Sample records for vapor pressure correlations

  1. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization whichmore » have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.« less

  2. Correlation of chemical evaporation rate with vapor pressure.

    PubMed

    Mackay, Donald; van Wesenbeeck, Ian

    2014-09-02

    A new one-parameter correlation is developed for the evaporation rate (ER) of chemicals as a function of molar mass (M) and vapor pressure (P) that is simpler than existing correlations. It applies only to liquid surfaces that are unaffected by the underlying solid substrate as occurs in the standard ASTM evaporation rate test and to quiescent liquid pools. The relationship has a sounder theoretical basis than previous correlations because ER is correctly correlated with PM rather than P alone. The inclusion of M increases the slope of previous log ER versus log P regressions to a value close to 1.0 and yields a simpler one-parameter correlation, namely, ER (μg m(-1) h(-1)) = 1464P (Pa) × M (g mol(-1)). Applications are discussed for the screening level assessment and ranking of chemicals for evaporation rate, such as pesticides, fumigants, and hydrocarbon carrier fluids used in pesticide formulations, liquid consumer products used indoors, and accidental spills of liquids. The mechanistic significance of the single parameter as a mass-transfer coefficient or velocity is discussed.

  3. Estimating vapor pressures of pure liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haraburda, S.S.

    1996-03-01

    Calculating the vapor pressures for pure liquid chemicals is a key step in designing equipment for separation of liquid mixtures. Here is a useful way to develop an equation for predicting vapor pressures over a range of temperatures. The technique uses known vapor pressure points for different temperatures. Although a vapor-pressure equation is being showcased in this article, the basic method has much broader applicability -- in fact, users can apply it to develop equations for any temperature-dependent model. The method can be easily adapted for use in software programs for mathematics evaluation, minimizing the need for any programming. Themore » model used is the Antoine equation, which typically provides a good correlation with experimental or measured data.« less

  4. Estimated vapor pressure for WTP process streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pike, J.; Poirier, M.

    Design assumptions during the vacuum refill phase of the Pulsed Jet Mixers (PJMs) in the Hanford Waste Treatment and Immobilization Plant (WTP) equate the vapor pressure of all process streams to that of water when calculating the temperature at which the vacuum refill is reduced or eliminated. WTP design authority asked the authors to assess this assumption by performing calculations on proposed feed slurries to calculate the vapor pressure as a function of temperature. The vapor pressure was estimated for each WTP waste group. The vapor pressure suppression caused by dissolved solids is much greater than the increase caused bymore » organic components such that the vapor pressure for all of the waste group compositions is less than that of pure water. The vapor pressure for each group at 145°F ranges from 81% to 98% of the vapor pressure of water. If desired, the PJM could be operated at higher temperatures for waste groups with high dissolved solids that suppress vapor pressure. The SO4 group with the highest vapor pressure suppression could be operated up to 153°F before reaching the same vapor pressure of water at 145°F. However, most groups would reach equivalent vapor pressure at 147 to 148°F. If any of these waste streams are diluted, the vapor pressure can exceed the vapor pressure of water at mass dilution ratios greater than 10, but the overall effect is less than 0.5%.« less

  5. Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus

    ERIC Educational Resources Information Center

    Battino, Rubin; Dolson, David A.; Hall, Michael A.; Letcher, Trevor M.

    2007-01-01

    A simple and inexpensive method to determine the enthalpy of vaporization of liquids by measuring vapor pressure as a function of temperature is described. The vapor pressures measured with the stopcock cell were higher than the literature values and those measured with the sidearm rubber septum cell were both higher and lower than literature…

  6. Vapor pressures of new fluorocarbons

    NASA Astrophysics Data System (ADS)

    Kubota, H.; Yamashita, T.; Tanaka, Y.; Makita, T.

    1989-05-01

    The vapor pressures of four fluorocarbons have been measured at the following temperature ranges: R123 (2,2-dichloro-l,l,l-trifluoroethane), 273 457 K; R123a (1,2-dichloro-1,1,2-trifluoroethane), 303 458 K; R134a (1,1,1,2-tetrafluoroethane), 253 373 K; and R132b (l,2-dichloro-l,l-difluoroethane), 273 398 K. Determinations of the vapor pressure were carried out by a constant-volume apparatus with an uncertainty of less than 1.0%. The vapor pressures of R123 and R123a are very similar to those of R11 over the whole experimental temperature range, but the vapor pressures of R134a and R132b differ somewhat from those of R12 and R113, respectively, as the temperature increases. The numerical vapor pressure data can be fitted by an empirical equation using the Chebyshev polynomial with a mean deviation of less than 0.3 %.

  7. Vapor pressures of new fluorocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubota, H.; Yamashita, T.; Tanaka, Y.

    1989-05-01

    The vapor pressures of four fluorocarbons have been measured at the following temperature ranges: R123 (2,2-dichloro-1,1,1-trifluoroethane), 273-457 K; R123a (1,2-dichloro-1,1,2-trifluoroethane), 303-458 K; R134a (1,1,1,2-tetrafluoroethane), 253-373 K; and R132b (1,2-dichloro-1,1-difluoroethane), 273-398 K. Determinations of the vapor pressure were carried out by a constant-volume apparatus with an uncertainty of less than 1.0%. The vapor pressures of R123 and R123a are very similar to those of R11 over the whole experimental temperature range, but the vapor pressures of R134a and R132b differ somewhat from those of R12 and R113, respectively, as the temperature increases. The numerical vapor pressure data can be fitted bymore » an empirical equation using the Chebyshev polynomial with a mean deviation of less than 0.3%.« less

  8. Vapor Pressure Data Analysis and Statistics

    DTIC Science & Technology

    2016-12-01

    sublimation for solids), volatility, and entropy of volatilization. Vapor pressure can be reported several different ways, including tables of experimental ...account the variation in heat of vaporization with temperature, and accurately describes data over broad experimental ranges, thereby enabling...pressure is incorrect at temperatures far below the experimental temperature limit; the calculated vapor pressure becomes undefined when the

  9. 40 CFR 796.1950 - Vapor pressure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gases until the measured vapor pressure is constant, a process called “degassing.” Impurities more... simulations. Vapor pressure is computed on the assumption that the total pressure of a mixture of gases is...

  10. Determination of vapor pressures for nonpolar and semipolar organic compounds from gas chromatographic retention data

    USGS Publications Warehouse

    Hinckley, D.A.; Bidleman, T.F.; Foreman, W.T.; Tuschall, J.R.

    1990-01-01

    Vapor pressures for nonpolar and moderately polar organochlorine, pyrethroid, and organophosphate insecticides, phthalate esters, and organophosphate flame retardants were determined by capillary gas chromatography (GC). Organochlorines and polycyclic aromatic hydrocarbons with known liquid-phase vapor pressures (P??L) (standard compounds) were chromatographed along with two reference compounds n-C20 (elcosane) and p,p???-DDT on a 1.0-m-long poly(dimethylsiloxane) bonded-phase (BP-1) column to determine their vapor pressures by GC (P??GC). A plot of log P??L vs log P??GC for standard compounds was made to establish a correlation between measured and literature values, and this correlation was then used to compute P??L of test compounds from their measured P??GC. P??L of seven major components of technical chlordane, endosulfan and its metabolites, ??-hexachlorocyclohexane, mirex, and two components of technical toxaphene were determined by GC. This method provides vapor pressures within a factor of 2 of average literature values for nonpolar compounds, similar to reported interlaboratory precisions of vapor pressure determinations. GC tends to overestimate vapor pressures of moderately polar compounds. ?? 1990 American Chemical Society.

  11. Vapor Pressure Measurements in a Closed System

    ERIC Educational Resources Information Center

    Iannone, Mark

    2006-01-01

    An alternative method that uses a simple apparatus to measure vapor pressure versus temperature in a closed system, in which the total pressure is the vapor pressure of the liquid sample, is described. The use of this apparatus gives students a more direct picture of vapor pressure than the isoteniscope method and results have generally been quite…

  12. Vapor pressure measured with inflatable plastic bag

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Deflated plastic bag in a vacuum chamber measures initial low vapor pressures of materials. The bag captures the test sample vapors and visual observation of the vapor-inflated bag under increasing external pressures yields pertinent data.

  13. Vapor Pressure of GB

    DTIC Science & Technology

    2009-04-01

    equation. The Podoll and Parish low temperature measured vapor pressure data (-35 and -25 °C) were included in our analysis . Penski summarized the...existing literature data for GB in his 1994 data review and analysis .6 He did not include the 0 °C Podoll and Parish measured vapor pressure data point...35.9 Pa) in his analysis because the error associated with this point was Ŗ to 10 times greater than the other values". He did not include the -10 °C

  14. Compressed liquid densities, saturated liquid densities, and vapor pressures of 1,1-difluoroethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Defibaugh, D.R.; Morrison, G.

    1996-05-01

    The compressed liquid densities and vapor pressures of 1,1-difluoroethane (HFC-152a) have been measured, correlated, and compared with other data. The liquid densities were measured with a combined standard uncertainty of {+-}0.05% using a vibrating tube densimeter over a temperature range of 243 K to 371 K and at pressures from near the saturated vapor pressure to 6,500 kPa; thus the data extend nearly to the critical point ({Tc} = 386.41 K and P{sub c} = 4514.7 kPa). The vapor pressures were measured with a combined standard uncertainty of {+-}0.02% using a stainless steel ebulliometer in the temperature range from 280more » K to 335 K. Saturated liquid densities were calculated by extrapolating the compressed liquid isotherms to the saturation pressure.« less

  15. Vapor pressures of a homologous series of polyethylene glycols as a reference data set for validating vapor pressure measurement techniques.

    NASA Astrophysics Data System (ADS)

    Krieger, Ulrich; Marcolli, Claudia; Siegrist, Franziska

    2015-04-01

    The production of secondary organic aerosol (SOA) by gas-to-particle partitioning is generally represented by an equilibrium partitioning model. A key physical parameter which governs gas-particle partitioning is the pure component vapor pressure, which is difficult to measure for low- and semivolatile compounds. For typical atmospheric compounds like e.g. citric acid or tartaric acid, vapor pressures have been reported in the literature which differ by up to six orders of magnitude [Huisman et al., 2013]. Here, we report vapor pressures of a homologous series of polyethylene glycols (triethylene glycol to octaethylene glycol) determined by measuring the evaporation rate of single, levitated aerosol particles in an electrodynamic balance. We propose to use those as a reference data set for validating different vapor pressure measurement techniques. With each addition of a (O-CH2-CH2)-group the vapor pressure is lowered by about one order of magnitude which makes it easy to detect the lower limit of vapor pressures accessible with a particular technique down to a pressure of 10-8 Pa at room temperature. Reference: Huisman, A. J., Krieger, U. K., Zuend, A., Marcolli, C., and Peter, T., Atmos. Chem. Phys., 13, 6647-6662, 2013.

  16. Vapor pressure of germanium precursors

    NASA Astrophysics Data System (ADS)

    Pangrác, J.; Fulem, M.; Hulicius, E.; Melichar, K.; Šimeček, T.; Růžička, K.; Morávek, P.; Růžička, V.; Rushworth, S. A.

    2008-11-01

    The vapor pressure of two germanium precursors tetrakis(methoxy)germanium (Ge(OCH 3) 4, CASRN 992-91-6) and tetrakis(ethoxy)germanium (Ge(OC 2H 5) 4, CASRN 14165-55-0) was determined using a static method in the temperature range 259-303 K. The experimental vapor pressure data were fit with the Antoine equation. The mass spectra before and after degassing by vacuum distillation at low temperature are also reported and discussed.

  17. New Micro-Method for Prediction of Vapor Pressure of Energetic Materials

    DTIC Science & Technology

    2014-07-01

    temperature is recorded as the extrapolated onset temperature (11–12). • Gas chromatography (GC) headspace analysis requires the establishment of an...J. L.; Shinde, K.; Moran, J. Determination of the Vapor Density of Triacetone Triperoxide (TATP) Using a Gas Chromatography Headspace Technique...Propellants Explos. Pyrotech. 2005, 30 (2), 127–30. 14. Chickos, J. S. Sublimation Vapor Pressures as Evaluated by Correlation- Gas Chromatography . J

  18. 46 CFR 30.10-59 - Reid vapor pressure-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-59 Reid vapor pressure—TB/ALL. The term Reid vapor pressure means the vapor pressure of a liquid at a... 46 Shipping 1 2013-10-01 2013-10-01 false Reid vapor pressure-TB/ALL. 30.10-59 Section 30.10-59....01-3), Method of Test for Vapor Pressure of Petroleum Products. This Standard is available at...

  19. 46 CFR 30.10-59 - Reid vapor pressure-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-59 Reid vapor pressure—TB/ALL. The term Reid vapor pressure means the vapor pressure of a liquid at a... 46 Shipping 1 2012-10-01 2012-10-01 false Reid vapor pressure-TB/ALL. 30.10-59 Section 30.10-59....01-3), Method of Test for Vapor Pressure of Petroleum Products. This Standard is available at...

  20. 46 CFR 30.10-59 - Reid vapor pressure-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-59 Reid vapor pressure—TB/ALL. The term Reid vapor pressure means the vapor pressure of a liquid at a... 46 Shipping 1 2014-10-01 2014-10-01 false Reid vapor pressure-TB/ALL. 30.10-59 Section 30.10-59....01-3), Method of Test for Vapor Pressure of Petroleum Products. This Standard is available at...

  1. PVT properties and vapor-pressures of ordinary water substance in the critical region

    NASA Astrophysics Data System (ADS)

    Morita, T.; Sato, H.; Uematsu, M.; Watanabe, K.

    1989-03-01

    For the purpose of revealing the rather complicated thermodynamic surface of ordinary water substance in the critical region, a series of measurements of the PVT properties and the vapor-pressures of this technically important fluid have been performed by means of a constant-volume method. Ninety-three PVT measurements along 14 isotherms between 638.15 K and 652.15 K have been completed covering pressures from 18.5 to 39.2 MPa and densities from 122 to 610kg/m 3. Twenty-six vapor-pressure measurements have also been performed at temperatures between 620.15 K and 647.05 K in the near vicinity of the critical point. Our measurements are compared with other available experimental data as well as with several equations of state. We also propose a new vapor-pressure correlation from the triple point to the critical point.

  2. Vapor Pressure of Methyl Salicylate and n-Hexadecane

    DTIC Science & Technology

    2014-01-01

    VAPOR PRESSURE OF METHYL SALICYLATE AND N-HEXADECANE ECBC-TR-1184 David E. Tevault Leonard C. Buettner...REPORT TYPE Final 3. DATES COVERED (From - To) Mar 2000-Dec 2001 4. TITLE AND SUBTITLE Vapor Pressure of Methyl Salicylate and n-Hexadecane 5a...ABSTRACT Vapor pressure data are reported for O-hydroxybenzoic acid, methyl ester, more commonly known as methyl salicylate (MeS), and n-hexadecane in

  3. Fuel Vapor Pressures and the Relation of Vapor Pressure to the Preparation of Fuel for Combustion in Fuel Injection Engines

    NASA Technical Reports Server (NTRS)

    Joachim, William F; Rothrock, A M

    1930-01-01

    This investigation on the vapor pressure of fuels was conducted in connection with the general research on combustion in fuel injection engines. The purpose of the investigation was to study the effects of high temperatures such as exist during the first stages of injection on the vapor pressures of several fuels and certain fuel mixtures, and the relation of these vapor pressures to the preparation of the fuel for combustion in high-speed fuel injection engines.

  4. Vapor pressures of acetylene at low temperatures

    NASA Technical Reports Server (NTRS)

    Masterson, C. M.; Allen, John E., Jr.; Kraus, G. F.; Khanna, R. K.

    1990-01-01

    The atmospheres of many of the outer planets and their satellites contain a large number of hydrocarbon species. In particular, acetylene (C2H2) has been identified at Jupiter, Saturn and its satellite Titan, Uranus and Neptune. In the lower atmospheres of these planets, where colder temperatures prevail, the condensation and/or freezing of acetylene is probable. In order to obtain accurate models of the acetylene in these atmospheres, it is necessary to have a complete understanding of its vapor pressures at low temperatures. Vapor pressures at low temperatures for acetylene are being determined. The vapor pressures are measured with two different techniques in order to cover a wide range of temperatures and pressures. In the first, the acetylene is placed in a sample tube which is immersed in a low temperature solvent/liquid nitrogen slush bath whose temperature is measured with a thermocouple. The vapor pressure is then measured directly with a capacitance manometer. For lower pressures, a second technique which was called the thin-film infrared method (TFIR) was developed. It involves measuring the disappearance rate of a thin film of acetylene at a particular temperature. The spectra are then analyzed using previously determined extinction coefficient values, to determine the disappearance rate R (where R = delta n/delta t, the number of molecules that disappear per unit time). This can be related to the vapor pressure directly. This technique facilitates measurement of the lower temperatures and pressures. Both techniques have been calibrated using CO2, and have shown good agreement with the existing literature data.

  5. Effects of Chamber Pressure and Partial Pressure of Water Vapor on Secondary Drying in Lyophilization.

    PubMed

    Searles, James A; Aravapalli, Sridhar; Hodge, Cody

    2017-10-01

    Secondary drying is the final step of lyophilization before stoppering, during which water is desorbed from the product to yield the final moisture content. We studied how chamber pressure and partial pressure of water vapor during this step affected the time course of water content of aqueous solutions of polyvinylpyrrolidone (PVP) in glass vials. The total chamber pressure had no effect when the partial pressure of water vapor was very low. However, when the vapor phase contained a substantial fraction of water vapor, the PVP moisture content was much higher. We carried out dynamic vapor sorption experiments (DVS) to demonstrate that the higher PVP moisture content was a straightforward result of the higher water vapor content in the lyophilizer. The results highlight that the partial pressure of water vapor is extremely important during secondary drying in lyophilization, and that lower chamber pressure set points for secondary drying may sometimes be justified as a strategy for ensuring low partial pressure of water vapor, especially for lyophilizers that do not inject dry gas to control pressure. These findings have direct application for process transfers/scale ups from freeze-dryers that do not inject dry gas for pressure control to those that do, and vice versa.

  6. The optimum intermediate pressure of two-stages vapor compression refrigeration cycle for Air-Conditioning unit

    NASA Astrophysics Data System (ADS)

    Ambarita, H.; Sihombing, H. V.

    2018-03-01

    Vapor compression cycle is mainly employed as a refrigeration cycle in the Air-Conditioning (AC) unit. In order to save energy, the Coefficient of Performance (COP) of the need to be improved. One of the potential solutions is to modify the system into multi-stages vapor compression cycle. The suitable intermediate pressure between the high and low pressures is one of the design issues. The present work deals with the investigation of an optimum intermediate pressure of two-stages vapor compression refrigeration cycle. Typical vapor compression cycle that is used in AC unit is taken into consideration. The used refrigerants are R134a. The governing equations have been developed for the systems. An inhouse program has been developed to solve the problem. COP, mass flow rate of the refrigerant and compressor power as a function of intermediate pressure are plotted. It was shown that there exists an optimum intermediate pressure for maximum COP. For refrigerant R134a, the proposed correlations need to be revised.

  7. The Breathing Snowpack: Pressure-induced Vapor Flux of Temperate Snow

    NASA Astrophysics Data System (ADS)

    Drake, S. A.; Selker, J. S.; Higgins, C. W.

    2017-12-01

    As surface air pressure increases, hydrostatic compression of the air column forces atmospheric air into snowpack pore space. Likewise, as surface air pressure decreases, the atmospheric air column decompresses and saturated air exits the snow. Alternating influx and efflux of air can be thought of as a "breathing" process that produces an upward vapor flux when air above the snow is not saturated. The impact of pressure-induced vapor exchange is assumed to be small and is thus ignored in model parameterizations of surface processes over snow. Rationale for disregarding this process is that large amplitude pressure changes as caused by synoptic weather patterns are too infrequent to credibly impact vapor flux. The amplitude of high frequency pressure changes is assumed to be too small to affect vapor flux, however, the basis for this hypothesis relies on pressure measurements collected over an agricultural field (rather than snow). Resolution of the impact of pressure changes on vapor flux over seasonal cycles depends on an accurate representation of the magnitude of pressure changes caused by changes in wind as a function of the frequency of pressure changes. High precision in situ pressure measurements in a temperature snowpack allowed us to compute the spectra of pressure changes vs. wind forcing. Using a simplified model for vapor exchange we then computed the frequency of pressure changes that maximize vapor exchange. We examine and evaluate the seasonal impact of pressure-induced vapor exchange relative to other snow ablation processes.

  8. 46 CFR 154.445 - Design vapor pressure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Design vapor pressure. 154.445 Section 154.445 Shipping... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type B § 154.445 Design vapor pressure. If the surfaces of an independent tank type B are...

  9. 46 CFR 154.438 - Design vapor pressure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Design vapor pressure. 154.438 Section 154.438 Shipping... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type A § 154.438 Design vapor pressure. (a) If the surface of an independent tank type A are...

  10. 46 CFR 154.436 - Design vapor pressure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Design vapor pressure. 154.436 Section 154.436 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Semi-Membrane Tanks § 154.436 Design vapor pressure....

  11. 46 CFR 154.419 - Design vapor pressure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Design vapor pressure. 154.419 Section 154.419 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Integral Tanks § 154.419 Design vapor pressure. The...

  12. 46 CFR 154.419 - Design vapor pressure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Design vapor pressure. 154.419 Section 154.419 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Integral Tanks § 154.419 Design vapor pressure. The...

  13. 46 CFR 154.426 - Design vapor pressure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Design vapor pressure. 154.426 Section 154.426 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Membrane Tanks § 154.426 Design vapor pressure. The...

  14. 46 CFR 154.419 - Design vapor pressure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Design vapor pressure. 154.419 Section 154.419 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Integral Tanks § 154.419 Design vapor pressure. The...

  15. 46 CFR 154.426 - Design vapor pressure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Design vapor pressure. 154.426 Section 154.426 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Membrane Tanks § 154.426 Design vapor pressure. The...

  16. 46 CFR 154.426 - Design vapor pressure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Design vapor pressure. 154.426 Section 154.426 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Membrane Tanks § 154.426 Design vapor pressure. The...

  17. 46 CFR 154.436 - Design vapor pressure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Design vapor pressure. 154.436 Section 154.436 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Semi-Membrane Tanks § 154.436 Design vapor pressure....

  18. 46 CFR 154.436 - Design vapor pressure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Design vapor pressure. 154.436 Section 154.436 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Semi-Membrane Tanks § 154.436 Design vapor pressure....

  19. Controlling the vapor pressure of a mercury lamp

    DOEpatents

    Grossman, Mark W.; George, William A.

    1988-01-01

    The invention described herein discloses a method and apparatus for controlling the Hg vapor pressure within a lamp. This is done by establishing and controlling two temperature zones within the lamp. One zone is colder than the other zone. The first zone is called the cold spot. By controlling the temperature of the cold spot, the Hg vapor pressure within the lamp is controlled. Likewise, by controlling the Hg vapor pressure of the lamp, the intensity and linewidth of the radiation emitted from the lamp is controlled.

  20. 46 CFR 154.436 - Design vapor pressure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Design vapor pressure. 154.436 Section 154.436 Shipping... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Semi-Membrane Tanks § 154.436 Design vapor pressure. The Po of a semi-membrane tank must not exceed 24.5 kPa...

  1. 46 CFR 154.419 - Design vapor pressure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Design vapor pressure. 154.419 Section 154.419 Shipping... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Integral Tanks § 154.419 Design vapor pressure. The Po of an integral tank must not exceed 24.5 kPa gauge (3.55...

  2. 46 CFR 154.426 - Design vapor pressure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Design vapor pressure. 154.426 Section 154.426 Shipping... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Membrane Tanks § 154.426 Design vapor pressure. The Po of a membrane tank must not exceed 24.5 kPa gauge (3.55...

  3. Controlling the vapor pressure of a mercury lamp

    DOEpatents

    Grossman, M.W.; George, W.A.

    1988-05-24

    The invention described herein discloses a method and apparatus for controlling the Hg vapor pressure within a lamp. This is done by establishing and controlling two temperature zones within the lamp. One zone is colder than the other zone. The first zone is called the cold spot. By controlling the temperature of the cold spot, the Hg vapor pressure within the lamp is controlled. Likewise, by controlling the Hg vapor pressure of the lamp, the intensity and linewidth of the radiation emitted from the lamp is controlled. 2 figs.

  4. Gasoline Reid Vapor Pressure

    EPA Pesticide Factsheets

    EPA regulates the vapor pressure of gasoline sold at retail stations during the summer ozone season to reduce evaporative emissions from gasoline that contribute to ground-level ozone and diminish the effects of ozone-related health problems.

  5. Solar radiation and water vapor pressure to forecast chickenpox epidemics.

    PubMed

    Hervás, D; Hervás-Masip, J; Nicolau, A; Reina, J; Hervás, J A

    2015-03-01

    The clear seasonality of varicella infections in temperate regions suggests the influence of meteorologic conditions. However, there are very few data on this association. The aim of this study was to determine the seasonal pattern of varicella infections on the Mediterranean island of Mallorca (Spain), and its association with meteorologic conditions and schooling. Data on the number of cases of varicella were obtained from the Network of Epidemiologic Surveillance, which is composed of primary care physicians who notify varicella cases on a compulsory basis. From 1995 to 2012, varicella cases were correlated to temperature, humidity, rainfall, water vapor pressure, atmospheric pressure, wind speed, and solar radiation using regression and time-series models. The influence of schooling was also analyzed. A total of 68,379 cases of varicella were notified during the study period. Cases occurred all year round, with a peak incidence in June. Varicella cases increased with the decrease in water vapor pressure and/or the increase of solar radiation, 3 and 4 weeks prior to reporting, respectively. An inverse association was also observed between varicella cases and school holidays. Using these variables, the best fitting autoregressive moving average with exogenous variables (ARMAX) model could predict 95 % of varicella cases. In conclusion, varicella in our region had a clear seasonality, which was mainly determined by solar radiation and water vapor pressure.

  6. Apparatus of the Vapor-pressure Measurements for Natural Refrigerants

    NASA Astrophysics Data System (ADS)

    Higuchi, Satoru; Higashi, Yukihiro

    An apparatus for measuring the vapor-pressures was newly designed and constructed in order to make the basic thermodynamic properties for environmentally acceptable refrigerants clear. The temperature of sample fluid was measured with 100Ω platinum resistance thermometer calibrated against ITS-90 using a 25Ω standard platinum resistance thermometer. With respect to the pressure measurement, two kinds of presure transducer were adopted. One is a diaphragm semi-conductor strain pressure transducer with the uncertainty of ±0.09%. This pressure transducer was calibrated against quartz crystal pressure transducer with the uncertainty of ±0.01% after every series of experiments. Another is a quartz crystal pressure transducer with the uncertainty of ±0.01%. A quartz crystal pressure transducer was calibrated against the dead weight pressure gauge and barometer. The vapor-pressures for R-32, R-134a, R-290 (propane), R-600a (iso-butane) and n-pentane were measured in the temperature range between273.15 and 323.15K. As the results of vapor-pressure measurements, the reliability of the experimental apparatus as well as the reproducibility of the experimental data were confirmed. In addition, coefficients of Antoine vapor pressure equation were determined from the experimental data. Normal boiling points for environmentally acceptable refrigerants were also determined with high accuracy.

  7. 40 CFR 796.1950 - Vapor pressure.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to a wide variety of chemical types and structures, EPA has sponsored research and development work... Chemistry, 3:664-670 (1969). (3) Spencer, W.F. and Cliath, M.M. “Vapor Density and Apparent Vapor Pressure of Lindane,” Journal of Agricultural and Food Chemistry, 18:529-530 (1970). [50 FR 39252, Sept. 27...

  8. 40 CFR 796.1950 - Vapor pressure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to a wide variety of chemical types and structures, EPA has sponsored research and development work... Chemistry, 3:664-670 (1969). (3) Spencer, W.F. and Cliath, M.M. “Vapor Density and Apparent Vapor Pressure of Lindane,” Journal of Agricultural and Food Chemistry, 18:529-530 (1970). [50 FR 39252, Sept. 27...

  9. 40 CFR 796.1950 - Vapor pressure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to a wide variety of chemical types and structures, EPA has sponsored research and development work... Chemistry, 3:664-670 (1969). (3) Spencer, W.F. and Cliath, M.M. “Vapor Density and Apparent Vapor Pressure of Lindane,” Journal of Agricultural and Food Chemistry, 18:529-530 (1970). [50 FR 39252, Sept. 27...

  10. 40 CFR 796.1950 - Vapor pressure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to a wide variety of chemical types and structures, EPA has sponsored research and development work... Chemistry, 3:664-670 (1969). (3) Spencer, W.F. and Cliath, M.M. “Vapor Density and Apparent Vapor Pressure of Lindane,” Journal of Agricultural and Food Chemistry, 18:529-530 (1970). [50 FR 39252, Sept. 27...

  11. Relationship between the evaporation rate and vapor pressure of moderately and highly volatile chemicals.

    PubMed

    van Wesenbeeck, Ian; Driver, Jeffrey; Ross, John

    2008-04-01

    Volatilization of chemicals can be an important form of dissipation in the environment. Rates of evaporative losses from plant and soil surfaces are useful for estimating the potential for food-related dietary residues and operator and bystander exposure, and can be used as source functions for screening models that predict off-site movement of volatile materials. A regression of evaporation on vapor pressure from three datasets containing 82 pesticidal active ingredients and co-formulants, ranging in vapor pressure from 0.0001 to >30,000 Pa was developed for this purpose with a regression correlation coefficient of 0.98.

  12. Thermogravimetric study of vapor pressure of TATP synthesized without recrystallization.

    PubMed

    Mbah, Jonathan; Knott, Debra; Steward, Scott

    2014-11-01

    This study aims at characterizing the vapor pressure signatures generated by triacetone triperoxide (TATP) that was synthesized without recrystallization by thermogravimmetric analysis (TGA) for exploitation by standoff detection technologies of explosive devices. The thermal behavior of the nonrecrystallized sample was compared with reported values. Any phase change, melting point and decomposition identification were studied by differential scanning calorimeter. Vapor pressures were estimated by the Langmuir method of evaporation from an open surface in a vacuum. Vapor pressures of TATP at different temperatures were calculated using the linear logarithmic relationship obtained from benzoic acid reference standard. Sublimation of TATP was found to follow apparent zero-order kinetics and sublimes at steady rates at 298 K and above. While the enthalpy of sublimation found, 71.7 kJ mol(-1), is in agreement with reported values the vapor pressures deviated significantly. The differences in the vapor pressures behavior are attributable to the synthesis pathway chosen in this study. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Vapor Pressure of Antimony Triiodide

    DTIC Science & Technology

    2017-12-07

    function of inverse temperature ........................................................................................... 4 Fig. 3 Effective ∆Hvapor of...pressure on inverse -temperature with the slope of (∆Hvapor/R). One method of experimentally determining ∆Hvapor, therefore, is to measure the...equilibrium vapor pressure of any material as a function of inverse -temperature where the slope of the data can be used to directly determine ∆Hvapor

  14. Subatmospheric vapor pressures evaluated from internal-energy measurements

    NASA Astrophysics Data System (ADS)

    Duarte-Garza, H. A.; Magee, J. W.

    1997-01-01

    Vapor pressures were evaluated from measured internal-energy changes in the vapor+liquid two-phase region, Δ U (2). The method employed a thermodynamic relationship between the derivative quantity (ϖ U (2)/ϖ V) T and the vapor pressure ( p σ) and its temperature derivative (ϖ p/ϖ T)σ. This method was applied at temperatures between the triple point and the normal boiling point of three substances: 1,1,1,2-tetrafluoroethane (R134a), pentafluoroethane (R125), and difluoromethane (R32). Agreement with experimentally measured vapor pressures near the normal boiling point (101.325 kPa) was within the experimental uncertainty of approximately ±0.04 kPa (±0.04%). The method was applied to R134a to test the thermodynamic consistency of a published p-p-T equation of state with an equation for p σ for this substance. It was also applied to evaluate published p σ data which are in disagreement by more than their claimed uncertainty.

  15. A Simple Experiment for Determining Vapor Pressure and Enthalpy of Vaporization of Water.

    ERIC Educational Resources Information Center

    Levinson, Gerald S.

    1982-01-01

    Laboratory procedures, calculations, and sample results are described for a freshman chemistry experiment in which the Clausius-Clapeyron equation is introduced as a means of describing the variation of vapor pressure with temperature and for determining enthalpy of vaporization. (Author/SK)

  16. The self-similar turbulent flow of low-pressure water vapor

    NASA Astrophysics Data System (ADS)

    Konyukhov, V. K.; Stepanov, E. V.; Borisov, S. K.

    2018-05-01

    We studied turbulent flows of water vapor in a pipe connecting two closed vessels of equal volume. The vessel that served as a source of water vapor was filled with adsorbent in the form of corundum ceramic balls. These ceramic balls were used to obtain specific conditions to lower the vapor pressure in the source vessel that had been observed earlier. A second vessel, which served as a receiver, was empty of either air or vapor before each vapor sampling. The rate of the pressure increase in the receiver vessel was measured in a series of six samplings performed with high precision. The pressure reduction rate in the source vessel was found to be three times lower than the pressure growth rate in the receiver vessel. We found that the pressure growth rates in all of the adjacent pairs of samples could be arranged in a combination that appeared to be identical for all pairs, and this revealed the existence of a rather interesting and peculiar self-similarity law for the sampling processes under consideration.

  17. A technique to depress desflurane vapor pressure.

    PubMed

    Brosnan, Robert J; Pypendop, Bruno H

    2006-09-01

    To determine whether the vapor pressure of desflurane could be decreased by using a solvent to reduce the anesthetic molar fraction in a solution (Raoult's Law). We hypothesized that such an anesthetic mixture could produce anesthesia using a nonprecision vaporizer instead of an agent-specific, electronically controlled, temperature and pressure compensated vaporizer currently required for desflurane administration. One healthy adult female dog. Propylene glycol was used as a solvent for desflurane, and the physical characteristics of this mixture were evaluated at various molar concentrations and temperatures. Using a circle system with a breathing bag attached at the patient end and a mechanical ventilator to simulate respiration, an in-circuit, nonprecision vaporizer containing 40% desflurane and 60% propylene glycol achieved an 11.5% +/- 1.0% circuit desflurane concentration with a 5.2 +/- 0.4 (0 = off, 10 = maximum) vaporizer setting. This experiment was repeated with a dog attached to the breathing circuit under spontaneous ventilation with a fresh gas flow of 0.5 L minute(-1). Anesthesia was maintained for over 2 hours at a mean vaporizer setting of 6.2 +/- 0.4, yielding mean inspired and end-tidal desflurane concentrations of 8.7% +/- 0.5% and 7.9% +/- 0.7%, respectively. Rather than alter physical properties of vaporizers to suit a particular anesthetic agent, this study demonstrates that it is also possible to alter physical properties of anesthetic agents to suit a particular vaporizer. However, propylene glycol may not prove an ideal solvent for desflurane because of its instability in solution and substantial-positive deviation from Raoult's Law.

  18. Prospective Chemistry Teachers' Mental Models of Vapor Pressure

    ERIC Educational Resources Information Center

    Tumay, Halil

    2014-01-01

    The main purpose of this study was to identify prospective chemistry teachers' mental models of vapor pressure. The study involved 85 students in the Chemistry Teacher Training Department of a state university in Turkey. Participants' mental models of vapor pressure were explored using a concept test that involved qualitative comparison tasks.…

  19. 46 CFR 154.445 - Design vapor pressure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Design vapor pressure. 154.445 Section 154.445 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type B § 154.445 Design vapor...

  20. 46 CFR 154.445 - Design vapor pressure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Design vapor pressure. 154.445 Section 154.445 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type B § 154.445 Design vapor...

  1. 46 CFR 154.438 - Design vapor pressure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Design vapor pressure. 154.438 Section 154.438 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type A § 154.438 Design vapor...

  2. 46 CFR 154.438 - Design vapor pressure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Design vapor pressure. 154.438 Section 154.438 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type A § 154.438 Design vapor...

  3. 46 CFR 154.438 - Design vapor pressure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Design vapor pressure. 154.438 Section 154.438 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type A § 154.438 Design vapor...

  4. 46 CFR 154.445 - Design vapor pressure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Design vapor pressure. 154.445 Section 154.445 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type B § 154.445 Design vapor...

  5. Hydrogen bonding Part 53. Correlation of differential scanning calorimetric data with IR and dissociation vapor pressure studies of transitions of hexamethonium chloride and bromide dihydrates and hexamethonium bromide monohydrate

    NASA Astrophysics Data System (ADS)

    Snider, Barbara L.; Harmon, Kenneth M.

    1994-03-01

    Differential scanning calorimetry of hexamethonium chloride dihydrate shows an endothermic transition of 2.70 kcal mol -1 at 36.81°C. This correlates well with the temperatures observed by IR spectra (36°C) and equilibrium dissociation vapor pressure studies (37°C) for the transition between Type I planar cluster and Type II extended linear HOH⋯Cl - hydrogen bonding, and with the value of 2.77 kcal mol -1 for this transition derived by Hess' law treatment of dissociation vapor pressure data. Differential scanning calorimetry of hexamethonium bromide shows a rapid endothermic transition of 2.38 kcal mol -1 at 35.15°C and a very slow endothermic transition of about 12-13 kcal mol -1 centered near 50°C. This latter endotherm corresponds to the transition between Type I and Type II HOH⋯Br - hydrogen bonding observed by IR and vapor pressure studies at 49°C. The nature of the 35.15°C endotherm is not known. Hexamethonium bromide also shows a third endotherm at 142.91°C, which presumably results from melting of hydrate in the sealed DSC cell. Combined analysis of differential scanning calorimetry and dissociation vapor pressure data predicts a value of about -13 kcal mol -1 for an exothermic disproportionation at 52°C of two hexamethonium bromide monohydrate to Type II dihydrate and anhydrous bromide.

  6. Using Dalton's Law of Partial Pressures to Determine the Vapor Pressure of a Volatile Liquid

    ERIC Educational Resources Information Center

    Hilgeman, Fred R.; Bertrand, Gary; Wilson, Brent

    2007-01-01

    This experiment, designed for a general chemistry laboratory, illustrates the use of Dalton's law of partial pressures to determine the vapor pressure of a volatile liquid. A predetermined volume of air is injected into a calibrated tube filled with a liquid whose vapor pressure is to be measured. The volume of the liquid displaced is greater than…

  7. Water-vapor pressure in nests of the San Miguel Island Song Sparrow

    USGS Publications Warehouse

    Kern, Michael D.; Sogge, Mark K.; van Riper, Charles

    1990-01-01

    The water-vapor pressure (PN) in nests of the San Miguel Island race of Song Sparrows (Melospiza melodia micronyx) averaged 16 torr, but varied considerable between nests and within individual nests during successive days of incubation. Large daily fluctuations occurred throughout the incubation period and did not parallel concurrent changes in ambien vapor pressure (P1). Daily rates of water loss from nest eggs (MH2O) averaged 28 mg day-1, but also varied considerable within and between nests and did not correlate with changes in P1. MH2O increased 6-33% after the third day of incubation. PN was significantly higher and MH2O significantly lower in nests located in sheltered gullies than in nests from a windswept slope. These data suggest that Song Sparrows do not regulate PN to achieve hatching success.

  8. Determination of vapor pressure of low-volatility compounds using a method to obtain saturated vapor with coated capillary columns.

    PubMed

    Rittfeldt, L

    2001-06-01

    The vapor pressures of O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX), O-isobutyl S-2-diethylaminoethyl methylphosphonothiolate (RVX), and 2,4-dinitrotoluene (2,4-DNT) were determined with the gas saturation method in temperatures ranging from -12 to 103 degrees C. The saturated vapor was generated using a fused-silica column coated with the compound. This column was placed in a gas chromatograph, and the vapor pressure was determined directly from the detector signal or by sampling on Tenax tubes that were subsequently analyzed. From the linear relationships obtained by plotting log P vs 1/T, the enthalpies of vaporization (deltaHvap) and the vapor pressures at selected temperatures were determined. The vapor pressure of VX at 25 degrees C was 0.110 Pa and the deltaHvap 77.9 kJ x mol(-1). The corresponding results for RVX were 0.082 Pa and 76.6 kJ x mol(-1). The vapor pressure of 2,4-DNT at 72 degrees C (melting point) was determined to 6.0 Pa, and the enthalpies of the solid and the liquid state were 94.2 and 75.3 kJ x mol(-1), respectively. Using capillary columns to generate saturated vapors has three major advantages: short equilibrium time, low consumption of sample, and safe handling of toxic compounds.

  9. Condensation heat transfer correlation for water-ethanol vapor mixture flowing through a plate heat exchanger

    NASA Astrophysics Data System (ADS)

    Zhou, Weiqing; Hu, Shenhua; Ma, Xiangrong; Zhou, Feng

    2018-04-01

    Condensation heat transfer coefficient (HTC) as a function of outlet vapor quality was investigated using water-ethanol vapor mixture of different ethanol vapor concentrations (0%, 1%, 2%, 5%, 10%, 20%) under three different system pressures (31 kPa, 47 kPa, 83 kPa). A heat transfer coefficient was developed by applying multiple linear regression method to experimental data, taking into account the dimensionless numbers which represents the Marangoni condensation effects, such as Re, Pr, Ja, Ma and Sh. The developed correlation can predict the condensation performance within a deviation range from -22% to 32%. Taking PHE's characteristic into consideration and bringing in Ma number and Sh number, a new correlation was developed, which showed a much more accurate prediction, within a deviation from -3.2% to 7.9%.

  10. A semiempirical correlation between enthalpy of vaporization and saturation concentration for organic aerosol.

    PubMed

    Epstein, Scott A; Riipinen, Ilona; Donahue, Neil M

    2010-01-15

    To model the temperature-induced partitioning of semivolatile organics in laboratory experiments or atmospheric models, one must know the appropriate heats of vaporization. Current treatments typically assume a constant value of the heat of vaporization or else use specific values from a small set of surrogate compounds. With published experimental vapor-pressure data from over 800 organic compounds, we have developed a semiempirical correlation between the saturation concentration (C*, microg m(-3)) and the heat of vaporization (deltaH(VAP), kJ mol(-1)) for organics in the volatility basis set. Near room temperature, deltaH(VAP) = -11 log(10)C(300)(*) + 129. Knowledge of the relationship between C* and deltaH(VAP) constrains a free parameter in thermodenuder data analysis. A thermodenuder model using our deltaH(VAP) values agrees well with thermal behavior observed in laboratory experiments.

  11. Vapor pressure and vapor fractionation of silicate melts of tektite composition

    USGS Publications Warehouse

    Walter, Louis S.; Carron, M.K.

    1964-01-01

    The total vapor pressure of Philippine tektite melts of approximately 70 per cent silica has been determined at temperatures ranging from 1500 to 2100??C. This pressure is 190 ?? 40 mm Hg at 1500??C, 450 ?? 50 mm at 1800??C and 850 ?? 70 mm at 2100?? C. Determinations were made by visually observing the temperature at which bubbles began to form at a constant low ambient pressure. By varying the ambient pressure, a boiling point curve was constructed. This curve differs from the equilibrium vapor pressure curve due to surface tension effects. This difference was evaluated by determining the equilibrium bubble size in the melt and calculating the pressure due to surface tension, assuming the latter to be 380 dyn/cm. The relative volatility from tektite melts of the oxides of Na, K, Fe, Al and Si has been determined as a function of temperature, total pressure arid roughly, of oxygen fugacity. The volatility of SiO2 is decreased and that of Na2O and K2O is increased in an oxygen-poor environment. Preliminary results indicate that volatilization at 2100??C under atmospheric pressure caused little or no change in the percentage Na2O and K2O. The ratio Fe3 Fe2 of the tektite is increased in ambient air at a pressure of 9 ?? 10-4 mm Hg (= 106.5 atm O2, partial pressure) at 2000??C. This suggests that tektites were formed either at lower oxygen pressures or that they are a product of incomplete oxidation of parent material with a still lower ferricferrous ratio. ?? 1964.

  12. Effect of superficial velocity on vaporization pressure drop with propane in horizontal circular tube

    NASA Astrophysics Data System (ADS)

    Novianto, S.; Pamitran, A. S.; Nasruddin, Alhamid, M. I.

    2016-06-01

    Due to its friendly effect on the environment, natural refrigerants could be the best alternative refrigerant to replace conventional refrigerants. The present study was devoted to the effect of superficial velocity on vaporization pressure drop with propane in a horizontal circular tube with an inner diameter of 7.6 mm. The experiments were conditioned with 4 to 10 °C for saturation temperature, 9 to 20 kW/m2 for heat flux, and 250 to 380 kg/m2s for mass flux. It is shown here that increased heat flux may result in increasing vapor superficial velocity, and then increasing pressure drop. The present experimental results were evaluated with some existing correlations of pressure drop. The best prediction was evaluated by Lockhart-Martinelli (1949) with MARD 25.7%. In order to observe the experimental flow pattern, the present results were also mapped on the Wang flow pattern map.

  13. Method and apparatus to measure vapor pressure in a flow system

    DOEpatents

    Grossman, Mark W.; Biblarz, Oscar

    1991-01-01

    The present invention is directed to a method for determining, by a condensation method, the vapor pressure of a material with a known vapor pressure versus temperature characteristic, in a flow system particularly in a mercury isotope enrichment process.

  14. Estimating enthalpy of vaporization from vapor pressure using Trouton's rule.

    PubMed

    MacLeod, Matthew; Scheringer, Martin; Hungerbühler, Konrad

    2007-04-15

    The enthalpy of vaporization of liquids and subcooled liquids at 298 K (delta H(VAP)) is an important parameter in environmental fate assessments that consider spatial and temporal variability in environmental conditions. It has been shown that delta H(VAP)P for non-hydrogen-bonding substances can be estimated from vapor pressure at 298 K (P(L)) using an empirically derived linear relationship. Here, we demonstrate that the relationship between delta H(VAP)and PL is consistent with Trouton's rule and the ClausiusClapeyron equation under the assumption that delta H(VAP) is linearly dependent on temperature between 298 K and the boiling point temperature. Our interpretation based on Trouton's rule substantiates the empirical relationship between delta H(VAP) degree and P(L) degrees for non-hydrogen-bonding chemicals with subcooled liquid vapor pressures ranging over 15 orders of magnitude. We apply the relationship between delta H(VAP) degrees and P(L) degrees to evaluate data reported in literature reviews for several important classes of semivolatile environmental contaminants, including polycyclic aromatic hydrocarbons, chlorobenzenes, polychlorinated biphenyls and polychlorinated dibenzo-dioxins and -furans and illustrate the temperature dependence of results from a multimedia model presented as a partitioning map. The uncertainty associated with estimating delta H(VAP)degrees from P(L) degrees using this relationship is acceptable for most environmental fate modeling of non-hydrogen-bonding semivolatile organic chemicals.

  15. Method and apparatus to measure vapor pressure in a flow system

    DOEpatents

    Grossman, M.W.; Biblarz, O.

    1991-10-15

    The present invention is directed to a method for determining, by a condensation method, the vapor pressure of a material with a known vapor pressure versus temperature characteristic, in a flow system particularly in a mercury isotope enrichment process. 2 figures.

  16. 46 CFR 153.372 - Gauges and vapor return for cargo vapor pressures exceeding 100 kPa (approx. 14.7 psia).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Gauges and vapor return for cargo vapor pressures exceeding 100 kPa (approx. 14.7 psia). 153.372 Section 153.372 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... return for cargo vapor pressures exceeding 100 kPa (approx. 14.7 psia). When table 1 references this...

  17. 40 CFR 265.1054 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gas/vapor service. 265.1054 Section 265.1054 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... TREATMENT, STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 265.1054 Standards: Pressure relief devices in gas/vapor service. (a) Except during pressure releases, each pressure relief...

  18. Water-vapor pressure control in a volume

    NASA Technical Reports Server (NTRS)

    Scialdone, J. J.

    1978-01-01

    The variation with time of the partial pressure of water in a volume that has openings to the outside environment and includes vapor sources was evaluated as a function of the purging flow and its vapor content. Experimental tests to estimate the diffusion of ambient humidity through openings and to validate calculated results were included. The purging flows required to produce and maintain a certain humidity in shipping containers, storage rooms, and clean rooms can be estimated with the relationship developed here. These purging flows are necessary to prevent the contamination, degradation, and other effects of water vapor on the systems inside these volumes.

  19. The Oxidation Rate of SiC in High Pressure Water Vapor Environments

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Robinson, R. Craig

    1999-01-01

    CVD SiC and sintered alpha-SiC samples were exposed at 1316 C in a high pressure burner rig at total pressures of 5.7, 15, and 25 atm for times up to 100h. Variations in sample emittance for the first nine hours of exposure were used to determine the thickness of the silica scale as a function of time. After accounting for volatility of silica in water vapor, the parabolic rate constants for Sic in water vapor pressures of 0.7, 1.8 and 3.1 atm were determined. The dependence of the parabolic rate constant on the water vapor pressure yielded a power law exponent of one. Silica growth on Sic is therefore limited by transport of molecular water vapor through the silica scale.

  20. Prediction of the vapor pressure and vaporization enthalpy of 1-n-alkyl-3-methylimidazolium-bis-(trifluoromethanesulfonyl) amide ionic liquids.

    PubMed

    Diedenhofen, Michael; Klamt, Andreas; Marsh, Kenneth; Schäfer, Ansgar

    2007-09-07

    The vapor pressures and vaporization enthalpies of a series of 1-n-alkyl-3-methylimidazolium-bis-(trifluoromethanesulfonyl) amide ionic liquids have been predicted with two different approaches using the COSMO-RS method and quantum chemical gas phase calculations. While the calculated enthalpies are in good agreement with the experimental data, COSMO-RS seems to underestimate the vapor pressures by roughly 0.5-4 log units dependent on the IL and approach used.

  1. A reference data set for validating vapor pressure measurement techniques: homologous series of polyethylene glycols

    NASA Astrophysics Data System (ADS)

    Krieger, Ulrich K.; Siegrist, Franziska; Marcolli, Claudia; Emanuelsson, Eva U.; Gøbel, Freya M.; Bilde, Merete; Marsh, Aleksandra; Reid, Jonathan P.; Huisman, Andrew J.; Riipinen, Ilona; Hyttinen, Noora; Myllys, Nanna; Kurtén, Theo; Bannan, Thomas; Percival, Carl J.; Topping, David

    2018-01-01

    To predict atmospheric partitioning of organic compounds between gas and aerosol particle phase based on explicit models for gas phase chemistry, saturation vapor pressures of the compounds need to be estimated. Estimation methods based on functional group contributions require training sets of compounds with well-established saturation vapor pressures. However, vapor pressures of semivolatile and low-volatility organic molecules at atmospheric temperatures reported in the literature often differ by several orders of magnitude between measurement techniques. These discrepancies exceed the stated uncertainty of each technique which is generally reported to be smaller than a factor of 2. At present, there is no general reference technique for measuring saturation vapor pressures of atmospherically relevant compounds with low vapor pressures at atmospheric temperatures. To address this problem, we measured vapor pressures with different techniques over a wide temperature range for intercomparison and to establish a reliable training set. We determined saturation vapor pressures for the homologous series of polyethylene glycols (H - (O - CH2 - CH2)n - OH) for n = 3 to n = 8 ranging in vapor pressure at 298 K from 10-7 to 5×10-2 Pa and compare them with quantum chemistry calculations. Such a homologous series provides a reference set that covers several orders of magnitude in saturation vapor pressure, allowing a critical assessment of the lower limits of detection of vapor pressures for the different techniques as well as permitting the identification of potential sources of systematic error. Also, internal consistency within the series allows outlying data to be rejected more easily. Most of the measured vapor pressures agreed within the stated uncertainty range. Deviations mostly occurred for vapor pressure values approaching the lower detection limit of a technique. The good agreement between the measurement techniques (some of which are sensitive to the mass

  2. Evaporation rate and vapor pressure of selected polymeric lubricating oils.

    NASA Technical Reports Server (NTRS)

    Gardos, M. N.

    1973-01-01

    A recently developed ultrahigh-vacuum quartz spring mass sorption microbalance has been utilized to measure the evaporation rates of several low-volatility polymeric lubricating oils at various temperatures. The evaporation rates are used to calculate the vapor pressures by the Langmuir equation. A method is presented to accurately estimate extended temperature range evaporation rate and vapor pressure data for polymeric oils, incorporating appropriate corrections for the increases in molecular weight and the change in volatility of the progressively evaporating polymer fractions. The logarithms of the calculated data appear to follow linear relationships within the test temperature ranges, when plotted versus 1000/T. These functions and the observed effusion characteristics of the fluids on progressive volatilization are useful in estimating evaporation rate and vapor pressure changes on evaporative depletion.

  3. An Indirect Method for Vapor Pressure and Phase Change Enthalpy Determination by Thermogravimetry

    NASA Astrophysics Data System (ADS)

    Giani, Samuele; Riesen, Rudolf; Schawe, Jürgen E. K.

    2018-07-01

    Vapor pressure is a fundamental property of a pure substance. This property is the pressure of a compound's vapor in thermodynamic equilibrium with its condensed phase (solid or liquid). When phase equilibrium condition is met, phase coexistence of a pure substance involves a continuum interplay of vaporization or sublimation to gas and condensation back to their liquid or solid form, respectively. Thermogravimetric analysis (TGA) techniques are based on mass loss determination and are well suited for the study of such phenomena. In this work, it is shown that TGA method using a reference substance is a suitable technique for vapor pressure determination. This method is easy and fast because it involves a series of isothermal segments. In contrast to original Knudsen's approach, where the use of high vacuum is mandatory, adopting the proposed method a given experimental setup is calibrated under ambient pressure conditions. The theoretical framework of this method is based on a generalization of Langmuir equation of free evaporation: The real strength of the proposed method is the ability to determine the vapor pressure independently of the molecular mass of the vapor. A demonstration of this method has been performed using the Clausius-Clapeyron equation of state to derive the working equation. This algorithm, however, is adaptive and admits the use of other equations of state. The results of a series of experiments with organic molecules indicate that the average difference of the measured and the literature vapor pressure amounts to about 5 %. Vapor pressure determined in this study spans from few mPa up to several kPa. Once the p versus T diagram is obtained, phase transition enthalpy can additionally be calculated from the data.

  4. Pluto's atmosphere - Models based on refraction, inversion, and vapor-pressure equilibrium

    NASA Technical Reports Server (NTRS)

    Eshleman, Von R.

    1989-01-01

    Viking spacecraft radio-occultation measurements indicate that, irrespective of substantial differences, the polar ice cap regions on Mars have inversions similar to those of Pluto, and may also share vapor pressure equilibrium characteristics at the surface. This temperature-inversion phenomenon occurs in a near-surface boundary layer; surface pressure-temperature may correspond to the vapor-pressure equilibrium with CH4 ice, or the temperature may be slightly higher to match the value derived from IRAS data.

  5. 40 CFR 264.1054 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gas/vapor service. 264.1054 Section 264.1054 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE... relief devices in gas/vapor service. (a) Except during pressure releases, each pressure relief device in...

  6. A survey and new measurements of ice vapor pressure at temperatures between 170 and 250K

    NASA Technical Reports Server (NTRS)

    Marti, James; Mauersberger, Konrad

    1993-01-01

    New measurements of ice vapor pressures at temperatures between 170 and 250 K are presented and published vapor pressure data are summarized. An empirical vapor pressure equation was derived and allows prediction of vapor pressures between 170 k and the triple point of water with an accuracy of approximately 2 percent. Predictions obtained agree, within experimental uncertainty, with the most reliable equation derived from thermodynamic principles.

  7. Preconcentrator with high volume chiller for high vapor pressure particle detection

    DOEpatents

    Linker, Kevin L

    2013-10-22

    Apparatus and method for collecting particles of both high and low vapor pressure target materials entrained in a large volume sample gas stream. Large volume active cooling provides a cold air supply which is mixed with the sample gas stream to reduce the vapor pressure of the particles. In embodiments, a chiller cools air from ambient conditions to 0-15.degree. C. with the volumetric flow rate of the cold air supply being at least equal to the volumetric flow rate of the sample gas stream. In further embodiments an adsorption media is heated in at least two stages, a first of which is below a threshold temperature at which decomposition products of the high vapor pressure particle are generated.

  8. Measurements and Correlations of cis-1,3,3,3-Tetrafluoroprop-1-ene (R1234ze(Z)) Saturation Pressure

    NASA Astrophysics Data System (ADS)

    Fedele, Laura; Di Nicola, Giovanni; Brown, J. Steven; Bobbo, Sergio; Zilio, Claudio

    2014-01-01

    cis-1,3,3,3-Tetrafluoroprop-1-ene (R1234ze(Z)) is being investigated as a working fluid possessing a low global warming potential (GWP) for high-temperature heat pumping applications, organic Rankine cycles, and air-conditioning and refrigeration applications, and as a potential solvent, propellant, and foam blowing agent. Its GWP is less than one. The open literature contains a total of 79 vapor-pressure data from three sources and the critical state properties from a single source. The current paper provides 64 vapor-pressure data from two different laboratories over the temperature range from 238.13 K to 372.61 K. These data are regressed using Wagner and extended Antoine vapor-pressure correlations and then compared to the existing open literature data and correlations. The normal-boiling-point temperature and acentric factor for R1234ze(Z) are estimated to be 282.73 K and 0.3257, respectively.

  9. VAPOR PRESSURE ISOTOPE EFFECTS IN THE MEASUREMENT OF ENVIRONMENTAL TRITIUM SAMPLES.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhne, W.

    2012-12-03

    Standard procedures for the measurement of tritium in water samples often require distillation of an appropriate sample aliquot. This distillation process may result in a fractionation of tritiated water and regular light water due to the vapor pressure isotope effect, introducing either a bias or an additional contribution to the total tritium measurement uncertainty. The magnitude of the vapor pressure isotope effect is characterized as functions of the amount of water distilled from the sample aliquot and the heat settings for the distillation process. The tritium concentration in the distillate is higher than the tritium concentration in the sample earlymore » in the distillation process, it then sharply decreases due to the vapor pressure isotope effect and becomes lower than the tritium concentration in the sample, until the high tritium concentration retained in the boiling flask is evaporated at the end of the process. At that time, the tritium concentration in the distillate again overestimates the sample tritium concentration. The vapor pressure isotope effect is more pronounced the slower the evaporation and distillation process is conducted; a lower heat setting during the evaporation of the sample results in a larger bias in the tritium measurement. The experimental setup used and the fact that the current study allowed for an investigation of the relative change in vapor pressure isotope effect in the course of the distillation process distinguish it from and extend previously published measurements. The separation factor as a quantitative measure of the vapor pressure isotope effect is found to assume values of 1.034 {+-} 0.033, 1.052 {+-} 0.025, and 1.066 {+-} 0.037, depending on the vigor of the boiling process during distillation of the sample. A lower heat setting in the experimental setup, and therefore a less vigorous boiling process, results in a larger value for the separation factor. For a tritium measurement in water samples, this implies

  10. Measuring Vapor Pressure with an Isoteniscope: A Hands-on Introduction to Thermodynamic Concepts

    ERIC Educational Resources Information Center

    Chen, Wenqian; Haslam, Andrew J.; Macey, Andrew; Shah, Umang V.; Brechtelsbauer, Clemens

    2016-01-01

    Characterization of the vapor pressure of a volatile liquid or azeotropic mixture, and its fluid phase diagram, can be achieved with an isoteniscope and an industrial grade digital pressure sensor using the experimental method reported in this study. We describe vapor-pressure measurements of acetone and n-hexane and their azeotrope, and how the…

  11. Controlling Vapor Pressure In Hanging-Drop Crystallization

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Smith, Robbie

    1988-01-01

    Rate of evaporation adjusted to produce larger crystals. Device helps to control vapor pressure of water and other solvents in vicinity of hanging drop of solution containing dissolved enzyme protein. Well of porous frit (sintered glass) holds solution in proximity to drop of solution containing protein or enzyme. Vapor from solution in frit controls evaporation of solvent from drop to control precipitation of protein or enzyme. With device, rate of nucleation limited to decrease number and increase size (and perhaps quality) of crystals - large crystals of higher quality needed for x-ray diffraction studies of macromolecules.

