second hydrogen peroxide vapor. Additional systems and methods are also presented.

  18. Effect of vibration amplitude on vapor cavitation in journal bearings

    NASA Technical Reports Server (NTRS)

    Brewe, D. E.; Jacobson, B. O.

    1986-01-01

    Computational movies were used to analyze the formation and collapse of vapor cavitation bubbles in a submerged journal bearing. The effect of vibration amplitude on vapor cavitation was studied for a journal undergoing circular whirl. The boundary conditions were implemented using Elrod's algorithm, which conserves mass flow through the cavitation bubble as well as through the oil-film region of the bearing. The vibration amplitudes for the different cases studied resulted in maximum eccentricity ratios ranging from 0.4 to 0.9. The minimum eccentricity ratio reached in each case was 0.1. For the least vibration amplitude studied in which the eccentricity ratio varied between 0.1 and 0.4, no vapor cavitation occurred. The largest vibration amplitude (i.e., eccentricity ratios of 0.1 to 0.9) resulted in vapor cavitation present 76 percent of one complete orbit.

  19. Bioeffects due to acoustic droplet vaporization

    NASA Astrophysics Data System (ADS)

    Bull, Joseph

    2015-11-01

    Encapsulated micro- and nano-droplets can be vaporized via ultrasound, a process termed acoustic droplet vaporization. Our interest is primarily motivated by a developmental gas embolotherapy technique for cancer treatment. In this methodology, infarction of tumors is induced by selectively formed vascular gas bubbles that arise from the acoustic vaporization of vascular microdroplets. Additionally, the microdroplets may be used as vehicles for localized drug delivery, with or without flow occlusion. In this talk, we examine the dynamics of acoustic droplet vaporization through experiments and theoretical/computational fluid mechanics models, and investigate the bioeffects of acoustic droplet vaporization on endothelial cells and in vivo. Early timescale vaporization events, including phase change, are directly visualized using ultra-high speed imaging, and the influence of acoustic parameters on droplet/bubble dynamics is discussed. Acoustic and fluid mechanics parameters affecting the severity of endothelial cell bioeffects are explored. These findings suggest parameter spaces for which bioeffects may be reduced or enhanced, depending on the objective of the therapy. This work was supported by NIH grant R01EB006476.

  20. The consequences of crystal relaxation on CO2 partitioning in plagioclase-hosted melt inclusions

    NASA Astrophysics Data System (ADS)

    Drignon, M. J.; Nielsen, R.; Moore, L.; Bodnar, R. J.; Tepley, F. J., III; Kotash, A.

    2017-12-01

    Melt inclusions (MI) are samples of magmas representing the early stages of the development of the system, both spatially and compositionally. However, little work has been done to test and understand whether MI in plagioclase faithfully sample and maintain a record of the magmatic history. Here, we examine the effects of post entrapment processes such as sidewall crystallization (PEC) and crystal relaxation that may occur during transport and eruption and, thus alter the composition of MI. To better understand the effects of PEC and crystal relaxation, time-series experiments were conducted on plagioclase-hosted MI from plagioclase ultraphyric basalts to evaluate the extent of crystal relaxation. Run times ranged from 30 min to 4 days. To evaluate the magnitude of the effect, we analyzed the CO2 content in the vapor bubbles using Raman spectroscopy. CO2 in the MI glass was determined by SIMS. The working assumption was that relaxation would lead to a pressure drop within the MI leading to an increase in CO2 in the vapor bubbles as CO2 moved from the melt to the bubble. In addition, a drop in pressure was expected to affect the major element composition of the MI. Our results demonstrated that Na2O, CaO and Al2O3 in the MI decreased, and SiO2 and MgO increased as a function of run time. However, the magnitude of the changes cannot be explained by plagioclase melting alone. In addition, our preliminary data show more CO2 in the vapor bubbles after the 4 day runs than after 30 min runs. Using our SIMS data, and applying the total CO2 reconstruction methodology described in Moore et al. (2015), we estimate that 61% of the total CO2 in the MI is contained within the vapor bubbles after the 4 day runs and 37 % of the CO2 is in the vapor bubbles after 30 min. We hypothesize that after 4 days the CO2 exsolved from the melt into the vapor bubble and is not re-dissolved into the melt due to crystal relaxation and the concomitant pressure decrease in the MI. This suggests that plagioclase-hosted MI hold their volatiles after long runs. The total CO2 reconstruction indicates that the MI were trapped between 3000 and 6000 bars which correspond to 9-18 km. These pressures represent the pressures of last equilibration and suggest that plagioclase megacrysts crystallized in the upper mantle, and are not related to processes within or above the magma lens.

  1. Olivine-hosted Melt Inclusions: Insights into Highly Explosive Basaltic Volcanism from Alkali-rich Magma at Sunset Crater, AZ

    NASA Astrophysics Data System (ADS)

    Allison, C. M.; Roggensack, K.; Clarke, A. B.

    2017-12-01

    Sunset Crater volcano, an alkali basalt scoria cone in northern Arizona, erupted ca. 1085 AD, producing a large tephra blanket through sub-Plinian activity during its most explosive period. Primary melt inclusions (MIs) in free olivine crystals from the tephra were analyzed to study magma characteristics and storage conditions. We compare MIs from the early-erupted Strombolian deposit to those of sub-Plinian units to identify magma properties related to eruptive style. All MIs are faceted and closely similar in composition exhibiting minor post entrapment crystallization (3-15%). MIs are relatively dry (0.5-1.5 wt% H2O) but CO2-rich (1,200-3000 ppm). Most MIs contain >1 wt% H2O and >2,000 ppm CO2. MI vapor bubbles are ubiquitous in Sunset Crater samples ranging in size from 1 to 10 vol% of the MI in typical samples or 3 vol% on average. However, based on MI shrinkage caused by the decrease of olivine and melt densities with lower temperatures, only bubbles smaller than 3 vol% can result from post-entrapment cooling alone. We conclude that larger MI bubbles likely include volume contributions from pre-entrapment vapor. Raman spectroscopy, calibrated with synthetic CO2 inclusions, shows that the bubbles contain CO2 vapor and carbonate crystals have been observed on the bubble walls. Total MI CO2 contents, representing dissolved CO2 plus vapor bubble (if less than 3 vol% in size), range up to 4500 ppm. If no size constraint is applied to the vapor bubbles, the maximum total CO2 content (dissolved + vapor) reaches 6,500 ppm. These volatile abundances exceed the current experimental data on volatile solubility in alkali basalts. Fluid-saturated H2O-CO2 solubility experiments at 1200 °C between 400 and 600 MPa were conducted on the bulk Sunset Crater composition to account for the enhanced CO2 solubility of alkali-rich magma and accurately constrain solubility. This experimental data and the resulting calibrated thermodynamic model, indicates that MIs record depths up to 17 km, assuming fluid saturation. We do not observe any significant differences between MIs from Strombolian and sub-Plinian phases, suggesting that while a high CO2 content may drive rapid magma ascent and be partly responsible for highly explosive eruptions, shallower processes may play an important role in the final eruptive character.

  2. Tapered Screened Channel PMD for Cryogenic Liquids

    NASA Astrophysics Data System (ADS)

    Dodge, Franklin T.; Green, Steve T.; Walter, David B.

    2004-02-01

    If a conventional spacecraft propellant management device (PMD) of the screened channel type were employed with a cryogenic liquid, vapor bubbles generated within the channel by heat transfer could ``dry out'' the channel screens and thereby cause the channels to admit large amounts of vapor from the tank into the liquid outflow. This paper describes a new tapered channel design that passively `pumps' bubbles away from the outlet port and vents them into the tank. A predictive mathematical model of the operating principle is presented and discussed. Scale-model laboratory tests were conducted and the mathematical model agreed well with the measured rates of bubble transport velocity. Finally, an example of the use of the predictive model for a realistic spacecraft application is presented. The model predicts that bubble clearing rates are acceptable even in tanks up to 2 m in length.

  3. Numerical and Experimental Study of Mechanisms Involved in Boiling Histotripsy.

    PubMed

    Pahk, Ki Joo; Gélat, Pierre; Sinden, David; Dhar, Dipok Kumar; Saffari, Nader

    2017-12-01

    The aim of boiling histotripsy is to mechanically fractionate tissue as an alternative to thermal ablation for therapeutic applications. In general, the shape of a lesion produced by boiling histotripsy is tadpole like, consisting of a head and a tail. Although many studies have demonstrated the efficacy of boiling histotripsy for fractionating solid tumors, the exact mechanisms underpinning this phenomenon are not yet well understood, particularly the interaction of a boiling vapor bubble with incoming incident shockwaves. To investigate the mechanisms involved in boiling histotripsy, a high-speed camera with a passive cavitation detection system was used to observe the dynamics of bubbles produced in optically transparent tissue-mimicking gel phantoms exposed to the field of a 2.0-MHz high-intensity focused ultrasound (HIFU) transducer. We observed that boiling bubbles were generated in a localized heated region and cavitation clouds were subsequently induced ahead of the expanding bubble. This process was repeated with HIFU pulses and eventually resulted in a tadpole-shaped lesion. A simplified numerical model describing the scattering of the incident ultrasound wave by a vapor bubble was developed to help interpret the experimental observations. Together with the numerical results, these observations suggest that the overall size of a lesion induced by boiling histotripsy is dependent on the sizes of (i) the heated region at the HIFU focus and (ii) the backscattered acoustic field by the original vapor bubble. Copyright © 2017 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  4. Single-bubble dynamics in pool boiling of one-component fluids

    NASA Astrophysics Data System (ADS)

    Xu, Xinpeng; Qian, Tiezheng

    2014-06-01

    We numerically investigate the pool boiling of one-component fluids with a focus on the effects of surface wettability on the single-bubble dynamics. We employed the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007), 10.1103/PhysRevE.75.036304], a diffuse-interface model for liquid-vapor flows involving liquid-vapor transition in nonuniform temperature fields. We first perform simulations for bubbles on homogeneous surfaces. We find that an increase in either the contact angle or the surface superheating can enhance the bubble spreading over the heating surface and increase the bubble departure diameter as well and therefore facilitate the transition into film boiling. We then examine the dynamics of bubbles on patterned surfaces, which incorporate the advantages of both hydrophobic and hydrophilic surfaces. The central hydrophobic region increases the thermodynamic probability of bubble nucleation while the surrounding hydrophilic region hinders the continuous bubble spreading by pinning the contact line at the hydrophobic-hydrophilic intersection. This leads to a small bubble departure diameter and therefore prevents the transition from nucleate boiling into film boiling. With the bubble nucleation probability increased and the bubble departure facilitated, the efficiency of heat transfer on such patterned surfaces is highly enhanced, as observed experimentally [Int. J. Heat Mass Transfer 57, 733 (2013), 10.1016/j.ijheatmasstransfer.2012.10.080]. In addition, the stick-slip motion of contact line on patterned surfaces is demonstrated in one-component fluids, with the effect weakened by surface superheating.

  5. Numerical studies of surface tensions

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1995-01-01

    Liquid-vapor (bubble) interface disturbances caused by various types of accelerations, including centrifugal, lateral and axial impulses, gravity gradient and g-jitter accelerations associated with spinning and slew motion in microgravity, are reviewed. Understanding of bubble deformations and fluctuations is important in the development of spacecraft orbital and attitude control techniques to secure its normal operation. This review discusses bubble deformations and oscillations driven by various forces in the microgravity environment. The corresponding bubble mass center fluctuations and slosh reaction forces and torques due to bubble deformations are also reviewed.

  6. Shock wave interaction with laser-generated single bubbles.

    PubMed

    Sankin, G N; Simmons, W N; Zhu, S L; Zhong, P

    2005-07-15

    The interaction of a lithotripter shock wave (LSW) with laser-generated single vapor bubbles in water is investigated using high-speed photography and pressure measurement via a fiber-optic probe hydrophone. The interaction leads to nonspherical collapse of the bubble with secondary shock wave emission and microjet formation along the LSW propagation direction. The maximum pressure amplification is produced during the collapse phase of the bubble oscillation when the compressive pulse duration of the LSW matches with the forced collapse time of the bubble.

  7. Bubbles

    NASA Astrophysics Data System (ADS)

    Prosperetti, Andrea

    2004-06-01

    Vanitas vanitatum et omnia vanitas: bubbles are emptiness, non-liquid, a tiny cloud shielding a mathematical singularity. Born from chance, a violent and brief life ending in the union with the (nearly) infinite. But a wealth of phenomena spring forth from this nothingness: underwater noise, sonoluminescence, boiling, and many others. Some recent results on a "blinking bubble" micropump and vapor bubbles in sound fields are outlined. The last section describes Leonardo da Vinci's observation of the non-rectlinear ascent of buoyant bubbles and justifies the name Leonardo's paradox recently attributed to this phenomenon.

  8. Thulium fiber laser-induced vapor bubble dynamics using bare, tapered, ball, hollow steel, and muzzle brake fiber optic tips

    NASA Astrophysics Data System (ADS)

    Gonzalez, David A.; Hardy, Luke A.; Hutchens, Thomas C.; Irby, Pierce B.; Fried, Nathaniel M.

    2018-03-01

    This study characterizes laser-induced vapor bubble dynamics for five different distal fiber optic tip configurations, to provide insight into stone retropulsion commonly experienced during laser ablation of kidney stones. A thulium fiber laser with 1908-nm wavelength delivered 34-mJ energy per pulse at 500-μs pulse duration through five different fibers such as 100-μm-core / 170-μm-OD bare fiber tip, 150- to 300-μm-core tapered fiber tip, 100-μm-core / 300-μm-OD ball tip fiber, 100-μm-core / 340-μm-OD hollow steel tip fiber, and 100-μm-core / 560-μm-OD muzzle brake fiber tip. A high-speed camera with 10-μm-spatial and 9.5-μs-temporal resolution was used to image the vapor bubble dynamics. A needle hydrophone measured pressure transients in the forward (0 deg) and side (90 deg) directions while placed at a 6.8 ± 0.4 mm distance from the distal fiber tip. Maximum bubble dimensions (width/length) averaged 0.7/1.5, 1.0/1.6, 0.5/1.1, 0.8/1.9, and 0.7 / 1.5 mm, for bare, tapered, ball, hollow steel, and muzzle brake fiber tips, respectively (n = 5). The hollow steel tip exhibited the most elongated vapor bubble shape, translating into increased forward pressure in this study and consistent with higher stone retropulsion in previous reports. Relative pressures (a.u.) in (forward/side) directions averaged 1.7/1.6, 2.0/2.0, 1.4/1.2, 6.8/1.1, and 0.3/1.2, for each fiber tip (n = 5). For the hollow steel tip, forward pressure was 4 × higher than for the bare fiber. For the muzzle brake fiber tip, forward pressure was 5 × lower than the bare fiber. Bubble dimensions and pressure measurements demonstrated that the muzzle brake fiber tip reduced forward pressure by partially venting vapors through the portholes, which is consistent with the observation of lower stone retropulsion in previous reports.

  9. Laser induced explosive vapor and cavitation resulting in effective irrigation of the root canal. Part 1: a visualization study.

    PubMed

    Blanken, Jan; De Moor, Roeland Jozef Gentil; Meire, Maarten; Verdaasdonk, Rudolf

    2009-09-01

    Limited information exists regarding the induction of explosive vapor and cavitation bubbles in an endodontic rinsing solution. It is also not clear whether a fiber has to be moved in the irrigation solution or can be kept stationary. No information is available on safe power settings for the use of cavitation in the root canal. This study investigates the fluid movements and the mechanism of action caused by an Er,Cr:YSGG laser in a transparent root model. Glass models with an artificial root canal (15 mm long, with a 0.06 taper and apical diameter of 400 microm) were used for visualization and registration with a high-speed imaging technique (resolution in the microsecond range) of the creation of explosive vapor bubbles with an Er,Cr:YSGG laser at pulse energies of 75, 125, and 250 mJ at 20 Hz using a 200 microm fiber (Z2 Endolase). Fluid movement was investigated by means of dyes and visualization of the explosive vapor bubbles, and as a function of pulse energy and distance of the fiber tip to the apex. The recordings in the glass model show the creation of expanding and imploding vapor bubbles with secondary cavitation effects. Dye is flushed out of the canal and replaced by surrounding fluid. It seems not necessary to move the fiber close to the apex. Imaging suggests that the working mechanism of an Er,Cr:YSGG laser in root canal treatment in an irrigation solution can be attributed to cavitation effects inducing high-speed fluid motion into and out the canal.

  10. Vapor Cavitation in Dynamically Loaded Journal Bearings

    NASA Technical Reports Server (NTRS)

    Jacobson, B. O.; Hamrock, B. J.

    1983-01-01

    High speed motion camera experiments were performed on dynamically loaded journal bearings. The length to diameter ratio of the bearing, the speed of the roller and the tube, the surface material of the roller, and the static and dynamic eccentricity of the bearing were varied. One hundred and thirty-four cases were filmed. The occurrence of vapor cavitation was clearly evident in the films and figures presented. Vapor cavitation was found to occur when the tensile stress applied to the oil exceeded the tensile strength of the oil or the binding of the oil to the surface. The physical situation in which vapor cavitation occurs is during the squeezing and sliding motion within a bearing. Besides being able to accurately capture the vapor cavitation on film, an analysis of the formation and collapse of the cavitation bubbles and characteristics of the bubble content are presented.

  11. Evolution of vacuum bubbles embedded in inhomogeneous spacetimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pannia, Florencia Anabella Teppa; Bergliaffa, Santiago Esteban Perez, E-mail: fteppa@fcaglp.unlp.edu.ar, E-mail: sepbergliaffa@gmail.com

    We study the propagation of bubbles of new vacuum in a radially inhomogeneous background filled with dust or radiation, and including a cosmological constant, as a first step in the analysis of the influence of inhomogeneities in the evolution of an inflating region. We also compare the cases with dust and radiation backgrounds and show that the evolution of the bubble in radiation environments is notably different from that in the corresponding dust cases, both for homogeneous and inhomogeneous ambients, leading to appreciable differences in the evolution of the proper radius of the bubble.

  12. One-dimensional model of inertial pumping

    NASA Astrophysics Data System (ADS)

    Kornilovitch, Pavel E.; Govyadinov, Alexander N.; Markel, David P.; Torniainen, Erik D.

    2013-02-01

    A one-dimensional model of inertial pumping is introduced and solved. The pump is driven by a high-pressure vapor bubble generated by a microheater positioned asymmetrically in a microchannel. The bubble is approximated as a short-term impulse delivered to the two fluidic columns inside the channel. Fluid dynamics is described by a Newton-like equation with a variable mass, but without the mass derivative term. Because of smaller inertia, the short column refills the channel faster and accumulates a larger mechanical momentum. After bubble collapse the total fluid momentum is nonzero, resulting in a net flow. Two different versions of the model are analyzed in detail, analytically and numerically. In the symmetrical model, the pressure at the channel-reservoir connection plane is assumed constant, whereas in the asymmetrical model it is reduced by a Bernoulli term. For low and intermediate vapor bubble pressures, both models predict the existence of an optimal microheater location. The predicted net flow in the asymmetrical model is smaller by a factor of about 2. For unphysically large vapor pressures, the asymmetrical model predicts saturation of the effect, while in the symmetrical model net flow increases indefinitely. Pumping is reduced by nonzero viscosity, but to a different degree depending on the microheater location.

  13. One-dimensional model of inertial pumping.

    PubMed

    Kornilovitch, Pavel E; Govyadinov, Alexander N; Markel, David P; Torniainen, Erik D

    2013-02-01

    A one-dimensional model of inertial pumping is introduced and solved. The pump is driven by a high-pressure vapor bubble generated by a microheater positioned asymmetrically in a microchannel. The bubble is approximated as a short-term impulse delivered to the two fluidic columns inside the channel. Fluid dynamics is described by a Newton-like equation with a variable mass, but without the mass derivative term. Because of smaller inertia, the short column refills the channel faster and accumulates a larger mechanical momentum. After bubble collapse the total fluid momentum is nonzero, resulting in a net flow. Two different versions of the model are analyzed in detail, analytically and numerically. In the symmetrical model, the pressure at the channel-reservoir connection plane is assumed constant, whereas in the asymmetrical model it is reduced by a Bernoulli term. For low and intermediate vapor bubble pressures, both models predict the existence of an optimal microheater location. The predicted net flow in the asymmetrical model is smaller by a factor of about 2. For unphysically large vapor pressures, the asymmetrical model predicts saturation of the effect, while in the symmetrical model net flow increases indefinitely. Pumping is reduced by nonzero viscosity, but to a different degree depending on the microheater location.

  14. Cavitation propagation in water under tension

    NASA Astrophysics Data System (ADS)

    Noblin, Xavier; Yip Cheung Sang, Yann; Pellegrin, Mathieu; Materials and Complex Fluids Team

    2012-11-01

    Cavitation appears when pressure decreases below vapor pressure, generating vapor bubbles. It can be obtain in dynamical ways (acoustic, hydraulic) but also in quasi-static conditions. This later case is often observed in nature, in trees, or during the ejection of ferns spores. We study the cavitation bubbles nucleation dynamics and its propagation in a confined microfabricated media. This later is an ordered array of microcavities made in hydrogel filled with water. When the system is put into dry air, it dehydrates, water leaves the cavities and tension (negative pressure) builds in the cavities. This can be sustained up to a critical pressure (of order -20 MPa), then cavitation bubbles appear. We follow the dynamics using ultra high speed imaging. Events with several bubbles cavitating in a few microseconds could be observed along neighboring cells, showing a propagation phenomenon that we discuss. ANR CAVISOFT 2010-JCJC-0407 01.

  15. Exploding and Imaging of Electron Bubbles in Liquid Helium

    NASA Astrophysics Data System (ADS)

    Yadav, Neha; Vadakkumbatt, Vaisakh; Maris, Humphrey J.; Ghosh, Ambarish

    2017-06-01

    An electron bubble in liquid helium-4 under the saturated vapor pressure becomes unstable and explodes if the pressure becomes more negative than -1.9 bars. In this paper, we use focused ultrasound to explode electron bubbles. We then image at 30,000 frames per second the growth and subsequent collapse of the bubbles. We find that bubbles can grow to as large as 1 mm in diameter within 2 ms after the cavitation event. We examine the relation between the maximum size of the bubble and the lifetime and find good agreement with the experimental results.

  16. Self-pressurization of a spherical liquid hydrogen storage tank in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Lin, C. S.; Hasan, M. M.

    1992-01-01

    Thermal stratification and self-pressurization of partially filled liquid hydrogen (LH2) storage tanks under microgravity condition is studied theoretically. A spherical tank is subjected to a uniform and constant wall heat flux. It is assumed that a vapor bubble is located in the tank center such that the liquid-vapor interface and tank wall form two concentric spheres. This vapor bubble represents an idealized configuration of a wetting fluid in microgravity conditions. Dimensionless mass and energy conservation equations for both vapor and liquid regions are numerically solved. Coordinate transformation is used to capture the interface location which changes due to liquid thermal expansion, vapor compression, and mass transfer at liquid-vapor interface. The effects of tank size, liquid fill level, and wall heat flux on the pressure rise and thermal stratification are studied. Liquid thermal expansion tends to cause vapor condensation and wall heat flux tends to cause liquid evaporation at the interface. The combined effects determine the direction of mass transfer at the interface. Liquid superheat increases with increasing wall heat flux and liquid fill level and approaches an asymptotic value.

  17. Single-bubble sonoluminescence in sulfuric acid and water: bubble dynamics, stability, and continuous spectra.

    PubMed

    Puente, Gabriela F; García-Martínez, Pablo; Bonetto, Fabián J

    2007-01-01

    We present theoretical calculations of an argon bubble in a liquid solution of 85%wt sulfuric acid and 15%wt water in single-bubble sonoluminescence. We used a model without free parameters to be adjusted. We predict from first principles the region in parameter space for stable bubble evolution, the temporal evolution of the bubble radius, the maximum temperature, pressures, and the light spectra due to thermal emissions. We also used a partial differential equation based model (hydrocode) to compute the temperature and pressure evolutions at the center of the bubble during maximum compression. We found the behavior of this liquid mixture to be very different from water in several aspects. Most of the models in sonoluminescence were compared with water experimental results.

  18. A Study of Nucleate Boiling with Forced Convection in Microgravity

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1999-01-01

    The ultimate objective of basic studies of flow boiling in microgravity is to improve the understanding of the processes involved, as manifested by the ability to predict its behavior. This is not yet the case for boiling heat transfer even in earth gravity, despite the considerable research activity over the past 30 years. The elements that constitute the nucleate boiling process - nucleation, growth, motion, and collapse of the vapor bubbles (if the bulk liquid is subcooled) - are common to both pool and flow boiling. It is well known that the imposition of bulk liquid motion affects the vapor bubble behavior relative to pool boiling, but does not appear to significantly influence the heat transfer. Indeed, it has been recommended in the past that empirical correlations or experimental data of pool boiling be used for design purposes with forced convection nucleate boiling. It is anticipated that such will most certainly not be possible for boiling in microgravity, based on observations made with pool boiling in microgravity. In earth gravity buoyancy will act to remove the vapor bubbles from the vicinity of the heater surface regardless of how much the imposed bulk velocity is reduced, depending, of course, on the geometry of the system. Vapor bubbles have been observed to dramatically increase in size in pool boiling in microgravity, and the heat flux at which dryout took place was reduced considerably below what is generally termed the critical heat flux (CHF) in earth gravity, depending on the bulk liquid subcooling. However, at heat flux levels below dryout, the nucleate pool boiling process was enhanced considerably over that in earth gravity, in spite of the large vapor bubbles formed in microgravity and perhaps as a consequence. These large vapor bubbles tended to remain in the vicinity of the heater surface, and the enhanced heat transfer appeared to be associated with the presence of what variously has been referred to as a liquid microlayer between the bubble and the heater surface. The enhancement of the boiling process with low velocities in earth gravity for those orientations producing the formation of a liquid macrolayer described above, accompanied by "sliding" vapor bubbles, has been demonstrated. The enhancement was presented as a function of orientation, subcooling, and heated length, while a criterion for the heat transfer for mixed natural/forced convection nucleate boiling was given previously. A major unknown in the prediction and application of flow boiling heat transfer in microgravity is the upper limit of the heat flux for the onset of dryout (or critical heat flux - CHF), for given conditions of fluid-heater surfaces, including geometry, system pressure and bulk liquid subcooling. It is clearly understood that the behavior in microgravity will be no different than on earth with sufficiently high flow velocities, and would require no space experimentation. However, the boundary at which this takes place is still an unknown. Previous results of CHF measurements were presented for low velocity flow boiling at various orientations in earth gravity as a function of flow velocity and bulk liquid subcooling, along with preliminary measurements of bubble residence times on a flat heater surface. This showed promise as a parameter to be used in modeling the CHF, both in earth gravity and in microgravity. The objective of the work here is to draw attention to and show results of current modeling efforts for the CHF, with low velocities in earth gravity at different orientations and subcoolings. Many geometrical possibilities for a heater surface exist in flowing boiling, with boiling on the inner and outer surfaces of tubes perhaps being the most common. If the vapor bubble residence time on and departure size from the heater surface bear a relationship to the CHF, as results to be given indicate, it is important that visualization of and access to vapor bubble growth be conveniently available for research purposes. In addition, it is desirable to reduce the number of variables as much as possible in a fundamental study. These considerations dictated the use of a flat heater surface, which is rectangular in shape, 1.91 cm by 3.81 cm (0.75 x 1.5 inches), consisting either of a 400 Angstrom thick semi-transparent gold film sputtered on a quartz substrate which serves simultaneously as a heater and a resistance thermometer, or a copper substrate of the same size. The heater substrate is a disc which can be rotated so that the heated length in the flow direction can be changed from 1.91 to 3.81 cm (0.75 to 1.5 inches). The fluid is R-113, and the velocities can be varied between 0.5 cm/s and 60 cm/s. For a sufficiently low velocity the CHF can be modeled reasonably well at various orientations by the correlation for pool boiling corrected for the influence of bulk liquid subcooling, multiplied by the square root of q, the angle relative to horizontal. This arises from equating buoyancy and drag forces in the inverted positions where the vapor bubbles are held against the heater surface as they slide. A distortion of the measurements relative to pool boiling occurs as the flow velocity increases. In modeling this effect at different levels of subcooling it appeared appropriate to estimate the volumetric rate of vapor generation, using measurements of bubble frequency (or residence time), void fraction and average bubble boundary layer thickness. These were determined with the use of a platinum hot wire probe 0.025 mm in diameter by 1.3 mm long, applying a constant current to distinguish between contact with liquid or vapor. Two-dimensional spatial variations are obtained with a special mechanism to resolve displacements in increments of 0.025 mm. From such measurements it was determined that the fraction of the surface heat transfer resulting in evaporation varies inversely with the subcooling correction factor for the CHF. The measured inverse bubble residence time is normalized relative to that predicted for an infinite horizontal flat plate at the CHF, and is correlated well with the CHF normalized relative to that for pool boiling, for various orientation angles and subcooling levels. This correspondence is then combined with a normalizing factor for the energy flux leaving the heater surface at the CHF and the computed bubble radius at departure, determined from the balance between the outward velocity of the interface due to evaporation and the buoyance induced velocity of the center of mass of the bubble. The product of the CHF and the corresponding residence time was determined to be a constant for all orientations at a given bulk flow velocity and liquid subcooling, and must be determined empirically for each velocity and subcooling at present. It then becomes possible to predict the CHF for the different orientations, velocities, and subcoolings. These are compared with normalized measurements of the CHF for velocities ranging from 4 cm/s to 55 cm/s, subcoolings from 2.8 to 22.2 K, over orientations angles of 360 degrees.

  19. Evaporation-induced cavitation in nanofluidic channels

    PubMed Central

    Duan, Chuanhua; Karnik, Rohit; Lu, Ming-Chang; Majumdar, Arun

    2012-01-01

    Cavitation, known as the formation of vapor bubbles when liquids are under tension, is of great interest both in condensed matter science as well as in diverse applications such as botany, hydraulic engineering, and medicine. Although widely studied in bulk and microscale-confined liquids, cavitation in the nanoscale is generally believed to be energetically unfavorable and has never been experimentally demonstrated. Here we report evaporation-induced cavitation in water-filled hydrophilic nanochannels under enormous negative pressures up to -7 MPa. As opposed to receding menisci observed in microchannel evaporation, the menisci in nanochannels are pinned at the entrance while vapor bubbles form and expand inside. Evaporation in the channels is found to be aided by advective liquid transport, which leads to an evaporation rate that is an order of magnitude higher than that governed by Fickian vapor diffusion in macro- and microscale evaporation. The vapor bubbles also exhibit unusual motion as well as translational stability and symmetry, which occur because of a balance between two competing mass fluxes driven by thermocapillarity and evaporation. Our studies expand our understanding of cavitation and provide new insights for phase-change phenomena at the nanoscale. PMID:22343530

  20. Vaporization dynamics of volatile perfluorocarbon droplets: A theoretical model and in vitro validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doinikov, Alexander A., E-mail: doinikov@bsu.by; Bouakaz, Ayache; Sheeran, Paul S.

    2014-10-15

    Purpose: Perfluorocarbon (PFC) microdroplets, called phase-change contrast agents (PCCAs), are a promising tool in ultrasound imaging and therapy. Interest in PCCAs is motivated by the fact that they can be triggered to transition from the liquid state to the gas state by an externally applied acoustic pulse. This property opens up new approaches to applications in ultrasound medicine. Insight into the physics of vaporization of PFC droplets is vital for effective use of PCCAs and for anticipating bioeffects. PCCAs composed of volatile PFCs (with low boiling point) exhibit complex dynamic behavior: after vaporization by a short acoustic pulse, a PFCmore » droplet turns into a vapor bubble which undergoes overexpansion and damped radial oscillation until settling to a final diameter. This behavior has not been well described theoretically so far. The purpose of our study is to develop an improved theoretical model that describes the vaporization dynamics of volatile PFC droplets and to validate this model by comparison with in vitro experimental data. Methods: The derivation of the model is based on applying the mathematical methods of fluid dynamics and thermodynamics to the process of the acoustic vaporization of PFC droplets. The used approach corrects shortcomings of the existing models. The validation of the model is carried out by comparing simulated results with in vitro experimental data acquired by ultrahigh speed video microscopy for octafluoropropane (OFP) and decafluorobutane (DFB) microdroplets of different sizes. Results: The developed theory allows one to simulate the growth of a vapor bubble inside a PFC droplet until the liquid PFC is completely converted into vapor, and the subsequent overexpansion and damped oscillations of the vapor bubble, including the influence of an externally applied acoustic pulse. To evaluate quantitatively the difference between simulated and experimental results, the L2-norm errors were calculated for all cases where the simulated and experimental results are compared. These errors were found to be in the ranges of 0.043–0.067 and 0.037–0.088 for OFP and DFB droplets, respectively. These values allow one to consider agreement between the simulated and experimental results as good. This agreement is attained by varying only 2 of 16 model parameters which describe the material properties of gaseous and liquid PFCs and the liquid surrounding the PFC droplet. The fitting parameters are the viscosity and the surface tension of the surrounding liquid. All other model parameters are kept invariable. Conclusions: The good agreement between the theoretical and experimental results suggests that the developed model is able to correctly describe the key physical processes underlying the vaporization dynamics of volatile PFC droplets. The necessity of varying the parameters of the surrounding liquid for fitting the experimental curves can be explained by the fact that the parts of the initial phospholipid shell of PFC droplets remain on the surface of vapor bubbles at the oscillatory stage and their presence affects the bubble dynamics.« less

  1. A study of the laminar separation bubble on an airfoil at low Reynolds numbers using flow visualization techniques

    NASA Technical Reports Server (NTRS)

    Schmidt, Gordon S.; Mueller, Thomas J.

    1987-01-01

    The use of flow visualization to study separation bubbles is evaluated. The wind tunnel, two NACA 66(3)-018 airfoil models, and kerosene vapor, titanium tetrachloride, and surface flow visualizations techniques are described. The application of the three visualization techniques to the two airfoil models reveals that the smoke and vapor techniques provide data on the location of laminar separation and the onset of transition, and the surface method produces information about the location of turbulent boundary layer separation. The data obtained with the three flow visualization techniques are compared to pressure distribution data and good correlation is detected. It is noted that flow visualization is an effective technique for examining separation bubbles.

  2. Thermal singularity and contact line motion in pool boiling: Effects of substrate wettability.

    PubMed

    Taylor, M T; Qian, Tiezheng

    2016-03-01

    The dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)] is employed to model the growth of a single vapor bubble in a superheated liquid on a flat homogeneous substrate. The bubble spreading dynamics in the pool boiling regime has been numerically investigated for one-component van der Waals fluids close to the critical point, with a focus on the effect of the substrate wettability on bubble growth and contact line motion. The substrate wettability is found to control the apparent contact angle and the rate of bubble growth (the rate of total evaporation), through which the contact line speed is determined. An approximate expression is derived for the contact line speed, showing good agreement with the simulation results. This demonstrates that the contact line speed is primarily governed by (1) the circular shape of interface (for slow bubble growth), (2) the constant apparent contact angle, and (3) the constant bubble growth rate. It follows that the contact line speed has a sensitive dependence on the substrate wettability via the apparent contact angle which also determines the bubble growth rate. Compared to hydrophilic surfaces, hydrophobic surfaces give rise to a thinner shape of bubble and a higher rate of total evaporation, which combine to result in a much faster contact line speed. This can be linked to the earlier formation of a vapor film and hence the onset of boiling crisis.

  3. Somma-Vesuvius Plinian Eruptions fed by mafic magma: insights from bubbles in melt inclusions

    NASA Astrophysics Data System (ADS)

    Esposito, R.; Redi, D.; Cannatelli, C.; Danyushevsky, L. V.; Lima, A.; Bodnar, R. J.; De Vivo, B.

    2014-12-01

    Mt. Somma-Vesuvius Plinian eruptions were first described by Pliny the younger in 79 AD during the infamous eruption that destroyed Pompeii. Today, such eruptions are still a concern to the nearly 3 million people living in the Naples metropolitan area. Understanding the source for Mt. Somma-Vesuvius magma and the coexisting volatile phase is vital to better constrain the long-term eruptive behavior of this volcano. In the present study, ~ 50 olivine phenocrysts were selected from lavas and pumices produced during mild effusive events referred to as inter-Plinian eruptions, and from highly explosive Plinian eruptions that occurred at Mt. Somma-Vesuvius between 33000 ka and 1631 AD. Selected olivine phenocrysts containing MI were examined petrographically and analyzed for Fo content. Fo varies from 69 to 73 mole% for inter-Plinian olivine crystals and from 84 to 90 mole% with one zoned olivine containing 76-81 mole% Fo, for Plinian olivine crystals. Investigated MI vary from slightly crystallized to highly crystallized. Selected crystallized MI were reheated using the Vernadsky stage, and quenched to a homogeneous glass (Group 1) or glass plus a vapor bubble (Group 2). On one hand, MI of Group 1 are hosted in olivine ranging from Fo72 to Fo76 and were all erupted from the Pompeii eruption (white pumice deposit). On the other hand, MI of Group 2 are trapped in olivine ranging from Fo69 to Fo81 and from Fo84 to Fo90, and the hosts are representative of both Plinian and inter-Plinian events. The only eruption where Group-1 and Group-2 MI coexist is the Pompeii eruption. Group 2 MIs were further analyzed by Raman to test for the presence of volatiles (CO2 or H2O) in the vapor bubbles. CO2 was detected in all MI analyzed. CO2 density was determined using the distance between the two Fermi-diad peaks, and ranges between 0.14 and 0.55 g/cm3. Six MI also showed evidence for H2O in the vapor bubble. In addition, carbonates were detected at the glass-vapor interface of five MI. This study shows that the CO2-rich fluid phase, which might exsolve from Plinian melts contain a significant amount of H2O. In addition, the first melting temperature of the fluids in the vapor bubble (~ -58ºC) suggests that volatile components, other than CO2, are included in the vapor bubbles.

  4. Time-Dependent Changes in a Shampoo Bubble

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Arun

    2000-10-01

    This article demonstrates the fascinating phenomenon of time evolution of a shampoo bubble through experiments that can be performed by undergraduate students. The changes in thickness of the bubble films with time are followed by UV-vis spectroscopy. The change in chemical composition as a bubble film evolves is monitored by FTIR spectroscopy. It is observed that the change in thickness of a typical shampoo bubble film enclosed in a container is gradual and slow, and the hydrocarbon components of the bubble drain from the bubble much more slowly than water. An additional agent, such as acetonitrile, strikingly alters the dynamics of evolution of such a bubble.

  5. Optofluidic microvalve-on-a-chip with a surface plasmon-enhanced fiber optic microheater

    PubMed Central

    Zhang, Zhijian; Kusimo, Abisola; Yu, Miao

    2014-01-01

    We present an optofluidic microvalve utilizing an embedded, surface plasmon-enhanced fiber optic microheater. The fiber optic microheater is formed by depositing a titanium thin film on the roughened end-face of a silica optical fiber that serves as a waveguide to deliver laser light to the titanium film. The nanoscale roughness at the titanium-silica interface enables strong light absorption enhancement in the titanium film through excitation of localized surface plasmons as well as facilitates bubble nucleation. Our experimental results show that due to the unique design of the fiber optic heater, the threshold laser power required to generate a bubble is greatly reduced and the bubble growth rate is significantly increased. By using the microvalve, stable vapor bubble generation in the microchannel is demonstrated, which does not require complex optical focusing and alignment. The generated vapor bubble is shown to successfully block a liquid flow channel with a size of 125 μm × 125 μm and a flow rate of ∼10 μl/min at ∼120 mW laser power. PMID:25538813

  6. Walks of bubbles on a hot wire in a liquid bath

    NASA Astrophysics Data System (ADS)

    Duchesne, A.; Caps, H.

    2017-05-01

    When a horizontal resistive wire is heated up to the boiling point in a subcooled liquid bath, some vapor bubbles nucleate on its surface. The traditional nucleate boiling theory predicts that bubbles generated from active nucleate sites grow up and depart from the heating surface due to buoyancy and inertia. However, we observed here a different behavior: the bubbles slide along the heated wire. In this situation, unexpected regimes are observed; from the simple sliding motion to bubble clustering. We noticed that bubbles could rapidly change their moving direction and may also interact. Finally, we propose an interpretation for both the attraction between the bubbles and the wire and for the motion of the bubbles on the wire in terms of Marangoni effects.

  7. Dynamics of Vapour Bubbles in Nucleate Boiling. 2; Evolution of Thermally Controlled Bubbles

    NASA Technical Reports Server (NTRS)

    Buyevich, Yu A.; Webbon, Bruce W.; Callaway, Robert (Technical Monitor)

    1995-01-01

    The previously developed dynamic theory of growth and detachment of vapour bubbles under conditions of nucleate pool boiling is applied to study motion and deformation of a bubble evolving at a single nucleation site. The bubble growth is presumed to be thermally controlled, and two components of heat transfer to the bubble are accounted of: the one from the bulk of surrounding liquid and the one due to heat conduction across a liquid microlayer formed underneath the bubble. Bubble evolution is governed by the buoyancy and an effective surface tension force, both the forces making the bubble centre of mass move away from the wall and, thus, assisting its detachment. Buoyancy-controlled and surface-tension-controlled regimes are considered separately in a meticulous way. The duration of the whole process of bubble evolution till detachment, the rate of growth, and the bubble departure size are found as functions of time and physical and operating parameters. Some repeatedly observed phenomena, such as an influence of gravity on the growth rate, are explained. Inferences of the model agree qualitatively with available experimental evidence, and conclusions pertaining to the dependence on gravity of the bubble radius at detachment and the whole time of the bubble development when being attached to the wall are confirmed quantitatively.

  8. Effects of viscosity on endothelial cell damage under acoustic droplet vaporization

    NASA Astrophysics Data System (ADS)

    Seda, Robinson; Singh, Rahul; Li, David; Pitre, John; Putnam, Andrew; Fowlkes, J. Brian; Bull, Joseph

    2014-11-01

    Acoustic droplet vaporization (ADV) is a process by which stabilized superheated microdroplets are able to undergo phase transition with the aid of focused ultrasound. Gas bubbles resulting from ADV can provide local occlusion of the blood vessels supplying diseased tissue, such as tumors. The ADV process can also induce bioeffects that increase vessel permeability, which is beneficial for localized drug delivery. Previous in vitro studies have demonstrated that vaporization at the endothelial layer will affect cell attachment and viability. Several hypotheses have been proposed to elucidate the mechanism of damage including the generation of normal and shear stresses during bubble expansion. A single 3.5 MHz ultrasound pulse consisting of 8 cycles (~2.3 μs) and a 6 MPa peak rarefactional pressure was used to induce ADV on endothelial cells in media of different viscosities. Carboxylmethyl cellulose was added to the cell media to increase the viscosity up to 300 cP to and aid in the reduction of stresses during bubble expansion. The likelihood of cell damage was decreased when compared to our control (~1 cP), but it was still present in some cases indicating that the mechanism of damage does not depend entirely on viscous stresses associated with bubble expansion. This work was supported by NIH Grant R01EB006476.

  9. The cavitation induced Becquerel effect and the hot spot theory of sonoluminescence.

    PubMed

    Prevenslik, T V

    2003-06-01

    Over 150 years ago, Becquerel discovered the ultraviolet illumination of one of a pair of identical electrodes in liquid water produced an electric current, the phenomenon called the Becquerel effect. Recently, a similar effect was observed if the water surrounding one electrode is made to cavitate by focused acoustic radiation, which by similarity is referred to as the cavitation induced Becquerel effect. The current in the cavitation induced Becquerel effect was found to be semi-logarithmic with the standard electrode potential that is consistent with the oxidation of the electrode surface by the photo-decomposition theory of photoelectrochemistry. But oxidation of the electrode surface usually requires high temperatures, say as in cavitation. Absent high bubble temperatures, cavitation may produce vacuum ultraviolet (VUV) light that excites water molecules in the electrode film to higher H(2)O(*) energy states, the excited states oxidizing the electrode surface by chemical reaction. Solutions of the Rayleigh-Plesset equation during bubble collapse that include the condensation of water vapor show any increase in temperature or pressure of the water vapor by compression heating is compensated by the condensation of vapor to the bubble wall, the bubbles collapsing almost isothermally. Hence, the cavitation induced Becquerel effect is likely caused by cavitation induced VUV light at ambient temperature.

  10. Theoretical and experimental comparison of vapor cavitation in dynamically loaded journal bearings

    NASA Astrophysics Data System (ADS)

    Brewe, D. E.; Hamrock, B. J.; Jacobson, B. A.

    Vapor cavitation for a submerged journal bearing under dynamically loaded conditions was investigated. The observation of vapor cavitation in the laboratory was done by high-speed photography. It was found that vapor cavitation occurs when the tensile stress applied to the oil exceeded the tensile strength of the oil or the binding of the oil to the surface. The theoretical solution to the Reynolds equation is determined numerically using a moving boundary algorithm. This algorithm conserves mass throughout the computational domain including the region of cavitation and its boundaries. An alternating direction implicit (MDI) method is used to effect the time march. A rotor undergoing circular whirl was studied. Predicted cavitation behavior was analyzed by three-dimensional computer graphic movies. The formation, growth, and collapse of the bubble in response to the dynamic conditions is shown. For the same conditions of dynamic loading, the cavitation bubble was studied in the laboratory using high-speed photography.

  11. Theoretical and experimental comparison of vapor cavitation in dynamically loaded journal bearings

    NASA Technical Reports Server (NTRS)

    Brewe, D. E.; Hamrock, B. J.; Jacobson, B. A.

    1985-01-01

    Vapor cavitation for a submerged journal bearing under dynamically loaded conditions was investigated. The observation of vapor cavitation in the laboratory was done by high-speed photography. It was found that vapor cavitation occurs when the tensile stress applied to the oil exceeded the tensile strength of the oil or the binding of the oil to the surface. The theoretical solution to the Reynolds equation is determined numerically using a moving boundary algorithm. This algorithm conserves mass throughout the computational domain including the region of cavitation and its boundaries. An alternating direction implicit (MDI) method is used to effect the time march. A rotor undergoing circular whirl was studied. Predicted cavitation behavior was analyzed by three-dimensional computer graphic movies. The formation, growth, and collapse of the bubble in response to the dynamic conditions is shown. For the same conditions of dynamic loading, the cavitation bubble was studied in the laboratory using high-speed photography.

  12. Vapor segregation and loss in basaltic melts

    USGS Publications Warehouse

    Edmonds, M.; Gerlach, T.M.

    2007-01-01

    Measurements of volcanic gases at Pu'u'O??'o??, Kilauea Volcano, Hawai'i, reveal distinct degassing regimes with respect to vapor segregation and loss during effusive activity in 2004-2005. Three styles of vapor loss are distinguished by the chemical character of the emitted volcanic gases, measured by open path Fourier transform infrared spectroscopy: 1 persistent continuous gas emission, 2 gas piston events, and 3 lava spattering. Persistent continuous gas emission is associated with magma ascent and degassing beneath the crater vents, then eruption of the degassed magma from flank vents. Gas piston events are the result of static gas accumulation at depths of 400-900 m beneath Pu'u'O??'o??. A CO2-rich gas slug travels up the conduit at a few meters per second, displacing magma as it expands. Lava spattering occurs due to dynamic bubble coalescence in a column of relatively stagnant magma. The Large gas bubbles are H2O rich and are generated by open-system degassing at depths of <150 m. Static gas accumulation and dynamic bubble coalescence are both manifestations of vapor segregation in basaltic melts, but their implications differ. Accumulation and segregation of CO2-rich vapor at depth does not deplete the melt of H2O (required to drive lava fountains near to the surface) and therefore gas piston events can occur interspersed with lava fountaining activity. Lava spattering, however, efficiently strips H2O-rich vapor from magma beneath the crater vents; the magma must then erupt effusively from vents on the flank of the cone. ?? 2007 The Geological Society of America.

  13. Vapor segregation and loss in basaltic melts

    NASA Astrophysics Data System (ADS)

    Edmonds, Marie; Gerlach, Terrence M.

    2007-08-01

    Measurements of volcanic gases at Pu'u‘Ō’ō, Kilauea Volcano, Hawai'i, reveal distinct degassing regimes with respect to vapor segregation and loss during effusive activity in 2004-2005. Three styles of vapor loss are distinguished by the chemical character of the emitted volcanic gases, measured by open path Fourier transform infrared spectroscopy: (1) persistent continuous gas emission, (2) gas piston events, and (3) lava spattering. Persistent continuous gas emission is associated with magma ascent and degassing beneath the crater vents, then eruption of the degassed magma from flank vents. Gas piston events are the result of static gas accumulation at depths of 400-900 m beneath Pu'u‘Ō’ō. A CO2-rich gas slug travels up the conduit at a few meters per second, displacing magma as it expands. Lava spattering occurs due to dynamic bubble coalescence in a column of relatively stagnant magma. The large gas bubbles are H2O rich and are generated by open-system degassing at depths of <150 m. Static gas accumulation and dynamic bubble coalescence are both manifestations of vapor segregation in basaltic melts, but their implications differ. Accumulation and segregation of CO2-rich vapor at depth does not deplete the melt of H2O (required to drive lava fountains near to the surface) and therefore gas piston events can occur interspersed with lava fountaining activity. Lava spattering, however, efficiently strips H2O-rich vapor from magma beneath the crater vents; the magma must then erupt effusively from vents on the flank of the cone.

  14. A hydrodynamical model of the circumstellar bubble created by two massive stars

    NASA Astrophysics Data System (ADS)

    van Marle, A. J.; Meliani, Z.; Marcowith, A.

    2012-05-01

    Context. Numerical models of the wind-blown bubble of massive stars usually only account for the wind of a single star. However, since massive stars are usually formed in clusters, it would be more realistic to follow the evolution of a bubble created by several stars. Aims: We develop a two-dimensional (2D) model of the circumstellar bubble created by two massive stars, a 40 M⊙ star and a 25 M⊙ star, and follow its evolution. The stars are separated by approximately 16 pc and surrounded by a cold medium with a density of 20 particles per cm3. Methods: We use the MPI-AMRVAC hydrodynamics code to solve the conservation equations of hydrodynamics on a 2D cylindrical grid using time-dependent models for the wind parameters of the two stars. At the end of the stellar evolution (4.5 and 7.0 million years for the 40 and 25 M⊙ stars, respectively), we simulate the supernova explosion of each star. Results: Each star initially creates its own bubble. However, as the bubbles expand they merge, creating a combined, aspherical bubble. The combined bubble evolves over time, influenced by the stellar winds and supernova explosions. Conclusions: The evolution of a wind-blown bubble created by two stars deviates from that of the bubbles around single stars. In particular, once one of the stars has exploded, the bubble is too large for the wind of the remaining star to maintain and the outer shell starts to disintegrate. The lack of thermal pressure inside the bubble also changes the behavior of circumstellar features close to the remaining star. The supernovae are contained inside the bubble, which reflects part of the energy back into the circumstellar medium. Movies are available in electronic form at http://www.aanda.org

  15. Smoothed particle hydrodynamics simulations of evaporation and explosive boiling of liquid drops in microgravity.

    PubMed

    Sigalotti, Leonardo Di G; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2015-07-01

    The rapid evaporation and explosive boiling of a van der Waals (vdW) liquid drop in microgravity is simulated numerically in two-space dimensions using the method of smoothed particle hydrodynamics. The numerical approach is fully adaptive and incorporates the effects of surface tension, latent heat, mass transfer across the interface, and liquid-vapor interface dynamics. Thermocapillary forces are modeled by coupling the hydrodynamics to a diffuse-interface description of the liquid-vapor interface. The models start from a nonequilibrium square-shaped liquid of varying density and temperature. For a fixed density, the drop temperature is increased gradually to predict the point separating normal boiling at subcritical heating from explosive boiling at the superheat limit for this vdW fluid. At subcritical heating, spontaneous evaporation produces stable drops floating in a vapor atmosphere, while at near-critical heating, a bubble is nucleated inside the drop, which then collapses upon itself, leaving a smaller equilibrated drop embedded in its own vapor. At the superheat limit, unstable bubble growth leads to either fragmentation or violent disruption of the liquid layer into small secondary drops, depending on the liquid density. At higher superheats, explosive boiling occurs for all densities. The experimentally observed wrinkling of the bubble surface driven by rapid evaporation followed by a Rayleigh-Taylor instability of the thin liquid layer and the linear growth of the bubble radius with time are reproduced by the simulations. The predicted superheat limit (T(s)≈0.96) is close to the theoretically derived value of T(s)=1 at zero ambient pressure for this vdW fluid.

  16. The impact of vaporized nanoemulsions on ultrasound-mediated ablation

    PubMed Central

    2013-01-01

    Background The clinical feasibility of using high-intensity focused ultrasound (HIFU) for ablation of solid tumors is limited by the high acoustic pressures and long treatment times required. The presence of microbubbles during sonication can increase the absorption of acoustic energy and accelerate heating. However, formation of microbubbles within the tumor tissue remains a challenge. Phase-shift nanoemulsions (PSNE) have been developed as a means for producing microbubbles within tumors. PSNE are emulsions of submicron-sized, lipid-coated, and liquid perfluorocarbon droplets that can be vaporized into microbubbles using short (<1 ms), high-amplitude (>5 MPa) acoustic pulses. In this study, the impact of vaporized phase-shift nanoemulsions on the time and acoustic power required for HIFU-mediated thermal lesion formation was investigated in vitro. Methods PSNE containing dodecafluoropentane were produced with narrow size distributions and mean diameters below 200 nm using a combination of sonication and extrusion. PSNE was dispersed in albumin-containing polyacrylamide gel phantoms for experimental tests. Albumin denatures and becomes opaque at temperatures above 58°C, enabling visual detection of lesions formed from denatured albumin. PSNE were vaporized using a 30-cycle, 3.2-MHz, at an acoustic power of 6.4 W (free-field intensity of 4,586 W/cm2) pulse from a single-element, focused high-power transducer. The vaporization pulse was immediately followed by a 15-s continuous wave, 3.2-MHz signal to induce ultrasound-mediated heating. Control experiments were conducted using an identical procedure without the vaporization pulse. Lesion formation was detected by acquiring video frames during sonication and post-processing the images for analysis. Broadband emissions from inertial cavitation (IC) were passively detected with a focused, 2-MHz transducer. Temperature measurements were acquired using a needle thermocouple. Results Bubbles formed at the HIFU focus via PSNE vaporization enhanced HIFU-mediated heating. Broadband emissions detected during HIFU exposure coincided in time with measured accelerated heating, which suggested that IC played an important role in bubble-enhanced heating. In the presence of bubbles, the acoustic power required for the formation of a 9-mm3 lesion was reduced by 72% and the exposure time required for the onset of albumin denaturation was significantly reduced (by 4 s), provided that the PSNE volume fraction in the polyacrylamide gel was at least 0.008%. Conclusions The time or acoustic power required for lesion formation in gel phantoms was dramatically reduced by vaporizing PSNE into bubbles. These results suggest that PSNE may improve the efficiency of HIFU-mediated thermal ablation of solid tumors; thus, further investigation is warranted to determine whether bubble-enhanced HIFU may potentially become a viable option for cancer therapy. PMID:24761223

  17. The impact of vaporized nanoemulsions on ultrasound-mediated ablation.

    PubMed

    Zhang, Peng; Kopechek, Jonathan A; Porter, Tyrone M

    2013-01-01

    The clinical feasibility of using high-intensity focused ultrasound (HIFU) for ablation of solid tumors is limited by the high acoustic pressures and long treatment times required. The presence of microbubbles during sonication can increase the absorption of acoustic energy and accelerate heating. However, formation of microbubbles within the tumor tissue remains a challenge. Phase-shift nanoemulsions (PSNE) have been developed as a means for producing microbubbles within tumors. PSNE are emulsions of submicron-sized, lipid-coated, and liquid perfluorocarbon droplets that can be vaporized into microbubbles using short (<1 ms), high-amplitude (>5 MPa) acoustic pulses. In this study, the impact of vaporized phase-shift nanoemulsions on the time and acoustic power required for HIFU-mediated thermal lesion formation was investigated in vitro. PSNE containing dodecafluoropentane were produced with narrow size distributions and mean diameters below 200 nm using a combination of sonication and extrusion. PSNE was dispersed in albumin-containing polyacrylamide gel phantoms for experimental tests. Albumin denatures and becomes opaque at temperatures above 58°C, enabling visual detection of lesions formed from denatured albumin. PSNE were vaporized using a 30-cycle, 3.2-MHz, at an acoustic power of 6.4 W (free-field intensity of 4,586 W/cm(2)) pulse from a single-element, focused high-power transducer. The vaporization pulse was immediately followed by a 15-s continuous wave, 3.2-MHz signal to induce ultrasound-mediated heating. Control experiments were conducted using an identical procedure without the vaporization pulse. Lesion formation was detected by acquiring video frames during sonication and post-processing the images for analysis. Broadband emissions from inertial cavitation (IC) were passively detected with a focused, 2-MHz transducer. Temperature measurements were acquired using a needle thermocouple. Bubbles formed at the HIFU focus via PSNE vaporization enhanced HIFU-mediated heating. Broadband emissions detected during HIFU exposure coincided in time with measured accelerated heating, which suggested that IC played an important role in bubble-enhanced heating. In the presence of bubbles, the acoustic power required for the formation of a 9-mm(3) lesion was reduced by 72% and the exposure time required for the onset of albumin denaturation was significantly reduced (by 4 s), provided that the PSNE volume fraction in the polyacrylamide gel was at least 0.008%. The time or acoustic power required for lesion formation in gel phantoms was dramatically reduced by vaporizing PSNE into bubbles. These results suggest that PSNE may improve the efficiency of HIFU-mediated thermal ablation of solid tumors; thus, further investigation is warranted to determine whether bubble-enhanced HIFU may potentially become a viable option for cancer therapy.

  18. A Study of Nucleate Boiling with Forced Convection in Microgravity

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1996-01-01

    Boiling is a rather imprecise term applied to the process of evaporation in which the rate of liquid-vapor phase change is large. In seeking to determine the role and significance of body forces on the process, of which buoyancy or gravity is just one agent, it becomes necessary to define the term more precisely. It is generally characterized by the formation and growth of individual vapor bubbles arising from heat transfer to the liquid, either at a solid/liquid or liquid/liquid interface, or volumetrically. The terms 'bubble' boiling and 'nucleate' boiling are frequently used, in recognition of the interactions of surface tension and other forces in producing discrete bubbles at distinctive locations (although not always). Primary considerations are that evaporation can occur only at existing liquid-vapor interfaces, so that attention must be given to the formation of an interface (the nucleation process), and that the latent heat for this evaporation can come only from the superheated liquid, so that attention must also be given to the temperature distributions in the liquid.

  19. Transformer overload and bubble evolution: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Addis, G.; Lindgren, S.

    1988-06-01

    The EPRI workshop on Transformer Overload Characteristics and Bubble Evolution was held to review the findings of investigations over the past 7-8 years to determine whether enough information is now available for utilities to establish safe loading practices. Sixteen papers were presented, including a utility review, physical and dielectric effects of gas and bubble formation from cellulose insulated transformers, transformer life characteristics, gas bubble studies and impulse test on distribution transformers, mathematical modeling of bubble evolution, transformer overload characteristics, variation of PD-strength for oil-paper insulation, survey on maximum safe operating hot spot temperature, and overload management. The meeting concluded withmore » a general discussion covering the existing state of knowledge and the need for additional research. Sixteen papers have been cataloged separately.« less

  20. A Mechanistic Study of Nucleate Boiling Heat Transfer Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Dhir, V. K.; Hasan, M. M.

