Sample records for vapor phase formation

  1. Phase transformations during the growth of paracetamol crystals from the vapor phase

    NASA Astrophysics Data System (ADS)

    Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.

    2014-07-01

    Phase transformations during the growth of paracetamol crystals from the vapor phase are studied by differential scanning calorimetry. It is found that the vapor-crystal phase transition is actually a superposition of two phase transitions: a first-order phase transition with variable density and a second-order phase transition with variable ordering. The latter, being a diffuse phase transition, results in the formation of a new, "pretransition," phase irreversibly spent in the course of the transition, which ends in the appearance of orthorhombic crystals. X-ray diffraction data and micrograph are presented.

  2. Thermodynamic considerations of the vapor phase reactions in III-nitride metal organic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Kazuki; Shirakawa, Hiroki; Chokawa, Kenta; Araidai, Masaaki; Kangawa, Yoshihiro; Kakimoto, Koichi; Shiraishi, Kenji

    2017-04-01

    We analyzed the metal organic vapor phase epitaxial growth mechanism of the III-nitride semiconductors GaN, AlN, and InN by first-principles calculations and thermodynamic analyses. In these analyses, we investigated the decomposition processes of the group III source gases X(CH3)3 (X = Ga, Al, In) at finite temperatures and determined whether the (CH3)2GaNH2 adduct can be formed or not. The results of our calculations show that the (CH3)2GaNH2 adduct cannot be formed in the gas phase in GaN metal organic vapor phase epitaxy (MOVPE), whereas, in AlN MOVPE, the formation of the (CH3)2AlNH2 adduct in the gas phase is exclusive. In the case of GaN MOVPE, trimethylgallium (TMG, [Ga(CH3)3]) decomposition into Ga gas on the growth surface with the assistance of H2 carrier gas, instead of the formation of the (CH3)2GaNH2 adduct, occurs almost exclusively. Moreover, in the case of InN MOVPE, the formation of the (CH3)2InNH2 adduct does not occur and it is relatively easy to produce In gas even without H2 in the carrier gas.

  3. Vapor phase pyrolysis

    NASA Technical Reports Server (NTRS)

    Steurer, Wolfgang

    1992-01-01

    The vapor phase pyrolysis process is designed exclusively for the lunar production of oxygen. In this concept, granulated raw material (soil) that consists almost entirely of metal oxides is vaporized and the vapor is raised to a temperature where it dissociates into suboxides and free oxygen. Rapid cooling of the dissociated vapor to a discrete temperature causes condensation of the suboxides, while the oxygen remains essentially intact and can be collected downstream. The gas flow path and flow rate are maintained at an optimum level by control of the pressure differential between the vaporization region and the oxygen collection system with the aid of the environmental vacuum.

  4. Vapor-crystal phase transition in synthesis of paracetamol films by vacuum evaporation and condensation

    NASA Astrophysics Data System (ADS)

    Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.; Zarembo, V. I.

    2014-03-01

    We report on the structural and technological investigations of the vapor-crystal phase transition during synthesis of paracetamol films of the monoclinic system by vacuum evaporation and condensation in the temperature range 220-320 K. The complex nature of the transformation accompanied by the formation of a gel-like phase is revealed. The results are interpreted using a model according to which the vapor-crystal phase transition is not a simple first-order phase transition, but is a nonlinear superposition of two phase transitions: a first-order transition with a change in density and a second-order phase transition with a change in ordering. Micrographs of the surface of the films are obtained at different phases of formation.

  5. Initial Stage of Aerosol Formation from Oversaturated Vapors

    NASA Astrophysics Data System (ADS)

    Lushnikov, A. A.; Zagainov, V. A.; Lyubovtseva, Yu. S.

    2018-03-01

    The formation of aerosol particles from oversaturated vapor was considered assuming that the stable nuclei of the new phase contain two (dimers) or three (trimers) condensing vapor molecules. Exact expressions were derived and analyzed for the partition functions of the dimer and trimer suspended in a carrier gas for the rectangular well and repulsive core intermolecular potentials. The equilibrium properties of these clusters and the nucleation rate of aerosol particles were discussed. The bound states of clusters were introduced using a limitation on their total energy: molecular clusters with a negative total energy were considered to exclude configurations with noninteracting fragments.

  6. A Preliminary Study on the Vapor/Mist Phase Lubrication of a Spur Gearbox

    NASA Technical Reports Server (NTRS)

    Morales, Wilfredo; Handschuh, Robert F.

    1999-01-01

    Organophosphates have been the primary compounds used in vapor/mist phase lubrication studies involving ferrous bearing material. Experimental results have indicated that the initial formation of an iron phosphate film on a rubbing ferrous surface, followed by the growth (by cationic diffusion) of a lubricious pyrophosphate-type coating over the iron phosphate, is the reason organophosphates work well as vapor/mist phase lubricants. Recent work, however, has shown that this mechanism leads to the depletion of surface iron atoms and to eventual lubrication failure. A new organophosphate formulation was developed which circumvents surface iron depletion. This formulation was tested by generating an iron phosphate coating on an aluminum surface. The new formulation was then used to vapor/mist phase lubricate a spur gearbox in a preliminary study.

  7. Evidence for extreme partitioning of copper into a magmatic vapor phase.

    PubMed

    Lowenstern, J B; Mahood, G A; Rivers, M L; Sutton, S R

    1991-06-07

    The discovery of copper sulfides in carbon dioxide- and chlorine-bearing bubbles in phenocryst-hosted melt inclusions shows that copper resides in a vapor phase in some shallow magma chambers. Copper is several hundred times more concentrated in magmatic vapor than in coexisting pantellerite melt. The volatile behavior of copper should be considered when modeling the volcanogenic contribution of metals to the atmosphere and may be important in the formation of copper porphyry ore deposits.

  8. Liquid phase stabilization versus bubble formation at a nanoscale curved interface

    NASA Astrophysics Data System (ADS)

    Schiffbauer, Jarrod; Luo, Tengfei

    2018-03-01

    We investigate the nature of vapor bubble formation near a nanoscale-curved convex liquid-solid interface using two models: an equilibrium Gibbs model for homogenous nucleation, and a nonequilibrium dynamic van der Waals-diffuse-interface model for phase change in an initially cool liquid. Vapor bubble formation is shown to occur for sufficiently large radius of curvature and is suppressed for smaller radii. Solid-fluid interactions are accounted for and it is shown that liquid-vapor interfacial energy, and hence Laplace pressure, has limited influence over bubble formation. The dominant factor is the energetic cost of creating the solid-vapor interface from the existing solid-liquid interface, as demonstrated via both equilibrium and nonequilibrium arguments.

  9. Hybrid vapor phase-solution phase growth techniques for improved CZT(S,Se) photovoltaic device performance

    DOEpatents

    Chang, Liang-Yi; Gershon, Talia S.; Haight, Richard A.; Lee, Yun Seog

    2016-12-27

    A hybrid vapor phase-solution phase CZT(S,Se) growth technique is provided. In one aspect, a method of forming a kesterite absorber material on a substrate includes the steps of: depositing a layer of a first kesterite material on the substrate using a vapor phase deposition process, wherein the first kesterite material includes Cu, Zn, Sn, and at least one of S and Se; annealing the first kesterite material to crystallize the first kesterite material; and depositing a layer of a second kesterite material on a side of the first kesterite material opposite the substrate using a solution phase deposition process, wherein the second kesterite material includes Cu, Zn, Sn, and at least one of S and Se, wherein the first kesterite material and the second kesterite material form a multi-layer stack of the absorber material on the substrate. A photovoltaic device and method of formation thereof are also provided.

  10. Metal-boride phase formation on tungsten carbide (WC-Co) during microwave plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Johnston, Jamin M.; Catledge, Shane A.

    2016-02-01

    Strengthening of cemented tungsten carbide by boriding is used to improve the wear resistance and lifetime of carbide tools; however, many conventional boriding techniques render the bulk carbide too brittle for extreme conditions, such as hard rock drilling. This research explored the variation in metal-boride phase formation during the microwave plasma enhanced chemical vapor deposition process at surface temperatures from 700 to 1100 °C. We showed several well-adhered metal-boride surface layers consisting of WCoB, CoB and/or W2CoB2 with average hardness from 23 to 27 GPa and average elastic modulus of 600-730 GPa. The metal-boride interlayer was shown to be an effective diffusion barrier against elemental cobalt; migration of elemental cobalt to the surface of the interlayer was significantly reduced. A combination of glancing angle X-ray diffraction, electron dispersive spectroscopy, nanoindentation and scratch testing was used to evaluate the surface composition and material properties. An evaluation of the material properties shows that plasma enhanced chemical vapor deposited borides formed at substrate temperatures of 800 °C, 850 °C, 900 °C and 1000 °C strengthen the material by increasing the hardness and elastic modulus of cemented tungsten carbide. Additionally, these boride surface layers may offer potential for adhesion of ultra-hard carbon coatings.

  11. Vapor Phase Deposition Using Plasma Spray-PVD™

    NASA Astrophysics Data System (ADS)

    von Niessen, K.; Gindrat, M.; Refke, A.

    2010-01-01

    Plasma spray—physical vapor deposition (PS-PVD) is a low pressure plasma spray technology to deposit coatings out of the vapor phase. PS-PVD is a part of the family of new hybrid processes recently developed by Sulzer Metco AG (Switzerland) on the basis of the well-established low pressure plasma spraying (LPPS) technology. Included in this new process family are plasma spray—chemical vapor deposition (PS-CVD) and plasma spray—thin film (PS-TF) processes. In comparison to conventional vacuum plasma spraying and LPPS, these new processes use a high energy plasma gun operated at a work pressure below 2 mbar. This leads to unconventional plasma jet characteristics which can be used to obtain specific and unique coatings. An important new feature of PS-PVD is the possibility to deposit a coating not only by melting the feed stock material which builds up a layer from liquid splats, but also by vaporizing the injected material. Therefore, the PS-PVD process fills the gap between the conventional PVD technologies and standard thermal spray processes. The possibility to vaporize feedstock material and to produce layers out of the vapor phase results in new and unique coating microstructures. The properties of such coatings are superior to those of thermal spray and EB-PVD coatings. This paper reports on the progress made at Sulzer Metco to develop functional coatings build up from vapor phase of oxide ceramics and metals.

  12. Overview: Homogeneous nucleation from the vapor phase-The experimental science.

    PubMed

    Wyslouzil, Barbara E; Wölk, Judith

    2016-12-07

    Homogeneous nucleation from the vapor phase has been a well-defined area of research for ∼120 yr. In this paper, we present an overview of the key experimental and theoretical developments that have made it possible to address some of the fundamental questions first delineated and investigated in C. T. R. Wilson's pioneering paper of 1897 [C. T. R. Wilson, Philos. Trans. R. Soc., A 189, 265-307 (1897)]. We review the principles behind the standard experimental techniques currently used to measure isothermal nucleation rates, and discuss the molecular level information that can be extracted from these measurements. We then highlight recent approaches that interrogate the vapor and intermediate clusters leading to particle formation, more directly.

  13. Self-catalyzed GaAs nanowires on silicon by hydride vapor phase epitaxy.

    PubMed

    Dong, Zhenning; André, Yamina; Dubrovskii, Vladimir G; Bougerol, Catherine; Leroux, Christine; Ramdani, Mohammed R; Monier, Guillaume; Trassoudaine, Agnès; Castelluci, Dominique; Gil, Evelyne

    2017-03-24

    Gold-free GaAs nanowires on silicon substrates can pave the way for monolithic integration of photonic nanodevices with silicon electronic platforms. It is extensively documented that the self-catalyzed approach works well in molecular beam epitaxy but is much more difficult to implement in vapor phase epitaxies. Here, we report the first gallium-catalyzed hydride vapor phase epitaxy growth of long (more than 10 μm) GaAs nanowires on Si(111) substrates with a high integrated growth rate up to 60 μm h -1 and pure zincblende crystal structure. The growth is achieved by combining a low temperature of 600 °C with high gaseous GaCl/As flow ratios to enable dechlorination and formation of gallium droplets. GaAs nanowires exhibit an interesting bottle-like shape with strongly tapered bases, followed by straight tops with radii as small as 5 nm. We present a model that explains the peculiar growth mechanism in which the gallium droplets nucleate and rapidly swell on the silicon surface but then are gradually consumed to reach a stationary size. Our results unravel the necessary conditions for obtaining gallium-catalyzed GaAs nanowires by vapor phase epitaxy techniques.

  14. Condensed phase conversion and growth of nanorods and other materials instead of from vapor

    DOEpatents

    Geohegan, David B.; Seals, Roland D.; Puretzky, Alex A.; Fan, Xudong

    2010-10-19

    Compositions, systems and methods are described for condensed phase conversion and growth of nanorods and other materials. A method includes providing a condensed phase matrix material; and activating the condensed phase matrix material to produce a plurality of nanorods by condensed phase conversion and growth from the condensed phase matrix material instead of from vapor. The compositions are very strong. The compositions and methods provide advantages because they allow (1) formation rates of nanostructures necessary for reasonable production rates, and (2) the near net shaped production of component structures.

  15. Vapor-liquid phase separator studies

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Lee, J. M.; Kim, Y. I.; Hepler, W. A.; Frederking, T. H. K.

    1983-01-01

    Porous plugs serve as both entropy rejection devices and phase separation components separating the vapor phase on the downstream side from liquid Helium 2 upstream. The liquid upstream is the cryo-reservoir fluid needed for equipment cooling by means of Helium 2, i.e Helium-4 below its lambda temperature in near-saturated states. The topics outlined are characteristic lengths, transport equations and plug results.

  16. Acoustically-Enhanced Direct Contact Vapor Bubble Condensation

    NASA Astrophysics Data System (ADS)

    Boziuk, Thomas; Smith, Marc; Glezer, Ari

    2017-11-01

    Rate-limited, direct contact vapor condensation of vapor bubbles that are formed by direct steam injection through a nozzle in a quiescent subcooled liquid bath is accelerated using ultrasonic (MHz-range) actuation. A submerged, low power actuator produces an acoustic beam whose radiation pressure deforms the liquid-vapor interface, leading to the formation of a liquid spear that penetrates the vapor bubble to form a vapor torus with a significantly larger surface area and condensation rate. Ultrasonic focusing along the spear leads to the ejection of small, subcooled droplets through the vapor volume that impact the vapor-liquid interface and further enhance the condensation. High-speed Schlieren imaging of the formation and collapse of the vapor bubbles in the absence and presence of actuation shows that the impulse associated with the collapse of the toroidal volume leads to the formation of a turbulent vortex ring in the liquid phase. Liquid motions near the condensing vapor volume are investigated in the absence and presence of acoustic actuation using high-magnification PIV and show the evolution of a liquid jet through the center of the condensing toroidal volume and the formation and advection of vortex ring structures whose impulse appear to increase with temperature difference between the liquid and vapor phases. High-speed image processing is used to assess the effect of the actuation on the temporal and spatial variations in the characteristic scales and condensation rates of the vapor bubbles.

  17. Water vapor radiometry research and development phase

    NASA Technical Reports Server (NTRS)

    Resch, G. M.; Chavez, M. C.; Yamane, N. L.; Barbier, K. M.; Chandlee, R. C.

    1985-01-01

    This report describes the research and development phase for eight dual-channel water vapor radiometers constructed for the Crustal Dynamics Project at the Goddard Space Flight Center, Greenbelt, Maryland, and for the NASA Deep Space Network. These instruments were developed to demonstrate that the variable path delay imposed on microwave radio transmissions by atmospheric water vapor can be calibrated, particularly as this phenomenon affects very long baseline interferometry measurement systems. Water vapor radiometry technology can also be used in systems that involve moist air meteorology and propagation studies.

  18. Melt-Vapor Phase Diagram of the Te-S System

    NASA Astrophysics Data System (ADS)

    Volodin, V. N.; Trebukhov, S. A.; Kenzhaliyev, B. K.; Nitsenko, A. V.; Burabaeva, N. M.

    2018-03-01

    The values of partial pressure of saturated vapor of the constituents of the Te-S system are determined from boiling points. The boundaries of the melt-vapor phase transition at atmospheric pressure and in vacuum of 2000 and 100 Pa are calculated on the basis of partial pressures. A phase diagram that includes vapor-liquid equilibrium fields whose boundaries allow us to assess the behavior of elements upon distillation fractioning is plotted. It is established that the separation of elements is possible at the first evaporation-condensation cycle. Complications can be caused by crystallization of a sulfur solid solution in tellurium.

  19. Application of Thioether for Vapor Phase Lubrication

    NASA Technical Reports Server (NTRS)

    Graham, E. Earl

    1997-01-01

    The objective of these studies was to identify the optimal conditions for vapor phase lubrication using Thioether for both sliding and rolling wear. The important variable include; (1) The component materials including M50 steel, monel and silicon nitride. (2) The vapor concentration and flow rate. (3) The temperature in the range of 600 F to 1500 F. (4) The loads and rolling and/or sliding speeds.

  20. The threshold of vapor channel formation in water induced by pulsed CO2 laser

    NASA Astrophysics Data System (ADS)

    Guo, Wenqing; Zhang, Xianzeng; Zhan, Zhenlin; Xie, Shusen

    2012-12-01

    Water plays an important role in laser ablation. There are two main interpretations of laser-water interaction: hydrokinetic effect and vapor phenomenon. The two explanations are reasonable in some way, but they can't explain the mechanism of laser-water interaction completely. In this study, the dynamic process of vapor channel formation induced by pulsed CO2 laser in static water layer was monitored by high-speed camera. The wavelength of pulsed CO2 laser is 10.64 um, and pulse repetition rate is 60 Hz. The laser power ranged from 1 to 7 W with a step of 0.5 W. The frame rate of high-speed camera used in the experiment was 80025 fps. Based on high-speed camera pictures, the dynamic process of vapor channel formation was examined, and the threshold of vapor channel formation, pulsation period, the volume, the maximum depth and corresponding width of vapor channel were determined. The results showed that the threshold of vapor channel formation was about 2.5 W. Moreover, pulsation period, the maximum depth and corresponding width of vapor channel increased with the increasing of the laser power.

  1. Bacterial chemotaxis along vapor-phase gradients of naphthalene.

    PubMed

    Hanzel, Joanna; Harms, Hauke; Wick, Lukas Y

    2010-12-15

    The role of bacterial growth and translocation for the bioremediation of organic contaminants in the vadose zone is poorly understood. Whereas air-filled pores restrict the mobility of bacteria, diffusion of volatile organic compounds in air is more efficient than in water. Past research, however, has focused on chemotactic swimming of bacteria along gradients of water-dissolved chemicals. In this study we tested if and to what extent Pseudomonas putida PpG7 (NAH7) chemotactically reacts to vapor-phase gradients forming above their swimming medium by the volatilization from a spot source of solid naphthalene. The development of an aqueous naphthalene gradient by air-water partitioning was largely suppressed by means of activated carbon in the agar. Surprisingly, strain PpG7 was repelled by vapor-phase naphthalene although the steady state gaseous concentrations were 50-100 times lower than the aqueous concentrations that result in positive chemotaxis of the same strain. It is thus assumed that the efficient gas-phase diffusion resulting in a steady, and possibly toxic, naphthalene flux to the cells controlled the chemotactic reaction rather than the concentration to which the cells were exposed. To our knowledge this is the first demonstration of apparent chemotactic behavior of bacteria in response to vapor-phase effector gradients.

  2. Vapor-phase exchange of perchloroethene between soil and plants

    USGS Publications Warehouse

    Struckhoff, G.C.; Burken, J.G.; Schumacher, J.G.

    2005-01-01

    Tree core concentrations of tetrachloroethylene (perchloroethene, PCE) at the Riverfront Superfund Site in New Haven, MO, were found to mimic the profile of soil phase concentrations. The observed soil-tree core relationship was stronger than that of groundwater PCE to tree core concentrations at the same site. Earlier research has shown a direct, linear relationship between tree core and groundwater concentrations of chlorinated solvents and other organics. Laboratory-scale experiments were performed to elucidate this phenomenon, including determining partitioning coefficients of PCE between plant tissues and air and between plant tissues and water, measured to be 8.1 and 49 L/kg, respectively. The direct relationship of soil to tree core PCE concentrations was hypothesized to be caused by diffusion between tree roots and the soil vapor phase in the subsurface. The central findings of this research are discovering the importance of subsurface vapor-phase transfer for VOCs and uncovering a direct relationship between soil vapor-phase chlorinated solvents and uptake rates that impact contaminant translocation from the subsurface and transfer into the atmosphere. ?? 2005 American Chemical Society.

  3. Low temperature vapor phase digestion of graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Robert A.

    2017-04-18

    A method for digestion and gasification of graphite for removal from an underlying surface is described. The method can be utilized to remove graphite remnants of a formation process from the formed metal piece in a cleaning process. The method can be particularly beneficial in cleaning castings formed with graphite molding materials. The method can utilize vaporous nitric acid (HNO.sub.3) or vaporous HNO.sub.3 with air/oxygen to digest the graphite at conditions that can avoid damage to the underlying surface.

  4. Stand-off detection of vapor phase explosives by resonance enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ehlerding, Anneli; Johansson, Ida; Wallin, Sara; Östmark, Henric

    2010-10-01

    Stand-off measurements on nitromethane (NM), 2,4-DNT and 2,4,6-TNT in vapor phase using resonance Raman spectroscopy have been performed. The Raman cross sections for NM, DNT and TNT in vapor phase have been measured in the wavelength range 210-300 nm under laboratory conditions, in order to estimate how large resonance enhancement factors can be achieved for these explosives. The measurements show that the signal is greatly enhanced, up to 250.000 times for 2,4-DNT and 60.000 times for 2,4,6-TNT compared to the non-resonant signal at 532 nm. For NM the resonance enhancement enabled realistic outdoor measurements in vapor phase at 13 m distance. This all indicate a potential for resonance Raman spectroscopy as a stand-off technique for detection of vapor phase explosives.

  5. The mechanism of vapor phase hydration of calcium oxide: implications for CO2 capture.

    PubMed

    Kudłacz, Krzysztof; Rodriguez-Navarro, Carlos

    2014-10-21

    Lime-based sorbents are used for fuel- and flue-gas capture, thereby representing an economic and effective way to reduce CO2 emissions. Their use involves cyclic carbonation/calcination which results in a significant conversion reduction with increasing number of cycles. To reactivate spent CaO, vapor phase hydration is typically performed. However, little is known about the ultimate mechanism of such a hydration process. Here, we show that the vapor phase hydration of CaO formed after calcination of calcite (CaCO3) single crystals is a pseudomorphic, topotactic process, which progresses via an intermediate disordered phase prior to the final formation of oriented Ca(OH)2 nanocrystals. The strong structural control during this solid-state phase transition implies that the microstructural features of the CaO parent phase predetermine the final structural and physicochemical (reactivity and attrition) features of the product hydroxide. The higher molar volume of the product can create an impervious shell around unreacted CaO, thereby limiting the efficiency of the reactivation process. However, in the case of compact, sintered CaO structures, volume expansion cannot be accommodated in the reduced pore volume, and stress generation leads to pervasive cracking. This favors complete hydration but also detrimental attrition. Implications of these results in carbon capture and storage (CCS) are discussed.

  6. Nonlinear dynamics of confined thin liquid-vapor bilayer systems with phase change

    NASA Astrophysics Data System (ADS)

    Kanatani, Kentaro; Oron, Alexander

    2011-03-01

    We numerically investigate the nonlinear evolution of the interface of a thin liquid-vapor bilayer system confined by rigid horizontal walls from both below and above. The lateral variation of the vapor pressure arising from phase change is taken into account in the present analysis. When the liquid (vapor) is heated (cooled) and gravity acts toward the liquid, the deflection of the interface monotonically grows, leading to a rupture of the vapor layer, whereas nonruptured stationary states are found when the liquid (vapor) is cooled (heated) and gravity acts toward the vapor. In the latter case, vapor-flow-driven convective cells are found in the liquid phase in the stationary state. The average vapor pressure and interface temperature deviate from their equilibrium values once the interface departs from the flat equilibrium state. Thermocapillarity does not have a significant effect near the thermodynamic equilibrium, but becomes important if the system significantly deviates from it.

  7. Particle formation in SiOx film deposition by low frequency plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tomoyo; Sakamoto, Naoshi; Shimozuma, Mitsuo; Yoshino, Masaki; Tagashira, Hiroaki

    1998-01-01

    Dust particle formation dynamics in the process of SiOx film deposition from a SiH4 and N2O gas mixture by a low frequency plasma enhanced chemical vapor deposition have been investigated using scanning electron microscopy and laser light scattering. The deposited films are confirmed to be SiOx from the measurements of Auger electron spectroscopy, x-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. It is observed by scanning electron microscopy that particles are deposited on Si substrate at the plasma power frequency f=5 kHz and above both with and without substrate heating (400 °C), while no particle is deposited below f=1 kHz. Moreover, the laser light scattering indicates that particles are generated at the plasma power frequency of f=3 kHz and above in the gas phase, and that they are not generated in the gas phase at below f=3 kHz. Properties (the refractive index, resistivity, and Vickers hardness) of the films with particles are inferior to those of the films without particles. This article has revealed experimentally the effect of plasma power frequency on SiOx particle formation and makes a contribution to the explication of the particle formation mechanism. We suggest that high-quality film deposition with the low frequency plasma enhanced chemical vapor deposition method is attained at f=1 kHz or less without substrate heating.

  8. Vapor phase elemental sulfur amendment for sequestering mercury in contaminated soil

    DOEpatents

    Looney, Brian B.; Denham, Miles E.; Jackson, Dennis G.

    2014-07-08

    The process of treating elemental mercury within the soil is provided by introducing into the soil a heated vapor phase of elemental sulfur. As the vapor phase of elemental sulfur cools, sulfur is precipitated within the soil and then reacts with any elemental mercury thereby producing a reaction product that is less hazardous than elemental mercury.

  9. Vapor Phase Catalytic Ammonia Reduction

    NASA Technical Reports Server (NTRS)

    Flynn, Michael T.; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    This paper discusses the development of a Vapor Phase Catalytic Ammonia Reduction (VPCAR) teststand and the results of an experimental program designed to evaluate the potential of the technology as a water purification process. In the experimental program the technology is evaluated based upon product water purity, water recovery rate, and power consumption. The experimental work demonstrates that the technology produces high purity product water and attains high water recovery rates at a relatively high specific power consumption. The experimental program was conducted in 3 phases. In phase I an Igepon(TM) soap and water mixture was used to evaluate the performance of an innovative Wiped-Film Rotating-Disk evaporator and associated demister. In phase II a phenol-water solution was used to evaluate the performance of the high temperature catalytic oxidation reactor. In phase III a urine analog was used to evaluate the performance of the combined distillation/oxidation functions of the processor.

  10. Synthesis of TiO2 Nanoparticles from Ilmenite Through the Mechanism of Vapor-Phase Reaction Process by Thermal Plasma Technology

    NASA Astrophysics Data System (ADS)

    Samal, Sneha

    2017-11-01

    Synthesis of nanoparticles of TiO2 was carried out by non-transferred arc thermal plasma reactor using ilmenite as the precursor material. The powder ilmenite was vaporized at high temperature in plasma flame and converted to a gaseous state of ions in the metastable phase. On cooling, chamber condensation process takes place on recombination of ions for the formation of nanoparticles. The top-to-bottom approach induces the disintegration of complex ilmenite phases into simpler compounds of iron oxide and titanium dioxide phases. The vapor-phase reaction mechanism was carried out in thermal plasma zone for the synthesis of nanoparticles from ilmenite compound in a plasma reactor. The easy separation of iron particles from TiO2 was taken place in the plasma chamber with deposition of light TiO2 particles at the top of the cooling chamber and iron particles at the bottom. The dissociation and combination process of mechanism and synthesis are studied briefly in this article. The product TiO2 nanoparticle shows the purity with a major phase of rutile content. TiO2 nanoparticles produced in vapor-phase reaction process shows more photo-induced capacity.

  11. Sporicidal Activity of the KMT reagent in its vapor phase against Geobacillus stearothermophilus Spores.

    PubMed

    Kida, Nori; Mochizuki, Yasushi; Taguchi, Fumiaki

    2007-01-01

    In an investigation of the sporicidal activity of the KMT reagent, a vapor phase study was performed using five kinds of carriers contaminated with Geobacillus stearothermophilus spores. When 25 ml of the KMT reagent was vaporized in a chamber (capacity; approximately 95 liters), the 2-step heating method (vaporization by a combination of low temperature and high temperature) showed the most effective sporicidal activity in comparison with the 1-step heating method (rapid vaporization). The 2-step heating method appeared to be related to the sporicidal activity of vaporized KMT reagent, i.e., ethanol and iodine, which vaporized mainly when heated at a low temperature such as 55 C, and acidic water, which vaporized mainly when heated at a high temperature such as 300 C. We proposed that the KMT reagent can be used as a new disinfectant not only in the liquid phase but also in the vapor phase in the same way as peracetic acid and hydrogen peroxide.

  12. Infrared analysis of vapor phase deposited tricresylphosphate (TCP)

    NASA Technical Reports Server (NTRS)

    Morales, Wilfredo; Hanyaloglu, Bengi; Graham, Earl E.

    1994-01-01

    Infrared transmission was employed to study the formation of a lubricating film deposited on two different substrates at 700 C. The deposit was formed from tricresylphosphate vapors and collected onto a NaCl substrate and on an iron coated NaCl substrate. Analysis of the infrared data suggests that a metal phosphate is formed initially, followed by the formation of organophosphorus polymeric compounds.

  13. Investigation of local evaporation flux and vapor-phase pressure at an evaporative droplet interface.

    PubMed

    Duan, Fei; Ward, C A

    2009-07-07

    In the steady-state experiments of water droplet evaporation, when the throat was heating at a stainless steel conical funnel, the interfacial liquid temperature was found to increase parabolically from the center line to the rim of the funnel with the global vapor-phase pressure at around 600 Pa. The energy conservation analysis at the interface indicates that the energy required for evaporation is maintained by thermal conduction to the interface from the liquid and vapor phases, thermocapillary convection at interface, and the viscous dissipation globally and locally. The local evaporation flux increases from the center line to the periphery as a result of multiple effects of energy transport at the interface. The local vapor-phase pressure predicted from statistical rate theory (SRT) is also found to increase monotonically toward the interface edge from the center line. However, the average value of the local vapor-phase pressures is in agreement with the measured global vapor-phase pressure within the measured error bar.

  14. Comparison of vapor formation of water at the solid/water interface to colloidal solutions using optically excited gold nanostructures.

    PubMed

    Baral, Susil; Green, Andrew J; Livshits, Maksim Y; Govorov, Alexander O; Richardson, Hugh H

    2014-02-25

    The phase transformation properties of liquid water to vapor is characterized by optical excitation of the lithographically fabricated single gold nanowrenches and contrasted to the phase transformation properties of gold nanoparticles located and optically excited in a bulk solution system [two and three dimensions]. The 532 nm continuous wave excitation of a single gold nanowrench results in superheating of the water to the spinodal decomposition temperature of 580 ± 20 K with bubble formation below the spinodal decomposition temperature being a rare event. Between the spinodal decomposition temperature and the boiling point liquid water is trapped into a metastable state because a barrier to vapor nucleation exists that must be overcome before the thermodynamically stable state is realized. The phase transformation for an optically heated single gold nanowrench is different from the phase transformation of optically excited colloidal gold nanoparticles solution where collective heating effects dominates and leads to the boiling of the solution exactly at the boiling point. In the solution case, the optically excited ensemble of nanoparticles collectively raises the ambient temperature of water to the boiling point where liquid is converted into vapor. The striking difference in the boiling properties of the single gold nanowrench and the nanoparticle solution system can be explained in terms of the vapor-nucleation mechanism, the volume of the overheated liquid, and the collective heating effect. The interpretation of the observed regimes of heating and vaporization is consistent with our theoretical modeling. In particular, we explain with our theory why the boiling with the collective heating in a solution requires 3 orders of magnitude less intensity compared to the case of optically driven single nanowrench.

  15. Speciation and quantification of vapor phases in soy biodiesel and waste cooking oil biodiesel.

    PubMed

    Peng, Chiung-Yu; Lan, Cheng-Hang; Dai, Yu-Tung

    2006-12-01

    This study characterizes the compositions of two biodiesel vapors, soy biodiesel and waste cooking oil biodiesel, to provide a comprehensive understanding of biodiesels. Vapor phases were sampled by purging oil vapors through thermal desorption tubes which were then analyzed by the thermal desorption/GC/MS system. The results show that the compounds of biodiesel vapors can be divided into four groups. They include methyl esters (the main biodiesel components), oxygenated chemicals, alkanes and alkenes, and aromatics. The first two chemical groups are only found in biodiesel vapors, not in the diesel vapor emissions. The percentages of mean concentrations for methyl esters, oxygenated chemicals, alkanes and alkenes, and aromatics are 66.1%, 22.8%, 4.8% and 6.4%, respectively for soy biodiesel, and 35.8%, 35.9%, 27.9% and 0.3%, respectively for waste cooking oil biodiesel at a temperature of 25+/-2 degrees C. These results show that biodiesels have fewer chemicals and lower concentrations in vapor phase than petroleum diesel, and the total emission rates are between one-sixteenth and one-sixth of that of diesel emission, corresponding to fuel evaporative emissions of loading losses of between 106 microg l(-1) and 283 microg l(-1). Although diesels generate more vapor phase emissions, biodiesels still generate considerable amount of vapor emissions, particularly the emissions from methyl esters and oxygenated chemicals. These two chemical groups are more reactive than alkanes and aromatics. Therefore, speciation and quantification of biodiesel vapor phases are important.

  16. Trapping of water vapor from an atmosphere by condensed silicate matter formed by high-temperature pulse vaporization

    NASA Technical Reports Server (NTRS)

    Gerasimov, M. V.; Dikov, Yu. P.; Yakovlev, O. I.; Wlotzka, F.

    1993-01-01

    The origin of planetary atmospheres is thought to be the result of bombardment of a growing planet by massive planetesimals. According to some models, the accumulation of released water vapor and/or carbon dioxide can result in the formation of a dense and hot primordial atmosphere. Among source and sink processes of atmospheric water vapor the formation of hydroxides was considered mainly as rehydration of dehydrated minerals (foresterite and enstatite). From our point of view, the formation of hydroxides is not limited to rehydration. Condensation of small silicate particles in a spreading vapor cloud and their interaction with a wet atmosphere can also result in the origin of hydrated phases which have no genetic connections with initial water bearing minerals. We present results of two experiments of a simulated interaction of condensed silicate matter which originated during vaporization of dry clinopyroxene in a wet helium atmosphere.

  17. Real-Time Optical Monitoring and Simulations of Gas Phase Kinetics in InN Vapor Phase Epitaxy at High Pressure

    NASA Technical Reports Server (NTRS)

    Dietz, Nikolaus; Woods, Vincent; McCall, Sonya D.; Bachmann, Klaus J.

    2003-01-01

    Understanding the kinetics of nucleation and coalescence of heteroepitaxial thin films is a crucial step in controlling a chemical vapor deposition process, since it defines the perfection of the heteroepitaxial film both in terms of extended defect formation and chemical integrity of the interface. The initial nucleation process also defines the film quality during the later stages of film growth. The growth of emerging new materials heterostructures such as InN or In-rich Ga(x)In(1-x)N require deposition methods operating at higher vapor densities due to the high thermal decomposition pressure in these materials. High nitrogen pressure has been demonstrated to suppress thermal decomposition of InN, but has not been applied yet in chemical vapor deposition or etching experiments. Because of the difficulty with maintaining stochiometry at elevated temperature, current knowledge regarding thermodynamic data for InN, e.g., its melting point, temperature-dependent heat capacity, heat and entropy of formation are known with far less accuracy than for InP, InAs and InSb. Also, no information exists regarding the partial pressures of nitrogen and phosphorus along the liquidus surfaces of mixed-anion alloys of InN, of which the InN(x)P(1-x) system is the most interesting option. A miscibility gap is expected for InN(x)P(1-x) pseudobinary solidus compositions, but its extent is not established at this point by experimental studies under near equilibrium conditions. The extension of chemical vapor deposition to elevated pressure is also necessary for retaining stoichiometric single phase surface composition for materials that are characterized by large thermal decomposition pressures at optimum processing temperatures.

  18. Spontaneous formation of GaN/AlN core-shell nanowires on sapphire by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Trassoudaine, Agnès; Roche, Elissa; Bougerol, Catherine; André, Yamina; Avit, Geoffrey; Monier, Guillaume; Ramdani, Mohammed Réda; Gil, Evelyne; Castelluci, Dominique; Dubrovskii, Vladimir G.

    2016-11-01

    Spontaneous GaN/AlN core-shell nanowires with high crystal quality were synthesized on sapphire substrates by vapor-liquid-solid hydride vapor phase epitaxy (VLS-HVPE) without any voluntary aluminum source. Deposition of aluminum is difficult to achieve in this growth technique which uses metal-chloride gaseous precursors: the strong interaction between the AlCl gaseous molecules and the quartz reactor yields a huge parasitic nucleation on the walls of the reactor upstream the substrate. We open up an innovative method to produce GaN/AlN structures by HVPE, thanks to aluminum etching from the sapphire substrate followed by redeposition onto the sidewalls of the GaN core. The paper presents the structural characterization of GaN/AlN core-shell nanowires, speculates on the growth mechanism and discusses a model which describes this unexpected behavior.

  19. Vapor-liquid phase separator permeability results

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Frederking, T. H. K.

    1981-01-01

    Continued studies are described in the area of vapor-liquid phase separator work with emphasis on permeabilities of porous sintered plugs (stainless steel, nominal pore size 2 micrometer). The temperature dependence of the permeability has been evaluated in classical fluid using He-4 gas at atmospheric pressure and in He-2 on the basis of a modified, thermosmotic permeability of the normal fluid.

  20. Development of Vapor-Phase Catalytic Ammonia Removal System

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Fisher, John; Kiss, Mark; Borchers, Bruce; Tleimat, Badawi; Tleimat, Maher; Quinn, Gregory; Fort, James; Nalette, Tim; Baker, Gale; hide

    2007-01-01

    A report describes recent accomplishments of a continuing effort to develop the vapor-phase catalytic ammonia removal (VPCAR) process for recycling wastewater for consumption by humans aboard a spacecraft in transit to Mars.

  1. Formation of boron nitride coatings on silicon carbide fibers using trimethylborate vapor

    NASA Astrophysics Data System (ADS)

    Yuan, Mengjiao; Zhou, Tong; He, Jing; Chen, Lifu

    2016-09-01

    High quality boron nitride (BN) coatings have been grown on silicon carbide (SiC) fibers by carbothermal nitridation and at atmospheric pressure. SiC fibers were first treated in chlorine gas to form CDC (carbide-derived carbon) film on the fiber surface. The CDC-coated SiC fibers were then reacted with trimethylborate vapor and ammonia vapor at high temperature, forming BN coatings by carbothermal reduction. The FT-IR, XPS, XRD, SEM, TEM and AES were used to investigate the formation of the obtained coatings. It has been found that the obtained coatings are composed of phase mixture of h-BN and amorphous carbon, very uniform in thickness, have smooth surface and adhere well with the SiC fiber substrates. The BN-coated SiC fibers retain ∼80% strength of the as-received SiC fibers and show an obvious interfacial debonding and fiber pullout in the SiCf/SiOC composites. This method may be useful for the large scale production of high quality BN coating on silicon carbide fiber.

  2. Experimental study of flash boiling spray vaporization through quantitative vapor concentration and liquid temperature measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Gaoming; Hung, David L. S.; Xu, Min

    2014-08-01

    Flash boiling sprays of liquid injection under superheated conditions provide the novel solutions of fast vaporization and better air-fuel mixture formation for internal combustion engines. However, the physical mechanisms of flash boiling spray vaporization are more complicated than the droplet surface vaporization due to the unique bubble generation and boiling process inside a superheated bulk liquid, which are not well understood. In this study, the vaporization of flash boiling sprays was investigated experimentally through the quantitative measurements of vapor concentration and liquid temperature. Specifically, the laser-induced exciplex fluorescence technique was applied to distinguish the liquid and vapor distributions. Quantitative vapor concentration was obtained by correlating the intensity of vapor-phase fluorescence with vapor concentration through systematic corrections and calibrations. The intensities of two wavelengths were captured simultaneously from the liquid-phase fluorescence spectra, and their intensity ratios were correlated with liquid temperature. The results show that both liquid and vapor phase of multi-hole sprays collapse toward the centerline of the spray with different mass distributions under the flash boiling conditions. Large amount of vapor aggregates along the centerline of the spray to form a "gas jet" structure, whereas the liquid distributes more uniformly with large vortexes formed in the vicinity of the spray tip. The vaporization process under the flash boiling condition is greatly enhanced due to the intense bubble generation and burst. The liquid temperature measurements show strong temperature variations inside the flash boiling sprays with hot zones present in the "gas jet" structure and vortex region. In addition, high vapor concentration and closed vortex motion seem to have inhibited the heat and mass transfer in these regions. In summary, the vapor concentration and liquid temperature provide detailed information

  3. An Indirect Method for Vapor Pressure and Phase Change Enthalpy Determination by Thermogravimetry

    NASA Astrophysics Data System (ADS)

    Giani, Samuele; Riesen, Rudolf; Schawe, Jürgen E. K.

    2018-07-01

    Vapor pressure is a fundamental property of a pure substance. This property is the pressure of a compound's vapor in thermodynamic equilibrium with its condensed phase (solid or liquid). When phase equilibrium condition is met, phase coexistence of a pure substance involves a continuum interplay of vaporization or sublimation to gas and condensation back to their liquid or solid form, respectively. Thermogravimetric analysis (TGA) techniques are based on mass loss determination and are well suited for the study of such phenomena. In this work, it is shown that TGA method using a reference substance is a suitable technique for vapor pressure determination. This method is easy and fast because it involves a series of isothermal segments. In contrast to original Knudsen's approach, where the use of high vacuum is mandatory, adopting the proposed method a given experimental setup is calibrated under ambient pressure conditions. The theoretical framework of this method is based on a generalization of Langmuir equation of free evaporation: The real strength of the proposed method is the ability to determine the vapor pressure independently of the molecular mass of the vapor. A demonstration of this method has been performed using the Clausius-Clapeyron equation of state to derive the working equation. This algorithm, however, is adaptive and admits the use of other equations of state. The results of a series of experiments with organic molecules indicate that the average difference of the measured and the literature vapor pressure amounts to about 5 %. Vapor pressure determined in this study spans from few mPa up to several kPa. Once the p versus T diagram is obtained, phase transition enthalpy can additionally be calculated from the data.

  4. FIELD TRAPPING OF SUBSURFACE VAPOR PHASE PETROLEUM HYDROCARBONS

    EPA Science Inventory

    Soil gas samples from intact soil cores were collected on adsorbents at a field site, then thermally desorbed and analyzed by laboratory gas chromatography (GC). ertical concentration profiles of predominant vapor phase petroleum hydrocarbons under ambient conditions were obtaine...

  5. Vapor-Phase Stoichiometry and Heat Treatment of CdTe Starting Material for Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Sha, Yi-Gao; Lehoczky, S. L.; Liu, Hao-Chieh; Fang, Rei; Brebrick, R. F.

    1998-01-01

    Six batches of CdTe, having total amounts of material from 99 to 203 g and gross mole fraction of Te, X(sub Te), 0.499954-0.500138, were synthesized from pure Cd and Te elements. The vapor-phase stoichiometry of the assynthesized CdTe batches was determined from the partial pressure of Te2, P(sub Te2) using an optical absorption technique. The measured vapor compositions at 870 C were Te-rich for all of the batches with partial pressure ratios of Cd to Te2, P(sub Cd)/P(sub Te2), ranging from 0.00742 to 1.92. After the heat treatment of baking under dynamic vacuum at 870 C for 8 min, the vapor-phase compositions moved toward that of the congruent sublimation, i.e. P(sub Cd)/P(sub Te2) = 2.0, with the measured P(sub Cd)/P(sub Te2) varying from 1.84 to 3.47. The partial pressure measurements on one of the heat-treated samples also showed that the sample remained close to the congruent sublimation condition over the temperature range 800-880 C.

  6. Shock-and-Release to the Liquid-Vapor Phase Boundary: Experiments and Applications to Planetary Science

    NASA Astrophysics Data System (ADS)

    Stewart, Sarah

    2017-06-01

    Shock-induced vaporization was a common process during the end stages of terrestrial planet formation and transient features in extra-solar systems are attributed to recent giant impacts. At the Sandia Z Machine, my collaborators and I are conducting experiments to study the shock Hugoniot and release to the liquid-vapor phase boundary of major minerals in rocky planets. Current work on forsterite, enstatite and bronzite and previous results on silica, iron and periclase demonstrate that shock-induced vaporization played a larger role during planet formation than previously thought. I will provide an overview of the experimental results and describe how the data have changed our views of planetary impact events in our solar system and beyond. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work is supported by the Z Fundamental Science Program at Sandia National Laboratories, DOE-NNSA Grant DE- NA0002937, NASA Grant # NNX15AH54G, and UC Multicampus-National Lab Collaborative Research and Training Grant #LFR-17-449059.

  7. Formation of Aluminide Coatings on Fe-Based Alloys by Chemical Vapor Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ying; Pint, Bruce A; Cooley, Kevin M

    2008-01-01

    Aluminide and Al-containing coatings were synthesized on commercial ferritic (P91) and austenitic (304L) alloys via a laboratory chemical vapor deposition (CVD) procedure for rigorous control over coating composition, purity and microstructure. The effect of the CVD aluminizing parameters such as temperature, Al activity, and post-aluminizing anneal on coating growth was investigated. Two procedures involving different Al activities were employed with and without including Cr-Al pellets in the CVD reactor to produce coatings with suitable thickness and composition for coating performance evaluation. The phase constitution of the as-synthesized coatings was assessed with the aid of a combination of X-ray diffraction, electronmore » probe microanalysis, and existing phase diagrams. The mechanisms of formation of these CVD coatings on the Fe-based alloys are discussed, and compared with nickel aluminide coatings on Ni-base superalloys. In addition, Cr-Al pellets were replaced with Fe-Al metals in some aluminizing process runs and similar coatings were achieved.« less

  8. Phase-field model of vapor-liquid-solid nanowire growth

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Upmanyu, Moneesh; Karma, Alain

    2018-03-01

    We present a multiphase-field model to describe quantitatively nanowire growth by the vapor-liquid-solid (VLS) process. The free-energy functional of this model depends on three nonconserved order parameters that distinguish the vapor, liquid, and solid phases and describe the energetic properties of various interfaces, including arbitrary forms of anisotropic γ plots for the solid-vapor and solid-liquid interfaces. The evolution equations for those order parameters describe basic kinetic processes including the rapid (quasi-instantaneous) equilibration of the liquid catalyst to a droplet shape with constant mean curvature, the slow incorporation of growth atoms at the droplet surface, and crystallization within the droplet. The standard constraint that the sum of the phase fields equals unity and the conservation of the number of catalyst atoms, which relates the catalyst volume to the concentration of growth atoms inside the droplet, are handled via separate Lagrange multipliers. An analysis of the model is presented that rigorously maps the phase-field equations to a desired set of sharp-interface equations for the evolution of the phase boundaries under the constraint of force balance at three-phase junctions (triple points) given by the Young-Herring relation that includes torque term related to the anisotropy of the solid-liquid and solid-vapor interface excess free energies. Numerical examples of growth in two dimensions are presented for the simplest case of vanishing crystalline anisotropy and the more realistic case of a solid-liquid γ plot with cusped minima corresponding to two sets of (10 ) and (11 ) facets. The simulations reproduce many of the salient features of nanowire growth observed experimentally, including growth normal to the substrate with tapering of the side walls, transitions between different growth orientations, and crawling growth along the substrate. They also reproduce different observed relationships between the nanowire growth

  9. Solid-state graphene formation via a nickel carbide intermediate phase [Nickel carbide (Ni 3C) as an intermediate phase for graphene formation

    DOE PAGES

    Xiong, W; Zhou, Yunshen; Hou, Wenjia; ...

    2015-11-10

    Direct formation of graphene with controlled number of graphitic layers on dielectric surfaces is highly desired for practical applications. Despite significant progress achieved in understanding the formation of graphene on metallic surfaces through chemical vapor deposition (CVD) of hydrocarbons, very limited research is available elucidating the graphene formation process via rapid thermal processing (RTP) of solid-state amorphous carbon, through which graphene is formed directly on dielectric surfaces accompanied by autonomous nickel evaporation. It is suggested that a metastable hexagonal nickel carbide (Ni 3C) intermediate phase plays a critical role in transforming amorphous carbon to 2D crystalline graphene and contributing tomore » the autonomous Ni evaporation. Temperature resolved carbon and nickel evolution in the RTP process is investigated using Auger electron spectroscopic (AES) depth profiling and glancing-angle X-ray diffraction (GAXRD). Formation, migration and decomposition of the hexagonal Ni 3C are confirmed to be responsible for the formation of graphene and the evaporation of Ni at 1100 °C. The Ni 3C-assisted graphene formation mechanism expands the understanding of Ni-catalyzed graphene formation, and provides insightful guidance for controlled growth of graphene through the solid-state transformation process.« less

  10. Phase-transitional Fe3O4/perfluorohexane Microspheres for Magnetic Droplet Vaporization.

    PubMed

    Wang, Ronghui; Zhou, Yang; Zhang, Ping; Chen, Yu; Gao, Wei; Xu, Jinshun; Chen, Hangrong; Cai, Xiaojun; Zhang, Kun; Li, Pan; Wang, Zhigang; Hu, Bing; Ying, Tao; Zheng, Yuanyi

    2017-01-01

    Activating droplets vaporization has become an attractive strategy for ultrasound imaging and physical therapy due to the significant increase in ultrasound backscatter signals and its ability to physically damage the tumor cells. However, the current two types of transitional droplets named after their activation methods have their respective limitations. To circumvent the limitations of these activation methods, here we report the concept of magnetic droplet vaporization (MDV) for stimuli-responsive cancer theranostics by a magnetic-responsive phase-transitional agent. This magnetic-sensitive phase-transitional agent-perfluorohexane (PFH)-loaded porous magnetic microspheres (PFH-PMMs), with high magnetic-thermal energy-transfer capability, could quickly respond to external alternating current (AC) magnetic fields to produce thermal energy and trigger the vaporization of the liquid PFH. We systematically demonstrated MDV both in vitro and in vivo. This novel trigger method with deep penetration can penetrate the air-filled viscera and trigger the vaporization of the phase-transitional agent without the need of pre-focusing lesion. This unique MDV strategy is expected to substantially broaden the biomedical applications of nanotechnology and promote the clinical treatment of tumors that are not responsive to chemical therapies.

  11. Columnar jointing in vapor-phase-altered, non-welded Cerro Galán Ignimbrite, Paycuqui, Argentina

    USGS Publications Warehouse

    Wright, Heather M.; Lesti, Chiara; Cas, Ray A.F.; Porreca, Massimiliano; Viramonte, Jose G.; Folkes, Christopher B.; Giordano, Guido

    2011-01-01

    Columnar jointing is thought to occur primarily in lavas and welded pyroclastic flow deposits. However, the non-welded Cerro Galán Ignimbrite at Paycuqui, Argentina, contains well-developed columnar joints that are instead due to high-temperature vapor-phase alteration of the deposit, where devitrification and vapor-phase crystallization have increased the density and cohesion of the upper half of the section. Thermal remanent magnetization analyses of entrained lithic clasts indicate high emplacement temperatures, above 630°C, but the lack of welding textures indicates temperatures below the glass transition temperature. In order to remain below the glass transition at 630°C, the minimum cooling rate prior to deposition was 3.0 × 10−3–8.5 × 10−2°C/min (depending on the experimental data used for comparison). Alternatively, if the deposit was emplaced above the glass transition temperature, conductive cooling alone was insufficient to prevent welding. Crack patterns (average, 4.5 sides to each polygon) and column diameters (average, 75 cm) are consistent with relatively rapid cooling, where advective heat loss due to vapor fluxing increases cooling over simple conductive heat transfer. The presence of regularly spaced, complex radiating joint patterns is consistent with fumarolic gas rise, where volatiles originated in the valley-confined drainage system below. Joint spacing is a proxy for cooling rates and is controlled by depositional thickness/valley width. We suggest that the formation of joints in high-temperature, non-welded deposits is aided by the presence of underlying external water, where vapor transfer causes crystallization in pore spaces, densifies the deposit, and helps prevent welding.

  12. Continuous Determination of High-Vapor Phase Concentrations of Tetrachloroethylene Using On-Line Mass Spectrometry

    EPA Science Inventory

    A method was developed to determine the vapor concentration of tetrachloroethylene (PCE) at and below its equilibrium vapor phase concentration, 168,000 μg/L (25°C). Vapor samples were drawn by vacuum into a six-port sampling valve and injected through a jet separator into an io...

  13. Method of condensing vaporized water in situ to treat tar sands formations

    DOEpatents

    Hsu, Chia-Fu

    2010-03-16

    Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. Heat may be allowed to transfer from the heaters to at least a first portion of the formation. Conditions may be controlled in the formation so that water vaporized by the heaters in the first portion is selectively condensed in a second portion of the formation. At least some of the fluids may be produced from the formation.

  14. The gaseous enthalpy of formation of the ionic liquid 1-butyl-3-methylimidazolium dicyanamide from combustion calorimetry, vapor pressure measurements, and ab initio calculations.

    PubMed

    Emel'yanenko, Vladimir N; Verevkin, Sergey P; Heintz, Andreas

    2007-04-04

    Ionic liquids are attracting growing interest as alternatives to conventional molecular solvents. Experimental values of vapor pressure, enthalpy of vaporization, and enthalpy of formation of ionic liquids are the key thermodynamic quantities, which are required for the validation and development of the molecular modeling and ab initio methods toward this new class of solvents. In this work, the molar enthalpy of formation of the liquid 1-butyl-3-methylimidazolium dicyanamide, 206.2 +/- 2.5 kJ.mol-1, was measured by means of combustion calorimetry. The molar enthalpy of vaporization of 1-butyl-3-methylimidazolium dicyanamide, 157.2 +/- 1.1 kJ.mol-1, was obtained from the temperature dependence of the vapor pressure measured using the transpiration method. The latter method has been checked with measurements of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, where data are available from the effusion technique. The first experimental determination of the gaseous enthalpy of formation of the ionic liquid 1-butyl-3-methylimidazolium dicyanamide, 363.4 +/- 2.7 kJ.mol-1, from thermochemical measurements (combustion and transpiration) is presented. Ab initio calculations of the enthalpy of formation in the gaseous phase have been performed for 1-butyl-3-methylimidazolium dicyanamide using the G3MP2 theory. Excellent agreement with experimental results has been observed. The method developed opens a new way to obtain thermodynamic properties of ionic liquids which have not been available so far.

  15. Formation of the racemic compound of ephedrine base from a physical mixture of its enantiomers in the solid, liquid, solution, or vapor state.

    PubMed

    Duddu, S P; Grant, D J

    1992-08-01

    Physical mixtures (conglomerates) of the two enantiomers of ephedrine base, each containing 0.5% (w/w) of water, were observed to be converted to the 1:1 racemic compound in the solid, liquid, solution, or vapor state. From a geometrically mixed racemic conglomerate of particle size 250-300 microns (50-60 mesh), the formation of the racemic compound follows second-order kinetics (first order with respect to each enantiomer), with a rate constant of 392 mol-1 hr-1 at 22 degrees C. The reaction appears to proceed via the vapor phase as indicated by the growth of the crystals of the racemic compound between diametrically separated crystals of the two enantiomers in a glass petri dish. The observed kinetics of conversion in the solid state are explained by a homogeneous reaction model via the vapor and/or liquid states. Formation of the racemic compound from the crystals of ephedrine enantiomers in the solution state may explain why Schmidt et al. (Pharm. Res. 5:391-395, 1988) observed a consistently lower aqueous solubility of the mixture than of the pure enantiomers. The solid phase in equilibrium with the solution at the end of the experiment was found to be the racemic compound, whose melting point and heat of fusion are higher than those of the enantiomers. An association reaction, of measurable rate, between the opposite enantiomers in a binary mixture in the solid, liquid, solution, or vapor state to form the racemic compound may be more common than is generally realized.

  16. Transient-pressure analysis in geothermal steam reservoirs with an immobile vaporizing liquid phase

    USGS Publications Warehouse

    Moench, A.F.; Atkinson, P.G.

    1978-01-01

    A finite-difference model for the radial horizontal flow of steam through a porous medium is used to evaluate transient-pressure behavior in the presence of an immobile vaporizing or condensing liquid phase. Graphs of pressure drawdown and buildup in terms of dimensionless pressure and time are obtained for a well discharging steam at a constant mass flow rate for a specified time. The assumptions are made that the steam is in local thermal equilibrium with the reservoir rocks, that temperature changes are due only to phase change, and that effects of vapor-pressure lowering are negligible. Computations show that when a vaporizing liquid phase is present the pressure drawdown exhibits behavior similar to that observed in noncondensable gas reservoirs, but delayed in time. A theoretical analysis allows for the computation of this delay and demonstrates that it is independent of flow geometry. The response that occurs upon pressure buildup is markedly different from that in a noncondensable gas system. This result may provide a diagnostic tool for establishing the existence of phase-change phenomena within a reservoir. ?? 1979.

  17. Magmatic-vapor expansion and the formation of high-sulfidation gold deposits: Structural controls on hydrothermal alteration and ore mineralization

    USGS Publications Warehouse

    Berger, Byron R.; Henley, Richard W.

    2011-01-01

    High-sulfidation copper–gold lode deposits such as Chinkuashih, Taiwan, Lepanto, Philippines, and Goldfield, Nevada, formed within 1500 m of the paleosurface in volcanic terranes. All underwent an early stage of extensive advanced argillic silica–alunite alteration followed by an abrupt change to spatially much more restricted stages of fracture-controlled sulfide–sulfosalt mineral assemblages and gold–silver mineralization. The alteration as well as ore mineralization stages of these deposits were controlled by the dynamics and history of syn-hydrothermal faulting.At the Sulfate Stage, aggressive advanced argillic alteration and silicification were consequent on the in situ formation of acidic condensate from magmatic vapor as it expanded through secondary fracture networks alongside active faults. The reduction of permeability at this stage due to alteration decreased fluid flow to the surface, and progressively developed a barrier between magmatic-vapor expansion constrained by the active faults and peripheral hydrothermal activity dominated by hot-water flow. In conjunction with the increased rock strength resulting from alteration, subsequent fault-slip inversion in response to an increase in compressional stress generated new, highly permeable fractures localized by the embrittled, altered rock. The new fractures focused magmatic-vapor expansion with much lower heat loss so that condensation occurred. Sulfide Stage sulfosalt, sulfide, and gold–silver deposition then resulted from destabilization of vapor phase metal species due to vapor decompression through the new fracture array. The switch from sulfate to sulfide assemblages is, therefore, a logical consequence of changes in structural permeability due to the coupling of alteration and fracture dynamics rather than to changes in the chemistry of the fluid phase at its magmatic source.

  18. Improved thermal lattice Boltzmann model for simulation of liquid-vapor phase change

    NASA Astrophysics Data System (ADS)

    Li, Qing; Zhou, P.; Yan, H. J.

    2017-12-01

    In this paper, an improved thermal lattice Boltzmann (LB) model is proposed for simulating liquid-vapor phase change, which is aimed at improving an existing thermal LB model for liquid-vapor phase change [S. Gong and P. Cheng, Int. J. Heat Mass Transfer 55, 4923 (2012), 10.1016/j.ijheatmasstransfer.2012.04.037]. First, we emphasize that the replacement of ∇ .(λ ∇ T ) /∇.(λ ∇ T ) ρ cV ρ cV with ∇ .(χ ∇ T ) is an inappropriate treatment for diffuse interface modeling of liquid-vapor phase change. Furthermore, the error terms ∂t 0(T v ) +∇ .(T vv ) , which exist in the macroscopic temperature equation recovered from the previous model, are eliminated in the present model through a way that is consistent with the philosophy of the LB method. Moreover, the discrete effect of the source term is also eliminated in the present model. Numerical simulations are performed for droplet evaporation and bubble nucleation to validate the capability of the model for simulating liquid-vapor phase change. It is shown that the numerical results of the improved model agree well with those of a finite-difference scheme. Meanwhile, it is found that the replacement of ∇ .(λ ∇ T ) /∇ .(λ ∇ T ) ρ cV ρ cV with ∇ .(χ ∇ T ) leads to significant numerical errors and the error terms in the recovered macroscopic temperature equation also result in considerable errors.

  19. Irradiation of fish fillets: Relation of vapor phase reactions to storage quality

    USGS Publications Warehouse

    Spinelli, J.; Dollar, A.M.; Wedemeyer, G.A.; Gallagher, E.C.

    1969-01-01

    Fish fillets irradiated under air, nitrogen, oxygen, or carbon dioxide atmospheres developed rancidlike flavors when they were stored at refrigerated temperatures. Packing and irradiating under vacuum or helium prevented development of off-flavors during storage.Significant quantities of nitrate and oxidizing substances were formed when oxygen, nitrogen, or air were present in the vapor or liquid phases contained in a Pyrex glass model system exposed to ionizing radiation supplied by a 60Co source. It was demonstrated that the delayed flavor changes that occur in stored fish fillets result from the reaction of vapor phase radiolysis products and the fish tissue substrates.

  20. Vapor-phase hydrothermal transformation of HTiOF3 intermediates into {001} faceted anatase single-crystalline nanosheets.

    PubMed

    Liu, Porun; Wang, Yun; Zhang, Haimin; An, Taicheng; Yang, Huagui; Tang, Zhiyong; Cai, Weiping; Zhao, Huijun

    2012-12-07

    For the first time, a facile, one-pot hydrofluoric acid vapor-phase hydrothermal (HF-VPH) method is demonstrated to directly grow single-crystalline anatase TiO(2) nanosheets with 98.2% of exposed {001} faceted surfaces on the Ti substrate via a distinctive two-stage formation mechanism. The first stage produces a new intermediate crystal (orthorhombic HTiOF(3) ) that is transformed into anatase TiO(2) nanosheets during the second stage. The findings reveal that the HF-VPH reaction environment is unique and differs remarkably from that of liquid-phase hydrothermal processes. The uniqueness of the HF-VPH conditions can be readily used to effectively control the nanostructure growth. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Predicting vapor-liquid phase equilibria with augmented ab initio interatomic potentials

    NASA Astrophysics Data System (ADS)

    Vlasiuk, Maryna; Sadus, Richard J.

    2017-06-01

    The ability of ab initio interatomic potentials to accurately predict vapor-liquid phase equilibria is investigated. Monte Carlo simulations are reported for the vapor-liquid equilibria of argon and krypton using recently developed accurate ab initio interatomic potentials. Seventeen interatomic potentials are studied, formulated from different combinations of two-body plus three-body terms. The simulation results are compared to either experimental or reference data for conditions ranging from the triple point to the critical point. It is demonstrated that the use of ab initio potentials enables systematic improvements to the accuracy of predictions via the addition of theoretically based terms. The contribution of three-body interactions is accounted for using the Axilrod-Teller-Muto plus other multipole contributions and the effective Marcelli-Wang-Sadus potentials. The results indicate that the predictive ability of recent interatomic potentials, obtained from quantum chemical calculations, is comparable to that of accurate empirical models. It is demonstrated that the Marcelli-Wang-Sadus potential can be used in combination with accurate two-body ab initio models for the computationally inexpensive and accurate estimation of vapor-liquid phase equilibria.

  2. Predicting vapor-liquid phase equilibria with augmented ab initio interatomic potentials.

    PubMed

    Vlasiuk, Maryna; Sadus, Richard J

    2017-06-28

    The ability of ab initio interatomic potentials to accurately predict vapor-liquid phase equilibria is investigated. Monte Carlo simulations are reported for the vapor-liquid equilibria of argon and krypton using recently developed accurate ab initio interatomic potentials. Seventeen interatomic potentials are studied, formulated from different combinations of two-body plus three-body terms. The simulation results are compared to either experimental or reference data for conditions ranging from the triple point to the critical point. It is demonstrated that the use of ab initio potentials enables systematic improvements to the accuracy of predictions via the addition of theoretically based terms. The contribution of three-body interactions is accounted for using the Axilrod-Teller-Muto plus other multipole contributions and the effective Marcelli-Wang-Sadus potentials. The results indicate that the predictive ability of recent interatomic potentials, obtained from quantum chemical calculations, is comparable to that of accurate empirical models. It is demonstrated that the Marcelli-Wang-Sadus potential can be used in combination with accurate two-body ab initio models for the computationally inexpensive and accurate estimation of vapor-liquid phase equilibria.

  3. Metalorganic Vapor-Phase Epitaxy Growth Parameters for Two-Dimensional MoS2

    NASA Astrophysics Data System (ADS)

    Marx, M.; Grundmann, A.; Lin, Y.-R.; Andrzejewski, D.; Kümmell, T.; Bacher, G.; Heuken, M.; Kalisch, H.; Vescan, A.

    2018-02-01

    The influence of the main growth parameters on the growth mechanism and film formation processes during metalorganic vapor-phase epitaxy (MOVPE) of two-dimensional MoS2 on sapphire (0001) have been investigated. Deposition was performed using molybdenum hexacarbonyl and di- tert-butyl sulfide as metalorganic precursors in a horizontal hot-wall MOVPE reactor from AIXTRON. The structural properties of the MoS2 films were analyzed by atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. It was found that a substrate prebake step prior to growth reduced the nucleation density of the polycrystalline film. Simultaneously, the size of the MoS2 domains increased and the formation of parasitic carbonaceous film was suppressed. Additionally, the influence of growth parameters such as reactor pressure and surface temperature is discussed. An upper limit for these parameters was found, beyond which strong parasitic deposition or incorporation of carbon into MoS2 took place. This carbon contamination became significant at reactor pressure above 100 hPa and temperature above 900°C.

  4. Vapor-phase interactions and diffusion of organic solvents in the unsaturated zone

    USGS Publications Warehouse

    Roy, W.R.; Griffin, R.A.

    1990-01-01

    This article presents an analysis of the interactions and static movement of 37 organic solvents as vapors through the unsaturated soil zone. The physicochemical interactions of the organic vapors with unsaturated soil materials were emphasized with focus on diffusive, and adsorptive interactions. Fick's Law and porous media diffusion coefficients for most of the solvent vapors were either compiled or estimated; coefficients were not available for some of the fluorinated solvents. The adsorption of some of the solvent vapors by silica was concluded to be due to hydrogen bond formation with surface silanol groups. Heats of adsorption data for different adsorbents were also compiled. There were very few data on the adsorption of these solvent vapors by soils, but it appears that the magnitude of adsorption of nonpolar solvents is reduced as the relative humidity of the vapor-solid system is increased. Consequently, the interaction of the vapors may then separated into two processes; (1) gas-water partitioning described by Henry's Law constants, and (2) solid-water adsorption coefficients which may be estimated from liquid-solid partition coefficients (Kd values). ?? 1990 Springer-Verlag New York Inc.

  5. Comparative Study of Solution Phase and Vapor Phase Deposition of Aminosilanes on Silicon Dioxide Surfaces

    PubMed Central

    Yadav, Amrita R.; Sriram, Rashmi; Carter, Jared A.; Miller, Benjamin L.

    2014-01-01

    The uniformity of aminosilane layers typically used for the modification of hydroxyl bearing surfaces such as silicon dioxide is critical for a wide variety of applications, including biosensors. However, in spite of many studies that have been undertaken on surface silanization, there remains a paucity of easy-to-implement deposition methods reproducibly yielding smooth aminosilane monolayers. In this study, solution- and vapor-phase deposition methods for three aminoalkoxysilanes differing in the number of reactive groups (3-aminopropyl triethoxysilane (APTES), 3-aminopropyl methyl diethoxysilane (APMDES) and 3-aminopropyl dimethyl ethoxysilane (APDMES)) were assessed with the aim of identifying methods that yield highly uniform and reproducible silane layers that are resistant to minor procedural variations. Silane film quality was characterized based on measured thickness, hydrophilicity and surface roughness. Additionally, hydrolytic stability of the films was assessed via these thickness and contact angle values following desorption in water. We found that two simple solution-phase methods, an aqueous deposition of APTES and a toluene based deposition of APDMES, yielded high quality silane layers that exhibit comparable characteristics to those deposited via vapor-phase methods. PMID:24411379

  6. The influence of liquid/vapor phase change onto the Nusselt number

    NASA Astrophysics Data System (ADS)

    Popescu, Elena-Roxana; Colin, Catherine; Tanguy, Sebastien

    2017-11-01

    In spite of its significant interest in various fields, there is currently a very few information on how an external flow will modify the evaporation or the condensation of a liquid surface. Although most applications involve turbulent flows, the simpler configuration where a laminar superheated or subcooled vapor flow is shearing a saturated liquid interface has still never been solved. Based on a numerical approach, we propose to characterize the interaction between a laminar boundary layer of a superheated or subcooled vapor flow and a static liquid pool at saturation temperature. By performing a full set of simulations sweeping the parameters space, correlations are proposed for the first time on the Nusselt number depending on the dimensionless numbers that characterize both vaporization and condensation. As attended, the Nusselt number decreases or increases in the configurations involving respectively vaporization or condensation. More unexpected is the behaviour of the friction of the vapor flow on the liquid pool, for which we report that it is weakly affected by the phase change, despite the important variation of the local flow structure due to evaporation or condensation.

  7. Morphological, compositional, and geometrical transients of V-groove quantum wires formed during metalorganic vapor-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Dimastrodonato, Valeria; Pelucchi, Emanuele; Zestanakis, Panagiotis A.; Vvedensky, Dimitri D.

