Sample records for vapor recovery rule

  1. Fact Sheet: Final Rule Determining Widespread use of Onboard Refueling Vapor Recovery and Waiver of Stage Two Requirements

    EPA Pesticide Factsheets

    Read the May 2012 factsheet on the rule that waived the requirement that current and former ozone nonattainment areas classifiedSerious and above, implement Stage II vapor recovery systems on gasoline pumps.

  2. Ozone: Stage Two Vapor Recovery Rule and Guidance

    EPA Pesticide Factsheets

    This page includes the guidance document, fact sheet, memorandum, and final rule on removing Stage II Gasoline Vapor Control Programs from State Implementation Plans (SIP) for the Ozone National Ambient Air Quality Standards (NAAQS)

  3. Gasoline Vapor Recovery

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Gasoline is volatile and some of it evaporates during storage, giving off hydrocarbon vapor. Formerly, the vapor was vented into the atmosphere but anti-pollution regulations have precluded that practice in many localities, so oil companies and storage terminals are installing systems to recover hydrocarbon vapor. Recovery provides an energy conservation bonus in that most of the vapor can be reconverted to gasoline. Two such recovery systems are shown in the accompanying photographs (mid-photo at right and in the foreground below). They are actually two models of the same system, although.configured differently because they are customized to users' needs. They were developed and are being manufactured by Edwards Engineering Corporation, Pompton Plains, New Jersey. NASA technological information proved useful in development of the equipment.

  4. Estimating enthalpy of vaporization from vapor pressure using Trouton's rule.

    PubMed

    MacLeod, Matthew; Scheringer, Martin; Hungerbühler, Konrad

    2007-04-15

    The enthalpy of vaporization of liquids and subcooled liquids at 298 K (delta H(VAP)) is an important parameter in environmental fate assessments that consider spatial and temporal variability in environmental conditions. It has been shown that delta H(VAP)P for non-hydrogen-bonding substances can be estimated from vapor pressure at 298 K (P(L)) using an empirically derived linear relationship. Here, we demonstrate that the relationship between delta H(VAP)and PL is consistent with Trouton's rule and the ClausiusClapeyron equation under the assumption that delta H(VAP) is linearly dependent on temperature between 298 K and the boiling point temperature. Our interpretation based on Trouton's rule substantiates the empirical relationship between delta H(VAP) degree and P(L) degrees for non-hydrogen-bonding chemicals with subcooled liquid vapor pressures ranging over 15 orders of magnitude. We apply the relationship between delta H(VAP) degrees and P(L) degrees to evaluate data reported in literature reviews for several important classes of semivolatile environmental contaminants, including polycyclic aromatic hydrocarbons, chlorobenzenes, polychlorinated biphenyls and polychlorinated dibenzo-dioxins and -furans and illustrate the temperature dependence of results from a multimedia model presented as a partitioning map. The uncertainty associated with estimating delta H(VAP)degrees from P(L) degrees using this relationship is acceptable for most environmental fate modeling of non-hydrogen-bonding semivolatile organic chemicals.

  5. Water recovery by catalytic treatment of urine vapor

    NASA Technical Reports Server (NTRS)

    Budininkas, P.; Quattrone, P. D.; Leban, M. I.

    1980-01-01

    The objective of this investigation was to demonstrate the feasibility of water recovery on a man-rated scale by the catalytic processing of untreated urine vapor. For this purpose, two catalytic systems, one capable of processing an air stream containing low urine vapor concentrations and another to process streams with high urine vapor concentrations, were designed, constructed, and tested to establish the quality of the recovered water.

  6. Vacuum distillation/vapor filtration water recovery

    NASA Technical Reports Server (NTRS)

    Honegger, R. J.; Neveril, R. B.; Remus, G. A.

    1974-01-01

    The development and evaluation of a vacuum distillation/vapor filtration (VD/VF) water recovery system are considered. As a functional model, the system converts urine and condensates waste water from six men to potable water on a steady-state basis. The system is designed for 180-day operating durations and for function on the ground, on zero-g aircraft, and in orbit. Preparatory tasks are summarized for conducting low gravity tests of a vacuum distillation/vapor filtration system for recovering water from urine.

  7. A novel close-circulating vapor stripping-vapor permeation technique for boosting biobutanol production and recovery.

    PubMed

    Zhu, Chao; Chen, Lijie; Xue, Chuang; Bai, Fengwu

    2018-01-01

    Butanol derived from renewable resources by microbial fermentation is considered as one of not only valuable platform chemicals but alternative advanced biofuels. However, due to low butanol concentration in fermentation broth, butanol production is restricted by high energy consumption for product recovery. For in situ butanol recovery techniques, such as gas stripping and pervaporation, the common problem is their low efficiency in harvesting and concentrating butanol. Therefore, there is a necessity to develop an advanced butanol recovery technique for cost-effective biobutanol production. A close-circulating vapor stripping-vapor permeation (VSVP) process was developed with temperature-difference control for single-stage butanol recovery. In the best scenario, the highest butanol separation factor of 142.7 reported to date could be achieved with commonly used polydimethylsiloxane membrane, when temperatures of feed solution and membrane surroundings were 70 and 0 °C, respectively. Additionally, more ABE (31.2 vs. 17.7 g/L) were produced in the integrated VSVP process, with a higher butanol yield (0.21 vs. 0.17 g/g) due to the mitigation of butanol inhibition. The integrated VSVP process generated a highly concentrated permeate containing 212.7 g/L butanol (339.3 g/L ABE), with the reduced energy consumption of 19.6 kJ/g-butanol. Therefore, the present study demonstrated a well-designed energy-efficient technique named by vapor stripping-vapor permeation for single-stage butanol removal. The butanol separation factor was multiplied by the temperature-difference control strategy which could double butanol recovery performance. This advanced VSVP process can completely eliminate membrane fouling risk for fermentative butanol separation, which is superior to other techniques.