  12. Temperature dependences of saturated vapor pressure and the enthalpy of vaporization of n-pentyl esters of dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Portnova, S. V.; Krasnykh, E. L.; Levanova, S. V.

    2016-05-01

    The saturated vapor pressures and enthalpies of vaporization of n-pentyl esters of linear C2-C6 dicarboxylic acids are determined by the transpiration method in the temperature range of 309.2-361.2 K. The dependences of enthalpies of vaporization on the number of carbon atoms in the molecule and on the retention indices have been determined. The predictive capabilities of the existing calculation schemes for estimation of enthalpy of vaporization of the studied compounds have been analyzed.

  13. Low temperature measurement of the vapor pressures of planetary molecules

    NASA Technical Reports Server (NTRS)

    Kraus, George F.

    1989-01-01

    Interpretation of planetary observations and proper modeling of planetary atmospheres are critically upon accurate laboratory data for the chemical and physical properties of the constitutes of the atmospheres. It is important that these data are taken over the appropriate range of parameters such as temperature, pressure, and composition. Availability of accurate, laboratory data for vapor pressures and equilibrium constants of condensed species at low temperatures is essential for photochemical and cloud models of the atmospheres of the outer planets. In the absence of such data, modelers have no choice but to assume values based on an educated guess. In those cases where higher temperature data are available, a standard procedure is to extrapolate these points to the lower temperatures using the Clausius-Clapeyron equation. Last summer the vapor pressures of acetylene (C2H2) hydrogen cyanide (HCN), and cyanoacetylene (HC3N) was measured using two different methods. At the higher temperatures 1 torr and 10 torr capacitance manometers were used. To measure very low pressures, a technique was used which is based on the infrared absorption of thin film (TFIR). This summer the vapor pressure of acetylene was measured the TFIR method. The vapor pressure of hydrogen sulfide (H2S) was measured using capacitance manometers. Results for H2O agree with literature data over the common range of temperature. At the lower temperatures the data lie slightly below the values predicted by extrapolation of the Clausius-Clapeyron equation. Thin film infrared (TFIR) data for acetylene lie significantly below the values predicted by extrapolation. It is hoped to bridge the gap between the low end of the CM data and the upper end of the TFIR data in the future using a new spinning rotor gauge.

  14. Investigation of local evaporation flux and vapor-phase pressure at an evaporative droplet interface.

    PubMed

    Duan, Fei; Ward, C A

    2009-07-07

    In the steady-state experiments of water droplet evaporation, when the throat was heating at a stainless steel conical funnel, the interfacial liquid temperature was found to increase parabolically from the center line to the rim of the funnel with the global vapor-phase pressure at around 600 Pa. The energy conservation analysis at the interface indicates that the energy required for evaporation is maintained by thermal conduction to the interface from the liquid and vapor phases, thermocapillary convection at interface, and the viscous dissipation globally and locally. The local evaporation flux increases from the center line to the periphery as a result of multiple effects of energy transport at the interface. The local vapor-phase pressure predicted from statistical rate theory (SRT) is also found to increase monotonically toward the interface edge from the center line. However, the average value of the local vapor-phase pressures is in agreement with the measured global vapor-phase pressure within the measured error bar.

  15. Contributions to the Data on Theoretical Metallurgy. 3. The Free Energies of Vaporization and Vapor Pressures of Inorganic Substances

    DTIC Science & Technology

    1935-01-01

    109ead-------------59 Vapor-pressure table ----------- 110 Lithium -------------------- 63 Bibliography ----------------- 115 Acceson orj NYTIS CRAMI ti...852-926*) have measured the vapor pressure of lithium in the liquid state, and Ruff and Jobannsen (32~4) have stated that the boili point is above...the results of th~e three investigations on ii u{id lithium do not agree, some arbitrar choice must be made. V this case, the data of Hartmann and

  16. On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena.

    PubMed

    Nath, Saurabh; Boreyko, Jonathan B

    2016-08-23

    Interdroplet vapor pressure gradients are the driving mechanism for several phase-change phenomena such as condensation dry zones, interdroplet ice bridging, dry zones around ice, and frost halos. Despite the fundamental nature of the underlying pressure gradients, the majority of studies on these emerging phenomena have been primarily empirical. Using classical nucleation theory and Becker-Döring embryo formation kinetics, here we calculate the pressure field for all possible modes of condensation and desublimation in order to gain fundamental insight into how pressure gradients govern the behavior of dry zones, condensation frosting, and frost halos. Our findings reveal that in a variety of phase-change systems the thermodynamically favorable mode of nucleation can switch between condensation and desublimation depending upon the temperature and wettability of the surface. The calculated pressure field is used to model the length of a dry zone around liquid or ice droplets over a broad parameter space. The long-standing question of whether the vapor pressure at the interface of growing frost is saturated or supersaturated is resolved by considering the kinetics of interdroplet ice bridging. Finally, on the basis of theoretical calculations, we propose that there exists a new mode of frost halo that is yet to be experimentally observed; a bimodal phase map is developed, demonstrating its dependence on the temperature and wettability of the underlying substrate. We hope that the model and predictions contained herein will assist future efforts to exploit localized vapor pressure gradients for the design of spatially controlled or antifrosting phase-change systems.

  17. 46 CFR 39.20-13 - High and low vapor pressure protection for tankships-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false High and low vapor pressure protection for tankships-T/ALL. 39.20-13 Section 39.20-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS Design and Equipment § 39.20-13 High and low vapor pressure protection for...

  18. 46 CFR 39.20-13 - High and low vapor pressure protection for tankships-T/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false High and low vapor pressure protection for tankships-T/ALL. 39.20-13 Section 39.20-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS Design and Equipment § 39.20-13 High and low vapor pressure protection for...

  19. 46 CFR 39.20-13 - High and low vapor pressure protection for tankships-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false High and low vapor pressure protection for tankships-T/ALL. 39.20-13 Section 39.20-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS Design and Equipment § 39.20-13 High and low vapor pressure protection for...

  20. Vapor Pressures of Anesthetic Agents at Temperatures below Zero Degrees Celsius and a Novel Anesthetic Delivery Device

    PubMed Central

    Schenning, Katie J.; Casson, Henry; Click, Sarah V.; Brambrink, Lucas; Chatkupt, Thomas T.; Alkayed, Nabil J.; Hutchens, Michael P.

    2016-01-01

    At room temperature, the vapor pressures of desflurane, isoflurane, and sevoflurane are well above the clinically useful range. We hypothesized that therapeutic concentrations of these agents could be achieved at temperatures below zero, but the vapor pressure-temperature relationship is unknown below zero. Secondarily, we hypothesized that this relationship could be exploited to deliver therapeutic-range concentrations of anesthetic vapor. We therefore set out to determine the low temperature-vapor pressure relationships of each anesthetic agent thereby identifying the saturated vapor concentration of each agent at any temperature below zero. To test our hypothesis, we measured the saturated vapor concentration at 1 atmosphere of pressure for temperatures between -60°C and 0°C thus developing an empiric relationship for each agent. There was consistency in repeated experiments for all three agents. To test the empiric data we constructed a digitally-controlled thermoelectric anesthetic vaporizer, characterized the device, and used it to deliver anesthetic vapor to laboratory mice. We report, for the first time, the temperature-vapor pressure relationship at temperatures below 0°C for desflurane, isoflurane, and sevoflurane as well as the TMAC of these agents: the temperature at which the vapor pressure is equal to the minimum alveolar concentration. We describe the construction and limited validation of an anesthetic vaporizer prototype based on this principle. We conclude that clinically relevant concentrations of volatile anesthetics may be achieved at low temperatures. PMID:27632346

  1. Vapor Pressures of Anesthetic Agents at Temperatures Below 0°C and a Novel Anesthetic Delivery Device.

    PubMed

    Schenning, Katie J; Casson, Henry; Click, Sarah V; Brambrink, Lucas; Chatkupt, Thomas T; Alkayed, Nabil J; Hutchens, Michael P

    2017-02-01

    At room temperature, the vapor pressures of desflurane, isoflurane, and sevoflurane are well above the clinically useful range. We hypothesized that therapeutic concentrations of these agents could be achieved at temperatures below 0°C, but the vapor pressure-temperature relationship is unknown below 0. Second, we hypothesized that this relationship could be exploited to deliver therapeutic-range concentrations of anesthetic vapor. We therefore set out to determine the low temperature-vapor pressure relationships of each anesthetic agent, thereby identifying the saturated vapor concentration of each agent at any temperature below 0°C. To test our hypothesis, we measured the saturated vapor concentration at 1 atm of pressure for temperatures between -60 and 0°C, thus developing an empiric relationship for each agent. There was consistency in repeated experiments for all 3 agents. To test the empiric data, we constructed a digitally controlled thermoelectric anesthetic vaporizer, characterized the device, and used it to deliver anesthetic vapor to laboratory mice. We report, for the first time, the temperature-vapor pressure relationship at temperatures below 0°C for desflurane, isoflurane, and sevoflurane as well as the TMAC of these agents: the temperature at which the vapor pressure is equal to the minimum alveolar concentration. We describe the construction and limited validation of an anesthetic vaporizer prototype on the basis of this principle. We conclude that clinically relevant concentrations of volatile anesthetics may be achieved at low temperatures.

  2. 40 CFR 63.7944 - How do I determine the maximum HAP vapor pressure of my remediation material?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... vapor pressure of my remediation material? 63.7944 Section 63.7944 Protection of Environment... Pollutants: Site Remediation Performance Tests § 63.7944 How do I determine the maximum HAP vapor pressure of my remediation material? (a) You must determine the maximum HAP vapor pressure of your remediation...

  3. Assessment of the accuracy of pharmacy students' compounded solutions using vapor pressure osmometry.

    PubMed

    Kolling, William M; McPherson, Timothy B

    2013-04-12

    OBJECTIVE. To assess the effectiveness of using a vapor pressure osmometer to measure the accuracy of pharmacy students' compounding skills. DESIGN. Students calculated the theoretical osmotic pressure (mmol/kg) of a solution as a pre-laboratory exercise, compared their calculations with actual values, and then attempted to determine the cause of any errors found. ASSESSMENT. After the introduction of the vapor pressure osmometer, the first-time pass rate for solution compounding has varied from 85% to 100%. Approximately 85% of students surveyed reported that the instrument was valuable as a teaching tool because it objectively assessed their work and provided immediate formative assessment. CONCLUSIONS. This simple technique of measuring compounding accuracy using a vapor pressure osmometer allowed students to see the importance of quality control and assessment in practice for both pharmacists and technicians.

  4. Silicates Do Nucleate in Oxygen-rich Circumstellar Outflows: New Vapor Pressure Data for SiO

    NASA Astrophysics Data System (ADS)

    Nuth, Joseph A., III; Ferguson, Frank T.

    2006-10-01

    We have measured the vapor pressure of solid SiO as a function of temperature over the range from 1325 up to 1785 K in vacuo using a modified Thermo-Cahn thermogravimetric system. Although an extrapolation of the current vapor pressure data to 2200 K is close to that predicted from the work of Schick under reducing conditions, the vapor pressures measured at successively lower temperatures diverge significantly from such predictions and are several orders of magnitude lower than predicted at 1200 K. This new vapor pressure data has been inserted into a simple model for the gas expanding from a late-stage star. Using the new vapor pressure curve makes a significant difference in the temperature and stellar radius at which SiO gas becomes supersaturated, although SiO still becomes supersaturated at temperatures that are too low to be consistent with observations. We have therefore also explored the effects of vibrational disequilibrium (as explored by Nuth & Donn) of SiO in the expanding shell on the conditions under which nucleation occurs. These calculations are much more interesting in that supersaturation now occurs at much higher kinetic temperatures. We note, however, that both vibrational disequilibrium and the new vapor pressure curve are required to induce SiO supersaturation in stellar outflows at temperatures above 1000 K.

  5. Vitrification of polymer solutions as a function of solvent quality, analyzed via vapor pressures

    NASA Astrophysics Data System (ADS)

    Bercea, Maria; Wolf, Bernhard A.

    2006-05-01

    Vapor pressures (headspace sampling in combination with gas chromatography) and glass transition temperatures [differential scanning calorimetry (DSC)] have been measured for solutions of polystyrene (PS) in either toluene (TL) (10-70°C) or cyclohexane (CH) (32-60°C) from moderately concentrated solutions up to the pure polymer. As long as the mixtures are liquid, the vapor pressure of TL (good solvent) is considerably lower than that of CH (theta solvent) under other identical conditions. These differences vanish upon the vitrification of the solutions. For TL the isothermal liquid-solid transition induced by an increase of polymer concentration takes place within a finite composition interval at constant vapor pressure; with CH this phenomenon is either absent or too insignificant to be detected. For PS solutions in TL the DSC traces look as usual, whereas these curves may become bimodal for solutions in CH. The implications of the vitrification of the polymer solutions for the determination of Flory-Huggins interaction parameters from vapor pressure data are discussed. A comparison of the results for TL/PS with recently published data on the same system demonstrates that the experimental method employed for the determination of vapor pressures plays an important role at high polymer concentrations and low temperatures.

  6. Assessment of the Accuracy of Pharmacy Students’ Compounded Solutions Using Vapor Pressure Osmometry

    PubMed Central

    McPherson, Timothy B.

    2013-01-01

    Objective. To assess the effectiveness of using a vapor pressure osmometer to measure the accuracy of pharmacy students’ compounding skills. Design. Students calculated the theoretical osmotic pressure (mmol/kg) of a solution as a pre-laboratory exercise, compared their calculations with actual values, and then attempted to determine the cause of any errors found. Assessment. After the introduction of the vapor pressure osmometer, the first-time pass rate for solution compounding has varied from 85% to 100%. Approximately 85% of students surveyed reported that the instrument was valuable as a teaching tool because it objectively assessed their work and provided immediate formative assessment. Conclusions. This simple technique of measuring compounding accuracy using a vapor pressure osmometer allowed students to see the importance of quality control and assessment in practice for both pharmacists and technicians. PMID:23610476

  7. Determination of vaporization enthalpies of polychlorinated biphenyls by correlation gas chromatography.

    PubMed

    Puri, S; Chickos, J S; Welsh, W J

    2001-04-01

    The vaporization enthalpies of 16 polychlorinated biphenyls have been determined by correlation gas chromatography. This study was prompted by the realization that the vaporization enthalpy of the standard compounds used in previous studies, octadecane and eicosane, were values measured at 340 and 362 K, respectively, rather than at 298 K. Adjustment to 298 K amounts to a 7-8 kJ/mol increment in the values. With the inclusion of this adjustment, vaporization enthalpies evaluated by correlation gas chromatography are in good agreement with the values determined previously in the literature. The present results are based on the vaporization enthalpies of several standards whose values are well established in the literature. The standards include a variety of n-alkanes and various chlorinated hydrocarbons. The vaporization enthalpies of PCBs increased with the number of chlorine atoms and were found to be larger for meta- and para-substituted polychlorinated biphenyls.

  8. The Observed Properties of Liquid Helium at the Saturated Vapor Pressure

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell J.; Barenghi, Carlo F.

    1998-11-01

    The equilibrium and transport properties of liquid 4He are deduced from experimental observations at the saturated vapor pressure. In each case, the bibliography lists all known measurements. Quantities reported here include density, thermal expansion coefficient, dielectric constant, superfluid and normal fluid densities, first, second, third, and fourth sound velocities, specific heat, enthalpy, entropy, surface tension, ion mobilities, mutual friction, viscosity and kinematic viscosity, dispersion curve, structure factor, thermal conductivity, latent heat, saturated vapor pressure, thermal diffusivity and Prandtl number of helium I, and displacement length and vortex core parameter in helium II.

  9. Transient-pressure analysis in geothermal steam reservoirs with an immobile vaporizing liquid phase

    USGS Publications Warehouse

    Moench, A.F.; Atkinson, P.G.

    1978-01-01

    A finite-difference model for the radial horizontal flow of steam through a porous medium is used to evaluate transient-pressure behavior in the presence of an immobile vaporizing or condensing liquid phase. Graphs of pressure drawdown and buildup in terms of dimensionless pressure and time are obtained for a well discharging steam at a constant mass flow rate for a specified time. The assumptions are made that the steam is in local thermal equilibrium with the reservoir rocks, that temperature changes are due only to phase change, and that effects of vapor-pressure lowering are negligible. Computations show that when a vaporizing liquid phase is present the pressure drawdown exhibits behavior similar to that observed in noncondensable gas reservoirs, but delayed in time. A theoretical analysis allows for the computation of this delay and demonstrates that it is independent of flow geometry. The response that occurs upon pressure buildup is markedly different from that in a noncondensable gas system. This result may provide a diagnostic tool for establishing the existence of phase-change phenomena within a reservoir. ?? 1979.

  10. Correlations between water-soluble organic aerosol and water vapor: a synergistic effect from biogenic emissions?

    PubMed

    Hennigan, Christopher J; Bergin, Michael H; Weber, Rodney J

    2008-12-15

    Ground-based measurements of meteorological parameters and water-soluble organic carbon in the gas(WSOCg) and particle (WSOCp) phases were carried out in Atlanta, Georgia, from May to September 2007. Fourteen separate events were observed throughout the summer in which WSOCp and water vapor concentrations were highly correlated (average WSOCp-water vapor r = 0.92); however, for the entire summer, no well-defined relationship existed between the two. The correlation events, which lasted on average 19 h, were characterized by a wide range of WSOCp and water vapor concentrations. Several hypotheses for the correlation are explored, including heterogeneous liquid phase SOA formation and the co-emission of biogenic VOCs and water vapor. The data provide supporting evidence for contributions from both and suggest the possibility of a synergistic effect between the co-emission of water vapor and VOCs from biogenic sources on SOA formation. Median WSOCp concentrations were also correlated with elemental carbon (EC), although this correlation extended over the entire summer. Despite the emission of water vapor from anthropogenic mobile sources and the WSOCp-EC correlation, mobile sources were not considered a potential cause for the WSOCp-water vapor correlations because of their low contribution to the water vapor budget. Meteorology could perhaps have influenced the WSOCp-EC correlation, but other factors are implicated as well. Overall, the results suggest that the temperature-dependent co-emission of water vapor through evapotranspiration and SOA precursor-VOCs by vegetation may be an important process contributing to SOA in some environments.

  11. Liquid densities and vapor pressures of 1-chloro-1, 1-difluorethane (HCFC 142b)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maezawa, Yl; Sato, H.; Watanabe, K.

    1991-04-01

    In this paper, thirty-six saturated liquid densities of HCFC 142b (1-chloro-1,1-difluoroethane) are measured in a range of temperatures from 210 to 400 K. Twelve vapor pressures, from 320 to 400 K, and six compressed liquid PVT properties, from 320 to 360 K and of pressures up to 2 MPa, are also measured. All measurements were made by a magnetic densimeter coupled with a variable volume cell. The experimental uncertainties in temperature, pressure, and density were estimated to be not greater than [plus minus]15 mK, [plus minus]10 kPa, and [plus minus]0.2%, respectively. The purity of the sample used was 99.8 wtmore » % or better. The simple correlation for the saturated liquid density of HCFC 142b was developed.« less

  12. A study of the vaporization enthalpies of some 1-substituted imidazoles and pyrazoles by correlation-gas chromatography.

    PubMed

    Lipkind, Dmitry; Plienrasri, Chatchawat; Chickos, James S

    2010-12-23

    The vaporization enthalpies of 1-methyl-, 1-ethyl-, 1-phenyl-, and 1-benzylimidazole, 1-methyl- and 1-phenylpyrazole, and trans-azobenzene are evaluated by correlation-gas chromatography (C-GC) using a variety of azines and diazines as standards. The vaporization enthalpies obtained by C-GC when compared to literature values are approximately 14 kJ·mol(-1) smaller for the imidazoles and 6 kJ·mol(-1) smaller for the pyrazoles. The literature vaporization enthalpies of 1-methylpyrrole and 1-methylindole, two closely related compounds with one less nitrogen, are reproduced by C-GC. These results suggest that the magnitude of the intermolecular interactions present in 1-substituted imidazoles and pyrazoles are significantly larger than the those present in the reference compounds and greater than or equal in magnitude to the enhanced intermolecular interactions observed previously in aromatic 1,2-diazines. The vaporization enthalpy and vapor pressure of a trans-1,2-diazine, trans-azobenzene, measured by C-GC using similar standards reproduced the literature values within experimental error.

  13. Notes on Vapor Pressure Equilibria Measurements

    NASA Astrophysics Data System (ADS)

    Krieger, Albert G.; Henderson, John W.

    1996-11-01

    After reading the article in this Journal (1), we would like to share our experience with a similar experiment based on an earlier article in this Journal (2). Freshman students at our institution use manometers and 24/40 ground-glass distillation apparatus (abandoned by our organic chemistry classes) to measure boiling points at reduced pressures. Distilled water and 2-methyl-1-propanol are typical liquids of interest. Students enter their collected data into an Excel template which generates graphs of P vs. T and log P vs 1/T to demonstrate the nonlinear and linear relationships that exist between vapor pressures and temperatures. The templates use the Clausius-Clapeyron equation to determine the normal boiling point and the enthalpy of vaporization of the liquid studies. The boiling point determined for water is 100 oC and for 2-methyl-1-propanol is 106 oC, within 2 o of the CRC Handbook data. We have found that the availability of state-of-the-art equipment need not limit the ability to teach and demonstrate fundamental principles. The Excel template (Macintosh) is available upon request domestically and for the cost of international postage for others. Literature Cited 1. Kidahl, N.; Berka, L. H. J. Chem. Educ. 1995, 72, 258. 2. Schaber, P. M. J. Chem. Educ. 1985, 62, 345.

  14. Distillation device supplies cesium vapor at constant pressure

    NASA Technical Reports Server (NTRS)

    Basiulis, A.; Shefsiek, P. K.

    1968-01-01

    Distillation apparatus in the form of a U tube supplies small amounts of pure cesium vapor at constant pressure to a thermionic converter. The upstream leg of the U tube is connected to a vacuum pump to withdraw noncondensable impurities, the bottom portion serves as a reservoir for the liquid cesium.

  15. Quantitative structure-property relationships for prediction of boiling point, vapor pressure, and melting point.

    PubMed

    Dearden, John C

    2003-08-01

    Boiling point, vapor pressure, and melting point are important physicochemical properties in the modeling of the distribution and fate of chemicals in the environment. However, such data often are not available, and therefore must be estimated. Over the years, many attempts have been made to calculate boiling points, vapor pressures, and melting points by using quantitative structure-property relationships, and this review examines and discusses the work published in this area, and concentrates particularly on recent studies. A number of software programs are commercially available for the calculation of boiling point, vapor pressure, and melting point, and these have been tested for their predictive ability with a test set of 100 organic chemicals.

  16. New class of compounds have very low vapor pressures

    NASA Technical Reports Server (NTRS)

    Angell, C. A.; Gruen, D. M.

    1967-01-01

    Magnesium hexahydrate tetrachlorometallates are 50-volume-percent water, have a high melting point and possess a low vapor pressure. These new compounds are relatively noncorrosive, thermally stable, and water soluble but not hygroscopic. They may have potential applications as cooling fluids.

  17. Unusual effect of water vapor pressure on dehydration of dibasic calcium phosphate dihydrate.

    PubMed

    Kaushal, Aditya M; Vangala, Venu R; Suryanarayanan, Raj

    2011-04-01

    Dibasic calcium phosphate occurs as an anhydrate (DCPA; CaHPO₄) and as a dihydrate (DCPD; CaHPO₄•2H₂O). Our objective was to investigate the unusual behavior of these phases. Dibasic calcium phosphate dihydrate was dehydrated in a (i) differential scanning calorimeter (DSC) in different pan configurations; (ii) variable-temperature X-ray diffractometer (XRD) at atmospheric and under reduced pressure, and in sealed capillaries; and (iii) water vapor sorption analyzer at varying temperature and humidity conditions. Dehydration was complete by 210°C in an open DSC pan and under atmospheric pressure in the XRD. Unlike "conventional" hydrates, the dehydration of DCPD was facilitated in the presence of water vapor. Variable-temperature XRD in a sealed capillary and DSC in a hermetic pan with pinhole caused complete dehydration by 100°C and 140°C, respectively. Under reduced pressure, conversion to the anhydrate was incomplete even at 300°C. The increase in dehydration rate with increase in water vapor pressure has been explained by the Smith-Topley effect. Under "dry" conditions, a coating of poorly crystalline product is believed to form on the surface of particles and act as a barrier to further dehydration. However, in the presence of water vapor, recrystallization occurs, creating cracks and channels and facilitating continued dehydration. Copyright © 2010 Wiley-Liss, Inc.

  18. Correlations for Vapor Nucleating Critical Embryo Parameters

    NASA Astrophysics Data System (ADS)

    Magnusson, Lars-Erik; Koropchak, John A.; Anisimov, Michael P.; Poznjakovskiy, Valeriy M.; de la Mora, Juan Fernandez

    2003-12-01

    Condensation nucleation light scattering detection in principle works by converting the effluent of the chromatographic separation into an aerosol and then selectively evaporating the mobile phase, leaving less volatile analytes and nonvolatile impurities as dry aerosol particles. The dry particles produced are then exposed to an environment that is saturated with the vapors of an organic solvent (commonly n-butanol). The blend of aerosol particles and organic vapor is then cooled so that conditions of vapor supersaturation are achieved. In principle, the vapor then condenses onto the dry particles, growing each particle (ideally) from as small as a few nanometers in diameter into a droplet with a diameter up to about 10 μm. The grown droplets are then passed through a beam of light, and the light scattered by the droplets is detected and used as the detector response. This growth and detection step is generally carried out using commercial continuous-flow condensation nucleus counters. In the present research, the possibility of using other fluids than the commonly used n-butanol is investigated. The Kelvin equation and the Nucleation theorem [Anisimov et al. (1978)] are used to evaluate a range of fluids for efficacy of growing small particles by condensation nucleation. Using the available experimental data on vapor nucleation, the correlations of Kelvin diameters (the critical embryo sizes) and the bulk surface tension with dielectric constants of working liquids are found. A simple method for choosing the most efficient fluid, within a class of fluids, for growth of small particles is suggested.

  19. Pressure control in interfacial systems: Atomistic simulations of vapor nucleation

    NASA Astrophysics Data System (ADS)

    Marchio, S.; Meloni, S.; Giacomello, A.; Valeriani, C.; Casciola, C. M.

    2018-02-01

    A large number of phenomena of scientific and technological interest involve multiple phases and occur at constant pressure of one of the two phases, e.g., the liquid phase in vapor nucleation. It is therefore of great interest to be able to reproduce such conditions in atomistic simulations. Here we study how popular barostats, originally devised for homogeneous systems, behave when applied straightforwardly to heterogeneous systems. We focus on vapor nucleation from a super-heated Lennard-Jones liquid, studied via hybrid restrained Monte Carlo simulations. The results show a departure from the trends predicted for the case of constant liquid pressure, i.e., from the conditions of classical nucleation theory. Artifacts deriving from standard (global) barostats are shown to depend on the size of the simulation box. In particular, for Lennard-Jones liquid systems of 7000 and 13 500 atoms, at conditions typically found in the literature, we have estimated an error of 10-15 kBT on the free-energy barrier, corresponding to an error of 104-106 s-1σ-3 on the nucleation rate. A mechanical (local) barostat is proposed which heals the artifacts for the considered case of vapor nucleation.

  20. Apparatus to measure the vapor pressure of slowly decomposing compounds from 1 Pa to 105 Pa

    PubMed Central

    Berg, Robert F.

    2016-01-01

    This article describes an apparatus and method for measuring vapor pressures in the range from 1 Pa to 105 Pa. Its three distinctive elements are : (1) the static pressure measurements were made with only a small temperature difference between the vapor and the condensed phase, (2) the sample was degassed in situ, and (3) the temperature range extended up to 200 °C. The apparatus was designed to measure metal-organic precursors, which often are toxic, pyrophoric, or unstable. Vapor pressures are presented for naphthalene, ferrocene, diethyl phthalate, and TEMAH (tetrakisethylmethylaminohafnium). Also presented are data for the temperature-dependent decomposition rate of TEMAH. PMID:27274567

  1. Advanced Computational Modeling of Vapor Deposition in a High-Pressure Reactor

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.; Moore, Craig E.; McCall, Sonya D.; Cardelino, Carlos A.; Dietz, Nikolaus; Bachmann, Klaus

    2004-01-01

    In search of novel approaches to produce new materials for electro-optic technologies, advances have been achieved in the development of computer models for vapor deposition reactors in space. Numerical simulations are invaluable tools for costly and difficult processes, such as those experiments designed for high pressures and microgravity conditions. Indium nitride is a candidate compound for high-speed laser and photo diodes for optical communication system, as well as for semiconductor lasers operating into the blue and ultraviolet regions. But InN and other nitride compounds exhibit large thermal decomposition at its optimum growth temperature. In addition, epitaxy at lower temperatures and subatmospheric pressures incorporates indium droplets into the InN films. However, surface stabilization data indicate that InN could be grown at 900 K in high nitrogen pressures, and microgravity could provide laminar flow conditions. Numerical models for chemical vapor deposition have been developed, coupling complex chemical kinetics with fluid dynamic properties.

  2. Advanced Computational Modeling of Vapor Deposition in a High-pressure Reactor

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.; Moore, Craig E.; McCall, Sonya D.; Cardelino, Carlos A.; Dietz, Nikolaus; Bachmann, Klaus

    2004-01-01

    In search of novel approaches to produce new materials for electro-optic technologies, advances have been achieved in the development of computer models for vapor deposition reactors in space. Numerical simulations are invaluable tools for costly and difficult processes, such as those experiments designed for high pressures and microgravity conditions. Indium nitride is a candidate compound for high-speed laser and photo diodes for optical communication system, as well as for semiconductor lasers operating into the blue and ultraviolet regions. But InN and other nitride compounds exhibit large thermal decomposition at its optimum growth temperature. In addition, epitaxy at lower temperatures and subatmospheric pressures incorporates indium droplets into the InN films. However, surface stabilization data indicate that InN could be grown at 900 K in high nitrogen pressures, and microgravity could provide laminar flow conditions. Numerical models for chemical vapor deposition have been developed, coupling complex chemical kinetics with fluid dynamic properties.

  3. Correlation between mobility collapse and carbon impurities in Si-doped GaN grown by low pressure metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kaess, Felix; Mita, Seiji; Xie, Jingqiao; Reddy, Pramod; Klump, Andrew; Hernandez-Balderrama, Luis H.; Washiyama, Shun; Franke, Alexander; Kirste, Ronny; Hoffmann, Axel; Collazo, Ramón; Sitar, Zlatko

    2016-09-01

    In the low doping range below 1 × 1017 cm-3, carbon was identified as the main defect attributing to the sudden reduction of the electron mobility, the electron mobility collapse, in n-type GaN grown by low pressure metalorganic chemical vapor deposition. Secondary ion mass spectroscopy has been performed in conjunction with C concentration and the thermodynamic Ga supersaturation model. By controlling the ammonia flow rate, the input partial pressure of Ga precursor, and the diluent gas within the Ga supersaturation model, the C concentration in Si-doped GaN was controllable from 6 × 1019 cm-3 to values as low as 2 × 1015 cm-3. It was found that the electron mobility collapsed as a function of free carrier concentration, once the Si concentration closely approached the C concentration. Lowering the C concentration to the order of 1015 cm-3 by optimizing Ga supersaturation achieved controllable free carrier concentrations down to 5 × 1015 cm-3 with a peak electron mobility of 820 cm2/V s without observing the mobility collapse. The highest electron mobility of 1170 cm2/V s was obtained even in metalorganic vapor deposition-grown GaN on sapphire substrates by optimizing growth parameters in terms of Ga supersaturation to reduce the C concentration.

  4. Thermal-hydraulic behaviors of vapor-liquid interface due to arrival of a pressure wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Akira; Fujii, Yoshifumi; Matsuzaki, Mitsuo

    In the vapor explosion, a pressure wave (shock wave) plays a fundamental role for triggering, propagation and enhancement of the explosion. Energy of the explosion is related to the magnitude of heat transfer rate from hot liquid to cold volatile one. This is related to an increasing rate of interface area and to an amount of transient heat flux between the liquids. In this study, the characteristics of transient heat transfer and behaviors of vapor film both on the platinum tube and on the hot melt tin drop, under same boundary conditions have been investigated. It is considered that theremore » exists a fundamental mechanism of the explosion in the initial expansion process of the hot liquid drop immediately after arrival of pressure wave. The growth rate of the vapor film is much faster on the hot liquid than that on the solid surface. Two kinds of roughness were observed, one due to the Taylor instability, by rapid growth of the explosion bubble, and another, nucleation sites were observed at the vapor-liquid interface. Based on detailed observation of early stage interface behaviors after arrival of a pressure wave, the thermal fragmentation mechanism is proposed.« less

  5. 40 CFR 63.7944 - How do I determine the maximum HAP vapor pressure of my remediation material?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... vapor pressure of my remediation material? 63.7944 Section 63.7944 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS... Pollutants: Site Remediation Performance Tests § 63.7944 How do I determine the maximum HAP vapor pressure of...

  6. 40 CFR 63.7944 - How do I determine the maximum HAP vapor pressure of my remediation material?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... vapor pressure of my remediation material? 63.7944 Section 63.7944 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS... Pollutants: Site Remediation Performance Tests § 63.7944 How do I determine the maximum HAP vapor pressure of...

  7. 40 CFR 63.7944 - How do I determine the maximum HAP vapor pressure of my remediation material?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... vapor pressure of my remediation material? 63.7944 Section 63.7944 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS... Pollutants: Site Remediation Performance Tests § 63.7944 How do I determine the maximum HAP vapor pressure of...

  8. 40 CFR 63.7944 - How do I determine the maximum HAP vapor pressure of my remediation material?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... vapor pressure of my remediation material? 63.7944 Section 63.7944 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS... Pollutants: Site Remediation Performance Tests § 63.7944 How do I determine the maximum HAP vapor pressure of...

  9. Stomatal responses to changes in vapor pressure deficit reflect tissue-specific differences in hydraulic conductance.

    PubMed

    Ocheltree, T W; Nippert, J B; Prasad, P V V

    2014-01-01

    The vapor pressure deficit (D) of the atmosphere can negatively affect plant growth as plants reduce stomatal conductance to water vapor (g(wv)) in response to increasing D, limiting the ability of plants to assimilate carbon. The sensitivity of g(wv) to changes in D varies among species and has been correlated with the hydraulic conductance of leaves (K(leaf) ), but the hydraulic conductance of other tissues has also been implicated in plant responses to changing D. Among the 19 grass species, we found that K(leaf) was correlated with the hydraulic conductance of large longitudinal veins (K(lv), r(2) = 0.81), but was not related to K(root) (r(2) = 0.01). Stomatal sensitivity to D was correlated with K(leaf) relative to total leaf area (r(2) = 0.50), and did not differ between C3 and C4 species. Transpiration (E) increased in response to D, but 8 of the 19 plants showed a decline in E at high D, indicative of an 'apparent feedforward' response. For these individuals, E began to decline at lower values of D in plants with low K(root) (r(2) = 0.72). These results show the significance of both leaf and root hydraulic conductance as drivers of plant responses to evaporative demand. © 2013 John Wiley & Sons Ltd.

  10. Use of Interrupted Helium Flow in the Analysis of Vapor Samples with Flowing Atmospheric-Pressure Afterglow-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Storey, Andrew P.; Zeiri, Offer M.; Ray, Steven J.; Hieftje, Gary M.

    2017-02-01

    The flowing atmospheric-pressure afterglow (FAPA) source was used for the mass-spectrometric analysis of vapor samples introduced between the source and mass spectrometer inlet. Through interrupted operation of the plasma-supporting helium flow, helium consumption is greatly reduced and dynamic gas behavior occurs that was characterized by schlieren imaging. Moreover, mass spectra acquired immediately after the onset of helium flow exhibit a signal spike before declining and ultimately reaching a steady level. This initial signal appears to be due to greater interaction of sample vapor with the afterglow of the source when helium flow resumes. In part, the initial spike in signal can be attributed to a pooling of analyte vapor in the absence of helium flow from the source. Time-resolved schlieren imaging of the helium flow during on and off cycles provided insight into gas-flow patterns between the FAPA source and the MS inlet that were correlated with mass-spectral data.

  11. Use of Interrupted Helium Flow in the Analysis of Vapor Samples with Flowing Atmospheric-Pressure Afterglow-Mass Spectrometry.

    PubMed

    Storey, Andrew P; Zeiri, Offer M; Ray, Steven J; Hieftje, Gary M

    2017-02-01

    The flowing atmospheric-pressure afterglow (FAPA) source was used for the mass-spectrometric analysis of vapor samples introduced between the source and mass spectrometer inlet. Through interrupted operation of the plasma-supporting helium flow, helium consumption is greatly reduced and dynamic gas behavior occurs that was characterized by schlieren imaging. Moreover, mass spectra acquired immediately after the onset of helium flow exhibit a signal spike before declining and ultimately reaching a steady level. This initial signal appears to be due to greater interaction of sample vapor with the afterglow of the source when helium flow resumes. In part, the initial spike in signal can be attributed to a pooling of analyte vapor in the absence of helium flow from the source. Time-resolved schlieren imaging of the helium flow during on and off cycles provided insight into gas-flow patterns between the FAPA source and the MS inlet that were correlated with mass-spectral data. Graphical Abstract ᅟ.

  12. Characterization of AIRS temperature and water vapor measurement capability using correlative observations

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Eldering, Annmarie; Lee, Sung-Yung

    2005-01-01

    In this presentation we address several fundamental issues in the measurement of temperature and water vapor by AIRS: accuracy, precision, vertical resolution and biases as a function of cloud amount. We use two correlative data sources. First we compare AIRS total water vapor with that from the Advanced microwave Sounding Radiometer for EOS (AMSR-E) instrument, also onboard the Aqua spacecraft. AMSRE uses a mature methodology with a heritage including the operational Special Sensor Microwave Imager (SSM/I) instruments. AIRS and AMSR-E observations are collocated and simultaneous, providing a very large data set for comparison: about 200,000 over-ocean matches daily. We show small cloud-dependent biases between AIRS and AMSR-E total water vapor for several oceanic regions. Our second correlative data source is several hundred dedicated radiosondes launched during AIRS overpasses.

  13. Vapor Pressure of Bis-(2-chloroethyl)ethylamine (HN1)

    DTIC Science & Technology

    2013-10-01

    coefficient of the compound. 4 Analysis of an aliquot of the material by 13 C nuclear magnetic resonance (NMR) spectroscopy, gas chromatography ...ACRONYMS AND ABBREVIATIONS CW chemical warfare ECBC U.S. Army Edgewood Chemical Biological Center GC gas chromatography HN1 bis-(2...compounds for determining vapor pressures. The arrows indicate the direction of flow of the nitrogen carrier gas

  14. Influence of the helium-pressure on diode-pumped alkali-vapor laser

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Chen, Fei; Xie, Ji-jiang; Zhang, Lai-ming; Li, Dian-jun; Yang, Gui-long; Guo, Jing

    2013-05-01

    Diode-pumped alkali-vapor laser (DPAL) is a kind of laser attracted much attention for its merits, such as high quantum efficiency, excellent beam quality, favorable thermal management, and potential scalability to high power and so on. Based on the rate-equation theory of end-pumped DPAL, the performances of DPAL using Cs-vapor collisionally broadened by helium are simulated and studied. With the increase of helium pressure, the numerical results show that: 1) the absorption line-width increases and the stimulated absorption cross-section decreases contrarily; 2) the threshold pumping power decreases to minimum and then rolls over to increase linearly; 3) the absorption efficiency rises to maximum initially due to enough large stimulated absorption cross-section in the far wings of collisionally broadened D2 transition (absorption transition), and then begins to reduce; 4) an optimal value of helium pressure exists to obtain the highest output power, leading to an optimal optical-optical efficiency. Furthermore, to generate the self-oscillation of laser, a critical value of helium pressure occurs when small-signal gain equals to the threshold gain.

  15. Contribution of water vapor pressure to pressurization of plutonium dioxide storage containers

    NASA Astrophysics Data System (ADS)

    Veirs, D. Kirk; Morris, John S.; Spearing, Dane R.

    2000-07-01

    Pressurization of long-term storage containers filled with materials meeting the US DOE storage standard is of concern.1,2 For example, temperatures within storage containers packaged according to the standard and contained in 9975 shipping packages that are stored in full view of the sun can reach internal temperatures of 250 °C.3 Twenty five grams of water (0.5 wt.%) at 250 °C in the storage container with no other material present would result in a pressure of 412 psia, which is limited by the amount of water. The pressure due to the water can be substantially reduced due to interactions with the stored material. Studies of the adsorption of water by PuO2 and surface interactions of water with PuO2 show that adsorption of 0.5 wt.% of water is feasible under many conditions and probable under high humidity conditions.4,5,6 However, no data are available on the vapor pressure of water over plutonium dioxide containing materials that have been exposed to water.

  16. In situ ESEM imaging of the vapor-pressure-dependent sublimation-induced morphology of ice

    NASA Astrophysics Data System (ADS)

    Nair, Malavika; Husmann, Anke; Cameron, Ruth E.; Best, Serena M.

    2018-04-01

    Sublimation is a fundamental phase transition that has a profound impact on both natural phenomena and advanced manufacturing technologies. Although great strides have been made in the study of ice growth from melt and vapor, little consideration has been given to the effect of sublimation on the morphological features that develop in the ice microstructure. In this experimental study, we demonstrate the effect of vapor pressure on the mesoscopic faceting observed and show that a vapor-pressure-specific wavelength characterizes the periodic features that arise during sublimation. The ability to control the length scale of these features not only provides us with new insights into the mesoscopic roughness of ice crystals, but also presents the potential to exploit this effect in a plethora of applications from comet dating to ice-templated tissue engineering scaffolds.

  17. Probabilistic approach: back pressure turbine for geothermal vapor-dominated system

    NASA Astrophysics Data System (ADS)

    Alfandi Ahmad, Angga; Xaverius Guwowijoyo, Fransiscus; Pratama, Heru Berian

    2017-12-01

    Geothermal bussiness nowadays needs to be accelerated in a way that profit can be obtained as soon as reasonable possible. One of the many ways to do this is by using one of geothermal wellhead generating unit (GWGU), called backpressure turbine. Backpressure turbine can be used in producing electricity as soon as there is productive or rather small-scale productive well existed after finished drilling. In a vapor dominated system, steam fraction in the wellhead capable to produce electricity based on each well productivity immediately. The advantage for using vapor dominated system is reduce brine disposal in the wellhead so it will be a cost benefit in operation. The design and calculation for backpressure turbine will use probablistic approach with Monte Carlo simulation. The parameter that will be evaluated in sensitivity would be steam flow rate, turbine inlet pressure, and turbine exhaust pressure/atmospheric pressure. The result are probability for P10, P50, and P90 of gross power output which are 1.78 MWe, 2.22 MWe and 2.66 Mwe respectively. Whereas the P10, P50, and P90 of SSC are 4.67 kg/s/MWe, 5.19 kg/s/MWe and 5.78 kg/s/MWe respectively.

  18. Characterization of the TIP4P-Ew water model: vapor pressure and boiling point.

    PubMed

    Horn, Hans W; Swope, William C; Pitera, Jed W

    2005-11-15

    The liquid-vapor-phase equilibrium properties of the previously developed TIP4P-Ew water model have been studied using thermodynamic integration free-energy simulation techniques in the temperature range of 274-400 K. We stress that free-energy results from simulations need to be corrected in order to be compared to the experiment. This is due to the fact that the thermodynamic end states accessible through simulations correspond to fictitious substances (classical rigid liquids and classical rigid ideal gases) while experiments operate on real substances (liquids and real gases, with quantum effects). After applying analytical corrections the vapor pressure curve obtained from simulated free-energy changes is in excellent agreement with the experimental vapor pressure curve. The boiling point of TIP4P-Ew water under ambient pressure is found to be at 370.3+/-1.9 K, about 7 K higher than the boiling point of TIP4P water (363.7+/-5.1 K; from simulations that employ finite range treatment of electrostatic and Lennard-Jones interactions). This is in contrast to the approximately +15 K by which the temperature of the density maximum and the melting temperature of TIP4P-Ew are shifted relative to TIP4P, indicating that the temperature range over which the liquid phase of TIP4P-Ew is stable is narrower than that of TIP4P and resembles more that of real water. The quality of the vapor pressure results highlights the success of TIP4P-Ew in describing the energetic and entropic aspects of intermolecular interactions in liquid water.

  19. Physics-based agent to simulant correlations for vapor phase mass transport.

    PubMed

    Willis, Matthew P; Varady, Mark J; Pearl, Thomas P; Fouse, Janet C; Riley, Patrick C; Mantooth, Brent A; Lalain, Teri A

    2013-12-15

    Chemical warfare agent simulants are often used as an agent surrogate to perform environmental testing, mitigating exposure hazards. This work specifically addresses the assessment of downwind agent vapor concentration resulting from an evaporating simulant droplet. A previously developed methodology was used to estimate the mass diffusivities of the chemical warfare agent simulants methyl salicylate, 2-chloroethyl ethyl sulfide, di-ethyl malonate, and chloroethyl phenyl sulfide. Along with the diffusivity of the chemical warfare agent bis(2-chloroethyl) sulfide, the simulant diffusivities were used in an advection-diffusion model to predict the vapor concentrations downwind from an evaporating droplet of each chemical at various wind velocities and temperatures. The results demonstrate that the simulant-to-agent concentration ratio and the corresponding vapor pressure ratio are equivalent under certain conditions. Specifically, the relationship is valid within ranges of measurement locations relative to the evaporating droplet and observation times. The valid ranges depend on the relative transport properties of the agent and simulant, and whether vapor transport is diffusion or advection dominant. Published by Elsevier B.V.

  20. Pressure intelligent control strategy of Waste heat recovery system of converter vapors

    NASA Astrophysics Data System (ADS)

    Feng, Xugang; Wu, Zhiwei; Zhang, Jiayan; Qian, Hong

    2013-01-01

    The converter gas evaporative cooling system is mainly used for absorbing heat in the high temperature exhaust gas which produced by the oxygen blowing reaction. Vaporization cooling steam pressure control system of converter is a nonlinear, time-varying, lagging behind, close coupling of multivariable control object. This article based on the analysis of converter operation characteristics of evaporation cooling system, of vaporization in a production run of pipe pressure variation and disturbance factors.For the dynamic characteristics of the controlled objects,we have improved the conventional PID control scheme.In Oxygen blowing process, we make intelligent control by using fuzzy-PID cascade control method and adjusting the Lance,that it can realize the optimization of the boiler steam pressure control.By design simulation, results show that the design has a good control not only ensures drum steam pressure in the context of security, enabling efficient conversion of waste heat.And the converter of 1800 flue gas through pipes and cool and dust removal also can be cooled to about 800. Therefore the converter haze evaporative cooling system has achieved to the converter haze temperature decrease effect and enhanced to the coal gas returns-ratio.

  1. Investigations of dc electrical discharges in low-pressure sodium vapor with implications for AMTEC converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barkan, A.; Hunt, T.K.

    1998-07-01

    Upcoming designs for AMTEC modules capable of delivering as much as 150 watts will see the introduction of higher voltages into sodium vapor at pressures spanning a wide range. In theory, with any value for two out of three parameters: voltage, pressure, and electrode geometry, a value exists for the third parameter where DC electrical breakdown can occur; due to its low ionization energy, sodium vapor may be particularly susceptible to breakdown. This destructive event is not desirable in AMTEC modules, and sets a limit on the maximum voltage that can be built-up within any single enclosed module. An experimentalmore » cell was fabricated with representative electrode configurations and a separately heated sodium reservoir to test conditions typically expected during start-up, operation, and shutdown of AMTEC cells. Breakdown voltages were investigated in both sodium vapor and, for comparison, argon gas. The dependence on electrode material and polarity was also investigated. Additional information about leakage currents and the insulating properties of {alpha}-alumina in the presence of sodium vapor was collected, revealing a reversible tendency for conductive sodium films to build up under certain conditions, electrically shorting-out previously isolated components. In conclusion, safe operating limits on voltages, temperatures, and pressures are discussed.« less

  2. COMPARISON OF THE OCTANOL-AIR PARTITION COEFFICIENT AND LIQUID-PHASE VAPOR PRESSURE AS DESCRIPTORS FOR PARTICLE/GAS PARTITIONING USING LABORATORY AND FIELD DATA FOR PCBS AND PCNS

    EPA Science Inventory

    The conventional Junge-Pankow adsorption model uses the sub-cooled liquid vapor pressure (pLo) as a correlation parameter for gas/particle interactions. An alternative is the octanol-air partition coefficient (Koa) absorption model. Log-log plots of the particle-gas partition c...

  3. Determination of Water Vapor Pressure Over Corrosive Chemicals Versus Temperature Using Raman Spectroscopy as Exemplified with 85.5% Phosphoric Acid.

    PubMed

    Rodier, Marion; Li, Qingfeng; Berg, Rolf Willestofte; Bjerrum, Niels Janniksen

    2016-07-01

    A method to determine the water vapor pressure over a corrosive substance was developed and tested with 85.5 ± 0.4% phosphoric acid. The water vapor pressure was obtained at a range of temperatures from ∼25 ℃ to ∼200 ℃ using Raman spectrometry. The acid was placed in an ampoule and sealed with a reference gas (either hydrogen or methane) at a known pressure (typically ∼0.5 bar). By comparing the Raman signals from the water vapor and the references, the water pressure was determined as a function of temperature. A considerable amount of data on the vapor pressure of phosphoric acid are available in the literature, to which our results could successfully be compared. A record value of the vapor pressure, 3.40 bar, was determined at 210 ℃. The method required a determination of the precise Raman scattering ratios between the substance, water, and the used reference gas, hydrogen or methane. In our case the scattering ratios between water and reference ν1 Q-branches were found to be 1.20 ± 0.03 and 0.40 ± 0.02 for H2 and CH4, respectively. © The Author(s) 2016.

  4. Experimental study on the performance of the vapor injection refrigeration system with an economizer for intermediate pressures

    NASA Astrophysics Data System (ADS)

    Moon, Chang-Uk; Choi, Kwang-Hwan; Yoon, Jung-In; Kim, Young-Bok; Son, Chang-Hyo; Ha, Soo-Jung; Jeon, Min-Ju; An, Sang-Young; Lee, Joon-Hyuk

    2018-04-01

    In this study, to investigate the performance characteristics of vapor injection refrigeration system with an economizer at an intermediate pressure, the vapor injection refrigeration system was analyzed under various experiment conditions. As a result, the optimum design data of the vapor injection refrigeration system with an economizer were obtained. The findings from this study can be summarized as follows. The mass flow rate through the compressor increases with intermediate pressure. The compression power input showed an increasing trend under all the test conditions. The evaporation capacity increased and then decreased at the intermediate pressure, and as such, it became maximum at the given intermediate pressure. The increased mass flow rate of the by-passed refrigerant enhanced the evaporation capacity at the low medium pressure range, but the increased saturation temperature limited the subcooling degree of the liquid refrigerant after the application of the economizer when the intermediate pressure kept rising, and degenerated the evaporation capacity. The coefficient of performance (COP) increased and then decreased with respect to the intermediate pressures under all the experiment conditions. Nevertheless, there was an optimum intermediate pressure for the maximum COP under each experiment condition. Therefore, the optimum intermediate pressure in this study was found at -99.08 kPa, which is the theoretical standard medium pressure under all the test conditions.

  5. Rate correlation for condensation of pure vapor on turbulent, subcooled liquid

    NASA Technical Reports Server (NTRS)

    Brown, J. Steven; Khoo, Boo Cheong; Sonin, Ain A.

    1990-01-01

    An empirical correlation is presented for the condensation of pure vapor on a subcooled, turbulent liquid with a shear-free interface. The correlation expresses the dependence of the condensation rate on fluid properties, on the liquid-side turbulence (which is imposed from below), and on the effects of buoyancy in the interfacial thermal layer. The correlation is derived from experiments with steam and water, but under conditions which simulate typical cryogenic fluids.

  6. LIMS Instrument Package (LIP) balloon experiment: Nimbus 7 satellite correlative temperature, ozone, water vapor, and nitric acid measurements

    NASA Technical Reports Server (NTRS)

    Lee, R. B., III; Gandrud, B. W.; Robbins, D. E.; Rossi, L. C.; Swann, N. R. W.

    1982-01-01

    The Limb Infrared Monitor of the Stratosphere (LIMS) LIP balloon experiment was used to obtain correlative temperature, ozone, water vapor, and nitric acid data at altitudes between 10 and 36 kilometers. The performance of the LIMS sensor flown on the Nimbus 7 Satellite was assessed. The LIP consists of the modified electrochemical concentration cell ozonesonde, the ultraviolet absorption photometric of ozone, the water vapor infrared radiometer sonde, the chemical absorption filter instrument for nitric acid vapor, and the infrared radiometer for nitric acid vapor. The limb instrument package (LIP), its correlative sensors, and the resulting data obtained from an engineering and four correlative flights are described.

  7. Chemical Vapor Deposition at High Pressure in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    McCall, Sonya; Bachmann, Klaus; LeSure, Stacie; Sukidi, Nkadi; Wang, Fuchao

    1999-01-01

    In this paper we present an evaluation of critical requirements of organometallic chemical vapor deposition (OMCVD) at elevated pressure for a channel flow reactor in a microgravity environment. The objective of using high pressure is to maintain single-phase surface composition for materials that have high thermal decomposition pressure at their optimum growth temperature. Access to microgravity is needed to maintain conditions of laminar flow, which is essential for process analysis. Based on ground based observations we present an optimized reactor design for OMCVD at high pressure and reduced gravity. Also, we discuss non-intrusive real-time optical monitoring of flow dynamics coupled to homogeneous gas phase reactions, transport and surface processes. While suborbital flights may suffice for studies of initial stages of heteroepitaxy experiments in space are essential for a complete evaluation of steady-state growth.

  8. A unified equation for calculating methane vapor pressures in the CH4-H2O system with measured Raman shifts

    USGS Publications Warehouse

    Lu, W.; Chou, I.-Ming; Burruss, R.C.; Song, Y.

    2007-01-01

    A unified equation has been derived by using all available data for calculating methane vapor pressures with measured Raman shifts of C-H symmetric stretching band (??1) in the vapor phase of sample fluids near room temperature. This equation eliminates discrepancies among the existing data sets and can be applied at any Raman laboratory. Raman shifts of C-H symmetric stretching band of methane in the vapor phase of CH4-H2O mixtures prepared in a high-pressure optical cell were also measured at temperatures between room temperature and 200 ??C, and pressures up to 37 MPa. The results show that the CH4 ??1 band position shifts to higher wavenumber as temperature increases. We also demonstrated that this Raman band shift is a simple function of methane vapor density, and, therefore, when combined with equation of state of methane, methane vapor pressures in the sample fluids at elevated temperatures can be calculated from measured Raman peak positions. This method can be applied to determine the pressure of CH4-bearing systems, such as methane-rich fluid inclusions from sedimentary basins or experimental fluids in hydrothermal diamond-anvil cell or other types of optical cell. ?? 2007 Elsevier Ltd. All rights reserved.

  9. On the critical temperature, normal boiling point, and vapor pressure of ionic liquids.

    PubMed

    Rebelo, Luis P N; Canongia Lopes, José N; Esperança, José M S S; Filipe, Eduardo

    2005-04-07

    One-stage, reduced-pressure distillations at moderate temperature of 1-decyl- and 1-dodecyl-3-methylimidazolium bistriflilamide ([Ntf(2)](-)) ionic liquids (ILs) have been performed. These liquid-vapor equilibria can be understood in light of predictions for normal boiling points of ILs. The predictions are based on experimental surface tension and density data, which are used to estimate the critical points of several ILs and their corresponding normal boiling temperatures. In contrast to the situation found for relatively unstable ILs at high-temperature such as those containing [BF(4)](-) or [PF(6)](-) anions, [Ntf(2)](-)-based ILs constitute a promising class in which reliable, accurate vapor pressure measurements can in principle be performed. This property is paramount for assisting in the development and testing of accurate molecular models.

  10. Integrated Rig for the Production of Boron Nitride Nanotubes via the Pressurized Vapor-Condenser Method

    NASA Technical Reports Server (NTRS)

    Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor)

    2014-01-01

    An integrated production apparatus for production of boron nitride nanotubes via the pressure vapor-condenser method. The apparatus comprises: a pressurized reaction chamber containing a continuously fed boron containing target having a boron target tip, a source of pressurized nitrogen and a moving belt condenser apparatus; a hutch chamber proximate the pressurized reaction chamber containing a target feed system and a laser beam and optics.

  11. Integrated rig for the production of boron nitride nanotubes via the pressurized vapor-condenser method

    DOEpatents

    Smith, Michael W; Jordan, Kevin C

    2014-03-25

    An integrated production apparatus for production of boron nitride nanotubes via the pressure vapor-condenser method. The apparatus comprises: a pressurized reaction chamber containing a continuously fed boron containing target having a boron target tip, a source of pressurized nitrogen and a moving belt condenser apparatus; a hutch chamber proximate the pressurized reaction chamber containing a target feed system and a laser beam and optics.

  12. 40 CFR 65.111 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Standards: Pressure relief devices in gas/vapor service. 65.111 Section 65.111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Equipment Leaks § 65.111 Standards...

  13. Subatmospheric vapor pressures for fluoromethane (R41), 1,1-difluoroethane (R152a), and 1,1,1-trifluoroethane (R143a) evaluated from internal-energy measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duarte-Garza, H.A.; Magee, J.W.

    1999-09-01

    Vapor pressures were evaluated from measured internal-energy changes {Delta}U{sup (2)} in the vapor + liquid two-phase region. The method employed a thermodynamic relationship between the derivative quantity ({partial_derivative}U{sup (2)}/{partial_derivative}V){sub T}, the vapor pressure p{sub {sigma}}, and its temperature derivative ({partial_derivative}p/{partial_derivative}T){sub {sigma}}. This method was applied at temperatures between the triple point and the normal boiling point of three substances: fluoromethane (R41), 1,1-difluoroethane (R152a), and 1,1,1-trifluoroethane (R143a). In the case of R41, vapor pressures up to 1 MPa were calculated to validate the technique at higher pressures. For R152a, the calculated vapor pressure at the triple-point temperature differed from a directmore » experimental measurement by less than the claimed uncertainty (5 Pa) of the measurement. The calculated vapor pressures for R41 helped to resolve discrepancies in several published vapor pressure sources. Agreement with experimentally measured vapor pressures for R152a and for R143a near the normal boiling point (101.325 kPa) was within the experimental uncertainty of approximately 0.04 kPa (0.04%) for the published measurements.« less

  14. Adiabatic pressure dependence of the 2.7 and 1.9 micron water vapor bands

    NASA Technical Reports Server (NTRS)

    Mathai, C. V.; Walls, W. L.; Broersma, S.