    2000-01-01

    Experimental studies of growth and detachment processes of a single bubble and multiple bubbles formed on a heated surface have been conducted in the parabola flights of KC-135 aircraft. Distilled water and PF5060 were used as the test liquids. A micro-fabricated test surface was designed and built. Artificial cavities of diameters 10 microns, 7 microns and 4 microns were made on a thin polished Silicon wafer that was electrically heated by a number of small heating elements on the back side in order to control the surface superheat. Bubble growth period, bubble size and shape from nucleation to departure were measured under subcooled and saturation conditions. Significantly larger bubble departure diameters and bubble growth periods than those at earth normal gravity were observed. Bubble departure diameters as large as 20 mm for water and 6 mm for PF5060 were observed as opposed to about 3 mm for water and less than 1 mm for PF5060 at earth normal gravity respectively. It is found that the bubble departure diameter can be approximately related to the gravity level through the relation D(sub d) proportional 1/g(exp 1/2). For water,the effect of wall superheat and liquid subcooling on bubble departure diameter is found to be small.The growth periods are found to be very sensitive to liquid subcooling at a given wall superheat. However,the preliminary results of single bubble dynamics using PF5060 showed that the departure diameter increases when wall superheat is elevated at the same gravity and subcooling. Growth period of single bubbles in water has been found to vary as t(sub g) proportional g(exp -.93). For water, when the magnitude of horizontal gravitational components was comparable to that of gravity normal to the surface, single bubbles slid along the heater surface and departed with smaller diameter at the same gravity level in the direction normal to the surface. For PF5060, even a very small horizontal gravitational component caused the sliding of bubble along the surface. The numerical simulation has been carried out by solving under the condition of axisymmetry, the mass, momentum, and energy equations for the vapor and the liquid phases. In the model the contribution of micro-layer has been included and instantaneous shape of the evolving vapor-liquid interface is determined from the analysis. Consistent with the experimental results, it is found that effect of reduced gravity is to stretch the growth period and bubble diameter It is found that effect of reduced gravity is to stretch the growth period and bubble diameter at departure. The numerical simulations are in good agreement with the experimental data for both the departure diameters and the growth periods. In the study on dynamics of multiple bubbles, horizontal merger of 2,3 4,and 5 bubbles was observed. It is found that after merger of 2 and 3 bubbles the equivalent diameter of the detached bubble is smaller than that of a single bubble departing at the same gravity level. During and after bubble merger, liquid still fills the space between the vapor stems so as to form mushroom type bubbles. The experimental and numerical studies conducted so far have brought us a step closer to prediction of nucleate boiling heat fluxes under low gravity conditions. Preparations for a space flight are continuing.

  1. Novel approach to Zr powder production by smooth ZrCl4 bubbling through molten salt

    NASA Astrophysics Data System (ADS)

    Bae, Hyun-Na; Choi, Mi-Seon; Lee, Go-Gi; Kim, Seon-Hyo

    2016-01-01

    A reduction process using ZrCl4 bubbles as a reactant was investigated to produce zirconium metals. ZrCl4 vapor was bubbled through the lance in the bath, in which Mg melt and MgCl2 salt were separated. Zr powder was formed by a reduction of ZrCl4 bubbles in magnesium layer. However, the lance was clogged by the aggregate of zirconium occurred during ZrCl4 vapor injecting leading to interruption of ZrCl4 supply into the bath. This phenomenon could be caused by the presence of magnesium at the lance tip, which passes through MgCl2 salt during bubbling, and then zirconium was formed in the forms of intermetallic compounds with aluminum. In this study, the effect of molten salt on the troubled phenomena was investigated and it was verified that CaCl2 with relatively low Weber number meaning relatively high surface tension as molten salt is effective in inhibiting the lance clogging phenomena. Then, a few micrometer-sized Zr powder with the high purity of 91.6 wt% was obtained smoothly without the formation of intermetallic compound.

  2. Sloshing dynamics modulated fluid angular momentum and moment fluctuations driven by orbital gravity gradient and jitter accelerations in microgravity

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Pan, H. L.

    1995-01-01

    The dynamical behavior of spacecraft propellant affected by the asymmetric combined gravity gradient and jitter accelerations, in particular the effect of surface tension on partially-filled rotating fluids applicable to a full-scale Gravity Probe-B Spacecraft dewar tank has been investigated. Three different cases of orbital accelerations: (1) gravity gradient-dominated, (2) equally weighted between gravity gradient and jitter, and (3) gravity jitter-dominated accelerations are studied. The results of slosh wave excitation along the liquid-vapor interface induced by gravity gradient-dominated accelerations provide a torsional moment with tidal motion of bubble oscillations in the rotating dewar. The results are clearly seen from the twisting shape of the bubble oscillations driven by gravity gradient-dominated acceleration. The results of slosh wave excitation along the liquid-vapor interface induced by gravity jitter-dominated acceleration indicate the results of bubble motion in a manner of down-and-up and leftward-and-rightward movement of oscillation when the bubble is rotating with respect to rotating dewar axis. Fluctuations of angular momentum, fluid moment and bubble mass center caused by slosh wave excitations driven by gravity gradient acceleration or gravity jitter acceleration are also investigated.

  3. The collapse of a cavitation bubble in a corner

    NASA Astrophysics Data System (ADS)

    Peters, Ivo; Tagawa, Yoshiyuki

    2017-11-01

    The collapse of cavitation bubbles is influenced by the surrounding geometry. A classic example is the collapse of a bubble near a solid wall, where a fast jet is created towards the wall. The addition of a second wall creates a non-axisymmetric flow field, which influences the displacement and jet formation during the collapse of a bubble. In this experimental study we generate mm-sized vapor bubbles using a focused pulsed laser, giving us full control over the position of the bubble. The corner geometry is formed by two glass slides. High-speed imaging reveals the directional motion of the bubble during the collapse. We find that the bubble displacement cannot be fully described by a simple superposition of the bubble dynamics of the two walls individually. Comparison of our experimental results to a model based on potential flow shows a good agreement for the direction of displacement.

  4. Supernova remnant evolution in wind bubbles: A closer look at Kes 27

    NASA Astrophysics Data System (ADS)

    Dwarkadas, V. V.; Dewey, D.

    2013-03-01

    Massive Stars (>8M⊙) lose mass in the form of strong winds. These winds accumulate around the star, forming wind-blown bubbles. When the star explodes as a supernova (SN), the resulting shock wave expands within this wind-blown bubble, rather than the interstellar medium. The properties of the resulting remnant, its dynamics and kinematics, the morphology, and the resulting evolution, are shaped by the structure and properties of the wind-blown bubble. In this article we focus on Kes 27, a supernova remnant (SNR) that has been proposed by [1] to be evolving in a wind-blown bubble, explore its properties, and investigate whether the X-Ray properties could be ascribed to evolution of a SNR in a wind-blown bubble. Our initial model does not support the scenario proposed by [1], due to the fact that the reflected shock is expanding into much lower densities.

  5. Dynamics of gas bubble growth in a supersaturated solution with Sievert's solubility law.

    PubMed

    Gor, G Yu; Kuchma, A E

    2009-07-21

    This paper presents a theoretical description of diffusion growth of a gas bubble after its nucleation in supersaturated liquid solution. We study systems where gas molecules completely dissociate in the solvent into two parts, thus making Sievert's solubility law valid. We show that the difference between Henry's and Sievert's laws for chemical equilibrium conditions causes the difference in bubble growth dynamics. Assuming that diffusion flux is steady we obtain a differential equation on bubble radius. Bubble dynamics equation is solved analytically for the case of homogeneous nucleation of a bubble, which takes place at a significant pressure drop. We also obtain conditions of diffusion flux steadiness. The fulfillment of these conditions is studied for the case of nucleation of water vapor bubbles in magmatic melts.

  6. Analysis of the Pressure Rise in a Partially Filled Liquid Tank in Microgravity with Low Wall Heat Flux and Simultaneous Boiling and Condensation

    NASA Technical Reports Server (NTRS)

    Hasan, Mohammad M.; Balasubramaniam, R.

    2012-01-01

    Experiments performed with Freon 113 in the space shuttle have shown that in a pro- cess of very slow heating, high liquid superheats can be sustained for a long period in microgravity. In a closed system explosive vaporization of superheated liquid resulted in pressure spikes of varying magnitudes. In this paper, we analyze the pressure rise in a partially lled closed tank in which a large vapor bubble (i.e., ullage) is initially present, and the liquid is subjected to a low wall heat ux. The liquid layer adjacent to the wall becomes superheated until the temperature for nucleation of the bubbles (or the incipience of boiling) is achieved. In the absence of the gravity-induced convection large quantities of superheated liquid can accumulate over time near the heated surface. Once the incipience temperature is attained, explosive boiling occurs and the vapor bubbles that are produced on the heater surface tend to quickly raise the tank pressure. The liquid-vapor saturation temperature increases as well. These two e ects tend to induce condensation of the large ullage bubble that is initially present, and tends to mitigate the tank pressure rise. As a result, the tank pressure is predicted to rise sharply, attain a maximum, and subsequently decay slowly. The predicted pressure rise is compared with experimental results obtained in the microgravity environments of the space shuttle for Freon 113. The analysis is appli- cable, in general to heating of liquid in closed containers in microgravity and to cryogenic fuel tanks, in particular where small heat leaks into the tank are unavoidable.

  7. Bubbles

    NASA Astrophysics Data System (ADS)

    Prosperetti, Andrea

    2002-11-01

    ``Vanitas vanitatum et omnia vanitas": bubbles are emptiness, non-liquid, a tiny cloud shielding a mathematical singularity. Born from chance, a violent and brief life ending in the union with the (nearly) infinite. But a wealth of phenomena spring forth from this nothingness: underwater noise, sonoluminescence, boiling, many others. Ultimately, diffusive processes govern much of the physics, and the difference between the diffusivity of heat and dissolved gases in ordinary liquids holds the key to the striking differences between gas and vapor bubbles.

  8. Method for nanoencapsulation of aerogels and nanoencapsulated aerogels produced by such method

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A. (Inventor)

    2007-01-01

    A method for increasing the compressive modulus of aerogels comprising: providing aerogel substrate comprising a bubble matrix in a chamber; providing monomer to the chamber, the monomer comprising vapor phase monomer which polymerizes substantially free of polymerization byproducts; depositing monomer from the vapor phase onto the surface of the aerogel substrate under deposition conditions effective to produce a vapor pressure sufficient to cause the vapor phase monomer to penetrate into the bubble matrix and deposit onto the surface of the aerogel substrate, producing a substantially uniform monomer film; and, polymerizing the substantially uniform monomer film under polymerization conditions effective to produce polymer coated aerogel comprising a substantially uniform polymer coating substantially free of polymerization byproducts.Polymer coated aerogel comprising aerogel substrate comprising a substantially uniform polymer coating, said polymer coated aerogel comprising porosity and having a compressive modulus greater than the compressive modulus of the aerogel substrate, as measured by a 100 lb. load cell at 1 mm/minute in the linear range of 20% to 40% compression.

  9. Revealing the Location of the Mixing Layer in a Hot Bubble

    NASA Astrophysics Data System (ADS)

    Guerrero, M. A.; Fang, X.; Chu, Y.-H.; Toalá, J. A.; Gruendl, R. A.

    2017-10-01

    The fast stellar winds can blow bubbles in the circumstellar material ejected from previous phases of stellar evolution. These are found at different scales, from planetary nebulae (PNe) around stars evolving to the white dwarf stage, to Wolf-Rayet (WR) bubbles and up to large-scale bubbles around massive star clusters. In all cases, the fast stellar wind is shock-heated and a hot bubble is produced. Processes of mass evaporation and mixing of nebular material and heat conduction occurring at the mixing layer between the hot bubble and the optical nebula are key to determine the thermal structure of these bubbles and their evolution. In this contribution we review our current understanding of the X-ray observations of hot bubbles in PNe and present the first spatially-resolved study of a mixing layer in a PN.

  10. Plasmonic Nanobubbles as Transient Vapor Nanobubbles Generated Around Plasmonic Nanoparticles

    PubMed Central

    Lukianova-Hleb, Ekaterina; Hu, Ying; Latterini, Loredana; Tarpani, Luigi; Lee, Seunghyun; Drezek, Rebekah A.; Hafner, Jason H.; Lapotko, Dmitri O.

    2010-01-01

    We have used short laser pulses to generate transient vapor nanobubbles around plasmonic nanoparticles. The photothermal, mechanical and optical properties of such bubbles were found to be different from those of plasmonic nanoparticle and vapor bubbles as well. This phenomena was considered as a new complex nanosystem – plasmonic nanobubble (PNB). Mechanical and optical scattering properties of PNB depended upon the nanoparticle surface and heat capacity, clusterization state, and the optical pulse length. The generation of the PNB required much higher laser pulse fluence thresholds than the explosive boiling level, and was characterized by the relatively high lower threshold of the minimal size (lifetime) of PNB. Optical scattering by PNB and its diameter (measured as the lifetime) has been varied with the fluence of laser pulse and this has demonstrated the tunable nature of PNB. PMID:20307085

  11. [The development of vaporizers. A question of precise dose].

    PubMed

    Petermann, Heike

    2009-05-01

    Since the beginning of anaesthesia it was well known that anaesthetic agents administered by inhalation must be capable of existing in gaseous form. For vaporization various types tried to work accurately. Since oxygen was available there could be realized new concepts like the principles of injection or bubble through. With Copper Kettle (1948) for ether and chloroform and Draeger Vapor (1958) for Halothane accurate administration of volatile anaesthetics was available. Today vaporizers are part of anaesthetic machines.

  12. Bubble formation during drop impact on a heated pool

    NASA Astrophysics Data System (ADS)

    Tian, Yuansi; Alhazmi, Muath; Kouraytem, Nadia; Thoroddsen, Sigurdur

    2017-11-01

    Ultra high-speed video imaging, at up to 200 kfps, is used to investigate a drop impinging onto a high temperature pool. The room-temperature perfluorohexane drop, which has a boiling temperature as low as 56 °C impacts on the soybean oil pool heated up to around 200 °C, which is overwhelmingly higher than the boiling temperature of the drop. The bottom of the drop is therefore covered by a layer of vapor which prevents contact between the two immiscible liquid surfaces, akin to the Leidenfrost effect However, as the pool temperature is reduced, one starts seeing contact and the dynamics transition into the vapor explosion regime. At the boundary of this regime we observe some entrapment of scattered or a toroidal ring of small bubbles. Experimental video data will be presented to show this novel phenomenon and explain how these bubbles are formed and evolve.

  13. Spatiotemporal evolution of thin liquid films during impact of water bubbles on glass on a micrometer to nanometer scale.

    PubMed

    Hendrix, Maurice H W; Manica, Rogerio; Klaseboer, Evert; Chan, Derek Y C; Ohl, Claus-Dieter

    2012-06-15

    Collisions between millimeter-size bubbles in water against a glass plate are studied using high-speed video. Bubble trajectory and shape are tracked simultaneously with laser interferometry between the glass and bubble surfaces that monitors spatial-temporal evolution of the trapped water film. Initial bubble bounces and the final attachment of the bubble to the surface have been quantified. While the global Reynolds number is large (∼10(2)), the film Reynolds number remains small and permits analysis with lubrication theory with tangentially immobile boundary condition at the air-water interface. Accurate predictions of dimple formation and subsequent film drainage are obtained.

  14. Magnetic bubbles and domain evolution in Fe/Gd multilayer nanodots

    NASA Astrophysics Data System (ADS)

    Wang, T. T.; Liu, W.; Dai, Z. M.; Zhao, X. T.; Zhao, X. G.; Zhang, Z. D.

    2018-04-01

    The formation of magnetic bubbles and the domain-evolution processes, induced by a perpendicular magnetic field in Fe/Gd multilayer films and nanodots, have been investigated. At room temperature, the stripe domains in a continuous film transform into magnetic bubbles in an external field, while bubbles form spontaneously in nanodots due to the existence of shape anisotropy. When the temperature decreases to 20 K, the enhancement of the perpendicular magnetic anisotropy of the samples results in an increase of the domain size in the continuous film and the magnetization-reversal behavior of each nanodot becomes independent, and most reversed dots do not depend on each other, indicating the magnetic characteristics of a single domain. The present research provides further understanding of the evolution of magnetic bubbles in the Fe/Gd system and suggests their promising applications in patterned recording materials.

  15. Oscillation of a Shallow Hydrothermal Fissure Inferred from Long-Period Seismic Events at Taal Volcano, the Philippines

    NASA Astrophysics Data System (ADS)

    Maeda, Y.; Kumagai, H.; Lacson, R.; Figueroa, M. S.; Yamashina, T.

    2012-12-01

    We installed a multi-parameter monitoring network including five broadband seismometers at Taal volcano, the Philippines, where a high risk of near-future eruption is expected. The network detected more than 40,000 long-period (LP) seismic events which have a peak frequency of 0.8 Hz and a Q value of 6. Most of the events occurred in a 2-month-long swarm period of ~600 events/day. Our travel time analysis pointed to a shallow source (100-200 m) beneath the northeastern flank of the active volcanic island. To determine the source mechanism of the LP events, we performed waveform inversion. We first fixed the source location to that obtained by the travel time analysis, and performed inversion using waveforms with and without site amplification corrections and assuming four simple source geometries (a vertical crack, a horizontal crack, a vertical pipe, and a sphere). We obtained the minimum AIC value for the vertical crack source geometry using the corrected waveforms. We next performed a grid search for dip, azimuth, and the location of the tensile crack source using the corrected waveforms. We obtained small residuals for crack dips between 30 and 60 degrees at similar locations to that of the travel time analysis. We used the fluid-filled crack model to interpret the observed complex frequencies of the events. The observed waveforms of the events show a small Q value (= 6), which may be explained by bubbly basalt, bubbly water, or gas. However, since the source location is estimated to be shallow (100-200 m) and we have no evidence for an ascent of magma to such a shallow depth in the swarm period, bubbly basalt seems to be unrealistic. It seems difficult to maintain bubbly water in the inclined crack. For bubbly water, a peak frequency variation is expected to occur due to a variation of the bubble content, whereas the observed peak frequencies of the events are almost constant. The constant frequency is more easily realized by gas in a crack. We therefore examine H2O gas (vapor) for simplicity. We calculated far-field waveforms generated by an oscillation of a crack containing vapor, and applied the Sompi method to estimate Q and nondimensional frequency. The estimated Q of a fundamental longitudinal mode oscillation was similar to the observation. We obtained a reasonable crack size (188 m) from a comparison of the observed peak frequency (0.8 Hz) with the calculated nondimensional frequency of the mode. In the swarm period of the LP events, other anomalies such as large volcano deformation and significant increase of gas emission from the main crater were not observed. This feature and the crack model result above suggest an active and localized vapor supply from magma at depth to the LP source. Such a localized supply may be realized by a transportation of vapor through a fissure. If we assume that the estimated crack volume (10^2 m^3) corresponds to vapor supplied to the LP source for each event, the total vapor mass supplied throughout the swarm period is ~10^7 kg. If we assume that this amount of vapor was originated by degassing from the magma and transported to the LP source through the fissure, we can estimate a magma volume of ~10^6 m^3. We thus suggest that the LP events at Taal were triggered by degassing and transportation of vapor from a deep magma to a shallow depth through a fissure.

  16. Formation and evolution of bubbly screens in confined oscillating bubbly liquids.

    PubMed

    Shklyaev, Sergey; Straube, Arthur V

    2010-01-01

    We consider the dynamics of dilute monodisperse bubbly liquid confined by two plane solid walls and subject to small-amplitude high-frequency oscillations normal to the walls. The initial state corresponds to the uniform distribution of bubbles and motionless liquid. The period of external driving is assumed much smaller than typical relaxation times for a single bubble but larger than the period of volume eigenoscillations. The time-averaged description accounting for the two-way coupling between the liquid and the bubbles is applied. We show that the model predicts accumulation of bubbles in thin sheets parallel to the walls. These singular structures, which are formally characterized by infinitely thin width and infinitely high concentration, are referred to as bubbly screens. The formation of a bubbly screen is described analytically in terms of a self-similar solution, which is in agreement with numerical simulations. We study the evolution of bubbly screens and detect a one-dimensional stationary state, which is shown to be unconditionally unstable.

  17. Formation and evolution of bubbly screens in confined oscillating bubbly liquids

    NASA Astrophysics Data System (ADS)

    Shklyaev, Sergey; Straube, Arthur V.

    2010-01-01

    We consider the dynamics of dilute monodisperse bubbly liquid confined by two plane solid walls and subject to small-amplitude high-frequency oscillations normal to the walls. The initial state corresponds to the uniform distribution of bubbles and motionless liquid. The period of external driving is assumed much smaller than typical relaxation times for a single bubble but larger than the period of volume eigenoscillations. The time-averaged description accounting for the two-way coupling between the liquid and the bubbles is applied. We show that the model predicts accumulation of bubbles in thin sheets parallel to the walls. These singular structures, which are formally characterized by infinitely thin width and infinitely high concentration, are referred to as bubbly screens. The formation of a bubbly screen is described analytically in terms of a self-similar solution, which is in agreement with numerical simulations. We study the evolution of bubbly screens and detect a one-dimensional stationary state, which is shown to be unconditionally unstable.

  18. In situ observation of single cell response to acoustic droplet vaporization: Membrane deformation, permeabilization, and blebbing.

    PubMed

    Qin, Dui; Zhang, Lei; Chang, Nan; Ni, Pengying; Zong, Yujin; Bouakaz, Ayache; Wan, Mingxi; Feng, Yi

    2018-02-06

    In this study, the bioeffects of acoustic droplet vaporization (ADV) on adjacent cells were investigated by evaluating the real-time cell response at the single-cell level in situ, using a combined ultrasound-exposure and optical imaging system. Two imaging modalities, high-speed and fluorescence imaging, were used to observe ADV bubble dynamics and to evaluate the impact on cell membrane permeabilization (i.e., sonoporation) using propidium iodide (PI) uptake as an indicator. The results indicated that ADV mainly led to irreversible rather than reversible sonoporation. Further, the rate of irreversible sonoporation significantly increased with increasing nanodroplet concentration, ultrasound amplitude, and pulse duration. The results suggested that sonoporation is correlated to the rapid formation, expansion, and contraction of ADV bubbles near cells, and strongly depends on ADV bubble size and bubble-to-cell distance when subjected to short ultrasound pulses (1 μs). Moreover, the displacement of ADV bubbles was larger when using a long ultrasound pulse (20 μs), resulting in considerable cell membrane deformation and a more irreversible sonoporation rate. During sonoporation, cell membrane blebbing as a recovery manoeuvre was also investigated, indicating the essential role of Ca 2+ influx in the membrane blebbing response. This study has helped us gain further insights into the dynamic behavior of ADV bubbles near cells, ADV bubble-cell interactions, and real-time cell response, which are invaluable in the development of optimal approaches for ADV-associated theranostic applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Dynamics of Single Hydrogen Bubbles at a Platinum Microelectrode.

    PubMed

    Yang, Xuegeng; Karnbach, Franziska; Uhlemann, Margitta; Odenbach, Stefan; Eckert, Kerstin

    2015-07-28

    Bubble dynamics, including the formation, growth, and detachment, of single H2 bubbles was studied at a platinum microelectrode during the electrolysis of 1 M H2SO4 electrolyte. The bubbles were visualized through a microscope by a high-speed camera. Electrochemical measurements were conducted in parallel to measure the transient current. The periodic current oscillations, resulting from the periodic formation and detachment of single bubbles, allow the bubble lifetime and size to be predicted from the transient current. A comparison of the bubble volume calculated from the current and from the recorded bubble image shows a gas evolution efficiency increasing continuously with the growth of the bubble until it reaches 100%. Two different substrates, glass and epoxy, were used to embed the Pt wire. While nearly no difference was found with respect to the growth law for the bubble radius, the contact angle differs strongly for the two types of cell. Data provided for the contact point evolution further complete the image of single hydrogen bubble growth. Finally, the velocity field driven by the detached bubble was measured by means of PIV, and the effects of the convection on the subsequent bubble were evaluated.

  20. Phase-transition thresholds and vaporization phenomena for ultrasound phase-change nanoemulsions assessed via high speed optical microscopy

    PubMed Central

    Sheeran, Paul S.; Matsunaga, Terry O.; Dayton, Paul A.

    2015-01-01

    Ultrasonically activated phase-change contrast agents (PCCAs) based on perfluorocarbon droplets have been proposed for a variety of therapeutic and diagnostic clinical applications. When generated at the nanoscale, droplets may be small enough to exit the vascular space and then be induced to vaporize with high spatial and temporal specificity by externally-applied ultrasound. The use of acoustical techniques for optimizing ultrasound parameters for given applications can be a significant challenge for nanoscale PCCAs due to the contributions of larger outlier droplets. Similarly, optical techniques can be a challenge due to the sub-micron size of nanodroplet agents and resolution limits of optical microscopy. In this study, an optical method for determining activation thresholds of nanoscale emulsions based on the in vitro distribution of bubbles resulting from vaporization of PCCAs after single, short (<10 cycles) ultrasound pulses is evaluated. Through ultra-high-speed microscopy it is shown that the bubbles produced early in the pulse from vaporized droplets are strongly affected by subsequent cycles of the vaporization pulse, and these effects increase with pulse length. Results show that decafluorobutane nanoemulsions with peak diameters on the order of 200 nm can be optimally vaporized with short pulses using pressures amenable to clinical diagnostic ultrasound machines. PMID:23760161

  1. Thermodynamic and kinetic considerations of nucleation and stabilization of acoustic cavitation bubbles in water.

    PubMed

    Bapat, Pratap S; Pandit, Aniruddha B

    2008-01-01

    Qualitative explanation for a homogeneous nucleation of acoustic cavitation bubbles in the incompressible liquid water with simple phenomenological approach has been provided via the concept of the desorbtion of the dissolved gas and the vaporization of local liquid molecules. The liquid medium has been viewed as an ensemble of lattice structures. Validity of the lattice structure approach against the Brownian motion of molecules in the liquid state has been discussed. Criterion based on probability for nucleus formation has been defined for the vaporization of local liquid molecules. Energy need for the enthalpy of vaporization has been considered as an energy criterion for the formation of a vaporous nucleus. Sound energy, thermal energy of the liquid bulk (Joule-Thomson effect) and free energy of activation, which is associated with water molecules in the liquid state (Brownian motion) as per the modified Eyring's kinetic theory of liquid are considered as possible sources for the enthalpy of vaporization of water molecules forming a single unit lattice. The classical nucleation theory has then been considered for expressing further growth of the vaporous nucleus against the surface energy barrier. Effect of liquid property (temperature), and effect of an acoustic parameter (frequency) on an acoustic cavitation threshold pressure have been discussed. Kinetics of nucleation has been considered.

  2. Plasmonic nanoparticle-generated photothermal bubbles and their biomedical applications

    PubMed Central

    Lapotko, Dmitri

    2009-01-01

    This article is focused on the optical generation and detection of photothermal vapor bubbles around plasmonic nanoparticles. We report physical properties of such plasmonic nanobubbles and their biomedical applications as cellular probes. Our experimental studies of gold nanoparticle-generated photothermal bubbles demonstrated the selectivity of photothermal bubble generation, amplification of optical scattering and thermal insulation effect, all realized at the nanoscale. The generation and imaging of photothermal bubbles in living cells (leukemia and carcinoma culture and primary cancerous cells), and tissues (atherosclerotic plaque and solid tumor in animal) demonstrated a noninvasive highly sensitive imaging of target cells by small photothermal bubbles and a selective mechanical, nonthermal damage to the individual target cells by bigger photothermal bubbles due to a rapid disruption of cellular membranes. The analysis of the plasmonic nanobubbles suggests them as theranostic probes, which can be tuned and optically guided at cell level from diagnosis to delivery and therapy during one fast process. PMID:19839816

  3. Experimental study of flash boiling spray vaporization through quantitative vapor concentration and liquid temperature measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Gaoming; Hung, David L. S.; Xu, Min

    2014-08-01

    Flash boiling sprays of liquid injection under superheated conditions provide the novel solutions of fast vaporization and better air-fuel mixture formation for internal combustion engines. However, the physical mechanisms of flash boiling spray vaporization are more complicated than the droplet surface vaporization due to the unique bubble generation and boiling process inside a superheated bulk liquid, which are not well understood. In this study, the vaporization of flash boiling sprays was investigated experimentally through the quantitative measurements of vapor concentration and liquid temperature. Specifically, the laser-induced exciplex fluorescence technique was applied to distinguish the liquid and vapor distributions. Quantitative vapor concentration was obtained by correlating the intensity of vapor-phase fluorescence with vapor concentration through systematic corrections and calibrations. The intensities of two wavelengths were captured simultaneously from the liquid-phase fluorescence spectra, and their intensity ratios were correlated with liquid temperature. The results show that both liquid and vapor phase of multi-hole sprays collapse toward the centerline of the spray with different mass distributions under the flash boiling conditions. Large amount of vapor aggregates along the centerline of the spray to form a "gas jet" structure, whereas the liquid distributes more uniformly with large vortexes formed in the vicinity of the spray tip. The vaporization process under the flash boiling condition is greatly enhanced due to the intense bubble generation and burst. The liquid temperature measurements show strong temperature variations inside the flash boiling sprays with hot zones present in the "gas jet" structure and vortex region. In addition, high vapor concentration and closed vortex motion seem to have inhibited the heat and mass transfer in these regions. In summary, the vapor concentration and liquid temperature provide detailed information concerning the heat and mass transfer inside flash boiling sprays, which is important for the understanding of its unique vaporization process.

  4. Nanoscale dynamics of Joule heating and bubble nucleation in a solid-state nanopore.

    PubMed

    Levine, Edlyn V; Burns, Michael M; Golovchenko, Jene A

    2016-01-01

    We present a mathematical model for Joule heating of an electrolytic solution in a nanopore. The model couples the electrical and thermal dynamics responsible for rapid and extreme superheating of the electrolyte within the nanopore. The model is implemented numerically with a finite element calculation, yielding a time and spatially resolved temperature distribution in the nanopore region. Temperatures near the thermodynamic limit of superheat are predicted to be attained just before the explosive nucleation of a vapor bubble is observed experimentally. Knowledge of this temperature distribution enables the evaluation of related phenomena including bubble nucleation kinetics, relaxation oscillation, and bubble dynamics.

  5. Helium bubbles aggravated defects production in self-irradiated copper

    NASA Astrophysics Data System (ADS)

    Wu, FengChao; Zhu, YinBo; Wu, Qiang; Li, XinZhu; Wang, Pei; Wu, HengAn

    2017-12-01

    Under the environment of high radiation, materials used in fission and fusion reactors will internally accumulate numerous lattice defects and bubbles. With extensive studies focused on bubble resolution under irradiation, the mutually effects between helium bubbles and displacement cascades in irradiated materials remain unaddressed. Therefore, the defects production and microstructure evolution under self-irradiation events in vicinity of helium bubbles are investigated by preforming large scale molecular dynamics simulations in single-crystal copper. When subjected to displacement cascades, distinguished bubble resolution categories dependent on bubble size are observed. With the existence of bubbles, radiation damage is aggravated with the increasing bubble size, represented as the promotion of point defects and dislocations. The atomic mechanisms of heterogeneous dislocation structures are attributed to different helium-vacancy cluster modes, transforming from the resolved gas trapped with vacancies to the biased absorption of vacancies by the over-pressured bubble. In both cases, helium impedes the recombination of point defects, leading to the accelerated formation of interstitial loops. The results and insight obtained here might contribute to understand the underlying mechanism of transmutant solute on the long-term evolution of irradiated materials.

  6. Net vapor generation point in boiling flow of trichlorotrifluoroethane at high pressures

    NASA Technical Reports Server (NTRS)

    Dougall, R. S.; Lippert, T. E.

    1973-01-01

    The conditions at which the void in subcooled boiling starts to undergo a rapid increase were studied experimentally. The experiments were performed in a 12.7 x 9.5 mm rectangular channel. Heating was from a 3.2 mm wide strip embedded in one wall. The pressure ranged from 9.45 to 20.7 bar, mass velocity from 600 to 7000 kg/sq m sec, and subcooling from 16 to 67 C. Photographs were used to determine when detached bubbles first appeared in the bulk flow. Measurements of bubble layer thickness along the wall were also made. Results showed that the point of net vapor generation is close to the occurrence of fully-developed boiling.

  7. Vapor-phase cristobalite as a durable indicator of magmatic pore structure and halogen degassing: an example from White Island volcano (New Zealand)

    NASA Astrophysics Data System (ADS)

    Ian Schipper, C.; Mandon, Céline; Maksimenko, Anton; Castro, Jonathan M.; Conway, Chris E.; Hauer, Peter; Kirilova, Martina; Kilgour, Geoff

    2017-10-01

    Vesicles in volcanic rocks are physical records of magmatic degassing; however, the interpretation of their textures is complicated by resorption, coalescence, and collapse. We discuss the textural significance of vesicle-hosted vapor-phase cristobalite (high-T, low-P SiO2 polymorph), and its utility as a complement to textural assessments of magmatic degassing, using a representative dacite bomb erupted from White Island volcano (New Zealand) in 1999. Imaging in 2D (SEM) and 3D (CT) shows the bomb to have 56% bulk porosity, almost all of which is connected ( 99%) and devoid of SiO2 phases. The remaining ( 1%) of porosity is in isolated, sub-spherical vesicles that have corroded walls and contain small (< 30 μm across) prismatic vapor-phase cristobalite crystals (98.4 ± 0.4 wt.% SiO2 with diagnostic laser Raman spectra). Halogen degassing models show vapor-phase cristobalite to be indicative of closed-system chlorine and fluorine partitioning into H2O-rich fluid in isolated pores. At White Island, this occurred during shallow (< 100s of meters) ascent and extensive ( 50%) groundmass crystallization associated with slow cooling in a volcanic plug. Pristine textures in this White Island bomb demonstrate the link between pore isolation and vapor-phase cristobalite deposition. We suggest that because these crystals have higher preservation potential than the bubbles in which they form, they can serve as durable, qualitative textural indicators of halogen degassing and pre-quench bubble morphologies in slowly cooled volcanic rocks (e.g., lava flows and domes), even where emplacement mechanisms have overprinted original bubble textures.

  8. The energy balance within a bubble column evaporator

    NASA Astrophysics Data System (ADS)

    Fan, Chao; Shahid, Muhammad; Pashley, Richard M.

    2018-05-01

    Bubble column evaporator (BCE) systems have been studied and developed for many applications, such as thermal desalination, sterilization, evaporative cooling and controlled precipitation. The heat supplied from warm/hot dry bubbles is to vaporize the water in various salt solutions until the solution temperature reaches steady state, which was derived into the energy balance of the BCE. The energy balance and utilization involved in each BCE process form the fundamental theory of these applications. More importantly, it opened a new field for the thermodynamics study in the form of heat and vapor transfer in the bubbles. In this paper, the originally derived energy balance was reviewed on the basis of its physics in the BCE process and compared with new proposed energy balance equations in terms of obtained the enthalpy of vaporization (Δ H vap) values of salt solutions from BCE experiments. Based on the analysis of derivation and Δ H vap values comparison, it is demonstrated that the original balance equation has high accuracy and precision, within 2% over 19-55 °C using improved systems. Also, the experimental and theoretical techniques used for determining Δ H vap values of salt solutions were reviewed for the operation conditions and their accuracies compared to the literature data. The BCE method, as one of the most simple and accurate techniques, offers a novel way to determine Δ H vap values of salt solutions based on its energy balance equation, which had error less than 3%. The thermal energy required to heat the inlet gas, the energy used for water evaporation in the BCE and the energy conserved from water vapor condensation were estimated in an overall energy balance analysis. The good agreement observed between input and potential vapor condensation energy illustrates the efficiency of the BCE system. Typical energy consumption levels for thermal desalination for producing pure water using the BCE process was also analyzed for different inlet air temperatures, and indicated the better energy efficiency, of 7.55 kW·h per m3 of pure water, compared to traditional thermal desalination techniques.

  9. Transport of cardiovascular microbubbles in gas embolotherapy

    NASA Astrophysics Data System (ADS)

    Bull, Joseph L.; Calderon, Andres J.; Eshpuniyani, Brijesh; Valassis, Doug; Fowlkes, J. Brian

    2006-11-01

    This work is motivated by our ongoing development of a novel gas embolotherapy technique to occlude blood flow to tumors using gas bubbles that are selectively formed by the in vivo acoustic vaporization of liquid perfluorocarbon droplets. The droplets are small enough to pass through the microcirculation, but the subsequent bubbles are large enough to lodge in vessels. The uniformity of tumor infarction depends on the transport the blood-borne bubbles before they stick. We theoretically and experimentally investigate the transport of gas bubbles through bifurcating blood vessels. More homogenous bubble splitting is observed for higher values of capillary numbers and lower values of Bond numbers. The dependence of bubble lodging on flow parameters is also investigated, and several modes of bubble lodging and sticking are identified. These findings indicate the ability of gas bubbles to occlude flow and suggest the potential for development of treatment strategies that uniformly occlude the tumor circulation while minimizing collateral infarction. This work is supported by NSF grant BES-0301278 and NIH grant EB003541.

  10. Bubble evolution in Kr-irradiated UO2 during annealing

    NASA Astrophysics Data System (ADS)

    He, L.; Bai, X. M.; Pakarinen, J.; Jaques, B. J.; Gan, J.; Nelson, A. T.; El-Azab, A.; Allen, T. R.

    2017-12-01

    Transmission electron microscopy observation of Kr bubble evolution in polycrystalline UO2 annealed at high temperature was conducted in order to understand the inert gas behavior in oxide nuclear fuel. The average diameter of intragranular bubbles increased gradually from 0.8 nm in as-irradiated sample at room temperature to 2.6 nm at 1600 °C and the bubble size distribution changed from a uniform distribution to a bimodal distribution above 1300 °C. The size of intergranular bubbles increased more rapidly than intragranular ones and bubble denuded zones near grain boundaries formed in all the annealed samples. It was found that high-angle grain boundaries held bigger bubbles than low-angle grain boundaries. Complementary atomistic modeling was conducted to interpret the effects of grain boundary character on the Kr segregation. The area density of strong segregation sites in the high-angle grain boundaries is much higher than that in the low angle grain boundaries.

  11. Observations of the collapses and rebounds of millimeter-sized lithotripsy bubbles

    PubMed Central

    Kreider, Wayne; Crum, Lawrence A.; Bailey, Michael R.; Sapozhnikov, Oleg A.

    2011-01-01

    Bubbles excited by lithotripter shock waves undergo a prolonged growth followed by an inertial collapse and rebounds. In addition to the relevance for clinical lithotripsy treatments, such bubbles can be used to study the mechanics of inertial collapses. In particular, both phase change and diffusion among vapor and noncondensable gas molecules inside the bubble are known to alter the collapse dynamics of individual bubbles. Accordingly, the role of heat and mass transport during inertial collapses is explored by experimentally observing the collapses and rebounds of lithotripsy bubbles for water temperatures ranging from 20 to 60 °C and dissolved gas concentrations from 10 to 85% of saturation. Bubble responses were characterized through high-speed photography and acoustic measurements that identified the timing of individual bubble collapses. Maximum bubble diameters before and after collapse were estimated and the corresponding ratio of volumes was used to estimate the fraction of energy retained by the bubble through collapse. The rebounds demonstrated statistically significant dependencies on both dissolved gas concentration and temperature. In many observations, liquid jets indicating asymmetric bubble collapses were visible. Bubble rebounds were sensitive to these asymmetries primarily for water conditions corresponding to the most dissipative collapses. PMID:22088027

  12. Inertial collapse of bubble pairs near a solid surface

    NASA Astrophysics Data System (ADS)

    Alahyari Beig, Shahaboddin; Johnsen, Eric

    2017-11-01

    Cavitation occurs in a variety of applications ranging from naval structures to biomedical ultrasound. One important consequence is structural damage to neighboring surfaces following repeated inertial collapse of vapor bubbles. Although the mechanical loading produced by the collapse of a single bubble has been widely investigated, less is known about the detailed dynamics of the collapse of multiple bubbles. In such a problem, the bubble-bubble interactions typically affect the dynamics, e.g., by increasing the non-sphericity of the bubbles and amplifying/hindering the collapse intensity depending on the flow parameters. Here, we quantify the effects of bubble-bubble interactions on the bubble dynamics, as well as the pressures/temperatures produced by the collapse of a pair of gas bubbles near a rigid surface. We perform high-resolution simulations of this problem by solving the three-dimensional compressible Navier-Stokes equations for gas/liquid flows. The results are used to investigate the non-spherical bubble dynamics and characterize the pressure and temperature fields based on the relevant parameters entering the problem: stand-off distance, geometrical configuration (angle, relative size, distance), collapse strength. This research was supported in part by ONR Grant N00014-12-1-0751 and NSF Grant CBET 1253157.

  13. Acoustic Droplet Vaporization in Biology and Medicine

    PubMed Central

    Pitt, William G.

    2013-01-01

    This paper reviews the literature regarding the use of acoustic droplet vaporization (ADV) in clinical applications of imaging, embolic therapy, and therapeutic delivery. ADV is a physical process in which the pressure waves of ultrasound induce a phase transition that causes superheated liquid nanodroplets to form gas bubbles. The bubbles provide ultrasonic imaging contrast and other functions. ADV of perfluoropentane was used extensively in imaging for preclinical trials in the 1990s, but its use declined rapidly with the advent of other imaging agents. In the last decade, ADV was proposed and explored for embolic occlusion therapy, drug delivery, aberration correction, and high intensity focused ultrasound (HIFU) sensitization. Vessel occlusion via ADV has been explored in rodents and dogs and may be approaching clinical use. ADV for drug delivery is still in preclinical stages with initial applications to treat tumors in mice. Other techniques are still in preclinical studies but have potential for clinical use in specialty applications. Overall, ADV has a bright future in clinical application because the small size of nanodroplets greatly reduces the rate of clearance compared to larger contrast agent bubbles and yet provides the advantages of ultrasonographic contrast, acoustic cavitation, and nontoxicity of conventional perfluorocarbon contrast agent bubbles. PMID:24350267

  14. Stability of cavitation structures in a thin liquid layer.

    PubMed

    Wu, Pengfei; Bai, Lixin; Lin, Weijun; Yan, Jiuchun

    2017-09-01

    The inception and evolution of acoustic cavitation structures in thin liquid layers under different conditions and perturbations are investigated experimentally with high speed photography. The stability and characterization of cavitation structures are quantified by image analysis methods. It is found that cavitation structures (shape of bubble cloud and number of bubbles) are stable under unaltered experimental conditions, and the cavitation bubble cloud will return to the original structure and remain stable even in the face of large perturbations. When the experimental conditions are altered (for example, acoustic intensity, cavitation nuclei, boundary), the cavitation structures will vary correspondingly. Further analysis implies that the stability of cavitation structures is closely related to the number of bubbles in the cavitation bubble cloud. There are two mechanisms acting simultaneously in the cavitation bubble cloud evolution, one "bubble production" and the other "bubble disappearance". We propose that the two mechanisms acting together constitute the most likely explanation for the stability of cavitation structures and their transformation. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Acoustic Droplet Vaporization for the Enhancement of Ultrasound Thermal Therapy.

    PubMed

    Zhang, Man; Fabiilli, Mario; Carson, Paul; Padilla, Frederic; Swanson, Scott; Kripfgans, Oliver; Fowlkes, Brian

    2010-10-11

    Acoustic droplet vaporization (ADV) is an ultrasound method for converting biocompatible microdroplets into microbubbles. The objective is to demonstrate that ADV bubbles can enhance high intensity focused ultrasound (HIFU) therapy by controlling and increasing energy absorption at the focus. Thermal phantoms were made with or without droplets. Compound lesions were formed in the phantoms by 5-second exposures with 5-second delays. Center to center spacing of individual lesions was 5.5 mm in either a linear pattern or a spiral pattern. Prior to the HIFU, 10 cycle tone bursts with 0.25% duty cycle were used to vaporize the droplets, forming an "acoustic trench" within 30 seconds. The transducer was then focused in the middle of the back bubble wall to form thermal lesions in the trench. All lesions were imaged optically and with 2T MRI. With the use of ADV and the acoustic trench, a uniform thermal ablation volume of 15 cm(3) was achieved in 4 minutes; without ADV only less than 15% of this volume was filled. The commonly seen tadpole shape characteristic of bubble-enhanced HIFU lesions was not evident with the acoustic trench. In conclusion, ADV shows promise for the spatial control and dramatic acceleration of thermal lesion production by HIFU.

  16. A numerical simulation of the water vapor bubble rising in ferrofluid by volume of fluid model in the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Shafiei Dizaji, A.; Mohammadpourfard, M.; Aminfar, H.

    2018-03-01

    Multiphase flow is one of the most complicated problems, considering the multiplicity of the related parameters, especially the external factors influences. Thus, despite the recent developments more investigations are still required. The effect of a uniform magnetic field on the hydrodynamics behavior of a two-phase flow with different magnetic permeability is presented in this article. A single water vapor bubble which is rising inside a channel filled with ferrofluid has been simulated numerically. To capture the phases interface, the Volume of Fluid (VOF) model, and to solve the governing equations, the finite volume method has been employed. Contrary to the prior anticipations, while the consisting fluids of the flow are dielectric, uniform magnetic field causes a force acting normal to the interface toward to the inside of the bubble. With respect to the applied magnetic field direction, the bubble deformation due to the magnetic force increases the bubble rising velocity. Moreover, the higher values of applied magnetic field strength and magnetic permeability ratio resulted in the further increase of the bubble rising velocity. Also it is indicated that the flow mixing and the heat transfer rate is increased by a bubble injection and applying a magnetic field. The obtained results have been concluded that the presented phenomenon with applying a magnetic field can be used to control the related characteristics of the multiphase flows. Compared to the previous studies, implementing the applicable cases using the common and actual materials and a significant reduction of the CPU time are the most remarkable advantages of the current study.

  17. Foam Flow Through a 2D Porous Medium: Evolution of the Bubble Size Distribution

    NASA Astrophysics Data System (ADS)

    Meheust, Y.; Géraud, B.; Cantat, I.; Dollet, B.

    2017-12-01

    Foams have been used for decades as displacing fluids for EOR and aquifer remediation, and more recently as carriers of chemical amendments for remediation of the vadose zone. Bulk foams are shear-thinning fluids; but for foams with bubbles of order at least the typical pore size of the porous medium, the rheology cannot be described at the continuum scale, as viscous dissipation occurs mostly at the contact between soap films and solid walls. We have investigated the flow of an initially monodisperse foam through a transparent 2D porous medium[1]. The resulting complex flow phenomenology has been characterized quantitatively from optical measurements of the bubble dynamics. In addition to preferential flow path and local flow intermittency, we observe an irreversible evolution of the probability density function (PDF) for bubbles size as bubbles travel along the porous medium. This evolution is due to bubble fragmentation by lamella division, which is by far the dominant mechanism of film creation/destruction. We measure and characterize this evolution of the PDF as a function of the experimental parameters, and model it numerically based on a fragmentation equation, with excellent agreement. The model uses two ingredients obtained from the experimental data, namely the statistics of the bubble fragmentation rate and of the fragment size distributions[2]. It predicts a nearly-universal scaling of all PDFs as a function of the bubble area normalized by the initial mean bubble area. All the PDFs measured in various experiments, with different mean flow velocities, initial bubble sizes and foam qualities, collapse on a master distribution which is only dependent on the geometry of the medium.References:[1] B. Géraud, S. A. Jones, I. Cantat, B. Dollet & Y. Méheust (2016), WRR 52(2), 773-790. [2] B. Géraud, Y. Méheust, I. Cantat & B. Dollet (2017), Lamella division in a foam flowing through a two-dimensional porous medium: A model fragmentation process, PRL 118, 098003.

  18. Quasi-stokeslet induced by thermoplasmonic Marangoni effect around a water vapor microbubble

    PubMed Central

    Namura, Kyoko; Nakajima, Kaoru; Suzuki, Motofumi

    2017-01-01

    Rapid Marangoni flows around a water vapor microbubble (WVMB) is investigated using the thermoplasmonic effect of a gold nanoisland film (GNF). By focusing a laser onto the GNF, a stable WVMB with a diameter of ~10 μm is generated in degassed water, while an air bubble generated in non-degassed water is larger than 40 μm. Under continuous heating, the WVMB involves significantly rapid Marangoni flow. This flow is well-described by a stokeslet sat ~10 μm above the surface of GNF, from which the maximum flow speed around the WVMB is estimated to exceed 1 m/s. This rapid flow generation is attributed to the small bubble size, over which the temperature is graded, and the superheat at the bubble surface in contact with the GNF. It is expected to be useful not only for microfluidic mixing but also for fundamental research on viscous flow induced by a single stokeslet. PMID:28361949

  19. Columnar Transitions in Microscale Evaporating Liquid Jets

    NASA Astrophysics Data System (ADS)

    Hunter, Hanif; Glezer, Ari

    2007-11-01

    Microscale evaporating liquid jets that are injected into a quiescent gaseous medium having adjustable ambient pressure are investigated over a range of jet speeds using a shadowgraph technique. The jets are formed by a laser-drilled 10 μm nozzle from a small-scale pressurized reservoir, and sub-atmospheric ambient pressure is maintained using a controllable, metered Venturi pump. The near-field jet features are captured by shadowgraph imaging using a pulsed ND-Yag laser and a 12 bit CCD camera where the field of view measured 200 μm on the side. As the ambient pressure is reduced, the jet column undergoes a series of spectacular transitions that are first marked by the appearance of vapor bubbles within the jet column. The transitions progress from columnar instabilities to series of column bifurcations to high-order branching and film formation and culminate in conical atomization of the jet column. In addition to the effects of the ambient pressure, the present investigation also considers effects of the liquid surface tension and vapor pressure on the onset, evolution, and hysteresis of the columnar transitions.

  20. Bubble Transport through Micropillar Arrays

    NASA Astrophysics Data System (ADS)

    Lee, Kenneth; Savas, Omer

    2012-11-01

    In current energy research, artificial photosynthetic devices are being designed to split water and harvest hydrogen gas using energy from the sun. In one such design, hydrogen gas bubbles evolve on the catalytic surfaces of arrayed micropillars. If these bubbles are not promptly removed from the surface, they can adversely affect gas evolution rates, water flow rates, sunlight capture, and heat management of the system. Therefore, an efficient method of collecting the evolved gas bubbles is crucial. Preliminary flow visualization has been conducted of bubbles advecting through dense arrays of pillars. Bubbles moving through square and hexagonal arrays are tracked, and the results are qualitatively described. Initial attempts to correlate bubble motion with relevant lengthscales and forces are also presented. These observations suggest how bubble transport within such pillar arrays can be managed, as well as guide subsequent experiments that investigate bubble evolution and collection. This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993.

  1. Laser-induced microjet: wavelength and pulse duration effects on bubble and jet generation for drug injection

    NASA Astrophysics Data System (ADS)

    Jang, Hun-jae; Park, Mi-ae; Sirotkin, Fedir V.; Yoh, Jack J.

    2013-12-01

    The expansion of the laser-induced bubble is the main mechanism in the developed microjet injector. In this study, Nd:YAG and Er:YAG lasers are used as triggers of the bubble formation. The impact of the laser parameters on the bubble dynamics is studied and the performance of the injector is evaluated. We found that the main cause of the differences in the bubble behavior comes from the pulse duration and wavelength. For Nd:YAG laser, the pulse duration is very short relative to the bubble lifetime making the behavior of the bubble close to that of the cavitation bubble, while in Er:YAG case, the high absorption in the water and long pulse duration change the initial behavior of the bubble making it close to a vapor bubble. The contraction and subsequent rebound are typical for cavitation bubbles in both cases. The results show that the laser-induced microjet injector generates velocity which is sufficient for the drug delivery for both laser beams of different pulse duration. We estimate the typical velocity within 30-80 m/s range and the breakup length to be larger than 1 mm suitable for trans-dermal drug injection.

  2. Volumes of critical bubbles from the nucleation theorem

    NASA Astrophysics Data System (ADS)

    Wilemski, Gerald

    2006-09-01

    A corollary of the nucleation theorem due to Kashchiev [Nucleation: Basic Theory with Applications (Butterworth-Heinemann, Oxford, 2000)] allows the volume V* of a critical bubble to be determined from nucleation rate measurements. The original derivation was limited to one-component, ideal gas bubbles with a vapor density much smaller than that of the ambient liquid. Here, an exact result is found for multicomponent, nonideal gas bubbles. Provided a weak density inequality holds, this result reduces to Kashchiev's simple form which thus has a much broader range of applicability than originally expected. Limited applications to droplets are also mentioned, and the utility of the pT,x form of the nucleation theorem as a sum rule is noted.

  3. Optical shielding of nickel nanoparticle by a bubble: Optical limiting gets limited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Vijay; Jayabalan, J., E-mail: jjaya@rrcat.gov.in; Chari, Rama

    2016-06-13

    We have demonstrated that in a nickel nanoparticle colloid, the optical limiting action reduces if a vapor bubble forms around the nanoparticle. The energy-dependent transmission and z-scan measurements on nickel nanoparticles in toluene show the onset of an additional process. At high fluence excitation, the particle becomes less visible to the later part of the incoming pulse due to the heat generated bubble formed around it. We have proposed a simple “particle-in-bubble” model which fits the optical limiting and z-scan curves quite well. Using this model, we have also estimated that the bubble radius increases at a rate of 4.5 m/s.

  4. Forced convection flow boiling and two-phase flow phenomena in a microchannel

    NASA Astrophysics Data System (ADS)

    Na, Yun Whan

    2008-07-01

    The present study was performed to numerically analyze the evaporation phenomena through the liquid-vapor interface and to investigate bubble dynamics and heat transfer behavior during forced convective flow boiling in a microchannel. Flow instabilities of two-phase flow boiling in a microchannel were studied as well. The main objective of this research is to investigate the fundamental mechanisms of two-phase flow boiling in a microchannel and provide predictive tools to design thermal management systems, for example, microchannel heat sinks. The numerical results obtained from this study were qualitatively and quantitatively compared with experimental results in the open literature. Physical and mathematical models, accounting for evaporating phenomena through the liquid-vapor interface in a microchannel at constant heat flux and constant wall temperature, have been developed, respectively. The heat transfer mechanism is affected by the dominant heat conduction through the thin liquid film and vaporization at the liquid-vapor interface. The thickness of the liquid film and the pressure of the liquid and vapor phases were simultaneously solved by the governing differential equations. The developed semi-analytical evaporation model that takes into account of the interfacial phenomena and surface tension effects was used to obtain solutions numerically using the fourth-order Runge-Kutta method. The effects of heat flux 19 and wall temperature on the liquid film were evaluated. The obtained pressure drops in a microchannel were qualitatively consistent with the experimental results of Qu and Mudawar (2004). Forced convective flow boiling in a single microchannel with different channel heights was studied through a numerical simulation to investigate bubble dynamics, flow patterns, and heat transfer. The momentum and energy equations were solved using the finite volume method while the liquid-vapor interface of a bubble is captured using the VOF (Volume of Fluid) technique. The effects of different constant heat fluxes and different channel heights on the boiling mechanisms were investigated. The effects of liquid velocity on the bubble departure diameter were analyzed. The obtained results showed that the wall superheats at the position of nucleate boiling are relatively independent of the mass flow rates at the same channel height. The obtained results, however, showed that the heat flux at the onset of nucleate boiling strongly depends on the channel height. With a decrease of the channel height and an increase of the liquid velocity at the channel inlet, the departure diameter of a bubble was smaller. The periodic flow patterns, such as the bubbly flow, elongated slug flow, and churn flow were observed in the microchannel. Flow instabilities of two-phase flow boiling in a trapezoidal microchannel using a three-dimensional model were investigated. Fluctuation behaviors of flow boiling parameters such as wall temperature and inlet pressure caused by periodic flow patterns were studied at different heat fluxes and mass fluxes. The numerical results showed large amplitude and short period oscillations for wall temperature and inlet pressure fluctuations. Stable and unstable flow boiling regime with short period oscillations were investigated. Those flow boiling regimes were not listed in stable and unstable boiling regime map proposed by Wang et al. (2007).

  5. Evidence for extreme partitioning of copper into a magmatic vapor phase.

    PubMed

    Lowenstern, J B; Mahood, G A; Rivers, M L; Sutton, S R

    1991-06-07

    The discovery of copper sulfides in carbon dioxide- and chlorine-bearing bubbles in phenocryst-hosted melt inclusions shows that copper resides in a vapor phase in some shallow magma chambers. Copper is several hundred times more concentrated in magmatic vapor than in coexisting pantellerite melt. The volatile behavior of copper should be considered when modeling the volcanogenic contribution of metals to the atmosphere and may be important in the formation of copper porphyry ore deposits.

  6. Bubble-facilitated VOC transport: Laboratory experiments and numerical modelling

    NASA Astrophysics Data System (ADS)

    Mumford, K. G.; Soucy, N. C.

    2017-12-01

    Most conceptual and numerical models of vapor intrusion assume that the transport of volatile organic compounds (VOCs) from the source to near the building foundation is a diffusion-limited processes. However, the transport of VOCs by mobilized gas bubbles through the saturated zone could lead to increased rates of transport and advection through the unsaturated zone, thereby increasing mass flux and risks associated with vapor intrusion. This mobilized gas could be biogenic (methanogenic) but could also result from the partitioning of VOC to trapped atmospheric gases in light non-aqueous phase liquid (LNAPL) smear zones. The potential for bubble-facilitated VOC transport to increase mass flux was investigated in a series of 1D and 2D laboratory experiments. Pentane source zones were emplaced in sand using sequential drainage and imbibition steps to mimic a water table fluctuation and trap air alongside LNAPL residual. This source was placed below an uncontaminated, water saturated sand (occlusion zone) and a gravel-sized (glass beads) unsaturated zone. Water was pumped laterally through the source zone and occlusion zone to deliver the dissolved gases (air) that are required for the expansion of trapped gas bubbles. Images from 2D flow cell experiments were used to demonstrate fluid rearrangement in the source zone and gas expansion to the occlusion zone, and 1D column experiments were used to measure gas-phase pentane mass flux. This flux was found to be 1-2 orders of magnitude greater than that measured in diffusion-dominated control columns, and showed intermittent behavior consistent with bubble transport by repeated expansion, mobilization, coalescence and trapping. Numerical simulation results under a variety of conditions using an approach that couples macroscopic invasion percolation with mass transfer (MIP-MT) between the aqueous and gas phases will also be presented. The results of this study demonstrate the potential for bubble-facilitated transport to increase transport rates linked to vapor intrusion, and will serve as a basis for further development of conceptual and numerical models to investigate the conditions under which this mechanism may play an important role.

  7. Evolution of Helium Bubbles and Discs in Irradiated 6H-SiC during Post-Implantation Annealing.

    PubMed

    Shen, Qiang; Zhou, Wei; Ran, Guang; Li, Ruixiang; Feng, Qijie; Li, Ning

    2017-01-24

    The single crystal 6H-SiC with [0001] crystal direction irradiated by 400 keV He⁺ ions with 1 × 10 17 ions/cm² fluence at 400 °C were annealed at 600, 900, 1200 and 1400 °C for different durations. The evolution of helium bubbles and discs was investigated by transmission electron microscopy. An irradiated layer distributed with fine helium bubbles was formed with a width of ~170 nm after helium ion irradiation. The size of gas bubbles increased with increasing annealing time and temperature and finally reached stable values at a given annealing temperature. According to the relationship between the bubble radii and annealing time, an empirical formula for calculating the bubble radii at the annealing temperature ranged from 600 to 1400 °C was given by fitting the experiment data. Planar bubble clusters (discs) were found to form on (0001) crystal plane at both sides of the bubble layer when the annealing temperature was at the range of 800-1200 °C. The mechanism of bubble growth during post-implantation annealing and the formation of bubble discs were also analyzed and discussed.

  8. 40 CFR 89.421 - Exhaust gas analytical system; CVS bag sample.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... essentially free of CO2 and water vapor interference, the use of the conditioning column may be deleted. (See... and water vapor interference if its response to a mixture of 3 percent CO2 in N2, which has been bubbled through water at room temperature, produces an equivalent CO response, as measured on the most...

  9. 40 CFR 89.421 - Exhaust gas analytical system; CVS bag sample.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... essentially free of CO2 and water vapor interference, the use of the conditioning column may be deleted. (See... and water vapor interference if its response to a mixture of 3 percent CO2 in N2, which has been bubbled through water at room temperature, produces an equivalent CO response, as measured on the most...

  10. 40 CFR 89.421 - Exhaust gas analytical system; CVS bag sample.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... essentially free of CO2 and water vapor interference, the use of the conditioning column may be deleted. (See... and water vapor interference if its response to a mixture of 3 percent CO2 in N2, which has been bubbled through water at room temperature, produces an equivalent CO response, as measured on the most...

  11. 40 CFR 89.421 - Exhaust gas analytical system; CVS bag sample.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... essentially free of CO2 and water vapor interference, the use of the conditioning column may be deleted. (See... and water vapor interference if its response to a mixture of 3 percent CO2 in N2, which has been bubbled through water at room temperature, produces an equivalent CO response, as measured on the most...