    2013-07-01

    We present a theoretical model of the formation of self-limited (Al)GaAs quantum wires within V-grooves on GaAs(001) substrates during metalorganic vapor-phase epitaxy. We identify the facet-dependent rates of the kinetic processes responsible for the formation of the self-limiting profile, which is accompanied by Ga segregation along the axis perpendicular to the bottom of the original template, and analyze their interplay with the facet geometry in the transient regime. A reduced model is adopted for the evolution of the patterned profile, as determined by the angle between the different crystallographic planes as a function of the growth conditions. Our results provide a comprehensive phenomenological understanding of the self-ordering mechanism on patterned surfaces which can be harnessed for designing the quantum optical properties of low-dimensional systems.

  8. Superfluid helium 2 liquid-vapor phase separation: Technology assessment

    NASA Technical Reports Server (NTRS)

    Lee, J. M.

    1984-01-01

    A literature survey of helium 2 liquid vapor phase separation is presented. Currently, two types of He 2 phase separators are being investigated: porous, sintered metal plugs and the active phase separator. The permeability K(P) shows consistency in porous plug geometric characterization. Both the heat and mass fluxes increase with K(P). Downstream pressure regulation to adjust for varying heat loads and both temperatures is possible. For large dynamic heat loads, the active phase separator shows a maximum heat rejection rate of up to 2 W and bath temperature stability of 0.1 mK. Porous plug phase separation performance should be investigated for application to SIRTF and, in particular, that plugs of from 10 to the minus ninth square centimeters to 10 to the minus eighth square centimeters in conjunction with downstream pressure regulation be studied.

  9. Seeded Physical Vapor Transport of Cadmium-Zinc Telluride Crystals: Growth and Characterization

    NASA Technical Reports Server (NTRS)

    Palosz, W.; George, M. A.; Collins, E. E.; Chen, K.-T.; Zhang, Y.; Burger, A.

    1997-01-01

    Crystals of Cd(1-x)Zn(x)Te with x = 0.2 and 40 g in weight were grown on monocrystalline cadmium-zinc telluride seeds by closed-ampoule physical vapor transport with or without excess (Cd + Zn) in the vapor phase. Two post-growth cool-down rates were used. The crystals were characterized using low temperature photoluminescence, atomic force microscopy, chemical etching, X-ray diffraction and electrical measurements. No formation of a second, ZnTe-rich phase was observed.

  10. Comparative study of solution-phase and vapor-phase deposition of aminosilanes on silicon dioxide surfaces.

    PubMed

    Yadav, Amrita R; Sriram, Rashmi; Carter, Jared A; Miller, Benjamin L

    2014-02-01

    The uniformity of aminosilane layers typically used for the modification of hydroxyl bearing surfaces such as silicon dioxide is critical for a wide variety of applications, including biosensors. However, in spite of many studies that have been undertaken on surface silanization, there remains a paucity of easy-to-implement deposition methods reproducibly yielding smooth aminosilane monolayers. In this study, solution- and vapor-phase deposition methods for three aminoalkoxysilanes differing in the number of reactive groups (3-aminopropyl triethoxysilane (APTES), 3-aminopropyl methyl diethoxysilane (APMDES) and 3-aminopropyl dimethyl ethoxysilane (APDMES)) were assessed with the aim of identifying methods that yield highly uniform and reproducible silane layers that are resistant to minor procedural variations. Silane film quality was characterized based on measured thickness, hydrophilicity and surface roughness. Additionally, hydrolytic stability of the films was assessed via these thickness and contact angle values following desorption in water. We found that two simple solution-phase methods, an aqueous deposition of APTES and a toluene based deposition of APDMES, yielded high quality silane layers that exhibit comparable characteristics to those deposited via vapor-phase methods. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Formation of the molecular crystal structure during the vacuum sublimation of paracetamol

    NASA Astrophysics Data System (ADS)

    Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.

    2015-04-01

    The results from structural and thermal studies on the formation of molecular crystals during the vacuum sublimation of paracetamol from its vapor phase are given. It is established that the vapor-crystal phase transition proceeds in a complicated way as the superposition of two phase transitions: a first-order phase transition with a change in density, and a second-order phase transition with a change in ordering. It is shown that the latter is a smeared phase transition that proceeds with the formation of a pretransitional phase that is irreversibly dissipated during phase transformation, leading to the formation of crystals of the rhombic syngony. Data from differential scanning calorimetry and X-ray diffraction analysis are presented along with microphotographs.

  12. Plasma Spray-PVD: A New Thermal Spray Process to Deposit Out of the Vapor Phase

    NASA Astrophysics Data System (ADS)

    von Niessen, Konstantin; Gindrat, Malko

    2011-06-01

    Plasma spray-physical vapor deposition (PS-PVD) is a low pressure plasma spray technology recently developed by Sulzer Metco AG (Switzerland). Even though it is a thermal spray process, it can deposit coatings out of the vapor phase. The basis of PS-PVD is the low pressure plasma spraying (LPPS) technology that has been well established in industry for several years. In comparison to conventional vacuum plasma spraying (VPS) or low pressure plasma spraying (LPPS), the new proposed process uses a high energy plasma gun operated at a reduced work pressure of 0.1 kPa (1 mbar). Owing to the high energy plasma and further reduced work pressure, PS-PVD is able to deposit a coating not only by melting the feed stock material which builds up a layer from liquid splats but also by vaporizing the injected material. Therefore, the PS-PVD process fills the gap between the conventional physical vapor deposition (PVD) technologies and standard thermal spray processes. The possibility to vaporize feedstock material and to produce layers out of the vapor phase results in new and unique coating microstructures. The properties of such coatings are superior to those of thermal spray and electron beam-physical vapor deposition (EB-PVD) coatings. In contrast to EB-PVD, PS-PVD incorporates the vaporized coating material into a supersonic plasma plume. Owing to the forced gas stream of the plasma jet, complex shaped parts such as multi-airfoil turbine vanes can be coated with columnar thermal barrier coatings using PS-PVD. Even shadowed areas and areas which are not in the line of sight of the coating source can be coated homogeneously. This article reports on the progress made by Sulzer Metco in developing a thermal spray process to produce coatings out of the vapor phase. Columnar thermal barrier coatings made of Yttria-stabilized Zircona (YSZ) are optimized to serve in a turbine engine. This process includes not only preferable coating properties such as strain tolerance and erosion

  13. Wetting phenomenon in the liquid-vapor phase coexistence of a partially miscible Lennard-Jones binary mixture

    NASA Astrophysics Data System (ADS)

    Ramírez-Santiago, Guillermo; Díaz-Herrera, Enrique; Moreno Razo, José A.

    2004-03-01

    We have carried out extensive equilibrium MD simulations to study wetting phenomena in the liquid-vapor phase coexistence of a partially miscible binary LJ mixture. We find that in the temperature range 0.60 ≤ T^* < 0.80, the system separates forming a liquid A-liquid B interface in coexistence with the vapor phase. At higher temperatures, 0.80 ≤ T^* < 1.25 the liquid phases are wet by the vapor phase. By studying the behavior of the surface tension as a function of temperature we estimate the wetting transition temperature (WTT) to be T^*_w≃ 0.80. The adsorption of molecules at the liquid-liquid interface shows a discontinuity at about T^*≃ 0.79 suggesting that the wetting transition is a first order phase transition. These results are in agreement with some experiments carried out in fluid binary mixtures. In addition, we estimated the consolute temperature to be T^* _cons≃ 1.25. The calculated phase diagram of the mixture suggest the existence of a tricritical point.

  14. Comparison of cryopreserved human sperm in vapor and liquid phases of liquid nitrogen: effect on motility parameters, morphology, and sperm function.

    PubMed

    Punyatanasakchai, Piyaphan; Sophonsritsuk, Areephan; Weerakiet, Sawaek; Wansumrit, Surapee; Chompurat, Deonthip

    2008-11-01

    To compare the effects of cryopreserved sperm in vapor and liquid phases of liquid nitrogen on sperm motility, morphology, and sperm function. Experimental study. Andrology laboratory at Ramathibodi Hospital, Thailand. Thirty-eight semen samples with normal motility and sperm count were collected from 38 men who were either patients of an infertility clinic or had donated sperm for research. Each semen sample was divided into two aliquots. Samples were frozen with static-phase vapor cooling. One aliquot was plunged into liquid nitrogen (-196 degrees C), and the other was stored in vapor-phase nitrogen (-179 degrees C) for 3 days. Thawing was performed at room temperature. Motility was determined by using computer-assisted semen analysis, sperm morphology was determined by using eosin-methylene blue staining, and sperm function was determined by using a hemizona binding test. Most of the motility parameters of sperm stored in the vapor phase were not significantly different from those stored in the liquid phase of liquid nitrogen, except in amplitude of lateral head displacement. The percentages of normal sperm morphology in both vapor and liquid phases also were not significantly different. There was no significant difference in the number of bound sperm in hemizona between sperm cryopreserved in both vapor and liquid phases of liquid nitrogen. Cryopreservation of human sperm in a vapor phase of liquid nitrogen was comparable to cryopreservation in a liquid phase of liquid nitrogen.

  15. Sol–gel synthesis of MCM-41 silicas and selective vapor-phase modification of their surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roik, N.V., E-mail: roik_nadya@ukr.net; Belyakova, L.A.

    2013-11-15

    Silica particles with uniform hexagonal mesopore architecture were synthesized by template directed sol–gel condensation of tetraethoxysilane or mixture of tetraethoxysilane and (3-chloropropyl)triethoxysilane in a water–ethanol–ammonia solution. Selective functionalization of exterior surface of parent materials was carried out by postsynthetic treatment of template-filled MCM-41 and Cl-MCM-41 with vapors of (3-chloropropyl)triethoxysilane and 1,2-ethylenediamine in vacuum. The chemical composition of obtained mesoporous silicas was estimated by IR spectroscopy and chemical analysis of surface products of reactions. Characteristics of porous structure of resulting materials were determined from the data of X-ray, low-temperature nitrogen ad-desorption and transmission electron microscopy measurements. Obtained results confirm invariability ofmore » highly ordered mesoporous structure of MCM-41 and Cl-MCM-41 after their selective postsynthetic modification in vapor phase. It was proved that proposed method of vapor-phase functionalization of template-filled starting materials is not accompanied by dissolution of the template and chemical modification of pores surface. This provides preferential localization of grafted functional groups onto the exterior surface of mesoporous silicas. - Graphical abstract: Sol–gel synthesis and postsynthetic chemical modification of template-filled MCM-41 and Cl-MCM-41 with (3-chloropropyl)triethoxysilane and 1,2-ethylenediamine in vapor phase. Display Omitted - Highlights: • Synthesis of MCM-41 silica by template directed sol–gel condensation. • Selective vapor-phase functionalization of template-filled silica particles. • Preferential localization of grafted groups onto the exterior surface of mesoporous silicas.« less

  16. Role of Co-Vapors in Vapor Deposition Polymerization

    PubMed Central

    Lee, Ji Eun; Lee, Younghee; Ahn, Ki-Jin; Huh, Jinyoung; Shim, Hyeon Woo; Sampath, Gayathri; Im, Won Bin; Huh, Yang–Il; Yoon, Hyeonseok

    2015-01-01

    Polypyrrole (PPy)/cellulose (PPCL) composite papers were fabricated by vapor phase polymerization. Importantly, the vapor-phase deposition of PPy onto cellulose was assisted by employing different co-vapors namely methanol, ethanol, benzene, water, toluene and hexane, in addition to pyrrole. The resulting PPCL papers possessed high mechanical flexibility, large surface-to-volume ratio, and good redox properties. Their main properties were highly influenced by the nature of the co-vaporized solvent. The morphology and oxidation level of deposited PPy were tuned by employing co-vapors during the polymerization, which in turn led to change in the electrochemical properties of the PPCL papers. When methanol and ethanol were used as co-vapors, the conductivities of PPCL papers were found to have improved five times, which was likely due to the enhanced orientation of PPy chain by the polar co-vapors with high dipole moment. The specific capacitance of PPCL papers obtained using benzene, toluene, water and hexane co-vapors was higher than those of the others, which is attributed to the enlarged effective surface area of the electrode material. The results indicate that the judicious choice and combination of co-vapors in vapor-deposition polymerization (VDP) offers the possibility of tuning the morphological, electrical, and electrochemical properties of deposited conducting polymers. PMID:25673422

  17. Heating systems for heating subsurface formations

    DOEpatents

    Nguyen, Scott Vinh [Houston, TX; Vinegar, Harold J [Bellaire, TX

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  18. Enhanced Vapor-Phase Diffusion in Porous Media - LDRD Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, C.K.; Webb, S.W.

    1999-01-01

    As part of the Laboratory-Directed Research and Development (LDRD) Program at Sandia National Laboratories, an investigation into the existence of enhanced vapor-phase diffusion (EVD) in porous media has been conducted. A thorough literature review was initially performed across multiple disciplines (soil science and engineering), and based on this review, the existence of EVD was found to be questionable. As a result, modeling and experiments were initiated to investigate the existence of EVD. In this LDRD, the first mechanistic model of EVD was developed which demonstrated the mechanisms responsible for EVD. The first direct measurements of EVD have also been conductedmore » at multiple scales. Measurements have been made at the pore scale, in a two- dimensional network as represented by a fracture aperture, and in a porous medium. Significant enhancement of vapor-phase transport relative to Fickian diffusion was measured in all cases. The modeling and experimental results provide additional mechanisms for EVD beyond those presented by the generally accepted model of Philip and deVries (1957), which required a thermal gradient for EVD to exist. Modeling and experimental results show significant enhancement under isothermal conditions. Application of EVD to vapor transport in the near-surface vadose zone show a significant variation between no enhancement, the model of Philip and deVries, and the present results. Based on this information, the model of Philip and deVries may need to be modified, and additional studies are recommended.« less

  19. Condition of Si crystal formation by vaporizing Na from NaSi

    NASA Astrophysics Data System (ADS)

    Morito, Haruhiko; Karahashi, Taiki; Yamane, Hisanori

    2012-09-01

    NaSi was heated at various Na vapor pressures (pNa 0.1-1.2 atm) and temperatures (973-1173 K) to investigate the condition of Si crystal formation from NaSi by Na evaporation. Silicon single crystals 1-3 mm in diameter were grown by evaporation of Na from Na-Si melt at 1173 K and pNa=0.74 atm.

  20. Structural and optical inhomogeneities of Fe doped GaN grown by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Malguth, E.; Hoffmann, A.; Phillips, M. R.

    2008-12-01

    We present the results of cathodoluminescence experiments on a set of Fe doped GaN samples with Fe concentrations of 5×1017, 1×1018, 1×1019, and 2×1020 cm-3. These specimens were grown by hydride vapor phase epitaxy with different concentrations of Fe. The introduction of Fe is found to promote the formation of structurally inhomogeneous regions of increased donor concentration. We detect a tendency of these regions to form hexagonal pits at the surface. The locally increased carrier concentration leads to enhanced emission from the band edge and the internal T41(G)-A61(S) transition of Fe3+. In these areas, the luminescence forms a finely structured highly symmetric pattern, which is attributed to defect migration along strain-field lines. Fe doping is found to quench the yellow defect luminescence band and to enhance the blue luminescence band due to the lowering of the Fermi level and the formation of point defects, respectively.

  1. Quantum chemical analysis of thermodynamics of 2D cluster formation of alkanes at the water/vapor interface in the presence of aliphatic alcohols.

    PubMed

    Vysotsky, Yu B; Kartashynska, E S; Belyaeva, E A; Fainerman, V B; Vollhardt, D; Miller, R

    2015-11-21

    Using the quantum chemical semi-empirical PM3 method it is shown that aliphatic alcohols favor the spontaneous clusterization of vaporous alkanes at the water surface due to the change of adsorption from the barrier to non-barrier mechanism. A theoretical model of the non-barrier mechanism for monolayer formation is developed. In the framework of this model alcohols (or any other surfactants) act as 'floats', which interact with alkane molecules of the vapor phase using their hydrophobic part, whereas the hydrophilic part is immersed into the water phase. This results in a significant increase of contact effectiveness of alkanes with the interface during the adsorption and film formation. The obtained results are in good agreement with the existing experimental data. To test the model the thermodynamic and structural parameters of formation and clusterization are calculated for vaporous alkanes C(n)H(2n+2) (n(CH3) = 6-16) at the water surface in the presence of aliphatic alcohols C(n)H(2n+1)OH (n(OH) = 8-16) at 298 K. It is shown that the values of clusterization enthalpy, entropy and Gibbs' energy per one monomer of the cluster depend on the chain lengths of corresponding alcohols and alkanes, the alcohol molar fraction in the monolayers formed, and the shift of the alkane molecules with respect to the alcohol molecules Δn. Two possible competitive structures of mixed 2D film alkane-alcohol are considered: 2D films 1 with single alcohol molecules enclosed by alkane molecules (the alcohols do not form domains) and 2D films 2 that contain alcohol domains enclosed by alkane molecules. The formation of the alkane films of the first type is nearly independent of the surfactant type present at the interface, but depends on their molar fraction in the monolayer formed and the chain length of the compounds participating in the clusterization, whereas for the formation of the films of the second type the interaction between the hydrophilic parts of the surfactant is

  2. Space cryogenics components based on the thermomechanical effect - Vapor-liquid phase separation

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Frederking, T. H. K.

    1989-01-01

    Applications of the thermomechanical effect has been qualified including incorporation in large-scale space systems in the area of vapor-liquid phase separation (VLPS). The theory of the porous-plug phase separator is developed for the limit of a high thermal impedance of the solid-state grains. Extensions of the theory of nonlinear turbulent flow are presented based on experimental results.

  3. Magmatic-vapor expansion and the formation of high-sulfidation gold deposits: Chemical controls on alteration and mineralization

    USGS Publications Warehouse

    Henley, R.W.; Berger, B.R.

    2011-01-01

    Large bulk-tonnage high-sulfidation gold deposits, such as Yanacocha, Peru, are the surface expression of structurally-controlled lode gold deposits, such as El Indio, Chile. Both formed in active andesite-dacite volcanic terranes. Fluid inclusion, stable isotope and geologic data show that lode deposits formed within 1500. m of the paleo-surface as a consequence of the expansion of low-salinity, low-density magmatic vapor with very limited, if any, groundwater mixing. They are characterized by an initial 'Sulfate' Stage of advanced argillic wallrock alteration ?? alunite commonly with intense silicification followed by a 'Sulfide' Stage - a succession of discrete sulfide-sulfosalt veins that may be ore grade in gold and silver. Fluid inclusions in quartz formed during wallrock alteration have homogenization temperatures between 100 and over 500 ??C and preserve a record of a vapor-rich environment. Recent data for El Indio and similar deposits show that at the commencement of the Sulfide Stage, 'condensation' of Cu-As-S sulfosalt melts with trace concentrations of Sb, Te, Bi, Ag and Au occurred at > 600 ??C following pyrite deposition. Euhedral quartz crystals were simultaneously deposited from the vapor phase during crystallization of the vapor-saturated melt occurs to Fe-tennantite with progressive non-equilibrium fractionation of heavy metals between melt-vapor and solid. Vugs containing a range of sulfides, sulfosalts and gold record the changing composition of the vapor. Published fluid inclusion and mineralogical data are reviewed in the context of geological relationships to establish boundary conditions through which to trace the expansion of magmatic vapor from source to surface and consequent alteration and mineralization. Initially heat loss from the vapor is high resulting in the formation of acid condensate permeating through the wallrock. This Sulfate Stage alteration effectively isolates the expansion of magmatic vapor in subsurface fracture arrays

  4. Vapors-liquid phase separator. [infrared telescope heat sink

    NASA Technical Reports Server (NTRS)

    Frederking, T. H. K.; Brown, G. S.; Chuang, C.; Kamioka, Y.; Kim, Y. I.; Lee, J. M.; Yuan, S. W. K.

    1980-01-01

    The use of porous plugs, mostly with in the form of passive devices with constant area were considered as vapor-liquid phase separators for helium 2 storage vessels under reduced gravity. The incorporation of components with variable cross sectional area as a method of flow rate modification was also investigated. A particular device which uses a shutter-type system for area variation was designed and constructed. This system successfully permitted flor rate changes of up to plus or minus 60% from its mean value.

  5. Modeling solvent evaporation during thin film formation in phase separating polymer mixtures

    DOE PAGES

    Cummings, John; Lowengrub, John S.; Sumpter, Bobby G.; ...

    2018-02-09

    Preparation of thin films by dissolving polymers in a common solvent followed by evaporation of the solvent has become a routine processing procedure. However, modeling of thin film formation in an evaporating solvent has been challenging due to a need to simulate processes at multiple length and time scales. In this paper, we present a methodology based on the principles of linear non-equilibrium thermodynamics, which allows systematic study of various effects such as the changes in the solvent properties due to phase transformation from liquid to vapor and polymer thermodynamics resulting from such solvent transformations. The methodology allows for themore » derivation of evaporative flux and boundary conditions near each surface for simulations of systems close to the equilibrium. We apply it to study thin film microstructural evolution in phase segregating polymer blends dissolved in a common volatile solvent and deposited on a planar substrate. Finally, effects of the evaporation rates, interactions of the polymers with the underlying substrate and concentration dependent mobilities on the kinetics of thin film formation are studied.« less

  6. Modeling solvent evaporation during thin film formation in phase separating polymer mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cummings, John; Lowengrub, John S.; Sumpter, Bobby G.

    Preparation of thin films by dissolving polymers in a common solvent followed by evaporation of the solvent has become a routine processing procedure. However, modeling of thin film formation in an evaporating solvent has been challenging due to a need to simulate processes at multiple length and time scales. In this paper, we present a methodology based on the principles of linear non-equilibrium thermodynamics, which allows systematic study of various effects such as the changes in the solvent properties due to phase transformation from liquid to vapor and polymer thermodynamics resulting from such solvent transformations. The methodology allows for themore » derivation of evaporative flux and boundary conditions near each surface for simulations of systems close to the equilibrium. We apply it to study thin film microstructural evolution in phase segregating polymer blends dissolved in a common volatile solvent and deposited on a planar substrate. Finally, effects of the evaporation rates, interactions of the polymers with the underlying substrate and concentration dependent mobilities on the kinetics of thin film formation are studied.« less

  7. Biodegradation of vapor-phase toluene in unsaturated porous media: Column experiments.

    PubMed

    Khan, Ali M; Wick, Lukas Y; Harms, Hauke; Thullner, Martin

    2016-04-01

    Biodegradation of organic chemicals in the vapor phase of soils and vertical flow filters has gained attention as promising approach to clean up volatile organic compounds (VOC). The drivers of VOC biodegradation in unsaturated systems however still remain poorly understood. Here, we analyzed the processes controlling aerobic VOC biodegradation in a laboratory setup mimicking the unsaturated zone above a shallow aquifer. The setup allowed for diffusive vapor-phase transport and biodegradation of three VOC: non-deuterated and deuterated toluene as two compounds of highly differing biodegradability but (nearly) identical physical and chemical properties, and MTBE as (at the applied experimental conditions) non-biodegradable tracer and internal control. Our results showed for toluene an effective microbial degradation within centimeter VOC transport distances despite high gas-phase diffusivity. Degradation rates were controlled by the reactivity of the compounds while oxic conditions were found everywhere in the system. This confirms hypotheses that vadose zone biodegradation rates can be extremely high and are able to prevent the outgassing of VOC to the atmosphere within a centimeter range if compound properties and site conditions allow for sufficiently high degradation rates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The effect of heated vapor-phase acidification on organic carbon concentrations and isotopic values in geologic rock samples

    NASA Astrophysics Data System (ADS)

    Wang, R. Z.; West, A. J.; Yager, J. A.; Rollins, N.; Li, G.; Berelson, W.

    2016-12-01

    Carbon signatures recorded in the modern and geologic rock record can give insight on the Earth's carbon cycle through time. This is especially true for organic carbon (OC), which can help us understand how the biosphere has evolved over Earth's history. However, carbon recorded in rocks is a combination of OC and inorganic carbon (IC) mostly in the form of carbonate minerals. To measure OC, IC must therefore first be removed through a process called "decarbonation." This is often done through a leaching process with hydrochloric acid (HCl). However, three well known problems exist for the decarbonation process: 1) Incomplete removal of IC, 2) Unintentional removal of OC, and 3) Addition of false carbon blank. Currently, vapor (gas) phase removal of OC is preferred to liquid phase treatment because it has been shown that OC is lost to solubilization during liquid phase acidification. Vapor phase treatment is largely thought to avoid the problem of OC loss, but this has not yet been rigorously investigated. This study investigates that assumption and shows that vapor phase treatment can cause unintentional OC loss. We show that vapor phase treatment must be sensitive to rock type and treatment length to produce robust OC isotopic measurements and concentrations.

  9. Liquid-vapor phase equilibria and the thermodynamic properties of 2-methylpropanol- n-alkyl propanoate solutions

    NASA Astrophysics Data System (ADS)

    Suntsov, Yu. K.; Goryunov, V. A.; Chuikov, A. M.; Meshcheryakov, A. V.

    2016-08-01

    The boiling points of solutions of five binary systems are measured via ebulliometry in the pressure range of 2.05-103.3 kPa. Equilibrium vapor phase compositions, the values of the excess Gibbs energies, enthalpies, and entropies of solution of these systems are calculated. Patterns in the changes of phase equilibria and thermodynamic properties of solutions are established, depending on the compositions and temperatures of the systems. Liquid-vapor equilibria in the systems are described using the equations of Wilson and the NRTL (Non-Random Two-Liquid Model).

  10. Vapor Phase Hydrogenolysis of Furanics Utilizing Reduced Cobalt Mixed Metal Oxide Catalysts

    DOE PAGES

    Sulmonetti, Taylor P.; Hu, Bo; Ifkovits, Zachary; ...

    2017-03-21

    Vapor phase hydrogenolysis of both furfuryl alcohol and furfural were investigated over reduced Co based mixed metal oxides derived from the calcination of a layered double hydroxide precursor. Although a reduced cobalt aluminate sample displays promising selectivity towards 2-methylfuran (2-MF) production, the addition of an Fe dopant into the oxide matrix significantly enhances the activity and selectivity per gram of catalyst. Approximately 82% 2-MF yield is achieved at high conversion when furfuryl alcohol is fed into the reactor at 180 °C over the reduced 3Co-0.25Fe-0.75Al catalyst. Based on structural characterization studies including TPR, XPS, and in-situ XAS it is suggestedmore » that Fe facilitates the reduction of Co, allowing for formation of more metallic species. Altogether, this study demonstrates that non-precious metal catalysts offer promise for the selective conversion of a key biomass oxygenate to a proposed fuel additive.« less

  11. Vapor-phase infrared laser spectroscopy: from gas sensing to forensic urinalysis.

    PubMed

    Bartlome, Richard; Rey, Julien M; Sigrist, Markus W

    2008-07-15

    Numerous gas-sensing devices are based on infrared laser spectroscopy. In this paper, the technique is further developed and, for the first time, applied to forensic urinalysis. For this purpose, a difference frequency generation laser was coupled to an in-house-built, high-temperature multipass cell (HTMC). The continuous tuning range of the laser was extended to 329 cm(-1) in the fingerprint C-H stretching region between 3 and 4 microm. The HTMC is a long-path absorption cell designed to withstand organic samples in the vapor phase (Bartlome, R.; Baer, M.; Sigrist, M. W. Rev. Sci. Instrum. 2007, 78, 013110). Quantitative measurements were taken on pure ephedrine and pseudoephedrine vapors. Despite featuring similarities, the vapor-phase infrared spectra of these diastereoisomers are clearly distinguishable with respect to a vibrational band centered at 2970.5 and 2980.1 cm(-1), respectively. Ephedrine-positive and pseudoephedrine-positive urine samples were prepared by means of liquid-liquid extraction and directly evaporated in the HTMC without any preliminary chromatographic separation. When 10 or 20 mL of ephedrine-positive human urine is prepared, the detection limit of ephedrine, prohibited in sports as of 10 microg/mL, is 50 or 25 microg/mL, respectively. The laser spectrometer has room for much improvement; its potential is discussed with respect to doping agents detection.

  12. External fuel vaporization study, phase 1

    NASA Technical Reports Server (NTRS)

    Szetela, E. J.; Chiappetta, L.

    1980-01-01

    A conceptual design study was conducted to devise and evaluate techniques for the external vaporization of fuel for use in an aircraft gas turbine with characteristics similar to the Energy Efficient Engine (E(3)). Three vaporizer concepts were selected and they were analyzed from the standpoint of fuel thermal stability, integration of the vaporizer system into the aircraft engine, engine and vaporizer dynamic response, startup and altitude restart, engine performance, control requirements, safety, and maintenance. One of the concepts was found to improve the performance of the baseline E(3) engine without seriously compromising engine startup and power change response. Increased maintenance is required because of the need for frequent pyrolytic cleaning of the surfaces in contact with hot fuel.

  13. Modeling of Gallium Nitride Hydride Vapor Phase Epitaxy

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    A reactor model for the hydride vapor phase epitaxy of GaN is presented. The governing flow, energy, and species conservation equations are solved in two dimensions to examine the growth characteristics as a function of process variables and reactor geometry. The growth rate varies with GaCl composition but independent of NH3 and H2 flow rates. A change in carrier gas for Ga source from H2 to N2 affects the growth rate and uniformity for a fixed reactor configuration. The model predictions are in general agreement with observed experimental behavior.

  14. Phase-transition thresholds and vaporization phenomena for ultrasound phase-change nanoemulsions assessed via high speed optical microscopy

    PubMed Central

    Sheeran, Paul S.; Matsunaga, Terry O.; Dayton, Paul A.

    2015-01-01

    Ultrasonically activated phase-change contrast agents (PCCAs) based on perfluorocarbon droplets have been proposed for a variety of therapeutic and diagnostic clinical applications. When generated at the nanoscale, droplets may be small enough to exit the vascular space and then be induced to vaporize with high spatial and temporal specificity by externally-applied ultrasound. The use of acoustical techniques for optimizing ultrasound parameters for given applications can be a significant challenge for nanoscale PCCAs due to the contributions of larger outlier droplets. Similarly, optical techniques can be a challenge due to the sub-micron size of nanodroplet agents and resolution limits of optical microscopy. In this study, an optical method for determining activation thresholds of nanoscale emulsions based on the in vitro distribution of bubbles resulting from vaporization of PCCAs after single, short (<10 cycles) ultrasound pulses is evaluated. Through ultra-high-speed microscopy it is shown that the bubbles produced early in the pulse from vaporized droplets are strongly affected by subsequent cycles of the vaporization pulse, and these effects increase with pulse length. Results show that decafluorobutane nanoemulsions with peak diameters on the order of 200 nm can be optimally vaporized with short pulses using pressures amenable to clinical diagnostic ultrasound machines. PMID:23760161

  15. Phase Equilibrium of TiO2 Nanocrystals in Flame-Assisted Chemical Vapor Deposition.

    PubMed

    Liu, Changran; Camacho, Joaquin; Wang, Hai

    2018-01-19

    Nano-scale titanium oxide (TiO 2 ) is a material useful for a wide range of applications. In a previous study, we showed that TiO 2 nanoparticles of both rutile and anatase crystal phases could be synthesized over the size range of 5 to 20 nm in flame-assisted chemical vapor deposition. Rutile was unexpectedly dominant in oxygen-lean synthesis conditions, whereas anatase is the preferred phase in oxygen-rich gases. The observation is in contrast to the 14 nm rutile-anatase crossover size derived from the existing crystal-phase equilibrium model. In the present work, we made additional measurements over a wider range of synthesis conditions; the results confirm the earlier observations. We propose an improved model for the surface energy that considers the role of oxygen desorption at high temperatures. The model successfully explains the observations made in the current and previous work. The current results provide a useful path to designing flame-assisted chemical vapor deposition of TiO 2 nanocrystals with controllable crystal phases. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A unifying picture of gas-phase formation and growth of PAH (Polycyclic Aromatic Hydrocarbons), soot, diamond and graphite

    NASA Technical Reports Server (NTRS)

    Frenklach, Michael

    1990-01-01

    A variety of seemingly different carbon formation processes -- polycyclic aromatic hydrocarbons and diamond in the interstellar medium, soot in hydrocarbon flames, graphite and diamond in plasma-assisted-chemical vapor deposition reactors -- may all have closely related underlying chemical reaction mechanisms. Two distinct mechanisms for gas-phase carbon growth are discussed. At high temperatures it proceeds via the formation of carbon clusters. At lower temperatures it follows a polymerization-type kinetic sequence of chemical reactions of acetylene addition to a radical, and reactivation of the resultant species through H-abstraction by a hydrogen atom.

  17. Condensation from Cluster-IDP Enriched Vapor Inside the Snow Line: Implications for Mercury, Asteroids, and Enstatite Chondrites

    NASA Technical Reports Server (NTRS)

    Ebel, D. S.; Alexander, C. M. OD.

    2005-01-01

    Enstatite chondrites (EC) contain highly reduced matrix minerals (e.g.- (Mg,Fe,Mn)S solid solution, CaS) that probably formed in thermodynamic equilibrium with a vapor phase. EC chondrules contain enstatite, Fs5 to Fs30, in which iron was reduced after formation, also by interaction with vapor [1, 2]. The origin and location of this reducing vapor bears upon the formation of the terrestrial planets (Mercury to Mars), the remnant chemical zoning of the asteroid belt (E, S, C, D-types), and the cosmochemistry of metals in the early solar system.

  18. The impact of vaporized nanoemulsions on ultrasound-mediated ablation.

    PubMed

    Zhang, Peng; Kopechek, Jonathan A; Porter, Tyrone M

    2013-01-01

    The clinical feasibility of using high-intensity focused ultrasound (HIFU) for ablation of solid tumors is limited by the high acoustic pressures and long treatment times required. The presence of microbubbles during sonication can increase the absorption of acoustic energy and accelerate heating. However, formation of microbubbles within the tumor tissue remains a challenge. Phase-shift nanoemulsions (PSNE) have been developed as a means for producing microbubbles within tumors. PSNE are emulsions of submicron-sized, lipid-coated, and liquid perfluorocarbon droplets that can be vaporized into microbubbles using short (<1 ms), high-amplitude (>5 MPa) acoustic pulses. In this study, the impact of vaporized phase-shift nanoemulsions on the time and acoustic power required for HIFU-mediated thermal lesion formation was investigated in vitro. PSNE containing dodecafluoropentane were produced with narrow size distributions and mean diameters below 200 nm using a combination of sonication and extrusion. PSNE was dispersed in albumin-containing polyacrylamide gel phantoms for experimental tests. Albumin denatures and becomes opaque at temperatures above 58°C, enabling visual detection of lesions formed from denatured albumin. PSNE were vaporized using a 30-cycle, 3.2-MHz, at an acoustic power of 6.4 W (free-field intensity of 4,586 W/cm(2)) pulse from a single-element, focused high-power transducer. The vaporization pulse was immediately followed by a 15-s continuous wave, 3.2-MHz signal to induce ultrasound-mediated heating. Control experiments were conducted using an identical procedure without the vaporization pulse. Lesion formation was detected by acquiring video frames during sonication and post-processing the images for analysis. Broadband emissions from inertial cavitation (IC) were passively detected with a focused, 2-MHz transducer. Temperature measurements were acquired using a needle thermocouple. Bubbles formed at the HIFU focus via PSNE vaporization

  19. Determination of Methane Hydrate Solubility in the Absence of Vapor Phase by in-situ Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lu, W.; Chou, I.; Burruss, R.

    2006-12-01

    Prediction of the occurrence, distribution, and evolution of methane hydrate in porous marine sediments requires information on solubilities of methane hydrate in water. Solubilities of methane hydrate in the presence of a vapor phase are well established, but those in the absence of a vapor phase are not well defined with differences up to 30%. We have measured methane concentrations in pure water in equilibrium with sI methane hydrate, in the absence of vapor phase, by in-situ Raman spectroscopy at temperatures (T) from 2 to 20 (± 0.3) °C and pressures (P) at 10, 20, 30, and 40 (± 0.4%) MPa. Methane hydrate was synthesized in a high-pressure capillary optical cell (Chou et al., 2005; Advances in High-Pressure Technology for Geophysical Applications. Ed. J. Chen et al., Chapter 24, p. 475, Elsevier). A small quantity of methane was first loaded in an evacuated cell and then pressurized by water. Hydrate crystals were formed near the liquid-vapor interface near the enclosed end of the optical tube at room T, and were then placed at the center of a USGS-type heating-cooling stage. By adjusting sample P and T, the crystals went through dissolution-formation cycles three to four times in three days until the vapor phase was completely consumed and several crystals (typically 40 x 40 x 10 μm) were formed. These crystals were located at about 200 μm from the enclosed end and were about 20 to 40 μm from each other. Raman spectra were collected for the liquid phase adjacent to hydrate crystals near the enclosed end of the tube. A volumetric decrease in crystal size was observed away from the sampling spot; however, no such volumetric decrease was observed in or near the sampling spot. Therefore, equilibrium was likely established locally within the sampling area. The results are represented by the following linear isobaric equations: 10 MPa: ln [X(CH4)] = 0.06175 T - 6.79507; r2 = 0.9991 (n = 6) 20 MPa: ln [X(CH4)] = 0.06170 T - 6.82816; r2 = 0.9985 (n = 6) 30 MPa

  20. Volatilization of low vapor pressure--volatile organic compounds (LVP-VOCs) during three cleaning products-associated activities: Potential contributions to ozone formation.

    PubMed

    Shin, Hyeong-Moo; McKone, Thomas E; Bennett, Deborah H

    2016-06-01

    There have been many studies to reduce ozone formation mostly from volatile organic compound (VOC) sources. However, the role of low vapor pressure (LVP)-VOCs from consumer products remains mostly unexplored and unaddressed. This study explores the impact of high production volume LVP-VOCs on ozone formation from three cleaning products-associated activities (dishwashing, clothes washing, and surface cleaning). We develop a model framework to account for the portion available for ozone formation during the use phase and from the down-the-drain disposal. We apply experimental studies that measured emission rates or models that were developed for estimating emission rates of organic compounds during the use phase. Then, the fraction volatilized (fvolatilized) and the fraction disposed down the drain (fdown-the-drain) are multiplied by the portion available for ozone formation for releases to the outdoor air (fO3|volatilized) and down-the-drain (fO3|down-the-drain), respectively. Overall, for chemicals used in three specific cleaning-product uses, fvolatilized is less than 0.6% for all studied LVP-VOCs. Because greater than 99.4% of compounds are disposed of down the drain during the use phase, when combined with fO3|volatilized and fO3|down-the-drain, the portion available for ozone formation from the direct releases to outdoor air and the down-the-drain disposal is less than 0.4% and 0.2%, respectively. The results from this study indicate that the impact of the studied LVP-VOCs on ozone formation is very sensitive to what occurs during the use phase and suggest the need for future research on experimental work at the point of use. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Formation, structure, and evolution of boiling nucleus and interfacial tension between bulk liquid phase and nucleus

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Dong; Peng, Xiao-Feng; Tian, Yong; Wang, Bu-Xuan

    2005-05-01

    In this paper, the concept of the molecular free path is introduced to derive a criterion distinguishing active molecules from inactive molecules in liquid phase. A concept of the critical aggregation concentration (CAC) of active molecules is proposed to describe the physical configuration before the formation of a nucleus during vapor-liquid phase transition. All active molecules exist as monomers when the concentration of active molecules is lower than CAC, while the active molecules will generate aggregation once the concentration of the active molecules reaches CAC. However, these aggregates with aggregation number, N, smaller than five can steadily exist in bulk phase. The other excess active molecules can only produce infinite aggregation and form a critical nucleus of vapor-liquid phase transition. Without any outer perturbation the state point of CAC corresponds to the critical superheated or supercooled state. Meanwhile, a model of two-region structure of a nucleus is proposed to describe nucleus evolution. The interfacial tension between bulk liquid phase and nucleus is dependent of the density gradient in the transition region and varies with the structure change of the transition region. With the interfacial tension calculated using this model, the predicted nucleation rate is very close to the experimental measurement. Furthermore, this model and associated analysis provides solid theoretical evidences to clarify the definition of nucleation rate and understand nucleation phenomenon with the insight into the physical nature.

  2. Crystal growth from the vapor phase experiment MA-085

    NASA Technical Reports Server (NTRS)

    Wiedemeir, H.; Sadeek, H.; Klaessig, F. C.; Norek, M.

    1976-01-01

    Three vapor transport experiments on multicomponent systems were performed during the Apollo Soyuz mission to determine the effects of microgravity forces on crystal morphology and mass transport rates. The mixed systems used germanium selenide, tellurium, germanium tetraiodide (transport agent), germanium monosulfide, germanium tetrachloride (transport agent), and argon (inert atmosphere). The materials were enclosed in evacuated sealed ampoules of fused silica and were transported in a temperature gradient of the multipurpose electric furnace onboard the Apollo Soyuz spacecraft. Preliminary evaluation of 2 systems shows improved quality of space grown crystals in terms of growth morphology and bulk perfection. This conclusion is based on a direct comparison of space grown and ground based crystals by means of X-ray diffraction, microscopic, and chemical etching techniques. The observation of greater mass transport rates than predicted for a microgravity environment by existing vapor transport models indicates the existence of nongravity caused transport effects in a reactive solid/gas phase system.

  3. Vapor-liquid nucleation: the solid touch.

    PubMed

    Yarom, Michal; Marmur, Abraham

    2015-08-01

    Vapor-liquid nucleation is a ubiquitous process that has been widely researched in many disciplines. Yet, case studies are quite scattered in the literature, and the implications of some of its basic concepts are not always clearly stated. This is especially noticeable for heterogeneous nucleation, which involves a solid surface in touch with the liquid and vapor. The current review attempts to offer a comprehensive, though concise, thermodynamic discussion of homogeneous and heterogeneous nucleation in vapor-liquid systems. The fundamental concepts of nucleation are detailed, with emphasis on the role of the chemical potential, and on intuitive explanations whenever possible. We review various types of nucleating systems and discuss the effect of the solid geometry on the characteristics of the new phase formation. In addition, we consider the effect of mixing on the vapor-liquid equilibrium. An interesting sub-case is that of a non-volatile solute that modifies the chemical potential of the liquid, but not of the vapor. Finally, we point out topics that need either further research or more exact, accurate presentation. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Reduction of degradation in vapor phase transported InP/InGaAsP mushroom stripe lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, H.; Burkhardt, E.G.; Pfister, W.

    1988-10-03

    The rapid degradation rate generally observed in InP/InGaAsP mushroom stripe lasers can be considerably decreased by regrowing the open sidewalls of the active stripe with low-doped InP in a second epitaxial step using the hydride vapor phase transport technique. This technique does not change the fundamental laser parameters like light-current and current-voltage characteristics. Because of this drastic reduction in degradation, the vapor phase epitaxy regrown InP/InGaAsP mushroom laser seems to be an interesting candidate for application in optical communication.

  5. APTS and rGO co-functionalized pyrenated fluorescent nanonets for representative vapor phase nitroaromatic explosive detection

    NASA Astrophysics Data System (ADS)

    Guo, Linjuan; Zu, Baiyi; Yang, Zheng; Cao, Hongyu; Zheng, Xuefang; Dou, Xincun

    2014-01-01

    For the first time, flexible PVP/pyrene/APTS/rGO fluorescent nanonets were designed and synthesized via a one-step electrospinning method to detect representative subsaturated nitroaromatic explosive vapor. The functional fluorescent nanonets, which were highly stable in air, showed an 81% quenching efficiency towards TNT vapor (~10 ppb) with an exposure time of 540 s at room temperature. The nice performance of the nanonets was ascribed to the synergistic effects induced by the specific adsorption properties of APTS, the fast charge transfer properties and the effective π-π interaction with pyrene and TNT of rGO. Compared to the analogues of TNT, the PVP/pyrene/APTS/rGO nanonets showed notable selectivity towards TNT and DNT vapors. The explored functionalization method opens up brand new insight into sensitive and selective detection of vapor phase nitroaromatic explosives.For the first time, flexible PVP/pyrene/APTS/rGO fluorescent nanonets were designed and synthesized via a one-step electrospinning method to detect representative subsaturated nitroaromatic explosive vapor. The functional fluorescent nanonets, which were highly stable in air, showed an 81% quenching efficiency towards TNT vapor (~10 ppb) with an exposure time of 540 s at room temperature. The nice performance of the nanonets was ascribed to the synergistic effects induced by the specific adsorption properties of APTS, the fast charge transfer properties and the effective π-π interaction with pyrene and TNT of rGO. Compared to the analogues of TNT, the PVP/pyrene/APTS/rGO nanonets showed notable selectivity towards TNT and DNT vapors. The explored functionalization method opens up brand new insight into sensitive and selective detection of vapor phase nitroaromatic explosives. Electronic supplementary information (ESI) available: Vapor pressure of TNT and its analogues, fluorescence quenching kinetics, fluorescence quenching efficiencies and additional SEM images. See DOI: 10.1039/c3nr04960d

  6. Noctilucent cloud formation and the effects of water vapor variability on temperatures in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Mckay, C. P.

    1985-01-01

    To investigate the occurrence of low temperatures and the formation of noctilucent clouds in the summer mesosphere, a one-dimensional time-dependent photochemical-thermal numerical model of the atmosphere between 50 and 120 km has been constructed. The model self-consistently solves the coupled photochemical and thermal equations as perturbation equations from a reference state assumed to be in equilibrium and is used to consider the effect of variability in water vapor in the lower mesosphere on the temperature in the region of noctilucent cloud formation. It is found that change in water vapor from an equilibrium value of 5 ppm at 50 km to a value of 10 ppm, a variation consistent with observations, can produce a roughly 15 K drop in temperature at 82 km. It is suggested that this process may produce weeks of cold temperatures and influence noctilucent cloud formation.

  7. Correlations between water-soluble organic aerosol and water vapor: a synergistic effect from biogenic emissions?

    PubMed

    Hennigan, Christopher J; Bergin, Michael H; Weber, Rodney J

    2008-12-15

    Ground-based measurements of meteorological parameters and water-soluble organic carbon in the gas(WSOCg) and particle (WSOCp) phases were carried out in Atlanta, Georgia, from May to September 2007. Fourteen separate events were observed throughout the summer in which WSOCp and water vapor concentrations were highly correlated (average WSOCp-water vapor r = 0.92); however, for the entire summer, no well-defined relationship existed between the two. The correlation events, which lasted on average 19 h, were characterized by a wide range of WSOCp and water vapor concentrations. Several hypotheses for the correlation are explored, including heterogeneous liquid phase SOA formation and the co-emission of biogenic VOCs and water vapor. The data provide supporting evidence for contributions from both and suggest the possibility of a synergistic effect between the co-emission of water vapor and VOCs from biogenic sources on SOA formation. Median WSOCp concentrations were also correlated with elemental carbon (EC), although this correlation extended over the entire summer. Despite the emission of water vapor from anthropogenic mobile sources and the WSOCp-EC correlation, mobile sources were not considered a potential cause for the WSOCp-water vapor correlations because of their low contribution to the water vapor budget. Meteorology could perhaps have influenced the WSOCp-EC correlation, but other factors are implicated as well. Overall, the results suggest that the temperature-dependent co-emission of water vapor through evapotranspiration and SOA precursor-VOCs by vegetation may be an important process contributing to SOA in some environments.

  8. Electron microscopy investigation of gallium oxide micro/nanowire structures synthesized via vapor phase growth.

    PubMed

    Wang, Y; Xu, J; Wang, R M; Yu, D P

    2004-01-01

    Large-scale micro/nanosized Ga(2)O(3) structures were synthesized via a simple vapor p9hase growth method. The morphology of the as-grown structures varied from aligned arrays of smooth nano/microscale wires to composite and complex microdendrites. We present evidence that the formation of the observed structure depends strongly on its position relative to the source materials (the concentration distribution) and on the growth temperature. A growth model is proposed, based on the vapor-solid (VS) mechanism, which can explain the observed morphologies.

  9. Worldwide data sets constrain the water vapor uptake coefficient in cloud formation.

    PubMed

    Raatikainen, Tomi; Nenes, Athanasios; Seinfeld, John H; Morales, Ricardo; Moore, Richard H; Lathem, Terry L; Lance, Sara; Padró, Luz T; Lin, Jack J; Cerully, Kate M; Bougiatioti, Aikaterini; Cozic, Julie; Ruehl, Christopher R; Chuang, Patrick Y; Anderson, Bruce E; Flagan, Richard C; Jonsson, Haflidi; Mihalopoulos, Nikos; Smith, James N

    2013-03-05

    Cloud droplet formation depends on the condensation of water vapor on ambient aerosols, the rate of which is strongly affected by the kinetics of water uptake as expressed by the condensation (or mass accommodation) coefficient, αc. Estimates of αc for droplet growth from activation of ambient particles vary considerably and represent a critical source of uncertainty in estimates of global cloud droplet distributions and the aerosol indirect forcing of climate. We present an analysis of 10 globally relevant data sets of cloud condensation nuclei to constrain the value of αc for ambient aerosol. We find that rapid activation kinetics (αc > 0.1) is uniformly prevalent. This finding resolves a long-standing issue in cloud physics, as the uncertainty in water vapor accommodation on droplets is considerably less than previously thought.

  10. Removal of Oxygen from Electronic Materials by Vapor-Phase Processes

    NASA Technical Reports Server (NTRS)

    Palosz, Witold

    1997-01-01

    Thermochemical analyses of equilibrium partial pressures over oxides with and without the presence of the respective element condensed phase, and hydrogen, chalcogens, hydrogen chalcogenides, and graphite are presented. Theoretical calculations are supplemented with experimental results on the rate of decomposition and/or sublimation/vaporization of the oxides under dynamic vacuum, and on the rate of reaction with hydrogen, graphite, and chalcogens. Procedures of removal of a number of oxides under different conditions are discussed.

  11. The impact of vaporized nanoemulsions on ultrasound-mediated ablation

    PubMed Central

    2013-01-01

    Background The clinical feasibility of using high-intensity focused ultrasound (HIFU) for ablation of solid tumors is limited by the high acoustic pressures and long treatment times required. The presence of microbubbles during sonication can increase the absorption of acoustic energy and accelerate heating. However, formation of microbubbles within the tumor tissue remains a challenge. Phase-shift nanoemulsions (PSNE) have been developed as a means for producing microbubbles within tumors. PSNE are emulsions of submicron-sized, lipid-coated, and liquid perfluorocarbon droplets that can be vaporized into microbubbles using short (<1 ms), high-amplitude (>5 MPa) acoustic pulses. In this study, the impact of vaporized phase-shift nanoemulsions on the time and acoustic power required for HIFU-mediated thermal lesion formation was investigated in vitro. Methods PSNE containing dodecafluoropentane were produced with narrow size distributions and mean diameters below 200 nm using a combination of sonication and extrusion. PSNE was dispersed in albumin-containing polyacrylamide gel phantoms for experimental tests. Albumin denatures and becomes opaque at temperatures above 58°C, enabling visual detection of lesions formed from denatured albumin. PSNE were vaporized using a 30-cycle, 3.2-MHz, at an acoustic power of 6.4 W (free-field intensity of 4,586 W/cm2) pulse from a single-element, focused high-power transducer. The vaporization pulse was immediately followed by a 15-s continuous wave, 3.2-MHz signal to induce ultrasound-mediated heating. Control experiments were conducted using an identical procedure without the vaporization pulse. Lesion formation was detected by acquiring video frames during sonication and post-processing the images for analysis. Broadband emissions from inertial cavitation (IC) were passively detected with a focused, 2-MHz transducer. Temperature measurements were acquired using a needle thermocouple. Results Bubbles formed at the HIFU focus via

  12. A three-dimensional phase field model for nanowire growth by the vapor-liquid-solid mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Yanming; Ryu, Seunghwa; McIntyre, Paul C.; Cai, Wei

    2014-07-01

    We present a three-dimensional multi-phase field model for catalyzed nanowire (NW) growth by the vapor-liquid-solid (VLS) mechanism. The equation of motion contains both a Ginzburg-Landau term for deposition and a diffusion (Cahn-Hilliard) term for interface relaxation without deposition. Direct deposition from vapor to solid, which competes with NW crystal growth through the molten catalyst droplet, is suppressed by assigning a very small kinetic coefficient at the solid-vapor interface. The thermodynamic self-consistency of the model is demonstrated by its ability to reproduce the equilibrium contact angles at the VLS junction. The incorporation of orientation dependent gradient energy leads to faceting of the solid-liquid and solid-vapor interfaces. The model successfully captures the curved shape of the NW base and the Gibbs-Thomson effect on growth velocity.

  13. Mid-infrared laser-absorption diagnostic for vapor-phase fuel mole fraction and liquid fuel film thickness

    NASA Astrophysics Data System (ADS)

    Porter, J. M.; Jeffries, J. B.; Hanson, R. K.

    2011-02-01

    A novel two-wavelength mid-infrared laser-absorption diagnostic has been developed for simultaneous measurements of vapor-phase fuel mole fraction and liquid fuel film thickness. The diagnostic was demonstrated for time-resolved measurements of n-dodecane liquid films in the absence and presence of n-decane vapor at 25°C and 1 atm. Laser wavelengths were selected from FTIR measurements of the C-H stretching band of vapor n-decane and liquid n-dodecane near 3.4 μm (3000 cm-1). n-Dodecane film thicknesses <20 μm were accurately measured in the absence of vapor, and simultaneous measurements of n-dodecane liquid film thickness and n-decane vapor mole fraction (300 ppm) were measured with <10% uncertainty for film thicknesses <10 μm. A potential application of the measurement technique is to provide accurate values of vapor mole fraction in combustion environments where strong absorption by liquid fuel or oil films on windows make conventional direct absorption measurements of the gas problematic.

  14. Curvature induced phase stability of an intensely heated liquid

    NASA Astrophysics Data System (ADS)

    Sasikumar, Kiran; Liang, Zhi; Cahill, David G.; Keblinski, Pawel

    2014-06-01

    We use non-equilibrium molecular dynamics simulations to study the heat transfer around intensely heated solid nanoparticles immersed in a model Lennard-Jones fluid. We focus our studies on the role of the nanoparticle curvature on the liquid phase stability under steady-state heating. For small nanoparticles we observe a stable liquid phase near the nanoparticle surface, which can be at a temperature well above the boiling point. Furthermore, for particles with radius smaller than a critical radius of 2 nm we do not observe formation of vapor even above the critical temperature. Instead, we report the existence of a stable fluid region with a density much larger than that of the vapor phase. We explain the stability in terms of the Laplace pressure associated with the formation of a vapor nanocavity and the associated effect on the Gibbs free energy.

  15. Fog Machines, Vapors, and Phase Diagrams

    ERIC Educational Resources Information Center

    Vitz, Ed

    2008-01-01

    A series of demonstrations is described that elucidate the operation of commercial fog machines by using common laboratory equipment and supplies. The formation of fogs, or "mixing clouds", is discussed in terms of the phase diagram for water and other chemical principles. The demonstrations can be adapted for presentation suitable for elementary…

  16. Worldwide data sets constrain the water vapor uptake coefficient in cloud formation

    PubMed Central

    Raatikainen, Tomi; Nenes, Athanasios; Seinfeld, John H.; Morales, Ricardo; Moore, Richard H.; Lathem, Terry L.; Lance, Sara; Padró, Luz T.; Lin, Jack J.; Cerully, Kate M.; Bougiatioti, Aikaterini; Cozic, Julie; Ruehl, Christopher R.; Chuang, Patrick Y.; Anderson, Bruce E.; Flagan, Richard C.; Jonsson, Haflidi; Mihalopoulos, Nikos; Smith, James N.

    2013-01-01

    Cloud droplet formation depends on the condensation of water vapor on ambient aerosols, the rate of which is strongly affected by the kinetics of water uptake as expressed by the condensation (or mass accommodation) coefficient, αc. Estimates of αc for droplet growth from activation of ambient particles vary considerably and represent a critical source of uncertainty in estimates of global cloud droplet distributions and the aerosol indirect forcing of climate. We present an analysis of 10 globally relevant data sets of cloud condensation nuclei to constrain the value of αc for ambient aerosol. We find that rapid activation kinetics (αc > 0.1) is uniformly prevalent. This finding resolves a long-standing issue in cloud physics, as the uncertainty in water vapor accommodation on droplets is considerably less than previously thought. PMID:23431189

  17. External fuel vaporization study, phase 2

    NASA Technical Reports Server (NTRS)

    Szetela, E. J.; Chiappetta, L.

    1981-01-01

    An analytical study was conducted to evaluate the effect of variations in fuel properties on the design of an external fuel vaporizaton system. The fuel properties that were considered included thermal stability, critical temperature, enthalpy a critical conditions, volatility, and viscosity. The design parameters that were evaluated included vaporizer weight and the impact on engine requirement such as maintenance, transient response, performance, and altitude relight. The baseline fuel properties were those of Jet A. The variation in thermal stability was taken as the thermal stability variation for Experimental Referee Broad Specification (ERBS) fuel. The results of the analysis indicate that a change in thermal stability equivalent to that of ERBS would increase the vaporization system weight by 20 percent, decrease oprating time between cleaning by 40 percent and make altitude relight more difficult. An increase in fuel critical temperature of 39 K would require a 40 percent increase in vaporization system weight. The assumed increase in enthalpy and volatility would also increase vaporizer weight by 40 percent and make altitude relight extremely difficult. The variation in fuel viscosity would have a negligible effect on the design parameters.

  18. Water Sorption and Vapor-Phase Deuterium Exchange Studies on Methemoglobin CC, SC, SS, AS, and AA

    PubMed Central

    Killion, Philip J.; Cameron, Bruce F.

    1972-01-01

    Five hemoglobins whose genetic relationship to one another involves one set of alleles, hemoglobins CC, SC, SS, AS, and AA, were studied in the Met form. Two different investigations were conducted at 28°C on these methemoglobins within a McBain gravimetric sorption system: sorption of H2O vapor and vapor-phase deuterium-hydrogen exchange. For each of the five samples there was close agreement between the per cent hydration of polar sites as determined from sorption studies and the maximum per cent of labile hydrogens that were exchanged during the vapor-phase deuterium exchange study. Both studies measured a slight increase in the number of polar sites accessible to H2O or D2O vapor for those samples in which the substituent in the sixth position from the N-terminus of the two β-chains had a positively charged side chain and a slight decrease for those in which the substituent had a negatively charged side chain. The in-exchange of deuterium for hydrogen occurred at a faster observed rate than the out-exchange of hydrogen for deuterium. PMID:5030563

  19. Simplified thermodynamic functions for vapor-liquid phase separation and fountain effect pumps

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Hepler, W. A.; Frederking, T. H. K.

    1984-01-01

    He-4 fluid handling devices near 2 K require novel components for non-Newtonian fluid transport in He II. Related sizing of devices has to be based on appropriate thermophysical property functions. The present paper presents simplified equilibrium state functions for porous media components which serve as vapor-liquid phase separators and fountain effect pumps.

  20. Influence of phase transition on the instability of a liquid-vapor interface in a gravitational field

    NASA Astrophysics Data System (ADS)

    Konovalov, V. V.; Lyubimov, D. V.; Lyubimova, T. P.

    2017-06-01

    This study is concerned with the linear stability of the horizontal interface between thick layers of a viscous heat-conducting liquid and its vapor in a gravitational field subject to phase transition. We consider the case when the hydrostatic base state is consistent with a balanced heat flux at the liquid-vapor interface. The corrections to the growth rate of the most dangerous perturbations and cutoff wave number, characterizing the influence of phase transition on the Rayleigh-Taylor instability, are found to be different from the data in the literature. Most of the previous results were obtained in the framework of a quasiequilibrium approximation, which had been shown to conform to the limit of thin media layers under equality of the interface temperature to a saturation temperature. The main difference from the results obtained with the quasiequilibrium approach is new values of the proportionality coefficients that correlate our corrections with the intensity of weak heating. Moreover, at large values of the heat flux rate, when deviations from the approximate linear law are important, the effect of phase transition is limited and does not exceed the size of the vapor viscosity effect.

  1. Adsorptive Water Removal from Dichloromethane and Vapor-Phase Regeneration of a Molecular Sieve 3A Packed Bed

    PubMed Central

    2017-01-01

    The drying of dichloromethane with a molecular sieve 3A packed bed process is modeled and experimentally verified. In the process, the dichloromethane is dried in the liquid phase and the adsorbent is regenerated by water desorption with dried dichloromethane product in the vapor phase. Adsorption equilibrium experiments show that dichloromethane does not compete with water adsorption, because of size exclusion; the pure water vapor isotherm from literature provides an accurate representation of the experiments. The breakthrough curves are adequately described by a mathematical model that includes external mass transfer, pore diffusion, and surface diffusion. During the desorption step, the main heat transfer mechanism is the condensation of the superheated dichloromethane vapor. The regeneration time is shortened significantly by external bed heating. Cyclic steady-state experiments demonstrate the feasibility of this novel, zero-emission drying process. PMID:28539701

  2. Preparation of freestanding GaN wafer by hydride vapor phase epitaxy on porous silicon

    NASA Astrophysics Data System (ADS)

    Wu, Xian; Li, Peng; Liang, Renrong; Xiao, Lei; Xu, Jun; Wang, Jing

    2018-05-01

    A freestanding GaN wafer was prepared on porous Si (111) substrate using hydride vapor phase epitaxy (HVPE). To avoid undesirable effects of the porous surface on the crystallinity of the GaN, a GaN seed layer was first grown on the Si (111) bare wafer. A pattern with many apertures was fabricated in the GaN seed layer using lithography and etching processes. A porous layer was formed in the Si substrate immediately adjacent to the GaN seed layer by an anodic etching process. A 500-μm-thick GaN film was then grown on the patterned GaN seed layer using HVPE. The GaN film was separated from the Si substrate through the formation of cracks in the porous layer caused by thermal mismatch stress during the cooling stage of the HVPE. Finally, the GaN film was polished to obtain a freestanding GaN wafer.

  3. Preventing kinetic roughening in physical vapor-phase-deposited films.

    PubMed

    Vasco, E; Polop, C; Sacedón, J L

    2008-01-11

    The growth kinetics of the mostly used physical vapor-phase deposition techniques -molecular beam epitaxy, sputtering, flash evaporation, and pulsed laser deposition-is investigated by rate equations with the aim of testing their suitability for the preparation of ultraflat ultrathin films. The techniques are studied in regard to the roughness and morphology during early stages of growth. We demonstrate that pulsed laser deposition is the best technique for preparing the flattest films due to two key features [use of (i) a supersaturated pulsed flux of (ii) hyperthermal species] that promote a kinetically limited Ostwald ripening mechanism.

  4. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Metal-organic vapor phase epitaxy of (GaAl)As for 0.85-μm laser diodes

    NASA Astrophysics Data System (ADS)

    Jacobs, K.; Bugge, F.; Butzke, G.; Lehmann, L.; Schimko, R.

    1988-11-01

    Metal-organic vapor phase epitaxy was used to grow stripe heterolaser diodes that were hitherto fabricated by liquid phase epitaxy. The main relationships between the growth parameters (partial input pressures, temperatures) and the properties of materials (thicknesses, solid-solution compositions, carrier densities) were investigated. The results were in full agreement with the mechanism of growth controlled by a vapor-phase diffusion. The results achieved routinely in the growth of GaAs are reported. It is shown that double heterostructure laser diodes fabricated by metal-organic vapor phase epitaxy compete favorably with those grown so far by liquid phase epitaxy, including their degradation and reliability.

  5. Porous single-phase NiTi processed under Ca reducing vapor for use as a bone graft substitute.

    PubMed

    Bertheville, Bernard

    2006-03-01

    Porous nickel-titanium alloys (NiTi, nitinol) have recently attracted attention in clinical surgery because they are a very interesting alternative to the more brittle and less machinable conventional porous Ca-based ceramics. The main remaining limitations come from the chemical homogeneity of the as-processed porous nickel-titanium alloys, which always contain undesired secondary Ti- and Ni-rich phases. These are known to weaken the NiTi products, to favor their cavitation corrosion and to decrease their biocompatibility. Elemental nickel must also be avoided because it could give rise to several adverse tissue reactions. Therefore, the synthesis of porous single-phase NiTi alloys by using a basic single-step sintering procedure is an important step towards the processing of safe implant materials. The sintering process used in this work is based on a vapor phase calciothermic reduction operating during the NiTi compound formation. The as-processed porous nickel-titanium microstructure is single-phase and shows a uniformly open pore distribution with porosity of about 53% and pore diameters in the range 20-100 microm. Furthermore, due to the process, fine CaO layers grow on the NiTi outer and inner surfaces, acting as possible promoting agents for the ingrowth of bone cells at the implantation site.

  6. Mid-infrared laser-absorption diagnostic for vapor-phase measurements in an evaporating n-decane aerosol

    NASA Astrophysics Data System (ADS)

    Porter, J. M.; Jeffries, J. B.; Hanson, R. K.

    2009-09-01

    A novel three-wavelength mid-infrared laser-based absorption/extinction diagnostic has been developed for simultaneous measurement of temperature and vapor-phase mole fraction in an evaporating hydrocarbon fuel aerosol (vapor and liquid droplets). The measurement technique was demonstrated for an n-decane aerosol with D 50˜3 μ m in steady and shock-heated flows with a measurement bandwidth of 125 kHz. Laser wavelengths were selected from FTIR measurements of the C-H stretching band of vapor and liquid n-decane near 3.4 μm (3000 cm -1), and from modeled light scattering from droplets. Measurements were made for vapor mole fractions below 2.3 percent with errors less than 10 percent, and simultaneous temperature measurements over the range 300 K< T<900 K were made with errors less than 3 percent. The measurement technique is designed to provide accurate values of temperature and vapor mole fraction in evaporating polydispersed aerosols with small mean diameters ( D 50<10 μ m), where near-infrared laser-based scattering corrections are prone to error.

  7. Substrate-induced phase of a [1]benzothieno[3,2-b]benzothiophene derivative and phase evolution by aging and solvent vapor annealing.

    PubMed

    Jones, Andrew O F; Geerts, Yves H; Karpinska, Jolanta; Kennedy, Alan R; Resel, Roland; Röthel, Christian; Ruzié, Christian; Werzer, Oliver; Sferrazza, Michele

    2015-01-28

    Substrate-induced phases (SIPs) are polymorphic phases that are found in thin films of a material and are different from the single crystal or "bulk" structure of a material. In this work, we investigate the presence of a SIP in the family of [1]benzothieno[3,2-b]benzothiophene (BTBT) organic semiconductors and the effect of aging and solvent vapor annealing on the film structure. Through extensive X-ray structural investigations of spin coated films, we find a SIP with a significantly different structure to that found in single crystals of the same material forms; the SIP has a herringbone motif while single crystals display layered π-π stacking. Over time, the structure of the film is found to slowly convert to the single crystal structure. Solvent vapor annealing initiates the same structural evolution process but at a greatly increased rate, and near complete conversion can be achieved in a short period of time. As properties such as charge transport capability are determined by the molecular structure, this work highlights the importance of understanding and controlling the structure of organic semiconductor films and presents a simple method to control the film structure by solvent vapor annealing.

  8. EFFECT OF VAPOR-PHASE BIOREACTOR OPERATION ON BIOMASS ACCUMULATION, DISTRIBUTION, AND ACTIVITY. (R826168)

    EPA Science Inventory

    Excess biomass accumulation and activity loss in vapor-phase bioreactors (VPBs) can lead to unreliable long-term operation. In this study, temporal and spatial variations in biomass accumulation, distribution and activity in VPBs treating toluene-contaminated air were monitored o...

  9. Incorporating Phase-Dependent Polarizability in Non-Additive Electrostatic Models for Molecular Dynamics Simulations of the Aqueous Liquid-Vapor Interface.

    PubMed

    Bauer, Brad A; Warren, G Lee; Patel, Sandeep

    2009-02-10

    anticipated in regions with both liquid and vapor character, interfacial simulations of TIP4P-QDP were performed and compared to TIP4P-FQ, a static polarizability analog. Despite similar features in density profiles such as the position of the GDS and interfacial width, enhanced dipole moments are observed for the TIP4P-QDP interface and onset of the vapor phase. Water orientational profiles show an increased preference (over TIP4P-FQ) in the orientation of the permanent dipole vector of the molecule within the interface; an enhanced z-induced dipole moment directly results from this preference. Hydrogen bond formation is lower, on average, in the bulk for TIP4P-QDP than TIP4P-FQ. However, the average number of hydrogen bonds formed by TIP4P-QDP in the interface exceeds that of TIP4P-FQ, and observed hydrogen bond networks extend further into the gaseous region. The TIP4P-QDP interfacial potential, calculated to be -11.98(±0.08) kcal/mol, is less favorable than that for TIP4P-FQ by approximately 2% as a result of a diminished quadrupole contribution. Surface tension is calculated within a 1.3% reduction from the experimental value. Results reported demonstrate TIP4P-QDP as a model comparable to the popular TIP4P-FQ while accounting for a physical effect previously neglected by other water models. Further refinements to this model, as well as future applications are discussed.