  8. Water vapor recovery from plant growth chambers

    NASA Technical Reports Server (NTRS)

    Ray, R. J.; Newbold, D. D.; Colton, R. H.; Mccray, S. B.

    1991-01-01

    NASA is investigating the use of plant growth chambers (PGCs) for space missions and for bases on the moon and Mars. Key to successful development of PGCs is a system to recover and reuse the water vapor that is transpired from the leaves of the plants. A design is presented for a simple, reliable, membrane-based system that allows the recovery, purification, and reuse of the transpired water vapor through control of temperature and humidity levels in PGCs. The system is based on two membrane technologies: (1) dehumidification membrane modules to remove water vapor from the air, and (2) membrane contactors to return water vapor to the PGC (and, in doing so, to control the humidity and temperature within the PGC). The membrane-based system promises to provide an ideal, stable growth environment for a variety of plants, through a design that minimizes energy usage, volume, and mass, while maximizing simplicity and reliability.

  9. Efficient ethanol recovery from fermentation broths with integrated distillation-vapor permeation hybrid process

    EPA Science Inventory

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative hybrid process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane s...

  10. Relapse Prevention and the Five Rules of Recovery.

    PubMed

    Melemis, Steven M

    2015-09-01

    There are four main ideas in relapse prevention. First, relapse is a gradual process with distinct stages. The goal of treatment is to help individuals recognize the early stages, in which the chances of success are greatest. Second, recovery is a process of personal growth with developmental milestones. Each stage of recovery has its own risks of relapse. Third, the main tools of relapse prevention are cognitive therapy and mind-body relaxation, which are used to develop healthy coping skills. Fourth, most relapses can be explained in terms of a few basic rules. Educating clients in these rules can help them focus on what is important: 1) change your life (recovery involves creating a new life where it is easier to not use); 2) be completely honest; 3) ask for help; 4) practice self-care; and 5) don't bend the rules.

  11. Relapse Prevention and the Five Rules of Recovery

    PubMed Central

    Melemis, Steven M.

    2015-01-01

    There are four main ideas in relapse prevention. First, relapse is a gradual process with distinct stages. The goal of treatment is to help individuals recognize the early stages, in which the chances of success are greatest. Second, recovery is a process of personal growth with developmental milestones. Each stage of recovery has its own risks of relapse. Third, the main tools of relapse prevention are cognitive therapy and mind-body relaxation, which are used to develop healthy coping skills. Fourth, most relapses can be explained in terms of a few basic rules. Educating clients in these rules can help them focus on what is important: 1) change your life (recovery involves creating a new life where it is easier to not use); 2) be completely honest; 3) ask for help; 4) practice self-care; and 5) don’t bend the rules. PMID:26339217

  12. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: COMM ENGINEERING, USA ENVIRONMENTAL VAPOR RECOVERY UNIT (EVRU)

    EPA Science Inventory

    This report documents the testing of a new technology that recovers and utilizes vapors from crude oil storage tanks employed in the oil production and processing industry. The COMM Engineering, USA Environmental Vapor Recovery Unit (EVRU) is a non-mechanical eductor, or jet pump...

  13. 26 CFR 1.43-1 - The enhanced oil recovery credit-general rules.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 1 2010-04-01 2010-04-01 true The enhanced oil recovery credit-general rules. 1... INCOME TAXES Credits Against Tax § 1.43-1 The enhanced oil recovery credit—general rules. (a) Claiming the credit—(1) In general. The enhanced oil recovery credit (the “credit”) is a component of the...

  14. Experimental Evaluation of Hybrid Distillation-Vapor Permeation Process for Efficient Ethanol Recovery from Ethanol-Water Mixtures

    EPA Science Inventory

    The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions [1]. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation ...

  15. Energy efficient of ethanol recovery in pervaporation membrane bioreactor with mechanical vapor compression eliminating the cold traps.

    PubMed

    Fan, Senqing; Xiao, Zeyi; Li, Minghai

    2016-07-01

    An energy efficient pervaporation membrane bioreactor with mechanical vapor compression was developed for ethanol recovery during the process of fermentation coupled with pervaporation. Part of the permeate vapor at the membrane downstream under the vacuum condition was condensed by running water at the first condenser and the non-condensed vapor enriched with ethanol was compressed to the atmospheric pressure and pumped into the second condenser, where the vapor was easily condensed into a liquid by air. Three runs of fermentation-pervaporation experiment have been carried out lasting for 192h, 264h and 360h respectively. Complete vapor recovery validated the novel pervaporation membrane bioreactor. The total flux of the polydimethylsiloxane (PDMS) membrane was in the range of 350gm(-2)h(-1) and 600gm(-2)h(-1). Compared with the traditional cold traps condensation, mechanical vapor compression behaved a dominant energy saving feature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Idle speed and fuel vapor recovery control system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orzel, D.V.

    1993-06-01

    A method for controlling idling speed of an engine via bypass throttle connected in parallel to a primary engine throttle and for controlling purge flow through a vapor recovery system into an air/fuel intake of the engine is described, comprising the steps of: positioning the bypass throttle to decrease any difference between a desired engine idle speed and actual engine idle speed; and decreasing the purge flow when said bypass throttle position is less than a preselected fraction of a maximum bypass throttle position.

  17. Detonation-flame arrester devices for gasoline cargo vapor recovery systems

    NASA Technical Reports Server (NTRS)

    Bjorklund, R. A.; Ryason, P. R.