    1977-01-01

    An acoustic excitation technique is used to determine the adiabatic pressure derivative of the spectral absorptance of the 2.7 and 1.9 micron water vapor bands, and the 3.5 micron HCl band. The dependence of this derivative on thermodynamic parameters such as temperature, concentration, and pressure is evaluated. A cross-flow water vapor system is used to measure spectral absorptance. Taking F as the ratio of nonrigid to rotor line strengths, it is found that an F factor correction is needed for the 2.7 micron band. The F factor for the 1.9 micron band is also determined. In the wings of each band a wavelength can be found where the concentration dependence is predominant. Farther out in the wings a local maximum occurs for the temperature derivative. It is suggested that the pressure derivative is significant in the core of the band.

  15. Vapor Pressure and Evaporation Coefficient of Silicon Monoxide over a Mixture of Silicon and Silica

    NASA Technical Reports Server (NTRS)

    Ferguson, Frank T.; Nuth, Joseph A., III

    2012-01-01

    The evaporation coefficient and equilibrium vapor pressure of silicon monoxide over a mixture of silicon and vitreous silica have been studied over the temperature range (1433 to 1608) K. The evaporation coefficient for this temperature range was (0.007 plus or minus 0.002) and is approximately an order of magnitude lower than the evaporation coefficient over amorphous silicon monoxide powder and in general agreement with previous measurements of this quantity. The enthalpy of reaction at 298.15 K for this reaction was calculated via second and third law analyses as (355 plus or minus 25) kJ per mol and (363.6 plus or minus 4.1) kJ per mol respectively. In comparison with previous work with the evaporation of amorphous silicon monoxide powder as well as other experimental measurements of the vapor pressure of silicon monoxide gas over mixtures of silicon and silica, these systems all tend to give similar equilibrium vapor pressures when the evaporation coefficient is correctly taken into account. This provides further evidence that amorphous silicon monoxide is an intimate mixture of small domains of silicon and silica and not strictly a true compound.

  16. In-reactor oxidation of zircaloy-4 under low water vapor pressures

    NASA Astrophysics Data System (ADS)

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin K.; Longhurst, Glen R.

    2015-01-01

    Complementary in- and ex-reactor oxidation tests have been performed to evaluate the oxidation and hydrogen absorption performance of Zircaloy-4 (Zr-4) under relatively low partial pressures (300 and 1000 Pa) of water vapor at specified test temperatures (330 and 370 °C). Data from these tests will be used to support the fabrication of components intended for isotope-producing targets and provide information regarding the temperature and pressure dependence of oxidation and hydrogen absorption of Zr-4 over the specified range of test conditions. Comparisons between in- and ex-reactor test results were performed to evaluate the influence of irradiation.

  17. Vapor Pressure Measurements of LiBH4, NaBH 4 and Ca(BH4)2 using Knudsen Torsion Effusion Gravimetric Method

    NASA Astrophysics Data System (ADS)

    Danyan, Mohammad Masoumi

    Hydrogen storage is one of the critical technologies needed on the path towards commercialization for mobile applications. In the past few years, a range of new light weight hydrogen containing material has been discovered with good storage properties. Among them, lithium borohydride (LiBH 4) sodium borohydride (NaBH4) and calcium borohydride (Ca(BH 4)2) have shown promising results to be used as solid state hydrogen storage material. In this work, we have determined equilibrium vapor pressures of LiBH 4 NaBH4 and Ca(BH4)2 obtained by Torsion effusion thermogravimetric method. Results for all the three hydrides exhibited that a small fraction of the materials showed congruency, and sublimed as gaseous compound, but the majority of the material showed incongruent vaporization. Two Knudsen cells of 0.3 and 0.6mm orifice size was employed to measure the total vapor pressures. A Whitman-Motzfeldt method is used to extrapolate the measured vapor pressures to zero orifice size to calculate the equilibrium vapor pressures. In the case of LiBH4 we found that 2% of the material evaporated congruently (LiBH4(s) → LiBH4(g)) according to the equation: logPLiBH4/P 0 =-3263.5 +/-309/T + (1.079 +/-0.69) and rest as incongruent vaporization to LiH, B, and hydrogen gas according to the equation logPeq/P0 =(-3263.5 +/-309)/T+ (2.458 +/-0.69) with DeltaH evap.= 62.47+/-5.9 kJ/mol of H2, DeltaSevap. = 47.05+/-13 J/mol of H2.K. The NaBH4 also had somewhat similar behavior, with 9% congruent evaporation and equilibrium vapor pressure equation of logPLiBH4=-7700+/-335/ T+ (6.7+/-1.5) and 91% incongruent decomposition to Na and Boron metal, and hydrogen gas. The enthalpy of vaporization; DeltaHevap. = 147.2+/-6.4kJ/molH2 and DeltaSevap.= 142 +/-28 kJ/molH2.K (550-650K). The Ca(BH4) 2 exhibited similar vaporization behavior with congruency of 3.2%. The decomposition products are CaH2 and Boron metal with evolution of hydrogen gas varying with the pressure equation as logPeq /P0 =(-1562

  18. 46 CFR 154.405 - Design vapor pressure (Po) of a cargo tank.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Design vapor pressure (Po) of a cargo tank. 154.405 Section 154.405 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Containment Systems §...

  19. 46 CFR 154.405 - Design vapor pressure (Po) of a cargo tank.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Design vapor pressure (Po) of a cargo tank. 154.405 Section 154.405 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Containment Systems §...

  20. 46 CFR 154.405 - Design vapor pressure (Po) of a cargo tank.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Design vapor pressure (Po) of a cargo tank. 154.405 Section 154.405 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Containment Systems §...

  1. 46 CFR 154.405 - Design vapor pressure (Po) of a cargo tank.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Design vapor pressure (Po) of a cargo tank. 154.405 Section 154.405 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Containment Systems §...

  2. Organic component vapor pressures and hygroscopicities of aqueous aerosol measured by optical tweezers.

    PubMed

    Cai, Chen; Stewart, David J; Reid, Jonathan P; Zhang, Yun-hong; Ohm, Peter; Dutcher, Cari S; Clegg, Simon L

    2015-01-29

    Measurements of the hygroscopic response of aerosol and the particle-to-gas partitioning of semivolatile organic compounds are crucial for providing more accurate descriptions of the compositional and size distributions of atmospheric aerosol. Concurrent measurements of particle size and composition (inferred from refractive index) are reported here using optical tweezers to isolate and probe individual aerosol droplets over extended timeframes. The measurements are shown to allow accurate retrievals of component vapor pressures and hygroscopic response through examining correlated variations in size and composition for binary droplets containing water and a single organic component. Measurements are reported for a homologous series of dicarboxylic acids, maleic acid, citric acid, glycerol, or 1,2,6-hexanetriol. An assessment of the inherent uncertainties in such measurements when measuring only particle size is provided to confirm the value of such a correlational approach. We also show that the method of molar refraction provides an accurate characterization of the compositional dependence of the refractive index of the solutions. In this method, the density of the pure liquid solute is the largest uncertainty and must be either known or inferred from subsaturated measurements with an error of <±2.5% to discriminate between different thermodynamic treatments.

  3. Rapid Chemical Vapor Infiltration of Silicon Carbide Minicomposites at Atmospheric Pressure.

    PubMed

    Petroski, Kenneth; Poges, Shannon; Monteleone, Chris; Grady, Joseph; Bhatt, Ram; Suib, Steven L

    2018-02-07

    The chemical vapor infiltration technique is one of the most popular for the fabrication of the matrix portion of a ceramic matrix composite. This work focuses on tailoring an atmospheric pressure deposition of silicon carbide onto carbon fiber tows using the methyltrichlorosilane (CH 3 SiCl 3 ) and H 2 deposition system at atmospheric pressure to create minicomposites faster than low pressure systems. Adjustment of the flow rate of H 2 bubbled through CH 3 SiCl 3 will improve the uniformity of the deposition as well as infiltrate the substrate more completely as the flow rate is decreased. Low pressure depositions conducted at 50 Torr deposit SiC at a rate of approximately 200 nm*h -1 , while the atmospheric pressure system presented has a deposition rate ranging from 750 nm*h -1 to 3.88 μm*h -1 . The minicomposites fabricated in this study had approximate total porosities of 3 and 6% for 10 and 25 SCCM infiltrations, respectively.

  4. Transport of Carbon Tetrachloride in a Fractured Vadose Zone due to Atmospheric Pressure Fluctuations, Diffusion, and Vapor Density

    NASA Astrophysics Data System (ADS)

    McCray, J. E.; Downs, W.; Falta, R. W.; Housley, T.

    2005-12-01

    DNAPL sources of carbon tetrachloride (CT) vapors are of interest at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering and Environmental Laboratory (INEEL). The site is underlain by thick fractured basalt that includes sedimentary interbeds, each are a few meters thick. Daily atmospheric pressure fluctuations serve as driving forces for CT vapor transport in the subsurface. Other important transport processes for vapor movement include gas-phase diffusion and density-driven transport. The objective of this research is to investigate the influence and relative importance of these processes on gaseous transport of CT. Gas pressure and vapor concentration measurements were conducted at various depths in two wells. A numerical multiphase flow model (TOUGH2), calibrated to field pressure data, is used to conduct sensitivity analyses to elucidate the importance of the different transport mechanisms. Results show that the basalt is highly permeable to vertical air flow. The pressure dampening occurs mainly in the sedimentary interbeds. Model-calibrated permeability values for the interbeds are similar to those obtained in a study by the U.S. Geological Survey for shallow sediments, and an order of magnitude higher than column-scale values obtained by previous studies conducted by INEEL scientists. The transport simulations indicate that considering the effect of barometric pressure changes is critical to simulating transport of pollutants in the vadose zone above the DNAPL source. Predicted concentrations can be orders of magnitude smaller than actual concentrations if the effect is not considered. Below the DNAPL vapor source, accounting for density and diffusion alone would yield acceptable results provided that a 20% error in concentrations are acceptable, and that simulating concentrations trends (and not actual concentrations) is the primary goal.

  5. Methods of Measuring Vapor Pressures of Lubricants With Their Additives Using TGA and/or Microbalances

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.; Miller, Michael K.; Montoya, Alex F.

    1996-01-01

    The life of a space system may be critically dependent on the lubrication of some of its moving parts. The vapor pressure, the quantity of the available lubricant, the temperature and the exhaust venting conductance passage are important considerations in the selection and application of a lubricant. In addition, the oil additives employed to provide certain properties of low friction, surface tension, antioxidant and load bearing characteristics, are also very important and need to be known with regard to their amounts and vapor pressures. This paper reports on the measurements and analyses carried out to obtain those parameters for two often employed lubricants, the Apiezon(TM)-C and the Krytox(TM) AB. The measurements were made employing an electronic microbalance and a thermogravimetric analyzer (TGA) modified to operate in a vacuum. The results have been compared to other data on these oils when available. The identification of the mass fractions of the additives in the oil and their vapor pressures as a function of the temperature were carried out. These may be used to estimate the lubricant life given its quantity and the system vent exhaust conductance. It was found that the Apiezon(TM)-C has three main components with different rates of evaporation while the Krytox(TM) did not indicate any measurable additive.

  6. Impacts of Changes of Indoor Air Pressure and Air Exchange Rate in Vapor Intrusion Scenarios

    PubMed Central

    Shen, Rui; Suuberg, Eric M.

    2016-01-01

    There has, in recent years, been increasing interest in understanding the transport processes of relevance in vapor intrusion of volatile organic compounds (VOCs) into buildings on contaminated sites. These studies have included fate and transport modeling. Most such models have simplified the prediction of indoor air contaminant vapor concentrations by employing a steady state assumption, which often results in difficulties in reconciling these results with field measurements. This paper focuses on two major factors that may be subject to significant transients in vapor intrusion situations, including the indoor air pressure and the air exchange rate in the subject building. A three-dimensional finite element model was employed with consideration of daily and seasonal variations in these factors. From the results, the variations of indoor air pressure and air exchange rate are seen to contribute to significant variations in indoor air contaminant vapor concentrations. Depending upon the assumptions regarding the variations in these parameters, the results are only sometimes consistent with the reports of several orders of magnitude in indoor air concentration variations from field studies. The results point to the need to examine more carefully the interplay of these factors in order to quantitatively understand the variations in potential indoor air exposures. PMID:28090133

  7. Impacts of Changes of Indoor Air Pressure and Air Exchange Rate in Vapor Intrusion Scenarios.

    PubMed

    Shen, Rui; Suuberg, Eric M

    2016-02-01

    There has, in recent years, been increasing interest in understanding the transport processes of relevance in vapor intrusion of volatile organic compounds (VOCs) into buildings on contaminated sites. These studies have included fate and transport modeling. Most such models have simplified the prediction of indoor air contaminant vapor concentrations by employing a steady state assumption, which often results in difficulties in reconciling these results with field measurements. This paper focuses on two major factors that may be subject to significant transients in vapor intrusion situations, including the indoor air pressure and the air exchange rate in the subject building. A three-dimensional finite element model was employed with consideration of daily and seasonal variations in these factors. From the results, the variations of indoor air pressure and air exchange rate are seen to contribute to significant variations in indoor air contaminant vapor concentrations. Depending upon the assumptions regarding the variations in these parameters, the results are only sometimes consistent with the reports of several orders of magnitude in indoor air concentration variations from field studies. The results point to the need to examine more carefully the interplay of these factors in order to quantitatively understand the variations in potential indoor air exposures.

  8. Mass Spectrometric Identification of Si-O-H(g) Species from the Reaction of Silica with Water Vapor at Atmospheric Pressure

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Fox, Dennis S.; Jacobson, Nathan S.

    1997-01-01

    A high-pressure sampling mass spectrometer was used to detect the volatile species formed from SiO2 at temperatures between 1200C and 1400C in a flowing water vapor/oxygen gas mixture at 1 bar total pressure. The primary vapor species identified was Si(OH)4. The fragment ion Si(OH)3+,' was observed in quantities 3 to 5 times larger than the parent ion Si(OH)4+. The Si(OH)3+ intensity was found to have a small temperature dependence and to increase with the water vapor partial pressure as expected. In addition, SiO(OH)+ believed to be a fragment of SiO(OH)2, was observed. These mass spectral results were compared to the behavior of silicon halides.

  9. Evaluation of Vapor Pressure and Ultra-High Vacuum Tribological Properties of Ionic Liquids (2) Mixtures and Additives

    NASA Technical Reports Server (NTRS)

    Morales, Wilfredo; Koch, Victor R.; Street, Kenneth W., Jr.; Richard, Ryan M.

    2008-01-01

    Ionic liquids are salts, many of which are typically viscous fluids at room temperature. The fluids are characterized by negligible vapor pressures under ambient conditions. These properties have led us to study the effectiveness of ionic liquids containing both organic cations and anions for use as space lubricants. In the previous paper we have measured the vapor pressure and some tribological properties of two distinct ionic liquids under simulated space conditions. In this paper we will present vapor pressure measurements for two new ionic liquids and friction coefficient data for boundary lubrication conditions in a spiral orbit tribometer using stainless steel tribocouples. In addition we present the first tribological data on mixed ionic liquids and an ionic liquid additive. Post mortem infrared and Raman analysis of the balls and races indicates the major degradation pathway for these two organic ionic liquids is similar to those of other carbon based lubricants, i.e. deterioration of the organic structure into amorphous graphitic carbon. The coefficients of friction and lifetimes of these lubricants are comparable to or exceed these properties for several commonly used space oils.

  10. 46 CFR 154.1836 - Vapor venting as a means of cargo tank pressure and temperature control.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... temperature control. 154.1836 Section 154.1836 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... LIQUEFIED GASES Operations § 154.1836 Vapor venting as a means of cargo tank pressure and temperature... cargo pressure and temperature control system under §§ 154.701 through 154.709 is operating and that...

  11. 46 CFR 154.1836 - Vapor venting as a means of cargo tank pressure and temperature control.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... temperature control. 154.1836 Section 154.1836 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... LIQUEFIED GASES Operations § 154.1836 Vapor venting as a means of cargo tank pressure and temperature... cargo pressure and temperature control system under §§ 154.701 through 154.709 is operating and that...

  12. 46 CFR 154.1836 - Vapor venting as a means of cargo tank pressure and temperature control.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... temperature control. 154.1836 Section 154.1836 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... LIQUEFIED GASES Operations § 154.1836 Vapor venting as a means of cargo tank pressure and temperature... cargo pressure and temperature control system under §§ 154.701 through 154.709 is operating and that...

  13. 46 CFR 154.1836 - Vapor venting as a means of cargo tank pressure and temperature control.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... temperature control. 154.1836 Section 154.1836 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... LIQUEFIED GASES Operations § 154.1836 Vapor venting as a means of cargo tank pressure and temperature... cargo pressure and temperature control system under §§ 154.701 through 154.709 is operating and that...

  14. 46 CFR 154.1836 - Vapor venting as a means of cargo tank pressure and temperature control.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... temperature control. 154.1836 Section 154.1836 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... LIQUEFIED GASES Operations § 154.1836 Vapor venting as a means of cargo tank pressure and temperature... cargo pressure and temperature control system under §§ 154.701 through 154.709 is operating and that...

  15. Thermodynamic Modeling and Mechanical Design of a Liquid Nitrogen Vaporization and Pressure Building Device

    NASA Astrophysics Data System (ADS)

    Leege, Brian J.

    The design of a liquid nitrogen vaporization and pressure building device that has zero product waste while recovering some of its stored energy is of interest for the cost reduction of nitrogen for use in industrial processes. Current devices may waste up to 30% of the gaseous nitrogen product by venting it to atmosphere. Furthermore, no attempt is made to recover the thermal energy available in the coldness of the cryogen. A seven step cycle with changing volumes and ambient heat addition is proposed, eliminating all product waste and providing the means of energy recovery from the nitrogen. This thesis discusses the new thermodynamic cycle and modeling as well as the mechanical design and testing of a prototype device. The prototype was able to achieve liquid nitrogen vaporization and pressurization up to 1000 psi, while full cycle validation is ongoing with promising initial results.

  16. Molar Mass and Second Virial Coefficient of Polyethylene Glycol by Vapor Pressure Osmometry

    ERIC Educational Resources Information Center

    Schwinefus, Jeffrey J.; Checkal, Caleb; Saksa, Brian; Baka, Nadia; Modi, Kalpit; Rivera, Carlos

    2015-01-01

    In this laboratory experiment, students determine the number-average molar masses and second virial coefficients of polyethylene glycol (PEG) polymers ranging in molar mass from 200 to 1500 g mol[superscript -1] using vapor pressure osmometry (VPO). Students assess VPO in relation to accurate molar mass calculations of PEG polymers. Additionally,…

  17. The hysteretic evapotranspiration - vapor pressure deficit relation

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Manzoni, S.; Katul, G. G.; Porporato, A. M.; Yang, D.

    2013-12-01

    Diurnal hysteresis between evapotranspiration (ET) and vapor pressure deficit (VPD) was reported in many ecosystems but justification for its onset and magnitude remain incomplete with biotic and abiotic factors invoked as possible explanations. To place these explanations within a mathematical framework, ';rate-dependent' hysteresis originating from a phase angle difference between periodic input and output time series is first considered. Lysimeter evaporation (E) measurements from wet bare soils and model calculations using the Penman equation demonstrate that the E-VPD hysteresis emerges without any biotic effects due to a phase angle difference (or time lag) between net radiation the main driver of E, and VPD. Modulations originating from biotic effects on the ET-VPD hysteresis were then considered. The phase angle difference representation earlier employed was mathematically transformed into a storage problem and applied to the soil-plant system. The transformed system shows that soil moisture storage within the root zone can produce an ET-VPD hysteresis prototypical of those generated by phase-angle differences. To explore the interplay between all the lags in the soil-plant-atmosphere system and phase angle differences among forcing and response variables, a detailed soil-plant-atmosphere continuum (SPAC) model was developed and applied to a grassland ecosystem. The results of the SPAC model suggest that the hysteresis magnitude depends on the radiation-VPD lag. The soil moisture dry-down simulations also suggest that modeled root water potential and leaf water potential are both better indicators of the hysteresis magnitude than soil moisture, suggesting that plant water status is the main factor regulating the hysteretic relation between ET and VPD. Hence, the genesis and magnitude of the ET-VPD hysteresis are controlled directly by both biotic factors and abiotic factors such as time lag between radiation and VPD originating from boundary layer processes

  18. Understanding Zeeman EIT Noise Correlation Spectra in Buffered Rb Vapor

    NASA Astrophysics Data System (ADS)

    O'Leary, Shannon; Zheng, Aojie; Crescimanno, Michael

    2014-05-01

    Noise correlation spectroscopy on systems manifesting Electromagnetically Induced Transparency (EIT) holds promise as a simple, robust method for performing high-resolution spectroscopy used in applications such as EIT-based atomic magnetometry and clocks. During laser light's propagation through a resonant medium, interaction with the medium converts laser phase noise into intensity noise. While this noise conversion can diminish the precision of EIT applications, noise correlation techniques transform the noise into a useful spectroscopic tool that can improve the application's precision. Using a single diode laser with large phase noise, we examine laser intensity noise and noise correlations from Zeeman EIT in a buffered Rb vapor. Of particular interest is a narrow noise correlation feature, resonant with EIT, that has been shown in earlier work to be power-broadening resistant at low powers. We report here on our recent experimental work and complementary theoretical modeling on EIT noise spectra, including a study of power broadening of the narrow noise correlation feature. Understanding the nature of the noise correlation spectrum is essential for optimizing EIT-noise applications.

  19. Water Vapor Effects on Silica-Forming Ceramics

    NASA Technical Reports Server (NTRS)

    Opila, E. J.; Greenbauer-Seng, L. (Technical Monitor)

    2000-01-01

    Silica-forming ceramics such as SiC and Si3N4 are proposed for applications in combustion environments. These environments contain water vapor as a product of combustion. Oxidation of silica-formers is more rapid in water vapor than in oxygen. Parabolic oxidation rates increase with the water vapor partial pressure with a power law exponent value close to one. Molecular water vapor is therefore the mobile species in silica. Rapid oxidation rates and large amounts of gases generated during the oxidation reaction in high water vapor pressures may result in bubble formation in the silica and nonprotective scale formation. It is also shown that silica reacts with water vapor to form Si(OH)4(g). Silica volatility has been modeled using a laminar flow boundary layer controlled reaction equation. Silica volatility depends on the partial pressure of water vapor, the total pressure, and the gas velocity. Simultaneous oxidation and volatilization reactions have been modeled with paralinear kinetics.

  20. Correlated environmental corrections in TOPEX/POSEIDON, with a note on ionospheric accuracy

    NASA Technical Reports Server (NTRS)

    Zlotnicki, V.

    1994-01-01

    Estimates of the effectiveness of an altimetric correction, and interpretation of sea level variability as a response to atmospheric forcing, both depend upon assuming that residual errors in altimetric corrections are uncorrelated among themselves and with residual sea level, or knowing the correlations. Not surprisingly, many corrections are highly correlated since they involve atmospheric properties and the ocean surface's response to them. The full corrections (including their geographically varying time mean values), show correlations between electromagnetic bias (mostly the height of wind waves) and either atmospheric pressure or water vapor of -40%, and between atmospheric pressure and water vapor of 28%. In the more commonly used collinear differences (after removal of the geographically varying time mean), atmospheric pressure and wave height show a -30% correlation, atmospheric pressure and water vapor a -10% correlation, both pressure and water vapor a 7% correlation with residual sea level, and a bit surprisingly, ionospheric electron content and wave height a 15% correlation. Only the ocean tide is totally uncorrelated with other corrections or residual sea level. The effectiveness of three ionospheric corrections (TOPEX dual-frequency, a smoothed version of the TOPEX dual-frequency, and Doppler orbitography and radiopositioning integrated by satellite (DORIS) is also evaluated in terms of their reduction in variance of residual sea level. Smooth (90-200 km along-track) versions of the dual-frequency altimeter ionosphere perform best both globally and within 20 deg in latitude from the equator. The noise variance in the 1/s TOPEX inospheric samples is approximately (11 mm) squared, about the same as noise in the DORIS-based correction; however, the latter has its error over scales of order 10(exp 3) km. Within 20 deg of the equator, the DORIS-based correction adds (14 mm) squared to the residual sea level variance.

  1. Aqueous solubilities, vapor pressures, and 1-octanol-water partition coefficients for C9-C14 linear alkylbenzenes

    USGS Publications Warehouse

    Sherblom, P.M.; Gschwend, P.M.; Eganhouse, R.P.

    1992-01-01

    Measurements and estimates of aqueous solubilities, 1-octanol-water partition coefficients (Kow), and vapor pressures were made for 29 linear alkylbenzenes having alkyl chain lengths of 9-14 carbons. The ranges of values observed were vapor pressures from 0.002 to 0.418 Pa, log Kow, from 6.83 to 9.95, and aqueous solubilities from 4 to 38 nmol??L-1. Measured values exhibited a relationship to both the alkyl chain length and the position of phenyl substitution on the alkyl chain. Measurement of the aqueous concentrations resulting from equilibration of a mixture of alkylbenzenes yielded higher than expected values, indicating cosolute or other interactive effects caused enhanced aqueous concentrations of these compounds. ?? 1992 American Chemical Society.

  2. Real-Time Optical Monitoring and Simulations of Gas Phase Kinetics in InN Vapor Phase Epitaxy at High Pressure

    NASA Technical Reports Server (NTRS)

    Dietz, Nikolaus; Woods, Vincent; McCall, Sonya D.; Bachmann, Klaus J.

    2003-01-01

    Understanding the kinetics of nucleation and coalescence of heteroepitaxial thin films is a crucial step in controlling a chemical vapor deposition process, since it defines the perfection of the heteroepitaxial film both in terms of extended defect formation and chemical integrity of the interface. The initial nucleation process also defines the film quality during the later stages of film growth. The growth of emerging new materials heterostructures such as InN or In-rich Ga(x)In(1-x)N require deposition methods operating at higher vapor densities due to the high thermal decomposition pressure in these materials. High nitrogen pressure has been demonstrated to suppress thermal decomposition of InN, but has not been applied yet in chemical vapor deposition or etching experiments. Because of the difficulty with maintaining stochiometry at elevated temperature, current knowledge regarding thermodynamic data for InN, e.g., its melting point, temperature-dependent heat capacity, heat and entropy of formation are known with far less accuracy than for InP, InAs and InSb. Also, no information exists regarding the partial pressures of nitrogen and phosphorus along the liquidus surfaces of mixed-anion alloys of InN, of which the InN(x)P(1-x) system is the most interesting option. A miscibility gap is expected for InN(x)P(1-x) pseudobinary solidus compositions, but its extent is not established at this point by experimental studies under near equilibrium conditions. The extension of chemical vapor deposition to elevated pressure is also necessary for retaining stoichiometric single phase surface composition for materials that are characterized by large thermal decomposition pressures at optimum processing temperatures.

  3. The pressure-dilatation correlation in compressible flows

    NASA Technical Reports Server (NTRS)

    Sarkar, S.

    1992-01-01

    Simulations of simple compressible flows have been performed to enable the direct estimation of the pressure-dilatation correlation. The generally accepted belief that this correlation may be important in high-speed flows has been verified by the simulations. The pressure-dilatation correlation is theoretically investigated by considering the equation for fluctuating pressure in an arbitrary compressible flow. This leads to the isolation of a component of the pressure-dilatation that exhibits temporal oscillations on a fast time scale. Direct numerical simulations of homogeneous shear turbulence and isotropic turbulence show that this fast component has a negligible contribution to the evolution of turbulent kinetic energy. Then, an analysis for the case of homogeneous turbulence is performed to obtain a formal solution for the nonoscillatory pressure-dilatation. Simplifications lead to a model that algebraically relates the pressure-dilatation to quantities traditionally obtained in incompressible turbulence closures. The model is validated by direct comparison with the simulations.

  4. A vapor generator for transonic flow visualization

    NASA Technical Reports Server (NTRS)

    Bruce, Robert A.; Hess, Robert W.; Rivera, Jose A., Jr.

    1989-01-01

    A vapor generator was developed for use in the NASA Langley Transonic Dynamics Tunnel (TDT). Propylene glycol was used as the vapor material. The vapor generator system was evaluated in a laboratory setting and then used in the TDT as part of a laser light sheet flow visualization system. The vapor generator provided satisfactory seeding of the air flow with visible condensate particles, smoke, for tests ranging from low subsonic through transonic speeds for tunnel total pressures from atmospheric pressure down to less than 0.1 atmospheric pressure.

  5. Highly ionized physical vapor deposition plasma source working at very low pressure

    NASA Astrophysics Data System (ADS)

    Stranak, V.; Herrendorf, A.-P.; Drache, S.; Cada, M.; Hubicka, Z.; Tichy, M.; Hippler, R.

    2012-04-01

    Highly ionized discharge for physical vapor deposition at very low pressure is presented in the paper. The discharge is generated by electron cyclotron wave resonance (ECWR) which assists with ignition of high power impulse magnetron sputtering (HiPIMS) discharge. The magnetron gun (with Ti target) was built into the single-turn coil RF electrode of the ECWR facility. ECWR assistance provides pre-ionization effect which allows significant reduction of pressure during HiPIMS operation down to p = 0.05 Pa; this is nearly more than an order of magnitude lower than at typical pressure ranges of HiPIMS discharges. We can confirm that nearly all sputtered particles are ionized (only Ti+ and Ti++ peaks are observed in the mass scan spectra). This corresponds well with high plasma density ne ˜ 1018 m-3, measured during the HiPIMS pulse.

  6. Improved Assessment Strategies for Vapor Intrusion Passive Samplers and Building Pressure Control

    DTIC Science & Technology

    2013-09-01

    pressure control. Matrix Analyte Method Container Holding Time (Days) Vapor Radon McHugh , Hammond, Nickels , and Hartman, 2008 Tedlar ® bag 14...2: Diffusive Sampling,” ISO 16017-2:2003. McHugh T. E., D. E. Hammond, T. Nickels , and B. Hartman. 2008. “Use of Radon Measurements for Evaluation...Control I. D. Rivera-Duarte D. B. Chadwick SSC Pacific T. McAlary H. Groenevelt T. Creamer D. Bertrand Geosyntec Consultants, Inc. T. McHugh

  7. Modeling and Real-Time Process Monitoring of Organometallic Chemical Vapor Deposition of III-V Phosphides and Nitrides at Low and High Pressure

    NASA Technical Reports Server (NTRS)

    Bachmann, K. J.; Cardelino, B. H.; Moore, C. E.; Cardelino, C. A.; Sukidi, N.; McCall, S.

    1999-01-01

    The purpose of this paper is to review modeling and real-time monitoring by robust methods of reflectance spectroscopy of organometallic chemical vapor deposition (OMCVD) processes in extreme regimes of pressure. The merits of p-polarized reflectance spectroscopy under the conditions of chemical beam epitaxy (CBE) and of internal transmission spectroscopy and principal angle spectroscopy at high pressure are assessed. In order to extend OMCVD to materials that exhibit large thermal decomposition pressure at their optimum growth temperature we have designed and built a differentially-pressure-controlled (DCP) OMCVD reactor for use at pressures greater than or equal to 6 atm. We also describe a compact hard-shell (CHS) reactor for extending the pressure range to 100 atm. At such very high pressure the decomposition of source vapors occurs in the vapor phase, and is coupled to flow dynamics and transport. Rate constants for homogeneous gas phase reactions can be predicted based on a combination of first principles and semi-empirical calculations. The pressure dependence of unimolecular rate constants is described by RRKM theory, but requires variational and anharmonicity corrections not included in presently available calculations with the exception of ammonia decomposition. Commercial codes that include chemical reactions and transport exist, but do not adequately cover at present the kinetics of heteroepitaxial crystal growth.

  8. Structure-property relationships in halogenbenzoic acids: Thermodynamics of sublimation, fusion, vaporization and solubility.

    PubMed

    Zherikova, Kseniya V; Svetlov, Aleksey A; Kuratieva, Natalia V; Verevkin, Sergey P

    2016-10-01

    Temperature dependences of vapor pressures for 2-, 3-, and 4-bromobenzoic acid, as well as for five isomeric bromo-methylbenzoic acids were studied by the transpiration method. Melting temperatures and enthalpies of fusion for all isomeric bromo-methylbenzoic acids and 4-bromobenzoic acid were measured with a DSC. The molar enthalpies of sublimation and vaporization were derived. These data together with results available in the literature were collected and checked for internal consistency using a group-additivity procedure and results from X-ray structural diffraction studies. Specific (hydrogen bonding) interactions in the liquid and in the crystal phase of halogenbenzoic acids were quantified based on experimental values of vaporization and sublimation enthalpies. Structure-property correlations of solubilities of halogenobenzoic acids with sublimation pressures and sublimation enthalpies were developed and solubilities of bromo-benzoic acids were estimated. These new results resolve much of the ambiguity in the available thermochemical and solubility data on bromobenzoic acids. The approach based on structure property correlations can be applied for the assessment of water solubility of sparingly soluble drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Correlation among Cirrus Ice Content, Water Vapor and Temperature in the TTL as Observed by CALIPSO and Aura-MLS

    NASA Technical Reports Server (NTRS)

    Flury, T.; Wu, D. L.; Read, W. G.

    2012-01-01

    Water vapor in the tropical tropopause layer (TTL) has a local radiative cooling effect. As a source for ice in cirrus clouds, however, it can also indirectly produce infrared heating. Using NASA A-Train satellite measurements of CALIPSO and Aura/MLS we calculated the correlation of water vapor, ice water content and temperature in the TTL. We find that temperature strongly controls water vapor (correlation r =0.94) and cirrus clouds at 100 hPa (r = -0.91). Moreover we observe that the cirrus seasonal cycle is highly (r =-0.9) anticorrelated with the water vapor variation in the TTL, showing higher cloud occurrence during December-January-February. We further investigate the anticorrelation on a regional scale and find that the strong anticorrelation occurs generally in the ITCZ (Intertropical Convergence Zone). The seasonal cycle of the cirrus ice water content is also highly anticorrelated to water vapor (r = -0.91) and our results support the hypothesis that the total water at 100 hPa is roughly constant. Temperature acts as a main regulator for balancing the partition between water vapor and cirrus clouds. Thus, to a large extent, the depleting water vapor in the TTL during DJF is a manifestation of cirrus formation.

  10. Oxidation/vaporization of silicide coated columbium base alloys

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.; Stearns, C. A.

    1971-01-01

    Mass spectrometric and target collection experiments were made at 1600 K to elucidate the mode of oxidative vaporization of two columbium alloys, fused-slurry-coated with a complex silicide former (Si-20Cr-Fe). At oxygen pressures up to 0.0005 torr the major vapor component detected by mass spectrometry for oxidized samples was gaseous silicon monoxide. Analysis of condensates collected at oxygen pressures of 0.1, 1.0 and 10 torr revealed that chromium-, silicon-, iron- and tungsten- containing species were the major products of vaporization. Equilibrium thermochemical diagrams were constructed for the metal-oxygen system corresponding to each constituent metal in both the coating and base alloy. The major vaporizing species are expected to be the gaseous oxides of chromium, silicon, iron and tungsten. Plots of vapor phase composition and maximum vaporization rate versus oxygen pressure were calculated for each coating constituent. The major contribution to weight loss by vaporization at oxygen pressures above 1 torr was shown to be the chromium-containing species.

  11. A systematic study of atmospheric pressure chemical vapor deposition growth of large-area monolayer graphene.

    PubMed

    Liu, Lixin; Zhou, Hailong; Cheng, Rui; Chen, Yu; Lin, Yung-Chen; Qu, Yongquan; Bai, Jingwei; Ivanov, Ivan A; Liu, Gang; Huang, Yu; Duan, Xiangfeng

    2012-01-28

    Graphene has attracted considerable interest as a potential material for future electronics. Although mechanical peel is known to produce high quality graphene flakes, practical applications require continuous graphene layers over a large area. The catalyst-assisted chemical vapor deposition (CVD) is a promising synthetic method to deliver wafer-sized graphene. Here we present a systematic study on the nucleation and growth of crystallized graphene domains in an atmospheric pressure chemical vapor deposition (APCVD) process. Parametric studies show that the mean size of the graphene domains increases with increasing growth temperature and CH 4 partial pressure, while the density of domains decreases with increasing growth temperature and is independent of the CH 4 partial pressure. Our studies show that nucleation of graphene domains on copper substrate is highly dependent on the initial annealing temperature. A two-step synthetic process with higher initial annealing temperature but lower growth temperature is developed to reduce domain density and achieve high quality full-surface coverage of monolayer graphene films. Electrical transport measurements demonstrate that the resulting graphene exhibits a high carrier mobility of up to 3000 cm 2 V -1 s -1 at room temperature.

  12. Performance Measurements and Mapping of a R-407C Vapor Injection Scroll Compressor

    NASA Astrophysics Data System (ADS)

    Lumpkin, Domenique; Spielbauer, Niklas; Groll, Eckhard

    2017-08-01

    Environmental conditions significantly define the performance of HVAC&R systems. Vapor compression systems in hot climates tend to operate at higher pressure ratios, leading to increased discharge temperatures. Higher discharge temperatures can lead to higher irreversibilities in the compression process, lower specific enthalpies differences across the evaporator, and possibly a reduction in the compressor life due to the breakdown of the oil used for lubrication. To counter these effects, the use of economized, vapor injection compressors is proposed for vapor compression systems in high temperature climates. Such compressors are commercially available for refrigeration applications, in particular, supermarket refrigeration systems. However, compressor maps for vapor injection compressors are limited and none exist for R-407C. Through calorimeter testing, a compressor map for a single-port vapor injection compressor using R-407C was developed. A standard correlation for mapping single-port vapor injection compressors is proposed and validated using the compressor test results. The system and compressor performance with and without vapor injection was considered. As expected, with vapor injection there was a reduction in compressor discharge temperatures and an increase in the system coefficient of performance. The proposed dimensionless correlation is more accurate than the AHRI polynomial for mapping the injection ratio, discharge temperature, and compressor heat loss. The predicted volumetric efficiency values from the dimensionless correlation is within 1% of the measured valued. Similarly, the predicted isentropic efficiency values are within 2% of the measured values.

  13. Calibrated vapor generator source

    DOEpatents

    Davies, John P.; Larson, Ronald A.; Goodrich, Lorenzo D.; Hall, Harold J.; Stoddard, Billy D.; Davis, Sean G.; Kaser, Timothy G.; Conrad, Frank J.

    1995-01-01

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet.

  14. Calibrated vapor generator source

    DOEpatents

    Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.

    1995-09-26

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.

  15. Study of liquid and vapor flow into a Centaur capillary device

    NASA Technical Reports Server (NTRS)

    Blatt, M. H.; Risberg, J. A.

    1979-01-01

    The following areas of liquid and vapor flow were analyzed and experimentally evaluated; 1) the refilling of capillary devices with settled liquid, and 2) vapor flow across wetted screens. These investigations resulted in: 1) the development of a versatile computer program that was successfully correlated with test data and used to predict Centaur D-1S LO2 and LH2 start basket refilling; 2) the development of a semi-empirical model that was only partially correlated with data due to difficulties in obtaining repeatable test results. Also, a comparison was made to determine the best propellant management system for the Centaur D-1S vehicle. The comparison identified the basline Centaur D-1S system (using pressurization, boost pumps and propellant settling) as the best candidate based on payload weight penalty. However, other comparison criteria and advanced mission condition were identified where pressure fed systems, thermally subcooled boost pumps and capillary devices would be selected as attractive alternatives.

  16. Vapor phase pyrolysis

    NASA Technical Reports Server (NTRS)

    Steurer, Wolfgang

    1992-01-01

    The vapor phase pyrolysis process is designed exclusively for the lunar production of oxygen. In this concept, granulated raw material (soil) that consists almost entirely of metal oxides is vaporized and the vapor is raised to a temperature where it dissociates into suboxides and free oxygen. Rapid cooling of the dissociated vapor to a discrete temperature causes condensation of the suboxides, while the oxygen remains essentially intact and can be collected downstream. The gas flow path and flow rate are maintained at an optimum level by control of the pressure differential between the vaporization region and the oxygen collection system with the aid of the environmental vacuum.

  17. The functional dependence of canopy conductance on water vapor pressure deficit revisited

    NASA Astrophysics Data System (ADS)

    Fuchs, Marcel; Stanghellini, Cecilia

    2018-03-01

    Current research seeking to relate between ambient water vapor deficit (D) and foliage conductance (g F ) derives a canopy conductance (g W ) from measured transpiration by inverting the coupled transpiration model to yield g W = m - n ln(D) where m and n are fitting parameters. In contrast, this paper demonstrates that the relation between coupled g W and D is g W = AP/D + B, where P is the barometric pressure, A is the radiative term, and B is the convective term coefficient of the Penman-Monteith equation. A and B are functions of g F and of meteorological parameters but are mathematically independent of D. Keeping A and B constant implies constancy of g F . With these premises, the derived g W is a hyperbolic function of D resembling the logarithmic expression, in contradiction with the pre-set constancy of g F . Calculations with random inputs that ensure independence between g F and D reproduce published experimental scatter plots that display a dependence between g W and D in contradiction with the premises. For this reason, the dependence of g W on D is a computational artifact unrelated to any real effect of ambient humidity on stomatal aperture and closure. Data collected in a maize field confirm the inadequacy of the logarithmic function to quantify the relation between canopy conductance and vapor pressure deficit.

  18. Maple sap uptake, exudation, and pressure changes correlated with freezing exotherms and thawing endotherms.

    PubMed

    Tyree, M T

    1983-10-01

    Sap flow rates and sap pressure changes were measured in dormant sugar maple trees (Acer saccharum Marsh.). In the forest, sap flow rates and pressure changes were measured from tap holes drilled into tree trunks in mature trees and sap flow rates were measured from the base of excised branches. Excised branches were also brought into the laboratory where air temperature could be carefully controlled in a refrigerated box and sap flow rates and sap pressures were measured from the cut base of the branches.Under both forest and laboratory conditions, sap uptake occurred as the wood temperature declined but much more rapid sap uptake correlated with the onset of the freezing exotherm. When sap pressures were measured under conditions of negligible volume displacement, the sap pressure rapidly fell to -60 to -80 kilopascals at the start of the freezing exotherm. The volume of water uptake and the rate of uptake depended on the rate of freezing. A slow freezing rate correlated with a large volume of water uptake, a fast freezing rate induced a smaller volume of water uptake. The volume of water uptake ranged from 0.02 to 0.055 grams water per gram dry weight of sapwood. The volume of water exuded after thawing was usually less than the volume of uptake so that after several freezing and thawing cycles the sapwood water content increased from 0.7 to 0.8 grams water per gram dry weight.These results are discussed in terms of a physical model of the mechanism of maple sap uptake and exudation first proposed by P. E. R. O'Malley. The proposed mechanism of sap uptake is by vapor distillation in air filled wood fiber lumina during the freezing of minor branches. Gravity and pressurized air bubbles (compressed during freezing) cause sap flow from the canopy down the tree after the thaw.

  19. Cavitating flow during water hammer using a generalized interface vaporous cavitation model

    NASA Astrophysics Data System (ADS)

    Sadafi, Mohamadhosein; Riasi, Alireza; Nourbakhsh, Seyed Ahmad

    2012-10-01

    In a transient flow simulation, column separation may occur when the calculated pressure head decreases to the saturated vapor pressure head in a computational grid. Abrupt valve closure or pump failure can result in a fast transient flow with column separation, potentially causing problems such as pipe failure, hydraulic equipment damage, cavitation or corrosion. This paper reports a numerical study of water hammer with column separation in a simple reservoir-pipeline-valve system and pumping station. The governing equations for two-phase transient flow in pipes are solved based on the method of characteristics (MOC) using a generalized interface vaporous cavitating model (GIVCM). The numerical results were compared with the experimental data for validation purposes, and the comparison indicated that the GIVCM describes the experimental results more accurately than the discrete vapor cavity model (DVCM). In particular, the GIVCM correlated better with the experimental data than the DVCM in terms of timing and pressure magnitude. The effects of geometric and hydraulic parameters on flow behavior in a pumping station with column separation were also investigated in this study.

  20. Propagation of detonations in hydrazine vapor

    NASA Technical Reports Server (NTRS)

    Heinrich, H. J.

    1985-01-01

    In the range of greater hydrazine vapor pressure, detonation speed depends exclusively on the extent of the ammonia decomposition in the second reaction stage. As vapor pressure decreases, the ammonia disintegration speed becomes increasingly slower and the reaction reached in the reaction zone increasingly decreases until finally, in the vapor pressure range between 53 and 16 Torr, the contribution of the second stage to detonation propagation disappears, and only the first stage remains active. Since the disintegration speed of the hydrazine in this pressure range has decreased markedly as well, no level, but rather only spinning, detonations occur. Temporary separations of the impact front and the reaction zone in the process lead to fluctuations of the detonation speed.

  1. Determination of saturation pressure and enthalpy of vaporization of semi-volatile aerosols: the integrated volume mentod

    EPA Science Inventory

    This study presents the integrated volume method for estimating saturation pressure and enthalpy of vaporization of a whole aerosol distribution. We measure the change of total volume of an aerosol distribution between a reference state and several heated states, with the heating...

  2. Vapor-phase concentrations of PAHs and their derivatives determined in a large city: correlations with their atmospheric aerosol concentrations.

    PubMed

    Barrado, Ana Isabel; García, Susana; Sevillano, Marisa Luisa; Rodríguez, Jose Antonio; Barrado, Enrique

    2013-11-01

    Thirteen PAHs, five nitro-PAHs and two hydroxy-PAHs were determined in 55 vapor-phase samples collected in a suburban area of a large city (Madrid, Spain), from January 2008 to February 2009. The data obtained revealed correlations between the concentrations of these compounds and a series of meteorological factors (e.g., temperature, atmospheric pressure) and physical-chemical factors (e.g., nitrogen and sulfur oxides). As a consequence, seasonal trends were observed in the atmospheric pollutants. A "mean sample" for the 14-month period would contain a total PAH concentration of 13835±1625 pg m(-3) and 122±17 pg m(-3) of nitro-PAHs. When the data were stratified by season, it emerged that a representative sample of the coldest months would contain 18900±2140 pg m(-3) of PAHs and 150±97 pg m(-3) of nitro-PAHs, while in an average sample collected in the warmest months, these values drop to 9293±1178 pg m(-3) for the PAHs and to 97±13 pg m(-3) for the nitro-PAHs. Total vapor phase concentrations of PAHs were one order of magnitude higher than concentrations detected in atmospheric aerosol samples collected on the same dates. Total nitro-PAH concentrations were comparable to their aerosol concentrations whereas vapor phase OH-PAHs were below their limits of the detection, indicating these were trapped in airborne particles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Thermodynamic Properties of Nitrogen Including Liquid and Vapor Phases from 63K to 2000K with Pressures to 10,000 Bar

    NASA Technical Reports Server (NTRS)

    Jacobsen, Richard T.; Stewart, Richard B.

    1973-01-01

    Tables of thermodynamic properties of nitrogen are presented for the liquid and vapor phases for temperatures from the freezing line to 2000K and pressures to 10,000 bar. The tables include values of density, internal energy, enthalpy, entropy, isochoric heat capacity, isobaric heat capacity velocity of sound, the isotherm derivative, and the isochor derivative. The thermodynamic property tables are based on an equation of state, P=P (p,T), which accurately represents liquid and gaseous nitrogen for the range of pressures and temperatures covered by the tables. Comparisons of property values calculated from the equation of state with measured values for P-p-T, heat capacity, enthalpy, latent heat, and velocity of sound are included to illustrate the agreement between the experimental data and the tables of properties presented here. The coefficients of the equation of state were determined by a weighted least squares fit to selected P-p-T data and, simultaneously, to isochoric heat capacity data determined by corresponding states analysis from oxygen data, and to data which define the phase equilibrium criteria for the saturated liquid and the saturated vapor. The vapor pressure equation, melting curve equation, and an equation to represent the ideal gas heat capacity are also presented. Estimates of the accuracy of the equation of state, the vapor pressure equation, and the ideal gas heat capacity equation are given. The equation of state, derivatives of the equation, and the integral functions for calculating derived thermodynamic properties are included.

  4. Vapor pressures, thermodynamic stability, and fluorescence properties of three 2,6-alkyl naphthalenes.

    PubMed

    Santos, Ana Filipa L O M; Oliveira, Juliana A S A; Ribeiro da Silva, Maria D M C; Monte, Manuel J S

    2016-03-01

    This work reports the experimental determination of relevant thermodynamic properties and the characterization of luminescence properties of the following polycyclic aromatic hydrocarbons (PAHs): 2,6-diethylnaphthalene, 2,6-diisopropylnaphthalene and 2,6-di-tert-butylnaphthalene. The standard (p(o) = 0.1 MPa) molar enthalpies of combustion, ΔcHm(o), of the three compounds were determined using static bomb combustion calorimetry. The vapor pressures of the crystalline phase of 2,6-diisopropylnaphthalene and 2,6-di-tert-butylnaphthalene were measured at different temperatures using the Knudsen effusion method and the vapor pressures of both liquid and crystalline phases of 2,6-diethylnaphthalene were measured by means of a static method. The temperatures and the molar enthalpies of fusion of the three compounds were determined using differential scanning calorimetry. The gas-phase molar heat capacities and absolute entropies of the three 2,6-dialkylnaphthalenes studied were determined computationally. The thermodynamic stability of the compounds in both the crystalline and gaseous phases was evaluated by the determination of the Gibbs energies of formation and compared with the ones reported in the literature for 2,6-dimethylnaphthalene. From fluorescence spectroscopy measurements, the optical properties of the compounds studied and of naphthalene were evaluated in solution and in the solid state. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Temperature/pressure and water vapor sounding with microwave spectroscopy

    NASA Technical Reports Server (NTRS)

    Muhleman, D. O.; Janssen, M. A.; Clancy, R. T.; Gulkis, S.; Mccleese, D. J.; Zurek, R.; Haberle, R. M.; Frerking, M.

    1992-01-01

    Two intense microwave spectra lines exist in the martian atmosphere that allow unique sounding capabilities: water vapor at 183 GHz and the (2-1) rotational line of CO at 230 GHz. Microwave spectra line sounding is a well-developed technique for the Earth's atmosphere for sounding from above from spacecraft and airplanes, and from below from fixed surface sites. Two simple instruments for temperature sounding on Mars (the CO line) and water vapor measurements are described. The surface sounder proposed for the MESUR sites is designed to study the boundary layer water vapor distribution and the temperature/pressure profiles with vertical resolution of 0.25 km up to 1 km with reduced resolution above approaching a scale height. The water channel will be sensitive to a few tenths of a micrometer of water and the temperature profile will be retrieved to an accuracy between 1 and 2 K. The latter is routinely done on the Earth using oxygen lines near 60 GHz. The measurements are done with a single-channel heterodyne receiver looking into a 10-cm mirror that is canned through a range of elevation angles plus a target load. The frequency of the receiver is sweep across the water and CO lines generating the two spectra at about 1-hr intervals throughout the mission. The mass and power for the proposed instrument are 2 kg and 5-8 W continuously. The measurements are completely immune to the atmospheric dust and ice particle loads. It was felt that these measurements are the ultimate ones to properly study the martian boundary layer from the surface to a few kilometers. Sounding from above requires an orbiting spacecraft with multichannel microwave spectrometers such as the instrument proposed for MO by a subset of the authors, a putative MESUR orbiter, and a proposed Discovery mission called MOES. Such an instrument can be built with less than 10 kg and use less than 15 W. The obvious advantage of this approach is that the entire atmosphere can be sounded for temperature and

  6. Low-pressure chemical vapor deposition of low in situ phosphorus doped silicon thin films

    NASA Astrophysics Data System (ADS)

    Sarret, M.; Liba, A.; Bonnaud, O.

    1991-09-01

    In situ low phosphorus doped silicon films are deposited onto glass substrates by low-pressure chemical vapor deposition method. The deposition parameters, temperature, total pressure, and pure silane gas flow are, respectively, fixed at 550 °C, 0.08 Torr, and 50 sccm. The varying deposition parameter is phosphine/silane mole ratio; when this ratio varies from 2×10-6 to 4×10-4, the phosphorus concentration and the resistivity after annealing, respectively, vary from 2×1018 to 3×1020 atoms cm-3 and from 1.5 Ω cm to 2.5×10-3 Ω cm.

  7. Pressurization of a Flightweight, Liquid Hydrogen Tank: Evaporation & Condensation at a Liquid/Vapor Interface

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E. M.

    2017-01-01

    This paper presents an analysis and simulation of evaporation and condensation at a motionless liquid/vapor interface. A 1-D model equation, emphasizing heat and mass transfer at the interface, is solved in two ways, and incorporated into a subgrid interface model within a CFD simulation. Simulation predictions are compared with experimental data from the CPST Engineering Design Unit tank, a cryogenic fluid management test tank in 1-g. The numerical challenge here is the physics of the liquid/vapor interface; pressurizing the ullage heats it by several degrees, and sets up an interfacial temperature gradient that transfers heat to the liquid phase-the rate limiting step of condensation is heat conducted through the liquid and vapor. This physics occurs in thin thermal layers O(1 mm) on either side of the interface which is resolved by the subgrid interface model. An accommodation coefficient of 1.0 is used in the simulations which is consistent with theory and measurements. This model is predictive of evaporation/condensation rates, that is, there is no parameter tuning.

  8. Local Time Variation of Water Vapor on Mars using TES Aerobraking Spectra

    NASA Astrophysics Data System (ADS)

    AlShamsi, M. R.; AlJanaahi, A. A.; Smith, M. D.; Altunaiji, E. S.; Edwards, C. S.

    2016-12-01

    During the Mars Global Surveyor (MGS) aerobraking phase, the spacecraft was in a large elliptical orbit that enabled the Thermal Emission Spectrometer (TES) instrument to sample many local times of Mars. The observed TES aerobraking spectra during that phase cover the time range between Mars Year 23, Ls=180° and Mars Year 24, Ls=30°. These TES aerobraking spectra have never been analyzed to study local time variations on Mars. Through radiative transfer modeling of the spectra, surface and atmospheric temperature, dust and water ice optical depth, and water vapor were retrieved. Specifically, the water vapor retrievals during aerobraking have similar seasonal and latitudinal trends to those in other Mars years observed by TES. These retrievals show somewhat higher water vapor during the morning hours (09:00-12:00) than in the afternoon (12:00-17:00) during southern summer (Ls=270°-330°) and little variation as a function of local time for southern fall (Ls=0°-30°). These retrievals show water vapor has a positive correlation with surface pressure (or negative correlation with altitude) indicating that water vapor is mixed in the lowest 10-20 km.

  9. "Pressure Blocking" Effect in the Growing Vapor Bubble in a Highly Superheated Liquid

    NASA Astrophysics Data System (ADS)

    Zudin, Yu. B.; Zenin, V. V.

    2016-09-01

    The problem on the growth of a vapor bubble in a liquid whose superheating enthalpy exceeds the phase transition heat has been considered. A physical model of the "pressure blocking" in the bubble is presented. The problem for the conditions of the experiment on the effervescence of a butane drop has been solved numerically. An algorithm for constructing an analytical solution of the problem on the bubble growth in a highly superheated liquid is proposed.

  10. Beer Law Constants and Vapor Pressures of HgI2 over HgI2(s,l)

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Zhu, Shen; Ramachandran, N.; Burger, A.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The optical absorption spectra of the vapor phase over HgI2(s,l) were measured for wavelengths between 200 and 600 nm. The spectra show that the sample sublimed congruently into HgI2 with no Hg or I2 absorption spectrum observed. The Beer's Law constants for 15 wavelengths between 200 and 440 nm were determined. From these constants the vapor pressure of H912, P, was established as a function of temperatures for the liquid and the solid Beta-phases. The expressions correspond to the enthalpies of vaporization and sublimation of 15.30 and 20.17 Kcal/mole, respectively, for the liquid and the Beta-phase HgI2. The difference in the enthalpies gives an enthalpy of fusion of 4.87 Kcal/mole and the intersection of the two expressions gives a melting point of 537 K.

  11. Performance of some nucleation theories with a nonsharp droplet-vapor interface.

    PubMed

    Napari, Ismo; Julin, Jan; Vehkamäki, Hanna

    2010-10-21

    Nucleation theories involving the concept of nonsharp boundary between the droplet and vapor are compared to recent molecular dynamics (MD) simulation data of Lennard-Jones vapors at temperatures above the triple point. The theories are diffuse interface theory (DIT), extended modified liquid drop-dynamical nucleation theory (EMLD-DNT), square gradient theory (SGT), and density functional theory (DFT). Particular attention is paid to thermodynamic consistency in the comparison: the applied theories either use or, with a proper parameter adjustment, result in the same values of equilibrium vapor pressure, bulk liquid density, and surface tension as the MD simulations. Realistic pressure-density correlations are also used. The best agreement between the simulated nucleation rates and calculations is obtained from DFT, SGT, and EMLD-DNT, all of which, in the studied temperature range, show deviations of less than one order of magnitude in the nucleation rate. DIT underestimates the nucleation rate by up to two orders of magnitude. DFT and SGT give the best estimate of the molecular content of the critical nuclei. Overall, at the vapor conditions of this study, all the investigated theories perform better than classical nucleation theory in predicting nucleation rates.

  12. Vapor Bubbles

    NASA Astrophysics Data System (ADS)

    Prosperetti, Andrea

    2017-01-01

    This article reviews the fundamental physics of vapor bubbles in liquids. Work on bubble growth and condensation for stationary and translating bubbles is summarized and the differences with bubbles containing a permanent gas stressed. In particular, it is shown that the natural frequency of a vapor bubble is proportional not to the inverse radius, as for a gas bubble, but to the inverse radius raised to the power 2/3. Permanent gas dissolved in the liquid diffuses into the bubble with strong effects on its dynamics. The effects of the diffusion of heat and mass on the propagation of pressure waves in a vaporous bubbly liquid are discussed. Other topics briefly touched on include thermocapillary flow, plasmonic nanobubbles, and vapor bubbles in an immiscible liquid.

  13. Passive Vaporizing Heat Sink

    NASA Technical Reports Server (NTRS)

    Knowles, TImothy R.; Ashford, Victor A.; Carpenter, Michael G.; Bier, Thomas M.

    2011-01-01

    A passive vaporizing heat sink has been developed as a relatively lightweight, compact alternative to related prior heat sinks based, variously, on evaporation of sprayed liquids or on sublimation of solids. This heat sink is designed for short-term dissipation of a large amount of heat and was originally intended for use in regulating the temperature of spacecraft equipment during launch or re-entry. It could also be useful in a terrestrial setting in which there is a requirement for a lightweight, compact means of short-term cooling. This heat sink includes a hermetic package closed with a pressure-relief valve and containing an expendable and rechargeable coolant liquid (e.g., water) and a conductive carbon-fiber wick. The vapor of the liquid escapes when the temperature exceeds the boiling point corresponding to the vapor pressure determined by the setting of the pressure-relief valve. The great advantage of this heat sink over a melting-paraffin or similar phase-change heat sink of equal capacity is that by virtue of the =10x greater latent heat of vaporization, a coolant-liquid volume equal to =1/10 of the paraffin volume can suffice.

  14. Empirical correlations of the performance of vapor-anode PX-series AMTEC cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, L.; Merrill, J.M.; Mayberry, C.