  10. Incorporating Phase-Dependent Polarizability in Non-Additive Electrostatic Models for Molecular Dynamics Simulations of the Aqueous Liquid-Vapor Interface

    PubMed Central

    Bauer, Brad A.; Warren, G. Lee; Patel, Sandeep

    2012-01-01

    anticipated in regions with both liquid and vapor character, interfacial simulations of TIP4P-QDP were performed and compared to TIP4P-FQ, a static polarizability analog. Despite similar features in density profiles such as the position of the GDS and interfacial width, enhanced dipole moments are observed for the TIP4P-QDP interface and onset of the vapor phase. Water orientational profiles show an increased preference (over TIP4P-FQ) in the orientation of the permanent dipole vector of the molecule within the interface; an enhanced z-induced dipole moment directly results from this preference. Hydrogen bond formation is lower, on average, in the bulk for TIP4P-QDP than TIP4P-FQ. However, the average number of hydrogen bonds formed by TIP4P-QDP in the interface exceeds that of TIP4P-FQ, and observed hydrogen bond networks extend further into the gaseous region. The TIP4P-QDP interfacial potential, calculated to be -11.98(±0.08) kcal/mol, is less favorable than that for TIP4P-FQ by approximately 2% as a result of a diminished quadrupole contribution. Surface tension is calculated within a 1.3% reduction from the experimental value. Results reported demonstrate TIP4P-QDP as a model comparable to the popular TIP4P-FQ while accounting for a physical effect previously neglected by other water models. Further refinements to this model, as well as future applications are discussed. PMID:23133341

  11. Non-Ballistic Vapor-Driven Ejecta

    NASA Technical Reports Server (NTRS)

    Wrobel, K. E.; Schultz, P. H.; Heineck, J. T.

    2004-01-01

    Impact-induced vaporization is a key component of early-time cratering mechanics. Previous experimental [1,2] and computational [e.g., 3] studies focused on the generation and expansion of vapor clouds in an attempt to better understand vaporization in hypervelocity impacts. Presented here is a new experimental approach to the study of impact-induced vaporization. The three-dimensional particle image velocimetry (3D PIV) system captures interactions between expanding vapor phases and fine particulates. Particles ejected early in the cratering process may be entrained in expanding gas phases generated at impact, altering their otherwise ballistic path of flight. 3D PIV allows identifying the presence of such non-ballistic ejecta from very early times in the cratering process.

  12. OM-VPE growth of Mg-doped GaAs. [OrganoMetallic-Vapor Phase Epitaxy

    NASA Technical Reports Server (NTRS)

    Lewis, C. R.; Dietze, W. T.; Ludowise, M. J.

    1982-01-01

    The epitaxial growth of Mg-doped GaAs by the organometallic vapor phase epitaxial process (OM-VPE) has been achieved for the first time. The doping is controllable over a wide range of input fluxes of bis (cyclopentadienyl) magnesium, (C5H5)2Mg, the organometallic precursor to Mg.

  13. Evaluation of Apical Vapor Lock Formation and comparative Evaluation of its Elimination using Three different Techniques: An in vitro Study.

    PubMed

    Agarwal, Anand; Deore, Rahul B; Rudagi, Kavitarani; Nanda, Zinnie; Baig, Mirza Osman; Fareez, Md Adil

    2017-09-01

    The aim of this study was (i) to evaluate the formation of air bubbles in the apical region of root canal (apical vapor lock) during syringe irrigation, using cone beam computed tomography (CBCT) and (ii) comparative evaluation of the elimination of an established vapor lock by EndoActivator, ultrasonics, and manual dynamic agitation (MDA), using CBCT. A total of 60 extracted human single-rooted teeth were equally divided into three groups of 20 teeth each. The samples were decoronated 17 mm from the apex, cleaned, and shaped to size F4 Protaper using 3% sodium hypochlorite. Samples were irrigated with 3% sodium hypochlorite + cesium chloride radiopaque dye, and preoperative CBCT images were obtained. After formation of apical vapor lock in the scanned teeth, EndoActivator (group I), passive ultrasonic irrigation (group II), and MDA with K-file (group III) were performed and the teeth were again placed in CBCT scanner and results analyzed using the chi-square test. The apical vapor lock was formed in all the samples. Out of the 20 teeth in each group, the apical vapor lock was eliminated in 18 samples of EndoActivator group (90%), 16 samples of ultrasonic group (80%), while it was eliminated in 10 samples by MDA (50%). It is concluded that (1) apical vapor lock is consistently formed during endodontic irrigation in closed canal systems and (2) sonic activation performs better than the ultrasonics and MDA in eliminating the apical vapor lock, with statistically significant difference between all the three groups (p < 0.05). The results suggest that the apical vapor lock (dead water zone) is consistently formed during routine endodontic irrigation which impedes irrigant penetration till the working length, thereby leading to inefficient debridement. Hence, to eliminate this vapor lock, techniques, such as sonics or ultrasonics should be used along with the irrigant after shaping and cleaning of the root canal.

  14. Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: Explicit modeling of SOA formation from alkane and alkene oxidation

    DOE PAGES

    La, Y. S.; Camredon, M.; Ziemann, P. J.; ...

    2016-02-08

    Recent studies have shown that low volatility gas-phase species can be lost onto the smog chamber wall surfaces. Although this loss of organic vapors to walls could be substantial during experiments, its effect on secondary organic aerosol (SOA) formation has not been well characterized and quantified yet. Here the potential impact of chamber walls on the loss of gaseous organic species and SOA formation has been explored using the Generator for Explicit Chemistry and Kinetics of the Organics in the Atmosphere (GECKO-A) modeling tool, which explicitly represents SOA formation and gas–wall partitioning. The model was compared with 41 smog chambermore » experiments of SOA formation under OH oxidation of alkane and alkene series (linear, cyclic and C 12-branched alkanes and terminal, internal and 2-methyl alkenes with 7 to 17 carbon atoms) under high NO x conditions. Simulated trends match observed trends within and between homologous series. The loss of organic vapors to the chamber walls is found to affect SOA yields as well as the composition of the gas and the particle phases. Simulated distributions of the species in various phases suggest that nitrates, hydroxynitrates and carbonylesters could substantially be lost onto walls. The extent of this process depends on the rate of gas–wall mass transfer, the vapor pressure of the species and the duration of the experiments. Furthermore, this work suggests that SOA yields inferred from chamber experiments could be underestimated up a factor of 2 due to the loss of organic vapors to chamber walls.« less

  15. Delivery of Epinephrine in the Vapor Phase for the Treatment of Croup.

    PubMed

    Leung, Kitty; Newth, Christopher J L; Hotz, Justin C; O'Brien, Kevin C; Fink, James B; Coates, Allan L

    2016-04-01

    The Vapotherm system delivers high humidity to the airway of patients by using semipermeable tubules where heated liquid water is in contact with air. The humidified air is conducted to the patient via a heated tube. Preliminary clinical observations in infants with croup suggested that epinephrine added to the water supplying the humidity was delivered successfully in the vapor phase. The purpose of this study was to evaluate the efficiency of the delivery of epinephrine in the vapor phase and to develop the feasibility criteria for a clinical pilot study. Thirty milligrams of epinephrine in a 1-L bag of sterile water was used as the humidification source for a Vapotherm 2000i. The output of the heated circuit was condensed and collected into a small Erlenmeyer flask via a metal coil while the whole collection system was submerged in an ice slurry to maintain the outflow temperature from the flask between 0°C and 2°C. The in vitro system was tested at 40°C with flows of 5, 10, and 15 L/min and L-epinephrine concentrations of 15, 30, and 60 mg/L. Each test was duplicated at each of the six conditions. Academic children's hospital research laboratory. None. None. The system recovered more than 90% of the water vapor from the fully saturated air at 40°C. The epinephrine concentration recovery quantified by ultraviolet-visible spectrophotometry was 23.9% (27.5-20.4%) (mean and range) of the initial concentration. At flows of 5, 10, and 15 L/min, the delivery of epinephrine would be 1.8, 3.6, and 4.2 μg/min, respectively, which is in the therapeutic range used for parenteral infusion in young children. The Vapotherm system can be used to deliver epinephrine in pharmacological doses to the respiratory system as a vapor and thus as an alternative to droplets by conventional nebulization.

  16. Feasibility Study of Vapor-Mist Phase Reaction Lubrication Using a Thioether Liquid

    NASA Technical Reports Server (NTRS)

    Morales, Wilfredo; Handschuh, Robert F.; Krantz, Timothy L.

    2007-01-01

    A primary technology barrier preventing the operation of gas turbine engines and aircraft gearboxes at higher temperatures is the inability of currently used liquid lubricants to survive at the desired operating conditions over an extended time period. Current state-of-the-art organic liquid lubricants rapidly degrade at temperatures above 300 C; hence, another form of lubrication is necessary. Vapor or mist phase reaction lubrication is a unique, alternative technology for high temperature lubrication. The majority of past studies have employed a liquid phosphate ester that was vaporized or misted, and delivered to bearings or gears where the phosphate ester reacted with the metal surfaces generating a solid lubricious film. This method resulted in acceptable operating temperatures suggesting some good lubrication properties, but the continuous reaction between the phosphate ester and the iron surfaces led to wear rates unacceptable for gas turbine engine or aircraft gearbox applications. In this study, an alternative non-phosphate liquid was used to mist phase lubricate a spur gearbox rig operating at 10,000 rpm under highly loaded conditions. After 21 million shaft revolutions of operation the gears exhibited only minor wear.

  17. Gas-Phase Infrared; JCAMP Format

    National Institute of Standards and Technology Data Gateway

    SRD 35 NIST/EPA Gas-Phase Infrared; JCAMP Format (PC database for purchase)   This data collection contains 5,228 infrared spectra in the JCAMP-DX (Joint Committee for Atomic and Molecular Physical Data "Data Exchange") format.

  18. Melting and Vaporization of the 1223 Phase in the System (Tl-Pb-Ba-Sr-Ca-Cu-O)

    PubMed Central

    Cook, L. P.; Wong-Ng, W.; Paranthaman, P.

    1996-01-01

    The melting and vaporization of the 1223 [(Tl,Pb):(Ba,Sr):Ca:Cu] oxide phase in the system (Tl-Pb-Ba-Sr-Ca-Cu-O) have been investigated using a combination of dynamic methods (differential thermal analysis, thermogravimetry, effusion) and post-quenching characterization techniques (powder x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectrometry). Vaporization rates, thermal events, and melt compositions were followed as a function of thallia loss from a 1223 stoichiometry. Melting and vaporization equilibria of the 1223 phase are complex, with as many as seven phases participating simultaneously. At a total pressure of 0.1 MPa the 1223 phase was found to melt completely at (980 ± 5) °C in oxygen, at a thallia partial pressure (pTl2O) of (4.6 ± 0.5) kPa, where the quoted uncertainties are standard uncertainties, i.e., 1 estimated standard deviation. The melting reaction involves five other solids and a liquid, nominally as follows: 1223→1212+(Ca,Sr)2CuO3+(Sr,Ca)CuO2+BaPbO3+(Ca,Sr)O+Liquid Stoichiometries of the participating phases have been determined from microchemical analysis, and substantial elemental substitution on the 1212 and 1223 crystallographic sites is indicated. The 1223 phase occurs in equilibrium with liquids from its melting point down to at least 935 °C. The composition of the lowest melting liquid detected for the bulk compositions of this study has been measured using microchemical analysis. Applications to the processing of superconducting wires and tapes are discussed. PMID:27805086

  19. Conductive Textiles via Vapor-Phase Polymerization of 3,4-Ethylenedioxythiophene.

    PubMed

    Ala, Okan; Hu, Bin; Li, Dapeng; Yang, Chen-Lu; Calvert, Paul; Fan, Qinguo

    2017-08-30

    We fabricated electrically conductive textiles via vapor-phase polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) layers on cotton, cotton/poly(ethylene terephthalate) (PET), cotton/Lycra, and PET fabrics. We then measured the electrical resistivity values of such PEDOT-coated textiles and analyzed the effect of water treatment on the electrical resistivity. Additionally, we tested the change in the electrical resistance of the conductive textiles under cyclic stretching and relaxation. Last, we characterized the uniformity and morphology of the conductive layer formed on the fabrics using scanning electron microscopy and electron-dispersive X-ray spectroscopy.

  20. CRYOCHEM, Thermodynamic Model for Cryogenic Chemical Systems: Solid-Vapor and Solid-Liquid-Vapor Phase Equilibria Toward Applications on Titan and Pluto

    NASA Astrophysics Data System (ADS)

    Tan, S. P.; Kargel, J. S.; Adidharma, H.; Marion, G. M.

    2014-12-01

    Until in-situ measurements can be made regularly on extraterrestrial bodies, thermodynamic models are the only tools to investigate the properties and behavior of chemical systems on those bodies. The resulting findings are often critical in describing physicochemical processes in the atmosphere, surface, and subsurface in planetary geochemistry and climate studies. The extremely cold conditions on Triton, Pluto and other Kuiper Belt Objects, and Titan introduce huge non-ideality that prevents conventional models from performing adequately. At such conditions, atmospheres as a whole—not components individually—are subject to phase equilibria with their equilibrium solid phases or liquid phases or both. A molecular-based thermodynamic model for cryogenic chemical systems, referred to as CRYOCHEM, the development of which is still in progress, was shown to reproduce the vertical composition profile of Titan's atmospheric methane measured by the Huygens probe (Tan et al., Icarus 2013, 222, 53). Recently, the model was also used to describe Titan's global circulation where the calculated composition of liquid in Ligeia Mare is consistent with the bathymetry and microwave absorption analysis of T91 Cassini fly-by data (Tan et al., 2014, submitted). Its capability to deal with equilibria involving solid phases has also been demonstrated (Tan et al., Fluid Phase Equilib. 2013, 360, 320). With all those previous works done, our attention is now shifting to the lower temperatures in Titan's tropopause and on Pluto's surface, where much technical development remains for CRYOCHEM to assure adequate performance at low temperatures. In these conditions, solid-vapor equilibrium (SVE) is the dominant phase behavior that determines the composition of the atmosphere and the existing ices. Another potential application is for the subsurface phase equilibrium, which also involves liquid, thus three-phase equilibrium: solid-liquid-vapor (SLV). This presentation will discuss the

  1. APTS and rGO co-functionalized pyrenated fluorescent nanonets for representative vapor phase nitroaromatic explosive detection.

    PubMed

    Guo, Linjuan; Zu, Baiyi; Yang, Zheng; Cao, Hongyu; Zheng, Xuefang; Dou, Xincun

    2014-01-01

    For the first time, flexible PVP/pyrene/APTS/rGO fluorescent nanonets were designed and synthesized via a one-step electrospinning method to detect representative subsaturated nitroaromatic explosive vapor. The functional fluorescent nanonets, which were highly stable in air, showed an 81% quenching efficiency towards TNT vapor (∼10 ppb) with an exposure time of 540 s at room temperature. The nice performance of the nanonets was ascribed to the synergistic effects induced by the specific adsorption properties of APTS, the fast charge transfer properties and the effective π-π interaction with pyrene and TNT of rGO. Compared to the analogues of TNT, the PVP/pyrene/APTS/rGO nanonets showed notable selectivity towards TNT and DNT vapors. The explored functionalization method opens up brand new insight into sensitive and selective detection of vapor phase nitroaromatic explosives.

  2. Monitoring of vapor phase polycyclic aromatic hydrocarbons

    DOEpatents

    Vo-Dinh, Tuan; Hajaligol, Mohammad R.

    2004-06-01

    An apparatus for monitoring vapor phase polycyclic aromatic hydrocarbons in a high-temperature environment has an excitation source producing electromagnetic radiation, an optical path having an optical probe optically communicating the electromagnetic radiation received at a proximal end to a distal end, a spectrometer or polychromator, a detector, and a positioner coupled to the first optical path. The positioner can slidably move the distal end of the optical probe to maintain the distal end position with respect to an area of a material undergoing combustion. The emitted wavelength can be directed to a detector in a single optical probe 180.degree. backscattered configuration, in a dual optical probe 180.degree. backscattered configuration or in a dual optical probe 90.degree. side scattered configuration. The apparatus can be used to monitor an emitted wavelength of energy from a polycyclic aromatic hydrocarbon as it fluoresces in a high temperature environment.

  3. Impact Vaporization of Planetesimal Cores

    NASA Astrophysics Data System (ADS)

    Kraus, R. G.; Root, S.; Lemke, R. W.; Stewart, S. T.; Jacobsen, S. B.; Mattsson, T. R.

    2013-12-01

    The degree of mixing and chemical equilibration between the iron cores of planetesimals and the mantle of the growing Earth has important consequences for understanding the end stages of Earth's formation and planet formation in general. At the Sandia Z machine, we developed a new shock-and-release technique to determine the density on the liquid-vapor dome of iron, the entropy on the iron shock Hugoniot, and the criteria for shock-induced vaporization of iron. We find that the critical shock pressure to vaporize iron is 507(+65,-85) GPa and show that decompression from a 15 km/s impact will initiate vaporization of iron cores, which is a velocity that is readily achieved at the end stages of planet formation. Vaporization of the iron cores increases dispersal of planetesimal cores, enables more complete chemical equilibration of the planetesimal cores with Earth's mantle, and reduces the highly siderophile element abundance on the Moon relative to Earth due to the expanding iron vapor exceeding the Moon's escape velocity. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Securities Administration under Contract No. DE-AC04-94AL85000.

  4. A GAS-PHASE FORMATION ROUTE TO INTERSTELLAR TRANS-METHYL FORMATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Callie A.; Wehres, Nadine; Yang Zhibo

    2012-07-20

    The abundance of methyl formate in the interstellar medium has previously been underpredicted by chemical models. Additionally, grain surface chemistry cannot account for the relative abundance of the cis- and trans-conformers of methyl formate, and the trans-conformer is not even formed at detectable abundance on these surfaces. This highlights the importance of studying formation pathways to methyl formate in the gas phase. The rate constant and branching fractions are reported for the gas-phase reaction between protonated methanol and formic acid to form protonated trans-methyl formate and water as well as adduct ion: Rate constants were experimentally determined using a flowingmore » afterglow-selected ion flow tube apparatus at 300 K and a pressure of 530 mTorr helium. The results indicate a moderate overall rate constant of (3.19 {+-} 0.39) Multiplication-Sign 10{sup -10} cm{sup 3} s{sup -1} ({+-} 1{sigma}) and an average branching fraction of 0.05 {+-} 0.04 for protonated trans-methyl formate and 0.95 {+-} 0.04 for the adduct ion. These experimental results are reinforced by ab initio calculations at the MP2(full)/aug-cc-pVTZ level of theory to examine the reaction coordinate and complement previous density functional theory calculations. This study underscores the need for continued observational studies of trans-methyl formate and for the exploration of other gas-phase formation routes to complex organic molecules.« less

  5. Y-junction carbon nanocoils: synthesis by chemical vapor deposition and formation mechanism

    PubMed Central

    Ding, Er-Xiong; Wang, Jing; Geng, Hong-Zhang; Wang, Wen-Yi; Wang, Yan; Zhang, Ze-Chen; Luo, Zhi-Jia; Yang, Hai-Jie; Zou, Cheng-Xiong; Kang, Jianli; Pan, Lujun

    2015-01-01

    Y-junction carbon nanocoils (Y-CNCs) were synthesized by thermal chemical vapor deposition using Ni catalyst prepared by spray-coating method. According to the emerging morphologies of Y-CNCs, several growth models were advanced to elucidate their formation mechanisms. Regarding the Y-CNCs without metal catalyst in the Y-junctions, fusing of contiguous CNCs and a tip-growth mechanism are considered to be responsible for their formation. However, as for the Y-CNCs with catalyst presence in the Y-junctions, the formation can be ascribed to nanoscale soldering/welding and bottom-growth mechanism. It is found that increasing spray-coating time for catalyst preparation generates agglomerated larger nanoparticles strongly adhering to the substrate, resulting in bottom-growth of CNCs and appearance of the metal catalyst in the Y-junctions. In the contrary case, CNCs catalyzed by isolated smaller nanoparticles develop Y-junctions with an absence of metal catalyst by virtue of weaker adhesion of catalyst with the substrate and tip-growth of CNCs. PMID:26063127

  6. Processing Research on Chemically Vapor Deposited Silicon Nitride.

    DTIC Science & Technology

    1979-12-01

    34 sea urchins ") predominated, suggesting that formation was primarily from the vapor phase with little of the nodular growths seen at only slightly...Specimen HW-4-200-10 .................................. 3-38 3-17 Fracture Stress: Grain Size Correlation 3-39 3-18 SEM Fractographs of Flexure...4-202-10 ........ 3-42 3-21 SEM Fractographs of Flexure Specimen HW-4-200-4 ......... 3-43 3-22 SEM Fractographs of Compression Side of Flexure

  7. Assessment of the Vapor Phase Catalytic Ammonia Removal (VPCAR) Technology at the MSFC ECLS Test Facility

    NASA Technical Reports Server (NTRS)

    Tomes, Kristin; Long, David; Carter, Layne; Flynn, Michael

    2007-01-01

    The Vapor Phase Catalytic Ammonia. Removal (VPCAR) technology has been previously discussed as a viable option for. the Exploration Water Recovery System. This technology integrates a phase change process with catalytic oxidation in the vapor phase to produce potable water from exploration mission wastewaters. A developmental prototype VPCAR was designed, built and tested under funding provided by a National Research. Announcement (NRA) project. The core technology, a Wiped Film Rotating Device (WFRD) was provided by Water Reuse Technologies under the NRA, whereas Hamilton Sundstrand Space Systems International performed the hardware integration and acceptance test. of the system. Personnel at the-Ames Research Center performed initial systems test of the VPCAR using ersatz solutions. To assess the viability of this hardware for Exploration. Life Support (ELS) applications, the hardware has been modified and tested at the MSFC ECLS Test facility. This paper summarizes the hardware modifications and test results and provides an assessment of this technology for the ELS application.

  8. Statistical analysis of dimer formation in supersaturated metal vapor based on molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Korenchenko, Anna E.; Vorontsov, Alexander G.; Gelchinski, Boris R.; Sannikov, Grigorii P.

    2018-04-01

    We discuss the problem of dimer formation during the homogeneous nucleation of atomic metal vapor in an inert gas environment. We simulated nucleation with molecular dynamics and carried out the statistical analysis of double- and triple-atomic collisions as the two ways of long-lived diatomic complex formation. Close pair of atoms with lifetime greater than the mean time interval between atom-atom collisions is called a long-lived diatomic complex. We found that double- and triple-atomic collisions gave approximately the same probabilities of long-lived diatomic complex formation, but internal energy of the resulted state was essentially lower in the second case. Some diatomic complexes formed in three-particle collisions are stable enough to be a critical nucleus.

  9. Use of column V alkyls in organometallic vapor phase epitaxy (OMVPE)

    NASA Technical Reports Server (NTRS)

    Ludowise, M. J.; Cooper, C. B., III

    1982-01-01

    The use of the column V-trialkyls trimethylarsenic (TMAs) and trimethylantimony (TMSb) for the organometallic vapor phase epitaxy (OM-VPE) of III-V compound semiconductors is reviewed. A general discussion of the interaction chemistry of common Group III and Group V reactants is presented. The practical application of TMSb and TMAs for OM-VPE is demonstrated using the growth of GaSb, GaAs(1-y)Sb(y), Al(x)Ga(1-x)Sb, and Ga(1-x)In(x)As as examples.

  10. Direct calculation of liquid-vapor phase equilibria from transition matrix Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Errington, Jeffrey R.

    2003-06-01

    An approach for directly determining the liquid-vapor phase equilibrium of a model system at any temperature along the coexistence line is described. The method relies on transition matrix Monte Carlo ideas developed by Fitzgerald, Picard, and Silver [Europhys. Lett. 46, 282 (1999)]. During a Monte Carlo simulation attempted transitions between states along the Markov chain are monitored as opposed to tracking the number of times the chain visits a given state as is done in conventional simulations. Data collection is highly efficient and very precise results are obtained. The method is implemented in both the grand canonical and isothermal-isobaric ensemble. The main result from a simulation conducted at a given temperature is a density probability distribution for a range of densities that includes both liquid and vapor states. Vapor pressures and coexisting densities are calculated in a straightforward manner from the probability distribution. The approach is demonstrated with the Lennard-Jones fluid. Coexistence properties are directly calculated at temperatures spanning from the triple point to the critical point.

  11. A Kinetic Model for GaAs Growth by Hydride Vapor Phase Epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulte, Kevin L.; Simon, John; Jain, Nikhil

    2016-11-21

    Precise control of the growth of III-V materials by hydride vapor phase epitaxy (HVPE) is complicated by the fact that the growth rate depends on the concentrations of nearly all inputs to the reactor and also the reaction temperature. This behavior is in contrast to metalorganic vapor phase epitaxy (MOVPE), which in common practice operates in a mass transport limited regime where growth rate and alloy composition are controlled almost exclusively by flow of the Group III precursor. In HVPE, the growth rate and alloy compositions are very sensitive to temperature and reactant concentrations, which are strong functions of themore » reactor geometry. HVPE growth, particularly the growth of large area materials and devices, will benefit from the development of a growth model that can eventually be coupled with a computational fluid dynamics (CFD) model of a specific reactor geometry. In this work, we develop a growth rate law using a Langmuir-Hinshelwood (L-H) analysis, fitting unknown parameters to growth rate data from the literature that captures the relevant kinetic and thermodynamic phenomena of the HVPE process. We compare the L-H rate law to growth rate data from our custom HVPE reactor, and develop quantitative insight into reactor performance, demonstrating the utility of the growth model.« less

  12. An Experimental Visualization and Image Analysis of Electrohydrodynamically Induced Vapor-Phase Silicon Oil Flow under DC Corona Discharge

    NASA Astrophysics Data System (ADS)

    Ohyama, Ryu-Ichiro; Fukumoto, Masaru

    A DC corona discharge induced electrohydrodynamic (EHD) flow phenomenon for a multi-phase fluid containing a vapor-phase dielectric liquid in the fresh air was investigated. The experimental electrode system was a simple arrangement of needle-plate electrodes for the corona discharges and high-resistivity silicon oil was used as the vapor-phase liquid enclosure. The qualitative observation of EHD flow patterns was conducted by an optical processing on computer tomography and the time-series of discharge current pulse generations at corona discharge electrode were measured simultaneously. These experimental results were analyzed in relationship between the EHD flow motions and the current pulse generations in synchronization. The current pulses and the EHD flow motions from the corona discharge electrode presented a continuous mode similar to the ionic wind in the fresh air and an intermittent mode. In the intermittent mode, the observed EHD flow motion was synchronized with the separated discharge pulse generations. From these experimental results, it was expected that the existence of silicon oil vapor trapped charges gave an occasion to the intermittent generations of the discharge pulses and the secondary EHD flow.

  13. Communication: Quantitative Fourier-transform infrared data for competitive loading of small cages during all-vapor instantaneous formation of gas-hydrate aerosols

    NASA Astrophysics Data System (ADS)

    Uras-Aytemiz, Nevin; Abrrey Monreal, I.; Devlin, J. Paul

    2011-10-01

    A simple method has been developed for the measurement of high quality FTIR spectra of aerosols of gas-hydrate nanoparticles. The application of this method enables quantitative observation of gas hydrates that form on subsecond timescales using our all-vapor approach that includes an ether catalyst rather than high pressures to promote hydrate formation. The sampling method is versatile allowing routine studies at temperatures ranging from 120 to 210 K of either a single gas or the competitive uptake of different gas molecules in small cages of the hydrates. The present study emphasizes hydrate aerosols formed by pulsing vapor mixtures into a cold chamber held at 160 or 180 K. We emphasize aerosol spectra from 6 scans recorded an average of 8 s after "instantaneous" hydrate formation as well as of the gas hydrates as they evolve with time. Quantitative aerosol data are reported and analyzed for single small-cage guests and for mixed hydrates of CO2, CH4, C2H2, N2O, N2, and air. The approach, combined with the instant formation of gas hydrates from vapors only, offers promise with respect to optimization of methods for the formation and control of gas hydrates.

  14. The three phases of galaxy formation

    NASA Astrophysics Data System (ADS)

    Clauwens, Bart; Schaye, Joop; Franx, Marijn; Bower, Richard G.

    2018-05-01

    We investigate the origin of the Hubble sequence by analysing the evolution of the kinematic morphologies of central galaxies in the EAGLE cosmological simulation. By separating each galaxy into disc and spheroidal stellar components and tracing their evolution along the merger tree, we find that the morphology of galaxies follows a common evolutionary trend. We distinguish three phases of galaxy formation. These phases are determined primarily by mass, rather than redshift. For M* ≲ 109.5M⊙ galaxies grow in a disorganised way, resulting in a morphology that is dominated by random stellar motions. This phase is dominated by in-situ star formation, partly triggered by mergers. In the mass range 109.5M⊙ ≲ M* ≲ 1010.5M⊙ galaxies evolve towards a disc-dominated morphology, driven by in-situ star formation. The central spheroid (i.e. the bulge) at z = 0 consists mostly of stars that formed in-situ, yet the formation of the bulge is to a large degree associated with mergers. Finally, at M* ≳ 1010.5M⊙ growth through in-situ star formation slows down considerably and galaxies transform towards a more spheroidal morphology. This transformation is driven more by the buildup of spheroids than by the destruction of discs. Spheroid formation in these galaxies happens mostly by accretion at large radii of stars formed ex-situ (i.e. the halo rather than the bulge).

  15. New mechanism for autocatalytic decomposition of H2CO3 in the vapor phase.

    PubMed

    Ghoshal, Sourav; Hazra, Montu K

    2014-04-03

    In this article, we present high level ab initio calculations investigating the energetics of a new autocatalytic decomposition mechanism for carbonic acid (H2CO3) in the vapor phase. The calculation have been performed at the MP2 level of theory in conjunction with aug-cc-pVDZ, aug-cc-pVTZ, and 6-311++G(3df,3pd) basis sets as well as at the CCSD(T)/aug-cc-pVTZ level. The present study suggests that this new decomposition mechanism is effectively a near-barrierless process at room temperature and makes vapor phase of H2CO3 unstable even in the absence of water molecules. Our calculation at the MP2/aug-cc-pVTZ level predicts that the effective barrier, defined as the difference between the zero-point vibrational energy (ZPE) corrected energy of the transition state and the total energy of the isolated starting reactants in terms of bimolecular encounters, is nearly zero for the autocatalytic decomposition mechanism. The results at the CCSD(T)/aug-cc-pVTZ level of calculations suggest that the effective barrier, as defined above, is sensitive to some extent to the levels of calculations used, nevertheless, we find that the effective barrier height predicted at the CCSD(T)/aug-cc-pVTZ level is very small or in other words the autocatalytic decomposition mechanism presented in this work is a near-barrierless process as mentioned above. Thus, we suggest that this new autocatalytic decomposition mechanism has to be considered as the primary mechanism for the decomposition of carbonic acid, especially at its source, where the vapor phase concentration of H2CO3 molecules reaches its highest levels.

  16. Metalorganic vapor phase epitaxy of AlN on sapphire with low etch pit density

    NASA Astrophysics Data System (ADS)

    Koleske, D. D.; Figiel, J. J.; Alliman, D. L.; Gunning, B. P.; Kempisty, J. M.; Creighton, J. R.; Mishima, A.; Ikenaga, K.

    2017-06-01

    Using metalorganic vapor phase epitaxy, methods were developed to achieve AlN films on sapphire with low etch pit density (EPD). Key to this achievement was using the same AlN growth recipe and only varying the pre-growth conditioning of the quartz-ware. After AlN growth, the quartz-ware was removed from the growth chamber and either exposed to room air or moved into the N2 purged glove box and exposed to H2O vapor. After the quartz-ware was exposed to room air or H2O, the AlN film growth was found to be more reproducible, resulting in films with (0002) and (10-12) x-ray diffraction (XRD) rocking curve linewidths of 200 and 500 arc sec, respectively, and EPDs < 100 cm-2. The EPD was found to correlate with (0002) linewidths, suggesting that the etch pits are associated with open core screw dislocations similar to GaN films. Once reproducible AlN conditions were established using the H2O pre-treatment, it was found that even small doses of trimethylaluminum (TMAl)/NH3 on the quartz-ware surfaces generated AlN films with higher EPDs. The presence of these residual TMAl/NH3-derived coatings in metalorganic vapor phase epitaxy (MOVPE) systems and their impact on the sapphire surface during heating might explain why reproducible growth of AlN on sapphire is difficult.

  17. Vapor-phase fabrication of β-iron oxide nanopyramids for lithium-ion battery anodes.

    PubMed

    Carraro, Giorgio; Barreca, Davide; Cruz-Yusta, Manuel; Gasparotto, Alberto; Maccato, Chiara; Morales, Julián; Sada, Cinzia; Sánchez, Luis

    2012-12-07

    The other polymorph: A vapor-phase route for the fabrication of β-Fe(2)O(3) nanomaterials on Ti substrates at 400-500 °C is reported. For the first time, the β polymorph is tested as anode for lithium batteries, exhibiting promising performances in terms of Li storage and rate capability. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Simulating the SOA formation of isoprene from partitioning and aerosol phase reactions in the presence of inorganics

    NASA Astrophysics Data System (ADS)

    Beardsley, Ross L.; Jang, Myoseon

    2016-05-01

    The secondary organic aerosol (SOA) produced by the photooxidation of isoprene with and without inorganic seed is simulated using the Unified Partitioning Aerosol Phase Reaction (UNIPAR) model. Recent work has found the SOA formation of isoprene to be sensitive to both aerosol acidity ([H+], mol L-1) and aerosol liquid water content (LWC) with the presence of either leading to significant aerosol phase organic mass generation and large growth in SOA yields (YSOA). Classical partitioning models alone are insufficient to predict isoprene SOA formation due to the high volatility of photooxidation products and sensitivity of their mass yields to variations in inorganic aerosol composition. UNIPAR utilizes the chemical structures provided by a near-explicit chemical mechanism to estimate the thermodynamic properties of the gas phase products, which are lumped based on their calculated vapor pressure (eight groups) and aerosol phase reactivity (six groups). UNIPAR then determines the SOA formation of each lumping group from both partitioning and aerosol phase reactions (oligomerization, acid-catalyzed reactions and organosulfate formation) assuming a single homogeneously mixed organic-inorganic phase as a function of inorganic composition and VOC / NOx (VOC - volatile organic compound). The model is validated using isoprene photooxidation experiments performed in the dual, outdoor University of Florida Atmospheric PHotochemical Outdoor Reactor (UF APHOR) chambers. UNIPAR is able to predict the experimental SOA formation of isoprene without seed, with H2SO4 seed gradually titrated by ammonia, and with the acidic seed generated by SO2 oxidation. Oligomeric mass is predicted to account for more than 65 % of the total organic mass formed in all cases and over 85 % in the presence of strongly acidic seed. The model is run to determine the sensitivity of YSOA to [H+], LWC and VOC / NOx, and it is determined that the SOA formation of isoprene is most strongly related to [H

  19. Sintering behavior of ultrafine silicon carbide powders obtained by vapor phase reaction

    NASA Technical Reports Server (NTRS)

    Okabe, Y.; Miyachi, K.; Hojo, J.; Kato, A.

    1984-01-01

    The sintering behavior of ultrafine SiC powder with average particle size of about 0.01-0.06 microns produced by a vapor phase reaction of the Me4Si-H2 system was studied at the temperature range of 1400-2050 deg. It was found that the homogeneous dispersion of C on SiC particles is important to remove the surface oxide layer effectively. B and C and inhibitive effect on SiC grain growth.

  20. Ultrahigh-yield growth of GaN via halogen-free vapor-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Nakamura, Daisuke; Kimura, Taishi

    2018-06-01

    The material yield of Ga during GaN growth via halogen-free vapor-phase epitaxy (HF-VPE) was systematically investigated and found to be much higher than that obtained using conventional hydride VPE. This is attributed to the much lower process pressure and shorter seed-to-source distance, owing to the inherent chemical reactions and corresponding reactor design used for HF-VPE growth. Ultrahigh-yield GaN growth was demonstrated on a 4-in.-diameter sapphire seed substrate.

  1. Enthalpies of Formation of Hydrazine and Its Derivatives.

    PubMed

    Dorofeeva, Olga V; Ryzhova, Oxana N; Suchkova, Taisiya A

    2017-07-20

    Enthalpies of formation, Δ f H 298 ° , in both the gas and condensed phase, and enthalpies of sublimation or vaporization have been estimated for hydrazine, NH 2 NH 2 , and its 36 various derivatives using quantum chemical calculations. The composite G4 method has been used along with isodesmic reaction schemes to derive a set of self-consistent high-accuracy gas-phase enthalpies of formation. To estimate the enthalpies of sublimation and vaporization with reasonable accuracy (5-20 kJ/mol), the method of molecular electrostatic potential (MEP) has been used. The value of Δ f H 298 ° (NH 2 NH 2 ,g) = 97.0 ± 3.0 kJ/mol was determined from 75 isogyric reactions involving about 50 reference species; for most of these species, the accurate Δ f H 298 ° (g) values are available in Active Thermochemical Tables (ATcT). The calculated value is in excellent agreement with the reported results of the most accurate models based on coupled cluster theory (97.3 kJ/mol, the average of six calculations). Thus, the difference between the values predicted by high-level theoretical calculations and the experimental value of Δ f H 298 ° (NH 2 NH 2 ,g) = 95.55 ± 0.19 kJ/mol recommended in the ATcT and other comprehensive reference sources is sufficiently large and requires further investigation. Different hydrazine derivatives have been also considered in this work. For some of them, both the enthalpy of formation in the condensed phase and the enthalpy of sublimation or vaporization are available; for other compounds, experimental data for only one of these properties exist. Evidence of accuracy of experimental data for the first group of compounds was provided by the agreement with theoretical Δ f H 298 ° (g) value. The unknown property for the second group of compounds was predicted using the MEP model. This paper presents a systematic comparison of experimentally determined enthalpies of formation and enthalpies of sublimation or vaporization with the results of

  2. Water Vapor Effects on Silica-Forming Ceramics

    NASA Technical Reports Server (NTRS)

    Opila, E. J.; Greenbauer-Seng, L. (Technical Monitor)

    2000-01-01

    Silica-forming ceramics such as SiC and Si3N4 are proposed for applications in combustion environments. These environments contain water vapor as a product of combustion. Oxidation of silica-formers is more rapid in water vapor than in oxygen. Parabolic oxidation rates increase with the water vapor partial pressure with a power law exponent value close to one. Molecular water vapor is therefore the mobile species in silica. Rapid oxidation rates and large amounts of gases generated during the oxidation reaction in high water vapor pressures may result in bubble formation in the silica and nonprotective scale formation. It is also shown that silica reacts with water vapor to form Si(OH)4(g). Silica volatility has been modeled using a laminar flow boundary layer controlled reaction equation. Silica volatility depends on the partial pressure of water vapor, the total pressure, and the gas velocity. Simultaneous oxidation and volatilization reactions have been modeled with paralinear kinetics.

  3. Biodegradation of high concentrations of benzene vapors in a two phase partition stirred tank bioreactor.

    PubMed

    Karimi, Ali; Golbabaei, Farideh; Neghab, Masoud; Pourmand, Mohammad Reza; Nikpey, Ahmad; Mohammad, Kazem; Mehrnia, Momammad Reza

    2013-01-15

    The present study examined the biodegradation rate of benzene vapors in a two phase stirred tank bioreactor by a bacterial consortium obtained from wastewater of an oil industry refinery house. Initially, the ability of the microbial consortium for degrading benzene was evaluated before running the bioreactor. The gaseous samples from inlet and outlet of bioreactor were directly injected into a gas chromatograph to determine benzene concentrations. Carbone oxide concentration at the inlet and outlet of bioreactor were also measured with a CO2 meter to determine the mineralization rate of benzene. Influence of the second non-aqueous phase (silicon oil) has been emphasized, so at the first stage the removal efficiency (RE) and elimination capacity (EC) of benzene vapors were evaluated without any organic phase and in the second stage, 10% of silicon oil was added to bioreactor media as an organic phase. Addition of silicon oil increased the biodegradation performance up to an inlet loading of 5580 mg/m3, a condition at which, the elimination capacity and removal efficiency were 181 g/m3/h and 95% respectively. The elimination rate of benzene increased by 38% in the presence of 10% of silicone oil. The finding of this study demonstrated that two phase partition bioreactors (TPPBs) are potentially effective tools for the treatment of gas streams contaminated with high concentrations of poorly water soluble organic contaminant, such as benzene.

  4. Phase diagram of nanoscale alloy particles used for vapor-liquid-solid growth of semiconductor nanowires.

    PubMed

    Sutter, Eli; Sutter, Peter

    2008-02-01

    We use transmission electron microscopy observations to establish the parts of the phase diagram of nanometer sized Au-Ge alloy drops at the tips of Ge nanowires (NWs) that determine their temperature-dependent equilibrium composition and, hence, their exchange of semiconductor material with the NWs. We find that the phase diagram of the nanoscale drop deviates significantly from that of the bulk alloy, which explains discrepancies between actual growth results and predictions on the basis of the bulk-phase equilibria. Our findings provide the basis for tailoring vapor-liquid-solid growth to achieve complex one-dimensional materials geometries.

  5. Alternate methods of applying diffusants to silicon solar cells. [screen printing of thick-film paste materials and vapor phase transport from solid sources

    NASA Technical Reports Server (NTRS)

    Brock, T. W.; Field, M. B.

    1979-01-01

    Low-melting phosphate and borate glasses were screen printed on silicon wafers and heated to form n and p junctions. Data on surface appearance, sheet resistance and junction depth are presented. Similar data are reported for vapor phase transport from sintered aluminum metaphosphate and boron-containing glass-ceramic solid sources. Simultaneous diffusion of an N(+) layer with screen-printed glass and a p(+) layer with screen-printed Al alloy paste was attempted. No p(+) back surface field formation was achieved. Some good cells were produced but the heating in an endless-belt furnace caused a large scatter in sheet resistance and junction depth for three separate lots of wafers.

  6. Influence of liquid water and water vapor on antimisting kerosene (AMK)

    NASA Technical Reports Server (NTRS)

    Yavrouian, A. H.; Sarolouki, M.; Sarohia, V.

    1983-01-01

    Experiments have been performed to evaluate the compatibility of liquid water and water vapor with antimisting kerosenes (AMK) containing polymer additive FM-9 developed by Imperial Chemical Industries. This effort consists of the determination of water solubility in AMK, influence of water on restoration (degradation) of AMK, and effect of water on standard AMK quality control methods. The principal conclusions of this investigation are: (1) the uptake of water in AMK critically depends upon the degree of agitation and can be as high as 1300 ppm at 20 C, (2) more than 250 to 300 ppm of water in AMK causes an insoluble second phase to form. The amount of this second phase depends on fuel temperature, agitation, degree of restoration (degradation) and the water content of the fuel, (3) laboratory scale experiments indicate precipitate formation when water vapor comes in contact with cold fuel surfaces at a much lower level of water (125 to 150 ppm), (4) precipitate formation is very pronounced in these experiments where humid air is percolated through a cold fuel (-20 C), (5) laboratory tests further indicate that water droplet settling time is markedly reduced in AMK as compared to jet A, (6) limited low temperature testing down to -30 C under laboratory conditions indicates the formation of stable, transparent gels.

  7. Contrail Formation in Aircraft Wakes Using Large-Eddy Simulations

    NASA Technical Reports Server (NTRS)

    Paoli, R.; Helie, J.; Poinsot, T. J.; Ghosal, S.

    2002-01-01

    In this work we analyze the issue of the formation of condensation trails ("contrails") in the near-field of an aircraft wake. The basic configuration consists in an exhaust engine jet interacting with a wing-tip training vortex. The procedure adopted relies on a mixed Eulerian/Lagrangian two-phase flow approach; a simple micro-physics model for ice growth has been used to couple ice and vapor phases. Large eddy simulations have carried out at a realistic flight Reynolds number to evaluate the effects of turbulent mixing and wake vortex dynamics on ice-growth characteristics and vapor thermodynamic properties.

  8. Simultaneous imaging of fuel vapor mass fraction and gas-phase temperature inside gasoline sprays using two-line excitation tracer planar laser-induced fluorescence.

    PubMed

    Zigan, Lars; Trost, Johannes; Leipertz, Alfred

    2016-02-20

    This paper reports for the first time, to the best of our knowledge, on the simultaneous imaging of the gas-phase temperature and fuel vapor mass fraction distribution in a direct-injection spark-ignition (DISI) spray under engine-relevant conditions using tracer planar laser-induced fluorescence (TPLIF). For measurements in the spray, the fluorescence tracer 3-pentanone is added to the nonfluorescent surrogate fuel iso-octane, which is excited quasi-simultaneously by two different excimer lasers for two-line excitation LIF. The gas-phase temperature of the mixture of fuel vapor and surrounding gas and the fuel vapor mass fraction can be calculated from the two LIF signals. The measurements are conducted in a high-temperature, high-pressure injection chamber. The fluorescence calibration of the tracer was executed in a flow cell and extended significantly compared to the existing database. A detailed error analysis for both calibration and measurement is provided. Simultaneous single-shot gas-phase temperature and fuel vapor mass fraction fields are processed for the assessment of cyclic spray fluctuations.

  9. The gas phase emitter effect of lanthanum within ceramic metal halide lamps and its dependence on the La vapor pressure and operating frequency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruhrmann, C.; Hoebing, T.; Bergner, A.

    2015-08-07

    The gas phase emitter effect increases the lamp lifetime by lowering the work function and, with it, the temperature of the tungsten electrodes of metal halide lamps especially for lamps in ceramic vessels due to their high rare earth pressures. It is generated by a monolayer on the electrode surface of electropositive atoms of certain emitter elements, which are inserted into the lamp bulb by metal iodide salts. They are vaporized, dissociated, ionized, and deposited by an emitter ion current onto the electrode surface within the cathodic phase of lamp operation with a switched-dc or ac-current. The gas phase emittermore » effect of La and the influence of Na on the emitter effect of La are studied by spatially and phase-resolved pyrometric measurements of the electrode tip temperature, La atom, and ion densities by optical emission spectroscopy as well as optical broadband absorption spectroscopy and arc attachment images by short time photography. An addition of Na to the lamp filling increases the La vapor pressure within the lamp considerably, resulting in an improved gas phase emitter effect of La. Furthermore, the La vapor pressure is raised by a heating of the cold spot. In this way, conditions depending on the La vapor pressure and operating frequency are identified, at which the temperature of the electrodes becomes a minimum.« less

  10. Kinetics of plasma formation in sodium vapor excited by nanosecond resonant laser pulses

    NASA Astrophysics Data System (ADS)

    Mahmoud, M. A.; Gamal, Y. E. E.

    2012-07-01

    We have studied theoretically formation of molecular ion Na2 + and the atomic ion Na+ which are created in laser excited sodium vapor at the first resonance transition, 3S1/2-3P1/2. A set of rate equations, which describe the temporal variation of the electron energy distribution function (EEDF), the electron density, the population density of the excited states as well as the atomic Na+ and molecular ion Na2 +, are solved numerically. The calculations are carried out at different laser energy and different sodium atomic vapor densities. The numerical calculations of the EEDF show that a deviation from the Maxwellian distribution due to the superelastic collisions effect. In addition to the competition between associative ionization (3P-3P), associative ionization (3P-3D) and Molnar-Hornbeck ionization processes for producing Na2 +, the calculations have also shown that the atomic ions Na+ are formed through the Penning ionization and photoionization processes. These results are found to be consistent with the experimental observations.

  11. Carbon-supported bimetallic Pd–Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Junming; Karim, Ayman M.; Zhang, He

    2013-10-01

    Abstract Carbon supported metal catalysts (Cu/C, Fe/C, Pd/C, Pt/C, PdFe/C and Ru/C) have been prepared, characterized and tested for vapor-phase hydrodeoxygenation (HDO) of guaiacol (GUA) at atmospheric pressure. Phenol was the major intermediate on all catalysts. Over the noble metal catalysts saturation of the aromatic ring was the major pathway observed at low temperature (250 °C), forming predominantly cyclohexanone and cyclohexanol. Substantial ring opening reaction was observed on Pt/C and Ru/C at higher reaction temperatures (e.g., 350 °C). Base metal catalysts, especially Fe/C, were found to exhibit high HDO activity without ring-saturation or ring-opening with the main products being benzene,more » phenol along with small amounts of cresol, toluene and trimethylbenzene (TMB). A substantial enhancement in HDO activity was observed on the PdFe/C catalysts. Compared with Fe/C, the yield to oxygen-free aromatic products (i.e., benzene/toluene/TMB) on PdFe/C increased by a factor of four at 350 °C, and by approximately a factor of two (83.2% versus 43.3%) at 450 °C. The enhanced activity of PdFe/C is attributed to the formation of PdFe alloy as evidenced by STEM, EDS and TPR.« less

  12. Infrared spectroscopic studies of the conformation in ethyl alpha-haloacetates in the vapor, liquid and solid phases.

    PubMed

    Jassem, Naserallah A; El-Bermani, Muhsin F

    2010-07-01

    Infrared spectra of ethyl alpha-fluoroacetate, ethyl alpha-chloroacetate, ethyl alpha-bromoacetate and ethyl alpha-iodoacetate have been measured in the solid, liquid and vapor phases in the region 4000-200 cm(-1). Vibrational frequency assignment of the observed bands to the appropriate modes of vibration was made. Calculations at DFT B3LYP/6-311+G** level, Job: conformer distribution, using Spartan program '08, release 132 was made to determine which conformers exist in which molecule. The results indicated that the first compound exists as an equilibrium mixture of cis and trans conformers and the other three compounds exist as equilibrium mixtures of cis and gauche conformers. Enthalpy differences between the conformers have been determined experimentally for each compound and for every phase. The values indicated that the trans of the first compound is more stable in the vapor phase, while the cis is the more stable in both the liquid and solid phases. In the other three compounds the gauche is more stable in the vapor and liquid phases, while the cis conformer is the more stable in the solid phase for each of the second and third compound, except for ethyl alpha-iodoacetate, the gauche conformer is the more stable over the three phases. Molar energy of activation Ea and the pseudo-thermodynamic parameters of activation DeltaH(double dagger), DeltaS(double dagger) and DeltaG(double dagger) were determined in the solid phase by applying Arrhenius equation; using bands arising from single conformers. The respective E(a) values of these compounds are 5.1+/-0.4, 6.7+/-0.1, 7.5+/-1.3 and 12.0+/-0.6 kJ mol(-1). Potential energy surface calculations were made at two levels; for ethyl alpha-fluoroacetate and ethyl alpha-chloroacetate; the calculations were established at DFT B3LYP/6-311+G** level and for ethyl alpha-bromoacetate and ethyl alpha-iodoacetate at DFT B3LYP/6-311G* level. The results showed no potential energy minimum exists for the gauche conformer in

  13. A unifying model for adsorption and nucleation of vapors on solid surfaces.

    PubMed

    Laaksonen, Ari

    2015-04-23

    Vapor interaction with solid surfaces is traditionally described with adsorption isotherms in the undersaturated regime and with heterogeneous nucleation theory in the supersaturated regime. A class of adsorption isotherms is based on the idea of vapor molecule clustering around so-called active sites. However, as the isotherms do not account for the surface curvature effects of the clusters, they predict an infinitely thick adsorption layer at saturation and do not recognize the existence of the supersaturated regime. The classical heterogeneous nucleation theory also builds on the idea of cluster formation, but describes the interactions between the surface and the cluster with a single parameter, the contact angle, which provides limited information compared with adsorption isotherms. Here, a new model of vapor adsorption on nonporous solid surfaces is derived. The basic assumption is that adsorption proceeds via formation of molecular clusters, modeled as liquid caps. The equilibrium of the individual clusters with the vapor phase is described with the Frenkel-Halsey-Hill (FHH) adsorption theory modified with the Kelvin equation that corrects for the curvature effect on vapor pressure. The new model extends the FHH adsorption isotherm to be applicable both at submonolayer surface coverages and at supersaturated conditions. It shows good agreement with experimental adsorption data from 12 different adsorbent-adsorbate systems. The model predictions are also compared against heterogeneous nucleation data, and they show much better agreement than predictions of the classical heterogeneous nucleation theory.

  14. β-Ga2O3 versus ε-Ga2O3: Control of the crystal phase composition of gallium oxide thin film prepared by metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhuo, Yi; Chen, Zimin; Tu, Wenbin; Ma, Xuejin; Pei, Yanli; Wang, Gang

    2017-10-01

    Gallium oxide thin films of β and ε phase were grown on c-plane sapphire using metal-organic chemical vapor deposition and the phase compositions were analyzed using X-ray diffraction. The epitaxial phase diagram was constructed as a function of the growth temperature and VI/III ratio. A low growth temperature and low VI/III ratio were beneficial for the formation of hexagonal-type ε-Ga2O3. Further structure analysis revealed that the epitaxial relationship between ε-Ga2O3 and c-plane sapphire is ε-Ga2O3 (0001) || Al2O3 (0001) and ε-Ga2O3 || Al2O3 . The structural evolution of the mixed-phase sample during film thickening was investigated. By reducing the growth rate, the film evolved from a mixed phase to the energetically favored ε phase. Based on these results, a Ga2O3 thin film with a phase-pure ε-Ga2O3 upper layer was successfully obtained.

  15. On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena.

    PubMed

    Nath, Saurabh; Boreyko, Jonathan B

    2016-08-23

    Interdroplet vapor pressure gradients are the driving mechanism for several phase-change phenomena such as condensation dry zones, interdroplet ice bridging, dry zones around ice, and frost halos. Despite the fundamental nature of the underlying pressure gradients, the majority of studies on these emerging phenomena have been primarily empirical. Using classical nucleation theory and Becker-Döring embryo formation kinetics, here we calculate the pressure field for all possible modes of condensation and desublimation in order to gain fundamental insight into how pressure gradients govern the behavior of dry zones, condensation frosting, and frost halos. Our findings reveal that in a variety of phase-change systems the thermodynamically favorable mode of nucleation can switch between condensation and desublimation depending upon the temperature and wettability of the surface. The calculated pressure field is used to model the length of a dry zone around liquid or ice droplets over a broad parameter space. The long-standing question of whether the vapor pressure at the interface of growing frost is saturated or supersaturated is resolved by considering the kinetics of interdroplet ice bridging. Finally, on the basis of theoretical calculations, we propose that there exists a new mode of frost halo that is yet to be experimentally observed; a bimodal phase map is developed, demonstrating its dependence on the temperature and wettability of the underlying substrate. We hope that the model and predictions contained herein will assist future efforts to exploit localized vapor pressure gradients for the design of spatially controlled or antifrosting phase-change systems.

  16. In vivo droplet vaporization for occlusion therapy and phase aberration correction.

    PubMed

    Kripfgans, Oliver D; Fowlkes, J Brian; Woydt, Michael; Eldevik, Odd P; Carson, Paul L

    2002-06-01

    The objective was to determine whether a transpulmonary droplet emulsion (90%, <6 microm diameter) could be used to form large gas bubbles (>30 microm) temporarily in vivo. Such bubbles could occlude a targeted capillary bed when used in a large number density. Alternatively, for a very sparse population of droplets, the resulting gas bubbles could serve as point beacons for phase aberration corrections in ultrasonic imaging. Gas bubbles can be made in vivo by acoustic droplet vaporization (ADV) of injected, superheated, dodecafluoropentane droplets. Droplets vaporize in an acoustic field whose peak rarefactional pressure exceeds a well-defined threshold. In this new work, it has been found that intraarterial and intravenous injections can be used to introduce the emulsion into the blood stream for subsequent ADV (B- and M-mode on a clinical scanner) in situ. Intravenous administration results in a lower gas bubble yield, possibly because of filtering in the lung, dilution in the blood volume, or other circulatory effects. Results show that for occlusion purposes, a reduction in regional blood flow of 34% can be achieved. Individual point beacons with a +24 dB backscatter amplitude relative to white matter were created by intravenous injection and ADV.

  17. Upright and Inverted Single-Junction GaAs Solar Cells Grown by Hydride Vapor Phase Epitaxy

    DOE PAGES

    Simon, John; Schulte, Kevin L.; Jain, Nikhil; ...

    2016-10-19

    Hydride vapor phase epitaxy (HVPE) is a low-cost alternative to conventional metal-organic vapor phase epitaxy (MOVPE) growth of III-V solar cells. In this work, we show continued improvement of the performance of HVPE-grown single-junction GaAs solar cells. We show over an order of magnitude improvement in the interface recombination velocity between GaAs and GaInP layers through the elimination of growth interrupts, leading to increased short-circuit current density and open-circuit voltage compared with cells with interrupts. One-sun conversion efficiencies as high as 20.6% were achieved with this improved growth process. Solar cells grown in an inverted configuration that were removed frommore » the substrate showed nearly identical performance to on-wafer cells, demonstrating the viability of HVPE to be used together with conventional wafer reuse techniques for further cost reduction. As a result, these devices utilized multiple heterointerfaces, showing the potential of HVPE for the growth of complex and high-quality III-V devices.« less

  18. Vapor-phase and particulate-associated pesticides and PCB concentrations in eastern North Dakota air samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawthorne, S.B.; Miller, D.J.; Louie, P.K.K.

    1996-05-01

    Vapor-phase and suspended particulate (<50 {mu}m) samples were collected on polyurethane foam (PUF) and quartz fiber filters in rural North Dakota to determine the air concentrations of pesticides in an area where agriculture is a primary source of semivolatile pollutants. Samples were collected at two sites from 1992 to 1994 that were at least 0.4 km from the nearest farmed fields and known application of pesticides, and analyzed for 22 different organochlorine, triazine, and acid herbicide pesticides. Fourteen pesticides were found above the detection limits (typically <1 pg/m{sup 3}). Concentrations of polychlorinated biphenyl (PCB) congeners were much lower (<50 pg/m{supmore » 3} in all cases) than many of the pesticides. These results demonstrate that pesticides are among the most prevalent chlorinated semivolatile pollutants present in rural North Dakota, that significant transport of pesticides occurs both in the vapor-phase and on suspended particulate matter, and that blown soil may be a significant mechanism for introducing pesticides into surface and ground waters. 32 refs., 2 figs., 4 tabs.« less

  19. Biofiltration - an innovative approach to vapor phase treatment at the Silvex hazardous waste site in Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartsfield, B.

    1995-12-31

    Biofiltration is an emerging technology that is being used for vapor phase treatment at the Silvex hazardous waste site. Biofiltration works by directing the off-gas from the groundwater treatment system through a bed of soil, compost or other medium that supports the growth of bacteria. Contaminants are absorbed into the water present in the medium, and are subsequently degraded by the microorganisms. The biofiltration system at the Silvex hazardous waste site has been effective in removing contaminants from the off-gas. The biofiltration system has also been effective in minimizing the odor problem resulting from mercaptans in the off-gas. Biofiltration hasmore » been used for many years at wastewater and industrial plants to control odor and remove organic contaminants. This technology has only recently been used for hazardous waste site cleanups. The hazardous waste literature is now listing biofiltration as a vapor phase treatment technology, along with carbon, thermal oxidation and others.« less

  20. Studies on formation of unconfined detonable vapor cloud using explosive means.

    PubMed

    Apparao, A; Rao, C R; Tewari, S P

    2013-06-15

    Certain organic liquid fuels like hydrocarbons, hydrocarbon oxides, when dispersed in air in the form of small droplets, mix with surrounding atmosphere forming vapor cloud (aerosol) and acquire explosive properties. This paper describes the studies on establishment of conditions for dispersion of fuels in air using explosive means resulting in formation of detonable aerosols of propylene oxide and ethylene oxide. Burster charges based on different explosives were evaluated for the capability to disperse the fuels without causing ignition. Parameters like design of canister, burster tube, burster charge type, etc. have been studied based on dispersion experiments. The detonability of the aerosol formed by the optimized burster charge system was also tested. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Vapor-phase cristobalite as a durable indicator of magmatic pore structure and halogen degassing: an example from White Island volcano (New Zealand)

    NASA Astrophysics Data System (ADS)

    Ian Schipper, C.; Mandon, Céline; Maksimenko, Anton; Castro, Jonathan M.; Conway, Chris E.; Hauer, Peter; Kirilova, Martina; Kilgour, Geoff

    2017-10-01

    Vesicles in volcanic rocks are physical records of magmatic degassing; however, the interpretation of their textures is complicated by resorption, coalescence, and collapse. We discuss the textural significance of vesicle-hosted vapor-phase cristobalite (high-T, low-P SiO2 polymorph), and its utility as a complement to textural assessments of magmatic degassing, using a representative dacite bomb erupted from White Island volcano (New Zealand) in 1999. Imaging in 2D (SEM) and 3D (CT) shows the bomb to have 56% bulk porosity, almost all of which is connected ( 99%) and devoid of SiO2 phases. The remaining ( 1%) of porosity is in isolated, sub-spherical vesicles that have corroded walls and contain small (< 30 μm across) prismatic vapor-phase cristobalite crystals (98.4 ± 0.4 wt.% SiO2 with diagnostic laser Raman spectra). Halogen degassing models show vapor-phase cristobalite to be indicative of closed-system chlorine and fluorine partitioning into H2O-rich fluid in isolated pores. At White Island, this occurred during shallow (< 100s of meters) ascent and extensive ( 50%) groundmass crystallization associated with slow cooling in a volcanic plug. Pristine textures in this White Island bomb demonstrate the link between pore isolation and vapor-phase cristobalite deposition. We suggest that because these crystals have higher preservation potential than the bubbles in which they form, they can serve as durable, qualitative textural indicators of halogen degassing and pre-quench bubble morphologies in slowly cooled volcanic rocks (e.g., lava flows and domes), even where emplacement mechanisms have overprinted original bubble textures.

  2. Synthesis of alloys with controlled phase structure

    DOEpatents

    Guthrie, Stephen Everett; Thomas, George John; Bauer, Walter; Yang, Nancy Yuan Chi

    1999-04-20

    A method for preparing controlled phase alloys useful for engineering and hydrogen storage applications. This novel method avoids melting the constituents by employing vapor transport, in a hydrogen atmosphere, of an active metal constituent, having a high vapor pressure at temperatures .apprxeq.300 C. and its subsequent condensation on and reaction with the other constituent (substrate) of an alloy thereby forming a controlled phase alloy and preferably a single phase alloy. It is preferred that the substrate material be a metal powder such that diffusion of the active metal constituent, preferably magnesium, and reaction therewith can be completed within a reasonable time and at temperatures .apprxeq.300 C. thereby avoiding undesirable effects such as sintering, local compositional inhomogeneities, segregation, and formation of unwanted second phases such as intermetallic compounds.

  3. Synthesis of alloys with controlled phase structure

    DOEpatents

    Guthrie, S.E.; Thomas, G.J.; Bauer, W.; Yang, N.Y.C.

    1999-04-20

    A method is described for preparing controlled phase alloys useful for engineering and hydrogen storage applications. This novel method avoids melting the constituents by employing vapor transport, in a hydrogen atmosphere, of an active metal constituent, having a high vapor pressure at temperatures {approx_equal}300 C and its subsequent condensation on and reaction with the other constituent (substrate) of an alloy thereby forming a controlled phase alloy and preferably a single phase alloy. It is preferred that the substrate material be a metal powder such that diffusion of the active metal constituent, preferably magnesium, and reaction therewith can be completed within a reasonable time and at temperatures {approx_equal}300 C thereby avoiding undesirable effects such as sintering, local compositional inhomogeneities, segregation, and formation of unwanted second phases such as intermetallic compounds. 4 figs.

  4. Vapor-phase infrared spectroscopy on solid organic compounds with a pulsed resonant photoacoustic detection scheme

    NASA Astrophysics Data System (ADS)

    Bartlome, Richard; Fischer, Cornelia; Sigrist, Markus W.

    2005-08-01

    There is a great need for a low cost and sensitive method to measure infrared spectra of solid organic compounds in the gas phase. To record such spectra, we propose an optical parametric generator-based photoacoustic spectrometer, which emits in the mid-infrared fingerprint region between 3 and 4 microns. In this system, the sample is heated in a vessel before entering a home built photoacoustic cell, where the gaseous molecules are excited by a tunable laser source with a frequency repetition rate that matches the first longitudinal resonance frequency of the photocaoustic cell. In a first phase, we have focused on low-melting point stimulants such as Nikethamide, Mephentermine sulfate, Methylephedrine, Ephedrine and Pseudoephedrine. The vapor-phase spectra of these doping substances were measured between 2800 and 3100 cm-1, where fundamental C-H stretching vibrations take place. Our spectra show notable differences with commercially available condensed phase spectra. Our scheme enables to measure very low vapor pressures of low-melting point (<160 °C) solid organic compounds. Furthermore, the optical resolution of 8 cm-1 is good enough to distinguish closely related chemical structures such as the Ephedra alkaloids Ephedrine and Methylephedrine, but doesn't allow to differentiate diastereoisomeric pairs such as Ephedrine and Pseudoephedrine, two important neurotransmitters which reveal different biological activities. Therefore, higher resolution and a system capable of measuring organic compounds with higher melting points are required.

  5. Analytical solutions for a soil vapor extraction model that incorporates gas phase dispersion and molecular diffusion

    NASA Astrophysics Data System (ADS)

    Huang, Junqi; Goltz, Mark N.

    2017-06-01

    To greatly simplify their solution, the equations describing radial advective/dispersive transport to an extraction well in a porous medium typically neglect molecular diffusion. While this simplification is appropriate to simulate transport in the saturated zone, it can result in significant errors when modeling gas phase transport in the vadose zone, as might be applied when simulating a soil vapor extraction (SVE) system to remediate vadose zone contamination. A new analytical solution for the equations describing radial gas phase transport of a sorbing contaminant to an extraction well is presented. The equations model advection, dispersion (including both mechanical dispersion and molecular diffusion), and rate-limited mass transfer of dissolved, separate phase, and sorbed contaminants into the gas phase. The model equations are analytically solved by using the Laplace transform with respect to time. The solutions are represented by confluent hypergeometric functions in the Laplace domain. The Laplace domain solutions are then evaluated using a numerical Laplace inversion algorithm. The solutions can be used to simulate the spatial distribution and the temporal evolution of contaminant concentrations during operation of a soil vapor extraction well. Results of model simulations show that the effect of gas phase molecular diffusion upon concentrations at the extraction well is relatively small, although the effect upon the distribution of concentrations in space is significant. This study provides a tool that can be useful in designing SVE remediation strategies, as well as verifying numerical models used to simulate SVE system performance.

  6. The Inhibition of Vapor-Phase Corrosion. A Review

    DTIC Science & Technology

    1985-10-01

    vaporization of the inhibitor in a nondissociated molecular form, followed by hydrolysis on the surface of the metal. The products of hydrolysis may...Patent No. 600328) was assigned to Shell in 1945 . Some time ago, camphor was used to protect military materials made of ferrous metals. Naphthalene vapor...reduce moisture, they also "reduce corrosion. More importantly, they decompose as they absorb water, and the decomposition products (as illustrated by

  7. Secondary organic aerosol formation in biomass-burning plumes: theoretical analysis of lab studies and ambient plumes

    NASA Astrophysics Data System (ADS)

    Bian, Qijing; Jathar, Shantanu H.; Kodros, John K.; Barsanti, Kelley C.; Hatch, Lindsay E.; May, Andrew A.; Kreidenweis, Sonia M.; Pierce, Jeffrey R.

    2017-04-01

    Secondary organic aerosol (SOA) has been shown to form in biomass-burning emissions in laboratory and field studies. However, there is significant variability among studies in mass enhancement, which could be due to differences in fuels, fire conditions, dilution, and/or limitations of laboratory experiments and observations. This study focuses on understanding processes affecting biomass-burning SOA formation in laboratory smog-chamber experiments and in ambient plumes. Vapor wall losses have been demonstrated to be an important factor that can suppress SOA formation in laboratory studies of traditional SOA precursors; however, impacts of vapor wall losses on biomass-burning SOA have not yet been investigated. We use an aerosol-microphysical model that includes representations of volatility and oxidation chemistry to estimate the influence of vapor wall loss on SOA formation observed in the FLAME III smog-chamber studies. Our simulations with base-case assumptions for chemistry and wall loss predict a mean OA mass enhancement (the ratio of final to initial OA mass, corrected for particle-phase wall losses) of 1.8 across all experiments when vapor wall losses are modeled, roughly matching the mean observed enhancement during FLAME III. The mean OA enhancement increases to over 3 when vapor wall losses are turned off, implying that vapor wall losses reduce the apparent SOA formation. We find that this decrease in the apparent SOA formation due to vapor wall losses is robust across the ranges of uncertainties in the key model assumptions for wall-loss and mass-transfer coefficients and chemical mechanisms.We then apply similar assumptions regarding SOA formation chemistry and physics to smoke emitted into the atmosphere. In ambient plumes, the plume dilution rate impacts the organic partitioning between the gas and particle phases, which may impact the potential for SOA to form as well as the rate of SOA formation. We add Gaussian dispersion to our aerosol

  8. Secondary organic aerosol formation in biomass-burning plumes: theoretical analysis of lab studies and ambient plumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bian, Qijing; Jathar, Shantanu H.; Kodros, John K.

    Secondary organic aerosol (SOA) has been shown to form in biomass-burning emissions in laboratory and field studies. However, there is significant variability among studies in mass enhancement, which could be due to differences in fuels, fire conditions, dilution, and/or limitations of laboratory experiments and observations. This study focuses on understanding processes affecting biomass-burning SOA formation in laboratory smog-chamber experiments and in ambient plumes. Vapor wall losses have been demonstrated to be an important factor that can suppress SOA formation in laboratory studies of traditional SOA precursors; however, impacts of vapor wall losses on biomass-burning SOA have not yet been investigated.more » We use an aerosol-microphysical model that includes representations of volatility and oxidation chemistry to estimate the influence of vapor wall loss on SOA formation observed in the FLAME III smog-chamber studies. Our simulations with base-case assumptions for chemistry and wall loss predict a mean OA mass enhancement (the ratio of final to initial OA mass, corrected for particle-phase wall losses) of 1.8 across all experiments when vapor wall losses are modeled, roughly matching the mean observed enhancement during FLAME III. The mean OA enhancement increases to over 3 when vapor wall losses are turned off, implying that vapor wall losses reduce the apparent SOA formation. We find that this decrease in the apparent SOA formation due to vapor wall losses is robust across the ranges of uncertainties in the key model assumptions for wall-loss and mass-transfer coefficients and chemical mechanisms. We then apply similar assumptions regarding SOA formation chemistry and physics to smoke emitted into the atmosphere. In ambient plumes, the plume dilution rate impacts the organic partitioning between the gas and particle phases, which may impact the potential for SOA to form as well as the rate of SOA formation. We add Gaussian dispersion to our aerosol

  9. Secondary organic aerosol formation in biomass-burning plumes: theoretical analysis of lab studies and ambient plumes

    DOE PAGES

    Bian, Qijing; Jathar, Shantanu H.; Kodros, John K.; ...