  12. 40 CFR 89.421 - Exhaust gas analytical system; CVS bag sample.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... essentially free of CO2 and water vapor interference, the use of the conditioning column may be deleted. (See... and water vapor interference if its response to a mixture of 3 percent CO2 in N2, which has been bubbled through water at room temperature, produces an equivalent CO response, as measured on the most...

  13. The influence of surface roughness and solution concentration on pool boiling process in Diethanolamine aqueous solution

    NASA Astrophysics Data System (ADS)

    Khoshechin, Mohsen; Salimi, Farhad; Jahangiri, Alireza

    2018-04-01

    In this research, the effect of surface roughness and concentration of solution on bubble departing frequency and nucleation site density for pool boiling of water/diethanolamine (DEA) binary solution were investigated experimentally. In this investigation, boiling heat transfer coefficient, bubble departing frequency and nucleation site density have been experimentally investigated in various concentrations and heat fluxes. Microstructured surfaces with a wide range of well-defined surface roughness were fabricated, and a heat flux between 1.5-86 kW/m2 was achieved under atmospheric conditions. The Results indicated that surface roughness and concentration of solution increase the bubble departing frequency and nucleation site density with increasing heat flux. The boiling heat transfer coefficient in mixtures of water/DEA increases with increasing concentration of DEA in water. The experimental results were compared with predictions of several used correlations in the literatures. Results showed that the boiling heat transfer coefficients of this case study are much higher than the predicted values by major existing correlations and models. The excellent agreement for bubble departing frequency found between the models of Jackob and Fritz (1966) and experimental data and also the nucleation site density were in close agreement with the model of Paul (1983) data. f bubble departure frequency, 1/s or Hz N Number of nucleation sites per area per time R c Minimum cavity size, m D c critical diameter, m g gravitational acceleration, m/s2 ρ density, kg/m3 T temperature, °c ΔT temperature difference, °c d d vapor bubble diameter, m h fg enthalpy of vaporization, J/kg R Roughness, μm Ja Jakob number cp specific heat, J/kg °c Pr Prandtl number Ar Archimedes number h Heat transfer coefficient, J/(m2 °c) tg time it takes to grow a bubble, s q/A heat flux (kW/m2) tw time required to heat the layer, s gc Correction coefficient of incompatible units R a Surface roughness A heated surface area d departure ONB onset of nucleate boiling w surface wall s saturation v vapor l liquid θ groove angle (o) γ influence parameter of heating surface material σ surface tension, N/m.

  14. Bubble transport in bifurcations

    NASA Astrophysics Data System (ADS)

    Bull, Joseph; Qamar, Adnan

    2017-11-01

    Motivated by a developmental gas embolotherapy technique for cancer treatment, we examine the transport of bubbles entrained in liquid. In gas embolotherapy, infarction of tumors is induced by selectively formed vascular gas bubbles that originate from acoustic vaporization of vascular droplets. In the case of non-functionalized droplets with the objective of vessel occlusion, the bubbles are transported by flow through vessel bifurcations, where they may split prior to eventually reach vessels small enough that they become lodged. This splitting behavior affects the distribution of bubbles and the efficacy of flow occlusion and the treatment. In these studies, we investigated bubble transport in bifurcations using computational and theoretical modeling. The model reproduces the variety of experimentally observed splitting behaviors. Splitting homogeneity and maximum shear stress along the vessel walls is predicted over a variety of physical parameters. Maximum shear stresses were found to decrease with increasing Reynolds number. The initial bubble length was found to affect the splitting behavior in the presence of gravitational asymmetry. This work was supported by NIH Grant R01EB006476.

  15. Physics of lithium bromide (LiBr) solution dewatering through vapor venting membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isfahani, RN; Fazeli, A; Bigham, S

    2014-01-01

    The physics of water desorption from a lithium bromide (LiBr) solution flow through an array of microchannels capped by a porous membrane is studied. The membrane allows the vapor to exit the flow and retains the liquid. Effects of different parameters such as wall temperature, solution and vapor pressures, and solution mass flux on the desorption rate were studied. Two different mechanisms of desorption are analyzed. These mechanisms consisted of: (1) direct diffusion of water molecules out of the solution and their subsequent flow through the membrane and (2) formation of water vapor bubbles within the solution and their ventingmore » through the membrane. Direct diffusion was the dominant desorption mode at low surface temperatures and its magnitude was directly related to the vapor pressure, the solution concentration, and the heated wall temperature. Desorption at the boiling regime was predominantly controlled by the solution flow pressure and mass flux. Microscale visualization studies suggested that at a critical mass flux, some bubbles are carried out of the desorber through the solution microchannels rather than being vented through the membrane. Overall, an order of magnitude higher desorption rate compare to a previous study on a membrane-based desorber was achieved. Published by Elsevier Ltd.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Shenyang; Setyawan, Wahyu; Joshi, Vineet V.

    Xe gas bubble superlattice formation is observed in irradiated uranium–10 wt% molybdenum (U10Mo) fuels. However, the thermodynamic properties of the bubbles (the relationship among bubble size, equilibrium Xe concentration, and bubble pressure) and the mechanisms of bubble growth and superlattice formation are not well known. In this work, molecular dynamics is used to study these properties and mechanisms. The results provide important inputs for quantitative mesoscale models of gas bubble evolution and fuel performance. In the molecular dynamics simulations, the embedded-atom method (EAM) potential of U10Mo-Xe (Smirnova et al. 2013) is employed. Initial gas bubbles with low Xe concentration aremore » generated in a U10Mo single crystal. Then Xe atom atoms are continuously added into the bubbles, and the evolution of pressure and dislocation emission around the bubbles is analyzed. The relationship between pressure, equilibrium Xe concentration, and radius of the bubbles is established. It was found that the gas bubble growth is accompanied by partial dislocation emission, which results in a star-shaped dislocation structure and an anisotropic stress field. The emitted partial dislocations have a Burgers vector along the <111> direction and a slip plane of (11-2). Dislocation loop punch-out was not observed. A tensile stress was found along <110> directions around the bubble, favoring the nucleation and formation of a face-centered cubic bubble superlattice in body-centered cubic U10Mo fuels.« less

  17. Computational modeling of stress transient and bubble evolution in short-pulse laser irradiated melanosome particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, M.; Amendt, P.A.; London, R.A.

    1997-03-04

    Objective is to study retinal injury by subnanosecond laser pulses absorbed in the retinal pigment epithelium (RPE) cells. The absorption centers in the RPE cell are melanosomes of order 1 {mu}m radius. Each melanosome includes many melanin particles of 10-15 nm radius, which are the local absorbers of the laser light and generate a discrete structure of hot spots. This work use the hydrodynamic code LATIS (LAser-TISsue interaction modeling) and a water equation of state to first simulate the small melanin particle of 15 nm responsible for initiating the hot spot and the pressure field. A average melanosome of 1more » {mu}m scale is next simulated. Supersonic shocks and fast vapor bubbles are generated in both cases: the melanin scale and the melanosome scale. The hot spot induces a shock wave pressure than with a uniform deposition of laser energy. It is found that an absorption coefficient of 6000 -8000 cm{sup -1} can explain the enhanced shock wave emitted by the melanosome. An experimental and theoretical effort should be considered to identify the mechanism for generating shock wave enhancement.« less

  18. Shape and evolution of wind-blown bubbles of massive stars: on the effect of the interstellar magnetic field

    NASA Astrophysics Data System (ADS)

    van Marle, A. J.; Meliani, Z.; Marcowith, A.

    2015-12-01

    Context. The winds of massive stars create large (>10 pc) bubbles around their progenitors. As these bubbles expand they encounter the interstellar coherent magnetic field which, depending on its strength, can influence the shape of the bubble. Aims: We wish to investigate if, and how much, the interstellar magnetic field can contribute to the shape of an expanding circumstellar bubble around a massive star. Methods: We use the MPI-AMRVAC code to make magneto-hydrodynamical simulations of bubbles, using a single star model, combined with several different field strengths: B = 5, 10, and 20 μG for the interstellar magnetic field. This covers the typical field strengths of the interstellar magnetic fields found in the galactic disk and bulge. Furthermore, we present two simulations that include both a 5 μG interstellar magnetic field and a warm (10 000 K) interstellar medium (ISM) and two different ISM densities to demonstrate how the magnetic field can combine with other external factors to influence the morphology of the circumstellar bubbles. Results: Our results show that low magnetic fields, as found in the galactic disk, inhibit the growth of the circumstellar bubbles in the direction perpendicular to the field. As a result, the bubbles become ovoid, rather than spherical. Strong interstellar fields, such as observed for the galactic bulge, can completely stop the expansion of the bubble in the direction perpendicular to the field, leading to the formation of a tube-like bubble. When combined with an ISM that is both warm and high density the bubble is greatly reduced in size, causing a dramatic change in the evolution of temporary features inside the bubble such as Wolf-Rayet ring nebulae. Conclusions: The magnetic field of the interstellar medium can affect the shape of circumstellar bubbles. This effect may have consequences for the shape and evolution of circumstellar nebulae and supernova remnants, which are formed within the main wind-blown bubble. Appendices and movies associated to Figs. A.1-A.12 are available in electronic form at http://www.aanda.org

  19. Determination of Magma Ascent Rates From D/H Fractionation in Olivine-Hosted Melt Inclusions

    NASA Astrophysics Data System (ADS)

    Gaetani, G. A.; Bucholz, C. E.; Le Roux, V.; Klein, F.; Ghiorso, M. S.; Wallace, P. J.; Sims, K. W. W.

    2016-12-01

    The depths at which magmas are stored and the rates at which they ascend to Earth's surface are important controls on the dynamics of volcanic eruptions. Eruptive style is influenced by the rate at which magma ascends from the reservoir to the surface through its effect on vapor bubble nucleation, growth, and coalescence. However, ascent rates are difficult to quantify because few accurate geospeedometers are appropriate for a process occurring on such short timescales. We developed a new approach to determining ascent rates on the basis of D/H fraction associated with diffusive H2O loss from olivine-hosted melt inclusions. The utility of this approach was demonstrated on olivine-hosted melt inclusions in a hyaloclastite recovered from within Dry Valley Drilling Project core 3 from Hut Point Peninsula, Antarctica. All of the melt inclusions are glassy and contain vapor bubbles. The volumes of melt inclusions and vapor bubbles were determined by X-ray microtomography, and the density of CO2 within each bubble was determined using Raman spectroscopy. Olivines were then polished to expose individual inclusions and analyzed for volatiles and dDVSMOW by secondary ion mass spectrometry. Total CO2 was reconstructed by summing CO2 in the included glass and vapor bubble. Entrapment pressures calculated on the basis of reconstructed CO2 and maximum H2O concentrations using the MagmaSat solubility model [1] indicate a depth of origin of 24 km - in good agreement with the seismically determined depth to the Moho beneath Ross Island [2]. Magma ascent rates were determined using a finite difference model for melt inclusion dehydration during magma ascent. The positive correlation between H2O and CO2 is consistent with diffusive loss during ascent, but does not provide direct information on magma ascent rate. In contrast, the slope of the negative correlation between H2O and dDVSMOW is a reflection of transport time and, therefore, ascent rate. If it is assumed that magmas did not stall between the Moho and the surface, our results indicate an ascent rate of 0.1 m/s. Our new approach has broad applicability to determining magma ascent rates for both active and extinct volcanic centers in all tectonic environments. References: [1] Ghiorso and Gualda (2015) Cont Miner Pet 169; [2] Finotello et al. (2011) Geophys J Int 185:85-92.

  20. Dynamic evolution of Rayleigh-Taylor bubbles from sinusoidal, W-shaped, and random perturbations

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi-Rui; Zhang, You-Sheng; Tian, Bao-Lin

    2018-03-01

    Implicit large eddy simulations of two-dimensional Rayleigh-Taylor instability at different density ratios (i.e., Atwood number A =0.05 , 0.5, and 0.9) are conducted to investigate the late-time dynamics of bubbles. To produce a flow field full of bounded, semibounded, and chaotic bubbles, three problems with distinct perturbations are simulated: (I) periodic sinusoidal perturbation, (II) isolated W-shaped perturbation, and (III) random short-wave perturbations. The evolution of height h , velocity v , and diameter D of the (dominant) bubble with time t are formulated and analyzed. In problem I, during the quasisteady stage, the simulations confirm Goncharov's prediction of the terminal speed v∞=Fr√{A g λ /(1 +A ) } , where Fr=1 /√{3 π } . Moreover, the diameter D at this stage is found to be proportional to the initial perturbation wavelength λ as D ≈λ . This differed from Daly's simulation result of D =λ (1 +A )/2 . In problem II, a W-shaped perturbation is designed to produce a bubble environment similar to that of chaotic bubbles in problem III. We obtain a similar terminal speed relationship as above, but Fr is replaced by Frw≈0.63 . In problem III, the simulations show that h grows quadratically with the bubble acceleration constant α ≡h /(A g t2)≈0.05 , and D expands self-similarly with a steady aspect ratio β ≡D /h ≈(1 +A )/2 , which differs from existing theories. Therefore, following the mechanism of self-similar growth, we derive a relationship of β =4 α (1 +A ) /Frw2 to relate the evolution of chaotic bubbles in problem III to that of semibounded bubbles in problem II. The validity of this relationship highlights the fact that the dynamics of chaotic bubbles in problem III are similar to the semibounded isolated bubbles in problem II, but not to that of bounded periodic bubbles in problem I.

  1. Evolution of bubble clouds induced by pulsed cavitational ultrasound therapy - histotripsy.

    PubMed

    Xu, Zhen; Raghavan, M; Hall, T L; Mycek, M-A; Fowlkes, J B

    2008-05-01

    Mechanical tissue fractionation can be achieved using successive, high-intensity ultrasound pulses in a process termed histotripsy. Histotripsy has many potential clinical applications where noninvasive tissue removal is desired. The primary mechanism for histotripsy is believed to be cavitation. Using fast-gated imaging, this paper studies the evolution of a cavitating bubble cloud induced by a histotripsy pulse (10 and 14 cycles) at peak negative pressures exceeding 21MPa. Bubble clouds are generated inside a gelatin phantom and at a tissue-water interface, representing two situations encountered clinically. In both environments, the imaging results show that the bubble clouds share the same evolutionary trend. The bubble cloud and individual bubbles in the cloud were generated by the first cycle of the pulse, grew with each cycle during the pulse, and continued to grow and collapsed several hundred microseconds after the pulse. For example, the bubbles started under 10 microm, grew to 50 microm during the pulse, and continued to grow 100 microm after the pulse. The results also suggest that the bubble clouds generated in the two environments differ in growth and collapse duration, void fraction, shape, and size. This study furthers our understanding of the dynamics of bubble clouds induced by histotripsy.

  2. Nanoscale Dynamics of Joule heating and Bubble Nucleation in a Solid-State Nanopore

    PubMed Central

    Levine, Edlyn V.; Burns, Michael M.; Golovchenko, Jene A.

    2016-01-01

    We present a mathematical model for Joule heating of an electrolytic solution in a nanopore. The model couples the electrical and thermal dynamics responsible for rapid and extreme superheating of the electrolyte within the nanopore. The model is implemented numerically with a finite element calculation, yielding a time and spatially resolved temperature distribution in the nanopore region. Temperatures near the thermodynamic limit of superheat are predicted to be attained just before the explosive nucleation of a vapor bubble is observed experimentally. Knowledge of this temperature distribution enables the evaluation of related phenomena including bubble nucleation kinetics, relaxation oscillation, and bubble dynamics. PACS numbers 47.55.dp, 47.55.db, 85.35.-p, 05.70Fh PMID:26871171

  3. Modelling chemical reactions in dc plasma inside oxygen bubbles in water

    NASA Astrophysics Data System (ADS)

    Takeuchi, N.; Ishii, Y.; Yasuoka, K.

    2012-02-01

    Plasmas generated inside oxygen bubbles in water have been developed for water purification. Zero-dimensional numerical simulations were used to investigate the chemical reactions in plasmas driven by dc voltage. The numerical and experimental results of the concentrations of hydrogen peroxide and ozone in the solution were compared with a discharge current between 1 and 7 mA. Upon increasing the water vapour concentration inside bubbles, we saw from the numerical results that the concentration of hydrogen peroxide increased with discharge current, whereas the concentration of ozone decreased. This finding agreed with the experimental results. With an increase in the discharge current, the heat flux from the plasma to the solution increased, and a large amount of water was probably vaporized into the bubbles.

  4. Molten silicate mantle during a giant impact. Speciation from vapor to supercritical state

    NASA Astrophysics Data System (ADS)

    Caracas, R.; Stewart, S. T.

    2017-12-01

    We employ large-scale first-principles molecular dynamics simulations to understand the physical and chemical behavior of the molten protolunar disk, at the atomic level. We consider the average composition of the Earth's mantle as proposed by Sun and McDonough (1995). We cover the 0.75 - 7.5 g/cm3 density range and 2000 - 10000 K temperature range. This allows us to investigate the entire disk, from the interior of the molten core to the outer regions of the vaporized disk. At high density, the liquid is highly polymerized and viscous, consistent with previous studies. At low density and low temperatures, in the 2000 to 4000 K range, we capture the nucleation of bubbles. The bubbles contain a low-density gas phase rich in individual alkaline and calc-alkaline cations and SiOx groups. When volatiles are present in the system, such molecular species are the first ones to evaporate and be present in these bubbles. We propose numerical tools to detect the liquid-vapor equilibrium. The critical curves are reached consistently regardless of the thermodynamic path we chose to obtain the low densities. We analyze the equilibrium between the gas of the bubbles and the liquid. At high temperature, we identify the supercritical region characterized by one homogeneous fluid, rich in ionic species. We show that the chemical speciation is very different from the one obtained at ambient pressure conditions. Critical curves are necessary to understand the separation and degassing of volatiles during the recovery from a giant impact. Acknowledgements: This research was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement n°681818 - IMPACT). The ab initio simulations were performed on the GENCI supercomputers, under eDARI/CINES grants x106368.

  5. 40 CFR 91.423 - Exhaust gas analytical system; CVS grab sample.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and water vapor interference, the use of the conditioning column may be deleted. (See §§ 91.317 and 91.320.) (3) A CO instrument will be considered to be essentially free of CO2 and water vapor interference if its response to a mixture of three percent CO2 in N2, which has been bubbled through water at...

  6. 40 CFR 91.423 - Exhaust gas analytical system; CVS grab sample.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and water vapor interference, the use of the conditioning column may be deleted. (See §§ 91.317 and 91.320.) (3) A CO instrument will be considered to be essentially free of CO2 and water vapor interference if its response to a mixture of three percent CO2 in N2, which has been bubbled through water at...

  7. 40 CFR 91.423 - Exhaust gas analytical system; CVS grab sample.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and water vapor interference, the use of the conditioning column may be deleted. (See §§ 91.317 and 91.320.) (3) A CO instrument will be considered to be essentially free of CO2 and water vapor interference if its response to a mixture of three percent CO2 in N2, which has been bubbled through water at...

  8. 40 CFR 91.423 - Exhaust gas analytical system; CVS grab sample.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and water vapor interference, the use of the conditioning column may be deleted. (See §§ 91.317 and 91.320.) (3) A CO instrument will be considered to be essentially free of CO2 and water vapor interference if its response to a mixture of three percent CO2 in N2, which has been bubbled through water at...

  9. 40 CFR 91.423 - Exhaust gas analytical system; CVS grab sample.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and water vapor interference, the use of the conditioning column may be deleted. (See §§ 91.317 and 91.320.) (3) A CO instrument will be considered to be essentially free of CO2 and water vapor interference if its response to a mixture of three percent CO2 in N2, which has been bubbled through water at...

  10. Characteristics of Pool Boiling on Graphite-Copper Composite Surfaces

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.; Yang, Wen-Jei

    2002-01-01

    Nucleate pool boiling performance of different liquids on graphite-copper composite (Gr-Cu) surfaces has been experimentally studied and modeled. Both highly wetting fluids, such as freon-113 and pentane, and a moderately wetting fluid (water) were tested on the Gr-Cu surfaces with different graphite-fiber volume fractions to reveal the enhancement effects of the composite surfaces on the nucleate pool boiling. Results of the experiments show that the graphite-fiber volume fraction has an optimum value. The Gr-Cu composite surface with 25 percent graphite-fiber volume (f=0.25) has a maximum enhancement effect on the nucleate boiling heat transfer comparing to the pure copper surface. For the highly wetting fluid, the nucleate boiling heat transfer is generally enhanced on the Gr- Cu composite surfaces by 3 to 6 times shown. In the low heat flux region, the enhancement is over 6 times, but in the high heat flux region, the enhancement is reduced to about 40%. For the moderately wetting fluid (water), stronger enhancement of nucleate boiling heat transfer is achieved on the composite surface. It shown the experimental results in which one observes the nucleate boiling heat transfer enhancement of 5 to 10 times in the low heat flux region and an enhancement of 3 to 5 times in the high heat flux region. Photographs of bubble departure during the initial stage of nucleate boiling indicate that the bubbles detached from the composite surface are much smaller in diameter than those detached from the pure copper surface. Typical photographs are presented.It shows that the bubbles departed from the composite surface have diameters of only O(0.1) mm, while those departed from the pure copper surface have diameters of O(1) mm. It is also found that the bubbles depart from the composite surface at a much higher frequency, thus forming vapor columns. These two phenomena combined with high thermal conductivity of the graphite fiber are considered the mechanisms for such a significant augmentation in nucleate boiling heat transfer on the composite surfaces. A physical model is developed to describe the phenomenon of bubble departure from the composite surface: The preferred site of bubble nucleation is the fiber tip because of higher tip temperature than the surrounding copper base and poor wettability of the graphite tip compared with that of the base material (copper). The high evaporation rate near the contact line produces the vapor cutback due to the vapor recoil pushing the three-phase line outwards from the fiber tip, and so a neck of the bubble is formed near the bubble bottom. Evaporation and surface tension accelerate the necking process and finally result in the bubble departure while a new small bubble is formed at the tip when the surface tension pushes the three-phase line back to the tip. The process is schematically shown. The proposed model is based on and confirmed by experimental results.

  11. Transformer overload characteristics---Bubble evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, E.E.; Wendel, R.C.; Dresser, R.D.

    1988-08-01

    Project RP1289-3 explores significant parameters affecting bubble evolution from transformer oil under high temperature operating conditions to address the question: Does ''real life'' operation of a transformer cause harmful bubbling conditions. Studies outlined in the project are designed to determine when bubbling occurs in transformers and if bubbling can be harmful during the normal operation of these transformers. Data obtained from these studies should provide a basis for utilities to perform risk assessments in relation to their loading practices. The program is designed to demonstrate those conditions under which bubbling occurs in transformers by using controlled models and actual signalmore » phase transformers that were designed to give access to both high and low voltage windings for the purpose of viewing bubble generation. Results and observations from tests on the full-size transformers, thermal models, and electrical models have led to the conclusion that bubbles can occur under operating conditions. The electrical models show that dielectric strength can be reduced by as much as 40 percent due to the presence of bubbles. Because of factory safety considerations, the transformers could not be tested at hot spot temperatures greater than 140/degree/C. Therefore, there is no information on the dielectric strength of the full-size transformers under bubbling conditions. 4 refs., 28 figs., 45 tabs.« less

  12. Biophysical considerations for optimizing energy delivery during Erbium:YAG laser vitreoretinal surgery

    NASA Astrophysics Data System (ADS)

    Berger, Jeffrey W.; Bochow, Thomas W.; Kim, Rosa Y.; D'Amico, Donald J.

    1996-05-01

    Er:YAG laser-mediated tissue disruption and removal results from both direct ablation and the acousto-mechanical sequelae of explosive vaporization of the tissue water. We investigated the scaling laws for photoablative and photodisruptive interactions, and interpret these results towards optimizing energy delivery for vitreoretinal surgical maneuvers. Experimental studies were performed with a free-running Er:YAG laser (100 - 300 microseconds FWHM, 0.5 - 20 mJ, 1 - 30 Hz). Energy was delivered by fiberoptic to a custom-made handpiece with a 75 - 600 micrometer quartz tip, and applied to excised, en bloc samples of bovine vitreous or model systems of saline solution. Sample temperature was measured with 33 gauge copper- constantan thermocouples. Expansion and collapse of the bubble following explosive vaporization of tissue water was optically detected. The bubble size was calculated from the period of the bubble oscillation and known material properties. A model for bubble expansion is presented based on energy principles and adiabatic gas expansion. Pressure transients associated with bubble dynamics are estimated following available experimental and analytical data. The temperature rise in vitreous and model systems depends on the pulse energy and repetition rate, but is independent of the probe-tip diameter at constant laser power; at moderate repetition rates, the temperature rise depends only on the total energy (mJ) delivered. The maximum bubble diameter increases as the cube root of the pulse energy with a reverberation period of 110 microseconds and a maximum bubble diameter of 1.2 mm following one mJ delivery to saline through a 100 micrometer tip. Our modeling studies generate predictions similar to experimental data and predicts that the maximum bubble diameter increases as the cube root of the pulse energy. We demonstrate that tissue ablation depends on radiant exposure (J/cm2), while temperature rise, bubble size, and pressure depends on total pulse energy. Further, we show that mechanical injury should be minimized by delivering low pulse energy, through small diameter probe tips, at high repetition rates. These results allow for optimization strategies relevant to achieving vitreoretinal surgical goals while minimizing the potential for unintentional injury.

  13. Numerical Modeling of Three-Dimensional Fluid Flow with Phase Change

    NASA Technical Reports Server (NTRS)

    Esmaeeli, Asghar; Arpaci, Vedat

    1999-01-01

    We present a numerical method to compute phase change dynamics of three-dimensional deformable bubbles. The full Navier-Stokes and energy equations are solved for both phases by a front tracking/finite difference technique. The fluid boundary is explicitly tracked by discrete points that are connected by triangular elements to form a front that is used to keep the stratification of material properties sharp and to calculate the interfacial source terms. Two simulations are presented to show robustness of the method in handling complex phase boundaries. In the first case, growth of a vapor bubble in zero gravity is studied where large volume increase of the bubble is managed by adaptively increasing the front resolution. In the second case, growth of a bubble under high gravity is studied where indentation at the rear of the bubble results in a region of large curvature which challenges the front tracking in three dimensions.

  14. On the shape of giant soap bubbles.

    PubMed

    Cohen, Caroline; Darbois Texier, Baptiste; Reyssat, Etienne; Snoeijer, Jacco H; Quéré, David; Clanet, Christophe

    2017-03-07

    We study the effect of gravity on giant soap bubbles and show that it becomes dominant above the critical size [Formula: see text], where [Formula: see text] is the mean thickness of the soap film and [Formula: see text] is the capillary length ([Formula: see text] stands for vapor-liquid surface tension, and [Formula: see text] stands for the liquid density). We first show experimentally that large soap bubbles do not retain a spherical shape but flatten when increasing their size. A theoretical model is then developed to account for this effect, predicting the shape based on mechanical equilibrium. In stark contrast to liquid drops, we show that there is no mechanical limit of the height of giant bubble shapes. In practice, the physicochemical constraints imposed by surfactant molecules limit the access to this large asymptotic domain. However, by an exact analogy, it is shown how the giant bubble shapes can be realized by large inflatable structures.

  15. Freezing Bubbles

    NASA Astrophysics Data System (ADS)

    Kingett, Christian; Ahmadi, Farzad; Nath, Saurabh; Boreyko, Jonathan

    2017-11-01

    The two-stage freezing process of a liquid droplet on a substrate is well known; however, how bubbles freeze has not yet been studied. We first deposited bubbles on a silicon substrate that was chilled at temperatures ranging from -10 °C to -40 °C, while the air was at room temperature. We observed that the freeze front moved very slowly up the bubble, and in some cases, even came to a complete halt at a critical height. This slow freezing front propagation can be explained by the low thermal conductivity of the thin soap film, and can be observed more clearly when the bubble size or the surface temperature is increased. This delayed freezing allows the frozen portion of the bubble to cool the air within the bubble while the top part is still liquid, which induces a vapor pressure mismatch that either collapses the top or causes the top to pop. In cases where the freeze front reaches the top of the bubble, a portion of the top may melt and slowly refreeze; this can happen more than just once for a single bubble. We also investigated freezing bubbles inside of a freezer where the air was held at -20 °C. In this case, the bubbles freeze quickly and the ice grows radially from nucleation sites instead of perpendicular to the surface, which provides a clear contrast with the conduction limited room temperature bubbles.

  16. A model describing intra-granular fission gas behaviour in oxide fuel for advanced engineering tools

    NASA Astrophysics Data System (ADS)

    Pizzocri, D.; Pastore, G.; Barani, T.; Magni, A.; Luzzi, L.; Van Uffelen, P.; Pitts, S. A.; Alfonsi, A.; Hales, J. D.

    2018-04-01

    The description of intra-granular fission gas behaviour is a fundamental part of any model for the prediction of fission gas release and swelling in nuclear fuel. In this work we present a model describing the evolution of intra-granular fission gas bubbles in terms of bubble number density and average size, coupled to gas release to grain boundaries. The model considers the fundamental processes of single gas atom diffusion, gas bubble nucleation, re-solution and gas atom trapping at bubbles. The model is derived from a detailed cluster dynamics formulation, yet it consists of only three differential equations in its final form; hence, it can be efficiently applied in engineering fuel performance codes while retaining a physical basis. We discuss improvements relative to previous single-size models for intra-granular bubble evolution. We validate the model against experimental data, both in terms of bubble number density and average bubble radius. Lastly, we perform an uncertainty and sensitivity analysis by propagating the uncertainties in the parameters to model results.

  17. The Effect of Surface Induced Flows on Bubble and Particle Aggregation

    NASA Technical Reports Server (NTRS)

    Guelcher, Scott A.; Solomentsev, Yuri E.; Anderson, John L.; Boehmer, Marcel; Sides, Paul J.

    1999-01-01

    Almost 20 years have elapsed since a phenomenon called "radial specific coalescence" was identified. During studies of electrolytic oxygen evolution from the back side of a vertically oriented, transparent tin oxide electrode in alkaline electrolyte, one of the authors (Sides) observed that large "collector" bubbles appeared to attract smaller bubbles. The bubbles moved parallel to the surface of the electrode, while the electric field was normal to the electrode surface. The phenomenon was reported but not explained. More recently self ordering of latex particles was observed during electrophoretic deposition at low DC voltages likewise on a transparent tin oxide electrode. As in the bubble work, the field was normal to the electrode while the particles moved parallel to it. Fluid convection caused by surface induced flows (SIF) can explain these two apparently different experimental observations: the aggregation of particles on an electrode during electrophoretic deposition, and a radial bubble coalescence pattern on an electrode during electrolytic gas evolution. An externally imposed driving force (the gradient of electrical potential or temperature), interacting with the surface of particles or bubbles very near a planar conducting surface, drives the convection of fluid that causes particles and bubbles to approach each other on the electrode.

  18. New Type of the Interface Evolution in the Richtmyer-Meshkov Instability

    NASA Technical Reports Server (NTRS)

    Abarzhi, S. I.; Herrmann, M.

    2003-01-01

    We performed systematic theoretical and numerical studies of the nonlinear large-scale coherent dynamics in the Richtmyer-Meshkov instability for fluids with contrast densities. Our simulations modeled the interface dynamics for compressible and viscous uids. For a two-fluid system we observed that in the nonlinear regime of the instability the bubble velocity decays and its surface attens, and the attening is accompanied by slight oscillations. We found the theoretical solution for the system of conservation laws, describing the principal influence of the density ratio on the motion of the nonlinear bubble. The solution has no adjustable parameters, and shows that the attening of the bubble front is a distinct property universal for all values of the density ratio. This property follows from the fact that the RM bubbles decelerate. The theoretical and numerical results validate each other, describe the new type of the bubble front evolution in RMI, and identify the bubble curvature as important and sensitive diagnostic parameter.

  19. Method and means for producing solid evacuated microspheres of hydrogen

    DOEpatents

    Turnbull, Robert J.; Foster, Christopher A.; Hendricks, Charles D.

    1976-01-01

    A method is provided for producing solid, evacuated microspheres comprised of hydrogen. The spheres are produced by forming a jet of liquid hydrogen and exciting mechanical waves on the jet of appropriate frequency so that the jet breaks up into drops with a bubble formed in each drop by cavitation. The drops are exposed to a pressure less than the vapor pressure of the liquid hydrogen so that the bubble which is formed within each drop expands. The drops which contain bubbles are exposed to an environment having a pressure just below the triple point of liquid hydrogen and they thereby freeze giving solid, evacuated spheres of hydrogen.

  20. Solid evacuated microspheres of hydrogen

    DOEpatents

    Turnbull, Robert J.; Foster, Christopher A.; Hendricks, Charles D.

    1982-01-01

    A method is provided for producing solid, evacuated microspheres comprised of hydrogen. The spheres are produced by forming a jet of liquid hydrogen and exciting mechanical waves on the jet of appropriate frequency so that the jet breaks up into drops with a bubble formed in each drop by cavitation. The drops are exposed to a pressure less than the vapor pressure of the liquid hydrogen so that the bubble which is formed within each drop expands. The drops which contain bubbles are exposed to an environment having a pressure just below the triple point of liquid hydrogen and they thereby freeze giving solid, evacuated spheres of hydrogen.

  1. Growth and Detachment of Oxygen Bubbles Induced by Gold-Catalyzed Decomposition of Hydrogen Peroxide.

    PubMed

    Lv, Pengyu; Le The, Hai; Eijkel, Jan; Van den Berg, Albert; Zhang, Xuehua; Lohse, Detlef

    2017-09-28

    Whereas bubble growth out of gas-oversatured solutions has been quite well understood, including the formation and stability of surface nanobubbles, this is not the case for bubbles forming on catalytic surfaces due to catalytic reactions , though it has important implications for gas evolution reactions and self-propulsion of micro/nanomotors fueled by bubble release. In this work we have filled this gap by experimentally and theoretically examining the growth and detachment dynamics of oxygen bubbles from hydrogen peroxide decomposition catalyzed by gold. We measured the bubble radius R ( t ) as a function of time by confocal microscopy and find R ( t ) ∝ t 1/2 . This diffusive growth behavior demonstrates that the bubbles grow from an oxygen-oversaturated environment. For several consecutive bubbles detaching from the same position in a short period of time, a well-repeated growing behavior is obtained from which we conclude the absence of noticeable depletion effect of oxygen from previous bubbles or increasing oversaturation from the gas production. In contrast, for two bubbles far apart either in space or in time, substantial discrepancies in their growth rates are observed, which we attribute to the variation in the local gas oversaturation. The current results show that the dynamical evolution of bubbles is influenced by comprehensive effects combining chemical catalysis and physical mass transfer. Finally, we find that the size of the bubbles at the moment of detachment is determined by the balance between buoyancy and surface tension and by the detailed geometry at the bubble's contact line.

  2. Magma transport and olivine crystallization depths in Kīlauea’s East Rift Zone inferred from experimentally rehomogenized melt inclusions

    USGS Publications Warehouse

    Tuohy, Robin M; Wallace, Paul J.; Loewen, Matthew W; Swanson, Don; Kent, Adam J R

    2016-01-01

    Concentrations of H2O and CO2 in olivine-hosted melt inclusions can be used to estimate crystallization depths for the olivine host. However, the original dissolved CO2concentration of melt inclusions at the time of trapping can be difficult to measure directly because in many cases substantial CO2 is transferred to shrinkage bubbles that form during post-entrapment cooling and crystallization. To investigate this problem, we heated olivine from the 1959 Kīlauea Iki and 1960 Kapoho (Hawai‘i) eruptions in a 1-atm furnace to temperatures above the melt inclusion trapping temperature to redissolve the CO2 in shrinkage bubbles. The measured CO2 concentrations of the experimentally rehomogenized inclusions (⩽590 ppm for Kīlauea Iki [n=10]; ⩽880 ppm for Kapoho, with one inclusion at 1863 ppm [n=38]) overlap with values for naturally quenched inclusions from the same samples, but experimentally rehomogenized inclusions have higher within-sample median CO2 values than naturally quenched inclusions, indicating at least partial dissolution of CO2 from the vapor bubble during heating. Comparison of our data with predictions from modeling of vapor bubble formation and published Raman data on the density of CO2 in the vapor bubbles suggests that 55-85% of the dissolved CO2 in the melt inclusions at the time of trapping was lost to post-entrapment shrinkage bubbles. Our results combined with the Raman data demonstrate that olivine from the early part of the Kīlauea Iki eruption crystallized at <6 km depth, with the majority of olivine in the 1-3 km depth range. These depths are consistent with the interpretation that the Kīlauea Iki magma was supplied from Kīlauea’s summit magma reservoir (∼2-5 km depth). In contrast, olivine from Kapoho, which was the rift zone extension of the Kīlauea Iki eruption, crystallized over a much wider range of depths (∼1-16 km). The wider depth range requires magma transport during the Kapoho eruption from deep beneath the summit region and/or from deep beneath Kīlauea’s east rift zone. The deeply derived olivine crystals and their host magma mixed with stored, more evolved magma in the rift zone, and the mixture was later erupted at Kapoho.

  3. Magma transport and olivine crystallization depths in Kīlauea's east rift zone inferred from experimentally rehomogenized melt inclusions

    NASA Astrophysics Data System (ADS)

    Tuohy, Robin M.; Wallace, Paul J.; Loewen, Matthew W.; Swanson, Donald A.; Kent, Adam J. R.

    2016-07-01

    Concentrations of H2O and CO2 in olivine-hosted melt inclusions can be used to estimate crystallization depths for the olivine host. However, the original dissolved CO2 concentration of melt inclusions at the time of trapping can be difficult to measure directly because in many cases substantial CO2 is transferred to shrinkage bubbles that form during post-entrapment cooling and crystallization. To investigate this problem, we heated olivine from the 1959 Kīlauea Iki and 1960 Kapoho (Hawai'i) eruptions in a 1-atm furnace to temperatures above the melt inclusion trapping temperature to redissolve the CO2 in shrinkage bubbles. The measured CO2 concentrations of the experimentally rehomogenized inclusions (⩽590 ppm for Kīlauea Iki [n = 10]; ⩽880 ppm for Kapoho, with one inclusion at 1863 ppm [n = 38]) overlap with values for naturally quenched inclusions from the same samples, but experimentally rehomogenized inclusions have higher within-sample median CO2 values than naturally quenched inclusions, indicating at least partial dissolution of CO2 from the vapor bubble during heating. Comparison of our data with predictions from modeling of vapor bubble formation and published Raman data on the density of CO2 in the vapor bubbles suggests that 55-85% of the dissolved CO2 in the melt inclusions at the time of trapping was lost to post-entrapment shrinkage bubbles. Our results combined with the Raman data demonstrate that olivine from the early part of the Kīlauea Iki eruption crystallized at <6 km depth, with the majority of olivine in the 1-3 km depth range. These depths are consistent with the interpretation that the Kīlauea Iki magma was supplied from Kīlauea's summit magma reservoir (∼2-5 km depth). In contrast, olivine from Kapoho, which was the rift zone extension of the Kīlauea Iki eruption, crystallized over a much wider range of depths (∼1-16 km). The wider depth range requires magma transport during the Kapoho eruption from deep beneath the summit region and/or from deep beneath Kīlauea's east rift zone. The deeply derived olivine crystals and their host magma mixed with stored, more evolved magma in the rift zone, and the mixture was later erupted at Kapoho.

  4. Water Vapor Effects on Silica-Forming Ceramics

    NASA Technical Reports Server (NTRS)

    Opila, E. J.; Greenbauer-Seng, L. (Technical Monitor)

    2000-01-01

    Silica-forming ceramics such as SiC and Si3N4 are proposed for applications in combustion environments. These environments contain water vapor as a product of combustion. Oxidation of silica-formers is more rapid in water vapor than in oxygen. Parabolic oxidation rates increase with the water vapor partial pressure with a power law exponent value close to one. Molecular water vapor is therefore the mobile species in silica. Rapid oxidation rates and large amounts of gases generated during the oxidation reaction in high water vapor pressures may result in bubble formation in the silica and nonprotective scale formation. It is also shown that silica reacts with water vapor to form Si(OH)4(g). Silica volatility has been modeled using a laminar flow boundary layer controlled reaction equation. Silica volatility depends on the partial pressure of water vapor, the total pressure, and the gas velocity. Simultaneous oxidation and volatilization reactions have been modeled with paralinear kinetics.

  5. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD.

    PubMed

    Soria, José; Gauthier, Daniel; Flamant, Gilles; Rodriguez, Rosa; Mazza, Germán

    2015-09-01

    Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Luminescence from cavitation bubbles deformed in uniform pressure gradients

    NASA Astrophysics Data System (ADS)

    Supponen, Outi; Obreschkow, Danail; Kobel, Philippe; Farhat, Mohamed

    2017-09-01

    Presented here are observations that demonstrate how the deformation of millimetric cavitation bubbles by a uniform pressure gradient quenches single-collapse luminescence. Our innovative measurement system captures a broad luminescence spectrum (wavelength range, 300-900 nm) from the individual collapses of laser-induced bubbles in water. By varying the bubble size, driving pressure, and perceived gravity level aboard parabolic flights, we probed the limit from aspherical to highly spherical bubble collapses. Luminescence was detected for bubbles of maximum radii within the previously uncovered range, R0=1.5 -6 mm, for laser-induced bubbles. The relative luminescence energy was found to rapidly decrease as a function of the bubble asymmetry quantified by the anisotropy parameter ζ , which is the dimensionless equivalent of the Kelvin impulse. As established previously, ζ also dictates the characteristic parameters of bubble-driven microjets. The threshold of ζ beyond which no luminescence is observed in our experiment closely coincides with the threshold where the microjets visibly pierce the bubble and drive a vapor jet during the rebound. The individual fitted blackbody temperatures range between Tlum=7000 and Tlum=11 500 K but do not show any clear trend as a function of ζ . Time-resolved measurements using a high-speed photodetector disclose multiple luminescence events at each bubble collapse. The averaged full width at half-maximum of the pulse is found to scale with R0 and to range between 10 and 20 ns.

  7. Completing the evolution of supernova remnants and their bubbles

    NASA Technical Reports Server (NTRS)

    Slavin, Jonathan D.; Cox, Donald P.

    1992-01-01

    The filling fraction of hot gas in the ISM is reexamined with new calculations of the very long term evolution of SNRs and their fossil hot bubbles. Results are presented of a 1D numerical solution of the evolution of an SNR in a homogeneous medium with a nonthermal pressure corresponding to a 5-micro-G magnetic field and density of 0.2/cu cm. Comparison is made with a control simulation having no magnetic field pressure. It is found that the evolutions, once they have become radiative, differ in several significant ways, while both differ appreciably from qualitative pictures presented in the past. Over most of the evolution of either case, the hot bubble in the interior occupies only a small fraction of the shocked volume, the remainder in a thick shell of slightly compressed material. Column densities and radial distributions of O VI, N V, C IV, and Si IV as well as examples of absorption profiles for their strong UV lines are presented.

  8. A general patterning approach by manipulating the evolution of two-dimensional liquid foams

    NASA Astrophysics Data System (ADS)

    Huang, Zhandong; Su, Meng; Yang, Qiang; Li, Zheng; Chen, Shuoran; Li, Yifan; Zhou, Xue; Li, Fengyu; Song, Yanlin

    2017-01-01

    The evolution of gas-liquid foams has been an attractive topic for more than half a century. However, it remains a challenge to manipulate the evolution of foams, which restricts the development of porous materials with excellent mechanical, thermal, catalytic, electrical or acoustic properties. Here we report a strategy to manipulate the evolution of two-dimensional (2D) liquid foams with a micropatterned surface. We demonstrate that 2D liquid foams can evolve beyond Ostwald ripening (large bubbles always consuming smaller ones). By varying the arrangement of pillars on the surface, we have prepared various patterns of foams in which the size, shape and position of the bubbles can be precisely controlled. Furthermore, these patterned bubbles can serve as a template for the assembly of functional materials, such as nanoparticles and conductive polymers, into desired 2D networks with nanoscale resolution. This methodology provides new insights in controlling curvature-driven evolution and opens a general route for the assembly of functional materials.

  9. Natural Gas Evolution in a Gas Hydrate Melt: Effect of Thermodynamic Hydrate Inhibitors.

    PubMed

    Sujith, K S; Ramachandran, C N

    2017-01-12

    Natural gas extraction from gas hydrate sediments by injection of hydrate inhibitors involves the decomposition of hydrates. The evolution of dissolved gas from the hydrate melt is an important step in the extraction process. Using classical molecular dynamics simulations, we study the evolution of dissolved methane from its hydrate melt in the presence of two thermodynamic hydrate inhibitors, NaCl and CH 3 OH. An increase in the concentration of hydrate inhibitors is found to promote the nucleation of methane nanobubbles in the hydrate melt. Whereas NaCl promotes bubble formation by enhancing the hydrophobic interaction between aqueous CH 4 molecules, CH 3 OH molecules assist bubble formation by stabilizing CH 4 bubble nuclei formed in the solution. The CH 3 OH molecules accumulate around the nuclei leading to a decrease in the surface tension at their interface with water. The nanobubbles formed are found to be highly dynamic with frequent exchange of CH 4 molecules between the bubble and the surrounding liquid. A quantitative analysis of the dynamic behavior of the bubble is performed by introducing a unit step function whose value depends on the location of CH 4 molecules with respect to the bubble. It is observed that an increase in the concentration of thermodynamic hydrate inhibitors reduces the exchange process, making the bubble less dynamic. It is also found that for a given concentration of the inhibitor, larger bubbles are less dynamic compared to smaller ones. The dependence of the dynamic nature of nanobubbles on bubble size and inhibitor concentration is correlated with the solubility of CH 4 and the Laplace pressure within the bubble. The effect of CO 2 on the formation of nanobubble in the CH 4 -CO 2 mixed gas hydrate melt in the presence of inhibitors is also examined. The simulations show that the presence of CO 2 molecules significantly reduces the induction time for methane nanobubble nucleation. The role of CO 2 in the early nucleation of bubble is explained based on the interaction between the bubble and the dissolved CO 2 molecules.

  10. Single-bubble boiling under Earth's and low gravity

    NASA Astrophysics Data System (ADS)

    Khusid, Boris; Elele, Ezinwa; Lei, Qian; Tang, John; Shen, Yueyang

    2017-11-01

    Miniaturization of electronic systems in terrestrial and space applications is challenged by a dramatic increase in the power dissipation per unit volume with the occurrence of localized hot spots where the heat flux is much higher than the average. Cooling by forced gas or liquid flow appears insufficient to remove high local heat fluxes. Boiling that involves evaporation of liquid in a hot spot and condensation of vapor in a cold region can remove a significantly larger amount of heat through the latent heat of vaporization than force-flow cooling can carry out. Traditional methods for enhancing boiling heat transfer in terrestrial and space applications focus on removal of bubbles from the heating surface. In contrast, we unexpectedly observed a new boiling regime of water under Earth's gravity and low gravity in which a bubble was pinned on a small heater up to 270°C and delivered a heat flux up to 1.2 MW/m2 that was as high as the critical heat flux in the classical boiling regime on Earth .Low gravity measurements conducted in parabolic flights in NASA Boeing 727. The heat flux in flight and Earth's experiments was found to rise linearly with increasing the heater temperature. We will discuss physical mechanisms underlying heat transfer in single-bubble boiling. The work supported by NASA Grants NNX12AM26G and NNX09AK06G.

  11. Evaporation of a sessile water drop and a drop of aqueous salt solution.

    PubMed

    Misyura, S Y

    2017-11-07

    The influence of various factors on the evaporation of drops of water and aqueous salt solution has been experimentally studied. Typically, in the studies of drop evaporation, only the diffusive vapor transfer, radiation and the molecular heat conduction are taken into account. However, vapor-gas convection plays an important role at droplet evaporation. In the absence of droplet boiling, the influence of gas convection turns out to be the prevailing factor. At nucleate boiling, a prevailing role is played by bubbles generation and vapor jet discharge at a bubble collapse. The gas convection behavior for water and aqueous salt solution is substantially different. With a growth of salt concentration over time, the influence of the convective component first increases, reaches an extremum and then significantly decreases. At nucleate boiling in a salt solution it is incorrect to simulate the droplet evaporation and the heat transfer in quasi-stationary approximation. The evaporation at nucleate boiling in a liquid drop is divided into several characteristic time intervals. Each of these intervals is characterized by a noticeable change in both the evaporation rate and the convection role.

  12. A Study of the Constrained Vapor Bubble Thermosyphon

    NASA Technical Reports Server (NTRS)

    Wayner, Peter C., Jr.; Plawsky, J. L.

    2000-01-01

    The objective of this effort is to better understand the physics of evaporation, condensation, and fluid flow as they affect the heat transfer processes in a constrained vapor bubble heat exchanger (CVBHX). This CVBHX consists of a small enclosed container with a square cross section (inside dimensions. 3 x 3 x 40 mm) partially filled with a liquid. The major portion of the liquid is in the corners, which act as arteries. When a temperature difference is applied to the ends of the CVBHX, evaporation occurs at the hot end and condensation at the cold end resulting in a very effective heat transfer device with great potential in space applications. Liquid is returned by capillary flow in the corners. A complete description of the system and the results obtained to date are given in the papers listed.

  13. Jet Simulation in a Diesel Engine

    NASA Astrophysics Data System (ADS)

    Xu, Zhiliang

    2005-03-01

    We present a numerical study of the jet breakup and spray formation in a diesel engine by the Front Tracking method. The mechanisms of jet breakup and spray formation of a high speed diesel jet injected through a circular nozzle are the key to design a fuel efficient, nonpolluting diesel engine. We conduct the simulations for the jet breakup within a 2D axis-symmetric geometry. Our goal is to model the spray at a micro-physical level, with the creation of individual droplets. The problem is multiscale. The droplets are a few microns in size. The nozzle is about 0.2 mm in diameter and 1 mm in length. To resolve various physical patterns such as vortex, shock waves, vacuum and track droplets and spray, the Burger-Colella adaptive mesh refinement technique is used. To simulate the spray formation, we model mixed vapor-liquid region through a heterogeneous model with dynamic vapor bubble insertion. The formation of the cavitation is represented by the dynamic creation of vapor bubbles. On the liquid/vapor interface, a phase transition problem is solved numerically. The phase transition is governed by the compressible Euler equations with heat diffusion. Our solution is a new description for the Riemann problem associated with a phase transition in a fully compressible fluid.

  14. Growth and Detachment of Oxygen Bubbles Induced by Gold-Catalyzed Decomposition of Hydrogen Peroxide

    PubMed Central

    2017-01-01

    Whereas bubble growth out of gas-oversatured solutions has been quite well understood, including the formation and stability of surface nanobubbles, this is not the case for bubbles forming on catalytic surfaces due to catalytic reactions, though it has important implications for gas evolution reactions and self-propulsion of micro/nanomotors fueled by bubble release. In this work we have filled this gap by experimentally and theoretically examining the growth and detachment dynamics of oxygen bubbles from hydrogen peroxide decomposition catalyzed by gold. We measured the bubble radius R(t) as a function of time by confocal microscopy and find R(t) ∝ t1/2. This diffusive growth behavior demonstrates that the bubbles grow from an oxygen-oversaturated environment. For several consecutive bubbles detaching from the same position in a short period of time, a well-repeated growing behavior is obtained from which we conclude the absence of noticeable depletion effect of oxygen from previous bubbles or increasing oversaturation from the gas production. In contrast, for two bubbles far apart either in space or in time, substantial discrepancies in their growth rates are observed, which we attribute to the variation in the local gas oversaturation. The current results show that the dynamical evolution of bubbles is influenced by comprehensive effects combining chemical catalysis and physical mass transfer. Finally, we find that the size of the bubbles at the moment of detachment is determined by the balance between buoyancy and surface tension and by the detailed geometry at the bubble’s contact line. PMID:28983387

  15. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soria, José, E-mail: jose.soria@probien.gob.ar; Gauthier, Daniel; Flamant, Gilles

    2015-09-15

    Highlights: • A CFD two-scale model is formulated to simulate heavy metal vaporization from waste incineration in fluidized beds. • MSW particle is modelled with the macroscopic particle model. • Influence of bed dynamics on HM vaporization is included. • CFD predicted results agree well with experimental data reported in literature. • This approach may be helpful for fluidized bed reactor modelling purposes. - Abstract: Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with themore » flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073 K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator.« less

  16. Correlation between Gas Bubble Formation and Hydrogen Evolution Reaction Kinetics at Nanoelectrodes.

    PubMed

    Chen, Qianjin; Luo, Long

    2018-04-17

    We report the correlation between H 2 gas bubble formation potential and hydrogen evolution reaction (HER) activity for Au and Pt nanodisk electrodes (NEs). Microkinetic models were formulated to obtain the HER kinetic information for individual Au and Pt NEs. We found that the rate-determining steps for the HER at Au and Pt NEs were the Volmer step and the Heyrovsky step, respectively. More interestingly, the standard rate constant ( k 0 ) of the rate-determining step was found to vary over 2 orders of magnitude for the same type of NEs. The observed variations indicate the HER activity heterogeneity at the nanoscale. Furthermore, we discovered a linear relationship between bubble formation potential ( E bubble ) and log( k 0 ) with a slope of 125 mV/decade for both Au and Pt NEs. As log ( k 0 ) increases, E bubble shifts linearly to more positive potentials, meaning NEs with higher HER activities form H 2 bubbles at less negative potentials. Our theoretical model suggests that such linear relationship is caused by the similar critical bubble formation condition for Au and Pt NEs with varied sizes. Our results have potential implications for using gas bubble formation to evaluate the HER activity distribution of nanoparticles in an ensemble.

  17. Bursting Bubbles from Combustion of Thermoplastic Materials in Microgravity

    NASA Technical Reports Server (NTRS)

    Butler, K. B.

    1999-01-01

    Many thermoplastic materials in common use for a wide range of applications, including spacecraft, develop bubbles internally as they burn due to chemical reactions taking place within the bulk. These bubbles grow and migrate until they burst at the surface, forceably ejecting volatile gases and, occasionally, molten fuel. In experiments in normal gravity, Kashiwagi and Ohlemiller observed vapor jets extending a few centimeters from the surface of a radiatively heated polymethylmethacrylate (PMMA) sample, with some molten material ejected into the gas phase. These physical phenomena complicated the combustion process considerably. In addition to the non-steady release of volatiles, the depth of the surface layer affected by oxygen was increased, attributed to the roughening of the surface by bursting events. The ejection of burning droplets in random directions presents a potential fire hazard unique to microgravity. In microgravity combustion experiments on nylon Velcro fasteners and on polyethylene wire insulation, the presence of bursting fuel vapor bubbles was associated with the ejection of small particles of molten fuel as well as pulsations of the flame. For the nylon fasteners, particle velocities were higher than 30 cm/sec. The droplets burned robustly until all fuel was consumed, demonstrating the potential for the spread of fire in random directions over an extended distance. The sequence of events for a bursting bubble has been photographed by Newitt et al.. As the bubble reaches the fluid surface, the outer surface forms a dome while the internal bubble pressure maintains a depression at the inner interface. Liquid drains from the dome until it breaks into a cloud of droplets on the order of a few microns in size. The bubble gases are released rapidly, generating vortices in the quiescent surroundings and transporting the tiny droplets. The depression left by the escaping gases collapses into a central jet, which rises with a high velocity and may break up, releasing one or more relatively large drops (on the order of a millimeter in these experiments). A better understanding of bubble development and bursting processes, the effects of bursting behavior on burning rate of the bulk material, and the circumstances under which large droplets are expelled, as well as their trajectories, sizes, and burning rates, is sought through computer modeling compared with experiment.

  18. Bubble transport and sticking in gas embolotherapy

    NASA Astrophysics Data System (ADS)

    Bull, Joseph

    2002-11-01

    Pressure-driven bubble transport in a two-dimensional, bifurcating channel is investigated as a model of gas emboli transport in the microcirculation. Gas emboli are relevant to a number of clinical situations, and our particular interest is a novel gas embolotherapy technique, which involves using gas bubbles to occlude blood flow to tumors. This minimally invasive treatment modality allows selective delivery of emboli. The bubbles originate as 6 micron-diameter liquid droplets of perfluorocarbon (PFC), mixed in saline, and are injected into the vascular system. The droplet forms are small enough to pass through capillary beds, so they can circulate until the next stage of the therapy. By strategically placing an ultrasound source over the artery feeding the tumor, the droplets may be vaporized at that location. Our model is developed using the Stokes equation subject to interfacial and wall boundary conditions, and is solved using the boundary element method. The conditions under which bubbles 'stick' to the channel walls and occlude flow are investigated. Clinically, these results are important because the location and homogeneity of bubble sticking determines the degree of tumor necrosis and the efficacy of the treatment.

  19. Dynamic behaviors of cavitation bubble for the steady cavitating flow

    NASA Astrophysics Data System (ADS)

    Cai, Jun; Huai, Xiulan; Li, Xunfeng

    2009-12-01

    In this paper, by introducing the flow velocity item into the classical Rayleigh-Plesset dynamic equation, a new equation, which does not involve the time term and can describe the motion of cavitation bubble in the steady cavitating flow, has been obtained. By solving the new motion equation using Runge-Kutta fourth order method with adaptive step size control, the dynamic behaviors of cavitation bubble driven by the varying pressure field downstream of a venturi cavitation reactor are numerically simulated. The effects of liquid temperature (corresponding to the saturated vapor pressure of liquid), cavitation number and inlet pressure of venturi on radial motion of bubble and pressure pulse due to the radial motion are analyzed and discussed in detail. Some dynamic behaviors of bubble different from those in previous papers are displayed. In addition, the internal relationship between bubble dynamics and process intensification is also discussed. The simulation results reported in this work reveal the variation laws of cavitation intensity with the flow conditions of liquid, and will lay a foundation for the practical application of hydrodynamic cavitation technology.

  20. Real-cinematographic visualization of droplet ejection in thermal ink jets

    NASA Astrophysics Data System (ADS)

    Rembe, Christian; Patzer, Joachim; Hofer, Eberhard P.; Krehl, Peter

    1996-03-01

    Although thermal ink jet printers have gained a high market share there are still open questions left in the understanding of the processes in ink jet firing chambers. The experimental investigation of these processes is difficult due to the extremely short time durations of the different phenomena. For example, the bubble life time amounts to approximately 20 microsecond(s) . A new experimental set-up is presented to record phenomena of very short time duration like the bubble nucleation process and the beginning of droplet ejection. This set-up allows realcinematographic visualization with a local resolution of less than 1 micrometers and a time resolution of 10 ns. This also offers the possibility to investigate transient processes like the droplet ejection at high printing frequencies. The essential part of the set-up is a new high speed camera. With an exact evaluation of the digitized images the locus, velocity, and acceleration distributions of the phase interface from liquid to vapor/air can be measured. In addition the results of a numerical model with realistic geometry of the firing chamber and the nozzle have been compared with the experimental results to draw conclusions for pressure propagation in the vapor bubble.

  1. Kinetics-based phase change approach for VOF method applied to boiling flow

    NASA Astrophysics Data System (ADS)

    Cifani, Paolo; Geurts, Bernard; Kuerten, Hans

    2014-11-01

    Direct numerical simulations of boiling flows are performed to better understand the interaction of boiling phenomena with turbulence. The multiphase flow is simulated by solving a single set of equations for the whole flow field according to the one-fluid formulation, using a VOF interface capturing method. Interface terms, related to surface tension, interphase mass transfer and latent heat, are added at the phase boundary. The mass transfer rate across the interface is derived from kinetic theory and subsequently coupled with the continuum representation of the flow field. The numerical model was implemented in OpenFOAM and validated against 3 cases: evaporation of a spherical uniformly heated droplet, growth of a spherical bubble in a superheated liquid and two dimensional film boiling. The computational model will be used to investigate the change in turbulence intensity in a fully developed channel flow due to interaction with boiling heat and mass transfer. In particular, we will focus on the influence of the vapor bubble volume fraction on enhancing heat and mass transfer. Furthermore, we will investigate kinetic energy spectra in order to identify the dynamics associated with the wakes of vapor bubbles. Department of Applied Mathematics, 7500 AE Enschede, NL.