    Power systems based on AMTEC technology will be used for future NASA missions, including a Pluto-Express (PX) or Europa mission planned for approximately year 2004. AMTEC technology may also be used as an alternative to photovoltaic based power systems for future Air Force missions. An extensive development program of Alkali-Metal Thermal-to-Electric Conversion (AMTEC) technology has been underway at the Vehicle Technologies Branch of the Air Force Research Laboratory (AFRL) in Albuquerque, New Mexico since 1992. Under this program, numerical modeling and experimental investigations of the performance of the various multi-BASE tube, vapor-anode AMTEC cells have been and are being performed.more » Vacuum testing of AMTEC cells at AFRL determines the effects of changing the hot and cold end temperatures, T{sub hot} and T{sub cold}, and applied external load, R{sub ext}, on the cell electric power output, current-voltage characteristics, and conversion efficiency. Test results have traditionally been used to provide feedback to cell designers, and to validate numerical models. The current work utilizes the test data to develop empirical correlations for cell output performance under various working conditions. Because the empirical correlations are developed directly from the experimental data, uncertainties arising from material properties that must be used in numerical modeling can be avoided. Empirical correlations of recent vapor-anode PX-series AMTEC cells have been developed. Based on AMTEC theory and the experimental data, the cell output power (as well as voltage and current) was correlated as a function of three parameters (T{sub hot}, T{sub cold}, and R{sub ext}) for a given cell. Correlations were developed for different cells (PX-3C, PX-3A, PX-G3, and PX-5A), and were in good agreement with experimental data for these cells. Use of these correlations can greatly reduce the testing required to determine electrical performance of a given type of AMTEC cell

  15. Effect of substrate roughness on D spacing supports theoretical resolution of vapor pressure paradox.

    PubMed Central

    Tristram-Nagle, S; Petrache, H I; Suter, R M; Nagle, J F

    1998-01-01

    The lamellar D spacing has been measured for oriented stacks of lecithin bilayers prepared on a variety of solid substrates and hydrated from the vapor. We find that, when the bilayers are in the L(alpha) phase near 100% relative humidity, the D spacing is consistently larger when the substrate is rougher than when it is smooth. The differences become smaller as the relative humidity is decreased to 80% and negligible differences are seen in the L(beta') phase. Our interpretation is that rough substrates frustrate the bilayer stack energetically, thereby increasing the fluctuations, the fluctuational repulsive forces, and the water spacing compared with stacks on smooth surfaces. This interpretation is consistent with and provides experimental support for a recently proposed theoretical resolution of the vapor pressure paradox. PMID:9512038

  16. Pressure (Or No Royal Road)

    ERIC Educational Resources Information Center

    Bradley, J.

    1973-01-01

    Discusses how difficult the various problems of pressure, partial pressure, gas laws, and vapor pressure are for students. Outlines the evolution of the concept of pressure, the gas equation for a perfect gas, partial pressures, saturated vapor pressure, Avogadro's hypothesis, Raoult's law, and the vapor pressure of ideal solutions. (JR)

  17. Two dimensional radial gas flows in atmospheric pressure plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kim, Gwihyun; Park, Seran; Shin, Hyunsu; Song, Seungho; Oh, Hoon-Jung; Ko, Dae Hong; Choi, Jung-Il; Baik, Seung Jae

    2017-12-01

    Atmospheric pressure (AP) operation of plasma-enhanced chemical vapor deposition (PECVD) is one of promising concepts for high quality and low cost processing. Atmospheric plasma discharge requires narrow gap configuration, which causes an inherent feature of AP PECVD. Two dimensional radial gas flows in AP PECVD induces radial variation of mass-transport and that of substrate temperature. The opposite trend of these variations would be the key consideration in the development of uniform deposition process. Another inherent feature of AP PECVD is confined plasma discharge, from which volume power density concept is derived as a key parameter for the control of deposition rate. We investigated deposition rate as a function of volume power density, gas flux, source gas partial pressure, hydrogen partial pressure, plasma source frequency, and substrate temperature; and derived a design guideline of deposition tool and process development in terms of deposition rate and uniformity.

  18. Assessment of Mitigation Systems on Vapor Intrusion ...

    EPA Pesticide Factsheets

    Vapor intrusion is the migration of subsurface vapors, including radon and volatile organic compounds (VOCs), in soil gas from the subsurface to indoor air. Vapor intrusion happens because there are pressure and concentration differentials between indoor air and soil gas. Indoor environments are often negatively pressurized with respect to outdoor air and soil gas (for example, from exhaust fans or the stack effect), and this pressure difference allows soil gas containing subsurface vapors to flow into indoor air through advection. In addition, concentration differentials cause VOCs and radon to migrate from areas of higher to lower concentrations through diffusion, which is another cause of vapor intrusion. Current practice for evaluating the vapor intrusion pathway involves a multiple line of evidence approach based on direct measurements in groundwater, external soil gas, subslab soil gas, and/or indoor air. No single line of evidence is considered definitive, and direct measurements of vapor intrusion can be costly, especially where significant spatial and temporal variability require repeated measurements at multiple locations to accurately assess the chronic risks of long-term exposure to volatile organic compounds (VOCs) like chloroform, perchloroethylene (PCE), and trichloroethylene (TCE).

  19. The gas phase emitter effect of lanthanum within ceramic metal halide lamps and its dependence on the La vapor pressure and operating frequency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruhrmann, C.; Hoebing, T.; Bergner, A.

    2015-08-07

    The gas phase emitter effect increases the lamp lifetime by lowering the work function and, with it, the temperature of the tungsten electrodes of metal halide lamps especially for lamps in ceramic vessels due to their high rare earth pressures. It is generated by a monolayer on the electrode surface of electropositive atoms of certain emitter elements, which are inserted into the lamp bulb by metal iodide salts. They are vaporized, dissociated, ionized, and deposited by an emitter ion current onto the electrode surface within the cathodic phase of lamp operation with a switched-dc or ac-current. The gas phase emittermore » effect of La and the influence of Na on the emitter effect of La are studied by spatially and phase-resolved pyrometric measurements of the electrode tip temperature, La atom, and ion densities by optical emission spectroscopy as well as optical broadband absorption spectroscopy and arc attachment images by short time photography. An addition of Na to the lamp filling increases the La vapor pressure within the lamp considerably, resulting in an improved gas phase emitter effect of La. Furthermore, the La vapor pressure is raised by a heating of the cold spot. In this way, conditions depending on the La vapor pressure and operating frequency are identified, at which the temperature of the electrodes becomes a minimum.« less

  20. Gas-pressure chemical vapor transport growth of millimeter-sized c-BAs single crystals with moderate thermal conductivity

    NASA Astrophysics Data System (ADS)

    Xing, Jie; Glaser, Evan R.; Song, Bai; Culbertson, James C.; Freitas, Jaime A.; Duncan, Ryan A.; Nelson, Keith A.; Chen, Gang; Ni, Ni

    2018-06-01

    We have grown c-BAs single crystals up to 1000 μm size by the chemical vapor transport (CVT) technique using combined As and I2 transport agents with the As:I ratio of 1:3 under gas pressures of up to 35 atm. Raman spectroscopy revealed a very sharp (˜2.4 cm-1) P1 phonon mode and an interesting splitting behavior of P1 from detailed polarization studies. Electron paramagnetic resonance (EPR) experiments revealed no evidence for EPR active growth-related defects under the experimental resolution. Finally, a moderate thermal conductivity value of ˜132 W/m-K was obtained using a transient thermal grating technique. These results suggest that although the high As gas vapor pressure environment in CVT growth can increase the transport rate of c-BAs significantly, it may not be efficient in reducing the defects and enhancing the thermal conductivity in c-BAs significantly.

  1. Prediction of Sublimation Pressures of Low Volatility Solids

    NASA Astrophysics Data System (ADS)

    Drake, Bruce Douglas

    Sublimation pressures are required for solid-vapor phase equilibrium models in design of processes such as supercritical fluid extraction, sublimation purification and vapor epitaxy. The objective of this work is to identify and compare alternative methods for predicting sublimation pressures. A bibliography of recent sublimation data is included. Corresponding states methods based on the triple point (rather than critical point) are examined. A modified Trouton's rule is the preferred method for estimating triple point pressure in the absence of any sublimation data. Only boiling and melting temperatures are required. Typical error in log_{10} P _{rm triple} is 0.3. For lower temperature estimates, the slope of the sublimation curve is predicted by a correlation based on molar volume. Typical error is 10% of slope. Molecular dynamics methods for surface modeling are tested as estimators of vapor pressure. The time constants of the vapor and solid phases are too different to allow the vapor to come to thermal equilibrium with the solid. The method shows no advantages in prediction of sublimation pressure but provides insight into appropriate models and experimental methods for sublimation. Density-dependent augmented van der Waals equations of state based on hard-sphere distribution functions are examined. The perturbation term is almost linear and is well fit by a simple quadratic. Use of the equation provides reasonable fitting of sublimation pressures from one data point. Order-of-magnitude estimation is possible from melting temperature and solid molar volume. The inverse -12 fluid is used to develop an additional equation of state. Sublimation pressure results, including quality of pressure predictions, are similar to the hard-sphere results. Three-body (Axilrod -Teller) interactions are used to improve results.

  2. Vaporization characteristics of carbon heat shields under radiative heating.

    NASA Technical Reports Server (NTRS)

    Davy, W. C.; Bar-Nun, A.

    1972-01-01

    Study of the vaporization characteristics of samples of ATJ graphite, a material that has been considered for use on a Jovian probe. These samples were subjected to radiative heating loads of approximately 2 kW/sq cm in argon atmospheres of pressures from 0.00046 to 1 atm. Surface temperatures, mass loss rates, and spatially resolved emission spectral data were recorded. These data are analyzed to determine carbon vapor pressure as a function of temperature and are compared with current models for the vapor pressure of carbon. The effects of finite vaporization (i.e., nonequilibrium) rates are considered and compared with experiment. Estimates of the heat of vaporization from an energy balance are also presented.

  3. Sorption and vapor transmission properties of uncompressed and compressed microcellular starch foam.

    PubMed

    Glenn, Gregory M; Klamczynski, Artur P; Takeoka, Gary; Orts, William J; Wood, Delilah; Widmaier, Robert

    2002-11-20

    Microcellular starch foams (MCFs) are made by a solvent-exchange process and consist of a porous matrix with pores generally ranging from approximately 2 microm to submicrometer size. MCF may potentially be useful as a slow-release agent for volatile compounds because of its ability to sorb chemicals from the atmosphere and to absorb liquids into its porous structure, and because it can be compressed to form a starch plastic. MCF made of high-amylose corn and wheat starches was prepared with or without 2% (w/w) silicone oil (SO) or palmitic acid (PA). The MCF was loaded with 1% of various volatile compounds with vapor pressures ranging from 0.02 to 28 mm. The MCF depressed the vapor pressure from 0.37 to 37% compared to a control containing no MCF. Incorporating SO or PA in the matrix of the MCF had little effect on sorption of volatiles. Compressing MCF at 1.4, 6.9, and 69 MPa made a starch plastic with varying porosity. The vapor transmission rate of various volatile compounds through MCF was positively correlated to the vapor pressure of the test compound but was inversely proportional to the compression force used to form the starch plastic. The results indicate that uncompressed and compressed MCFs could be effective slow-release agents for a variety of volatile compounds, especially if used together.

  4. Highly Efficient 2D/3D Hybrid Perovskite Solar Cells via Low-Pressure Vapor-Assisted Solution Process.

    PubMed

    Li, Ming-Hsien; Yeh, Hung-Hsiang; Chiang, Yu-Hsien; Jeng, U-Ser; Su, Chun-Jen; Shiu, Hung-Wei; Hsu, Yao-Jane; Kosugi, Nobuhiro; Ohigashi, Takuji; Chen, Yu-An; Shen, Po-Shen; Chen, Peter; Guo, Tzung-Fang

    2018-06-08

    The fabrication of multidimensional organometallic halide perovskite via a low-pressure vapor-assisted solution process is demonstrated for the first time. Phenyl ethyl-ammonium iodide (PEAI)-doped lead iodide (PbI 2 ) is first spin-coated onto the substrate and subsequently reacts with methyl-ammonium iodide (MAI) vapor in a low-pressure heating oven. The doping ratio of PEAI in MAI-vapor-treated perovskite has significant impact on the crystalline structure, surface morphology, grain size, UV-vis absorption and photoluminescence spectra, and the resultant device performance. Multiple photoluminescence spectra are observed in the perovskite film starting with high PEAI/PbI 2 ratio, which suggests the coexistence of low-dimensional perovskite (PEA 2 MA n -1 Pb n I 3 n +1 ) with various values of n after vapor reaction. The dimensionality of the as-fabricated perovskite film reveals an evolution from 2D, hybrid 2D/3D to 3D structure when the doping level of PEAI/PbI 2 ratio varies from 2 to 0. Scanning electron microscopy images and Kelvin probe force microscopy mapping show that the PEAI-containing perovskite grain is presumably formed around the MAPbI 3 perovskite grain to benefit MAPbI 3 grain growth. The device employing perovskite with PEAI/PbI 2 = 0.05 achieves a champion power conversion efficiency of 19.10% with an open-circuit voltage of 1.08 V, a current density of 21.91 mA cm -2 , and a remarkable fill factor of 80.36%. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Vapor pressures and calculated heats of vaporization of concentrated nitric acid solutions in the composition range 71 to 89 percent nitrogen dioxide, 1 to 10 percent water, and in the temperature range 10 to 60 degrees C

    NASA Technical Reports Server (NTRS)

    Mckeown, A B; Belles, Frank E

    1954-01-01

    Total vapor pressures were measured for 16 acid mixtures of the ternary system nitric acid, nitrogen dioxide, and water within the temperature range 10 degrees to 60 degrees Celsius, and with the composition range 71 to 89 weight percent nitric acid, 7 to 20 weight percent nitrogen dioxide, and 1 to 10 weight percent water. Heats of vaporization were calculated from the vapor pressure measurements for each sample for the temperatures 25, 40, and 60 degrees Celsius. The ullage of the apparatus used for the measurements was 0.46. Ternary diagrams showing isobars as a function of composition of the system were constructed from experimental and interpolated data for the temperatures 25, 40, 45, and 60 degrees C and are presented herein.

  6. Correlation Between Endotracheal Tube Cuff Pressure and Tracheal Wall Pressure Using Air and Saline Filled Cuffs

    DTIC Science & Technology

    2017-01-31

    AFRL-SA-WP-SR-2017-0004 Correlation Between Endotracheal Tube Cuff Pressure and Tracheal Wall Pressure Using Air- and Saline -Filled...Correlation Between Endotracheal Tube Cuff Pressure and Tracheal Wall Pressure Using Air- and Saline -Filled Cuffs 5a. CONTRACT NUMBER FA8650-14...descending from altitude. When using saline in the ETT cuff, TW pressure differences with the 7.5 high-volume, low-pressure cuff and 8.0 TaperGuard

  7. Tested Demonstrations. Gasoline Vapor: An Invisible Pollutant

    ERIC Educational Resources Information Center

    Stephens, Edgar R.

    1977-01-01

    Describes a demonstration concerning the air pollution aspects of gasoline vapor which provides an estimation of the vapor pressure of test fuel, the molecular weight of the vapor, and illustrates a method of controlling the pollution. (SL)

  8. Methods for calculation of engineering parameters for gas separation. [vapor pressure and solubility of gases in organic liquids

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.

    1979-01-01

    A group additivity method is generated which allows estimation, from the structural formulas alone, of the energy of vaporization and the molar volume at 25 C of many nonpolar organic liquids. Using these two parameters and appropriate thermodynamic relations, the vapor pressure of the liquid phase and the solubility of various gases in nonpolar organic liquids are predicted. It is also possible to use the data to evaluate organic and some inorganic liquids for use in gas separation stages or liquids as heat exchange fluids in prospective thermochemical cycles for hydrogen production.

  9. COMPUTATIONAL CHEMISTRY METHOD FOR PREDICTING VAPOR PRESSURES AND ACTIVITY COEFFICIENTS OF POLAR ORGANIC OXYGENATES IN PM2.5

    EPA Science Inventory

    Parameterizations of interactions of polar multifunctional organic oxygenates in PM2.5 must be included in aerosol chemistry models for evaluating control strategies for reducing ambient concentrations of PM2.5 compounds. Vapor pressures and activity coefficients of these compo...

  10. Measurements of near-IR water vapor absorption at high pressure and temperature

    NASA Astrophysics Data System (ADS)

    Rieker, G. B.; Liu, X.; Li, H.; Jeffries, J. B.; Hanson, R. K.

    2007-03-01

    Tunable diode lasers (TDLs) are used to measure high resolution (0.1 cm-1), near-infrared (NIR) water vapor absorption spectra at 700 K and pressures up to 30 atm within a high-pressure and -temperature optical cell in a high-uniformity tube furnace. Both direct absorption and wavelength modulation with second harmonic detection (WMS-2f) spectra are obtained for 6 cm-1 regions near 7204 cm-1 and 7435 cm-1. Direct absorption measurements at 700 K and 10 atm are compared with simulations using spectral parameters from HITRAN and a hybrid database combining HITRAN with measured spectral constants for transitions in the two target spectral regions. The hybrid database reduces RMS error between the simulation and the measurements by 45% for the 7204 cm-1 region and 28% for the 7435 cm-1 region. At pressures above 10 atm, the breakdown of the impact approximation inherent to the Lorentzian line shape model becomes apparent in the direct absorption spectra, and measured results are in agreement with model results and trends at elevated temperatures reported in the literature. The wavelength-modulation spectra are shown to be less affected by the breakdown of the impact approximation and measurements agree well with the hybrid database predictions to higher pressures (30 atm).

  11. Vapor pressure and evaporation rate of certain heat-resistant compounds in a vacuum at high temperatures

    NASA Technical Reports Server (NTRS)

    Bolgar, A. S.; Verkhoglyadova, T. S.; Samsonov, G. V.

    1985-01-01

    The vapor pressure and evaporation rate of borides of titanium, zirconium, and chrome; and of strontium and carbides of titanium, zirconium, and chrome, molybdenum silicide; and nitrides of titanium, niobium, and tantalum in a vacuum were studied. It is concluded that all subject compounds evaporate by molecular structures except AlB sub 12' which dissociates, losing the aluminum.

  12. Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics

    NASA Astrophysics Data System (ADS)

    Makarieva, A. M.; Gorshkov, V. G.; Sheil, D.; Nobre, A. D.; Li, B.-L.

    2013-01-01

    Phase transitions of atmospheric water play a ubiquitous role in the Earth's climate system, but their direct impact on atmospheric dynamics has escaped wide attention. Here we examine and advance a theory as to how condensation influences atmospheric pressure through the mass removal of water from the gas phase with a simultaneous account of the latent heat release. Building from fundamental physical principles we show that condensation is associated with a decline in air pressure in the lower atmosphere. This decline occurs up to a certain height, which ranges from 3 to 4 km for surface temperatures from 10 to 30 °C. We then estimate the horizontal pressure differences associated with water vapor condensation and find that these are comparable in magnitude with the pressure differences driving observed circulation patterns. The water vapor delivered to the atmosphere via evaporation represents a store of potential energy available to accelerate air and thus drive winds. Our estimates suggest that the global mean power at which this potential energy is released by condensation is around one per cent of the global solar power - this is similar to the known stationary dissipative power of general atmospheric circulation. We conclude that condensation and evaporation merit attention as major, if previously overlooked, factors in driving atmospheric dynamics.

  13. Spectral calculations for pressure-velocity and pressure-strain correlations in homogeneous shear turbulence

    NASA Astrophysics Data System (ADS)

    Dutta, Kishore

    2018-02-01

    Theoretical analyses of pressure related turbulent statistics are vital for a reliable and accurate modeling of turbulence. In the inertial subrange of turbulent shear flow, pressure-velocity and pressure-strain correlations are affected by anisotropy imposed at large scales. Recently, Tsuji and Kaneda (2012 J. Fluid Mech. 694 50) performed a set of experiments on homogeneous shear flow, and estimated various one-dimensional pressure related spectra and the associated non-dimensional universal numbers. Here, starting from the governing Navier-Stokes dynamics for the fluctuating velocity field and assuming the anisotropy at inertial scales as a weak perturbation of an otherwise isotropic dynamics, we analytically derive the form of the pressure-velocity and pressure-strain correlations. The associated universal numbers are calculated using the well-known renormalization-group results, and are compared with the experimental estimates of Tsuji and Kaneda. Approximations involved in the perturbative calculations are discussed.

  14. Correlates of blood pressure in Yanomami Indians of northwestern Brazil.

    PubMed

    Crews, D E; Mancilha-Carvalho, J J

    1993-01-01

    We determined associations of measures of body habitus with blood pressure for 100 adult Yanomami Indians (61 men, 39 women) examined during February and March 1990. Measurements included body weight and height, four skinfolds (triceps, subscapular, suprailiac, abdomen), four circumferences (wrist, upper arm, abdomen, hip), systolic and diastolic blood pressures, pulse rate, and estimated age. Various indices of fat distribution were determined from the measurements of skinfolds, circumferences, weight, and height. Estimated age averaged 35.0 years in men and 33.4 years in women (range: 15 to 63 years). Mean systolic and diastolic blood pressures were low in both men (104.8/70.4 mm Hg) and women (94.8/63.5 mm Hg), as was body mass index (men: 20.7; women: 21.4 kg/m2). In Yanomami women, all four skinfolds, wrist circumference, and the indices of hip and abdominal fat were significant correlates of systolic blood pressure, while the abdominal skinfold and wrist and hip circumferences correlated significantly with diastolic blood pressure. Among men, there was a negative correlation between estimated age and systolic blood pressure and a positive correlation between BMI and upper arm and hip circumferences and systolic blood pressure. There was a significant positive correlation between wrist, upper arm, and hip circumferences and diastolic blood pressure among Yanomami men. We used stepwise regression to generate sex-specific predictive equations for blood pressure. For men, estimated age and hip circumference, and for women, abdominal skinfold measurement and age were included in the model for systolic blood pressure. Among men, wrist circumference and height, and among women, wrist circumference alone entered the model for diastolic blood pressure. On the basis of these results, we suggest that even in a low-blood pressure, low-body fat, no-salt setting, systolic blood pressure is associated with the amount and placement of adipose tissue. However, diastolic blood

  15. Analysis of organic vapors with laser induced breakdown spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nozari, Hadi; Tavassoli, Seyed Hassan; Rezaei, Fatemeh, E-mail: fatemehrezaei@kntu.ac.ir

    2015-09-15

    In this paper, laser induced breakdown spectroscopy (LIBS) is utilized in the study of acetone, ethanol, methanol, cyclohexane, and nonane vapors. Carbon, hydrogen, oxygen, and nitrogen atomic emission spectra have been recorded following laser-induced breakdown of the organic vapors that are mixed with air inside a quartz chamber at atmospheric pressure. The plasma is generated with focused, Q-switched Nd:YAG radiation at the wavelength of 1064 nm. The effects of ignition and vapor pressure are discussed in view of the appearance of the emission spectra. The recorded spectra are proportional to the vapor pressure in air. The hydrogen and oxygen contributions diminishmore » gradually with consecutive laser-plasma events without gas flow. The results show that LIBS can be used to characterize organic vapor.« less

  16. Low Pressure Vapor-assisted Solution Process for Tunable Band Gap Pinhole-free Methylammonium Lead Halide Perovskite Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutter-Fella, Carolin M.; Li, Yanbo; Cefarin, Nicola

    Organo-lead halide perovskites have recently attracted great interest for potential applications in thin-film photovoltaics and optoelectronics. Herein, we present a protocol for the fabrication of this material via the low-pressure vapor assisted solution process (LP-VASP) method, which yields ~19% power conversion efficiency in planar heterojunction perovskite solar cells. First, we report the synthesis of methylammonium iodide (CH 3NH 3I) and methylammonium bromide (CH 3NH 3Br) from methylamine and the corresponding halide acid (HI or HBr). Then, we describe the fabrication of pinhole-free, continuous methylammonium-lead halide perovskite (CH 3NH 3PbX 3 with X = I, Br, Cl and their mixture) filmsmore » with the LP-VASP. This process is based on two steps: i) spin-coating of a homogenous layer of lead halide precursor onto a substrate, and ii) conversion of this layer to CH 3NH 3PbI 3-xBr x by exposing the substrate to vapors of a mixture of CH 3NH 3I and CH 3NH 3Br at reduced pressure and 120 °C. Through slow diffusion of the methylammonium halide vapor into the lead halide precursor, we achieve slow and controlled growth of a continuous, pinhole-free perovskite film. The LP-VASP allows synthetic access to the full halide composition space in CH 3NH 3PbI 3-xBr x with 0 ≤ x ≤ 3. Depending on the composition of the vapor phase, the bandgap can be tuned between 1.6 eV ≤ E g ≤ 2.3 eV. In addition, by varying the composition of the halide precursor and of the vapor phase, we can also obtain CH 3NH 3PbI 3-xCl x. Films obtained from the LP-VASP are reproducible, phase pure as confirmed by X-ray diffraction measurements, and show high photoluminescence quantum yield. The process does not require the use of a glovebox.« less

  17. Low Pressure Vapor-assisted Solution Process for Tunable Band Gap Pinhole-free Methylammonium Lead Halide Perovskite Films

    DOE PAGES

    Sutter-Fella, Carolin M.; Li, Yanbo; Cefarin, Nicola; ...

    2017-09-08

    Organo-lead halide perovskites have recently attracted great interest for potential applications in thin-film photovoltaics and optoelectronics. Herein, we present a protocol for the fabrication of this material via the low-pressure vapor assisted solution process (LP-VASP) method, which yields ~19% power conversion efficiency in planar heterojunction perovskite solar cells. First, we report the synthesis of methylammonium iodide (CH 3NH 3I) and methylammonium bromide (CH 3NH 3Br) from methylamine and the corresponding halide acid (HI or HBr). Then, we describe the fabrication of pinhole-free, continuous methylammonium-lead halide perovskite (CH 3NH 3PbX 3 with X = I, Br, Cl and their mixture) filmsmore » with the LP-VASP. This process is based on two steps: i) spin-coating of a homogenous layer of lead halide precursor onto a substrate, and ii) conversion of this layer to CH 3NH 3PbI 3-xBr x by exposing the substrate to vapors of a mixture of CH 3NH 3I and CH 3NH 3Br at reduced pressure and 120 °C. Through slow diffusion of the methylammonium halide vapor into the lead halide precursor, we achieve slow and controlled growth of a continuous, pinhole-free perovskite film. The LP-VASP allows synthetic access to the full halide composition space in CH 3NH 3PbI 3-xBr x with 0 ≤ x ≤ 3. Depending on the composition of the vapor phase, the bandgap can be tuned between 1.6 eV ≤ E g ≤ 2.3 eV. In addition, by varying the composition of the halide precursor and of the vapor phase, we can also obtain CH 3NH 3PbI 3-xCl x. Films obtained from the LP-VASP are reproducible, phase pure as confirmed by X-ray diffraction measurements, and show high photoluminescence quantum yield. The process does not require the use of a glovebox.« less

  18. Alumina Volatility in Water Vapor at Elevated Temperatures: Application to Combustion Environments

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Myers, Dwight L.

    2003-01-01

    The volatility of alumina in high temperature water vapor was determined by measuring weight loss of sapphire coupons at temperatures between 1250 and 1500 C, water vapor partial pressures between 0.15 and 0.68 atm in oxygen, at one atmosphere total pressure, and a gas velocity of 4.4 centimeters per second. The variation of the volatility with water vapor partial pressure was consistent with Al(OH)3(g) formation. The enthalpy of reaction to form Al(OH)3(g) from alumina and water vapor was found to be 210 plus or minus 20 kJ/mol. Surface rearrangement of ground sapphire surfaces increased with water vapor partial pressure, temperature and volatility rate. Recession rates of alumina due to volatility were determined as a function of water vapor partial pressure and temperature to evaluate limits for use of alumina in long term applications in combustion environments.

  19. Heat Pipe Vapor Dynamics. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Issacci, Farrokh

    1990-01-01

    The dynamic behavior of the vapor flow in heat pipes is investigated at startup and during operational transients. The vapor is modeled as two-dimensional, compressible viscous flow in an enclosure with inflow and outflow boundary conditions. For steady-state and operating transients, the SIMPLER method is used. In this method a control volume approach is employed on a staggered grid which makes the scheme very stable. It is shown that for relatively low input heat fluxes the compressibility of the vapor flow is low and the SIMPLER scheme is suitable for the study of transient vapor dynamics. When the input heat flux is high or the process under a startup operation starts at very low pressures and temperatures, the vapor is highly compressible and a shock wave is created in the evaporator. It is shown that for a wide range of input heat fluxes, the standard methods, including the SIMPLER scheme, are not suitable. A nonlinear filtering technique, along with the centered difference scheme, are then used for shock capturing as well as for the solution of the cell Reynolds-number problem. For high heat flux, the startup transient phase involves multiple shock reflections in the evaporator region. Each shock reflection causes a significant increase in the local pressure and a large pressure drop along the heat pipe. Furthermore, shock reflections cause flow reversal in the evaporation region and flow circulations in the adiabatic region. The maximum and maximum-averaged pressure drops in different sections of the heat pipe oscillate periodically with time because of multiple shock reflections. The pressure drop converges to a constant value at steady state. However, it is significantly higher than its steady-state value at the initiation of the startup transient. The time for the vapor core to reach steady-state condition depends on the input heat flux, the heat pipe geometry, the working fluid, and the condenser conditions. However, the vapor transient time, for an Na

  20. Precipitable water vapor and 212 GHz atmospheric optical depth correlation at El Leoncito site

    NASA Astrophysics Data System (ADS)

    Cassiano, Marta M.; Cornejo Espinoza, Deysi; Raulin, Jean-Pierre; Giménez de Castro, Carlos G.

    2018-03-01

    Time series of precipitable water vapor (PWV) and 212 GHz atmospheric optical depth were obtained in CASLEO (Complejo Astronómico El Leoncito), at El Leoncito site, Argentinean Andes, for the period of 2011-2013. The 212 GHz atmospheric optical depth data were derived from measurements by the Solar Submillimeter Telescope (SST) and the PWV data were obtained by the AERONET CASLEO station. The correlation between PWV and 212 GHz optical depth was analyzed for the whole period, when both parameters were simultaneously available. A very significant correlation was observed. Similar correlation was found when data were analyzed year by year. The results indicate that the correlation of PWV versus 212 GHz optical depth could be used as an indirect estimation method for PWV, when direct measurements are not available.

  1. Applications of the Simple Multi-Fluid Model to Correlations of the Vapor-Liquid Equilibrium of Refrigerant Mixtures Containing Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Akasaka, Ryo

    This study presents a simple multi-fluid model for Helmholtz energy equations of state. The model contains only three parameters, whereas rigorous multi-fluid models developed for several industrially important mixtures usually have more than 10 parameters and coefficients. Therefore, the model can be applied to mixtures where experimental data is limited. Vapor-liquid equilibrium (VLE) of the following seven mixtures have been successfully correlated with the model: CO2 + difluoromethane (R-32), CO2 + trifluoromethane (R-23), CO2 + fluoromethane (R-41), CO2 + 1,1,1,2- tetrafluoroethane (R-134a), CO2 + pentafluoroethane (R-125), CO2 + 1,1-difluoroethane (R-152a), and CO2 + dimethyl ether (DME). The best currently available equations of state for the pure refrigerants were used for the correlations. For all mixtures, average deviations in calculated bubble-point pressures from experimental values are within 2%. The simple multi-fluid model will be helpful for design and simulations of heat pumps and refrigeration systems using the mixtures as working fluid.

  2. Interactive response of photosynthetic characteristics in Haloxylon ammodendron and Hedysarum scoparium exposed to soil water and air vapor pressure deficits.

    PubMed

    Gong, Chunmei; Wang, Jiajia; Hu, Congxia; Wang, Junhui; Ning, Pengbo; Bai, Juan

    2015-08-01

    C4 plants possess better drought tolerance than C3 plants. However, Hedysarum scoparium, a C3 species, is dominant and widely distributed in the desert areas of northwestern China due to its strong drought tolerance. This study compared it with Haloxylon ammodendron, a C4 species, regarding the interactive effects of drought stress and different leaf-air vapor pressure deficits. Variables of interest included gas exchange, the activity levels of key C4 photosynthetic enzymes, and cellular anatomy. In both species, gas exchange parameters were more sensitive to high vapor pressure deficit than to strong water stress, and the net CO2 assimilation rate (An) was enhanced as vapor pressure deficits increased. A close relationship between An and stomatal conductance (gs) suggested that the species shared a similar response mechanism. In H. ammodendron, the activity levels of key C4 enzymes were higher, including those of phosphoenolpyruvate carboxylase (PEPC) and nicotinamide adenine dinucleotide phosphate-malate enzyme (NADP-ME), whereas in H. scoparium, the activity level of nicotinamide adenine dinucleotide-malate enzyme (NAD-ME) was higher. Meanwhile, H. scoparium utilized adaptive structural features, including a larger relative vessel area and a shorter distance from vein to stomata, which facilitated the movement of water. These findings implied that some C4 biochemical pathways were present in H. scoparium to respond to environmental challenges. Copyright © 2015. Published by Elsevier B.V.

  3. High pressure studies using two-stage diamond micro-anvils grown by chemical vapor deposition

    DOE PAGES

    Vohra, Yogesh K.; Samudrala, Gopi K.; Moore, Samuel L.; ...

    2015-06-10

    Ultra-high static pressures have been achieved in the laboratory using a two-stage micro-ball nanodiamond anvils as well as a two-stage micro-paired diamond anvils machined using a focused ion-beam system. The two-stage diamond anvils’ designs implemented thus far suffer from a limitation of one diamond anvil sliding past another anvil at extreme conditions. We describe a new method of fabricating two-stage diamond micro-anvils using a tungsten mask on a standard diamond anvil followed by microwave plasma chemical vapor deposition (CVD) homoepitaxial diamond growth. A prototype two stage diamond anvil with 300 μm culet and with a CVD diamond second stage ofmore » 50 μm in diameter was fabricated. We have carried out preliminary high pressure X-ray diffraction studies on a sample of rare-earth metal lutetium sample with a copper pressure standard to 86 GPa. Furthermore, the micro-anvil grown by CVD remained intact during indentation of gasket as well as on decompression from the highest pressure of 86 GPa.« less

  4. Modeling and control of diffusion and low-pressure chemical vapor deposition furnaces

    NASA Astrophysics Data System (ADS)

    De Waard, H.; De Koning, W. L.

    1990-03-01

    In this paper a study is made of the heat transfer inside cylindrical resistance diffusion and low-pressure chemical vapor deposition furnaces, aimed at developing an improved temperature controller. A model of the thermal behavior is derived which also covers the important class of furnaces equipped with semitransparent quartz process tubes. The model takes into account the thermal behavior of the thermocouples. It is shown that currently used temperature controllers are highly inefficient for very large scale integration applications. Based on the model an alternative temperature controller of the linear-quadratic-Gaussian type is proposed which features direct wafer temperature control. Some simulation results are given.

  5. Zno Micro/Nanostructures Grown on Sapphire Substrates Using Low-Temperature Vapor-Trapped Thermal Chemical Vapor Deposition: Structural and Optical Properties.

    PubMed

    Hu, Po-Sheng; Wu, Cheng-En; Chen, Guan-Lin

    2017-12-21

    In this research, the Zn(C₅H₇O₂)₂·xH₂O-based growth of ZnO micro/nanostructures in a low temperature, vapor-trapped chemical vapor deposition system was attempted to optimize structural and optical properties for potential biomedical applications. By trapping in-flow gas molecules and Zinc vapor inside a chamber tube by partially obstructing a chamber outlet, a high pressure condition can be achieved, and this experimental setup has the advantages of ease of synthesis, being a low temperature process, and cost effectiveness. Empirically, the growth process proceeded under a chamber condition of an atmospheric pressure of 730 torr, a controlled volume flow rate of input gas, N₂/O₂, of 500/500 Standard Cubic Centimeters per Minute (SCCM), and a designated oven temperature of 500 °C. Specifically, the dependence of structural and optical properties of the structures on growth duration and spatially dependent temperature were investigated utilizing scanning electron microscopy, X-ray diffraction (XRD), photoluminescence (PL), and ultraviolet-visible transmission spectroscopy. The experimental results indicate that the grown thin film observed with hexagonal structures and higher structural uniformity enables more prominent structural and optical signatures. XRD spectra present the dominant peaks along crystal planes of (002) and (101) as the main direction of crystallization. In addition, while the structures excited with laser wavelength of 325 nm emit a signature radiation around 380 nm, an ultraviolet lamp with a wavelength of 254 nm revealed distinctive photoluminescence peaks at 363.96 nm and 403.52 nm, elucidating different degrees of structural correlation as functions of growth duration and the spatial gradient of temperature. Transmittance spectra of the structures illustrate typical variation in the wavelength range of 200 nm to 400 nm, and its structural correlation is less significant when compared with PL.

  6. Zno Micro/Nanostructures Grown on Sapphire Substrates Using Low-Temperature Vapor-Trapped Thermal Chemical Vapor Deposition: Structural and Optical Properties

    PubMed Central

    Hu, Po-Sheng; Wu, Cheng-En; Chen, Guan-Lin

    2017-01-01

    In this research, the Zn(C5H7O2)2·xH2O-based growth of ZnO micro/nanostructures in a low temperature, vapor-trapped chemical vapor deposition system was attempted to optimize structural and optical properties for potential biomedical applications. By trapping in-flow gas molecules and Zinc vapor inside a chamber tube by partially obstructing a chamber outlet, a high pressure condition can be achieved, and this experimental setup has the advantages of ease of synthesis, being a low temperature process, and cost effectiveness. Empirically, the growth process proceeded under a chamber condition of an atmospheric pressure of 730 torr, a controlled volume flow rate of input gas, N2/O2, of 500/500 Standard Cubic Centimeters per Minute (SCCM), and a designated oven temperature of 500 °C. Specifically, the dependence of structural and optical properties of the structures on growth duration and spatially dependent temperature were investigated utilizing scanning electron microscopy, X-ray diffraction (XRD), photoluminescence (PL), and ultraviolet-visible transmission spectroscopy. The experimental results indicate that the grown thin film observed with hexagonal structures and higher structural uniformity enables more prominent structural and optical signatures. XRD spectra present the dominant peaks along crystal planes of (002) and (101) as the main direction of crystallization. In addition, while the structures excited with laser wavelength of 325 nm emit a signature radiation around 380 nm, an ultraviolet lamp with a wavelength of 254 nm revealed distinctive photoluminescence peaks at 363.96 nm and 403.52 nm, elucidating different degrees of structural correlation as functions of growth duration and the spatial gradient of temperature. Transmittance spectra of the structures illustrate typical variation in the wavelength range of 200 nm to 400 nm, and its structural correlation is less significant when compared with PL. PMID:29267196

  7. Beer Law Constants and Vapor Pressures of HgI2 over HgI2(s,l)

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Zhu, Shen; Ramachandran, N.; Burger, A.

    2002-01-01

    Optical absorption spectra of the vapor phase over HgI2(s,l) were measured at sample temperatures between 349 and 610 K for wavelengths between 200 and 600 nm. The spectra show the samples sublimed congruently into HGI2 without any observed Hg or I2 absorption spectra. The Beer's Law constants for 15 wavelengths between 200 and 440 nm were derived. From these constants the vapor pressure of HgI2, P, was found to be a function of temperature for the liquid and the solid beta-phases: ln P(atm) = -7700/T(K) + 12.462 (liquid phase) and ln P(atm) = -10150/T(K) + 17.026 (beta-phase). The expressions match the enthalpies of vaporization and sublimation of 15.30 and 20.17 kcal/mole respectively, for the liquid and the beta-phase HgI2. The difference in the enthalpies gives an enthalpy of fusion of 4.87 kcal/mole, and the intersection of the two expressions gives a melting point of 537 K.

  8. Maple Sap Uptake, Exudation, and Pressure Changes Correlated with Freezing Exotherms and Thawing Endotherms 1

    PubMed Central

    Tyree, Melvin T.

    1983-01-01

    Sap flow rates and sap pressure changes were measured in dormant sugar maple trees (Acer saccharum Marsh.). In the forest, sap flow rates and pressure changes were measured from tap holes drilled into tree trunks in mature trees and sap flow rates were measured from the base of excised branches. Excised branches were also brought into the laboratory where air temperature could be carefully controlled in a refrigerated box and sap flow rates and sap pressures were measured from the cut base of the branches. Under both forest and laboratory conditions, sap uptake occurred as the wood temperature declined but much more rapid sap uptake correlated with the onset of the freezing exotherm. When sap pressures were measured under conditions of negligible volume displacement, the sap pressure rapidly fell to −60 to −80 kilopascals at the start of the freezing exotherm. The volume of water uptake and the rate of uptake depended on the rate of freezing. A slow freezing rate correlated with a large volume of water uptake, a fast freezing rate induced a smaller volume of water uptake. The volume of water uptake ranged from 0.02 to 0.055 grams water per gram dry weight of sapwood. The volume of water exuded after thawing was usually less than the volume of uptake so that after several freezing and thawing cycles the sapwood water content increased from 0.7 to 0.8 grams water per gram dry weight. These results are discussed in terms of a physical model of the mechanism of maple sap uptake and exudation first proposed by P. E. R. O'Malley. The proposed mechanism of sap uptake is by vapor distillation in air filled wood fiber lumina during the freezing of minor branches. Gravity and pressurized air bubbles (compressed during freezing) cause sap flow from the canopy down the tree after the thaw. PMID:16663208

  9. Vaporization chemistry of hypo-stoichiometric (U,Pu)O 2

    NASA Astrophysics Data System (ADS)

    Viswanathan, R.; Krishnaiah, M. V.

    2001-04-01

    Calculations were performed on hypo-stoichiometric uranium plutonium di-oxide to examine its vaporization behavior as a function of O/ M ( M= U+ Pu) ratio and plutonium content. The phase U (1- y) Pu yO z was treated as an ideal solid solution of (1- y)UO 2+ yPuO (2- x) such that x=(2- z)/ y. Oxygen potentials for different desired values of y, z, and temperature were used as the primary input to calculate the corresponding partial pressures of various O-, U-, and Pu-bearing gaseous species. Relevant thermodynamic data for the solid phases UO 2 and PuO (2- x) , and the gaseous species were taken from the literature. Total vapor pressure varies with O/M and goes through a minimum. This minimum does not indicate a congruently vaporizing composition. Vaporization behavior of this system can at best be quasi-congruent. Two quasi-congruently vaporizing compositions (QCVCs) exist, representing the equalities (O/M) vapor=(O/M) mixed-oxide and (U/Pu) vapor=(U/Pu) mixed-oxide, respectively. The (O/M) corresponding to QCVC1 is lower than that corresponding to QCVC2, but very close to the value where vapor pressure minimum occurs. The O/M values of both QCVCs increase with decrease in plutonium content. The vaporization chemistry of this system, on continuous vaporization under dynamic condition, is discussed.

  10. Vacuum vapor deposition

    NASA Technical Reports Server (NTRS)

    Poorman, Richard M. (Inventor); Weeks, Jack L. (Inventor)

    1995-01-01

    A method and apparatus is described for vapor deposition of a thin metallic film utilizing an ionized gas arc directed onto a source material spaced from a substrate to be coated in a substantial vacuum while providing a pressure differential between the source and the substrate so that, as a portion of the source is vaporized, the vapors are carried to the substrate. The apparatus includes a modified tungsten arc welding torch having a hollow electrode through which a gas, preferably inert, flows and an arc is struck between the electrode and the source. The torch, source, and substrate are confined within a chamber within which a vacuum is drawn. When the arc is struck, a portion of the source is vaporized and the vapors flow rapidly toward the substrate. A reflecting shield is positioned about the torch above the electrode and the source to ensure that the arc is struck between the electrode and the source at startup. The electrode and the source may be confined within a vapor guide housing having a duct opening toward the substrate for directing the vapors onto the substrate.

  11. DETERMINATION OF THE VAPOR PRESSURES OF SELECT POLYCHLORINATED DIBENZO-P-DIOXINS AND DIBENZOFURANS AT 75–275°C

    EPA Science Inventory

    Vapor pressures were determined for several polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) at 75–275°C, extending the available literature data to more relevant temperature regions and providing the first experimental data for 2,3,7...

  12. Atmospheric-Pressure Chemical Vapor Deposition of Iron Pyrite Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, Nicholas; Cheng, Ming; Perkins, Craig L.

    2012-10-23

    Iron pyrite (cubic FeS{sub 2}) is a promising candidate absorber material for earth-abundant thin-film solar cells. In this report, single-phase, large-grain, and uniform polycrystalline pyrite thin films are fabricated on glass and molybdenum-coated glass substrates by atmospheric-pressure chemical vapor deposition (AP-CVD) using the reaction of iron(III) acetylacetonate and tert-butyl disulfide in argon at 300 C, followed by sulfur annealing at 500--550 C to convert marcasite impurities to pyrite. The pyrite-marcasite phase composition depends strongly on the concentration of sodium in the growth substrate and the sulfur partial pressure during annealing. Phase and elemental composition of the films are characterized bymore » X-ray diffraction, Raman spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry, Rutherford backscattering spectrometry, and X-ray photoelectron spectroscopy. The in-plane electrical properties are surprisingly insensitive to phase and elemental impurities, with all films showing p-type, thermally activated transport with a small activation energy ({approx}30 meV), a room- temperature resistivity of {approx}1 {Omega} cm, and low mobility. These ubiquitous electrical properties may result from robust surface effects. These CVD pyrite thin films are well suited to fundamental electrical studies and the fabrication of pyrite photovoltaic device stacks.« less

  13. DSMC simulations of vapor transport toward development of the lithium vapor box divertor concept

    NASA Astrophysics Data System (ADS)

    Jagoe, Christopher; Schwartz, Jacob; Goldston, Robert

    2016-10-01

    The lithium vapor divertor box concept attempts to achieve volumetric dissipation of the high heat efflux from a fusion power system. The vapor extracts the heat of the incoming plasma by ionization and radiation, while remaining localized in the vapor box due to differential pumping based on rapid condensation. Preliminary calculations with lithium vapor at densities appropriate for an NSTX-U-scale machine give Knudsen numbers between 0.01 and 1, outside both the range of continuum fluid dynamics and of collisionless Monte Carlo. The direct-simulation Monte Carlo (DSMC) method, however, can simulate rarefied gas flows in this regime. Using the solver contained in the OpenFOAM package, pressure-driven flows of water vapor will be analyzed. The use of water vapor in the relevant range of Knudsen number allows for a flexible similarity experiment to verify the reliability of the code before moving to tests with lithium. The simulation geometry consists of chains of boxes on a temperature gradient, connected by slots with widths that are a representative fraction of the dimensions of the box. We expect choked flow, sonic shocks, and order-of-magnitude pressure and density drops from box to box, but this expectation will be tested in the simulation and then experiment. This work is supported by the Princeton Environmental Institute.

  14. Reid Vapor Pressure (RVP) of Gasoline Spreadsheet Example Key for Requirements at 40 CFR 80.47(g) and 80.47(l)

    EPA Pesticide Factsheets

    This guidance deals with the self-qualification of analytical test methods at a testing facility for measuring Reid Vapor Pressure (RVP) of gasoline to meet precision requirements codified in regulations.

  15. Vapor Phase Deposition Using Plasma Spray-PVD™

    NASA Astrophysics Data System (ADS)

    von Niessen, K.; Gindrat, M.; Refke, A.

    2010-01-01

    Plasma spray—physical vapor deposition (PS-PVD) is a low pressure plasma spray technology to deposit coatings out of the vapor phase. PS-PVD is a part of the family of new hybrid processes recently developed by Sulzer Metco AG (Switzerland) on the basis of the well-established low pressure plasma spraying (LPPS) technology. Included in this new process family are plasma spray—chemical vapor deposition (PS-CVD) and plasma spray—thin film (PS-TF) processes. In comparison to conventional vacuum plasma spraying and LPPS, these new processes use a high energy plasma gun operated at a work pressure below 2 mbar. This leads to unconventional plasma jet characteristics which can be used to obtain specific and unique coatings. An important new feature of PS-PVD is the possibility to deposit a coating not only by melting the feed stock material which builds up a layer from liquid splats, but also by vaporizing the injected material. Therefore, the PS-PVD process fills the gap between the conventional PVD technologies and standard thermal spray processes. The possibility to vaporize feedstock material and to produce layers out of the vapor phase results in new and unique coating microstructures. The properties of such coatings are superior to those of thermal spray and EB-PVD coatings. This paper reports on the progress made at Sulzer Metco to develop functional coatings build up from vapor phase of oxide ceramics and metals.

  16. Effects of solvent evaporation conditions on solvent vapor annealed cylinder-forming block polymer thin films

    NASA Astrophysics Data System (ADS)

    Grant, Meagan; Jakubowski, William; Nelson, Gunnar; Drapes, Chloe; Baruth, A.

    Solvent vapor annealing is a less time and energy intensive method compared to thermal annealing, to direct the self-assembly of block polymer thin films. Periodic nanostructures have applications in ultrafiltration, magnetic arrays, or other structures with nanometer dimensions, driving its continued interest. Our goal is to create thin films with hexagonally packed, perpendicular aligned cylinders of poly(lactide) in a poly(styrene) matrix that span the thickness of the film with low anneal times and low defect densities, all with high reproducibility, where the latter is paramount. Through the use of our computer-controlled, pneumatically-actuated, purpose-built solvent vapor annealing chamber, we have the ability to monitor and control vapor pressure, solvent concentration within the film, and solvent evaporation rate with unprecedented precision and reliability. Focusing on evaporation, we report on two previously unexplored areas, chamber pressure during solvent evaporation and the flow rate of purging gas aiding the evaporation. We will report our exhaustive results following atomic force microscopy analysis of films exposed to a wide range of pressures and flow rates. Reliably achieving well-ordered films, while occurring within a large section of this parameter space, was correlated with high-flow evaporation rates and low chamber pressures. These results have significant implications on other methods of solvent annealing, including ``jar'' techniques.

  17. Stability limit of liquid water in metastable equilibrium with subsaturated vapors.

    PubMed

    Wheeler, Tobias D; Stroock, Abraham D

    2009-07-07

    A pure liquid can reach metastable equilibrium with its subsaturated vapor across an appropriate membrane. This situation is analogous to osmotic equilibrium: the reduced chemical potential of the dilute phase (the subsaturated vapor) is compensated by a difference in pressure between the phases. To equilibrate with subsaturated vapor, the liquid phase assumes a pressure that is lower than its standard vapor pressure, such that the liquid phase is metastable with respect to the vapor phase. For sufficiently subsaturated vapors, the liquid phase can even assume negative pressures. The appropriate membrane for this metastable equilibrium must provide the necessary mechanical support to sustain the difference in pressure between the two phases, limit nonhomogeneous mechanisms of cavitation, and resist the entry of the dilutant (gases) into the pure phase (liquid). In this article, we present a study of the limit of stability of liquid water--the degree of subsaturation at which the liquid cavitates--in this metastable state within microscale voids embedded in hydrogel membranes. We refer to these structures as vapor-coupled voids (VCVs). In these VCVs, we observed that liquid water cavitated when placed in equilibrium with vapors of activity aw,vapairpressure in the liquid based on thermodynamic calculations, the liquid cavitated at pressures Ppressure is smaller in magnitude than the limit predicted by homogeneous nucleation theory or molecular simulations (Pcav=-140 to -180 MPa). To determine the cause of the disparity between the observed and predicted stability limit, we examine experimentally the likelihood of several nonhomogeneous mechanisms of nucleation: (i) heterogeneous nucleation caused by hydrophobic patches on void walls, (ii) nucleation caused by the presence of dissolved solute, (iii) nucleation caused by the presence of pre-existing vapor nuclei, and (iv

  18. Saturated liquid density of 1,1-difluoroethane(R 152a) and thermodynamic properties along the vapor-liquid coexistence curve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, H.; Okada, M.; Uematsu, M.

    1987-01-01

    Saturated liquid densities of 1,1-difluoroethane (CH/sub 3/CHF/sub 2/) are measured at temperatures from 223 K to 363 K with the estimated uncertainty of +-0.2% by a magnetic densimetry. The experimental results are compared with the available experimental data and some correlations and equations of state. A simple correlation for the saturated liquid density is developed as a function of temperature. This correlation covers the temperature range up to the critical point which reproduces the present experimental results with the percent means deviation of 0.11%. Adding the available experimental data with respect to the vapor pressure, critical parameters, saturated vapor density,more » and the second virial coefficient to the present saturated liquid density data, the parameters of the Redlich-Kwong-Soave equation of state are determined and the thermodynamic properties along the vapor-liquid coexistence curve are derived.« less

  19. Melt-Vapor Phase Diagram of the Te-S System

    NASA Astrophysics Data System (ADS)

    Volodin, V. N.; Trebukhov, S. A.; Kenzhaliyev, B. K.; Nitsenko, A. V.; Burabaeva, N. M.

    2018-03-01

    The values of partial pressure of saturated vapor of the constituents of the Te-S system are determined from boiling points. The boundaries of the melt-vapor phase transition at atmospheric pressure and in vacuum of 2000 and 100 Pa are calculated on the basis of partial pressures. A phase diagram that includes vapor-liquid equilibrium fields whose boundaries allow us to assess the behavior of elements upon distillation fractioning is plotted. It is established that the separation of elements is possible at the first evaporation-condensation cycle. Complications can be caused by crystallization of a sulfur solid solution in tellurium.

  20. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium.

    PubMed

    McCarron, Daniel J; Hughes, Ifan G; Tierney, Patrick; Cornish, Simon L

    2007-09-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D(2) transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude.

  1. Experimental study of flash boiling spray vaporization through quantitative vapor concentration and liquid temperature measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Gaoming; Hung, David L. S.; Xu, Min

    2014-08-01

    Flash boiling sprays of liquid injection under superheated conditions provide the novel solutions of fast vaporization and better air-fuel mixture formation for internal combustion engines. However, the physical mechanisms of flash boiling spray vaporization are more complicated than the droplet surface vaporization due to the unique bubble generation and boiling process inside a superheated bulk liquid, which are not well understood. In this study, the vaporization of flash boiling sprays was investigated experimentally through the quantitative measurements of vapor concentration and liquid temperature. Specifically, the laser-induced exciplex fluorescence technique was applied to distinguish the liquid and vapor distributions. Quantitative vapor concentration was obtained by correlating the intensity of vapor-phase fluorescence with vapor concentration through systematic corrections and calibrations. The intensities of two wavelengths were captured simultaneously from the liquid-phase fluorescence spectra, and their intensity ratios were correlated with liquid temperature. The results show that both liquid and vapor phase of multi-hole sprays collapse toward the centerline of the spray with different mass distributions under the flash boiling conditions. Large amount of vapor aggregates along the centerline of the spray to form a "gas jet" structure, whereas the liquid distributes more uniformly with large vortexes formed in the vicinity of the spray tip. The vaporization process under the flash boiling condition is greatly enhanced due to the intense bubble generation and burst. The liquid temperature measurements show strong temperature variations inside the flash boiling sprays with hot zones present in the "gas jet" structure and vortex region. In addition, high vapor concentration and closed vortex motion seem to have inhibited the heat and mass transfer in these regions. In summary, the vapor concentration and liquid temperature provide detailed information

  2. Net vapor generation point in boiling flow of trichlorotrifluoroethane at high pressures

    NASA Technical Reports Server (NTRS)

    Dougall, R. S.; Lippert, T. E.

    1973-01-01

    The conditions at which the void in subcooled boiling starts to undergo a rapid increase were studied experimentally. The experiments were performed in a 12.7 x 9.5 mm rectangular channel. Heating was from a 3.2 mm wide strip embedded in one wall. The pressure ranged from 9.45 to 20.7 bar, mass velocity from 600 to 7000 kg/sq m sec, and subcooling from 16 to 67 C. Photographs were used to determine when detached bubbles first appeared in the bulk flow. Measurements of bubble layer thickness along the wall were also made. Results showed that the point of net vapor generation is close to the occurrence of fully-developed boiling.

  3. An Integrated Approach to Introducing Biofuels, Flash Point, and Vapor Pressure Concepts into an Introductory College Chemistry Lab

    ERIC Educational Resources Information Center

    Hoffman, Adam R.; Britton, Stephanie L.; Cadwell, Katie D.; Walz, Kenneth A.

    2011-01-01

    Students explore the fundamental chemical concepts of vapor pressure and flash point in a real-world technical context, while gaining insight into the contemporary societal issue of biofuels. Lab activities were developed using a closed-cup instrument to measure the flash point of various biodiesel samples. Pre- and post-tests revealed that the…

  4. Vapor-dominated zones within hydrothermal systems: evolution and natural state

    USGS Publications Warehouse

    Ingebritsen, S.E.; Sorey, M.L.

    1988-01-01

    Three conceptual models illustrate the range of hydrothermal systems in which vapor-dominated conditions are found. The first model (model I) represents a system with an extensive near-vaporstatic vapor-dominated zone and limited liquid throughflow and is analogous to systems such as The Geysers, California. Models II and III represent systems with significant liquid throughflow and include steam-heated discharge features at higher elevations and high-chloride springs at lower elevations connected to and fed by a single circulation system at depth. In model II, as in model I, the vapor-dominated zone has a near-vaporstatic vertical pressure gradient and is generally underpressured with respect to local hydrostatic pressure. The vapor-dominated zone in model III is quite different, in that phase separation takes place at pressures close to local hydrostatic and the overall pressure gradient is near hydrostatic. -from Authors

  5. The control of purity and stoichiometry of compound semiconductors by high vapor pressure transport

    NASA Technical Reports Server (NTRS)

    Bachmann, Klaus J.; Ito, Kazufumi; Scroggs, Jeffery S.; Tran, Hien T.

    1995-01-01

    In this report we summarize the results of a three year research program on high pressure vapor transport (HPVT) of compound semiconductors. Most of our work focused onto pnictides, in particular ZnGeP2, as a model system. Access to single crystals of well controlled composition of this material is desired for advancing the understanding and control of its point defect chemistry in the contest of remote, real-time sensing of trace impurities, e.g., greenhouse gases, in the atmosphere by ZnGeP2 optical parametric oscillators (OPO's).

  6. Preliminary endurance tests of water vaporizers for resistojet applications

    NASA Technical Reports Server (NTRS)

    Morren, W. Earl; Macrae, Gregory S.

    1993-01-01

    Three water vaporizers designed for resistojet applications were built and tested for periods up to 500 h and 250 thermal cycles. Two of the vaporizers were not sensitive to orientation with respect to gravity, an indication of likely compatibility with low-gravity environments. Some temperatures and pressures in the third were impacted by orientation, although operation was always stable. The pressure drop across the sand-filled version increased by 147 percent in 38 h and 19 thermal cycles. Bonding of the sand granules in the downstream end of the heat exchanger was the suspected cause of failure of this vaporizer. Pressure drops across the two sintered stainless steel-filled versions were more gradual. One, with a pore size of 60 microns, showed an 80 percent increase in 500 h and 250 thermal cycles and another, with a 10 microns poresize, showed a 29 percent increase in 350 h and 175 thermal cycles. Testing of the latter metal-filled vaporizer was ongoing as of this writing. Oxidation of the porous metal packing materials in these vaporizers, with subsequent deposition of oxide particles within the pores, was believed to have caused the observed increases in pressure drops.

  7. Scaling behavior of columnar structure during physical vapor deposition

    NASA Astrophysics Data System (ADS)

    Meese, W. J.; Lu, T.-M.

    2018-02-01

    The statistical effects of different conditions in physical vapor deposition, such as sputter deposition, have on thin film morphology has long been the subject of interest. One notable effect is that of column development due to differential chamber pressure in the well-known empirical model called the Thornton's Structure Zone Model. The model is qualitative in nature and theoretical understanding with quantitative predictions of the morphology is still lacking due, in part, to the absence of a quantitative description of the incident flux distribution on the growth front. In this work, we propose an incident Gaussian flux model developed from a series of binary hard-sphere collisions and simulate its effects using Monte Carlo methods and a solid-on-solid growth scheme. We also propose an approximate cosine-power distribution for faster Monte Carlo sampling. With this model, it is observed that higher chamber pressures widen the average deposition angle, and similarly increase the growth of column diameters (or lateral correlation length) and the column-to-column separation (film surface wavelength). We treat both the column diameter and the surface wavelength as power laws. It is seen that both the column diameter exponent and the wavelength exponent are very sensitive to changes in pressure for low pressures (0.13 Pa to 0.80 Pa); meanwhile, both exponents saturate for higher pressures (0.80 Pa to 6.7 Pa) around a value of 0.6. These predictions will serve as guides to future experiments for quantitative description of the film morphology under a wide range of vapor pressure.