    2017-04-28

    Secondary organic aerosol (SOA) has been shown to form in biomass-burning emissions in laboratory and field studies. However, there is significant variability among studies in mass enhancement, which could be due to differences in fuels, fire conditions, dilution, and/or limitations of laboratory experiments and observations. This study focuses on understanding processes affecting biomass-burning SOA formation in laboratory smog-chamber experiments and in ambient plumes. Vapor wall losses have been demonstrated to be an important factor that can suppress SOA formation in laboratory studies of traditional SOA precursors; however, impacts of vapor wall losses on biomass-burning SOA have not yet been investigated.more » We use an aerosol-microphysical model that includes representations of volatility and oxidation chemistry to estimate the influence of vapor wall loss on SOA formation observed in the FLAME III smog-chamber studies. Our simulations with base-case assumptions for chemistry and wall loss predict a mean OA mass enhancement (the ratio of final to initial OA mass, corrected for particle-phase wall losses) of 1.8 across all experiments when vapor wall losses are modeled, roughly matching the mean observed enhancement during FLAME III. The mean OA enhancement increases to over 3 when vapor wall losses are turned off, implying that vapor wall losses reduce the apparent SOA formation. We find that this decrease in the apparent SOA formation due to vapor wall losses is robust across the ranges of uncertainties in the key model assumptions for wall-loss and mass-transfer coefficients and chemical mechanisms. We then apply similar assumptions regarding SOA formation chemistry and physics to smoke emitted into the atmosphere. In ambient plumes, the plume dilution rate impacts the organic partitioning between the gas and particle phases, which may impact the potential for SOA to form as well as the rate of SOA formation. We add Gaussian dispersion to our aerosol

  10. Boiler for generating high quality vapor

    NASA Technical Reports Server (NTRS)

    Gray, V. H.; Marto, P. J.; Joslyn, A. W.

    1972-01-01

    Boiler supplies vapor for use in turbines by imparting a high angular velocity to the liquid annulus in heated rotating drum. Drum boiler provides a sharp interface between boiling liquid and vapor, thereby, inhibiting the formation of unwanted liquid droplets.

  11. Enthalpy and high temperature relaxation kinetics of stable vapor-deposited glasses of toluene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, Deepanjan; Sadtchenko, Vlad, E-mail: vlad@gwu.edu

    Stable non-crystalline toluene films of micrometer and nanometer thicknesses were grown by vapor deposition at distinct rates and probed by fast scanning calorimetry. Fast scanning calorimetry is shown to be extremely sensitive to the structure of the vapor-deposited phase and was used to characterize simultaneously its kinetic stability and its thermodynamic properties. According to our analysis, transformation of vapor-deposited samples of toluene during heating with rates in excess 10{sup 5} K s{sup −1} follows the zero-order kinetics. The transformation rate correlates strongly with the initial enthalpy of the sample, which increases with the deposition rate according to sub-linear law. Analysismore » of the transformation kinetics of vapor-deposited toluene films of various thicknesses reveal a sudden increase in the transformation rate for films thinner than 250 nm. The change in kinetics seems to correlate with the surface roughness scale of the substrate. The implications of these findings for the formation mechanism and structure of vapor-deposited stable glasses are discussed.« less

  12. Modeling of metastable phase formation diagrams for sputtered thin films.

    PubMed

    Chang, Keke; Music, Denis; To Baben, Moritz; Lange, Dennis; Bolvardi, Hamid; Schneider, Jochen M

    2016-01-01

    A method to model the metastable phase formation in the Cu-W system based on the critical surface diffusion distance has been developed. The driver for the formation of a second phase is the critical diffusion distance which is dependent on the solubility of W in Cu and on the solubility of Cu in W. Based on comparative theoretical and experimental data, we can describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation. Metastable phase formation diagrams for Cu-W and Cu-V thin films are predicted and validated by combinatorial magnetron sputtering experiments. The correlative experimental and theoretical research strategy adopted here enables us to efficiently describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation during magnetron sputtering.

  13. THE EFFECT OF WATER (VAPOR-PHASE) AND CARBON ON ELEMENTAL MERCURY REMOVAL IN A FLOW REACTOR

    EPA Science Inventory

    The paper gives results of studying the effect of vapor-phase moisture on elemental mercury (Hgo) removal by activated carbon (AC) in a flow reactor. tests involved injecting AC into both a dry and a 4% moisture nitrogen (N2) /Hgo gas stream. A bituminous-coal-based AC (Calgon WP...

  14. Growth of NH4Cl Single Crystal from Vapor Phase in Vertical Furnace

    NASA Astrophysics Data System (ADS)

    Nigara, Yutaka; Yoshizawa, Masahito; Fujimura, Tadao

    1983-02-01

    A pure and internally stress-free single crystal of NH4Cl was grown successfully from the vapor phase. The crystal measured 1.6 cmφ× 2 cm and had the disordered CsCl structure, which was stable below 184°C. The crystal was grown in an ampoule in a vertical furnace, in which the vapor was efficiently transported both by diffusion and convection. In line with the growth mechanism of a single crystal, the temperature fluctuation (°C/min) on the growth interface was kept smaller than the product of the temperature gradient (°C/cm) and the growth rate (cm/min). The specific heat of the crystal was measured around -31°C (242 K) during cooling and heating cycles by AC calorimetry. The thermal hysteresis (0.4 K) obtained here was smaller than that (0.89 K) of an NH4Cl crystal grown from its aqueous solution with urea added as a habit modifier.

  15. The role of beaded activated carbon's pore size distribution on heel formation during cyclic adsorption/desorption of organic vapors.

    PubMed

    Jahandar Lashaki, Masoud; Atkinson, John D; Hashisho, Zaher; Phillips, John H; Anderson, James E; Nichols, Mark

    2016-09-05

    The effect of activated carbon's pore size distribution (PSD) on heel formation during adsorption of organic vapors was investigated. Five commercially available beaded activated carbons (BAC) with varying PSDs (30-88% microporous) were investigated. Virgin samples had similar elemental compositions but different PSDs, which allowed for isolating the contribution of carbon's microporosity to heel formation. Heel formation was linearly correlated (R(2)=0.91) with BAC micropore volume; heel for the BAC with the lowest micropore volume was 20% lower than the BAC with the highest micropore volume. Meanwhile, first cycle adsorption capacities and breakthrough times correlated linearly (R(2)=0.87 and 0.93, respectively) with BAC total pore volume. Micropore volume reduction for all BACs confirmed that heel accumulation takes place in the highest energy pores. Overall, these results show that a greater portion of adsorbed species are converted into heel on highly microporous adsorbents due to higher share of high energy adsorption sites in their structure. This differs from mesoporous adsorbents (low microporosity) in which large pores contribute to adsorption but not to heel formation, resulting in longer adsorbent lifetime. Thus, activated carbon with high adsorption capacity and high mesopore fraction is particularly desirable for organic vapor application involving extended adsorption/regeneration cycling. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Liquid-phase and vapor-phase dehydration of organic/water solutions

    DOEpatents

    Huang, Yu [Palo Alto, CA; Ly, Jennifer [San Jose, CA; Aldajani, Tiem [San Jose, CA; Baker, Richard W [Palo Alto, CA

    2011-08-23

    Processes for dehydrating an organic/water solution by pervaporation or vapor separation using fluorinated membranes. The processes are particularly useful for treating mixtures containing light organic components, such as ethanol, isopropanol or acetic acid.

  17. An Evaluation of the Vapor Phase Catalytic Ammonia Removal Process for Use in a Mars Transit Vehicle

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Borchers, Bruce

    1998-01-01

    An experimental program has been developed to evaluate the potential of the Vapor Phase Catalytic Ammonia Reduction (VPCAR) technology for use as a Mars Transit Vehicle water purification system. Design modifications which will be required to ensure proper operation of the VPCAR system in reduced gravity are also evaluated. The VPCAR system is an integrated wastewater treatment technology that combines a distillation process with high temperature catalytic oxidation. The distillation portion of the system utilizes a vapor compression distillation process to provide an energy efficient phase change separation. This portion of the system removes any inorganic salts and large molecular weight, organic contaminates, i.e., non-volatile, from the product water stream and concentrates these contaminates into a byproduct stream. To oxidize the volatile organic compounds and ammonia, a vapor phase, high temperature catalytic oxidizer is used. This catalytic system converts these compounds along with the aqueous product into CO2, H2O, and N2O. A secondary catalytic bed can then be used to reduce the N2O to nitrogen and oxygen (although not evaluated in this study). This paper describes the design specification of the VPCAR process, the relative benefits of its utilization in a Mars Transit Vehicle, and the design modification which will be required to ensure its proper operation in reduced gravity. In addition, the results of an experimental evaluation of the processors is presented. This evaluation presents the processors performance based upon product water purity, water recovery rates, and power.

  18. Vapor Wall Deposition in Chambers: Theoretical Considerations

    NASA Astrophysics Data System (ADS)

    McVay, R.; Cappa, C. D.; Seinfeld, J.

    2014-12-01

    In order to constrain the effects of vapor wall deposition on measured secondary organic aerosol (SOA) yields in laboratory chambers, Zhang et al. (2014) varied the seed aerosol surface area in toluene oxidation and observed a clear increase in the SOA yield with increasing seed surface area. Using a coupled vapor-particle dynamics model, we examine the extent to which this increase is the result of vapor wall deposition versus kinetic limitations arising from imperfect accommodation of organic species into the particle phase. We show that a seed surface area dependence of the SOA yield is present only when condensation of vapors onto particles is kinetically limited. The existence of kinetic limitation can be predicted by comparing the characteristic timescales of gas-phase reaction, vapor wall deposition, and gas-particle equilibration. The gas-particle equilibration timescale depends on the gas-particle accommodation coefficient αp. Regardless of the extent of kinetic limitation, vapor wall deposition depresses the SOA yield from that in its absence since vapor molecules that might otherwise condense on particles deposit on the walls. To accurately extrapolate chamber-derived yields to atmospheric conditions, both vapor wall deposition and kinetic limitations must be taken into account.

  19. Pollution level and distribution of PCDD/PCDF congeners between vapor phase and particulate phase in winter air of Dalian, China.

    PubMed

    Wang, Wei; Qin, Songtao; Song, Yu; Xu, Qian; Ni, Yuwen; Chen, Jiping; Zhang, Xueping; Mu, Jim; Zhu, Xiuhua

    2011-06-01

    In December 2009, ambient air was sampled with active high-volume air samplers at two sites: on the roof of the No. l building of Dalian Jiaotong University and on the roof of the building of Dalian Meteorological Observatory. The concentrations and the congeners between vapor phase and particulate phase of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the air were measured. Sample analysis results showed that the concentrations of PCDD/Fs in particulate phase was higher than that in gaseous phase. The ratio of PCDD to PCDF in gaseous phase and particulate phase was lower than 0.4 in all samples. The total I-TEQ value in gaseous phase and particulate phase was 5.5 and 453.8 fg/m(3) at Dalian Jiaotong University, 16.6 and 462.1 fg/m(3) at Dalian Meteorological Observatory, respectively. The I-TEQ value of Dalian atmosphere was 5.5-462.1 fg/m(3) which was lower than international standard, the atmospheric quality in Dalian is better. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  20. Approach to high quality GaN lateral nanowires and planar cavities fabricated by focused ion beam and metal-organic vapor phase epitaxy.

    PubMed

    Pozina, Galia; Gubaydullin, Azat R; Mitrofanov, Maxim I; Kaliteevski, Mikhail A; Levitskii, Iaroslav V; Voznyuk, Gleb V; Tatarinov, Evgeniy E; Evtikhiev, Vadim P; Rodin, Sergey N; Kaliteevskiy, Vasily N; Chechurin, Leonid S

    2018-05-08

    We have developed a method to fabricate GaN planar nanowires and cavities by combination of Focused Ion Beam (FIB) patterning of the substrate followed by Metal Organic Vapor Phase Epitaxy (MOVPE). The method includes depositing a silicon nitride mask on a sapphire substrate, etching of the trenches in the mask by FIB with a diameter of 40 nm with subsequent MOVPE growth of GaN within trenches. It was observed that the growth rate of GaN is substantially increased due to enhanced bulk diffusion of the growth precursor therefore the model for analysis of the growth rate was developed. The GaN strips fabricated by this method demonstrate effective luminescence properties. The structures demonstrate enhancement of spontaneous emission via formation of Fabry-Perot modes.

  1. On the existence of vapor-liquid phase transition in dusty plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kundu, M.; Sen, A.; Ganesh, R.

    2014-10-15

    The phenomenon of phase transition in a dusty-plasma system (DPS) has attracted some attention in the past. Earlier Farouki and Hamaguchi [J. Chem. Phys. 101, 9876 (1994)] have demonstrated the existence of a liquid to solid transition in DPS where the dust particles interact through a Yukawa potential. However, the question of the existence of a vapor-liquid (VL) transition in such a system remains unanswered and relatively unexplored so far. We have investigated this problem by performing extensive molecular dynamics simulations which show that the VL transition does not have a critical curve in the pressure versus volume diagram formore » a large range of the Yukawa screening parameter κ and the Coulomb coupling parameter Γ. Thus, the VL phase transition is found to be super-critical, meaning that this transition is continuous in the dusty plasma model given by Farouki and Hamaguchi. We provide an approximate analytic explanation of this finding by means of a simple model calculation.« less

  2. Reaction mechanisms in the organometallic vapor phase epitaxial growth of GaAs

    NASA Technical Reports Server (NTRS)

    Larsen, C. A.; Buchan, N. I.; Stringfellow, G. B.

    1988-01-01

    The decomposition mechanisms of AsH3, trimethylgallium (TMGa), and mixtures of the two have been studied in an atmospheric-pressure flow system with the use of D2 to label the reaction products which are analyzed in a time-of-flight mass spectrometer. AsH3 decomposes entirely heterogeneously to give H2. TMGa decomposes by a series of gas-phase steps, involving methyl radicals and D atoms to produce CH3D, CH4, C2H6, and HD. TMGa decomposition is accelerated by the presence of AsH3. When the two are mixed, as in the organometallic vapor phase epitaxial growth of GaAs, both compounds decompose in concert to produce only CH4. A likely model is that of a Lewis acid-base adduct that forms and subsequently eliminates CH4.

  3. Reaction mechanisms in the organometallic vapor phase epitaxial growth of GaAs

    NASA Astrophysics Data System (ADS)

    Larsen, C. A.; Buchan, N. I.; Stringfellow, G. B.

    1988-02-01

    The decomposition mechanisms of AsH3, trimethylgallium (TMGa), and mixtures of the two have been studied in an atmospheric-pressure flow system with the use of D2 to label the reaction products which are analyzed in a time-of-flight mass spectrometer. AsH3 decomposes entirely heterogeneously to give H2. TMGa decomposes by a series of gas-phase steps, involving methyl radicals and D atoms to produce CH3D, CH4, C2H6, and HD. TMGa decomposition is accelerated by the presence of AsH3. When the two are mixed, as in the organometallic vapor phase epitaxial growth of GaAs, both compounds decompose in concert to produce only CH4. A likely model is that of a Lewis acid-base adduct that forms and subsequently eliminates CH4.

  4. Synthesis and impurity doping of GaN powders by the two-stage vapor-phase method for phosphor applications

    NASA Astrophysics Data System (ADS)

    Hara, K.; Okuyama, E.; Yonemura, A.; Uchida, T.; Okamoto, N.

    2006-09-01

    The analysis of particle formation and the doping of luminescent impurities during the two-stage vapor-phase synthesis of GaN powder were carried. GaN particles were grown very fast during the second stage of this method, and the increment in particle size was larger for higher reaction temperature in the region between 800 and 1000 °C. The analysis on the behaviour of particle growth based on the reaction kinetics suggested that the growth almost finishes in a few seconds with an extremely high rate at the early stage at 1000 °C, whereas the growth lasts with relatively low rates for a time longer than the actual growth duration for the case of lower temperature synthesis. GaN powders doped with various impurity atoms were synthesized by supplying impurity sources with GaCl during the second stage. The samples doped with Zn, Mg and Tb showed emissions characteristic for each doped impurity.

  5. Nanoparticle Treated Stainless Steel Filters for Metal Vapor Sequestration

    NASA Astrophysics Data System (ADS)

    Murph, Simona E. Hunyadi; Larsen, George K.; Korinko, Paul; Coopersmith, Kaitlin J.; Summer, Ansley J.; Lewis, Rebecca

    2017-02-01

    The ability to sequester vapor phase radioactive compounds during industrial processes reduces the exposure of workers and the environment to dangerous radioactive materials. Nanomaterials have a lot of potential in this area because they typically demonstrate size- and shape-dependent properties with higher reactivity than bulk. This is due to the increased surface area-to-volume ratio and quantum size effects. In this report, we developed a gold nanomaterial-treated stainless steel filter, namely wools and coupons, that can be efficiently used for zinc vapor sequestration. Without nanoparticle modification, stainless steel coupons do not react or alloy with Zn. Gold nanomaterials were grown onto various stainless steel filters using solution chemistry that is amenable to scaling up. Materials were characterized by electron microscopy, inductively coupled plasma mass spectroscopy and dynamic light scattering before and after exposure to zinc vapors. X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy mapping and ultraviolet-visible spectroscopy confirm the formation of gold-zinc alloys after Zn vapor exposure. The effect of surface topography on nanoparticle morphology, size and loading density were also investigated, and stainless steel surface defects were found to have an impact on the Au NP growth and subsequently Zn sequestration.

  6. Nanoparticle treated stainless steel filters for metal vapor sequestration

    DOE PAGES

    Murph, Simona E. Hunyadi; Larsen, George K.; Korinko, Paul; ...

    2016-12-07

    The ability to sequester vapor phase radioactive compounds during industrial processes reduces the exposure of workers and the environment to dangerous radioactive materials. Nanomaterials have a lot of potential in this area because they typically demonstrate size- and shape-dependent properties with higher reactivity than bulk. This is due to the increased surface area-to-volume ratio and quantum size effects. In this report, we developed a gold nanomaterial-treated stainless steel filter, namely wools and coupons, that can be efficiently used for zinc vapor sequestration. Without nanoparticle modification, stainless steel coupons do not react or alloy with Zn. Gold nanomaterials were grown ontomore » various stainless steel filters using solution chemistry that is amenable to scaling up. Materials were characterized by electron microscopy, inductively coupled plasma mass spectroscopy and dynamic light scattering before and after exposure to zinc vapors. X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy mapping and ultraviolet-visible spectroscopy confirm the formation of gold-zinc alloys after Zn vapor exposure. Furthermore, the effect of surface topography on nanoparticle morphology, size and loading density were also investigated, and stainless steel surface defects were found to have an impact on the Au NP growth and subsequently Zn sequestration.« less

  7. Nanoparticle treated stainless steel filters for metal vapor sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murph, Simona E. Hunyadi; Larsen, George K.; Korinko, Paul

    The ability to sequester vapor phase radioactive compounds during industrial processes reduces the exposure of workers and the environment to dangerous radioactive materials. Nanomaterials have a lot of potential in this area because they typically demonstrate size- and shape-dependent properties with higher reactivity than bulk. This is due to the increased surface area-to-volume ratio and quantum size effects. In this report, we developed a gold nanomaterial-treated stainless steel filter, namely wools and coupons, that can be efficiently used for zinc vapor sequestration. Without nanoparticle modification, stainless steel coupons do not react or alloy with Zn. Gold nanomaterials were grown ontomore » various stainless steel filters using solution chemistry that is amenable to scaling up. Materials were characterized by electron microscopy, inductively coupled plasma mass spectroscopy and dynamic light scattering before and after exposure to zinc vapors. X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy mapping and ultraviolet-visible spectroscopy confirm the formation of gold-zinc alloys after Zn vapor exposure. Furthermore, the effect of surface topography on nanoparticle morphology, size and loading density were also investigated, and stainless steel surface defects were found to have an impact on the Au NP growth and subsequently Zn sequestration.« less

  8. Potentiometric detection of chemical vapors using molecularly imprinted polymers as receptors

    PubMed Central

    Liang, Rongning; Chen, Lusi; Qin, Wei

    2015-01-01

    Ion-selective electrode (ISE) based potentiometric gas sensors have shown to be promising analytical tools for detection of chemical vapors. However, such sensors are only capable of detecting those vapors which can be converted into ionic species in solution. This paper describes for the first time a polymer membrane ISE based potentiometric sensing system for sensitive and selective determination of neutral vapors in the gas phase. A molecularly imprinted polymer (MIP) is incorporated into the ISE membrane and used as the receptor for selective adsorption of the analyte vapor from the gas phase into the sensing membrane phase. An indicator ion with a structure similar to that of the vapor molecule is employed to indicate the change in the MIP binding sites in the membrane induced by the molecular recognition of the vapor. The toluene vapor is used as a model and benzoic acid is chosen as its indicator. Coupled to an apparatus manifold for preparation of vapor samples, the proposed ISE can be utilized to determine volatile toluene in the gas phase and allows potentiometric detection down to parts per million levels. This work demonstrates the possibility of developing a general sensing principle for detection of neutral vapors using ISEs. PMID:26215887

  9. Detection of vapor-phase organophosphate threats using wearable conformable integrated epidermal and textile wireless biosensor systems.

    PubMed

    Mishra, Rupesh K; Martín, Aida; Nakagawa, Tatsuo; Barfidokht, Abbas; Lu, Xialong; Sempionatto, Juliane R; Lyu, Kay Mengjia; Karajic, Aleksandar; Musameh, Mustafa M; Kyratzis, Ilias L; Wang, Joseph

    2018-03-15

    Flexible epidermal tattoo and textile-based electrochemical biosensors have been developed for vapor-phase detection of organophosphorus (OP) nerve agents. These new wearable sensors, based on stretchable organophosphorus hydrolase (OPH) enzyme electrodes, are coupled with a fully integrated conformal flexible electronic interface that offers rapid and selective square-wave voltammetric detection of OP vapor threats and wireless data transmission to a mobile device. The epidermal tattoo and textile sensors display a good reproducibility (with RSD of 2.5% and 4.2%, respectively), along with good discrimination against potential interferences and linearity over the 90-300mg/L range, with a sensitivity of 10.7µA∙cm 3 ∙mg -1 (R 2 = 0.983) and detection limit of 12mg/L in terms of OP air density. Stress-enduring inks, used for printing the electrode transducers, ensure resilience against mechanical deformations associated with textile and skin-based on-body sensing operations. Theoretical simulations are used to estimate the OP air density over the sensor surface. These fully integrated wearable wireless tattoo and textile-based nerve-agent vapor biosensor systems offer considerable promise for rapid warning regarding personal exposure to OP nerve-agent vapors in variety of decentralized security applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Performance Testing of the Vapor Phase Catalytic Ammonia Removal Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Tleimat, Maher; Nalette, Tim; Quinn, Gregory

    2005-01-01

    This paper describes the results of performance testing of the Vapor Phase Catalytic Ammonia Removal (VPCAR) technology. The VPCAR technology is currently being developed by NASA as a Mars transit vehicle water recycling system. NASA has recently completed-a grant-to develop a next generation VPCAR system. This grant concluded with the shipment of the final deliverable to NASA on 8/31/03. This paper presents the results of mass, power, volume, and acoustic measurements for the delivered system. Product water purity analysis for a Mars transit mission and a simulated planetary base wastewater ersatz are also provided.

  11. Improving biomass pyrolysis economics by integrating vapor and liquid phase upgrading

    DOE PAGES

    Iisa, Kristiina; Robichaud, David J.; Watson, Michael J.; ...

    2017-11-24

    Partial deoxygenation of bio-oil by catalytic fast pyrolysis with subsequent coupling and hydrotreating can lead to improved economics and will aid commercial deployment of pyrolytic conversion of biomass technologies. Biomass pyrolysis efficiently depolymerizes and deconstructs solid plant matter into carbonaceous molecules that, upon catalytic upgrading, can be used for fuels and chemicals. Upgrading strategies include catalytic deoxygenation of the vapors before they are condensed (in situ and ex situ catalytic fast pyrolysis), or hydrotreating following condensation of the bio-oil. In general, deoxygenation carbon efficiencies, one of the most important cost drivers, are typically higher for hydrotreating when compared to catalyticmore » fast pyrolysis alone. However, using catalytic fast pyrolysis as the primary conversion step can benefit the entire process chain by: (1) reducing the reactivity of the bio-oil, thereby mitigating issues with aging and transport and eliminating need for multi-stage hydroprocessing configurations; (2) producing a bio-oil that can be fractionated through distillation, which could lead to more efficient use of hydrogen during hydrotreating and facilitate integration in existing petroleum refineries; and (3) allowing for the separation of the aqueous phase. In this perspective, we investigate in detail a combination of these approaches, where some oxygen is removed during catalytic fast pyrolysis and the remainder removed by downstream hydrotreating, accompanied by carbon–carbon coupling reactions in either the vapor or liquid phase to maximize carbon efficiency toward value-driven products (e.g. fuels or chemicals). The economic impact of partial deoxygenation by catalytic fast pyrolysis will be explored in the context of an integrated two-stage process. In conclusion, improving the overall pyrolysis-based biorefinery economics by inclusion of production of high-value co-products will be examined.« less

  12. Improving biomass pyrolysis economics by integrating vapor and liquid phase upgrading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iisa, Kristiina; Robichaud, David J.; Watson, Michael J.

    Partial deoxygenation of bio-oil by catalytic fast pyrolysis with subsequent coupling and hydrotreating can lead to improved economics and will aid commercial deployment of pyrolytic conversion of biomass technologies. Biomass pyrolysis efficiently depolymerizes and deconstructs solid plant matter into carbonaceous molecules that, upon catalytic upgrading, can be used for fuels and chemicals. Upgrading strategies include catalytic deoxygenation of the vapors before they are condensed (in situ and ex situ catalytic fast pyrolysis), or hydrotreating following condensation of the bio-oil. In general, deoxygenation carbon efficiencies, one of the most important cost drivers, are typically higher for hydrotreating when compared to catalyticmore » fast pyrolysis alone. However, using catalytic fast pyrolysis as the primary conversion step can benefit the entire process chain by: (1) reducing the reactivity of the bio-oil, thereby mitigating issues with aging and transport and eliminating need for multi-stage hydroprocessing configurations; (2) producing a bio-oil that can be fractionated through distillation, which could lead to more efficient use of hydrogen during hydrotreating and facilitate integration in existing petroleum refineries; and (3) allowing for the separation of the aqueous phase. In this perspective, we investigate in detail a combination of these approaches, where some oxygen is removed during catalytic fast pyrolysis and the remainder removed by downstream hydrotreating, accompanied by carbon–carbon coupling reactions in either the vapor or liquid phase to maximize carbon efficiency toward value-driven products (e.g. fuels or chemicals). The economic impact of partial deoxygenation by catalytic fast pyrolysis will be explored in the context of an integrated two-stage process. In conclusion, improving the overall pyrolysis-based biorefinery economics by inclusion of production of high-value co-products will be examined.« less

  13. Molecular dynamic approach to the study of the intense heat and mass transfer processes on the vapor-liquid interface

    NASA Astrophysics Data System (ADS)

    Levashov, V. Yu; Kamenov, P. K.

    2017-10-01

    The paper is devoted to research of the heat and mass transfer processes on the vapor-liquid interface. These processes can be realized for example at metal tempering, accidents at nuclear power stations, followed by the release of the corium into the heat carrier, getting hot magma into the water during volcanic eruptions and other. In all these examples the vapor film can arise on the heated body surface. In this paper the vapor film formation process will be considered with help of molecular dynamics simulation methods. The main attention during this process modeling will be focused on the subject of the fluid and vapor interactions with the heater surface. Another direction of this work is to study of the processes inside the droplet that may take place as result of impact of the high-power laser radiation. Such impact can lead to intensive evaporation and explosive destruction of the droplet. At that the duration of heat and mass transfer processes in droplet substance is tens of femtoseconds. Thus, the methods of molecular dynamics simulation can give the possibilities describe the heat and mass transfer processes in the droplet and the vapor phase formation.

  14. On the synthesis of AlPO4-21 molecular sieve by vapor phase transport method and its phase transformation to AlPO4-15 molecular sieve

    NASA Astrophysics Data System (ADS)

    Shao, Hui; Chen, Jingjing; Chen, Xia; Leng, Yixin; Zhong, Jing

    2015-04-01

    An experimental design was applied to the synthesis of AlPO4-21 molecular sieve (AWO structure) by vapor phase transport (VPT) method, using tetramethylguanidine (TMG) as the template. In this study, the effects of crystallization time, crystallization temperature, phosphor content, template content and water content in the synthesis gel were investigated. The materials obtained were characterized by X-ray diffraction, scanning electron microscopy and fourier transform infrared spectroscopy (FT-IR). Microstructural analysis of the crystal growth in vapor synthetic conditions revealed a revised crystal growth route from zeolite AlPO4-21 to AlPO4-15 in the presence of the TMG. Homogenous hexagonal prism AlPO4-21 crystals with size of 7 × 3 μm were synthesized at a lower temperature (120 °C), which were completely different from the typical tabular parallelogram crystallization microstructure of AlPO4-21 phase. The crystals were transformed into AlPO4-21 phase with higher crystallization temperature, longer crystallization time, higher P2O5/Al2O3 ratio and higher TMG/Al2O3 ratio.

  15. Phase degradation in BxGa1-xN films grown at low temperature by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Gunning, Brendan P.; Moseley, Michael W.; Koleske, Daniel D.; Allerman, Andrew A.; Lee, Stephen R.

    2017-04-01

    Using metalorganic vapor phase epitaxy, a comprehensive study of BxGa1-xN growth on GaN and AlN templates is described. BGaN growth at high-temperature and high-pressure results in rough surfaces and poor boron incorporation efficiency, while growth at low-temperature and low-pressure (750-900 °C and 20 Torr) using nitrogen carrier gas results in improved surface morphology and boron incorporation up to 7.4% as determined by nuclear reaction analysis. However, further structural analysis by transmission electron microscopy and x-ray pole figures points to severe degradation of the high boron composition films, into a twinned cubic structure with a high density of stacking faults and little or no room temperature photoluminescence emission. Films with <1% triethylboron (TEB) flow show more intense, narrower x-ray diffraction peaks, near-band-edge photoluminescence emission at 362 nm, and primarily wurtzite-phase structure in the x-ray pole figures. For films with >1% TEB flow, the crystal structure becomes dominated by the cubic phase. Only when the TEB flow is zero (pure GaN), does the cubic phase entirely disappear from the x-ray pole figure, suggesting that under these growth conditions even very low boron compositions lead to mixed crystalline phases.

  16. A Tissue-Mimicking Ultrasound Test Object Using Droplet Vaporization to Create Point Targets

    PubMed Central

    Carneal, Catherine M.; Kripfgans, Oliver D.; Krücker, Jochen; Carson, Paul L.; Fowlkes, J. Brian

    2012-01-01

    Ultrasound test objects containing reference point targets could be useful for evaluating ultrasound systems and phase aberration correction methods. Polyacrylamide gels containing albumin-stabilized droplets (3.6 µm mean diameter) of dodecafluoropentane (DDFP) are being developed for this purpose. Perturbation by ultrasound causes spontaneous vaporization of the superheated droplets to form gas bubbles, a process termed acoustic droplet vaporization (ADV). The resulting bubbles (20 to 160 µm diameter) are small compared with acoustic wavelengths in diagnostic ultrasound and are theoretically suitable for use as point targets (phase errors <20° for typical f-numbers). Bubbles distributed throughout the material are convenient for determining the point spread function in an imaging plane or volume. Cooling the gel causes condensation of the DDFP droplets, which may be useful for storage. Studying ADV in such viscoelastic media could provide insight into potential bioeffects from rapid bubble formation. PMID:21937339

  17. A semi-empirical model for the complete orientation dependence of the growth rate for vapor phase epitaxy - Chloride VPE of GaAs

    NASA Technical Reports Server (NTRS)

    Seidel-Salinas, L. K.; Jones, S. H.; Duva, J. M.

    1992-01-01

    A semi-empirical model has been developed to determine the complete crystallographic orientation dependence of the growth rate for vapor phase epitaxy (VPE). Previous researchers have been able to determine this dependence for a limited range of orientations; however, our model yields relative growth rate information for any orientation. This model for diamond and zincblende structure materials is based on experimental growth rate data, gas phase diffusion, and surface reactions. Data for GaAs chloride VPE is used to illustrate the model. The resulting growth rate polar diagrams are used in conjunction with Wulff constructions to simulate epitaxial layer shapes as grown on patterned substrates. In general, this model can be applied to a variety of materials and vapor phase epitaxy systems.

  18. Isobaric molecular dynamics version of the generalized replica exchange method (gREM): Liquid–vapor equilibrium

    DOE PAGES

    Malolepsza, Edyta; Secor, Maxim; Keyes, Tom

    2015-09-23

    A prescription for sampling isobaric generalized ensembles with molecular dynamics is presented and applied to the generalized replica exchange method (gREM), which was designed for simulating first-order phase transitions. The properties of the isobaric gREM ensemble are discussed and a study is presented of the liquid-vapor equilibrium of the guest molecules given for gas hydrate formation with the mW water model. As a result, phase diagrams, critical parameters, and a law of corresponding states are obtained.

  19. Condensed phase conversion and growth of nanorods instead of from vapor

    DOEpatents

    Geohegan, David B.; Seals, Roland D.; Puretzky, Alex A.; Fan, Xudong

    2005-08-02

    Compositions, systems and methods are described for condensed phase conversion and growth of nanorods and other materials. A method includes providing a condensed phase matrix material; and activating the condensed phase matrix material to produce a plurality of nanorods by condensed phase conversion and growth from the condensed chase matrix material instead of from vacor. The compositions are very strong. The compositions and methods provide advantages because they allow (1) formation rates of nanostructures necessary for reasonable production rates, and (2) the near net shaped production of component structures.

  20. Formation of the ZnFe2O4 phase in an electric arc furnace off-gas treatment system.

    PubMed

    Suetens, T; Guo, M; Van Acker, K; Blanpain, B

    2015-04-28

    To better understand the phenomena of ZnFe2O4 spinel formation in electric arc furnace dust, the dust was characterized with particle size analysis, X-ray fluorescence (XRF), electron backscatter diffraction (EBSD), and electron probe micro-analysis (EPMA). Different ZnFe2O4 formation reaction extents were observed for iron oxide particles with different particle sizes. ZnO particles were present as both individual particles and aggregated on the surface of larger particles. Also, the slag particles found in the off-gas were shown not to react with the zinc vapor. After confirming the presence of a ZnFe2O4 formation reaction, the thermodynamic feasibility of in-process separation - a new electric arc furnace dust treatment technology - was reevaluated. The large air intake and the presence of iron oxide particles in the off-gas were included into the thermodynamic calculations. The formation of the stable ZnFe2O4 spinel phase was shown to be thermodynamically favorable in current electric arc furnace off-gas ducts conditions even before reaching the post combustion chamber. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Vapor deposition routes to conformal polymer thin films

    PubMed Central

    Moni, Priya; Al-Obeidi, Ahmed

    2017-01-01

    Vapor phase syntheses, including parylene chemical vapor deposition (CVD) and initiated CVD, enable the deposition of conformal polymer thin films to benefit a diverse array of applications. This short review for nanotechnologists, including those new to vapor deposition methods, covers the basic theory in designing a conformal polymer film vapor deposition, sample preparation and imaging techniques to assess film conformality, and several applications that have benefited from vapor deposited, conformal polymer thin films. PMID:28487816

  2. Chemistry of vaporization of refractory materials

    NASA Technical Reports Server (NTRS)

    Gilles, P. W.

    1975-01-01

    A discussion is given of the principles of physical chemistry important in vaporization studies, notably the concepts of equilibrium, phase behavior, thermodynamics, solid solution, and kinetics. The important factors influencing equilibrium vaporization phenomena are discussed and illustrated. A proper course of a vaporization study consisting of 9 stages is proposed. The important experimental techniques of Knudsen effusion, Langmuir vaporization and mass spectrometry are discussed. The principles, the factors, the course of a study and the experimental techniques and procedures are illustrated by recent work on the Ti-O system.

  3. Solid-vapor interactions: influence of environmental conditions on the dehydration of carbamazepine dihydrate.

    PubMed

    Surana, Rahul; Pyne, Abira; Suryanarayanan, Raj

    2004-12-31

    The goal of this research was a phenomenological study of the effect of environmental factors on the dehydration behavior of carbamazepine dihydrate. Dehydration experiments were performed in an automated vapor sorption apparatus under a variety of conditions, and weight loss was monitored as a function of time. In addition to lattice water, carbamazepine dihydrate contained a significant amount of physically bound water. Based on the kinetics of water loss, it was possible to differentiate between the removal of physically bound water and the lattice water. The activation energy for the 2 processes was 44 and 88 kJ/mol, respectively. As expected, the dehydration rate of carbamazepine dihydrate decreased with an increase in water vapor pressure. While dehydration at 0% relative humidity (RH) resulted in an amorphous anhydrate, the crystallinity of the anhydrate increased as a function of the RH of dehydration. A method was developed for in situ crystallinity determination of the anhydrate formed. Dehydration in the presence of the ethanol vapor was a 2-step process, and the fraction dehydrated at each step was a function of the ethanol vapor pressure. We hypothesize the formation of an intermediate lower hydrate phase with unknown water stoichiometry. An increase in the ethanol vapor pressure first led to a decrease in the dehydration rate followed by an increase. In summary, the dehydration behavior of carbamazepine dihydrate was evaluated at different vapor pressures of water and ethanol. Using the water sorption apparatus, it was possible to (1) differentiate between the removal of physically bound and lattice water, and (2) develop a method for quantifying, in situ, the crystallinity of the product (anhydrate) phase.

  4. Stability limit of liquid water in metastable equilibrium with subsaturated vapors.

    PubMed

    Wheeler, Tobias D; Stroock, Abraham D

    2009-07-07

    A pure liquid can reach metastable equilibrium with its subsaturated vapor across an appropriate membrane. This situation is analogous to osmotic equilibrium: the reduced chemical potential of the dilute phase (the subsaturated vapor) is compensated by a difference in pressure between the phases. To equilibrate with subsaturated vapor, the liquid phase assumes a pressure that is lower than its standard vapor pressure, such that the liquid phase is metastable with respect to the vapor phase. For sufficiently subsaturated vapors, the liquid phase can even assume negative pressures. The appropriate membrane for this metastable equilibrium must provide the necessary mechanical support to sustain the difference in pressure between the two phases, limit nonhomogeneous mechanisms of cavitation, and resist the entry of the dilutant (gases) into the pure phase (liquid). In this article, we present a study of the limit of stability of liquid water--the degree of subsaturation at which the liquid cavitates--in this metastable state within microscale voids embedded in hydrogel membranes. We refer to these structures as vapor-coupled voids (VCVs). In these VCVs, we observed that liquid water cavitated when placed in equilibrium with vapors of activity aw,vapairvapor nuclei, and (iv

  5. Accelerated formation of cubic phases in phosphatidylethanolamine dispersions.

    PubMed Central

    Tenchov, B; Koynova, R; Rapp, G

    1998-01-01

    By means of x-ray diffraction we show that several sodium salts and the disaccharides sucrose and trehalose strongly accelerate the formation of cubic phases in phosphatidylethanolamine (PE) dispersions upon temperature cycling through the lamellar liquid crystalline-inverted hexagonal (Lalpha-HII) phase transition. Ethylene glycol does not have such an effect. The degree of acceleration increases with the solute concentration. Such an acceleration has been observed for dielaidoyl PE (DEPE), dihexadecyl PE, and dipalmitoyl PE. It was investigated in detail for DEPE dispersions. For DEPE (10 wt% of lipid) aqueous dispersions at 1 M solute concentration, 10-50 temperature cycles typically result in complete conversion of the Lalpha phase into cubic phase. Most efficient is temperature cycling executed by laser flash T-jumps. In that case the conversion completes within 10-15 cycles. However, the cubic phases produced by laser T-jumps are less ordered in comparison to the rather regular cubic structures produced by linear, uniform temperature cycling at 10 degrees C/min. Temperature cycles at scan rates of 1-3 degrees C/min also induce the rapid formation of cubic phases. All solutes used induce the formation of Im3m (Q229) cubic phase in 10 wt% DEPE dispersions. The initial Im3m phases appearing during the first temperature cycles have larger lattice parameters that relax to smaller values with continuation of the cycling after the disappearance of the Lalpha phase. A cooperative Im3m --> Pn3m transition takes place at approximately 85 degrees C and transforms the Im3m phase into a mixture of coexisting Pn3m (Q224) and Im3m phases. The Im3m/Pn3m lattice parameter ratio is 1. 28, as could be expected from a representation of the Im3m and Pn3m phases with the primitive and diamond infinite periodic minimal surfaces, respectively. At higher DEPE contents ( approximately 30 wt%), cubic phase formation is hindered after 20-30 temperature cycles. The conversion does not go

  6. A Generalized Eulerian-Lagrangian Analysis, with Application to Liquid Flows with Vapor Bubbles

    NASA Technical Reports Server (NTRS)

    Dejong, Frederik J.; Meyyappan, Meyya

    1993-01-01

    Under a NASA MSFC SBIR Phase 2 effort an analysis has been developed for liquid flows with vapor bubbles such as those in liquid rocket engine components. The analysis is based on a combined Eulerian-Lagrangian technique, in which Eulerian conservation equations are solved for the liquid phase, while Lagrangian equations of motion are integrated in computational coordinates for the vapor phase. The novel aspect of the Lagrangian analysis developed under this effort is that it combines features of the so-called particle distribution approach with those of the so-called particle trajectory approach and can, in fact, be considered as a generalization of both of those traditional methods. The result of this generalization is a reduction in CPU time and memory requirements. Particle time step (stability) limitations have been eliminated by semi-implicit integration of the particle equations of motion (and, for certain applications, the particle temperature equation), although practical limitations remain in effect for reasons of accuracy. The analysis has been applied to the simulation of cavitating flow through a single-bladed section of a labyrinth seal. Models for the simulation of bubble formation and growth have been included, as well as models for bubble drag and heat transfer. The results indicate that bubble formation is more or less 'explosive'. for a given flow field, the number density of bubble nucleation sites is very sensitive to the vapor properties and the surface tension. The bubble motion, on the other hand, is much less sensitive to the properties, but is affected strongly by the local pressure gradients in the flow field. In situations where either the material properties or the flow field are not known with sufficient accuracy, parametric studies can be carried out rapidly to assess the effect of the important variables. Future work will include application of the analysis to cavitation in inducer flow fields.

  7. Conductometric Sensors for Detection of Elemental Mercury Vapor

    NASA Technical Reports Server (NTRS)

    Ryan, M. A.; Homer, M. L.; Shevade, A. V.; Lara, L. M.; Yen, S.-P. S.; Kisor, A. K.; Manatt, K. S.

    2008-01-01

    Several organic and inorganic materials have been tested for possible incorporation into a sensing array in order to add elemental mercury vapor to the suite of chemical species detected. Materials have included gold films, treated gold films, polymer-carbon composite films, gold-polymer-carbon composite films and palladium chloride sintered films. The toxicity of mercury and its adverse effect on human and animal health has made environmental monitoring of mercury in gas and liquid phases important (1,2). As consumer products which contain elemental mercury, such as fluorescent lighting, become more widespread, the need to monitor environments for the presence of vapor phase elemental mercury will increase. Sensors in use today to detect mercury in gaseous streams are generally based on amalgam formation with gold or other metals, including noble metals and aluminum. Recently, NASA has recognized a need to detect elemental mercury vapor in the breathing atmosphere of the crew cabin in spacecraft and has requested that such a capability be incorporated into the JPL Electronic Nose (3). The detection concentration target for this application is 10 parts-per-billion (ppb), or 0.08 mg/m3. In order to respond to the request to incorporate mercury sensing into the JPL Electronic Nose (ENose) platform, it was necessary to consider only conductometric methods of sensing, as any other transduction method would have required redesign of the platform. Any mercury detection technique which could not be incorporated into the existing platform, such as an electrochemical technique, could not be considered.

  8. Vapor-phase concentrations of PAHs and their derivatives determined in a large city: correlations with their atmospheric aerosol concentrations.

    PubMed

    Barrado, Ana Isabel; García, Susana; Sevillano, Marisa Luisa; Rodríguez, Jose Antonio; Barrado, Enrique

    2013-11-01

    Thirteen PAHs, five nitro-PAHs and two hydroxy-PAHs were determined in 55 vapor-phase samples collected in a suburban area of a large city (Madrid, Spain), from January 2008 to February 2009. The data obtained revealed correlations between the concentrations of these compounds and a series of meteorological factors (e.g., temperature, atmospheric pressure) and physical-chemical factors (e.g., nitrogen and sulfur oxides). As a consequence, seasonal trends were observed in the atmospheric pollutants. A "mean sample" for the 14-month period would contain a total PAH concentration of 13835±1625 pg m(-3) and 122±17 pg m(-3) of nitro-PAHs. When the data were stratified by season, it emerged that a representative sample of the coldest months would contain 18900±2140 pg m(-3) of PAHs and 150±97 pg m(-3) of nitro-PAHs, while in an average sample collected in the warmest months, these values drop to 9293±1178 pg m(-3) for the PAHs and to 97±13 pg m(-3) for the nitro-PAHs. Total vapor phase concentrations of PAHs were one order of magnitude higher than concentrations detected in atmospheric aerosol samples collected on the same dates. Total nitro-PAH concentrations were comparable to their aerosol concentrations whereas vapor phase OH-PAHs were below their limits of the detection, indicating these were trapped in airborne particles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Flexible, Low-Power Thin-Film Transistors Made of Vapor-Phase Synthesized High-k, Ultrathin Polymer Gate Dielectrics.

    PubMed

    Choi, Junhwan; Joo, Munkyu; Seong, Hyejeong; Pak, Kwanyong; Park, Hongkeun; Park, Chan Woo; Im, Sung Gap

    2017-06-21

    A series of high-k, ultrathin copolymer gate dielectrics were synthesized from 2-cyanoethyl acrylate (CEA) and di(ethylene glycol) divinyl ether (DEGDVE) monomers by a free radical polymerization via a one-step, vapor-phase, initiated chemical vapor deposition (iCVD) method. The chemical composition of the copolymers was systematically optimized by tuning the input ratio of the vaporized CEA and DEGDVE monomers to achieve a high dielectric constant (k) as well as excellent dielectric strength. Interestingly, DEGDVE was nonhomopolymerizable but it was able to form a copolymer with other kinds of monomers. Utilizing this interesting property of the DEGDVE cross-linker, the dielectric constant of the copolymer film could be maximized with minimum incorporation of the cross-linker moiety. To our knowledge, this is the first report on the synthesis of a cyanide-containing polymer in the vapor phase, where a high-purity polymer film with a maximized dielectric constant was achieved. The dielectric film with the optimized composition showed a dielectric constant greater than 6 and extremely low leakage current densities (<3 × 10 -8 A/cm 2 in the range of ±2 MV/cm), with a thickness of only 20 nm, which is an outstanding thickness for down-scalable cyanide polymer dielectrics. With this high-k dielectric layer, organic thin-film transistors (OTFTs) and oxide TFTs were fabricated, which showed hysteresis-free transfer characteristics with an operating voltage of less than 3 V. Furthermore, the flexible OTFTs retained their low gate leakage current and ideal TFT characteristics even under 2% applied tensile strain, which makes them some of the most flexible OTFTs reported to date. We believe that these ultrathin, high-k organic dielectric films with excellent mechanical flexibility will play a crucial role in future soft electronics.

  10. An evaluation of the vapor phase catalytic ammonia removal process for use in a Mars transit vehicle.

    PubMed

    Flynn, M; Borchers, B

    1998-01-01

    This article describes the design specification of the Vapor Phase Catalytic Ammonia Removal (VPCAR) process and the relative benefits of its utilization in a Mars Transit Vehicle application. The VPCAR process is a wastewater treatment technology that combines distillation with high-temperature catalytic oxidation of volatile impurities such as ammonia and organic compounds.

  11. Penicillium expansum Inhibition on Bread by Lemongrass Essential Oil in Vapor Phase.

    PubMed

    Mani López, Emma; Valle Vargas, Georgina P; Palou, Enrique; López Malo, Aurelio

    2018-02-23

    The antimicrobial activity of lemongrass ( Cymbopogon citratus) essential oil (EO) in the vapor phase on the growth of Penicillium expansum inoculated on bread was evaluated, followed by a sensory evaluation of the bread's attributes after EO exposure. The lemongrass EO was extracted from dry leaves of lemongrass by microwave-assisted steam distillation. The chemical composition of the lemongrass EO was determined using a gas chromatograph coupled to a mass spectrometer. The refractive index and specific gravity of the EO were also determined. Bread was prepared and baked to reach two water activity levels, 0.86 or 0.94, and then 10 μL of P. expansum spore (10 6 spores per mL) suspension was inoculated on the bread surface. Concentrations of lemongrass EO were tested from 125 to 4,000 μL/L air , whereas mold radial growth was measured for 21 days. For sensory evaluation, breads were treated with lemongrass EO vapor at 0, 500, or 1,000 μL/L air for 48 h and tested by 25 untrained panelists. The EO yield was 1.8%, with similar physical properties to those reported previously. Thirteen compounds were the main components in the EO, with citral being the major compound. P. expansum was inhibited for 21 days at 20°C with 750 μL of EO/L air , and its inhibition increased with increasing concentrations of EO. Sensory acceptance of bread exposed to vapor concentrations of 500 or 1,000 μL of EO/L air or without EO was favorable; similar and no significant differences ( P > 0.05) were observed among them.

  12. Vapor phase growth technique of III-V compounds utilizing a preheating step

    NASA Technical Reports Server (NTRS)

    Olsen, Gregory Hammond (Inventor); Zamerowski, Thomas Joseph (Inventor); Buiocchi, Charles Joseph (Inventor)

    1978-01-01

    In the vapor phase epitaxy fabrication of semiconductor devices and in particular semiconductor lasers, the deposition body on which a particular layer of the laser is to be grown is preheated to a temperature about 40.degree. to 60.degree. C. lower than the temperature at which deposition occurs. It has been discovered that by preheating at this lower temperature there is reduced thermal decomposition at the deposition surface, especially for semiconductor materials such as indium gallium phosphide and gallium arsenide phosphide. A reduction in thermal decomposition reduces imperfections in the deposition body in the vicinity of the deposition surface, thereby providing a device with higher efficiency and longer lifetime.

  13. In Situ Water Vapor Measurements Using Coupled UV Fragment Fluorescence/Absorption Spectroscopy in Support of CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Anderson, James G.

    2004-01-01

    Understanding the coupling of dynamics, chemistry, and radiation within the context of the NASA Earth Science Enterprise (ESE) and the national Climate Change Science Program (CCSP) requires, as a first-order priority, high spatial resolution, high-accuracy observations of water in its various phases. Given the powerful diagnostic importance of the condensed phases of water for dynamics and the impact of phase changes in water on the radiation field, the accurate, in situ observation of water vapor is of central importance to CRYSTAL FACE (CF). This is clear both from the defined scientific objectives of the NRA and from developments in the coupled fields of stratosphere/troposphere exchange, cirrus cloud formation/removal and mechanisms for the distribution of water vapor in the middle/upper troposphere. Accordingly, we were funded under NASA Grant NAG5-11548 to perform the following tasks for the CF mission: 1. Prepare the water vapor instrument for integration into the WB57F and test flights scheduled for Spring 2002. 2. Calibrate and prepare the water vapor instrument for the Summer 2002 CF science flights based in Jacksonville, Florida. 3. Provide both science and engineering support for the above-mentioned efforts. 4. Analyze and interpret the CF data in collaboration with other mission scientists. 5. Attend the science workshop in Spring 2003. 6. Publish the data and analysis in peer-reviewed journals.

  14. Selective detection of vapor phase hydrogen peroxide with phthalocyanine chemiresistors.

    PubMed

    Bohrer, Forest I; Colesniuc, Corneliu N; Park, Jeongwon; Schuller, Ivan K; Kummel, Andrew C; Trogler, William C

    2008-03-26

    The use of hydrogen peroxide as a precursor to improvised explosives has made its detection a topic of critical importance. Chemiresistor arrays comprised of 50 nm thick films of metallophthalocyanines (MPcs) are redox selective vapor sensors of hydrogen peroxide. Hydrogen peroxide is shown to decrease currents in cobalt phthalocyanine sensors while it increases currents in nickel, copper, and metal-free phthalocyanine sensors; oxidation and reduction of hydrogen peroxide via catalysis at the phthalocyanine surface are consistent with the pattern of sensor responses. This represents the first example of MPc vapor sensors being oxidized and reduced by the same analyte by varying the metal center. Consequently, differential analysis by redox contrast with catalytic amplification using a small array of sensors may be used to uniquely identify peroxide vapors. Metallophthalocyanine chemiresistors represent an improvement over existing peroxide vapor detection technologies in durability and selectivity in a greatly decreased package size.

  15. Minimizing artifact formation in magnetorheological finishing of chemical vapor deposition ZnS flats.

    PubMed

    Kozhinova, Irina A; Romanofsky, Henry J; Maltsev, Alexander; Jacobs, Stephen D; Kordonski, William I; Gorodkin, Sergei R

    2005-08-01

    The polishing performance of magnetorheological (MR) fluids prepared with a variety of magnetic and nonmagnetic ingredients was studied on four types of initial surface for chemical vapor deposition (CVD) ZnS flats from domestic and foreign sources. The results showed that it was possible to greatly improve smoothing performance of magnetorheological finishing (MRF) by altering the fluid composition, with the best results obtained for nanoalumina abrasive used with soft carbonyl iron and altered MR fluid chemistry. Surface roughness did not exceed 20 nm peak to valley and 2 nm rms after removal of 2 microm of material. The formation of orange peel and the exposure of a pebblelike structure inherent in ZnS from the CVD process were suppressed.

  16. Nanoscale heat transfer and phase transformation surrounding intensely heated nanoparticles

    NASA Astrophysics Data System (ADS)

    Sasikumar, Kiran

    Over the last decade there has been significant ongoing research to use nanoparticles for hyperthermia-based destruction of cancer cells. In this regard, the investigation of highly non-equilibrium thermal systems created by ultrafast laser excitation is a particularly challenging and important aspect of nanoscale heat transfer. It has been observed experimentally that noble metal nanoparticles, illuminated by radiation at the plasmon resonance wavelength, can act as localized heat sources at nanometer-length scales. Achieving biological response by delivering heat via nanoscale heat sources has also been demonstrated. However, an understanding of the thermal transport at these scales and associated phase transformations is lacking. A striking observation made in several laser-heating experiments is that embedded metal nanoparticles heated to extreme temperatures may even melt without an associated boiling of the surrounding fluid. This unusual phase stability is not well understood and designing experiments to understand the physics of this phenomenon is a challenging task. In this thesis, we will resort to molecular dynamics (MD) simulations, which offer a powerful tool to investigate this phenomenon, without assumptions underlying continuum-level model formulations. We present the results from a series of steady state and transient non-equilibrium MD simulations performed on an intensely heated nanoparticle immersed in a model liquid. For small nanoparticles (1-10 nm in diameter) we observe a stable liquid phase near the nanoparticle surface, which can be at a temperature well above the boiling point. Furthermore, we report the existence of a critical nanoparticle size (4 nm in diameter) below which we do not observe formation of vapor even when local fluid temperatures exceed the critical temperature. Instead, we report the existence of a stable fluid region with a density much larger than that of the vapor phase. We explain this stability in terms of the

  17. Gel phase formation in dilute triblock copolyelectrolyte complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chainmore » aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.« less

  18. Gel phase formation in dilute triblock copolyelectrolyte complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chainmore » aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Finally, our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.« less

  19. Gel phase formation in dilute triblock copolyelectrolyte complexes

    DOE PAGES

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.; ...

    2017-02-23

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chainmore » aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Finally, our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.« less

  20. Gel Phase Formation in Dilute Triblock Copolyelectrolyte Complexes

    NASA Astrophysics Data System (ADS)

    Srivastava, Samanvaya; Andreev, Marat; Prabhu, Vivek; de Pablo, Juan; Tirrell, Matthew

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at extremely low polymer concentrations (<1 % by mass) has been observed in scattering experiments and molecular dynamics simulations. In contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing polymer concentrations, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assemblies of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously upon solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chain aggregates in early stages of triblock copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries not only contribute to our fundamental understanding of the structure and pathways of complexation driven assemblies, but also raise intriguing prospects for formation of gel structures at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.

  1. Gel phase formation in dilute triblock copolyelectrolyte complexes

    NASA Astrophysics Data System (ADS)

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.; Goldfeld, David J.; Mao, Jun; Heller, William T.; Prabhu, Vivek M.; de Pablo, Juan J.; Tirrell, Matthew V.

    2017-02-01

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chain aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.

  2. Vaporization and atomization of uranium in a graphite tube electrothermal vaporizer: a mechanistic study using electrothermal vaporization inductively coupled plasma mass spectrometry and graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Goltz, D. M.; Grégoire, D. C.; Byrne, J. P.; Chakrabarti, C. L.

    1995-07-01

    The mechanism of vaporization and atomization of U in a graphite tube electrothermal vaporizer was studied using graphite furnace atomic absorption spectrometry (GFAAS) and electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS). Graphite furnace AAS studies indicate U atoms are formed at temperatures above 2400°C. Using ETV-ICP-MS, an appearance temperature of 1100°C was obtained indicating that some U vaporizes as U oxide. Although U carbides form at temperatures above 2000°C, ETV-ICP-MS studies show that they do not vaporize until 2600°C. In the temperature range between 2200°C and 2600°C, U atoms in GFAAS are likely formed by thermal dissociation of U oxide, whereas at higher temperatures, U atoms are formed via thermal dissociation of U carbide. The origin of U signal suppression in ETV-ICP-MS by NaCl was also investigated. At temperatures above 2000°C, signal suppression may be caused by the accelerated rate of formation of carbide species while at temperatures below 2000°C, the presence of NaCl may cause intercalation of the U in the graphite layers resulting in partial retention of U during the vaporization step. The use of 0.3% freon-23 (CHF 3) mixed with the argon carrier gas was effective in preventing the intercalation of U in graphite and U carbide formation at 2700°C.

  3. Student Understanding of Liquid-Vapor Phase Equilibrium

    ERIC Educational Resources Information Center

    Boudreaux, Andrew; Campbell, Craig

    2012-01-01

    Student understanding of the equilibrium coexistence of a liquid and its vapor was the subject of an extended investigation. Written assessment questions were administered to undergraduates enrolled in introductory physics and chemistry courses. Responses have been analyzed to document conceptual and reasoning difficulties in sufficient detail to…

  4. Formation of metastable phases by spinodal decomposition

    PubMed Central

    Alert, Ricard; Tierno, Pietro; Casademunt, Jaume

    2016-01-01

    Metastable phases may be spontaneously formed from other metastable phases through nucleation. Here we demonstrate the spontaneous formation of a metastable phase from an unstable equilibrium by spinodal decomposition, which leads to a transient coexistence of stable and metastable phases. This phenomenon is generic within the recently introduced scenario of the landscape-inversion phase transitions, which we experimentally realize as a structural transition in a colloidal crystal. This transition exhibits a rich repertoire of new phase-ordering phenomena, including the coexistence of two equilibrium phases connected by two physically different interfaces. In addition, this scenario enables the control of sizes and lifetimes of metastable domains. Our findings open a new setting that broadens the fundamental understanding of phase-ordering kinetics, and yield new prospects of applications in materials science. PMID:27713406

  5. Hydride vapor phase epitaxy of AlN using a high temperature hot-wall reactor

    NASA Astrophysics Data System (ADS)

    Baker, Troy; Mayo, Ashley; Veisi, Zeinab; Lu, Peng; Schmitt, Jason

    2014-10-01

    Aluminum nitride (AlN) was grown on c-plane sapphire substrates by hydride vapor phase epitaxy (HVPE). The experiments utilized a two zone inductively heated hot-wall reactor. The surface morphology, crystal quality, and growth rate were investigated as a function of growth temperature in the range of 1450-1575 °C. AlN templates grown to a thickness of 1 μm were optimized with double axis X-ray diffraction (XRD) rocking curve full width half maximums (FWHMs) of 135″ for the (002) and 513″ for the (102).

  6. Vapor pressures, thermodynamic stability, and fluorescence properties of three 2,6-alkyl naphthalenes.

    PubMed

    Santos, Ana Filipa L O M; Oliveira, Juliana A S A; Ribeiro da Silva, Maria D M C; Monte, Manuel J S

    2016-03-01

    This work reports the experimental determination of relevant thermodynamic properties and the characterization of luminescence properties of the following polycyclic aromatic hydrocarbons (PAHs): 2,6-diethylnaphthalene, 2,6-diisopropylnaphthalene and 2,6-di-tert-butylnaphthalene. The standard (p(o) = 0.1 MPa) molar enthalpies of combustion, ΔcHm(o), of the three compounds were determined using static bomb combustion calorimetry. The vapor pressures of the crystalline phase of 2,6-diisopropylnaphthalene and 2,6-di-tert-butylnaphthalene were measured at different temperatures using the Knudsen effusion method and the vapor pressures of both liquid and crystalline phases of 2,6-diethylnaphthalene were measured by means of a static method. The temperatures and the molar enthalpies of fusion of the three compounds were determined using differential scanning calorimetry. The gas-phase molar heat capacities and absolute entropies of the three 2,6-dialkylnaphthalenes studied were determined computationally. The thermodynamic stability of the compounds in both the crystalline and gaseous phases was evaluated by the determination of the Gibbs energies of formation and compared with the ones reported in the literature for 2,6-dimethylnaphthalene. From fluorescence spectroscopy measurements, the optical properties of the compounds studied and of naphthalene were evaluated in solution and in the solid state. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Chirality-Controlled Growth of Single-Wall Carbon Nanotubes Using Vapor Phase Epitaxy: Mechanistic Understanding and Scalable Production

    DTIC Science & Technology

    2016-09-15

    controlled synthesis of single-wall carbon nanotubes. Firstly, we have successfully demonstrated a vapor-phase-epitaxy-analogous general strategy for...preselected chirality. Moreover, we carried out systematic investigations of the chirality-dependent growth kinetics and termination mechanism for the... generally believed that the diameters of the nanotubes are determined by the size of the catalytic metal particles. Unfortunately, attempts to control

  8. Vaporization chemistry of hypo-stoichiometric (U,Pu)O 2

    NASA Astrophysics Data System (ADS)

    Viswanathan, R.; Krishnaiah, M. V.

    2001-04-01

    Calculations were performed on hypo-stoichiometric uranium plutonium di-oxide to examine its vaporization behavior as a function of O/ M ( M= U+ Pu) ratio and plutonium content. The phase U (1- y) Pu yO z was treated as an ideal solid solution of (1- y)UO 2+ yPuO (2- x) such that x=(2- z)/ y. Oxygen potentials for different desired values of y, z, and temperature were used as the primary input to calculate the corresponding partial pressures of various O-, U-, and Pu-bearing gaseous species. Relevant thermodynamic data for the solid phases UO 2 and PuO (2- x) , and the gaseous species were taken from the literature. Total vapor pressure varies with O/M and goes through a minimum. This minimum does not indicate a congruently vaporizing composition. Vaporization behavior of this system can at best be quasi-congruent. Two quasi-congruently vaporizing compositions (QCVCs) exist, representing the equalities (O/M) vapor=(O/M) mixed-oxide and (U/Pu) vapor=(U/Pu) mixed-oxide, respectively. The (O/M) corresponding to QCVC1 is lower than that corresponding to QCVC2, but very close to the value where vapor pressure minimum occurs. The O/M values of both QCVCs increase with decrease in plutonium content. The vaporization chemistry of this system, on continuous vaporization under dynamic condition, is discussed.

  9. Thermodynamic analysis of vapor-phase epitaxy of CdTe using a metallic Cd source

    NASA Astrophysics Data System (ADS)

    Iso, Kenji; Murakami, Hisashi; Koukitu, Akinori

    2017-07-01

    Thermodynamic analysis of CdTe growth using cost-effective metallic Cd and dialkyl telluride was performed. The major vapor species at source zone in equilibrium were gaseous Cd for the group-II precursor, and Te2 and H2Te for the group-VI precursors. The driving force for the CdTe deposition was still positive even at 650 °C. This indicates that CdTe formation from gaseous Cd can proceed thermodynamically. Furthermore, the calculations showed that CdTe decomposes at higher temperature and increasing the II/VI ratio increases the limit of the growth temperature, which coincides with the experimental results.

  10. Experimental formation enthalpies for intermetallic phases and other inorganic compounds

    PubMed Central

    Kim, George; Meschel, S. V.; Nash, Philip; Chen, Wei

    2017-01-01

    The standard enthalpy of formation of a compound is the energy associated with the reaction to form the compound from its component elements. The standard enthalpy of formation is a fundamental thermodynamic property that determines its phase stability, which can be coupled with other thermodynamic data to calculate phase diagrams. Calorimetry provides the only direct method by which the standard enthalpy of formation is experimentally measured. However, the measurement is often a time and energy intensive process. We present a dataset of enthalpies of formation measured by high-temperature calorimetry. The phases measured in this dataset include intermetallic compounds with transition metal and rare-earth elements, metal borides, metal carbides, and metallic silicides. These measurements were collected from over 50 years of calorimetric experiments. The dataset contains 1,276 entries on experimental enthalpy of formation values and structural information. Most of the entries are for binary compounds but ternary and quaternary compounds are being added as they become available. The dataset also contains predictions of enthalpy of formation from first-principles calculations for comparison. PMID:29064466

  11. Enzymatic oxidation of ethanol in the gaseous phase.

    PubMed

    Barzana, E; Karel, M; Klibanov, A M

    1989-11-01

    The enzymatic conversion of gaseous substrates represents a novel concept in bioprocessing. A critical parameter in such systems is the water activity, A(w) The present article reports the effect of A(w) on the catalytic performance of alcohol oxidase acting on ethanol vapors. Enzyme activity in the gas-phase reaction increases several orders of magnitude, whereas the thermostability decreases drastically when A(w) is increased from 0.11 to 0.97. The enzyme is active on gaseous substrates even at hydration levels below the monolayer coverage. Enhanced thermostability at lower hydrations results in an increase in the optimum temperature of the gas-phase reaction catalyzed by alcohol oxidase. The apparent activation energy decreases as A(w) increases, approaching the value obtained for the enzyme in aqueous solution. The formation of a pread-sorbed ethanol phase on the surface of the support is not a prerequisite for the reaction, suggesting that the reaction occurs by direct interaction of the gaseous substrate with the enzyme. The gas-phase reaction follows Michaelis-Menten kinetics, with a K(m) value almost 100 times lower than that in aqueous solution. Based on vapor-liquid equilibrium data and observed K(m) values, it is postulated that during the gas-phase reaction the ethanol on the enzyme establishes an equilibrium with the ethanol vapor similar to that between ethanol in water and ethanol in the gas phase.

  12. Local Cloudiness Development Forecast Based on Simulation of Solid Phase Formation Processes in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Barodka, Siarhei; Kliutko, Yauhenia; Krasouski, Alexander; Papko, Iryna; Svetashev, Alexander; Turishev, Leonid

    2013-04-01

    Nowadays numerical simulation of thundercloud formation processes is of great interest as an actual problem from the practical point of view. Thunderclouds significantly affect airplane flights, and mesoscale weather forecast has much to contribute to facilitate the aviation forecast procedures. An accurate forecast can certainly help to avoid aviation accidents due to weather conditions. The present study focuses on modelling of the convective clouds development and thunder clouds detection on the basis of mesoscale atmospheric processes simulation, aiming at significantly improving the aeronautical forecast. In the analysis, the primary weather radar information has been used to be further adapted for mesoscale forecast systems. Two types of domains have been selected for modelling: an internal one (with radius of 8 km), and an external one (with radius of 300 km). The internal domain has been directly applied to study the local clouds development, and the external domain data has been treated as initial and final conditions for cloud cover formation. The domain height has been chosen according to the civil aviation forecast data (i.e. not exceeding 14 km). Simulations of weather conditions and local clouds development have been made within selected domains with the WRF modelling system. In several cases, thunderclouds are detected within the convective clouds. To specify the given category of clouds, we employ a simulation technique of solid phase formation processes in the atmosphere. Based on modelling results, we construct vertical profiles indicating the amount of solid phase in the atmosphere. Furthermore, we obtain profiles demonstrating the amount of ice particles and large particles (hailstones). While simulating the processes of solid phase formation, we investigate vertical and horizontal air flows. Consequently, we attempt to separate the total amount of solid phase into categories of small ice particles, large ice particles and hailstones. Also, we

  13. Growth kinetics and mass transport mechanisms of GaN columns by selective area metal organic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Wang, Xue; Hartmann, Jana; Mandl, Martin; Sadat Mohajerani, Matin; Wehmann, Hergo-H.; Strassburg, Martin; Waag, Andreas

    2014-04-01

    Three-dimensional GaN columns recently have attracted a lot of attention as the potential basis for core-shell light emitting diodes for future solid state lighting. In this study, the fundamental insights into growth kinetics and mass transport mechanisms of N-polar GaN columns during selective area metal organic vapor phase epitaxy on patterned SiOx/sapphire templates are systematically investigated using various pitch of apertures, growth time, and silane flow. Species impingement fluxes on the top surface of columns Jtop and on their sidewall Jsw, as well as, the diffusion flux from the substrate Jsub contribute to the growth of the GaN columns. The vertical and lateral growth rates devoted by Jtop, Jsw and Jsub are estimated quantitatively. The diffusion length of species on the SiOx mask surface λsub as well as on the sidewall surfaces of the 3D columns λsw are determined. The influences of silane on the growth kinetics are discussed. A growth model is developed for this selective area metal organic vapor phase epitaxy processing.