    1980-01-01

    Empirical data on the deflagration-to-detonation run-up distance for flowing mixtures of gasoline and air in 15.2-cm- (6.0-in.-) diameter piping simulating a vapor recovery system are presented. The quenching capability of eight selected flame control devices subjected to repeated stable detonations was evaluated. The successful detonation-flame arresters were: (1) spiral-wound, crimped aluminum ribbon, (2) foamed nickel-chrome metal, (3) vertically packed bed of aluminum Ballast rings, and (4) water-trap or hydraulic back-pressure valve. Installation configurations for two of the more applicable arresters, the spiral-wound, crimped stainless-steel ribbon and the vertically packed bed of aluminum Ballast rings, were further optimized by a series of parametric tests. The final configuration of these two arresters was demonstrated with repeated detonation tests at conditions that simulated vapor recovery system operation. On these tests, the combustible mixture of gasoline and air continued to flow through the piping for periods up to 120 seconds after the initial detonation had been arrested. There was no indication of continuous burning or reignition occurring on either side of the test arresters.

  18. Guggenheim's rule and the enthalpy of vaporization of simple and polar fluids, molten salts, and room temperature ionic liquids.

    PubMed

    Weiss, Volker C

    2010-07-22

    One of Guggenheim's many corresponding-states rules for simple fluids implies that the molar enthalpy of vaporization (determined at the temperature at which the pressure reaches 1/50th of its critical value, which approximately coincides with the normal boiling point) divided by the critical temperature has a value of roughly 5.2R, where R is the universal gas constant. For more complex fluids, such as strongly polar and ionic fluids, one must expect deviations from Guggenheim's rule. Such a deviation has far-reaching consequences for other empirical rules related to the vaporization of fluids, namely Guldberg's rule and Trouton's rule. We evaluate these characteristic quantities for simple fluids, polar fluids, hydrogen-bonding fluids, simple inorganic molten salts, and room temperature ionic liquids (RTILs). For the ionic fluids, the critical parameters are not accessible to direct experimental observation; therefore, suitable extrapolation schemes have to be applied. For the RTILs [1-n-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides, where the alkyl chain is ethyl, butyl, hexyl, or octyl], the critical temperature is estimated by extrapolating the surface tension to zero using Guggenheim's and Eotvos' rules; the critical density is obtained using the linear-diameter rule. It is shown that the RTILs adhere to Guggenheim's master curve for the reduced surface tension of simple and moderately polar fluids, but that they deviate significantly from his rule for the reduced enthalpy of vaporization of simple fluids. Consequences for evaluating the Trouton constant of RTILs, the value of which has been discussed controversially in the literature, are indicated.

  19. Recovery of Platinum Group Metals from Spent Catalysts Using Iron Chloride Vapor Treatment

    NASA Astrophysics Data System (ADS)

    Taninouchi, Yu-ki; Okabe, Toru H.

    2018-05-01

    The recovery of platinum group metals (PGMs) from spent automobile catalysts is a difficult process because of their relatively low contents in the scrap. In this study, to improve the efficiency of the existing recycling techniques, a novel physical concentration method involving treatment with FeCl2 vapor has been examined. The reactions occurring between typical catalyst components and FeCl2 vapor are discussed from the thermodynamic point of view, and the validity of the proposed technique was experimentally verified. The obtained results indicate that the vapor treatment at around 1200 K (927 °C) can effectively alloy PGMs (Pt, Pd, and Rh) with Fe, resulting in the formation of a ferromagnetic alloy. It was also confirmed that cordierite and alumina (the major catalyst components) remained unreacted after the vapor treatment, while ceria species were converted into oxychlorides. The samples simulating the automobile catalyst were also subjected to magnetic separation after the treatment with FeCl2 vapor; as a result, PGMs were successfully extracted and concentrated in the form of a magnetic powder. Thus, the FeCl2 vapor treatment followed by magnetic separation can be utilized for recovering PGMs directly from spent catalysts as an effective pretreatment for the currently used recycling methods.

  20. Schedules of Controlled Substances: Table of Excluded Nonnarcotic Products: Nasal Decongestant Inhaler/Vapor Inhaler. Final rule.

    PubMed

    2016-02-08

    This final rule adopts, without change, the interim final rule that was published in the Federal Register on October 27, 2015. The Drug Enforcement Administration is amending the table of Excluded Nonnarcotic Products to update the company name for the drug product Nasal Decongestant Inhaler/Vapor Inhaler (containing 50 milligrams levmetamfetamine) to Aphena Pharma Solutions--New York, LLC. This over-the-counter, nonnarcotic drug product is excluded from the provisions of the Controlled Substances Act.

  1. 40 CFR 147.503 - Existing Class II (except enhanced recovery and hydrocarbon storage) wells authorized by rule.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Existing Class II (except enhanced recovery and hydrocarbon storage) wells authorized by rule. 147.503 Section 147.503 Protection of... recovery and hydrocarbon storage) wells authorized by rule. Maximum injection pressure. To meet the...

  2. 40 CFR 147.503 - Existing Class II (except enhanced recovery and hydrocarbon storage) wells authorized by rule.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Existing Class II (except enhanced recovery and hydrocarbon storage) wells authorized by rule. 147.503 Section 147.503 Protection of... recovery and hydrocarbon storage) wells authorized by rule. Maximum injection pressure. To meet the...

  3. Development of a preprototype vapor compression distillation water recovery subsystem

    NASA Technical Reports Server (NTRS)

    Johnson, K. L.

    1978-01-01

    The activities involved in the design, development, and test of a preprototype vapor compression distillation water recovery subsystem are described. This subsystem, part of a larger regenerative life support evaluation system, is designed to recover usable water from urine, urinal rinse water, and concentrated shower and laundry brine collected from three space vehicle crewmen for a period of 180 days without resupply. Details of preliminary design and testing as well as component developments are included. Trade studies, considerations leading to concept selections, problems encountered, and test data are also presented. The rework of existing hardware, subsystem development including computer programs, assembly verification, and comprehensive baseline test results are discussed.

  4. Vacuum distillation/vapor filtration water recovery, phases 1 and 2

    NASA Technical Reports Server (NTRS)

    Honegger, R. J.; Remus, G. A.; Krug, E. K.