  2. Experimental and numerical study of the effects of a wall on the coalescence and collapse of bubble pairs

    NASA Astrophysics Data System (ADS)

    Han, Rui; Zhang, A.-Man; Li, Shuai; Zong, Zhi

    2018-04-01

    Two-bubble interaction is the most fundamental problem in multi-bubbles dynamics, which is crucial in many practical applications involving air-gun arrays and underwater explosions. In this paper, we experimentally and numerically investigate coalescence, collapse, and rebound of non-buoyant bubble pairs below a rigid wall. Two oscillating vapor bubbles with similar size are generated simultaneously near a rigid wall in axisymmetric configuration using the underwater electric discharge method, and the physical process is captured by a high-speed camera. Numerical simulations are conducted based on potential flow theory coupled with the boundary integral method. Our numerical results show excellent agreement with the experimental data until the splashing of the jet impact sets in. With different ranges of γbw (the dimensionless distance between the rigid wall and the nearest bubble center), the interaction between the coalesced bubble and the rigid wall is divided into three types, i.e., "weak," "intermediate," and "strong." As γbw decreases, the contact point of the two axial jets migrates toward the wall. In "strong interaction" cases, only an upward jet towards the upper rigid wall forms and a secondary jet with a larger width appears at the base of the first jet. The collapsing coalesced bubble in a toroidal form splits into many smaller bubbles due to the instabilities and presents as bubble clouds during the rebounding phase, which may lead to a weakened pressure wave because the focusing energy associated with the collapsing bubble is disintegrated.

  3. Cardiovascular microbubble transport in vessel bifurcations with pulsatile flow: experimental model and theory

    NASA Astrophysics Data System (ADS)

    Valassis, Doug; Dodde, Robert; Eshpuniyani, Brijesh; Fowlkes, J. Brian; Bull, Joseph

    2008-11-01

    The behavior of long gas bubbles suspended in liquid flowing through successive bifurcations was investigated experimentally and theoretically as a model of cardiovascular bubble transport in gas embolotherapy. In this developmental cancer therapy, perflurocarbon droplets are vaporized in the vasculature and travel through a bifurcating network of vessels before lodging. The homogeneity of tumor necrosis is directly correlated with the transport and lodging of the emboli. An experimental model was used to explore the effects of flow pulsatility, frequency, gravity, and bifurcation roll angle on bubble splitting and lodging. At a bifurcation roll angle of 45-degrees, the most distinct difference in splitting ratios between three physiologic frequencies (1, 1.5, 2 Hz) was observed. As roll angle increased, lodged bubble volume in the first generation channel increased while bubble volume beyond the second bifurcation proportionately decreased. A corresponding time-dependent one-dimensional theoretical model was also developed. The results elucidate the effects of pulsatile flow and suggest the potential of gas embolotherapy to occlude blood flow to tumors.

  4. Micro-explosion of compound drops

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Kuei; Lin, Ta-Hui

    2014-08-01

    Introducing water into spray combustion systems, by either water-in-oil emulsification or supplementary water injection, is one of the major techniques for combustion improvement and NOx reduction. Plentiful researches are available on combustion of water-in-oil emulsion fuel drops. The emulsified liquid is a heterogeneous mixture of immiscible liquids. One component forms the continuous phase and the other component forms the discrete phase. The discrete phase consists of globules of the one fluid that are suspended in the continuous phase fluid. Water-in-oil emulsions are commonly considered for combustion applications because emulsions can result in micro-explosion, thereby reducing the average drop diameter to enhance liquid vaporization, and suppressing the formation of soot and NOx. However, the water addition generally does not exceed about 20% for smooth engine operations[!, 21. The combustion characteristics and micro-explosion of emulsion drop were studied by many researchers. The micro-explosion of water in fuel emulsion drops was caused by very fast growth of superheated water vapor bubbles, its superheat limits must be lower than the boiling point temperature of the fuel. These bubbles were primarily governed by the pressure difference between the superheated vapor and the liquid, and by the inertia imparted to the liquid by the motion of the bubble surface[3 6 In this study, we used a coaxial nozzle to generation the multi-component drop. The different type of water-in-oil fuel drops called the compound drops. Unlike an emulsion drop, a compound drop consists of a water core and a fuel shell, which can originate from the phase separation of emulsion[7, 81 or a water drop colliding with a fuel drop[9, 101 Burning and micro-explosion of compound drops have been found to be distinct from those of emulsion drops[9-111 Wang et al.[9 , 101 studied the combustion characteristics of collision merged alkane-water drops. The merged drops appeared in adhesive and inserted manners. The drop ignition delay time increased with increasing water content. The average burning rate of alkane-water drops decreased with increasing water content. In the burning process, hexadecane-water drops exhibited flash vaporization or flame extinction. Heterogeneous explosion was occasionally observed in drops with trapped air bubbles. The air bubbles were assumed to be the nucleation points of the heterogeneous explosions. Chen and Lin[11 studied the characteristics of water-in-dodecane compound drop with different water content, diameter of drop and environmental oxygen concentration. The vaporization rate increased with increasing environmental oxygen concentration. The compound drops micro-exploded during the burning process in a random way. The number of micro-explosions was majorly influenced by drop diameter, followed by environmental oxygen concentration. Water content had a weaker effect on micro-explosion. As available literature and research results of compound drop burning are scarce, their combustion and micro-explosion behaviors are still poorly understood. In this regard, we changed the drop nature as compound drops to study their combustion characteristics and micro-explosion phenomena.

  5. Natural oscillations of a gas bubble in a liquid-filled cavity located in a viscoelastic medium

    NASA Astrophysics Data System (ADS)

    Doinikov, Alexander A.; Marmottant, Philippe

    2018-04-01

    The present study is motivated by cavitation phenomena that occur in the stems of trees. The internal pressure in tree conduits can drop down to significant negative values. This drop gives rise to cavitation bubbles, which undergo high-frequency eigenmodes. The aim of the present study is to determine the parameters of the bubble natural oscillations. To this end, a theory is developed that describes the pulsation of a spherical bubble located at the center of a spherical cavity surrounded by an infinite solid medium. It is assumed that the medium inside the bubble is a gas-vapor mixture, the cavity is filled with a compressible viscous liquid, and the medium surrounding the cavity behaves as a viscoelastic solid. The theoretical solution takes into account the outgoing acoustic wave produced by the bubble pulsation, the incoming wave caused by reflection from the liquid-solid boundary, and the outgoing wave propagating in the solid. A dispersion equation for the calculation of complex wavenumbers of the bubble eigenmodes is derived. Approximate analytical solutions to the dispersion equation are found. Numerical simulations are performed to reveal the effect of different physical parameters on the resonance frequency and the attenuation coefficient of the bubble oscillations.

  6. Insights in the laser induced breakdown spectroscopy signal generation underwater using dual pulse excitation — Part II: Plasma emission intensity as a function of interpulse delay

    NASA Astrophysics Data System (ADS)

    Lazic, V.; Laserna, J. J.; Jovicevic, S.

    2013-04-01

    Influence of time delay between two laser pulses on the LIBS (laser induced breakdown spectroscopy) signal inside liquids was investigated and the results are compared with data from literature. Plasma was produced by laser ablation (LA) of aluminum inside water and its emission after the second laser pulse was characterized by spectrally and time resolved detection. Light propagation through the vapor bubble formed by the first laser pulse was studied by measurements of beam scattering and transmission. Optical absorption by the evolving bubble is not significant, but its growth is accompanied by lowering of its refraction index nb with respect to surrounding liquid; this effect increases defocusing both of the incident beam and of the out-coming plasma radiation. Collection efficiency of the secondary plasma emission rapidly degrades with the cavity growth, but close to its full expansion the LIBS signal partially recovers through Snell's reflections at the liquid-vapor interface, which produce a bright spot close to the bubble center. Such a light redistribution allows detecting of the emission from external plasma volume, otherwise deflected out of the collection system. Except for strong line transitions from the main sample constituents, self-absorbed inside the high-pressure cavity, we observed the highest LIBS signal when sending the second pulse well before the bubble is fully expanded. Transitions of the pressure wave through the focal volume, formed by the first laser pulse and reflected from the cell's walls and sample back-plane, enhances the LIBS signal importantly. The measured lifetime of the secondary plasma rapidly decreases with the bubble expansion. Here, we also discuss the optimization of the optical collection system and some analytical aspects of double-pulse (DP) LIBS inside liquids.

  7. Evolution of spherical cavitation bubbles: Parametric and closed-form solutions

    NASA Astrophysics Data System (ADS)

    Mancas, Stefan C.; Rosu, Haret C.

    2016-02-01

    We present an analysis of the Rayleigh-Plesset equation for a three dimensional vacuous bubble in water. In the simplest case when the effects of surface tension are neglected, the known parametric solutions for the radius and time evolution of the bubble in terms of a hypergeometric function are briefly reviewed. By including the surface tension, we show the connection between the Rayleigh-Plesset equation and Abel's equation, and obtain the parametric rational Weierstrass periodic solutions following the Abel route. In the same Abel approach, we also provide a discussion of the nonintegrable case of nonzero viscosity for which we perform a numerical integration.

  8. A computational model of microbubble transport through a blood-filled vessel bifurcation

    NASA Astrophysics Data System (ADS)

    Calderon, Andres

    2005-11-01

    We are developing a novel gas embolotherapy technique to occlude blood vessels and starve tumors using gas bubbles that are produced by the acoustic vaporization of liquid perfluorocarbon droplets. The droplets are small enough to pass through the microcirculation, but the subsequent bubbles are large enough to lodge in vessels. The uniformity of tumor infarction depends on the transport the blood-borne bubbles before they stick. We examine the transport of a semi-infinite bubble through a single bifurcation in a liquid-filled two-dimensional channel. The flow is governed by the conservation of fluid mass and momentum equations. Reynolds numbers in the microcirculation are small, and we solve the governing equations using the boundary element method. The effect of gravity on bubble splitting is investigated and results are compared with our previous bench top experiments and to a quasi-steady one-dimensional analysis. The effects of daughter tube outlet pressures and bifurcation geometry are also considered. The findings suggest that slow moving bubbles will favor the upper branch of the bifurcation, but that increasing the bubble speed leads to more even splitting. It is also found that some bifurcation geometries and flow conditions result in severe thinning of the liquid film separating the bubble from the wall, suggesting the possibility bubble-wall contact. This work is supported by NSF grant BES-0301278 and NIH grant EB003541.

  9. Flow visualization of cavitating flows through a rectangular slot micro-orifice ingrained in a microchannel

    NASA Astrophysics Data System (ADS)

    Mishra, Chandan; Peles, Yoav

    2005-11-01

    Multifarious hydrodynamic cavitating flow patterns have been detected in the flow of de-ionized water through a 40.5μm wide and 100.8μm deep rectangular slot micro-orifice established inside a 202.6μm wide and 20 000μm long microchannel. This article presents and discusses the flow patterns observed at various stages of cavitation in the aforementioned micrometer-sized silicon device. Cavitation inception occurs with the appearance of inchoate bubbles that emerge from two thin vapor cavities that emanate from the boundaries of the constriction element. A reduction in the cavitation number beyond inception results in the development of twin coherent unsteady large vapor cavities, which appear just downstream of the micro-orifice and engulf the liquid jet. The shedding of both spherical and nonspherical vapor bubbles and their subsequent collapse into vapor plumes downstream of the orifice occurs intermittently. A further reduction in the exit pressure only aids in the elongation of the two coherent cavities and produces two stable vapor pockets. Additionally, interference fringes are clearly observed, showing that the vapor pocket has a curved interface with liquid. At low cavitation numbers, the flow undergoes a flip downstream and the two vapor pockets coalesce and form a single vapor pocket that is encircled by the liquid and extends until the exit of the microchannel. The cavitating flow patterns are unique and are markedly different from those reported for their macroworld counterparts. Evidence of pitting due to cavitation has been observed on the silicon just downstream of the micro-orifice. It is therefore apparent that cavitation will continue to influence/impact the design of high-speed MEMS hydraulic machines, and the pernicious effects of cavitation in terms of erosion, choking, and a reduction in performance will persist in microfluidic systems if apposite hydrodynamic conditions develop.

  10. A variational approach to the strongly nonlinear regime of the Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Toshio

    The Rayleigh-Taylor instability is the instability of the interface between two fluids of different densities. When a heavy fluid is superposed over a light fluid. small disturbances on the interface develop into a complex form with heavy fluid ``fingers'' and light fluid ``bubbles.'' We propose a variational method for the description of the evolution of the fingers and bubbles in the late stage of the instability. In this method, the fluid region is represented as the image of a time-dependent conformal mapping; the dynamics of the mapping is determined by the least action principle for the Lagrangian. i.e., the kinetic energy minus the potential energy. The evolution of a single finger and bubble is investigated by this method. We first consider a symmetric finger and bubble in a zero gravitational field. We derive an integrable Hamiltonian system with two degrees of freedom that governs the dynamics of the symmetric finger and bubble. We present a general solution of the system. The solution predicts the linear growth of the finger and the saturation of the bubble growth. It is shown that this solution is asymptotically exact. We consider a symmetric finger and bubble with perturbations. We show that the dynamics of the finger and bubble and that of the perturbations are decoupled. We next consider an inclined finger and bubble in a zero gravitational field. We derive a Hamiltonian system with four degrees of freedom that governs the dynamics of the inclined finger and bubble. The system has four integrals of motion, one of them depends on time explicitly. When there is no lateral motion, the system reduces to an integrable Hamiltonian system with three degrees of freedom. A general solution of the system is presented. The solution predicts the linear growth of the finger toward a direction and the saturation of the bubble growth. Finally, we consider a symmetric finger and bubble in a uniform gravitational field. We derive a Hamiltonian system with two degrees of freedom that governs the dynamics of the symmetric finger and bubble. Since the system includes a potential energy term, it is not integrable in general. However, we present a general solution in the case of the total energy being zero. This case corresponds to an interesting case where the evolution starts from a flat surface. The solution predicts that the finger grows as the square of time, and the bubble as the square root of time.

  11. Microgravity Boiling Enhancement Using Vibration-Based Fluidic Technologies

    NASA Astrophysics Data System (ADS)

    Smith, Marc K.; Glezer, Ari; Heffington, Samuel N.

    2002-11-01

    Thermal management is an important subsystem in many devices and technologies used in a microgravity environment. The increased power requirements of new Space technologies and missions mean that the capacity and efficiency of thermal management systems must be improved. The current work addresses this need through the investigation and development of a direct liquid immersion heat transfer cell for microgravity applications. The device is based on boiling heat transfer enhanced by two fluidic technologies developed at Georgia Tech. The first of these fluidic technologies, called vibration-induced bubble ejection, is shown in Fig. 1. Here, an air bubble in water is held against a vibrating diaphragm by buoyancy. The vibrations at 440 Hz induce violent oscillations of the air/water interface that can result in small bubbles being ejected from the larger air bubble (Fig. 1a) and, simultaneously, the collapse of the air/water interface against the solid surface (Fig. 1b). Both effects would be useful during a heat transfer process. Bubble ejection would force vapor bubbles back into the cooler liquid so that they can condense. Interfacial collapse would tend to keep the hot surface wet thereby increasing liquid evaporation and heat transfer to the bulk liquid. Figure 2 shows the effect of vibrating the solid surface at 7.6 kHz. Here, small-scale capillary waves appear on the surface of the bubble near the attachment point on the solid surface (the grainy region). The vibration produces a net force on the bubble that pushes it away from the solid surface. As a result, the bubble detaches from the solid and is propelled into the bulk liquid. This force works against buoyancy and so it would be even more effective in a microgravity environment. The benefit of the force in a boiling process would be to push vapor bubbles off the solid surface, thus helping to keep the solid surface wet and increasing the heat transfer. The second fluidic technology to be employed in this work is a synthetic jet, shown schematically in Fig. 3. The jet is produced using a small, sealed cavity with a sharp-edged orifice on one side and a vibrating diaphragm on the opposite side. The jet is formed when fluid is alternately sucked into and then expelled from the cavity by the motion of the diaphragm. This alternating motion means that there is no net mass addition to the system. Thus, there is no need for input piping or complex fluidic packaging.

  12. Mesoporous hollow spheres from soap bubbling.

    PubMed

    Yu, Xianglin; Liang, Fuxin; Liu, Jiguang; Lu, Yunfeng; Yang, Zhenzhong

    2012-02-01

    The smaller and more stable bubbles can be generated from the large parent bubbles by rupture. In the presence of a bubble blowing agent, hollow spheres can be prepared by bubbling a silica sol. Herein, the trapped gas inside the bubble acts as a template. When the porogen, i.e., other surfactant, is introduced, a mesostructured shell forms by the co-assembly with the silica sol during sol-gel process. Morphological evolution emphasizes the prerequisite of an intermediate interior gas flow rate and high exterior gas flow rate for hollow spheres. The method is valid for many compositions from inorganic, polymer to their composites. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, R.; Aluie, H.; Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14627

    The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. The vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume.

  14. Bubble migration in a compacting crystal-liquid mush

    NASA Astrophysics Data System (ADS)

    Boudreau, Alan

    2016-04-01

    Recent theoretical models have suggested that bubbles are unlikely to undergo significant migration in a compaction crystal mush by capillary invasion while the system remains partly molten. To test this, experiments of bubble migration during compaction in a crystal-liquid mush were modeled using deformable foam crystals in corn syrup in a volumetric burette, compacted with rods of varying weights. A bubble source was provided by sodium bicarbonate (Alka-Seltzer®). Large bubbles (>several crystal sizes) are pinched by the compacting matrix and become overpressured and deformed as the bubbles experience a load change from hydrostatic to lithostatic. Once they begin to move, they move much faster than the compaction-driven liquid. Bubbles that are about the same size as the crystals but larger than the narrower pore throats move by deformation or breaking into smaller bubbles as they are forced through pore restrictions. Bubbles that are less than the typical pore diameter generally move with the liquid: The liquid + bubble mixture behaves as a single phase with a lower density than the bubble-free liquid, and as a consequence it rises faster than bubble-free liquid and allows for faster compaction. The overpressure required to force a bubble through the matrix (max grain size = 5 mm) is modest, about 5 %, and it is estimated that for a grain size of 1 mm, the required overpressure would be about 25 %. Using apatite distribution in a Stillwater olivine gabbro as an analog for bubble nucleation and growth, it is suggested that relatively large bubbles initially nucleate and grow in liquid-rich channels that develop late in the compaction history. Overpressure from compaction allows bubbles to rise higher into hotter parts of the crystal pile, where they redissolve and increase the volatile content of the liquid over what it would have without the bubble migration, leading to progressively earlier vapor saturation during crystallization of the interstitial liquid. Bubbles can also move rapidly by `surfing' on porosity waves that can develop in a compacting mush.

  15. A physics based multiscale modeling of cavitating flows.

    PubMed

    Ma, Jingsen; Hsiao, Chao-Tsung; Chahine, Georges L

    2017-03-02

    Numerical modeling of cavitating bubbly flows is challenging due to the wide range of characteristic lengths of the physics at play: from micrometers (e.g., bubble nuclei radius) to meters (e.g., propeller diameter or sheet cavity length). To address this, we present here a multiscale approach which integrates a Discrete Singularities Model (DSM) for dispersed microbubbles and a two-phase Navier Stokes solver for the bubbly medium, which includes a level set approach to describe large cavities or gaseous pockets. Inter-scale schemes are used to smoothly bridge the two transitioning subgrid DSM bubbles into larger discretized cavities. This approach is demonstrated on several problems including cavitation inception and vapor core formation in a vortex flow, sheet-to-cloud cavitation over a hydrofoil, cavitation behind a blunt body, and cavitation on a propeller. These examples highlight the capabilities of the developed multiscale model in simulating various form of cavitation.

  16. An acoustical bubble counter for superheated drop detectors.

    PubMed

    Taylor, Chris; Montvila, Darius; Flynn, David; Brennan, Christopher; d'Errico, Francesco

    2006-01-01

    A new bubble counter has been developed based on the well-established approach of detecting vaporization events acoustically in superheated drop detectors (SDDs). This counter is called the Framework Scientific ABC 1260, and it represents a major improvement over prior versions of this technology. By utilizing advanced acoustic pattern recognition software, the bubble formation event can be differentiated from ambient background noise, as well as from other acoustic signatures. Additional structural design enhancements include a relocation of the electronic components to the bottom of the device; thus allowing for greater stability, easier access to vial SDDs without exposure to system electronics. Upgrades in the electronics permit an increase in the speed of bubble detection by almost 50%, compared with earlier versions of the counters. By positioning the vial on top of the device, temperature and sound insulation can be accommodated for extreme environments. Lead shells can also be utilized for an enhanced response to high-energy neutrons.

  17. A physics based multiscale modeling of cavitating flows

    PubMed Central

    Ma, Jingsen; Hsiao, Chao-Tsung; Chahine, Georges L.

    2018-01-01

    Numerical modeling of cavitating bubbly flows is challenging due to the wide range of characteristic lengths of the physics at play: from micrometers (e.g., bubble nuclei radius) to meters (e.g., propeller diameter or sheet cavity length). To address this, we present here a multiscale approach which integrates a Discrete Singularities Model (DSM) for dispersed microbubbles and a two-phase Navier Stokes solver for the bubbly medium, which includes a level set approach to describe large cavities or gaseous pockets. Inter-scale schemes are used to smoothly bridge the two transitioning subgrid DSM bubbles into larger discretized cavities. This approach is demonstrated on several problems including cavitation inception and vapor core formation in a vortex flow, sheet-to-cloud cavitation over a hydrofoil, cavitation behind a blunt body, and cavitation on a propeller. These examples highlight the capabilities of the developed multiscale model in simulating various form of cavitation. PMID:29720773

  18. An analytical approach to the rise velocity of periodic bubble trains in non-Newtonian fluids.

    PubMed

    Frank, X; Li, H Z; Funfschilling, D

    2005-01-01

    The present study aims at providing insight into the acceleration mechanism of a bubble chain rising in shear-thinning viscoelastic fluids. The experimental investigation by the Particle Image Velocimetry (PIV), birefringence visualisation and rheological simulation shows that two aspects are central to bubble interactions in such media: the stress creation by the passage of bubbles, and their relaxation due to the fluid's memory forming an evanescent corridor of reduced viscosity. Interactions between bubbles were taken into account mainly through a linear superposition of the stress evolution behind each bubble. An analytical approach together with the rheological consideration was developed to compute the rise velocity of a bubble chain in function of the injection period and bubble volume. The model predictions compare satisfactorily with the experimental investigation.

  19. 40 CFR 86.1322-84 - Carbon monoxide analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... analyzer shall be checked for response to water vapor and CO2: (1) Follow good engineering practices for...) Bubble a mixture of 3 percent CO2 in N2 through water at room temperature and record analyzer response...

  20. 40 CFR 86.122-78 - Carbon monoxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... monoxide analyzer shall be checked for response to water vapor and CO2: (1) Follow the manufacturer's... nitrogen. (3) Bubble a mixture of 3 percent CO2 in N2 through water at room temperature and record analyzer...

  1. 40 CFR 86.122-78 - Carbon monoxide analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... monoxide analyzer shall be checked for response to water vapor and CO2: (1) Follow the manufacturer's... nitrogen. (3) Bubble a mixture of 3 percent CO2 in N2 through water at room temperature and record analyzer...

  2. 40 CFR 86.1322-84 - Carbon monoxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... analyzer shall be checked for response to water vapor and CO2: (1) Follow good engineering practices for...) Bubble a mixture of 3 percent CO2 in N2 through water at room temperature and record analyzer response...

  3. 40 CFR 86.1322-84 - Carbon monoxide analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... analyzer shall be checked for response to water vapor and CO2: (1) Follow good engineering practices for...) Bubble a mixture of 3 percent CO2 in N2 through water at room temperature and record analyzer response...

  4. 40 CFR 86.122-78 - Carbon monoxide analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... monoxide analyzer shall be checked for response to water vapor and CO2: (1) Follow the manufacturer's... nitrogen. (3) Bubble a mixture of 3 percent CO2 in N2 through water at room temperature and record analyzer...

  5. 40 CFR 86.122-78 - Carbon monoxide analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... monoxide analyzer shall be checked for response to water vapor and CO2: (1) Follow the manufacturer's... nitrogen. (3) Bubble a mixture of 3 percent CO2 in N2 through water at room temperature and record analyzer...

  6. High-speed off-axis holographic cinematography with a copper-vapor-pumped dye laser.

    PubMed

    Lauterborn, W; Judt, A; Schmitz, E

    1993-01-01

    A series of coherent light pulses is generated by pumping a dye laser with the pulsed output of a copper-vapor laser at rates of as much as 20 kHz. Holograms are recorded at this pulse rate on a rotating holographic plate. This technique of high-speed holographic cinematography is demonstrated by viewing the bubble filaments that appear in water under the action of a sound field of high intensity.

  7. Compressible bubbles in Stokes flow

    NASA Astrophysics Data System (ADS)

    Crowdy, Darren G.

    2003-02-01

    The problem of a two-dimensional inviscid compressible bubble evolving in Stokes flow is considered. By generalizing the work of Tanveer & Vasconcelos (1995) it is shown that for certain classes of initial condition the quasi-steady free boundary problem for the bubble shape evolution is reducible to a finite set of coupled nonlinear ordinary differential equations, the form of which depends on the equation of state governing the relationship between the bubble pressure and its area. Recent numerical calculations by Pozrikidis (2001) using boundary integral methods are retrieved and extended. If the ambient pressures are small enough, it is shown that bubbles can expand significantly. It is also shown that a bubble evolving adiabatically is less likely to expand than an isothermal bubble.

  8. Acoustic droplet vaporization of vascular droplets in gas embolotherapy

    NASA Astrophysics Data System (ADS)

    Bull, Joseph

    2016-11-01

    This work is primarily motivated by a developmental gas embolotherapy technique for cancer treatment. In this methodology, infarction of tumors is induced by selectively formed vascular gas bubbles that arise from the acoustic vaporization of vascular droplets. Additionally, micro- or nano-droplets may be used as vehicles for localized drug delivery, with or without flow occlusion. In this talk, we examine the dynamics of acoustic droplet vaporization through experiments and theoretical/computational fluid mechanics models, and investigate the bioeffects of acoustic droplet vaporization on endothelial cells and in vivo. Functionalized droplets that are targeted to tumor vasculature are examined. The influence of fluid mechanical and acoustic parameters, as well as droplet functionalization, is explored. This work was supported by NIH Grant R01EB006476.

  9. Flow of foams in two-dimensional disordered porous media

    NASA Astrophysics Data System (ADS)

    Dollet, Benjamin; Geraud, Baudouin; Jones, Sian A.; Meheust, Yves; Cantat, Isabelle; Institut de Physique de Rennes Team; Geosciences Rennes Team

    2015-11-01

    Liquid foams are a yield stress fluid with elastic properties. When a foam flow is confined by solid walls, viscous dissipation arises from the contact zones between soap films and walls, giving very peculiar friction laws. In particular, foams potentially invade narrow pores much more efficiently than Newtonian fluids, which is of great importance for enhanced oil recovery. To quantify this effect, we study experimentally flows of foam in a model two-dimensional porous medium, consisting of an assembly of circular obstacles placed randomly in a Hele-Shaw cell, and use image analysis to quantify foam flow at the local scale. We show that bubbles split as they flow through the porous medium, by a mechanism of film pinching during contact with an obstacle, yielding two daughter bubbles per split bubble. We quantify the evolution of the bubble size distribution as a function of the distance along the porous medium, the splitting probability as a function of bubble size, and the probability distribution function of the daughter bubbles. We propose an evolution equation to model this splitting phenomenon and compare it successfully to the experiments, showing how at long distance, the porous medium itself dictates the size distribution of the foam.

  10. Nonspherical laser-induced cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Lim, Kang Yuan; Quinto-Su, Pedro A.; Klaseboer, Evert; Khoo, Boo Cheong; Venugopalan, Vasan; Ohl, Claus-Dieter

    2010-01-01

    The generation of arbitrarily shaped nonspherical laser-induced cavitation bubbles is demonstrated with a optical technique. The nonspherical bubbles are formed using laser intensity patterns shaped by a spatial light modulator using linear absorption inside a liquid gap with a thickness of 40μm . In particular we demonstrate the dynamics of elliptic, toroidal, square, and V-shaped bubbles. The bubble dynamics is recorded with a high-speed camera at framing rates of up to 300000 frames per second. The observed bubble evolution is compared to predictions from an axisymmetric boundary element simulation which provides good qualitative agreement. Interesting dynamic features that are observed in both the experiment and simulation include the inversion of the major and minor axis for elliptical bubbles, the rotation of the shape for square bubbles, and the formation of a unidirectional jet for V-shaped bubbles. Further we demonstrate that specific bubble shapes can either be formed directly through the intensity distribution of a single laser focus, or indirectly using secondary bubbles that either confine the central bubble or coalesce with the main bubble. The former approach provides the ability to generate in principle any complex bubble geometry.

  11. Mathematical Models of Diffusion-Limited Gas Bubble Evolution in Perfused Tissue

    DTIC Science & Technology

    2013-08-01

    the Generation of New Bubbles,” Undersea Biomedical Research, Vol. 18, No. 4 (1991), pp. 333-345. 10. H. D. Van Liew and M. E. Burkard, “Density of...and R. D. Vann, “Probabilistic Gas and Bubble Dynamics Models of Decompression Sickness Occurrence in Air and Nitrogen-Oxygen Diving,” Undersea and...Gas Bubbles During Decompression,” Undersea and Hyperbaric Medicine, Vol. 23, No. 3 (1996), pp. 131-140. 13. R. L. Riley and A. Cournand, “’Ideal

  12. Photothermal nanoblade for patterned cell membrane cutting

    PubMed Central

    Wu, Ting-Hsiang; Teslaa, Tara; Teitell, Michael A.; Chiou, Pei-Yu

    2010-01-01

    We report a photothermal nanoblade that utilizes a metallic nanostructure to harvest short laser pulse energy and convert it into a highly localized and specifically shaped explosive vapor bubble. Rapid bubble expansion and collapse punctures a lightly-contacting cell membrane via high-speed fluidic flows and induced transient shear stress. The membrane cutting pattern is controlled by the metallic nanostructure configuration, laser pulse polarization, and energy. Highly controllable, sub-micron sized circular hole pairs to half moon-like, or cat-door shaped, membrane cuts were realized in glutaraldehyde treated HeLa cells. PMID:21164656

  13. The XMM-Newton View of Wolf-Rayet Bubbles

    NASA Astrophysics Data System (ADS)

    Guerrero, M.; Toala, J.

    2017-10-01

    The powerful stellar winds of Wolf-Rayet (WR) stars blow large bubble into the circumstellar material ejected in previous phases of stellar evolution. The shock of those stellar winds produces X-ray-emitting hot plasmas which tells us about the diffusion of processed material onto the interstellar medium, about processes of heat conduction and turbulent mixing at the interface, about the late stages of stellar evolution, and about the shaping of the circumstellar environment, just before supernova explosions. The unique sensitivity of XMM-Newton has been key for the detection, mapping and spectral analysis of the X-ray emission from the hot bubbles around WR stars. These observations underscore the importance of the structure of the interstellar medium around massive stars, but they have also unveiled unknown phenomena, such as blowouts of hot gas into the interstellar medium or spatially-resolved spectral properties of the hot gas, which disclose inhomogeneous chemical abundances and physical properties across these bubbles.

  14. 40 CFR 86.522-78 - Carbon monoxide analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... thereafter the NDIR carbon monoxide analyzer shall be checked for response to water vapor and CO2: (1) Follow... zero grade nitrogen. (3) Bubble a mixture of 3 percent CO2 in N2 through water at room temperature and...

  15. 40 CFR 86.522-78 - Carbon monoxide analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... thereafter the NDIR carbon monoxide analyzer shall be checked for response to water vapor and CO2: (1) Follow... zero grade nitrogen. (3) Bubble a mixture of 3 percent CO2 in N2 through water at room temperature and...

  16. 40 CFR 86.522-78 - Carbon monoxide analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... thereafter the NDIR carbon monoxide analyzer shall be checked for response to water vapor and CO2: (1) Follow... zero grade nitrogen. (3) Bubble a mixture of 3 percent CO2 in N2 through water at room temperature and...

  17. 40 CFR 86.522-78 - Carbon monoxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... thereafter the NDIR carbon monoxide analyzer shall be checked for response to water vapor and CO2: (1) Follow... zero grade nitrogen. (3) Bubble a mixture of 3 percent CO2 in N2 through water at room temperature and...

  18. Experiments and Modeling of Evaporating/Condensing Menisci

    NASA Technical Reports Server (NTRS)

    Plawsky, Joel; Wayner, Peter C., Jr.

    2013-01-01

    Discuss the Constrained Vapor Bubble (CVB) experiment and how it aims to achieve a better understanding of the physics of evaporation and condensation and how they affect cooling processes in microgravity using a remotely controlled microscope and a small cooling device.

  19. Bubble formation in water with addition of a hydrophobic solute.

    PubMed

    Okamoto, Ryuichi; Onuki, Akira

    2015-07-01

    We show that phase separation can occur in a one-component liquid outside its coexistence curve (CX) with addition of a small amount of a solute. The solute concentration at the transition decreases with increasing the difference of the solvation chemical potential between liquid and gas. As a typical bubble-forming solute, we consider O2 in ambient liquid water, which exhibits mild hydrophobicity and its critical temperature is lower than that of water. Such a solute can be expelled from the liquid to form gaseous domains while the surrounding liquid pressure is higher than the saturated vapor pressure p cx. This solute-induced bubble formation is a first-order transition in bulk and on a partially dried wall, while a gas film grows continuously on a completely dried wall. We set up a bubble free energy ΔG for bulk and surface bubbles with a small volume fraction ϕ. It becomes a function of the bubble radius R under the Laplace pressure balance. Then, for sufficiently large solute densities above a threshold, ΔG exhibits a local maximum at a critical radius and a minimum at an equilibrium radius. We also examine solute-induced nucleation taking place outside CX, where bubbles larger than the critical radius grow until attainment of equilibrium.

  20. Numerical simulation of cavitation bubble dynamics induced by ultrasound waves in a high frequency reactor.

    PubMed

    Servant, G; Caltagirone, J P; Gérard, A; Laborde, J L; Hita, A

    2000-10-01

    The use of high frequency ultrasound in chemical systems is of major interest to optimize chemical procedures. Characterization of an open air 477 kHz ultrasound reactor shows that, because of the collapse of transient cavitation bubbles and pulsation of stable cavitation bubbles, chemical reactions are enhanced. Numerical modelling is undertaken to determine the spatio-temporal evolution of cavitation bubbles. The calculus of the emergence of cavitation bubbles due to the acoustic driving (by taking into account interactions between the sound field and bubbles' distribution) gives a cartography of bubbles' emergence within the reactor. Computation of their motion induced by the pressure gradients occurring in the reactor show that they migrate to the pressure nodes. Computed bubbles levitation sites gives a cartography of the chemical activity of ultrasound. Modelling of stable cavitation bubbles' motion induced by the motion of the liquid gives some insight on degassing phenomena.

  1. Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, R.; Betti, R.; Sanz, J.

    The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. As a result, the vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume.

  2. Bubble nucleation in simple and molecular liquids via the largest spherical cavity method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, Miguel A., E-mail: m.gonzalez12@imperial.ac.uk; Department of Chemistry, Imperial College London, London SW7 2AZ; Abascal, José L. F.

    2015-04-21

    In this work, we propose a methodology to compute bubble nucleation free energy barriers using trajectories generated via molecular dynamics simulations. We follow the bubble nucleation process by means of a local order parameter, defined by the volume of the largest spherical cavity (LSC) formed in the nucleating trajectories. This order parameter simplifies considerably the monitoring of the nucleation events, as compared with the previous approaches which require ad hoc criteria to classify the atoms and molecules as liquid or vapor. The combination of the LSC and the mean first passage time technique can then be used to obtain themore » free energy curves. Upon computation of the cavity distribution function the nucleation rate and free-energy barrier can then be computed. We test our method against recent computations of bubble nucleation in simple liquids and water at negative pressures. We obtain free-energy barriers in good agreement with the previous works. The LSC method provides a versatile and computationally efficient route to estimate the volume of critical bubbles the nucleation rate and to compute bubble nucleation free-energies in both simple and molecular liquids.« less

  3. Cavitation in confined water: ultra-fast bubble dynamics

    NASA Astrophysics Data System (ADS)

    Vincent, Olivier; Marmottant, Philippe

    2012-02-01

    In the hydraulic vessels of trees, water can be found at negative pressure. This metastable state, corresponding to mechanical tension, is achieved by evaporation through a porous medium. It can be relaxed by cavitation, i.e. the sudden nucleation of vapor bubbles. Harmful for the tree due to the subsequent emboli of sap vessels, cavitation is on the contrary used by ferns to eject spores very swiftly. We will focus here on the dynamics of the cavitation bubble, which is of primary importance to explain the previously cited natural phenomena. We use the recently developed method of artificial tress, using transparent hydrogels as the porous medium. Our experiments, on water confined in micrometric hydrogel cavities, show an extremely fast dynamics: bubbles are nucleated at the microsecond timescale. For cavities larger than 100 microns, the bubble ``rings'' with damped oscillations at MHz frequencies, whereas for smaller cavities the oscillations become overdamped. This rich dynamics can be accounted for by a model we developed, leading to a modified Rayleigh-Plesset equation. Interestingly, this model predicts the impossibility to nucleate bubbles above a critical confinement that depends on liquid negative pressure and corresponds to approximately 100 nm for 20 MPa tensions.

  4. Marangoni Effects on Near-Bubble Microscale Transport During Boiling of Binary Fluid Mixtures

    NASA Technical Reports Server (NTRS)

    V. Carey; Sun, C.; Carey, V. P.

    2000-01-01

    In earlier investigations, Marangoni effects were observed to be the dominant mechanism of boiling transport in 2-propanol/water mixtures under reduced gravity conditions. In this investigation we have examined the mechanisms of binary mixture boiling by exploring the transport near a single bubble generated in a binary mixture between a heated surface and cold surface. The temperature field created in the liquid around the bubble produces vaporization over the portion of its interface near the heated surface and condensation over portions of its interface near the cold surface. Experiments were conducted using different mixtures of water and 2-propanol under 1g conditions and under reduced gravity conditions aboard the KC135 aircraft. Since 2-propanol is more volatile than water, there is a lower concentration of 2-propanol near the hot surface and a higher concentration of 2-propanol near the cold plate relative to the bulk quantity. This difference in interface concentration gives rise to strong Marangoni effects that move liquid toward the hot plate in the near bubble region for 2-propanol and water mixtures. In the experiments in this study, the pressure of the test system was maintained at about 5 kPa to achieve the full spectrum of boiling behavior (nucleate boiling, critical heat flux and film boiling) at low temperature and heat flux levels. Heat transfer data and visual documentation of the bubble shape were extracted from the experimental results. In the 1-g experiments at moderate to high heat flux levels, the bubble was observed to grow into a mushroom shape with a larger top portion near the cold plate due to the buoyancy effect. The shape of the bubble was somewhat affected by the cold plate subcooling and the superheat of the heated surface. At low superheat levels for the heated surface, several active nucleation sites were observed, and the vapor stems from them merged to form a larger bubble. The generation rate of vapor is moderate in this regime and the bubble shape is cylindrical in appearance. In some instances, the bubble interface appeared to oscillate. At higher applied heat flux levels, the top of the bubble became larger, apparently to provide more condensing interface area adjacent to the cold plate. Increasing the applied heat flux ultimately led to dry-out of the heated surface, with conditions just prior to dryout corresponding to the maximum heat flux (CHF). A more stable bubble was observed when the system attained the minimum heat flux (for film boiling). In this regime, most of the surface under the bottom of the bubble was dry with nucleate boiling sometimes occuring around the contact perimeter of the bubble at heated surface. Different variations (e.g. gap between two plates, molar concentration of the liquid mixture) of the experiments were examined to determine parametric effects on the boiling process and to determine the best conditions for the KC135 reduced gravity tests. Variation of the gap was found to have a minor impact on the CHF. However, reducing the gap between the hot and cold surface was observed to significantly reduce the minimum heat flux for fixed molar concentration of 2-propanol. In the reduced gravity experiments aboard the KC135 aircraft, the bubble formed in the 6.4 mm gap was generally cylindrical or barrel shaped and it increased its extent laterally as the surface superheat increased. In reduced gravity experiments, dryout of the heated surface under the bubble was observed to occur at a lower superheated temperature than for 1g conditions. Observed features of the boiling process and heat transfer data under reduced gravity will be discussed in detail. The results of the reduced gravity experiments will also be compared to those obtained in comparable 1g experiments. In tandem with the experiments we are also developing a computational model of the transport in the liquid surrounding the bubble during the boiling process. The computational model uses a level set method to model motion of the interface. It will incorporate a macroscale treatment of the transport in the liquid gap between the surfaces and a microscale treatment of transport in the regions between the bubble interface and the solid surfaces. The features of the model will be described in detail. Future research directions suggested by the results to date will also be discussed.

  5. Comparison of cavitation bubbles evolution in viscous media

    NASA Astrophysics Data System (ADS)

    Jasikova, Darina; Schovanec, Petr; Kotek, Michal; Kopecky, Vaclav

    2018-06-01

    There have been tried many types of liquids with different ranges of viscosity values that have been tested to form a single cavitation bubble. The purpose of these experiments was to observe the behaviour of cavitation bubbles in media with different ranges of absorbance. The most of the method was based on spark to induced superheat limit of liquid. Here we used arrangement of the laser-induced breakdown (LIB) method. There were described the set cavitation setting that affects the size bubble in media with different absorbance. We visualized the cavitation bubble with a 60 kHz high speed camera. We used here shadowgraphy setup for the bubble visualization. There were observed time development and bubble extinction in various media, where the size of the bubble in the silicone oil was extremely small, due to the absorbance size of silicon oil.

  6. Drum bubbler tritium processing system

    DOEpatents

    Rule, Keith; Gettelfinger, Geoff; Kivler, Paul

    1999-01-01

    A method of separating tritium oxide from a gas stream containing tritium oxide. The gas stream containing tritium oxide is fed into a container of water having a head space above the water. Bubbling the gas stream containing tritium oxide through the container of water and removing gas from the container head space above the water. Thereafter, the gas from the head space is dried to remove water vapor from the gas, and the water vapor is recycled to the container of water.

  7. High-Temperature Annealing Induced He Bubble Evolution in Low Energy He Ion Implanted 6H-SiC

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Zhu; Li, Bing-Sheng; Zhang, Li

    2017-05-01

    Bubble evolution in low energy and high dose He-implanted 6H-SiC upon thermal annealing is studied. The < 0001> -oriented 6H-SiC wafers are implanted with 15 keV helium ions at a dose of 1× 1017 cm-2 at room temperature. The samples with post-implantation are annealed at temperatures of 1073, 1173, 1273, and 1473 K for 30 min. He bubbles in the wafers are examined via cross-sectional transmission electron microscopy (XTEM) analysis. The results present that nanoscale bubbles are almost homogeneously distributed in the damaged layer of the as-implanted sample, and no significant change is observed in the He-implanted sample after 1073 K annealing. Upon 1193 K annealing, almost full recrystallization of He-implantation-induced amorphization in 6H-SiC is observed. In addition, the diameters of He bubbles increase obviously. With continually increasing temperatures to 1273 K and 1473 K, the diameters of He bubbles increase and the number density of lattice defects decreases. The growth of He bubbles after high temperature annealing abides by the Ostwald ripening mechanism. The mean diameter of He bubbles located at depths of 120-135 nm as a function of annealing temperature is fitted in terms of a thermal activated process which yields an activation energy of 1.914+0.236 eV. Supported by the National Natural Science Foundation of China under Grant No 11475229.

  8. Jet formation of SF6 bubble induced by incident and reflected shock waves

    NASA Astrophysics Data System (ADS)

    Zhu, Yuejin; Yu, Lei; Pan, Jianfeng; Pan, Zhenhua; Zhang, Penggang

    2017-12-01

    The computational results of two different cases on the evolution of the shock-SF6 heavy bubble interaction are presented. The shock focusing processes and jet formation mechanisms are analyzed by using the high resolution of computation schemes, and the influence of reflected shock waves is also investigated. It is concluded that there are two steps in the shock focusing process behind the incident shock wave, and the density and pressure values increase distinctly when the shock focusing process is completed. The local high pressure and vorticities in the vicinity of the downstream pole can propel the formation of the jet behind the incident shock wave. In addition, the gas is with the rightward velocity before the reflected shock wave impinges on the bubble; therefore, the evolutions of the waves and the bubble are more complicated when the reflected shock wave impinges on the SF6 bubble. Furthermore, the different end wall distances would affect the deformation degree of the bubble before the interaction of the reflected shock wave; therefore, the different left jet formation processes are found after the impingement of reflected shock waves when L = 27 mm. The local high pressure zones in the vicinity of the left bubble interface and the impingement of different shock waves can induce the local gas to shift the rightward velocity to the leftward velocity, which can further promote the formation of jets.

  9. Axisymmetric bubble pinch-off at high Reynolds numbers.

    PubMed

    Gordillo, J M; Sevilla, A; Rodríguez-Rodríguez, J; Martínez-Bazán, C

    2005-11-04

    Analytical considerations and potential-flow numerical simulations of the pinch-off of bubbles at high Reynolds numbers reveal that the bubble minimum radius, rn, decreases as tau proportional to r2n sqrt[1lnr2n], where tau is the time to break up, when the local shape of the bubble near the singularity is symmetric. However, if the gas convective terms in the momentum equation become of the order of those of the liquid, the bubble shape is no longer symmetric and the evolution of the neck changes to a rn proportional to tau1/3 power law. These findings are verified experimentally.

  10. A 1,470 nm diode laser in stapedotomy: Mechanical, thermal, and acoustic effects.

    PubMed

    Koenraads, Simone P C; de Boorder, Tjeerd; Grolman, Wilko; Kamalski, Digna M A

    2017-08-01

    Multiple laser systems have been investigated for their use in stapes surgery in patients with otosclerosis. The diode 1,470 nm laser used in this study is an attractive laser system because it is easily transported and relatively inexpensive in use. This wavelength has relative high absorption in water. This study aimed to investigate the mechanical, thermal, and acoustic effects of the diode 1,470 nm laser on a stapes in an inner ear model. Experiments were performed in an inner ear model including fresh frozen human stapes. High-speed imaging with frame rates up to 2,000 frames per second (f/s) was used to visualize the effects in the vestibule during fenestration of the footplate. A special high-speed color Schlieren technique was used to study thermal effects. The sound produced by perforation was recorded by a hydrophone. Single pulse settings of the diode 1,470 nm laser were 100 ms, 3 W. Diode 1,470 nm laser fenestration showed mechanical effects with small vapor bubbles and pressure waves pushed into the vestibule. Thermal imaging visualized an increase temperature underneath the stapes footplate. Acoustic effects were limited, but larger sounds levels were reached when vaporization bubbles arise and explode in the vestibule. The diode 1,470 nm laser highly absorbs in perilymph and is capable of forming a clear fenestration in the stapes. An overlapping laser pulse will increase the risk of vapor bubbles, pressure waves, and heating the vestibule. As long as we do not know the possible damage of these effects to the inner ear function, it seems advisable to use the laser with less potential harm. Lasers Surg. Med. 49:619-624, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Removal of nanoaerosol during the bubbling of the salt melt of beryllium and lithium fluorides for the preparation of reactor radioisotopes

    NASA Astrophysics Data System (ADS)

    Zagnit'ko, A. V.; Chuvilin, D. Yu.

    2010-06-01

    The parameters of aerosol particles formed in the course of the spontaneous thermal condensation of vapors and bubbling a 66LiF-34BeF2 (mol %) eutectic salt mixture with helium have been studied. For this purpose, a vertical bubbling mode at T ≈ 900 K and an ampule device for obtaining reactor radioisotopes for medical applications were used. The rate of the bulk removal and the chemical composition of aerosols were measured. The size distribution of the aerosol particles was bimodal, and the mass concentration of the particles exceeded by far the maximum permissible concentration (MPC). The characteristics of regenerated nickel multilayer nanofilters for ultrahigh filtration of aerosols from the salt liquid melt were analyzed.

  12. Evolution of a Collection of Bubbles with Application to Wakes, Bubble Screens, and Cloud Noise

    DTIC Science & Technology

    1994-08-01

    Hydrodynamics", Santa Barbara, CA, August 1994.. 2. G.L. CHAIIINE, "Bubble Interactions with Vortices," in "Vortex Flows," S. GREEN , ed., to be published by...2. G.L. CHAHINE, "Bubble Interactions with Vortices," in "Vortex Flows," S. GREEN , ed., to be published by Klttwer Academic, (1993). 3. G.L. CHAHINE...Tip Vortei, ASME Cavitation and Multiphase Flow Forum, Washington D.C., FED-VoL 153, pp. 93-99. (24] Green , S.I., 1991, "Correlatiag Single Phase Flow

  13. Laboratory Experiments on Propagating Plasma Bubbles into Vacuum, Vacuum Magnetic Field, and Background Plasmas

    NASA Astrophysics Data System (ADS)

    Lynn, Alan G.; Zhang, Yue; Gilmore, Mark; Hsu, Scott

    2014-10-01

    We discuss the dynamics of plasma ``bubbles'' as they propagate through a variety of background media. These bubbles are formed by a pulsed coaxial gun with an externally applied magnetic field. Bubble parameters are typically ne ~1020 m-3, Te ~ 5 - 10 eV, and Ti ~ 10 - 15 eV. The structure of the bubbles can range from unmagnetized jet-like structures to spheromak-like structures with complex magnetic flux surfaces. Some of the background media the bubbles interact with are vacuum, vacuum with magnetic field, and other magnetized plasmas. These bubbles exhibit different qualitative behavior depending on coaxial gun parameters such as gas species, gun current, and gun bias magnetic field. Their behavior also depends on the parameters of the background they propagate through. Multi-frame fast camera imaging and magnetic probe data are used to characterize the bubble evolution under various conditions.

  14. Treatment of micro air bubbles in rat adipose tissue at 25 kPa altitude exposures with perfluorocarbon emulsions and nitric oxide.

    PubMed

    Randsøe, Thomas; Hyldegaard, O

    2014-01-01

    Perfluorocarbon emulsions (PFC) and nitric oxide (NO) releasing agents have on experimental basis demonstrated therapeutic properties in treating and preventing the formation of venous gas embolism as well as increased survival rate during decompression sickness from diving. The effect is ascribed to an increased solubility and transport capacity of respiratory gases in the PFC emulsion and possibly enhanced nitrogen washout through NO-increased blood flow rate and/or the removal of endothelial micro bubble nuclei precursors. Previous reports have shown that metabolic gases (i.e., oxygen in particular) and water vapor contribute to bubble growth and stabilization during altitude exposures. Accordingly, we hypothesize that the administration of PFC and NO donors upon hypobaric pressure exposures either (1) enhance the bubble disappearance rate through faster desaturation of nitrogen, or in contrast (2) promote bubble growth and stabilization through an increased oxygen supply. In anesthetized rats, micro air bubbles (containing 79% nitrogen) of 4-500 nl were injected into exposed abdominal adipose tissue. Rats were decompressed in 36 min to 25 kPa (~10,376 m above sea level) and bubbles studied for 210 min during continued oxygen breathing (FIO2 = 1). Rats were administered PFC, NO, or combined PFC and NO. In all groups, most bubbles grew transiently, followed by a stabilization phase. There were no differences in the overall bubble growth or decay between groups or when compared with previous data during oxygen breathing alone at 25 kPa. During extreme altitude exposures, the contribution of metabolic gases to bubble growth compromises the therapeutic effects of PFC and NO, but PFC and NO do not induce additional bubble growth.

  15. Isotopic fractionation of volatile species during bubble growth in magmas

    NASA Astrophysics Data System (ADS)

    Watson, E. B.

    2016-12-01

    Bubbles grow in decompressing magmas by simple expansion and also by diffusive supply of volatiles to the bubble/melt interface. The latter phenomenon is of significant geochemical interest because diffusion can fractionate isotopes, raising the possibility that the isotopic character of volatile components in bubbles may not reflect that of volatiles dissolved in the host melt over the lifetime of a bubble—even in the complete absence of equilibrium vapor/melt isotopic fractionation. None of the foregoing is conceptually new, but recent experimental studies have established the existence of isotope mass effects on diffusion in silicate melts for several elements (Li, Mg, Ca, Fe), and this finding has now been extended to the volatile (anionic) element chlorine (Fortin et al. 2016; this meeting). Knowledge of isotope mass effects on diffusion of volatile species opens the way for quantitative models of diffusive fractionation during bubble growth. Significantly different effects are anticipated for "passive" volatiles (e.g., noble gases and Cl) that are partitioned into existing bubbles but play little role in nucleation and growth, as opposed to "active" volatiles whose limited solubilities lead to bubble nucleation during magma decompression. Numerical solution of the appropriate diffusion/mass-conservation equations reveals that the isotope effect on passive volatiles partitioned into bubbles growing at a constant rate in a static system depends (predictably) upon R/D, Kd and D1/D2 (R = growth rate; D = diffusivity; Kd = bubble/melt partition coefficient; D1/D2 = diffusivity ratio of the isotopes of interest). Constant R is unrealistic, but other scenarios can be explored by including the solubility and EOS of an "active" volatile (e.g., CO2) in numerical simulations of bubble growth. For plausible decompression paths, R increases exponentially with time—leading, potentially, to larger isotopic fractionation of species partitioned into the growing bubble.

  16. Formation and ascent of nonisothermal ionospheric and chromospheric bubbles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genkin, L.G.; Erukhimov, L.M.; Myasnikov, E.N.

    1987-11-01

    The influences of nonisothermicity on the dynamics of ionospheric and chromospheric bubbles is discussed. The possibility of the existence in the ionosphere of a recombination-thermal instability, arising from the temperature dependence of the coefficient of charge exchange between molecules and atomic ions, is shown, and its influence on the formation and evolution of equatorial bubbles is analyzed. It is shown that the formation and dynamics of bubbles may depend on recombination processes and gravity, while plasma heating (predominantly by vertical electric fields) leads to the deepening and preservation of bubbles as they move to greater altitudes. The hypothesis is advancedmore » that the formation of bubbles may be connected with the ascent of clumps of molecules in ionospheric tornados.« less

  17. Evolution of the properties of helium nanobubbles during in situ annealing probed by spectrum imaging in the transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Alix, K.; David, M.-L.; Dérès, J.; Hébert, C.; Pizzagalli, L.

    2018-03-01

    The evolution of nanometric helium bubbles in silicon has been investigated using spatially resolved electron energy-loss spectroscopy during in situ annealing in the transmission electron microscope. This approach allows the simultaneous determination of both the morphology and the helium density in the bubbles at each step of the annealing. Structural modification and helium emission from bubbles of various diameters in the range 7.5 to 20 nm and various aspect ratios of 1.1 to 1.9 have been studied. We clearly show that helium emission takes place at temperatures where bubble migration had hardly started. At higher temperatures, the migration (and coalescence) of voids is clearly revealed. For helium density lower than 150 He nm-3 , the Cerofolini's model taking into account the thermodynamical properties of an ultradense fluid reproduces well the helium emission from the bubbles, leading to an activation energy of 1.8 eV. When bubbles exhibit a higher initial helium density, the Cerofolini's model fails to reproduce the helium emission kinetics. We ascribe this to the fact that helium may be in the solid phase and we propose a tentative model to take into account the properties of the solid.

  18. In-situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments

    PubMed Central

    El-Atwani, O.; Hinks, J. A.; Greaves, G.; Gonderman, S.; Qiu, T.; Efe, M.; Allain, J. P.

    2014-01-01

    The accumulation of defects, and in particular He bubbles, can have significant implications for the performance of materials exposed to the plasma in magnetic-confinement nuclear fusion reactors. Some of the most promising candidates for deployment into such environments are nanocrystalline materials as the engineering of grain boundary density offers the possibility of tailoring their radiation resistance properties. In order to investigate the microstructural evolution of ultrafine- and nanocrystalline-grained tungsten under conditions similar to those in a reactor, a transmission electron microscopy study with in situ 2 keV He+ ion irradiation at 950°C has been completed. A dynamic and complex evolution in the microstructure was observed including the formation of defect clusters, dislocations and bubbles. Nanocrystalline grains with dimensions less than around 60 nm demonstrated lower bubble density and greater bubble size than larger nanocrystalline (60–100 nm) and ultrafine (100–500 nm) grains. In grains over 100 nm, uniform distributions of bubbles and defects were formed. At higher fluences, large faceted bubbles were observed on the grain boundaries, especially on those of nanocrystalline grains, indicating the important role grain boundaries can play in trapping He and thus in giving rise to the enhanced radiation tolerance of nanocrystalline materials. PMID:24796578

  19. Pool Boiling Experiment Has Five Successful Flights

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Fran

    1997-01-01

    The Pool Boiling Experiment (PBE) is designed to improve understanding of the fundamental mechanisms that constitute nucleate pool boiling. Nucleate pool boiling is a process wherein a stagnant pool of liquid is in contact with a surface that can supply heat to the liquid. If the liquid absorbs enough heat, a vapor bubble can be formed. This process occurs when a pot of water boils. On Earth, gravity tends to remove the vapor bubble from the heating surface because it is dominated by buoyant convection. In the orbiting space shuttle, however, buoyant convection has much less of an effect because the forces of gravity are very small. The Pool Boiling Experiment was initiated to provide insight into this nucleate boiling process, which has many earthbound applications in steamgeneration power plants, petroleum plants, and other chemical plants. In addition, by using the test fluid R-113, the Pool Boiling Experiment can provide some basic understanding of the boiling behavior of cryogenic fluids without the large cost of an experiment using an actual cryogen.

  20. Investigation of chemical vapor deposition of garnet films for bubble domain memories

    NASA Technical Reports Server (NTRS)

    Besser, P. J.; Hamilton, T. N.

    1973-01-01

    The important process parameters and control required to grow reproducible device quality ferrimagnetic films by chemical vapor deposition (CVD) were studied. The investigation of the critical parameters in the CVD growth process led to the conclusion that the required reproducibility of film properties cannot be achieved with individually controlled separate metal halide sources. Therefore, the CVD growth effort was directed toward replacement of the halide sources with metallic sources with the ultimate goal being the reproducible growth of complex garnet compositions utilizing a single metal alloy source. The characterization of the YGdGaIG films showed that certain characteristics of this material, primarily the low domain wall energy and the large temperature sensitivity, severely limited its potential as a useful material for bubble domain devices. Consequently, at the time of the change from halide to metallic sources, the target film compositions were shifted to more useful materials such as YGdTmGaIG, YEuGaIG and YSmGaIG.

  1. Current Status in Cavitation Modeling

    NASA Technical Reports Server (NTRS)

    Singhal, Ashok K.; Avva, Ram K.

    1993-01-01

    Cavitation is a common problem for many engineering devices in which the main working fluid is in liquid state. In turbomachinery applications, cavitation generally occurs on the inlet side of pumps. The deleterious effects of cavitation include: lowered performance, load asymmetry, erosion and pitting of blade surfaces, vibration and noise, and reduction of the overall machine life. Cavitation models in use today range from rather crude approximations to sophisticated bubble dynamics models. Details about bubble inception, growth and collapse are relevant to the prediction of blade erosion, but are not necessary to predict the performance of pumps. An engineering model of cavitation is proposed to predict the extent of cavitation and performance. The vapor volume fraction is used as an indicator variable to quantify cavitation. A two-phase flow approach is employed with the assumption of the thermal equilibrium between liquid and vapor. At present velocity slip between the two phases is selected. Preliminary analyses of 2D flows shows qualitatively correct results.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W. H.; HEDPS and CAPT, Peking University, Beijing 100871; Wang, L. F.

    In this research, the temporal evolution of the bubble tip velocity in Rayleigh-Taylor instability (RTI) at arbitrary Atwood numbers and different initial perturbation velocities with a discontinuous profile in irrotational, incompressible, and inviscid fluids (i.e., classical RTI) is investigated. Potential models from Layzer [Astrophys. J. 122, 1 (1955)] and perturbation velocity potentials from Goncharov [Phys. Rev. Lett. 88, 134502 (2002)] are introduced. It is found that the temporal evolution of bubble tip velocity [u(t)] depends essentially on the initial perturbation velocity [u(0)]. First, when the u(0)

  3. Fluid dynamics: The subtle art of blowing bubbles

    NASA Astrophysics Data System (ADS)

    Witelski, Thomas P.