  14. Portable vapor diffusion coefficient meter

    DOEpatents

    Ho, Clifford K [Albuquerque, NM

    2007-06-12

    An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.

  15. Composition, diffusion, and antifungal activity of black mustard (Brassica nigra) essential oil when applied by direct addition or vapor phase contact.

    PubMed

    Mejía-Garibay, Beatriz; Palou, Enrique; López-Malo, Aurelio

    2015-04-01

    In this study, we characterized the essential oil (EO) of black mustard (Brassica nigra) and quantified its antimicrobial activity, when applied by direct contact into the liquid medium or by exposure in the vapor phase (in laboratory media or in a bread-type product), against the growth of Aspergillus niger, Aspergillus ochraceus, or Penicillium citrinum. Allyl-isothiocyanate (AITC) was identified as the major component of B. nigra EO with a concentration of 378.35 mg/ml. When B. nigra EO was applied by direct contact into the liquid medium, it inhibited the growth of A. ochraceus and P. citrinum when the concentration was 2 μl/ml of liquid medium (MIC), while for A. niger, a MIC of B. nigra EO was 4 μl/ml of liquid medium. Exposure of molds to B. nigra EO in vapor phase showed that 41.1 μl of B. nigra EO per liter of air delayed the growth of P. citrinum and A. niger by 10 days, while A. ochraceus growth was delayed for 20 days. Exposure to concentrations ≥ 47 μl of B. nigra EO per liter of air (MIC) inhibited the growth of tested molds by 30 days, and they were not able to recover after further incubation into an environment free of EO (fungicidal effect). Adsorbed AITC was quantified by exposing potato dextrose agar to B. nigra EO in a vapor phase, exhibiting that AITC was retained at least 5 days when testing EO at its MIC or with higher concentrations. Mustard EO MIC was also effective against the evaluated molds inhibiting their growth for 30 days in a bread-type product when exposed to EO by vapor contact, demonstrating its antifungal activity.

  16. Vapor-phase polymerization of poly(3, 4-ethylenedioxythiophene) nanofibers on carbon cloth as electrodes for flexible supercapacitors.

    PubMed

    Zhao, Xin; Dong, Mengyang; Zhang, Junxian; Li, Yingzhi; Zhang, Qinghua

    2016-09-23

    In this study, an evaporative vapor-phase polymerization approach was employed to fabricate vertically aligned poly(3, 4-ethylenedioxythiophene) (PEDOT) nanofibers on the surface of carbon cloth (CC). Optimized reaction conditions can obtain well distributed and uniform layers of high-aspect-ratio PEDOT nanofibers on CC. The hierarchical PEDOT/CC structure as a freestanding electrode exhibits good electrochemical properties. As a flexible symmetric supercapacitor, the PEDOT/CC hybrid electrode displays a specific areal capacitance of 201.4 mF cm(-2) at 1 mA cm(-2), good flexibility with a higher value (204.6 mF cm(-2)) in the bending state, and a good cycling stability of 92.4% after 1000 cycles. Moreover, the device shows a maximum energy density of 4.0 Wh kg(-1) (with a power density of 3.2 kW kg(-1)) and a maximum power density of 4.2 kW kg(-1) (with an energy density of 3.1 Wh kg(-1)). The results demonstrate that PEDOT may be a promising material for storage devices through a simple and efficient vapor-phase polymerization process with precisely controlled reaction conditions.

  17. Vapor-phase polymerization of poly(3, 4-ethylenedioxythiophene) nanofibers on carbon cloth as electrodes for flexible supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Dong, Mengyang; Zhang, Junxian; Li, Yingzhi; Zhang, Qinghua

    2016-09-01

    In this study, an evaporative vapor-phase polymerization approach was employed to fabricate vertically aligned poly(3, 4-ethylenedioxythiophene) (PEDOT) nanofibers on the surface of carbon cloth (CC). Optimized reaction conditions can obtain well distributed and uniform layers of high-aspect-ratio PEDOT nanofibers on CC. The hierarchical PEDOT/CC structure as a freestanding electrode exhibits good electrochemical properties. As a flexible symmetric supercapacitor, the PEDOT/CC hybrid electrode displays a specific areal capacitance of 201.4 mF cm-2 at 1 mA cm-2, good flexibility with a higher value (204.6 mF cm-2) in the bending state, and a good cycling stability of 92.4% after 1000 cycles. Moreover, the device shows a maximum energy density of 4.0 Wh kg-1 (with a power density of 3.2 kW kg-1) and a maximum power density of 4.2 kW kg-1 (with an energy density of 3.1 Wh kg-1). The results demonstrate that PEDOT may be a promising material for storage devices through a simple and efficient vapor-phase polymerization process with precisely controlled reaction conditions.

  18. Tunnel Junction Development Using Hydride Vapor Phase Epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ptak, Aaron J.; Simon, John D.; Schulte, Kevin L.

    We demonstrate for the first time III-V tunnel junctions grown using hydride vapor phase epitaxy (HVPE) with peak tunneling currents >8 A/cm 2, sufficient for operation of a multijunction device to several hundred suns of concentration. Multijunction solar cells rely on tunneling interconnects between subcells to enable series connection with minimal voltage loss, but tunnel junctions have never been shown using the HVPE growth method. HVPE has recently reemerged as a low-cost growth method for high-quality III-V materials and devices, including the growth of high-efficiency III-V solar cells. We previously showed single-junction GaAs solar cells with conversion efficiencies of ~24%more » with a path forward to equal or exceed the practical efficiency limits of crystalline Si. Moving to a multijunction device structure will allow for even higher efficiencies with minimal impact on cost, necessitating the development of tunnel interconnects. Here in this paper, we demonstrate the performance of both isolated HVPE-grown tunnel junctions, as well as single-junction GaAs solar cell structures with a tunnel junction incorporated into the contact region. We observe no degradation in device performance compared to a structure without the added junction.« less

  19. Tunnel Junction Development Using Hydride Vapor Phase Epitaxy

    DOE PAGES

    Ptak, Aaron J.; Simon, John D.; Schulte, Kevin L.; ...

    2017-10-18

    We demonstrate for the first time III-V tunnel junctions grown using hydride vapor phase epitaxy (HVPE) with peak tunneling currents >8 A/cm 2, sufficient for operation of a multijunction device to several hundred suns of concentration. Multijunction solar cells rely on tunneling interconnects between subcells to enable series connection with minimal voltage loss, but tunnel junctions have never been shown using the HVPE growth method. HVPE has recently reemerged as a low-cost growth method for high-quality III-V materials and devices, including the growth of high-efficiency III-V solar cells. We previously showed single-junction GaAs solar cells with conversion efficiencies of ~24%more » with a path forward to equal or exceed the practical efficiency limits of crystalline Si. Moving to a multijunction device structure will allow for even higher efficiencies with minimal impact on cost, necessitating the development of tunnel interconnects. Here in this paper, we demonstrate the performance of both isolated HVPE-grown tunnel junctions, as well as single-junction GaAs solar cell structures with a tunnel junction incorporated into the contact region. We observe no degradation in device performance compared to a structure without the added junction.« less

  20. Prediction of the vapor pressure and vaporization enthalpy of 1-n-alkyl-3-methylimidazolium-bis-(trifluoromethanesulfonyl) amide ionic liquids.

    PubMed

    Diedenhofen, Michael; Klamt, Andreas; Marsh, Kenneth; Schäfer, Ansgar

    2007-09-07

    The vapor pressures and vaporization enthalpies of a series of 1-n-alkyl-3-methylimidazolium-bis-(trifluoromethanesulfonyl) amide ionic liquids have been predicted with two different approaches using the COSMO-RS method and quantum chemical gas phase calculations. While the calculated enthalpies are in good agreement with the experimental data, COSMO-RS seems to underestimate the vapor pressures by roughly 0.5-4 log units dependent on the IL and approach used.

  1. Lithium vapor/aerosol studies. Interim summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitlow, G.A.; Bauerle, J.E.; Down, M.G.

    1979-04-01

    The temperature/cover gas pressure regime, in which detectable lithium aerosol is formed in a static system has been mapped for argon and helium cover gases using a portable He--Ne laser device. At 538/sup 0/C (1000/sup 0/F), lithium aerosol particles were observed over the range 0.5 to 20 torr and 2 to 10 torr for argon and helium respectively. The experimental conditions in this study were more conducive to aerosol formation than in a fusion reactor. In the real reactor system, very high intensity mechanical and thermal disturbances will be made to the liquid lithium. These disturbances, particularly transient increases inmore » lithium vapor pressure appear to be capable of producing high concentrations of optically-dense aerosol. A more detailed study is, therefore, proposed using the basic information generated in these preliminary experiments, as a starting point. Areas recommended include the kinetics of aerosol formation and the occurrence of supersaturated vapor during rapid vapor pressure transients, and also the effect of lithium agitation (falls, jets, splashing, etc.) on aerosol formation.« less

  2. Numerical Modeling of Liquid-Vapor Phase Change

    NASA Technical Reports Server (NTRS)

    Esmaeeli, Asghar; Arpaci, Vedat S.

    2001-01-01

    We implemented a two- and three-dimensional finite difference/front tracking technique to solve liquid-vapor phase change problems. The mathematical and the numerical features of the method were explained in great detail in our previous reports, Briefly, we used a single formula representation which incorporated jump conditions into the governing equations. The interfacial terms were distributed as singular terms using delta functions so that the governing equations would be the same as conventional conservation equations away from the interface and in the vicinity of the interface they would provide correct jump conditions. We used a fixed staggered grid to discretize these equations and an unstructured grid to explicitly track the front. While in two dimensions the front was simply a connection of small line segments, in three dimensions it was represented by a connection of small triangular elements. The equations were written in conservative forms and during the course of computations we used regriding to control the size of the elements of the unstructured grid. Moreover, we implemented a coalescence in two dimensions which allowed the merging of different fronts or two segments of the same front when they were sufficiently close. We used our code to study thermocapillary migration of bubbles, burst of bubbles at a free surface, buoyancy-driven interactions of bubbles, evaporation of drops, rapid evaporation of an interface, planar solidification of an undercooled melt, dendritic solidification, and a host of other problems cited in the reference.

  3. The Vapor-phase Multi-stage CMD Test for Characterizing Contaminant Mass Discharge Associated with VOC Sources in the Vadose Zone: Application to Three Sites in Different Lifecycle Stages of SVE Operations

    PubMed Central

    Brusseau, M.L.; Mainhagu, J.; Morrison, C.; Carroll, K.C.

    2015-01-01

    Vapor-phase multi-stage contaminant mass discharge (CMD) tests were conducted at three field sites to measure mass discharge associated with contaminant sources located in the vadose zone. The three sites represent the three primary stages along the soil vapor extraction (SVE) operations lifecycle- pre/initial-SVE, mid-lifecycle, and near-closure. A CMD of 32 g/d was obtained for a site at which soil vapor SVE has been in operation for approximately 6 years, and for which mass removal is currently in the asymptotic stage. The contaminant removal behavior exhibited for the vapor extractions conducted at this site suggests that there is unlikely to be a significant mass of non-vapor-phase contaminant (e.g., DNAPL, sorbed phase) remaining in the advective domains, and that most remaining mass is likely located in poorly accessible domains. Given the conditions for this site, this remaining mass is hypothesized to be associated with the low-permeability (and higher water saturation) region in the vicinity of the saturated zone and capillary fringe. A CMD of 25 g/d was obtained for a site wherein SVE has been in operation for several years but concentrations and mass-removal rates are still relatively high. A CMD of 270 g/d was obtained for a site for which there were no prior SVE operations. The behavior exhibited for the vapor extractions conducted at this site suggest that non-vapor-phase contaminant mass (e.g., DNAPL) may be present in the advective domains. Hence, the asymptotic conditions observed for this site most likely derive from a combination of rate-limited mass transfer from DNAPL (and sorbed) phases present in the advective domain as well as mass residing in lower-permeability (“non-advective”) regions. The CMD values obtained from the tests were used in conjunction with a recently developed vapor-discharge tool to evaluate the impact of the measured CMDs on groundwater quality. PMID:26047819

  4. The vapor-phase multi-stage CMD test for characterizing contaminant mass discharge associated with VOC sources in the vadose zone: Application to three sites in different lifecycle stages of SVE operations.

    PubMed

    Brusseau, M L; Mainhagu, J; Morrison, C; Carroll, K C

    2015-08-01

    Vapor-phase multi-stage contaminant mass discharge (CMD) tests were conducted at three field sites to measure mass discharge associated with contaminant sources located in the vadose zone. The three sites represent the three primary stages of the soil vapor extraction (SVE) operations lifecycle-pre/initial-SVE, mid-lifecycle, and near-closure. A CMD of 32g/d was obtained for a site at which soil vapor SVE has been in operation for approximately 6years, and for which mass removal is currently in the asymptotic stage. The contaminant removal behavior exhibited for the vapor extractions conducted at this site suggests that there is unlikely to be a significant mass of non-vapor-phase contaminant (e.g., DNAPL, sorbed phase) remaining in the advective domains, and that most remaining mass is likely located in poorly accessible domains. Given the conditions for this site, this remaining mass is hypothesized to be associated with the low-permeability (and higher water saturation) region in the vicinity of the saturated zone and capillary fringe. A CMD of 25g/d was obtained for a site wherein SVE has been in operation for several years but concentrations and mass-removal rates are still relatively high. A CMD of 270g/d was obtained for a site for which there were no prior SVE operations. The behavior exhibited for the vapor extractions conducted at this site suggest that non-vapor-phase contaminant mass (e.g., DNAPL) may be present in the advective domains. Hence, the asymptotic conditions observed for this site most likely derive from a combination of rate-limited mass transfer from DNAPL (and sorbed) phases present in the advective domain as well as mass residing in lower-permeability ("non-advective") regions. The CMD values obtained from the tests were used in conjunction with a recently developed vapor-discharge tool to evaluate the impact of the measured CMDs on groundwater quality. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Piezoelectric trace vapor calibrator

    NASA Astrophysics Data System (ADS)

    Verkouteren, R. Michael; Gillen, Greg; Taylor, David W.

    2006-08-01

    The design and performance of a vapor generator for calibration and testing of trace chemical sensors are described. The device utilizes piezoelectric ink-jet nozzles to dispense and vaporize precisely known amounts of analyte solutions as monodisperse droplets onto a hot ceramic surface, where the generated vapors are mixed with air before exiting the device. Injected droplets are monitored by microscope with strobed illumination, and the reproducibility of droplet volumes is optimized by adjustment of piezoelectric wave form parameters. Complete vaporization of the droplets occurs only across a 10°C window within the transition boiling regime of the solvent, and the minimum and maximum rates of trace analyte that may be injected and evaporated are determined by thermodynamic principles and empirical observations of droplet formation and stability. By varying solution concentrations, droplet injection rates, air flow, and the number of active nozzles, the system is designed to deliver—on demand—continuous vapor concentrations across more than six orders of magnitude (nominally 290fg/lto1.05μg/l). Vapor pulses containing femtogram to microgram quantities of analyte may also be generated. Calibrated ranges of three explosive vapors at ng/l levels were generated by the device and directly measured by ion mobility spectrometry (IMS). These data demonstrate expected linear trends within the limited working range of the IMS detector and also exhibit subtle nonlinear behavior from the IMS measurement process.

  6. Accumulation of Background Impurities in Hydride Vapor Phase Epitaxy Grown GaN Layers

    NASA Astrophysics Data System (ADS)

    Usikov, Alexander; Soukhoveev, Vitali; Kovalenkov, Oleg; Syrkin, Alexander; Shapovalov, Liza; Volkova, Anna; Ivantsov, Vladimir

    2013-08-01

    We report on accumulation of background Si and O impurities measured by secondary ion mass spectrometry (SIMS) at the sub-interfaces in undoped, Zn- and Mg-doped multi-layer GaN structures grown by hydride vapor phase epitaxy (HVPE) on sapphire substrates with growth interruptions. The impurities accumulation is attributed to reaction of ammonia with the rector quartz ware during the growth interruptions. Because of this effect, HVPE-grown GaN layers had excessive Si and O concentration on the surface that may hamper forming of ohmic contacts especially in the case of p-type layers and may complicate homo-epitaxial growth of a device structure.

  7. Thermodynamic Properties of Nitrogen Including Liquid and Vapor Phases from 63K to 2000K with Pressures to 10,000 Bar

    NASA Technical Reports Server (NTRS)

    Jacobsen, Richard T.; Stewart, Richard B.

    1973-01-01

    Tables of thermodynamic properties of nitrogen are presented for the liquid and vapor phases for temperatures from the freezing line to 2000K and pressures to 10,000 bar. The tables include values of density, internal energy, enthalpy, entropy, isochoric heat capacity, isobaric heat capacity velocity of sound, the isotherm derivative, and the isochor derivative. The thermodynamic property tables are based on an equation of state, P=P (p,T), which accurately represents liquid and gaseous nitrogen for the range of pressures and temperatures covered by the tables. Comparisons of property values calculated from the equation of state with measured values for P-p-T, heat capacity, enthalpy, latent heat, and velocity of sound are included to illustrate the agreement between the experimental data and the tables of properties presented here. The coefficients of the equation of state were determined by a weighted least squares fit to selected P-p-T data and, simultaneously, to isochoric heat capacity data determined by corresponding states analysis from oxygen data, and to data which define the phase equilibrium criteria for the saturated liquid and the saturated vapor. The vapor pressure equation, melting curve equation, and an equation to represent the ideal gas heat capacity are also presented. Estimates of the accuracy of the equation of state, the vapor pressure equation, and the ideal gas heat capacity equation are given. The equation of state, derivatives of the equation, and the integral functions for calculating derived thermodynamic properties are included.

  8. Glass fibers and vapor phase components of cigarette smoke as cofactors in experimental respiratory tract carcinogenesis.

    PubMed

    Feron, V J; Kuper, C F; Spit, B J; Reuzel, P G; Woutersen, R A

    1985-01-01

    Syrian golden hamsters were given intratracheal instillations of glass fibers with or without BP suspended in saline, once a fortnight for 52 weeks; the experiment was terminated at week 85. No tumors of the respiratory tract were observed in hamsters treated with glass fibers alone. There was no indication that glass fibers enhanced the development of respiratory tract tumors induced by BP. In another study Syrian golden hamsters were exposed to fresh air or to a mixture of 4 major vapor phase components of cigarette smoke, viz. isoprene (800----700 ppm), methyl chloride (1000----900 ppm), methyl nitrite (200----190 ppm) and acetaldehyde (1400----1200 ppm) for a period of at most 23 months. Some of the animals were also given repeated intratracheal instillations of BP or norharman in saline. Laryngeal tumors were found in 7/31 male and 6/32 female hamsters exposed only to the vapor mixture, whereas no laryngeal tumors occurred in controls. The tumor response of the larynx most probably has to be ascribed entirely to the action of acetaldehyde. Simultaneous treatment with norharman or BP did not affect the tumor response of the larynx. Acetaldehyde may occur in the vapor phase of cigarette smoke at levels up to 2000 ppm. Chronic inhalation exposure of rats to acetaldehyde at levels of 0 (controls), 750, 1500 or 3000----1000 ppm resulted in a high incidence of nasal carcinomas, both squamous cell carcinomas of the respiratory epithelium and adenocarcinomas of the olfactory epithelium. It was discussed that acetaldehyde may significantly contribute to the induction of bronchogenic cancer by cigarette smoke in man. No evidence was obtained for a role of isoprene, methyl chloride or methyl nitrite in the induction of lung cancer by cigarette smoke.

  9. Method of varying a characteristic of an optical vertical cavity structure formed by metalorganic vapor phase epitaxy

    DOEpatents

    Hou, Hong Q.; Coltrin, Michael E.; Choquette, Kent D.

    2001-01-01

    A process for forming an array of vertical cavity optical resonant structures wherein the structures in the array have different detection or emission wavelengths. The process uses selective area growth (SAG) in conjunction with annular masks of differing dimensions to control the thickness and chemical composition of the materials in the optical cavities in conjunction with a metalorganic vapor phase epitaxy (MOVPE) process to build these arrays.

  10. Prediction of Phase Formation in Nanoscale Sn-Ag-Cu Solder Alloy

    NASA Astrophysics Data System (ADS)

    Wu, Min; Lv, Bailin

    2016-01-01

    In a dynamic nonequilibrium process, the effective heat of formation allows the heat of formation to be calculated as a function of concentrations of the reacting atoms. In this work, we used the effective heat of formation rule to predict the formation and size of compound phases in a nanoscale Sn-Ag-Cu lead-free solder. We calculated the formation enthalpy and effective formation enthalpy of compounds in the Sn-Ag, Sn-Cu, and Ag-Cu systems by using the Miedema model and effective heat of formation. Our results show that, considering the surface effect of the nanoparticle, the effective heat of formation rule successfully predicts the phase formation and sizes of Ag3Sn and Cu6Sn5 compounds, which agrees well with experimental data.

  11. Theoretical Investigation of the Structural Stabilities of Ceria Surfaces and Supported Metal Nanocluster in Vapor and Aqueous Phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Zhibo; Liu, Ning; Chen, Biaohua

    Understanding the structural stability and dynamics at the interface between the solid metal oxide and aqueous phase is significant in a variety of industrial applications including heterogeneous catalysis and environmental remediation. In the present work, the stabilities of three low-index ceria (CeO2) surfaces, i.e., (111), (110) and (100) in vapor and aqueous phases were studied using ab initio molecular dynamics simulations and density functional theory (DFT) calculations. Gibbs surface free energies as a function of temperature, water partial pressure, and water coverages were calculated using DFT based atomistic thermodynamic approach. On the basis of surface free energies, the morphology andmore » exposed surface structures of the CeO2 nanoparticle were predicted using Wulff construction principle. It is found that the partially hydroxylated (111) and (100) are two major surface structures of CeO2 nanoparticles in vapor phase at ambient temperature (300 K). As the temperature increases, the fully dehydrated (111) surface gradually becomes the most dominant surface structure. While in aqueous phase, the exposed surface of the CeO2 nanoparticle is dominated by the hydroxylated (110) structure at 393 K. Finally, the morphology and stability of a cuboctahedron Pt13 nanocluster supported on CeO2 surfaces in both gas and aqueous phases were investigated. In gas phase, the supported Pt13 nanocluster has the tendency to wetting the CeO2 surface due to the strong metal-support interaction. The calculated interaction energies suggest the CeO2(110) surface provides the best stability for the Pt13 nanocluster. The CeO2 supported Pt13 nanoclusters are oxidized. Compared to the gas phase, the morphology of the CeO2 supported Pt13 nanocluster is less distorted due to the solvation effect provided by surrounding water molecules in aqueous phase. More electrons are transferred from the Pt13 nanocluster to the CeO2 support, implying the supported Pt13 nanocluster is

  12. Migration of carbon nanotubes from liquid phase to vapor phase in the refrigerant-based nanofluid pool boiling

    PubMed Central

    2011-01-01

    The migration characteristics of carbon nanotubes from liquid phase to vapor phase in the refrigerant-based nanofluid pool boiling were investigated experimentally. Four types of carbon nanotubes with the outside diameters from 15 to 80 nm and the lengths from 1.5 to 10 μm were used in the experiments. The refrigerants include R113, R141b and n-pentane. The oil concentration is from 0 to 10 wt.%, the heat flux is from 10 to 100 kW·m-2, and the initial liquid-level height is from 1.3 to 3.4 cm. The experimental results indicate that the migration ratio of carbon nanotube increases with the increase of the outside diameter or the length of carbon nanotube. For the fixed type of carbon nanotube, the migration ratio decreases with the increase of the oil concentration or the heat flux, and increases with the increase of the initial liquid-level height. The migration ratio of carbon nanotube increases with the decrease of dynamic viscosity of refrigerant or the increase of liquid phase density of refrigerant. A model for predicting the migration ratio of carbon nanotubes in the refrigerant-based nanofluid pool boiling is proposed, and the predictions agree with 92% of the experimental data within a deviation of ±20%. PMID:21711730

  13. Study of nickel silicide formation by physical vapor deposition techniques

    NASA Astrophysics Data System (ADS)

    Pancharatnam, Shanti

    Metal silicides are used as contacts to the highly n-doped emitter in photovoltaic devices. Thin films of nickel silicide (NiSi) are of particular interest for Si-based solar cells, as they form at lower temperature and consume less silicon. However, interfacial oxide limits the reduction in sheet resistance. Hence, different diffusion barriers were investigated with regard to optimizing the conductivity and thermal stability. The formation of NiSi, and if it can be doped to have good contact with the n-side of a p-n junction were studied. Reduction of the interfacial oxide by the interfacial Ti layer to allow the formation of NiSi was observed. Silicon was treated in dilute hydrofluoric acid for removing the surface oxide layer. Ni and a Ti diffusion barrier were deposited on Si by physical vapor deposition (PVD) methods - electron beam evaporation and sputtering. The annealing temperature and time were varied to observe the stability of the deposited film. The films were then etched to observe the retention of the silicide. Characterization was done using scanning electron microscopy (SEM), Auger electron spectroscopy (AES) and Rutherford back scattering (RBS). Sheet resistance was measured using the four-point probe technique. Annealing temperatures from 300°C showed films began to agglomerate indicating some diffusion between Ni and Si in the Ti layer, also supported by the compositional analysis in the Auger spectra. Films obtained by evaporation and sputtering were of high quality in terms of coverage over substrate area and uniformity. Thicknesses of Ni and Ti were optimized to 20 nm and 10 nm respectively. Resistivity was low at these thicknesses, and reduced by about half post annealing at 300°C for 8 hours. Thus a low resistivity contact was obtained at optimized thicknesses of the metal layers. It was also shown that some silicide formation occurs at temperatures starting from 300°C and can thus be used to make good silicide contacts.

  14. Formation of β-FeSi 2 thin films by partially ionized vapor deposition

    NASA Astrophysics Data System (ADS)

    Harada, Noriyuki; Takai, Hiroshi

    2003-05-01

    The partially ionized vapor deposition (PIVD) is proposed as a new method to realize low temperature formation of β-FeSi 2 thin films. In this method, Fe is evaporated by E-gun and a few percents of Fe atoms are ionized. We have investigated influences of the ion content and the accelerating voltage of Fe ions on the structural properties of β-FeSi 2 films deposited on Si substrates. It was confirmed that β-FeSi 2 can be formed on Si(1 0 0) substrate by PIVD even at substrate temperature as low as 350, while FeSi by the conventional vacuum deposition. It was concluded that the influence of Fe ions on preferential orientation of β-FeSi 2 depends strongly on the content and the acceleration energy of ions.

  15. Model for the Vaporization of Mixed Organometallic Compounds in the Metalorganic Chemical Vapor Deposition of High Temperature Superconducting Films

    NASA Technical Reports Server (NTRS)

    Meng, Guangyao; Zhou, Gang; Schneider, Roger L.; Sarma, Bimal K.; Levy, Moises

    1993-01-01

    A model of the vaporization and mass transport of mixed organometallics from a single source for thin film metalorganic chemical vapor deposition is presented. A stoichiometric gas phase can be obtained from a mixture of the organometallics in the desired mole ratios, in spite of differences in the volatilities of the individual compounds. Proper film composition and growth rates are obtained by controlling the velocity of a carriage containing the organometallics through the heating zone of a vaporizer.

  16. Uncertainties in SOA Formation from the Photooxidation of α-pinene

    NASA Astrophysics Data System (ADS)

    McVay, R.; Zhang, X.; Aumont, B.; Valorso, R.; Camredon, M.; La, S.; Seinfeld, J.

    2015-12-01

    Explicit chemical models such as GECKO-A (the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere) enable detailed modeling of gas-phase photooxidation and secondary organic aerosol (SOA) formation. Comparison between these explicit models and chamber experiments can provide insight into processes that are missing or unknown in these models. GECKO-A is used to model seven SOA formation experiments from α-pinene photooxidation conducted at varying seed particle concentrations with varying oxidation rates. We investigate various physical and chemical processes to evaluate the extent of agreement between the experiments and the model predictions. We examine the effect of vapor wall loss on SOA formation and how the importance of this effect changes at different oxidation rates. Proposed gas-phase autoxidation mechanisms are shown to significantly affect SOA predictions. The potential effects of particle-phase dimerization and condensed-phase photolysis are investigated. We demonstrate the extent to which SOA predictions in the α-pinene photooxidation system depend on uncertainties in the chemical mechanism.

  17. Investigation of particle and vapor wall-loss effects on controlled wood-smoke smog-chamber experiments

    NASA Astrophysics Data System (ADS)

    Bian, Q.; May, A. A.; Kreidenweis, S. M.; Pierce, J. R.

    2015-10-01

    Smog chambers are extensively used to study processes that drive gas and particle evolution in the atmosphere. A limitation of these experiments is that particles and gas-phase species may be lost to chamber walls on shorter timescales than the timescales of the atmospheric processes being studied in the chamber experiments. These particle and vapor wall losses have been investigated in recent studies of secondary organic aerosol (SOA) formation, but they have not been systematically investigated in experiments of primary emissions from combustion. The semi-volatile nature of combustion emissions (e.g. from wood smoke) may complicate the behavior of particle and vapor wall deposition in the chamber over the course of the experiments due to the competition between gas/particle and gas/wall partitioning. Losses of vapors to the walls may impact particle evaporation in these experiments, and potential precursors for SOA formation from combustion may be lost to the walls, causing underestimations of aerosol yields. Here, we conduct simulations to determine how particle and gas-phase wall losses contributed to the observed evolution of the aerosol during experiments in the third Fire Lab At Missoula Experiment (FLAME III). We use the TwO-Moment Aerosol Sectional (TOMAS) microphysics algorithm coupled with the organic volatility basis set (VBS) and wall-loss formulations to examine the predicted extent of particle and vapor wall losses. We limit the scope of our study to the dark periods in the chamber before photo-oxidation to simplify the aerosol system for this initial study. Our model simulations suggest that over one-third of the initial particle-phase organic mass (41 %) was lost during the experiments, and over half of this particle-organic mass loss was from direct particle wall loss (65 % of the loss) with the remainder from evaporation of the particles driven by vapor losses to the walls (35 % of the loss). We perform a series of sensitivity tests to understand

  18. Investigation of particle and vapor wall-loss effects on controlled wood-smoke smog-chamber experiments

    NASA Astrophysics Data System (ADS)

    Bian, Q.; May, A. A.; Kreidenweis, S. M.; Pierce, J. R.

    2015-06-01

    Smog chambers are extensively used to study processes that drive gas and particle evolution in the atmosphere. A limitation of these experiments is that particles and gas-phase species may be lost to chamber walls on shorter timescales than the timescales of the atmospheric processes being studied in the chamber experiments. These particle and vapor wall losses have been investigated in recent studies of secondary organic aerosol (SOA) formation, but they have not been systematically investigated in experiments of primary emissions from combustion. The semi-volatile nature of combustion emissions (e.g. from wood smoke) may complicate the behavior of particle and vapor wall deposition in the chamber over the course of the experiments due to the competition between gas/particle and gas/wall partitioning. Losses of vapors to the walls may impact particle evaporation in these experiments, and potential precursors for SOA formation from combustion may be lost to the walls, causing underestimates of aerosol yields. Here, we conduct simulations to determine how particle and gas-phase wall losses contributed to the observed evolution of the aerosol during experiments in the third Fire Lab At Missoula Experiment (FLAME III). We use the TwO-Moment Aerosol Sectional (TOMAS) microphysics algorithm coupled with the organic volatility basis set (VBS) and wall-loss formulations to examine the predicted extent of particle and vapor wall losses. We limit the scope of our study to the dark periods in the chamber before photo-oxidation to simplify the aerosol system for this initial study. Our model simulations suggest that over one third of the initial particle-phase organic mass (36%) was lost during the experiments, and roughly half of this particle organic mass loss was from direct particle wall loss (56% of the loss) with the remainder from evaporation of the particles driven by vapor losses to the walls (44% of the loss). We perform a series of sensitivity tests to understand

  19. Investigation of particle and vapor wall-loss effects on controlled wood-smoke smog-chamber experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bian, Q.; May, A. A.; Kreidenweis, Sonia M.

    Here, smog chambers are extensively used to study processes that drive gas and particle evolution in the atmosphere. A limitation of these experiments is that particles and gas-phase species may be lost to chamber walls on shorter timescales than the timescales of the atmospheric processes being studied in the chamber experiments. These particle and vapor wall losses have been investigated in recent studies of secondary organic aerosol (SOA) formation, but they have not been systematically investigated in experiments of primary emissions from combustion. The semi-volatile nature of combustion emissions (e.g. from wood smoke) may complicate the behavior of particle andmore » vapor wall deposition in the chamber over the course of the experiments due to the competition between gas/particle and gas/wall partitioning. Losses of vapors to the walls may impact particle evaporation in these experiments, and potential precursors for SOA formation from combustion may be lost to the walls, causing underestimations of aerosol yields. Here, we conduct simulations to determine how particle and gas-phase wall losses contributed to the observed evolution of the aerosol during experiments in the third Fire Lab At Missoula Experiment (FLAME III). We use the TwO-Moment Aerosol Sectional (TOMAS) microphysics algorithm coupled with the organic volatility basis set (VBS) and wall-loss formulations to examine the predicted extent of particle and vapor wall losses. We limit the scope of our study to the dark periods in the chamber before photo-oxidation to simplify the aerosol system for this initial study. Our model simulations suggest that over one-third of the initial particle-phase organic mass (41 %) was lost during the experiments, and over half of this particle-organic mass loss was from direct particle wall loss (65 % of the loss) with the remainder from evaporation of the particles driven by vapor losses to the walls (35 % of the loss). We perform a series of sensitivity tests

  20. Methylammonium formate as a mobile phase modifier for reversed-phase liquid chromatography

    PubMed Central

    Grossman, Shau; Danielson, Neil D.

    2009-01-01

    Although alkylammonium ionic liquids such as ethylammonium nitrate and ethylammonium formate have been used as mobile phase “solvents” for liquid chromatography (LC), we have shown that methylammonium formate (MAF), in part because of its lower viscosity, can be an effective replacement for methanol (MeOH) in reversed-phase LC. Plots of log retention factor versus the fraction of MeOH and MAF in the mobile phase indicate quite comparable solvent strength slope values of 2.50 and 2.05, respectively. Using a polar endcapped C18 column, furazolidone and nitrofurantoin using 20% MAF-80% water could be separated in 22 min but no baseline separation was possible using MeOH as the modifier, even down to 10%. Suppression of silanol peak broadening effects by MAF is important permitting a baseline separation of pyridoxine, thiamine, and nicotinamide using 5% MAF-95% water at 0.7 mL/min. Using 5% MeOH-95% water, severe peak broadening for thiamine is evident. The compatibility of MAF as a mobile phase modifer for LC with mass spectrometry detection of water soluble vitamins is also shown. PMID:18849044

  1. Chemical Species in the Vapor Phase of Hanford Double-Shell Tanks: Potential Impacts on Waste Tank Corrosion Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felmy, Andrew R.; Qafoku, Odeta; Arey, Bruce W.

    2010-09-22

    The presence of corrosive and inhibiting chemicals on the tank walls in the vapor space, arising from the waste supernatant, dictate the type and degree of corrosion that occurs there. An understanding of how waste chemicals are transported to the walls and the affect on vapor species from changing supernatant chemistry (e.g., pH, etc.), are basic to the evaluation of risks and impacts of waste changes on vapor space corrosion (VSC). In order to address these issues the expert panel workshop on double-shell tank (DST) vapor space corrosion testing (RPP-RPT-31129) participants made several recommendations on the future data and modelingmore » needs in the area of DST corrosion. In particular, the drying of vapor phase condensates or supernatants can form salt or other deposits at the carbon steel interface resulting in a chemical composition at the near surface substantially different from that observed directly in the condensates or the supernatants. As a result, over the past three years chemical modeling and experimental studies have been performed on DST supernatants and condensates to predict the changes in chemical composition that might occur as condensates or supernatants equilibrate with the vapor space species and dry at the carbon steel surface. The experimental studies included research on both the chemical changes that occurred as the supernatants dried as well as research on how these chemical changes impact the corrosion of tank steels. The chemical modeling and associated experimental studies were performed at the Pacific Northwest National Laboratory (PNNL) and the research on tank steel corrosion at the Savannah River National Laboratory (SRNL). This report presents a summary of the research conducted at PNNL with special emphasis on the most recent studies conducted in FY10. An overall summary of the project results as well as their broader implications for vapor space corrosion of the DST’s is given at the end of this report.« less

  2. Perspective: Highly stable vapor-deposited glasses

    NASA Astrophysics Data System (ADS)

    Ediger, M. D.

    2017-12-01

    This article describes recent progress in understanding highly stable glasses prepared by physical vapor deposition and provides perspective on further research directions for the field. For a given molecule, vapor-deposited glasses can have higher density and lower enthalpy than any glass that can be prepared by the more traditional route of cooling a liquid, and such glasses also exhibit greatly enhanced kinetic stability. Because vapor-deposited glasses can approach the bottom of the amorphous part of the potential energy landscape, they provide insights into the properties expected for the "ideal glass." Connections between vapor-deposited glasses, liquid-cooled glasses, and deeply supercooled liquids are explored. The generality of stable glass formation for organic molecules is discussed along with the prospects for stable glasses of other types of materials.

  3. Perspective: Highly stable vapor-deposited glasses

    DOE PAGES

    Ediger, M. D.

    2017-12-07

    This paper describes recent progress in understanding highly stable glasses prepared by physical vapor deposition and provides perspective on further research directions for the field. For a given molecule, vapor-deposited glasses can have higher density and lower enthalpy than any glass that can be prepared by the more traditional route of cooling a liquid, and such glasses also exhibit greatly enhanced kinetic stability. Because vapor-deposited glasses can approach the bottom of the amorphous part of the potential energy landscape, they provide insights into the properties expected for the “ideal glass”. Connections between vapor-deposited glasses, liquid-cooled glasses, and deeply supercooled liquidsmore » are explored. The generality of stable glass formation for organic molecules is discussed along with the prospects for stable glasses of other types of materials.« less

  4. Perspective: Highly stable vapor-deposited glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ediger, M. D.

    This paper describes recent progress in understanding highly stable glasses prepared by physical vapor deposition and provides perspective on further research directions for the field. For a given molecule, vapor-deposited glasses can have higher density and lower enthalpy than any glass that can be prepared by the more traditional route of cooling a liquid, and such glasses also exhibit greatly enhanced kinetic stability. Because vapor-deposited glasses can approach the bottom of the amorphous part of the potential energy landscape, they provide insights into the properties expected for the “ideal glass”. Connections between vapor-deposited glasses, liquid-cooled glasses, and deeply supercooled liquidsmore » are explored. The generality of stable glass formation for organic molecules is discussed along with the prospects for stable glasses of other types of materials.« less

  5. Non-aqueous phase liquid spreading during soil vapor extraction

    PubMed Central

    Kneafsey, Timothy J.; Hunt, James R.

    2010-01-01

    Many non-aqueous phase liquids (NAPLs) are expected to spread at the air – water interface, particularly under non-equilibrium conditions. In the vadose zone, this spreading should increase the surface area for mass transfer and the efficiency of volatile NAPL recovery by soil vapor extraction (SVE). Observations of spreading on water wet surfaces led to a conceptual model of oil spreading vertically above a NAPL pool in the vadose zone. Analysis of this model predicts that spreading can enhance the SVE contaminant recovery compared to conditions where the liquid does not spread. Experiments were conducted with spreading volatile oils hexane and heptane in wet porous media and capillary tubes, where spreading was observed at the scale of centimeters. Within porous medium columns up to a meter in height containing stagnant gas, spreading was less than ten centimeters and did not contribute significantly to hexane volatilization. Water film thinning and oil film pinning may have prevented significant oil film spreading, and thus did not enhance SVE at the scale of a meter. The experiments performed indicate that volatile oil spreading at the field scale is unlikely to contribute significantly to the efficiency of SVE. PMID:14734243

  6. Rare-earth-doped optical-fiber core deposition using full vapor-phase SPCVD process

    NASA Astrophysics Data System (ADS)

    Barnini, A.; Robin, T.; Cadier, B.; Aka, G.; Caurant, D.; Gotter, T.; Guyon, C.; Pinsard, E.; Guitton, P.; Laurent, A.; Montron, R.

    2017-02-01

    One key parameter in the race toward ever-higher power fiber lasers remains the rare earth doped optical core quality. Modern Large Mode Area (LMA) fibers require a fine radial control of the core refractive index (RI) close to the silica level. These low RI are achieved with multi-component materials that cannot be readily obtained using conventional solution doping based Modified Chemical Vapor Deposition (MCVD) technology. This paper presents a study of such optical material obtained through a full-vapor phase Surface Plasma Chemical Vapor Deposition (SPCVD). The SPCVD process generates straight glassy films on the inner surface of a thermally regulated synthetic silica tube under vacuum. The first part of the presented results points out the feasibility of ytterbium-doped aluminosilicate fibers by this process. In the second part we describe the challenge controlling the refractive index throughout the core diameter when using volatile fluorine to create efficient LMA fiber profiles. It has been demonstrated that it is possible to counter-act the loss of fluorine at the center of the core by adjusting the core composition locally. Our materials yielded, when used in optical fibers with numerical apertures ranging from 0.07 to 0.09, power conversion efficiency up to 76% and low background losses below 20 dB/km at 1100nm. Photodarkening has been measured to be similar to equivalent MCVD based fibers. The use of cerium as a co-dopant allowed for a complete mitigation of this laser lifetime detrimental effect. The SPCVD process enables high capacity preforms and is particularly versatile when it comes to radial tailoring of both rare earth doping level and RI. Large core diameter preforms - up to 4mm - were successfully produced.

  7. Phase degradation in B xGa 1–xN films grown at low temperature by metalorganic vapor phase epitaxy

    DOE PAGES

    Gunning, Brendan P.; Moseley, Michael W.; Koleske, Daniel D.; ...

    2016-11-01

    Using metalorganic vapor phase epitaxy, a comprehensive study of B xGa 1-xN growth on GaN and AlN templates is described. BGaN growth at high-temperature and high-pressure results in rough surfaces and poor boron incorporation efficiency, while growth at low-temperature and low-pressure (750–900 °C and 20 Torr) using nitrogen carrier gas results in improved surface morphology and boron incorporation up to ~7.4% as determined by nuclear reaction analysis. However, further structural analysis by transmission electron microscopy and x-ray pole figures points to severe degradation of the high boron composition films, into a twinned cubic structure with a high density of stackingmore » faults and little or no room temperature photoluminescence emission. Films with <1% triethylboron (TEB) flow show more intense, narrower x-ray diffraction peaks, near-band-edge photoluminescence emission at ~362 nm, and primarily wurtzite-phase structure in the x-ray pole figures. For films with >1% TEB flow, the crystal structure becomes dominated by the cubic phase. As a result, only when the TEB flow is zero (pure GaN), does the cubic phase entirely disappear from the x-ray pole figure, suggesting that under these growth conditions even very low boron compositions lead to mixed crystalline phases.« less

  8. Phase degradation in B xGa 1–xN films grown at low temperature by metalorganic vapor phase epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunning, Brendan P.; Moseley, Michael W.; Koleske, Daniel D.

    Using metalorganic vapor phase epitaxy, a comprehensive study of B xGa 1-xN growth on GaN and AlN templates is described. BGaN growth at high-temperature and high-pressure results in rough surfaces and poor boron incorporation efficiency, while growth at low-temperature and low-pressure (750–900 °C and 20 Torr) using nitrogen carrier gas results in improved surface morphology and boron incorporation up to ~7.4% as determined by nuclear reaction analysis. However, further structural analysis by transmission electron microscopy and x-ray pole figures points to severe degradation of the high boron composition films, into a twinned cubic structure with a high density of stackingmore » faults and little or no room temperature photoluminescence emission. Films with <1% triethylboron (TEB) flow show more intense, narrower x-ray diffraction peaks, near-band-edge photoluminescence emission at ~362 nm, and primarily wurtzite-phase structure in the x-ray pole figures. For films with >1% TEB flow, the crystal structure becomes dominated by the cubic phase. As a result, only when the TEB flow is zero (pure GaN), does the cubic phase entirely disappear from the x-ray pole figure, suggesting that under these growth conditions even very low boron compositions lead to mixed crystalline phases.« less

  9. Macroscopic modeling of heat and water vapor transfer with phase change in dry snow based on an upscaling method: Influence of air convection

    NASA Astrophysics Data System (ADS)

    Calonne, N.; Geindreau, C.; Flin, F.

    2015-12-01

    At the microscopic scale, i.e., pore scale, dry snow metamorphism is mainly driven by the heat and water vapor transfer and the sublimation-deposition process at the ice-air interface. Up to now, the description of these phenomena at the macroscopic scale, i.e., snow layer scale, in the snowpack models has been proposed in a phenomenological way. Here we used an upscaling method, namely, the homogenization of multiple-scale expansions, to derive theoretically the macroscopic equivalent modeling of heat and vapor transfer through a snow layer from the physics at the pore scale. The physical phenomena under consideration are steady state air flow, heat transfer by conduction and convection, water vapor transfer by diffusion and convection, and phase change (sublimation and deposition). We derived three different macroscopic models depending on the intensity of the air flow considered at the pore scale, i.e., on the order of magnitude of the pore Reynolds number and the Péclet numbers: (A) pure diffusion, (B) diffusion and moderate convection (Darcy's law), and (C) strong convection (nonlinear flow). The formulation of the models includes the exact expression of the macroscopic properties (effective thermal conductivity, effective vapor diffusion coefficient, and intrinsic permeability) and of the macroscopic source terms of heat and vapor arising from the phase change at the pore scale. Such definitions can be used to compute macroscopic snow properties from 3-D descriptions of snow microstructures. Finally, we illustrated the precision and the robustness of the proposed macroscopic models through 2-D numerical simulations.

  10. Development of an acoustic wave based biosensor for vapor phase detection of small molecules

    NASA Astrophysics Data System (ADS)

    Stubbs, Desmond

    For centuries scientific ingenuity and innovation have been influenced by Mother Nature's perfect design. One of her more elusive designs is that of the sensory olfactory system, an array of highly sensitive receptors responsible for chemical vapor recognition. In the animal kingdom this ability is magnified among canines where ppt (parts per trillion) sensitivity values have been reported. Today, detection dogs are considered an essential part of the US drug and explosives detection schemes. However, growing concerns about their susceptibility to extraneous odors have inspired the development of highly sensitive analytical detection tools or biosensors known as "electronic noses". In general, biosensors are distinguished from chemical sensors in that they use an entity of biological origin (e.g. antibody, cell, enzyme) immobilized onto a surface as the chemically-sensitive film on the device. The colloquial view is that the term "biosensors" refers to devices which detect the presence of entities of biological origin, such as proteins or single-stranded DNA and that this detection must take place in a liquid. Our biosensor utilizes biomolecules, specifically IgG monoclonal antibodies, to achieve molecular recognition of relatively small molecules in the vapor phase.

  11. Isotopic Abundances as Tracers of the Processes of Lunar Formation

    NASA Astrophysics Data System (ADS)

    Pahlevan, K.

    2011-12-01

    Ever since Apollo, isotopic abundances have been used as tracers to study lunar formation, in particular, to study the sources of the lunar material. In the last decade, however, a number of isotopic similarities have been observed between the lunar samples and the Earth's mantle such that these two reservoirs are now known to be indistinguishable from one another to high precision for a variety of isotopic tracers. This occurs against the backdrop of a Solar System that exhibits widespread heterogeneity with respect to these tracers, a situation that strongly argues that the source of the lunar material is the silicate Earth. To reconcile this observation with the fact that the Moon is thought to result from the collision of two isotopically distinct planetary bodies, a scenario has emerged in which the material from the Moon-forming impactor and the proto-Earth are homogenized in the aftermath of the giant impact. This takes place via turbulent mixing in the time after the giant impact but before lunar accretion while the Earth-Moon system exists in the form of a continuous, high-temperature fluid. Importantly, this high-temperature phase of the evolution occurs in the presence of at least two phases (liquid + vapor) making possible chemical and isotopic fractionation. While equilibrium isotopic fractionation tends to zero at high temperatures, and the post giant impact environment experiences some of the highest temperatures encountered in the Earth sciences, there are several factors that nevertheless make equilibrium isotope effects important probes of this early evolution. (1) Because the vaporization of silicates involves decomposition reactions, the bonding environment for elements in the liquid is often very different from that in the vapor. This difference makes the magnitude of isotopic fractionation intrinsically large, even at the relevant temperatures. (2) Since the isotopic composition of a silicate liquid and co-existing vapor are distinctly

  12. Influence of mass diffusion on the stability of thermophoretic growth of a solid from the vapor phase

    NASA Technical Reports Server (NTRS)

    Castillo, J. L.; Garcia-Ybarra, P. L.; Rosner, D. E.

    1991-01-01

    The stability of solid planar growth from a binary vapor phase with a condensing species dilute in a carrier gas is examined when the ratio of depositing to carrier species molecular mass is large and the main diffusive transport mechanism is thermal diffusion. It is shown that a deformation of the solid-gas interface induces a deformation of the gas phase isotherms that increases the thermal gradients and thereby the local mass deposition rate at the crests and reduces them at the valleys. The initial surface deformation is enhanced by the modified deposition rates in the absence of appreciable Fick/Brownian diffusion and interfacial energy effects.

  13. Production of higher quality bio-oils by in-line esterification of pyrolysis vapor

    DOEpatents

    Hilten, Roger Norris; Das, Keshav; Kastner, James R; Bibens, Brian P

    2014-12-02

    The disclosure encompasses in-line reactive condensation processes via vapor phase esterification of bio-oil to decease reactive species concentration and water content in the oily phase of a two-phase oil, thereby increasing storage stability and heating value. Esterification of the bio-oil vapor occurs via the vapor phase contact and subsequent reaction of organic acids with ethanol during condensation results in the production of water and esters. The pyrolysis oil product can have an increased ester content and an increased stability when compared to a condensed pyrolysis oil product not treated with an atomized alcohol.

  14. Method for controlling corrosion in thermal vapor injection gases

    DOEpatents

    Sperry, John S.; Krajicek, Richard W.

    1981-01-01

    An improvement in the method for producing high pressure thermal vapor streams from combustion gases for injection into subterranean oil producing formations to stimulate the production of viscous minerals is described. The improvement involves controlling corrosion in such thermal vapor gases by injecting water near the flame in the combustion zone and injecting ammonia into a vapor producing vessel to contact the combustion gases exiting the combustion chamber.

  15. Environmentally friendly method to grow wide-bandgap semiconductor aluminum nitride crystals: Elementary source vapor phase epitaxy

    PubMed Central

    Wu, PeiTsen; Funato, Mitsuru; Kawakami, Yoichi

    2015-01-01

    Aluminum nitride (AlN) has attracted increasing interest as an optoelectronic material in the deep ultraviolet spectral range due to its wide bandgap of 6.0 eV (207 nm wavelength) at room temperature. Because AlN bulk single crystals are ideal device substrates for such applications, the crystal growth of bulky AlN has been extensively studied. Two growth methods seem especially promising: hydride vapor phase epitaxy (HVPE) and sublimation. However, the former requires hazardous gases such as hydrochloric acid and ammonia, while the latter needs extremely high growth temperatures around 2000 °C. Herein we propose a novel vapor-phase-epitaxy-based growth method for AlN that does not use toxic materials; the source precursors are elementary aluminum and nitrogen gas. To prepare our AlN, we constructed a new growth apparatus, which realizes growth of AlN single crystals at a rate of ~18 μm/h at 1550 °C using argon as the source transfer via the simple reaction Al + 1/2N2 → AlN. This growth rate is comparable to that by HVPE, and the growth temperature is much lower than that in sublimation. Thus, this study opens up a novel route to achieve environmentally friendly growth of AlN. PMID:26616203

  16. Evaluation of the Antibacterial Potential of Liquid and Vapor Phase Phenolic Essential Oil Compounds against Oral Microorganisms

    PubMed Central

    Wu, Chi-Hao; Ko, Shun-Yao; Chen, Michael Yuanchien; Shih, Yin-Hua; Shieh, Tzong-Ming; Chuang, Li-Chuan; Wu, Ching-Yi

    2016-01-01

    The aim of the present study was to determine the antibacterial activities of the phenolic essential oil (EO) compounds hinokitiol, carvacrol, thymol, and menthol against oral pathogens. Aggregatibacter actinomycetemcomitans, Streptococcus mutans, Methicillin-resistant Staphylococcus aureus (MRSA), and Escherichia. coli were used in this study. The minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs), bacterial growth curves, temperature and pH stabilities, and synergistic effects of the liquid and vapor EO compounds were tested. The MIC/MBC of the EO compounds, ranging from the strongest to weakest, were hinokitiol (40–60 μg/mL/40-100 μg/mL), thymol (100–200 μg/mL/200-400 μg/mL), carvacrol (200–400 μg/mL/200-600 μg/mL), and menthol (500-more than 2500 μg/mL/1000-more than 2500 μg/mL). The antibacterial activities of the four EO phenolic compound based on the agar diffusion test and bacterial growth curves showed that the four EO phenolic compounds were stable under different temperatures for 24 h, but the thymol activity decreased when the temperature was higher than 80°C. The combination of liquid carvacrol with thymol did not show any synergistic effects. The activities of the vaporous carvacrol and thymol were inhibited by the presence of water. Continual violent shaking during culture enhanced the activity of menthol. Both liquid and vaporous hinokitiol were stable at different temperatures and pH conditions. The combination of vaporous hinokitiol with zinc oxide did not show synergistic effects. These results showed that the liquid and vapor phases of hinokitiol have strong anti-oral bacteria abilities. Hinokitiol has the potential to be applied in oral health care products, dental materials, and infection controls to exert antimicrobial activity. PMID:27681039

  17. Ionic Vapor Composition in Critical and Supercritical States of Strongly Interacting Ionic Compounds.

    PubMed

    Chaban, Vitaly V; Prezhdo, Oleg V

    2016-05-12

    The critical point, CP (T, P), of the phase diagram quantifies the minimum amount of kinetic energy needed to prevent a substance from existing in a condensed phase. Therefore, the CP is closely related to the properties of the fluid far below the critical temperature. Approaches designed to predict thermophysical properties of a system necessarily aim to provide reliable estimates of the CP. Vice versa, CP estimation is impossible without knowledge of the vapor phase behavior. We report ab initio Born-Oppenheimer molecular dynamics (BOMD) simulations of sodium and potassium chlorides, NaCl and KCl, at and above their expected CPs. We advance the present knowledge regarding the existence of ionic species in the vapor phase by establishing significant percentages of atomic clusters: 29-30% in NaCl and 34-38% in KCl. A neutral pair of counterions is the most abundant cluster in the ionic vapors (ca. 35% of all vaporized ions exist in this form). Unexpectedly, an appreciable fraction of clusters is charged. The ionic vapor composition is determined by the vapor density, rather than the nature of the alkali ion. The previously suggested CPs of NaCl and KCl appear overestimated, based on the present simulations. The reported results offer essential insights into the ionic fluid properties and assist in development of thermodynamic theories. The ab initio BOMD method has been applied to investigate the vapor phase composition of an ionic fluid for the first time.

  18. Low-temperature interface reactions in layered Au/Sb films: In situ investigation of the formation of an amorphous phase

    NASA Astrophysics Data System (ADS)

    Boyen, H.-G.; Cossy-Favre, A.; Oelhafen, P.; Siber, A.; Ziemann, P.; Lauinger, C.; Moser, T.; Häussler, P.; Baumann, F.

    1995-01-01

    Photoelectron-spectroscopy methods combined with electrical-resistance measurements were employed to study the effects of intermixing at Au/Sb interfaces at low temperatures. For the purpose of characterizing the growth processes of the intermixed phase on a ML scale, Au/Sb bilayers (layer thicknesses DAu=0.5-75 ML and DSb=150 ML) were evaporated at 77 K and the different in situ techniques allowed a comparison to vapor-quenched amorphous AuxSb100-x alloys. For Au thicknesses between 0.5 and 0.9 ML, a change from a semiconducting to a metallic behavior of the samples has been detected, as indicated by the development of a steplike photoelectron intensity at the Fermi level. Evidence has been found that for Au coverages <= 6 ML chemical reactions at the Au/Sb interface occur, leading to the formation of a homogeneously intermixed amorphous layer with a maximum thickness of about 2.3 nm and Au concentrations as high as x~=80 at. %. This latter value corresponds to the limiting Au content where amorphous alloys can be prepared at low temperature (0 at. % <=x<= 80 at. %). For nominal coverages beyond 6 ML polycrystalline Au films were formed. Consequently, Au/Sb multilayers with sufficiently small modulation lengths, which were prepared at 130 K by ion-beam sputtering, were observed to grow as a homogeneous amorphous phase over a broad range of compositions, as evidenced by in situ resistance measurements and by comparing the obtained crystallization temperatures to those of vapor-quenched amorphous alloys. Variation of the deposition temperature Ts revealed that an amorphous interface layer is only formed for Ts<= 220 K. This is consistent with the fact that for multilayers with large modulation lengths containing unreacted polycrystalline Au and Sb layers, long-range interdiffusion is found to set in at temperatures above 230 K. This interdiffusion, however, results in the formation of polycrystalline Au-Sb alloys.

  19. Physics-based agent to simulant correlations for vapor phase mass transport.

    PubMed

    Willis, Matthew P; Varady, Mark J; Pearl, Thomas P; Fouse, Janet C; Riley, Patrick C; Mantooth, Brent A; Lalain, Teri A

    2013-12-15

    Chemical warfare agent simulants are often used as an agent surrogate to perform environmental testing, mitigating exposure hazards. This work specifically addresses the assessment of downwind agent vapor concentration resulting from an evaporating simulant droplet. A previously developed methodology was used to estimate the mass diffusivities of the chemical warfare agent simulants methyl salicylate, 2-chloroethyl ethyl sulfide, di-ethyl malonate, and chloroethyl phenyl sulfide. Along with the diffusivity of the chemical warfare agent bis(2-chloroethyl) sulfide, the simulant diffusivities were used in an advection-diffusion model to predict the vapor concentrations downwind from an evaporating droplet of each chemical at various wind velocities and temperatures. The results demonstrate that the simulant-to-agent concentration ratio and the corresponding vapor pressure ratio are equivalent under certain conditions. Specifically, the relationship is valid within ranges of measurement locations relative to the evaporating droplet and observation times. The valid ranges depend on the relative transport properties of the agent and simulant, and whether vapor transport is diffusion or advection dominant. Published by Elsevier B.V.

  20. Analysis of heterogeneous water vapor uptake by metal iodide cluster ions via differential mobility analysis-mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oberreit, Derek; Fluid Measurement Technologies, Inc., Saint Paul, Minnesota 55110; Rawat, Vivek K.

    The sorption of vapor molecules onto pre-existing nanometer sized clusters is of importance in understanding particle formation and growth in gas phase environments and devising gas phase separation schemes. Here, we apply a differential mobility analyzer-mass spectrometer based approach to observe directly the sorption of vapor molecules onto iodide cluster ions of the form (MI){sub x}M{sup +} (x = 1-13, M = Na, K, Rb, or Cs) in air at 300 K and with water saturation ratios in the 0.01-0.64 range. The extent of vapor sorption is quantified in measurements by the shift in collision cross section (CCS) for eachmore » ion. We find that CCS measurements are sensitive enough to detect the transient binding of several vapor molecules to clusters, which shift CCSs by only several percent. At the same time, for the highest saturation ratios examined, we observed CCS shifts of up to 45%. For x < 4, cesium, rubidium, and potassium iodide cluster ions are found to uptake water to a similar extent, while sodium iodide clusters uptake less water. For x ≥ 4, sodium iodide cluster ions uptake proportionally more water vapor than rubidium and potassium iodide cluster ions, while cesium iodide ions exhibit less uptake. Measured CCS shifts are compared to predictions based upon a Kelvin-Thomson-Raoult (KTR) model as well as a Langmuir adsorption model. We find that the Langmuir adsorption model can be fit well to measurements. Meanwhile, KTR predictions deviate from measurements, which suggests that the earliest stages of vapor uptake by nanometer scale species are not well described by the KTR model.« less

  1. Bioeffects due to acoustic droplet vaporization

    NASA Astrophysics Data System (ADS)

    Bull, Joseph

    2015-11-01

    Encapsulated micro- and nano-droplets can be vaporized via ultrasound, a process termed acoustic droplet vaporization. Our interest is primarily motivated by a developmental gas embolotherapy technique for cancer treatment. In this methodology, infarction of tumors is induced by selectively formed vascular gas bubbles that arise from the acoustic vaporization of vascular microdroplets. Additionally, the microdroplets may be used as vehicles for localized drug delivery, with or without flow occlusion. In this talk, we examine the dynamics of acoustic droplet vaporization through experiments and theoretical/computational fluid mechanics models, and investigate the bioeffects of acoustic droplet vaporization on endothelial cells and in vivo. Early timescale vaporization events, including phase change, are directly visualized using ultra-high speed imaging, and the influence of acoustic parameters on droplet/bubble dynamics is discussed. Acoustic and fluid mechanics parameters affecting the severity of endothelial cell bioeffects are explored. These findings suggest parameter spaces for which bioeffects may be reduced or enhanced, depending on the objective of the therapy. This work was supported by NIH grant R01EB006476.

  2. Frequency response of a vaporization process to distorted acoustic disturbances

    NASA Technical Reports Server (NTRS)

    Heidmann, M. F.

    1972-01-01

    The open-loop response properties expressed as the mass vaporized in phase and out of phase with the pressure oscillations were numerically evaluated for a vaporizing n-heptane droplet. The evaluation includes the frequency dependence introduced by periodic oscillation in droplet mass and temperature. A given response was achieved over a much broader range of frequency with harmonically distorted disturbances than with sinusoidal disturbances. The results infer that distortion increases the probability of incurring spontaneous and triggered instability in any rocket engine combustor by broadening the frequency range over which the vaporization process can support an instability.

  3. The behavior of vapor bubbles during boiling enhanced with acoustics and open microchannels

    NASA Astrophysics Data System (ADS)

    Boziuk, Thomas; Smith, Marc K.; Glezer, Ari

    2012-11-01

    Boiling heat transfer on a submerged heated surface is enhanced by combining a grid of surface micromachined open channels and ultrasonic acoustic actuation to control the formation and evolution of vapor bubbles and to inhibit the instability that leads to film boiling at the critical heat flux (CHF). The microchannels provide nucleation sites for vapor bubble formation and enable the entrainment of bulk subcooled fluid to these sites for sustained evaporation. Acoustic actuation excites interfacial oscillations of the detached bubbles and leads to accelerated condensation in the bulk fluid, thereby limiting the formation of vapor columns that precede the CHF instability. The combined effects of microchannels and acoustic actuation are investigated experimentally with emphasis on bubble nucleation, growth, detachment, and condensation. It is shown that this hybrid approach leads to a significant increase in the critical heat flux, a reduction of the vapor mass above the surface, and the breakup of low-frequency vapor slug formation. A large-scale model of the microchannel grid reveals details of the flow near the nucleation site and shows that the presence of the microchannels decreases the surface superheat at a given heat flux. Supported by ONR.

  4. New Density Functional Approach for Solid-Liquid-Vapor Transitions in Pure Materials

    NASA Astrophysics Data System (ADS)

    Kocher, Gabriel; Provatas, Nikolas

    2015-04-01

    A new phase field crystal (PFC) type theory is presented, which accounts for the full spectrum of solid-liquid-vapor phase transitions within the framework of a single density order parameter. Its equilibrium properties show the most quantitative features to date in PFC modeling of pure substances, and full consistency with thermodynamics in pressure-volume-temperature space is demonstrated. A method to control either the volume or the pressure of the system is also introduced. Nonequilibrium simulations show that 2- and 3-phase growth of solid, vapor, and liquid can be achieved, while our formalism also allows for a full range of pressure-induced transformations. This model opens up a new window for the study of pressure driven interactions of condensed phases with vapor, an experimentally relevant paradigm previously missing from phase field crystal theories.

  5. On the inclusion of alkanes into the monolayer of aliphatic alcohols at the water/alkane vapor interface: a quantum chemical approach.

    PubMed

    Vysotsky, Yuri B; Fomina, Elena S; Belyaeva, Elena A; Fainerman, Valentin B; Vollhardt, Dieter

    2013-02-14

    In the framework of the quantum chemical semiempirical PM3 method thermodynamic and structural parameters of the formation and clusterization of aliphatic alcohols C(n)H(2n+1)OH (n(OH) = 8-16) at 298 K at the water/alkane vapor C(n)H(2n+2), (n(CH(3)) = 6-16) interface were calculated. The dependencies of enthalpy, entropy and Gibbs' energy of clusterization per one monomer molecule of 2D films on the alkyl chain length of corresponding alcohols and alkanes, the molar fraction of alkanes in the monolayers and the immersion degree of alcohol molecules into the water phase were shown to be linear or stepwise. The threshold of spontaneous clusterization of aliphatic alcohols at the water/alkane vapor interface was 10-11 carbon atoms at 298 K which is in line with experimental data at the air/water interface. It is shown that the presence of alkane vapor does not influence the process of alcohol monolayer formation. The structure of these monolayers is analogous to those obtained at the air/water interface in agreement with experimental data. The inclusion of alkane molecules into the amphiphilic monolayer at the water/alkane vapor interface is possible for amphiphiles with the spontaneous clusterization threshold at the air/water interface (n(s)(0)) of at least 16 methylene units in the alkyl chain, and it does not depend on the molar fraction of alkanes in the corresponding monolayer. The inclusion of alkanes from the vapor phase into the amphiphilic monolayer also requires that the difference between the alkyl chain lengths of alcohols and alkanes is not larger than n(s)(0) - 15 and n(s)(0) - 14 for the 2D film 1 and 2D film 2, respectively.

  6. Synthesis of graphene nanoribbons from amyloid templates by gallium vapor-assisted solid-phase graphitization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murakami, Katsuhisa, E-mail: k.murakami@bk.tsukuba.ac.jp; Dong, Tianchen; Kajiwara, Yuya

    2014-06-16

    Single- and double-layer graphene nanoribbons (GNRs) with widths of around 10 nm were synthesized directly onto an insulating substrate by solid-phase graphitization using a gallium vapor catalyst and carbon templates made of amyloid fibrils. Subsequent investigation revealed that the crystallinity, conductivity, and carrier mobility were all improved by increasing the temperature of synthesis. The carrier mobility of the GNR synthesized at 1050 °C was 0.83 cm{sup 2}/V s, which is lower than that of mechanically exfoliated graphene. This is considered to be most likely due to electron scattering by the defects and edges of the GNRs.

  7. Estimated vapor pressure for WTP process streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pike, J.; Poirier, M.

    Design assumptions during the vacuum refill phase of the Pulsed Jet Mixers (PJMs) in the Hanford Waste Treatment and Immobilization Plant (WTP) equate the vapor pressure of all process streams to that of water when calculating the temperature at which the vacuum refill is reduced or eliminated. WTP design authority asked the authors to assess this assumption by performing calculations on proposed feed slurries to calculate the vapor pressure as a function of temperature. The vapor pressure was estimated for each WTP waste group. The vapor pressure suppression caused by dissolved solids is much greater than the increase caused bymore » organic components such that the vapor pressure for all of the waste group compositions is less than that of pure water. The vapor pressure for each group at 145°F ranges from 81% to 98% of the vapor pressure of water. If desired, the PJM could be operated at higher temperatures for waste groups with high dissolved solids that suppress vapor pressure. The SO4 group with the highest vapor pressure suppression could be operated up to 153°F before reaching the same vapor pressure of water at 145°F. However, most groups would reach equivalent vapor pressure at 147 to 148°F. If any of these waste streams are diluted, the vapor pressure can exceed the vapor pressure of water at mass dilution ratios greater than 10, but the overall effect is less than 0.5%.« less

  8. Investigating Vaporization of Silica through Laser Driven Shock Wave Experiments

    NASA Astrophysics Data System (ADS)

    Kraus, R. G.; Swift, D. C.; Stewart, S. T.; Smith, R.; Bolme, C. A.; Spaulding, D. K.; Hicks, D.; Eggert, J.; Collins, G.