    1973-01-01

    The research is reported on the development of an evaporator for vacuum distillation/vapor filtration VD/VF water reclamation system for use on manned space flights. The design, fabrication, and tests of a six-man evaporator are described. It is concluded that: (1) A condenser with an internal rotating impeller and coolant surfaces directly opposite the condensing surfaces is an effective condenser. (2) The VD/VF evaporator, catalyst unit and condenser function satisfactorily based on thermal, mechanical and recovery performance during a 145-hour evaluation test. (3) The quality of recovered water, as measured by analyses for total organic carbon, pH, conductivity, turbidity, and viable bacteria density was within established limits for potability.

  5. 40 CFR 147.2103 - Existing Class II enhanced recovery and hydrocarbon storage wells authorized by rule.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and hydrocarbon storage wells authorized by rule. 147.2103 Section 147.2103 Protection of Environment... hydrocarbon storage wells authorized by rule. (a) Maximum injection pressure. (1) To meet the operating... Administrator determines that the owner or operator of an existing enhanced recovery or hydrocarbon storage well...

  6. 40 CFR 147.2103 - Existing Class II enhanced recovery and hydrocarbon storage wells authorized by rule.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and hydrocarbon storage wells authorized by rule. 147.2103 Section 147.2103 Protection of Environment... hydrocarbon storage wells authorized by rule. (a) Maximum injection pressure. (1) To meet the operating... Administrator determines that the owner or operator of an existing enhanced recovery or hydrocarbon storage well...

  7. Limited recovery of soil microbial activity after transient exposure to gasoline vapors.

    PubMed

    Modrzyński, Jakub J; Christensen, Jan H; Mayer, Philipp; Brandt, Kristian K

    2016-09-01

    During gasoline spills complex mixtures of toxic volatile organic compounds (VOCs) are released to terrestrial environments. Gasoline VOCs exert baseline toxicity (narcosis) and may thus broadly affect soil biota. We assessed the functional resilience (i.e. resistance and recovery of microbial functions) in soil microbial communities transiently exposed to gasoline vapors by passive dosing via headspace for 40 days followed by a recovery phase of 84 days. Chemical exposure was characterized with GC-MS, whereas microbial activity was monitored as soil respiration (CO2 release) and soil bacterial growth ([(3)H]leucine incorporation). Microbial activity was strongly stimulated and inhibited at low and high exposure levels, respectively. Microbial growth efficiency decreased with increasing exposure, but rebounded during the recovery phase for low-dose treatments. Although benzene, toluene, ethylbenzene and xylene (BTEX) concentrations decreased by 83-97% during the recovery phase, microbial activity in high-dose treatments did not recover and numbers of viable bacteria were 3-4 orders of magnitude lower than in control soil. Re-inoculation with active soil microorganisms failed to restore microbial activity indicating residual soil toxicity, which could not be attributed to BTEX, but rather to mixture toxicity of more persistent gasoline constituents or degradation products. Our results indicate a limited potential for functional recovery of soil microbial communities after transient exposure to high, but environmentally relevant, levels of gasoline VOCs which therefore may compromise ecosystem services provided by microorganisms even after extensive soil VOC dissipation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. 40 CFR 147.304 - Existing Class II enhanced recovery and hydrocarbon storage wells authorized by rule.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and hydrocarbon storage wells authorized by rule. 147.304 Section 147.304 Protection of Environment... UNDERGROUND INJECTION CONTROL PROGRAMS Colorado § 147.304 Existing Class II enhanced recovery and hydrocarbon... the owner or operator of an existing enhanced recovery or hydrocarbon storage well may not be in...

  9. 40 CFR 147.904 - Existing Class II enhanced recovery and hydrocarbon storage wells authorized by rule.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and hydrocarbon storage wells authorized by rule. 147.904 Section 147.904 Protection of Environment... UNDERGROUND INJECTION CONTROL PROGRAMS Kentucky § 147.904 Existing Class II enhanced recovery and hydrocarbon... the owner or operator of an existing enhanced recovery or hydrocarbon storage well may not be in...

  10. 40 CFR 147.104 - Existing Class II enhanced recovery and hydrocarbon storage wells authorized by rule.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and hydrocarbon storage wells authorized by rule. 147.104 Section 147.104 Protection of Environment... UNDERGROUND INJECTION CONTROL PROGRAMS Alaska § 147.104 Existing Class II enhanced recovery and hydrocarbon... the owner or operator of an existing enhanced recovery or hydrocarbon storage well may not be in...

  11. 40 CFR 147.904 - Existing Class II enhanced recovery and hydrocarbon storage wells authorized by rule.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and hydrocarbon storage wells authorized by rule. 147.904 Section 147.904 Protection of Environment... UNDERGROUND INJECTION CONTROL PROGRAMS Kentucky § 147.904 Existing Class II enhanced recovery and hydrocarbon... the owner or operator of an existing enhanced recovery or hydrocarbon storage well may not be in...

  12. 40 CFR 147.1354 - Existing Class II enhanced recovery and hydrocarbon storage wells authorized by rule.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and hydrocarbon storage wells authorized by rule. 147.1354 Section 147.1354 Protection of Environment... UNDERGROUND INJECTION CONTROL PROGRAMS Montana § 147.1354 Existing Class II enhanced recovery and hydrocarbon... existing enhanced recovery or hydrocarbon storage well may not be in compliance with the requirements of...

  13. 40 CFR 147.1354 - Existing Class II enhanced recovery and hydrocarbon storage wells authorized by rule.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and hydrocarbon storage wells authorized by rule. 147.1354 Section 147.1354 Protection of Environment... UNDERGROUND INJECTION CONTROL PROGRAMS Montana § 147.1354 Existing Class II enhanced recovery and hydrocarbon... existing enhanced recovery or hydrocarbon storage well may not be in compliance with the requirements of...