  8. Effect of Water Vapor Pressure on Fatigue Crack Growth in Al-Zn-Cu-Mg Alloy Over Wide-Range Stress Intensity Factor Loading

    DTIC Science & Technology

    2014-05-07

    impacts: (a) crack closure, (b) transport of water vapor molecules within the fatigue crack (47], and (c) tensile stress-plastic strain range...sealed stainless steel UHV chamber. Pure water vapor was introduced from a sealed glass flask containing triply distilled water, via a precision leak...lamellar for H1 flow in a fatigue crack in steel ; specifically, flow is dominated by the low dynamic viscosity of a gas (particularly at low pressures) and

  9. The Annual Cycle of Water Vapor on Mars as Observed by the Thermal Emission Spectrometer

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Spectra taken by the Mars Global Surveyor Thermal Emission Spectrometer (TES) have been used to monitor the latitude, longitude, and seasonal dependence of water vapor for over one full Martian year (March 1999-March 2001). A maximum in water vapor abundance is observed at high latitudes during mid-summer in both hemispheres, reaching a maximum value of approximately 100 pr-micrometer in the north and approximately 50 pr-micrometer in the south. Low water vapor abundance (<5 pr-micrometer) is observed at middle and high latitudes in the fall and winter of both hemispheres. There are large differences in the hemispheric (north versus south) and seasonal (perihelion versus aphelion) behavior of water vapor. The latitudinal and seasonal dependence of the decay of the northern summer water vapor maximum implies cross-equatorial transport of water to the southern hemisphere, while there is little or no corresponding transport during the decay of the southern hemisphere summer maximum. The latitude-longitude dependence of annually-averaged water vapor (corrected for topography) has a significant positive correlation with albedo and significant negative correlations with thermal inertia and surface pressure. Comparison of TES results with those retrieved from the Viking Orbiter Mars Atmospheric Water Detectors (MAWD) experiments shows some similar features, but also many significant differences. The southern hemisphere maximum observed by TES was not observed by MAWD and the large latitudinal gradient in annually-averaged water vapor observed by MAWD does not appear in the TES results.

  10. Effects of ambient temperature and water vapor on chamber pressure and oxygen level during low atmospheric pressure stunning of poultry

    PubMed Central

    Holloway, Paul H.; Pritchard, David G.

    2017-01-01

    Abstract The characteristics of the vacuum used in a low atmospheric pressure stunning system to stun (render unconscious) poultry prior to slaughter are described. A vacuum chamber is pumped by a wet screw compressor. The vacuum pressure is reduced from ambient atmospheric pressure to an absolute vacuum pressure of ∼250 Torr (∼33 kPa) in ∼67 sec with the vacuum gate valve fully open. At ∼250 Torr, the sliding gate valve is partially closed to reduce effective pumping speed, resulting in a slower rate of decreasing pressure. Ambient temperature affects air density and water vapor pressure and thereby oxygen levels and the time at the minimum total pressure of ∼160 Torr (∼21 kPa) is varied from ∼120 to ∼220 sec to ensure an effective stun within the 280 seconds of each cycle. The reduction in total pressure results in a gradual reduction of oxygen partial pressure that was measured by a solid-state electrochemical oxygen sensor. The reduced oxygen pressure leads to hypoxia, which is recognized as a humane method of stunning poultry. The system maintains an oxygen concentration of <5% for at least 2 minutes, which ensures that birds are irreversibly stunned. Calculated pump down (pressure versus time) data match experimental data very closely because the programmable logic controller and the human machine interface enable precise and accurate control. The vacuum system operates in the turbulent viscous flow regime, and is best characterized by absolute vacuum pressure rather than gauge pressure. Neither the presence of broiler chickens nor different fore-line pipe designs of four parallel commercial systems affected the pressure-time data. Water in wet air always reduces the oxygen concentrations to a value lower than in dry air. The partial pressure of water and oxygen were found to depend on the pump down parameters due to the formation of fog in the chamber and desorption of water from the birds and the walls of the vacuum chamber. PMID

  11. Liquid-Vapor Equilibrium of Multicomponent Cryogenic Systems

    NASA Technical Reports Server (NTRS)

    Thompson, W. Reid; Calado, Jorge C. G.; Zollweg, John A.

    1990-01-01

    Liquid-vapor and solid-vapor equilibria at low to moderate pressures and low temperatures are important in many solar system environments, including the surface and clouds of Titan, the clouds of Uranus and Neptune, and the surfaces of Mars and Triton. The familiar cases of ideal behavior are limiting cases of a general thermodynamic representation for the vapor pressure of each component in a homogeneous multicomponent system. The fundamental connections of laboratory measurements to thermodynamic models are through the Gibbs-Duhem relation and the Gibbs-Helmholtz relation. Using laboratory measurements of the total pressure, temperature, and compositions of the liquid and vapor phases at equilibrium, the values of these parameters can be determined. The resulting model for vapor-liquid equilibrium can then conveniently and accurately be used to calculate pressures, compositions, condensation altitudes, and their dependencies on changing climatic conditions. A specific system being investigated is CH4-C2H6-N2, at conditions relevant to Titan's surface and atmosphere. Discussed are: the modeling of existing data on CH4-N2, with applications to the composition of Titan's condensate clouds; some new measurements on the CH4-C2H6 binary, using a high-precision static/volumetric system, and on the C2H6-N2 binary, using the volumetric system and a sensitive cryogenic flow calorimeter; and describe a new cryogenic phase-equilibrium vessel with which we are beginning a detailed, systematic study of the three constituent binaries and the ternary CH4-C2H6-N2 system at temperatures ranging from 80 to 105 K and pressures from 0.1 to 7 bar.

  12. Characterization of urania vaporization with transpiration coupled thermogravimetry

    DOE PAGES

    McMurray, J. W.

    2015-12-05

    Determining equilibrium vapor pressures of materials is made easier by transpiration measurements. However, the traditional technique involves condensing the volatiles entrained in a carrier gas outside of the hot measurement zone. One potential problem is deposition en route to a cooled collector. Thermogravimetric analysis (TGA) can be used to measure in situ mass loss due to vaporization and therefore obviate the need to analyze the entire gas train due to premature plating of vapor species. Therefore, a transpiration coupled TGA technique was used to determine equilibrium pressures of UO3 gas over fluorite structure UO2+x and U3O8 at T = (1573more » and 1773) K. Moreover, we compared to calculations from models and databases in the open literature. Our study gives clarity to the thermochemical data for UO3 gas and validates the mass loss transpiration method using thermogravimetry for determining equilibrium vapor pressures of non-stoichiometric oxides.« less

  13. 40 CFR 52.787 - Gasoline transfer vapor control.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Gasoline transfer vapor control. 52.787... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Indiana § 52.787 Gasoline transfer vapor control. (a) Gasoline means any petroleum distillate having a Reid vapor pressure of 4 pounds or greater...

  14. 40 CFR 52.787 - Gasoline transfer vapor control.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Gasoline transfer vapor control. 52.787... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Indiana § 52.787 Gasoline transfer vapor control. (a) Gasoline means any petroleum distillate having a Reid vapor pressure of 4 pounds or greater...

  15. 40 CFR 52.787 - Gasoline transfer vapor control.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Gasoline transfer vapor control. 52.787... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Indiana § 52.787 Gasoline transfer vapor control. (a) Gasoline means any petroleum distillate having a Reid vapor pressure of 4 pounds or greater...

  16. 40 CFR 52.787 - Gasoline transfer vapor control.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Gasoline transfer vapor control. 52.787... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Indiana § 52.787 Gasoline transfer vapor control. (a) Gasoline means any petroleum distillate having a Reid vapor pressure of 4 pounds or greater...

  17. 40 CFR 52.787 - Gasoline transfer vapor control.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Gasoline transfer vapor control. 52.787... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Indiana § 52.787 Gasoline transfer vapor control. (a) Gasoline means any petroleum distillate having a Reid vapor pressure of 4 pounds or greater...

  18. An examination of the thermodynamics of fusion, vaporization, and sublimation of several parabens by correlation gas chromatography.

    PubMed

    Umnahanant, Patamaporn; Chickos, James

    2011-05-01

    The vaporization, fusion, and sublimation enthalpies of methyl, ethyl, propyl, and butyl paraben are reported and compared with literature values. The vaporization enthalpies were measured by correlation gas chromatography and the fusion enthalpies by differential scanning calorimetry. Adjusted to T = 298.15 K, these enthalpies were combined to yield the sublimation enthalpy. The results compare favorably to some of the literature values but do not support the reversal in magnitude of both the vaporization and sublimation enthalpy previously reported for propyl and butyl paraben. The following fusion and vaporization enthalpies were measured for methyl through to butyl paraben, respectively: ΔH(fus) (T(fus) ) 26.3 ± 0.1 (398.6 K), 26.5 ± 0.1 (388.5 K), 27.3 ± 0.1 (368.8), and 25.9 ± 0.3 (340.7 K) kJ·mol(-1); ΔH(vap) (298.15 K) 79.5 ± 0.5, 84.0 ± 0.5, 89.7 ± 0.6, and 95.8 ± 0.6 kJ·mol(-1). The results are believed to be accurate to ± 4 kJ·mol(-1). Copyright © 2011 Wiley-Liss, Inc.

  19. The hysteretic evapotranspiration—Vapor pressure deficit relation

    NASA Astrophysics Data System (ADS)

    Zhang, Quan; Manzoni, Stefano; Katul, Gabriel; Porporato, Amilcare; Yang, Dawen

    2014-02-01

    Diurnal hysteresis between evapotranspiration (ET) and vapor pressure deficit (VPD) was reported in many ecosystems, but justification for its onset and magnitude remains incomplete with biotic and abiotic factors invoked as possible explanations. To place these explanations within a holistic framework, the occurrence of hysteresis was theoretically assessed along a hierarchy of model systems where both abiotic and biotic components are sequentially added. Lysimeter evaporation (E) measurements and model calculations using the Penman equation were used to investigate the effect of the time lag between net radiation and VPD on the hysteresis in the absence of any biotic effects. Modulations from biotic effects on the ET-VPD hysteresis were then added using soil-plant-atmosphere models of different complexities applied to a grassland ecosystem. The results suggest that the hysteresis magnitude depends on the radiation-VPD lag, while the plant and soil water potentials are both key factors modulating the hysteretic ET-VPD relation as soil moisture declines. In particular, larger hysteresis magnitude is achieved at less negative leaf water potential, root water potential, and soil water potential. While plant hydraulic capacitance affects the leaf water potential-ET relation, it has negligible effects on the ET-VPD hysteresis. Therefore, the genesis and magnitude of the ET-VPD hysteresis are controlled directly by both abiotic factors such as soil water availability, biotic factors (leaf and root water potentials, which in turn depend on soil moisture), and the time lag between radiation and VPD.

  20. Vapors and Droplets Mixture Deposition of Metallic Coatings by Very Low Pressure Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Vautherin, B.; Planche, M.-P.; Bolot, R.; Quet, A.; Bianchi, L.; Montavon, G.

    2014-04-01

    In recent years, the very low pressure plasma-spraying (VLPPS) process has been intensely developed and implemented to manufacture thin, dense and finely structured ceramic coatings for various applications, such as Y2O3 for diffusion barriers, among other examples. This paper aims at presenting developments carried out on metallic coatings. Aluminum was chosen as a demonstrative material due to its "moderate" vaporization enthalpy (i.e., 38.23 KJ cm-3) compared to the one of copper (i.e., 55.33 KJ cm-3), cobalt (i.e., 75.03 KJ cm-3), or even tantalum (i.e., 87.18 KJ cm-3). The objective of this work is primarily to better understand the behavior of a solid precursor injected into the plasma jet leading to the formation of vapors and to better control the factors affecting the coating structure. Nearly dense aluminum coatings were successfully deposited by VLPPS at 100 Pa with an intermediate power plasma torch (i.e., Sulzer Metco F4 type gun with maximum power of 45 kW). Optical emission spectroscopy (OES) was implemented to study and analyze the vapor behavior into the plasma jet. Simplified CFD modeling allowed better understanding of some of the thermo-physical mechanisms. The effect of powder-size distribution, substrate temperature and spray distance were studied. The phase composition and microstructural features of the coatings were characterized by XRD and SEM. Moreover, Vickers microhardness measurements were implemented.

  1. 40 CFR 52.255 - Gasoline transfer vapor control.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Gasoline transfer vapor control. 52.255... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.255 Gasoline transfer vapor control. (a) “Gasoline” means any petroleum distillate having a Reid vapor pressure of 4 pounds or greater...

  2. 40 CFR 52.255 - Gasoline transfer vapor control.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Gasoline transfer vapor control. 52.255... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.255 Gasoline transfer vapor control. (a) “Gasoline” means any petroleum distillate having a Reid vapor pressure of 4 pounds or greater...

  3. 40 CFR 52.255 - Gasoline transfer vapor control.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Gasoline transfer vapor control. 52.255... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.255 Gasoline transfer vapor control. (a) “Gasoline” means any petroleum distillate having a Reid vapor pressure of 4 pounds or greater...

  4. 40 CFR 52.255 - Gasoline transfer vapor control.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Gasoline transfer vapor control. 52.255... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.255 Gasoline transfer vapor control. (a) “Gasoline” means any petroleum distillate having a Reid vapor pressure of 4 pounds or greater...

  5. 40 CFR 52.255 - Gasoline transfer vapor control.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Gasoline transfer vapor control. 52.255... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.255 Gasoline transfer vapor control. (a) “Gasoline” means any petroleum distillate having a Reid vapor pressure of 4 pounds or greater...

  6. Growth of vertically aligned carbon nanofibers by low-pressure inductively coupled plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Caughman, J. B. O.; Baylor, L. R.; Guillorn, M. A.; Merkulov, V. I.; Lowndes, D. H.; Allard, L. F.

    2003-08-01

    Vertically aligned carbon nanofibers (VACNFs) have been grown using a low-pressure, plasma-enhanced, chemical vapor deposition process. The nanofibers are grown from a nickel catalyst that can be patterned to form arrays of individual, isolated VACNFs. The fibers are grown at pressures below 100 mTorr, using an inductively coupled plasma source with a radio-frequency bias on the sample substrate to allow for independent control of the ion energies. Plasma conditions are related to growth results by comparing optical emission from the plasma to the physical structure of the nanofibers. We find that the ratio of etching species in the plasma to depositing species is critical to the final shape of the carbon structures that are formed.

  7. Thermodynamics and Kinetics of Silicate Vaporization

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Costa, Gustavo C. C.

    2015-01-01

    Silicates are a common class of materials that are often exposed to high temperatures. The behavior of these materials needs to be understood for applications as high temperature coatings in material science as well as the constituents of lava for geological considerations. The vaporization behavior of these materials is an important aspect of their high temperature behavior and it also provides fundamental thermodynamic data. The application of Knudsen effusion mass spectrometry (KEMS) to silicates is discussed. There are several special considerations for silicates. The first is selection of an appropriate cell material, which is either nearly inert or has well-understood interactions with the silicate. The second consideration is proper measurement of the low vapor pressures. This can be circumvented by using a reducing agent to boost the vapor pressure without changing the solid composition or by working at very high temperatures. The third consideration deals with kinetic barriers to vaporization. The measurement of these barriers, as encompassed in a vaporization coefficient, is discussed. Current measured data of rare earth silicates for high temperature coating applications are discussed. In addition, data on magnesium-iron-silicates (olivine) are presented and discussed.

  8. Optical Sensor for Diverse Organic Vapors at ppm Concentration Ranges

    PubMed Central

    Thomas, J. Christopher; Trend, John E.; Rakow, Neal A.; Wendland, Michael S.; Poirier, Richard J.; Paolucci, Dora M.

    2011-01-01

    A broadly responsive optical organic vapor sensor is described that responds to low concentrations of organic vapors without significant interference from water vapor. Responses to several classes of organic vapors are highlighted, and trends within classes are presented. The relationship between molecular properties (vapor pressure, boiling point, polarizability, and refractive index) and sensor response are discussed. PMID:22163798

  9. Buoyancy-Driven Heat Transfer During Application of a Thermal Gradient for the Study of Vapor Deposition at Low Pressure Using and Ideal Gas

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Hung, R. J.; Paley, M. S.; Penn, B. G.; Long, Y. T.

    1996-01-01

    A mathematical model has been developed to determine heat transfer during vapor deposition of source materials under a variety of orientations relative to gravitational accelerations. The model demonstrates that convection can occur at total pressures as low as 10-2 mm Hg. Through numerical computation, using physical material parameters of air, a series of time steps demonstrates the development of flow and temperature profiles during the course of vapor deposition. These computations show that in unit gravity vapor deposition occurs by transport through a fairly complicated circulating flow pattern when applying heat to the bottom of the vessel with parallel orientation with respect to the gravity vector. The model material parameters for air predict the effect of kinematic viscosity to be of the same order as thermal diffusivity, which is the case for Prandtl number approx. 1 fluids. Qualitative agreement between experiment and the model indicates that 6-(2-methyl-4-nitroanilino)-2,4-hexadiyn-l-ol (DAMNA) at these pressures indeed approximates an ideal gas at the experiment temperatures, and may validate the use of air physical constants. It is apparent that complicated nonuniform temperature distribution in the vapor could dramatically affect the homogeneity, orientation, and quality of deposited films. The experimental test i's a qualitative comparison of film thickness using ultraviolet-visible spectroscopy on films generated in appropriately oriented vapor deposition cells. In the case where heating of the reaction vessel occurs from the top, deposition of vapor does not normally occur by convection due to a stable stratified medium. When vapor deposition occurs in vessels heated at the bottom, but oriented relative to the gravity vector between these two extremes, horizontal thermal gradients induce a complex flow pattern. In the plane parallel to the tilt axis, the flow pattern is symmetrical and opposite in direction from that where the vessel is

  10. Empirical Correlations for the Solubility of Pressurant Gases in Cryogenic Propellants

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Asipauskas, Marius; VanDresar, Neil T.

    2010-01-01

    We have analyzed data published by others reporting the solubility of helium in liquid hydrogen, oxygen, and methane, and of nitrogen in liquid oxygen, to develop empirical correlations for the mole fraction of these pressurant gases in the liquid phase as a function of temperature and pressure. The data, compiled and provided by NIST, are from a variety of sources and covers a large range of liquid temperatures and pressures. The correlations were developed to yield accurate estimates of the mole fraction of the pressurant gas in the cryogenic liquid at temperature and pressures of interest to the propulsion community, yet the correlations developed are applicable over a much wider range. The mole fraction solubility of helium in all these liquids is less than 0.3% at the temperatures and pressures used in propulsion systems. When nitrogen is used as a pressurant for liquid oxygen, substantial contamination can result, though the diffusion into the liquid is slow.

  11. Very Long Single and Few-Walled Boron Nitride Nanotubes via the Pressurized Vapor/Condenser Method

    NASA Technical Reports Server (NTRS)

    Smith, Michael W.; Jordan, Kevin C.; Park, Cheol; Kim, Jae-Woo; Lillehei, Peter T.; Crooks, Roy; Harrison, Joycelyn S.

    2009-01-01

    A new method for producing long, small diameter, single and few-walled, boron nitride nanotubes (BNNTs) in macroscopic quantities is reported. The pressurized vapor/condenser (PVC) method produces, without catalysts, highly crystalline, very long, small diameter, BNNTs. Palm-sized, cotton-like masses of BNNT raw material were grown by this technique and spun directly into centimeters-long yarn. Nanotube lengths were observed to be 100 times that of those grown by the most closely related method. Self-assembly and growth models for these long BNNTs are discussed.

  12. Semi-empirical correlation for binary interaction parameters of the Peng-Robinson equation of state with the van der Waals mixing rules for the prediction of high-pressure vapor-liquid equilibrium.

    PubMed

    Fateen, Seif-Eddeen K; Khalil, Menna M; Elnabawy, Ahmed O

    2013-03-01

    Peng-Robinson equation of state is widely used with the classical van der Waals mixing rules to predict vapor liquid equilibria for systems containing hydrocarbons and related compounds. This model requires good values of the binary interaction parameter kij . In this work, we developed a semi-empirical correlation for kij partly based on the Huron-Vidal mixing rules. We obtained values for the adjustable parameters of the developed formula for over 60 binary systems and over 10 categories of components. The predictions of the new equation system were slightly better than the constant-kij model in most cases, except for 10 systems whose predictions were considerably improved with the new correlation.

  13. Vapor-Phase Stoichiometry and Heat Treatment of CdTe Starting Material for Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Sha, Yi-Gao; Lehoczky, S. L.; Liu, Hao-Chieh; Fang, Rei; Brebrick, R. F.

    1998-01-01

    Six batches of CdTe, having total amounts of material from 99 to 203 g and gross mole fraction of Te, X(sub Te), 0.499954-0.500138, were synthesized from pure Cd and Te elements. The vapor-phase stoichiometry of the assynthesized CdTe batches was determined from the partial pressure of Te2, P(sub Te2) using an optical absorption technique. The measured vapor compositions at 870 C were Te-rich for all of the batches with partial pressure ratios of Cd to Te2, P(sub Cd)/P(sub Te2), ranging from 0.00742 to 1.92. After the heat treatment of baking under dynamic vacuum at 870 C for 8 min, the vapor-phase compositions moved toward that of the congruent sublimation, i.e. P(sub Cd)/P(sub Te2) = 2.0, with the measured P(sub Cd)/P(sub Te2) varying from 1.84 to 3.47. The partial pressure measurements on one of the heat-treated samples also showed that the sample remained close to the congruent sublimation condition over the temperature range 800-880 C.

  14. A demonstration experiment for studying the properties of saturated vapor

    NASA Astrophysics Data System (ADS)

    Grebenev, Igor V.; Lebedeva, Olga V.; Polushkina, Svetlana V.

    2017-11-01

    The paper proposes an important demonstration experiment that can be used at secondary schools in physics. The described experiment helps students learn the main concepts of the topic ‘saturated vapor’, namely, evaporation, condensation, dynamic equilibrium, saturation vapor, partial pressure, and the dependence of saturated vapor pressure on temperature.

  15. Effect of deposition pressure on the morphology and structural properties of carbon nanotubes synthesized by hot-filament chemical vapor deposition.

    PubMed

    Arendse, C J; Malgas, G F; Scriba, M R; Cummings, F R; Knoesen, D

    2007-10-01

    Hot-filament chemical vapor deposition has developed into an attractive method for the synthesis of various carbon nanostructures, including carbon nanotubes. This is primarily due to its versatility, low cost, repeatability, up-scalability, and ease of production. The resulting nano-material synthesized by this technique is dependent on the deposition conditions which can be easily controlled. In this paper we report on the effect of the deposition pressure on the structural properties and morphology of carbon nanotubes synthesized by hot-filament chemical vapor deposition, using Raman spectroscopy and high-resolution scanning electron microscopy, respectively. A 10 nm-thick Ni layer, deposited on a SiO2/Si substrate, was used as catalyst for carbon nanotube growth. Multi-walled carbon nanotubes with diameters ranging from 20-100 nm were synthesized at 500 degrees C with high structural perfection at deposition pressures between 150 and 200 Torr. Raman spectroscopy measurements confirm that the carbon nanotube deposit is homogeneous across the entire substrate area.

  16. Porous tungsten prepared by atmospheric-pressure chemical vapor deposition with WF6 and its characterization

    NASA Astrophysics Data System (ADS)

    Li, Ying; Yu, Xiaodong; Tan, Chengwen; Wang, Fuchi; Ma, Honglei; Yue, Jintao

    2017-05-01

    Porous tungsten (W) is used in aeronautic and aerospace engineering, power electronics field and metallurgical industry. In this study, porous W with 98wt% W was prepared on a carbon foam substrate by atmospheric-pressure chemical vapor deposition (CVD) with tungsten fluoride (WF6) as the precursor. The porous W with 78.1346% porosity displayed a pure α-W phase and the uniform surface. The mode pore diameter of porous W is 208.0 µm. In a compression test, the fracture strength of porous W is 20.3 MPa.

  17. Effects of ambient temperature and water vapor on chamber pressure and oxygen level during low atmospheric pressure stunning of poultry.

    PubMed

    Holloway, Paul H; Pritchard, David G

    2017-08-01

    The characteristics of the vacuum used in a low atmospheric pressure stunning system to stun (render unconscious) poultry prior to slaughter are described. A vacuum chamber is pumped by a wet screw compressor. The vacuum pressure is reduced from ambient atmospheric pressure to an absolute vacuum pressure of ∼250 Torr (∼33 kPa) in ∼67 sec with the vacuum gate valve fully open. At ∼250 Torr, the sliding gate valve is partially closed to reduce effective pumping speed, resulting in a slower rate of decreasing pressure. Ambient temperature affects air density and water vapor pressure and thereby oxygen levels and the time at the minimum total pressure of ∼160 Torr (∼21 kPa) is varied from ∼120 to ∼220 sec to ensure an effective stun within the 280 seconds of each cycle. The reduction in total pressure results in a gradual reduction of oxygen partial pressure that was measured by a solid-state electrochemical oxygen sensor. The reduced oxygen pressure leads to hypoxia, which is recognized as a humane method of stunning poultry. The system maintains an oxygen concentration of <5% for at least 2 minutes, which ensures that birds are irreversibly stunned. Calculated pump down (pressure versus time) data match experimental data very closely because the programmable logic controller and the human machine interface enable precise and accurate control. The vacuum system operates in the turbulent viscous flow regime, and is best characterized by absolute vacuum pressure rather than gauge pressure. Neither the presence of broiler chickens nor different fore-line pipe designs of four parallel commercial systems affected the pressure-time data. Water in wet air always reduces the oxygen concentrations to a value lower than in dry air. The partial pressure of water and oxygen were found to depend on the pump down parameters due to the formation of fog in the chamber and desorption of water from the birds and the walls of the vacuum chamber. © The Author 2017

  18. 42 CFR 84.163 - Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand classes; test requirements. 84.163 Section 84.163 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF...

  19. Development of a new test cell to measure cumulative permeation of water-insoluble pesticides with low vapor pressure through protective clothing and glove materials

    PubMed Central

    SHAW, Anugrah; COLEONE-CARVALHO, Ana Carla; HOLLINGSHURST, Julien; DRAPER, Michael; MACHADO NETO, Joaquim Gonçalves

    2017-01-01

    A collaborative approach, involving resources and expertise from several countries, was used to develop a test cell to measure cumulative permeation by a solid-state collection technique. The new technique was developed to measure the permeation of pesticide active ingredients and other chemicals with low vapor pressure that would otherwise be difficult to test via standard techniques. The development process is described and the results from the final chosen test method are reported. Inter-laboratory studies were conducted to further refine the new method and determine repeatability and reliability. The revised test method has been approved as a new ISO/EN standard to measure permeation of chemicals with low vapor pressure and/or solubility in water. PMID:29033403

  20. Water vapor-nitrogen absorption at CO2 laser frequencies

    NASA Technical Reports Server (NTRS)

    Peterson, J. C.; Thomas, M. E.; Nordstrom, R. J.; Damon, E. K.; Long, R. K.

    1979-01-01

    The paper reports the results of a series of pressure-broadened water vapor absorption measurements at 27 CO2 laser frequencies between 935 and 1082 kaysers. Both multiple traversal cell and optoacoustic (spectrophone) techniques were utilized together with an electronically stabilized CW CO2 laser. Comparison of the results obtained by these two methods shows remarkable agreement, indicating a precision which has not been previously achieved in pressure-broadened studies of water vapor. The data of 10.59 microns substantiate the existence of the large (greater than 200) self-broadening coefficients determined in an earlier study by McCoy. In this work, the case of water vapor in N2 at a total pressure of 1 atm has been treated.

  1. Impact vaporization: Late time phenomena from experiments

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.; Gault, D. E.

    1987-01-01

    While simple airflow produced by the outward movement of the ejecta curtain can be scaled to large dimensions, the interaction between an impact-vaporized component and the ejecta curtain is more complicated. The goal of these experiments was to examine such interaction in a real system involving crater growth, ejection of material, two phased mixtures of gas and dust, and strong pressure gradients. The results will be complemented by theoretical studies at laboratory scales in order to separate the various parameters for planetary scale processes. These experiments prompt, however, the following conclusions that may have relevance at broader scales. First, under near vacuum or low atmospheric pressures, an expanding vapor cloud scours the surrounding surface in advance of arriving ejecta. Second, the effect of early-time vaporization is relatively unimportant at late-times. Third, the overpressure created within the crater cavity by significant vaporization results in increased cratering efficiency and larger aspect ratios.

  2. Vapor-liquid equilibria for hydrogen fluoride + 1,1-difluoroethane at 288.23 and 298.35 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.; Kim, H.; Lim, J.S.

    1997-07-01

    Isothermal vapor-liquid equilibria for hydrogen fluoride + 1,1-difluoroethane at 288.23 and 298.35 K were measured using a circulation type apparatus equipped with an equilibrium view cell. The compositions of both vapor and liquid phases were analyzed by an on-line gas chromatographic method. They were compared with PTx equilibrium data measured by the total pressure method. The experimental data were correlated with Anderko`s equation of state using the Wong-Sandler mixing rule as well as the van der Waals one-fluid mixing rule. The Wong-Sandler mixing rule gives better results, and the relevant parameters are presented.

  3. Vapor-barrier Vacuum Isolation System

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M. (Inventor); Taminger, Karen M. (Inventor)

    2014-01-01

    A system includes a collimated beam source within a vacuum chamber, a condensable barrier gas, cooling material, a pump, and isolation chambers cooled by the cooling material to condense the barrier gas. Pressure levels of each isolation chamber are substantially greater than in the vacuum chamber. Coaxially-aligned orifices connect a working chamber, the isolation chambers, and the vacuum chamber. The pump evacuates uncondensed barrier gas. The barrier gas blocks entry of atmospheric vapor from the working chamber into the isolation chambers, and undergoes supersonic flow expansion upon entering each isolation chamber. A method includes connecting the isolation chambers to the vacuum chamber, directing vapor to a boundary with the working chamber, and supersonically expanding the vapor as it enters the isolation chambers via the orifices. The vapor condenses in each isolation chamber using the cooling material, and uncondensed vapor is pumped out of the isolation chambers via the pump.

  4. Dynamic Leidenfrost temperature on micro-textured surfaces: Acoustic wave absorption into thin vapor layer

    NASA Astrophysics Data System (ADS)

    Jerng, Dong Wook; Kim, Dong Eok

    2018-01-01

    The dynamic Leidenfrost phenomenon is governed by three types of pressure potentials induced via vapor hydrodynamics, liquid dynamic pressure, and the water hammer effect resulting from the generation of acoustic waves at the liquid-vapor interface. The prediction of the Leidenfrost temperature for a dynamic droplet needs quantitative evaluation and definition for each of the pressure fields. In particular, the textures on a heated surface can significantly affect the vapor hydrodynamics and the water hammer pressure. We present a quantitative model for evaluating the water hammer pressure on micro-textured surfaces taking into account the absorption of acoustic waves into the thin vapor layer. The model demonstrates that the strength of the acoustic flow into the liquid droplet, which directly contributes to the water hammer pressure, depends on the magnitude of the acoustic resistance (impedance) in the droplet and the vapor region. In consequence, the micro-textures of the surface and the increased spacing between them reduce the water hammer coefficient ( kh ) defined as the ratio of the acoustic flow into the droplet to total generated flow. Aided by numerical calculations that solve the laminar Navier-Stokes equation for the vapor flow, we also predict the dynamic Leidenfrost temperature on a micro-textured surface with reliable accuracy consistent with the experimental data.

  5. Solid-like features in dense vapors near the fluid critical point

    NASA Astrophysics Data System (ADS)

    Ruppeiner, George; Dyjack, Nathan; McAloon, Abigail; Stoops, Jerry

    2017-06-01

    The phase diagram (pressure versus temperature) of the pure fluid is typically envisioned as being featureless apart from the presence of the liquid-vapor coexistence curve terminating at the critical point. However, a number of recent authors have proposed that this simple picture misses important features, such as the Widom line, the Fisher-Widom line, and the Frenkel line. In our paper, we discuss another way of augmenting the pure fluid phase diagram, lines of zero thermodynamic curvature R = 0 separating regimes of fluid solid-like behavior (R > 0) from gas-like or liquid-like behavior (R < 0). We systematically evaluate R for the 121 pure fluids in the NIST/REFPROP (version 9.1) fluid database near the saturated vapor line from the triple point to the critical point. Our specific goal was to identify regions of positive R abutting the saturated vapor line ("feature D"). We found the following: (i) 97/121 of the NIST/REFPROP fluids have feature D. (ii) The presence and character of feature D correlates with molecular complexity, taken to be the number of atoms Q per molecule. (iii) The solid-like properties of feature D might be attributable to a mesoscopic model based on correlations among coordinated spinning molecules, a model that might be testable with computer simulations. (iv) There are a number of correlations between thermodynamic quantities, including the acentric factor ω , but we found little explicit correlation between ω and the shape of a molecule. (v) Feature D seriously constrains the size of the asymptotic fluid critical point regime, possibly resolving a long-standing mystery about why these are so small. (vi) Feature D correlates roughly with regimes of anomalous sound propagation.

  6. Growth of Carbon Nanostructure Materials Using Laser Vaporization

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehozeky, S.

    2000-01-01

    Since the potential applications of carbon nanotubes (CNT) was discovered in many fields, such as non-structure electronics, lightweight composite structure, and drug delivery, CNT has been grown by many techniques in which high yield single wall CNT has been produced by physical processes including arc vaporization and laser vaporization. In this presentation, the growth mechanism of the carbon nanostructure materials by laser vaporization is to be discussed. Carbon nanoparticles and nanotubes have been synthesized using pulsed laser vaporization on Si substrates in various temperatures and pressures. Two kinds of targets were used to grow the nanostructure materials. One was a pure graphite target and the other one contained Ni and Co catalysts. The growth temperatures were 600-1000 C and the pressures varied from several torr to 500 torr. Carbon nanoparticles were observed when a graphite target was used, although catalysts were deposited on substrates before growing carbon films. When the target contains catalysts, carbon nanotubes (CNT) are obtained. The CNT were characterized by scanning electron microscopy, x-ray diffraction, optical absorption and transmission, and Raman spectroscopy. The temperature-and pressure-dependencies of carbon nanotubes' growth rate and size were investigated.

  7. Process for recovering organic vapors from air

    DOEpatents

    Baker, Richard W.

    1985-01-01

    A process for recovering and concentrating organic vapor from a feed stream of air having an organic vapor content of no more than 20,000 ppm by volume. A thin semipermeable membrane is provided which has a feed side and a permeate side, a selectivity for organic vapor over air of at least 50, as measured by the ratio of organic vapor permeability to nitrogen permeability, and a permeability of organic vapor of at least 3.times.10.sup.-7 cm.sup.3 (STP) cm/cm.sup.2 sec.cm Hg. The feed stream is passed across the feed side of the thin semipermeable membrane while providing a pressure on the permeate side which is lower than the feed side by creating a partial vacuum on the permeate side so that organic vapor passes preferentially through the membrane to form an organic vapor depleted air stream on the feed side and an organic vapor enriched stream on the permeate side. The organic vapor which has passed through the membrane is compressed and condensed to recover the vapor as a liquid.

  8. Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hemawan, Kadek W.; Gou, Huiyang; Hemley, Russell J.

    2015-11-01

    Polycrystalline diamond has been synthesized on silicon substrates at atmospheric pressure, using a microwave capillary plasma chemical vapor deposition technique. The CH4/Ar plasma was generated inside of quartz capillary tubes using 2.45 GHz microwave excitation without adding H2 into the deposition gas chemistry. Electronically excited species of CN, C2, Ar, N2, CH, Hβ, and Hα were observed in the emission spectra. Raman measurements of deposited material indicate the formation of well-crystallized diamond, as evidenced by the sharp T2g phonon at 1333 cm-1 peak relative to the Raman features of graphitic carbon. Field emission scanning electron microscopy images reveal that, depending on the growth conditions, the carbon microstructures of grown films exhibit "coral" and "cauliflower-like" morphologies or well-facetted diamond crystals with grain sizes ranging from 100 nm to 10 μm.

  9. Vapor Pressure of Three Brominated Flame Retardants Determined via Knudsen Effusion Method

    PubMed Central

    Fu, Jinxia; Suuberg, Eric M.

    2012-01-01

    Brominated flame retardants (BFRs) have been used in a variety of consumer products in the past four decades. The vapor pressures for three widely used BFRs, that is, tetrabromobisphenol A (TBBPA), hexabromocyclododecane (HBCD), and octabromodiphenyl ethers (octaBDEs) mixtures, were determined using the Knudsen effusion method and compared to those of decabromodiphenyl ether (BDE209). The values measured extrapolated to 298.15 K are 8.47 × 10−9, 7.47 × 10−10, and 2.33 × 10−9 Pa, respectively. The enthalpies of sublimation for these BFRs were estimated using the Clausius-Clapeyron equation and are 143.6 ± 0.4, 153.7 ± 3.1, and 150.8 ± 3.2 kJ/mole, respectively. In addition, the enthalpies of fusion and melting temperatures for these BFRs were also measured in the present study. PMID:22213441

  10. Carbon nanotubes synthesized by Ni-assisted atmospheric pressure thermal chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Choi, G. S.; Cho, Y. S.; Hong, S. Y.; Park, J. B.; Son, K. H.; Kim, D. J.

    2002-03-01

    A detailed systematic study on the growth morphology of carbon nanotubes (CNTs) on Si in atmospheric pressure thermal chemical vapor deposition was undertaken. The role of NH3 for vertical alignment of CNTs was investigated. The direct cause for the alignment was a dense distribution of the catalytic metal particles, but that the particles are maintained catalytically active under amorphous carbon deposits was established by NH3. It allows a dense nucleation of the CNTs, and consequently, assists vertical alignment through entanglement and mechanical leaning among the tubes. The CNTs grew in a base growth mode. Since Ni is consumed both by silicide reaction and by capture into the growing tube, the growth stops when Ni is totally depleted. It occurs earlier for smaller particles, and thus a long time of growth results in a thin bottom with poor adhesion.

  11. Chemical reaction between water vapor and stressed glass

    NASA Technical Reports Server (NTRS)

    Soga, N.; Okamoto, T.; Hanada, T.; Kunugi, M.

    1979-01-01

    The crack velocity in soda-lime silicate glass was determined at room temperature at water-vapor pressures of 10 to 0.04 torr using the double torsion technique. A precracked glass specimen (70 x 16 x 1.6 mm) was placed in a vacuum chamber containing a four-point bending test apparatus. The plotted experimental results show that the crack propagation curve in water agrees fairly well with that of Wiederhorn (1967). Attention is given to the effect of water vapor pressure on crack velocity at K(I) = 550,000 N/m to the 3/2 power, with (Wiederhorn's data) or without N2 present. The plotted results reveal that the present crack velocity is about two orders of magnitude higher than that of Wiederhorn at high water-vapor conditions, but the difference decreases as the water-vapor concentration diminishes or the crack velocity slows down.

  12. An examination of the thermodynamics of fusion, vaporization, and sublimation of ibuprofen and naproxen by correlation gas chromatography.

    PubMed

    Maxwell, Rachel; Chickos, James

    2012-02-01

    The vaporization enthalpies of (S)-ibuprofen and (S)-naproxen measured by correlation gas chromatography at T = 298.15 K are reported and compared with literature values. Adjustment of the fusion enthalpies of (RS)- and (S)-ibuprofen and (S)-naproxen to T = 298.15 K and combined with the vaporization enthalpy of the (S)-enantiomer of both ibuprofen and naproxen also at T = 298.15 K resulted in the sublimation enthalpies of both (S)-enantiomers. On the assumption that the vaporization enthalpy of the racemic form of ibuprofen is within the experimental uncertainty of the chiral form, the sublimation enthalpy of racemic ibuprofen was also evaluated. The vaporization and sublimation enthalpies compare favorably to the most of the literature values for the racemic form of ibuprofen but differ from the value reported for chiral ibuprofen. The literature values of (S)-naproxen are somewhat smaller than the values measured in this work. The following vaporization enthalpies were measured for (S)-ibuprofen and (S)-naproxen, respectively: ΔH(vap) (298.15 K), 106.0 ± 5.5, 132.2 ± 5.0 kJ·mol(-1) . Sublimation enthalpies of 122.7 ± 5.6 and 155.2 ± 7.1 kJ·mol(-1) were calculated for the (S)-enantiomers of ibuprofen and naproxen and a value of 128.9 ± 5.8 kJ·mol(-1) was estimated for the racemic form of ibuprofen. Copyright © 2011 Wiley Periodicals, Inc.

  13. Test description and preliminary pitot-pressure surveys for Langley Test Technique Demonstrator at Mach 6

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.; Ashby, George C., Jr.; Monta, William J.

    1992-01-01

    A propulsion/airframe integration experiment conducted in the NASA Langley 20-Inch Mach 6 Tunnel using a 16.8-in.-long version of the Langley Test Technique Demonstrator configuration with simulated scramjet propulsion is described. Schlieren and vapor screen visualization of the nozzle flow field is presented and correlated with pitot-pressure flow-field surveys. The data were obtained at nominal free-stream conditions of Re = 2.8 x 10 exp 6 and a nominal engine total pressure of 100 psia. It is concluded that pitot-pressure surveys coupled to schlieren and vapor-screen photographs, and oil flows have revealed flow features including vortices, free shear layers, and shock waves occurring in the model flow field.

  14. Alkali vapor pressure modulation on the 100 ms scale in a single-cell vacuum system for cold atom experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dugrain, Vincent; Reichel, Jakob; Rosenbusch, Peter

    2014-08-15

    We describe and characterize a device for alkali vapor pressure modulation on the 100 ms timescale in a single-cell cold atom experiment. Its mechanism is based on optimized heat conduction between a current-modulated alkali dispenser and a heat sink at room temperature. We have studied both the short-term behavior during individual pulses and the long-term pressure evolution in the cell. The device combines fast trap loading and relatively long trap lifetime, enabling high repetition rates in a very simple setup. These features make it particularly suitable for portable atomic sensors.

  15. Lithium vapor/aerosol studies. Interim summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitlow, G.A.; Bauerle, J.E.; Down, M.G.

    1979-04-01

    The temperature/cover gas pressure regime, in which detectable lithium aerosol is formed in a static system has been mapped for argon and helium cover gases using a portable He--Ne laser device. At 538/sup 0/C (1000/sup 0/F), lithium aerosol particles were observed over the range 0.5 to 20 torr and 2 to 10 torr for argon and helium respectively. The experimental conditions in this study were more conducive to aerosol formation than in a fusion reactor. In the real reactor system, very high intensity mechanical and thermal disturbances will be made to the liquid lithium. These disturbances, particularly transient increases inmore » lithium vapor pressure appear to be capable of producing high concentrations of optically-dense aerosol. A more detailed study is, therefore, proposed using the basic information generated in these preliminary experiments, as a starting point. Areas recommended include the kinetics of aerosol formation and the occurrence of supersaturated vapor during rapid vapor pressure transients, and also the effect of lithium agitation (falls, jets, splashing, etc.) on aerosol formation.« less

  16. Nonlinear dynamics of confined thin liquid-vapor bilayer systems with phase change

    NASA Astrophysics Data System (ADS)

    Kanatani, Kentaro; Oron, Alexander

    2011-03-01

    We numerically investigate the nonlinear evolution of the interface of a thin liquid-vapor bilayer system confined by rigid horizontal walls from both below and above. The lateral variation of the vapor pressure arising from phase change is taken into account in the present analysis. When the liquid (vapor) is heated (cooled) and gravity acts toward the liquid, the deflection of the interface monotonically grows, leading to a rupture of the vapor layer, whereas nonruptured stationary states are found when the liquid (vapor) is cooled (heated) and gravity acts toward the vapor. In the latter case, vapor-flow-driven convective cells are found in the liquid phase in the stationary state. The average vapor pressure and interface temperature deviate from their equilibrium values once the interface departs from the flat equilibrium state. Thermocapillarity does not have a significant effect near the thermodynamic equilibrium, but becomes important if the system significantly deviates from it.

  17. An improved algorithm for the modeling of vapor flow in heat pipes

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K.; Hainley, Donald C.

    1989-01-01

    A heat pipe vapor flow algorithm suitable for use in codes on microcomputers is presented. The incompressible heat pipe vapor flow studies of Busse are extended to incorporate compressibility effects. The Busse velocity profile factor is treated as a function of temperature and pressure. The assumption of a uniform saturated vapor temperature determined by the local pressure at each cross section of the pipe is not made. Instead, a mean vapor temperature, defined by an energy integral, is determined in the course of the solution in addition to the pressure, saturation temperature at the wall, and the Busse velocity profile factor. For alkali metal working fluids, local species equilibrium is assumed. Temperature and pressure profiles are presented for several cases involving sodium heat pipes. An example for a heat pipe with an adiabatic section and two evaporators in sequence illustrates the ability to handle axially varying heat input. A sonic limit plot for a short evaporator falls between curves for the Busse and Levy inviscid sonic limits.

  18. An improved algorithm for the modeling of vapor flow in heat pipes

    NASA Astrophysics Data System (ADS)

    Tower, Leonard K.; Hainley, Donald C.

    1989-12-01

    A heat pipe vapor flow algorithm suitable for use in codes on microcomputers is presented. The incompressible heat pipe vapor flow studies of Busse are extended to incorporate compressibility effects. The Busse velocity profile factor is treated as a function of temperature and pressure. The assumption of a uniform saturated vapor temperature determined by the local pressure at each cross section of the pipe is not made. Instead, a mean vapor temperature, defined by an energy integral, is determined in the course of the solution in addition to the pressure, saturation temperature at the wall, and the Busse velocity profile factor. For alkali metal working fluids, local species equilibrium is assumed. Temperature and pressure profiles are presented for several cases involving sodium heat pipes. An example for a heat pipe with an adiabatic section and two evaporators in sequence illustrates the ability to handle axially varying heat input. A sonic limit plot for a short evaporator falls between curves for the Busse and Levy inviscid sonic limits.

  19. Adsorption characteristics of water vapor on gear-pellet and honeycomb-pellet types of adsorbents containing A-type zeolite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, A.; Munakata, K.; Hara, K.

    2015-03-15

    It is necessary to recover or process tritiated species that are extensively coexistent in nuclear fusion installations. A conventional way to recover tritium release to atmosphere is catalytic oxidation of tritiated species and adsorption of tritiated water vapor on adsorbents with high surface areas. Therefore, new adsorbents with low pressure loss and high surface areas need to be developed and utilized for such large-scale adsorption systems. In this study, attention was focused on new adsorbents, which are gear-type pellet MS5A adsorbent, gear-type pellet MS4A adsorbent and honeycomb-type pellet MS5A adsorbent. The adsorption characteristics of the new adsorbent were comparatively studiedmore » with conventional type of adsorbents (pellet-type MS5A adsorbent and pebble-type MS5A adsorbent), in terms of adsorption capacity, pressure loss and adsorption rate. It was found that the adsorption capacity of water vapor on the gear-type adsorbents is higher than that on a honeycomb-type adsorbent. The experimental breakthrough curves indicate that the adsorption rates of water vapor on gear-type and honeycomb-type adsorbents are smaller than that on conventional type adsorbents. Various adsorption models were also tested to correlate the experimental isotherms. It was found that the Langmuir-Freundlich model could properly correlate the experimental adsorption isotherms.« less

  20. Fabrication of Planar Heterojunction Perovskite Solar Cells by Controlled Low-Pressure Vapor Annealing.

    PubMed

    Li, Yanbo; Cooper, Jason K; Buonsanti, Raffaella; Giannini, Cinzia; Liu, Yi; Toma, Francesca M; Sharp, Ian D

    2015-02-05

    A new method for achieving high efficiency planar CH3NH3I3-xClx perovskite photovoltaics, based on a low pressure, reduced temperature vapor annealing is demonstrated. Heterojunction devices based on this hybrid halide perovskite exhibit a top PCE of 16.8%, reduced J-V hysteresis, and highly repeatable performance without need for a mesoporous or nanocrystalline metal oxide layer. Our findings demonstrate that large hysteresis is not an inherent feature of planar heterojunctions, and that efficient charge extraction can be achieved with uniform halide perovskite materials with desired composition. X-ray diffraction, valence band spectroscopy, and transient absorption measurements of these thin films reveal that structural modifications induced by chlorine clearly dominate over chemical and electronic doping effects, without affecting the Fermi level or photocarrier lifetime in the material.

  1. Numerical simulation of superheated vapor bubble rising in stagnant liquid

    NASA Astrophysics Data System (ADS)

    Samkhaniani, N.; Ansari, M. R.

    2017-09-01

    In present study, the rising of superheated vapor bubble in saturated liquid is simulated using volume of fluid method in OpenFOAM cfd package. The surface tension between vapor-liquid phases is considered using continuous surface force method. In order to reduce spurious current near interface, Lafaurie smoothing filter is applied to improve curvature calculation. Phase change is considered using Tanasawa mass transfer model. The variation of saturation temperature in vapor bubble with local pressure is considered with simplified Clausius-Clapeyron relation. The couple velocity-pressure equation is solved using PISO algorithm. The numerical model is validated with: (1) isothermal bubble rising and (2) one-dimensional horizontal film condensation. Then, the shape and life time history of single superheated vapor bubble are investigated. The present numerical study shows vapor bubble in saturated liquid undergoes boiling and condensation. It indicates bubble life time is nearly linear proportional with bubble size and superheat temperature.

  2. Heat-Exchange Fluids for Sulfuric Acid Vaporizers

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Petersen, G. R.

    1982-01-01

    Some fluorine-substituted organic materials meet criteria for heat-exchange fluids in contact with sulfuric acid. Most promising of these are perfluoropropylene oxide polymers with degree of polymerization (DP) between 10 and 50. It is desirable to have DP in high range because vapor pressure of material decreases as DP increases, and high-DP liquids have lower loss due to vaporization.

  3. The gaseous enthalpy of formation of the ionic liquid 1-butyl-3-methylimidazolium dicyanamide from combustion calorimetry, vapor pressure measurements, and ab initio calculations.

    PubMed

    Emel'yanenko, Vladimir N; Verevkin, Sergey P; Heintz, Andreas

    2007-04-04

    Ionic liquids are attracting growing interest as alternatives to conventional molecular solvents. Experimental values of vapor pressure, enthalpy of vaporization, and enthalpy of formation of ionic liquids are the key thermodynamic quantities, which are required for the validation and development of the molecular modeling and ab initio methods toward this new class of solvents. In this work, the molar enthalpy of formation of the liquid 1-butyl-3-methylimidazolium dicyanamide, 206.2 +/- 2.5 kJ.mol-1, was measured by means of combustion calorimetry. The molar enthalpy of vaporization of 1-butyl-3-methylimidazolium dicyanamide, 157.2 +/- 1.1 kJ.mol-1, was obtained from the temperature dependence of the vapor pressure measured using the transpiration method. The latter method has been checked with measurements of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, where data are available from the effusion technique. The first experimental determination of the gaseous enthalpy of formation of the ionic liquid 1-butyl-3-methylimidazolium dicyanamide, 363.4 +/- 2.7 kJ.mol-1, from thermochemical measurements (combustion and transpiration) is presented. Ab initio calculations of the enthalpy of formation in the gaseous phase have been performed for 1-butyl-3-methylimidazolium dicyanamide using the G3MP2 theory. Excellent agreement with experimental results has been observed. The method developed opens a new way to obtain thermodynamic properties of ionic liquids which have not been available so far.

  4. New Density Functional Approach for Solid-Liquid-Vapor Transitions in Pure Materials

    NASA Astrophysics Data System (ADS)

    Kocher, Gabriel; Provatas, Nikolas

    2015-04-01

    A new phase field crystal (PFC) type theory is presented, which accounts for the full spectrum of solid-liquid-vapor phase transitions within the framework of a single density order parameter. Its equilibrium properties show the most quantitative features to date in PFC modeling of pure substances, and full consistency with thermodynamics in pressure-volume-temperature space is demonstrated. A method to control either the volume or the pressure of the system is also introduced. Nonequilibrium simulations show that 2- and 3-phase growth of solid, vapor, and liquid can be achieved, while our formalism also allows for a full range of pressure-induced transformations. This model opens up a new window for the study of pressure driven interactions of condensed phases with vapor, an experimentally relevant paradigm previously missing from phase field crystal theories.

  5. Method for controlling corrosion in thermal vapor injection gases

    DOEpatents

    Sperry, John S.; Krajicek, Richard W.

    1981-01-01

    An improvement in the method for producing high pressure thermal vapor streams from combustion gases for injection into subterranean oil producing formations to stimulate the production of viscous minerals is described. The improvement involves controlling corrosion in such thermal vapor gases by injecting water near the flame in the combustion zone and injecting ammonia into a vapor producing vessel to contact the combustion gases exiting the combustion chamber.

  6. Characteristics of Evaporator with a Lipuid-Vapor Separator

    NASA Astrophysics Data System (ADS)

    Ikeguchi, Masaki; Tanaka, Naoki; Yumikura, Tsuneo

    Flow pattern of refrigerant in a heat exchanger tube changes depending on vapor quality, tube diameter, refrigerant flow rate and refrigerant properties. High flow rate causes mist flow where the quality is from 0.8 to 1.0. 1n this flow pattern, the liquid film detaches from the tube wall so that the heat flow is intervened. The heat transfer coefficient generally increases with the flow rate. But the pressure drop of refrigerant flow simultaneously increases and the region of the mist flow enlarges. In order to reduce the pressure drop and suppress the mist flow, we have developped a small liquid-vapor separator that removes the vapor from the evaporating refrigerant flow. This separator is equipped in the middle of the evaporator where the flow pattern is annular. The experiments to evaluate the effect of this separator were carried out and the following conclutions were obtained. (1) Average heat transfer coefficient increases by 30-60 %. (2) Pressure drop reduces by 20-30 %. (3) Cooling Capacity increases by 2-9 %.

  7. Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition

    DOE PAGES

    Gou, Huiyang; Hemley, Russell J.; Hemawan, Kadek W.

    2015-11-02

    Polycrystalline diamond has been successfully synthesized on silicon substrates at atmospheric pressure using a microwave capillary plasma chemical vapor deposition technique. The CH 4/Ar plasma was generated inside of quartz capillary tubes using 2.45 GHz microwave excitation without adding H2 into the deposition gas chemistry. Electronically excited species of CN, C 2, Ar, N 2, CH, H β and H α were observed in emission spectra. Raman measurements of deposited material indicate the formation of well-crystallized diamond, as evidenced by the sharp T 2g phonon at 1333 cm -1 peak relative to the Raman features of graphitic carbon. Furthermore, fieldmore » emission scanning electron microscopy (SEM) images reveal that, depending on the on growth conditions, the carbon microstructures of grown films exhibit “coral” and “cauliflower-like” morphologies or well-facetted diamond crystals with grain sizes ranging from 100 nm to 10 μm.« less

  8. Luminescence of mesoporous silicon powders treated by high-pressure water vapor annealing

    NASA Astrophysics Data System (ADS)

    Gelloz, Bernard; Loni, Armando; Canham, Leigh; Koshida, Nobuyoshi

    2012-07-01

    We have studied the photoluminescence of nanocrystalline silicon microparticle powders fabricated by fragmentation of PSi membranes. Several porosities were studied. Some powders have been subjected to further chemical etching in HF in order to reduce the size of the silicon skeleton and reach quantum sizes. High-pressure water vapor annealing was then used to enhance both the luminescence efficiency and stability. Two visible emission bands were observed. A red band characteristic of the emission of Si nanocrystals and a blue band related to localized centers in oxidized powders. The blue band included a long-lived component, with a lifetime exceeding 1 sec. Both emission bands depended strongly on the PSi initial porosity. The colors of the processed powders were tunable from brown to off-white, depending on the level of oxidation. The surface area and pore volume of some powders were also measured and discussed. The targeted applications are in cosmetics and medicine.

  9. Quantification of vapor intrusion pathways into a slab-on-ground building under varying environmental conditions.

    PubMed

    Patterson, Bradley M; Davis, Greg B

    2009-02-01

    Potential hydrocarbon-vapor intrusion pathways into a building through a concrete slab-on-ground were investigated and quantified under a variety of environmental conditions to elucidate the potential mechanisms for indoor air contamination. Vapor discharge from the uncovered open ground soil adjacent to the building and subsequent advection into the building was unlikely due to the low soil-gas concentrations at the edge of the building as a result of aerobic biodegradation of hydrocarbon vapors. When the building's interior was under ambient pressure, a flux of vapors into the building due to molecular diffusion of vapors through the building's concrete slab (cyclohexane 11 and methylcyclohexane 31 mg m(-2) concrete slab day(-1)) and short-term (up to 8 h) cyclical pressure-driven advection of vapors through an artificial crack (cyclohexane 4.2 x 10(3) and methylcyclohexane 1.2 x 10(4) mg m(-2) cracks day(-1)) was observed. The average subslab vapor concentration under the center of the building was 25,000 microg L(-1). Based on the measured building's interiorvapor concentrations and the building's air exchange rate of 0.66 h(-1), diffusion of vapors through the concrete slab was the dominantvapor intrusion pathway and cyclical pressure exchanges resulted in a near zero advective flux. When the building's interior was under a reduced pressure (-12 Pa), advective transport through cracks or gaps in the concrete slab (cyclohexane 340 and methylcyclohexane 1100 mg m(-2) cracks day(-1)) was the dominant vapor intrusion pathway.

  10. Partial Pressures for Several In-Se Compositions from Optical Absorbance of the Vapor

    NASA Technical Reports Server (NTRS)

    Brebrick, R. F.; Su, Ching-Hua

    2001-01-01

    The optical absorbance of the vapor phase over various In-Se compositions between 33.3-60.99 at.% Se and 673-1418 K was measured and used to obtain the partial pressures of Se2(g) and In2Se(g). The results are in agreement with silica Bourdon gauge measurements for compositions between 50-61 at.%, but significantly higher than those from Knudsen cell and simultaneous Knudsen-torsion cell measurements. It is found that 60.99 at.% Se lies outside the sesquiselenide homogeneity range and 59.98 at.% Se lies inside and is the congruently melting composition. The Gibbs energy of formation of the liquid from its pure liquid elements between 1000-1300 K is essentially independent of temperature and falls between -36 to -38 kJ per g atomic weight for 50 and 56% Se at 1200 and 1300 K.