    2010-12-01

    Giant impacts melt and vaporize a significant amount of the bolide and target body. However, our ability to determine how much melt or vapor a given impact creates depends strongly on our understanding of the liquid-vapor phase boundary of geologic materials. Our current knowledge of the liquid-vapor equilibrium for one of the most important minerals, SiO2, is rather limited due to the difficulty of performing experiments in this area of phase space. In this study, we investigate the liquid-vapor coexistence region by shocking quartz into a supercritical fluid state and allowing it to adiabatically expand to a state on the liquid-vapor phase boundary. Although shock compression and release has been used to study the liquid-vapor equilibrium of metals [1], few attempts have been made at studying geologic materials by this method [2]. Shock waves were produced by direct ablation of the quartz sample using the Jupiter Laser Facility of Lawrence Livermore National Laboratory. Steady shock pressures of 120-360 GPa were produced in the quartz samples: high enough to force the quartz into a supercritical fluid state. As the shock wave propagates through the sample, we measure the shock velocity using a line imaging velocity interferometer system for any reflector (VISAR) and shock temperature using a streaked optical pyrometer (SOP). When the shock wave reaches the free surface of the sample, the material adiabatically expands. Upon breakout of the shock at the free surface, the SOP records a distinct drop in radiance due to the lower temperature of the expanded material. For a subset of experiments, a LiF window is positioned downrange of the expanding silica. When the expanding silica impacts the LiF window, the velocity at the interface between the expanding silica and LiF window is measured using the VISAR. From the shock velocity measurements, we accurately determine the shocked state in the quartz. The post-shock radiance measurements are used to constrain the

  9. Matrix isolation studies of carbonic acid--the vapor phase above the β-polymorph.

    PubMed

    Bernard, Jürgen; Huber, Roland G; Liedl, Klaus R; Grothe, Hinrich; Loerting, Thomas

    2013-05-22

    Twenty years ago two different polymorphs of carbonic acid, α- and β-H2CO3, were isolated as thin, crystalline films. They were characterized by infrared and, of late, by Raman spectroscopy. Determination of the crystal structure of these two polymorphs, using cryopowder and thin film X-ray diffraction techniques, has failed so far. Recently, we succeeded in sublimating α-H2CO3 and trapping the vapor phase in a noble gas matrix, which was analyzed by infrared spectroscopy. In the same way we have now investigated the β-polymorph. Unlike α-H2CO3, β-H2CO3 was regarded to decompose upon sublimation. Still, we have succeeded in isolation of undecomposed carbonic acid in the matrix and recondensation after removal of the matrix here. This possibility of sublimation and recondensation cycles of β-H2CO3 adds a new aspect to the chemistry of carbonic acid in astrophysical environments, especially because there is a direct way of β-H2CO3 formation in space, but none for α-H2CO3. Assignments of the FTIR spectra of the isolated molecules unambiguously reveal two different carbonic acid monomer conformers (C(2v) and C(s)). In contrast to the earlier study on α-H2CO3, we do not find evidence for centrosymmetric (C(2h)) carbonic acid dimers here. This suggests that two monomers are entropically favored at the sublimation temperature of 250 K for β-H2CO3, whereas they are not at the sublimation temperature of 210 K for α-H2CO3.

  10. Numerical simulation of superheated vapor bubble rising in stagnant liquid

    NASA Astrophysics Data System (ADS)

    Samkhaniani, N.; Ansari, M. R.

    2017-09-01

    In present study, the rising of superheated vapor bubble in saturated liquid is simulated using volume of fluid method in OpenFOAM cfd package. The surface tension between vapor-liquid phases is considered using continuous surface force method. In order to reduce spurious current near interface, Lafaurie smoothing filter is applied to improve curvature calculation. Phase change is considered using Tanasawa mass transfer model. The variation of saturation temperature in vapor bubble with local pressure is considered with simplified Clausius-Clapeyron relation. The couple velocity-pressure equation is solved using PISO algorithm. The numerical model is validated with: (1) isothermal bubble rising and (2) one-dimensional horizontal film condensation. Then, the shape and life time history of single superheated vapor bubble are investigated. The present numerical study shows vapor bubble in saturated liquid undergoes boiling and condensation. It indicates bubble life time is nearly linear proportional with bubble size and superheat temperature.

  11. Interfacial nonequilibrium and Bénard-Marangoni instability of a liquid-vapor system

    NASA Astrophysics Data System (ADS)

    Margerit, J.; Colinet, P.; Lebon, G.; Iorio, C. S.; Legros, J. C.

    2003-10-01

    We study Bénard-Marangoni instability in a system formed by a horizontal liquid layer and its overlying vapor. The liquid is lying on a hot rigid plate and the vapor is bounded by a cold parallel plate. A pump maintains a reduced pressure in the vapor layer and evacuates the vapor. This investigation is undertaken within the classical quasisteady approximation for both the vapor and the liquid phases. The two layers are separated by a deformable interface. Temporarily frozen temperature and velocity distributions are employed at each instant for the stability analysis, limited to infinitesimal disturbances (linear regime). We use irreversible thermodynamics to model the phase change under interfacial nonequilibrium. Within this description, the interface appears as a barrier for transport of both heat and mass. Hence, in contrast with previous studies, we consider the possibility of a temperature jump across the interface, as recently measured experimentally. The stability analysis shows that the interfacial resistances to heat and mass transfer have a destabilizing influence compared to an interface that is in thermodynamic equilibrium. The role of the fluctuations in the vapor phase on the onset of instability is discussed. The conditions to reduce the system to a one phase model are also established. Finally, the influence of the evaporation parameters and of the presence of an inert gas on the marginal stability curves is discussed.

  12. Re-entrant phase behavior for systems with competition between phase separation and self-assembly

    NASA Astrophysics Data System (ADS)

    Reinhardt, Aleks; Williamson, Alexander J.; Doye, Jonathan P. K.; Carrete, Jesús; Varela, Luis M.; Louis, Ard A.

    2011-03-01

    In patchy particle systems where there is a competition between the self-assembly of finite clusters and liquid-vapor phase separation, re-entrant phase behavior can be observed, with the system passing from a monomeric vapor phase to a region of liquid-vapor phase coexistence and then to a vapor phase of clusters as the temperature is decreased at constant density. Here, we present a classical statistical mechanical approach to the determination of the complete phase diagram of such a system. We model the system as a van der Waals fluid, but one where the monomers can assemble into monodisperse clusters that have no attractive interactions with any of the other species. The resulting phase diagrams show a clear region of re-entrance. However, for the most physically reasonable parameter values of the model, this behavior is restricted to a certain range of density, with phase separation still persisting at high densities.

  13. Critical points of metal vapors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khomkin, A. L., E-mail: alhomkin@mail.ru; Shumikhin, A. S.

    2015-09-15

    A new method is proposed for calculating the parameters of critical points and binodals for the vapor–liquid (insulator–metal) phase transition in vapors of metals with multielectron valence shells. The method is based on a model developed earlier for the vapors of alkali metals, atomic hydrogen, and exciton gas, proceeding from the assumption that the cohesion determining the basic characteristics of metals under normal conditions is also responsible for their properties in the vicinity of the critical point. It is proposed to calculate the cohesion of multielectron atoms using well-known scaling relations for the binding energy, which are constructed for mostmore » metals in the periodic table by processing the results of many numerical calculations. The adopted model allows the parameters of critical points and binodals for the vapor–liquid phase transition in metal vapors to be calculated using published data on the properties of metals under normal conditions. The parameters of critical points have been calculated for a large number of metals and show satisfactory agreement with experimental data for alkali metals and with available estimates for all other metals. Binodals of metals have been calculated for the first time.« less

  14. Experimental verification of the vaporization's contribution to the shock waves generated by underwater electrical wire explosion under micro-second timescale pulsed discharge

    NASA Astrophysics Data System (ADS)

    Han, Ruoyu; Zhou, Haibin; Wu, Jiawei; Clayson, Thomas; Ren, Hang; Wu, Jian; Zhang, Yongmin; Qiu, Aici

    2017-06-01

    This paper studies pressure waves generated by exploding a copper wire in a water medium, demonstrating the significant contribution of the vaporization process to the formation of shock waves. A test platform including a pulsed current source, wire load, chamber, and diagnostic system was developed to study the shock wave and optical emission characteristics during the explosion process. In the experiment, a total of 500 J was discharged through a copper wire load 0.2 mm in diameter and 4 cm in length. A water gap was installed adjacent to the load so that the current was diverted away from the load after breakdown occurred across the water gap. This allows the electrical energy injection into the load to be interrupted at different times and at different stages of the wire explosion process. Experimental results indicate that when the load was bypassed before the beginning of the vaporization phase, the measured peak pressure was less than 2.5 MPa. By contrast, the peak pressure increased significantly to over 6.5 MPa when the water gap broke down after the beginning of the vaporization phase. It was also found that when bypassing the load after the voltage peak, similar shock waves were produced to those from a non-bypassed load. However, the total optical emission of these bypassed loads was at least an order of magnitude smaller. These results clearly demonstrate that the vaporization process is vital to the formation of shock waves and the energy deposited after the voltage collapse may only have a limited effect.

  15. Mixed phase clouds: observations and theoretical advances (overview)

    NASA Astrophysics Data System (ADS)

    Korolev, Alexei

    2013-04-01

    Mixed phase clouds play important role in precipitation formation and radiation budget of the Earth. The microphysical measurements in mixed phase clouds are notoriously difficult due to many technical challenges. The airborne instrumentation for characterization of the microstructure of mixed phase clouds is discussed. The results multiyear airborne observations and measurements of frequency of occurrence of mixed phase, characteristic spatial scales, humidity in mixed phase and ice clouds are presented. A theoretical framework describing the thermodynamics and phase transformation of a three phase component system consisting of ice particles, liquid droplets and water vapor is discussed. It is shown that the Wegener-Bergeron-Findeisen process plays different role in clouds with different dynamics. The problem of maintenance and longevity of mixed phase clouds is discussed.

  16. Cluster formation and phase separation in heteronuclear Janus dumbbells

    NASA Astrophysics Data System (ADS)

    Munaò, G.; O'Toole, P.; Hudson, T. S.; Costa, D.; Caccamo, C.; Sciortino, F.; Giacometti, A.

    2015-06-01

    We have recently investigated the phase behavior of model colloidal dumbbells constituted by two identical tangent hard spheres, with the first being surrounded by an attractive square-well interaction (Janus dumbbells, Munaó et al 2014 Soft Matter 10 5269). Here we extend our previous analysis by introducing in the model the size asymmetry of the hard-core diameters and study the enriched phase scenario thereby obtained. By employing standard Monte Carlo simulations we show that in such ‘heteronuclear Janus dumbbells’ a larger hard-sphere site promotes the formation of clusters, whereas in the opposite condition a gas-liquid phase separation takes place, with a narrow interval of intermediate asymmetries wherein the two phase behaviors may compete. In addition, some peculiar geometrical arrangements, such as lamellæ, are observed only around the perfectly symmetric case. A qualitative agreement is found with recent experimental results, where it is shown that the roughness of molecular surfaces in heterogeneous dimers leads to the formation of colloidal micelles.

  17. High growth rate hydride vapor phase epitaxy at low temperature through use of uncracked hydrides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulte, Kevin L.; Braun, Anna; Simon, John

    We demonstrate hydride vapor phase epitaxy (HVPE) of GaAs with unusually high growth rates (RG) at low temperature and atmospheric pressure by employing a hydride-enhanced growth mechanism. Under traditional HVPE growth conditions that involve growth from Asx species, RG exhibits a strong temperature dependence due to slow kinetics at the surface, and growth temperatures >750 degrees C are required to obtain RG > 60 um/h. We demonstrate that when the group V element reaches the surface in a hydride, the kinetic barrier is dramatically reduced and surface kinetics no longer limit RG. In this regime, RG is dependent on massmore » transport of uncracked AsH3 to the surface. By controlling the AsH3 velocity and temperature profile of the reactor, which both affect the degree of AsH3 decomposition, we demonstrate tuning of RG. We achieve RG above 60 um/h at temperatures as low as 560 degrees C and up to 110 um/h at 650 degrees C. We incorporate high-RG GaAs into solar cell devices to verify that the electronic quality does not deteriorate as RG is increased. The open circuit voltage (VOC), which is a strong function of non-radiative recombination in the bulk material, exhibits negligible variance in a series of devices grown at 650 degrees C with RG = 55-110 um/h. The implications of low temperature growth for the formation of complex heterostructure devices by HVPE are discussed.« less

  18. High growth rate hydride vapor phase epitaxy at low temperature through use of uncracked hydrides

    DOE PAGES

    Schulte, Kevin L.; Braun, Anna; Simon, John; ...

    2018-01-22

    We demonstrate hydride vapor phase epitaxy (HVPE) of GaAs with unusually high growth rates (RG) at low temperature and atmospheric pressure by employing a hydride-enhanced growth mechanism. Under traditional HVPE growth conditions that involve growth from Asx species, RG exhibits a strong temperature dependence due to slow kinetics at the surface, and growth temperatures >750 degrees C are required to obtain RG > 60 um/h. We demonstrate that when the group V element reaches the surface in a hydride, the kinetic barrier is dramatically reduced and surface kinetics no longer limit RG. In this regime, RG is dependent on massmore » transport of uncracked AsH3 to the surface. By controlling the AsH3 velocity and temperature profile of the reactor, which both affect the degree of AsH3 decomposition, we demonstrate tuning of RG. We achieve RG above 60 um/h at temperatures as low as 560 degrees C and up to 110 um/h at 650 degrees C. We incorporate high-RG GaAs into solar cell devices to verify that the electronic quality does not deteriorate as RG is increased. The open circuit voltage (VOC), which is a strong function of non-radiative recombination in the bulk material, exhibits negligible variance in a series of devices grown at 650 degrees C with RG = 55-110 um/h. The implications of low temperature growth for the formation of complex heterostructure devices by HVPE are discussed.« less

  19. Vapor bubble generation around gold nano-particles and its application to damaging of cells

    PubMed Central

    Kitz, M.; Preisser, S.; Wetterwald, A.; Jaeger, M.; Thalmann, G. N.; Frenz, M.

    2011-01-01

    We investigated vapor bubbles generated upon irradiation of gold nanoparticles with nanosecond laser pulses. Bubble formation was studied both with optical and acoustic means on supported single gold nanoparticles and single nanoparticles in suspension. Formation thresholds determined at different wavelengths indicate a bubble formation efficiency increasing with the irradiation wavelength. Vapor bubble generation in Bac-1 cells containing accumulations of the same particles was also investigated at different wavelengths. Similarly, they showed an increasing cell damage efficiency for longer wavelengths. Vapor bubbles generated by single laser pulses were about half the cell size when inducing acute damage. PMID:21339875

  20. Water vapor profiling using microwave radiometry

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Wilheit, T. T.

    1988-01-01

    Water vapor is one of the most important constituents in the Earth's atmosphere. Its spatial and temporal variations affect a wide spectrum of meteorological phenomena ranging from the formation of clouds to the development of severe storms. The passive microwave technique offers an excellent means for water vapor measurements. It can provide both day and night coverage under most cloud conditions. Two water vapor absorption features, at 22 and 183 GHz, were explored in the past years. The line strengths of these features differ by nearly two orders of magnitude. As a consequence, the techniques and the final products of water vapor measurements are also quite different. The research effort in the past few years was to improve and extend the retrieval algorithm to the measurements of water vapor profiles under cloudy conditions. In addition, the retrieval of total precipitable water using 183 GHz measurements, but in a manner analogous to the use of 22 GHz measurements, to increase measurement sensitivity for atmospheres of very low moisture content was also explored.

  1. Optical properties of bulk gallium nitride single crystals grown by chloride-hydride vapor-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Agyekyan, V. F.; Borisov, E. V.; Serov, A. Yu.; Filosofov, N. G.

    2017-12-01

    A gallium nitride crystal 5 mm in thickness was grown by chloride-hydride vapor-phase epitaxy on a sapphire substrate, from which the crystal separated during cooling. At an early stage, a three-dimensional growth mode was implemented, followed by a switch to a two-dimensional mode. Spectra of exciton reflection, exciton luminescence, and Raman scattering are studied in several regions characteristic of the sample. Analysis of these spectra and comparison with previously obtained data for thin epitaxial GaN layers with a wide range of silicon doping enabled conclusions about the quality of the crystal lattice in these characteristic regions.

  2. Vapor-liquid coexistence of the Stockmayer fluid in nonuniform external fields.

    PubMed

    Samin, Sela; Tsori, Yoav; Holm, Christian

    2013-05-01

    We investigate the structure and phase behavior of the Stockmayer fluid in the presence of nonuniform electric fields using molecular simulation. We find that an initially homogeneous vapor phase undergoes a local phase separation in a nonuniform field due to the combined effect of the field gradient and the fluid vapor-liquid equilibrium. This results in a high-density fluid condensing in the strong field region. The system polarization exhibits a strong field dependence due to the fluid condensation.

  3. A sharp interface method for compressible liquid–vapor flow with phase transition and surface tension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fechter, Stefan, E-mail: stefan.fechter@iag.uni-stuttgart.de; Munz, Claus-Dieter, E-mail: munz@iag.uni-stuttgart.de; Rohde, Christian, E-mail: Christian.Rohde@mathematik.uni-stuttgart.de

    The numerical approximation of non-isothermal liquid–vapor flow within the compressible regime is a difficult task because complex physical effects at the phase interfaces can govern the global flow behavior. We present a sharp interface approach which treats the interface as a shock-wave like discontinuity. Any mixing of fluid phases is avoided by using the flow solver in the bulk regions only, and a ghost-fluid approach close to the interface. The coupling states for the numerical solution in the bulk regions are determined by the solution of local two-phase Riemann problems across the interface. The Riemann solution accounts for the relevantmore » physics by enforcing appropriate jump conditions at the phase boundary. A wide variety of interface effects can be handled in a thermodynamically consistent way. This includes surface tension or mass/energy transfer by phase transition. Moreover, the local normal speed of the interface, which is needed to calculate the time evolution of the interface, is given by the Riemann solution. The interface tracking itself is based on a level-set method. The focus in this paper is the description of the two-phase Riemann solver and its usage within the sharp interface approach. One-dimensional problems are selected to validate the approach. Finally, the three-dimensional simulation of a wobbling droplet and a shock droplet interaction in two dimensions are shown. In both problems phase transition and surface tension determine the global bulk behavior.« less

  4. DETERMINING HOW VAPOR PHASE MTBE REACHES GROUND WATER

    EPA Science Inventory

    EPA Region 2 and ORD have funded a RARE project for FY 2005/2006 to evaluate the prospects that MTBE (and other fuel components) in vapors that escape from an underground storage tank (UST) can find its way to ground water produced by monitoring wells at a gasoline filling statio...

  5. Chemical vapor deposition reactor. [providing uniform film thickness

    NASA Technical Reports Server (NTRS)

    Chern, S. S.; Maserjian, J. (Inventor)

    1977-01-01

    An improved chemical vapor deposition reactor is characterized by a vapor deposition chamber configured to substantially eliminate non-uniformities in films deposited on substrates by control of gas flow and removing gas phase reaction materials from the chamber. Uniformity in the thickness of films is produced by having reactive gases injected through multiple jets which are placed at uniformally distributed locations. Gas phase reaction materials are removed through an exhaust chimney which is positioned above the centrally located, heated pad or platform on which substrates are placed. A baffle is situated above the heated platform below the mouth of the chimney to prevent downdraft dispersion and scattering of gas phase reactant materials.

  6. Oxidation/vaporization of silicide coated columbium base alloys

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.; Stearns, C. A.

    1971-01-01

    Mass spectrometric and target collection experiments were made at 1600 K to elucidate the mode of oxidative vaporization of two columbium alloys, fused-slurry-coated with a complex silicide former (Si-20Cr-Fe). At oxygen pressures up to 0.0005 torr the major vapor component detected by mass spectrometry for oxidized samples was gaseous silicon monoxide. Analysis of condensates collected at oxygen pressures of 0.1, 1.0 and 10 torr revealed that chromium-, silicon-, iron- and tungsten- containing species were the major products of vaporization. Equilibrium thermochemical diagrams were constructed for the metal-oxygen system corresponding to each constituent metal in both the coating and base alloy. The major vaporizing species are expected to be the gaseous oxides of chromium, silicon, iron and tungsten. Plots of vapor phase composition and maximum vaporization rate versus oxygen pressure were calculated for each coating constituent. The major contribution to weight loss by vaporization at oxygen pressures above 1 torr was shown to be the chromium-containing species.

  7. Uptake rate constants and partition coefficients for vapor phase organic chemicals using semipermeable membrane devices (SPMDs)

    USGS Publications Warehouse

    Cranor, W.L.; Alvarez, D.A.; Huckins, J.N.; Petty, J.D.

    2009-01-01

    To fully utilize semipermeable membrane devices (SPMDs) as passive samplers in air monitoring, data are required to accurately estimate airborne concentrations of environmental contaminants. Limited uptake rate constants (kua) and no SPMD air partitioning coefficient (Ksa) existed for vapor-phase contaminants. This research was conducted to expand the existing body of kinetic data for SPMD air sampling by determining kua and Ksa for a number of airborne contaminants including the chemical classes: polycyclic aromatic hydrocarbons, organochlorine pesticides, brominated diphenyl ethers, phthalate esters, synthetic pyrethroids, and organophosphate/organosulfur pesticides. The kuas were obtained for 48 of 50 chemicals investigated and ranged from 0.03 to 3.07??m3??g-1??d-1. In cases where uptake was approaching equilibrium, Ksas were approximated. Ksa values (no units) were determined or estimated for 48 of the chemicals investigated and ranging from 3.84E+5 to 7.34E+7. This research utilized a test system (United States Patent 6,877,724 B1) which afforded the capability to generate and maintain constant concentrations of vapor-phase chemical mixtures. The test system and experimental design employed gave reproducible results during experimental runs spanning more than two years. This reproducibility was shown by obtaining mean kua values (n??=??3) of anthracene and p,p???-DDE at 0.96 and 1.57??m3??g-1??d-1 with relative standard deviations of 8.4% and 8.6% respectively.

  8. Phase separation and the formation of cellular bodies

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Broedersz, Chase P.; Meir, Yigal; Wingreen, Ned S.

    Cellular bodies in eukaryotic cells spontaneously assemble to form cellular compartments. Among other functions, these bodies carry out essential biochemical reactions. Cellular bodies form micron-sized structures, which, unlike canonical cell organelles, are not surrounded by membranes. A recent in vitro experiment has shown that phase separation of polymers in solution can explain the formation of cellular bodies. We constructed a lattice-polymer model to capture the essential mechanism leading to this phase separation. We used both analytical and numerical tools to predict the phase diagram of a system of two interacting polymers, including the concentration of each polymer type in the condensed and dilute phase.

  9. Heterogeneously entrapped, vapor-rich melt inclusions record pre-eruptive magmatic volatile contents

    NASA Astrophysics Data System (ADS)

    Steele-MacInnis, Matthew; Esposito, Rosario; Moore, Lowell R.; Hartley, Margaret E.

    2017-04-01

    Silicate melt inclusions (MI) commonly provide the best record of pre-eruptive H2O and CO2 contents of subvolcanic melts, but the concentrations of CO2 and H2O in the melt (glass) phase within MI can be modified by partitioning into a vapor bubble after trapping. Melt inclusions may also enclose vapor bubbles together with the melt (i.e., heterogeneous entrapment), affecting the bulk volatile composition of the MI, and its post-entrapment evolution. In this study, we use numerical modeling to examine the systematics of post-entrapment volatile evolution within MI containing various proportions of trapped vapor from zero to 95 volume percent. Modeling indicates that inclusions that trap only a vapor-saturated melt exhibit significant decrease in CO2 and moderate increase in H2O concentrations in the melt upon nucleation and growth of a vapor bubble. In contrast, inclusions that trap melt plus vapor exhibit subdued CO2 depletion at equivalent conditions. In the extreme case of inclusions that trap mostly the vapor phase (i.e., CO2-H2O fluid inclusions containing trapped melt), degassing of CO2 from the melt is negligible. In the latter scenario, the large fraction of vapor enclosed in the MI during trapping essentially serves as a buffer, preventing post-entrapment modification of volatile concentrations in the melt. Hence, the glass phase within such heterogeneously entrapped, vapor-rich MI records the volatile concentrations of the melt at the time of trapping. These numerical modeling results suggest that heterogeneously entrapped MI containing large vapor bubbles represent amenable samples for constraining pre-eruptive volatile concentrations of subvolcanic melts.

  10. Procedure 5 Quality Assurance Requirements For Vapor Phase Mercury Continuous Emissions Monitoring Systems And Sorbent Trap Monitoring Systems Used For Compliance Determination At Stationary Sources

    EPA Pesticide Factsheets

    Promulgated quality assurance Procedure 5 Quality Assurance Requirements For Vapor Phase Mercury Continuous Emissions Monitoring Systems And Sorbent Trap Monitoring Systems Used For Compliance Determination At Stationary Sources

  11. Process for vaporizing a liquid hydrocarbon fuel

    DOEpatents

    Szydlowski, Donald F.; Kuzminskas, Vaidotas; Bittner, Joseph E.

    1981-01-01

    The object of the invention is to provide a process for vaporizing liquid hydrocarbon fuels efficiently and without the formation of carbon residue on the apparatus used. The process includes simultaneously passing the liquid fuel and an inert hot gas downwardly through a plurality of vertically spaed apart regions of high surface area packing material. The liquid thinly coats the packing surface, and the sensible heat of the hot gas vaporizes this coating of liquid. Unvaporized liquid passing through one region of packing is uniformly redistributed over the top surface of the next region until all fuel has been vaporized using only the sensible heat of the hot gas stream.

  12. Method for the generation of variable density metal vapors which bypasses the liquidus phase

    DOEpatents

    Kunnmann, Walter; Larese, John Z.

    2001-01-01

    The present invention provides a method for producing a metal vapor that includes the steps of combining a metal and graphite in a vessel to form a mixture; heating the mixture to a first temperature in an argon gas atmosphere to form a metal carbide; maintaining the first temperature for a period of time; heating the metal carbide to a second temperature to form a metal vapor; withdrawing the metal vapor and the argon gas from the vessel; and separating the metal vapor from the argon gas. Metal vapors made using this method can be used to produce uniform powders of the metal oxide that have narrow size distribution and high purity.

  13. Predicting the growth of S i3N4 nanowires by phase-equilibrium-dominated vapor-liquid-solid mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, Yongliang; Cai, Jing; Yang, Lijun; Wu, Qiang; Wang, Xizhang; Hu, Zheng

    2017-09-01

    Nanomaterial synthesis is experiencing a profound evolution from empirical science ("cook-and-look") to prediction and design, which depends on the deep insight into the growth mechanism. Herein, we report a generalized prediction of the growth of S i3N4 nanowires by nitriding F e28S i72 alloy particles across different phase regions based on our finding of the phase-equilibrium-dominated vapor-liquid-solid (PED-VLS) mechanism. All the predictions about the growth of S i3N4 nanowires, and the associated evolutions of lattice parameters and geometries of the coexisting Fe -Si alloy phases, are experimentally confirmed quantitatively. This progress corroborates the general validity of the PED-VLS mechanism, which could be applied to the design and controllable synthesis of various one-dimensional nanomaterials.

  14. Passive Vaporizing Heat Sink

    NASA Technical Reports Server (NTRS)

    Knowles, TImothy R.; Ashford, Victor A.; Carpenter, Michael G.; Bier, Thomas M.

    2011-01-01

    A passive vaporizing heat sink has been developed as a relatively lightweight, compact alternative to related prior heat sinks based, variously, on evaporation of sprayed liquids or on sublimation of solids. This heat sink is designed for short-term dissipation of a large amount of heat and was originally intended for use in regulating the temperature of spacecraft equipment during launch or re-entry. It could also be useful in a terrestrial setting in which there is a requirement for a lightweight, compact means of short-term cooling. This heat sink includes a hermetic package closed with a pressure-relief valve and containing an expendable and rechargeable coolant liquid (e.g., water) and a conductive carbon-fiber wick. The vapor of the liquid escapes when the temperature exceeds the boiling point corresponding to the vapor pressure determined by the setting of the pressure-relief valve. The great advantage of this heat sink over a melting-paraffin or similar phase-change heat sink of equal capacity is that by virtue of the =10x greater latent heat of vaporization, a coolant-liquid volume equal to =1/10 of the paraffin volume can suffice.

  15. Defect reduction of SiNx embedded m-plane GaN grown by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Woo, Seohwi; Kim, Minho; So, Byeongchan; Yoo, Geunho; Jang, Jongjin; Lee, Kyuseung; Nam, Okhyun

    2014-12-01

    Nonpolar (1 0 -1 0) m-plane GaN has been grown on m-plane sapphire substrates by hydride vapor phase epitaxy (HVPE). We studied the defect reduction of m-GaN with embedded SiNx interlayers deposited by ex-situ metal organic chemical vapor deposition (MOCVD). The full-width at half-maximum values of the X-ray rocking curves for m-GaN with embedded SiNx along [1 1 -2 0]GaN and [0 0 0 1]GaN were reduced to 528 and 1427 arcs, respectively, as compared with the respective values of 947 and 3170 arcs, of m-GaN without SiNx. Cross-section transmission electron microscopy revealed that the basal stacking fault density was decreased by approximately one order to 5×104 cm-1 due to the defect blocking of the embedded SiNx. As a result, the near band edge emission intensities of the room-temperature and low-temperature photoluminescence showed approximately two-fold and four-fold improvement, respectively.

  16. Effect of surface condition on the formation of solid lubricating films at high temperatures

    NASA Technical Reports Server (NTRS)

    Hanyaloglu, Bengi; Graham, E. E.

    1992-01-01

    Solid films were produced on active metal or ceramic surfaces using lubricants (such as tricresyl phosphate) delivered as a vapor at high temperatures, and the lubricity of these deposits under different dynamic wear conditions was investigated. A method is described for chemically activating ceramic surfaces resulting in a surface that could promote the formation of lubricating polymeric derivative of TCP. Experiments were carried out to evaluate the wear characteristics of unlubricated cast iron and of Sialon ceramic at 25 and 280 C, and lubricated with a vapor of TCP at 280 C. It is shown that continuous vapor phase lubrication of chemically treated Sialon reduced its coefficient of friction from 0.7 to less than 0.1.

  17. Ionic liquids. Combination of combustion calorimetry with high-level quantum chemical calculations for deriving vaporization enthalpies.

    PubMed

    Emel'yanenko, Vladimir N; Verevkin, Sergey P; Heintz, Andreas; Schick, Christoph

    2008-07-10

    In this work, the molar enthalpies of formation of the ionic liquids [C2MIM][NO3] and [C4MIM][NO3] were measured by means of combustion calorimetry. The molar enthalpy of fusion of [C2MIM][NO3] was measured using differential scanning calorimetry. Ab initio calculations of the enthalpy of formation in the gaseous phase have been performed for the ionic species using the G3MP2 theory. We have used a combination of traditional combustion calorimetry with modern high-level ab initio calculations in order to obtain the molar enthalpies of vaporization of a series of the ionic liquids under study.

  18. Stalk Phase Formation: Effects of Dehydration and Saddle Splay Modulus

    PubMed Central

    Kozlovsky, Yonathan; Efrat, Avishay; Siegel, David A.; Kozlov, Michael M.

    2004-01-01

    One of the earliest lipid intermediates forming in the course of membrane fusion is the lipid stalk. Although many aspects of the stalk hypothesis were elaborated theoretically and confirmed by experiments it remained unresolved whether stalk formation is always an energy consuming process or if there are conditions where the stalks are energetically favorable and form spontaneously resulting in an equilibrium stalk phase. Motivated by a recent breakthrough experiments we analyze the physical factors determining the spontaneous stalk formation. We show that this process can be driven by interplay between two factors: the elastic energy of lipid monolayers including a contribution of the saddle splay deformation and the energy of hydration repulsion acting between apposing membranes. We analyze the dependence of stalk formation on the saddle splay (Gaussian) modulus of the lipid monolayers and estimate the values of this modulus based on the experimentally established phase boundary between the lamellar and the stalk phases. We suggest that fusion proteins can induce stalk formation just by bringing the membranes into close contact, and accumulating, at least locally, a sufficiently large energy of the hydration repulsion. PMID:15454446

  19. Advanced Life Support Water Recycling Technologies Case Studies: Vapor Phase Catalytic Ammonia Removal and Direct Osmotic Concentration

    NASA Technical Reports Server (NTRS)

    Flynn, Michael

    2004-01-01

    Design for microgravity has traditionally not been well integrated early on into the development of advanced life support (ALS) technologies. NASA currently has a many ALS technologies that are currently being developed to high technology readiness levels but have not been formally evaluated for microgravity compatibility. Two examples of such technologies are the Vapor Phase Catalytic Ammonia Removal Technology and the Direct Osmotic Concentration Technology. This presentation will cover the design of theses two systems and will identify potential microgravity issues.

  20. Low temperature photochemical vapor deposition of alloy and mixed metal oxide films

    DOEpatents

    Liu, David K.

    1992-01-01

    Method and apparatus for formation of an alloy thin film, or a mixed metal oxide thin film, on a substrate at relatively low temperatures. Precursor vapor(s) containing the desired thin film constituents is positioned adjacent to the substrate and irradiated by light having wavelengths in a selected wavelength range, to dissociate the gas(es) and provide atoms or molecules containing only the desired constituents. These gases then deposit at relatively low temperatures as a thin film on the substrate. The precursor vapor(s) is formed by vaporization of one or more precursor materials, where the vaporization temperature(s) is selected to control the ratio of concentration of metals present in the precursor vapor(s) and/or the total precursor vapor pressure.

  1. Low temperature photochemical vapor deposition of alloy and mixed metal oxide films

    DOEpatents

    Liu, D.K.

    1992-12-15

    Method and apparatus are described for formation of an alloy thin film, or a mixed metal oxide thin film, on a substrate at relatively low temperatures. Precursor vapor(s) containing the desired thin film constituents is positioned adjacent to the substrate and irradiated by light having wavelengths in a selected wavelength range, to dissociate the gas(es) and provide atoms or molecules containing only the desired constituents. These gases then deposit at relatively low temperatures as a thin film on the substrate. The precursor vapor(s) is formed by vaporization of one or more precursor materials, where the vaporization temperature(s) is selected to control the ratio of concentration of metals present in the precursor vapor(s) and/or the total precursor vapor pressure. 7 figs.

  2. Development and study of chemical vapor deposited tantalum base alloys

    NASA Technical Reports Server (NTRS)

    Meier, G. H.; Bryant, W. A.

    1976-01-01

    A technique for the chemical vapor deposition of alloys was developed. The process, termed pulsing, involves the periodic injection of reactant gases into a previously-evacuated reaction chamber where they blanket the substrate almost instantaneously. Formation of alternating layers of the alloy components and subsequent homogenization allows the formation of an alloy of uniform composition with the composition being determined by the duration and relative numbers of the various cycles. The technique has been utilized to produce dense alloys of uniform thickness and composition (Ta- 10 wt % W) by depositing alternating layers of Ta and W by the hydrogen reduction of TaCl5 and WCl6. A similar attempt to deposit a Ta - 8 wt % W - 2 wt% Hf alloy was unsuccessful because of the difficulty in reducing HfCl4 at temperatures below those at which gas phase nucleation of Ta and W occurred.

  3. Vaporization of a mixed precursors in chemical vapor deposition for YBCO films

    NASA Technical Reports Server (NTRS)

    Zhou, Gang; Meng, Guangyao; Schneider, Roger L.; Sarma, Bimal K.; Levy, Moises

    1995-01-01

    Single phase YBa2Cu3O7-delta thin films with T(c) values around 90 K are readily obtained by using a single source chemical vapor deposition technique with a normal precursor mass transport. The quality of the films is controlled by adjusting the carrier gas flow rate and the precursor feed rate.

  4. Formation of Gas-Phase Formate in Thermal Reactions of Carbon Dioxide with Diatomic Iron Hydride Anions.

    PubMed

    Jiang, Li-Xue; Zhao, Chongyang; Li, Xiao-Na; Chen, Hui; He, Sheng-Gui

    2017-04-03

    The hydrogenation of carbon dioxide involves the activation of the thermodynamically very stable molecule CO 2 and formation of a C-H bond. Herein, we report that HCO 2 - and CO can be formed in the thermal reaction of CO 2 with a diatomic metal hydride species, FeH - . The FeH - anions were produced by laser ablation, and the reaction with CO 2 was analyzed by mass spectrometry and quantum-chemical calculations. Gas-phase HCO 2 - was observed directly as a product, and its formation was predicted to proceed by facile hydride transfer. The mechanism of CO 2 hydrogenation in this gas-phase study parallels similar behavior of a condensed-phase iron catalyst. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Method and apparatus for conducting variable thickness vapor deposition

    DOEpatents

    Nesslage, G.V.

    1984-08-03

    A method of vapor depositing metal on a substrate in variable thickness comprises conducting the deposition continuously without interruption to avoid formation of grain boundaries. To achieve reduced deposition in specific regions a thin wire or ribbon blocking body is placed between source and substrate to partially block vapors from depositing in the region immediately below.

  6. Thin film solar cells grown by organic vapor phase deposition

    NASA Astrophysics Data System (ADS)

    Yang, Fan

    Organic solar cells have the potential to provide low-cost photovoltaic devices as a clean and renewable energy resource. In this thesis, we focus on understanding the energy conversion process in organic solar cells, and improving the power conversion efficiencies via controlled growth of organic nanostructures. First, we explain the unique optical and electrical properties of organic materials used for photovoltaics, and the excitonic energy conversion process in donor-acceptor heterojunction solar cells that place several limiting factors of their power conversion efficiency. Then, strategies for improving exciton diffusion and carrier collection are analyzed using dynamical Monte Carlo models for several nanostructure morphologies. Organic vapor phase deposition is used for controlling materials crystallization and film morphology. We improve the exciton diffusion efficiency while maintaining good carrier conduction in a bulk heterojunction solar cell. Further efficiency improvement is obtained in a novel nanocrystalline network structure with a thick absorbing layer, leading to the demonstration of an organic solar cell with 4.6% efficiency. In addition, solar cells using simultaneously active heterojunctions with broad spectral response are presented. We also analyze the efficiency limits of single and multiple junction organic solar cells, and discuss the challenges facing their practical implementations.

  7. Vapor-phase catalytic oxidesulfurization (ODS) of organosulfur compounds over supported metal oxide catalysts

    NASA Astrophysics Data System (ADS)

    Choi, Sukwon

    Sulfur in transportation fuels remains a leading source of SOx emissions from vehicle engines and is a major source of air pollution. The very low levels of sulfur globally mandated for transportation fuels in the near future cannot be achieved by current practices of hydrodesulfurization (HDS) for sulfur removal, which operate under severe conditions (high T, P) and use valuable H2. Novel vapor-phase catalytic oxidesulfurization (ODS) processes of selectively oxidizing various organosulfur compounds (carbonyl sulfide, carbon disulfide, methanethiol, dimethyl sulfide (DMS), dimethyl disulfide (DMDS), thiophene, 2,5-dimenthylthiophene) typically found in various industrial streams (e.g., petroleum refining, pulp and paper) into valuable chemical intermediates (H 2CO, CO, H2, maleic anhydride and concentrated SO2) has been extensively studied. This research has primarily focused on establishing the fundamental kinetics and mechanisms of these selective oxidation reactions over well-defined supported metal oxide catalysts. The selective oxidation reactions of COS + O2 → CO + SO2; 2CS2 + 5O2 → 2CO + 4SO2; CH3SH + 2O 2 → H2CO + SO2 + H2O; C4 H4S + 3O2 → C4H2O 3 + H2O + SO2; were studied. Raman spectroscopy revealed that the supported metal oxide phases were 100% dispersed on the oxide substrate. All the catalysts were highly active and selective for the oxidesulfurization of carbonyl sulfide, carbon disulfide, methanethiol, and thiophene between 290--330°C, 230--270°C, 350--400°C, and 250--400°C, respectively and did not deactivate. The TOFs (turnover frequency, normalized activity per active catalytic site) for all ODS reactions over supported vanadia catalysts, only containing molecularly dispersed surface vanadia species, varied within one order of magnitude and revealed the V-O-Support bridging bond was involved in the critical rate-determining kinetic steps. The surface reaction mechanism for each reaction was revealed by in situ IR (infrared) and

  8. Measured and Predicted Vapor Liquid Equilibrium of Ethanol-Gasoline Fuels with Insight on the Influence of Azeotrope Interactions on Aromatic Species Enrichment and Particulate Matter Formation in Spark Ignition Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratcliff, Matthew A; McCormick, Robert L; Burke, Stephen

    A relationship has been observed between increasing ethanol content in gasoline and increased particulate matter (PM) emissions from direct injection spark ignition (DISI) vehicles. The fundamental cause of this observation is not well understood. One potential explanation is that increased evaporative cooling as a result of ethanol's high HOV may slow evaporation and prevent sufficient reactant mixing resulting in the combustion of localized fuel rich regions within the cylinder. In addition, it is well known that ethanol when blended in gasoline forms positive azeotropes which can alter the liquid/vapor composition during the vaporization process. In fact, it was shown recentlymore » through a numerical study that these interactions can retain the aromatic species within the liquid phase impeding the in-cylinder mixing of these compounds, which would accentuate PM formation upon combustion. To better understand the role of the azeotrope interactions on the vapor/liquid composition evolution of the fuel, distillations were performed using the Advanced Distillation Curve apparatus on carefully selected samples consisting of gasoline blended with ethanol and heavy aromatic and oxygenated compounds with varying vapor pressures, including cumene, p-cymene, 4-tertbutyl toluene, anisole, and 4-methyl anisole. Samples collected during the distillation indicate an enrichment of the heavy aromatic or oxygenated additive with an increase in initial ethanol concentration from E0 to E30. A recently developed distillation and droplet evaporation model is used to explore the influence of dilution effects versus azeotrope interactions on the aromatic species enrichment. The results suggest that HOV-cooling effects as well as aromatic species enrichment behaviors should be considered in future development of predictive indices to forecast the PM potential of fuels containing oxygenated compounds with comparatively high HOV.« less

  9. Stress granule formation via ATP depletion-triggered phase separation

    NASA Astrophysics Data System (ADS)

    Wurtz, Jean David; Lee, Chiu Fan

    2018-04-01

    Stress granules (SG) are droplets of proteins and RNA that form in the cell cytoplasm during stress conditions. We consider minimal models of stress granule formation based on the mechanism of phase separation regulated by ATP-driven chemical reactions. Motivated by experimental observations, we identify a minimal model of SG formation triggered by ATP depletion. Our analysis indicates that ATP is continuously hydrolysed to deter SG formation under normal conditions, and we provide specific predictions that can be tested experimentally.

  10. Formation of microbeads during vapor explosions of Field's metal in water

    NASA Astrophysics Data System (ADS)

    Kouraytem, N.; Li, E. Q.; Thoroddsen, S. T.

    2016-06-01

    We use high-speed video imaging to investigate vapor explosions during the impact of a molten Field's metal drop onto a pool of water. These explosions occur for temperatures above the Leidenfrost temperature and are observed to occur in up to three stages as the metal temperature is increased, with each explosion being more powerful that the preceding one. The Field's metal drop breaks up into numerous microbeads with an exponential size distribution, in contrast to tin droplets where the vapor explosion deforms the metal to form porous solid structures. We compare the characteristic bead size to the wavelength of the fastest growing mode of the Rayleigh-Taylor instability.

  11. Detection Of Gas-Phase Polymerization in SiH4 And GeH4

    NASA Technical Reports Server (NTRS)

    Shing, Yuh-Han; Perry, Joseph W.; Allevato, Camillo E.

    1990-01-01

    Inelastic scattering of laser light found to indicate onset of gas-phase polymerization in plasma-enhanced chemical-vapor deposition (PECVD) of photoconductive amorphous hydrogenated silicon/germanium alloy (a-SiGe:H) film. In PECVD process, film deposited from radio-frequency glow-discharge plasma of silane (SiH4) and germane (GeH4) diluted with hydrogen. Gas-phase polymerization undesirable because it causes formation of particulates and defective films.

  12. The partitioning behavior of silver in a vapor brine rhyolite melt assemblage

    NASA Astrophysics Data System (ADS)

    Simon, Adam C.; Pettke, Thomas; Candela, Philip A.; Piccoli, Philip M.

    2008-03-01

    The partitioning of silver in a sulfur-free rhyolite melt-vapor-brine assemblage has been quantified at 800 °C, pressures of 100 and 140 MPa and f≈NNO (nickel-nickel oxide). Silver solubility (±2 σ) in rhyolite increases 5-fold from 105 ± 21 to 675 ± 98 μg/g as pressure increases from 100 to 140 MPa. Nernst-type partition coefficients (DAgi,j±2σ) describing the mass transfer of silver at 100 MPa between vapor and melt, brine and melt and vapor and brine are 32 ± 30, 1151 ± 238 and 0.026 ± 0.004, respectively. At 140 MPa, values for DAgi,j(±2σ) for vapor and melt, brine and melt, and vapor and brine are 32 ± 10, 413 ± 172 and 0.06 ± 0.03, respectively. Apparent equilibrium constant values (±2 σ) describing the exchange of silver and sodium between vapor and melt, KAg,Nav/m, at 100 and 140 MPa are 105 ± 68 and 14 ± 6. The average values (±2 σ) for silver and sodium exchange between brine and melt, KAg,Nab/m, at 100 and 140 MPa are 313 ± 288 and 65 ± 12. These data indicate that the mass transfer of silver from rhyolite melt to an exsolved volatile phase(s) is enhanced at 100 MPa relative to 140 MPa, suggesting that decompression increases the silver ore-generative potential of an evolving silicate magma. Model calculations using the new data suggest that the evolution of low-density, aqueous fluid (i.e., vapor) may be responsible for the the silver tonnage of many porphyry-type and perhaps epithermal-type ore deposits. For example, Halter et al. (Halter W. E., Pettke T. and Heinrich C. A. (2002) The origin of Cu/Au ratios in porphyry-type ore deposits. Science296, 1842-1844) used detailed silicate and sulfide melt inclusion and vapor and brine fluid inclusions analyses to estimate a melt volume on the order of 15 km 3 to satisfy the copper budget at the Bajo de la Alumbrera copper-, gold-, silver-ore deposit. Using their melt volume estimate with the data presented here, model calculations for a 15-km 3 felsic melt, saturated with pyrrhotite

  13. Significant vertical phase separation in solvent-vapor-annealed poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) composite films leading to better conductivity and work function for high-performance indium tin oxide-free optoelectronics.

    PubMed

    Yeo, Jun-Seok; Yun, Jin-Mun; Kim, Dong-Yu; Park, Sungjun; Kim, Seok-Soon; Yoon, Myung-Han; Kim, Tae-Wook; Na, Seok-In

    2012-05-01

    In the present study, a novel polar-solvent vapor annealing (PSVA) was used to induce a significant structural rearrangement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films in order to improve their electrical conductivity and work function. The effects of polar-solvent vapor annealing on PEDOT:PSS were systematically compared with those of a conventional solvent additive method (SAM) and investigated in detail by analyzing the changes in conductivity, morphology, top and bottom surface composition, conformational PEDOT chains, and work function. The results confirmed that PSVA induces significant phase separation between excess PSS and PEDOT chains and a spontaneous formation of a highly enriched PSS layer on the top surface of the PEDOT:PSS polymer blend, which in turn leads to better 3-dimensional connections between the conducting PEDOT chains and higher work function. The resultant PSVA-treated PEDOT:PSS anode films exhibited a significantly enhanced conductivity of up to 1057 S cm(-1) and a tunable high work function of up to 5.35 eV. The PSVA-treated PEDOT:PSS films were employed as transparent anodes in polymer light-emitting diodes (PLEDs) and polymer solar cells (PSCs). The cell performances of organic optoelectronic devices with the PSVA-treated PEDOT:PSS anodes were further improved due to the significant vertical phase separation and the self-organized PSS top surface in PSVA-treated PEDOT:PSS films, which can increase the anode conductivity and work function and allow the direct formation of a functional buffer layer between the active layer and the polymeric electrode. The results of the present study will allow better use and understanding of polymeric-blend materials and will further advance the realization of high-performance indium tin oxide (ITO)-free organic electronics.

  14. Identification of vapor-phase chemical warfare agent simulants and rocket fuels using laser-induced breakdown spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stearns, Jaime A.; McElman, Sarah E.; Dodd, James A.

    2010-05-01

    Application of laser-induced breakdown spectroscopy (LIBS) to the identification of security threats is a growing area of research. This work presents LIBS spectra of vapor-phase chemical warfare agent simulants and typical rocket fuels. A large dataset of spectra was acquired using a variety of gas mixtures and background pressures and processed using partial least squares analysis. The five compounds studied were identified with a 99% success rate by the best method. The temporal behavior of the emission lines as a function of chamber pressure and gas mixture was also investigated, revealing some interesting trends that merit further study.

  15. Vapor Cavitation in Dynamically Loaded Journal Bearings

    NASA Technical Reports Server (NTRS)

    Jacobson, B. O.; Hamrock, B. J.

    1983-01-01

    High speed motion camera experiments were performed on dynamically loaded journal bearings. The length to diameter ratio of the bearing, the speed of the roller and the tube, the surface material of the roller, and the static and dynamic eccentricity of the bearing were varied. One hundred and thirty-four cases were filmed. The occurrence of vapor cavitation was clearly evident in the films and figures presented. Vapor cavitation was found to occur when the tensile stress applied to the oil exceeded the tensile strength of the oil or the binding of the oil to the surface. The physical situation in which vapor cavitation occurs is during the squeezing and sliding motion within a bearing. Besides being able to accurately capture the vapor cavitation on film, an analysis of the formation and collapse of the cavitation bubbles and characteristics of the bubble content are presented.

  16. First-order wetting transition at a liquid-vapor interface

    NASA Technical Reports Server (NTRS)

    Schmidt, J. W.; Moldover, M. R.

    1983-01-01

    Evidence from reflectance and contact angle measurements is presented that three-phase mixtures of i-C3H7OH-C7F14 exhibit a first-order wetting phase transition at the liquid-vapor interface at 38 C. Equilibration phenomena support this interpretation. Ellipsometry was used to measure the apparent thickness of the intruding layer in the three-phase mixture. At temperatures slightly above the wetting temperature T(w), the intruding layer's thickness is several hundred angstroms and its variation with temperature is extremely weak. Below T(w), three-phase contact can occur between the vapor and both the upper and lower liquid phases; one of the angles which characterizes this contact has a very simple temperature dependence. The thickness of the intruding layer, monitored as the solutions approached equilibrium, is found to depend quite weakly on the height spanned by the upper liquid phase in the vicinity of a first-order wetting transition.

  17. The 2nd phase of the LEANDRE program: Water-vapor DIAL measurement

    NASA Technical Reports Server (NTRS)

    Quaglia, P.; Bruneau, D.; Pelon, J.

    1992-01-01

    As a follow-on of the backscattered lidar, a differential absorption lidar (LEANDRE 2) is now being developed as part of the LEANDRE program for airborne meteorological studies. The primary measurement objective of LEANDRE 2 is water vapor. Pressure and temperature measurements are aimed at a second stage. The goals are to obtain a horizontal resolution of a few hundred meters for a vertical resolution of less than a hundred meters, with an absolute accuracy of 10 percent for humidity measurement. As compatibility is an important feature between the 2 first phases of LEANDRE, most of the LEANDRE 1 sub-system will be used and adapted for LEANDRE 2. For example, detection electronics, central computer, detectors and telescope will be the same. However, important modifications have to be done on the laser source, and spectral control has to be added. Most of the work is thus devoted to those developments, and the status is presented here.

  18. Vapor-phase-processed fluorinated self-assembled monolayer for organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Roh, Jeongkyun; Lee, Changhee; Kwak, Jeonghun; Jung, Byung Jun; Kim, Hyeok

    2015-09-01

    A vapor-phase-processed fluorinated silazane self-assembled monolayer (SAM), 1,3-bis(trifluoropropyl)-1,1,3,3-tetramethyldisilazane (FPDS), was introduced as a surface modifier for pentacene-based organic thin-film transistors (OTFTs). A remarkable improvement in the field effect mobility from 0.25 cm2/Vs (without SAM-treatment) to 0.42 cm2/Vs (with FPDS-treatment) was observed, which was attributed to the better pentacene growth on a hydrophobic surface. A significant reduction in the contact resistance was also observed by FPDS treatment due to the improved bulk conductivity and diminished charge trapping at the gate dielectric surface by the SAM treatment. In addition, FPDS treatment efficiently improved the bias stability of the OTFTs; the drain-to-source current degradation by the bias stress was greatly reduced from 80% to 50% by FPDS treatment, and the characteristic time for charge trapping of the FPDS treated OTFTs was approximately one order of magnitude larger than that of the OTFTs without SAM treatment.

  19. Phase equilibrium measurements on nine binary mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilding, W.V.; Giles, N.F.; Wilson, L.C.

    1996-11-01

    Phase equilibrium measurements have been performed on nine binary mixtures. The PTx method was used to obtain vapor-liquid equilibrium data for the following systems at two temperatures each: (aminoethyl)piperazine + diethylenetriamine; 2-butoxyethyl acetate + 2-butoxyethanol; 2-methyl-2-propanol + 2-methylbutane; 2-methyl-2-propanol + 2-methyl-2-butene; methacrylonitrile + methanol; 1-chloro-1,1-difluoroethane + hydrogen chloride; 2-(hexyloxy)ethanol + ethylene glycol; butane + ammonia; propionaldehyde + butane. Equilibrium vapor and liquid phase compositions were derived form the PTx data using the Soave equation of state to represent the vapor phase and the Wilson or the NRTL activity coefficient model to represent the liquid phase. A large immiscibility region existsmore » in the butane + ammonia system at 0 C. Therefore, separate vapor-liquid-liquid equilibrium measurements were performed on this system to more precisely determine the miscibility limits and the composition of the vapor phase in equilibrium with the two liquid phases.« less

  20. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation

    PubMed Central

    Shiraiwa, Manabu; Yee, Lindsay D.; Schilling, Katherine A.; Loza, Christine L.; Craven, Jill S.; Zuend, Andreas; Ziemann, Paul J.; Seinfeld, John H.

    2013-01-01

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process. PMID:23818634

  1. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation.

    PubMed

    Shiraiwa, Manabu; Yee, Lindsay D; Schilling, Katherine A; Loza, Christine L; Craven, Jill S; Zuend, Andreas; Ziemann, Paul J; Seinfeld, John H

    2013-07-16

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process.

  2. Thermodynamic analysis of trimethylgallium decomposition during GaN metal organic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Kazuki; Shirakawa, Hiroki; Chokawa, Kenta; Araidai, Masaaki; Kangawa, Yoshihiro; Kakimoto, Koichi; Shiraishi, Kenji

    2018-04-01

    We analyzed the decomposition of Ga(CH3)3 (TMG) during the metal organic vapor phase epitaxy (MOVPE) of GaN on the basis of first-principles calculations and thermodynamic analysis. We performed activation energy calculations of TMG decomposition and determined the main reaction processes of TMG during GaN MOVPE. We found that TMG reacts with the H2 carrier gas and that (CH3)2GaH is generated after the desorption of the methyl group. Next, (CH3)2GaH decomposes into (CH3)GaH2 and this decomposes into GaH3. Finally, GaH3 becomes GaH. In the MOVPE growth of GaN, TMG decomposes into GaH by the successive desorption of its methyl groups. The results presented here concur with recent high-resolution mass spectroscopy results.

  3. Field emission and photoluminescence characteristics of ZnS nanowires via vapor phase growth

    NASA Astrophysics Data System (ADS)

    Chang, Yongqin; Wang, Mingwei; Chen, Xihong; Ni, Saili; Qiang, Weijing

    2007-05-01

    Large-area ZnS nanowires were synthesized through a vapor phase deposition method. X-ray diffraction and electron microscopy results show that the products are composed of single crystalline ZnS nanowires with a cubic structure. The nanowires have sharp tips and are distributed uniformly on silicon substrates. The diameter of the bases is in the range of 320-530 nm and that of the tips is around 20-30 nm. The strong ultraviolet emission in the photoluminescence spectra also demonstrates that the ZnS nanowires are of high crystalline perfection. Field emission measurements reveal that the ZnS nanowires have a fairly low threshold field, which may be ascribed to their very sharp tips, rough surfaces and high crystal quality. The perfect field emission ability of the ZnS nanowires makes them a promising candidate for the fabrication of flexible cold cathodes.

  4. Profiling of Atmospheric Water Vapor with MIR and LASE

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Racette, P.; Triesly, M. E.; Browell, E. V.; Ismail, S.; Chang, L. A.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    This paper presents the first and the only simultaneous measurements of water vapor by MIR (Millimeter-wave Imaging Radiometer) and LASE (Lidar Atmospheric Sounding Experiment) on board the same ER-2 aircraft. Water vapor is one of the most important constituents in the Earth's atmosphere, as its spatial and temporal variations affect a wide spectrum of meteorological phenomena ranging from the formation of clouds to the development of severe storms. Its concentration, as measured in terms of relative humidity, determines the extinction coefficient of atmospheric aerosol particles and therefore visibility. These considerations point to the need for effective and frequent measurements of the atmospheric water vapor. The MIR and LASE instruments provide measurements of water vapor profiles with two markedly different techniques. LASE can give water vapor profiles with excellent vertical resolution under clear condition, while MIR can retrieve water vapor profiles with a crude vertical resolution even under a moderate cloud cover. Additionally, millimeter-wave measurements are relatively simple and provide better spatial coverage.

  5. Enthalpy of Formation of N 2 H 4 (Hydrazine) Revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feller, David; Bross, David H.; Ruscic, Branko

    2017-08-02

    In order to address the accuracy of the long-standing experimental enthalpy of formation of gas-phase hydrazine, fully confirmed in earlier versions of Active Thermochemical Tables (ATcT), the provenance of that value is re-examined in light of new high-end calculations of the Feller-Peterson-Dixon (FPD) variety. An overly optimistic determination of the vaporization enthalpy of hydrazine, which created an unrealistically strong connection between the gas phase thermochemistry and the calorimetric results defining the thermochemistry of liquid hydrazine was identified as the probable culprit. The new enthalpy of formation of gas-phase hydrazine, based on balancing all available knowledge, was determined to be 111.57more » ± 0.47 kJ/mol at 0 K (97.41 kJ/mol at 298.15 K). Close agreement was found between the ATcT (even excluding the latest theoretical result) and FPD enthalpies.« less

  6. Enthalpy of Formation of N2H4 (Hydrazine) Revisited.

    PubMed

    Feller, David; Bross, David H; Ruscic, Branko

    2017-08-17

    In order to address the accuracy of the long-standing experimental enthalpy of formation of gas-phase hydrazine, fully confirmed in earlier versions of Active Thermochemical Tables (ATcT), the provenance of that value is re-examined in light of new high-end calculations of the Feller-Peterson-Dixon (FPD) variety. An overly optimistic determination of the vaporization enthalpy of hydrazine, which created an unrealistically strong connection between the gas phase thermochemistry and the calorimetric results defining the thermochemistry of liquid hydrazine, was identified as the probable culprit. The new enthalpy of formation of gas-phase hydrazine, based on balancing all available knowledge, was determined to be 111.57 ± 0.47 kJ/mol at 0 K (97.42 ± 0.47 kJ/mol at 298.15 K). Close agreement was found between the ATcT (even excluding the latest theoretical result) and the FPD enthalpy.

  7. Numerical modeling of experimental observations on gas formation and multi-phase flow of carbon dioxide in subsurface formations

    NASA Astrophysics Data System (ADS)

    Pawar, R.; Dash, Z.; Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Illangasekare, T. H.; Zyvoloski, G.

    2011-12-01

    One of the concerns related to geologic CO2 sequestration is potential leakage of CO2 and its subsequent migration to shallow groundwater resources leading to geochemical impacts. Developing approaches to monitor CO2 migration in shallow aquifer and mitigate leakage impacts will require improving our understanding of gas phase formation and multi-phase flow subsequent to CO2 leakage in shallow aquifers. We are utilizing an integrated approach combining laboratory experiments and numerical simulations to characterize the multi-phase flow of CO2 in shallow aquifers. The laboratory experiments involve a series of highly controlled experiments in which CO2 dissolved water is injected in homogeneous and heterogeneous soil columns and tanks. The experimental results are used to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. We utilize the Finite Element Heat and Mass (FEHM) simulator (Zyvoloski et al, 2010) to numerically model the experimental results. The numerical models capture the physics of CO2 exsolution, multi-phase fluid flow as well as sand heterogeneity. Experimental observations of pressure, temperature and gas saturations are used to develop and constrain conceptual models for CO2 gas-phase formation and multi-phase CO2 flow in porous media. This talk will provide details of development of conceptual models based on experimental observation, development of numerical models for laboratory experiments and modelling results.

  8. The Vaporization of B2O3(l) to B2O3(g) and B2O2(g)

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Myers, Dwight L.

    2011-01-01

    The vaporization of B2O3 in a reducing environment leads to formation of both B2O3(g) and B2O2(g). While formation of B2O3(g) is well understood, many questions about the formation of B2O2(g) remain. Previous studies using B(s) + B2O3(l) have led to inconsistent thermodynamic data. In this study, it was found that after heating, B(s) and B2O3(l) appear to separate and variations in contact area likely led to the inconsistent vapor pressures of B2O2(g). To circumvent this problem, an activity of boron is fixed with a two-phase mixture of FeB and Fe2B. Both second and third law enthalpies of formation were measured for B2O2(g) and B2O3(g). From these the enthalpies of formation at 298.15 K are calculated to be -479.9 +/- 41.5 kJ/mol for B2O2(g) and -833.4 +/- 13.1 kJ/mol for B2O3(g). Ab initio calculations to determine the enthalpies of formation of B2O2(g) and B2O3(g) were conducted using the W1BD composite method and show good agreement with the experimental values.

  9. Water vapor measurements in- and outside cirrus with the novel water vapor mass spectrometer AIMS-H2O

    NASA Astrophysics Data System (ADS)

    Kaufmann, Stefan; Schlage, Romy; Voigt, Christiane; Jurkat, Tina; Krämer, Martina; Rolf, Christian; Zöger, Martin; Schäfler, Andreas; Dörnbrack, Andreas

    2015-04-01

    Water vapor plays a crucial role for the earth's climate both directly via its radiative properties and indirectly due to its ability to form clouds. However, accurate measurements of especially low water vapor concentrations prevalent in the upper troposphere and lower stratosphere are difficult and exhibit large discrepancies between different instruments and methods. In order to address this issue and to provide a comprehensive water vapor data set necessary to gather a complete picture of cloud formation processes, four state-of-the-art hygrometers including the novel water vapor mass spectrometer AIMS-H2O were deployed on the DLR research aircraft HALO during the ML-Cirrus campaign in March/April 2014 over Europe. Here, we present first water vapor measurements of AIMS-H2O on HALO. The instrument performance is validated by intercomparison with the fluorescence hygrometer FISH and the laser hygrometer SHARC, both also mounted in the aircraft. This intercomparison shows good agreement between the instruments from low stratospheric mixing ratios up to higher H2O concentrations at upper tropospheric conditions. Gathering data from over 24 flight hours, no significant offsets between the instruments were found (mean of relative deviation

  10. Development of theory-based health messages: three-phase programme of formative research

    PubMed Central

    Epton, Tracy; Norman, Paul; Harris, Peter; Webb, Thomas; Snowsill, F. Alexandra; Sheeran, Paschal

    2015-01-01

    Online health behaviour interventions have great potential but their effectiveness may be hindered by a lack of formative and theoretical work. This paper describes the process of formative research to develop theoretically and empirically based health messages that are culturally relevant and can be used in an online intervention to promote healthy lifestyle behaviours among new university students. Drawing on the Theory of Planned Behaviour, a three-phase programme of formative research was conducted with prospective and current undergraduate students to identify (i) modal salient beliefs (the most commonly held beliefs) about fruit and vegetable intake, physical activity, binge drinking and smoking, (ii) which beliefs predicted intentions/behaviour and (iii) reasons underlying each of the beliefs that could be targeted in health messages. Phase 1, conducted with 96 pre-university college students, elicited 56 beliefs about the behaviours. Phase 2, conducted with 3026 incoming university students, identified 32 of these beliefs that predicted intentions/behaviour. Phase 3, conducted with 627 current university students, elicited 102 reasons underlying the 32 beliefs to be used to construct health messages to bolster or challenge these beliefs. The three-phase programme of formative research provides researchers with an example of how to develop health messages with a strong theoretical- and empirical base for use in health behaviour change interventions. PMID:24504361

  11. Stabilization of the cubic phase of HfO2 by Y addition in films grown by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Rauwel, E.; Dubourdieu, C.; Holländer, B.; Rochat, N.; Ducroquet, F.; Rossell, M. D.; Van Tendeloo, G.; Pelissier, B.

    2006-07-01

    Addition of yttrium in HfO2 thin films prepared on silicon by metal organic chemical vapor deposition is investigated in a wide compositional range (2.0-99.5at.%). The cubic structure of HfO2 is stabilized for 6.5at.%. The permittivity is maximum for yttrium content of 6.5-10at.%; in this range, the effective permittivity, which results from the contribution of both the cubic phase and silicate phase, is of 22. These films exhibit low leakage current density (5×10-7A /cm2 at -1V for a 6.4nm film). The cubic phase is stable upon postdeposition high temperature annealing at 900°C under NH3.

  12. Kinetic manipulation of silicide phase formation in Si nanowire templates.

    PubMed

    Chen, Yu; Lin, Yung-Chen; Zhong, Xing; Cheng, Hung-Chieh; Duan, Xiangfeng; Huang, Yu

    2013-08-14

    The phase formation sequence of silicides in two-dimensional (2-D) structures has been well-investigated due to their significance in microelectronics. Applying high-quality silicides as contacts in nanoscale silicon (Si) devices has caught considerable attention recently for their potential in improving and introducing new functions in nanodevices. However, nucleation and diffusion mechanisms are found to be very different in one-dimensional (1-D) nanostructures, and thus the phase manipulation of silicides is yet to be achieved there. In this work, we report kinetic phase modulations to selectively enhance or hinder the growth rates of targeted nickel (Ni) silicides in a Si nanowire (NW) and demonstrate that Ni31Si12, δ-Ni2Si, θ-Ni2Si, NiSi, and NiSi2 can emerge as the first contacting phase at the silicide/Si interface through these modulations. First, the growth rates of silicides are selectively tuned through template structure modifications. It is demonstrated that the growth rate of diffusion limited phases can be enhanced in a porous Si NW due to a short diffusion path, which suppresses the formation of interface limited NiSi2. In addition, we show that a confining thick shell can be applied around the Si NW to hinder the growth of the silicides with large volume expansion during silicidation, including Ni31Si12, δ-Ni2Si, and θ-Ni2Si. Second, a platinum (Pt) interlayer between the Ni source and the Si NW is shown to effectively suppress the formation of the phases with low Pt solubility, including the dominating NiSi2. Lastly, we show that with the combined applications of the above-mentioned approaches, the lowest resistive NiSi phase can form as the first phase in a solid NW with a Pt interlayer to suppress NiSi2 and a thick shell to hinder Ni31Si12, δ-Ni2Si, and θ-Ni2Si simultaneously. The resistivity and maximum current density of NiSi agree reasonably to reported values.

  13. Integrated atomic layer deposition and chemical vapor reaction for the preparation of metal organic framework coatings for solid-phase microextraction Arrow.

    PubMed

    Lan, Hangzhen; Salmi, Leo D; Rönkkö, Tuukka; Parshintsev, Jevgeni; Jussila, Matti; Hartonen, Kari; Kemell, Marianna; Riekkola, Marja-Liisa

    2018-09-18

    New chemical vapor reaction (CVR) and atomic layer deposition (ALD)-conversion methods were utilized for preparation of metal organic frameworks (MOFs) coatings of solid phase microextraction (SPME) Arrow for the first time. With simple, easy and convenient one-step reaction or conversion, four MOF coatings were made by suspend ALD iron oxide (Fe 2 O 3 ) film or aluminum oxide (Al 2 O 3 ) film above terephthalic acid (H 2 BDC) or trimesic acid (H 3 BTC) vapor. UIO-66 coating was made by zirconium (Zr)-BDC film in acetic acid vapor. As the first documented instance of all-gas phase synthesis of SPME Arrow coatings, preparation parameters including CVR/conversion time and temperature, acetic acid volume, and metal oxide film/metal-ligand films thickness were investigated. The optimal coatings exhibited crystalline structures, excellent uniformity, satisfactory thickness (2-7.5 μm), and high robustness (>80 times usage). To study the practical usefulness of the coatings for the extraction, several analytes with different chemical properties were tested. The Fe-BDC coating was found to be the most selective and sensitive for the determination of benzene ring contained compounds due to its highly hydrophobic surface and unsaturated metal site. UIO-66 coating was best for small polar, aromatic, and long chain polar compounds owing to its high porosity. The usefulness of new coatings were evaluated for gas chromatography-mass spectrometer (GC-MS) determination of several analytes, present in wastewater samples at three levels of concentration, and satisfactory results were achieved. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. ALMA long baseline phase calibration using phase referencing

    NASA Astrophysics Data System (ADS)

    Asaki, Yoshiharu; Matsushita, Satoki; Fomalont, Edward B.; Corder, Stuartt A.; Nyman, Lars-Åke; Dent, William R. F.; Philips, Neil M.; Hirota, Akihiko; Takahashi, Satoko; Vila-Vilaro, Baltasar; Nikolic, Bojan; Hunter, Todd R.; Remijan, Anthony; Vlahakis, Catherine

    2016-08-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) is the world's largest millimeter/submillimeter telescope and provides unprecedented sensitivities and spatial resolutions. To achieve the highest imaging capabilities, interferometric phase calibration for the long baselines is one of the most important subjects: The longer the baselines, the worse the phase stability becomes because of turbulent motions of the Earth's atmosphere, especially, the water vapor in the troposphere. To overcome this subject, ALMA adopts a phase correction scheme using a Water Vapor Radiometer (WVR) to estimate the amount of water vapor content along the antenna line of sight. An additional technique is phase referencing, in which a science target and a nearby calibrator are observed by turn by quickly changing the antenna pointing. We conducted feasibility studies of the hybrid technique with the WVR phase correction and the antenna Fast Switching (FS) phase referencing (WVR+FS phase correction) for the ALMA 16 km longest baselines in cases that (1) the same observing frequency both for a target and calibrator is used, and (2) higher and lower frequencies for a target and calibrator, respectively, with a typical switching cycle time of 20 s. It was found that the phase correction performance of the hybrid technique is promising where a nearby calibrator is located within roughly 3◦ from a science target, and that the phase correction with 20 s switching cycle time significantly improves the performance with the above separation angle criterion comparing to the 120 s switching cycle time. The currently trial phase calibration method shows the same performance independent of the observing frequencies. This result is especially important for the higher frequency observations because it becomes difficult to find a bright calibrator close to an arbitrary sky position. In the series of our experiments, it is also found that phase errors affecting the image quality come from not only

  15. Direct detection of RDX vapor using a conjugated polymer network.

    PubMed

    Gopalakrishnan, Deepti; Dichtel, William R

    2013-06-05

    1,3,5-Trinitroperhydro-1,3,5-triazine (RDX) is a principal component of plastic explosives used in acts of terrorism and within improvised explosive devices, among others. Approaches to detect RDX compatible with remote, "stand-off" sampling that do not require preconcentration strategies, such as the swabs commonly employed in airports, will benefit military and civilian security. Such detection remains a significant challenge because RDX is 10(3) less volatile than 1,3,5-trinitrotoluene (TNT), corresponding to a parts-per-trillion vapor pressure under ambient conditions. Therefore, while fluorescence quenching of conjugated polymers is sufficiently sensitive to detect TNT vapors, RDX vapor detection is undemonstrated. Here we report a cross-linked phenylene vinylene polymer network whose fluorescence is quenched by trace amounts of RDX introduced from solution or the vapor phase. Fluorescence quenching is reduced, but remains significant, when partially degraded RDX is employed, suggesting that the polymer responds to RDX itself. The polymer network also responds to TNT and PETN similarly introduced from solution or the vapor phase. Pure solvents, volatile amines, and the outgassed vapors from lipstick or sunscreen do not quench polymer fluorescence. The established success of TNT sensors based on fluorescence quenching makes this a material of interest for real-world explosive sensors and will motivate further interest in cross-linked polymers and framework materials for sensing applications.