  14. 40 CFR 147.104 - Existing Class II enhanced recovery and hydrocarbon storage wells authorized by rule.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and hydrocarbon storage wells authorized by rule. 147.104 Section 147.104 Protection of Environment... UNDERGROUND INJECTION CONTROL PROGRAMS Alaska § 147.104 Existing Class II enhanced recovery and hydrocarbon... the owner or operator of an existing enhanced recovery or hydrocarbon storage well may not be in...

  15. 40 CFR 147.304 - Existing Class II enhanced recovery and hydrocarbon storage wells authorized by rule.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and hydrocarbon storage wells authorized by rule. 147.304 Section 147.304 Protection of Environment... UNDERGROUND INJECTION CONTROL PROGRAMS Colorado § 147.304 Existing Class II enhanced recovery and hydrocarbon... the owner or operator of an existing enhanced recovery or hydrocarbon storage well may not be in...

  16. 40 CFR 147.2154 - Existing Class II enhanced recovery and hydrocarbon storage wells authorized by rule.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and hydrocarbon storage wells authorized by rule. 147.2154 Section 147.2154 Protection of Environment... hydrocarbon storage wells authorized by rule. (a) Maximum injection pressure. (1) To meet the operating... that the owner or operator of an existing enhanced recovery or hydrocarbon storage well may not be in...

  17. 40 CFR 147.1954 - Existing Class II enhanced recovery and hydrocarbon storage wells authorized by rule.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and hydrocarbon storage wells authorized by rule. 147.1954 Section 147.1954 Protection of Environment... hydrocarbon storage wells authorized by rule. (a) Maximum injection pressure. (1) To meet the operating... determines that the owner or operator of an existing enhanced recovery or hydrocarbon storage well may not be...

  18. 40 CFR 147.1954 - Existing Class II enhanced recovery and hydrocarbon storage wells authorized by rule.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and hydrocarbon storage wells authorized by rule. 147.1954 Section 147.1954 Protection of Environment... hydrocarbon storage wells authorized by rule. (a) Maximum injection pressure. (1) To meet the operating... determines that the owner or operator of an existing enhanced recovery or hydrocarbon storage well may not be...

  19. 40 CFR 147.2154 - Existing Class II enhanced recovery and hydrocarbon storage wells authorized by rule.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and hydrocarbon storage wells authorized by rule. 147.2154 Section 147.2154 Protection of Environment... hydrocarbon storage wells authorized by rule. (a) Maximum injection pressure. (1) To meet the operating... that the owner or operator of an existing enhanced recovery or hydrocarbon storage well may not be in...

  20. 40 CFR 147.1154 - Existing Class II enhanced recovery and hydrocarbon storage wells authorized by rule.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and hydrocarbon storage wells authorized by rule. 147.1154 Section 147.1154 Protection of Environment... UNDERGROUND INJECTION CONTROL PROGRAMS Michigan § 147.1154 Existing Class II enhanced recovery and hydrocarbon... determines that the owner or operator of an existing enhanced recovery or hydrocarbon storage will may not be...

  1. 40 CFR 147.1454 - Existing Class II enhanced recovery and hydrocarbon storage wells authorized by rule.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and hydrocarbon storage wells authorized by rule. 147.1454 Section 147.1454 Protection of Environment... UNDERGROUND INJECTION CONTROL PROGRAMS Nevada § 147.1454 Existing Class II enhanced recovery and hydrocarbon... determines that the owner or operator of an existing enhanced recovery or hydrocarbon storage well may not be...

  2. 40 CFR 147.1454 - Existing Class II enhanced recovery and hydrocarbon storage wells authorized by rule.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and hydrocarbon storage wells authorized by rule. 147.1454 Section 147.1454 Protection of Environment... UNDERGROUND INJECTION CONTROL PROGRAMS Nevada § 147.1454 Existing Class II enhanced recovery and hydrocarbon... determines that the owner or operator of an existing enhanced recovery or hydrocarbon storage well may not be...

  3. 40 CFR 147.1654 - Existing Class II enhanced recovery and hydrocarbon storage wells authorized by rule.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and hydrocarbon storage wells authorized by rule. 147.1654 Section 147.1654 Protection of Environment... UNDERGROUND INJECTION CONTROL PROGRAMS New York § 147.1654 Existing Class II enhanced recovery and hydrocarbon... the owner or operator of an existing enhanced recovery or hydrocarbon storage well may not be in...

  4. 40 CFR 147.1154 - Existing Class II enhanced recovery and hydrocarbon storage wells authorized by rule.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and hydrocarbon storage wells authorized by rule. 147.1154 Section 147.1154 Protection of Environment... UNDERGROUND INJECTION CONTROL PROGRAMS Michigan § 147.1154 Existing Class II enhanced recovery and hydrocarbon... determines that the owner or operator of an existing enhanced recovery or hydrocarbon storage will may not be...

  5. 40 CFR 147.1654 - Existing Class II enhanced recovery and hydrocarbon storage wells authorized by rule.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and hydrocarbon storage wells authorized by rule. 147.1654 Section 147.1654 Protection of Environment... UNDERGROUND INJECTION CONTROL PROGRAMS New York § 147.1654 Existing Class II enhanced recovery and hydrocarbon... the owner or operator of an existing enhanced recovery or hydrocarbon storage well may not be in...

  6. Membrane-assisted vapor stripping: energy efficient hybrid distillation-vapor permeation process for alcohol-water separation

    EPA Science Inventory

    BACKGROUND: Energy efficient alternatives to distillation for alcohol recovery from dilute solution are needed to improve biofuel sustainability. A process integrating steam stripping with a vapor compression step and a vapor permeation membrane separation step is proposed. The...