    2009-05-01

    Careful study of the moments leading up to pinch-off of air bubbles in water reveals rich and intricate dynamics controlling their evolution, and could spark re-examination of assumptions about the nature of the formation of singularities in many physical systems.

  4. Measurements of CO{sub 2} fluxes and bubbles from a tower during ASGASEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leeuw, G. de; Kunz, G.J.; Larsen, S.E.

    1994-12-31

    The Air-Sea Gas Exchange experiment ASGASEX was conducted from August 30 until October 1st from the Meetpost Noordwijk (MPN), a research tower in the North Sea at 9 km from the Dutch coast. The objective of ASGASEX was a study of parameters affecting the air-sea exchange of gases, and a comparison of experimental methods to derive the exchange coefficient for CO{sub 2}. A detailed description of the ASGASEX experiment is presented in Oost. The authors` contribution to ASGASEX was a micro-meteorological package to measure the fluxes of CO{sub 2}, momentum, heat and water vapor, and an instrument to measure themore » size distribution of bubbles just below the sea surface. In this contribution the authors report preliminary results from the CO{sub 2} flux measurements and the bubble measurements. The latter was made as part of a larger study on the influence of bubbles on gas exchange in cooperation with the University of Southampton and the University of Galway.« less

  5. Scoping studies of vapor behavior during a severe accident in a metal-fueling reactor

    NASA Astrophysics Data System (ADS)

    Spencer, B. W.; Marchaterre, J. F.

    1985-04-01

    The consequences of fuel melting and pin failures for a reactivity-insertion type accident in a sodium-cooled, pool-type reactor fueled with a metal alloy fuel were examined. The principal gas and vapor species released are shown to be Xe, Cs, and bond sodium contained within the fuel porosity. Condensation of sodium vapor as it expands into the upper sodium pool in a jet mixing regime may occur as rapidly as the vapor emerges from the disrupted core. If the predictions of rapid direct-contact condensation can be verified experimentally for the sodium system, the ability of vapor expansion to perform appreciable work on the system and the ability of an expanding vapor bubble to transport fuel and fission produce species to the cover gas region where they may be released to the containment are largely eliminated. The radionuclide species except for fission gas are largely retained within the core and sodium pool.

  6. Effects of water vapor pretreatment time and reaction temperature on CO(2) capture characteristics of a sodium-based solid sorbent in a bubbling fluidized-bed reactor.

    PubMed

    Seo, Yongwon; Jo, Sung-Ho; Ryu, Chong Kul; Yi, Chang-Keun

    2007-10-01

    CO(2) capture from flue gas using a sodium-based solid sorbent was investigated in a bubbling fluidized-bed reactor. Carbonation and regeneration temperature on CO(2) removal was determined. The extent of the chemical reactivity after carbonation or regeneration was characterized via (13)C NMR. In addition, the physical properties of the sorbent such as pore size, pore volume, and surface area after carbonation or regeneration were measured by gas adsorption method (BET). With water vapor pretreatment, near complete CO(2) removal was initially achieved and maintained for about 1-2min at 50 degrees C with 2s gas residence time, while without proper water vapor pretreatment CO(2) removal abruptly decreased from the beginning. Carbonation was effective at the lower temperature over the 50-70 degrees C temperature range, while regeneration more effective at the higher temperature over the 135-300 degrees C temperature range. To maintain the initial 90% CO(2) removal, it would be necessary to keep the regeneration temperature higher than about 135 degrees C. The results obtained in this study can be used as basic data for designing and operating a large scale CO(2) capture process with two fluidized-bed reactors.

  7. Focus Article: Theoretical aspects of vapor/gas nucleation at structured surfaces

    NASA Astrophysics Data System (ADS)

    Meloni, Simone; Giacomello, Alberto; Casciola, Carlo Massimo

    2016-12-01

    Heterogeneous nucleation is the preferential means of formation of a new phase. Gas and vapor nucleation in fluids under confinement or at textured surfaces is central for many phenomena of technological relevance, such as bubble release, cavitation, and biological growth. Understanding and developing quantitative models for nucleation is the key to control how bubbles are formed and to exploit them in technological applications. An example is the in silico design of textured surfaces or particles with tailored nucleation properties. However, despite the fact that gas/vapor nucleation has been investigated for more than one century, many aspects still remain unclear and a quantitative theory is still lacking; this is especially true for heterogeneous systems with nanoscale corrugations, for which experiments are difficult. The objective of this focus article is analyzing the main results of the last 10-20 years in the field, selecting few representative works out of this impressive body of the literature, and highlighting the open theoretical questions. We start by introducing classical theories of nucleation in homogeneous and in simple heterogeneous systems and then discuss their extension to complex heterogeneous cases. Then we describe results from recent theories and computer simulations aimed at overcoming the limitations of the simpler theories by considering explicitly the diffuse nature of the interfaces, atomistic, kinetic, and inertial effects.

  8. Determination of the dispersion constant in a constrained vapor bubble thermosyphon

    NASA Technical Reports Server (NTRS)

    Dasgupta, Sunando; Plawsky, Joel L.; Wayner, Peter C., Jr.

    1995-01-01

    The isothermal profiles of the extended meniscus in a quartz cuvette were measured in a gravitational field using an image analyzing interferometer which is based on computer enhanced video microscopy of the naturally occurring interference fringes. The experimental results for heptane and pentane menisci were analyzed using the extended Young Laplace Equation. These isothermal results characterized the interfacial force field in-siru at the start of the heat transfer experiments by quantifying the dispersion constant, which is a function of the liquid-solid system and cleaning procedures. The experimentally obtained values of the disjoining pressure and the dispersion constants were compared to that predicted from the DLP theory and good agreements were obtained. The measurements are critical to the subsequent non-isothermal experiments because one of the major variables in the heat sink capability of the Constrained Vapor Bubble Thermosyphon, CVBT, is the dispersion constant. In all previous studies of micro heat pipes the value of the dispersion constant has been 'estimated'. One of the major advantages of the current glass cell is the ability to view the extended meniscus at all times. Experimentally, we find that the extended Young-Laplace Equation is an excellent model for the force field at the solid-liquid-vapor interfaces.

  9. Sonoluminescence in Space: The Critical Role of Buoyancy in Stability and Emission Mechanisms

    NASA Technical Reports Server (NTRS)

    Thomas, Charles R.; Holt, R. Glynn; Roy, Ronald A.

    2002-01-01

    Sonoluminescence is the term used to describe the emission of light from a violently collapsing bubble. Sonoluminescence ("light from sound") is the result of extremely nonlinear pulsations of gas/vapor bubbles in liquids when subject to sufficiently high amplitude acoustic pressures. In a single collapse, a bubble's volume can be compressed more than a thousand-fold in the span of less than a microsecond. Even the simplest consideration of the thermodynamics yields pressures on the order of 10,000 ATM, and temperatures of at least 10,000K. On the face of things, it is not surprising that light should be emitted from such an extreme process. Since 1990 (the year that Gaitan discovered light from a single bubble) there has been a tremendous amount of experimental and theoretical research in stable, single-bubble sonoluminescence (SBSL), yet there remain at least four unexplained phenomena associated with SBSL in 1g: the light emission mechanism itself, the existence of anisotropies in the emitted light, the disappearance of the bubble at some critical acoustic pressure, and the appearance of quasiperiodic and chaotic oscillations in the flash timing. Gravity, in the context of the buoyant force, is implicated in all four of these. We are developing KC-135 experiments probing the effect of gravity on single bubble sonoluminescence. By determining the stability boundaries experimentally in microgravity, and measuring not only light emission but mechanical bubble response, we will be able to directly test the predictions of existing theories.

  10. An experimental investigation of bubble splitting through multiple bifurcations

    NASA Astrophysics Data System (ADS)

    Bull, Joseph L.; Eshpuniyani, Brijesh; Fowlkes, J. Brian

    2004-11-01

    A bench top vascular bifurcation model is used to investigate the splitting of long bubbles in a series of liquid-filled bifurcations. These experiments are motivated by a gas embolotherapy technique for the potential treatment of cancer by using gas emboli to infarct tumors. The gas bubbles originate as perfluorocarbon droplets that are small enough to pass through capillaries and are injected into the bloodstream. Low intensity ultrasound is used to track their motion, and they are vaporized at the desired location for treatment via high intensity ultrasound to produce gas bubbles whose volumes are approximately 125 to 150 times the droplet volume. Achieving complete tumor necrosis requires infarction of most of the tumor. Understanding the transport and splitting of the gas bubbles, which can be long enough to extend through more than one bifurcation, is necessary to design delivery strategies. The current experiments investigate the behavior of a bubble as it passes through a series of two geometrically symmetric bifurcations, for different values of effective Bond number, which depends on gravity and the positioning of the bifurcation, capillary number, and bubble volume. The experiments are designed to match the Reynolds, Bond and capillary numbers to the physiological values for arterioles, and to provide guidance in achieving uniform tumor infarction. This work is supported by NSF grant BES-0301278 and NIH grant EB003541-01.

  11. Radical production inside an acoustically driven microbubble.

    PubMed

    Stricker, Laura; Lohse, Detlef

    2014-01-01

    The chemical production of radicals inside acoustically driven bubbles is determined by the local temperature inside the bubbles and by their composition at collapse. By means of a previously validated ordinary differential equations (ODE) model [L. Stricker, A. Prosperetti, D. Lohse, Validation of an approximate model for the thermal behavior in acoustically driven bubbles, J. Acoust. Soc. Am. 130 (5) (2011) 3243-3251], based on boundary layer assumption for mass and heat transport, we study the influence of different parameters on the radical production. We perform different simulations by changing the driving frequency and pressure, the temperature of the surrounding liquid and the composition of the gas inside the bubbles. In agreement with the experimental conditions of new generation sonochemical reactors, where the bubbles undergo transient cavitation oscillations [D. F. Rivas, L. Stricker, A. Zijlstra, H. Gardeniers, D. Lohse, A. Prosperetti, Ultrasound artificially nucleated bubbles and their sonochemical radical production, Ultrason. Sonochem. 20 (1) (2013) 510-524], we mainly concentrate on the initial chemical transient and we suggest optimal working ranges for technological applications. The importance of the chemical composition at collapse is reflected in the model, including the role of entrapped water vapor. We in particular study the exothermal reactions taking place in H2 and O2 mixtures. At the exact stoichiometric mixture 2:1 the highest internal bubble temperatures are achieved. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Electron self-injection in the donut bubble wakefield

    NASA Astrophysics Data System (ADS)

    Firouzjaei, Ali Shekari; Shokri, Babak

    2018-05-01

    We investigate electron self-injection in a donut bubble wakefield driven by a Laguerre-Gauss laser pulse. The present work discusses the electron capture by modeling the analytical donut bubble field. We discuss the self-injection of the electrons from plasma for various initial conditions and then compare the results. We show that the donut bubble can trap plasma electrons forming a hollow beam. We present the phase spaces and longitudinal momentum evolution for the trapped electrons in the bubble and discuss their characteristic behaviors and stability. It will be shown that the electrons self-injected in the front are ideal for applications in which a good stability and low energy spread are essential.

  13. Effect of trichloroethylene enhancement on deposition rate of low-temperature silicon oxide films by silicone oil and ozone

    NASA Astrophysics Data System (ADS)

    Horita, Susumu; Jain, Puneet

    2017-08-01

    A low-temperature silcon oxide film was deposited at 160 to 220 °C using an atmospheric pressure CVD system with silicone oil vapor and ozone gases. It was found that the deposition rate is markedly increased by adding trichloroethylene (TCE) vapor, which is generated by bubbling TCE solution with N2 gas flow. The increase is more than 3 times that observed without TCE, and any contamination due to TCE is hardly observed in the deposited Si oxide films from Fourier transform infrared spectra.

  14. Drum bubbler tritium processing system

    DOEpatents

    Rule, K.; Gettelfinger, G.; Kivler, P.

    1999-08-17

    A method is described for separating tritium oxide from a gas stream containing tritium oxide. The gas stream containing tritium oxide is fed into a container of water having a head space above the water. The tritium oxide is separated by bubbling the gas stream containing tritium oxide through the container of water and removing gas from the container head space above the water. Thereafter, the gas from the head space is dried to remove water vapor from the gas, and the water vapor is recycled to the container of water. 2 figs.

  15. Frequency-Domain Streak Camera and Tomography for Ultrafast Imaging of Evolving and Channeled Plasma Accelerator Structures

    NASA Astrophysics Data System (ADS)

    Li, Zhengyan; Zgadzaj, Rafal; Wang, Xiaoming; Reed, Stephen; Dong, Peng; Downer, Michael C.

    2010-11-01

    We demonstrate a prototype Frequency Domain Streak Camera (FDSC) that can capture the picosecond time evolution of the plasma accelerator structure in a single shot. In our prototype Frequency-Domain Streak Camera, a probe pulse propagates obliquely to a sub-picosecond pump pulse that creates an evolving nonlinear index "bubble" in fused silica glass, supplementing a conventional Frequency Domain Holographic (FDH) probe-reference pair that co-propagates with the "bubble". Frequency Domain Tomography (FDT) generalizes Frequency-Domain Streak Camera by probing the "bubble" from multiple angles and reconstructing its morphology and evolution using algorithms similar to those used in medical CAT scans. Multiplexing methods (Temporal Multiplexing and Angular Multiplexing) improve data storage and processing capability, demonstrating a compact Frequency Domain Tomography system with a single spectrometer.

  16. Single-Shot Visualization of Evolving Laser Wakefields Using an All-Optical Streak Camera

    NASA Astrophysics Data System (ADS)

    Li, Zhengyan; Tsai, Hai-En; Zhang, Xi; Pai, Chih-Hao; Chang, Yen-Yu; Zgadzaj, Rafal; Wang, Xiaoming; Khudik, V.; Shvets, G.; Downer, M. C.

    2014-08-01

    We visualize ps-time-scale evolution of an electron density bubble—a wake structure created in atmospheric density plasma by an intense ultrashort laser pulse—from the phase "streak" that the bubble imprints onto a probe pulse that crosses its path obliquely. Phase streaks, recovered in one shot using frequency-domain interferometric techniques, reveal the formation, propagation, and coalescence of the bubble within a 3 mm long ionized helium gas target. 3D particle-in-cell simulations validate the observed density-dependent bubble evolution, and correlate it with the generation of a quasimonoenergetic ˜100 MeV electron beam. The results provide a basis for understanding optimized electron acceleration at a plasma density ne≈2×1019 cm-3, inefficient acceleration at lower density, and dephasing limits at higher density.

  17. Electrical Breakdown in Water Vapor

    NASA Astrophysics Data System (ADS)

    Škoro, N.; Marić, D.; Malović, G.; Graham, W. G.; Petrović, Z. Lj.

    2011-11-01

    In this paper investigations of the voltage required to break down water vapor are reported for the region around the Paschen minimum and to the left of it. In spite of numerous applications of discharges in biomedicine, and recent studies of discharges in water and vapor bubbles and discharges with liquid water electrodes, studies of the basic parameters of breakdown are lacking. Paschen curves have been measured by recording voltages and currents in the low-current Townsend regime and extrapolating them to zero current. The minimum electrical breakdown voltage for water vapor was found to be 480 V at a pressure times electrode distance (pd) value of around 0.6 Torr cm (˜0.8 Pa m). The present measurements are also interpreted using (and add additional insight into) the developing understanding of relevant atomic and particularly surface processes associated with electrical breakdown.

  18. Design, fabrication and testing of porous tungsten vaporizers for mercury ion thrusters

    NASA Technical Reports Server (NTRS)

    Zavesky, R.; Kroeger, E.; Kami, S.

    1983-01-01

    The dispersions in the characteristics, performance and reliability of vaporizers for early model 30-cm thrusters were investigated. The purpose of the paper is to explore the findings and to discuss the approaches that were taken to reduce the observed dispersion and present the results of a program which validated those approaches. The information that is presented includes porous tungsten materials specifications, a discussion of assembly procedures, and a description of a test program which screens both material and fabrication processes. There are five appendices providing additional detail in the areas of vaporizer contamination, nitrogen flow testing, bubble testing, porosimeter testing, and mercury purity. Four neutralizers, seven cathodes and five main vaporizers were successfully fabricated, tested, and operated on thrusters. Performance data from those devices is presented and indicates extremely repeatable results from using the design and fabrication procedures.

  19. Studies of Islands on Freely Suspended Bubbles of Smectic Liquid Crystal

    NASA Technical Reports Server (NTRS)

    Pattanaporkratana, A.; Mavel, B.; Park, C. S.; Maclennan, J. E.; Clark, N. A.

    2002-01-01

    We have constructed an optical system for observing the internal structure of freely suspended smectic liquid crystal bubbles using a reflected light microscope. Liquid crystal bubbles can have thicker circular regions (islands) which can easily be generated by shrinking the bubble diameter. The diameter of these islands is approximately 10 microns and they are typically up to five times thicker than the surrounding liquid crystal film (500 angstroms). In the Laboratory, the location of the islands is strongly influenced by gravity, which causes the majority of islands to migrate to the bottom half of the bubble. We will describe the size and thickness distributions of islands and their time evolution, and also discuss two-dimensional hydrodynamics and turbulence of smectic bubbles, the shapes of islands and holes affected by bubble vibrations, and the interactions between islands, which we have probed using optical tweezers.

  20. The growth of oscillating bubbles in an ultrasound field

    NASA Astrophysics Data System (ADS)

    Yamauchi, Risa; Yamashita, Tatsuya; Ando, Keita

    2017-11-01

    From our recent experiments to test particle removal by underwater ultrasound, dissolved gas supersaturation is found to play an important role in physical cleaning; cavitation bubble nucleation can be triggered easily by weak ultrasound under the supersaturation and mild motion of the bubbles contributes to efficient cleaning without erosion. The state of gas bubble nuclei in water is critical to the determination of a cavitation inception threshold. Under ultrasound forcing, the size of bubble nuclei is varied by the transfer of dissolved gas (i.e., rectified diffusion); the growth rate will be promoted by the supersaturation and is thus expected to contribute to cavitation activity enhancement. In the present work, we experimentally study rectified diffusion for bubbles attached at glass surfaces in an ultrasound field. We will present the evolution of bubble nuclei sizes with varying parameters such as dissolved oxygen supersaturation, and ultrasound intensity and frequency. the Research Grant of Keio Leading-edge Laboratory of Science & Technology.

  1. Anti-Bubbles

    NASA Astrophysics Data System (ADS)

    Tufaile, Alberto; Sartorelli, José Carlos

    2003-08-01

    An anti-bubble is a striking kind of bubble in liquid that seemingly does not comply the buoyancy, and after few minutes it disappears suddenly inside the liquid. Different from a simple air bubble that rises directly to the liquid surface, an anti-bubble wanders around in the fluid due to its slightly lesser density than the surrounding liquid. In spite of this odd behavior, an anti-bubble can be understood as the opposite of a conventional soap bubble in air, which is a shell of liquid surrounding air, and an anti-bubble is a shell of air surrounding a drop of the liquid inside the liquid. Two-phase flow has been a subject of interest due to its relevance to process equipment for contacting gases and liquids applied in industry. A chain of bubbles rising in a liquid formed from a nozzle is a two-phase flow, and there are certain conditions in which spherical air shells, called anti-bubbles, are produced. The purpose of this work is mainly to note the existence of anti-bubbling regime as a sequel of a bubbling system. We initially have presented the experimental apparatus. After this we have described the evolution of the bubbling regimes, and emulated the effect of bubbling coalescence with simple maps. Then is shown the inverted dripping as a consequence of the bubble coalescence, and finally the conditions for anti-bubble formation.

  2. HOW SIGNIFICANT IS RADIATION PRESSURE IN THE DYNAMICS OF THE GAS AROUND YOUNG STELLAR CLUSTERS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silich, Sergiy; Tenorio-Tagle, Guillermo, E-mail: silich@inaoep.mx

    2013-03-01

    The impact of radiation pressure on the dynamics of the gas in the vicinity of young stellar clusters is thoroughly discussed. The radiation over the thermal/ram pressure ratio time evolution is calculated explicitly and the crucial roles of the cluster mechanical power, the strong time evolution of the ionizing photon flux, and the bolometric luminosity of the exciting cluster are stressed. It is shown that radiation has only a narrow window of opportunity to dominate the wind-driven shell dynamics. This may occur only at early stages of the bubble evolution and if the shell expands into a dusty and/or amore » very dense proto-cluster medium. The impact of radiation pressure on the wind-driven shell always becomes negligible after about 3 Myr. Finally, the wind-driven model results allow one to compare the model predictions with the distribution of thermal pressure derived from X-ray observations. The shape of the thermal pressure profile then allows us to distinguish between the energy and the momentum-dominated regimes of expansion and thus conclude whether radiative losses of energy or the leakage of hot gas from the bubble interior have been significant during bubble evolution.« less

  3. Two-phase flow characteristics of liquid nitrogen in vertically upward 0.5 and 1.0 mm micro-tubes: Visualization studies

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Fu, X.

    2009-10-01

    Application of liquid nitrogen to cooling is widely employed in many fields, such as cooling of the high temperature superconducting devices, cryosurgery and so on, in which liquid nitrogen is generally forced to flow inside very small passages to maintain good thermal performance and stability. In order to have a full understanding of the flow and heat transfer characteristics of liquid nitrogen in micro-tube, high-speed digital photography was employed to acquire the typical two-phase flow patterns of liquid nitrogen in vertically upward micro-tubes of 0.531 and 1.042 mm inner diameters. It was found from the experimental results that the flow patterns were mainly bubbly flow, slug flow, churn flow and annular flow. And the confined bubble flow, mist flow, bubble condensation and flow oscillation were also observed. These flow patterns were characterized in different types of flow regime maps. The surface tension force and the size of the diameter were revealed to be the major factors affecting the flow pattern transitions. It was found that the transition boundaries of the slug/churn flow and churn/annular flow of the present experiment shifted to lower superficial vapor velocity; while the transition boundary of the bubbly/slug flow shifted to higher superficial vapor velocity compared to the results of the room-temperature fluids in the tubes with the similar hydraulic diameters. The corresponding transition boundaries moved to lower superficial velocity when reducing the inner diameter of the micro-tubes. Time-averaged void fraction and heat transfer characteristics for individual flow patterns were presented and special attention was paid to the effect of the diameter on the variation of void fraction.

  4. Molecular mechanism for cavitation in water under tension

    PubMed Central

    Menzl, Georg; Gonzalez, Miguel A.; Geiger, Philipp; Caupin, Frédéric; Abascal, José L. F.; Dellago, Christoph

    2016-01-01

    Despite its relevance in biology and engineering, the molecular mechanism driving cavitation in water remains unknown. Using computer simulations, we investigate the structure and dynamics of vapor bubbles emerging from metastable water at negative pressures. We find that in the early stages of cavitation, bubbles are irregularly shaped and become more spherical as they grow. Nevertheless, the free energy of bubble formation can be perfectly reproduced in the framework of classical nucleation theory (CNT) if the curvature dependence of the surface tension is taken into account. Comparison of the observed bubble dynamics to the predictions of the macroscopic Rayleigh–Plesset (RP) equation, augmented with thermal fluctuations, demonstrates that the growth of nanoscale bubbles is governed by viscous forces. Combining the dynamical prefactor determined from the RP equation with CNT based on the Kramers formalism yields an analytical expression for the cavitation rate that reproduces the simulation results very well over a wide range of pressures. Furthermore, our theoretical predictions are in excellent agreement with cavitation rates obtained from inclusion experiments. This suggests that homogeneous nucleation is observed in inclusions, whereas only heterogeneous nucleation on impurities or defects occurs in other experiments. PMID:27803329

  5. 40 CFR 264.1031 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with or without the application of heat to the liquid. Packed towers, spray towers, and bubble-cap.... Condenser means a heat-transfer device that reduces a thermodynamic fluid from its vapor phase to its liquid... means flanged fittings that are not covered by insulation or other materials that prevent location of...

  6. 40 CFR 264.1031 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... with or without the application of heat to the liquid. Packed towers, spray towers, and bubble-cap.... Condenser means a heat-transfer device that reduces a thermodynamic fluid from its vapor phase to its liquid... means flanged fittings that are not covered by insulation or other materials that prevent location of...

  7. 40 CFR 264.1031 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with or without the application of heat to the liquid. Packed towers, spray towers, and bubble-cap.... Condenser means a heat-transfer device that reduces a thermodynamic fluid from its vapor phase to its liquid... means flanged fittings that are not covered by insulation or other materials that prevent location of...

  8. 40 CFR 264.1031 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... with or without the application of heat to the liquid. Packed towers, spray towers, and bubble-cap.... Condenser means a heat-transfer device that reduces a thermodynamic fluid from its vapor phase to its liquid... means flanged fittings that are not covered by insulation or other materials that prevent location of...

  9. 40 CFR 264.1031 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... with or without the application of heat to the liquid. Packed towers, spray towers, and bubble-cap.... Condenser means a heat-transfer device that reduces a thermodynamic fluid from its vapor phase to its liquid... means flanged fittings that are not covered by insulation or other materials that prevent location of...

  10. Gas depletion through single gas bubble diffusive growth and its effect on subsequent bubbles

    NASA Astrophysics Data System (ADS)

    Moreno Soto, Alvaro; Prosperetti, Andrea; Lohse, Detlef; van der Meer, Devaraj; Physics of Fluid Group Collaboration; MCEC Netherlands CenterMultiscale Catalytic Energy Conversion Collaboration

    2016-11-01

    In weakly supersaturated mixtures, bubbles are known to grow quasi-statically as diffusion-driven mass transfer governs the process. In the final stage of the evolution, before detachment, there is an enhancement of mass transfer, which changes from diffusion to natural convection. Once the bubble detaches, it leaves behind a gas-depleted area. The diffusive mass transfer towards that region cannot compensate for the amount of gas which is taken away by the bubble. Consequently, the consecutive bubble will grow in an environment which contains less gas than for the previous one. This reduces the local supersaturation of the mixture around the nucleation site, leading to a reduced bubble growth rate. We present quantitative experimental data on this effect and the theoretical model for depletion during the bubble growth rate. This work was supported by the Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC), an NWO Gravitation programme funded by the Ministry of Education, Culture and Science of the government of the Netherlands.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Shenyang; Joshi, Vineet; Lavender, Curt A.

    Experiments showed that recrystallization dramatically speeds up the gas bubble swelling kinetics in metallic UMo fuels. In this work a recrystallization model is developed to study the effect of microstructures and radiation conditions on recrystallization kinetics. The model integrates the rate theory of intra-granular gas bubble and interstitial loop evolution and a phase field model of recrystallization zone evolution. A fast passage method is employed to describe one dimensional diffusion of interstitials which have diffusivity several order magnitude larger than that of the fission gas Xe. With the model, the effect of grain sizes on recrystallization kinetics is simulated.

  12. Radiation-pressure-driven dust waves inside bursting interstellar bubbles

    NASA Astrophysics Data System (ADS)

    Ochsendorf, B. B.; Verdolini, S.; Cox, N. L. J.; Berné, O.; Kaper, L.; Tielens, A. G. G. M.

    2014-06-01

    Massive stars drive the evolution of the interstellar medium through their radiative and mechanical energy input. After their birth, they form "bubbles" of hot gas surrounded by a dense shell. Traditionally, the formation of bubbles is explained through the input of a powerful stellar wind, even though direct evidence supporting this scenario is lacking. Here we explore the possibility that interstellar bubbles seen by the Spitzer- and Herschel space telescopes, blown by stars with log (L/L⊙) ≲ 5.2, form and expand because of the thermal pressure that accompanies the ionization of the surrounding gas. We show that density gradients in the natal cloud or a puncture in the swept-up shell lead to an ionized gas flow through the bubble into the general interstellar medium, which is traced by a dust wave near the star, which demonstrates the importance of radiation pressure during this phase. Dust waves provide a natural explanation for the presence of dust inside H II bubbles, offer a novel method to study dust in H II regions and provide direct evidence that bubbles are relieving their pressure into the interstellar medium through a champagne flow, acting as a probe of the radiative interaction of a massive star with its surroundings. We explore a parameter space connecting the ambient density, the ionizing source luminosity, and the position of the dust wave, while using the well studied H II bubbles RCW 120 and RCW 82 as benchmarks of our model. Finally, we briefly examine the implications of our study for the environments of super star clusters formed in ultraluminous infrared galaxies, merging galaxies, and the early Universe, which occur in very luminous and dense environments and where radiation pressure is expected to dominate the dynamical evolution.

  13. Characterization of Methane Hydrate Growth from Aqueous Solution by Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chou, I.; Lu, W.; Yuan, S.; Li, J.; Burruss, R. C.

    2009-12-01

    We observed the growth of methane hydrate from aqueous solution in fused silica capillaries near room temperature (RT) in two different experiments. In the first, we sealed methane together with ~2 wt% Na2SO4 solution in a fused silica capillary (0.3x0.3 mm cross-section with 0.05x0.05 mm cavity, and ~6 cm long), using the method of Chou et al. (2008, Geochim. Cosmochim. Acta, 72, 2517). The hydrate, liquid, and vapor coexist at ~23 °C and ~36.5 MPa. The behavior of two methane bubbles, one of which was enclosed by a hydrate crystal and the other near a small hydrate crystal, was monitored. These two bubbles are the only methane sources near the hydrate crystals. The system was slowly cooled to RT (~21 °C), and images were recorded continuously for a period of ~1.5 hours, together with temperature and time information. The images show the exposed bubble decreased in size, while both of the hydrate crystals increased in size, which was caused by the transfer of methane in solution. According to our previous report (Fig. 8 of Lu et al., 2008, Geochim. Cosmochim. Acta, 72, 412), the concentrations of methane in the solution near the exposed bubble are higher than those near the hydrate crystals. Most of the dissolved methane, transferred down the concentration gradient, was consumed and encaged in the nearby crystal, with only a small fraction of methane being consumed by the more distant crystal. Eventually, the exposed vapor bubble was totally consumed, but the bubble shielded by the hydrate crystal remained. This shows hydrate can grow from dissolved methane in the solution far away from free gas. In the 2nd experiment, we sealed methane, together with pure H2O and glass beads (0.04 to 0.07 mm in dia.), in a fused silica capillary (0.3 mm OD, 0.1 mm ID, and ~6 cm long) using the method cited above. We separated the vapor phase from the solution and glass beads by centrifuging the sealed capsule, then imposed a T gradient to the sample by cooling the solution end of the capsule to ~0 °C. It is difficult to recognize the nucleation and growth of hydrate crystals under a microscope, but Raman spectroscopy was used to identify and map the distribution of hydrate crystals along the capsule. Near the original vapor-aqueous phase boundary (V-A B), Raman signals show 100% methane hydrate. However, the lack of dissolved methane in the solution further away from the V-A B limited the growth of hydrate, as indicated by the increase in water/hydrate ratio when the Raman spectrum, which combines signals from both water and hydrate, was collected further away from the V-A B. We are investigating other possible ways to map the distribution of hydrate crystals around the glass beads, including x-ray computed tomography, to understand the nature of methane hydrate crystals that grow around grains in marine sediments from pore water. These observations will improve our ability to interpret the geophysical responses (e.g., electric and acoustic signals) obtained from hydrate-bearing sediments in the field.

  14. Bubble deformations and segmented flows in corrugated microchannels at large capillary numbers

    NASA Astrophysics Data System (ADS)

    Sauzade, Martin; Cubaud, Thomas

    2018-03-01

    We experimentally investigate the interaction between individual bubble deformations and collective distortions of segmented flows in nonlinear microfluidic geometries. Using highly viscous carrier fluids, we study the evolution of monodisperse trains of gas bubbles from a square to a smoothly corrugated microchannel characterized with a series of extensions and constrictions along the flow path. The hysteresis in the bubble shape between accelerating and decelerating flow fields is shown to increase with the capillary number. Measurements of instantaneous bubble velocities reveal the presence of a capillary pull that produces a nonmonotonic behavior for the front velocity in accelerating flow regions. Functional relationships are developed for predicting the morphology and dynamics of viscous multiphase flow patterns at the pore scale.

  15. Fundamental study of FC-72 pool boiling surface temperature fluctuations and bubble behavior

    NASA Astrophysics Data System (ADS)

    Griffin, Alison R.

    A heater designed to monitor surface temperature fluctuations during pool boiling experiments while the bubbles were simultaneously being observed has been fabricated and tested. The heat source was a transparent indium tin oxide (ITO) layer commercially deposited on a fused quartz substrate. Four copper-nickel thin film thermocouples (TFTCs) on the heater surface measured the surface temperature, while a thin layer of sapphire or fused silica provided electrical insulation between the TFTCs and the ITO. The TFTCs were micro-fabricated using the liftoff process to deposit the nickel and copper metal films. The TFTC elements were 50 mum wide and overlapped to form a 25 mum by 25 mum junction. TFTC voltages were recorded by a DAQ at a sampling rate of 50 kHz. A high-speed CCD camera recorded bubble images from below the heater at 2000 frames/second. A trigger sent to the camera by the DAQ synchronized the bubble images and the surface temperature data. As the bubbles and their contact rings grew over the TFTC junction, correlations between bubble behavior and surface temperature changes were demonstrated. On the heaters with fused silica insulation layers, 1--2°C temperature drops on the order of 1 ms occurred as the contact ring moved over the TFTC junction during bubble growth and as the contact ring moved back over the TFTC junction during bubble departure. These temperature drops during bubble growth and departure were due to microlayer evaporation and liquid rewetting the heated surface, respectively. Microlayer evaporation was not distinguished as the primary method of heat removal from the surface. Heaters with sapphire insulation layers did not display the measurable temperature drops observed with the fused silica heaters. The large thermal diffusivity of the sapphire compared to the fused silica was determined as the reason for the absence of these temperature drops. These findings were confirmed by a comparison of temperature drops in a 2-D simulation of a bubble growing over the TFTC junction on both the sapphire and fused silica heater surfaces. When the fused silica heater produced a temperature drop of 1.4°C, the sapphire heater produced a drop of only 0.04°C under the same conditions. These results verified that the lack of temperature drops present in the sapphire data was due to the thermal properties of the sapphire layer. By observing the bubble departure frequency and site density on the heater, as well as the bubble departure diameter, the contribution of nucleate boiling to the overall heat removal from the surface could be calculated. These results showed that bubble vapor generation contributed to approximately 10% at 1 W/cm2, 23% at 1.75 W/cm2, and 35% at 2.9 W/cm 2 of the heat removed from a fused silica heater. Bubble growth and contact ring growth were observed and measured from images obtained with the high-speed camera. Bubble data recorded on a fused silica heater at 3 W/cm2, 4 W/cm2, and 5 W/cm 2 showed that bubble departure diameter and lifetime were negligibly affected by the increase in heat flux. Bubble and contact ring growth rates demonstrated significant differences when compared on the fused silica and sapphire heaters at 3 W/cm2. The bubble departure diameters were smaller, the bubble lifetimes were longer, and the bubble departure frequency was larger on the sapphire heater, while microlayer evaporation was faster on the fused silica heater. Additional considerations revealed that these differences may be due to surface conditions as well as differing thermal properties. Nucleate boiling curves were recorded on the fused silica and sapphire heaters by adjusting the heat flux input and monitoring the local surface temperature with the TFTCs. The resulting curves showed a temperature drop at the onset of nucleate boiling due to the increase in heat transfer coefficient associated with bubble nucleation. One of the TFTC locations on the sapphire heater frequently experienced a second temperature drop at a higher heat flux. When the heat flux was started from 1 W/cm2 instead of zero or returned to zero only momentarily, the temperature overshoot did not occur. In these cases sufficient vapor remained in the cavities to initiate boiling at a lower superheat.

  16. The life and death of film bubbles

    NASA Astrophysics Data System (ADS)

    Poulain, S.; Villermaux, E.; Bourouiba, L.

    2017-11-01

    Following its burst, the fragmentation of a large bubble (film bubble) at the air-water interface can release hundreds of micrometer-sized film-drops in the air we breathe. This mechanism of droplet formation is one of the most prominent sources of sea spray. Indoor or outdoor, pathogens from contaminated water are transported by these droplets and have also been linked to respiratory infection. The lifetime and thickness of bubbles govern the number and size of the droplets they produce. Despite these important implications, little is known about the factors influencing the life and death of surface film bubbles. In particular, the fundamental physical mechanisms linking bubble aging, thinning, and lifetime remain poorly understood. To address this gap, we present the results of an extensive investigation of the aging of film-drop-producing bubbles in various ambient air, water composition, and temperature conditions. We present and validate a generalized physical picture and model of bubble cap thickness evolution. The model and physical picture are linked to the lifetime of bubbles via a series of cap rupture mechanisms of increasing efficiency.

  17. Vapor pressure and vapor fractionation of silicate melts of tektite composition

    USGS Publications Warehouse

    Walter, Louis S.; Carron, M.K.

    1964-01-01

    The total vapor pressure of Philippine tektite melts of approximately 70 per cent silica has been determined at temperatures ranging from 1500 to 2100??C. This pressure is 190 ?? 40 mm Hg at 1500??C, 450 ?? 50 mm at 1800??C and 850 ?? 70 mm at 2100?? C. Determinations were made by visually observing the temperature at which bubbles began to form at a constant low ambient pressure. By varying the ambient pressure, a boiling point curve was constructed. This curve differs from the equilibrium vapor pressure curve due to surface tension effects. This difference was evaluated by determining the equilibrium bubble size in the melt and calculating the pressure due to surface tension, assuming the latter to be 380 dyn/cm. The relative volatility from tektite melts of the oxides of Na, K, Fe, Al and Si has been determined as a function of temperature, total pressure arid roughly, of oxygen fugacity. The volatility of SiO2 is decreased and that of Na2O and K2O is increased in an oxygen-poor environment. Preliminary results indicate that volatilization at 2100??C under atmospheric pressure caused little or no change in the percentage Na2O and K2O. The ratio Fe3 Fe2 of the tektite is increased in ambient air at a pressure of 9 ?? 10-4 mm Hg (= 106.5 atm O2, partial pressure) at 2000??C. This suggests that tektites were formed either at lower oxygen pressures or that they are a product of incomplete oxidation of parent material with a still lower ferricferrous ratio. ?? 1964.

  18. Sonoluminescence in Space: The Critical Role of Buoyancy in Stability and Emission Mechanisms

    NASA Technical Reports Server (NTRS)

    Holt, R. Glynn; Roy, Ronald A.

    1999-01-01

    Sonoluminescence is the term used to describe the emission of light from a violently collapsing bubble. Sonoluminescence ("light from sound") is the result of extremely nonlinear pulsations of gas/vapor bubbles in liquids when subject to sufficiently high amplitude acoustic pressures. In a single collapse, a bubble's volume can be compressed more than a thousand-fold in the span of less than a microsecond. Even the simplest consideration of the thermodynamics yields pressures on the order of 10,000 ATM. and temperatures of at least 10,000 K. On the face of things, it is not surprising that light should be emitted from such an extreme process. Since 1990 (the year that Gaitan discovered light from a single bubble) there has been a tremendous amount of experimental and theoretical research in stable, single-bubble sonoluminescence. Yet there remain four fundamental mysteries associated with this phenomenon: 1) the light emission mechanism itself; 2) the mechanism for anomalous mass flux stability; 3) the disappearance of the bubble at some critical acoustic pressure; and 4) the appearance of quasiperiodic and chaotic oscillations in the flash timing. Gravity, in the context of the buoyant force, is implicated in all four of these unexplained phenomena. We are developing microgravity experiments probing the effect of gravity on single bubble sonoluminescence. By determining the stability boundaries experimentally in microgravity, and measuring not only light emission but mechanical bubble response, we will be able to directly test the unambiguous predictions of existing theories. By exploiting the microgravity environment we will gain new knowledge impossible to obtain in earth-based labs which will enable explanations for the above mysteries. We will also be in a position to make new discoveries about bubbles which emit light.

  19. Investigation of the interaction dynamics of a pair of laser-induced bubbles generated at the same time through double-exposure strobe method and numerical simulations

    NASA Astrophysics Data System (ADS)

    Han, Bing; Liu, Liu; Ni, Xiao-Wu

    2017-08-01

    In order to understand the interaction dynamics of a pair of laser-induced bubbles, a double-exposure strobe photography experimental setup is build up to study the temporal evolution of the bubble pairs and to measure the transient bubble-interface moving speed. The interaction mechanisms of the bubble pairs are discussed together with the numerical results obtained through OpenFOAM. It is shown that the direction and the velocity of the jetting could be controlled by the relative size and the relative initiation distance of the bubble pair, when the bubbles are generated at the same time, i.e., in-phase. The liquid jet is considered to be a penetrating jet. The jet is originated from the smaller bubble and clearly protruding outside of the bigger bubble. The parameter space of the relative size and the initiation distance of the bubble pair allowing the formation of the penetrating jet are very narrow. It is concluded that the liquid jet induced by the bubble interactions resulted from the collapse and the rebound of the smaller bubble nearby the bigger bubble. This is defined as the "catapult effect." Such a directional liquid transportation is a promising tool as a micro-injector or a micro-pump. The investigation results could be also supplementary to the understandings of the bubble dynamics.

  20. Frequency-Domain Streak Camera and Tomography for Ultrafast Imaging of Evolving and Channeled Plasma Accelerator Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Zhengyan; Zgadzaj, Rafal; Wang Xiaoming

    2010-11-04

    We demonstrate a prototype Frequency Domain Streak Camera (FDSC) that can capture the picosecond time evolution of the plasma accelerator structure in a single shot. In our prototype Frequency-Domain Streak Camera, a probe pulse propagates obliquely to a sub-picosecond pump pulse that creates an evolving nonlinear index 'bubble' in fused silica glass, supplementing a conventional Frequency Domain Holographic (FDH) probe-reference pair that co-propagates with the 'bubble'. Frequency Domain Tomography (FDT) generalizes Frequency-Domain Streak Camera by probing the 'bubble' from multiple angles and reconstructing its morphology and evolution using algorithms similar to those used in medical CAT scans. Multiplexing methods (Temporalmore » Multiplexing and Angular Multiplexing) improve data storage and processing capability, demonstrating a compact Frequency Domain Tomography system with a single spectrometer.« less

  1. Pulsed laser triggered high speed microfluidic switch

    NASA Astrophysics Data System (ADS)

    Wu, Ting-Hsiang; Gao, Lanyu; Chen, Yue; Wei, Kenneth; Chiou, Pei-Yu

    2008-10-01

    We report a high-speed microfluidic switch capable of achieving a switching time of 10 μs. The switching mechanism is realized by exciting dynamic vapor bubbles with focused laser pulses in a microfluidic polydimethylsiloxane (PDMS) channel. The bubble expansion deforms the elastic PDMS channel wall and squeezes the adjacent sample channel to control its fluid and particle flows as captured by the time-resolved imaging system. A switching of polystyrene microspheres in a Y-shaped channel has also been demonstrated. This ultrafast laser triggered switching mechanism has the potential to advance the sorting speed of state-of-the-art microscale fluorescence activated cell sorting devices.

  2. Modeling the Interaction between AFM Tips and Pinned Surface Nanobubbles.

    PubMed

    Guo, Zhenjiang; Liu, Yawei; Xiao, Qianxiang; Schönherr, Holger; Zhang, Xianren

    2016-01-26

    Although the morphology of surface nanobubbles has been studied widely with different AFM modes, AFM images may not reflect the real shapes of the nanobubbles due to AFM tip-nanobubble interactions. In addition, the interplay between surface nanobubble deformation and induced capillary force has not been well understood in this context. In our work we used constraint lattice density functional theory to investigate the interaction between AFM tips and pinned surface nanobubbles systematically, especially concentrating on the effects of tip hydrophilicity and shape. For a hydrophilic tip contacting a nanobubble, its hydrophilic nature facilitates its departure from the bubble surface, displaying a weak and intermediate-range attraction. However, when the tip squeezes the nanobubble during the approach process, the nanobubble shows an elastic effect that prevents the tip from penetrating the bubble, leading to a strong nanobubble deformation and repulsive interactions. On the contrary, a hydrophobic tip can easily pierce the vapor-liquid interface of the nanobubble during the approach process, leading to the disappearance of the repulsive force. In the retraction process, however, the adhesion between the tip and the nanobubble leads to a much stronger lengthening effect on nanobubble deformation and a strong long-range attractive force. The trends of force evolution from our simulations agree qualitatively well with recent experimental AFM observations. This favorable agreement demonstrates that our model catches the main intergradient of tip-nanobubble interactions for pinned surface nanobubbles and may therefore provide important insight into how to design minimally invasive AFM experiments.

  3. Physical analysis of the process of cavitation in xylem sap.

    PubMed

    Shen, Fanyi; Gao, Rongfu; Liu, Wenji; Zhang, Wenjie

    2002-06-01

    Recent studies have confirmed that cavitation in xylem is caused by air bubbles. We analyzed expansion of a preexistent bubble adhering to a crack in a conduit wall and a bubble formed by the passage of air through a pore of a pit membrane, a process known as air seeding. We consider that there are two equilibrium states for a very small air bubble in the xylem: one is temporarily stable with a bubble radius r1 at point s1 on the curve P(r) relating pressure within the bubble (P) with bubble radius (r); the other is unstable with a bubble radius r2 at point s2 on Pr (where r1 < r2). In each equilibrium state, the bubble collapse pressure (2sigma/r, where sigma is surface tension of water) is balanced by the pressure difference across its surface. In the case of a bubble from a crack in a conduit wall, which is initially at point s1, expansion will occur steadily as water potential decreases. The bubble will burst only if the xylem pressure drops below a threshold value. A formula giving the threshold pressure for bubble bursting is proposed. In the case of an air seed entering a xylem conduit through a pore in a pit membrane, its initial radius may be r2 (i.e., the radius of the pore by which the air seed entered the vessel) at point s2 on Pr. Because the bubble is in an unstable equilibrium when entering the conduit, it can either expand or contract to point s1. As water vaporizes into the air bubble at s2, P rises until it exceeds the gas pressure that keeps the bubble in equilibrium, at which point the bubble will burst and induce a cavitation event in accordance with the air-seeding hypothesis. However, other possible perturbations could make the air-seeded bubble contract to s1, in which case the bubble will burst at a threshold pressure proposed for a bubble expanding from a crack in a conduit wall. For this reason some cavitation events may take place at a xylem threshold pressure (Pl'*) other than that determined by the formula, Plp'* = -2sigma/rp, proposed by Sperry and Tyree (1988), which is applicable only to air-seeded bubbles at s2. The more general formula we propose for calculating the threshold pressure for bubble breaking is consistent with the results of published experiments.

  4. Bubble statistics in aged wet foams and the Fokker-Planck equation

    NASA Astrophysics Data System (ADS)

    Zimnyakov, D. A.; Yuvchenko, S. A.; Tzyipin, D. V.; Samorodina, T. V.

    2018-04-01

    Results of the experimental study of changes in the bubble size statistics during aging of wet foams are discussed. It is proposed that the evolution of the bubble radii distributions can be described in terms of the one dimensional Fokker- Planck equation. The empirical distributions of the bubble radii exhibit a self-similarity of their shapes and can be transformed to a time-independent form using the radius renormalization. Analysis of obtained data allows us to suggest that the drift term of the Fokker-Planck equation dominates in comparison with the diffusion term in the case of aging of isolated quasi-stable wet foams.

  5. Unified model of plasma formation, bubble generation and shock wave emission in water for fs to ns laser pulses (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liang, Xiao-Xuan; Freidank, Sebastian; Linz, Norbert; Paltauf, Günther; Zhang, Zhenxi; Vogel, Alfred

    2017-03-01

    We developed modeling tools for optical breakdown events in water that span various phases reaching from breakdown initiation via solvated electron generation, through laser induced-plasma formation and temperature evolution in the focal spot to the later phases of cavitation bubble dynamics and shock wave emission and applied them to a large parameter space of pulse durations, wavelengths, and pulse energies. The rate equation model considers the interplay of linear absorption, photoionization, avalanche ionization and recombination, traces thermalization and temperature evolution during the laser pulse, and portrays the role of thermal ionization that becomes relevant for T > 3000 K. Modeling of free-electron generation includes recent insights on breakdown initiation in water via multiphoton excitation of valence band electrons into a solvated state at Eini = 6.6 eV followed by up-conversion into the conduction band level that is located at 9.5 eV. The ability of tracing the temperature evolution enabled us to link the model of laser-induced plasma formation with a hydrodynamic model of plasma-induced pressure evolution and phase transitions that, in turn, traces bubble generation and dynamics as well as shock wave emission. This way, the amount of nonlinear energy deposition in transparent dielectrics and the resulting material modifications can be assessed as a function of incident laser energy. The unified model of plasma formation and bubble dynamics yields an excellent agreement with experimental results over the entire range of investigated pulse durations (femtosecond to nanosecond), wavelengths (UV to IR) and pulse energies.

  6. A model for acoustic vaporization dynamics of a bubble/droplet system encapsulated within a hyperelastic shell.

    PubMed

    Lacour, Thomas; Guédra, Matthieu; Valier-Brasier, Tony; Coulouvrat, François

    2018-01-01

    Nanodroplets have great, promising medical applications such as contrast imaging, embolotherapy, or targeted drug delivery. Their functions can be mechanically activated by means of focused ultrasound inducing a phase change of the inner liquid known as the acoustic droplet vaporization (ADV) process. In this context, a four-phases (vapor + liquid + shell + surrounding environment) model of ADV is proposed. Attention is especially devoted to the mechanical properties of the encapsulating shell, incorporating the well-known strain-softening behavior of Mooney-Rivlin material adapted to very large deformations of soft, nearly incompressible materials. Various responses to ultrasound excitation are illustrated, depending on linear and nonlinear mechanical shell properties and acoustical excitation parameters. Different classes of ADV outcomes are exhibited, and a relevant threshold ensuring complete vaporization of the inner liquid layer is defined. The dependence of this threshold with acoustical, geometrical, and mechanical parameters is also provided.

  7. The effect of gravity-induced pressure gradient on bubble luminescence

    NASA Astrophysics Data System (ADS)

    Supponen, Outi; Obreschkow, Danail; Kobel, Philippe; Dorsaz, Nicolas; Tinguely, Marc; Farhat, Mohamed

    2014-11-01

    The violent collapse of a bubble can heat up its gaseous contents to temperatures exceeding those on the sun's surface, resulting in a short luminescence flash. Occurring at the very moment of the collapse, luminescence must be highly sensitive to the bubble geometry at the preceding final stage. This represents an important feature as any pressure anisotropy in the surrounding liquid will result in a deformation of an initially spherical bubble, inducing a micro-jet that pierces the bubble and makes it experience a toroidal collapse. We therefore present these as complementary phenomena by investigating the link between jets and luminescence of laser-generated single bubbles. Through ultra-high-speed imaging, the micro-jet formation and evolution of a single bubble are observed with unprecedented detail, whilst the bubble light emission is analyzed by means of a spectrometer. The bubble energy and the micro-jet size are controlled by adjusting the laser-pulse and by varying the gravity level aboard ESA parabolic flights, respectively. We here provide systematic evidence on how bubble-jets suppress luminescence in a considerable manner, even in normal gravity where the jet is barely observable. We conclude that gravity must be accounted for in accurate models of luminescence.

  8. Vapor-liquid equilibria for an R134a/lubricant mixture: Measurements and equation-of-state modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, M.L.; Holcomb, C.D.; Outcalt, S.L.

    2000-07-01

    The authors measured bubble point pressures and coexisting liquid densities for two mixtures of R-134a and a polyolester (POE) lubricant. The mass fraction of the lubricant was approximately 9% and 12%, and the temperature ranged from 280 K to 355 K. The authors used the Elliott, Suresh, and Donohue (ESD) equation of state to model the bubble point pressure data. The bubble point pressures were represented with an average absolute deviation of 2.5%. A binary interaction parameter reduced the deviation to 1.4%. The authors also applied the ESD model to other R-134a/POE lubricant data in the literature. As the concentrationmore » of the lubricant increased, the performance of the model deteriorated markedly. However, the use of a single binary interaction parameter reduced the deviations significantly.« less

  9. Analysis of bubble plume spacing produced by regular breaking waves

    NASA Astrophysics Data System (ADS)

    Phaksopa, J.; Haller, M. C.

    2012-12-01

    The breaking wave process in the ocean is a significant mechanism for energy dissipation, splash, and entrainment of air. The relationship between breaking waves and bubble plume characteristics is still a mystery because of the complexity of the breaking wave mechanism. This study takes a unique approach to quantitatively analyze bubble plumes produced by regular breaking waves. Various previous studies have investigated the formation and the characteristics of bubble plumes using either field observations, laboratory experiments, or numerical modeling However, in most observational work the plume characteristics have been studied from the underneath the water surface. In addition, though numerical simulations are able to include much of the important physics, the computational costs are high and bubble plume events are only simulated for short times. Hence, bubble plume evolution and generation throughout the surf zone is not yet computationally feasible. In the present work we take a unique approach to analyzing bubble plumes. These data may be of use for model/data comparisons as numerical simulations become more tractable. The remotely sensed video data from freshwater breaking waves in the OSU Large Wave Flume (Catalan and Haller, 2008) are analyzed. The data set contains six different regular wave conditions and the video intensity data are used to estimate the spacing of plume events (wavenumber spectrum), to calculate the spectral width (i.e. the range of plume spacing), and to relate these with the wave conditions. The video intensity data capture the evolution of the wave passage over a fixed bed arranged in a bar-trough morphology. Bright regions represent the moving path or trajectory coincident with bubble plume of each wave. It also shows the bubble foam were generated and released from wave crest shown in the form of bubble tails with almost regular spacing for each wave. The bubble tails show that most bubbles did not move along with wave. For the estimation of wavenumber spectrum, the density is high at low wavenumber and it decreases toward high wavenumber. The average spectrum bandwidth was estimated and represented as the bubble event spacing for each run. It is found that its magnitude varies with wave conditions range from 8.81 - 11.82 and is related to the waveheight. Additionally, the calculated wavenumbers from power density function vary in the range of 0.80 - 1.58 meters-1. It is found that the bubble wavenumbers are mostly higher than the wavenumbers calculated from the linear wave theory between 0.2L-0.7L. In other words, the bubble plume length does not exceed the progressive wavelength.

  10. Studies on the Tempo of Bubble Formation in Recently Cavitated Vessels: A Model to Predict the Pressure of Air Bubbles1

    PubMed Central

    Wang, Yujie; Pan, Ruihua; Tyree, Melvin T.

    2015-01-01

    A cavitation event in a vessel replaces water with a mixture of water vapor and air. A quantitative theory is presented to argue that the tempo of filling of vessels with air has two phases: a fast process that extracts air from stem tissue adjacent to the cavitated vessels (less than 10 s) and a slow phase that extracts air from the atmosphere outside the stem (more than 10 h). A model was designed to estimate how water tension (T) near recently cavitated vessels causes bubbles in embolized vessels to expand or contract as T increases or decreases, respectively. The model also predicts that the hydraulic conductivity of a stem will increase as bubbles collapse. The pressure of air bubbles trapped in vessels of a stem can be predicted from the model based on fitting curves of hydraulic conductivity versus T. The model was validated using data from six stem segments each of Acer mono and the clonal hybrid Populus 84K (Populus alba × Populus glandulosa). The model was fitted to results with root mean square error less than 3%. The model provided new insight into the study of embolism formation in stem tissue and helped quantify the bubble pressure immediately after the fast process referred to above. PMID:25907963

  11. Studies on the tempo of bubble formation in recently cavitated vessels: a model to predict the pressure of air bubbles.

    PubMed

    Wang, Yujie; Pan, Ruihua; Tyree, Melvin T

    2015-06-01

    A cavitation event in a vessel replaces water with a mixture of water vapor and air. A quantitative theory is presented to argue that the tempo of filling of vessels with air has two phases: a fast process that extracts air from stem tissue adjacent to the cavitated vessels (less than 10 s) and a slow phase that extracts air from the atmosphere outside the stem (more than 10 h). A model was designed to estimate how water tension (T) near recently cavitated vessels causes bubbles in embolized vessels to expand or contract as T increases or decreases, respectively. The model also predicts that the hydraulic conductivity of a stem will increase as bubbles collapse. The pressure of air bubbles trapped in vessels of a stem can be predicted from the model based on fitting curves of hydraulic conductivity versus T. The model was validated using data from six stem segments each of Acer mono and the clonal hybrid Populus 84 K (Populus alba × Populus glandulosa). The model was fitted to results with root mean square error less than 3%. The model provided new insight into the study of embolism formation in stem tissue and helped quantify the bubble pressure immediately after the fast process referred to above. © 2015 American Society of Plant Biologists. All Rights Reserved.

  12. C-O-H-S magmatic fluid system in shrinkage bubbles of melt inclusions

    NASA Astrophysics Data System (ADS)

    Robidoux, P.; Frezzotti, M. L.; Hauri, E. H.; Aiuppa, A.

    2016-12-01

    Magmatic volatiles include multiple phases in the C-O-H-S system of shrinkage bubbles for which a conceptual model is still unclear during melt inclusion formation [1,2,3,4]. The present study aims to qualitatively explore the evolution of the volatile migration, during and after the formation of the shrinkage bubble in melt inclusions trapped by olivines from Holocene to present at San Cristóbal volcano (Nicaragua), Central American Volcanic Arc (CAVA). Combined scanning electron microscope (SEM) and Raman spectroscopy observations allow to define the mineral-fluid phases inside typical shrinkage bubbles at ambient temperature. The existence of residual liquid water is demonstrated in the shrinkage bubbles of naturally quenched melt inclusion and this water could represents the principal agent for chemical reactions with other dissolved ionic species (SO42-, CO32-, etc.) and major elements (Mg, Fe, Cu, etc.) [4,5]. With the objective of following the cooling story of the bubble-inclusion system, the new methodological approach here estimate the interval of equilibrium temperatures for each SEM-Raman identified mineral phase (carbonates, hydrous carbonates, sulfurs, sulfates, etc.). Finally, two distinct mechanisms are proposed to describe the evolution of this heterogeneous fluid system in bubble samples at San Cristóbal which imply a close re-examination for similar volcanoes in subduction zone settings: (1) bubbles are already contracted and filled by volatiles by diffusion processes from the glass and leading to a C-O-H-S fluid-glass reaction enriched in Mg-Fe-Cu elements (2) bubbles are formed by oversaturation of the volatiles from the magma which is producing an immiscible metal-rich fluid. [1]Moore et al. (2015). Am. Mineral. 100, 806-823 [2]Wallace et al. (2015). Am. Mineral. 100, 787-794 [3]Lowenstern (2015). Am. Mineral. 100, 672-673 [4]Esposito, et al. (2016). Am. Mineral. 101, 1691-1708 [5]Kamenetsky et al. (2001). Earth Planet. Sci. Lett. 184, 685-702

  13. Ventless pressure control of two-phase propellant tanks in microgravity.

    PubMed

    Kassemi, Mohammad; Panzarella, Charles H

    2004-11-01

    This work studies pressurization and pressure control of a large liquid hydrogen storage tank. A finite element model is developed that couples a lumped thermodynamic formulation for the vapor region with a complete solution of the Navier-Stokes and energy equations for the flow and temperature fields in the liquid. Numerical results show that buoyancy effects are strong, even in microgravity, and can reposition a vapor bubble that is initially at the center of the tank to a region near the tank wall in a relatively short time. Long-term tank pressurization with the vapor bubble at the tank wall shows that after an initial transient lasting about a week, the final rate of pressure increase agrees with a purely thermodynamic analysis of the entire tank. However, the final pressure levels are quite different from thermodynamic predictions. Numerical results also show that there is significant thermal stratification in the liquid due to the effects of natural convection. A subcooled jet is used to provide simultaneous cooling and mixing in order to bring the tank pressure back down to its initial value. Three different jet speeds are examined. Although the lowest jet speed is ineffective at controlling the pressure because of insufficient penetration into the liquid region, the highest jet speed is shown to be quite effective at disrupting thermal stratification and reducing the tank pressure in reasonable time.

  14. Ventless pressure control of two-phase propellant tanks in microgravity

    NASA Technical Reports Server (NTRS)

    Kassemi, Mohammad; Panzarella, Charles H.