  16. Advanced deposition model for thermal activated chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Cai, Dang

    Thermal Activated Chemical Vapor Deposition (TACVD) is defined as the formation of a stable solid product on a heated substrate surface from chemical reactions and/or dissociation of gaseous reactants in an activated environment. It has become an essential process for producing solid film, bulk material, coating, fibers, powders and monolithic components. Global market of CVD products has reached multi billions dollars for each year. In the recent years CVD process has been extensively used to manufacture semiconductors and other electronic components such as polysilicon, AlN and GaN. Extensive research effort has been directed to improve deposition quality and throughput. To obtain fast and high quality deposition, operational conditions such as temperature, pressure, fluid velocity and species concentration and geometry conditions such as source-substrate distance need to be well controlled in a CVD system. This thesis will focus on design of CVD processes through understanding the transport and reaction phenomena in the growth reactor. Since the in situ monitor is almost impossible for CVD reactor, many industrial resources have been expended to determine the optimum design by semi-empirical methods and trial-and-error procedures. This approach has allowed the achievement of improvements in the deposition sequence, but begins to show its limitations, as this method cannot always fulfill the more and more stringent specifications of the industry. To resolve this problem, numerical simulation is widely used in studying the growth techniques. The difficulty of numerical simulation of TACVD crystal growth process lies in the simulation of gas phase and surface reactions, especially the latter one, due to the fact that very limited kinetic information is available in the open literature. In this thesis, an advanced deposition model was developed to study the multi-component fluid flow, homogeneous gas phase reactions inside the reactor chamber, heterogeneous surface

  17. Defect structure of high temperature hydride vapor phase epitaxy-grown epitaxial (0 0 0 1) AlN/sapphire using growth mode modification process

    NASA Astrophysics Data System (ADS)

    Su, Xujun; Zhang, Jicai; Huang, Jun; Zhang, Jinping; Wang, Jianfeng; Xu, Ke

    2017-06-01

    Defect structures were investigated by transmission electron microscopy for AlN/sapphire (0 0 0 1) epilayers grown by high temperature hydride vapor phase epitaxy using a growth mode modification process. The defect structures, including threading dislocations, inversion domains, and voids, were analyzed by diffraction contrast, high-resolution imaging, and convergent beam diffraction. AlN film growth was initiated at 1450 °C with high V/III ratio for 8 min. This was followed by low V/III ratio growth for 12 min. The near-interfacial region shows a high density of threading dislocations and inversion domains. Most of these dislocations have Burgers vector b = 1/3〈1 1 2 0〉 and were reduced with the formation of dislocation loops. In the middle range 400 nm < h < 2 μm, dislocations gradually aggregated and reduced to ∼109 cm-2. The inversion domains have a shuttle-like shape with staggered boundaries that deviate by ∼ ±5° from the c axis. Above 2 μm thickness, the film consists of isolated threading dislocations with a total density of 8 × 108 cm-2. Most of threading dislocations are either pure edge or mixed dislocations. The threading dislocation reduction in these films is associated with dislocation loops formation and dislocation aggregation-interaction during island growth with high V/III ratio.

  18. Nonlinear dynamic theory for photorefractive phase hologram formation

    NASA Technical Reports Server (NTRS)

    Kim, D. M.; Shah, R. R.; Rabson, T. A.; Tittle, F. K.

    1976-01-01

    A nonlinear dynamic theory is developed for the formation of photorefractive volume phase holograms. A feedback mechanism existing between the photogenerated field and free-electron density, treated explicitly, yields the growth and saturation of the space-charge field in a time scale characterized by the coupling strength between them. The expression for the field reduces in the short-time limit to previous theories and approaches in the long-time limit the internal or photovoltaic field. Additionally, the phase of the space charge field is shown to be time-dependent.

  19. Interface amorphization in hexagonal boron nitride films on sapphire substrate grown by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Nitta, Shugo; Pristovsek, Markus; Liu, Yuhuai; Nagamatsu, Kentaro; Kushimoto, Maki; Honda, Yoshio; Amano, Hiroshi

    2018-05-01

    Hexagonal boron nitride (h-BN) films directly grown on c-plane sapphire substrates by pulsed-mode metalorganic vapor phase epitaxy exhibit an interlayer for growth temperatures above 1200 °C. Cross-sectional transmission electron microscopy shows that this interlayer is amorphous, while the crystalline h-BN layer above has a distinct orientational relationship with the sapphire substrate. Electron energy loss spectroscopy shows the energy-loss peaks of B and N in both the amorphous interlayer and the overlying crystalline h-BN layer, while Al and O signals are also seen in the amorphous interlayer. Thus, the interlayer forms during h-BN growth through the decomposition of the sapphire at elevated temperatures.

  20. Chemical Production of Vibrationally Excited Carbon Monoxide from Carbon Vapor and Molecular Oxygen Precursors

    NASA Astrophysics Data System (ADS)

    Frederickson, Kraig; Musci, Ben; Rich, J. William; Adamovich, Igor

    2015-09-01

    Recent results demonstrating the formation of vibrationally excited carbon monoxide from carbon vapor and molecular oxygen will be presented. Previous reaction dynamics simulations and crossed molecular beam experiments have shown that gas-phase reaction of carbon atoms and molecular oxygen produces vibrationally excited carbon monoxide. The present work examines the product distribution of this reaction in a collision dominated environment, at a pressure of several Torr. Carbon vapor is produced in an AC arc discharge in argon buffer operated at a voltage of approximately 1 kV and current of 10 A, and mixed with molecular oxygen, which may also be excited by an auxiliary RF discharge, in a flowing chemical reactor. Identification of chemical reaction products and inference of their vibrational populations is performed by comparing infrared emission spectra of the flow in the reactor, taken by a Fourier Transform IR spectrometer, with synthetic spectra. Estimates of vibrationally excited carbon monoxide concentration and relative vibrational level populations will be presented.

  1. Investigating gas-phase defect formation in late-stage solidification using a novel phase-field crystal alloy model

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Smith, Nathan; Provatas, Nikolas

    2017-09-01

    We study late-stage solidification and the associated formation of defects in alloy materials using a novel model based on the phase-field-crystal technique. It is shown that our model successfully captures several important physical phenomena that occur in the late stages of solidification, including solidification shrinkage, liquid cavitation and microsegregation, all in a single framework. By examining the interplay of solidification shrinkage and solute segregation, this model reveals that the formation of gas pore defects at the late stage of solidification can lead to nucleation of second phase solid particles due to solute enrichment in the eutectic liquid driven by gas-phase nucleation and growth. We also predict a modification of the Gulliver-Scheil equation in the presence of gas pockets in confined liquid pools.

  2. Effect of Interaction of the Temperature Field and Supersaturation on the Morphology of the Solid-Vapor Interface in Crystal Growth by Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Grasza, K.; Palosz, W.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    An in-situ study of the morphology of the solid-vapor interface during iodine crystal growth was done. The conditions for terrace growth, flat faces formation and retraction, competition between sources of steps, formation of protrusions, surface roughening, and defect overgrowth are demonstrated and discussed.

  3. An electron diffraction study of alkali chloride vapors

    NASA Technical Reports Server (NTRS)

    Mawhorter, R. J.; Fink, M.; Hartley, J. G.

    1985-01-01

    A study of monomers and dimers of the four alkali chlorides NaCl, KCl, RbCl, and CsCl in the vapor phase using the counting method of high energy electron diffraction is reported. Nozzle temperatures from 850-960 K were required to achieve the necessary vapor pressures of approximately 0.01 torr. Using harmonic calculations for the monomer and dimer 1 values, a consistent set of structures for all four molecules was obained. The corrected monomer distances reproduce the microwave values very well. The experiment yields information on the amount of dimer present in the vapor, and these results are compared with thermodynamic values.

  4. Water vapor adsorption on goethite.

    PubMed

    Song, Xiaowei; Boily, Jean-François

    2013-07-02

    Goethite (α-FeOOH) is an important mineral contributing to processes of atmospheric and terrestrial importance. Their interactions with water vapor are particularly relevant in these contexts. In this work, molecular details of water vapor (0.0-19.0 Torr; 0-96% relative humidity at 25 °C) adsorption at surfaces of synthetic goethite nanoparticles reacted with and without HCl and NaCl were resolved using vibrational spectroscopy. This technique probed interactions between surface (hydr)oxo groups and liquid water-like films. Molecular dynamics showed that structures and orientations adopted by these waters are comparable to those adopted at the interface with liquid water. Particle surfaces reacted with HCl accumulated less water than acid-free surfaces due to disruptions in hydrogen bond networks by chemisorbed waters and chloride. Particles reacted with NaCl had lower loadings below ∼10 Torr water vapor but greater loadings above this value than salt-free surfaces. Water adsorption reactions were here affected by competitive hydration of coexisting salt-free surface regions, adsorbed chloride and sodium, as well as precipitated NaCl. Collectively, the findings presented in this study add further insight into the initial mechanisms of thin water film formation at goethite surfaces subjected to variations in water vapor pressure that are relevant to natural systems.

  5. Liquid-Vapor Equilibrium of Multicomponent Cryogenic Systems

    NASA Technical Reports Server (NTRS)

    Thompson, W. Reid; Calado, Jorge C. G.; Zollweg, John A.

    1990-01-01

    Liquid-vapor and solid-vapor equilibria at low to moderate pressures and low temperatures are important in many solar system environments, including the surface and clouds of Titan, the clouds of Uranus and Neptune, and the surfaces of Mars and Triton. The familiar cases of ideal behavior are limiting cases of a general thermodynamic representation for the vapor pressure of each component in a homogeneous multicomponent system. The fundamental connections of laboratory measurements to thermodynamic models are through the Gibbs-Duhem relation and the Gibbs-Helmholtz relation. Using laboratory measurements of the total pressure, temperature, and compositions of the liquid and vapor phases at equilibrium, the values of these parameters can be determined. The resulting model for vapor-liquid equilibrium can then conveniently and accurately be used to calculate pressures, compositions, condensation altitudes, and their dependencies on changing climatic conditions. A specific system being investigated is CH4-C2H6-N2, at conditions relevant to Titan's surface and atmosphere. Discussed are: the modeling of existing data on CH4-N2, with applications to the composition of Titan's condensate clouds; some new measurements on the CH4-C2H6 binary, using a high-precision static/volumetric system, and on the C2H6-N2 binary, using the volumetric system and a sensitive cryogenic flow calorimeter; and describe a new cryogenic phase-equilibrium vessel with which we are beginning a detailed, systematic study of the three constituent binaries and the ternary CH4-C2H6-N2 system at temperatures ranging from 80 to 105 K and pressures from 0.1 to 7 bar.

  6. Non-aqueous phase cold vapor generation and determination of trace cadmium by atomic fluorescence spectrometry.

    PubMed

    Lei, Zirong; Chen, Luqiong; Hu, Kan; Yang, Shengchun; Wen, Xiaodong

    2018-06-05

    Cold vapor generation (CVG) of cadmium was firstly accomplished in non-aqueous media by using solid reductant of potassium borohydride (KBH 4 ) as a derivation reagent. The mixture of surfactant Triton X-114 micelle and octanol was innovatively used as the non-aqueous media for the CVG and atomic fluorescence spectrometry (AFS) was used for the elemental determination. The analyte ions were firstly extracted into the non-aqueous media from the bulk aqueous phase of analyte/sample solution via a novelly established ultrasound-assisted rapidly synergistic cloud point extraction (UARS-CPE) process and then directly mixed with the solid redcutant KBH 4 to generate volatile elemental state cadmium in a specially designed reactor, which was then rapidly transported to a commercial atomic fluorescence spectrometer for detection. Under the optimal conditions, the limit of detection (LOD) for cadmium was 0.004 μg L -1 . Compared to conventional hydride generation (HG)-AFS, the efficiency of non-aqueous phase CVG and the analytical performance of the developed system was considerably improved. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Universal adsorption at the vapor-liquid interface near the consolute point

    NASA Technical Reports Server (NTRS)

    Schmidt, James W.

    1990-01-01

    The ellipticity of the vapor-liquid interface above mixtures of methylcyclohexane (C7H14) and perfluoromethylcyclohexane (C7F14) has been measured near the consolute point T(c) = 318.6 K. The data are consistent with a model of the interface that combines a short-ranged density-vs height profile in the vapor phase with a much longer-ranged composition-versus-height profile in the liquid. The value of the free parameter produced by fitting the model to the data is consistent with results from two other simple mixtures and a mixture of a polymer and solvent. This experiment combines precision ellipsometry of the vapor-liquid interface with in situ measurements of refractive indices of the liquid phases, and it precisely locates the consolute point.

  8. Long-term stable water vapor permeation barrier properties of SiN/SiCN/SiN nanolaminated multilayers grown by plasma-enhanced chemical vapor deposition at extremely low pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Bum Ho, E-mail: bhchoi@kitech.re.kr; Lee, Jong Ho

    2014-08-04

    We investigated the water vapor permeation barrier properties of 30-nm-thick SiN/SiCN/SiN nanolaminated multilayer structures grown by plasma enhanced chemical vapor deposition at 7 mTorr. The derived water vapor transmission rate was 1.12 × 10{sup −6} g/(m{sup 2} day) at 85 °C and 85% relative humidity, and this value was maintained up to 15 000 h of aging time. The X-ray diffraction patterns revealed that the nanolaminated film was composed of an amorphous phase. A mixed phase was observed upon performing high resolution transmission electron microscope analysis, which indicated that a thermodynamically stable structure was formed. It was revealed amorphous SiN/SiCN/SiN multilayer structures that are freemore » from intermixed interface defects effectively block water vapor permeation into active layer.« less

  9. Dynamics of vapor emissions at wire explosion thresholda)

    NASA Astrophysics Data System (ADS)

    Belony, Paul A.; Kim, Yong W.

    2010-10-01

    X-pinch plasmas have been actively studied in the recent years. Numerical simulation of the ramp-up of metallic vapor emissions from wire specimens shows that under impulsive Ohmic heating the wire core invariably reaches a supercritical state before explosion. The heating rate depends sensitively on the local wire resistance, leading to highly variable vapor emission flux along the wire. To examine the vapor emission process, we have visualized nickel wire explosions by means of shock formation in air. In a single explosion as captured by shadowgraphy, there usually appear several shocks with spherical or cylindrical wave front originating from different parts of the wire. Growth of various shock fronts in time is well characterized by a power-law scaling in one form or another. Continuum emission spectra are obtained and calibrated to measure temperature near the explosion threshold. Shock front structures and vapor plume temperature are examined.

  10. Impact vaporization: Late time phenomena from experiments

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.; Gault, D. E.

    1987-01-01

    While simple airflow produced by the outward movement of the ejecta curtain can be scaled to large dimensions, the interaction between an impact-vaporized component and the ejecta curtain is more complicated. The goal of these experiments was to examine such interaction in a real system involving crater growth, ejection of material, two phased mixtures of gas and dust, and strong pressure gradients. The results will be complemented by theoretical studies at laboratory scales in order to separate the various parameters for planetary scale processes. These experiments prompt, however, the following conclusions that may have relevance at broader scales. First, under near vacuum or low atmospheric pressures, an expanding vapor cloud scours the surrounding surface in advance of arriving ejecta. Second, the effect of early-time vaporization is relatively unimportant at late-times. Third, the overpressure created within the crater cavity by significant vaporization results in increased cratering efficiency and larger aspect ratios.

  11. Gallium hydride vapor phase epitaxy of GaN nanowires

    PubMed Central

    2011-01-01

    Straight GaN nanowires (NWs) with diameters of 50 nm, lengths up to 10 μm and a hexagonal wurtzite crystal structure have been grown at 900°C on 0.5 nm Au/Si(001) via the reaction of Ga with NH3 and N2:H2, where the H2 content was varied between 10 and 100%. The growth of high-quality GaN NWs depends critically on the thickness of Au and Ga vapor pressure while no deposition occurs on plain Si(001). Increasing the H2 content leads to an increase in the growth rate, a reduction in the areal density of the GaN NWs and a suppression of the underlying amorphous (α)-like GaN layer which occurs without H2. The increase in growth rate with H2 content is a direct consequence of the reaction of Ga with H2 which leads to the formation of Ga hydride that reacts efficiently with NH3 at the top of the GaN NWs. Moreover, the reduction in the areal density of the GaN NWs and suppression of the α-like GaN layer is attributed to the reaction of H2 with Ga in the immediate vicinity of the Au NPs. Finally, the incorporation of H2 leads to a significant improvement in the near band edge photoluminescence through a suppression of the non-radiative recombination via surface states which become passivated not only via H2, but also via a reduction of O2-related defects. PMID:21711801

  12. Gallium hydride vapor phase epitaxy of GaN nanowires.

    PubMed

    Zervos, Matthew; Othonos, Andreas

    2011-03-28

    Straight GaN nanowires (NWs) with diameters of 50 nm, lengths up to 10 μm and a hexagonal wurtzite crystal structure have been grown at 900°C on 0.5 nm Au/Si(001) via the reaction of Ga with NH3 and N2:H2, where the H2 content was varied between 10 and 100%. The growth of high-quality GaN NWs depends critically on the thickness of Au and Ga vapor pressure while no deposition occurs on plain Si(001). Increasing the H2 content leads to an increase in the growth rate, a reduction in the areal density of the GaN NWs and a suppression of the underlying amorphous (α)-like GaN layer which occurs without H2. The increase in growth rate with H2 content is a direct consequence of the reaction of Ga with H2 which leads to the formation of Ga hydride that reacts efficiently with NH3 at the top of the GaN NWs. Moreover, the reduction in the areal density of the GaN NWs and suppression of the α-like GaN layer is attributed to the reaction of H2 with Ga in the immediate vicinity of the Au NPs. Finally, the incorporation of H2 leads to a significant improvement in the near band edge photoluminescence through a suppression of the non-radiative recombination via surface states which become passivated not only via H2, but also via a reduction of O2-related defects.

  13. Liquid phase evaporation on the normal shock wave in moist air transonic flows in nozzles

    NASA Astrophysics Data System (ADS)

    Dykas, Sławomir; Szymański, Artur; Majkut, Mirosław

    2017-06-01

    This paper presents a numerical analysis of the atmospheric air transonic flow through de Laval nozzles. By nature, atmospheric air always contains a certain amount of water vapor. The calculations were made using a Laval nozzle with a high expansion rate and a convergent-divergent (CD) "half-nozzle", referred to as a transonic diffuser, with a much slower expansion rate. The calculations were performed using an in-house CFD code. The computational model made it possible to simulate the formation of the liquid phase due to spontaneous condensation of water vapor contained in moist air. The transonic flow calculations also take account of the presence of a normal shock wave in the nozzle supersonic part to analyze the effect of the liquid phase evaporation.

  14. Investigation of nucleation kinetics in H2SO4 vapor through modeling of gas phase kinetics coupled with particle dynamics

    NASA Astrophysics Data System (ADS)

    Carlsson, Philip T. M.; Zeuch, Thomas

    2018-03-01

    We have developed a new model utilizing our existing kinetic gas phase models to simulate experimental particle size distributions emerging in dry supersaturated H2SO4 vapor homogeneously produced by rapid oxidation of SO2 through stabilized Criegee-Intermediates from 2-butene ozonolysis. We use a sectional method for simulating the particle dynamics. The particle treatment in the model is based on first principles and takes into account the transition from the kinetic to the diffusion-limited regime. It captures the temporal evolution of size distributions at the end of the ozonolysis experiment well, noting a slight underrepresentation of coagulation effects for larger particle sizes. The model correctly predicts the shape and the modes of the experimentally observed particle size distributions. The predicted modes show an extremely high sensitivity to the H2SO4 evaporation rates of the initially formed H2SO4 clusters (dimer to pentamer), which were arbitrarily restricted to decrease exponentially with increasing cluster size. In future, the analysis presented in this work can be extended to allow a direct validation of quantum chemically predicted stabilities of small H2SO4 clusters, which are believed to initiate a significant fraction of atmospheric new particle formation events. We discuss the prospects and possible limitations of the here presented approach.

  15. Acceptance Testing of the Vapor Phase Catalytic Ammonia Removal Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Fisher, John; Kliss, Mark; Tleimat, Maher; Quinn, Gregory; Fort, James; Nalette, Tim; Baker, Gale

    2005-01-01

    This paper describes the results of acceptance testing of the Vapor Phase Catalytic Ammonia Removal (VPCAR) technology. The VPCAR technology is currently being developed by NASA as a Mars transit vehicle water recycling system. NASA has recently completed a grant to develop a next generation VPCAR system. This grant was peer reviewed and funded through the Advanced Life Support (ALS) National Research Announcement (NRA). The grant funded a contract with Water Reuse Technology Inc. to construct an engineering development unit. This contract concluded with the shipment of the final deliverable to NASA on 8/31/03. The objective of the acceptance testing was to characterize the performance of this new system. This paper presents the results of mass power, and volume measurements for the delivered system. In addition, product water purity analysis for a Mars transit mission and a planetary base wastewater ersatz are provided. Acoustic noise levels, interface specifications and system reliability results are also discussed. An assessment of the readiness of the technology for human testing and recommendations for future improvements are provided.

  16. Study of silicon crystal surface formation based on molecular dynamics simulation results

    NASA Astrophysics Data System (ADS)

    Barinovs, G.; Sabanskis, A.; Muiznieks, A.

    2014-04-01

    The equilibrium shape of <110>-oriented single crystal silicon nanowire, 8 nm in cross-section, was found from molecular dynamics simulations using LAMMPS molecular dynamics package. The calculated shape agrees well to the shape predicted from experimental observations of nanocavities in silicon crystals. By parametrization of the shape and scaling to a known value of {111} surface energy, Wulff form for solid-vapor interface was obtained. The Wulff form for solid-liquid interface was constructed using the same model of the shape as for the solid-vapor interface. The parameters describing solid-liquid interface shape were found using values of surface energies in low-index directions known from published molecular dynamics simulations. Using an experimental value of the liquid-vapor interface energy for silicon and graphical solution of Herring's equation, we constructed angular diagram showing relative equilibrium orientation of solid-liquid, liquid-vapor and solid-vapor interfaces at the triple phase line. The diagram gives quantitative predictions about growth angles for different growth directions and formation of facets on the solid-liquid and solid-vapor interfaces. The diagram can be used to describe growth ridges appearing on the crystal surface grown from a melt. Qualitative comparison to the ridges of a Float zone silicon crystal cone is given.

  17. Formation of Silicate Grains in Circumstellar Environments: Experiment, Theory and Observations

    NASA Technical Reports Server (NTRS)

    Castleman, A., Jr.; Reber, A.; Clayborne, P.; Reveles, J.; Khanna, S.; Ali, A.

    2006-01-01

    Amongst chemical reactions (1) in the molecular universe (2), condensation reaction is probably the most poorly understood. The condensation of a solid from its components in the gas phase occurs in many parts of our galaxy such as stellar mass outflows, the terrestrial region of protoplanetary disks and in primordial solar nebula (3). But how does the transition occur from molecules to intermediate clusters to macroscopic grains? The major focus of the present work is the identification of chemical condensation reaction pathways that lead to the formation of stoichiometry, composition and crystallinity of cosmic silicates from vapor phase species.

  18. High-resolution discrete absorption spectrum of α-methallyl free radical in the vapor phase

    NASA Astrophysics Data System (ADS)

    Bayrakçeken, Fuat; Telatar, Ziya; Arı, Fikret; Tunçyürek, Lale; Karaaslan, İpek; Yaman, Ali

    2006-09-01

    The α-methallyl free radical is formed in the flash photolysis of 3-methylbut-1-ene, and cis-pent-2-ene in the vapor phase, and then subsequent reactions have been investigated by kinetic spectroscopy and gas-liquid chromatography. The photolysis flash was of short duration and it was possible to follow the kinetics of the radicals' decay, which occurred predominantly by bimolecular recombination. The measured rate constant for the α-methallyl recombination was (3.5 ± 0.3) × 10 10 mol -1 l s -1 at 295 ± 2 K. The absolute extinction coefficients of the α-methallyl radical are calculated from the optical densities of the absorption bands. Detailed analysis of related absorption bands and lifetime measurements in the original α-methallyl high-resolution discrete absorption spectrum image were also carried out by image processing techniques.

  19. Cluster Free Energies from Simple Simulations of Small Numbers of Aggregants: Nucleation of Liquid MTBE from Vapor and Aqueous Phases.

    PubMed

    Patel, Lara A; Kindt, James T

    2017-03-14

    We introduce a global fitting analysis method to obtain free energies of association of noncovalent molecular clusters using equilibrated cluster size distributions from unbiased constant-temperature molecular dynamics (MD) simulations. Because the systems simulated are small enough that the law of mass action does not describe the aggregation statistics, the method relies on iteratively determining a set of cluster free energies that, using appropriately weighted sums over all possible partitions of N monomers into clusters, produces the best-fit size distribution. The quality of these fits can be used as an objective measure of self-consistency to optimize the cutoff distance that determines how clusters are defined. To showcase the method, we have simulated a united-atom model of methyl tert-butyl ether (MTBE) in the vapor phase and in explicit water solution over a range of system sizes (up to 95 MTBE in the vapor phase and 60 MTBE in the aqueous phase) and concentrations at 273 K. The resulting size-dependent cluster free energy functions follow a form derived from classical nucleation theory (CNT) quite well over the full range of cluster sizes, although deviations are more pronounced for small cluster sizes. The CNT fit to cluster free energies yielded surface tensions that were in both cases lower than those for the simulated planar interfaces. We use a simple model to derive a condition for minimizing non-ideal effects on cluster size distributions and show that the cutoff distance that yields the best global fit is consistent with this condition.

  20. Predicting the enthalpies of melting and vaporization for pure components

    NASA Astrophysics Data System (ADS)

    Esina, Z. N.; Korchuganova, M. R.

    2014-12-01

    A mathematical model of the melting and vaporization enthalpies of organic components based on the theory of thermodynamic similarity is proposed. In this empirical model, the phase transition enthalpy for the homological series of n-alkanes, carboxylic acids, n-alcohols, glycols, and glycol ethers is presented as a function of the molecular mass, the number of carbon atoms in a molecule, and the normal transition temperature. The model also uses a critical or triple point temperature. It is shown that the results from predicting the melting and vaporization enthalpies enable the calculation of binary phase diagrams.

  1. Methods for forming wellbores in heated formations

    DOEpatents

    Guimerans, Rosalvina Ramona; Mansure, Arthur James

    2012-09-25

    A method for forming a wellbore in a heated formation includes flowing liquid cooling fluid to a bottom hole assembly in a wellbore in a heated formation. At least a portion of the liquid cooling fluid is vaporized at or near a region to be cooled. Vaporizing the liquid cooling fluid absorbs heat from the region to be cooled.

  2. A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    François, B.; Boudot, R.; Calosso, C. E.

    2014-09-15

    We report the development, absolute phase noise, and residual phase noise characterization of a 9.192 GHz microwave frequency synthesis chain devoted to be used as a local oscillator in a high-performance cesium vapor cell atomic clock based on coherent population trapping (CPT). It is based on frequency multiplication of an ultra-low phase noise 100 MHz oven-controlled quartz crystal oscillator using a nonlinear transmission line-based chain. Absolute phase noise performances of the 9.192 GHz output signal are measured to be −42, −100, −117 dB rad{sup 2}/Hz and −129 dB rad{sup 2}/Hz at 1 Hz, 100 Hz, 1 kHz, and 10 kHz offset frequencies, respectively. Comparedmore » to current results obtained in a state-of-the-art CPT-based frequency standard developed at LNE-SYRTE, this represents an improvement of 8 dB and 10 dB at f = 166 Hz and f = 10 kHz, respectively. With such performances, the expected Dick effect contribution to the atomic clock short term frequency stability is reported at a level of 6.2 × 10{sup −14} at 1 s integration time, that is a factor 3 higher than the atomic clock shot noise limit. Main limitations are pointed out.« less

  3. Theoretical study of the composition pulling effect in InGaN metalorganic vapor-phase epitaxy growth

    NASA Astrophysics Data System (ADS)

    Inatomi, Yuya; Kangawa, Yoshihiro; Ito, Tomonori; Suski, Tadeusz; Kumagai, Yoshinao; Kakimoto, Koichi; Koukitu, Akinori

    2017-07-01

    The composition pulling effect in metalorganic vapor-phase InGaN epitaxy was theoretically investigated by thermodynamic analysis. The excess energies of biaxial-strained In x Ga1- x N were numerically calculated using empirical interatomic potentials considering different situations: (i) coherent growth on GaN(0001), (ii) coherent growth on In0.2Ga0.8N(0001), and (iii) bulk growth. Using the excess energies, the excess chemical potentials of InN and GaN alloys were computed. Our results show that compressive strain suppresses In incorporation, whereas tensile strain promotes it. Moreover, assuming chemical equilibrium, the relationship between the solid composition and the growth conditions was predicted. The results successfully reproduced the typical composition pulling effect.

  4. Vaporization and recondensation dynamics of indocyanine green-loaded perfluoropentane droplets irradiated by a short pulse laser

    NASA Astrophysics Data System (ADS)

    Yu, Jaesok; Chen, Xucai; Villanueva, Flordeliza S.; Kim, Kang

    2016-12-01

    Phase-transition droplets have been proposed as promising contrast agents for ultrasound and photoacoustic imaging. Short pulse laser activated perfluorocarbon-based droplets, especially when in a medium with a temperature below their boiling point, undergo phase changes of vaporization and recondensation in response to pulsed laser irradiation. Here, we report and discuss the vaporization and recondensation dynamics of perfluoropentane droplets containing indocyanine green in response to a short pulsed laser with optical and acoustic measurements. To investigate the effect of temperature on the vaporization process, an imaging chamber was mounted on a temperature-controlled water reservoir and then the vaporization event was recorded at 5 million frames per second via a high-speed camera. The high-speed movies show that most of the droplets within the laser beam area expanded rapidly as soon as they were exposed to the laser pulse and immediately recondensed within 1-2 μs. The vaporization/recondensation process was consistently reproduced in six consecutive laser pulses to the same area. As the temperature of the media was increased above the boiling point of the perfluoropentane, the droplets were less likely to recondense and remained in a gas phase after the first vaporization. These observations will help to clarify the underlying processes and eventually guide the design of repeatable phase-transition droplets as a photoacoustic imaging contrast agent.

  5. DIPPR Project 871 For 1995 - Thermodynamic Properties and Ideal-Gas Enthalpies of Formation for Methyl Benzoate, Ethyl Benzoate, (R)-(+)-Limonene, Tert-Amyl Methyl Ether, Trans-Crotonaldehyde, and

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, W.V.

    2002-07-01

    Ideal-gas enthalpies of formation of methyl benzoate, ethyl benzoate, (R)-(+)-limonene, tert-amyl methyl ether, trans-crotonaldehyde, and diethylene glycol are reported. The standard energy of combustion and hence standard enthalpy of formation of each compound in the liquid phase has been measured using an oxygen rotating-bomb calorimeter without rotation. Vapor pressures were measured to a pressure limit of 270 kPa or the lower decomposition point for each of the six compounds using a twin ebulliometric apparatus. Liquid-phase densities along the saturation line were measured for each compound over a range of temperature (ambient to a maximum of 548 K). A differential scanningmore » calorimeter was used to measure two-phase (liquid + vapor) heat capacities for each compound in the temperature region ambient to the critical temperature or lower decomposition point. For methyl benzoate and tert-amyl methyl ether, critical temperatures and critical densities were determined from the DSC results and corresponding critical pressures derived from the fitting procedures. Fitting procedures were used to derive critical temperatures, critical pressures, and critical densities for each of the remaining compounds. The results of the measurements were combined to derive a series of thermophysical properties including critical temperature, critical density, critical pressure, acentric factor, enthalpies of vaporization (restricted to within {+-}50 K of the temperature region of the experimentally determined vapor pressures), and heat capacities along the saturation line. Wagner-type vapor-pressure equations were derived for each compound. All measured and derived values were compared with those obtained in a search of the literature. Recommended critical parameters are listed for each of the compounds studied. Group-additivity parameters, useful in the application of the Benson gas-phase group-contribution correlations, were derived.« less

  6. Synthesis and Characterization of Quenched and Crystalline Phases: Q-Carbon, Q-BN, Diamond and Phase-Pure c-BN

    NASA Astrophysics Data System (ADS)

    Bhaumik, Anagh; Narayan, Jagdish

    2018-04-01

    We report the synthesis and characterization of quenched (Q-carbon and Q-BN) and crystalline (diamond and c-BN) phases using a non-equilibrium technique. These phases are formed as a result of the melting and subsequent quenching of amorphous carbon and nanocrystalline h-BN in a super undercooled state by using high-power nanosecond laser pulses. Pulsed laser annealing also leads to the formation of nanoneedles, microneedles and single-crystal thin films of diamond and c-BN. This formation is dependent on the nucleation and growth times, which are controlled by laser energy density and thermal conductivities of substrate and as-deposited thin film. The diamond nuclei present in the Q-carbon structure ( 80% sp 3) can also be grown to larger sizes using the equilibrium hot filament chemical vapor deposition process. The texture of diamond and c-BN crystals is <111> under epitaxial growth and <110> under rapid unseeded crystallization. Our nanosecond laser processing opens up a roadmap to the fabrication of novel phases on heat-sensitive substrates.

  7. Simulation studies of vapor bubble generation by short-pulse lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amendt, P.; London, R.A.; Strauss, M.

    1997-10-26

    Formation of vapor bubbles is characteristic of many applications of short-pulse lasers in medicine. An understanding of the dynamics of vapor bubble generation is useful for developing and optimizing laser-based medical therapies. To this end, experiments in vapor bubble generation with laser light deposited in an aqueous dye solution near a fiber-optic tip have been performed. Numerical hydrodynamic simulations have been developed to understand and extrapolate results from these experiments. Comparison of two-dimensional simulations with the experiment shows excellent agreement in tracking the bubble evolution. Another regime of vapor bubble generation is short-pulse laser interactions with melanosomes. Strong shock generationmore » and vapor bubble generation are common physical features of this interaction. A novel effect of discrete absorption by melanin granules within a melanosome is studied as a possible role in previously reported high Mach number shocks.« less

  8. Vaporization thermodynamic studies by high-temperature mass spectrometry on some three-phase regions over the MnO-TeO2 binary line in the Mn-Te-O ternary system.

    PubMed

    Narasimhan, T S Lakshmi; Sai Baba, M; Viswanathan, R

    2006-12-28

    Knudsen effusion mass spectrometric measurements have been performed in the temperature range of 850-950 K over four three-phase mixtures, each phase mixture having at least one phase lying on the MnO-TeO2 binary line of the Mn-Te-O phase diagram, and the rest of the phases lying above this binary line. The three-phase mixtures investigated are Mn3O4 + MnO + Mn6Te5O16; Mn3O4 + Mn6Te5O16 + MnTeO3; Mn3O4 + Mn3TeO6 + MnTeO3; and Mn3TeO6 + MnTeO3 + Mn2Te3O8. The vapor pressures of the gaseous species TeO2, TeO, and Te2 over these three-phase mixtures were measured, and various heterogeneous solid-gas reactions were evaluated along with the homogeneous gas-phase reaction TeO2(g) + 0.5Te2(g) = 2 TeO(g). The enthalpy and Gibbs free energy of formation of the four ternary Mn-Te-O phases were deduced at T = 900 K. These values (in kJ.mol-1), along with the estimated uncertainties in them are Delta(f)H(o)m = 4150 +/- 19, 752 +/- 11, 1710 +/- 11, 1924 +/- 40, and Delta(f)G(o)m= 2835 +/- 28, 511 +/- 11, 1254 +/- 19, 1238 +/- 38, for Mn6Te5O16, MnTeO3, Mn3TeO6, and Mn2Te3O8, respectively. A thermochemical assessment was made to examine the conditions under which the ternary Mn-Te-O phases could be formed on a stainless steel clad of mixed-oxide-fueled (MO2; M = U + Pu) fast breeder nuclear reactors. The phase Mn3TeO6 could be formed when the fuel is even slightly hyperstoichiometric (O/M = 2.0002) and the phase Mn6Te5O16 could also be formed when O/M = 2.0004. The threshold tellurium potential for the formation of Mn3TeO6 is higher than that for MnTe0.80 and CrTe1.10, but is comparable to that for MoTe1.10, and even lower than that for FeTe0.81 or NiTe0.63.

  9. Water-Vapor-Mediated Close-Spaced Vapor Transport Growth of Epitaxial Gallium Indium Phosphide Films on Gallium Arsenide Substrates

    DOE PAGES

    Greenaway, Ann L.; Bachman, Benjamin F.; Boucher, Jason W.; ...

    2018-01-12

    Ga 1–xIn xP is a technologically important III–V ternary semiconductor widely utilized in commercial and record-efficiency solar cells. We report the growth of Ga 1–xIn xP by water-vapor-mediated close-spaced vapor transport. Because growth of III–V semiconductors in this system is controlled by diffusion of metal oxide species, we find that congruent transport from the mixed powder source requires complete annealing to form a single alloy phase. Growth from a fully alloyed source at water vapor concentrations of ~7000 ppm in H 2 at 850 °C affords smooth films with electron mobility of 1070 cm 2 V –1 s –1 andmore » peak internal quantum efficiency of ~90% for carrier collection in a nonaqueous photoelectrochemical test cell.« less

  10. Water-Vapor-Mediated Close-Spaced Vapor Transport Growth of Epitaxial Gallium Indium Phosphide Films on Gallium Arsenide Substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenaway, Ann L.; Bachman, Benjamin F.; Boucher, Jason W.

    Ga 1–xIn xP is a technologically important III–V ternary semiconductor widely utilized in commercial and record-efficiency solar cells. We report the growth of Ga 1–xIn xP by water-vapor-mediated close-spaced vapor transport. Because growth of III–V semiconductors in this system is controlled by diffusion of metal oxide species, we find that congruent transport from the mixed powder source requires complete annealing to form a single alloy phase. Growth from a fully alloyed source at water vapor concentrations of ~7000 ppm in H 2 at 850 °C affords smooth films with electron mobility of 1070 cm 2 V –1 s –1 andmore » peak internal quantum efficiency of ~90% for carrier collection in a nonaqueous photoelectrochemical test cell.« less

  11. Detection of water vapor on Jupiter

    NASA Technical Reports Server (NTRS)

    Larson, H. P.; Fink, U.; Treffers, R.; Gautier, T. N., III

    1975-01-01

    High-altitude (12.4 km) spectroscopic observations of Jupiter at 5 microns from the NASA 91.5 cm airborne infrared telescope have revealed 14 absorptions assigned to the rotation-vibration spectrum of water vapor. Preliminary analysis indicates a mixing ratio about 1 millionth for the vapor phase of water. Estimates of temperature (greater than about 300 K) and pressure (less than 20 atm) suggest observation of water deep in Jupiter's hot spots responsible for its 5 micron flux. Model-atmosphere calculations based on radiative-transfer theory may change these initial estimates and provide a better physical picture of Jupiter's atmosphere below the visible cloud tops.

  12. Highly resistive C-doped hydride vapor phase epitaxy-GaN grown on ammonothermally crystallized GaN seeds

    NASA Astrophysics Data System (ADS)

    Iwinska, Malgorzata; Piotrzkowski, Ryszard; Litwin-Staszewska, Elzbieta; Sochacki, Tomasz; Amilusik, Mikolaj; Fijalkowski, Michal; Lucznik, Boleslaw; Bockowski, Michal

    2017-01-01

    GaN crystals were grown by hydride vapor phase epitaxy (HVPE) and doped with C. The seeds were high-structural-quality ammonothermally crystallized GaN. The grown crystals were highly resistive at 296 K and of high structural quality. High-temperature Hall effect measurements revealed p-type conductivity and a deep acceptor level in the material with an activation energy of 1 eV. This is in good agreement with density functional theory calculations based on hybrid functionals as presented by the Van de Walle group. They obtained an ionization energy of 0.9 eV when C was substituted for N in GaN and acted as a deep acceptor.

  13. Vacuum distillation: vapor filtered-catalytic oxidation water reclamation system utilizing radioisotopes

    NASA Technical Reports Server (NTRS)

    Honegger, R. J.; Remus, G. A.; Kurg, E. K.

    1971-01-01

    The development of a functional model water reclamation system is discussed. The system produces potable water by distillation from the urine and respiration-perspiration condensate at the normal rate generated by four men. Basic processes employed are vacuum distillation, vapor filtration, vapor phase catalytic oxidation, and condensation. The system is designed to use four 75-watt isotope heaters for distillation thermal input, and one 45-watt isotope for the catalytic oxidation unit. The system is capable of collecting and storing urine, and provides for stabilizing the urine by chemical pretreatment. The functional model system is designed for operation in a weightless condition with liquid-vapor phase separators for the evaporator still, and centrifugal separators for urine collection and vapor condensation. The system provides for storing and dispensing reclaimed potable water. The system operates in a batch mode for 40 days, with urine residues accumulating in the evaporator. The evaporator still and residue are removed to storage and replaced with a fresh still for the next 40-day period.

  14. Kinetics and dynamics of annealing during sub-gel phase formation in phospholipid bilayers

    PubMed Central

    Páli, Tibor; Bartucci, Rosa; Horváth, László I.; Marsh, Derek

    1993-01-01

    The saturation transfer electron spin resonance (STESR) spectra of spin-labeled phosphatidylcholine have been used to follow the kinetics of conversion from the gel phase to the sub-gel phase in aqueous bilayers of dipalmitoyl phosphatidylcholine. This is a simple, well-defined model system for lipid domain formation in membranes. The integrated intensity of the STESR spectrum from the chain-labeled lipid first increases and then decreases with time of incubation in the gel phase at 0°C. The first, more rapid phase of the kinetics is attributed to the conversion of germ nuclei to growth nuclei of the sub-gel phase. The increase in STESR intensity corresponds to the reduction in chain mobility of spin labels located in the gel phase at the boundaries of the growth nuclei and correlates with the increase in the diagnostic STESR line height ratios over this time range. The second, slower phase of the kinetics is attributed to growth of the domains of the sub-gel phase. The decrease in STESR intensity over this time regime corresponds to exclusion of the spin-labeled lipids from the tightly packed sub-gel phase and correlates quantitatively with calibrations of the spin label concentration dependence of the STESR intensity in the gel phase. The kinetics of formation of the sub-gel phase are consistent with the classical model for domain formation and growth. At 0°C, the half-time for conversion of germ nuclei to growth nuclei is ∼7.7 h and domain growth of the sub-gel phase is characterized by a rate constant of 0.025 h-1. The temperature dependence of the STESR spectra from samples annealed at 0°C suggests that the subtransition takes place via dissolution of sub-gel phase domains, possibly accompanied by domain fission. PMID:19431899

  15. CFD Modeling of LNG Spill: Humidity Effect on Vapor Dispersion

    NASA Astrophysics Data System (ADS)

    Giannissi, S. G.; Venetsanos, A. G.; Markatos, N.

    2015-09-01

    The risks entailed by an accidental spill of Liquefied Natural Gas (LNG) should be indentified and evaluated, in order to design measures for prevention and mitigation in LNG terminals. For this purpose, simulations are considered a useful tool to study LNG spills and to understand the mechanisms that influence the vapor dispersion. In the present study, the ADREA-HF CFD code is employed to simulate the TEEX1 experiment. The experiment was carried out at the Brayton Fire Training Field, which is affiliated with the Texas A&M University system and involves LNG release and dispersion over water surface in open- obstructed environment. In the simulation the source was modeled as a two-phase jet enabling the prediction of both the vapor dispersion and the liquid pool spreading. The conservation equations for the mixture are solved along with the mass fraction for natural gas. Due to the low prevailing temperatures during the spill ambient humidity condenses and this might affect the vapor dispersion. This effect was examined in this work by solving an additional conservation equation for the water mass fraction. Two different models were tested: the hydrodynamic equilibrium model which assumes kinetic equilibrium between the phases and the non hydrodynamic equilibrium model, in order to assess the effect of slip velocity on the prediction. The slip velocity is defined as the difference between the liquid phase and the vapor phase and is calculated using the algebraic slip model. Constant droplet diameter of three different sizes and a lognormal distribution of the droplet diameter were applied and the results are discussed and compared with the measurements.

  16. Water vapor content in the polar atmosphere measured by Lyman-alpha/OH fluorescence method

    NASA Technical Reports Server (NTRS)

    Iwasaka, Y.; Saitoh, S.; Ono, A.

    1985-01-01

    The water vapor of the polar stratosphere possibly plays an important role in various aeronomical processes; for example, OH radical formation through photodissociation of H2O, formation of water cluster ions, radiative energy transfer in the lower stratosphere, condensation onto particulate matter, and so on. In addition to these, it has been speculated, from the viewpoint of global transport and/or budget of water vapor, that the polar stratosphere functions as an active sink. STANFORD (1973) emphasized the existence of the stratospheric Cist cloud in the polar stratosphere which brought a large loss rate of stratospheric water vapor through a so-called freeze-out of cloud particles from the stratosphere into the troposphere. However, these geophysically interesting problems unfortunately remain to be solved, owing to the lack of measurements on water vapor distribution and its temporal variation in the polar stratosphere. The water vapor content measured at Syowa Station (69.00 deg S, 39.35 deg E), Antarctica using a balloon-borne hygrometer (Lyman - alpha/OH fluorescence type) is discussed.

  17. Pressure control in interfacial systems: Atomistic simulations of vapor nucleation

    NASA Astrophysics Data System (ADS)

    Marchio, S.; Meloni, S.; Giacomello, A.; Valeriani, C.; Casciola, C. M.

    2018-02-01

    A large number of phenomena of scientific and technological interest involve multiple phases and occur at constant pressure of one of the two phases, e.g., the liquid phase in vapor nucleation. It is therefore of great interest to be able to reproduce such conditions in atomistic simulations. Here we study how popular barostats, originally devised for homogeneous systems, behave when applied straightforwardly to heterogeneous systems. We focus on vapor nucleation from a super-heated Lennard-Jones liquid, studied via hybrid restrained Monte Carlo simulations. The results show a departure from the trends predicted for the case of constant liquid pressure, i.e., from the conditions of classical nucleation theory. Artifacts deriving from standard (global) barostats are shown to depend on the size of the simulation box. In particular, for Lennard-Jones liquid systems of 7000 and 13 500 atoms, at conditions typically found in the literature, we have estimated an error of 10-15 kBT on the free-energy barrier, corresponding to an error of 104-106 s-1σ-3 on the nucleation rate. A mechanical (local) barostat is proposed which heals the artifacts for the considered case of vapor nucleation.

  18. Referred Air Method 25E: Determination of a Vapor Phase Organic Concentration in Waste Samples

    EPA Pesticide Factsheets

    This method is applicable for determining the vapor pressure of waste. The headspace vapor of the sample is analyzed for carbon content by a headspace analyzer, which uses a flame ionization detector (FID).

  19. Instantaneous formation of SiOx nanocomposite for high capacity lithium ion batteries by enhanced disproportionation reaction during plasma spray physical vapor deposition.

    PubMed

    Tashiro, Tohru; Dougakiuchi, Masashi; Kambara, Makoto

    2016-01-01

    Nanocomposite SiO x particles have been produced by a single step plasma spray physical vapor deposition (PS-PVD) through rapid condensation of SiO vapors and the subsequent disproportionation reaction. Core-shell nanoparticles, in which 15 nm crystalline Si is embedded within the amorphous SiO x matrix, form under typical PS-PVD conditions, while 10 nm amorphous particles are formed when processed with an increased degree of non-equilibrium effect. Addition of CH 4 promotes reduction in the oxygen content x of SiO x , and thereby increases the Si volume in a nanocomposite particle. As a result, core-shell nanoparticles with x  = 0.46 as anode exhibit increased initial efficiency and the capacity of lithium ion batteries while maintaining cyclability. Furthermore, it is revealed that the disproportionation reaction of SiO is promoted in nanosized particles attaining increased Si diffusivity by two orders of magnitude compared to that in bulk, which facilitates instantaneous composite nanoparticle formation during PS-PVD.

  20. Instantaneous formation of SiOx nanocomposite for high capacity lithium ion batteries by enhanced disproportionation reaction during plasma spray physical vapor deposition

    PubMed Central

    Tashiro, Tohru; Dougakiuchi, Masashi; Kambara, Makoto

    2016-01-01

    Abstract Nanocomposite SiOx particles have been produced by a single step plasma spray physical vapor deposition (PS-PVD) through rapid condensation of SiO vapors and the subsequent disproportionation reaction. Core-shell nanoparticles, in which 15 nm crystalline Si is embedded within the amorphous SiOx matrix, form under typical PS-PVD conditions, while 10 nm amorphous particles are formed when processed with an increased degree of non-equilibrium effect. Addition of CH4 promotes reduction in the oxygen content x of SiOx, and thereby increases the Si volume in a nanocomposite particle. As a result, core-shell nanoparticles with x = 0.46 as anode exhibit increased initial efficiency and the capacity of lithium ion batteries while maintaining cyclability. Furthermore, it is revealed that the disproportionation reaction of SiO is promoted in nanosized particles attaining increased Si diffusivity by two orders of magnitude compared to that in bulk, which facilitates instantaneous composite nanoparticle formation during PS-PVD. PMID:27933114

  1. Local Time Variation of Water Vapor on Mars using TES Aerobraking Spectra

    NASA Astrophysics Data System (ADS)

    AlShamsi, M. R.; AlJanaahi, A. A.; Smith, M. D.; Altunaiji, E. S.; Edwards, C. S.

    2016-12-01

    During the Mars Global Surveyor (MGS) aerobraking phase, the spacecraft was in a large elliptical orbit that enabled the Thermal Emission Spectrometer (TES) instrument to sample many local times of Mars. The observed TES aerobraking spectra during that phase cover the time range between Mars Year 23, Ls=180° and Mars Year 24, Ls=30°. These TES aerobraking spectra have never been analyzed to study local time variations on Mars. Through radiative transfer modeling of the spectra, surface and atmospheric temperature, dust and water ice optical depth, and water vapor were retrieved. Specifically, the water vapor retrievals during aerobraking have similar seasonal and latitudinal trends to those in other Mars years observed by TES. These retrievals show somewhat higher water vapor during the morning hours (09:00-12:00) than in the afternoon (12:00-17:00) during southern summer (Ls=270°-330°) and little variation as a function of local time for southern fall (Ls=0°-30°). These retrievals show water vapor has a positive correlation with surface pressure (or negative correlation with altitude) indicating that water vapor is mixed in the lowest 10-20 km.

  2. Performance enhancement of hybrid solar cells through chemical vapor annealing.

    PubMed

    Wu, Yue; Zhang, Genqiang

    2010-05-12

    Improvement in power conversion efficiency has been observed in cadmium selenide nanorods/poly(3-hexylthiophene) hybrid solar cells through benzene-1,3-dithiol chemical vapor annealing. Phosphor NMR studies of the nanorods and TEM/AFM characterizations of the morphology of the blended film showed that the ligand exchange reaction and related phase separation happening during the chemical vapor annealing are responsible for the performance enhancement.

  3. Intermolecular network analysis of the liquid and vapor interfaces of pentane and water: microsolvation does not trend with interfacial properties.

    PubMed

    Ghadar, Yasaman; Clark, Aurora E

    2014-06-28

    Liquid:vapor and liquid:liquid interfaces exhibit complex organizational structure and dynamics at the molecular level. In the case of water and organic solvents, the hydrophobicity of the organic, its conformational flexibility, and compressibility, all influence interfacial properties. This work compares the interfacial tension, width, molecular conformations and orientations at the vapor and aqueous liquid interfaces of two solvents, n-pentane and neopentane, whose varying molecular shapes can lead to significantly different interfacial behavior. Particular emphasis has been dedicated toward understanding how the hydrogen bond network of water responds to the pentane relative to the vapor interface and the sensitivity of the network to the individual pentane isomer and system temperature. Interfacial microsolvation of the immiscible solvents has been examined using graph theoretical methods that quantify the structure and dynamics of microsolvated species (both H2O in C5H12 and C5H12 in H2O). At room temperature, interfacial water at the pentane phase boundary is found to have markedly different organization and dynamics than at the vapor interface (as indicated by the hydrogen bond distributions and hydrogen bond persistence in solution). While the mesoscale interfacial properties (e.g. interfacial tension) are sensitive to the specific pentane isomer, the distribution and persistence of microsolvated species at the interface is nearly identical for both systems, irrespective of temperature (between 273 K and 298 K). This has important implications for understanding how properties defined by the interfacial organization are related to the underlying solvation reactions that drive formation of the phase boundary.

  4. Ion channeling studies on mixed phases formed in metalorganic chemical vapor deposition grown Mg-doped GaN on Al2O3(0001)

    NASA Astrophysics Data System (ADS)

    Sundaravel, B.; Luo, E. Z.; Xu, J. B.; Wilson, I. H.; Fong, W. K.; Wang, L. S.; Surya, C.

    2000-01-01

    Rutherford backscattering spectrometry and ion channeling were used to determine the relative quantities of wurtzite and zinc-blende phases in metalorganic chemical vapor deposition grown Mg-doped GaN(0001) on an Al2O3(0001) substrate with a GaN buffer layer. Offnormal axial channeling scans were used. High-resolution x-ray diffraction measurements also confirmed the presence of mixed phases. The in-plane orientation was found to be GaN[11¯0]‖GaN[112¯0]‖Al2O3[112¯0]. The effects of rapid thermal annealing on the relative phase content, thickness and crystalline quality of the GaN epilayer were also studied.

  5. Water-Assisted Vapor Deposition of PEDOT Thin Film.

    PubMed

    Goktas, Hilal; Wang, Xiaoxue; Ugur, Asli; Gleason, Karen K

    2015-07-01

    The synthesis and characterization of poly(3,4-ethylenedioxythiophene) (PEDOT) using water-assisted vapor phase polymerization (VPP) and oxidative chemical vapor deposition (oCVD) are reported. For the VPP PEDOT, the oxidant, FeCl3 , is sublimated onto the substrate from a heated crucible in the reactor chamber and subsequently exposed to 3,4-ethylenedioxythiophene (EDOT) monomer and water vapor in the same reactor. The oCVD PEDOT was produced by introducing the oxidant, EDOT monomer, and water vapor simultaneously to the reactor. The enhancement of doping and crystallinity is observed in the water-assisted oCVD thin films. The high doping level observed at UV-vis-NIR spectra for the oCVD PEDOT, suggests that water acts as a solubilizing agent for oxidant and its byproducts. Although the VPP produced PEDOT thin films are fully amorphous, their conductivities are comparable with that of the oCVD produced ones. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Subatmospheric vapor pressures evaluated from internal-energy measurements

    NASA Astrophysics Data System (ADS)

    Duarte-Garza, H. A.; Magee, J. W.

    1997-01-01

    Vapor pressures were evaluated from measured internal-energy changes in the vapor+liquid two-phase region, Δ U (2). The method employed a thermodynamic relationship between the derivative quantity (ϖ U (2)/ϖ V) T and the vapor pressure ( p σ) and its temperature derivative (ϖ p/ϖ T)σ. This method was applied at temperatures between the triple point and the normal boiling point of three substances: 1,1,1,2-tetrafluoroethane (R134a), pentafluoroethane (R125), and difluoromethane (R32). Agreement with experimentally measured vapor pressures near the normal boiling point (101.325 kPa) was within the experimental uncertainty of approximately ±0.04 kPa (±0.04%). The method was applied to R134a to test the thermodynamic consistency of a published p-p-T equation of state with an equation for p σ for this substance. It was also applied to evaluate published p σ data which are in disagreement by more than their claimed uncertainty.

  7. Phase formation and microstructure of gamma irradiated Bi-2223 Superconductor

    NASA Astrophysics Data System (ADS)

    ‘Atiqah Mohiju, Zaahidah; Alieya Adnan, Natasha; Hamid, Nasri A.; Abdullah, Yusof

    2018-01-01

    The Bi-2223 superconductor has been synthesized using the conventional solid state reaction method. The effect of gamma irradiation on phase formation and microstructure of high-temperature Bi-2223 superconductor ceramic was investigated. The bulk samples sample were palletized with 7 tons pressure of hydraulic press machine and sintered at 840°C for 48 hours. The gamma irradiation was performed at the Nuclear Malaysian Agency with dose of 50 kGray at room temperature. Structure characterization using X-ray diffraction (XRD) showed that the patterns for all the samples demonstrate well-defined peaks all of which could be indexed on the basis of a Bi-2223 phase structure. However, for irradiated sample, it showed reduction in the peak intensity indicating a decrease in the content of the Bi-2223 superconducting phase. The effect of gamma (γ) irradiation on surface morphology and its composites has also been investigated by scanning electron microscope (SEM) and the micrograph shows that the grains are distributed randomly with poorly connected inter and intra-grain microstructure. This shows that the morphology of the Bi-2223 superconductor is very sensitive to gamma irradiation. The effect on the phase formation and microstructure of non-irradiated and gamma irradiated of Bi-2223 superconductor is compared and evaluated.

  8. Detection of cocrystal formation based on binary phase diagrams using thermal analysis.

    PubMed

    Yamashita, Hiroyuki; Hirakura, Yutaka; Yuda, Masamichi; Teramura, Toshio; Terada, Katsuhide

    2013-01-01

    Although a number of studies have reported that cocrystals can form by heating a physical mixture of two components, details surrounding heat-induced cocrystal formation remain unclear. Here, we attempted to clarify the thermal behavior of a physical mixture and cocrystal formation in reference to a binary phase diagram. Physical mixtures prepared using an agate mortar were heated at rates of 2, 5, 10, and 30 °C/min using differential scanning calorimetry (DSC). Some mixtures were further analyzed using X-ray DSC and polarization microscopy. When a physical mixture consisting of two components which was capable of cocrystal formation was heated using DSC, an exothermic peak associated with cocrystal formation was detected immediately after an endothermic peak. In some combinations, several endothermic peaks were detected and associated with metastable eutectic melting, eutectic melting, and cocrystal melting. In contrast, when a physical mixture of two components which is incapable of cocrystal formation was heated using DSC, only a single endothermic peak associated with eutectic melting was detected. These experimental observations demonstrated how the thermal events were attributed to phase transitions occurring in a binary mixture and clarified the relationship between exothermic peaks and cocrystal formation.

  9. Significance of vapor phase chemical reactions on CVD rates predicted by chemically frozen and local thermochemical equilibrium boundary layer theories

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.

    1988-01-01

    This paper investigates the role played by vapor-phase chemical reactions on CVD rates by comparing the results of two extreme theories developed to predict CVD mass transport rates in the absence of interfacial kinetic barrier: one based on chemically frozen boundary layer and the other based on local thermochemical equilibrium. Both theories consider laminar convective-diffusion boundary layers at high Reynolds numbers and include thermal (Soret) diffusion and variable property effects. As an example, Na2SO4 deposition was studied. It was found that gas phase reactions have no important role on Na2SO4 deposition rates and on the predictions of the theories. The implications of the predictions of the two theories to other CVD systems are discussed.

  10. ZnO/Cu(InGa)Se.sub.2 solar cells prepared by vapor phase Zn doping

    DOEpatents

    Ramanathan, Kannan; Hasoon, Falah S.; Asher, Sarah E.; Dolan, James; Keane, James C.

    2007-02-20

    A process for making a thin film ZnO/Cu(InGa)Se.sub.2 solar cell without depositing a buffer layer and by Zn doping from a vapor phase, comprising: depositing Cu(InGa)Se.sub.2 layer on a metal back contact deposited on a glass substrate; heating the Cu(InGa)Se.sub.2 layer on the metal back contact on the glass substrate to a temperature range between about 100.degree. C. to about 250.degree. C.; subjecting the heated layer of Cu(InGa)Se.sub.2 to an evaporant species from a Zn compound; and sputter depositing ZnO on the Zn compound evaporant species treated layer of Cu(InGa)Se.sub.2.

  11. The temporal power spectrum of atmospheric fluctuations due to water vapor

    NASA Astrophysics Data System (ADS)

    Lay, O. P.

    1997-05-01

    Irregular variations in the refractivity of the atmosphere cause fluctuations in the phase measured by interferometers, limiting the spatial resolution that can be obtained. For frequencies up to the far infrared, water vapor is the dominant cause of the variations. The temporal power spectrum of the phase fluctuations is needed to assess correction schemes such as phase referencing using a nearby calibrator and water vapor radiometry. A model is developed for the temporal power spectrum of phase fluctuations measured by an interferometer through a layer of Kolmogorov turbulence of arbitrary thickness. It is found that both the orientation of the baseline with respect to the wind direction and the elevation of the observations can have a large effect on the temporal power spectrum. Plots of the spectral density distribution, where the area under the curve is proportional to phase power, show that substantial contributions from length scales as long as 100 times the interferometer baseline are possible. The model is generally consistent with data from the 12-GHz phase monitor at the Owens Valley Radio Observatory, and allows the data to be extrapolated to an arbitrary baseline, observing frequency and elevation. There is some evidence that there can be more than one component of turbulence present at a given time for the Owens Valley. The validity of the frozen turbulence assumption and the geometrical optics approximation is discussed and found to be reasonable under most conditions. The models and data presented here form the basis of an analysis of phase calibration and water vapor radiometry \\cite[(Lay 1997)]{lay96}.

  12. Environmentally Compatible Vapor-Phase Corrosion Inhibitor for Space Shuttle Hardware

    NASA Technical Reports Server (NTRS)

    Novak, Howard L.; Hall, Phillip B.

    2003-01-01

    USA-SRB Element is responsible for the assembly and refurbishment of the non-motor components of the SRB as part of Space Shuttle. Thrust Vector Control (TVC) frames structurally support components of the TVC system located in the aft skirt of the SRB. TVC frames are exposed to the seacoast environment after refurbishment and, also, to seawater immersion after splashdown, and during tow-back to CCAFS-Hangar AF refurbishment facilities. During refurbishment operations it was found that numerous TVC frames were experiencing internal corrosion and coating failures, both from salt air and seawater intrusions. Inspectors using borescopes would visually examine the internal cavities of the complicated aluminum alloy welded tubular structure. It was very difficult for inspectors to examine cavity corners and tubing intersections and particularly, to determine the extent of the corrosion and coating anomalies. Physical access to TVC frame internal cavities for corrosion removal and coating repair was virtually impossible, and an improved method using a Liquid (water based) Vapor-phase Corrosion Inhibitor (LVCI) for preventing initiation of new corrosion, and mitigating and/or stopping existing corrosion growth was recommended in lieu of hazardous paint solvents and high VOC / solvent based corrosion inhibitors. In addition, the borescopic inspection method used to detect corrosion, and/or coating anomalies had severe limitations because of part geometry, and an improved non-destructive inspection (NDI) method using Neutron Radiography (N-Ray) was also recommended.

  13. Environmentally Compatible Vapor-Phase Corrosion Inhibitor for Space Shuttle Hardware

    NASA Technical Reports Server (NTRS)

    Novak, Howard L.; Hall, Phillip B.; Martin, David (Technical Monitor)

    2002-01-01

    USA-SRB Element is responsible for the assembly and refurbishment of the non-motor components of the SRB as part of Space Shuttle. Thrust Vector Control (TVC) frames structurally support components of the TVC system located in the aft skirt of the SRB (Solid Rocket Booster). TVC frames are exposed to the seacoast environment after refurbishment and, also, to seawater immersion after splashdown, and during tow-back to CCAFS-Hangar AF refurbishment facilities. During refurbishment operations it was found that numerous TVC frames were experiencing internal corrosion and coating failures, both from salt air and seawater intrusions. Inspectors using borescopes would visually examine the internal cavities of the complicated aluminum alloy welded tubular structure. It was very difficult for inspectors to examine cavity corners and tubing intersections and particularly. to determine the extent of the corrosion and coating anomalies. Physical access to TVC frame internal cavities for corrosion removal and coating repair was virtually impossible, and an improved method using a Liquid (water based) Vapor-phase Corrosion Inhibitor (LVCI) for preventing initiation of new corrosion, and mitigating and/or stopping existing corrosion growth was recommended in lieu of hazardous paint solvents and high VOC/solvent based corrosion inhibitors. In addition, the borescopic inspection method used to detect corrosion, and/or coating anomalies had severe limitations because of part geometry, and an improved non-destructive inspection (NDI) method using Neutron Radiography (N-Ray) was also recommended.

  14. Environmentally Compatible Vapor-Phase Corrosion Inhibitor for Space Shuttle Hardware

    NASA Technical Reports Server (NTRS)

    Novak, Howard L.; Hall, Phillip B.; McCool, Alex (Technical Monitor)

    2001-01-01

    USA-SRB Element is responsible for the assembly and refurbishment of the non-motor components of the SRB as part of Space Shuttle. Thrust Vector Control (TVC) frames structurally support components of the TVC system located in the aft skirt of the SRB. TVC frames are exposed to the seacoast environment after refurbishment and, also, to seawater immersion after splashdown, and during tow-back to CCAFS-Hangar AF refurbishment facilities. During refurbishment operations it was found that numerous TVC frames were experiencing internal corrosion and coating failures, both from salt air and seawater intrusions. Inspectors using borescopes would visually examine the internal cavities of the complicated aluminum alloy welded tubular structure. It was very difficult for inspectors to examine cavity corners and tubing intersections and particularly, to determine the extent of the corrosion and coating anomalies. Physical access to TVC frame internal cavities for corrosion removal and coating repair was virtually impossible, and an improved method using a Liquid (water based) Vapor-phase Corrosion Inhibitor (LVCI) for preventing initiation of new corrosion, and mitigating and/or stopping existing corrosion growth was recommended in lieu of hazardous paint solvents and high VOC/solvent based corrosion inhibitors. In addition, the borescopic inspection method used to detect corrosion, and/or coating anomalies had severe limitations because of part geometry, and an improved non-destructive inspection (NDI) method using Neutron Radiography (N-Ray) was also recommended.

  15. Alumina Volatility in Water Vapor at Elevated Temperatures: Application to Combustion Environments

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Myers, Dwight L.

    2003-01-01

    The volatility of alumina in high temperature water vapor was determined by measuring weight loss of sapphire coupons at temperatures between 1250 and 1500 C, water vapor partial pressures between 0.15 and 0.68 atm in oxygen, at one atmosphere total pressure, and a gas velocity of 4.4 centimeters per second. The variation of the volatility with water vapor partial pressure was consistent with Al(OH)3(g) formation. The enthalpy of reaction to form Al(OH)3(g) from alumina and water vapor was found to be 210 plus or minus 20 kJ/mol. Surface rearrangement of ground sapphire surfaces increased with water vapor partial pressure, temperature and volatility rate. Recession rates of alumina due to volatility were determined as a function of water vapor partial pressure and temperature to evaluate limits for use of alumina in long term applications in combustion environments.

  16. Kinetic modeling of secondary organic aerosol formation: effects of particle- and gas-phase reactions of semivolatile products

    NASA Astrophysics Data System (ADS)

    Chan, A. W. H.; Kroll, J. H.; Ng, N. L.; Seinfeld, J. H.

    2007-08-01

    The distinguishing mechanism of formation of secondary organic aerosol (SOA) is the partitioning of semivolatile hydrocarbon oxidation products between the gas and aerosol phases. While SOA formation is typically described in terms of partitioning only, the rate of formation and ultimate yield of SOA can also depend on the kinetics of both gas- and aerosol-phase processes. We present a general equilibrium/kinetic model of SOA formation that provides a framework for evaluating the extent to which the controlling mechanisms of SOA formation can be inferred from laboratory chamber data. With this model we examine the effect on SOA formation of gas-phase oxidation of first-generation products to either more or less volatile species, of particle-phase reaction (both first- and second-order kinetics), of the rate of parent hydrocarbon oxidation, and of the extent of reaction of the parent hydrocarbon. The effect of pre-existing organic aerosol mass on SOA yield, an issue of direct relevance to the translation of laboratory data to atmospheric applications, is examined. The importance of direct chemical measurements of gas- and particle-phase species is underscored in identifying SOA formation mechanisms.