  7. 76 FR 20910 - Proposed Approval of Air Quality Implementation Plans; Indiana; Stage I Vapor Recovery Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... gasoline dispensing facilities more stringent by applying them statewide, making the rule applicable to... Emissions Standards for Hazardous Air Pollutants for gasoline dispensing facilities. The revisions also...

  8. Application of improved technology to a preprototype vapor compression distillation /VCD/ water recovery subsystem

    NASA Technical Reports Server (NTRS)

    Johnson, K. L.; Reysa, R. P.; Fricks, D. H.

    1981-01-01

    Vapor compression distillation (VCD) is considered the most efficient water recovery process for spacecraft application. This paper reports on a preprototype VCD which has undergone the most extensive operational and component development testing of any VCD subsystem to date. The component development effort was primarily aimed at eliminating corrosion and the need for lubrication, upgrading electronics, and substituting nonmetallics in key rotating components. The VCD evolution is documented by test results on specific design and/or materials changes. Innovations worthy of further investigation and additional testing are summarized for future VCD subsystem development reference. Conclusions on experience gained are presented.

  9. Water vapor diffusion membrane development. [for water recovery purposes onboard manned spacecraft

    NASA Technical Reports Server (NTRS)

    Tan, M. K.

    1974-01-01

    The phase separator component used as a membrane in the vapor diffusion process (VRD) for the recovery of potable water from urine on manned space missions of extended duration was investigated, with particular emphasis on cation-selective membranes because of their noted mechanical strength, superior resistance to acids, oxidants, and germicides, and their potential resistance to organic foulants. Two of the membranes were tested for 700 hours continuously, and were selected on the basis of criteria deemed important to an effective water reclamation system onboard spacecraft. The samples of urine were successfully processed by removing 93 percent of their water content in 70 hours using the selected membranes. Pretreatment with an acid-oxidant formulation improved product quality. Cation exchange membranes were shown to possess superior mechanical strength and chemical resistance, as compared to cellulosic membranes.

  10. A membrane-based subsystem for water-vapor recovery from plant-growth chambers

    NASA Technical Reports Server (NTRS)

    Ray, R. J.

    1992-01-01

    Bioregenerative systems--life-support systems to regenerate oxygen, food, and water--are the key to establishing man's permanent presence in space. NASA is investigating the use of plant-growth chambers (PGC's) for space missions and for bases on the moon and Mars. PGC's serve several important purposes, including the following: (1) oxygen and food production; (2) carbon-dioxide removal; and (3) water purification and reuse. The key to the successful development of PGC's is a system to recover and reuse the water vapor that is transpired by the leaves of the growing plants. In this program we propose to develop a simple, reliable, membrane-based system that allows the recovery, purification, and reuse of the transpired water vapor through control of temperature and humidity levels in the PGC. This system has characteristics that make it ideally suited to use in space: (1) minimal power requirements; (2) small volume and mass; (3) simplicity; (4) reliability; and (5) versatility. In Phase 1 we will do the following: (1) develop an accurate, predictive model of our temperature- and humidity-control system, based on parametric tests of membrane modules; and (2) use this model to design systems for selected PGC's. In Phase 2, we will seek to design, fabricate, test, and deliver a breadboard unit to NASA for testing on a PGC.

  11. 76 FR 20850 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Stage I Vapor Recovery Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... gasoline dispensing facilities more stringent by applying them statewide, making the rule applicable to... Emissions Standards for Hazardous Air Pollutants (NESHAPs) for gasoline dispensing facilities. The revisions... January 10, 2008, EPA issued new, more stringent National Regulations for Gasoline Dispensing Facilities...

  12. The Exploration Water Recovery System

    NASA Technical Reports Server (NTRS)

    ORourke, Mary Jane E.; Carter, Layne; Holder, Donald W.; Tomes, Kristin M.

    2006-01-01

    The Exploration Water Recovery System is designed towards fulfillment of NASA s Vision for Space Exploration, which will require elevation of existing technologies to higher levels of optimization. This new system, designed for application to the Exploration infrastructure, presents a novel combination of proven air and water purification technologies. The integration of unit operations is modified from that of the current state-of-the-art water recovery system so as to optimize treatment of the various waste water streams, contaminant loads, and flow rates. Optimization is achieved primarily through the removal of volatile organic contaminants from the vapor phase prior to their absorption into the liquid phase. In the current state-of-the-art system, the water vapor in the cabin atmosphere is condensed, and the volatile organic contaminants present in that atmosphere are absorbed into the aqueous phase. Removal of contaminants the5 occurs via catalytic oxidation in the liquid phase. Oxidation kinetics, however, dictate that removal of volatile organic contaminants from the vapor phase can inherently be more efficient than their removal from the aqueous phase. Taking advantage of this efficiency reduces the complexity of the water recovery system. This reduction in system complexity is accompanied by reductions in the weight, volume, power, and resupply requirements of the system. Vapor compression distillation technology is used to treat the urine, condensate, and hygiene waste streams. This contributes to the reduction in resupply, as incorporation of vapor compression distillation technology at this point in the process reduces reliance on the expendable ion exchange and adsorption media used in the current state-of-the-art water recovery system. Other proven technologies that are incorporated into the Exploration Water Recovery System include the Trace Contaminant Control System and the Volatile Removal Assembly.

  13. Pervaporation & Vapor Permeation Membrane Processes for the Selective Separation of Liquid and Vapor Mixtures

    EPA Science Inventory

    Pervaporation and vapor permeation are membrane-based processes which have been proposed as alternatives to conventional separation technologies. Applications range from organic solvent removal from water, ethanol or butanol recovery from dilute fermentation broths, solvent/biofu...