  11. Calibration of Raman lidar water vapor profiles by means of AERONET photometer observations and GDAS meteorological data

    NASA Astrophysics Data System (ADS)

    Dai, Guangyao; Althausen, Dietrich; Hofer, Julian; Engelmann, Ronny; Seifert, Patric; Bühl, Johannes; Mamouri, Rodanthi-Elisavet; Wu, Songhua; Ansmann, Albert

    2018-05-01

    We present a practical method to continuously calibrate Raman lidar observations of water vapor mixing ratio profiles. The water vapor profile measured with the multiwavelength polarization Raman lidar PollyXT is calibrated by means of co-located AErosol RObotic NETwork (AERONET) sun photometer observations and Global Data Assimilation System (GDAS) temperature and pressure profiles. This method is applied to lidar observations conducted during the Cyprus Cloud Aerosol and Rain Experiment (CyCARE) in Limassol, Cyprus. We use the GDAS temperature and pressure profiles to retrieve the water vapor density. In the next step, the precipitable water vapor from the lidar observations is used for the calibration of the lidar measurements with the sun photometer measurements. The retrieved calibrated water vapor mixing ratio from the lidar measurements has a relative uncertainty of 11 % in which the error is mainly caused by the error of the sun photometer measurements. During CyCARE, nine measurement cases with cloud-free and stable meteorological conditions are selected to calculate the precipitable water vapor from the lidar and the sun photometer observations. The ratio of these two precipitable water vapor values yields the water vapor calibration constant. The calibration constant for the PollyXT Raman lidar is 6.56 g kg-1 ± 0.72 g kg-1 (with a statistical uncertainty of 0.08 g kg-1 and an instrumental uncertainty of 0.72 g kg-1). To check the quality of the water vapor calibration, the water vapor mixing ratio profiles from the simultaneous nighttime observations with Raman lidar and Vaisala radiosonde sounding are compared. The correlation of the water vapor mixing ratios from these two instruments is determined by using all of the 19 simultaneous nighttime measurements during CyCARE. Excellent agreement with the slope of 1.01 and the R2 of 0.99 is found. One example is presented to demonstrate the full

  12. Correlates of blood pressure in young insulin-dependent diabetics and their families.

    PubMed

    Tarn, A C; Thomas, J M; Drury, P L

    1990-09-01

    We compared the correlates of blood pressure in 163 young patients with insulin-dependent diabetes and in 232 of their non-diabetic siblings. A single observer recorded blood pressure in all subjects, plus all their available parents, using a standardized technique. Other variables recorded included age, weight, height, presence of diabetes and urinary albumin. The major factors accounting for over 50% of the variance of systolic blood pressure (SBP) in both groups were age, weight, paternal SBP and sex. In addition, in the diabetic group the logarithm of the random urinary albumin concentration was a significant explanatory variable. For diastolic blood pressure (DBP) approximately 16% of the variance was explained by age, weight and maternal DBP. Parental blood pressure was an important determinant of blood pressure in both the diabetic and non-diabetic sibling groups. The similarity of the correlates of blood pressure in the two groups suggests that the determinants of blood pressure in young insulin-dependent diabetic patients and in the general population are similar.

  13. Impact Vaporization of Planetesimal Cores

    NASA Astrophysics Data System (ADS)

    Kraus, R. G.; Root, S.; Lemke, R. W.; Stewart, S. T.; Jacobsen, S. B.; Mattsson, T. R.

    2013-12-01

    The degree of mixing and chemical equilibration between the iron cores of planetesimals and the mantle of the growing Earth has important consequences for understanding the end stages of Earth's formation and planet formation in general. At the Sandia Z machine, we developed a new shock-and-release technique to determine the density on the liquid-vapor dome of iron, the entropy on the iron shock Hugoniot, and the criteria for shock-induced vaporization of iron. We find that the critical shock pressure to vaporize iron is 507(+65,-85) GPa and show that decompression from a 15 km/s impact will initiate vaporization of iron cores, which is a velocity that is readily achieved at the end stages of planet formation. Vaporization of the iron cores increases dispersal of planetesimal cores, enables more complete chemical equilibration of the planetesimal cores with Earth's mantle, and reduces the highly siderophile element abundance on the Moon relative to Earth due to the expanding iron vapor exceeding the Moon's escape velocity. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Securities Administration under Contract No. DE-AC04-94AL85000.

  14. Vaporization Would Cool Primary Battery

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Miyake, Robert N.

    1991-01-01

    Temperature of discharging high-power-density primary battery maintained below specified level by evaporation of suitable liquid from jacket surrounding battery, according to proposal. Pressure-relief valve regulates pressure and boiling temperature of liquid. Less material needed in cooling by vaporization than in cooling by melting. Technique used to cool batteries in situations in which engineering constraints on volume, mass, and location prevent attachment of cooling fins, heat pipes, or like.

  15. Condensation of vapor bubble in subcooled pool

    NASA Astrophysics Data System (ADS)

    Horiuchi, K.; Koiwa, Y.; Kaneko, T.; Ueno, I.

    2017-02-01

    We focus on condensation process of vapor bubble exposed to a pooled liquid of subcooled conditions. Two different geometries are employed in the present research; one is the evaporation on the heated surface, that is, subcooled pool boiling, and the other the injection of vapor into the subcooled pool. The test fluid is water, and all series of the experiments are conducted under the atmospheric pressure condition. The degree of subcooling is ranged from 10 to 40 K. Through the boiling experiment, unique phenomenon known as microbubble emission boiling (MEB) is introduced; this phenomenon realizes heat flux about 10 times higher than the critical heat flux. Condensation of the vapor bubble is the key phenomenon to supply ambient cold liquid to the heated surface. In order to understand the condensing process in the MEB, we prepare vapor in the vapor generator instead of the evaporation on the heated surface, and inject the vapor to expose the vapor bubble to the subcooled liquid. Special attention is paid to the dynamics of the vapor bubble detected by the high-speed video camera, and on the enhancement of the heat transfer due to the variation of interface area driven by the condensation.

  16. Impact of air and water vapor environments on the hydrophobicity of surfaces.

    PubMed

    Weisensee, Patricia B; Neelakantan, Nitin K; Suslick, Kenneth S; Jacobi, Anthony M; King, William P

    2015-09-01

    Droplet wettability and mobility play an important role in dropwise condensation heat transfer. Heat exchangers and heat pipes operate at liquid-vapor saturation. We hypothesize that the wetting behavior of liquid water on microstructures surrounded by pure water vapor differs from that for water droplets in air. The static and dynamic contact angles and contact angle hysteresis of water droplets were measured in air and pure water vapor environments inside a pressure vessel. Pressures ranged from 60 to 1000 mbar, with corresponding saturation temperatures between 36 and 100°C. The wetting behavior was studied on four hydrophobic surfaces: flat Teflon-coated, micropillars, micro-scale meshes, and nanoparticle-coated with hierarchical micro- and nanoscale roughness. Static advancing contact angles are 9° lower in the water vapor environment than in air on a flat surface. One explanation for this reduction in contact angles is water vapor adsorption to the Teflon. On microstructured surfaces, the vapor environment has little effect on the static contact angles. In all cases, variations in pressure and temperature do not influence the wettability and mobility of the water droplets. In most cases, advancing contact angles increase and contact angle hysteresis decreases when the droplets are sliding or rolling down an inclined surface. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Correlation models for waste tank sludges and slurries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahoney, L.A.; Trent, D.S.

    This report presents the results of work conducted to support the TEMPEST computer modeling under the Flammable Gas Program (FGP) and to further the comprehension of the physical processes occurring in the Hanford waste tanks. The end products of this task are correlation models (sets of algorithms) that can be added to the TEMPEST computer code to improve the reliability of its simulation of the physical processes that occur in Hanford tanks. The correlation models can be used to augment, not only the TEMPEST code, but other computer codes that can simulate sludge motion and flammable gas retention. This reportmore » presents the correlation models, also termed submodels, that have been developed to date. The submodel-development process is an ongoing effort designed to increase our understanding of sludge behavior and improve our ability to realistically simulate the sludge fluid characteristics that have an impact on safety analysis. The effort has employed both literature searches and data correlation to provide an encyclopedia of tank waste properties in forms that are relatively easy to use in modeling waste behavior. These properties submodels will be used in other tasks to simulate waste behavior in the tanks. Density, viscosity, yield strength, surface tension, heat capacity, thermal conductivity, salt solubility, and ammonia and water vapor pressures were compiled for solutions and suspensions of sodium nitrate and other salts (where data were available), and the data were correlated by linear regression. In addition, data for simulated Hanford waste tank supernatant were correlated to provide density, solubility, surface tension, and vapor pressure submodels for multi-component solutions containing sodium hydroxide, sodium nitrate, sodium nitrite, and sodium aluminate.« less

  18. Effect of Interfacial Turbulence and Accommodation Coefficient on CFD Predictions of Pressurization and Pressure Control in Cryogenic Storage Tank

    NASA Technical Reports Server (NTRS)

    Kassemi, Mohammad; Kartuzova, Olga; Hylton, Sonya

    2015-01-01

    Laminar models agree closely with the pressure evolution and vapor phase temperature stratification but under-predict liquid temperatures. Turbulent SST k-w and k-e models under-predict the pressurization rate and extent of stratification in the vapor but represent liquid temperature distributions fairly well. These conclusions seem to equally apply to large cryogenic tank simulations as well as small scale simulant fluid pressurization cases. Appropriate turbulent models that represent both interfacial and bulk vapor phase turbulence with greater fidelity are needed. Application of LES models to the tank pressurization problem can serve as a starting point.

  19. Conformal coating of amorphous silicon and germanium by high pressure chemical vapor deposition for photovoltaic fabrics

    NASA Astrophysics Data System (ADS)

    Ji, Xiaoyu; Cheng, Hiu Yan; Grede, Alex J.; Molina, Alex; Talreja, Disha; Mohney, Suzanne E.; Giebink, Noel C.; Badding, John V.; Gopalan, Venkatraman

    2018-04-01

    Conformally coating textured, high surface area substrates with high quality semiconductors is challenging. Here, we show that a high pressure chemical vapor deposition process can be employed to conformally coat the individual fibers of several types of flexible fabrics (cotton, carbon, steel) with electronically or optoelectronically active materials. The high pressure (˜30 MPa) significantly increases the deposition rate at low temperatures. As a result, it becomes possible to deposit technologically important hydrogenated amorphous silicon (a-Si:H) from silane by a simple and very practical pyrolysis process without the use of plasma, photochemical, hot-wire, or other forms of activation. By confining gas phase reactions in microscale reactors, we show that the formation of undesired particles is inhibited within the microscale spaces between the individual wires in the fabric structures. Such a conformal coating approach enables the direct fabrication of hydrogenated amorphous silicon-based Schottky junction devices on a stainless steel fabric functioning as a solar fabric.

  20. Auxiliary Electrodes for Chromium Vapor Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fergus, Jeffrey; Shahzad, Moaiz; Britt, Tommy

    Measurement of chromia-containing vapors in solid oxide fuel cell systems is useful for monitoring and addressing cell degradation caused by oxidation of the chomia scale formed on alloys for interconnects and balance-of-plant components. One approach to measuring chromium is to use a solid electrolyte with an auxiliary electrode that relates the partial pressure of the chromium containing species to the mobile species in the electrolyte. One example is YCrO3 which can equilibrate with the chromium containing vapor and yttrium in yttria stabilized zirconia to establish an oxygen activity. Another is Na2CrO4 which can equilibrate with the chromium-containing vapor to establishmore » a sodium activity.« less

  1. Vapor pressures of 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids with long alkyl chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocha, Marisa A. A., E-mail: lbsantos@fc.up.pt, E-mail: marisa.alexandra.rocha@gmail.com; Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven; Coutinho, João A. P.

    2014-10-07

    This work presents the vapor pressure at several temperatures for the 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide series, [C{sub N/2}C{sub N/2}im][NTf{sub 2}] (N = 14, 16, 18, and 20), measured by a Knudsen effusion method combined with a quartz crystal microbalance. The thermodynamic properties of vaporization of the ionic liquids under study are analysed together with the results obtained previously for the shorter alkyl chain length [C{sub N/2}C{sub N/2}im][NTf{sub 2}] (N = 2, 4, 6, 8, 10, and 12), in order to evaluate the effect of the alkyl side chains of the cation and to get additional insights concerning the nanostructuration of ionic liquids.more » The symmetry effect is explored, based on the comparison with the asymmetric imidazolium based ionic liquids, [C{sub N-1}C{sub 1}im][NTf{sub 2}]. A trend shift on the thermodynamic properties of vaporization along the alkyl side chains of the extended symmetric ionic liquids, around [C{sub 6}C{sub 6}im][NTf{sub 2}], was detected. An intensification of the odd-even effect was observed starting from [C{sub 6}C{sub 6}im][NTf{sub 2}], with higher enthalpies and entropies of vaporization for the odd numbered ionic liquids, [C{sub 7}C{sub 7}im][NTf{sub 2}] and [C{sub 9}C{sub 9}im][NTf{sub 2}]. Similar, but less pronounced, odd-even effect was found for the symmetric ionic liquids with lower alkyl side chains length, [C{sub N/2}C{sub N/2}im][NTf{sub 2}] (with N = 4, 6, 8, 10, and 12). This effect is related with the predominant orientation of the terminal methyl group of the alkyl chain to the imidazolium ring and their influence in the cation-anion interaction. The same Critical Alkyl length at the hexyl, (C{sub 6}C{sub 1}and C{sub 6}C{sub 6}) was found for both asymmetric and symmetric series indicating that the nanostructuration of the ionic liquids is related with alkyl chain length.« less

  2. Microspectroscopic imaging of solution plasma: How do its physical properties and chemical species evolve in atmospheric-pressure water vapor bubbles?

    NASA Astrophysics Data System (ADS)

    Yui, Hiroharu; Banno, Motohiro

    2018-01-01

    In this article, we review the development of scientific instruments for obtaining information on the evolution of physical properties and chemical species of solution plasma (SP). When a pulsed high voltage is applied between electrodes immersed in an aqueous solution, SP is formed in water vapor bubbles transiently generated in the solution under atmospheric pressure. To clarify how SP emerges in water vapor bubbles and is sustained in solutions, an instrument with micrometer spatial resolution and nanosecond temporal resolution is required. To meet these requirements, a microscopic system with a custom-made optical discharge cell was newly developed, where the working distance between the SP and the microscopic objective lens was minimized. A hollow electrode equipped in the discharge cell also enabled us to control the chemical composition in water vapor bubbles. To study the spatial and temporal evolutions of chemical species in micrometer and nano- to microsecond regions, a streak camera with a spectrometer and a CCD detector with a time-gated electronic device were combined with the microscope system. The developed instrument is expected to contribute to providing a new means of developing new schemes for chemical reactions and material syntheses.

  3. 46 CFR 39.20-11 - Vapor overpressure and vacuum protection-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-11 Section 39.20-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS Design and Equipment § 39.20-11 Vapor overpressure and vacuum protection—TB/ALL. (a) The cargo... connected to the vapor collection system does not exceed: (i) The maximum design working pressure for the...

  4. 46 CFR 39.20-11 - Vapor overpressure and vacuum protection-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-11 Section 39.20-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS Design and Equipment § 39.20-11 Vapor overpressure and vacuum protection—TB/ALL. (a) The cargo... connected to the vapor collection system does not exceed: (i) The maximum design working pressure for the...

  5. 46 CFR 39.20-11 - Vapor overpressure and vacuum protection-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-11 Section 39.20-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS Design and Equipment § 39.20-11 Vapor overpressure and vacuum protection—TB/ALL. (a) The cargo... connected to the vapor collection system does not exceed: (i) The maximum design working pressure for the...

  6. Point Defect Distributions in ZnSe Crystals: Effects of Gravity Vector Orientation During Physical Vapor Transport Growth

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Feth, S.; Hirschfeld, D.; Smith, T. M.; Wang, Ling Jun; Volz, M. P.; Lehoczky, S. L.

    1999-01-01

    ZnSe crystals were grown by the physical vapor transport technique under horizontal and vertical (stabilized and destabilized) configurations. Secondary ion mass spectroscopy and photoluminescence measurements were performed on the grown ZnSe samples to map the distributions of [Si], [Fe], [Cu], [Al] and [Li or Na] impurities as well as Zn vacancy, [V (sub Zn)]. Annealings of ZnSe under controlled Zn pressures were studied to correlate the measured photoluminescence emission intensity to the equilibrium Zn partial pressure. In the horizontal grown crystals the segregations of [Si], [Fe], [Al] and [V (sub Zn)] were observed along the gravity vector direction whereas in the vertically stabilized grown crystal the segregation of these point defects was radially symmetrical. No apparent pattern was observed on the measured distributions in the vertically destabilized grown crystal. The observed segregations in the three growth configurations were interpreted based on the possible buoyancy-driven convection in the vapor phase.

  7. Atmospheric pressure synthesis of photoluminescent hybrid materials by sequential organometallic vapor infiltration into polyethylene terephthalate fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akyildiz, Halil I.; Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695; Mousa, Moataz Bellah M.

    Exposing a polymer to sequential organometallic vapor infiltration (SVI) under low pressure conditions can significantly modify the polymer's chemical, mechanical, and optical properties. We demonstrate that SVI of trimethylaluminum into polyethylene terephthalate (PET) can also proceed readily at atmospheric pressure, and at 60 °C the extent of reaction determined by mass uptake is independent of pressure between 2.5 Torr and 760 Torr. At 120 °C, however, the mass gain is 50% larger at 2.5 Torr relative to that at 760 Torr, indicating that the precursor diffusion in the chamber and fiber matrix decreases at higher source pressure. Mass gain decreases, in general, as the SVI processmore » temperature increases both at 2.5 Torr and 760 Torr attributed to the faster reaction kinetics forming a barrier layer, which prevents further diffusion of the reactive species. The resulting PET/Al-O{sub x} product shows high photoluminescence compared to untreated fibers. A physical mask on the polymer during infiltration at 760 Torr is replicated in the underlying polymer, producing an image in the polymer that is visible under UV illumination. Because of the reduced precursor diffusivity during exposure at 760 Torr, the image shows improved resolution compared to SVI performed under typical 2.5 Torr conditions.« less

  8. Improvement of the Reynolds-stress model by a new pressure-strain correlation

    NASA Technical Reports Server (NTRS)

    Amano, Ryoichi S.; Chai, John C.

    1988-01-01

    A study is made to improve the predictions of Reynolds stresses in backward facing step flows, through modifications of the pressure-strain correlation. The mean-strain term of the pressure-strain correlation is formulated only in terms of nonisotropic turbulence in order to take the severe nonisotropic effect caused by a separating flow. This model is compared with other models and results are verified with experimental results.

  9. An examination of the thermodynamics of fusion, vaporization, and sublimation of (R,S)- and (R)-flurbiprofen by correlation gas chromatography.

    PubMed

    Umnahanant, Patamaporn; Hasty, Darrell; Chickos, James

    2012-06-01

    The vaporization, fusion, and sublimation enthalpies of (R,S)- and (R)-flurbiprofen at T = 298.15 K are reported and compared with literature values when available. Correlation gas chromatography experiments were first performed to identify appropriate standards that could be used for materials containing a single fluorine substituent. Subsequent correlations resulted in a vaporization enthalpy for (R,S)-flurbiprofen and (R)-flurbiprofen, ΔH(vap) (298.15 K), of (127.5 ± 5.5) and (127.4 ± 4.7) kJ mol, respectively. Fusion enthalpies, ΔH(fus) (387 K), of (28.2 ± and, ΔH(fus) (381 K), (22.8 ± kJ mol(-1) were also measured by differential scanning calorimetry for the racemic and chiral forms of flurbiprofen. Adjusted to T = 298.15 K and combined with the vaporization enthalpy resulted in sublimation enthalpies, ΔH(sub) (298.15 K), of (155.6 ± 5.8) and (145.1 ± 5.7) kJ mol(-1) for (R,S)- and (R)-flurbiprofen, respectively. The fusion enthalpy measured for the racemic form was in excellent agreement with the literature value, while the sublimation enthalpy varies substantially from previous work. Two weak solid-solid phase transitions were also observed for (R)-flurbiprofen at T = 353.9 K (0.30 ± 0.1) and 363.2 K (0.21 ± 0.03) kJ · mol(-1). Copyright © 2012 Wiley Periodicals, Inc.

  10. Acoustically-Enhanced Direct Contact Vapor Bubble Condensation

    NASA Astrophysics Data System (ADS)

    Boziuk, Thomas; Smith, Marc; Glezer, Ari

    2017-11-01

    Rate-limited, direct contact vapor condensation of vapor bubbles that are formed by direct steam injection through a nozzle in a quiescent subcooled liquid bath is accelerated using ultrasonic (MHz-range) actuation. A submerged, low power actuator produces an acoustic beam whose radiation pressure deforms the liquid-vapor interface, leading to the formation of a liquid spear that penetrates the vapor bubble to form a vapor torus with a significantly larger surface area and condensation rate. Ultrasonic focusing along the spear leads to the ejection of small, subcooled droplets through the vapor volume that impact the vapor-liquid interface and further enhance the condensation. High-speed Schlieren imaging of the formation and collapse of the vapor bubbles in the absence and presence of actuation shows that the impulse associated with the collapse of the toroidal volume leads to the formation of a turbulent vortex ring in the liquid phase. Liquid motions near the condensing vapor volume are investigated in the absence and presence of acoustic actuation using high-magnification PIV and show the evolution of a liquid jet through the center of the condensing toroidal volume and the formation and advection of vortex ring structures whose impulse appear to increase with temperature difference between the liquid and vapor phases. High-speed image processing is used to assess the effect of the actuation on the temporal and spatial variations in the characteristic scales and condensation rates of the vapor bubbles.

  11. An efficient reliable method to estimate the vaporization enthalpy of pure substances according to the normal boiling temperature and critical properties.

    PubMed

    Mehmandoust, Babak; Sanjari, Ehsan; Vatani, Mostafa

    2014-03-01

    The heat of vaporization of a pure substance at its normal boiling temperature is a very important property in many chemical processes. In this work, a new empirical method was developed to predict vaporization enthalpy of pure substances. This equation is a function of normal boiling temperature, critical temperature, and critical pressure. The presented model is simple to use and provides an improvement over the existing equations for 452 pure substances in wide boiling range. The results showed that the proposed correlation is more accurate than the literature methods for pure substances in a wide boiling range (20.3-722 K).

  12. Mass Flux of ZnSe by Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Sha, Yi-Gao; Su, Ching-Hua; Palosz, W.; Volz, M. P.; Gillies, D. C.; Szofran, F. R.; Lehoczky, S. L.; Liu, Hao-Chieh; Brebrick, R. F.

    1995-01-01

    Mass fluxes of ZnSe by physical vapor transport (PVT) were measured in the temperature range of 1050 to 1160 C using an in-situ dynamic technique. The starting materials were either baked out or distilled under vacuum to obtain near-congruently subliming compositions. Using an optical absorption technique Zn and Se, were found to be the dominant vapor species. Partial pressures of Zn and Se, over the starting materials at temperatures between 960 and 1140 C were obtained by measuring the optical densities of the vapor phase at the wavelengths of 2138, 3405, 3508, 3613, and 3792 A. The amount and composition of the residual gas inside the experimental ampoules were measured after the run using a total pressure gauge. For the first time, the experimentally determined partial pressures of Zn and Se, and the amount and composition of the residual gas were used in a one-dimensional diffusion limited analysis of the mass transport rates for a PVT system. Reasonable agreement between the experimental and theoretical results was observed.

  13. Bridgman-type apparatus for the study of growth-property relationships - Arsenic vapor pressure-GaAs property relationship

    NASA Technical Reports Server (NTRS)

    Parsey, J. M.; Nanishi, Y.; Lagowski, J.; Gatos, H. C.

    1982-01-01

    A precision Bridgman-type apparatus is described which was designed and constructed for the investigation of relationships between crystal growth parameters and the properties of GaAs crystals. Several key features of the system are highlighted, such as the use of a heat pipe for precise arsenic vapor pressure control and seeding without the presence of a viewing window. Pertinent growth parameters, such as arsenic source temperature, thermal gradients in the growing crystal and in the melt, and the macroscopic growth velocity can be independently controlled. During operation, thermal stability better than + or - 0.02 C is realized; thermal gradients can be varied up to 30 C/cm in the crystal region, and up to 20 C/cm in the melt region; the macroscopic growth velocity can be varied from 50 microns/hr to 6.0 cm/hr. It was found that the density of dislocations depends critically on As partial pressure; and essentially dislocation-free, undoped, crystals were grown under As pressure precisely controlled by an As source maintained at 617 C. The free carrier concentration varied with As pressure variations. This variation in free carrier concentration was found to be associated with variations in the compensation ratio rather than with standard segregation phenomena.

  14. Electrical Breakdown in Water Vapor

    NASA Astrophysics Data System (ADS)

    Škoro, N.; Marić, D.; Malović, G.; Graham, W. G.; Petrović, Z. Lj.

    2011-11-01

    In this paper investigations of the voltage required to break down water vapor are reported for the region around the Paschen minimum and to the left of it. In spite of numerous applications of discharges in biomedicine, and recent studies of discharges in water and vapor bubbles and discharges with liquid water electrodes, studies of the basic parameters of breakdown are lacking. Paschen curves have been measured by recording voltages and currents in the low-current Townsend regime and extrapolating them to zero current. The minimum electrical breakdown voltage for water vapor was found to be 480 V at a pressure times electrode distance (pd) value of around 0.6 Torr cm (˜0.8 Pa m). The present measurements are also interpreted using (and add additional insight into) the developing understanding of relevant atomic and particularly surface processes associated with electrical breakdown.

  15. VOC composition of current motor vehicle fuels and vapors, and collinearity analyses for receptor modeling.

    PubMed

    Chin, Jo-Yu; Batterman, Stuart A

    2012-03-01

    The formulation of motor vehicle fuels can alter the magnitude and composition of evaporative and exhaust emissions occurring throughout the fuel cycle. Information regarding the volatile organic compound (VOC) composition of motor fuels other than gasoline is scarce, especially for bioethanol and biodiesel blends. This study examines the liquid and vapor (headspace) composition of four contemporary and commercially available fuels: gasoline (<10% ethanol), E85 (85% ethanol and 15% gasoline), ultra-low sulfur diesel (ULSD), and B20 (20% soy-biodiesel and 80% ULSD). The composition of gasoline and E85 in both neat fuel and headspace vapor was dominated by aromatics and n-heptane. Despite its low gasoline content, E85 vapor contained higher concentrations of several VOCs than those in gasoline vapor, likely due to adjustments in its formulation. Temperature changes produced greater changes in the partial pressures of 17 VOCs in E85 than in gasoline, and large shifts in the VOC composition. B20 and ULSD were dominated by C(9) to C(16)n-alkanes and low levels of the aromatics, and the two fuels had similar headspace vapor composition and concentrations. While the headspace composition predicted using vapor-liquid equilibrium theory was closely correlated to measurements, E85 vapor concentrations were underpredicted. Based on variance decomposition analyses, gasoline and diesel fuels and their vapors VOC were distinct, but B20 and ULSD fuels and vapors were highly collinear. These results can be used to estimate fuel related emissions and exposures, particularly in receptor models that apportion emission sources, and the collinearity analysis suggests that gasoline- and diesel-related emissions can be distinguished. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Measurements of octanol-air partition coefficients, vapor pressures and vaporization enthalpies of the (E) and (Z) isomers of the 2-ethylhexyl 4-methoxycinnamate as parameters of environmental impact assessment.

    PubMed

    Pegoraro, César N; Chiappero, Malisa S; Montejano, Hernán A

    2015-11-01

    2-Ethylhexyl 4-methoxycinnamate is one of the UVB blocking agents more widely used in a variety of industrial fields. There are more than one hundred industrial suppliers worldwide. Given the enormous annual consumption of octinoxate, problems that arise due to the accumulation of this compound in nature should be taken into consideration. The GC-RT was used in this work with the aim of determining the vapor pressure, enthalpies of vaporization and octanol-air partition coefficient, for the BBP, DOP, E- and Z-EHMC esters. The results showed that Z-EHMC is almost five times more volatile than E-EHMC. Moreover, BBP, Z-EHMC and E-EHMC can be classified as substances with a relatively low mobility since they lie within the range of 810 and log(PL/Pa)<-4, therefore, a low mobility can be expected. From these parameters, their particle-bound fraction and gas-particle partition coefficient were also derived. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Identifying Liquid-Gas System Misconceptions and Addressing Them Using a Laboratory Exercise on Pressure-Temperature Diagrams of a Mixed Gas Involving Liquid-Vapor Equilibrium

    ERIC Educational Resources Information Center

    Yoshikawa, Masahiro; Koga, Nobuyoshi

    2016-01-01

    This study focuses on students' understandings of a liquid-gas system with liquid-vapor equilibrium in a closed system using a pressure-temperature ("P-T") diagram. By administrating three assessment questions concerning the "P-T" diagrams of liquid-gas systems to students at the beginning of undergraduate general chemistry…

  18. Low temperature photochemical vapor deposition of alloy and mixed metal oxide films

    DOEpatents

    Liu, David K.

    1992-01-01

    Method and apparatus for formation of an alloy thin film, or a mixed metal oxide thin film, on a substrate at relatively low temperatures. Precursor vapor(s) containing the desired thin film constituents is positioned adjacent to the substrate and irradiated by light having wavelengths in a selected wavelength range, to dissociate the gas(es) and provide atoms or molecules containing only the desired constituents. These gases then deposit at relatively low temperatures as a thin film on the substrate. The precursor vapor(s) is formed by vaporization of one or more precursor materials, where the vaporization temperature(s) is selected to control the ratio of concentration of metals present in the precursor vapor(s) and/or the total precursor vapor pressure.

  19. Low temperature photochemical vapor deposition of alloy and mixed metal oxide films

    DOEpatents

    Liu, D.K.

    1992-12-15

    Method and apparatus are described for formation of an alloy thin film, or a mixed metal oxide thin film, on a substrate at relatively low temperatures. Precursor vapor(s) containing the desired thin film constituents is positioned adjacent to the substrate and irradiated by light having wavelengths in a selected wavelength range, to dissociate the gas(es) and provide atoms or molecules containing only the desired constituents. These gases then deposit at relatively low temperatures as a thin film on the substrate. The precursor vapor(s) is formed by vaporization of one or more precursor materials, where the vaporization temperature(s) is selected to control the ratio of concentration of metals present in the precursor vapor(s) and/or the total precursor vapor pressure. 7 figs.

  20. 33 CFR 154.2103 - Facility requirements for vessel vapor overpressure and vacuum protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... HAZARDOUS MATERIAL IN BULK Marine Vapor Control Systems Transfer Facilities-Vcs Design and Installation... rate, unless there is experimental data for actual vapor growth for turbulent transferring under the... vapor growth. (b) A facility VCS must be designed to prevent the pressure in a vessel's cargo tanks from...

  1. Vapor sensing using polymer/carbon black composites in the percolative conduction regime.

    PubMed

    Sisk, Brian C; Lewis, Nathan S

    2006-08-29

    To investigate the behavior of chemiresistive vapor sensors operating below or around the percolation threshold, chemiresistors have been formed from composites of insulating organic polymers and low mass fractions of conductive carbon black (CB, 1-12% w/w). Such sensors produced extremely large relative differential resistance changes above certain threshold vapor concentrations. At high analyte partial pressures, these sensors exhibited better signal/noise characteristics and were typically less mutually correlated in their vapor response properties than composites formed using higher mass fractions of CB in the same set of polymer sorption layers. The responses of the low-mass-fraction CB sensors were, however, less repeatable, and their nonlinear response as a function of analyte concentration required more complicated calibration schemes to identify and quantify analyte vapors to compensate for drift of a sensor array and to compensate for variability in response between sensor arrays. Because of their much larger response signals, the low-mass-fraction CB sensors might be especially well suited for use with low-precision analog-to-digital signal readout electronics. These sensors serve well as a complement to composites formed from higher mass fractions of CB and have yielded insight into the tradeoffs of signal-to-noise improvements vs complexity of signal processing algorithms necessitated by the use of nonlinearly responding detectors in array-based sensing schemes.

  2. Vaporization behavior of an alkyl diphenyl ether and a commercial lubricant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMurray, Jake W.; Frame, Barbara J.; Voit, Stewart L.

    The equilibrium vapor pressure as a function of temperature for an alkyl diphenyl ether with a vaporization coefficient significantly smaller than unity was characterized using the combined Langmuir free evaporation and mass loss Knudsen effusion technique. Results are compared using different cell designs and discrepancies, difficulties, and complications are discussed. In conclusion, the enthalpy and entropy of vaporization are estimated using the average temperature of the measurements.

  3. Vaporization behavior of an alkyl diphenyl ether and a commercial lubricant

    DOE PAGES

    McMurray, Jake W.; Frame, Barbara J.; Voit, Stewart L.

    2018-05-24

    The equilibrium vapor pressure as a function of temperature for an alkyl diphenyl ether with a vaporization coefficient significantly smaller than unity was characterized using the combined Langmuir free evaporation and mass loss Knudsen effusion technique. Results are compared using different cell designs and discrepancies, difficulties, and complications are discussed. In conclusion, the enthalpy and entropy of vaporization are estimated using the average temperature of the measurements.

  4. 33 CFR 154.2108 - Vapor-moving devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Marine Vapor Control Systems Transfer... vibration; (4) Low lube oil level; (5) Low lube oil pressure; and (6) Excessive shaft bearing temperature...

  5. The Chemical Vapor Deposition of Thin Metal Oxide Films

    NASA Astrophysics Data System (ADS)

    Laurie, Angus Buchanan

    1990-01-01

    Chemical vapor deposition (CVD) is an important method of preparing thin films of materials. Copper (II) oxide is an important p-type semiconductor and a major component of high T_{rm c} superconducting oxides. By using a volatile copper (II) chelate precursor, copper (II) bishexafluoroacetylacetonate, it has been possible to prepare thin films of copper (II) oxide by low temperature normal pressure metalorganic chemical vapor deposition. In the metalorganic CVD (MOCVD) production of oxide thin films, oxygen gas saturated with water vapor has been used mainly to reduce residual carbon and fluorine content. This research has investigated the influence of water-saturated oxygen on the morphology of thin films of CuO produced by low temperature chemical vapor deposition onto quartz, magnesium oxide and cubic zirconia substrates. ZnO is a useful n-type semiconductor material and is commonly prepared by the MOCVD method using organometallic precursors such as dimethyl or diethylzinc. These compounds are difficult to handle under atmospheric conditions. In this research, thin polycrystalline films of zinc oxide were grown on a variety of substrates by normal pressure CVD using a zinc chelate complex with zinc(II) bishexafluoroacetylacetonate dihydrate (Zn(hfa)_2.2H _2O) as the zinc source. Zn(hfa) _2.2H_2O is not moisture - or air-sensitive and is thus more easily handled. By operating under reduced-pressure conditions (20-500 torr) it is possible to substantially reduce deposition times and improve film quality. This research has investigated the reduced-pressure CVD of thin films of CuO and ZnO. Sub-micron films of tin(IV) oxide (SnO _2) have been grown by normal pressure CVD on quartz substrates by using tetraphenyltin (TPT) as the source of tin. All CVD films were characterized by X-ray powder diffraction (XRPD), scanning electron microscopy (SEM) and electron probe microanalysis (EPMA).

  6. Leading-Edge Votex-System Details Obtained on F-106B Aircraft Using a Rotating Vapor Screen and Surface Techniques

    NASA Technical Reports Server (NTRS)

    Lamar, John E.; Brandon, Jay; Stacy, Kathryn; Johnson, Thomas D., Jr.; Severance, Kurt; Childers, Brooks A.

    1993-01-01

    A flight research program to study the flow structure and separated-flow origins over an F-106B aircraft wing is described. The flight parameters presented include Mach numbers from 0.26 to 0.81, angles of attack from 8.5 deg to 22.5 deg, Reynolds numbers from 22.6 x 10(exp 6) to 57.3 x 10(exp 6) and load factors from 0.9 to 3.9 times the acceleration due to gravity. Techniques for vapor screens, image enhancement, photogrammetry, and computer graphics are integrated to analyze vortex-flow systems. Emphasis is placed on the development and application of the techniques. The spatial location of vortex cores and their tracks over the wing are derived from the analysis. Multiple vortices are observed and are likely attributed to small surface distortions in the wing leading-edge region. A major thrust is to correlate locations of reattachment lines obtained from the off-surface (vapor-screen) observations with those obtained from on-surface oil-flow patterns and pressure-port data. Applying vapor-screen image data to approximate reattachment lines is experimental, but depending on the angle of attack, the agreement with oil-flow results is generally good. Although surface pressure-port data are limited, the vapor-screen data indicate reattachment point occurrences consistent with the available data.

  7. The latent heat of vaporization of supercritical fluids

    NASA Astrophysics Data System (ADS)

    Banuti, Daniel; Raju, Muralikrishna; Hickey, Jean-Pierre; Ihme, Matthias

    2016-11-01

    The enthalpy of vaporization is the energy required to overcome intermolecular attractive forces and to expand the fluid volume against the ambient pressure when transforming a liquid into a gas. It diminishes for rising pressure until it vanishes at the critical point. Counterintuitively, we show that a latent heat is in fact also required to heat a supercritical fluid from a liquid to a gaseous state. Unlike its subcritical counterpart, the supercritical pseudoboiling transition is spread over a finite temperature range. Thus, in addition to overcoming intermolecular attractive forces, added energy simultaneously heats the fluid. Then, considering a transition from a liquid to an ideal gas state, we demonstrate that the required enthalpy is invariant to changes in pressure for 0 < p < 3pcr . This means that the classical pressure-dependent latent heat is merely the equilibrium part of the phase transition. The reduction at higher pressures is compensated by an increase in a nonequilibrium latent heat required to overcome residual intermolecular forces in the real fluid vapor during heating. At supercritical pressures, all of the transition occurs at non-equilibrium; for p -> 0 , all of the transition occurs at equilibrium.

  8. Correlation of combustor acoustic power levels inferred from internal fluctuating pressure measurements

    NASA Technical Reports Server (NTRS)

    Vonglahn, U. H.

    1978-01-01

    Combustion chamber acoustic power levels inferred from internal fluctuating pressure measurements are correlated with operating conditions and chamber geometries over a wide range. The variables include considerations of chamber design (can, annular, and reverse-flow annular) and size, number of fuel nozzles, burner staging and fuel split, airflow and heat release rates, and chamber inlet pressure and temperature levels. The correlated data include those obtained with combustion component development rigs as well as engines.

  9. Numerical simulation of water injection into vapor-dominated reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruess, K.

    1995-01-01

    Water injection into vapor-dominated reservoirs is a means of condensate disposal, as well as a reservoir management tool for enhancing energy recovery and reservoir life. We review different approaches to modeling the complex fluid and heat flow processes during injection into vapor-dominated systems. Vapor pressure lowering, grid orientation effects, and physical dispersion of injection plumes from reservoir heterogeneity are important considerations for a realistic modeling of injection effects. An example of detailed three-dimensional modeling of injection experiments at The Geysers is given.

  10. The lithium vapor box divertor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldston, R. J.; Myers, R.; Schwartz, J.

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Our recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m -2, implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et almore » as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. Furthermore, at the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required in order to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma.« less

  11. The lithium vapor box divertor

    NASA Astrophysics Data System (ADS)

    Goldston, R. J.; Myers, R.; Schwartz, J.

    2016-02-01

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m-2, implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. At the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma.

  12. The lithium vapor box divertor

    DOE PAGES

    Goldston, R. J.; Myers, R.; Schwartz, J.

    2016-01-13

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Our recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m -2, implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et almore » as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. Furthermore, at the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required in order to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma.« less

  13. Plasma Spray-PVD: A New Thermal Spray Process to Deposit Out of the Vapor Phase

    NASA Astrophysics Data System (ADS)

    von Niessen, Konstantin; Gindrat, Malko

    2011-06-01

    Plasma spray-physical vapor deposition (PS-PVD) is a low pressure plasma spray technology recently developed by Sulzer Metco AG (Switzerland). Even though it is a thermal spray process, it can deposit coatings out of the vapor phase. The basis of PS-PVD is the low pressure plasma spraying (LPPS) technology that has been well established in industry for several years. In comparison to conventional vacuum plasma spraying (VPS) or low pressure plasma spraying (LPPS), the new proposed process uses a high energy plasma gun operated at a reduced work pressure of 0.1 kPa (1 mbar). Owing to the high energy plasma and further reduced work pressure, PS-PVD is able to deposit a coating not only by melting the feed stock material which builds up a layer from liquid splats but also by vaporizing the injected material. Therefore, the PS-PVD process fills the gap between the conventional physical vapor deposition (PVD) technologies and standard thermal spray processes. The possibility to vaporize feedstock material and to produce layers out of the vapor phase results in new and unique coating microstructures. The properties of such coatings are superior to those of thermal spray and electron beam-physical vapor deposition (EB-PVD) coatings. In contrast to EB-PVD, PS-PVD incorporates the vaporized coating material into a supersonic plasma plume. Owing to the forced gas stream of the plasma jet, complex shaped parts such as multi-airfoil turbine vanes can be coated with columnar thermal barrier coatings using PS-PVD. Even shadowed areas and areas which are not in the line of sight of the coating source can be coated homogeneously. This article reports on the progress made by Sulzer Metco in developing a thermal spray process to produce coatings out of the vapor phase. Columnar thermal barrier coatings made of Yttria-stabilized Zircona (YSZ) are optimized to serve in a turbine engine. This process includes not only preferable coating properties such as strain tolerance and erosion

  14. Correlation of Fin Buffet Pressures on an F/A-18 with Scaled Wind-Tunnel Measurements

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Shah, Gautam H.

    1999-01-01

    Buffeting is an aeroelastic phenomenon occurring at high angles of attack that plagues high performance aircraft, especially those with twin vertical tails. Previous wind-tunnel and flight tests were conducted to characterize the buffet loads on the vertical tails by measuring surface pressures, bending moments, and accelerations. Following these tests, buffeting responses were computed using the measured buffet pressures and compared to the measured buffeting responses. The calculated results did not match the measured data because the assumed spatial correlation of the buffet pressures was not correct. A better understanding of the partial (spatial) correlation of the differential buffet pressures on the tail was necessary to improve the buffeting predictions. Several wind-tunnel investigations were conducted for this purpose. When compared, the results of these tests show that the partial correlation scales with flight conditions. One of the remaining questions is whether the wind-tunnel data is consistent with flight data. Presented herein, cross-spectra and coherence functions calculated from pressures that were measured on the High Alpha Research Vehicle indicate that the partial correlation of the buffet pressures in flight agrees with the partial correlation observed in the wind tunnel.

  15. Three-Dimensional Digital Image Correlation of a Composite Overwrapped Pressure Vessel During Hydrostatic Pressure Tests

    NASA Technical Reports Server (NTRS)

    Revilock, Duane M., Jr.; Thesken, John C.; Schmidt, Timothy E.

    2007-01-01

    Ambient temperature hydrostatic pressurization tests were conducted on a composite overwrapped pressure vessel (COPV) to understand the fiber stresses in COPV components. Two three-dimensional digital image correlation systems with high speed cameras were used in the evaluation to provide full field displacement and strain data for each pressurization test. A few of the key findings will be discussed including how the principal strains provided better insight into system behavior than traditional gauges, a high localized strain that was measured where gages were not present and the challenges of measuring curved surfaces with the use of a 1.25 in. thick layered polycarbonate panel that protected the cameras.

  16. Reports of investigations on: Derivation of an infinite-dilution activity coefficient model and application to two-component vapor/liquid equilibria data: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roper, V.P.; Kobayashi, R.

    1988-02-01

    Infinite-dilution fugacity coefficients were obtained for the system fluorene/phenanthrene at thirteen temperatures by fitting total pressure across the entire mole fraction range by a computer routine. A thermodynamically consistent routine, that allowed for both positive and negative pressure deviations from the ideal values, was used to correlate data over the full mole fraction range from 0 to 1. The four-suffix Margules activity coefficient model without modification essentially served this purpose since total pressures and total pressure derivatives with respect to mole fraction were negligible compared to pressure measurement precision. The water/ethanol system and binary systems comprised of aniline, chlorobenzene, acetonitrilemore » and other polar compounds were fit for total pressure across the entire mole fraction range for binary Vapor-Liquid-Equilbria (VLE) using the rigorous, thermodynamically consistent Gibbs-Duhem Relation derived by Ibl and Dodge. Data correlation was performed using a computer least squares procedure. Infinite-dilution fugacity coefficients were obtained using a modified Margules activity coefficient model.« less

  17. 21 CFR 1040.30 - High-intensity mercury vapor discharge lamps.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... vapor lamp, incorporating a high-pressure arc discharge tube that has a fill consisting primarily of... use. (4) Outer envelope means the lamp element, usually glass, surrounding a high-pressure arc... operating time means the sum of the times during which electric current passes through the high-pressure arc...

  18. Surface vapor conductance derived from the ETRHEQ: Dependence on environmental variables and similarity to Oren's stomatal stress model for vapor pressure deficit

    NASA Astrophysics Data System (ADS)

    Salvucci, G.; Rigden, A. J.

    2015-12-01

    Daily time series of evapotranspiration and surface conductance to water vapor were estimated using the ETRHEQ method (Evapotranspiration from Relative Humidity at Equilibrium). ETRHEQ has been previously compared with ameriflux site-level measurements of ET at daily and seasonal time scales, with watershed water balance estimates, and with various benchmark ET data sets. The ETRHEQ method uses meteorological data collected at common weather stations and estimates the surface conductance by minimizing the vertical variance of the calculated relative humidity profile averaged over the day. The key advantage of the ETRHEQ method is that it does not require knowledge of the surface state (soil moisture, stomatal conductance, leaf are index, etc.) or site-specific calibration. The daily estimates of conductance from 229 weather stations for 53 years were analyzed for dependence on environmental variables known to impact stomatal conductance and soil diffusivity: surface temperature, surface vapor pressure deficit, solar radiation, antecedent precipitation (as a surrogate for soil moisture), and a seasonal vegetation greenness index. At each site the summertime (JJAS) conductance values estimated from ETRHEQ were fitted to a multiplicate Jarvis-type stress model. Functional dependence was not proscribed, but instead fitted using flexible piecewise-linear splines. The resulting stress functions reproduce the time series of conductance across a wide range of ecosystems and climates. The VPD stress term resembles that proposed by Oren (i.e., 1-m*log(VPD) ), with VPD measured in kilopascals. The equivalent value of m derived from our spline-fits at each station varied over a remarkably small range of 0.58 to 0.62, in agreement with Oren's original analysis based on leaf and tree-level measurements.

  19. Fatigue crack growth in 7475-T651 aluminum alloy plate in hard vacuum and water vapor. M.S. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Dicus, D. L.

    1981-01-01

    Compact specimens of 25 mm thick aluminum alloy plate were subjected to constant amplitude fatigue testing at a load ratio of 0.2. Crack growth rates were determined at frequencies of 1 Hz and 10 Hz in hard vacuum and laboratory air, and in mixtures of water vapor and nitrogen at water vapor partial pressures ranging from 94 Pa to 3.8 kPa. A significant effect of water vapor on fatigue crack growth rates was observed at the lowest water vapor pressure tested. Crack rates changed little for pressures up to 1.03 kPa, but abruptly accelerated at higher pressures. At low stress intensity factor ranges, cracking rates at the lowest and highest water vapor pressure tested were, respectively, two and five times higher than rates in vacuum. Although a frequency was observed in laboratory air, cracking rates in water vapor and vacuum are insensitive to a ten-fold change in frequency. Surfaces of specimens tested in water vapor and vacuum exhibited different amounts of residual deformation. Reduced deformation on the fracture surfaces of the specimens tested in water vapor suggests embrittlement of the plastic zone ahead of the crack tip as a result of environmental interaction.

  20. A portable fluorescence detector for fast ultra trace detection of explosive vapors

    NASA Astrophysics Data System (ADS)

    Xin, Yunhong; He, Gang; Wang, Qi; Fang, Yu

    2011-10-01

    This paper developed a portable detector based on a specific material-based fluorescent sensing film for an ultra trace detection of explosives, such as 2,4,6-trinitrotoluene (TNT) or its derivate 2,4-dinitrotoluene (DNT), in ambient air or on objects tainted by explosives. The fluorescent sensing films are based on single-layer chemistry and the signal amplification effect of conjugated polymers, which exhibited higher sensitivity and shorter response time to TNT or DNT at their vapor pressures. Due to application of the light emitting diode and the solid state photomultiplier and the cross-correlation-based circuit design technology, the device has the advantages of low-power, low-cost, small size, and an improved signal to noise ratio. The results of the experiments showed that the detector can real-time detect and identify of explosive vapors at extremely low levels; it is suitable for the identification of suspect luggage, forensic analyses, or battlefields clearing.

  1. A portable fluorescence detector for fast ultra trace detection of explosive vapors.

    PubMed

    Xin, Yunhong; He, Gang; Wang, Qi; Fang, Yu

    2011-10-01

    This paper developed a portable detector based on a specific material-based fluorescent sensing film for an ultra trace detection of explosives, such as 2,4,6-trinitrotoluene (TNT) or its derivate 2,4-dinitrotoluene (DNT), in ambient air or on objects tainted by explosives. The fluorescent sensing films are based on single-layer chemistry and the signal amplification effect of conjugated polymers, which exhibited higher sensitivity and shorter response time to TNT or DNT at their vapor pressures. Due to application of the light emitting diode and the solid state photomultiplier and the cross-correlation-based circuit design technology, the device has the advantages of low-power, low-cost, small size, and an improved signal to noise ratio. The results of the experiments showed that the detector can real-time detect and identify of explosive vapors at extremely low levels; it is suitable for the identification of suspect luggage, forensic analyses, or battlefields clearing.

  2. VOC composition of current motor vehicle fuels and vapors, and collinearity analyses for receptor modeling

    PubMed Central

    Chin, Jo-Yu; Batterman, Stuart A.

    2015-01-01

    The formulation of motor vehicle fuels can alter the magnitude and composition of evaporative and exhaust emissions occurring throughout the fuel cycle. Information regarding the volatile organic compound (VOC) composition of motor fuels other than gasoline is scarce, especially for bioethanol and bio-diesel blends. This study examines the liquid and vapor (headspace) composition of four contemporary and commercially available fuels: gasoline (<10% ethanol), E85 (85% ethanol and 15% gasoline), ultra-low sulfur diesel (ULSD), and B20 (20% soy-biodiesel and 80% ULSD). The composition of gasoline and E85 in both neat fuel and headspace vapor was dominated by aromatics and n-heptane. Despite its low gasoline content, E85 vapor contained higher concentrations of several VOCs than those in gasoline vapor, likely due to adjustments in its formulation. Temperature changes produced greater changes in the partial pressures of 17 VOCs in E85 than in gasoline, and large shifts in the VOC composition. B20 and ULSD were dominated by C9 to C16 n-alkanes and low levels of the aromatics, and the two fuels had similar headspace vapor composition and concentrations. While the headspace composition predicted using vapor–liquid equilibrium theory was closely correlated to measurements, E85 vapor concentrations were underpredicted. Based on variance decomposition analyses, gasoline and diesel fuels and their vapors VOC were distinct, but B20 and ULSD fuels and vapors were highly collinear. These results can be used to estimate fuel related emissions and exposures, particularly in receptor models that apportion emission sources, and the collinearity analysis suggests that gasoline- and diesel-related emissions can be distinguished. PMID:22154341

  3. Studies of oscillatory combustion and fuel vaporization

    NASA Technical Reports Server (NTRS)

    Borman, G. L.; Myers, P. S.; Uyehara, O. A.

    1972-01-01

    Research projects involving oscillatory combustion and fuel vaporization are reported. Comparisons of experimental and theoretical droplet vaporization histories under ambient conditions such that the droplet may approach its thermodynamic critical point are presented. Experimental data on instantaneous heat transfer from a gas to a solid surface under conditions of oscillatory pressure with comparisons to an unsteady one-dimensional model are analyzed. Droplet size and velocity distribution in a spray as obtained by use of a double flash fluorescent method were investigated.

  4. High Temperature Corrosion of Silicon Carbide and Silicon Nitride in Water Vapor

    NASA Technical Reports Server (NTRS)

    Opila, E. J.; Robinson, Raymond C.; Cuy, Michael D.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Silicon carbide (SiC) and silicon nitride (Si3N4) are proposed for applications in high temperature combustion environments containing water vapor. Both SiC and Si3N4 react with water vapor to form a silica (SiO2) scale. It is therefore important to understand the durability of SiC, Si3N4 and SiO2 in water vapor. Thermogravimetric analyses, furnace exposures and burner rig results were obtained for these materials in water vapor at temperatures between 1100 and 1450 C and water vapor partial pressures ranging from 0.1 to 3.1 atm. First, the oxidation of SiC and Si3N4 in water vapor is considered. The parabolic kinetic rate law, rate dependence on water vapor partial pressure, and oxidation mechanism are discussed. Second, the volatilization of silica to form Si(OH)4(g) is examined. Mass spectrometric results, the linear kinetic rate law and a volatilization model based on diffusion through a gas boundary layer are discussed. Finally, the combined oxidation and volatilization reactions, which occur when SiC or Si3N4 are exposed in a water vapor-containing environment, are presented. Both experimental evidence and a model for the paralinear kinetic rate law are shown for these simultaneous oxidation and volatilization reactions.

  5. Analytic Modeling of Pressurization and Cryogenic Propellant

    NASA Technical Reports Server (NTRS)

    Corpening, Jeremy H.

    2010-01-01

    An analytic model for pressurization and cryogenic propellant conditions during all mission phases of any liquid rocket based vehicle has been developed and validated. The model assumes the propellant tanks to be divided into five nodes and also implements an empirical correlation for liquid stratification if desired. The five nodes include a tank wall node exposed to ullage gas, an ullage gas node, a saturated propellant vapor node at the liquid-vapor interface, a liquid node, and a tank wall node exposed to liquid. The conservation equations of mass and energy are then applied across all the node boundaries and, with the use of perfect gas assumptions, explicit solutions for ullage and liquid conditions are derived. All fluid properties are updated real time using NIST Refprop.1 Further, mass transfer at the liquid-vapor interface is included in the form of evaporation, bulk boiling of liquid propellant, and condensation given the appropriate conditions for each. Model validation has proven highly successful against previous analytic models and various Saturn era test data and reasonably successful against more recent LH2 tank self pressurization ground test data. Finally, this model has been applied to numerous design iterations for the Altair Lunar Lander, Ares V Core Stage, and Ares V Earth Departure Stage in order to characterize Helium and autogenous pressurant requirements, propellant lost to evaporation and thermodynamic venting to maintain propellant conditions, and non-uniform tank draining in configurations utilizing multiple LH2 or LO2 propellant tanks. In conclusion, this model provides an accurate and efficient means of analyzing multiple design configurations for any cryogenic propellant tank in launch, low-acceleration coast, or in-space maneuvering and supplies the user with pressurization requirements, unusable propellants from evaporation and liquid stratification, and general ullage gas, liquid, and tank wall conditions as functions of time.

  6. An efficient reliable method to estimate the vaporization enthalpy of pure substances according to the normal boiling temperature and critical properties

    PubMed Central

    Mehmandoust, Babak; Sanjari, Ehsan; Vatani, Mostafa

    2013-01-01

    The heat of vaporization of a pure substance at its normal boiling temperature is a very important property in many chemical processes. In this work, a new empirical method was developed to predict vaporization enthalpy of pure substances. This equation is a function of normal boiling temperature, critical temperature, and critical pressure. The presented model is simple to use and provides an improvement over the existing equations for 452 pure substances in wide boiling range. The results showed that the proposed correlation is more accurate than the literature methods for pure substances in a wide boiling range (20.3–722 K). PMID:25685493

  7. Vaporization of liquid Pb-Li eutectic alloy from 1000K to 1200K - A high temperature mass spectrometric study

    NASA Astrophysics Data System (ADS)

    Jain, U.; Mukherjee, A.; Dey, G. K.

    2017-09-01

    Liquid lead-lithium eutectic will be used as a coolant in fusion reactor blanket loop. Vapor pressure of the eutectic is an important parameter to accurately predict its in-loop behavior. Past measurements of vapor pressure of the eutectic relied on indirect methods. In this paper, we report for the first time the in-situ vaporization behavior of the liquid alloy between 1042 and 1176 K by Knudsen effusion mass spectrometry (KEMS). It was seen that the vaporization occurred by independent evaporation of lead and lithium. No complex intermetallic vapor was seen in the mass spectra. The partial pressures and enthalpy of vaporization of Pb and Li were evaluated directly from the measured ion intensities formed from the equilibrium vapor over the alloy. The activity of Li over a temperature range of 1042-1176 K was found to be 4.8 × 10-5 to that of pure Li, indicating its very low activity in the alloy.

  8. Dynamics of vapor bubbles growth at boiling resulting from enthalpy excess of the surrounding superheated liquid and sound pulses generated by bubbles

    NASA Astrophysics Data System (ADS)

    Dorofeev, B. M.; Volkova, V. I.

    2016-01-01

    The results of experiments investigating the exponential dependence of the vapor bubble radius on time at saturated boiling are generalized. Three different methods to obtain this dependence are suggested: (1) by the application of the transient heat conduction equation, (2) by using the correlations of energy conservation, and (3) by solving a similar electrodynamic problem. Based on the known experimental data, the accuracy of the dependence up to one percent and a few percent accuracy of its description based on the sound pressure generated by a vapor bubble have been determined. A significant divergence of the power dependence of the vapor bubble radius on time (with an exponent of 1/2) with the experimental results and its inadequacy for the description of the sound pulse generated by the bubble have been demonstrated.

  9. Vaporization thermodynamics of K2S and K2SO3

    NASA Technical Reports Server (NTRS)

    Bennet, J. E.

    1982-01-01

    The vaporization reactions, vapor pressures, and thermodynamics of potassium sulfide and potassium sulfite were studied for purposes of providing fundamental data for the seed cycle in magnetohydrodynamic electric power generation. Rate of effusion studies, supported by tube furnace experiments, X-ray powder diffraction, mass spectrometry and appropriate chemical analyses and tests, revealed that potassium sulfite disproportionates at high temperatures to form potassium sulfide and potassium sulfate. Potassium sulfide was observed to vaporize incongruently, the initial vapors beng predominantly potassium atoms, with minor species being S2 and various K-S molecules. The ratio of K/S2 in the vapor is very large initially and decreases steadily with prolonged heating. Several materials were evaluated for purposes of containing K2S/K2SO3 at temperatures or = 800 C: Pt, Mo, W, quartz, machinable glass, BN, high density graphite, pyrolytic coated graphite, and alumina. Of these, only alumina was observed to be chemically inert to both K2S but reacted with K2SO3. The other materials were not suitable for either substance. Thermodynamic calculations based on measured vapor pressures and approximate free energy functions are described. Results from isothermal total mass loss experiments and from thermogravimetric experiments are also included.

  10. Continuous flow, explosives vapor generator and sensor chamber.

    PubMed

    Collins, Greg E; Giordano, Braden C; Sivaprakasam, Vasanthi; Ananth, Ramagopal; Hammond, Mark; Merritt, Charles D; Tucker, John E; Malito, Michael; Eversole, Jay D; Rose-Pehrsson, Susan

    2014-05-01

    A novel liquid injection vapor generator (LIVG) is demonstrated that is amenable to low vapor pressure explosives, 2,4,6-trinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine. The LIVG operates in a continuous manner, providing a constant and stable vapor output over a period of days and whose concentration can be extended over as much as three orders of magnitude. In addition, a large test atmosphere chamber attached to the LIVG is described, which enables the generation of a stable test atmosphere with controllable humidity and temperature. The size of the chamber allows for the complete insertion of testing instruments or arrays of materials into a uniform test atmosphere, and various electrical feedthroughs, insertion ports, and sealed doors permit simple and effective access to the sample chamber and its vapor.

  11. An electron diffraction study of alkali chloride vapors

    NASA Technical Reports Server (NTRS)

    Mawhorter, R. J.; Fink, M.; Hartley, J. G.

    1985-01-01

    A study of monomers and dimers of the four alkali chlorides NaCl, KCl, RbCl, and CsCl in the vapor phase using the counting method of high energy electron diffraction is reported. Nozzle temperatures from 850-960 K were required to achieve the necessary vapor pressures of approximately 0.01 torr. Using harmonic calculations for the monomer and dimer 1 values, a consistent set of structures for all four molecules was obained. The corrected monomer distances reproduce the microwave values very well. The experiment yields information on the amount of dimer present in the vapor, and these results are compared with thermodynamic values.