    2004-01-01

    This work studies pressurization and pressure control of a large liquid hydrogen storage tank. A finite element model is developed that couples a lumped thermodynamic formulation for the vapor region with a complete solution of the Navier-Stokes and energy equations for the flow and temperature fields in the liquid. Numerical results show that buoyancy effects are strong, even in microgravity, and can reposition a vapor bubble that is initially at the center of the tank to a region near the tank wall in a relatively short time. Long-term tank pressurization with the vapor bubble at the tank wall shows that after an initial transient lasting about a week, the final rate of pressure increase agrees with a purely thermodynamic analysis of the entire tank. However, the final pressure levels are quite different from thermodynamic predictions. Numerical results also show that there is significant thermal stratification in the liquid due to the effects of natural convection. A subcooled jet is used to provide simultaneous cooling and mixing in order to bring the tank pressure back down to its initial value. Three different jet speeds are examined. Although the lowest jet speed is ineffective at controlling the pressure because of insufficient penetration into the liquid region, the highest jet speed is shown to be quite effective at disrupting thermal stratification and reducing the tank pressure in reasonable time.

  15. Enhancing the aggressive intensity of hydrodynamic cavitation through a Venturi tube by increasing the pressure in the region where the bubbles collapse

    NASA Astrophysics Data System (ADS)

    Soyama, H.; Hoshino, J.

    2016-04-01

    In this paper, we used a Venturi tube for generating hydrodynamic cavitation, and in order to obtain the optimum conditions for this to be used in chemical processes, the relationship between the aggressive intensity of the cavitation and the downstream pressure where the cavitation bubbles collapse was investigated. The acoustic power and the luminescence induced by the bubbles collapsing were investigated under various cavitating conditions, and the relationships between these and the cavitation number, which depends on the upstream pressure, the downstream pressure at the throat of the tube and the vapor pressure of the test water, was found. It was shown that the optimum downstream pressure, i.e., the pressure in the region where the bubbles collapse, increased the aggressive intensity by a factor of about 100 compared to atmospheric pressure without the need to increase the input power. Although the optimum downstream pressure varied with the upstream pressure, the cavitation number giving the optimum conditions was constant for all upstream pressures.

  16. 40 CFR 63.428 - Reporting and recordkeeping.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; pressure or vacuum change, mm of water; time period of test; number of leaks found with instrument; and... facility as follows: (1) Annual certification testing performed under § 63.425(e) and railcar bubble leak...)); Annual Certification Test—Internal Vapor Valve (§ 63.425(e)(2)); Leak Detection Test (§ 63.425(f...

  17. Characteristics of plasma in culture medium generated by positive pulse voltage and effects of organic compounds on its characteristics

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Sato, T.; Yoshino, D.

    2016-12-01

    We describe a positive pulse voltage method for generating plasma in culture medium with a composition similar to biological fluids. We also describe the plasma’s characteristics, liquid quality, and the effect of organic compounds in the culture medium on the plasma characteristics through comparisons to a solution containing inorganic salts at the same concentrations as in the culture medium. Light emission with Na and OH spectra was observed within a vapor bubble produced by Joule heating at the tip of the electrode. A downward thermal flow and shock wave were caused by the behavior of the vapor bubble. The culture medium pH gradually increased from 7.9 to 8.3 over the discharge time of 300 s. H2O2 was generated 1.1 mg l-1 in the culture medium after discharge for 300 s, and this value was 0.5 mg l-1 lower than the inorganic salts solution which does not contain organic compounds. This study provides important data that will help facilitate more widespread application of plasma medicine.

  18. Explosive Boiling at Very Low Heat Fluxes: A Microgravity Phenomenon

    NASA Technical Reports Server (NTRS)

    Hasan, M. M.; Lin, C. S.; Knoll, R. H.; Bentz, M. D.

    1993-01-01

    The paper presents experimental observations of explosive boiling from a large (relative to bubble sizes) flat heating surface at very low heat fluxes in microgravity. The explosive boiling is characterized as either a rapid growth of vapor mass over the entire heating surface due to the flashing of superheated liquid or a violent boiling spread following the appearance of single bubbles on the heating surface. Pool boiling data with saturated Freon 113 was obtained in the microgravity environment of the space shuttle. The unique features of the experimental results are the sustainability of high liquid superheat for long periods and the occurrence of explosive boiling at low heat fluxes (0.2 to 1.2 kW/sq m). For a heat flux of 1.0 kW/sq m a wall superheat of 17.9 degrees C was attained in ten minutes of heating. This was followed by an explosive boiling accompanied with a pressure spike and a violent bulk liquid motion. However, at this heat flux the vapor blanketing the heating surface could not be sustained. Stable nucleate boiling continued following the explosive boiling.

  19. Numerical Modelling and Simulation of Chemical Reactions in a Nano-Pulse Discharged Bubble for Water Treatment

    NASA Astrophysics Data System (ADS)

    He, Yuchen; Satoshi, Uehara; Hidemasa, Takana; Hideya, Nishiyama

    2016-09-01

    A zero-dimensional model to simulate a nano-pulse-discharged bubble in water was developed. The model consists of gas and liquid phases corresponding to the inside and outside of the bubble, respectively. The diffusions of chemical species from the gas to the liquid phase through the bubble interface was also investigated. The initial gas is Ar, but includes a little H2O and O2 in the bubble. The time evolution of the OH concentration in the liquid phase was mainly investigated as an important species for water treatment. It was shown that OH was generated in the bubble and then diffused into the liquid. With the application of a continuous nano-pulse discharge, more OH radicals were generated as the frequency increased at a low voltage for a given power consumption. supported partially by Japan Society for the Promotion of Science (JSPS) KAKENHI (No. 26249015)

  20. Thermodynamics of ultra-sonic cavitation bubbles in flotation ore processes

    NASA Astrophysics Data System (ADS)

    Royer, J. J.; Monnin, N.; Pailot-Bonnetat, N.; Filippov, L. O.; Filippova, I. V.; Lyubimova, T.

    2017-07-01

    Ultra-sonic enhanced flotation ore process is a more efficient technique for ore recovery than classical flotation method. A classical simplified analytical Navier-Stokes model is used to predict the effect of the ultrasonic waves on the cavitations bubble behaviour. Then, a thermodynamics approach estimates the temperature and pressure inside a bubble, and investigates the energy exchanges between flotation liquid and gas bubbles. Several gas models (including ideal gas, Soave-Redlich-Kwong, and Peng-Robinson) assuming polytropic transformations (from isothermal to adiabatic) are used to predict the evolution of the internal pressure and temperature inside the bubble during the ultrasonic treatment, together with the energy and heat exchanges between the gas and the surrounding fluid. Numerical simulation illustrates the suggest theory. If the theory is verified experimentally, it predicts an increase of the temperature and pressure inside the bubbles. Preliminary ultrasonic flotation results performed on a potash ore seem to confirm the theory.

  1. Bubble bursting at an interface

    NASA Astrophysics Data System (ADS)

    Kulkarni, Varun; Sajjad, Kumayl; Anand, Sushant; Fezzaa, Kamel

    2017-11-01

    Bubble bursting is crucial to understanding the life span of bubbles at an interface and more importantly the nature of interaction between the bulk liquid and the outside environment from the point of view of chemical and biological material transport. The dynamics of the bubble as it rises from inside the liquid bulk to its disappearance on the interface after bursting is an intriguing process, many aspects of which are still being explored. In our study, we make detailed high speed imaging measurements to examine carefully the hole initiation and growth in bursting bubbles that unearth some interesting features of the process. Previous analyses available in literature are revisited based on our novel experimental visualizations. Using a combination of experiments and theory we investigate the role of various forces during the rupturing process. This work aims to further our current knowledge of bubble dynamics at an interface with an aim of predicting better the bubble evolution from its growth to its eventual integration with the liquid bulk.

  2. Synchrotron quantification of ultrasound cavitation and bubble dynamics in Al-10Cu melts.

    PubMed

    Xu, W W; Tzanakis, I; Srirangam, P; Mirihanage, W U; Eskin, D G; Bodey, A J; Lee, P D

    2016-07-01

    Knowledge of the kinetics of gas bubble formation and evolution under cavitation conditions in molten alloys is important for the control casting defects such as porosity and dissolved hydrogen. Using in situ synchrotron X-ray radiography, we studied the dynamic behaviour of ultrasonic cavitation gas bubbles in a molten Al-10 wt%Cu alloy. The size distribution, average radius and growth rate of cavitation gas bubbles were quantified under an acoustic intensity of 800 W/cm(2) and a maximum acoustic pressure of 4.5 MPa (45 atm). Bubbles exhibited a log-normal size distribution with an average radius of 15.3 ± 0.5 μm. Under applied sonication conditions the growth rate of bubble radius, R(t), followed a power law with a form of R(t)=αt(β), and α=0.0021 &β=0.89. The observed tendencies were discussed in relation to bubble growth mechanisms of Al alloy melts. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Bubble Combustion

    NASA Technical Reports Server (NTRS)

    Corrigan, Jackie

    2004-01-01

    A method of energy production that is capable of low pollutant emissions is fundamental to one of the four pillars of NASA s Aeronautics Blueprint: Revolutionary Vehicles. Bubble combustion, a new engine technology currently being developed at Glenn Research Center promises to provide low emissions combustion in support of NASA s vision under the Emissions Element because it generates power, while minimizing the production of carbon dioxide (CO2) and nitrous oxides (NOx), both known to be Greenhouse gases. and allows the use of alternative fuels such as corn oil, low-grade fuels, and even used motor oil. Bubble combustion is analogous to the inverse of spray combustion: the difference between bubble and spray combustion is that spray combustion is spraying a liquid in to a gas to form droplets, whereas bubble combustion involves injecting a gas into a liquid to form gaseous bubbles. In bubble combustion, the process for the ignition of the bubbles takes place on a time scale of less than a nanosecond and begins with acoustic waves perturbing each bubble. This perturbation causes the local pressure to drop below the vapor pressure of the liquid thus producing cavitation in which the bubble diameter grows, and upon reversal of the oscillating pressure field, the bubble then collapses rapidly with the aid of the high surface tension forces acting on the wall of the bubble. The rapid and violent collapse causes the temperatures inside the bubbles to soar as a result of adiabatic heating. As the temperatures rise, the gaseous contents of the bubble ignite with the bubble itself serving as its own combustion chamber. After ignition, this is the time in the bubble s life cycle where power is generated, and CO2, and NOx among other species, are produced. However, the pollutants CO2 and NOx are absorbed into the surrounding liquid. The importance of bubble combustion is that it generates power using a simple and compact device. We conducted a parametric study using CAVCHEM, a computational model developed at Glenn, that simulates the cavitational collapse of a single bubble in a liquid (water) and the subsequent combustion of the gaseous contents inside the bubble. The model solves the time-dependent, compressible Navier-Stokes equations in one-dimension with finite-rate chemical kinetics using the CHEMKIN package. Specifically, parameters such as frequency, pressure, bubble radius, and the equivalence ratio were varied while examining their effect on the maximum temperature, radius, and chemical species. These studies indicate that the radius of the bubble is perhaps the most critical parameter governing bubble combustion dynamics and its efficiency. Based on the results of the parametric studies, we plan on conducting experiments to study the effect of ultrasonic perturbations on the bubble generation process with respect to the bubble radius and size distribution.

  4. Numerical Modeling of the Photothermal Processing for Bubble Forming around Nanowire in a Liquid

    PubMed Central

    Chaari, Anis; Giraud-Moreau, Laurence

    2014-01-01

    An accurate computation of the temperature is an important factor in determining the shape of a bubble around a nanowire immersed in a liquid. The study of the physical phenomenon consists in solving a photothermic coupled problem between light and nanowire. The numerical multiphysic model is used to study the variations of the temperature and the shape of the created bubble by illumination of the nanowire. The optimization process, including an adaptive remeshing scheme, is used to solve the problem through a finite element method. The study of the shape evolution of the bubble is made taking into account the physical and geometrical parameters of the nanowire. The relation between the sizes and shapes of the bubble and nanowire is deduced. PMID:24795538

  5. Eternal inflation, bubble collisions, and the disintegration of the persistence of memory

    NASA Astrophysics Data System (ADS)

    Freivogel, Ben; Kleban, Matthew; Nicolis, Alberto; Sigurdson, Kris

    2009-08-01

    We compute the probability distribution for bubble collisions in an inflating false vacuum which decays by bubble nucleation. Our analysis generalizes previous work of Guth, Garriga, and Vilenkin to the case of general cosmological evolution inside the bubble, and takes into account the dynamics of the domain walls that form between the colliding bubbles. We find that incorporating these effects changes the results dramatically: the total expected number of bubble collisions in the past lightcone of a typical observer is N ~ γ Vf/Vi , where γ is the fastest decay rate of the false vacuum, Vf is its vacuum energy, and Vi is the vacuum energy during inflation inside the bubble. This number can be large in realistic models without tuning. In addition, we calculate the angular position and size distribution of the collisions on the cosmic microwave background sky, and demonstrate that the number of bubbles of observable angular size is NLS ~ (Ωk)1/2N, where Ωk is the curvature contribution to the total density at the time of observation. The distribution is almost exactly isotropic.

  6. Dynamic Bubble Surface Tension Measurements in Northwest Atlantic Seawater

    NASA Astrophysics Data System (ADS)

    Kieber, D. J.; Long, M. S.; Keene, W. C.; Kinsey, J. D.; Frossard, A. A.; Beaupre, S. R.; Duplessis, P.; Maben, J. R.; Lu, X.; Chang, R.; Zhu, Y.; Bisgrove, J.

    2017-12-01

    Numerous reports suggest that most organic matter (OM) associated with newly formed primary marine aerosol (PMA) originates from the sea-surface microlayer. However, surface-active OM rapidly adsorbs onto bubble surfaces in the water column and is ejected into the atmosphere when bubbles burst at the air-water interface. Here we present dynamic surface tension measurements of bubbles produced in near surface seawater from biologically productive and oligotrophic sites and in deep seawater collected from 2500 m in the northwest Atlantic. In all cases, the surface tension of bubble surfaces decreased within seconds after the bubbles were exposed to seawater. These observations demonstrate that bubble surfaces are rapidly saturated by surfactant material scavenged from seawater. Spatial and diel variability in bubble surface evolution indicate corresponding variability in surfactant concentrations and/or composition. Our results reveal that surface-active OM is found throughout the water column, and that at least some surfactants are not of recent biological origin. Our results also support the hypothesis that the surface microlayer is a minor to negligible source of OM associated with freshly produced PMA.

  7. Spatial and temporal observation of phase-shift nano-emulsions assisted cavitation and ablation during focused ultrasound exposure.

    PubMed

    Qiao, Yangzi; Zong, Yujin; Yin, Hui; Chang, Nan; Li, Zhaopeng; Wan, Mingxi

    2014-09-01

    Phase-shift nano-emulsions (PSNEs) with a small initial diameter in nanoscale have the potential to leak out of the blood vessels and to accumulate at the target point of tissue. At desired location, PSNEs can undergo acoustic droplet vaporization (ADV) process, change into gas bubbles and enhance focused ultrasound efficiency. The threshold of droplet vaporization and influence of acoustic parameters have always been research hotspots in order to spatially control the potential of bioeffects and optimize experimental conditions. However, when the pressure is much higher than PSNEs' vaporization threshold, there were little reports on their cavitation and thermal effects. In this study, PSNEs induced cavitation and ablation effects during pulsed high-intensity focused ultrasound (HIFU) exposure were investigated, including the spatial and temporal information and the influence of acoustic parameters. Two kinds of tissue-mimicking phantoms with uniform PSNEs were prepared because of their optical transparency. The Sonoluminescence (SL) method was employed to visualize the cavitation activities. And the ablation process was observed as the heat deposition could produce white lesion. Precisely controlled HIFU cavitation and ablation can be realized at a relatively low input power. But when the input power was high, PSNEs can accelerate cavitation and ablation in pre-focal region. The cavitation happened layer by layer advancing the transducer. While the lesion appeared to be separated into two parts, one in pre-focal region stemmed from one point and grew quickly, the other in focal region grew much more slowly. The influence of duty cycle has also been examined. Longer pulse off time would cause heat transfer to the surrounding media, and generate smaller lesion. On the other hand, this would give outer layer bubbles enough time to dissolve, and inner bubbles can undergo violent collapse and emit bright light. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Pyroclast/snow interactions and thermally driven slurry formation. Part 2: Experiments and theoretical extension to polydisperse tephra

    USGS Publications Warehouse

    Walder, J.S.

    2000-01-01

    Erosion of snow by pyroclastic flows and surges presumably involves mechanical scour, but there may be thermally driven phenomena involved as well. To investigate this possibility, layers of hot (up to 400??C), uniformly sized, fine- to medium-grained sand were emplaced vertically onto finely shaved ice ('snow'); thus there was no relative shear motion between sand and snow and no purely mechanical scour. In some cases large vapor bubbles, commonly more than 10 mm across, rose through the sand layer, burst at the surface, and caused complete convective overturn of the sand, which then scoured and mixed with snow and transformed into a slurry. In other cases no bubbling occurred and the sand passively melted its way downward into the snow as a wetting front moved upward into the sand. A continuum of behaviors between these two cases was observed. Vigorous bubbling and convection were generally favored by high temperature, small grain size, and small layer thickness. A physically based theory of heat- and mass transfer at the pyroclast/snow interface, developed in Part 1 of this paper, does a good job of explaining the observations as a manifestation of unstable vapor-driven fluidization. The theory, when extrapolated to the behavior of actual, poorly sorted pyroclastic flow sediments, leads to the prediction that the observed 'thermal-scour' phenomenon should also occur for many real pyroclastic flows passing over snow. 'Thermal scour' is therefore likely to be involved in the generation of lahars.

  9. Numerical Modeling of Liquid-Vapor Phase Change

    NASA Technical Reports Server (NTRS)

    Esmaeeli, Asghar; Arpaci, Vedat S.

    2001-01-01

    We implemented a two- and three-dimensional finite difference/front tracking technique to solve liquid-vapor phase change problems. The mathematical and the numerical features of the method were explained in great detail in our previous reports, Briefly, we used a single formula representation which incorporated jump conditions into the governing equations. The interfacial terms were distributed as singular terms using delta functions so that the governing equations would be the same as conventional conservation equations away from the interface and in the vicinity of the interface they would provide correct jump conditions. We used a fixed staggered grid to discretize these equations and an unstructured grid to explicitly track the front. While in two dimensions the front was simply a connection of small line segments, in three dimensions it was represented by a connection of small triangular elements. The equations were written in conservative forms and during the course of computations we used regriding to control the size of the elements of the unstructured grid. Moreover, we implemented a coalescence in two dimensions which allowed the merging of different fronts or two segments of the same front when they were sufficiently close. We used our code to study thermocapillary migration of bubbles, burst of bubbles at a free surface, buoyancy-driven interactions of bubbles, evaporation of drops, rapid evaporation of an interface, planar solidification of an undercooled melt, dendritic solidification, and a host of other problems cited in the reference.

  10. Cavitation inception by the backscattering of pressure waves from a bubble interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahira, Hiroyuki, E-mail: takahira@me.osakafu-u.ac.jp; Ogasawara, Toshiyuki, E-mail: oga@me.osakafu-u.ac.jp; Mori, Naoto, E-mail: su101064@edu.osakafu-u.ac.jp

    2015-10-28

    The secondary cavitation that occurs by the backscattering of focused ultrasound from a primary cavitation bubble caused by the negative pressure part of the ultrasound (Maxwell, et al., 2011) might be useful for the energy exchange due to bubble oscillations in High Intensity Focused Ultrasound (HIFU). The present study is concerned with the cavitation inception by the backscattering of ultrasound from a bubble. In the present experiment, a laser-induced bubble which is generated by a pulsed focused laser beam with high intensity is utilized as a primary cavitation bubble. After generating the bubble, focused ultrasound is emitted to the bubble.more » The acoustic field and the bubble motion are observed with a high-speed video camera. It is confirmed that the secondary cavitation bubble clouds are generated by the backscattering from the laser-induced bubble. The growth of cavitation bubble clouds is analyzed with the image processing method. The experimental results show that the height and width of the bubble clouds grow in stepwise during their evolution. The direct numerical simulations are also conducted for the backscattering of incident pressure waves from a bubble in order to evaluate a pressure field near the bubble. It is shown that the ratio of a bubble collapse time t{sub 0} to a characteristic time of wave propagation t{sub S}, η = t{sub 0}/t{sub s}, is an important determinant for generating negative pressure region by backscattering. The minimum pressure location by the backscattering in simulations is in good agreement with the experiment.« less

  11. Bubble Dynamics on a Heated Surface

    NASA Technical Reports Server (NTRS)

    Kassemi, Mohammad; Rashidnia, Nasser

    1996-01-01

    In this work, we study the combined thermocapillary and natural convective flow generated by a bubble on a heated solid surface. The interaction between gas and vapor bubbles with the surrounding fluid is of interest for both space and ground-based processing. On earth, the volumetric forces are dominant, especially, in apparatuses with large volume to surface ratio. But in the reduced gravity environment of orbiting spacecraft, surface forces become more important and the effects of Marangoni convection are easily unmasked. In order to delineate the roles of the various interacting phenomena, a combined numerical-experimental approach is adopted. The temperature field is visualized using Mach-Zehnder interferometry and the flow field is observed by a laser sheet flow visualization technique. A finite element numerical model is developed which solves the two-dimensional momentum and energy equations and includes the effects of bubble surface deformation. Steady state temperature and velocity fields predicted by the finite element model are in excellent qualitative agreement with the experimental results. A parametric study of the interaction between Marangoni and natural convective flows including conditions pertinent to microgravity space experiments is presented. Numerical simulations clearly indicate that there is a considerable difference between 1-g and low-g temperature and flow fields induced by the bubble.

  12. Length Scale and Gravity Effects on Microgravity Boiling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; McQuillen, John; Balombin, Joe

    2002-01-01

    Boiling is a complex phenomenon where hydrodynamics, heat transfer, mass transfer, and interfacial phenomena are tightly interwoven. An understanding of boiling and critical heat flux in microgravity environments is of importance to space based hardware and processes such as heat exchange, cryogenic fuel storage and transportation, electronic cooling, and material processing due to the large amounts of heat that can be removed with relatively little increase in temperature. Although research in this area has been performed in the past four decades, the mechanisms by which heat is removed from surfaces in microgravity are still unclear. In earth gravity, buoyancy is an important parameter that affects boiling heat transfer through the rate at which bubbles are removed from the surface. A simple model describing the bubble departure size based on a quasistatic force balance between buoyancy and surface tension is given by the Fritz [I] relation: Bo(exp 1/2) = 0.0208 theta where Bo is the ratio between buoyancy and surface tension forces. For small, rapidly growing bubbles, inertia associated with the induced liquid motion can also cause bubble departure. In microgravity, the magnitude of effects related to natural convection and buoyancy are small and physical mechanisms normally masked by natural convection in earth gravity such as Marangoni convection can substantially influence the boiling and vapor bubble dynamics. CHF (critical heat transfer) is also substantially affected by microgravity. In 1 g environments, Bo has been used as a correlating parameter for CHF. Zuber's CHF model for an infinite horizontal surface assumes that vapor columns formed by the merger of bubbles become unstable due to a Helmholtz instability blocking the supply of liquid to the surface. The jets are spaced lambda(sub D) apart, where lambda(sub D) = 2pi square root of 3[(sigma)/(g(rho(sub l) - rho(sub v)](exp 1/2) = 2pi square root of 3 L Bo(exp -1/2) = square root of 3 lambda(sub c) and is the wavelength that amplifies most rapidly. The critical wavelength, lambda(sub c), is the wavelength below which a vapor layer underneath a liquid layer is stable. For heaters with Bo smaller than about 3 (heaters smaller than lambda(sub D)), the above model is not applicable, and surface tension effects dominate. Bubble coalescence is thought to be the mechanism for CHF under these conditions. Small Bo can result by decreasing the size of a heater in earth gravity, or by operating a large heater in a lower gravity environment. In the microgravity of space, even large heaters can have low Bo, and models based on Helmholtz instability should not be applicable. The macrolayer model of Haramura and Katto is dimensionally equivalent to Zuber's model and has the same dependence on gravity, so it should not be applicable as well. The goal of this work is to determine how boiling heat transfer mechanisms in a low-g environment are altered from those at higher gravity levels. Boiling data using a microheater array was obtained under gravity environments ranging from 1.8 g to 0.02 g with heater sizes ranging from 2.7 mm to 1 mm. The boiling behavior for 2.7 mm at 0.02 g looked quite similar to boiling on the 1 mm heater at 1 g-the formation of a large primary bubble surrounded by smaller satellite bubbles was observed under both conditions. The similarity suggests that for heaters smaller than some fraction of I(sub c), coalescence and surface tension dominate boiling heat transfer. It also suggests that microgravity boiling can be studied by studying boiling on very small heaters.

  13. Development of bubble microstructure in ErT2 films during aging

    NASA Astrophysics Data System (ADS)

    Bond, Gillian M.; Browning, James F.; Snow, Clark S.

    2010-04-01

    Helium bubbles form in metal tritide films as tritium decays into H3e, influencing mechanical properties and long-term film stability. The bubble nucleation and growth mechanisms comprise an active research area, but there has been only one previous systematic experimental study of helium bubble growth in metal tritides, on zirconium tritides. There have been no such studies on tritides such as ErT2 that form platelike bubbles and lack a secondary bubble population on a network of line dislocations, and yet such a study is needed to inform the modeling of helium bubble microstructure development in a broader range of metal tritides. Transmission electron microscopy has been used to study the growth and evolution of helium bubbles in ErT2 films over a four-year period. The results have been used to test the present models of helium bubble nucleation and growth in metal tritides, particularly those forming platelike bubbles. The results support the models of Trinkaus and Cowgill. The observations of nonuniform bubble thicknesses and the pattern of grain-boundary bubble formation, however, indicate that these models could be strengthened by closer attention to details of interfacial energy. It is strongly recommended that efforts be made (either experimentally or by calculation) to determine anisotropy of tritide/helium interfacial energy, both for clean, stoichiometric interfaces, and also allowing for such factors as nonstoichiometry and segregation.

  14. Nano scale dynamics of bubble nucleation in confined liquid subjected to rapid cooling: Effect of solid-liquid interfacial wettability

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammad Nasim; Rabbi, Kazi Fazle; Mukut, K. M.; Tamim, Saiful Islam; Faisal, A. H. M.

    2017-06-01

    This study focuses on the occurrence of bubble nucleation in a liquid confined in a nano scale confinement and subjected to rapid cooling at one of its wall. Due to the very small size scale of the present problem, we adopt the molecular dynamics (MD) approach. The liquid (Argon) is confined within two solid (Platinum) walls. The temperature of the upper wall of the confinement is maintained at 90 K while the lower wall is being cooled rapidly to 50 K from initial equilibrium temperature of 90 K within 0.1 ns. This results in the nucleation and formation of nanobubbles in the liquid. The pattern of bubble nucleation has been studied for three different conditions of solid-liquid interfacial wettability such as hydrophilic, hydrophobic and neutral. Behavior of bubble nucleation is significantly different in the three case of solid-liquid interfacial wettability. In case of the hydrophobic confinement (weakly adsorbing), the liquid cannot achieve deeper metastability; vapor layers appear immediately on the walls. In case of the neutral confinement (moderately adsorbing), bubble nucleation is promoted by the walls where the nucleation is heterogeneous. In case of the hydrophilic walls (strongly adsorbing) bubbles are developed inside the liquid; that is the nucleation process is homogeneous. The variation in bubble nucleation under different conditions of surface wettability has been studied by the analysis of number density distribution, spatial temperature distribution, spatial number density distribution and heat flux through the upper and lower walls of the confinement. The present study indicates that the variation of heat transfer efficiency due to different surface wettability has significant effect on the size, shape and location of bubble nucleation in case rapid cooling of liquid in nano confinement.

  15. Convective mass transfer around a dissolving bubble

    NASA Astrophysics Data System (ADS)

    Duplat, Jerome; Grandemange, Mathieu; Poulain, Cedric

    2017-11-01

    Heat or mass transfer around an evaporating drop or condensing vapor bubble is a complex issue due to the interplay between the substrate properties, diffusion- and convection-driven mass transfer, and Marangoni effects, to mention but a few. In order to disentangle these mechanisms, we focus here mainly on the convective mass transfer contribution in an isothermal mass transfer problem. For this, we study the case of a millimetric carbon dioxide bubble which is suspended under a substrate and dissolved into pure liquid water. The high solubility of CO2 in water makes the liquid denser and promotes a buoyant-driven flow at a high (solutal) Rayleigh number (Ra˜104 ). The alteration of p H allows the concentration field in the liquid to be imaged by laser fluorescence enabling us to measure both the global mass flux (bubble volume, contact angle) and local mass flux around the bubble along time. After a short period of mass diffusion, where the boundary layer thickens like the square root of time, convection starts and the CO2 is carried by a plume falling at constant velocity. The boundary layer thickness then reaches a plateau which depends on the bubble cross section. Meanwhile the plume velocity scales like (dV /d t )1 /2 with V being the volume of the bubble. As for the rate of volume loss, we recover a constant mass flux in the diffusion-driven regime followed by a decrease in the volume V like V2 /3 after convection has started. We present a model which agrees well with the bubble dynamics and discuss our results in the context of droplet evaporation, as well as high Rayleigh convection.

  16. Influence of alkane and perfluorocarbon vapors on adsorbed surface layers and spread insoluble monolayers of surfactants, proteins and lipids.

    PubMed

    Fainerman, V B; Aksenenko, E V; Miller, R

    2017-06-01

    The influence of hexane vapor in the air atmosphere on the surface tension of water and solutions of C 10 EO 8 , C n TAB and proteins are presented. For dry air, a fast and strong decrease of surface tension of water was observed. In humid air, the process is slower and the surface tension higher. There are differences between the results obtained by the maximum bubble pressure, pendant drop and emerging bubble methods, which are discussed in terms of depletion and initial surface load. The surface tension of aqueous solutions of β-сasein (BCS), β-lactoglobulin (BLG) and human serum albumin (HSA) at the interfaces with air and air-saturated hexane vapor were measured. The results indicate that the equilibrium surface tension in the hexane vapor atmosphere is considerably lower (at 13-20mN/m) as compared to the values at the interface with pure air. A reorientation model is proposed assuming several states of adsorbed molecules with different molar area values. The newly developed theoretical model is used to describe the effect of alkane vapor in the gas phase on the surface tension. This model assumes that the first layer is composed of surfactant (or protein) molecules mixed with alkane, and the second layer is formed by alkane molecules only. The processing of the experimental data for the equilibrium surface tension for the C 10 EO 8 and BCS solutions results in a perfect agreement between the observed and calculated values. The co-adsorption mechanism of dipalmitoyl phosphatidyl choline (DPPC) and the fluorocarbon molecules leads to remarkable differences in the surface pressure term of cohesion Π coh . This in turn leads to a very efficient fluidization of the monolayer. It was found that the adsorption equilibrium constant for dioctanoyl phosphatidyl choline is increased in the presence of perfluorohexane, and the intermolecular interaction of the components is strong. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. On the role of sea-state in bubble-mediated air-sea gas flux during a winter storm

    NASA Astrophysics Data System (ADS)

    Liang, Jun-Hong; Emerson, Steven R.; D'Asaro, Eric A.; McNeil, Craig L.; Harcourt, Ramsey R.; Sullivan, Peter P.; Yang, Bo; Cronin, Meghan F.

    2017-04-01

    Oceanic bubbles play an important role in the air-sea exchange of weakly soluble gases at moderate to high wind speeds. A Lagrangian bubble model embedded in a large eddy simulation model is developed to study bubbles and their influence on dissolved gases in the upper ocean. The transient evolution of mixed-layer dissolved oxygen and nitrogen gases at Ocean Station Papa (50°N, 145°W) during a winter storm is reproduced with the model. Among different physical processes, gas bubbles are the most important in elevating dissolved gas concentrations during the storm, while atmospheric pressure governs the variability of gas saturation anomaly (the relative departure of dissolved gas concentration from the saturation concentration). For the same wind speed, bubble-mediated gas fluxes are larger during rising wind with smaller wave age than during falling wind with larger wave age. Wave conditions are the primary cause for the bubble gas flux difference: when wind strengthens, waves are less-developed with respect to wind, resulting in more frequent large breaking waves. Bubble generation in large breaking waves is favorable for a large bubble-mediated gas flux. The wave-age dependence is not included in any existing bubble-mediated gas flux parameterizations.

  18. Numerical simulation of single bubble dynamics under acoustic travelling waves.

    PubMed

    Ma, Xiaojian; Huang, Biao; Li, Yikai; Chang, Qing; Qiu, Sicong; Su, Zheng; Fu, Xiaoying; Wang, Guoyu

    2018-04-01

    The objective of this paper is to apply CLSVOF method to investigate the single bubble dynamics in acoustic travelling waves. The Naiver-Stokes equation considering the acoustic radiation force is proposed and validated to capture the bubble behaviors. And the CLSVOF method, which can capture the continuous geometric properties and satisfies mass conservation, is applied in present work. Firstly, the regime map, depending on the dimensionless acoustic pressure amplitude and acoustic wave number, is constructed to present different bubble behaviors. Then, the time evolution of the bubble oscillation is investigated and analyzed. Finally, the effect of the direction and the damping coefficient of acoustic wave propagation on the bubble behavior are also considered. The numerical results show that the bubble presents distinct oscillation types in acoustic travelling waves, namely, volume oscillation, shape oscillation, and splitting oscillation. For the splitting oscillation, the formation of jet, splitting of bubble, and the rebound of sub-bubbles may lead to substantial increase in pressure fluctuations on the boundary. For the shape oscillation, the nodes and antinodes of the acoustic pressure wave contribute to the formation of the "cross shape" of the bubble. It should be noted that the direction of the bubble translation and bubble jet are always towards the direction of wave propagation. In addition, the damping coefficient causes bubble in shape oscillation to be of asymmetry in shape and inequality in size, and delays the splitting process. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Study on characteristics of single cavitation bubble considering condensation and evaporation of kerosene steam under ultrasonic vibration honing.

    PubMed

    Ye, Linzheng; Zhu, Xijing; Wang, Lujie; Guo, Ce

    2018-01-01

    Ultrasonic vibration honing technology is an effective means for materials difficult to machine, where cavitation occurs in grinding fluid under the action of ultrasound. To investigate the changes of single cavitation bubble characteristics in the grinding area and how honing parameters influence bubble characteristics, a dynamic model of single cavitation bubble in the ultrasonic vibration honing grinding area was established. The model was based on the bubble dynamics and considered the condensation and evaporation of kerosene steam and honing processing environment. The change rules of bubble radius, temperature, pressure and number of kerosene steam molecules inside the bubble were numerically simulated in the process of bubble moving. The results show that the condensation and evaporation of kerosene steam can help to explain the changes of temperature and pressure inside the bubble. Compared with ultrasonic vibration, the amplitude of bubble radius is greatly suppressed in the ultrasonic honing environment. However, the rate of movement of the bubble is faster. Meanwhile, the minimum values of pressure and temperature are larger, and the number of kerosene steam molecules is less. By studying the effect of honing factors on the movement of the cavitation bubble, it is found that honing pressure has a greater influence on bubble evolution characteristics, while rotation speed of honing head has a minor effect and the reciprocating speed of honing head has little impacts. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Light generated bubble for microparticle propulsion.

    PubMed

    Frenkel, Ido; Niv, Avi

    2017-06-06

    Light activated motion of micron-sized particles with effective forces in the range of micro-Newtons is hereby proposed and demonstrated. Our investigation shows that this exceptional amount of force results from accumulation of light-generated heat by a micron-sized particle that translates into motion due to a phase transition in the nearby water. High-speed imagery indicates the role of bubble expansion and later collapse in this event. Comparing observations with known models reveals a dynamic behavior controlled by polytropic trapped vapor and the inertia of the surrounding liquid. The potential of the proposed approach is demonstrated by realization of disordered optical media with binary light-activated switching from opacity to high transparency.

  1. Interface stability in a slowly rotating, low gravity tank Experiments

    NASA Technical Reports Server (NTRS)

    Leslie, F.; Gans, R. F.

    1986-01-01

    Analytical models of liquid in partially-filled rotating tanks predict both the shape of the interface between the liquid and its vapor, and the stability of that interface. The models are of necessity incomplete and experimental data are needed to assess the approximations made. Presented are preliminary experimental studies both in the laboratory and in the low-gravity environment of a free-falling aircraft. Emphasis is placed on bubbles which intersect the container boundaries. Measurements of rotating equilibrium bubble shapes are in agreement with theoretical profiles derived from Laplace's formula. The interface shape depends on the contact angle, the radius of intersection with container, and the ratio of centrifugal force to surface tension.

  2. Elasticity effects on cavitation in a squeeze film damper undergoing noncentered circular whirl

    NASA Technical Reports Server (NTRS)

    Brewe, David E.

    1988-01-01

    Elasticity of the liner and its effects on cavitation were numerically determined for a squeeze film damper subjected to dynamic loading. The loading was manifested as a prescribed motion of the rotor undergoing noncentered circular whirl. The boundary conditions were implemented using Elrod's algorithm which conserves lineal mass flux through the moving cavitation bubble as well as the oil film region of the damper. Computational movies were used to analyze the rapidly changing pressures and vapor bubble dynamics throughout the dynamic cycle for various flexibilities in the damper liner. The effects of liner elasticity on cavitation were only noticeable for the intermediate and high values of viscosity used in this study.

  3. Influence of reactions heats on variation of radius, temperature, pressure and chemical species amounts within a single acoustic cavitation bubble.

    PubMed

    Kerboua, Kaouther; Hamdaoui, Oualid

    2018-03-01

    The scientific interest toward the study of acoustic bubble is mainly explained by its practical benefit in providing a reactional media favorable to the rapid evolution of chemical mechanism. The evolution of this mechanism is related to the simultaneous and dependent variation of the volume, temperature and pressure within the bubble, retrieved by the resolution of a differential equations system, including among others the thermal balance. This last one is subject to different assumptions, some authors deem simply that the temperature varies adiabatically during the collapsing phase, without considering the reactions heat of the studied mechanism. This paper aims to evaluate the pertinence of neglecting reactions heats in the thermal balance, by analyzing their effect on the variation of radius, temperature, pressure and chemical species amounts. The results show that the introduction of reactions heats conducts to a decrease of the temperature, an increase of the pressure and a reduction of the bubble volume. As a consequence, this leads to a drop of the quantities of free radicals produced by the chemical mechanism evolving within the bubble. This paper also proved that the impact of the consideration of reactions heats is dependent of the frequency and the acoustic amplitude of the ultrasonic wave. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Desulfurization kinetics of molten copper by gas bubbling

    NASA Astrophysics Data System (ADS)

    Fukunaka, Y.; Nishikawa, K.; Sohn, H. S.; Asaki, Z.

    1991-02-01

    Molten copper with 0.74 wt pct sulfur content was desulfurized at 1523 K by bubbling Ar-O2 gas through a submerged nozzle. The reaction rate was significantly influenced not only by the oxygen partial pressure but also by the gas flow rate. Little evolution of SO2 gas was observed in the initial 10 seconds of the oxidation; however, this was followed by a period of high evolution rate of SO2 gas. The partial pressure of SO2 gas decreased with further progress of the desulfurization. The effect of the immersion depth of the submerged nozzle was negligible. The overall reaction is decomposed to two elementary reactions: the desulfurization and the dissolution rate of oxygen. The assumptions were made that these reactions are at equilibrium and that the reaction rates are controlled by mass transfer rates within and around the gas bubble. The time variations of sulfur and oxygen contents in the melt and the SO2 partial pressure in the off-gas under various bubbling conditions were well explained by the mathematical model combined with the reported thermodynamic data of these reactions. Based on the present model, it was anticipated that the oxidation rate around a single gas bubble was mainly determined by the rate of gas-phase mass transfer, but all oxygen gas blown into the melt was virtually consumed to the desulfurization and dissolution reactions before it escaped from the melt surface.

  5. Shear Stress induced Stretching of Red Blood Cells by Oscillating Bubbles within a Narrow Gap

    NASA Astrophysics Data System (ADS)

    Li, Fenfang; Mohammadzadeh, Milad; Ohl, Claus-Dieter; Claus-Dieter Ohl Team

    2013-11-01

    The flow pattern, especially the boundary layer caused by the expanding/contracting bubble in a narrow gap (15 μm) and the resultant stretching of red blood cells is investigated in this work. High speed recordings show that a red blood cell (biconcave shape, thickness of 1-2 μm) can be elongated to five times its original length by a laser-induced cavitation bubble within the narrow gap. However, flexible cancer cells in suspension (RKO, spherical shape, diameter of 10-15 μm) are hardly elongated under the same experimental condition. We hypothesize that the shear stress at the boundary layer is crucial for this elongation to occur. Therefore, in order to resolve the related fluid dynamics, we conducted numerical simulations using the finite element method (Fluent). The rapidly expanding/contracting vapor bubble is successfully modeled by employing viscosity and surface tension. The transient pressure inside the bubble and the velocity profile of the flow is obtained. We observe strong shear near the upper and lower boundary during the bubble oscillation. The flow fields are compared with analytical solutions to transient and pulsating flows in 2D. In the experiment the red blood cells sit within the lower boundary layer, thus are probably elongated by this strong shear flow. In contrast, the spherical cancer cells are of comparable size to the gap height so that they are lesser affected by this boundary layer flow.

  6. Subgrid Modeling of AGN-driven Turbulence in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Scannapieco, Evan; Brüggen, Marcus

    2008-10-01

    Hot, underdense bubbles powered by active galactic nuclei (AGNs) are likely to play a key role in halting catastrophic cooling in the centers of cool-core galaxy clusters. We present three-dimensional simulations that capture the evolution of such bubbles, using an adaptive mesh hydrodynamic code, FLASH3, to which we have added a subgrid model of turbulence and mixing. While pure hydro simulations indicate that AGN bubbles are disrupted into resolution-dependent pockets of underdense gas, proper modeling of subgrid turbulence indicates that this is a poor approximation to a turbulent cascade that continues far beyond the resolution limit. Instead, Rayleigh-Taylor instabilities act to effectively mix the heated region with its surroundings, while at the same time preserving it as a coherent structure, consistent with observations. Thus, bubbles are transformed into hot clouds of mixed material as they move outward in the hydrostatic intracluster medium (ICM), much as large airbursts lead to a distinctive "mushroom cloud" structure as they rise in the hydrostatic atmosphere of Earth. Properly capturing the evolution of such clouds has important implications for many ICM properties. In particular, it significantly changes the impact of AGNs on the distribution of entropy and metals in cool-core clusters such as Perseus.

  7. Dynamics of Polydisperse Foam-like Emulsion

    NASA Astrophysics Data System (ADS)

    Hicock, Harry; Feitosa, Klebert

    2011-10-01

    Foam is a complex fluid whose relaxation properties are associated with the continuous diffusion of gas from small to large bubbles driven by differences in Laplace pressures. We study the dynamics of bubble rearrangements by tracking droplets of a clear, buoyantly neutral emulsion that coarsens like a foam. The droplets are imaged in three dimensions using confocal microscopy. Analysis of the images allows us to measure their positions and radii, and track their evolution in time. We find that the droplet size distribution fits a Weibull distribution characteristics of foam systems. Additionally, we observe that droplets undergo continuous evolution interspersed by occasional large rearrangements in par with local relaxation behavior typical of foams.

  8. Atomic-scale mechanisms of helium bubble hardening in iron

    DOE PAGES

    Osetskiy, Yury N.; Stoller, Roger E.

    2015-06-03

    Generation of helium due to (n,α) transmutation reactions changes the response of structural materials to neutron irradiation. The whole process of radiation damage evolution is affected by He accumulation and leads to significant changes in the material s properties. A population of nanometric He-filled bubbles affects mechanical properties and the impact can be quite significant because of their high density. Understanding how these basic mechanisms affect mechanical properties is necessary for predicting radiation effects. In this paper we present an extensive study of the interactions between a moving edge dislocation and bubbles using atomic-scale modeling. We focus on the effectmore » of He bubble size and He concentration inside bubbles. Thus, we found that ability of bubbles to act as an obstacle to dislocation motion is close to that of voids when the He-to-vacancy ratio is in the range from 0 to 1. A few simulations made at higher He contents demonstrated that the interaction mechanism is changed for over-pressurized bubbles and they become weaker obstacles. The results are discussed in light of post-irradiation materials testing.« less

  9. Inflation and bubbles in general relativity

    NASA Astrophysics Data System (ADS)

    Laguna-Castillo, Pablo; Matzner, Richard A.

    1986-11-01

    Following Israel's study of singular hypersurfaces and thin shells in general relativity, the complete set of Einstein's field equations in the presence of a bubble boundary SIGMA is reviewed for all spherically symmetric embedding four-geometries M+/-. The mapping that identifies points between the boundaries Σ+ and Σ- is obtained explicitly when the regions M+ and M- are described by a de Sitter and a Minkowski metric, respectively. In addition, the evolution of a bubble with vanishing surface energy density is studied in a spatially flat Robertson-Walker space-time, for region M- radiation dominated with a vanishing cosmological constant, and an energy equation in M+ determined by the matching. It is found that this type of bubble leads to a ``worm-hole'' matching; that is, an infinite extent exterior of a sphere is joined across the wall to another infinite extent exterior of a sphere. Interior-interior matches are also possible. Under this model, solutions for a bubble following a Hubble law are analyzed. Numerical solutions for bubbles with constant tension are also obtained.

  10. Analysis of intergranular fission-gas bubble-size distributions in irradiated uranium-molybdenum alloy fuel

    NASA Astrophysics Data System (ADS)

    Rest, J.; Hofman, G. L.; Kim, Yeon Soo

    2009-04-01

    An analytical model for the nucleation and growth of intra and intergranular fission-gas bubbles is used to characterize fission-gas bubble development in low-enriched U-Mo alloy fuel irradiated in the advanced test reactor in Idaho as part of the Reduced Enrichment for Research and Test Reactor (RERTR) program. Fuel burnup was limited to less than ˜7.8 at.% U in order to capture the fuel-swelling stage prior to irradiation-induced recrystallization. The model couples the calculation of the time evolution of the average intergranular bubble radius and number density to the calculation of the intergranular bubble-size distribution based on differential growth rate and sputtering coalescence processes. Recent results on TEM analysis of intragranular bubbles in U-Mo were used to set the irradiation-induced diffusivity and re-solution rate in the bubble-swelling model. Using these values, good agreement was obtained for intergranular bubble distribution compared against measured post-irradiation examination (PIE) data using grain-boundary diffusion enhancement factors of 15-125, depending on the Mo concentration. This range of enhancement factors is consistent with values obtained in the literature.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Wei; Li Hui; Li Shengtai

    Nonlinear ideal magnetohydrodynamic (MHD) simulations of the propagation and expansion of a magnetic ''bubble'' plasma into a lower density, weakly magnetized background plasma, are presented. These simulations mimic the geometry and parameters of the Plasma Bubble Expansion Experiment (PBEX) [A. G. Lynn, Y. Zhang, S. C. Hsu, H. Li, W. Liu, M. Gilmore, and C. Watts, Bull. Am. Phys. Soc. 52, 53 (2007)], which is studying magnetic bubble expansion as a model for extragalactic radio lobes. The simulations predict several key features of the bubble evolution. First, the direction of bubble expansion depends on the ratio of the bubble toroidalmore » to poloidal magnetic field, with a higher ratio leading to expansion predominantly in the direction of propagation and a lower ratio leading to expansion predominantly normal to the direction of propagation. Second, a MHD shock and a trailing slow-mode compressible MHD wavefront are formed ahead of the bubble as it propagates into the background plasma. Third, the bubble expansion and propagation develop asymmetries about its propagation axis due to reconnection facilitated by numerical resistivity and to inhomogeneous angular momentum transport mainly due to the background magnetic field. These results will help guide the initial experiments and diagnostic measurements on PBEX.« less

  12. Growth and process identification of CuInS 2 on GaP by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hwang, H. L.; Sun, C. Y.; Fang, C. S.; Chang, S. D.; Cheng, C. H.; Yang, M. H.; Lin, H. H.; Tuwan-Mu, H.

    1981-10-01

    Experimental techniques for growing CuInS 2 layers on GaP substrates by the metalorganic method have been developed. Hydrogen sulfide gas together with the vapors of CuCl( NCCH3) n and InCl3( NCCH3) both of which were generated by bubbling nitrogen through sources, using a solvent of acetonitride, were used as transport agents. Various characterization techniques such as atomic absorption (AA), neutron activation analysis (NAA), energy dispersive analysis by X-rays (EDAX), Rutherford back-scattering analysis (RBS), and X-ray analyses were used to help understand the fundamental mechanism of the CVD growth.

  13. Fluid inclusions in stony meteorites

    NASA Technical Reports Server (NTRS)

    Warner, J. L.; Ashwal, L. D.; Bergman, S. C.; Gibson, E. K., Jr.; Henry, D. J.; Lee-Berman, R.; Roedder, E.; Belkin, H. E.

    1983-01-01

    The fluid inclusions presently described for five stony meteorites brings to seven the number of such meteorites confirmed. Homogenization temperatures are reproducible in each inclusion, and range from 25 C to over 225 C, with some vapor plus liquid inclusions remaining at 225 C, the highest temperature in these microthermometric experiments. Upon cooling, the fluid in some inclusions appears to freeze, as indicated by deformation and immobilization of the vapor bubble at low temperatures. Melting temperatures are by contrast difficult to observe and are not reproducible. Microthermometric data for the fluid in diogenite ALPHA 77256 and inclusions in four chondrites suggest that the fluid is aqueous, with a high solute content.

  14. Influence of different heating types on the pumping performance of a bubble pump

    NASA Astrophysics Data System (ADS)

    Bierling, Bernd; Schmid, Fabian; Spindler, Klaus

    2017-11-01

    This study presents an experimental investigation of the influence of different heating types on the pumping performance of a bubble pump. A test rig was set up at the Institute of Thermodynamics and Thermal Engineering (ITW), University of Stuttgart. The vertical lift tube is made of copper with an inner diameter of 8 mm and a length of 1.91 m. The working fluid is demineralized water. The test rig offers the possibility to vary the supplied heat flow (0 W - 750 W), the resulting supplied heat flux and the location of the heating. Investigations were carried out using spot heating, partial-length heating and full-length heating. A Coriolis mass flowmeter was successfully implemented which measures the vapor mass flow rate continuously. The improvement of the vapor mass flow rate measurement by using the continuous measurement method compared to a discontinuous one is discussed. Furthermore, the influence of an unstable inlet temperature of the working fluid entering the lift tube on the pumping performance is investigated. The focus of this publication lies on the build-up of the test rig with the measurement setup and the analysis of the pumping performance for the three heating types. The measurement results show a big influence of the heating type on the pumping performance. The lower the relative length of the heating, the higher is the pumping ratio which is defined as the lifted liquid mass flow rate in relation to the generated vapor mass flow rate.

  15. A Study of Heat Transfer and Flow Characteristics of Rising Taylor Bubbles

    NASA Technical Reports Server (NTRS)

    Scammell, Alexander David

    2016-01-01

    Practical application of flow boiling to ground- and space-based thermal management systems hinges on the ability to predict the systems heat removal capabilities under expected operating conditions. Research in this field has shown that the heat transfer coefficient within two-phase heat exchangers can be largely dependent on the experienced flow regime. This finding has inspired an effort to develop mechanistic heat transfer models for each flow pattern which are likely to outperform traditional empirical correlations. As a contribution to the effort, this work aimed to identify the heat transfer mechanisms for the slug flow regime through analysis of individual Taylor bubbles.An experimental apparatus was developed to inject single vapor Taylor bubbles into co-currently flowing liquid HFE 7100. The heat transfer was measured as the bubble rose through a 6 mm inner diameter heated tube using an infrared thermography technique. High-speed flow visualization was obtained and the bubble film thickness measured in an adiabatic section. Experiments were conducted at various liquid mass fluxes (43-200 kgm2s) and gravity levels (0.01g-1.8g) to characterize the effect of bubble drift velocityon the heat transfer mechanisms. Variable gravity testing was conducted during a NASA parabolic flight campaign.Results from the experiments showed that the drift velocity strongly affects the hydrodynamics and heat transfer of single elongated bubbles. At low gravity levels, bubbles exhibited shapes characteristic of capillary flows and the heat transfer enhancement due to the bubble was dominated by conduction through the thin film. At moderate to high gravity, traditional Taylor bubbles provided small values of enhancement within the film, but large peaks in the wake heat transfer occurred due to turbulent vortices induced by the film plunging into the trailing liquid slug. Characteristics of the wake heat transfer profiles were analyzed and related to the predicted velocity field. Results were compared and shown to agree with numerical simulations of colleagues from EPFL, Switzerland.In addition, a preliminary study was completed on the effect of a Taylor bubble passing through nucleate flow boiling, showing that the thinning thermal boundary layer within the film suppressed nucleation, thereby decreasing the heat transfer coefficient.

  16. Direct observation of the topological spin configurations mediated by the substitution of rare-earth element Y in MnNiGa alloy.

    PubMed

    Zuo, S L; Zhang, Y; Peng, L C; Zhao, X; Li, R; Li, H; Xiong, J F; He, M; Zhao, T Y; Sun, J R; Hu, F X; Shen, B G

    2018-02-01

    The evolution of topological magnetic domains microscopically correlates the dynamic behavior of memory units in spintronic application. Nanometric bubbles with variation of spin configurations have been directly observed in a centrosymmetric hexagonal magnet (Mn 0.5 Ni 0.5 ) 65 (Ga 1-y Y y ) 35 (y = 0.01) using Lorentz transmission electron microscopy. Magnetic bubbles instead of biskyrmions are generated due to the enhancement of quality factor Q caused by the substitution of rare-earth element Y. Furthermore, the bubble density and diversified spin configurations are systematically manipulated via combining the electric current with perpendicular magnetic fields. The magnetic bubble lattice at zero field is achieved after the optimized manipulation.

  17. Collective bubble oscillations as a component of surf infrasound.

    PubMed

    Park, Joseph; Garcés, Milton; Fee, David; Pawlak, Geno

    2008-05-01

    Plunging surf is a known generator of infrasound, though the mechanisms have not been clearly identified. A model based on collective bubble oscillations created by demise of the initially entrained air pocket is examined. Computed spectra are compared to infrasound data from the island of Kauai during periods of medium, large, and extreme surf. Model results suggest that bubble oscillations generated by plunging waves are plausible generators of infrasound, and that dynamic bubble plume evolution on a temporal scale comparable to the breaking wave period may contribute to the broad spectral lobe of dominant infrasonic energy observed in measured data. Application of an inverse model has potential to characterize breaking wave size distributions, energy, and temporal changes in seafloor morphology based on remotely sensed infrasound.

  18. High-speed motion picture camera experiments of cavitation in dynamically loaded journal bearings

    NASA Technical Reports Server (NTRS)

    Jacobson, B. O.; Hamrock, B. J.

    1982-01-01

    A high-speed camera was used to investigate cavitation in dynamically loaded journal bearings. The length-diameter ratio of the bearing, the speeds of the shaft and bearing, the surface material of the shaft, and the static and dynamic eccentricity of the bearing were varied. The results reveal not only the appearance of gas cavitation, but also the development of previously unsuspected vapor cavitation. It was found that gas cavitation increases with time until, after many hundreds of pressure cycles, there is a constant amount of gas kept in the cavitation zone of the bearing. The gas can have pressures of many times the atmospheric pressure. Vapor cavitation bubbles, on the other hand, collapse at pressures lower than the atmospheric pressure and cannot be transported through a high-pressure zone, nor does the amount of vapor cavitation in a bearing increase with time. Analysis is given to support the experimental findings for both gas and vapor cavitation.

  19. Condensation of Forced Convection Two-Phase Flow in a Miniature Tube

    NASA Technical Reports Server (NTRS)

    Begg, E.; Faghri, A.; Krustalev, D.

    1999-01-01

    A physical/mathematical model of annular film condensation at the inlet of a miniature tube has been developed. In the model, the liquid flow is coupled with the vapor flow along the liquid-vapor interface through the interfacial temperature, heat flux, shear stress, and pressure jump conditions due to surface tension effects. The model predicts the shape of the liquid-vapor interface along the condenser and leads to the conclusion that there is complete condensation at a certain distance from the condenser inlet. The numerical results show that complete condensation of the incoming vapor is possible at comparatively low heat loads and that this is a special case of a more general condensation regime with two-phase bubbly flow downstream of the initial annular film condensation region. Observations from the flow visualization experiment confirm the existence and qualitative features of annular film condensation leading to the complete condensation phenomenon in a small diameter (3.25 mm) circular tube condenser.

  20. A large bubble around the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Romani, Roger W.; Reach, William T.; Koo, Bon Chul; Heiles, Carl

    1990-01-01

    IRAS and 21 cm observations of the interstellar medium around the Crab nebula show evidence of a large bubble surrounded by a partial shell. If located at the canonical 2 kpc distance of the Crab pulsar, the shell is estimated to have a radius of about 90 pc and to contain about 50,000 solar masses of swept-up gas. The way in which interior conditions of this bubble can have important implications for observations of the Crab are described, and the fashion in which presupernova evolution of the pulsar progenitor has affected its local environment is described.

  1. Star formation in shells of colliding multi-SNe bubbles

    NASA Astrophysics Data System (ADS)

    Vasiliev, Evgenii O.; Shchekinov, Yuri A.

    2017-12-01

    It is believed that when bubbles formed by multiple supernovae explosions interact with one another, they stimulate star formation in overlapping shells. We consider the evolution of a shocked layer formed by the collision of two identical bubbles each of which originated from OB clusters of ˜ 50 members and ˜ 50 pc. The clusters are separated by 200-400 pc.We found that depending on evolutionary status of colliding bubbles the shocked layer can either be destroyed into diffuse lumps, or be fragmented into dense clumps: the former occurs in collisions of young bubbles with continuing supernovae explosions, and the latter occurs in older bubble interactions.We argue that fragmentation efficiency in shells depends on external heating: for a heating rate <˜ 1.7×10-24 erg s-1 the number of fragments formed in a collision of two old bubbles reaches several tens at t ˜ 4 Myr, while a heating rate >˜ 7 × 10-24 erg s-1 prevents fragmentation. The clumps formed in freely expanding parts of bubbles are gradually destroyed and disappear on t <˜ 1 Myr,whereas those formed in the overlapping shells survive much longer. Because of this the number of fragments in an isolated bubble begins to decrease after reaching a maximum, while in collision of two old bubbles it fluctuates around 60-70 until longer than t ˜ 5 Myr.

  2. Dynamics of sonoluminescing bubbles within a liquid hammer device.

    PubMed

    Urteaga, Raúl; García-Martínez, Pablo Luis; Bonetto, Fabián J

    2009-01-01

    We studied the dynamics of a single sonoluminescing bubble (SBSL) in a liquid hammer device. In particular, we investigated the phosphoric acid-xenon system, in which pulses up to four orders of magnitude brighter than SBSL in water systems (about 10;{12} photons per pulse) have been previously reported [Chakravarty, Phys. Rev. E 69, 066317 (2004)]. We used stroboscopic photography and a Mie scattering technique in order to measure the radius evolution of the bubbles. Under adequate conditions we may position a bubble at the bottom of the tube (cavity) and a second bubble trapped at the middle of the tube (upper bubble). During its collapse, the cavity produces the compression of the liquid column. This compression drives impulsively the dynamics of the upper bubble. Our measurements reveal that the observed light emissions produced by the upper bubble are generated at its second collapse. We employed a simple numerical model to investigate the conditions that occur during the upper bubble collapse. We found good agreement between numerical and experimental values for the light intensity (fluence) and light pulse widths. Results from the model show that the light emission is increased mainly due to an increase in noble gas ambient radius and not because the maximum temperature increases. Even for the brightest pulses obtained ( 2x10;{13} photons, about 20W of peak power) the maximum temperatures computed for the upper bubble are always lower than 20000K .