  14. Medicinal Cannabis: In Vitro Validation of Vaporizers for the Smoke-Free Inhalation of Cannabis.

    PubMed

    Lanz, Christian; Mattsson, Johan; Soydaner, Umut; Brenneisen, Rudolf

    2016-01-01

    Inhalation by vaporization is a promising application mode for cannabis in medicine. An in vitro validation of 5 commercial vaporizers was performed with THC-type and CBD-type cannabis. Gas chromatography/mass spectrometry was used to determine recoveries of total THC (THCtot) and total CBD (CBDtot) in the vapor. High-performance liquid chromatography with photodiode array detection was used for the quantitation of acidic cannabinoids in the residue and to calculate decarboxylation efficiencies. Recoveries of THCtot and CBDtot in the vapor of 4 electrically-driven vaporizers were 58.4 and 51.4%, 66.8 and 56.1%, 82.7 and 70.0% and 54.6 and 56.7% for Volcano Medic®, Plenty Vaporizer®, Arizer Solo® and DaVinci Vaporizer®, respectively. Decarboxylation efficiency was excellent for THC (≥ 97.3%) and CBD (≥ 94.6%). The gas-powered Vape-or-Smoke™ showed recoveries of THCtot and CBDtot in the vapor of 55.9 and 45.9%, respectively, and a decarboxylation efficiency of ≥ 87.7 for both cannabinoids. However, combustion of cannabis was observed with this device. Temperature-controlled, electrically-driven vaporizers efficiently decarboxylate inactive acidic cannabinoids and reliably release their corresponding neutral, active cannabinoids. Thus, they offer a promising application mode for the safe and efficient administration of medicinal cannabis.

  15. Water vapor diffusion membranes, 2

    NASA Technical Reports Server (NTRS)

    Holland, F. F.; Klein, E.; Smith, J. K.; Eyer, C.

    1976-01-01

    Transport mechanisms were investigated for the three different types of water vapor diffusion membranes. Membranes representing porous wetting and porous nonwetting structures as well as dense diffusive membrane structures were investigated for water permeation rate as a function of: (1) temperature, (2) solids composition in solution, and (3) such hydrodynamic parameters as sweep gas flow rate, solution flow rate and cell geometry. These properties were measured using nitrogen sweep gas to collect the effluent. In addition, the chemical stability to chromic acid-stabilized urine was measured for several of each type of membrane. A technology based on the mechanism of vapor transport was developed, whereby the vapor diffusion rates and relative susceptibility of membranes to fouling and failure could be projected for long-term vapor recovery trials using natural chromic acid-stabilized urine.

  16. Medicinal Cannabis: In Vitro Validation of Vaporizers for the Smoke-Free Inhalation of Cannabis

    PubMed Central

    Lanz, Christian; Mattsson, Johan; Soydaner, Umut; Brenneisen, Rudolf

    2016-01-01

    Inhalation by vaporization is a promising application mode for cannabis in medicine. An in vitro validation of 5 commercial vaporizers was performed with THC-type and CBD-type cannabis. Gas chromatography/mass spectrometry was used to determine recoveries of total THC (THCtot) and total CBD (CBDtot) in the vapor. High-performance liquid chromatography with photodiode array detection was used for the quantitation of acidic cannabinoids in the residue and to calculate decarboxylation efficiencies. Recoveries of THCtot and CBDtot in the vapor of 4 electrically-driven vaporizers were 58.4 and 51.4%, 66.8 and 56.1%, 82.7 and 70.0% and 54.6 and 56.7% for Volcano Medic®, Plenty Vaporizer®, Arizer Solo® and DaVinci Vaporizer®, respectively. Decarboxylation efficiency was excellent for THC (≥ 97.3%) and CBD (≥ 94.6%). The gas-powered Vape-or-Smoke™ showed recoveries of THCtot and CBDtot in the vapor of 55.9 and 45.9%, respectively, and a decarboxylation efficiency of ≥ 87.7 for both cannabinoids. However, combustion of cannabis was observed with this device. Temperature-controlled, electrically-driven vaporizers efficiently decarboxylate inactive acidic cannabinoids and reliably release their corresponding neutral, active cannabinoids. Thus, they offer a promising application mode for the safe and efficient administration of medicinal cannabis. PMID:26784441

  17. Pervaporation and Vapor Permeation Tutorial: Membrane Processes for the Selective Separation of Liquid and Vapor Mixtures

    EPA Science Inventory

    Pervaporation and vapor permeation are membrane-based processes proposed as alternatives to conventional separation technologies. Applications range from organic solvent removal from water, ethanol or butanol recovery from fermentation broths, solvent/biofuel dehydration to meet ...

  18. Development of an improved membrane for a vapor diffusion water recovery process. [onboard manned spacecraft

    NASA Technical Reports Server (NTRS)

    Rich, T. R.; Mix, T. W.

    1974-01-01

    Recovery of potable water from urine on manned space missions of extended duration was the objective of work aimed at the improvement of membrane performance for the vapor diffusion process (VDR). Kynar, Teflon, PVC, and polysulfone candidate membranes were evaluated from chemical, thermal, mechanical, and fabricating standpoints to determine their suitability for operation in the VDR pervaporation module. Pervaporation rates and other performance characteristics were determined in a breadboard pervaporator test rig. Kynar and Teflon membranes were demonstrated to be chemically stable at pervaporation temperatures in urine pretreated with chromic acid bactericide. The separation of the pervaporator and condenser modules, the use of a recirculating sweep gas to conduct pervaporate to the condenser, and the selection of a hollow fiber membrane configuration for pervaporator module design is recommended as a result of the investigation.

  19. Water vapor diffusion membranes

    NASA Technical Reports Server (NTRS)

    Holland, F. F., Jr.; Smith, J. K.

    1974-01-01

    The program is reported, which was designed to define the membrane technology of the vapor diffusion water recovery process and to test this technology using commercially available or experimental membranes. One membrane was selected, on the basis of the defined technology, and was subjected to a 30-day demonstration trial.