  12. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Brebrick, R. F.; Dudley, M.; Ramachandran, N.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the crystals grown by vapor transport as results of buoyance-driven convection and growth interface fluctuations caused by irregular fluid-flows. ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, were grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals were characterized extensively to correlate the grown crystal properties with the growth conditions. The following are the research progress in the past two years. In-situ monitoring of partial pressure by optical absorption technique and visual observation of the growing crystal were performed during vapor growth of ZnSe. Low-temperature photoluminescence (PL) spectra and glow discharge mass spectroscopy (GDMS) were measured on ZnSe starting materials provided by various vendors and on bulk crystals grown from these starting materials by physical vapor transport (PVT) to study the effects of purification and contamination during crystal growth process. Optical characterization was performed on wafers sliced from the grown crystals of ZnSe, ZnTe and ZnSe(1-x),Te(x), (0

  13. Solid-vapor interactions: influence of environmental conditions on the dehydration of carbamazepine dihydrate.

    PubMed

    Surana, Rahul; Pyne, Abira; Suryanarayanan, Raj

    2004-12-31

    The goal of this research was a phenomenological study of the effect of environmental factors on the dehydration behavior of carbamazepine dihydrate. Dehydration experiments were performed in an automated vapor sorption apparatus under a variety of conditions, and weight loss was monitored as a function of time. In addition to lattice water, carbamazepine dihydrate contained a significant amount of physically bound water. Based on the kinetics of water loss, it was possible to differentiate between the removal of physically bound water and the lattice water. The activation energy for the 2 processes was 44 and 88 kJ/mol, respectively. As expected, the dehydration rate of carbamazepine dihydrate decreased with an increase in water vapor pressure. While dehydration at 0% relative humidity (RH) resulted in an amorphous anhydrate, the crystallinity of the anhydrate increased as a function of the RH of dehydration. A method was developed for in situ crystallinity determination of the anhydrate formed. Dehydration in the presence of the ethanol vapor was a 2-step process, and the fraction dehydrated at each step was a function of the ethanol vapor pressure. We hypothesize the formation of an intermediate lower hydrate phase with unknown water stoichiometry. An increase in the ethanol vapor pressure first led to a decrease in the dehydration rate followed by an increase. In summary, the dehydration behavior of carbamazepine dihydrate was evaluated at different vapor pressures of water and ethanol. Using the water sorption apparatus, it was possible to (1) differentiate between the removal of physically bound and lattice water, and (2) develop a method for quantifying, in situ, the crystallinity of the product (anhydrate) phase.

  14. Halogenated methyl-phenyl ethers (anisoles) in the environment: determination of vapor pressures, aqueous solubilities, Henry's law constants, and gas/water- (Kgw), n-octanol/water- (Kow) and gas/n-octanol (Kgo) partition coefficients.

    PubMed

    Pfeifer, O; Lohmann, U; Ballschmiter, K

    2001-11-01

    Halogenated methyl-phenyl ethers (methoxybenzenes, anisoles) are ubiquitous organics in the environment although they are not produced in industrial quantities. Modelling the fate of organic pollutants such as halogenated anisoles requires a knowledge of the fundamental physico-chemical properties of these compounds. The isomer-specific separation and detection of 60 of the 134 possible congeners allowing an environmental fingerprinting are reported in this study. The vapor pressure p0(L) of more than 60 and further physico-chemical properties of 26 available congeners are given. Vapor pressures p0(L), water solubilities S(L)W, and n-octanol/water partition coefficients Kow were determined by capillary HR-GC (High Resolution Gas Chromatography) on a non-polar phase and by RP-HPLC (Reversed Phase High Performance Liquid Chromatography) on a C18 phase with chlorobenzenes as reference standards. From these experimental data the Henry's law constants H, and the gas/water Kgw and gas/n-octanol Kgo partition coefficients were calculated. We found that vapor pressures, water solubilities, and n-octanol/water partition coefficients of the halogenated anisoles are close to those of the chlorobenzenes. A similar environmental fate of both groups can, therefore, be predicted.

  15. Correlation between central venous pressure and peripheral venous pressure with passive leg raise in patients on mechanical ventilation.

    PubMed

    Kumar, Dharmendra; Ahmed, Syed Moied; Ali, Shahna; Ray, Utpal; Varshney, Ankur; Doley, Kashmiri

    2015-11-01

    Central venous pressure (CVP) assesses the volume status of patients. However, this technique is not without complications. We, therefore, measured peripheral venous pressure (PVP) to see whether it can replace CVP. To evaluate the correlation and agreement between CVP and PVP after passive leg raise (PLR) in critically ill patients on mechanical ventilation. Prospective observational study in Intensive Care Unit. Fifty critically ill patients on mechanical ventilation were included in the study. CVP and PVP measurements were taken using a water column manometer. Measurements were taken in the supine position and subsequently after a PLR of 45°. Pearson's correlation and Bland-Altman's analysis. This study showed a fair correlation between CVP and PVP after a PLR of 45° (correlation coefficient, r = 0.479; P = 0.0004) when the CVP was <10 cmH2O. However, the correlation was good when the CVP was >10 cmH2O. Bland-Altman analysis showed 95% limits of agreement to be -2.912-9.472. PVP can replace CVP for guiding fluid therapy in critically ill patients.

  16. Correlation between auditory function and internal auditory canal pressure in patients with vestibular schwannomas.

    PubMed

    Lapsiwala, Samir B; Pyle, G Mark; Kaemmerle, Ann W; Sasse, Frank J; Badie, Behnam

    2002-05-01

    Hearing loss is the most common presenting symptom in patients who harbor a vestibular schwannoma (VS). Although mechanical injury to the cochlear nerve and vascular compromise of the auditory apparatus have been proposed, the exact mechanism of this hearing loss remains unclear. To test whether pressure on the cochlear nerve from tumor growth in the internal auditory canal (IAC) is responsible for this clinical finding, the authors prospectively evaluated intracanalicular pressure (ICaP) in patients with VS and correlated this with preoperative brainstem response. In 40 consecutive patients undergoing a retrosigmoid-transmeatal approach for tumor excision, ICaP was measured by inserting a pressure microsensor into the IAC before any tumor manipulation. Pressure recordings were correlated with tumor size and preoperative auditory evoked potential (AEP) recordings. The ICaP, which varied widely among patients (range 0-45 mm Hg), was significantly elevated in most patients (median 16 mm Hg). Although these pressure measurements directly correlated to the extension of tumor into the IAC (p = 0.001), they did not correlate to total tumor size (p = 0.2). In 20 patients in whom baseline AEP recordings were available, the ICaP directly correlated to wave V latency (p = 0.0001), suggesting that pressure from tumor growth in the IAC may be responsible for hearing loss in these patients. Tumor growth into the IAC results in elevation of ICaP and may play a role in hearing loss in patients with VS. The relevance of these findings to the surgical treatment of these tumors is discussed.

  17. Unified Application Vapor Screen Flow Visualization and Pressure Sensitive Paint Measurement Techniques to Vortex- and Shock Wave-Dominated Flow Fields

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2008-01-01

    Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack (alpha). The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).

  18. Vapor Phase Growth of High-Quality Bi-Te Compounds Using Elemental Bi and Te Sources: A Comparison Between High Vacuum and Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Concepción, O.; Escobosa, A.; de Melo, O.

    2018-03-01

    Bismuth telluride (Bi2Te3), traditionally used in the industry as thermoelectric material, has deserved much attention recently due to its properties as a topological insulator, a kind of material that might have relevant applications in spintronics or quantum computing, among other innovative uses. The preparation of high-quality material has become a very important technological task. Here, we compare the preparation of Bi2Te3 by physical vapor transport from the evaporation of elemental Bi and Te sources, under either low pressure or atmospheric pressure. The layers were characterized by different techniques to evaluate its structural properties. As a result, it is concluded that, as a consequence of the different transport regimes, films grown at atmospheric pressure present better crystal quality.

  19. O absorption measurements in an engineering-scale high-pressure coal gasifier

    NASA Astrophysics Data System (ADS)

    Sun, Kai; Sur, Ritobrata; Jeffries, Jay B.; Hanson, Ronald K.; Clark, Tommy; Anthony, Justin; Machovec, Scott; Northington, John

    2014-10-01

    A real-time, in situ water vapor (H2O) sensor using a tunable diode laser near 1,352 nm was developed to continuously monitor water vapor in the synthesis gas of an engineering-scale high-pressure coal gasifier. Wavelength-scanned wavelength-modulation spectroscopy with second harmonic detection (WMS-2 f) was used to determine the absorption magnitude. The 1 f-normalized, WMS-2 f signal (WMS-2 f/1 f) was insensitive to non-absorption transmission losses including beam steering and light scattering by the particulate in the synthesis gas. A fitting strategy was used to simultaneously determine the water vapor mole fraction and the collisional-broadening width of the transition from the scanned 1 f-normalized WMS-2 f waveform at pressures up to 15 atm, which can be used for large absorbance values. This strategy is analogous to the fitting strategy for wavelength-scanned direct absorption measurements. In a test campaign at the US National Carbon Capture Center, the sensor demonstrated a water vapor detection limit of ~800 ppm (25 Hz bandwidth) at conditions with more than 99.99 % non-absorption transmission losses. Successful unattended monitoring was demonstrated over a 435 h period. Strong correlations between the sensor measurements and transient gasifier operation conditions were observed, demonstrating the capability of laser absorption to monitor the gasification process.

  20. Partition Coefficients of Organics between Water and Carbon Dioxide Revisited: Correlation with Solute Molecular Descriptors and Solvent Cohesive Properties.

    PubMed

    Roth, Michal

    2016-12-06

    High-pressure phase behavior of systems containing water, carbon dioxide and organics has been important in several environment- and energy-related fields including carbon capture and storage, CO 2 sequestration and CO 2 -assisted enhanced oil recovery. Here, partition coefficients (K-factors) of organic solutes between water and supercritical carbon dioxide have been correlated with extended linear solvation energy relationships (LSERs). In addition to the Abraham molecular descriptors of the solutes, the explanatory variables also include the logarithm of solute vapor pressure, the solubility parameters of carbon dioxide and water, and the internal pressure of water. This is the first attempt to include also the properties of water as explanatory variables in LSER correlations of K-factor data in CO 2 -water-organic systems. Increasing values of the solute hydrogen bond acidity, the solute hydrogen bond basicity, the solute dipolarity/polarizability, the internal pressure of water and the solubility parameter of water all tend to reduce the K-factor, that is, to favor the solute partitioning to the water-rich phase. On the contrary, increasing values of the solute characteristic volume, the solute vapor pressure and the solubility parameter of CO 2 tend to raise the K-factor, that is, to favor the solute partitioning to the CO 2 -rich phase.

  1. Plasma Spray-Physical Vapor Deposition (PS-PVD) of Ceramics for Protective Coatings

    NASA Technical Reports Server (NTRS)

    Harder, Bryan J.; Zhu, Dongming

    2011-01-01

    In order to generate advanced multilayer thermal and environmental protection systems, a new deposition process is needed to bridge the gap between conventional plasma spray, which produces relatively thick coatings on the order of 125-250 microns, and conventional vapor phase processes such as electron beam physical vapor deposition (EB-PVD) which are limited by relatively slow deposition rates, high investment costs, and coating material vapor pressure requirements. The use of Plasma Spray - Physical Vapor Deposition (PS-PVD) processing fills this gap and allows thin (< 10 microns) single layers to be deposited and multilayer coatings of less than 100 microns to be generated with the flexibility to tailor microstructures by changing processing conditions. Coatings of yttria-stabilized zirconia (YSZ) were applied to NiCrAlY bond coated superalloy substrates using the PS-PVD coater at NASA Glenn Research Center. A design-of-experiments was used to examine the effects of process variables (Ar/He plasma gas ratio, the total plasma gas flow, and the torch current) on chamber pressure and torch power. Coating thickness, phase and microstructure were evaluated for each set of deposition conditions. Low chamber pressures and high power were shown to increase coating thickness and create columnar-like structures. Likewise, high chamber pressures and low power had lower growth rates, but resulted in flatter, more homogeneous layers

  2. [Measurement of atomic number of alkali vapor and pressure of buffer gas based on atomic absorption].

    PubMed

    Zheng, Hui-jie; Quan, Wei; Liu, Xiang; Chen, Yao; Lu, Ji-xi

    2015-02-01

    High sensitivitymagnetic measurementscanbe achieved by utilizing atomic spinmanipulation in the spin-exchange-relaxation-free (SERF) regime, which uses an alkali cell as a sensing element. The atomic number density of the alkali vapor and the pressure of the buffer gasare among the most important parameters of the cell andrequire accurate measurement. A method has been proposed and developedto measure the atomic number density and the pressure based on absorption spectroscopy, by sweeping the absorption line and fittingthe experiment data with a Lorentzian profile to obtainboth parameters. Due to Doppler broadening and pressure broadening, which is mainly dominated by the temperature of the cell and the pressure of buffer gas respectively, this work demonstrates a simulation of the errorbetween the peaks of the Lorentzian profile and the Voigt profile caused by bothfactors. The results indicates that the Doppler broadening contribution is insignificant with an error less than 0.015% at 313-513 K for a 4He density of 2 amg, and an error of 0.1% in the presence of 0.6-5 amg at 393 K. We conclude that the Doppler broadening could be ignored under above conditions, and that the Lorentzianprofile is suitably applied to fit the absorption spectrumobtainingboth parameters simultaneously. In addition we discuss the resolution and the instability due to thelight source, wavelength and the temperature of the cell. We find that the cell temperature, whose uncertainty is two orders of magnitude larger than the instability of the light source and the wavelength, is one of the main factors which contributes to the error.

  3. Shock vaporization of carbonate and sulfate minerals

    NASA Astrophysics Data System (ADS)

    Shen, A. H.; Ahrens, T. J.; O'Keefe, J. D.

    2001-12-01

    Strong shock waves induced by impacts can cause vaporization of rocks and minerals. The products of such process play important roles in planetary differentiation (Yakovlev et al., Geochem. International, 38, 1027, 2000) and in effecting the planetary climate. Many experiments and computer simulations have been performed to simulate the Chicxulub impact at Cretaceous/Tertiary boundary (see, for example, Pierazzo et al., J. Geophys. Res., 103, 28607, 1998 and Pope et al., J. Geophys. Res., 102, 21645, 1997). However, the pressure range for incipient and complete vaporization of carbonates and sulfates are not well constrained, especially, for minerals with various initial porosities. Furthermore, evidence for chemical species in the products of vaporized carbonate and sulfate minerals is almost non-existing. In this study, we employed published Hugoniot data for carbonate and sulfate minerals. By using the methods described in Ahrens (J. Appl. Phys., 43, 2443, 1972) and Ahrens and O'Keefe (The Moon, 4, 214, 1972), we calculated the entropy associated with the thermodynamic states produced by hypervelocity impacts at various velocities for carbonate and sulfate minerals with different initial porosities. The results were compared with the entropy of incipient vaporization and complete vaporization of these minerals to determine the degree of vaporization due to impacts. Moreover, these results are utilized to guide our experimental study in speciation reactions in shock-induced vaporization of carbonates and sulfates.

  4. Correlations to predict frictional pressure loss of hydraulic-fracturing slurry in coiled tubing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, S.; Zhoi, Y.X.; Bailey, M.

    2009-08-15

    Compared with conventional-tubing fracturing, coiled-tubing (CT) fracturing has several advantages. CT fracturing has become an effective stimulation technique for multizone oil and gas wells. It is also an attractive production-enhancement method for multiseam coalbed-methane wells, and wells with bypassed zones. The excessive frictional pressure loss through CT has been a concern in fracturing. The small diameter of the string limits the cross-sectional area open to flow. Furthermore, the tubing curvature causes secondary flow and results in extra flow resistance. This increased frictional pressure loss results in high surface pumping pressure. The maximum possible pump rate and sand concentration, therefore, havemore » to be reduced. To design a CT fracturing job properly, it is essential to predict the frictional pressure loss through the tubing accurately. This paper presents correlations for the prediction of frictional pressure loss of fracturing slurries in straight tubing and CT. They are developed on the basis of full-scale slurry-flow tests with 11/2-in. CT and slurries prepared with 35 lbm/1,000 gal of guar gel. The extensive experiments were conducted at the full-scale CT-flow test facility. The proposed correlations have been verified with the experimental data and actual field CT-fracturing data. Case studies of wells recently fractured are provided to demonstrate the application of the correlations. The correlations will be useful to the CT engineers in their hydraulics design calculations.« less

  5. Reduced-Pressure Chemical Vapor Deposition Growth of Isolated Ge Crystals and Suspended Layers on Micrometric Si Pillars.

    PubMed

    Skibitzki, Oliver; Capellini, Giovanni; Yamamoto, Yuji; Zaumseil, Peter; Schubert, Markus Andreas; Schroeder, Thomas; Ballabio, Andrea; Bergamaschini, Roberto; Salvalaglio, Marco; Miglio, Leo; Montalenti, Francesco

    2016-10-05

    In this work, we demonstrate the growth of Ge crystals and suspended continuous layers on Si(001) substrates deeply patterned in high aspect-ratio pillars. The material deposition was carried out in a commercial reduced-pressure chemical vapor deposition reactor, thus extending the "vertical-heteroepitaxy" technique developed by using the peculiar low-energy plasma-enhanced chemical vapor deposition reactor, to widely available epitaxial tools. The growth process was thoroughly analyzed, from the formation of small initial seeds to the final coalescence into a continuous suspended layer, by means of scanning and transmission electron microscopy, X-ray diffraction, and μ-Raman spectroscopy. The preoxidation of the Si pillar sidewalls and the addition of hydrochloric gas in the reactants proved to be key to achieve highly selective Ge growth on the pillars top only, which, in turn, is needed to promote the formation of a continuous Ge layer. Thanks to continuum growth models, we were able to single out the different roles played by thermodynamics and kinetics in the deposition dynamics. We believe that our findings will open the way to the low-cost realization of tens of micrometers thick heteroepitaxial layer (e.g., Ge, SiC, and GaAs) on Si having high crystal quality.

  6. Evaluation of pressurized water cleaning systems for hardware refurbishment

    NASA Technical Reports Server (NTRS)

    Dillard, Terry W.; Deweese, Charles D.; Hoppe, David T.; Vickers, John H.; Swenson, Gary J.; Hutchens, Dale E.

    1995-01-01

    Historically, refurbishment processes for RSRM motor cases and components have employed environmentally harmful materials. Specifically, vapor degreasing processes consume and emit large amounts of ozone depleting compounds. This program evaluates the use of pressurized water cleaning systems as a replacement for the vapor degreasing process. Tests have been conducted to determine if high pressure water washing, without any form of additive cleaner, is a viable candidate for replacing vapor degreasing processes. This paper discusses the findings thus far of Engineering Test Plan - 1168 (ETP-1168), 'Evaluation of Pressurized Water Cleaning Systems for Hardware Refurbishment.'

  7. Pressure-Velocity Correlations in the Cove of a Leading Edge Slat

    NASA Astrophysics Data System (ADS)

    Wilkins, Stephen; Richard, Patrick; Hall, Joseph

    2015-11-01

    One of the major sources of aircraft airframe noise is related to the deployment of high-lift devices, such as leading-edge slats, particularly when the aircraft is preparing to land. As the engines are throttled back, the noise produced by the airframe itself is of great concern, as the aircraft is low enough for the noise to impact civilian populations. In order to reduce the aeroacoustic noise sources associated with these high lift devices for the next generation of aircraft an experimental investigation of the correlation between multi-point surface-mounted fluctuating pressures measured via flush-mounted microphones and the simultaneously measured two-component velocity field measured via Particle Image Velocimetry (PIV) is studied. The development of the resulting shear-layer within the slat cove is studied for Re =80,000, based on the wing chord. For low Mach number flows in air, the major acoustic source is a dipole acoustic source tied to fluctuating surface pressures on solid boundaries, such as the underside of the slat itself. Regions of high correlations between the pressure and velocity field near the surface will likely indicate a strong acoustic dipole source. In order to study the underlying physical mechanisms and understand their role in the development of aeroacoustic noise, Proper Orthogonal Decomposition (POD) by the method of snapshots is employed on the velocity field. The correlation between low-order reconstructions and the surface-pressure measurements are also studied.

  8. General well function for soil vapor extraction

    NASA Astrophysics Data System (ADS)

    Perina, Tomas

    2014-04-01

    This paper develops a well function applicable to extraction of groundwater or soil vapor from a well under the most common field test conditions. The general well function (Perina and Lee, 2006) [12] is adapted to soil vapor extraction and constant head boundary at the top. For groundwater flow, the general well function now applies to an extraction well of finite diameter with uniform drawdown along the screen, finite-thickness skin, and partially penetrating an unconfined, confined, and leaky aquifer, or an aquifer underneath a reservoir. With a change of arguments, the model applies to soil vapor extraction from a vadose zone with no cover or with leaky cover at the ground surface. The extraction well can operate in specified drawdown (pressure for soil vapor) or specified flowrate mode. Frictional well loss is computed as flow-only dependent component of the drawdown inside the extraction well. In general case, the calculated flow distribution is not proportional to screen length for a multiscreen well.

  9. A Microstructural Comparison of the Initial Growth of AIN and GaN Layers on Basal Plane Sapphire and SiC Substrates by Low Pressure Metalorganic Chemical Vapor Depositon

    NASA Technical Reports Server (NTRS)

    George, T.; Pike, W. T.; Khan, M. A.; Kuznia, J. N.; Chang-Chien, P.

    1994-01-01

    The initial growth by low pressure metalorganic chemical vapor deposition and subsequent thermal annealing of AIN and GaN epitaxial layers on SiC and sapphire substrates is examined using high resolution transmission electron microscopy and atomic force microscopy.

  10. Quality and Control of Water Vapor Winds

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Atkinson, Robert J.

    1996-01-01

    Water vapor imagery from the geostationary satellites such as GOES, Meteosat, and GMS provides synoptic views of dynamical events on a continual basis. Because the imagery represents a non-linear combination of mid- and upper-tropospheric thermodynamic parameters (three-dimensional variations in temperature and humidity), video loops of these image products provide enlightening views of regional flow fields, the movement of tropical and extratropical storm systems, the transfer of moisture between hemispheres and from the tropics to the mid- latitudes, and the dominance of high pressure systems over particular regions of the Earth. Despite the obvious larger scale features, the water vapor imagery contains significant image variability down to the single 8 km GOES pixel. These features can be quantitatively identified and tracked from one time to the next using various image processing techniques. Merrill et al. (1991), Hayden and Schmidt (1992), and Laurent (1993) have documented the operational procedures and capabilities of NOAA and ESOC to produce cloud and water vapor winds. These techniques employ standard correlation and template matching approaches to wind tracking and use qualitative and quantitative procedures to eliminate bad wind vectors from the wind data set. Techniques have also been developed to improve the quality of the operational winds though robust editing procedures (Hayden and Veldon 1991). These quality and control approaches have limitations, are often subjective, and constrain wind variability to be consistent with model derived wind fields. This paper describes research focused on the refinement of objective quality and control parameters for water vapor wind vector data sets. New quality and control measures are developed and employed to provide a more robust wind data set for climate analysis, data assimilation studies, as well as operational weather forecasting. The parameters are applicable to cloud-tracked winds as well with minor

  11. Acoustic Behavior of Vapor Bubbles

    NASA Technical Reports Server (NTRS)

    Prosperetti, Andrea; Oguz, Hasan N.

    1996-01-01

    In a microgravity environment vapor bubbles generated at a boiling surface tend to remain near it for a long time. This affects the boiling heat transfer and in particular promotes an early transition to the highly inefficient film boiling regime. This paper describes the physical basis underlying attempts to remove the bubbles by means of pressure radiation forces.

  12. Water vapor absorption in the atmospheric window at 239 GHz

    NASA Technical Reports Server (NTRS)

    Bauer, A.; Godon, M.; Carlier, J.; Ma, Q.

    1995-01-01

    Absolute absorption rates of pure water vapor and mixtures of water vapor and nitrogen have been measured in the atmospheric window at 239 GHz. The dependence on pressure as well as temperature has been obtained. The experimental data are compared with several theoretical or empirical models, and satisfactory agreement is obtained with the models involving a continuum; in the case of pure water vapor, the continuum contribution based upon recent theoretical developments gives good results. The temperature dependence is stronger than that proposed in a commonly used atmospheric transmission model.

  13. Thermoeconomic analysis of an integrated multi-effect desalination thermal vapor compression (MED-TVC) system with a trigeneration system using triple-pressure HRSG

    NASA Astrophysics Data System (ADS)

    Ghaebi, Hadi; Abbaspour, Ghader

    2018-05-01

    In this research, thermoeconomic analysis of a multi-effect desalination thermal vapor compression (MED-TVC) system integrated with a trigeneration system with a gas turbine prime mover is carried out. The integrated system comprises of a compressor, a combustion chamber, a gas turbine, a triple-pressure (low, medium and high pressures) heat recovery steam generator (HRSG) system, an absorption chiller cycle (ACC), and a multi-effect desalination (MED) system. Low pressure steam produced in the HRSG is used to drive absorption chiller cycle, medium pressure is used in desalination system and high pressure superheated steam is used for heating purposes. For thermodynamic and thermoeconomic analysis of the proposed integrated system, Engineering Equation Solver (EES) is used by employing mass, energy, exergy, and cost balance equations for each component of system. The results of the modeling showed that with the new design, the exergy efficiency in the base design will increase to 57.5%. In addition, thermoeconomic analysis revealed that the net power, heating, fresh water and cooling have the highest production cost, respectively.

  14. Ultra-fast vapor generation by a graphene nano-ratchet: a theoretical and simulation study.

    PubMed

    Ding, Hongru; Peng, Guilong; Mo, Shenqiu; Ma, Dengke; Sharshir, Swellam Wafa; Yang, Nuo

    2017-12-14

    Vapor generation is of prime importance for a broad range of applications: domestic water heating, desalination and wastewater treatment, etc. However, slow and inefficient evaporation limits its development. In this study, a nano-ratchet, a multilayer graphene with cone-shaped nanopores (MGCN), to accelerate vapor generation has been proposed. By performing molecular dynamics simulation, we found that air molecules were spontaneously transported across MGCN and resulted in a remarkable pressure difference, 21 kPa, between the two sides of MGCN. We studied the dependence of the pressure difference on the ambient temperature and geometry of MGCN in detail. Through further analysis of the diffusive transport, we found that pressure difference depended on the competition between ratchet transport and Knudsen diffusion and it was further found that ratchet transport is dominant. The significant pressure difference could lead to a 15-fold or greater enhancement of vapor generation, which shows the wide applications of this nano-ratchet.

  15. The cesiator - A device for cesium vapor control and impurity purge

    NASA Astrophysics Data System (ADS)

    Rasor, N. S.; Desplat, J.-L.

    A new type of liquid cesium reservoir that maintains a temperature-independent cesium pressure, continuously recirculates cesium vapor through the TFE (thermionic fuel element), and purges it of impurities is discussed. This device, the cesiator, is based on well-established gas-buffered heat pipe principles. The cesiator offers new TFE design options for fission product/impurity handling that eliminate the need for an intercell insulator seal and associated failure modes. Cesiator performance requirements are estimated based on data for expected release of fission products and their effect on TFE performance. The effect of design parameters on cesiator performance is described. Experimentation with an ethanol-metal mock-up revealed an unexpected but desirable mode of operation that autoregulates the pressure drop and flow of vapor in the external circuit and that has been incorporated in the reference design for phase II development. Experimental techniques for measuring the local temperature, pressure, and composition in a condensing vapor were successfully developed. A reference design for a TFE cesiator was defined for prototype design, development, and test.

  16. Continuous Growth of Hexagonal Graphene and Boron Nitride In-Plane Heterostructures by Atmospheric Pressure Chemical Vapor Deposition

    PubMed Central

    Han, Gang Hee; Rodríguez-Manzo, Julio A.; Lee, Chan-Woo; Kybert, Nicholas J.; Lerner, Mitchell B.; Qi, Zhengqing John; Dattoli, Eric N.; Rappe, Andrew M.; Drndic, Marija; Charlie Johnson, A. T.

    2013-01-01

    Graphene-boron nitride monolayer heterostructures contain adjacent electrically active and insulating regions in a continuous, single-atom thick layer. To date structures were grown at low pressure, resulting in irregular shapes and edge direction, so studies of the graphene-boron nitride interface were restricted to microscopy of nano-domains. Here we report templated growth of single crystalline hexagonal boron nitride directly from the oriented edge of hexagonal graphene flakes by atmospheric pressure chemical vapor deposition, and physical property measurements that inform the design of in-plane hybrid electronics. Ribbons of boron nitride monolayer were grown from the edge of a graphene template and inherited its crystallographic orientation. The relative sharpness of the interface was tuned through control of growth conditions. Frequent tearing at the graphene-boron nitride interface was observed, so density functional theory was used to determine that the nitrogen-terminated interface was prone to instability during cool down. The electronic functionality of monolayer heterostructures was demonstrated through fabrication of field effect transistors with boron nitride as an in-plane gate dielectric. PMID:24182310

  17. Continuous growth of hexagonal graphene and boron nitride in-plane heterostructures by atmospheric pressure chemical vapor deposition.

    PubMed

    Han, Gang Hee; Rodríguez-Manzo, Julio A; Lee, Chan-Woo; Kybert, Nicholas J; Lerner, Mitchell B; Qi, Zhengqing John; Dattoli, Eric N; Rappe, Andrew M; Drndic, Marija; Johnson, A T Charlie

    2013-11-26

    Graphene-boron nitride monolayer heterostructures contain adjacent electrically active and insulating regions in a continuous, single-atom thick layer. To date structures were grown at low pressure, resulting in irregular shapes and edge direction, so studies of the graphene-boron nitride interface were restricted to the microscopy of nanodomains. Here we report templated growth of single crystalline hexagonal boron nitride directly from the oriented edge of hexagonal graphene flakes by atmospheric pressure chemical vapor deposition, and physical property measurements that inform the design of in-plane hybrid electronics. Ribbons of boron nitride monolayer were grown from the edge of a graphene template and inherited its crystallographic orientation. The relative sharpness of the interface was tuned through control of growth conditions. Frequent tearing at the graphene-boron nitride interface was observed, so density functional theory was used to determine that the nitrogen-terminated interface was prone to instability during cool down. The electronic functionality of monolayer heterostructures was demonstrated through fabrication of field effect transistors with boron nitride as an in-plane gate dielectric.

  18. Bimodal Distributions of Ozone in Relation to Water Vapor, Cloud Hydrometeors, and Other Chemical Tracers Over the Tropical Western Pacific

    NASA Astrophysics Data System (ADS)

    Steinmann, K. M.; Diao, M.

    2017-12-01

    The main objective of this work is to use the in-situ observations from the 2014 NSF Convective Transport of Active Species in the Tropics (CONTRAST) campaign to analyze the relationships among the distributions of ozone, water vapor, relative humidity, cloud hydrometers, and other chemical tracers in the Tropical Western Pacific. Previous analysis by Pan et al.(2015) observed a bimodal distribution of ozone: The first mode was observed around 20 ppbv and the second mode was observed around 60 ppbv. When RH was restricted to between 45% and 100%, the second mode was no longer observed, leaving only the first mode. Based on those results, this study looks at the distributions of different chemical tracers, RH, and water vapor. Preliminary analysis shows an increased concentration of ozone around a pressure of 150 hPa for "clear-sky" conditions, while the ozone concentration at the same pressure level for "in-cloud" conditions was around 40 ppbv lower. The differences between "clear-sky" and "in-cloud" average ozone concentrations become much smaller when restricting the analyzing RH to above 45%, indicating that ozone distributions have a stronger relationship with the magnitudes of RH than with the existence of clouds. The contrast between "clear-sky" and "in-cloud" conditions was not clearly observed for carbon monoxide (CO), CH3CN, or HCN. An anti-correlation is clearly observed in a ΔO3 vs. ΔLog10Q plot (where Q stands for water vapor mixing ratio), where larger ΔO3 values are observed at lower ΔLog10Q values. In addition, a weak anti-correlation is also observed in plots for ozone vs. Log10Q. When analyzing CO concentrations, only a weak anti-correlation is observed in a CO vs. Log10Q, while no strong correlation was observed in ΔCO vs. ΔLog10Q. For two biomass burning tracers, CH3CN and HCN, a positive correlation is observed between CH3CN and Log10Q, but an anti-correlation is observed between HCN and Log10Q. Analysis of vertical velocity, updraft

  19. Synthesis of Diamond-Like Carbon Films on Planar and Non-Planar Geometries by the Atmospheric Pressure Plasma Chemical Vapor Deposition Method

    NASA Astrophysics Data System (ADS)

    Noborisaka, Mayui; Hirako, Tomoaki; Shirakura, Akira; Watanabe, Toshiyuki; Morikawa, Masashi; Seki, Masaki; Suzuki, Tetsuya

    2012-09-01

    Diamond-like carbon (DLC) films were synthesized by the dielectric barrier discharge-based plasma deposition at atmospheric pressure and their hardness and gas barrier properties were measured. A decrease in size of grains and heating substrate temperature improved nano-hardness up to 3.3 GPa. The gas barrier properties of DLC-coated poly(ethylene terephthalate) (PET) sheets were obtained by 3-5 times of non-coated PET with approximately 0.5 µm in film thickness. The high-gas-barrier DLC films deposited on PET sheets are expected to wrap elevated bridge of the super express and prevent them from neutralization of concrete. We also deposited DLC films inside PET bottles by the microwave surface-wave plasma chemical vapor deposition (CVD) method at near-atmospheric pressure. Under atmospheric pressure, the films were coated uniformly inside the PET bottles, but did not show high gas barrier properties. In this paper, we summarize recent progress of DLC films synthesized at atmospheric pressure with the aimed of food packaging and concrete pillar.

  20. Continuous Estimates of Precipitable Water Vapor Within and Around Hurricane Systems

    NASA Astrophysics Data System (ADS)

    Braun, J. J.; Iwabuchi, T.; van Hove, T.

    2008-12-01

    This study investigates how estimates of precipitable water vapor (PW) from Global Positioning System (GPS) stations can be used to quantify how atmospheric moisture influences the intensity of tropical storms and hurricanes. The motivation for this study is based on the fact that hurricanes derive their strength through water vapor that is both evaporated from warm ocean surfaces and the existing moisture in the surrounding atmospheric environment. Observationally, there are relatively few instruments that can accurately measure water vapor in the presence of clouds and rain. Retrievals of PW using GPS stations may be the most reliable way to continuously monitor column integrated water vapor. Using storm information from the National Hurricane Center (www.nhc.noaa.gov), we have compared storm intensity to PW estimates for all tropical storms and hurricanes making landfall within 100-km of a GPS station between 2003 and 2008. We find that PW is inversely correlated (r**2 < -0.7) to the drop in surface pressure observed at that station. We have also begun to relate atmospheric PW at a station to the local sea surface temperature (SST). This comparison can be used to measure how strongly atmospheric water vapor and SST are coupled. It can also be used to measure how quickly the atmosphere responds to changes in SST. Finally we have compared the estimated PW to the Global Forecast System (GFS) analysis fields that are used to initialize numerical weather prediction models. This comparison indicates that the GFS analysis fields have significantly larger errors in atmospheric moisture in the Caribbean and Gulf of Mexico when compared to differences over the continental United States. These results illustrate that estimates of PW are an important data set for atmospheric scientists and forecasters attempting to improve the prediction of hurricane intensity.

  1. New Models for Velocity/Pressure-Gradient Correlations in Turbulent Boundary Layers

    NASA Astrophysics Data System (ADS)

    Poroseva, Svetlana; Murman, Scott

    2014-11-01

    To improve the performance of Reynolds-Averaged Navier-Stokes (RANS) turbulence models, one has to improve the accuracy of models for three physical processes: turbulent diffusion, interaction of turbulent pressure and velocity fluctuation fields, and dissipative processes. The accuracy of modeling the turbulent diffusion depends on the order of a statistical closure chosen as a basis for a RANS model. When the Gram-Charlier series expansions for the velocity correlations are used to close the set of RANS equations, no assumption on Gaussian turbulence is invoked and no unknown model coefficients are introduced into the modeled equations. In such a way, this closure procedure reduces the modeling uncertainty of fourth-order RANS (FORANS) closures. Experimental and direct numerical simulation data confirmed the validity of using the Gram-Charlier series expansions in various flows including boundary layers. We will address modeling the velocity/pressure-gradient correlations. New linear models will be introduced for the second- and higher-order correlations applicable to two-dimensional incompressible wall-bounded flows. Results of models' validation with DNS data in a channel flow and in a zero-pressure gradient boundary layer over a flat plate will be demonstrated. A part of the material is based upon work supported by NASA under award NNX12AJ61A.

  2. 46 CFR 39.2011 - Vapor overpressure and vacuum protection-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... freely and does not remain in the open position. (c) A liquid filled pressure-vacuum breaker may be used... 46 Shipping 1 2014-10-01 2014-10-01 false Vapor overpressure and vacuum protection-TB/ALL. 39.2011... Equipment and Installation § 39.2011 Vapor overpressure and vacuum protection—TB/ALL. (a) The cargo tank...

  3. 46 CFR 39.2011 - Vapor overpressure and vacuum protection-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... freely and does not remain in the open position. (c) A liquid filled pressure-vacuum breaker may be used... 46 Shipping 1 2013-10-01 2013-10-01 false Vapor overpressure and vacuum protection-TB/ALL. 39.2011... Equipment and Installation § 39.2011 Vapor overpressure and vacuum protection—TB/ALL. (a) The cargo tank...

  4. Motion of liquid plugs between vapor bubbles in capillary tubes: a comparison between fluids

    NASA Astrophysics Data System (ADS)

    Bertossi, Rémi; Ayel, Vincent; Mehta, Balkrishna; Romestant, Cyril; Bertin, Yves; Khandekar, Sameer

    2017-11-01

    Pulsating heat pipes (PHP) are now well-known devices in which liquid/vapor slug flow oscillates in a capillary tube wound between hot and cold sources. In this context, this paper focuses on the motion of the liquid plug, trapped between vapor bubbles, moving in capillary tubes, to try to better understand the thermo-physical phenomena involved in such devices. This study is divided into three parts. In the first part, an experimental study presents the evolution of the vapor pressure during the evaporation process of a liquid thin film deposited from a liquid plug flowing in a heated capillary tube: it is found that the behavior of the generated and removed vapor can be very different, according to the thermophysical properties of the fluids. In the second part, a transient model allows to compare, in terms of pressure and duration, the motion of a constant-length liquid plug trapped between two bubbles subjected to a constant difference of vapor pressure: the results highlight that the performances of the four fluids are also very different. Finally, a third model that can be considered as an improvement of the second one, is also presented: here, the liquid slug is surrounded by two vapor bubbles, one subjected to evaporation, the pressure in both bubbles is now a result of the calculation. This model still allows comparing the behaviors of the fluid. Even if our models are quite far from a complete model of a real PHP, results do indicate towards the applicability of different fluids as suitable working fluids for PHPs, particularly in terms of the flow instabilities which they generate.

  5. Note: implementation of a cold spot setup for controlled variation of vapor pressures and its application to an InBr containing discharge lamp.

    PubMed

    Briefi, S

    2013-02-01

    In order to allow for a systematic investigation of the plasma properties of discharges containing indium halides, which are proposed as an efficient alternative for mercury based low pressure discharge lamps, a controlled variation of the indium halide density is mandatory. This can be achieved by applying a newly designed setup in which a well-defined cold spot location is implemented and the cold spot temperature can be adjusted between 50 and 350 °C without influencing the gas temperature. The performance of the setup has been proved by comparing the calculated evaporated InBr density (using the vapor pressure curve) with the one measured via white light absorption spectroscopy.

  6. Preconditioning of the YSZ-NiO Fuel Cell Anode in Hydrogenous Atmospheres Containing Water Vapor.

    PubMed

    Vasyliv, Bogdan; Podhurska, Viktoriya; Ostash, Orest

    2017-12-01

    The YSZ-NiO ceramics for solid oxide fuel cells (SOFCs) anode have been investigated. A series of specimens were singly reduced in a hydrogenous atmosphere (Ar-5 vol% H 2 mixture) at 600 °C under the pressure of 0.15 MPa or subjected to 'reduction in the mixture-oxidation in air' (redox) cycling at 600 °C. The YSZ-Ni cermets formed in both treatment conditions were then aged in 'water vapor in Ar-5 vol% H 2 mixture' atmosphere at 600 °C under the pressure of 0.15 MPa. Additionally, the behaviour of the as-received material in this atmosphere was studied. It was revealed that small amount of water vapor in Ar-5 vol% H 2 mixture (water vapor pressure below 0.03 MPa) does not affect the reduction of the nickel phase in the YSZ-NiO ceramics, but causes some changes in the YSZ-Ni cermet structure. In particular, nanopore growth in tiny Ni particles takes place. At higher concentration of water vapor in the mixture (water vapor pressure above 0.03-0.05 MPa), converse changes in the kinetics of reduction occur. The best physical and mechanical properties were revealed for the material treated by redox cycling after holding at 600 °C in water depleted gas mixture. The dual effect of water vapor on nickel-zirconia anode behaviour is discussed basing on scanning electron microscopy analysis data, material electrical conductivity, and strength.

  7. The electrical properties of low pressure chemical vapor deposition Ga doped ZnO thin films depending on chemical bonding configuration

    NASA Astrophysics Data System (ADS)

    Jung, Hanearl; Kim, Doyoung; Kim, Hyungjun

    2014-04-01

    The electrical and chemical properties of low pressure chemical vapor deposition (LP-CVD) Ga doped ZnO (ZnO:Ga) films were systematically investigated using Hall measurement and X-ray photoemission spectroscopy (XPS). Diethylzinc (DEZ) and O2 gas were used as precursor and reactant gas, respectively, and trimethyl gallium (TMGa) was used as a Ga doping source. Initially, the electrical properties of undoped LP-CVD ZnO films depending on the partial pressure of DEZ and O2 ratio were investigated using X-ray diffraction (XRD) by changing partial pressure of DEZ from 40 to 140 mTorr and that of O2 from 40 to 80 mTorr. The resistivity was reduced by Ga doping from 7.24 × 10-3 Ω cm for undoped ZnO to 2.05 × 10-3 Ω cm for Ga doped ZnO at the TMG pressure of 8 mTorr. The change of electric properties of Ga doped ZnO with varying the amount of Ga dopants was systematically discussed based on the structural crystallinity and chemical bonding configuration, analyzed by XRD and XPS, respectively.

  8. Water vapor adsorption on goethite.

    PubMed

    Song, Xiaowei; Boily, Jean-François

    2013-07-02

    Goethite (α-FeOOH) is an important mineral contributing to processes of atmospheric and terrestrial importance. Their interactions with water vapor are particularly relevant in these contexts. In this work, molecular details of water vapor (0.0-19.0 Torr; 0-96% relative humidity at 25 °C) adsorption at surfaces of synthetic goethite nanoparticles reacted with and without HCl and NaCl were resolved using vibrational spectroscopy. This technique probed interactions between surface (hydr)oxo groups and liquid water-like films. Molecular dynamics showed that structures and orientations adopted by these waters are comparable to those adopted at the interface with liquid water. Particle surfaces reacted with HCl accumulated less water than acid-free surfaces due to disruptions in hydrogen bond networks by chemisorbed waters and chloride. Particles reacted with NaCl had lower loadings below ∼10 Torr water vapor but greater loadings above this value than salt-free surfaces. Water adsorption reactions were here affected by competitive hydration of coexisting salt-free surface regions, adsorbed chloride and sodium, as well as precipitated NaCl. Collectively, the findings presented in this study add further insight into the initial mechanisms of thin water film formation at goethite surfaces subjected to variations in water vapor pressure that are relevant to natural systems.

  9. Genetic correlations between intraocular pressure, blood pressure and primary open-angle glaucoma: a multi-cohort analysis.

    PubMed

    Aschard, Hugues; Kang, Jae H; Iglesias, Adriana I; Hysi, Pirro; Cooke Bailey, Jessica N; Khawaja, Anthony P; Allingham, R Rand; Ashley-Koch, Allison; Lee, Richard K; Moroi, Sayoko E; Brilliant, Murray H; Wollstein, Gadi; Schuman, Joel S; Fingert, John H; Budenz, Donald L; Realini, Tony; Gaasterland, Terry; Scott, William K; Singh, Kuldev; Sit, Arthur J; Igo, Robert P; Song, Yeunjoo E; Hark, Lisa; Ritch, Robert; Rhee, Douglas J; Gulati, Vikas; Haven, Shane; Vollrath, Douglas; Zack, Donald J; Medeiros, Felipe; Weinreb, Robert N; Cheng, Ching-Yu; Chasman, Daniel I; Christen, William G; Pericak-Vance, Margaret A; Liu, Yutao; Kraft, Peter; Richards, Julia E; Rosner, Bernard A; Hauser, Michael A; Klaver, Caroline C W; vanDuijn, Cornelia M; Haines, Jonathan; Wiggs, Janey L; Pasquale, Louis R

    2017-11-01

    Primary open-angle glaucoma (POAG) is the most common chronic optic neuropathy worldwide. Epidemiological studies show a robust positive relation between intraocular pressure (IOP) and POAG and modest positive association between IOP and blood pressure (BP), while the relation between BP and POAG is controversial. The International Glaucoma Genetics Consortium (n=27 558), the International Consortium on Blood Pressure (n=69 395), and the National Eye Institute Glaucoma Human Genetics Collaboration Heritable Overall Operational Database (n=37 333), represent genome-wide data sets for IOP, BP traits and POAG, respectively. We formed genome-wide significant variant panels for IOP and diastolic BP and found a strong relation with POAG (odds ratio and 95% confidence interval: 1.18 (1.14-1.21), P=1.8 × 10 -27 ) for the former trait but no association for the latter (P=0.93). Next, we used linkage disequilibrium (LD) score regression, to provide genome-wide estimates of correlation between traits without the need for additional phenotyping. We also compared our genome-wide estimate of heritability between IOP and BP to an estimate based solely on direct measures of these traits in the Erasmus Rucphen Family (ERF; n=2519) study using Sequential Oligogenic Linkage Analysis Routines (SOLAR). LD score regression revealed high genetic correlation between IOP and POAG (48.5%, P=2.1 × 10 -5 ); however, genetic correlation between IOP and diastolic BP (P=0.86) and between diastolic BP and POAG (P=0.42) were negligible. Using SOLAR in the ERF study, we confirmed the minimal heritability between IOP and diastolic BP (P=0.63). Overall, IOP shares genetic basis with POAG, whereas BP has limited shared genetic correlation with IOP or POAG.

  10. Flash vaporization during earthquakes evidenced by gold deposits

    NASA Astrophysics Data System (ADS)

    Weatherley, Dion K.; Henley, Richard W.

    2013-04-01

    Much of the world's known gold has been derived from arrays of quartz veins. The veins formed during periods of mountain building that occurred as long as 3 billion years ago, and were deposited by very large volumes of water that flowed along deep, seismically active faults. The veins formed under fluctuating pressures during earthquakes, but the magnitude of the pressure fluctuations and their influence on mineral deposition is not known. Here we use a simple thermo-mechanical piston model to calculate the drop in fluid pressure experienced by a fluid-filled fault cavity during an earthquake. The geometry of the model is constrained using measurements of typical fault jogs, such as those preserved in the Revenge gold deposit in Western Australia, and other gold deposits around the world. We find that cavity expansion generates extreme reductions in pressure that cause the fluid that is trapped in the jog to expand to a very low-density vapour. Such flash vaporization of the fluid results in the rapid co-deposition of silica with a range of trace elements to form gold-enriched quartz veins. Flash vaporization continues as more fluid flows towards the newly expanded cavity, until the pressure in the cavity eventually recovers to ambient conditions. Multiple earthquakes progressively build economic-grade gold deposits.

  11. Continuous growth of single-wall carbon nanotubes using chemical vapor deposition

    DOEpatents

    Grigorian, Leonid [Raymond, OH; Hornyak, Louis [Evergreen, CO; Dillon, Anne C [Boulder, CO; Heben, Michael J [Denver, CO

    2008-10-07

    The invention relates to a chemical vapor deposition process for the continuous growth of a carbon single-wall nanotube where a carbon-containing gas composition is contacted with a porous membrane and decomposed in the presence of a catalyst to grow single-wall carbon nanotube material. A pressure differential exists across the porous membrane such that the pressure on one side of the membrane is less than that on the other side of the membrane. The single-wall carbon nanotube growth may occur predominately on the low-pressure side of the membrane or, in a different embodiment of the invention, may occur predominately in between the catalyst and the membrane. The invention also relates to an apparatus used with the carbon vapor deposition process.

  12. Continuous growth of single-wall carbon nanotubes using chemical vapor deposition

    DOEpatents

    Grigorian, Leonid; Hornyak, Louis; Dillon, Anne C; Heben, Michael J

    2014-09-23

    The invention relates to a chemical vapor deposition process for the continuous growth of a carbon single-wall nanotube where a carbon-containing gas composition is contacted with a porous membrane and decomposed in the presence of a catalyst to grow single-wall carbon nanotube material. A pressure differential exists across the porous membrane such that the pressure on one side of the membrane is less than that on the other side of the membrane. The single-wall carbon nanotube growth may occur predominately on the low-pressure side of the membrane or, in a different embodiment of the invention, may occur predominately in between the catalyst and the membrane. The invention also relates to an apparatus used with the carbon vapor deposition process.

  13. Pressure loss modulus correlation for Delta p across uniformly distributed-loss devices

    NASA Technical Reports Server (NTRS)

    Nunz, Gregory J.

    1994-01-01

    A dimensionless group, called a pressure loss modulus (N(sub PL)), is introduced that, in conjunction with an appropriately defined Reynolds number, is of considerable engineering utility in correlating steady-state Delta p vs flow calibration data and subsequently as a predictor, using the same or a different fluid, in uniformly distributed pressure loss devices. It is particularly useful under operation in the transition regime. Applications of this simple bivariate correlation to three diverse devices of particular interest for small liquid rocket engine fluid systems are discussed: large L/D capillary tube restrictors, packed granular catalyst beds, and stacked vortex-loss disk restrictors.

  14. Detection of water vapor on Jupiter

    NASA Technical Reports Server (NTRS)

    Larson, H. P.; Fink, U.; Treffers, R.; Gautier, T. N., III

    1975-01-01

    High-altitude (12.4 km) spectroscopic observations of Jupiter at 5 microns from the NASA 91.5 cm airborne infrared telescope have revealed 14 absorptions assigned to the rotation-vibration spectrum of water vapor. Preliminary analysis indicates a mixing ratio about 1 millionth for the vapor phase of water. Estimates of temperature (greater than about 300 K) and pressure (less than 20 atm) suggest observation of water deep in Jupiter's hot spots responsible for its 5 micron flux. Model-atmosphere calculations based on radiative-transfer theory may change these initial estimates and provide a better physical picture of Jupiter's atmosphere below the visible cloud tops.

  15. Molecular dynamics study of the vaporization of an ionic drop.

    PubMed

    Galamba, N

    2010-09-28

    The melting of a microcrystal in vacuum and subsequent vaporization of a drop of NaCl were studied through molecular dynamics simulations with the Born-Mayer-Huggins-Tosi-Fumi rigid-ion effective potential. The vaporization was studied for a single isochor at increasing temperatures until the drop completely vaporized, and gaseous NaCl formed. Examination of the vapor composition shows that the vapor of the ionic drop and gaseous NaCl are composed of neutral species, the most abundant of which, ranging from simple NaCl monomers (ion pairs) to nonlinear polymers, (Na(n)Cl(n))(n=2-4). The enthalpies of sublimation, vaporization, and dissociation of the different vapor species are found to be in reasonable agreement with available experimental data. The decrease of the enthalpy of vaporization of the vapor species, with the radius of the drop decrease, accounts for a larger fraction of trimers and tetramers than that inferred from experiments. Further, the rhombic dimer is significantly more abundant than its linear isomer although the latter increases with the temperature. The present results suggest that both trimers and linear dimers may be important to explain the vapor pressure of molten NaCl at temperatures above 1500 K.

  16. Vaporization inside a mini microfin tube: experimental results and modeling

    NASA Astrophysics Data System (ADS)

    Diani, A.; Rossetto, L.

    2015-11-01

    This paper proposes a comparison among the common R134a and the extremely low GWP refrigerant R1234yf during vaporization inside a mini microfin tube. This microfin tube has an internal diameter of 2.4 mm, it has 40 fins, with a fin height of 0.12 mm. Due to the high heat transfer coefficients shown by this tube, this technology can lead to a refrigerant charge reduction. Tests were run in the Heat Transfer in Micro Geometries Lab of the Dipartimento di Ingegneria Industriale of the Università di Padova. Mass velocities range between 375 and 940 kg m-2 s-1, heat fluxes from 10 to 50 kW m-2, vapour qualities from 0.10 to 0.99, at a saturation temperature of 30°C. The comparison among the two fluids is proposed at the same operating conditions, in order to highlight the heat transfer and pressure drop differences among the two refrigerants. In addition, two correlations are proposed to estimate the heat transfer coefficient and frictional pressure drop during refrigerant flow boiling inside mini microfin tubes. These correlations well predict the experimental values, and thus they can be used as a useful tool to design evaporators based on these mini microfin tubes.

  17. Two-phase heat transfer and pressure drop of LNG during saturated flow boiling in a horizontal tube

    NASA Astrophysics Data System (ADS)

    Chen, Dongsheng; Shi, Yumei

    2013-12-01

    Two-phase heat transfer and pressure drop of LNG (liquefied natural gas) have been measured in a horizontal smooth tube with an inner diameter of 8 mm. The experiments were conducted at inlet pressures from 0.3 to 0.7 MPa with a heat flux of 8-36 kW m-2, and mass flux of 49.2-201.8 kg m-2 s-1. The effect of vapor quality, inlet pressure, heat flux and mass flux on the heat transfer characteristic are discussed. The comparisons of the experimental data with the predicted value by existing correlations are analyzed. Zou et al. (2010) correlation shows the best accuracy with 24.1% RMS deviation among them. Moreover four frictional pressure drop methods are also chosen to compare with the experimental database.

  18. Physics of lithium bromide (LiBr) solution dewatering through vapor venting membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isfahani, RN; Fazeli, A; Bigham, S

    2014-01-01

    The physics of water desorption from a lithium bromide (LiBr) solution flow through an array of microchannels capped by a porous membrane is studied. The membrane allows the vapor to exit the flow and retains the liquid. Effects of different parameters such as wall temperature, solution and vapor pressures, and solution mass flux on the desorption rate were studied. Two different mechanisms of desorption are analyzed. These mechanisms consisted of: (1) direct diffusion of water molecules out of the solution and their subsequent flow through the membrane and (2) formation of water vapor bubbles within the solution and their ventingmore » through the membrane. Direct diffusion was the dominant desorption mode at low surface temperatures and its magnitude was directly related to the vapor pressure, the solution concentration, and the heated wall temperature. Desorption at the boiling regime was predominantly controlled by the solution flow pressure and mass flux. Microscale visualization studies suggested that at a critical mass flux, some bubbles are carried out of the desorber through the solution microchannels rather than being vented through the membrane. Overall, an order of magnitude higher desorption rate compare to a previous study on a membrane-based desorber was achieved. Published by Elsevier Ltd.« less

  19. A new technique for monitoring the water vapor in the atmosphere

    NASA Technical Reports Server (NTRS)

    Black, H. D.; Eisner, A.

    1984-01-01

    In the correction of satellite Doppler data for tropospheric effects the precipitable water vapor (PWV) is inferred at the tracking site. The technique depends on: (1) an ephemeris for the satellite; (2) an analytic model for the refraction range effect that is good to a few centimeters; (3) Doppler data with noise level below 10 centimeters; and (4) a surface pressure/temperature measurement at the tracking site. The PWV is a by product of the computation necessary to correct the Doppler data for tropospheric effects. A formulation of the refraction integral minimizes the necessity for explicit water vapor, temperature and pressure profiles.

  20. Vapor Flow Patterns During a Start-Up Transient in Heat Pipes

    NASA Technical Reports Server (NTRS)

    Issacci, F.; Ghoniem, N, M.; Catton, I.

    1996-01-01

    The vapor flow patterns in heat pipes are examined during the start-up transient phase. The vapor core is modelled as a channel flow using a two dimensional compressible flow model. A nonlinear filtering technique is used as a post process to eliminate the non-physical oscillations of the flow variables. For high-input heat flux, multiple shock reflections are observed in the evaporation region. The reflections cause a reverse flow in the evaporation and circulations in the adiabatic region. Furthermore, each shock reflection causes a significant increase in the local pressure and a large pressure drop along the heat pipe.

  1. Unified Application of Vapor Screen Flow Visualization and Pressure Sensitive Paint Measurement Techniques to Vortex- and Shock Wave-Dominated Flow Fields

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2010-01-01

    Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack. The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).

  2. A search for chemical laser action in low pressure metal vapor flames. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Zwillenberg, M. L.

    1975-01-01

    Optical emissions were studied from low pressure (approximately 1 torr) dilute diffusion flames of Ca and Mg vapor with O2, N2O and mixtures of CCl4 and O2. The Ca flames with O2 and N2O revealed high vibrational excitation of the product CaO molecule (up to v=30). The flames with CCl4 revealed extreme nonequilibrium metal atom electronic excitation, up to the metal atom ionization limit (6.1 eV for Ca, 7.6 eV for Mg). The metal atom excited electronic state populations did not follow a Boltzmann distribution, but the excitation rates ('pumping rate') were found to obey an Arrhenius-type expression, with the electronic excitation energy playing the role of activation energy and a temperature of about 5000 K for triplet excited states and 2500 K for singlets (vs. approximately 500 K translational temperature).

  3. Reid Vapor Pressure Regulation of Gasoline 1987-1990

    DTIC Science & Technology

    1990-09-30

    explosion in cars fueled with high versus low volatility fuel. Gasoline vapors are only explosive if they are mixed with air. Any mixture with more...sufficiently to make the tank explosive . EPA refuted this argument, citing the safe track record of 9.0 psi fuel use in California. Another telling factor in...3.0 ..0 a.0 [ daho 9.0 9.0 9.0 .0 .0 Wyoming 3.0 .0 3.0 a3.0 .O Washington 9.0 9.0 9.0 .0 3.0 Maryland .0 7.8 7.8 .8 ?.8 District of Co!mbia ?.J 7.3

  4. Effect of water vapor on fatigue crack growth in 7475-T651 aluminum alloy plate. [for aerospace applications

    NASA Technical Reports Server (NTRS)

    Dicus, D. L.

    1984-01-01

    The effects of water vapor on fatigue crack growth in 7475-T651 aluminum alloy plate at frequencies of 1 Hz and 10 Hz were investigated. Twenty-five mm thick compact specimens were subjected to constant amplitude fatigue testing at a load ratio of 0.2. Fatigue crack growth rates were calculated from effective crack lengths determined using a compliance method. Tests were conducted in hard vacuum and at water vapor partial pressures ranging from 94 Pa to 3.8 kPa. Fatigue crack growth rates were frequency insensitive under all environment conditions tested. For constant stress intensity factor ranges crack growth rate transitions occurred at low and high water vapor pressures. Crack growth rates at intermediate pressures were relatively constant and showed reasonable agreement with published data for two Al-Cu-Mg alloys. The existence of two crack growth rate transitions suggests either a change in rate controlling kinetics or a change in corrosion fatigue mechanism as a function of water vapor pressure. Reduced residual deformation and transverse cracking specimens tested in water vapor versus vacuum may be evidence of embrittlement within the plastic zone due to environmental interaction.

  5. Referred Air Method 25E: Determination of a Vapor Phase Organic Concentration in Waste Samples

    EPA Pesticide Factsheets

    This method is applicable for determining the vapor pressure of waste. The headspace vapor of the sample is analyzed for carbon content by a headspace analyzer, which uses a flame ionization detector (FID).