  3. Photophysics of C60 Colloids

    DTIC Science & Technology

    2012-11-28

    boiling of the liquid or vaporization of the particle). Light scatters out of the propagation path. • Enhanced absorption from nanoplasmas . 8 I...and thus, nanoplasmas that absorb and scatter the light • NLO behavior is fluence dependent • Uncalibrated measurements of transmitted, absorbed...after the first 1-2 ns • Proposed mechanism: Initial scattering by nanoplasmas followed by additional scattering from bubble growth in the

  4. Theranostic Performance of Acoustic Nanodroplet Vaporization-Generated Bubbles in Tumor Intertissue.

    PubMed

    Ho, Yi-Ju; Yeh, Chih-Kuang

    2017-01-01

    Solid tumors with poorly perfused regions reveal some of the treatment limitations that restrict drug delivery and therapeutic efficacy. Acoustic droplet vaporization (ADV) has been applied to directly disrupt vessels and release nanodroplets, ADV-generated bubbles (ADV-Bs), and drugs into tumor tissue. In this study, we investigated the in vivo behavior of ADV-Bs stimulated by US, and evaluated the possibility of moving intertissue ADV-Bs into the poorly perfused regions of solid tumors. Intravital imaging revealed intertissue ADV-B formation, movement, and cavitation triggered by US, where the distance of intertissue ADV-B movement was 33-99 µm per pulse. When ADV-Bs were applied to tumor cells, the cell membrane was damaged, increasing cellular permeability or inducing cell death. The poorly perfused regions within solid tumors show enhancement due to ADV-B accumulation after application of US-triggered ADV-B. The intratumoral nanodroplet or ADV-B distribution around the poorly perfused regions with tumor necrosis or hypoxia were demonstrated by histological assessment. ADV-B formation, movement and cavitation could induce cell membrane damage by mechanical force providing a mechanism to overcome treatment limitations in poorly perfused regions of tumors.

  5. Phase change events of volatile liquid perfluorocarbon contrast agents produce unique acoustic signatures

    PubMed Central

    Sheeran, Paul S.; Matsunaga, Terry O.; Dayton, Paul A.

    2015-01-01

    Phase-change contrast agents (PCCAs) provide a dynamic platform to approach problems in medical ultrasound (US). Upon US-mediated activation, the liquid core vaporizes and expands to produce a gas bubble ideal for US imaging and therapy. In this study, we demonstrate through high-speed video microscopy and US interrogation that PCCAs composed of highly volatile perfluorocarbons (PFCs) exhibit unique acoustic behavior that can be detected and differentiated from standard microbubble contrast agents. Experimental results show that when activated with short pulses PCCAs will over-expand and undergo unforced radial oscillation while settling to a final bubble diameter. The size-dependent oscillation phenomenon generates a unique acoustic signal that can be passively detected in both time and frequency domain using confocal piston transducers with an ‘activate high’ (8 MHz, 2 cycles), ‘listen low’ (1 MHz) scheme. Results show that the magnitude of the acoustic ‘signature’ increases as PFC boiling point decreases. By using a band-limited spectral processing technique, the droplet signals can be isolated from controls and used to build experimental relationships between concentration and vaporization pressure. The techniques shown here may be useful for physical studies as well as development of droplet-specific imaging techniques. PMID:24351961

  6. Theranostic Performance of Acoustic Nanodroplet Vaporization-Generated Bubbles in Tumor Intertissue

    PubMed Central

    Ho, Yi-Ju; Yeh, Chih-Kuang

    2017-01-01

    Solid tumors with poorly perfused regions reveal some of the treatment limitations that restrict drug delivery and therapeutic efficacy. Acoustic droplet vaporization (ADV) has been applied to directly disrupt vessels and release nanodroplets, ADV-generated bubbles (ADV-Bs), and drugs into tumor tissue. In this study, we investigated the in vivo behavior of ADV-Bs stimulated by US, and evaluated the possibility of moving intertissue ADV-Bs into the poorly perfused regions of solid tumors. Intravital imaging revealed intertissue ADV-B formation, movement, and cavitation triggered by US, where the distance of intertissue ADV-B movement was 33-99 µm per pulse. When ADV-Bs were applied to tumor cells, the cell membrane was damaged, increasing cellular permeability or inducing cell death. The poorly perfused regions within solid tumors show enhancement due to ADV-B accumulation after application of US-triggered ADV-B. The intratumoral nanodroplet or ADV-B distribution around the poorly perfused regions with tumor necrosis or hypoxia were demonstrated by histological assessment. ADV-B formation, movement and cavitation could induce cell membrane damage by mechanical force providing a mechanism to overcome treatment limitations in poorly perfused regions of tumors. PMID:28529631

  7. Challenges in the Structure Determination of Self-Assembled Metallacages: What Do Cage Cavities Contain, Internal Vapor Bubbles or Solvent and/or Counterions?

    PubMed

    Givelet, Cecile C; Dron, Paul I; Wen, Jin; Magnera, Thomas F; Zamadar, Matibur; Čépe, Klára; Fujiwara, Hiroki; Shi, Yue; Tuchband, Michael R; Clark, Noel; Zbořil, Radek; Michl, Josef

    2016-05-25

    Proving the structures of charged metallacages obtained by metal ion coordination-driven solution self-assembly is challenging, and the common use of routine NMR spectroscopy and mass spectrometry is unreliable. Carefully determined diffusion coefficients from diffusion-ordered proton magnetic resonance (DOSY NMR) for six cages of widely differing sizes lead us to propose a structural reassignment of two molecular cages from a previously favored trimer to a pentamer or hexamer, and another from a trimer to a much higher oligomer, possibly an intriguing tetradecamer. In the former case, strong support for the reassignment to a larger cage is provided by an observation of a slow reversible transformation of the initially formed cage into a smaller but spectrally very similar one upon dilution. In the latter case, freeze-fracture transmission electron micrographs demonstrate that at least some of the solutions are colloidal, and high-resolution electron transmission and atomic force microscopy images are compatible with a tetradecamer but not a trimer. Comparison of solute partial molar volumes deduced from measurement of solution density with volumes anticipated from molecular models argues strongly against the presence of large voids (solvent vapor bubbles) in cages dissolved in nitromethane. The presence of bubbles was previously proposed in an attempt to account for the bilinear nature of the Eyring plot of the rate constant for pyridine ligand edge exchange reaction in one of the cages and for the unusual activation parameters in the high-temperature regime. An alternative interpretation is proposed now.

  8. Shock-wave generation and bubble formation in the retina by lasers

    NASA Astrophysics Data System (ADS)

    Sun, Jinming; Gerstman, Bernard S.; Li, Bin

    2000-06-01

    The generation of shock waves and bubbles has been experimentally observed due to absorption of sub-nanosecond laser pulses by melanosomes, which are found in retinal pigment epithelium cells. Both the shock waves and bubbles may be the cause of retinal damage at threshold fluence levels. The theoretical modeling of shock wave parameters such as amplitude, and bubble size, is a complicated problem due to the non-linearity of the phenomena. We have used two different approaches for treating pressure variations in water: the Tait Equation and a full Equation Of State (EOS). The Tait Equation has the advantage of being developed specifically to model pressure variations in water and is therefore simpler, quicker computationally, and allows the liquid to sustain negative pressures. Its disadvantage is that it does not allow for a change of phase, which prevents modeling of bubbles and leads to non-physical behavior such as the sustaining of ridiculously large negative pressures. The full EOS treatment includes more of the true thermodynamic behavior, such as phase changes that produce bubbles and avoids the generation of large negative pressures. Its disadvantage is that the usual stable equilibrium EOS allows for no negative pressures at all, since tensile stress is unstable with respect to a transition to the vapor phase. In addition, the EOS treatment requires longer computational times. In this paper, we compare shock wave generation for various laser pulses using the two different mathematical approaches and determine the laser pulse regime for which the simpler Tait Equation can be used with confidence. We also present results of our full EOS treatment in which both shock waves and bubbles are simultaneously modeled.

  9. The isotope mass effect on chlorine diffusion in dacite melt, with implications for fractionation during bubble growth

    NASA Astrophysics Data System (ADS)

    Fortin, Marc-Antoine; Watson, E. Bruce; Stern, Richard

    2017-12-01

    Previous experimental studies have revealed that the difference in diffusivity of two isotopes can be significant in some media and can lead to an observable fractionation effect in silicate melts based on isotope mass. Here, we report the first characterization of the difference in diffusivities of stable isotopes of Cl (35Cl and 37Cl). Using a piston-cylinder apparatus, we generated quenched melts of dacitic composition enriched in Cl; from these we fabricated diffusion couples in which Cl atoms were induced to diffuse in a chemical gradient at 1200 to 1350 °C and 1 GPa. We analyzed the run products by secondary ion mass spectrometry (SIMS) for their isotopic compositions along the diffusion profiles, and we report a diffusivity ratio for 37Cl/35Cl of 0.995 ± 0.001 (β = 0.09 ± 0.02). No significant effect of temperature on the diffusivity ratio was discernable over the 150 °C range covered by our experiments. The observed 0.5% difference in diffusivity of the two isotopes could affect our interpretation of isotopic measurements of Cl isotopes in bubble-bearing or degassed magmas, because bubble growth is regulated in part by the diffusive supply of volatiles to the bubble from the surrounding melt. Through numerical simulations, we constrain the extent of Cl isotopic fractionation between bubble and host melt during this process. Bubble growth rates vary widely in nature-which implies a substantial range in the expected magnitude of isotopic fractionation-but plausible growth scenarios lead to Cl isotopic fractionations up to about 5‰ enrichment of 35Cl relative to 37Cl in the bubble. This effect should be considered when interpreting Cl isotopic measurements of systems that have experienced vapor exsolution.

  10. Ultrashort laser-matter interaction at moderate intensities: two-temperature relaxation, foaming of stretched melt, and freezing of evolving nanostructures

    NASA Astrophysics Data System (ADS)

    Inogamov, Nail A.; Zhakhovsky, Vasily V.; Petrov, Yurii V.; Khokhlov, Viktor A.; Ashitkov, Sergey I.; Migdal, Kirill P.; Ilnitsky, Denis K.; Emirov, Yusuf N.; Khishchenko, Konstantin V.; Komarov, Pavel S.; Shepelev, Vadim V.; Agranat, Mikhail B.; Anisimov, Sergey I.; Oleynik, Ivan I.; Fortov, Vladimir E.

    2013-11-01

    Interaction of ultrashort laser pulse with metals is considered. Ultrafast heating in our range of absorbed fluences Fabs > 10 mJjcm2 transfers matter into two-temperature (2T) state and induces expressed thermomechani­ cal response. To analyze our case, where 2T, thermomechanical, and multidimensional (formation of surface structures) effects are significant, we use density functional theory (DFT), solutions of kinetic equations in τ- approximation, 2T-hydrodynamics, and molecular dynamics simulations. We have studied transition from light absorption in a skin layer to 2T state, and from 2T stage to hydrodynamical motions. We describe (i) formation of very peculiar (superelasticity) acoustic wave irradiated from the laser heated surface layer and (ii) rich com­ plex of surface phenomena including fast melting, nucleation of seed bubbles in hydrodynamically stretched fluid, evolution of vapor-liquid mixture into very spatially extended foam, mechanical breaking of liquid membranes in foam (foam disintegration), strong surface tension oscillations driven by breaking of membranes, non-equilibrium freezing of overcooled molten metals, transition to nano-domain solid, and formation of surface nanostructures.

  11. Large-scale atomistic simulations of helium-3 bubble growth in complex palladium alloys

    DOE PAGES

    Hale, Lucas M.; Zimmerman, Jonathan A.; Wong, Bryan M.

    2016-05-18

    Palladium is an attractive material for hydrogen and hydrogen-isotope storage applications due to its properties of large storage density and high diffusion of lattice hydrogen. When considering tritium storage, the material’s structural and mechanical integrity is threatened by both the embrittlement effect of hydrogen and the creation and evolution of additional crystal defects (e.g., dislocations, stacking faults) caused by the formation and growth of helium-3 bubbles. Using recently developed inter-atomic potentials for the palladium-silver-hydrogen system, we perform large-scale atomistic simulations to examine the defect-mediated mechanisms that govern helium bubble growth. Our simulations show the evolution of a distribution of materialmore » defects, and we compare the material behavior displayed with expectations from experiment and theory. In conclusion, we also present density functional theory calculations to characterize ideal tensile and shear strengths for these materials, which enable the understanding of how and why our developed potentials either meet or confound these expectations.« less

  12. Simulating Bubble Plumes from Breaking Waves with a Forced-Air Venturi

    NASA Astrophysics Data System (ADS)

    Long, M. S.; Keene, W. C.; Maben, J. R.; Chang, R. Y. W.; Duplessis, P.; Kieber, D. J.; Beaupre, S. R.; Frossard, A. A.; Kinsey, J. D.; Zhu, Y.; Lu, X.; Bisgrove, J.

    2017-12-01

    It has been hypothesized that the size distribution of bubbles in subsurface seawater is a major factor that modulates the corresponding size distribution of primary marine aerosol (PMA) generated when those bubbles burst at the air-water interface. A primary physical control of the bubble size distribution produced by wave breaking is the associated turbulence that disintegrates larger bubbles into smaller ones. This leads to two characteristic features of bubble size distributions: (1) the Hinze scale which reflects a bubble size above which disintegration is possible based on turbulence intensity and (2) the slopes of log-linear regressions of the size distribution on either side of the Hinze scale that indicate the state of plume evolution or age. A Venturi with tunable seawater and forced air flow rates was designed and deployed in an artificial PMA generator to produce bubble plumes representative of breaking waves. This approach provides direct control of turbulence intensity and, thus, the resulting bubble size distribution characterizable by observations of the Hinze scale and the simulated plume age over a range of known air detrainment rates. Evaluation of performance in different seawater types over the western North Atlantic demonstrated that the Venturi produced bubble plumes with parameter values that bracket the range of those observed in laboratory and field experiments. Specifically, the seawater flow rate modulated the value of the Hinze scale while the forced-air flow rate modulated the plume age parameters. Results indicate that the size distribution of sub-surface bubbles within the generator did not significantly modulate the corresponding number size distribution of PMA produced via bubble bursting.

  13. Observations of bubbles in natural seep flares at MC 118 and GC 600 using in situ quantitative imaging

    NASA Astrophysics Data System (ADS)

    Wang, Binbin; Socolofsky, Scott A.; Breier, John A.; Seewald, Jeffrey S.

    2016-04-01

    This paper reports the results of quantitative imaging using a stereoscopic, high-speed camera system at two natural gas seep sites in the northern Gulf of Mexico during the Gulf Integrated Spill Research G07 cruise in July 2014. The cruise was conducted on the E/V Nautilus using the ROV Hercules for in situ observation of the seeps as surrogates for the behavior of hydrocarbon bubbles in subsea blowouts. The seeps originated between 890 and 1190 m depth in Mississippi Canyon block 118 and Green Canyon block 600. The imaging system provided qualitative assessment of bubble behavior (e.g., breakup and coalescence) and verified the formation of clathrate hydrate skins on all bubbles above 1.3 m altitude. Quantitative image analysis yielded the bubble size distributions, rise velocity, total gas flux, and void fraction, with most measurements conducted from the seafloor to an altitude of 200 m. Bubble size distributions fit well to lognormal distributions, with median bubble sizes between 3 and 4.5 mm. Measurements of rise velocity fluctuated between two ranges: fast-rising bubbles following helical-type trajectories and bubbles rising about 40% slower following a zig-zag pattern. Rise speed was uncorrelated with hydrate formation, and bubbles following both speeds were observed at both sites. Ship-mounted multibeam sonar provided the flare rise heights, which corresponded closely with the boundary of the hydrate stability zone for the measured gas compositions. The evolution of bubble size with height agreed well with mass transfer rates predicted by equations for dirty bubbles.

  14. Advanced readout methods for superheated emulsion detectors

    NASA Astrophysics Data System (ADS)

    d'Errico, F.; Di Fulvio, A.

    2018-05-01

    Superheated emulsions develop visible vapor bubbles when exposed to ionizing radiation. They consist in droplets of a metastable liquid, emulsified in an inert matrix. The formation of a bubble cavity is accompanied by sound waves. Evaporated bubbles also exhibit a lower refractive index, compared to the inert gel matrix. These two physical phenomena have been exploited to count the number of evaporated bubbles and thus measure the interacting radiation flux. Systems based on piezoelectric transducers have been traditionally used to acquire the acoustic (pressure) signals generated by bubble evaporation. Such systems can operate at ambient noise levels exceeding 100 dB; however, they are affected by a significant dead time (>10 ms). An optical readout technique relying on the scattering of light by neutron-induced bubbles has been recently improved in order to minimize measurement dead time and ambient noise sensitivity. Beams of infra-red light from light-emitting diode (LED) sources cross the active area of the detector and are deflected by evaporated bubbles. The scattered light correlates with bubble density. Planar photodiodes are affixed along the detector length in optimized positions, allowing the detection of scattered light from the bubbles and minimizing the detection of direct light from the LEDs. A low-noise signal-conditioning stage has been designed and realized to amplify the current induced in the photodiodes by scattered light and to subtract the background signal due to intrinsic scattering within the detector matrix. The proposed amplification architecture maximizes the measurement signal-to-noise ratio, yielding a readout uncertainty of 6% (±1 SD), with 1000 evaporated bubbles in a detector active volume of 150 ml (6 cm detector diameter). In this work, we prove that the intensity of scattered light also relates to the bubble size, which can be controlled by applying an external pressure to the detector emulsion. This effect can be exploited during the readout procedure to minimize shadowing effects between bubbles, which become severe when the latter are several thousands. The detector we used in this work is based on superheated C-318 (octafluorocyclobutane), emulsified in 100 μm ± 10% (1 SD) diameter drops in an inert matrix of approximately 150 ml. The detector was operated at room temperature and ambient pressure.

  15. Bubble-free on-chip continuous-flow polymerase chain reaction: concept and application.

    PubMed

    Wu, Wenming; Kang, Kyung-Tae; Lee, Nae Yoon

    2011-06-07

    Bubble formation inside a microscale channel is a significant problem in general microfluidic experiments. The problem becomes especially crucial when performing a polymerase chain reaction (PCR) on a chip which is subject to repetitive temperature changes. In this paper, we propose a bubble-free sample injection scheme applicable for continuous-flow PCR inside a glass/PDMS hybrid microfluidic chip, and attempt to provide a theoretical basis concerning bubble formation and elimination. Highly viscous paraffin oil plugs are employed in both the anterior and posterior ends of a sample plug, completely encapsulating the sample and eliminating possible nucleation sites for bubbles. In this way, internal channel pressure is increased, and vaporization of the sample is prevented, suppressing bubble formation. Use of an oil plug in the posterior end of the sample plug aids in maintaining a stable flow of a sample at a constant rate inside a heated microchannel throughout the entire reaction, as compared to using an air plug. By adopting the proposed sample injection scheme, we demonstrate various practical applications. On-chip continuous-flow PCR is performed employing genomic DNA extracted from a clinical single hair root sample, and its D1S80 locus is successfully amplified. Also, chip reusability is assessed using a plasmid vector. A single chip is used up to 10 times repeatedly without being destroyed, maintaining almost equal intensities of the resulting amplicons after each run, ensuring the reliability and reproducibility of the proposed sample injection scheme. In addition, the use of a commercially-available and highly cost-effective hot plate as a potential candidate for the heating source is investigated.

  16. Alternate Reductant Cold Cap Evaluation Furnace Phase II Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, F. C.; Stone, M. E.; Miller, D. H.

    2014-09-03

    Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further research and development of this flowsheet eliminated the formic acid, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) tomore » address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric-glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12 th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the CEF cold cap and vapor space data to the benchmark melter flammability models; Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: Define new cold cap reactions and global kinetic parameters in support of the melter flammability model development; Quantify off-gas surging potential of the feed; Characterize off-gas condensate for complete organic and inorganic carbon species. After charging the CEF with cullet from Phase I CEF testing, the melter was slurry-fed with glycolic flowsheet based SB6-Frit 418 melter feed at 36% waste loading and was operated continuously for 25 days. Process data was collected throughout testing and included melter operation parameters and off-gas chemistry. In order to generate off-gas data in support of the flammability model development for the nitric-glycolic flowsheet, vapor space steady state testing in the range of ~300-750°C was conducted under the following conditions, (i) 100% (nominal and excess antifoam levels) and 125% stoichiometry feed and (ii) with and without argon bubbling. Adjustments to feed rate, heater outputs and purge air flow were necessary in order to achieve vapor space temperatures in this range. Surge testing was also completed under nominal conditions for four days with argon bubbling and one day without argon bubbling.« less

  17. Understanding the Links among the Magnetic Fields, Filament, Bipolar Bubble, and Star Formation in RCW 57A Using NIR Polarimetry

    NASA Astrophysics Data System (ADS)

    Eswaraiah, Chakali; Lai, Shih-Ping; Chen, Wen-Ping; Pandey, A. K.; Tamura, M.; Maheswar, G.; Sharma, S.; Wang, Jia-Wei; Nishiyama, S.; Nakajima, Y.; Kwon, Jungmi; Purcell, R.; Magalhães, A. M.

    2017-12-01

    The influence of magnetic fields (B-fields) on the formation and evolution of bipolar bubbles, due to the expanding ionization fronts (I-fronts) driven by the H II regions that are formed and embedded in filamentary molecular clouds, has not been well-studied yet. In addition to the anisotropic expansion of I-fronts into a filament, B-fields are expected to introduce an additional anisotropic pressure, which might favor the expansion and propagation of I-fronts forming a bipolar bubble. We present results based on near-infrared polarimetric observations toward the central ˜8‧ × 8‧ area of the star-forming region RCW 57A, which hosts an H II region, a filament, and a bipolar bubble. Polarization measurements of 178 reddened background stars, out of the 919 detected sources in the JHK s bands, reveal B-fields that thread perpendicularly to the filament long axis. The B-fields exhibit an hourglass morphology that closely follows the structure of the bipolar bubble. The mean B-field strength, estimated using the Chandrasekhar-Fermi method (CF method), is 91 ± 8 μG. B-field pressure dominates over turbulent and thermal pressures. Thermal pressure might act in the same orientation as the B-fields to accelerate the expansion of those I-fronts. The observed morphological correspondence among the B-fields, filament, and bipolar bubble demonstrate that the B-fields are important to the cloud contraction that formed the filament, to the gravitational collapse and star formation in it, and in feedback processes. The last one includes the formation and evolution of mid-infrared bubbles by means of B-field supported propagation and expansion of I-fronts. These may shed light on preexisting conditions favoring the formation of the massive stellar cluster in RCW 57A.

  18. Two types of nonlinear wave equations for diffractive beams in bubbly liquids with nonuniform bubble number density.

    PubMed

    Kanagawa, Tetsuya

    2015-05-01

    This paper theoretically treats the weakly nonlinear propagation of diffracted sound beams in nonuniform bubbly liquids. The spatial distribution of the number density of the bubbles, initially in a quiescent state, is assumed to be a slowly varying function of the spatial coordinates; the amplitude of variation is assumed to be small compared to the mean number density. A previous derivation method of nonlinear wave equations for plane progressive waves in uniform bubbly liquids [Kanagawa, Yano, Watanabe, and Fujikawa (2010). J. Fluid Sci. Technol. 5(3), 351-369] is extended to handle quasi-plane beams in weakly nonuniform bubbly liquids. The diffraction effect is incorporated by adding a relation that scales the circular sound source diameter to the wavelength into the original set of scaling relations composed of nondimensional physical parameters. A set of basic equations for bubbly flows is composed of the averaged equations of mass and momentum, the Keller equation for bubble wall, and supplementary equations. As a result, two types of evolution equations, a nonlinear Schrödinger equation including dissipation, diffraction, and nonuniform effects for high-frequency short-wavelength case, and a Khokhlov-Zabolotskaya-Kuznetsov equation including dispersion and nonuniform effects for low-frequency long-wavelength case, are derived from the basic set.

  19. On the Application of Image Processing Methods for Bubble Recognition to the Study of Subcooled Flow Boiling of Water in Rectangular Channels

    PubMed Central

    Paz, Concepción; Conde, Marcos; Porteiro, Jacobo; Concheiro, Miguel

    2017-01-01

    This work introduces the use of machine vision in the massive bubble recognition process, which supports the validation of boiling models involving bubble dynamics, as well as nucleation frequency, active site density and size of the bubbles. The two algorithms presented are meant to be run employing quite standard images of the bubbling process, recorded in general-purpose boiling facilities. The recognition routines are easily adaptable to other facilities if a minimum number of precautions are taken in the setup and in the treatment of the information. Both the side and front projections of subcooled flow-boiling phenomenon over a plain plate are covered. Once all of the intended bubbles have been located in space and time, the proper post-process of the recorded data become capable of tracking each of the recognized bubbles, sketching their trajectories and size evolution, locating the nucleation sites, computing their diameters, and so on. After validating the algorithm’s output against the human eye and data from other researchers, machine vision systems have been demonstrated to be a very valuable option to successfully perform the recognition process, even though the optical analysis of bubbles has not been set as the main goal of the experimental facility. PMID:28632158

  20. Could Martian Strawberries Be? -- Prebiotic Chemical Evolution on an Early Wet Mars

    NASA Astrophysics Data System (ADS)

    Lerman, L.

    2005-03-01

    The universality of chemical physics dictates the ubiquity of bubbles, aerosols, and droplets on planets with water and simple amphiphiles. Their ability to functionally support prebiotic chemical evolution seems critical: on the early Earth and Mars, and quite likely for Titan and Europa.

  1. The shape and motion of gas bubbles in a liquid flowing through a thin annulus

    NASA Astrophysics Data System (ADS)

    Lei, Qinghua; Xie, Zhihua; Pavlidis, Dimitrios; Salinas, Pablo; Veltin, Jeremy; Muggeridge, Ann; Pain, Christopher C.; Matar, Omar K.; Jackson, Matthew; Arland, Kristine; Gyllensten, Atle

    2017-11-01

    We study the shape and motion of gas bubbles in a liquid flowing through a horizontal or slightly-inclined thin annulus. Experimental data show that in the horizontal annulus, bubbles develop a unique ``tadpole'' shape with an elliptical cap and a highly-stretched tail, due to the confinement between the closely-spaced channel walls. As the annulus is inclined, the bubble tail tends to decrease in length, while the geometry of the cap remains almost invariant. To model the bubble evolution, the thin annulus is conceptualised as a ``Hele-Shaw'' cell in a curvilinear space. The three-dimensional flow within the cell is represented by a gap-averaged, two-dimensional model constrained by the same dimensionless quantities. The complex bubble dynamics are solved using a mixed control-volume finite-element method combined with interface-capturing and mesh adaptation techniques. A close match to the experimental data is achieved, both qualitatively and quantitatively, by the numerical simulations. The mechanism for the elliptical cap formation is interpreted based on an analogous irrotational flow field around a circular cylinder. The shape regimes of bubbles flowing through the thin annulus are further explored based on the simulation results. Funding from STATOIL gratefully acknowledged.

  2. Fermi Bubble: Giant Gamma-Ray Bubbles in the Milky Way

    NASA Astrophysics Data System (ADS)

    Su, Meng

    Data from the Fermi-LAT reveal two gigantic gamma-ray emitting bubble structures (known as the Fermibubbles), extending˜50° above and below the Galactic center symmetric about the Galactic plane, with a width of˜40∘ in longitude. The gamma-ray emission associated with these bubbles has a significantly harder spectrum ({dN}/{dE} ˜ {E}^{-2}) than the inverse Compton emission from known cosmic ray electrons in the Galactic disk, or the gamma-rays produced by decay of pions from proton-ISM collisions. The bubbles are spatially correlated with the hard-spectrum microwave excess known as the WMAPhaze; the edges of the bubbles also line up with features in the ROSATsoft X-ray maps at 1.5-2keV. The Fermibubble is most likely created by some large episode of energy injection in the Galactic center, such as past accretion events onto the central massive black hole, or a nuclear starburst in the last˜10Myr. Study of the origin and evolution of the bubbles also has the potential to improve our understanding of recent energetic events in the inner Galaxy and the high-latitude cosmic ray population.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Linyun; Mei, Zhi-Gang; Yacout, Abdellatif M.

    We have developed a mesoscale phase-field model for studying the effect of recrystallization on the gas-bubble-driven swelling in irradiated U-Mo alloy fuel. The model can simulate the microstructural evolution of the intergranular gas bubbles on the grain boundaries as well as the recrystallization process. Our simulation results show that the intergranular gas-bubble-induced fuel swelling exhibits two stages: slow swelling kinetics before recrystallization and rapid swelling kinetics with recrystallization. We observe that the recrystallization can significantly expedite the formation and growth of gas bubbles at high fission densities. The reason is that the recrystallization process increases the nucleation probability of gasmore » bubbles and reduces the diffusion time of fission gases from grain interior to grain boundaries by increasing the grain boundary area and decreasing the diffusion distance. The simulated gas bubble shape, size distribution, and density on the grain boundaries are consistent with experimental measurements. We investigate the effect of the recrystallization on the gas-bubble-driven fuel swelling in UMo through varying the initial grain size and grain aspect ratio. We conclude that the initial microstructure of fuel, such as grain size and grain aspect ratio, can be used to effectively control the recrystallization and therefore reduce the swelling in U-Mo fuel.« less

  4. Propagation of a finite bubble in a Hele-Shaw channel of variable depth

    NASA Astrophysics Data System (ADS)

    Juel, Anne; Franco-Gomez, Andres; Thompson, Alice; Hazel, Andrew

    2017-11-01

    We study the propagation of finite bubbles in a Hele-Shaw channel, where a centred rail is introduced to provide a small axially-uniform depth constriction. We demonstrate experimentally that this channel geometry can be used as a passive sorting device. Single air bubbles carried within silicone oil are generally transported on one side of the rail. However, for flow rates marginally larger than a critical value, a narrow band of bubble sizes on the order of the rail width can propagate over the rail, while bubbles of other sizes segregate to the side of the rail. The width of this band of bubble sizes increases with flow rate and the size of the most stable bubble can be tuned by varying the rail width. We present a depth-averaged theory which reveals that the mechanism relies on a non-trivial interaction between capillary and viscous forces that is fully dynamic, rather than being a simple modification of capillary static solutions. In contrast, for larger bubbles and sufficiently large imposed flow rates, we find that initially centred bubbles do not converge onto a steady mode of propagation. Instead they transiently explore weakly unstable steady modes, an evolution which results in their break-up and eventual settling into a steady state of changed topology. The financial support of CONICYT and the Leverhulme Trust are gratefully acknowledged.

  5. JET TRAILS AND MACH CONES: THE INTERACTION OF MICROQUASARS WITH THE INTERSTELLAR MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, D.; Morsony, B.; Heinz, S.

    2011-11-20

    A subset of microquasars exhibits high peculiar velocity with respect to the local standard of rest due to the kicks they receive when being born in supernovae. The interaction between the radio plasma released by microquasar jets from such high-velocity binaries with the interstellar medium must lead to the production of trails and bow shocks similar to what is observed in narrow-angle tailed radio galaxies and pulsar wind nebulae. We present a set of numerical simulations of this interaction that illuminate the long-term dynamical evolution and the observational properties of these microquasar bow-shock nebulae and trails. We find that thismore » interaction always produces a structure that consists of a bow shock, a trailing neck, and an expanding bubble. Using our simulations to model emission, we predict that the shock surrounding the bubble and the neck should be visible in H{sub {alpha}} emission, the interior of the bubble should be visible in synchrotron radio emission, and only the bow shock is likely to be detectable in X-ray emission. We construct an analytic model for the evolution of the neck and bubble shape and compare this model with observations of the X-ray binary SAX J1712.6-3739.« less

  6. Interaction of strong converging shock wave with SF6 gas bubble

    NASA Astrophysics Data System (ADS)

    Liang, Yu; Zhai, ZhiGang; Luo, XiSheng

    2018-06-01

    Interaction of a strong converging shock wave with an SF6 gas bubble is studied, focusing on the effects of shock intensity and shock shape on interface evolution. Experimentally, the converging shock wave is generated by shock dynamics theory and the gas bubble is created by soap film technique. The post-shock flow field is captured by a schlieren photography combined with a high-speed video camera. Besides, a three-dimensional program is adopted to provide more details of flow field. After the strong converging shock wave impact, a wide and pronged outward jet, which differs from that in planar shock or weak converging shock condition, is derived from the downstream interface pole. This specific phenomenon is considered to be closely associated with shock intensity and shock curvature. Disturbed by the gas bubble, the converging shocks approaching the convergence center have polygonal shapes, and the relationship between shock intensity and shock radius verifies the applicability of polygonal converging shock theory. Subsequently, the motion of upstream point is discussed, and a modified nonlinear theory considering rarefaction wave and high amplitude effects is proposed. In addition, the effects of shock shape on interface morphology and interface scales are elucidated. These results indicate that the shape as well as shock strength plays an important role in interface evolution.

  7. Water-Vapor Sorption Processes in Nanoporous MgO-Al2O3 Ceramics: the PAL Spectroscopy Study

    NASA Astrophysics Data System (ADS)

    Klym, Halyna; Ingram, Adam; Shpotyuk, Oleh; Hadzaman, Ivan; Solntsev, Viacheslav

    2016-03-01

    The water-vapor sorption processes in nanoporous MgO-Al2O3 ceramics are studied with positron annihilation lifetime (PAL) spectroscopy employing positron trapping and positronium (Ps)-decaying modes. It is demonstrated that the longest-lived components in the four-term reconstructed PAL spectra with characteristic lifetimes near 2 and 60-70 ns can be, respectively, attributed to ortho-positronium (o-Ps) traps in nanopores with 0.3- and 1.5-1.8-nm radii. The first o-Ps decaying process includes "pick-off" annihilation in the "bubbles" of liquid water, while the second is based on o-Ps interaction with physisorbed water molecules at the walls of the pores. In addition, the water vapor modifies structural defects located at the grain boundaries in a vicinity of pores, this process being accompanied by void fragmentation during water adsorption and agglomeration during water desorption after drying.

  8. Water-Vapor Sorption Processes in Nanoporous MgO-Al2O3 Ceramics: the PAL Spectroscopy Study.

    PubMed

    Klym, Halyna; Ingram, Adam; Shpotyuk, Oleh; Hadzaman, Ivan; Solntsev, Viacheslav

    2016-12-01

    The water-vapor sorption processes in nanoporous MgO-Al2O3 ceramics are studied with positron annihilation lifetime (PAL) spectroscopy employing positron trapping and positronium (Ps)-decaying modes. It is demonstrated that the longest-lived components in the four-term reconstructed PAL spectra with characteristic lifetimes near 2 and 60-70 ns can be, respectively, attributed to ortho-positronium (o-Ps) traps in nanopores with 0.3- and 1.5-1.8-nm radii. The first o-Ps decaying process includes "pick-off" annihilation in the "bubbles" of liquid water, while the second is based on o-Ps interaction with physisorbed water molecules at the walls of the pores. In addition, the water vapor modifies structural defects located at the grain boundaries in a vicinity of pores, this process being accompanied by void fragmentation during water adsorption and agglomeration during water desorption after drying.

  9. Variable-gravity anti-vortex and vapor-ingestion-suppression device

    NASA Technical Reports Server (NTRS)

    Grayson, Gary D. (Inventor)

    2003-01-01

    A liquid propellant management device for placement in a liquid storage tank adjacent an outlet of the storage tank to substantially reduce or eliminate the formation of a dip and vortex in the liquid of the tank, as well as prevent vapor ingestion into the outlet, as the liquid drains out through the outlet. The liquid propellant management device has a first member adapted to suppress the formation of a vortex of a liquid exiting the storage tank. A plate is affixed generally perpendicular to the first member, wherein the plate is adapted to suppress vapor ingestion into the outlet by reducing a dip in a surface level of the liquid leaving the tank. A second member is affixed to the second side of the plate. The second member ensures that the plate is wet with liquid and assists in positioning bubbles away from the outlet.

  10. The Evolution of the Large-Scale ISM: Bubbles, Superbubbles and Non-Equilibrium Ionization

    NASA Astrophysics Data System (ADS)

    de Avillez, M. A.; Breitschwerdt, D.

    2010-12-01

    The ISM, powered by SNe, is turbulent and permeated by a magnetic field (with a mean and a turbulent component). It constitutes a frothy medium that is mostly out of equilibrium and is ram pressure dominated on most of the temperature ranges, except for T < 200 K and T > 106K, where magnetic and thermal pressures dominate, respectively. Such lack of equilibrium is also imposed by the feedback of the radiative processes into the ISM flow. Many models of the ISM or isolated phenomena, such as bubbles, superbubbles, clouds evolution, etc., take for granted that the flow is in the so-called collisional ionization equilibrium (CIE). However, recombination time scales of most of the ions below 106 K are longer than the cooling time scale. This implies that the recombination lags behind and the plasma is overionized while it cools. As a consequence cooling deviates from CIE. This has severe implications on the evolution of the ISM flow and its ionization structure. Here, besides reviewing several models of the ISM, including bubbles and superbubbles, the validity of the CIE approximation is discussed, and a presentation of recent developments in modeling the ISM by taking into account the time-dependent ionization structure of the flow in a full-blown numerical 3D high resolution simulation is presented.

  11. Methane rising from the Deep: Hydrates, Bubbles, Oil Spills, and Global Warming

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Rehder, G. J.; Solomon, E. A.; Kastner, M.; Asper, V. L.; Joye, S. B.

    2011-12-01

    Elevated methane concentrations in near-surface waters and the atmosphere have been reported for seepage from depths of nearly 1 km at the Gulf of Mexico hydrate observatory (MC118), suggesting that for some methane sources, deepsea methane is not trapped and can contribute to atmospheric greenhouse gas budgets. Ebullition is key with important sensitivity to the formation of hydrate skins and oil coatings, high-pressure solubility, bubble size and bubble plume processes. Bubble ROV tracking studies showed survival to near thermocline depths. Studies with a numerical bubble propagation model demonstrated that consideration of structure I hydrate skins transported most methane only to mid-water column depths. Instead, consideration of structure II hydrates, which are stable to far shallower depths and appropriate for natural gas mixtures, allows bubbles to survive to far shallower depths. Moreover, model predictions of vertical methane and alkane profiles and bubble size evolution were in better agreement with observations after consideration of structure II hydrate properties as well as an improved implementation of plume properties, such as currents. These results demonstrate the importance of correctly incorporating bubble hydrate processes in efforts to predict the impact of deepsea seepage as well as to understand the fate of bubble-transported oil and methane from deepsea pipeline leaks and well blowouts. Application to the DWH spill demonstrated the importance of deepsea processes to the fate of spilled subsurface oil. Because several of these parameters vary temporally (bubble flux, currents, temperature), sensitivity studies indicate the importance of real-time monitoring data.

  12. Experimental study on pool boiling of distilled water and HFE7500 fluid under microgravity

    NASA Astrophysics Data System (ADS)

    Yang, Yan-jie; Chen, Xiao-qian; Huang, Yi-yong; Li, Guang-yu

    2018-02-01

    The experimental study on bubble behavior and heat transfer of pool boiling for distilled water and HFE7500 fluid under microgravity has been conducted by using drop tower in the National Microgravity Laboratory of China (NMLC). Two MCH ceramic plates of 20 mm(L) × 10 mm(W) × 1.2 mm(H) were used as the heaters. The nucleate boiling evolution under microgravity was observed during the experiment. It has been found that at the same heat flux, the bubbles of HFE7500 (which has smaller contact angle) grew faster and bigger, moved quickly on the heater surface, and were easier to merge into a central big bubble with other bubbles than that of distilled water. The whole process of bubbles coalescence from seven to one was recorded by using video camera. For distilled water (with bigger contact angle), the bubbles tended to keep at the nucleate location on heater surface, and the central big bubble evolved at its nucleate cite by absorbing smaller bubbles nearby. Compared with the bubbles under normal gravity, bubble radius of distilled water under microgravity was about 1.4 times bigger and of HFE7500 was about more than 6 times bigger till the end of experiment. At the beginning, pool boiling heat transfer of distilled water was advanced and then impeded under microgravity. As to HFE7500, the pool boiling impedes the heat transfer from heater to liquid under microgravity throughout the experiment.

  13. Topological defects from the multiverse

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Blanco-Pillado, Jose J.; Garriga, Jaume; Vilenkin, Alexander

    2015-05-01

    Many theories of the early universe predict the existence of a multiverse where bubbles continuously nucleate giving rise to observers in their interior. In this paper, we point out that topological defects of several dimensionalities will also be produced in de Sitter like regions of the multiverse. In particular, defects could be spontaneously nucleated in our parent vacuum. We study the evolution of these defects as they collide with and propagate inside of our bubble. We estimate the present distribution of defects in the observable part of the universe. The expected number of such nearby defects turns out to be quite small, even for the highest nucleation rate. We also study collisions of strings and domain walls with our bubble in our past light cone. We obtain simulated full-sky maps of the loci of such collisions, and find their angular size distribution. Similarly to what happens in the case of bubble collisions, the prospect of detecting any collisions of our bubble with ambient defects is greatly enhanced in the case where the cosmological constant of our parent vacuum is much higher than the vacuum energy density during inflation in our bubble.

  14. Effects of radiator shapes on the bubble diving and dispersion of ultrasonic argon process.

    PubMed

    Liu, Xuan; Xue, Jilai; Zhao, Qiang; Le, Qichi; Zhang, Zhiqiang

    2018-03-01

    In this work, three ultrasonic radiators in different shapes have been designed in order to investigate the effects of radiator shapes on the argon bubble dispersion and diving as well as the degassing efficiency on magnesium melt. The radiator shape has a strong influence on the bubble diving and dispersion by ultrasound. A massive argon bubble slowly flows out from the radiator with the hemispherical cap, due to the covering hemispherical cap. Using a concave radiator can intensively crush the argon bubbles and drive them much deep into the water/melt, depending on the competition between the argon flow and opposite joint shear force from the concave surface. The evolution of wall bubbles involves the ultrasonic cavities carrying dissolved gas, migrating to the vessel wall, and escaping from the liquid. Hydrogen removal can be efficiently achieved using a concave radiator. The hydrogen content can be reduced from 22.3 μg/g down to 8.7 μg/g. Mechanical properties are significantly promoted, due to the structure refinement and efficient hydrogen removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Interaction between phases in the liquid–gas system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, R. S., E-mail: bmsmirnov@gmail.com; Smirnov, B. M.

    This work analyzes the equilibrium between a liquid and a gas over this liquid separated by an interface. Various gas forms exist inside the liquid: dissolved gas molecules attached to solvent molecules, free gas molecules, and gaseous bubbles. Thermodynamic equilibrium is maintained between two phases; the first phase is the liquid containing dissolved and free molecules, and the second phase is the gas over the liquid and bubbles inside it. Kinetics of gas transition between the internal and external gas proceeds through bubbles and includes the processes of bubbles floating up and bubble growth as a result of association duemore » to the Smoluchowski mechanism. Evolution of a gas in the liquid is considered using the example of oxygen in water, and numerical parameters of this system are given. In the regime under consideration for an oxygen–water system, transport of oxygen into the surrounding air proceeds through micron-size bubbles with lifetimes of hours. This regime is realized if the total number of oxygen molecules in water is small compared with the numbers of solvated and free molecules in the liquid.« less

  16. Growth and Morphology of Supercritical Fluids, a Fluid Physics Experiment Conducted on Mir, Complete

    NASA Technical Reports Server (NTRS)

    Wilkinson, R. Allen

    2001-01-01

    The Growth and Morphology of Supercritical Fluids (GMSF) is an international experiment facilitated by the NASA Glenn Research Center and under the guidance of U.S. principal investor Professor Hegseth of the University of New Orleans and three French coinvestigators: Daniel Beysens, Yves Garrabos, and Carole Chabot. The GMSF experiments were concluded in early 1999 on the Russian space station Mir. The experiments spanned the three science themes of near-critical phase separation rates, interface dynamics in near-critical boiling, and measurement of the spectrum of density fluctuation length scales very close to the critical point. The fluids used were pure CO2 or SF6. Three of the five thermostats used could adjust the sample volume with the scheduled crew time. Such a volume adjustment enabled variable sample densities around the critical density as well as pressure steps (as distinct from the usual temperature steps) applied to the sample. The French-built ALICE II facility was used for these experiments. It allows tightly thermostated (left photograph) samples (right photograph) to be controlled and viewed/measured. Its diagnostics include interferometry, shadowgraph, high-speed pressure measurements, and microscopy. Data were logged on DAT tapes, and PCMCIA cards and were returned to Earth only after the mission was over. The ground-breaking near critical boiling experiment has yielded the most results with a paper published in Physical Review Letters (ref. 1). The boiling work also received press in Science Magazine (ref. 2). This work showed that, in very compressible near-critical two-phase pure fluids, a vapor bubble was induced to temporarily overheat during a rapid heating of the sample wall. The temperature rise in the vapor was 23-percent higher than the rise in the driving container wall. The effect is due to adiabatic compression of the vapor bubble by the rapid expansion of fluid near the boundary during heatup. Thermal diffusivity is low near the critical point, so getting heat out of the compressed bubble is observably slow. This gives the appearance of a backward heat flow, or heat flow from a cold surface to a warm fluid.

  17. Ultrasound-triggered drug delivery using acoustic droplet vaporization

    NASA Astrophysics Data System (ADS)

    Fabiilli, Mario Leonardo

    The goal of targeted drug delivery is the spatial and temporal localization of a therapeutic agent and its associated bioeffects. One method of drug localization is acoustic droplet vaporization (ADV), whereby drug-laden perfluorocarbon (PFC) emulsions are vaporized into gas bubbles using ultrasound, thereby releasing drug locally. Transpulmonary droplets are converted into bubbles that occlude capillaries, sequestering the released drug within an organ or tumor. This research investigates the relationship between the ADV and inertial cavitation (IC) thresholds---relevant for drug delivery due to the bioffects generated by IC---and explores the delivery of lipophilic and hydrophilic compounds using PFC double emulsions. IC can positively and negatively affect ultrasound mediated drug delivery. The ADV and IC thresholds were determined for various bulk fluid, droplet, and acoustic parameters. At 3.5 MHz, the ADV threshold occurred at a lower rarefactional pressure than the IC threshold. The results suggest that ADV is a distinct phenomenon from IC, the ADV nucleus is internal to the droplet, and the IC nucleus is the bubble generated by ADV. The ADV triggered release of a lipophilic chemotherapeutic agent, chlorambucil (CHL), from a PFC-in-oil-in-water emulsion was explored using plated cells. Cells exposed to a CHL-loaded emulsion, without ADV, displayed 44% less growth inhibition than cells exposed to an equal concentration of CHL in solution. Upon ADV of the CHL-loaded emulsion, the growth inhibition increased to the same level as cells exposed to CHL in solution. A triblock copolymer was synthesized which enabled the formulation of stable water-in-PFC-in-water (W1/PFC/W2) emulsions. The encapsulation of fluorescein in the W1 phase significantly decreased the mass flux of fluorescein; ADV was shown to completely release the fluorescein from the emulsions. ADV was also shown to release thrombin, dissolved in the W1 phase, which could be used in vivo to extend synergistically the duration of ADV-generated, microbubble-based embolizations. Overall, the results suggest that PFC double emulsions can be used as an ultrasound-triggered drug delivery system. Compared to traditional drug delivery systems, ADV could be used to increase the therapeutic efficacy and decrease the systemic toxicity of drug therapy.

  18. Singlet Delta oxygen generation for chemical oxygen-iodine lasers

    NASA Astrophysics Data System (ADS)

    Georges, E.; Mouthon, A.; Barraud, R.

    To improve the overall efficiency of chemical oxygen-iodine lasers, it is necessary to increase the generator production and yield of singlet delta oxygen at low and high pressure, respectively, for subsonic and supersonic lasers. The water vapor content must also be as low as possible. A generator model based on gas-liquid reaction and liquid-vapor equilibrium theories is presented. From model predictions, operating conditions have been drawn to attain the following experimental results in a bubble-column: by increasing the superficial gas velocity, the production of singlet delta oxygen is largely improved at low pressure; by mixing chlorine with an inert gas before injection in the reactor, this yield is maintained constant up to higher pressure.

  19. High-energy synchrotron study of in-pile-irradiated U–Mo fuels

    DOE PAGES

    Miao, Yinbin; Mo, Kun; Ye, Bei; ...

    2015-12-30

    We report synchrotron scattering analysis results on U-7wt%Mo fuel samples irradiated in the Advanced Test Reactor to three different burnup levels. Mature fission gas bubble superlattice was observed to form at intermediate burnup. The superlattice constant was determined to be 11.7 nm and 12.1 nm by wide-angle and small-angle scattering respectively. Grain sub-division takes place throughout the irradiation and causes the collapse of the superlattice at high burnup. The bubble superlattice expands the lattice constant and acts as strong sinks of radiation induced defects. The evolution of dislocation loops was therefore suppressed until the bubble superlattice collapses.

  20. The role of thermal vapor diffusion in the subsurface hydrologic evolution of Mars

    NASA Technical Reports Server (NTRS)

    Clifford, Stephen M.

    1991-01-01

    The hydrologic response of groundwater to the thermal evolution of the early martian crust is considered. When a temperature gradient is present in a moist porous medium, it gives rise to a vapor-pressure gradient that drives the diffusion of water vapor from regions of high to low temperature. By this process, a geothermal gradient as small as 15 K/km could drive the vertical transport of 1 km of water to the freezing front at the base of the martian crysophere every 10 exp 6-10 exp 7 years, or the equivalent of about 100-1000 km of water over the course of martian geologic history. Models of the thermal history of Mars suggest that this thermally-driven vapor flux may have been as much as 3-5 times greater in the past. The magnitude of this transport suggests that the process of geothermally-induced vapor diffusion may have played a critical role in the initial emplacement of ground ice and the subsequent geomorphic and geochemical evolution of the martian crust.

  1. Bubbling bed catalytic hydropyrolysis process utilizing larger catalyst particles and smaller biomass particles featuring an anti-slugging reactor

    DOEpatents

    Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J

    2014-09-23

    This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor. When the product vapor stream is cooled to ambient temperatures, a significant proportion of the hydrocarbons in the product vapor stream can be recovered as a liquid stream of hydrophobic hydrocarbons, with properties consistent with those of gasoline, kerosene, and diesel fuel. Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined hydrocarbon liquid.

  2. Bubbling bed catalytic hydropyrolysis process utilizinig larger catalyst particles and small biomass particles featuring an anti-slugging reactor

    DOEpatents

    Marker, Terry L.; Felix, Larry G.; Linck, Martin B.; Roberts, Michael J.

    2016-12-06

    This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor. When the product vapor stream is cooled to ambient temperatures, a significant proportion of the hydrocarbons in the product vapor stream can be recovered as a liquid stream of hydrophobic hydrocarbons, with properties consistent with those of gasoline, kerosene, and diesel fuel. Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined hydrocarbon liquid.

  3. Thermal-hydraulic behaviors of vapor-liquid interface due to arrival of a pressure wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Akira; Fujii, Yoshifumi; Matsuzaki, Mitsuo

    In the vapor explosion, a pressure wave (shock wave) plays a fundamental role for triggering, propagation and enhancement of the explosion. Energy of the explosion is related to the magnitude of heat transfer rate from hot liquid to cold volatile one. This is related to an increasing rate of interface area and to an amount of transient heat flux between the liquids. In this study, the characteristics of transient heat transfer and behaviors of vapor film both on the platinum tube and on the hot melt tin drop, under same boundary conditions have been investigated. It is considered that theremore » exists a fundamental mechanism of the explosion in the initial expansion process of the hot liquid drop immediately after arrival of pressure wave. The growth rate of the vapor film is much faster on the hot liquid than that on the solid surface. Two kinds of roughness were observed, one due to the Taylor instability, by rapid growth of the explosion bubble, and another, nucleation sites were observed at the vapor-liquid interface. Based on detailed observation of early stage interface behaviors after arrival of a pressure wave, the thermal fragmentation mechanism is proposed.« less

  4. Concurrent anti-vascular therapy and chemotherapy in solid tumors using drug-loaded acoustic nanodroplet vaporization.

    PubMed

    Ho, Yi-Ju; Yeh, Chih-Kuang

    2017-02-01

    Drug-loaded nanodroplets (NDs) can be converted into gas bubbles through ultrasound (US) stimulation, termed acoustic droplet vaporization (ADV), which provides a potential strategy to simultaneously induce vascular disruption and release drugs for combined physical anti-vascular therapy and chemotherapy. Doxorubicin-loaded NDs (DOX-NDs) with a mean size of 214nm containing 2.48mg DOX/mL were used in this study. High-speed images displayed bubble formation and cell debris, demonstrating the reduction in cell viability after ADV. Intravital imaging provided direct visualization of disrupted tumor vessels (vessel size <30μm), the extravasation distance was 12μm in the DOX-NDs group and increased over 100μm in the DOX-NDs+US group. Solid tumor perfusion on US imaging was significantly reduced to 23% after DOX-NDs vaporization, but gradually recovered to 41%, especially at the tumor periphery after 24h. Histological images of the DOX-NDs+US group revealed tissue necrosis, a large amount of drug extravasation, vascular disruption, and immune cell infiltration at the tumor center. Tumor sizes decreased 22%, 36%, and 68% for NDs+US, DOX-NDs, and DOX-NDs+US, respectively, to prolong the survival of tumor-bearing mice. Therefore, this study demonstrates that the combination of physical anti-vascular therapy and chemotherapy with DOX-NDs vaporization promotes uniform treatment to improve therapeutic efficacy. Tumor vasculature plays an important role for tumor cell proliferation by transporting oxygen and nutrients. Previous studies combined anti-vascular therapy and drug release to inhibit tumor growth by ultrasound-stimulated microbubble destruction or acoustic droplet vaporization. Although the efficacy of combined therapy has been demonstrated; the relative spatial distribution of vascular disruption, drug delivery, and accompanied immune responses within solid tumors was not discussed clearly. Herein, our study used drug-loaded nanodroplets to combined physical anti-vascular and chemical therapy. The in vitro cytotoxicity, intravital imaging, and histological assessment were used to evaluate the temporal and spatial cooperation between physical and chemical effect. These results revealed some evidences for complementary action to explain the high efficacy of tumor inhibition by combined therapy. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Period adding cascades: experiment and modeling in air bubbling.

    PubMed

    Pereira, Felipe Augusto Cardoso; Colli, Eduardo; Sartorelli, José Carlos

    2012-03-01

    Period adding cascades have been observed experimentally/numerically in the dynamics of neurons and pancreatic cells, lasers, electric circuits, chemical reactions, oceanic internal waves, and also in air bubbling. We show that the period adding cascades appearing in bubbling from a nozzle submerged in a viscous liquid can be reproduced by a simple model, based on some hydrodynamical principles, dealing with the time evolution of two variables, bubble position and pressure of the air chamber, through a system of differential equations with a rule of detachment based on force balance. The model further reduces to an iterating one-dimensional map giving the pressures at the detachments, where time between bubbles come out as an observable of the dynamics. The model has not only good agreement with experimental data, but is also able to predict the influence of the main parameters involved, like the length of the hose connecting the air supplier with the needle, the needle radius and the needle length.

  6. How to Enhance Gas Removal from Porous Electrodes?

    PubMed Central

    Kadyk, Thomas; Bruce, David; Eikerling, Michael

    2016-01-01

    This article presents a structure-based modeling approach to optimize gas evolution at an electrolyte-flooded porous electrode. By providing hydrophobic islands as preferential nucleation sites on the surface of the electrode, it is possible to nucleate and grow bubbles outside of the pore space, facilitating their release into the electrolyte. Bubbles that grow at preferential nucleation sites act as a sink for dissolved gas produced in electrode reactions, effectively suctioning it from the electrolyte-filled pores. According to the model, high oversaturation is necessary to nucleate bubbles inside of the pores. The high oversaturation allows establishing large concentration gradients in the pores that drive a diffusion flux towards the preferential nucleation sites. This diffusion flux keeps the pores bubble-free, avoiding deactivation of the electrochemically active surface area of the electrode as well as mechanical stress that would otherwise lead to catalyst degradation. The transport regime of the dissolved gas, viz. diffusion control vs. transfer control at the liquid-gas interface, determines the bubble growth law. PMID:28008914

  7. Temporal effect of inertial cavitation with and without microbubbles on surface deformation of agarose S gel in the presence of 1-MHz focused ultrasound.

    PubMed

    Tomita, Y; Matsuura, T; Kodama, T

    2015-01-01

    Sonoporation has the potential to deliver extraneous molecules into a target tissue non-invasively. There have been numerous investigations of cell membrane permeabilization induced by microbubbles, but very few studies have been carried out to investigate sonoporation by inertial cavitation, especially from a temporal perspective. In the present paper, we show the temporal variations in nano/micro-pit formations following the collapse of inertial cavitation bubbles, with and without Sonazoid® microbubbles. Using agarose S gel as a target material, erosion experiments were conducted in the presence of 1-MHz focused ultrasound applied for various exposure times, Tex (0.002-60 s). Conventional microscopy was used to measure temporal variations in micrometer-scale pit numbers, and atomic force microscopy utilized to detect surface roughness on a nanometer scale. The results demonstrated that nanometer-scale erosion was predominantly caused by Sonazoid® microbubbles and C4F10 gas bubbles for 0.002 s

  8. Shape Evolution of Metal Nanoparticles in Water Vapor Environment.

    PubMed

    Zhu, Beien; Xu, Zhen; Wang, Chunlei; Gao, Yi

    2016-04-13

    The structures of the metal nanoparticles are crucial for their catalytic activities. How to understand and even control the shape evolution of nanoparticles under reaction condition is a big challenge in heterogeneous catalysis. It has been proved that many reactive gases hold the capability of changing the structures and properties of metal nanoparticles. One interesting question is whether water vapor, such a ubiquitous environment, could induce the shape evolution of metal nanoparticles. So far this question has not received enough attention yet. In this work, we developed a model based on the density functional theory, the Wulff construction, and the Langmuir adsorption isotherm to explore the shape of metal nanoparticle at given temperature and water vapor pressure. By this model, we show clearly that water vapor could notably increase the fraction of (110) facets and decrease that of (111) facets for 3-8 nm Cu nanoparticles, which is perfectly consistent with the experimental observations. Further investigations indicate the water vapor has different effects on the different metal species (Cu, Au, Pt, and Pd). This work not only helps to understand the water vapor effect on the structures of metal nanoparticles but also proposes a simple but effective model to predict the shape of nanoparticles in certain environment.

  9. Vapor bridges between solid substrates in the presence of the contact line pinning effect: Stability and capillary force

    NASA Astrophysics Data System (ADS)

    Liu, Yawei; Zhang, Xianren

    2016-12-01

    In this work, we focus on investigating how nanobubbles mediate long-range interaction between neighboring solid substrates in the presence of the contact line pinning effect caused by surface heterogeneities. Using the constrained lattice density functional theory (LDFT), we prove that the nanobubbles, which take the form of vapor bridges here, are stabilized by the pinning effect if the separation between two substrates is less than a critical distance. The critical distance strongly depends on the chemical potential (i.e., the degree of saturation) and could become extremely long at a special chemical potential. Moreover, under the pinning effect, the substrate chemistry only determines the stability of the vapor bridges and the range of the capillary force, but has less influences on the magnitude of the capillary force, indicating that the substrate chemistry or the apparent contact angle for droplets or bubbles on the substrates is no longer a direct parameter to determine the magnitude of capillary force. A qualitative analysis for the two dimensional vapor bridges by considering the feedback mechanism can explain the results from the LDFT calculations.

  10. Study of vapor flow into a capillary acquisition device. [for cryogenic rocket propellants

    NASA Technical Reports Server (NTRS)

    Dodge, F. T.; Bowles, E. B.

    1982-01-01

    An analytical model was developed that prescribes the conditions for vapor flow through the window screen of a start basket. Several original submodels were developed as part of this model. The submodels interrelate such phenomena as the effect of internal evaporation of the liquid, the bubble point change of a screen in the presence of wicking, the conditions for drying out of a screen through a combination of evaporation and pressure difference, the vapor inflow rate across a wet screen as a function of pressure difference, and the effect on wicking of a difference between the static pressure of the liquid reservoir and the surrounding vapor. Most of these interrelations were verified by a series of separate effects tests, which were also used to determine certain empirical constants in the models. The equations of the model were solved numerically for typical start basket designs, and a simplified start basket was constructed to verify the predictions, using both volatile and nonvolatile test liquids. The test results verified the trends predicted by the model.

  11. Continuous Cavitation Designed for Enhancing Radiofrequency Ablation via a Special Radiofrequency Solidoid Vaporization Process.