  17. Kinetic modeling of Secondary Organic Aerosol formation: effects of particle- and gas-phase reactions of semivolatile products

    NASA Astrophysics Data System (ADS)

    Chan, A. W. H.; Kroll, J. H.; Ng, N. L.; Seinfeld, J. H.

    2007-05-01

    The distinguishing mechanism of formation of secondary organic aerosol (SOA) is the partitioning of semivolatile hydrocarbon oxidation products between the gas and aerosol phases. While SOA formation is typically described in terms of partitioning only, the rate of formation and ultimate yield of SOA can also depend on the kinetics of both gas- and aerosol-phase processes. We present a general equilibrium/kinetic model of SOA formation that provides a framework for evaluating the extent to which the controlling mechanisms of SOA formation can be inferred from laboratory chamber data. With this model we examine the effect on SOA formation of gas-phase oxidation of first-generation products to either more or less volatile species, of particle-phase reaction (both first- and second-order kinetics), of the rate of parent hydrocarbon oxidation, and of the extent of reaction of the parent hydrocarbon. The effect of pre-existing organic aerosol mass on SOA yield, an issue of direct relevance to the translation of laboratory data to atmospheric applications, is examined. The importance of direct chemical measurements of gas- and particle-phase species is underscored in identifying SOA formation mechanisms.

  18. THE INFLOW SIGNATURE TOWARD DIFFERENT EVOLUTIONARY PHASES OF MASSIVE STAR FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Mihwa; Lee, Jeong-Eun; Kim, Kee-Tae

    2016-08-01

    We analyze both HCN J  = 1–0 and HNC J  = 1–0 line profiles to study the inflow motions in different evolutionary stages of massive star formation: 54 infrared dark clouds (IRDCs), 69 high-mass protostellar objects (HMPOs), and 54 ultra-compact H ii regions (UCHIIs). Inflow asymmetry in the HCN spectra seems to be prevalent throughout all the three evolutionary phases, with IRDCs showing the largest excess in the blue profile. In the case of the HNC spectra, the prevalence of blue sources does not appear, apart from for IRDCs. We suggest that this line is not appropriate to trace the inflow motionmore » in the evolved stages of massive star formation, because the abundance of HNC decreases at high temperatures. This result highlights the importance of considering chemistry in dynamics studies of massive star-forming regions. The fact that the IRDCs show the highest blue excess in both transitions indicates that the most active inflow occurs in the early phase of star formation, i.e., in the IRDC phase rather than in the later phases. However, mass is still inflowing onto some UCHIIs. We also find that the absorption dips of the HNC spectra in six out of seven blue sources are redshifted relative to their systemic velocities. These redshifted absorption dips may indicate global collapse candidates, although mapping observations with better resolution are needed to examine this feature in more detail.« less

  19. Simulation of water vapor condensation on LOX droplet surface using liquid nitrogen

    NASA Technical Reports Server (NTRS)

    Powell, Eugene A.

    1988-01-01

    The formation of ice or water layers on liquid oxygen (LOX) droplets in the Space Shuttle Main Engine (SSME) environment was investigated. Formulation of such ice/water layers is indicated by phase-equilibrium considerations under conditions of high partial pressure of water vapor (steam) and low LOX droplet temperature prevailing in the SSME preburner or main chamber. An experimental investigation was begun using liquid nitrogen as a LOX simulant. A monodisperse liquid nitrogen droplet generator was developed which uses an acoustic driver to force the stream of liquid emerging from a capillary tube to break up into a stream of regularly space uniformly sized spherical droplets. The atmospheric pressure liquid nitrogen in the droplet generator reservoir was cooled below its boiling point to prevent two phase flow from occurring in the capillary tube. An existing steam chamber was modified for injection of liquid nitrogen droplets into atmospheric pressure superheated steam. The droplets were imaged using a stroboscopic video system and a laser shadowgraphy system. Several tests were conducted in which liquid nitrogen droplets were injected into the steam chamber. Under conditions of periodic droplet formation, images of 600 micron diameter liquid nitrogen droplets were obtained with the stroboscopic video systems.

  20. The transport phase of pyrolytic oil exiting a fast fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Daugaard, Daren Einar

    An unresolved and debated aspect in the fast pyrolysis of biomass is whether the bio-oil exits as a vapor or as an aerosol from the pyrolytic reactor. The determination of the bio-oil transport phase will have direct and significant impact on the design of fast pyrolysis systems. Optimization of both the removal of particulate matter and collection of bio-oil will require this information. In addition, the success of catalytic reforming of bio-oil to high-value chemicals will depend upon this transport phase. A variety of experimental techniques were used to identify the transport phase. Some tests were as simple as examining the catch of an inline filter while others attempted to deduce whether vapor or aerosol predominated by examining the pressure drop across a flow restriction. In supplementary testing, the effect of char on aerosol formation and the potential impact of cracking during direct contact filtering are evaluated. The study indicates that for pyrolysis of red oak approximately 90 wt-% of the collected bio-oil existed as a liquid aerosol. Conversely, the pyrolysis of corn starch produced bio-oil predominately in the vapor phase at the exit of the reactor. Furthermore, it was determined that the addition of char promotes the production of aerosols during pyrolysis of corn starch. Direct contact filtering of the product stream did not collect any liquids and the bio-oil yield was not significantly reduced indicating measurable cracking or coking did not occur.

  1. Formate-assisted pyrolysis

    DOEpatents

    DeSisto, William Joseph; Wheeler, Marshall Clayton; van Heiningen, Adriaan R. P.

    2015-03-17

    The present invention provides, among other thing, methods for creating significantly deoxygenated bio-oils form biomass including the steps of providing a feedstock, associating the feedstock with an alkali formate to form a treated feedstock, dewatering the treated feedstock, heating the dewatered treated feedstock to form a vapor product, and condensing the vapor product to form a pyrolysis oil, wherein the pyrolysis oil contains less than 30% oxygen by weight.

  2. Single crystal growth in spin-coated films of polymorphic phthalocyanine derivative under solvent vapor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higashi, T.; Ohmori, M.; Ramananarivo, M. F.

    2015-12-01

    The effects of solvent vapor on spin-coated films of a polymorphic phthalocyanine derivative were investigated. Growth of single crystal films via redissolving organic films under solvent vapor was revealed by in situ microscopic observations of the films. X-ray diffraction measurement of the films after exposing to solvent vapor revealed the phase transition of polymorphs under solvent vapor. The direction of crystal growth was clarified by measuring the crystal orientation in a grown monodomain film. The mechanism of crystal growth based on redissolving organic films under solvent vapor was discussed in terms of the different solubilities of the polymorphs.

  3. LOX/hydrocarbon fuel carbon formation and mixing data analysis

    NASA Technical Reports Server (NTRS)

    Fang, J.

    1983-01-01

    By applying the Priem-Heidmann Generalized-Length vaporization correlation, the computer model developed by the present study predicts the spatial variation of propellant vaporization rate using the injector cold flow results to define the streamtubes. The calculations show that the overall and local propellant vaporization rate and mixture ratio change drastically as the injection element type or the injector operating condition is changed. These results are compared with the regions of carbon formation observed in the photographic combustion testing. The correlation shows that the fuel vaporization rate and the local mixture ratio produced by the injector element have first order effects on the degree of carbon formation.

  4. Effect of vibration amplitude on vapor cavitation in journal bearings

    NASA Astrophysics Data System (ADS)

    Brewe, D. E.; Jacobson, B. O.

    Computational movies were used to analyze the formation and collapse of vapor cavitation bubbles in a submerged journal bearing. The effect of vibration amplitude on vapor cavitation was studied for a journal undergoing circular whirl. The boundary conditions were implemented using Elrod's algorithm, which conserves mass flow through the cavitation bubble as well as through the oil-film region of the bearing. The vibration amplitudes for the different cases studied resulted in maximum eccentricity ratios ranging from 0.4 to 0.9. The minimum eccentricity ratio reached in each case was 0.1. For the least vibration amplitude studied in which the eccentricity ratio varied between 0.1 and 0.4, no vapor cavitation occurred. The largest vibration amplitude (i.e., eccentricity ratios of 0.1 to 0.9) resulted in vapor cavitation present 76 percent of one complete orbit.

  5. Effect of vibration amplitude on vapor cavitation in journal bearings

    NASA Technical Reports Server (NTRS)

    Brewe, D. E.; Jacobson, B. O.

    1986-01-01

    Computational movies were used to analyze the formation and collapse of vapor cavitation bubbles in a submerged journal bearing. The effect of vibration amplitude on vapor cavitation was studied for a journal undergoing circular whirl. The boundary conditions were implemented using Elrod's algorithm, which conserves mass flow through the cavitation bubble as well as through the oil-film region of the bearing. The vibration amplitudes for the different cases studied resulted in maximum eccentricity ratios ranging from 0.4 to 0.9. The minimum eccentricity ratio reached in each case was 0.1. For the least vibration amplitude studied in which the eccentricity ratio varied between 0.1 and 0.4, no vapor cavitation occurred. The largest vibration amplitude (i.e., eccentricity ratios of 0.1 to 0.9) resulted in vapor cavitation present 76 percent of one complete orbit.

  6. NOVEL CERAMIC-ORGANIC VAPOR PERMEATION MEMBRANES FOR VOC REMOVAL - PHASE II

    EPA Science Inventory

    Vapor permeation with highly permeable and organic-selective membranes is becoming an increasingly popular technique for preventing VOC emissions that are generated by a variety of stationary sources, including solvent and surface coating operations, gasoline storage operat...

  7. Formation of metastable phases during heat treatment of multilayers in the Al-Pt system

    NASA Astrophysics Data System (ADS)

    Lábár, János L.; Kovács, András; Barna, Péter B.; Gas, Patrick

    2001-12-01

    This communication reports that several metastable phases form subsequently during heat treatment (up to 500 °C) of Al-rich Al-Pt multilayers. Besides the known a(amorphous)-Al2Pt, formation of two metastable phases with a composition close to Al5Pt was also observed in a transmission electron microscope. One of them corresponds to a phase given by space group P4 in Pearson's collection of intermetallic compounds. The other, a hexagonal phase (a=12.4 Å and c=26.2 Å) is the one that was observed in rapidly solidified Al-Pt alloys [L. Ma, R. Wang, and K. H. Kuo, J. Less-Common Met. 163, 37 (1990)]. Formation of these phases under different conditions is reported here.

  8. Controlled In Meso Phase Crystallization – A Method for the Structural Investigation of Membrane Proteins

    PubMed Central

    Kubicek, Jan; Schlesinger, Ramona; Baeken, Christian; Büldt, Georg; Schäfer, Frank; Labahn, Jörg

    2012-01-01

    We investigated in meso crystallization of membrane proteins to develop a fast screening technology which combines features of the well established classical vapor diffusion experiment with the batch meso phase crystallization, but without premixing of protein and monoolein. It inherits the advantages of both methods, namely (i) the stabilization of membrane proteins in the meso phase, (ii) the control of hydration level and additive concentration by vapor diffusion. The new technology (iii) significantly simplifies in meso crystallization experiments and allows the use of standard liquid handling robots suitable for 96 well formats. CIMP crystallization furthermore allows (iv) direct monitoring of phase transformation and crystallization events. Bacteriorhodopsin (BR) crystals of high quality and diffraction up to 1.3 Å resolution have been obtained in this approach. CIMP and the developed consumables and protocols have been successfully applied to obtain crystals of sensory rhodopsin II (SRII) from Halobacterium salinarum for the first time. PMID:22536388

  9. Modeling physical vapor deposition of energetic materials

    DOE PAGES

    Shirvan, Koroush; Forrest, Eric C.

    2018-03-28

    Morphology and microstructure of organic explosive films formed using physical vapor deposition (PVD) processes strongly depends on local surface temperature during deposition. Currently, there is no accurate means of quantifying the local surface temperature during PVD processes in the deposition chambers. This study focuses on using a multiphysics computational fluid dynamics tool, STARCCM+, to simulate pentaerythritol tetranitrate (PETN) deposition. The PETN vapor and solid phase were simulated using the volume of fluid method and its deposition in the vacuum chamber on spinning silicon wafers was modeled. The model also included the spinning copper cooling block where the wafers are placedmore » along with the chiller operating with forced convection refrigerant. Implicit time-dependent simulations in two- and three-dimensional were performed to derive insights in the governing physics for PETN thin film formation. PETN is deposited at the rate of 14 nm/s at 142.9 °C on a wafer with an initial temperature of 22 °C. The deposition of PETN on the wafers was calculated at an assumed heat transfer coefficient (HTC) of 400 W/m 2 K. This HTC proved to be the most sensitive parameter in determining the local surface temperature during deposition. Previous experimental work found noticeable microstructural changes with 0.5 mm fused silica wafers in place of silicon during the PETN deposition. This work showed that fused silica slows initial wafer cool down and results in ~10 °C difference for the surface temperature at 500 μm PETN film thickness. It was also found that the deposition surface temperature is insensitive to the cooling power of the copper block due to the copper block's very large heat capacity and thermal conductivity relative to the heat input from the PVD process. Future work should incorporate the addition of local stress during PETN deposition. Lastly, based on simulation results, it is also recommended to investigate the impact of wafer

  10. Modeling physical vapor deposition of energetic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirvan, Koroush; Forrest, Eric C.

    Morphology and microstructure of organic explosive films formed using physical vapor deposition (PVD) processes strongly depends on local surface temperature during deposition. Currently, there is no accurate means of quantifying the local surface temperature during PVD processes in the deposition chambers. This study focuses on using a multiphysics computational fluid dynamics tool, STARCCM+, to simulate pentaerythritol tetranitrate (PETN) deposition. The PETN vapor and solid phase were simulated using the volume of fluid method and its deposition in the vacuum chamber on spinning silicon wafers was modeled. The model also included the spinning copper cooling block where the wafers are placedmore » along with the chiller operating with forced convection refrigerant. Implicit time-dependent simulations in two- and three-dimensional were performed to derive insights in the governing physics for PETN thin film formation. PETN is deposited at the rate of 14 nm/s at 142.9 °C on a wafer with an initial temperature of 22 °C. The deposition of PETN on the wafers was calculated at an assumed heat transfer coefficient (HTC) of 400 W/m 2 K. This HTC proved to be the most sensitive parameter in determining the local surface temperature during deposition. Previous experimental work found noticeable microstructural changes with 0.5 mm fused silica wafers in place of silicon during the PETN deposition. This work showed that fused silica slows initial wafer cool down and results in ~10 °C difference for the surface temperature at 500 μm PETN film thickness. It was also found that the deposition surface temperature is insensitive to the cooling power of the copper block due to the copper block's very large heat capacity and thermal conductivity relative to the heat input from the PVD process. Future work should incorporate the addition of local stress during PETN deposition. Lastly, based on simulation results, it is also recommended to investigate the impact of wafer

  11. Island dynamics and anisotropy during vapor phase epitaxy of m-plane GaN

    DOE PAGES

    Perret, Edith; Xu, Dongwei; Highland, M. J.; ...

    2017-12-04

    Using in situ grazing-incidence x-ray scattering, we have measured the diffuse scattering from islands that form during layer-by-layer growth of GaN by metal-organic vapor phase epitaxy on the (10more » $$\\bar{1}$$0) m-plane surface. The diffuse scattering is extended in the (0001) in-plane direction in reciprocal space, indicating a strong anisotropy with islands elongated along [1$$\\bar{2}$$10] and closely spaced along [0001]. This is confirmed by atomic force microscopy of a quenched sample. Islands were characterized as a function of growth rate F and temperature. Furthermore, the island spacing along [0001] observed during the growth of the first monolayer obeys a power-law dependence on growth rate F -n, with an exponent n=0.25±0.02. Our results are in agreement with recent kinetic Monte Carlo simulations, indicating that elongated islands result from the dominant anisotropy in step edge energy and not from surface diffusion anisotropy. The observed power-law exponent can be explained using a simple steady-state model, which gives n = 1/4.« less

  12. Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers.

    PubMed

    Xing, Jun; Liu, Xin Feng; Zhang, Qing; Ha, Son Tung; Yuan, Yan Wen; Shen, Chao; Sum, Tze Chien; Xiong, Qihua

    2015-07-08

    Semiconductor nanowires have received considerable attention in the past decade driven by both unprecedented physics derived from the quantum size effect and strong isotropy and advanced applications as potential building blocks for nanoscale electronics and optoelectronic devices. Recently, organic-inorganic hybrid perovskites have been shown to exhibit high optical absorption coefficient, optimal direct band gap, and long electron/hole diffusion lengths, leading to high-performance photovoltaic devices. Herein, we present the vapor phase synthesis free-standing CH3NH3PbI3, CH3NH3PbBr3, and CH3NH3PbIxCl3(-x) perovskite nanowires with high crystallinity. These rectangular cross-sectional perovskite nanowires have good optical properties and long electron hole diffusion length, which ensure adequate gain and efficient optical feedback. Indeed, we have demonstrated optical-pumped room-temperature CH3NH3PbI3 nanowire lasers with near-infrared wavelength of 777 nm, low threshold of 11 μJ/cm(2), and a quality factor as high as 405. Our research advocates the promise of optoelectronic devices based on organic-inorganic perovskite nanowires.

  13. Island dynamics and anisotropy during vapor phase epitaxy of m-plane GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perret, Edith; Xu, Dongwei; Highland, M. J.

    Using in situ grazing-incidence x-ray scattering, we have measured the diffuse scattering from islands that form during layer-by-layer growth of GaN by metal-organic vapor phase epitaxy on the (1010) m-plane surface. The diffuse scattering is extended in the (0001) in-plane direction in reciprocal space, indicating a strong anisotropy with islands elongated along [1210] and closely spaced along [0001]. This is confirmed by atomic force microscopy of a quenched sample. Islands were characterized as a function of growth rate F and temperature. The island spacing along [0001] observed during the growth of the first monolayer obeys a power-law dependence on growthmore » rate F-n, with an exponent n = 0:25 + 0.02. The results are in agreement with recent kinetic Monte Carlo simulations, indicating that elongated islands result from the dominant anisotropy in step edge energy and not from surface diffusion anisotropy. The observed power-law exponent can be explained using a simple steady-state model, which gives n = 1/4.« less

  14. Island dynamics and anisotropy during vapor phase epitaxy of m-plane GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perret, Edith; Xu, Dongwei; Highland, M. J.

    Using in situ grazing-incidence x-ray scattering, we have measured the diffuse scattering from islands that form during layer-by-layer growth of GaN by metal-organic vapor phase epitaxy on the (10more » $$\\bar{1}$$0) m-plane surface. The diffuse scattering is extended in the (0001) in-plane direction in reciprocal space, indicating a strong anisotropy with islands elongated along [1$$\\bar{2}$$10] and closely spaced along [0001]. This is confirmed by atomic force microscopy of a quenched sample. Islands were characterized as a function of growth rate F and temperature. Furthermore, the island spacing along [0001] observed during the growth of the first monolayer obeys a power-law dependence on growth rate F -n, with an exponent n=0.25±0.02. Our results are in agreement with recent kinetic Monte Carlo simulations, indicating that elongated islands result from the dominant anisotropy in step edge energy and not from surface diffusion anisotropy. The observed power-law exponent can be explained using a simple steady-state model, which gives n = 1/4.« less

  15. Phase separation and the formation of the pyrenoid, a carbon-fixing organelle

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Freeman Rosenzweig, Elizabeth; Mackinder, Luke; Jonikas, Martin; Wingreen, Ned S.

    In the chloroplasts of most algae, the carbon-fixing enzyme Rubisco is concentrated in a non-membrane-bound structure called the pyrenoid, which enables more efficient carbon capture than that of most land plants. In contrast to the long-held assumptions of the field, the pyrenoid matrix is not a solid crystal, but behaves as a phase-separated, liquid-like organelle. In this system, the linker protein EPYC1 is thought to form multivalent specific bonds with Rubisco, and the formation of the pyrenoid occurs via the phase separation of these two associating proteins. Through analytical and numerical studies, we determine a phase diagram for this system. We also show how the length of the linker protein can affect the formation and dissolution of the pyrenoid in an unexpected manner. This new view of the pyrenoid matrix provides important insights into the structure, regulation, and inheritance of pyrenoid. More broadly, our findings give insights into fundamental principles of the architecture and inheritance of liquid-phase organelles.

  16. Phase formation in selected surface-roughened plasma-nitrided 304 austenite stainless steel.

    PubMed

    Singh, Gajendra Prasad; Joseph, Alphonsa; Raole, Prakash Manohar; Barhai, Prema Kanta; Mukherjee, Subroto

    2008-04-01

    Direct current (DC) glow discharge plasma nitriding was carried out on three selected surface-roughened AISI 304 stainless steel samples at 833 K under 4 mbar pressures for 24 h in the presence of N 2 :H 2 gas mixtures of 50 : 50 ratios. After plasma nitriding, the phase formation, case depth, surface roughness, and microhardness of a plasma-nitrided layer were evaluated by glancing angle x-ray diffractogram, optical microscope, stylus profilometer, and Vickers microhardness tester techniques. The case depth, surface hardness, and phase formation variations were observed with a variation in initial surface roughness. The diffraction patterns of the plasma-nitrided samples showed the modified intensities of the α and γ phases along with those of the CrN, Fe 4 N, and Fe 3 N phases. Hardness and case depth variations were observed with a variation in surface roughness. A maximum hardness of 1058 Hv and a case depth of 95 μm were achieved in least surface-roughened samples.

  17. Gold catalyzed nickel disilicide formation: a new solid-liquid-solid phase growth mechanism.

    PubMed

    Tang, Wei; Picraux, S Tom; Huang, Jian Yu; Liu, Xiaohua; Tu, K N; Dayeh, Shadi A

    2013-01-01

    The vapor-liquid-solid (VLS) mechanism is the predominate growth mechanism for semiconductor nanowires (NWs). We report here a new solid-liquid-solid (SLS) growth mechanism of a silicide phase in Si NWs using in situ transmission electron microcopy (TEM). The new SLS mechanism is analogous to the VLS one in relying on a liquid-mediating growth seed, but it is fundamentally different in terms of nucleation and mass transport. In SLS growth of Ni disilicide, the Ni atoms are supplied from remote Ni particles by interstitial diffusion through a Si NW to the pre-existing Au-Si liquid alloy drop at the tip of the NW. Upon supersaturation of both Ni and Si in Au, an octahedral nucleus of Ni disilicide (NiSi2) forms at the center of the Au liquid alloy, which thereafter sweeps through the Si NW and transforms Si into NiSi2. The dissolution of Si by the Au alloy liquid mediating layer proceeds with contact angle oscillation at the triple point where Si, oxide of Si, and the Au alloy meet, whereas NiSi2 is grown from the liquid mediating layer in an atomic stepwise manner. By using in situ quenching experiments, we are able to measure the solubility of Ni and Si in the Au-Ni-Si ternary alloy. The Au-catalyzed mechanism can lower the formation temperature of NiSi2 by 100 °C compared with an all solid state reaction.

  18. Elimination of macrostep-induced current flow nonuniformity in vertical GaN PN diode using carbon-free drift layer grown by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Fujikura, Hajime; Hayashi, Kentaro; Horikiri, Fumimasa; Narita, Yoshinobu; Konno, Taichiro; Yoshida, Takehiro; Ohta, Hiroshi; Mishima, Tomoyoshi

    2018-04-01

    In vertical GaN PN diodes (PNDs) grown entirely by metal–organic chemical vapor deposition (MOCVD), large current nonuniformity was observed. This nonuniformity was induced by macrosteps on the GaN surface through modulation of carbon incorporation into the n-GaN crystal. It was eliminated in a hybrid PND consisting of a carbon-free n-GaN layer grown by hydride vapor phase epitaxy (HVPE) and an MOCVD-regrown p-GaN layer. The hybrid PND showed a fairly low on-resistance (2 mΩ cm2) and high breakdown voltage (2 kV) even without a field plate electrode. These results clearly indicated the strong advantages of the HVPE-grown drift layer for improving power device performance, uniformity, and yield.

  19. Vapor phase polymerization deposition of conducting polymer/graphene nanocomposites as high performance electrode materials.

    PubMed

    Yang, Yajie; Li, Shibin; Zhang, Luning; Xu, Jianhua; Yang, Wenyao; Jiang, Yadong

    2013-05-22

    In this paper, we report chemical vapor phase polymerization (VPP) deposition of novel poly(3,4-ethylenedioxythiophene) (PEDOT)/graphene nanocomposites as solid tantalum electrolyte capacitor cathode films. The PEDOT/graphene films were successfully prepared on porous tantalum pentoxide surface as cathode films through the VPP procedure. The results indicated that the high conductivity nature of PEDOT/graphene leads to the decrease of cathode films resistance and contact resistance between PEDOT/graphene and carbon paste. This nanocomposite cathode film based capacitor showed ultralow equivalent series resistance (ESR) ca. 12 mΩ and exhibited better capacitance-frequency performance than the PEDOT based capacitor. The leakage current investigation revealed that the device encapsulation process does not influence capacitor leakage current, indicating the excellent mechanical strength of PEDOT-graphene films. The graphene showed a distinct protection effect on the dielectric layer from possible mechanical damage. This high conductivity and mechanical strength graphene based conducting polymer nanocomposites indicated a promising application future for organic electrode materials.

  20. Clathrate hydrate formation in amorphous cometary ice analogs in vacuo

    NASA Technical Reports Server (NTRS)

    Blake, David; Allamandola, Louis; Sandford, Scott; Hudgins, Doug; Freund, Friedemann

    1991-01-01

    Experiments conducted in clathrate hydrates with a modified electron microscope have demonstrated the possibility of such compounds' formation during the warming of vapor-deposited amorphous ices in vacuo, through rearrangements in the solid state. Subsolidus crystallization of compositionally complex amorphous ices may therefore be a general and ubiquitous process. Phase separations and microporous textures thus formed may be able to account for such anomalous cometary phenomena as the release of gas at large radial distances from the sun and the retention of volatiles to elevated temperatures.

  1. Thermogravimetric study of vapor pressure of TATP synthesized without recrystallization.

    PubMed

    Mbah, Jonathan; Knott, Debra; Steward, Scott

    2014-11-01

    This study aims at characterizing the vapor pressure signatures generated by triacetone triperoxide (TATP) that was synthesized without recrystallization by thermogravimmetric analysis (TGA) for exploitation by standoff detection technologies of explosive devices. The thermal behavior of the nonrecrystallized sample was compared with reported values. Any phase change, melting point and decomposition identification were studied by differential scanning calorimeter. Vapor pressures were estimated by the Langmuir method of evaporation from an open surface in a vacuum. Vapor pressures of TATP at different temperatures were calculated using the linear logarithmic relationship obtained from benzoic acid reference standard. Sublimation of TATP was found to follow apparent zero-order kinetics and sublimes at steady rates at 298 K and above. While the enthalpy of sublimation found, 71.7 kJ mol(-1), is in agreement with reported values the vapor pressures deviated significantly. The differences in the vapor pressures behavior are attributable to the synthesis pathway chosen in this study. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. A "User-Friendly" Program for Vapor-Liquid Equilibrium.

    ERIC Educational Resources Information Center

    Da Silva, Francisco A.; And Others

    1991-01-01

    Described is a computer software package suitable for teaching and research in the area of multicomponent vapor-liquid equilibrium. This program, which has a complete database, can accomplish phase-equilibrium calculations using various models and graph the results. (KR)

  3. The cluster model of a hot dense vapor

    NASA Astrophysics Data System (ADS)

    Zhukhovitskii, D. I.

    2015-04-01

    We explore thermodynamic properties of a vapor in the range of state parameters where the contribution to thermodynamic functions from bound states of atoms (clusters) dominates over the interaction between the components of the vapor in free states. The clusters are assumed to be light and sufficiently "hot" for the number of bonds to be minimized. We use the technique of calculation of the cluster partition function for the cluster with a minimum number of interatomic bonds to calculate the caloric properties (heat capacity and velocity of sound) for an ideal mixture of the lightest clusters. The problem proves to be exactly solvable and resulting formulas are functions solely of the equilibrium constant of the dimer formation. These formulas ensure a satisfactory correlation with the reference data for the vapors of cesium, mercury, and argon up to moderate densities in both the sub- and supercritical regions. For cesium, we extend the model to the densities close to the critical one by inclusion of the clusters of arbitrary size. Knowledge of the cluster composition of the cesium vapor makes it possible to treat nonequilibrium phenomena such as nucleation of the supersaturated vapor, for which the effect of the cluster structural transition is likely to be significant.

  4. The cluster model of a hot dense vapor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhukhovitskii, D. I., E-mail: dmr@ihed.ras.ru

    2015-04-28

    We explore thermodynamic properties of a vapor in the range of state parameters where the contribution to thermodynamic functions from bound states of atoms (clusters) dominates over the interaction between the components of the vapor in free states. The clusters are assumed to be light and sufficiently “hot” for the number of bonds to be minimized. We use the technique of calculation of the cluster partition function for the cluster with a minimum number of interatomic bonds to calculate the caloric properties (heat capacity and velocity of sound) for an ideal mixture of the lightest clusters. The problem proves tomore » be exactly solvable and resulting formulas are functions solely of the equilibrium constant of the dimer formation. These formulas ensure a satisfactory correlation with the reference data for the vapors of cesium, mercury, and argon up to moderate densities in both the sub- and supercritical regions. For cesium, we extend the model to the densities close to the critical one by inclusion of the clusters of arbitrary size. Knowledge of the cluster composition of the cesium vapor makes it possible to treat nonequilibrium phenomena such as nucleation of the supersaturated vapor, for which the effect of the cluster structural transition is likely to be significant.« less

  5. Gas-to-particle conversion in the particle precipitation-aided chemical vapor deposition process II. Synthesis of the perovskite oxide yttrium chromite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieten, V.E.J. van; Dekker, J.P.; Hurkmans, E.J.

    1993-11-01

    In the particle precipitation-aided chemical vapor deposition process, an aerosol is formed in the gas phase at elevated temperatures. The particles are deposited on a cooled substrate. Coherent layers with a controlled porosity can be obtained by a simultaneous heterogeneous reaction, which interconnects the deposited particles. The synthesis of submicrometer powder of the perovskite oxide yttrium chromite (YCrO[sub 3]) by gas to particle conversion, which is the first step of the PP-CVD process, has been investigated, and preliminary results are shown. The powders have been synthesized using yttrium trichloride vapor (YCl[sub 3]), chromium trichloride vapor (CrCl[sub 3]), and steam andmore » oxygen as reactants. The influence of the input molar ratio of the elements on the composition and characteristics of the powders has been investigated. Phase composition has been determined by X-ray diffraction (XRD). The powders have been characterized by transmission electron microscopy (TEM) and sedimentation field flow fractionation (SF[sup 3]). At a reaction temperature of 1283 K the powders consist of the chromium sesquioxide (Cr[sub 2]O[sub 3]), or a mixture of Cr[sub 2]O[sub 3] and YCrO[sub 3]. At stoichiometeric input amounts of metal chlorides and steam the formation of YCrO[sub 3] seems to be favored. 19 refs., 6 figs., 3 tabs.« less

  6. Influence of phase inversion on the formation and stability of one-step multiple emulsions.

    PubMed

    Morais, Jacqueline M; Rocha-Filho, Pedro A; Burgess, Diane J

    2009-07-21

    A novel method of preparation of water-in-oil-in-micelle-containing water (W/O/W(m)) multiple emulsions using the one-step emulsification method is reported. These multiple emulsions were normal (not temporary) and stable over a 60 day test period. Previously, reported multiple emulsion by the one-step method were abnormal systems that formed at the inversion point of simple emulsion (where there is an incompatibility in the Ostwald and Bancroft theories, and typically these are O/W/O systems). Pseudoternary phase diagrams and bidimensional process-composition (phase inversion) maps were constructed to assist in process and composition optimization. The surfactants used were PEG40 hydrogenated castor oil and sorbitan oleate, and mineral and vegetables oils were investigated. Physicochemical characterization studies showed experimentally, for the first time, the significance of the ultralow surface tension point on multiple emulsion formation by one-step via phase inversion processes. Although the significance of ultralow surface tension has been speculated previously, to the best of our knowledge, this is the first experimental confirmation. The multiple emulsion system reported here was dependent not only upon the emulsification temperature, but also upon the component ratios, therefore both the emulsion phase inversion and the phase inversion temperature were considered to fully explain their formation. Accordingly, it is hypothesized that the formation of these normal multiple emulsions is not a result of a temporary incompatibility (at the inversion point) during simple emulsion preparation, as previously reported. Rather, these normal W/O/W(m) emulsions are a result of the simultaneous occurrence of catastrophic and transitional phase inversion processes. The formation of the primary emulsions (W/O) is in accordance with the Ostwald theory ,and the formation of the multiple emulsions (W/O/W(m)) is in agreement with the Bancroft theory.

  7. Interfacial Dynamics of Condensing Vapor Bubbles in an Ultrasonic Acoustic Field

    NASA Astrophysics Data System (ADS)

    Boziuk, Thomas; Smith, Marc; Glezer, Ari

    2016-11-01

    Enhancement of vapor condensation in quiescent subcooled liquid using ultrasonic actuation is investigated experimentally. The vapor bubbles are formed by direct injection from a pressurized steam reservoir through nozzles of varying characteristic diameters, and are advected within an acoustic field of programmable intensity. While kHz-range acoustic actuation typically couples to capillary instability of the vapor-liquid interface, ultrasonic (MHz-range) actuation leads to the formation of a liquid spout that penetrates into the vapor bubble and significantly increases its surface area and therefore condensation rate. Focusing of the ultrasonic beam along the spout leads to ejection of small-scale droplets from that are propelled towards the vapor liquid interface and result in localized acceleration of the condensation. High-speed video of Schlieren images is used to investigate the effects of the ultrasonic actuation on the thermal boundary layer on the liquid side of the vapor-liquid interface and its effect on the condensation rate, and the liquid motion during condensation is investigated using high-magnification PIV measurements. High-speed image processing is used to assess the effect of the actuation on the dynamics and temporal variation in characteristic scale (and condensation rate) of the vapor bubbles.

  8. NOVEL CERAMIC-ORGANIC VAPOR PERMEATION MEMBRANES FOR VOC REMOVAL - PHASE I

    EPA Science Inventory

    Vapor permeation holds much promise for becoming a highly efficient means of preventing VOC emissions that are now generated by a variety of stationary sources, including solvent and surface coating operations, gasoline storage operations, and printing operations. A limitation of...

  9. Three-phase heaters with common overburden sections for heating subsurface formations

    DOEpatents

    Vinegar, Harold J [Bellaire, TX

    2012-02-14

    A heating system for a subsurface formation is described. The heating system includes three substantially u-shaped heaters with first end portions of the heaters being electrically coupled to a single, three-phase wye transformer and second end portions of the heaters being electrically coupled to each other and/or to ground. The three heaters may enter the formation through a first common wellbore and exit the formation through a second common wellbore so that the magnetic fields of the three heaters at least partially cancel out in the common wellbores.

  10. Vapor deposition in basaltic stalactites, Kilauea, Hawaii

    NASA Astrophysics Data System (ADS)

    Baird, A. K.; Mohrig, D. C.; Welday, E. E.

    Basaltic stalacties suspended from the ceiling of a large lava tube at Kilauea, Hawaii, have totally enclosed vesicles whose walls are covered with euhedral FeTi oxide and silicate crystals. The walls of the vesicles and the exterior surfaces of stalactites are Fe and Ti enriched and Si depleted compared to common basalt. Minerals in vesicles have surface ornamentations on crystal faces which include alkali-enriched, aluminosilicate glass(?) hemispheres. No sulfide-, chloride-, fluoride-, phosphate- or carbonate-bearing minerals are present. Minerals in the stalactites must have formed by deposition from an iron oxide-rich vapor phase produced by the partial melting and vaporization of wall rocks in the tube.

  11. Vapor-liquid phase equilibria of water modelled by a Kim-Gordon potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maerzke, K A; McGrath, M J; Kuo, I W

    2009-03-16

    Gibbs ensemble Monte Carlo simulations were carried out to investigate the properties of a frozen-electron-density (or Kim-Gordon, KG) model of water along the vapor-liquid coexistence curve. Because of its theoretical basis, such a KG model provides for seamless coupling to Kohn-Sham density functional theory for use in mixed quantum mechanics/molecular mechanics (QM/MM) implementations. The Gibbs ensemble simulations indicate rather limited transferability of such a simple KG model to other state points. Specifically, a KG model that was parameterized by Barker and Sprik to the properties of liquid water at 300 K, yields saturated vapor pressures and a critical temperature thatmore » are significantly under- and over-estimated, respectively.« less

  12. Phase formation and texture of thin nickel germanides on Ge(001) and Ge(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Schutter, B., E-mail: deschutter.bob@ugent.be; Detavernier, C.; Van Stiphout, K.

    2016-04-07

    We studied the solid-phase reaction between a thin Ni film and a single crystal Ge(001) or Ge(111) substrate during a ramp anneal. The phase formation sequence was determined using in situ X-ray diffraction and in situ Rutherford backscattering spectrometry (RBS), while the nature and the texture of the phases were studied using X-ray pole figures and transmission electron microscopy. The phase sequence is characterized by the formation of a single transient phase before NiGe forms as the final and stable phase. X-ray pole figures were used to unambiguously identify the transient phase as the ϵ-phase, a non-stoichiometric Ni-rich germanide withmore » a hexagonal crystal structure that can exist for Ge concentrations between 34% and 48% and which forms with a different epitaxial texture on both substrate orientations. The complementary information gained from both RBS and X-ray pole figure measurements revealed a simultaneous growth of both the ϵ-phase and NiGe over a small temperature window on both substrate orientations.« less

  13. Droplets Formation and Merging in Two-Phase Flow Microfluidics

    PubMed Central

    Gu, Hao; Duits, Michel H. G.; Mugele, Frieder

    2011-01-01

    Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i) the emulsification step should lead to a very well controlled drop size (distribution); and (ii) the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed. PMID:21731459

  14. Vapor-Phase Deposition and Modification of Metal-Organic Frameworks: State-of-the-Art and Future Directions.

    PubMed

    Stassen, Ivo; De Vos, Dirk; Ameloot, Rob

    2016-10-04

    Materials processing, and thin-film deposition in particular, is decisive in the implementation of functional materials in industry and real-world applications. Vapor processing of materials plays a central role in manufacturing, especially in electronics. Metal-organic frameworks (MOFs) are a class of nanoporous crystalline materials on the brink of breakthrough in many application areas. Vapor deposition of MOF thin films will facilitate their implementation in micro- and nanofabrication research and industries. In addition, vapor-solid modification can be used for postsynthetic tailoring of MOF properties. In this context, we review the recent progress in vapor processing of MOFs, summarize the underpinning chemistry and principles, and highlight promising directions for future research. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The formation of topological defects in phase transitions

    NASA Technical Reports Server (NTRS)

    Hodges, Hardy M.

    1989-01-01

    It was argued, and fought through numerical work that the results of non-dynamical Monte Carlo computer simulations cannot be applied to describe the formation of topological defects when the correlation length at the Ginzburg temperature is significantly smaller than the horizon size. To test the current hypothesis that infinite strings at formation are essentially described by Brownian walks of size the correlation length at the Ginzburg temperature, fields at the Ginzburg temperature were equilibrated. Infinite structure do not exist in equilibrium for reasonable definitions of the Ginzburg temperature, and horizons must be included in a proper treatment. A phase transition, from small-scale to large-scale string or domain wall structure, is found to occur very close to the Ginzburg temperature, in agreement with recent work. The formation process of domain walls and global strings were investigated through the breaking of initially ordered states. To mimic conditions in the early Universe, cooling times are chosen so that horizons exist in the sample volume when topological structure formation occurs. The classical fields are evolved in real-time by the numerical solution of Langevin equations of motion on a three dimensional spatial lattice. The results indicate that it is possible for most of the string energy to be in small loops, rather than in long strings, at formation.

  16. Quantification of natural vapor fluxes of trichloroethene in the unsaturated zone at Picatinny Arsenal, New Jersey

    USGS Publications Warehouse

    Smith, James A.; Tisdale, Amy K.; Cho, H. Jean

    1996-01-01

    The upward flux of trichloroethene (TCE) vapor through the unsaturated zone above a contaminated, water-table aquifer at Picatinny Arsenal, New Jersey, has been studied under natural conditions over a 12-month period. Vertical gas-phase diffusion fluxes were estimated indirectly by measuring the TCE vapor concentration gradient in the unsaturated zone and using Fick's law to calculate the flux. The total gas-phase flux (e.g., the sum of diffusion and advection fluxes) was measured directly with a vertical flux chamber (VFC). In many cases, the upward TCE vapor flux was several orders of magnitude greater than the upward TCE diffusion flux, suggesting that mechanisms other than steady-state vapor diffusion are contributing to the vertical transport of TCE vapors through the unsaturated zone. The measured total flux of TCE vapor from the subsurface to the atmosphere is approximately 50 kg/yr and is comparable in magnitude to the removal rate of TCE from the aquifer by an existing pump-and-treat system and by discharge into a nearby stream. The net upward flux of TCE is reduced significantly during a storm event, presumably due to the mass transfer of TCE from the soil gas to the infiltrating rainwater and its subsequent downward advection. Several potential problems associated with the measurement of total gas-phase fluxes are discussed.

  17. Evidence for alkali metal formation at a cathode interface of organic electroluminescent devices by thermal decomposition of alkali metal carboxylates during their vapor deposition

    NASA Astrophysics Data System (ADS)

    Ganzorig, Chimed; Fujihira, Masamichi

    2004-11-01

    This study examines the possibility of thermal decomposition of Na salts of acetate, benzoate, and fluoride during vacuum vapor deposition using a quartz crystal microbalance to measure negative frequency shift (Δf) caused by increasing mass deposited from the same amount of source materials. Cs acetate is also examined. We compare the negative frequency shift-source current (Δf -I) curves of the Na salts with those of organic materials such as tris(8-hydroxyquinoline)aluminum and N ,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine. CH3COONa and C6H5COONa exhibit much lower Δf than the organic materials. CH3COOCs gives much larger Δf than CH3COONa due to the higher atomic weight of Cs. These exhibit clear evidence for alkali metal formation by thermal decomposition during vapor deposition of alkali metal carboxylates.

  18. Deep-level transient spectroscopy studies of Ni- and Zn-diffused vapor-phase-epitaxy n-GaAs

    NASA Technical Reports Server (NTRS)

    Partin, D. L.; Chen, J. W.; Milnes, A. G.; Vassamillet, L. F.

    1979-01-01

    The paper presents deep-level transient spectroscopy studies of Ni- and Zn-diffused vapor-phase epitaxy n-GaAs. Nickel diffused into VPE n-GaAs reduces the hole diffusion length L sub p from 4.3 to 1.1 microns. Deep-level transient spectroscopy was used to identify energy levels in Ni-diffused GaAs; the as-grown VPE GaAs contains traces of these levels and an electron trap. Ni diffusion reduces the concentration of this level by an amount that matches the increase in concentration of each of the two Ni-related levels. A technique for measuring minority-carrier capture cross sections was developed, which indicates that L sub p in Ni-diffused VPE n-GaAs is controlled by the E sub c - 0.39 eV defect level.

  19. Metastable and equilibrium phase formation in sputter-deposited Ti/Al multilayer thin films

    NASA Astrophysics Data System (ADS)

    Lucadamo, G.; Barmak, K.; Lavoie, C.; Cabral, C., Jr.; Michaelsen, C.

    2002-06-01

    The sequence and kinetics of metastable and equilibrium phase formation in sputter deposited multilayer thin films was investigated by combining in situ synchrotron x-ray diffraction (XRD) with ex situ electron diffraction and differential scanning calorimetry (DSC). The sequence included both cubic and tetragonal modifications of the equilibrium TiAl3 crystal structure. Values for the formation activation energies of the various phases in the sequence were determined using the XRD and DSC data obtained here, as well as activation energy data reported in the literature.

  20. Determination of vapor pressures for nonpolar and semipolar organic compounds from gas chromatographic retention data

    USGS Publications Warehouse

    Hinckley, D.A.; Bidleman, T.F.; Foreman, W.T.; Tuschall, J.R.

    1990-01-01

    Vapor pressures for nonpolar and moderately polar organochlorine, pyrethroid, and organophosphate insecticides, phthalate esters, and organophosphate flame retardants were determined by capillary gas chromatography (GC). Organochlorines and polycyclic aromatic hydrocarbons with known liquid-phase vapor pressures (P??L) (standard compounds) were chromatographed along with two reference compounds n-C20 (elcosane) and p,p???-DDT on a 1.0-m-long poly(dimethylsiloxane) bonded-phase (BP-1) column to determine their vapor pressures by GC (P??GC). A plot of log P??L vs log P??GC for standard compounds was made to establish a correlation between measured and literature values, and this correlation was then used to compute P??L of test compounds from their measured P??GC. P??L of seven major components of technical chlordane, endosulfan and its metabolites, ??-hexachlorocyclohexane, mirex, and two components of technical toxaphene were determined by GC. This method provides vapor pressures within a factor of 2 of average literature values for nonpolar compounds, similar to reported interlaboratory precisions of vapor pressure determinations. GC tends to overestimate vapor pressures of moderately polar compounds. ?? 1990 American Chemical Society.

  1. Hydrogen storage and phase transformations in Mg-Pd nanoparticles

    NASA Astrophysics Data System (ADS)

    Callini, E.; Pasquini, L.; Rude, L. H.; Nielsen, T. K.; Jensen, T. R.; Bonetti, E.

    2010-10-01

    Microstructure refinement and synergic coupling among different phases are currently explored strategies to improve the hydrogen storage properties of traditional materials. In this work, we apply a combination of these methods and synthesize Mg-Pd composite nanoparticles by inert gas condensation of Mg vapors followed by vacuum evaporation of Pd clusters. Irreversible formation of the Mg6Pd intermetallic phase takes place upon vacuum annealing, resulting in Mg/Mg6Pd composite nanoparticles. Their hydrogen storage properties are investigated and connected to the undergoing phase transformations by gas-volumetric techniques and in situ synchrotron radiation powder x-ray diffraction. Mg6Pd transforms reversibly into different Mg-Pd intermetallic compounds upon hydrogen absorption, depending on temperature and pressure. In particular, at 573 K and 1 MPa hydrogen pressure, the metal-hydride transition leads to the formation of Mg3Pd and Mg5Pd2 phases. By increasing the pressure to 5 MPa, the Pd-richer MgPd intermetallic is obtained. Upon hydrogen desorption, the Mg6Pd phase is reversibly recovered. These phase transformations result in a specific hydrogen storage capacity associated with Mg-Pd intermetallics, which attain the maximum value of 3.96 wt % for MgPd and influence both the thermodynamics and kinetics of hydrogen sorption in the composite nanoparticles.

  2. Vapor-dominated zones within hydrothermal systems: evolution and natural state

    USGS Publications Warehouse

    Ingebritsen, S.E.; Sorey, M.L.

    1988-01-01

    Three conceptual models illustrate the range of hydrothermal systems in which vapor-dominated conditions are found. The first model (model I) represents a system with an extensive near-vaporstatic vapor-dominated zone and limited liquid throughflow and is analogous to systems such as The Geysers, California. Models II and III represent systems with significant liquid throughflow and include steam-heated discharge features at higher elevations and high-chloride springs at lower elevations connected to and fed by a single circulation system at depth. In model II, as in model I, the vapor-dominated zone has a near-vaporstatic vertical pressure gradient and is generally underpressured with respect to local hydrostatic pressure. The vapor-dominated zone in model III is quite different, in that phase separation takes place at pressures close to local hydrostatic and the overall pressure gradient is near hydrostatic. -from Authors

  3. Formation of gallium nitride templates and freestanding substrates by hydride vapor phase epitaxy for homoepitaxial growth of III-nitride devices

    NASA Astrophysics Data System (ADS)

    Williams, Adrian Daniel

    Gallium nitride (GaN) is a direct wide band gap semiconductor currently under heavy development worldwide due to interest in its applications in ultra-violet optoelectronics, power electronics, devices operating in harsh environments (high temperature or corrorsive), etc. While a number of devices have been demonstrated with this material and its related alloys, the unavailability of GaN substrates is seen as one of the current major bottlenecks to both material quality and device performance. This dissertation is concerned with the synthesis of high quality GaN substrates by the hydride vapor phase epitaxy method (HVPE). In this work, the flow of growth precursors in a home-built HVPE reactor was modeled by the Navier-Stokes equation and solved by finite element analysis to promote uniformity of GaN on 2'' sapphire substrates. Kinetics of growth was studied and various regimes of growth were identified to establish a methodology for HVPE GaN growth, independent of reactor geometry. GaN templates as well as bulk substrates were fabricated in this work. Realization of freestanding GaN substrates was achieved through discovery of a natural stress-induced method of separating bulk GaN from sapphire via mechanical failure of a low-temperature GaN buffer layer. Such a process eliminates the need for pre- or post-processing of sapphire substrates, as is currently the standard. Stress in GaN-on-sapphire is discussed, with the dominant contributor identified as thermal stress due to thermal expansion coefficient mismatch between the two materials. This thermal stress is analyzed using Stoney's equation and conditions for crack-free growth of thick GaN substrates were identified. An etch-back process for planarizing GaN templates was also developed and successfully applied to rough GaN templates. The planarization of GaN has been mainly addressed by chemo-mechanical polishing (CMP) methods in the literature, with notable shortcomings including the inability to effectively

  4. Gas hydrate formation rates from dissolved-phase methane in porous laboratory specimens

    USGS Publications Warehouse

    Waite, William F.; Spangenberg, E.K.

    2013-01-01

    Marine sands highly saturated with gas hydrates are potential energy resources, likely forming from methane dissolved in pore water. Laboratory fabrication of gas hydrate-bearing sands formed from dissolved-phase methane usually requires 1–2 months to attain the high hydrate saturations characteristic of naturally occurring energy resource targets. A series of gas hydrate formation tests, in which methane-supersaturated water circulates through 100, 240, and 200,000 cm3 vessels containing glass beads or unconsolidated sand, show that the rate-limiting step is dissolving gaseous-phase methane into the circulating water to form methane-supersaturated fluid. This implies that laboratory and natural hydrate formation rates are primarily limited by methane availability. Developing effective techniques for dissolving gaseous methane into water will increase formation rates above our observed (1 ± 0.5) × 10−7 mol of methane consumed for hydrate formation per minute per cubic centimeter of pore space, which corresponds to a hydrate saturation increase of 2 ± 1% per day, regardless of specimen size.

  5. Molecular dynamics studies of defect formation during heteroepitaxial growth of InGaN alloys on (0001) GaN surfaces

    NASA Astrophysics Data System (ADS)

    Gruber, J.; Zhou, X. W.; Jones, R. E.; Lee, S. R.; Tucker, G. J.

    2017-05-01

    We investigate the formation of extended defects during molecular-dynamics (MD) simulations of GaN and InGaN growth on (0001) and ( 11 2 ¯ 0 ) wurtzite-GaN surfaces. The simulated growths are conducted on an atypically large scale by sequentially injecting nearly a million individual vapor-phase atoms towards a fixed GaN surface; we apply time-and-position-dependent boundary constraints that vary the ensemble treatments of the vapor-phase, the near-surface solid-phase, and the bulk-like regions of the growing layer. The simulations employ newly optimized Stillinger-Weber In-Ga-N-system potentials, wherein multiple binary and ternary structures are included in the underlying density-functional-theory training sets, allowing improved treatment of In-Ga-related atomic interactions. To examine the effect of growth conditions, we study a matrix of >30 different MD-growth simulations for a range of InxGa1-xN-alloy compositions (0 ≤ x ≤ 0.4) and homologous growth temperatures [0.50 ≤ T/T*m(x) ≤ 0.90], where T*m(x) is the simulated melting point. Growths conducted on polar (0001) GaN substrates exhibit the formation of various extended defects including stacking faults/polymorphism, associated domain boundaries, surface roughness, dislocations, and voids. In contrast, selected growths conducted on semi-polar ( 11 2 ¯ 0 ) GaN, where the wurtzite-phase stacking sequence is revealed at the surface, exhibit the formation of far fewer stacking faults. We discuss variations in the defect formation with the MD growth conditions, and we compare the resulting simulated films to existing experimental observations in InGaN/GaN. While the palette of defects observed by MD closely resembles those observed in the past experiments, further work is needed to achieve truly predictive large-scale simulations of InGaN/GaN crystal growth using MD methodologies.

  6. Tracing Water Vapor and Ice During Dust Growth

    NASA Astrophysics Data System (ADS)

    Krijt, Sebastiaan; Ciesla, Fred J.; Bergin, Edwin A.

    2016-12-01

    The processes that govern the evolution of dust and water (in the form of vapor or ice) in protoplanetary disks are intimately connected. We have developed a model that simulates dust coagulation, dust dynamics (settling, turbulent mixing), vapor diffusion, and condensation/sublimation of volatiles onto grains in a vertical column of a protoplanetary disk. We employ the model to study how dust growth and dynamics influence the vertical distribution of water vapor and water ice in the region just outside the radial snowline. Our main finding is that coagulation (boosted by the enhanced stickiness of icy grains) and the ensuing vertical settling of solids results in water vapor being depleted, but not totally removed, from the region above the snowline on a timescale commensurate with the vertical turbulent mixing timescale. Depending on the strength of the turbulence and the temperature, the depletion can reach factors of up to ˜50 in the disk atmosphere. In our isothermal column, this vapor depletion results in the vertical snowline moving closer to the midplane (by up to 2 gas scale heights) and the gas-phase {{C}}/{{O}} ratio above the vertical snowline increasing. Our findings illustrate the importance of dynamical effects and the need for understanding coevolutionary dynamics of gas and solids in planet-forming environments.

  7. Structure and phase behavior of a confined nanodroplet composed of the flexible chain molecules.

    PubMed

    Kim, Soon-Chul; Kim, Eun-Young; Seong, Baek-Seok

    2011-04-28

    A polymer density functional theory has been employed for investigating the structure and phase behaviors of the chain polymer, which is modelled as the tangentially connected sphere chain with an attractive interaction, inside the nanosized pores. The excess free energy of the chain polymer has been approximated as the modified fundamental measure-theory for the hard spheres, the Wertheim's first-order perturbation for the chain connectivity, and the mean-field approximation for the van der Waals contribution. For the value of the chemical potential corresponding to a stable liquid phase in the bulk system and a metastable vapor phase, the flexible chain molecules undergo the liquid-vapor transition as the pore size is reduced; the vapor is the stable phase at small volume, whereas the liquid is the stable phase at large volume. The wide liquid-vapor coexistence curve, which explains the wide range of metastable liquid-vapor states, is observed at low temperature. The increase of temperature and decrease of pore size result in a narrowing of liquid-vapor coexistence curves. The increase of chain length leads to a shift of the liquid-vapor coexistence curve towards lower values of chemical potential. The coexistence curves for the confined phase diagram are contained within the corresponding bulk liquid-vapor coexistence curve. The equilibrium capillary phase transition occurs at a higher chemical potential than in the bulk phase.

  8. Formation of Low Symmetry Ordered Phases in Block Polymer Melts

    NASA Astrophysics Data System (ADS)

    Bates, Frank

    Until recently the phase behavior of asymmetric AB diblock copolymers in the melt state was universally accepted as a solved problem: spherical domains packed on a body centered cubic (BCC) lattice. Recent experiments with low molecular weight diblocks have upended this picture, beginning with the discovery of the Frank-Kasper sigma phase in poly(isoprene)- b-poly(lactide) (PI-PLA) followed recently by the identification of a dodecagonal quasicrystal phase (DDQC) as a metastable state that evolves from the supercooled disordered liquid. Self-consistent mean-field theory shows that introducing conformational asymmetry (bA >bB where b is the statistical segment length) opens a window in the phase portrait at fA <<1/2 that supports the formation of various low symmetry ordered phases. However, contrary to the widely accepted mean-field picture, the disordered state near the order-disorder transition (ODT) is highly structured and rapid cooling of this micellar fluid several tens of degrees below the ODT temperature arrests macromolecular chain exchange transitioning the material from an ergodic to non-ergodic state. We have explored the evolution of order following such temperature quenches and during subsequent reheating using synchrotron small-angle X-ray scattering (SAXS) revealing surprising analogies with the behavior of metal alloys. This presentation will associate the formation of ordered low symmetry phases with the concept of sphericity, the tendency for the self-assembled nanoparticles to be spherical in competition with the constraints imposed by periodic and aperiodic packing without voids and subject to the condition of incompressibility. Supported by NSF-DMR-1104368. This work was conducted in collaboration with Kyungtae Kim, Morgan Schulze, Akash Arora, Ronald Lewis, Timothy Gillard, Sangwoo Lee, Kevin Dorfman and Marc Hillmyer.

  9. Pathways through equilibrated states with coexisting phases for gas hydrate formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malolepsza, Edyta; Keyes, Tom

    Under ambient conditions, water freezes to either hexagonal ice or a hexagonal/cubic composite ice. The presence of hydrophobic guest molecules introduces a competing pathway: gas hydrate formation, with the guests in clathrate cages. Here, the pathways of the phase transitions are sought as sequences of states with coexisting phases, using a generalized replica exchange algorithm designed to sample them in equilibrium, avoiding nonequilibrium processes. For a dilute solution of methane in water under 200 atm, initializing the simulation with the full set of replicas leads to methane trapped in hexagonal/cubic ice, while gradually adding replicas with decreasing enthalpy produces themore » initial steps of hydrate growth. Once a small amount of hydrate is formed, water rearranges to form empty cages, eventually transforming the remainder of the system to metastable β ice, a scaffolding for hydrates. It is suggested that configurations with empty cages are reaction intermediates in hydrate formation when more guest molecules are available. Furthermore, free energy profiles show that methane acts as a catalyst reducing the barrier for β ice versus hexagonal/cubic ice formation.« less

  10. Pathways through equilibrated states with coexisting phases for gas hydrate formation

    DOE PAGES

    Malolepsza, Edyta; Keyes, Tom

    2015-12-01

    Under ambient conditions, water freezes to either hexagonal ice or a hexagonal/cubic composite ice. The presence of hydrophobic guest molecules introduces a competing pathway: gas hydrate formation, with the guests in clathrate cages. Here, the pathways of the phase transitions are sought as sequences of states with coexisting phases, using a generalized replica exchange algorithm designed to sample them in equilibrium, avoiding nonequilibrium processes. For a dilute solution of methane in water under 200 atm, initializing the simulation with the full set of replicas leads to methane trapped in hexagonal/cubic ice, while gradually adding replicas with decreasing enthalpy produces themore » initial steps of hydrate growth. Once a small amount of hydrate is formed, water rearranges to form empty cages, eventually transforming the remainder of the system to metastable β ice, a scaffolding for hydrates. It is suggested that configurations with empty cages are reaction intermediates in hydrate formation when more guest molecules are available. Furthermore, free energy profiles show that methane acts as a catalyst reducing the barrier for β ice versus hexagonal/cubic ice formation.« less

  11. Phase formation during the carbothermic reduction of eudialyte concentrate

    NASA Astrophysics Data System (ADS)

    Krasikov, S. A.; Upolovnikova, A. G.; Sitnikova, O. A.; Ponomarenko, A. A.; Agafonov, S. N.; Zhidovinova, S. V.; Maiorov, D. V.

    2013-07-01

    The phase transformations of eudialyte concentrate during the carbothermic reduction in the temperature range 25-2000°C are studied by thermodynamic simulation, differential thermal analysis, and X-ray diffraction. As the temperature increases to 1500°C, the following phases are found to form sequentially: iron and manganese carbides, free iron, niobium carbide, iron silicides, silicon and titanium carbides, and free silicon. Strontium, yttrium, and uranium in the temperature range under study are not reduced and are retained in an oxide form, and insignificant reduction of zirconium oxides with the formation of carbide ZrC is possible only at temperatures above 1500°C.

  12. QCM gas phase detection with ceramic materials--VOCs and oil vapors.

    PubMed

    Latif, Usman; Rohrer, Andreas; Lieberzeit, Peter A; Dickert, Franz L

    2011-06-01

    Titanate sol-gel layers imprinted with carbonic acids were used as sensitive layers on quartz crystal microbalance. These functionalized ceramics enable us detection of volatile organic compounds such as ethanol, n-propanol, n-butanol, n-hexane, n-heptane, n-/iso-octane, and n-decane. Variation of the precursors (i.e., tetrabutoxy titanium, tetrapropoxy titanium, tetraethoxy titanium) allows us to tune the sensitivity of the material by a factor of 7. Sensitivity as a function of precursors leads to selective inclusion of n-butanol vapors down to 1 ppm. The selectivity of materials is optimized to differentiate between isomers, e.g., n- and iso-octane. The results can be rationalized by correlating the sensor effects of hydrocarbons with the Wiener index. A mass-sensitive sensor based on titanate layer was also developed for monitoring emanation of degraded engine oil. Heating the sensor by a meander avoids vapor condensation. Thus, a continuously working oil quality sensor was designed.

  13. Variable-gravity anti-vortex and vapor-ingestion-suppression device

    NASA Technical Reports Server (NTRS)

    Grayson, Gary D. (Inventor)

    2003-01-01

    A liquid propellant management device for placement in a liquid storage tank adjacent an outlet of the storage tank to substantially reduce or eliminate the formation of a dip and vortex in the liquid of the tank, as well as prevent vapor ingestion into the outlet, as the liquid drains out through the outlet. The liquid propellant management device has a first member adapted to suppress the formation of a vortex of a liquid exiting the storage tank. A plate is affixed generally perpendicular to the first member, wherein the plate is adapted to suppress vapor ingestion into the outlet by reducing a dip in a surface level of the liquid leaving the tank. A second member is affixed to the second side of the plate. The second member ensures that the plate is wet with liquid and assists in positioning bubbles away from the outlet.

  14. Imparting passivity to vapor deposited magnesium alloys

    NASA Astrophysics Data System (ADS)

    Wolfe, Ryan C.

    Magnesium has the lowest density of all structural metals. Utilization of low density materials is advantageous from a design standpoint, because lower weight translates into improved performance of engineered products (i.e., notebook computers are more portable, vehicles achieve better gas mileage, and aircraft can carry more payload). Despite their low density and high strength to weight ratio, however, the widespread implementation of magnesium alloys is currently hindered by their relatively poor corrosion resistance. The objective of this research dissertation is to develop a scientific basis for the creation of a corrosion resistant magnesium alloy. The corrosion resistance of magnesium alloys is affected by several interrelated factors. Among these are alloying, microstructure, impurities, galvanic corrosion effects, and service conditions, among others. Alloying and modification of the microstructure are primary approaches to controlling corrosion. Furthermore, nonequilibrium alloying of magnesium via physical vapor deposition allows for the formation of single-phase magnesium alloys with supersaturated concentrations of passivity-enhancing elements. The microstructure and surface morphology is also modifiable during physical vapor deposition through the variation of evaporation power, pressure, temperature, ion bombardment, and the source-to-substrate distance. Aluminum, titanium, yttrium, and zirconium were initially chosen as candidates likely to impart passivity on vapor deposited magnesium alloys. Prior to this research, alloys of this type have never before been produced, much less studied. All of these metals were observed to afford some degree of corrosion resistance to magnesium. Due to the especially promising results from nonequilibrium alloying of magnesium with yttrium and titanium, the ternary magnesium-yttrium-titanium system was investigated in depth. While all of the alloys are lustrous, surface morphology is observed under the scanning

  15. Measuring Vapor Pressure with an Isoteniscope: A Hands-on Introduction to Thermodynamic Concepts

    ERIC Educational Resources Information Center

    Chen, Wenqian; Haslam, Andrew J.; Macey, Andrew; Shah, Umang V.; Brechtelsbauer, Clemens

    2016-01-01

    Characterization of the vapor pressure of a volatile liquid or azeotropic mixture, and its fluid phase diagram, can be achieved with an isoteniscope and an industrial grade digital pressure sensor using the experimental method reported in this study. We describe vapor-pressure measurements of acetone and n-hexane and their azeotrope, and how the…

  16. Solid- and vapor-phase antimicrobial activities of six essential oils: susceptibility of selected foodborne bacterial and fungal strains.

    PubMed

    López, P; Sánchez, C; Batlle, R; Nerín, C

    2005-08-24

    The antimicrobial activity of essential oils (EOs) of cinnamon (Cinnamon zeylanicum), clove (Syzygium aromaticum), basil (Ocimum basillicum), rosemary (Rosmarinus officinalis), dill (Anethum graveolens), and ginger (Zingiber officinalis) was evaluated over a range of concentrations in two types of contact tests (solid and vapor diffusion). The EOs were tested against an array of four Gram-positive bacteria (Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis, and Listeria monocytogenes), four Gram-negative bacteria (Escherichia coli, Yersinia enterocolitica, Salmonella choleraesuis, and Pseudomonas aeruginosa), and three fungi (a yeast, Candida albicans, and two molds, Penicillium islandicum and Aspergillus flavus). The rationale for this work was to test the possibility of creating a protective atmosphere by using natural compounds that could extend the shelf life of packaged foodstuffs while minimizing organoleptic alterations. In the solid diffusion tests, cinnamon and clove gave the strongest (and very similar) inhibition, followed by basil and rosemary, with dill and ginger giving the weakest inhibition. The fungi were the most sensitive microorganisms, followed by the Gram-positive bacterial strains. The Gram-negative strain P. aeruginosa was the least inhibited. The composition of the atmosphere generated by the EOs, and their minimum inhibitory concentrations (MICs), were determined using a disk volatilization method, in which no inhibition from rosemary or basil was observed. Cinnamon and clove, once again, gave similar results for every microorganism. As a general rule, MIC (fungi) < MIC (bacteria) with no clear differences between Gram-positive or -negative strains except for P. aeruginosa, which was not inhibited by any of the EOs in the vapor phase. The atmosphere generated from the EOs was analyzed by means of solid-phase microextraction combined with gas chromatography-ion trap mass spectrometry. Differences among the volatiles in the EOs

  17. Heteroepitaxial growth of 3-5 semiconductor compounds by metal-organic chemical vapor deposition for device applications

    NASA Technical Reports Server (NTRS)

    Collis, Ward J.; Abul-Fadl, Ali

    1988-01-01

    The purpose of this research is to design, install and operate a metal-organic chemical vapor deposition system which is to be used for the epitaxial growth of 3-5 semiconductor binary compounds, and ternary and quaternary alloys. The long-term goal is to utilize this vapor phase deposition in conjunction with existing current controlled liquid phase epitaxy facilities to perform hybrid growth sequences for fabricating integrated optoelectronic devices.

  18. Method for removing metal vapor from gas streams

    DOEpatents

    Ahluwalia, R.K.; Im, K.H.

    1996-04-02

    A process for cleaning an inert gas contaminated with a metallic vapor, such as cadmium, involves withdrawing gas containing the metallic contaminant from a gas atmosphere of high purity argon; passing the gas containing the metallic contaminant to a mass transfer unit having a plurality of hot gas channels separated by a plurality of coolant gas channels; cooling the contaminated gas as it flows upward through the mass transfer unit to cause contaminated gas vapor to condense on the gas channel walls; regenerating the gas channels of the mass transfer unit; and, returning the cleaned gas to the gas atmosphere of high purity argon. The condensing of the contaminant-containing vapor occurs while suppressing contaminant particulate formation, and is promoted by providing a sufficient amount of surface area in the mass transfer unit to cause the vapor to condense and relieve supersaturation buildup such that contaminant particulates are not formed. Condensation of the contaminant is prevented on supply and return lines in which the contaminant containing gas is withdrawn and returned from and to the electrorefiner and mass transfer unit by heating and insulating the supply and return lines. 13 figs.

  19. Method for removing metal vapor from gas streams

    DOEpatents

    Ahluwalia, R. K.; Im, K. H.

    1996-01-01

    A process for cleaning an inert gas contaminated with a metallic vapor, such as cadmium, involves withdrawing gas containing the metallic contaminant from a gas atmosphere of high purity argon; passing the gas containing the metallic contaminant to a mass transfer unit having a plurality of hot gas channels separated by a plurality of coolant gas channels; cooling the contaminated gas as it flows upward through the mass transfer unit to cause contaminated gas vapor to condense on the gas channel walls; regenerating the gas channels of the mass transfer unit; and, returning the cleaned gas to the gas atmosphere of high purity argon. The condensing of the contaminant-containing vapor occurs while suppressing contaminant particulate formation, and is promoted by providing a sufficient amount of surface area in the mass transfer unit to cause the vapor to condense and relieve supersaturation buildup such that contaminant particulates are not formed. Condensation of the contaminant is prevented on supply and return lines in which the contaminant containing gas is withdrawn and returned from and to the electrorefiner and mass transfer unit by heating and insulating the supply and return lines.

  20. Beer Law Constants and Vapor Pressures of HgI2 over HgI2(s,l)

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Zhu, Shen; Ramachandran, N.; Burger, A.

    2002-01-01

    Optical absorption spectra of the vapor phase over HgI2(s,l) were measured at sample temperatures between 349 and 610 K for wavelengths between 200 and 600 nm. The spectra show the samples sublimed congruently into HGI2 without any observed Hg or I2 absorption spectra. The Beer's Law constants for 15 wavelengths between 200 and 440 nm were derived. From these constants the vapor pressure of HgI2, P, was found to be a function of temperature for the liquid and the solid beta-phases: ln P(atm) = -7700/T(K) + 12.462 (liquid phase) and ln P(atm) = -10150/T(K) + 17.026 (beta-phase). The expressions match the enthalpies of vaporization and sublimation of 15.30 and 20.17 kcal/mole respectively, for the liquid and the beta-phase HgI2. The difference in the enthalpies gives an enthalpy of fusion of 4.87 kcal/mole, and the intersection of the two expressions gives a melting point of 537 K.