  6. Measurement of Temperature Dependence for Vapor Pressures of Seventeen OH-PBDEs and Eleven MeO-PBDEs by Gas Chromatographic Method.

    PubMed

    Zhao, Hongxia; Xie, Qing; Chen, Xiuying; Qu, Baocheng; Jiang, Jingqiu

    2016-05-01

    Hydroxylated polybromodiphenyl ethers (OH-PBDEs) and methoxylated polybrominated diphenyl ethers (MeO-PBDEs) are emerging organic pollutants. Supercooled liquid vapor pressures (p L) and enthalpies of vaporization (∆vap H) for seventeen OH-PBDEs and eleven MeO-PBDEs were determined by a gas chromatographic technique. p L at 298 K ranged from 0.0173 Pa for 2'-OH-BDE3 to 2.32 × 10(-7) Pa for 3'-OH-BDE154 and they are approximately one order of magnitude smaller than those determined for the counterpart polybrominated diphenyl ethers (PBDEs). ∆vap H was in the range of 76-121 kJ/mol. The temperature dependence of p L was measured by fitting the experimental data with the log(p L/Pa) = a/(T/K) + b equation, and this corresponds to a 50-265 times higher p L value at 0 versus 30°C. Using fundamental quantum chemical descriptors, two quantitative structure-property relationship models (Q cum > 0.935) were developed to estimate p L at any temperature for the additional OH- and MeO-PBDE congeners.

  7. Bionanomaterials and Bioinspired Nanostructures for Selective Vapor Sensing

    DTIC Science & Technology

    2013-04-03

    with the current baseline shown with yellow points. DNA sequence: 5′ GAG TCT GTG GAG GAG GTA GTC 3′. Green and black arrows in panels a–c show the...SWCNT transducer to TNT (red circles), RDX ( gray triangles), and HPT (black squares). Blue arrows in panels b and c show introduction of analyte vapors...increasing partial pressure ranging from 0 to 0.07 P/P0. Vapor concentrations are 0 ( gray dashed lines), 0.02 (red curves), 0.04 ( gold curves), and 0.07

  8. The application of the high-speed photography in the experiments of boiling liquid expanding vapor explosions

    NASA Astrophysics Data System (ADS)

    Chen, Sining; Sun, Jinhua; Chen, Dongliang

    2007-01-01

    The liquefied-petroleum gas tank in some failure situations may release its contents, and then a series of hazards with different degrees of severity may occur. The most dangerous accident is the boiling liquid expanding vapor explosion (BLEVE). In this paper, a small-scale experiment was established to experimentally investigate the possible processes that could lead to a BLEVE. As there is some danger in using LPG in the experiments, water was used as the test fluid. The change of pressure and temperature was measured during the experiment. The ejection of the vapor and the sequent two-phase flow were recorded by a high-speed video camera. It was observed that two pressure peaks result after the pressure is released. The vapor was first ejected at a high speed; there was a sudden pressure drop which made the liquid superheated. The superheated liquid then boiled violently causing the liquid contents to swell, and also, the vapor pressure in the tank increased rapidly. The second pressure peak was possibly due to the swell of this two-phase flow which was likely to violently impact the wall of the tank with high speed. The whole evolution of the two-phase flow was recorded through photos captured by the high-speed video camera, and the "two step" BLEVE process was confirmed.

  9. Vapor-liquid phase equilibria of water modelled by a Kim-Gordon potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maerzke, Katie A.; McGrath, M. J.; Kuo, I-F W.

    2009-09-07

    Gibbs ensemble Monte Carlo simulations were carried out to investigate the properties of a frozen-electron-density (or Kim-Gordon, KG) model of water along the vapor-liquid coexistence curve. Because of its theoretical basis, such a KG model provides for seamless coupling to Kohn-Sham density functional theory for use in mixed quantum mechanics/molecular mechanics (QM/MM) implementations. The Gibbs ensemble simulations indicate rather limited transferability of such a simple KG model to other state points. Specifically, a KG model that was parameterized by Barker and Sprik to the properties of liquid water at 300 K, yields saturated vapor pressures and a critical temperature thatmore » are significantly under- and overestimated, respectively. We present a comprehensive density functional theory study to asses the accuracy of two popular exchange correlation functionals on the structure and density of liquid water at ambient conditions This work was supported by the US Department of Energy Office of Basic Energy Science Chemical Sciences Program. Battelle operates Pacific Northwest National Laboratory for the US Department of Energy.« less

  10. Relationship between changes in the upper and lower tropospheric water vapor: A revisit

    NASA Astrophysics Data System (ADS)

    Yang, M.; Sun, D. Z.; Zhang, G. J.

    2017-12-01

    Upper tropospheric water vapor response to enhanced greenhouse gas forcing is as important as the lower tropospheric water vapor response in determining climate sensitivity. Early studies using older versions of climate models have suggested that the upper- and lower-troposphere water vapor changes are more strongly coupled in the climate models than in the observations. Here we reexamine this issue using a state-of-the-art climate model—the NCAR community model CAM5. Specifically, we have calculated the correlations between interannual variations of specific humidity in all levels of the troposphere with that at the surface in CAM5 and in the observations (as represented by the updated ERA-Interim and NCEP reanalysis). It is found that the previously noted biases in how strongly upper tropospheric water vapor and lower troposphere water vapor are linked still exist in CAM5—the change in the tropical averaged upper tropospheric water vapor is more strongly correlated with the change in the surface. However, this bias disappears in the averaged correlation obtained by averaging the point-by-point correlations over the tropics. The spatial pattern of the point-by-point correlations reveals that the better agreement between the model and the observations is related to the opposite model biases in different regions: the correlation is weaker in the model in the western Pacific, but stronger in the central and eastern Pacific. Further analysis of precipitation fields suggests that the weaker (stronger) coupling between tropospheric water vapor and surface moisture over western (central-eastern) Pacific in model is related to weaker (stronger) simulated convective activities in these regions. More specifically, during El Nino, the model has excessive deep convection in the central Pacific, but too littler deep convection in western Pacific. Implications of the results are discussed in the context of climate change as well as in the context of how to improve the model

  11. Frequency response of a vaporization process to distorted acoustic disturbances

    NASA Technical Reports Server (NTRS)

    Heidmann, M. F.

    1972-01-01

    The open-loop response properties expressed as the mass vaporized in phase and out of phase with the pressure oscillations were numerically evaluated for a vaporizing n-heptane droplet. The evaluation includes the frequency dependence introduced by periodic oscillation in droplet mass and temperature. A given response was achieved over a much broader range of frequency with harmonically distorted disturbances than with sinusoidal disturbances. The results infer that distortion increases the probability of incurring spontaneous and triggered instability in any rocket engine combustor by broadening the frequency range over which the vaporization process can support an instability.

  12. Vapor Pressure and Predicted Stability of American Contact Dermatitis Society Core Allergens

    PubMed Central

    Jou, Paul C.; Siegel, Paul D.; Warshaw, Erin M.

    2018-01-01

    Background Accurate patch testing is reliant on proper preparation of patch test allergens. The stability of patch test allergens is dependent on several factors including vapor pressure (VP). Objective This investigation reviews the VP of American Contact Dermatitis Society Core Allergens and compares stability predictions based on VP with those established through clinical testing. Methods Standard references were accessed for determining VP in millimeters of mercury and associated temperature in degrees celsius. If multiple values were listed, VP at temperatures that most approximate indoor storage conditions (20°C and 25°C) were chosen. For mixes, the individual component with the highest VP was chosen as the overall VP, assuming that the most volatile substance would evaporate first. Antigens were grouped into low (≤0.001 mm Hg), moderate (<1 to >0.001 mm Hg), and high (≥1 mm Hg) volatility using arbitrary cutoff values. Conclusions This review is consistent with previously reported data on formaldehyde, acrylates, and fragrance material instability. Given lack of testing data, VP can be useful in predicting patch test compound stability. Measures such as air-tight multidose reagent containers, sealed single-application dispensers, preparation of patches immediately before application, and storage at lower temperatures may remedy some of these issues. PMID:27427821

  13. Complexity of intracranial pressure correlates with outcome after traumatic brain injury

    PubMed Central

    Lu, Cheng-Wei; Czosnyka, Marek; Shieh, Jiann-Shing; Smielewska, Anna; Pickard, John D.

    2012-01-01

    This study applied multiscale entropy analysis to investigate the correlation between the complexity of intracranial pressure waveform and outcome after traumatic brain injury. Intracranial pressure and arterial blood pressure waveforms were low-pass filtered to remove the respiratory and pulse components and then processed using a multiscale entropy algorithm to produce a complexity index. We identified significant differences across groups classified by the Glasgow Outcome Scale in intracranial pressure, pressure-reactivity index and complexity index of intracranial pressure (P < 0.0001; P = 0.001; P < 0.0001, respectively). Outcome was dichotomized as survival/death and also as favourable/unfavourable. The complexity index of intracranial pressure achieved the strongest statistical significance (F = 28.7; P < 0.0001 and F = 17.21; P < 0.0001, respectively) and was identified as a significant independent predictor of mortality and favourable outcome in a multivariable logistic regression model (P < 0.0001). The results of this study suggest that complexity of intracranial pressure assessed by multiscale entropy was significantly associated with outcome in patients with brain injury. PMID:22734128

  14. On testing models for the pressure-strain correlation of turbulence using direct simulations

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.; Gatski, Thomas B.; Sarkar, Sutanu

    1992-01-01

    Direct simulations of homogeneous turbulence have, in recent years, come into widespread use for the evaluation of models for the pressure-strain correlation of turbulence. While work in this area has been beneficial, the increasingly common practice of testing the slow and rapid parts of these models separately in uniformly strained turbulent flows is shown in this paper to be unsound. For such flows, the decomposition of models for the total pressure-strain correlation into slow and rapid parts is ambiguous. Consequently, when tested in this manner, misleading conclusions can be drawn about the performance of pressure-strain models. This point is amplified by illustrative calculations of homogeneous shear flow where other pitfalls in the evaluation of models are also uncovered. More meaningful measures for testing the performance of pressure-strain models in uniformly strained turbulent flows are proposed and the implications for turbulence modeling are discussed.

  15. Acoustic droplet vaporization is initiated by superharmonic focusing.

    PubMed

    Shpak, Oleksandr; Verweij, Martin; Vos, Hendrik J; de Jong, Nico; Lohse, Detlef; Versluis, Michel

    2014-02-04

    Acoustically sensitive emulsion droplets composed of a liquid perfluorocarbon have the potential to be a highly efficient system for local drug delivery, embolotherapy, or for tumor imaging. The physical mechanisms underlying the acoustic activation of these phase-change emulsions into a bubbly dispersion, termed acoustic droplet vaporization, have not been well understood. The droplets have a very high activation threshold; its frequency dependence does not comply with homogeneous nucleation theory and localized nucleation spots have been observed. Here we show that acoustic droplet vaporization is initiated by a combination of two phenomena: highly nonlinear distortion of the acoustic wave before it hits the droplet and focusing of the distorted wave by the droplet itself. At high excitation pressures, nonlinear distortion causes significant superharmonics with wavelengths of the order of the droplet size. These superharmonics strongly contribute to the focusing effect; therefore, the proposed mechanism also explains the observed pressure thresholding effect. Our interpretation is validated with experimental data captured with an ultrahigh-speed camera on the positions of the nucleation spots, where we find excellent agreement with the theoretical prediction. Moreover, the presented mechanism explains the hitherto counterintuitive dependence of the nucleation threshold on the ultrasound frequency. The physical insight allows for the optimization of acoustic droplet vaporization for therapeutic applications, in particular with respect to the acoustic pressures required for activation, thereby minimizing the negative bioeffects associated with the use of high-intensity ultrasound.

  16. Acoustic droplet vaporization is initiated by superharmonic focusing

    PubMed Central

    Shpak, Oleksandr; Verweij, Martin; Vos, Hendrik J.; de Jong, Nico; Lohse, Detlef; Versluis, Michel

    2014-01-01

    Acoustically sensitive emulsion droplets composed of a liquid perfluorocarbon have the potential to be a highly efficient system for local drug delivery, embolotherapy, or for tumor imaging. The physical mechanisms underlying the acoustic activation of these phase-change emulsions into a bubbly dispersion, termed acoustic droplet vaporization, have not been well understood. The droplets have a very high activation threshold; its frequency dependence does not comply with homogeneous nucleation theory and localized nucleation spots have been observed. Here we show that acoustic droplet vaporization is initiated by a combination of two phenomena: highly nonlinear distortion of the acoustic wave before it hits the droplet and focusing of the distorted wave by the droplet itself. At high excitation pressures, nonlinear distortion causes significant superharmonics with wavelengths of the order of the droplet size. These superharmonics strongly contribute to the focusing effect; therefore, the proposed mechanism also explains the observed pressure thresholding effect. Our interpretation is validated with experimental data captured with an ultrahigh-speed camera on the positions of the nucleation spots, where we find excellent agreement with the theoretical prediction. Moreover, the presented mechanism explains the hitherto counterintuitive dependence of the nucleation threshold on the ultrasound frequency. The physical insight allows for the optimization of acoustic droplet vaporization for therapeutic applications, in particular with respect to the acoustic pressures required for activation, thereby minimizing the negative bioeffects associated with the use of high-intensity ultrasound. PMID:24449879

  17. Does footprint depth correlate with foot motion and pressure?

    PubMed Central

    Bates, K. T.; Savage, R.; Pataky, T. C.; Morse, S. A.; Webster, E.; Falkingham, P. L.; Ren, L.; Qian, Z.; Collins, D.; Bennett, M. R.; McClymont, J.; Crompton, R. H.

    2013-01-01

    Footprints are the most direct source of evidence about locomotor biomechanics in extinct vertebrates. One of the principal suppositions underpinning biomechanical inferences is that footprint geometry correlates with dynamic foot pressure, which, in turn, is linked with overall limb motion of the trackmaker. In this study, we perform the first quantitative test of this long-standing assumption, using topological statistical analysis of plantar pressures and experimental and computer-simulated footprints. In computer-simulated footprints, the relative distribution of depth differed from the distribution of both peak and pressure impulse in all simulations. Analysis of footprint samples with common loading inputs and similar depths reveals that only shallow footprints lack significant topological differences between depth and pressure distributions. Topological comparison of plantar pressures and experimental beach footprints demonstrates that geometry is highly dependent on overall print depth; deeper footprints are characterized by greater relative forefoot, and particularly toe, depth than shallow footprints. The highlighted difference between ‘shallow’ and ‘deep’ footprints clearly emphasizes the need to understand variation in foot mechanics across different degrees of substrate compliance. Overall, our results indicate that extreme caution is required when applying the ‘depth equals pressure’ paradigm to hominin footprints, and by extension, those of other extant and extinct tetrapods. PMID:23516064

  18. Temperature and pressure correlation for volume of gas hydrates with crystal structures sI and sII

    NASA Astrophysics Data System (ADS)

    Vinš, Václav; Jäger, Andreas; Hielscher, Sebastian; Span, Roland; Hrubý, Jan; Breitkopf, Cornelia

    The temperature and pressure correlations for the volume of gas hydrates forming crystal structures sI and sII developed in previous study [Fluid Phase Equilib. 427 (2016) 268-281], focused on the modeling of pure gas hydrates relevant in CCS (carbon capture and storage), were revised and modified for the modeling of mixed hydrates in this study. A universal reference state at temperature of 273.15 K and pressure of 1 Pa is used in the new correlation. Coefficients for the thermal expansion together with the reference lattice parameter were simultaneously correlated to both the temperature data and the pressure data for the lattice parameter. A two-stage Levenberg Marquardt algorithm was employed for the parameter optimization. The pressure dependence described in terms of the bulk modulus remained unchanged compared to the original study. A constant value for the bulk modulus B0 = 10 GPa was employed for all selected hydrate formers. The new correlation is in good agreement with the experimental data over wide temperature and pressure ranges from 0 K to 293 K and from 0 to 2000 MPa, respectively. Compared to the original correlation used for the modeling of pure gas hydrates the new correlation provides significantly better agreement with the experimental data for sI hydrates. The results of the new correlation are comparable to the results of the old correlation in case of sII hydrates. In addition, the new correlation is suitable for modeling of mixed hydrates.

  19. Separation of Solid Stress From Interstitial Fluid Pressure in Pancreas Cancer Correlates With Collagen Area Fraction.

    PubMed

    Nieskoski, Michael D; Marra, Kayla; Gunn, Jason R; Kanick, Stephen C; Doyley, Marvin M; Hasan, Tayyaba; Pereira, Stephen P; Stuart Trembly, B; Pogue, Brian W

    2017-06-01

    Elevated total tissue pressure (TTP) in pancreatic adenocarcinoma is often associated with stress applied by cellular proliferation and hydrated hyaluronic acid osmotic swelling; however, the causal roles of collagen in total tissue pressure have yet to be clearly measured. This study illustrates one direct correlation between total tissue pressure and increased deposition of collagen within the tissue matrix. This observation comes from a new modification to a conventional piezoelectric pressure catheter, used to independently separate and quantify total tissue pressure, solid stress (SS), and interstitial fluid pressure (IFP) within the same tumor location, thereby clarifying the relationship between these parameters. Additionally, total tissue pressure shows a direct correlation with verteporfin uptake, demonstrating the impediment of systemically delivered molecules with increased tissue hypertension.

  20. VAPOR PRESSURES, LIQUID MOLAR VOLUMES, VAPOR NON- IDEALITIES, AND CRITICAL PROPERTIES OF SOME FLUORINATED ETHERS: CF3OCF2OCF3, CF3OCF2 CF2H, c-CF2CF2CF2O, CF3OCF2H, AND CF3OCH3; AND OF CCl3F AND CF2ClH

    EPA Science Inventory

    Vapor pressures, compressibilities, expansivities, and molar volumes of the liquid phase have been measured between room temperature and the critical temperature for a series of fluorinated ethers: CF3OCF2OCF3, CF3OCF2CF2H, c-CF2CF2CF2O, CF3OCF2H, and CF3OCH3. Vapor-phase non-ide...

  1. Patterns of correlation between vehicle occupant seat pressure and anthropometry.

    PubMed

    Paul, Gunther; Daniell, Nathan; Fraysse, François

    2012-01-01

    Seat pressure is known as a major factor of seat comfort in vehicles. In passenger vehicles, there is lacking research into the seat comfort of rear seat occupants. As accurate seat pressure measurement requires significant effort, simulation of seat pressure is evolving as a preferred method. However, analytic methods are based on complex finite element modeling and therefore are time consuming and involve high investment. Based on accurate anthropometric measurements of 64 male subjects and outboard rear seat pressure measurements in three different passenger vehicles, this study investigates if a set of parameters derived from seat pressure mapping are sensitive enough to differentiate between different seats and whether they correlate with anthropometry in linear models. In addition to the pressure map analysis, H-Points were measured with a coordinate measurement system based on palpated body landmarks and the range of H-Point locations in the three seats is provided. It was found that for the cushion, cushion contact area and cushion front area/force could be modeled by subject anthropometry, while only seatback contact area could be modeled based on anthropometry for all three vehicles. Major differences were found between the vehicles for other parameters.

  2. Preparation and characterization of epitaxial MgO thin film by atmospheric-pressure metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zeng, J. M.; Wang, H.; Shang, S. X.; Wang, Z.; Wang, M.

    1996-12-01

    Magnesium oxide (MgO) thin films have been prepared on Si(100), {SiO2(100) }/{Si} and {Pt(111) }/{Si} substrates by atmospheric-pressure metalorganic chemical vapor deposition (AP-MOCVD) for the first time. The relationship between the temperature of substrates ( Ts) and crystallographic orientations was also investigated. Magnesium acetylacetonate [Mg(CH 2COCH 2COCH 3) 2] was used as the metalorganic source. The relatively low temperature of substrates is about 480°C and the MgO thin films obtained were uniform, dense and well-ordered single crystal. X-ray diffraction experiments provided evidence that the MgO thin films on Si(100) ( Ts ≈ 400-680°C), {SiO2}/{Si} and {Pt}/{Si} were fully textured with (100) orientation. The deliquescent character of MgO thin films was also studied.

  3. A model for jet-noise analysis using pressure-gradient correlations on an imaginary cone

    NASA Technical Reports Server (NTRS)

    Norum, T. D.

    1974-01-01

    The technique for determining the near and far acoustic field of a jet through measurements of pressure-gradient correlations on an imaginary conical surface surrounding the jet is discussed. The necessary analytical developments are presented, and their feasibility is checked by using a point source as the sound generator. The distribution of the apparent sources on the cone, equivalent to the point source, is determined in terms of the pressure-gradient correlations.

  4. Methodology for Assessing a Boiling Liquid Expanding Vapor Explosion (BLEVE) Blast Potential

    NASA Technical Reports Server (NTRS)

    Keddy, Chris P.

    2012-01-01

    Composite Vessels are now used to store a variety of fluids or gases including cryogenic fluids under pressure. Sudden failure of these vessels under certain conditions can lead to a potentially catastrophic vapor expansion if thermal control is not maintained prior to failure. This can lead to a "Boiling Liquid Expanding Vapor Explosion" or BLEVE.

  5. Low-Pressure Vapor-Assisted Solution Process for Thiocyanate-Based Pseudohalide Perovskite Solar Cells.

    PubMed

    Chiang, Yu-Hsien; Cheng, Hsin-Min; Li, Ming-Hsien; Guo, Tzung-Fang; Chen, Peter

    2016-09-22

    In this report, we fabricated thiocyanate-based perovskite solar cells with low-pressure vapor-assisted solution process (LP-VASP) method. Photovoltaic performances are evaluated with detailed materials characterizations. Scanning electron microscopy images show that SCN-based perovskite films fabricated using LP-VASP have long-range uniform morphology and large grain sizes up to 1 μm. The XRD and Raman spectra were employed to observe the characteristic peaks for both SCN-based and pure CH 3 NH 3 PbI 3 perovskite. We observed that the Pb(SCN) 2 film transformed to PbI 2 before the formation of perovskite film. X-ray photoemission spectra (XPS) show that only a small amount of S remained in the film. Using LP-VASP method, we fabricated SCN-based perovskite solar cells and achieved a power conversion efficiency of 12.72 %. It is worth noting that the price of Pb(SCN) 2 is only 4 % of PbI 2 . These results demonstrate that pseudo-halide perovskites are promising materials for fabricating low-cost perovskite solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Risk factors correlated with plantar pressure in Chinese patients with type 2 diabetes.

    PubMed

    Qiu, Xuan; Tian, De-Hu; Han, Chang-Ling; Chen, Wei; Wang, Zhan-Jian; Mu, Zhen-Yun; Li, Xu; Liu, Kuan-Zhi

    2013-12-01

    Plantar pressure is a key factor for predicting ulceration in the foot of a diabetes patient. We recruited a group of 100 Chinese patients with type 2 diabetes and an age-, sex-, weight-, and height-matched group of 100 Chinese subjects without diabetes. We obtained plantar pressure data using a Footscan(®) gait system (RsScan International, Olen, Belgium) when the subjects with and without diabetes walked barefoot across a sensor platform. We recorded the maximum force, maximum pressure, impulse, pressure-time integral, and loading rate from 10 regions of the foot. We collected the data of 11 history-based variables, 10 anthropometric variables, and three metabolic variables regarding the clinical characteristics of the diabetes patients. Weight was identified as a determining factor for high plantar pressure. Height, the Neuropathy Symptom Score (NSS), and ankle-brachial index (ABI) were correlated positively with plantar pressure measurements, respectively. The sex, history of ulcer and callus, intima-media membrane of the lower limb blood vessels, and fasting blood glucose (FBG) could also explain a portion of the variability of the plantar pressure measurements. However, the correlations were low or weak. High plantar pressure in diabetes patients could be predicted, in part, based on weight, height, NSS, ABI, sex, history of ulcer and callus, intima-media membrane of the lower limb blood vessels, and FBG. Therefore, interventions should be taken specifically before high plantar pressure emerges.

  7. Heat Treatments of ZnSe Starting Materials for Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Palosz, W.; Feth, S.; Lehoczky, S. L.

    1998-01-01

    The effect of different heat treatments on stoichiometry and residual gas pressure in ZnSe physical vapor transport system was investigated. The dependence of the amount and composition of the residual gas on various heat treatment procedures is reported. Heat treatment of ZnSe starting materials by baking under the condition of dynamic vacuum to adjust its stoichiometry was performed and the effectiveness of the treatment was confirmed by the measurements of the partial pressure of Se2, P(sub Se2), in equilibrium with the heat treated samples. Optimum heat treatment procedures on the ZnSe starting material for the physical vapor transport process are discussed and verified experimentally.

  8. Heat Treatments of ZnSe Starting Materials for Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Palosz, W.; Feth, S.; Lehoczky, S. L.

    1997-01-01

    The effect of different heat treatments on stoichiometry and residual gas pressure in ZnSe physical vapor transport system was investigated. The dependence of the amount and composition of the residual gas on various heat treatment procedures is reported. Heat treatment of ZnSe starting materials by baking under the condition of dynamic vacuum to adjust its stoichiometry was performed and the effectiveness of the treatment was confirmed by the measurements of the partial pressure of Se2, P(sub Se2), in equilibrium with the heat treated samples. Optimum heat treatment procedures on the ZnSe starting material for the physical vapor transport process are discussed and verified experimentally.

  9. The effect of water vapor on fatigue crack Growth in 7475-t651 aluminum alloy plate. [for aerospace applications

    NASA Technical Reports Server (NTRS)

    Dicus, D. L.

    1982-01-01

    The effects of water vapor on fatigue crack growth in 7475-T651 aluminum alloy plate at frequencies of 1 Hz and 10 Hz were investigated. Twenty-five mm thick compact specimens were subjected to constant amplitude fatigue testing at a load ratio of 0.2. Fatigue crack growth rates were calculated from effective crack lengths determined using a compliance method. Tests were conducted in hard vacuum and at water vapor partial pressures ranging from 94 Pa to 3.8 kPa. Fatigue crack growth rates were frequency insensitive under all environment conditions tested. For constant stress intensity factor ranges crack growth rate transitions occurred at low and high water vapor pressures. Crack growth rates at intermediate pressures were relatively constant and showed reasonable agreement with published data for two Al-Cu-Mg alloys. The existence of two crack growth rate transitions suggests either a change in rate controlling kinetics or a change in corrosion fatigue mechanism as a function of water vapor pressure. Reduced residual deformation and transverse cracking specimens tested in water vapor versus vacuum may be evidence of embrittlement within the plastic zone due to environmental interaction.

  10. Atmospheric Pressure Spray Chemical Vapor Deposited CuInS2 Thin Films for Photovoltaic Applications

    NASA Technical Reports Server (NTRS)

    Harris, J. D.; Raffaelle, R. P.; Banger, K. K.; Smith, M. A.; Scheiman, D. A.; Hepp, A. F.

    2002-01-01

    Solar cells have been prepared using atmospheric pressure spray chemical vapor deposited CuInS2 absorbers. The CuInS2 films were deposited at 390 C using the single source precursor (PPh3)2CuIn(SEt)4 in an argon atmosphere. The absorber ranges in thickness from 0.75 - 1.0 micrometers, and exhibits a crystallographic gradient, with the leading edge having a (220) preferred orientation and the trailing edge having a (112) orientation. Schottky diodes prepared by thermal evaporation of aluminum contacts on to the CuInS2 yielded diodes for films that were annealed at 600 C. Solar cells were prepared using annealed films and had the (top down) composition of Al/ZnO/CdS/CuInS2/Mo/Glass. The Jsc, Voc, FF and (eta) were 6.46 mA per square centimeter, 307 mV, 24% and 0.35%, respectively for the best small area cells under simulated AM0 illumination.

  11. Detection of Explosive Vapors: The Roles of Exciton and Molecular Diffusion in Real-Time Sensing.

    PubMed

    Ali, Mohammad A; Shoaee, Safa; Fan, Shengqiang; Burn, Paul L; Gentle, Ian R; Meredith, Paul; Shaw, Paul E

    2016-11-04

    Time-resolved quartz crystal microbalance with in situ fluorescence measurements are used to monitor the sorption of the nitroaromatic (explosive) vapor, 2,4-dinitrotoluene (DNT) into a porous pentiptycene-containing poly(phenyleneethynylene) sensing film. Correlation of the nitroaromatic mass uptake with fluorescence quenching shows that the analyte diffusion follows the Case-II transport model, a film-swelling-limited process, in which a sharp diffusional front propagates at a constant velocity through the film. At a low vapor pressure of DNT of ≈16 ppb, the analyte concentration in the front is sufficiently high to give an average fluorophore-analyte separation of ≈1.5 nm. Hence, a long exciton diffusion length is not required for real-time sensing in the solid state. Rather the diffusion behavior of the analyte and the strength of the binding interaction between the analyte and the polymer play first-order roles in the fluorescence quenching process. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Effect of fuel vapor concentrations on combustor emissions and performance

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Ingebo, R. D.

    1973-01-01

    Effects of fuel vaporization on the exhaust emission levels of oxides of nitrogen, carbon monoxide, total hydrocarbons, and smoke number were obtained in an experimental turbojet combustor segment. Two different fuel injectors were used in which liquid ASTM A-1 jet fuel and vapor propane fuel were independently controlled to simulate varying degrees of vaporization. Tests were conducted over a range of inlet-air temperatures from 478 to 700 K, pressures from 4 to 20 atm, and combustor reference velocities from 15.3 to 27.4 m/sec. Converting from liquid to complete vapor fuel resulted in oxides of nitrogen reductions of as much as 22 percent and smoke number reductions up to 51 percent. Supplement data are also presented on flame emissivity, flame temperature, and primary-zone liner wall temperatures.

  13. Design and test of porous-tungsten mercury vaporizers

    NASA Technical Reports Server (NTRS)

    Kerslake, W. R.

    1972-01-01

    Future use of large size Kaufman thrusters and thruster arrays will impose new design requirements for porous plug type vaporizers. Larger flow rate coupled with smaller pores to prevent liquid intrusion will be desired. The results of testing samples of porous tungsten for flow rate, liquid intrusion pressure level, and mechanical strength are presented. Nitrogen gas was used in addition to mercury flow for approximate calibration. Liquid intrusion pressure levels will require that flight thruster systems with long feed lines have some way (a valve) to restrict dynamic line pressures during launch.

  14. Vapor-pressure osmometric study of the molecular weight and aggregation tendency of a reference-soil fulvic acid

    USGS Publications Warehouse

    Marinsky, J.A.; Reddy, M.M.

    1990-01-01

    The molecular weight and aggregation tendency of a reference-soil fulvic acid in Armadale horizon Bh were determined by vapor-pressure osmometry using tetrahydrofuran and water as solvents. With tetrahydrofuran, number-average molecular weight values of 767 ?? 34 and 699 ?? 8 daltons were obtained from two separate sets of measurements. Two sets of measurements with water also yielded values within this range (754 ?? 70 daltons) provided that the fulvic acid concentration in water did not exceed 7 mg ml-1; at higher concentrations (9.1-13.7 mg ml-1) a number-average molecular weight of 956 ?? 25 daltons was resolved, providing evidence of molecular aggregation. Extension of these studies to 80% neutralized fulvic acid showed that a sizeable fraction of the sodium counter ion is not osmotically active.

  15. Role of Co-Vapors in Vapor Deposition Polymerization

    PubMed Central

    Lee, Ji Eun; Lee, Younghee; Ahn, Ki-Jin; Huh, Jinyoung; Shim, Hyeon Woo; Sampath, Gayathri; Im, Won Bin; Huh, Yang–Il; Yoon, Hyeonseok

    2015-01-01

    Polypyrrole (PPy)/cellulose (PPCL) composite papers were fabricated by vapor phase polymerization. Importantly, the vapor-phase deposition of PPy onto cellulose was assisted by employing different co-vapors namely methanol, ethanol, benzene, water, toluene and hexane, in addition to pyrrole. The resulting PPCL papers possessed high mechanical flexibility, large surface-to-volume ratio, and good redox properties. Their main properties were highly influenced by the nature of the co-vaporized solvent. The morphology and oxidation level of deposited PPy were tuned by employing co-vapors during the polymerization, which in turn led to change in the electrochemical properties of the PPCL papers. When methanol and ethanol were used as co-vapors, the conductivities of PPCL papers were found to have improved five times, which was likely due to the enhanced orientation of PPy chain by the polar co-vapors with high dipole moment. The specific capacitance of PPCL papers obtained using benzene, toluene, water and hexane co-vapors was higher than those of the others, which is attributed to the enlarged effective surface area of the electrode material. The results indicate that the judicious choice and combination of co-vapors in vapor-deposition polymerization (VDP) offers the possibility of tuning the morphological, electrical, and electrochemical properties of deposited conducting polymers. PMID:25673422

  16. Combined infrared and ultraviolet-visible spectroscopy matrix-isolated carbon vapor

    NASA Technical Reports Server (NTRS)

    Kurtz, Joe; Huffman, Donald R.

    1990-01-01

    Infrared and UV-visible absorption spectra have been measured on the same sample of matrix-isolated carbon vapor in order to establish correlations between absorption intensities of vibrational and electronic transitions as a function of sample annealing. A high degree of correlation has been found between the IR feature at 1998/cm recently assigned to C8 and a UV absorption feature at about 3100 A. Thus, for the first time, direct evidence is given for the assignment of one of the unknown UV-visible features of the long-studied matrix-isolated carbon vapor spectrum.

  17. Measurements of the vertical profile of water vapor abundance in the Martian atmosphere from Mars Observer

    NASA Technical Reports Server (NTRS)

    Schofield, J. T.; Mccleese, Daniel J.

    1988-01-01

    An analysis is presented of the Pressure Modulator Infrared Radiometer (PMIRR) capabilities along with how the vertical profiles of water vapor will be obtained. The PMIRR will employ filter and pressure modulation radiometry using nine spectral channels, in both limb scanning and nadir sounding modes, to obtain daily, global maps of temperature, dust extinction, condensate extinction, and water vapor mixing ratio profiles as a function of pressure to half scale height or 5 km vertical resolution. Surface thermal properties will also be mapped, and the polar radiactive balance will be monitored.

  18. Metastable superheated ice in liquid-water inclusions under high negative pressure

    USGS Publications Warehouse

    Roedder, E.

    1967-01-01

    In some microscopic inclusions (consisting of aqueous liquid and vapor) in minerals, freezing eliminates the vapor phase because of greater volume occupied by the resulting ice. When vapor fails to nucleate again on partial melting, the resulting negative pressure (hydrostatic tension) inside the inclusions permits the existence of ice I crystals under reversible, metastable equilibrium, at temperatures as high as +6.5??C and negative pressures possibly exceeding 1000 bars.

  19. Method and apparatus for pressurizing a liquefied gas

    DOEpatents

    Bingham, Dennis N.

    2005-07-26

    Apparatus providing at least one thermoelectric device for pressurizing a liquefied gas container and methods employing same are disclosed. A thermoelectric device including a heating surface and a cooling surface is used for pressurizing a container by vaporizing liquefied gas within the container by transferring heat energy from a portion of the liquefied gas in contact with the cooling surface to another portion of the liquefied gas in contact with the heating surface of the thermoelectric device to convert some of the liquefied gas to a vapor state. Liquefied gas vapor and/or liquid phase may be supplied by disclosed apparatus and methods. The apparatus may also be used as a vapor pump or a liquid pump, or fluid pump. Methods of operation are also disclosed.

  20. Liquid Oxygen Thermodynamic Vent System Testing with Helium Pressurization

    NASA Technical Reports Server (NTRS)

    VanDresar, Neil T.

    2014-01-01

    This report presents the results of several thermodynamic vent system (TVS) tests with liquid oxygen plus a test with liquid nitrogen. In all tests, the liquid was heated above its normal boiling point to 111 K for oxygen and 100 K for nitrogen. The elevated temperature was representative of tank conditions for a candidate lunar lander ascent stage. An initial test series was conducted with saturated oxygen liquid and vapor at 0.6 MPa. The initial series was followed by tests where the test tank was pressurized with gaseous helium to 1.4 to 1.6 MPa. For these tests, the helium mole fraction in the ullage was quite high, about 0.57 to 0.62. TVS behavior is different when helium is present than when helium is absent. The tank pressure becomes the sum of the vapor pressure and the partial pressure of helium. Therefore, tank pressure depends not only on temperature, as is the case for a pure liquid-vapor system, but also on helium density (i.e., the mass of helium divided by the ullage volume). Thus, properly controlling TVS operation is more challenging with helium pressurization than without helium pressurization. When helium was present, the liquid temperature would rise with each successive TVS cycle if tank pressure was kept within a constant control band. Alternatively, if the liquid temperature was maintained within a constant TVS control band, the tank pressure would drop with each TVS cycle. The final test series, which was conducted with liquid nitrogen pressurized with helium, demonstrated simultaneous pressure and temperature control during TVS operation. The simultaneous control was achieved by systematic injection of additional helium during each TVS cycle. Adding helium maintained the helium partial pressure as the liquid volume decreased because of TVS operation. The TVS demonstrations with liquid oxygen pressurized with helium were conducted with three different fluid-mixer configurations-a submerged axial jet mixer, a pair of spray hoops in the tank

  1. The correlation between pulsatile intracranial pressure and indices of intracranial pressure-volume reserve capacity: results from ventricular infusion testing.

    PubMed

    Eide, Per Kristian

    2016-12-01

    OBJECTIVE The objective of this study was to examine how pulsatile and static intracranial pressure (ICP) scores correlate with indices of intracranial pressure-volume reserve capacity, i.e., intracranial elastance (ICE) and intracranial compliance (ICC), as determined during ventricular infusion testing. METHODS All patients undergoing ventricular infusion testing and overnight ICP monitoring during the 6-year period from 2007 to 2012 were included in the study. Clinical data were retrieved from a quality registry, and the ventricular infusion pressure data and ICP scores were retrieved from a pressure database. The ICE and ICC (= 1/ICE) were computed during the infusion phase of the infusion test. RESULTS During the period from 2007 to 2012, 82 patients with possible treatment-dependent hydrocephalus underwent ventricular infusion testing within the department of neurosurgery. The infusion tests revealed a highly significant positive correlation between ICE and the pulsatile ICP scores mean wave amplitude (MWA) and rise-time coefficient (RTC), and the static ICP score mean ICP. The ICE was negatively associated with linear measures of ventricular size. The overnight ICP recordings revealed significantly increased MWA (> 4 mm Hg) and RTC (> 20 mm Hg/sec) values in patients with impaired ICC (< 0.5 ml/mm Hg). CONCLUSIONS In this study cohort, there was a significant positive correlation between pulsatile ICP and ICE measured during ventricular infusion testing. In patients with impaired ICC during infusion testing (ICC < 0.5 ml/mm Hg), overnight ICP recordings showed increased pulsatile ICP (MWA > 4 mm Hg, RTC > 20 mm Hg/sec), but not increased mean ICP (< 10-15 mm Hg). The present data support the assumption that pulsatile ICP (MWA and RTC) may serve as substitute markers of pressure-volume reserve capacity, i.e., ICE and ICC.

  2. The effect of carrier gas flow rate and source cell temperature on low pressure organic vapor phase deposition simulation by direct simulation Monte Carlo method

    PubMed Central

    Wada, Takao; Ueda, Noriaki

    2013-01-01

    The process of low pressure organic vapor phase deposition (LP-OVPD) controls the growth of amorphous organic thin films, where the source gases (Alq3 molecule, etc.) are introduced into a hot wall reactor via an injection barrel using an inert carrier gas (N2 molecule). It is possible to control well the following substrate properties such as dopant concentration, deposition rate, and thickness uniformity of the thin film. In this paper, we present LP-OVPD simulation results using direct simulation Monte Carlo-Neutrals (Particle-PLUS neutral module) which is commercial software adopting direct simulation Monte Carlo method. By estimating properly the evaporation rate with experimental vaporization enthalpies, the calculated deposition rates on the substrate agree well with the experimental results that depend on carrier gas flow rate and source cell temperature. PMID:23674843

  3. Tropical stratospheric water vapor measured by the microwave limb sounder (MLS)

    NASA Technical Reports Server (NTRS)

    Carr, E. S.; Harwood, R. S.; Mote, P. W.; Peckham, G. E.; Suttie, R. A.; Lahoz, W. A.; O'Neill, A.; Froidevaux, L.; Jarnot, R. F.; Read, W. G.

    1995-01-01

    The lower stratospheric variability of equatorial water vapor, measured by the Microwave Limb Sounder (MLS), follows an annual cycle modulated by the quasi-biennial oscillation. At levels higher in the stratosphere, water vapor measurements exhibit a semi-annual oscillatory signal with the largest amplitudes at 2.2 and 1hPa. Zonal-mean cross sections of MLS water vapor are consistent with previous satellite measurements from the limb infrared monitor of the stratosphere (LIMS) and the stratospheric Aerosol and Gas Experiment 2 (SAGE 2) instruments in that they show water vapor increasing upwards and the polewards from a well defined minimum in the tropics. The minimum values vary in height between the retrieved 46 and 22hPa pressure levels.

  4. Vapor Pressure Deficit and Sap Velocity Dynamic Coupling in Canopy Dominant Trees in the Amazon basin

    NASA Astrophysics Data System (ADS)

    Chambers, J. Q.; Gimenez, B.; Jardine, K.; Negron Juarez, R. I.; Cobello, L. O.; Fontes, C.; Dawson, T. E.; Higuchi, N.

    2017-12-01

    In order to improve our ability to predict terrestrial water fluxes, an understanding of the interactions between plant physiology and environmental conditions is necessary, especially in tropical forests which recycle large fluxes of water to the atmosphere. This need has become more relevant due to observed records in global temperature. In this study we show a strong temporal correlation between sap velocity and leaf-to-air vapor pressure deficit (VPD) in canopy dominant trees in two primary rainforest sites in the Amazon basin (Santarém and Manaus, Brazil). As VPDs in the upper canopy (20-30 m) varied throughout the day and night, basal sap velocity (1.5 m) responded rapidly without an observable delay (< 15 min). Sap velocity showed a sigmoidal dependence on VPDs including an exponential increase, an inflection point, and a plateau, in all observed trees. Moreover, a clear diurnal hysteresis in sap velocity, stomatal conductance, and leaf water potential was evident with morning periods showing higher sensitivities to VPD than afternoon and night periods. Diurnal leaf gas exchange observations revealed a morning to midday peak in stomatal conductance, but midday to afternoon peak in transpiration and VPD. Thus, our study confirms that the temporal lag between the Gs peak and VPD peak are the major regulators of the hysteresis phenomenon as previously described by other studies. Moreover, out study provide direct evidence for the role of decreased stomatal conductance in the warm afternoon periods to reduce transpiration and allow for the partial recovery of leaf water potential to less negative values. Our results suggests the possibility of predicting evapotranspiration fluxes from ecosystem to regional scales using remote sensing of vegetation temperature from, for example, thermal images of satellites and drones.

  5. Correlation of pressure measurements with angiographic characteristics predisposing to hemorrhage and steal in cerebral arteriovenous malformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norbash, A.M.; Marks, M.P.; Lane, B.

    1994-05-01

    To determine whether there is a physiologic explanation for the predisposition of patients with certain angiographic characteristics to symptoms of hemorrhage and steal. Superselective transcatheter feeding arterial pressure and mean arterial pressure measurements were obtained before embolotherapy in 32 patients with cerebral arteriovenous malformations. Pressures were correlated with previously described angioarchitectural characteristics predisposing to hemorrhage and steal. These included size of the arteriovenous malformation, feeding artery length, venous drainage pattern, and angiomatous change. The feeding arterial pressure and feeding arterial pressure/mean arterial pressure ratios were significantly decreased in patients with angiomatous change. Feeding arterial pressure and feeding arterial pressure/mean arterialmore » pressure ratios progressively decreased as lesions went from peripheral, to mixed, to central venous drainage. A trend for lower feeding arterial pressure was also demonstrated with greater feeding pedicle length. A statistically significant correlation could not be demonstrated between feeding arterial pressure or feeding arterial pressure/mean arterial pressure ratios and size of the arteriovenous malformation, hemorrhage, or symptoms of steal. Feeding arterial pressure measurements help provide a physiologic basis for the relationship between certain angiographic characteristics and hemorrhage and steal symptoms in patients with arteriovenous malformation. 27 refs., 1 fig.« less

  6. Nonlinear dynamics of a vapor bubble expanding in a superheated region of finite size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annenkova, E. A., E-mail: a-a-annenkova@yandex.ru; Kreider, W.; Sapozhnikov, O. A.

    2015-10-28

    Growth of a vapor bubble in a superheated liquid is studied theoretically. Contrary to the typical situation of boiling, when bubbles grow in a uniformly heated liquid, here the superheated region is considered in the form of a millimeter-sized spherical hot spot. An initial micron-sized bubble is positioned at the hot spot center and a theoretical model is developed that is capable of studying bubble growth caused by vapor pressure inside the bubble and corresponding hydrodynamic and thermal processes in the surrounding liquid. Such a situation is relevant to the dynamics of vapor cavities that are created in soft biologicalmore » tissue in the focal region of a high-intensity focused ultrasound beam with a shocked pressure waveform. Such beams are used in the recently proposed treatment called boiling histotripsy. Knowing the typical behavior of vapor cavities during boiling histotripsy could help to optimize the therapeutic procedure.« less

  7. Trichite growth during oxidation of titanium and TA6V4 alloy by water vapor at high temperatures

    NASA Technical Reports Server (NTRS)

    Coddet, C.; Motte, F.; Sarrazin, P.

    1982-01-01

    Analysis by electron scanning microscope detected the formation of rutile trichites on the surface of specimens of titanium and titanium alloy TA6V4 oxidized in water vapor in the temperature range 650 to 950 C and the water vapor pressure range from 0.5 to 18 torr. In all specimens, two sublayers of rutile were formed: an external layer of basalt-like appearance, and a microcrystalline inner layer. Morphology of the trichites depends on temperature and the material (whether metal or alloy), but not on vapor pressure.

  8. Method and apparatus for producing thermal vapor stream

    DOEpatents

    Cradeur, Robert R.; Sperry, John S.; Krajicek, Richard W.

    1979-01-01

    Method and apparatus for producing a thermal vapor stream for injecting into a subterranean formation for the recovery of liquefiable minerals therefrom, including a pressure vessel containing a high pressure combustion chamber for producing a heating gas for introduction into a heating gas injector. The heating gas injector is partly immersed in a steam generating section of the pressure vessel such that the heating gas is passed through the steam generating section to produce steam and combustion products which are directed between the pressure vessel and the combustion chamber for simultaneously cooling of the combustion chamber by further heating of the steam and combustion gases.

  9. Clogging in staked-in needle pre-filled syringes (SIN-PFS): Influence of water vapor transmission through the needle shield.

    PubMed

    De Bardi, M; Müller, R; Grünzweig, C; Mannes, D; Rigollet, M; Bamberg, F; Jung, T A; Yang, K

    2018-06-01

    Staked-in needle pre-fillable syringes (SIN-PFS) are a convenient delivery system widely established in the growing pharmaceutical market. Under specific storage conditions, the needle of PFS containing high concentration drug product (DP) solution is prone to clogging, which prevents administration of the liquid. The purpose of this study is to clarify the clogging phenomenon of SIN-PFS and to elucidate the role of water vapor transmission via the needle shield. The presence of liquid within needles is a prerequisite condition for clogging and was investigated non-invasively by neutron imaging (NI) to confirm that liquid can migrate into the needle under certain processing conditions. The water vapor transmission rate (WVTR) of different needle shields was measured and the impact of temperature and relative humidity (rH) on the WVTR was investigated on sheets with the same composition as used in commercial needle shields. Our study clearly showed that the partial vapor pressure difference (ΔPP) across the needle shield is the dominant driving factor for water vapor transmission. A linear correlation between ΔPP and WVTR was found and a model to predict the water vapor transmission for PFS under specific storage conditions was developed. The impact of the WVTR on needle clogging was confirmed by clogging tests performed on SIN-PFS stored under different conditions. Thereby, we clearly show that high water loss induced by higher WVTR can be correlated to an increased occurrence of needle clogging. In conclusion, the WVTR of the needle shield plays a key role in needle clogging and the established WVTR model can be employed to assess the clogging risk for product development. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Study of vapor flow into a capillary acquisition device. [for cryogenic rocket propellants

    NASA Technical Reports Server (NTRS)

    Dodge, F. T.; Bowles, E. B.

    1982-01-01

    An analytical model was developed that prescribes the conditions for vapor flow through the window screen of a start basket. Several original submodels were developed as part of this model. The submodels interrelate such phenomena as the effect of internal evaporation of the liquid, the bubble point change of a screen in the presence of wicking, the conditions for drying out of a screen through a combination of evaporation and pressure difference, the vapor inflow rate across a wet screen as a function of pressure difference, and the effect on wicking of a difference between the static pressure of the liquid reservoir and the surrounding vapor. Most of these interrelations were verified by a series of separate effects tests, which were also used to determine certain empirical constants in the models. The equations of the model were solved numerically for typical start basket designs, and a simplified start basket was constructed to verify the predictions, using both volatile and nonvolatile test liquids. The test results verified the trends predicted by the model.

  11. Modeling chemical vapor deposition of silicon dioxide in microreactors at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Konakov, S. A.; Krzhizhanovskaya, V. V.

    2015-01-01

    We developed a multiphysics mathematical model for simulation of silicon dioxide Chemical Vapor Deposition (CVD) from tetraethyl orthosilicate (TEOS) and oxygen mixture in a microreactor at atmospheric pressure. Microfluidics is a promising technology with numerous applications in chemical synthesis due to its high heat and mass transfer efficiency and well-controlled flow parameters. Experimental studies of CVD microreactor technology are slow and expensive. Analytical solution of the governing equations is impossible due to the complexity of intertwined non-linear physical and chemical processes. Computer simulation is the most effective tool for design and optimization of microreactors. Our computational fluid dynamics model employs mass, momentum and energy balance equations for a laminar transient flow of a chemically reacting gas mixture at low Reynolds number. Simulation results show the influence of microreactor configuration and process parameters on SiO2 deposition rate and uniformity. We simulated three microreactors with the central channel diameter of 5, 10, 20 micrometers, varying gas flow rate in the range of 5-100 microliters per hour and temperature in the range of 300-800 °C. For each microchannel diameter we found an optimal set of process parameters providing the best quality of deposited material. The model will be used for optimization of the microreactor configuration and technological parameters to facilitate the experimental stage of this research.

  12. The Relation between Vaporization Enthalpies and Viscosities: Eyring's Theory Applied to Selected Ionic Liquids.

    PubMed

    Bonsa, Anne-Marie; Paschek, Dietmar; Zaitsau, Dzmitry H; Emel'yanenko, Vladimir N; Verevkin, Sergey P; Ludwig, Ralf

    2017-05-19

    Key properties for the use of ionic liquids as electrolytes in batteries are low viscosities, low vapor pressure and high vaporization enthalpies. Whereas the measurement of transport properties is well established, the determination of vaporization enthalpies of these extremely low volatile compounds is still a challenge. At a first glance both properties seem to describe different thermophysical phenomena. However, eighty years ago Eyring suggested a theory which related viscosities and vaporization enthalpies to each other. The model is based on Eyring's theory of absolute reaction rates. Recent attempts to apply Eyring's theory to ionic liquids failed. The motivation of our study is to show that Eyring's theory works, if the assumptions specific for ionic liquids are fulfilled. For that purpose we measured the viscosities of three well selected protic ionic liquids (PILs) at different temperatures. The temperature dependences of viscosities were approximated by the Vogel-Fulcher-Tamann (VFT) relation and extrapolated to the high-temperature regime up to 600 K. Then the VFT-data could be fitted to the Eyring-model. The values of vaporization enthalpies for the three selected PILs predicted by the Eyring model have been very close to the experimental values measured by well-established techniques. We conclude that the Eyring theory can be successfully applied to the chosen set of PILs, if the assumption that ionic pairs of the viscous flow in the liquid and the ionic pairs in the gas phase are similar is fulfilled. It was also noticed that proper transfer of energies can be only derived if the viscosities and the vaporization energies are known for temperatures close to the liquid-gas transition temperature. The idea to correlate easy measurable viscosities of ionic liquids with their vaporization enthalpies opens a new way for a reliable assessment of these thermodynamic properties for a broad range of ionic liquids. © 2017 Wiley-VCH Verlag GmbH & Co. KGa

  13. Physical Vapor Transport of Lead Telluride

    NASA Technical Reports Server (NTRS)

    Palosz, W.

    1997-01-01

    Mass transport properties of physical vapor transport of PbTe are investigated. Thermochemical analysis of the system and its implications for the growth conditions are discussed. The effect of the material preparation and pre-processing on the stoichiometry and residual gas pressure and composition, and on related mass flux is shown. A procedure leading to high mass transport rates is presented.

  14. Vapor-liquid phase separator permeability results

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Frederking, T. H. K.

    1981-01-01

    Continued studies are described in the area of vapor-liquid phase separator work with emphasis on permeabilities of porous sintered plugs (stainless steel, nominal pore size 2 micrometer). The temperature dependence of the permeability has been evaluated in classical fluid using He-4 gas at atmospheric pressure and in He-2 on the basis of a modified, thermosmotic permeability of the normal fluid.

  15. Vapor-liquid equilibria for 1,1,1,2-tetrafluoroethane + 1-chloro-1,2,2,2-tetrafluoroethane and 1-chloro-1,2,2,2-tetrafluoroethane + 1-chloro-1,1-difluoroethane systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.; Lee, J.; Kim, H.

    1996-07-01

    Isothermal vapor-liquid equilibria were determined for two binary mixtures of refrigerants with a circulation type apparatus. The 1,1,1,2-tetrafluoroethane (HFC-134a) + 1-chloro-1,2,2,2-tetrafluoroethane (HCFC-124) system was studied at 296.45, 302.25, and 307.25 K. The 1-chloro-1,2,2,2-tetrafluoroethane (HCFC-124) + 1-chloro-1,1-difluoroethane (HCFC-142b) system was studied at 298.15 and 312.15 K. At each temperature, the pressure and vapor and liquid compositions were measured. Results were correlated with the Peng-Robinson equation of state.

  16. Thermodynamic and structure-property study of liquid-vapor equilibrium for aroma compounds.

    PubMed

    Tromelin, Anne; Andriot, Isabelle; Kopjar, Mirela; Guichard, Elisabeth

    2010-04-14

    Thermodynamic parameters (T, DeltaH degrees , DeltaS degrees , K) were collected from the literature and/or calculated for five esters, four ketones, two aldehydes, and three alcohols, pure compounds and compounds in aqueous solution. Examination of correlations between these parameters and the range values of DeltaH degrees and DeltaS degrees puts forward the key roles of enthalpy for vaporization of pure compounds and of entropy in liquid-vapor equilibrium of compounds in aqueous solution. A structure-property relationship (SPR) study was performed using molecular descriptors on aroma compounds to better understand their vaporization behavior. In addition to the role of polarity for vapor-liquid equilibrium of compounds in aqueous solution, the structure-property study points out the role of chain length and branching, illustrated by the correlation between the connectivity index CHI-V-1 and the difference between T and log K for vaporization of pure compounds and compounds in aqueous solution. Moreover, examination of the esters' enthalpy values allowed a probable conformation adopted by ethyl octanoate in aqueous solution to be proposed.

  17. Retrieval of water vapor mixing ratios from a laser-based sensor

    NASA Technical Reports Server (NTRS)

    Tucker, George F.

    1995-01-01

    Langley Research Center has developed a novel external path sensor which monitors water vapor along an optical path between an airplane window and reflective material on the plane's engine. An infrared tunable diode laser is wavelength modulated across a water vapor absorption line at a frequency f. The 2f and DC signals are measured by a detector mounted adjacent to the laser. The 2f/DC ratio depends on the amount of wavelength modulation, the water vapor absorption line being observed, and the temperature, pressure, and water vapor content of the atmosphere. The present work concerns efforts to quantify the contributions of these factors and to derive a method for extracting the water vapor mixing ratio from the measurements. A 3 m cell was fabricated in order to perform laboratory tests of the sensor. Measurements of 2f/DC were made for a series of pressures and modulation amplitudes. During my 1994 faculty fellowship, a computer program was created which allowed 2f/DC to be calculated for any combination of the variables which effect it. This code was used to generate 2f/DC values for the conditions measured in the laboratory. The experimental and theoretical values agreed to within a few percent. As a result, the laser modulation amplitude can now be set in the field by comparing the response of the instrument to the calculated response as a function of modulation amplitude. Once the validity of the computer code was established, it was used to investigate possible candidate absorption lines. 2f/DC values were calculated for pressures, temperatures, and water vapor mixing ratios expected to be encountered in future missions. The results have been incorporated into a database which will be used to select the best line for a particular mission. The database will also be used to select a retrieval technique. For examples under some circumstances there is little temperature dependence in 2f/DC so temperature can be neglected. In other cases, there is a dependence

  18. Analysis of impact melt and vapor production in CTH for planetary applications

    DOE PAGES

    Quintana, S. N.; Crawford, D. A.; Schultz, P. H.

    2015-05-19

    This study explores impact melt and vapor generation for a variety of impact speeds and materials using the shock physics code CTH. The study first compares the results of two common methods of impact melt and vapor generation to demonstrate that both the peak pressure method and final temperature method are appropriate for high-speed impact models (speeds greater than 10 km/s). However, for low-speed impact models (speeds less than 10 km/s), only the final temperature method is consistent with laboratory analyses to yield melting and vaporization. Finally, a constitutive model for material strength is important for low-speed impacts because strengthmore » can cause an increase in melting and vaporization.« less

  19. Analysis of impact melt and vapor production in CTH for planetary applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quintana, S. N.; Crawford, D. A.; Schultz, P. H.

    This study explores impact melt and vapor generation for a variety of impact speeds and materials using the shock physics code CTH. The study first compares the results of two common methods of impact melt and vapor generation to demonstrate that both the peak pressure method and final temperature method are appropriate for high-speed impact models (speeds greater than 10 km/s). However, for low-speed impact models (speeds less than 10 km/s), only the final temperature method is consistent with laboratory analyses to yield melting and vaporization. Finally, a constitutive model for material strength is important for low-speed impacts because strengthmore » can cause an increase in melting and vaporization.« less

  20. Pulse sequences for uniform perfluorocarbon droplet vaporization and ultrasound imaging.

    PubMed

    Puett, C; Sheeran, P S; Rojas, J D; Dayton, P A

    2014-09-01

    Phase-change contrast agents (PCCAs) consist of liquid perfluorocarbon droplets that can be vaporized into gas-filled microbubbles by pulsed ultrasound waves at diagnostic pressures and frequencies. These activatable contrast agents provide benefits of longer circulating times and smaller sizes relative to conventional microbubble contrast agents. However, optimizing ultrasound-induced activation of these agents requires coordinated pulse sequences not found on current clinical systems, in order to both initiate droplet vaporization and image the resulting microbubble population. Specifically, the activation process must provide a spatially uniform distribution of microbubbles and needs to occur quickly enough to image the vaporized agents before they migrate out of the imaging field of view. The development and evaluation of protocols for PCCA-enhanced ultrasound imaging using a commercial array transducer are described. The developed pulse sequences consist of three states: (1) initial imaging at sub-activation pressures, (2) activating droplets within a selected region of interest, and (3) imaging the resulting microbubbles. Bubble clouds produced by the vaporization of decafluorobutane and octafluoropropane droplets were characterized as a function of focused pulse parameters and acoustic field location. Pulse sequences were designed to manipulate the geometries of discrete microbubble clouds using electronic steering, and cloud spacing was tailored to build a uniform vaporization field. The complete pulse sequence was demonstrated in the water bath and then in vivo in a rodent kidney. The resulting contrast provided a significant increase (>15 dB) in signal intensity. Copyright © 2014 Elsevier B.V. All rights reserved.