    PubMed

    Zhang, Kun; Li, Pei; Chen, Hangrong; Bo, Xiaowan; Li, Xiaolong; Xu, Huixiong

    2016-02-23

    Lowering power output and radiation time during radiofrequency (RF) ablation is still a challenge. Although it is documented that metal-based magnetothermal conversion and microbubbles-based inertial cavitation have been tried to overcome above issues, disputed toxicity and poor magnetothermal conversion efficiency for metal-based nanoparticles and violent but transient cavitation for microbubbles are inappropriate for enhancing RF ablation. In this report, a strategy, i.e., continuous cavitation, has been proposed, and solid menthol-encapsulated poly lactide-glycolide acid (PLGA) nanocapsules have been constructed, as a proof of concept, to validate the role of such a continuous cavitation principle in continuously enhancing RF ablation. The synthesized PLGA-based nanocapsules can respond to RF to generate menthol bubbles via distinctive radiofrequency solidoid vaporization (RSV) process, meanwhile significantly enhance ultrasound imaging for HeLa solid tumor, and further facilitate RF ablation via the continuous cavitation, as systematically demonstrated both in vitro and in vivo. Importantly, this RSV strategy can overcome drawbacks and limitations of acoustic droplet vaporization (ADV) and optical droplet vaporization (ODV), and will probably find broad applications in further cancer theranostics.

  12. The Constrained Vapor Bubble Experiment - Interfacial Flow Region

    NASA Technical Reports Server (NTRS)

    Kundan, Akshay; Wayner, Peter C., Jr.; Plawsky, Joel L.

    2015-01-01

    Internal heat transfer coefficient of the CVB correlated to the presence of the interfacial flow region. Competition between capillary and Marangoni flow caused Flooding and not a Dry-out region. Interfacial flow region growth is arrested at higher power inputs. 1D heat model confirms the presence of interfacial flow region. 1D heat model confirms the arresting phenomena of interfacial flow region Visual observations are essential to understanding.

  13. Pulsed liquid microjet for intravascular injection

    NASA Astrophysics Data System (ADS)

    Palanker, Daniel V.; Fletcher, Daniel A.; Miller, Jason; Huie, Philip; Marmor, Michael; Blumenkranz, Mark S.

    2002-06-01

    Occlusions of the retinal veins and arteries are associated with common diseases such as hypertension and arteriosclerosis and usually cause severe and irreversible loss of vision. Treatments for these vascular diseases have been unsatisfactory to date in part because of the difficulty of delivering thrombolytic drugs locally within the eye. In this article we describe a pulsed liquid microjet for minimally invasive intra-vascular drug delivery. The microjet is driven by a vapor bubble following an explosive evaporation of saline, produced by a microsecond-long electric discharge in front of the 25 micrometers electrode inside the micronozzle. Expansion of the transient vapor bubble produces a water jet with a diameter equal to the diameter of the nozzle, and with a velocity and duration that are controlled by the pulse energy. We found that fluid could be injected through the wall of a 60-micrometers -diameter artery in choriallantoic membrane using a 15-micrometers diameter liquid jet traveling at more than 60 m/s. Histological analysis of these arteries showed that the width of the perforation is limited to the diameter of the micronozzle, and the penetration depth of the jet is controlled by the discharge energy. The pulsed liquid microjet offers a promising technique for precise and needle-free intravascular delivery of thrombolytic drugs for localized treatment of retinal vascular occlusions.

  14. Study of homogeneous bubble nucleation in liquid carbon dioxide by a hybrid approach combining molecular dynamics simulation and density gradient theory

    NASA Astrophysics Data System (ADS)

    Langenbach, K.; Heilig, M.; Horsch, M.; Hasse, H.

    2018-03-01

    A new method for predicting homogeneous bubble nucleation rates of pure compounds from vapor-liquid equilibrium (VLE) data is presented. It combines molecular dynamics simulation on the one side with density gradient theory using an equation of state (EOS) on the other. The new method is applied here to predict bubble nucleation rates in metastable liquid carbon dioxide (CO2). The molecular model of CO2 is taken from previous work of our group. PC-SAFT is used as an EOS. The consistency between the molecular model and the EOS is achieved by adjusting the PC-SAFT parameters to VLE data obtained from the molecular model. The influence parameter of density gradient theory is fitted to the surface tension of the molecular model. Massively parallel molecular dynamics simulations are performed close to the spinodal to compute bubble nucleation rates. From these simulations, the kinetic prefactor of the hybrid nucleation theory is estimated, whereas the nucleation barrier is calculated from density gradient theory. This enables the extrapolation of molecular simulation data to the whole metastable range including technically relevant densities. The results are tested against available experimental data and found to be in good agreement. The new method does not suffer from typical deficiencies of classical nucleation theory concerning the thermodynamic barrier at the spinodal and the bubble size dependence of surface tension, which is typically neglected in classical nucleation theory. In addition, the density in the center of critical bubbles and their surface tension is determined as a function of their radius. The usual linear Tolman correction to the capillarity approximation is found to be invalid.

  15. Study of homogeneous bubble nucleation in liquid carbon dioxide by a hybrid approach combining molecular dynamics simulation and density gradient theory.

    PubMed

    Langenbach, K; Heilig, M; Horsch, M; Hasse, H

    2018-03-28

    A new method for predicting homogeneous bubble nucleation rates of pure compounds from vapor-liquid equilibrium (VLE) data is presented. It combines molecular dynamics simulation on the one side with density gradient theory using an equation of state (EOS) on the other. The new method is applied here to predict bubble nucleation rates in metastable liquid carbon dioxide (CO 2 ). The molecular model of CO 2 is taken from previous work of our group. PC-SAFT is used as an EOS. The consistency between the molecular model and the EOS is achieved by adjusting the PC-SAFT parameters to VLE data obtained from the molecular model. The influence parameter of density gradient theory is fitted to the surface tension of the molecular model. Massively parallel molecular dynamics simulations are performed close to the spinodal to compute bubble nucleation rates. From these simulations, the kinetic prefactor of the hybrid nucleation theory is estimated, whereas the nucleation barrier is calculated from density gradient theory. This enables the extrapolation of molecular simulation data to the whole metastable range including technically relevant densities. The results are tested against available experimental data and found to be in good agreement. The new method does not suffer from typical deficiencies of classical nucleation theory concerning the thermodynamic barrier at the spinodal and the bubble size dependence of surface tension, which is typically neglected in classical nucleation theory. In addition, the density in the center of critical bubbles and their surface tension is determined as a function of their radius. The usual linear Tolman correction to the capillarity approximation is found to be invalid.

  16. Weldability, strength, and high temperature stability of chemically vapor deposited tungsten

    NASA Technical Reports Server (NTRS)

    Bryant, W. A.

    1972-01-01

    Three types of CVD tungsten (fluoride-produced, chloride-produced and the combination of the two which is termed duplex) were evaluated to determine their weldability, high temperature strength and structural stability during 5000 hour exposure to temperatures of 1540 C and 1700 C. Each type of CVD tungsten could be successfully electron beam welded but the results for the chloride product were not as satisfactory as those of the other two materials. The high temperature strength behavior of the three materials did not differ greatly. However a large difference was noted for the grain growth behavior of the two basic CVD tungsten materials. Fluoride tungsten was found to be relatively stable while for the most part the grain size of chloride tungsten increased appreciably. The examination of freshly fractured surfaces with a scanning electron microscope revealed numerous bubbles in the fluoride material following its exposure to 1700 C for 5000 hours. Less severe thermal treatments produced relatively few bubbles in this material. Only at certain locations within the chloride material associated with the interruption of tungsten were bubbles noted.

  17. Lumped Multi-Bubble Analysis of Injection Cooling System for Storage of Cryogenic Liquids

    NASA Astrophysics Data System (ADS)

    Saha, Pritam; Sandilya, Pavitra

    2017-12-01

    Storage of cryogenic liquids is a critical issue in many cryogenic applications. Subcooling of the liquid by bubbling a gas has been suggested to extend the storage period by reducing the boil-off loss. Liquid evaporation into the gas may cause liquid subcooling by extracting the latent heat of vaporization from the liquid. The present study aims at studying the factors affecting the liquid subcooling during gas injection. A lumped parameter model is presented to capture the effects of bubble dynamics (coalescence, breakup, deformation etc.) on the heat and mass transport between the gas and the liquid. The liquid subcooling has been estimated as a function of the key operating variables such as gas flow rate and gas injection temperature. Numerical results have been found to predict the change in the liquid temperature drop reasonably well when compared with the previously reported experimental results. This modelling approach can therefore be used in gauging the significance of various process variables on the liquid subcooling by injection cooling, as well as in designing and rating an injection cooling system.

  18. Combining liquid inertia with pressure recovery from bubble expansion for enhanced flow boiling

    NASA Astrophysics Data System (ADS)

    Kalani, A.; Kandlikar, S. G.

    2015-11-01

    In this paper, we demonstrate using liquid inertia force in a taper gap microchannel geometry to provide a high level of heat dissipation capacity accompanied by a high heat transfer coefficient and low pressure drop during flow boiling. The high mass flux increases liquid inertia force and promotes vapor removal from the manifold, thereby increasing critical heat flux (CHF) and heat transfer coefficient. The tapered gap above the microchannels provides an increasing cross-sectional area in the flow direction. This gap allows bubbles to emerge from microchannels and expand within the gap along the flow direction. The bubble evaporation and expansion in tapered gap causes pressure recovery and reduces the total pressure drop. The pressure recovery increases with the increased evaporation rate at higher heat fluxes. Using a 6% taper and a moderately high inlet liquid flow Reynolds number of 1095, we have reached a CHF of 1.07 kW/cm2 with a heat transfer coefficient of 295 kW/m2 °C and a pressure drop of 30 kPa.

  19. Microjet formation in a capillary by laser-induced cavitation

    NASA Astrophysics Data System (ADS)

    Peters, Ivo R.; Tagawa, Yoshiyuki; van der Meer, Devaraj; Prosperetti, Andrea; Sun, Chao; Lohse, Detlef

    2010-11-01

    A vapor bubble is created by focusing a laser pulse inside a capillary that is partially filled with water. Upon creation of the bubble, a shock wave travels through the capillary. When this shock wave meets the meniscus of the air-water interface, a thin jet is created that travels at very high speeds. A crucial ingredient for the creation of the jet is the shape of the meniscus, which is responsible for focusing the energy provided by the shock wave. We examine the formation of this jet numerically using a boundary integral method, where we prepare an initial interface at rest inside a tube with a diameter ranging from 50 to 500 μm. To simulate the effect of the bubble we then apply a short, strong pressure pulse, after which the jet forms. We investigate the influence of the shape of the meniscus, and pressure amplitude and duration on the jet formation. The jet shape and velocity obtained by the simulation compare well with experimental data, and provides good insight in the origin of the jet.

  20. STEAM FORMING NEUTRONIC REACTOR AND METHOD OF OPERATING IT

    DOEpatents

    Untermyer, S.

    1960-05-10

    The heterogeneous reactor is liquid moderated and cooled by a steam forming coolant and is designed to produce steam from the coolant directly within the active portion of the reactor while avoiding the formation of bubbles in the liquid moderator. This reactor achieves inherent stability as a result of increased neutron leakage and increased neutron resonance absorption in the U/sup 238/ fuel with the formation of bubbles. The invention produces certain conditions under which the formation of vapor bubbles as a result of a neutron flux excursion from the injection of a reactivity increment into the reactor will operate to nullify the reactivity increment within a sufficiently short period of time to prevent unsafe reactor operating conditions from developing. This is obtained by disposing a plurality of fuel elements within a mass of steam forming coolant in the core with the ratio of the volume of steam forming coolant to the volume of fissionable isotopes being within the range yielding a multiplication factor greater than unity and a negative reactivity to core void coefficient at the boiling temperature of the coolant.

  1. Dose dependence of helium bubble formation in nano-engineered SiC at 700 °C

    DOE PAGES

    Chen, Chien -Hung; Zhang, Yanwen; Wang, Yongqiang; ...

    2016-02-03

    Knowledge of radiation-induced helium bubble nucleation and growth in SiC is essential for applications in fusion and fission environments. Here we report the evolution of microstructure in nano-engineered (NE) 3C SiC, pre-implanted with helium, under heavy ion irradiation at 700 °C up to doses of 30 displacements per atom (dpa). Elastic recoil detection analysis confirms that the as-implanted helium depth profile does not change under irradiation to 30 dpa at 700 °C. While the helium bubble size distribution becomes narrower with increasing dose, the average size of bubbles remains unchanged and the density of bubbles increases somewhat with dose. Thesemore » results are consistent with a long helium bubble incubation process under continued irradiation at 700 °C up to 30 dpa, similar to that reported under dual and triple beam irradiation at much higher temperatures. The formation of bubbles at this low temperature is enhanced by the nano-layered stacking fault structure in the NE SiC, which enhances point defect mobility parallel to the stacking faults. Here, this stacking fault structure is stable at 700 °C up to 30 dpa and suppresses the formation of dislocation loops normally observed under these irradiation conditions.« less

  2. Spatial-temporal ultrasound imaging of residual cavitation bubbles around a fluid-tissue interface in histotripsy.

    PubMed

    Hu, Hong; Xu, Shanshan; Yuan, Yuan; Liu, Runna; Wang, Supin; Wan, Mingxi

    2015-05-01

    Cavitation is considered as the primary mechanism of soft tissue fragmentation (histotripsy) by pulsed high-intensity focused ultrasound. The residual cavitation bubbles have a dual influence on the histotripsy pulses: these serve as nuclei for easy generation of new cavitation, and act as strong scatterers causing energy "shadowing." To monitor the residual cavitation bubbles in histotripsy, an ultrafast active cavitation imaging method with relatively high signal-to-noise ratio and good spatial-temporal resolution was proposed in this paper, which combined plane wave transmission, minimum variance beamforming, and coherence factor weighting. The spatial-temporal evolutions of residual cavitation bubbles around a fluid-tissue interface in histotripsy under pulse duration (PD) of 10-40 μs and pulse repetition frequency (PRF) of 0.67-2 kHz were monitored by this method. The integrated bubble area curves inside the tissue interface were acquired from the bubble image sequence, and the formation process of histotripsy damage was estimated. It was observed that the histotripsy efficiency decreased with both longer PDs and higher PRFs. A direct relationship with a coefficient of 1.0365 between histotripsy lesion area and inner residual bubble area was found. These results can assist in monitoring and optimization of the histotripsy treatment further.

  3. Frequency-Domain Tomography for Single-shot, Ultrafast Imaging of Evolving Laser-Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Li, Zhengyan; Zgadzaj, Rafal; Wang, Xiaoming; Downer, Michael

    2011-10-01

    Intense laser pulses propagating through plasma create plasma wakefields that often evolve significantly, e.g. by expanding and contracting. However, such dynamics are known in detail only through intensive simulations. Laboratory visualization of evolving plasma wakes in the ``bubble'' regime is important for optimizing and scaling laser-plasma accelerators. Recently snap-shots of quasi-static wakes were recorded using frequency-domain holography (FDH). To visualize the wake's evolution, we have generalized FDH to frequency-domain tomography (FDT), which uses multiple probes propagating at different angles with respect to the pump pulse. Each probe records a phase streak, imprinting a partial record of the evolution of pump-created structures. We then topographically reconstruct the full evolution from all phase streaks. To prove the concept, a prototype experiment visualizing nonlinear index evolution in glass is demonstrated. Four probes propagating at 0, 0.6, 2, 14 degrees to the index ``bubble'' are angularly and temporally multiplexed to a single spectrometer to achieve cost-effective FDT. From these four phase streaks, an FDT algorithm analogous to conventional CT yields a single-shot movie of the pump's self-focusing dynamics.

  4. Inhibition of tafel kinetics for electrolytic hydrogen evolution on isolated micron scale electrocatalysts on semiconductor interfaces

    DOE PAGES

    Coridan, Robert H.; Schichtl, Zebulon G.; Sun, Tao; ...

    2016-08-30

    Semiconductor-liquid junctions are ubiquitous in photoelectrochemical approaches for solar-to-fuels energy conversion. Electrocatalysts are added to the interface to improve catalytic efficiency, but they can also impair the photovoltage-generating energetics of the electrode without appropriate microscopic organization of catalytically active area on the surface. This balance is more complicated when gas products are evolved, like hydrogen on water splitting electrodes. Discrete catalysts can be blocked by the gas liquid-solid boundary of a bubble stuck to the surface. Here, we study the kinetics of hydrogen evolution on semiconductor electrodes fabricated with an isolated, micronscale platinum electrocatalyst pad. Movies of in operando bubblemore » evolution were recorded with synchrotron-based high-speed x-ray phase-contrast imaging in a compatible electrochemical cell. The self-limited growth of a bubble residing on the isolated electrocatalyst was measured by tracking the evolution of the gas-liquid boundary through the sequence of images in the movie. As a result, the effect of pad size on the catalytic currents and the issues with reactant transport can be inferred from these dynamics.« less

  5. Inhibition of tafel kinetics for electrolytic hydrogen evolution on isolated micron scale electrocatalysts on semiconductor interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coridan, Robert H.; Schichtl, Zebulon G.; Sun, Tao

    Semiconductor-liquid junctions are ubiquitous in photoelectrochemical approaches for solar-to-fuels energy conversion. Electrocatalysts are added to the interface to improve catalytic efficiency, but they can also impair the photovoltage-generating energetics of the electrode without appropriate microscopic organization of catalytically active area on the surface. This balance is more complicated when gas products are evolved, like hydrogen on water splitting electrodes. Discrete catalysts can be blocked by the gas liquid-solid boundary of a bubble stuck to the surface. Here, we study the kinetics of hydrogen evolution on semiconductor electrodes fabricated with an isolated, micronscale platinum electrocatalyst pad. Movies of in operando bubblemore » evolution were recorded with synchrotron-based high-speed x-ray phase-contrast imaging in a compatible electrochemical cell. The self-limited growth of a bubble residing on the isolated electrocatalyst was measured by tracking the evolution of the gas-liquid boundary through the sequence of images in the movie. As a result, the effect of pad size on the catalytic currents and the issues with reactant transport can be inferred from these dynamics.« less

  6. Investigation of Nucleate Boiling Mechanisms Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Dhir, V. K.; Qiu, D. M.; Ramanujapu, N.; Hasan, M. M.

    1999-01-01

    The present work is aimed at the experimental studies and numerical modeling of the bubble growth mechanisms of a single bubble attached to a heating surface and of a bubble sliding along an inclined heated plate. Single artificial cavity of 10 microns in diameter was made on the polished Silicon wafer which was electrically heated at the back side in order to control the surface nucleation superheat. Experiments with a sliding bubble were conducted at different inclination angles of the downward facing heated surface for the purpose of studying the effect of magnitude of components of gravity acting parallel to and normal to the heat transfer surface. Information on the bubble shape and size, the bubble induced liquid velocities as well as the surface temperature were obtained using the high speed imaging and hydrogen bubble techniques. Analytical/numerical models were developed to describe the heat transfer through the micro-macro layer underneath and around a bubble formed at a nucleation site. In the micro layer model the capillary and disjoining pressures were included. Evolution of the bubble-liquid interface along with induced liquid motion was modeled. As a follow-up to the studies at normal gravity, experiments are being conducted in the KC-135 aircraft to understand the bubble growth/detachment under low gravity conditions. Experiments have been defined to be performed under long duration of microgravity conditions in the space shuttle. The experiment in the space shuttle will provide bubble growth and detachment data at microgravity and will lead to validation of the nucleate boiling heat transfer model developed from the preceding studies conducted at normal and low gravity (KC-135) conditions.

  7. Assessing the Performance of a Machine Learning Algorithm in Identifying Bubbles in Dust Emission

    NASA Astrophysics Data System (ADS)

    Xu, Duo; Offner, Stella S. R.

    2017-12-01

    Stellar feedback created by radiation and winds from massive stars plays a significant role in both physical and chemical evolution of molecular clouds. This energy and momentum leaves an identifiable signature (“bubbles”) that affects the dynamics and structure of the cloud. Most bubble searches are performed “by eye,” which is usually time-consuming, subjective, and difficult to calibrate. Automatic classifications based on machine learning make it possible to perform systematic, quantifiable, and repeatable searches for bubbles. We employ a previously developed machine learning algorithm, Brut, and quantitatively evaluate its performance in identifying bubbles using synthetic dust observations. We adopt magnetohydrodynamics simulations, which model stellar winds launching within turbulent molecular clouds, as an input to generate synthetic images. We use a publicly available three-dimensional dust continuum Monte Carlo radiative transfer code, HYPERION, to generate synthetic images of bubbles in three Spitzer bands (4.5, 8, and 24 μm). We designate half of our synthetic bubbles as a training set, which we use to train Brut along with citizen-science data from the Milky Way Project (MWP). We then assess Brut’s accuracy using the remaining synthetic observations. We find that Brut’s performance after retraining increases significantly, and it is able to identify yellow bubbles, which are likely associated with B-type stars. Brut continues to perform well on previously identified high-score bubbles, and over 10% of the MWP bubbles are reclassified as high-confidence bubbles, which were previously marginal or ambiguous detections in the MWP data. We also investigate the influence of the size of the training set, dust model, evolutionary stage, and background noise on bubble identification.

  8. The evolution of helium from aged Zr tritides: A thermal helium desorption spectrometry study

    NASA Astrophysics Data System (ADS)

    Cheng, G. J.; Huang, G.; Chen, M.; Zhou, X. S.; Liu, J. H.; Peng, S. M.; Ding, W.; Wang, H. F.; Shi, L. Q.

    2018-02-01

    The evolution of He from Zr-tritides was investigated for aging times up to about 6.5 years using analytical thermal helium desorption spectrometry (THDS). Zr films were deposited onto Mo substrates and then converted into Zr-tritides (ZrT1.70∼1.95) inside a tritiding apparatus loaded with pure tritium gas. During aging, there are at least five forms of He in Zr-tritides, and more than 99% of He atoms are in the form of He bubbles. The isolated He bubbles in lattices begin to link with each other when the He/Zr atom ratio reaches about 0.21, and are connected to grain boundaries or dislocation networks at He concentration of He/Zr ≈ 0.26. An interconnected system of channels decorated by bubbles evolves from the network dislocations, dislocation loops and internal boundaries. These He filled networks are formed completely when the He/Zr atom ratio is about 0.38. Once the He/Zr reached about 0.45, the networks of He bubble penetrate to the film surface and He begins an "accelerated release". This critical ratio of He to Zr for He accelerated release is much greater than that found previously for Ti-tritides (0.23-0.30). The difference of He retention in Zr-tritides and Ti-tritides was also discussed in this paper.

  9. Vapor nucleation paths in lyophobic nanopores.

    PubMed

    Tinti, Antonio; Giacomello, Alberto; Casciola, Carlo Massimo

    2018-04-19

    In recent years, technologies revolving around the use of lyophobic nanopores gained considerable attention in both fundamental and applied research. Owing to the enormous internal surface area, heterogeneous lyophobic systems (HLS), constituted by a nanoporous lyophobic material and a non-wetting liquid, are promising candidates for the efficient storage or dissipation of mechanical energy. These diverse applications both rely on the forced intrusion and extrusion of the non-wetting liquid inside the pores; the behavior of HLS for storage or dissipation depends on the hysteresis between these two processes, which, in turn, are determined by the microscopic details of the system. It is easy to understand that molecular simulations provide an unmatched tool for understanding phenomena at these scales. In this contribution we use advanced atomistic simulation techniques in order to study the nucleation of vapor bubbles inside lyophobic mesopores. The use of the string method in collective variables allows us to overcome the computational challenges associated with the activated nature of the phenomenon, rendering a detailed picture of nucleation in confinement. In particular, this rare event method efficiently searches for the most probable nucleation path(s) in otherwise intractable, high-dimensional free-energy landscapes. Results reveal the existence of several independent nucleation paths associated with different free-energy barriers. In particular, there is a family of asymmetric transition paths, in which a bubble forms at one of the walls; the other family involves the formation of axisymmetric bubbles with an annulus shape. The computed free-energy profiles reveal that the asymmetric path is significantly more probable than the symmetric one, while the exact position where the asymmetric bubble forms is less relevant for the free energetics of the process. A comparison of the atomistic results with continuum models is also presented, showing how, for simple liquids in mesoporous materials of characteristic size of ca. 4nm, the nanoscale effects reported for smaller pores have a minor role. The atomistic estimates for the nucleation free-energy barrier are in qualitative accord with those that can be obtained using a macroscopic, capillary-based nucleation theory.

  10. Effects of Soluble Surfactant on Lateral Migration of a Bubble in a Shear Flow

    NASA Astrophysics Data System (ADS)

    Muradoglu, Metin; Tryggvason, Gretar

    2014-11-01

    Motivated by the recent experimental study of Takagi et al. (2008), direct numerical simulations are performed to examine effects of soluble surfactant on the lateral migration of a deformable bubble in a pressure-driven channel flow. The interfacial and bulk surfactant concentration evolution equations are solved fully coupled with the incompressible Navier-Stokes equations. A non-linear equation of state is used to relate interfacial surface tension to surfactant concentration at the interface. A multiscale method is developed to handle the mass exchange between the interface and bulk fluid at high Peclet numbers, using a boundary-layer approximation next to the bubble and a relatively coarse grid for the rest of the flow. It is found that the surfactant induced Marangoni stresses can dominate over the shear-induced lift force and thus alter the behavior of the bubble completely, i.e., the contaminated bubble drifts away from the channel wall and stabilizes at the center of the channel in contrast with the corresponding clean bubble that drifts toward the wall and stabilizes near the wall. The Scientific and Technical Research Council of Turkey (TUBITAK), Grant 112M181 and Turkish Academy of Sciences (TUBA).

  11. Topological defects from the multiverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jun; Vilenkin, Alexander; Blanco-Pillado, Jose J.

    2015-05-01

    Many theories of the early universe predict the existence of a multiverse where bubbles continuously nucleate giving rise to observers in their interior. In this paper, we point out that topological defects of several dimensionalities will also be produced in de Sitter like regions of the multiverse. In particular, defects could be spontaneously nucleated in our parent vacuum. We study the evolution of these defects as they collide with and propagate inside of our bubble. We estimate the present distribution of defects in the observable part of the universe. The expected number of such nearby defects turns out to bemore » quite small, even for the highest nucleation rate. We also study collisions of strings and domain walls with our bubble in our past light cone. We obtain simulated full-sky maps of the loci of such collisions, and find their angular size distribution. Similarly to what happens in the case of bubble collisions, the prospect of detecting any collisions of our bubble with ambient defects is greatly enhanced in the case where the cosmological constant of our parent vacuum is much higher than the vacuum energy density during inflation in our bubble.« less

  12. Topological defects from the multiverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jun; Blanco-Pillado, Jose J.; IKERBASQUE, Basque Foundation for Science, 48013, Bilbao

    2015-05-28

    Many theories of the early universe predict the existence of a multiverse where bubbles continuously nucleate giving rise to observers in their interior. In this paper, we point out that topological defects of several dimensionalities will also be produced in de Sitter like regions of the multiverse. In particular, defects could be spontaneously nucleated in our parent vacuum. We study the evolution of these defects as they collide with and propagate inside of our bubble. We estimate the present distribution of defects in the observable part of the universe. The expected number of such nearby defects turns out to bemore » quite small, even for the highest nucleation rate. We also study collisions of strings and domain walls with our bubble in our past light cone. We obtain simulated full-sky maps of the loci of such collisions, and find their angular size distribution. Similarly to what happens in the case of bubble collisions, the prospect of detecting any collisions of our bubble with ambient defects is greatly enhanced in the case where the cosmological constant of our parent vacuum is much higher than the vacuum energy density during inflation in our bubble.« less

  13. Decompression models: review, relevance and validation capabilities.

    PubMed

    Hugon, J

    2014-01-01

    For more than a century, several types of mathematical models have been proposed to describe tissue desaturation mechanisms in order to limit decompression sickness. These models are statistically assessed by DCS cases, and, over time, have gradually included bubble formation biophysics. This paper proposes to review this evolution and discuss its limitations. This review is organized around the comparison of decompression model biophysical criteria and theoretical foundations. Then, the DCS-predictive capability was analyzed to assess whether it could be improved by combining different approaches. Most of the operational decompression models have a neo-Haldanian form. Nevertheless, bubble modeling has been gaining popularity, and the circulating bubble amount has become a major output. By merging both views, it seems possible to build a relevant global decompression model that intends to simulate bubble production while predicting DCS risks for all types of exposures and decompression profiles. A statistical approach combining both DCS and bubble detection databases has to be developed to calibrate a global decompression model. Doppler ultrasound and DCS data are essential: i. to make correlation and validation phases reliable; ii. to adjust biophysical criteria to fit at best the observed bubble kinetics; and iii. to build a relevant risk function.

  14. Weakly nonlinear incompressible Rayleigh-Taylor instability in spherical geometry

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Wang, L. F.; Ye, W. H.; Wu, J. F.; Guo, H. Y.; Zhang, W. Y.; He, X. T.

    2017-06-01

    In this research, a weakly nonlinear (WN) model for the incompressible Rayleigh-Taylor instability in cylindrical geometry [Wang et al., Phys. Plasmas 20, 042708 (2013)] is generalized to spherical geometry. The evolution of the interface with an initial small-amplitude single-mode perturbation in the form of Legendre mode (Pn) is analysed with the third-order WN solutions. The transition of the small-amplitude perturbed spherical interface to the bubble-and-spike structure can be observed by our model. For single-mode perturbation Pn, besides the generation of P 2 n and P 3 n , which are similar to the second and third harmonics in planar and cylindrical geometries, many other modes in the range of P0- P 3 n are generated by mode-coupling effects up to the third order. With the same initial amplitude, the bubbles at the pole grow faster than those at the equator in the WN regime. Furthermore, it is found that the behavior of the bubbles at the pole is similar to that of three-dimensional axisymmetric bubbles, while the behavior of the bubbles at the equator is similar to that of two-dimensional bubbles.

  15. Detection of vapor nanobubbles by small angle neutron scattering (SANS)

    NASA Astrophysics Data System (ADS)

    Popov, Emilian; He, Lilin; Dominguez-Ontiveros, Elvis; Melnichenko, Yuri

    2018-04-01

    Experiments using boiling water on untreated (roughness 100-300 nm) metal surfaces using small-angle neutron scattering (SANS) show the appearance of structures that are 50-70 nm in size when boiling is present. The scattering signal disappears when the boiling ceases, and no change in the signal is detected at any surface temperature condition below saturation. This confirms that the signal is caused by vapor nanobubbles. Two boiling regimes are evaluated herein that differ by the degree of subcooling (3-10 °C). A polydisperse spherical model with a log-normal distribution fits the SANS data well. The size distribution indicates that a large number of nanobubbles exist on the surface during boiling, and some of them grow into large bubbles.

  16. Effect of surface tension on the dynamical behavior of bubble in rotating fluids under low gravity environment

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Tsao, Y. D.; Leslie, Fred W.; Hong, B. B.

    1988-01-01

    Time dependent evolutions of the profile of free surface (bubble shapes) for a cylindrical container partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry, have been studied. Numerical computations of the dynamics of bubble shapes have been carried out with the following situations: (1) linear functions of spin-up and spin-down in low and microgravity environments, (2) linear functions of increasing and decreasing gravity enviroment in high and low rotating cylidner speeds, (3) step functions of spin-up and spin-down in a low gravity environment, and (4) sinusoidal function oscillation of gravity environment in high and low rotating cylinder speeds. The initial condition of bubble profiles was adopted from the steady-state formulations in which the computer algorithms have been developed by Hung and Leslie (1988), and Hung et al. (1988).

  17. Dynamic characteristics of azimuthally correlated structures of axial instability of wire-array Z pinches

    NASA Astrophysics Data System (ADS)

    Dan, Jia Kun; Huang, Xian Bin; Ren, Xiao Dong; Chen, Guang Hua; Xu, Qiang; Wang, Kun Lun; Ouyang, Kai; Wei, Bing

    2017-04-01

    Particular attention was placed on observations of dynamic properties of the azimuthally correlated structures of axial instability of wire-array Z pinches, which were conducted at 10-MA (for short circuit load) pulsed power generator-the Primary Test Stand facility. Not well fabricated loads, which were expected to preset bubble or spike in plasma, were used to degrade the implosion symmetry in order to magnify the phenomenon of instability. The side-view sequence of evolution of correlation given by laser shadowgraphy clearly demonstrates the dynamic processes of azimuthal correlation of the bubble and spike. A possible mechanism presented here suggests that it is the substantial current redistribution especially in regions surrounding the bubble/spike resulting from change of inductance due to the presence of the bubble/spike that plays an essential part in establishment of azimuthal correlation of wire array and liner Z pinches.

  18. Scaling Laws of Nonlinear Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Two and Three Dimensions (IFSA 1999)

    NASA Astrophysics Data System (ADS)

    Shvarts, D.; Oron, D.; Kartoon, D.; Rikanati, A.; Sadot, O.; Srebro, Y.; Yedvab, Y.; Ofer, D.; Levin, A.; Sarid, E.; Ben-Dor, G.; Erez, L.; Erez, G.; Yosef-Hai, A.; Alon, U.; Arazi, L.

    2016-10-01

    The late-time nonlinear evolution of the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities for random initial perturbations is investigated using a statistical mechanics model based on single-mode and bubble-competition physics at all Atwood numbers (A) and full numerical simulations in two and three dimensions. It is shown that the RT mixing zone bubble and spike fronts evolve as h ~ α · A · gt2 with different values of a for the bubble and spike fronts. The RM mixing zone fronts evolve as h ~ tθ with different values of θ for bubbles and spikes. Similar analysis yields a linear growth with time of the Kelvin-Helmholtz mixing zone. The dependence of the RT and RM scaling parameters on A and the dimensionality will be discussed. The 3D predictions are found to be in good agreement with recent Linear Electric Motor (LEM) experiments.

  19. Concentration gradient induced morphology evolution of silica nanostructure growth on photoresist-derived carbon micropatterns

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Shi, Tielin; Xi, Shuang; Lai, Wuxing; Liu, Shiyuan; Li, Xiaoping; Tang, Zirong

    2012-09-01

    The evolution of silica nanostructure morphology induced by local Si vapor source concentration gradient has been investigated by a smart design of experiments. Silica nanostructure or their assemblies with different morphologies are obtained on photoresist-derived three-dimensional carbon microelectrode array. At a temperature of 1,000°C, rope-, feather-, and octopus-like nanowire assemblies can be obtained along with the Si vapor source concentration gradient flow. While at 950°C, stringlike assemblies, bamboo-like nanostructures with large joints, and hollow structures with smaller sizes can be obtained along with the Si vapor source concentration gradient flow. Both vapor-liquid-solid and vapor-quasiliquid-solid growth mechanisms have been applied to explain the diverse morphologies involving branching, connecting, and batch growth behaviors. The present approach offers a potential method for precise design and controlled synthesis of nanostructures with different features.

  20. Pressure (Or No Royal Road)

    ERIC Educational Resources Information Center

    Bradley, J.

    1973-01-01

    Discusses how difficult the various problems of pressure, partial pressure, gas laws, and vapor pressure are for students. Outlines the evolution of the concept of pressure, the gas equation for a perfect gas, partial pressures, saturated vapor pressure, Avogadro's hypothesis, Raoult's law, and the vapor pressure of ideal solutions. (JR)

  1. Effect of Sulfur in Steel on Transient Evolution of Inclusions During Calcium Treatment

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Zhang, Lifeng; Zhang, Ying; Duan, Haojian; Ren, Ying; Yang, Wen

    2018-04-01

    In the current study, the effect of S content in the molten steel on inclusions during calcium treatment was studied using an induction furnace. The calcium in steel decreased from 48 to 2 ppm, and the sulfur in steel changed a little with time. When sulfur content in steel was as low as 25 ppm during calcium treatment, inclusions shifted from CaO-Al2O3-CaS to Al2O3-CaO with about 35 pct CaO. When the sulfur increased over 90 ppm, more CaS-CaO formed just after the addition of calcium, and then the CaS content decreased from over 45 pct to lower than 15 pct and inclusions were mostly Al2O3-CaO-CaS and Al2O3-CaO with a high Al2O3 content. Thermodynamic calculation predicted the variation of the composition of inclusions, indicating good agreement with the measurement, while a certain deviation existed, especially for heats with 90 and 180 ppm sulfur. A reaction model was proposed for the formation of CaO and CaS, which considered the reaction between calcium vapor bubbles in the zone and the dissolved oxygen and sulfur in the molten steel, as described by a Langmuir-type adsorption isotherm with a reaction occurring on the remaining vacant sites. The variation of transient CaS inclusions was discussed based on the thermodynamic calculation and the morphology evolution of typical inclusions containing CaS.

  2. Cluster Dynamics Modeling with Bubble Nucleation, Growth and Coalescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Almeida, Valmor F.; Blondel, Sophie; Bernholdt, David E.

    The topic of this communication pertains to defect formation in irradiated solids such as plasma-facing tungsten submitted to helium implantation in fusion reactor com- ponents, and nuclear fuel (metal and oxides) submitted to volatile ssion product generation in nuclear reactors. The purpose of this progress report is to describe ef- forts towards addressing the prediction of long-time evolution of defects via continuum cluster dynamics simulation. The di culties are twofold. First, realistic, long-time dynamics in reactor conditions leads to a non-dilute di usion regime which is not accommodated by the prevailing dilute, stressless cluster dynamics theory. Second, long-time dynamics callsmore » for a large set of species (ideally an in nite set) to capture all possible emerging defects, and this represents a computational bottleneck. Extensions beyond the dilute limit is a signi cant undertaking since no model has been advanced to extend cluster dynamics to non-dilute, deformable conditions. Here our proposed approach to model the non-dilute limit is to monitor the appearance of a spatially localized void volume fraction in the solid matrix with a bell shape pro le and insert an explicit geometrical bubble onto the support of the bell function. The newly cre- ated internal moving boundary provides the means to account for the interfacial ux of mobile species into the bubble, and the growth of bubbles allows for coalescence phenomena which captures highly non-dilute interactions. We present a preliminary interfacial kinematic model with associated interfacial di usion transport to follow the evolution of the bubble in any number of spatial dimensions and any number of bubbles, which can be further extended to include a deformation theory. Finally we comment on a computational front-tracking method to be used in conjunction with conventional cluster dynamics simulations in the non-dilute model proposed.« less

  3. New approach on volatile contents determination in silicate melt inclusions: A coupling X-ray microtomography and geochemical approach in Los Humeros caldera complex (Eastern Mexican Volcanic Belt)

    NASA Astrophysics Data System (ADS)

    Creon, L.; Levresse, G.; Carrasco Nuñez, G.

    2016-12-01

    Volatile contents and magma degassing behavior are known to affect the style, frequency, and intensity of near-surface magmatic processes. For this reason, much effort have been devoted to characterize the volatile evolution of shallow magmatic systems to better constrain volcanic history. Silicate melt inclusions (SMI) represent samples of melt that were isolated from the bulk magma at depth, thus preserving the PTX conditions of the pre-eruptive material. SMI are often affected by the formation of a bubble after trapping; this is a natural consequence of the PVTX properties of crystal-melt-volatile systems. Previous workers have recognized that bubble formation is an obstacle, which affects the interpretation of SMI trapping conditions based only on analysis of the glass phase. Indeed, they explained that bubbles can contain a significant percentage of the volatiles, particularly for those with low solubility in the melt (e.g. CO2). In this study, we propose to define the pre-eruptive PTX conditions of Los Humeros magma chamber using SMI from the various eruption events within 460 and 30 Ka. An innovative analytical coupling has been used in order to determine: (1) the volume of the SMI glass and bubble, using high resolution 3D X-ray microtomography; (2) the density and composition of the bubbles, using Raman spectroscopy; (3) the volatile element contents in glass, using NanoSIMS; and, (4) the major elements composition of the glass, using EPMA. The recalculated volatile concentrations of the total SMI (glass + bubble), illustrate clearly that the volatile content determinations using only the glass phase, underestimate drastically the total volatile content and therefore induce significant error on the determination of the pre-eruptive volcanic budget and on the constrain on the volcanic and thermal history. This study had moreover highlighted the complex evolution of Los Humeros composite magma chamber and, gave constrains for geothermal exploration purpose.

  4. Facile Synthesis of Single Crystal Vanadium Disulfide Nanosheets by Chemical Vapor Deposition for Efficient Hydrogen Evolution Reaction.

    PubMed

    Yuan, Jiangtan; Wu, Jingjie; Hardy, Will J; Loya, Philip; Lou, Minhan; Yang, Yingchao; Najmaei, Sina; Jiang, Menglei; Qin, Fan; Keyshar, Kunttal; Ji, Heng; Gao, Weilu; Bao, Jiming; Kono, Junichiro; Natelson, Douglas; Ajayan, Pulickel M; Lou, Jun

    2015-10-07

    A facile chemical vapor deposition method to prepare single-crystalline VS2 nanosheets for the hydrogen evolution reaction is reported. The electrocatalytic hydrogen evolution reaction (HER) activities of VS2 show an extremely low overpotential of -68 mV at 10 mA cm(-2), small Tafel slopes of ≈34 mV decade(-1), as well as high stability, demonstrating its potential as a candidate non-noble-metal catalyst for the HER. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Zinc electrodeposition from flowing alkaline zincate solutions: Role of hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Dundálek, Jan; Šnajdr, Ivo; Libánský, Ondřej; Vrána, Jiří; Pocedič, Jaromír; Mazúr, Petr; Kosek, Juraj

    2017-12-01

    The hydrogen evolution reaction is known as a parasitic reaction during the zinc electrodeposition from alkaline zincate solutions and is thus responsible for current efficiency losses during the electrolysis. Besides that, the rising hydrogen bubbles may cause an extra convection within a diffusion layer, which leads to an enhanced mass transport of zincate ions to an electrode surface. In this work, the mentioned phenomena were studied experimentally in a flow through electrolyzer and the obtained data were subsequently evaluated by mathematical models. The results prove the indisputable influence of the rising hydrogen bubbles on the additional mixing of the diffusion layer, which partially compensates the drop of the current efficiency of the zinc deposition at higher current flows. Moreover, the results show that the current density ratio (i.e., the ratio of an overall current density to a zinc limiting current density) is not suitable for the description of the zinc deposition, because the hydrogen evolution current density is always involved in the overall current density.

  6. Modeling photothermal and acoustical induced microbubble generation and growth.

    PubMed

    Krasovitski, Boris; Kislev, Hanoch; Kimmel, Eitan

    2007-12-01

    Previous experimental studies showed that powerful heating of nanoparticles by a laser pulse using energy density greater than 100 mJ/cm(2), could induce vaporization and generate microbubbles. When ultrasound is introduced at the same time as the laser pulse, much less laser power is required. For therapeutic applications, generation of microbubbles on demand at target locations, e.g. cells or bacteria can be used to induce hyperthermia or to facilitate drug delivery. The objective of this work is to develop a method capable of predicting photothermal and acoustic parameters in terms of laser power and acoustic pressure amplitude that are needed to produce stable microbubbles; and investigate the influence of bubble coalescence on the thresholds when the microbubbles are generated around nanoparticles that appear in clusters. We develop and solve here a combined problem of momentum, heat and mass transfer which is associated with generation and growth of a microbubble, filled with a mixture of non-vaporized gas (air) and water vapor. The microbubble's size and gas content vary as a result of three mechanisms: gas expansion or compression, evaporation or condensation on the bubble boundary, and diffusion of dissolved air in the surrounding water. The simulations predict that when ultrasound is applied relatively low threshold values of laser and ultrasound power are required to obtain a stable microbubble from a single nanoparticle. Even lower power is required when microbubbles are formed by coalescence around a cluster of 10 nanoparticles. Laser pulse energy density of 21 mJ/cm(2) is predicted for instance together with acoustic pressure of 0.1 MPa for a cluster of 10 or 62 mJ/cm(2) for a single nanoparticle. Those values are well within the safety limits, and as such are most appealing for targeted therapeutic purposes.

  7. Light and ultrasound activated microbubbles around gold nanorods for photoacoustic microsurgery

    NASA Astrophysics Data System (ADS)

    Cavigli, Lucia; Centi, Sonia; Lai, Sarah; Borri, Claudia; Micheletti, Filippo; Tortoli, Paolo; Panettieri, Ilaria; Streit, Ingolf; Rossi, Francesca; Ratto, Fulvio; Pini, Roberto

    2017-07-01

    Photoacoustic imaging and microsurgery have recently attracted attention for applications in oncology. Here, we present a versatile set-up to trigger vapor microbubbles around plasmonic nanoparticles by a combined light-ultrasound excitation. This system enables the detection and parametrization of bubbles as a function of several variables, such us optical fluence, ultrasound intensity, nanoparticles concentration, thus providing useful directions to the development of new strategies for treatments based on optical cavitation.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGee, Mike; Harms, Elvin; Klebaner, Arkadiy

    Two TESLA-style 8-cavity cryomodules have been operated at Fermilab Accelerator Science and Technology (FAST), formerly the Superconducting Radio Frequency (SRF) Accelerator Test Facility. Operational instabilities were revealed during Radio Frequency (RF) power studies. These observations were complemented by the characterization of thermal acoustic effects on cavity microphonics manifested by apparent noisy boiling of helium involving vapor bubble and liquid vibration. The thermal acoustic measurements also consider pressure and temperature spikes which drive the phenomenon at low and high frequencies.

  9. Bubble Formation at a Submerged Orifice in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Buyevich, Yu A.; Webbon, Bruce W.

    1994-01-01

    The dynamic regime of gas injection through a circular plate orifice into an ideally wetting liquid is considered, when successively detached bubbles may be regarded as separate identities. In normal gravity and at relatively low gas flow rates, a growing bubble is modeled as a spherical segment touching the orifice perimeter during the whole time of its evolution. If the flow rate exceeds a certain threshold value, another stage of the detachment process takes place in which an almost spherical gas envelope is connected with the orifice by a nearly cylindrical stem that lengthens as the bubble rises above the plate. The bubble shape resembles then that of a mushroom and the upper envelope continues to grow until the gas supply through the stem is completely cut off. Such a stage is always present under conditions of sufficiently low gravity, irrespective of the flow rate. Two major reasons make for bubble detachment: the buoyancy force and the force due to the momentum inflow into the bubble with the injected gas. The former force dominates the process at normal gravity whereas the second one plays a key role under negligible gravity conditions. It is precisely this fundamental factor that conditions the drastic influence on bubble growth and detachment that changes in gravity are able to cause. The frequency of bubble formation is proportional to and the volume of detached bubbles is independent of the gas flow rate in sufficiently low gravity, while at normal and moderately reduced gravity conditions the first variable slightly decreases and the second one almost linearly increases as the flow rate grows. Effects of other parameters, such as the orifice radius, gas and liquid densities, and surface tension are discussed.

  10. Observations and Simulations of Formation of Broad Plasma Depletions Through Merging Process

    NASA Technical Reports Server (NTRS)

    Huang, Chao-Song; Retterer, J. M.; Beaujardiere, O. De La; Roddy, P. A.; Hunton, D.E.; Ballenthin, J. O.; Pfaff, Robert F.

    2012-01-01

    Broad plasma depletions in the equatorial ionosphere near dawn are region in which the plasma density is reduced by 1-3 orders of magnitude over thousands of kilometers in longitude. This phenomenon is observed repeatedly by the Communication/Navigation Outage Forecasting System (C/NOFS) satellite during deep solar minimum. The plasma flow inside the depletion region can be strongly upward. The possible causal mechanism for the formation of broad plasma depletions is that the broad depletions result from merging of multiple equatorial plasma bubbles. The purpose of this study is to demonstrate the feasibility of the merging mechanism with new observations and simulations. We present C/NOFS observations for two cases. A series of plasma bubbles is first detected by C/NOFS over a longitudinal range of 3300-3800 km around midnight. Each of the individual bubbles has a typical width of approx 100 km in longitude, and the upward ion drift velocity inside the bubbles is 200-400 m/s. The plasma bubbles rotate with the Earth to the dawn sector and become broad plasma depletions. The observations clearly show the evolution from multiple plasma bubbles to broad depletions. Large upward plasma flow occurs inside the depletion region over 3800 km in longitude and exists for approx 5 h. We also present the numerical simulations of bubble merging with the physics-based low-latitude ionospheric model. It is found that two separate plasma bubbles join together and form a single, wider bubble. The simulations show that the merging process of plasma bubbles can indeed occur in incompressible ionospheric plasma. The simulation results support the merging mechanism for the formation of broad plasma depletions.

  11. Discovery of Giant Gamma-ray Bubbles in the Milky Way

    NASA Astrophysics Data System (ADS)

    Su, Meng

    Based on data from the Fermi Gamma-ray Space Telescope, we have discovered two gigantic gamma-ray emitting bubble structures in our Milky Way (known as the Fermi bubbles), extending ˜50 degrees above and below the Galactic center with a width of ˜40 degrees in longitude. The gamma-ray emission associated with these bubbles has a significantly harder spectrum (dN/dE ˜ E-2) than the inverse Compton emission from known cosmic ray electrons in the Galactic disk, or the gamma-rays produced by decay of pions from proton-ISM collisions. There is no significant difference in the spectrum or gamma-ray luminosity between the north and south bubbles. The bubbles are spatially correlated with the hard-spectrum microwave excess known as the WMAP haze; we also found features in the ROSAT soft X-ray maps at 1.5 -- 2 keV which line up with the edges of the bubbles. The Fermi bubbles are most likely created by some large episode of energy injection in the Galactic center, such as past accretion events onto the central massive black hole, or a nuclear starburst in the last ˜ 10 Myr. Study of the origin and evolution of the bubbles also has the potential to improve our understanding of recent energetic events in the inner Galaxy and the high-latitude cosmic ray population. Furthermore, we have recently identified a gamma-ray cocoon feature within the southern bubble, with a jet-like feature along the cocoon's axis of symmetry, and another directly opposite the Galactic center in the north. If confirmed, these jets are the first resolved gamma-ray jets ever seen.

  12. Modeling quiescent phase transport of air bubbles induced by breaking waves

    NASA Astrophysics Data System (ADS)

    Shi, Fengyan; Kirby, James T.; Ma, Gangfeng

    Simultaneous modeling of both the acoustic phase and quiescent phase of breaking wave-induced air bubbles involves a large range of length scales from microns to meters and time scales from milliseconds to seconds, and thus is computational unaffordable in a surfzone-scale computational domain. In this study, we use an air bubble entrainment formula in a two-fluid model to predict air bubble evolution in the quiescent phase in a breaking wave event. The breaking wave-induced air bubble entrainment is formulated by connecting the shear production at the air-water interface and the bubble number intensity with a certain bubble size spectra observed in laboratory experiments. A two-fluid model is developed based on the partial differential equations of the gas-liquid mixture phase and the continuum bubble phase, which has multiple size bubble groups representing a polydisperse bubble population. An enhanced 2-DV VOF (Volume of Fluid) model with a k - ɛ turbulence closure is used to model the mixture phase. The bubble phase is governed by the advection-diffusion equations of the gas molar concentration and bubble intensity for groups of bubbles with different sizes. The model is used to simulate air bubble plumes measured in laboratory experiments. Numerical results indicate that, with an appropriate parameter in the air entrainment formula, the model is able to predict the main features of bubbly flows as evidenced by reasonable agreement with measured void fraction. Bubbles larger than an intermediate radius of O(1 mm) make a major contribution to void fraction in the near-crest region. Smaller bubbles tend to penetrate deeper and stay longer in the water column, resulting in significant contribution to the cross-sectional area of the bubble cloud. An underprediction of void fraction is found at the beginning of wave breaking when large air pockets take place. The core region of high void fraction predicted by the model is dislocated due to use of the shear production in the algorithm for initial bubble entrainment. The study demonstrates a potential use of an entrainment formula in simulations of air bubble population in a surfzone-scale domain. It also reveals some difficulties in use of the two-fluid model for predicting large air pockets induced by wave breaking, and suggests that it may be necessary to use a gas-liquid two-phase model as the basic model framework for the mixture phase and to develop an algorithm to allow for transfer of discrete air pockets to the continuum bubble phase. A more theoretically justifiable air entrainment formulation should be developed.

  13. Photoacoustic removal of occlusions from blood vessels

    DOEpatents

    Visuri, Steven R.; Da Silva, Luiz B.; Celliers, Peter M.; London, Richard A.; Maitland, IV, Duncan J.; Esch, Victor C.

    2002-01-01

    Partial or total occlusions of fluid passages within the human body are removed by positioning an array of optical fibers in the passage and directing treatment radiation pulses along the fibers, one at a time, to generate a shock wave and hydrodynamics flows that strike and emulsify the occlusions. A preferred application is the removal of blood clots (thrombin and embolic) from small cerebral vessels to reverse the effects of an ischemic stroke. The operating parameters and techniques are chosen to minimize the amount of heating of the fragile cerebral vessel walls occurring during this photo acoustic treatment. One such technique is the optical monitoring of the existence of hydrodynamics flow generating vapor bubbles when they are expected to occur and stopping the heat generating pulses propagated along an optical fiber that is not generating such bubbles.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, M.-L.; Pailloux, F.; Mauchamp, V.

    The understanding of the mechanisms of helium bubble formation and evolution in materials requires the quantitative determination of several key quantities such as the helium density in the bubbles. Helium nanobubbles of about 16 nm in diameter were created in silicon by helium implantation at high fluence and subsequent annealing. Individual nanobubbles were analyzed by spatially resolved Electron Energy-loss Spectroscopy (EELS). We report on the in situ probing of helium desorption from the nanobubbles under electron irradiation. This opens new perspectives for a more accurate determination of the helium density through spatially resolved EELS.

  15. Investigating GAIM-GM’s Capability to Sense Ionospheric Irregularities via Walker Satellite Constellations

    DTIC Science & Technology

    2015-03-26

    aligned along the Earth’s geomagnetic equator [9]. Nava’s method was analyzed under the research of Fenton , who investigated GAIM-GM’s capability to handle...the plasma bubbles without additional inputs. Fenton determined that GAIM-GM handled the evolution of the plasma bubbles poorly [2]. With the results...0 0 2 2 .3 0 Z . 66 Bibliography 1. Space Environment Corporation. Ionospheric Forecast Model Version 4.4a, 2002. 2. Kenneth Fenton . Assessment of

  16. Evolutionary Thinking in Microeconomic Models: Prestige Bias and Market Bubbles

    PubMed Central

    Bell, Adrian Viliami

    2013-01-01

    Evolutionary models broadly support a number of social learning strategies likely important in economic behavior. Using a simple model of price dynamics, I show how prestige bias, or copying of famed (and likely successful) individuals, influences price equilibria and investor disposition in a way that exacerbates or creates market bubbles. I discuss how integrating the social learning and demographic forces important in cultural evolution with economic models provides a fruitful line of inquiry into real-world behavior. PMID:23544100

  17. Subsonic evolution of the radio bubbles in the nearby massive early-type galaxy NGC 4472: uplift, buoyancy, and heating

    NASA Astrophysics Data System (ADS)

    Kraft, Ralph P.; Gendron Marsolais, Marie-Lou; Bogdan, Akos; Su, Yuanyuan; Forman, William R.; Hlavacek-Larrondo, Julie; Jones, Christine; Nulsen, Paul; Randall, Scott W.; Roediger, Elke

    2017-01-01

    We present results from a deep (380 ks) Chandra observation of the hot gas in the nearby massive early-type galaxy NGC 4472. X-ray cavities were previously reported coincident with the radio lobes (Biller et al. 2004). In our deeper observation, we confirm the presence of the cavities and detect rims of enhanced emission surrounding the bubbles. The temperature of the gas in these rims is less than that of the ambient medium, demonstrating that they cold, low entropy material that has been drawn up from the group center by the buoyant rise of the bubbles and not shocks from supersonic inflation of the lobes. Interestingly, the gravitational energy required to lift these lobes from the group center is a significant fraction of the bubble enthalpy. This suggests that uplift by AGN bubbles may play an important role in some cases in offsetting the radiative cooling at cluster and group centers. This uplift also provides an efficient means of transporting enriched material from the group center to large radii.

  18. Direct molecular diffusion and micro-mixing for rapid dewatering of LiBr solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bigham, S; Isfahani, RN; Moghaddam, S

    2014-03-01

    A slow molecular diffusion rate often limits the desorption process of an absorbate molecule from a liquid absorbent. To enhance the desorption rate, the absorbent is often boiled to increase the liquid vapor interfacial area. However, the growth of bubbles generated during the nucleate boiling process still remains mass-diffusion limited. Here, it is shown that a desorption rate higher than that of boiling can be achieved, if the vapor absorbent interface is continuously replenished with the absorbate-rich solution to limit the concentration boundary layer growth. The study is conducted in a LiBr-water-solution, in which the water molecules' diffusion rate ismore » quite slow. The manipulation of the vapor solution interface concentration distribution is enabled by the mechanical confinement of the solution flow within microchannels, using a hydrophobic vapor-venting membrane and the implementation of microstructures on the flow channel's bottom wall. The microstructures stretch and fold the laminar streamlines within the solution film and produce vortices. The vortices continuously replace the concentrated solution at the vapor solution interface with the water-rich solution brought from the bottom and middle of the flow channel. The physics of the process is described using a combination of experimental and numerical studies. Published by Elsevier Ltd.« less

  19. Formation of electron energy spectra during magnetic reconnection in laser-produced plasma

    NASA Astrophysics Data System (ADS)

    Huang, Kai; Lu, Quanming; Huang, Can; Dong, Quanli; Wang, Huanyu; Fan, Feibin; Sheng, Zhengming; Wang, Shui; Zhang, Jie

    2017-10-01

    Energetic electron spectra formed during magnetic reconnection between two laser-produced plasma bubbles are investigated by the use of two-dimensional particle-in-cell simulations. It is found that the evolution of such an interaction between the two plasma bubbles can be separated into two distinct stages: squeezing and reconnection stages. In the squeezing stage, when the two plasma bubbles expand quickly and collide with each other, the magnetic field in the inflow region is greatly enhanced. In the second stage, a thin current sheet is formed between the two plasma bubbles, and then, magnetic reconnection occurs therein. During the squeezing stage, electrons are heated in the perpendicular direction by betatron acceleration due to the enhancement of the magnetic field around the plasma bubbles. Meanwhile, non-thermal electrons are generated by the Fermi mechanism when these electrons bounce between the two plasma bubbles approaching quickly and get accelerated mainly by the convective electric field associated with the plasma bubbles. During the reconnection stage, electrons get further accelerated mainly by the reconnection electric field in the vicinity of the X line. When the expanding speed of the plasma bubbles is sufficiently large, the formed electron energy spectra have a kappa distribution, where the lower energy part satisfies a Maxwellian function and the higher energy part is a power-law distribution. Moreover, the increase in the expanding speed will result in the hardening of formed power-law spectra in both the squeezing and reconnection stages.

  20. Comparing mechanical effects and sound production of KTP, thulium, and CO2 laser in stapedotomy.

    PubMed

    Kamalski, Digna M A; Verdaasdonk, Rudolf M; de Boorder, Tjeerd; Vincent, Robert; Versnel, Huib; Grolman, Wilko

    2014-08-01

    The mechanical and acoustic effects that occur during laser-assisted stapedotomy differ among KTP, CO2, and thulium lasers. Making a fenestration in stapedotomy with a laser minimizes the risk of a floating footplate caused by mechanical forces. Theoretically, the lasers used in stapedotomy could inflict mechanical trauma because of absorption in the perilymph, causing vaporization bubbles. These bubbles can generate a shock wave, when imploding. In an inner ear model, we made a fenestration in a fresh human stapes with KTP, CO2, and thulium laser. During the fenestration, we performed high-speed imaging from different angles to capture mechanical effects. The sounds produced by the fenestration were recorded simultaneously with a hydrophone; these recordings were compared with acoustics produced by a conventional microburr fenestration. KTP laser fenestration showed little mechanical effects, with minimal sound production. With CO2 laser, miniscule bubbles arose in the vestibule; imploding of these bubbles corresponded to the acoustics. Thulium laser fenestration showed large bubbles in the vestibule, with a larger sound production than the other two lasers. Each type of laser generated significantly less noise than the microburr. The microburr maximally reached 95 ± 7 dB(A), compared with 49 ± 8 dB(A) for KTP, 68 ± 4 dB(A) for CO2, and 83 ± 6 dB(A) for thulium. Mechanical and acoustic effects differ among lasers used for stapedotomy. Based on their relatively small effects, KTP and CO2 lasers are preferable to thulium laser.

Top