  20. Wash water recovery system

    NASA Technical Reports Server (NTRS)

    Deckman, G.; Rousseau, J. (Editor)

    1973-01-01

    The Wash Water Recovery System (WWRS) is intended for use in processing shower bath water onboard a spacecraft. The WWRS utilizes flash evaporation, vapor compression, and pyrolytic reaction to process the wash water to allow recovery of potable water. Wash water flashing and foaming characteristics, are evaluated physical properties, of concentrated wash water are determined, and a long term feasibility study on the system is performed. In addition, a computer analysis of the system and a detail design of a 10 lb/hr vortex-type water vapor compressor were completed. The computer analysis also sized remaining system components on the basis of the new vortex compressor design.

  1. Experimental Validation of Hybrid Distillation-Vapor Permeation Process for Energy Efficient Ethanol-Water Separation

    EPA Science Inventory

    The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation step...

  2. Experimental Validation of Hybrid Distillation-Vapor Permeation Process for Energy Efficient Ethanol-Water Separation

    EPA Science Inventory

    The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation step,...

  3. Thermal acidization and recovery process for recovering viscous petroleum

    DOEpatents

    Poston, Robert S.

    1984-01-01

    A thermal acidization and recovery process for increasing production of heavy viscous petroleum crude oil and synthetic fuels from subterranean hydrocarbon formations containing clay particles creating adverse permeability effects is described. The method comprises injecting a thermal vapor stream through a well bore penetrating such formations to clean the formation face of hydrocarbonaceous materials which restrict the flow of fluids into the petroleum-bearing formation. Vaporized hydrogen chloride is then injected simultaneously to react with calcium and magnesium salts in the formation surrounding the bore hole to form water soluble chloride salts. Vaporized hydrogen fluoride is then injected simultaneously with its thermal vapor to dissolve water-sensitive clay particles thus increasing permeability. Thereafter, the thermal vapors are injected until the formation is sufficiently heated to permit increased recovery rates of the petroleum.

  4. Efficient ethanol recovery from yeast fermentation broth with integrated distillation-membrane process

    EPA Science Inventory

    A hybrid process integrating vapor stripping with vapor compression and vapor permeation membrane separation, termed Membrane Assisted Vapor Stripping (MAVS), was evaluated for recovery and dehydration of ethanol from aqueous solution as an alternative to conventional distillatio...

  5. Numerical simulation of water injection into vapor-dominated reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruess, K.

    1995-01-01

    Water injection into vapor-dominated reservoirs is a means of condensate disposal, as well as a reservoir management tool for enhancing energy recovery and reservoir life. We review different approaches to modeling the complex fluid and heat flow processes during injection into vapor-dominated systems. Vapor pressure lowering, grid orientation effects, and physical dispersion of injection plumes from reservoir heterogeneity are important considerations for a realistic modeling of injection effects. An example of detailed three-dimensional modeling of injection experiments at The Geysers is given.

  6. ONSITE SOLVENT RECOVERY

    EPA Science Inventory

    This study evaluated the product quality, waste reduction/pollution prevention, and economic aspects of three technologies for onsite solvent recovery. The technologies were (1) atmospheric batch distillation, (2) vacuum heat-pump distillation, and (3) low-emission vapor degreas...

  7. Efficient ethanol recovery from fermentation broths with integrated distillation-membrane process

    EPA Science Inventory

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane separati...

  8. Catalytic distillation water recovery subsystem

    NASA Technical Reports Server (NTRS)

    Budininkas, P.; Rasouli, F.

    1985-01-01

    An integrated engineering breadboard subsystem for the recovery of potable water from untreated urine based on the vapor phase catalytic ammonia removal was designed, fabricated and tested. Unlike other evaporative methods, this process catalytically oxidizes ammonia and volatile hydrocarbons vaporizing with water to innocuous products; therefore, no pretreatment of urine is required. Since the subsystem is fabricated from commercially available components, its volume, weight and power requirements are not optimized; however, it is suitable for zero-g operation. The testing program consists of parametric tests, one month of daily tests and a continuous test of 168 hours duration. The recovered water is clear, odorless, low in ammonia and organic carbon, and requires only an adjustment of its pH to meet potable water standards. The obtained data indicate that the vapor phase catalytic ammonia removal process, if further developed, would also be competitive with other water recovery systems in weight, volume and power requirements.

  9. Gas Separation Using Organic-Vapor-Resistent Membranes In Conjunctin With Organic-Vapor-Selective Membranes

    DOEpatents

    Baker, Richard W.; Pinnau, Ingo; He, Zhenjie; Da Costa, Andre R.; Daniels, Ramin; Amo, Karl D.; Wijmans, Johannes G.

    2003-06-03

    A process for treating a gas mixture containing at least an organic compound gas or vapor and a second gas, such as natural gas, refinery off-gas or air. The process uses two sequential membrane separation steps, one using membrane selective for the organic compound over the second gas, the other selective for the second gas over the organic vapor. The second-gas-selective membranes use a selective layer made from a polymer having repeating units of a fluorinated polymer, and demonstrate good resistance to plasticization by the organic components in the gas mixture under treatment, and good recovery after exposure to liquid aromatic hydrocarbons. The membrane steps can be combined in either order.

  10. ON-SITE SOLVENT RECOVERY

    EPA Science Inventory

    This study evaluated the product quality, waste reduction/pollution prevention, and economic aspects of three technologies for onsite solvent recovery: atmospheric batch distillation, vacuum heat-pump distillation, and low-emission vapor degreasing. The atmospheric and vacuum ...

  11. Vapor-liquid equilibria for hydrogen fluoride + 1,1-difluoroethane at 288.23 and 298.35 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.; Kim, H.; Lim, J.S.

    1997-07-01

    Isothermal vapor-liquid equilibria for hydrogen fluoride + 1,1-difluoroethane at 288.23 and 298.35 K were measured using a circulation type apparatus equipped with an equilibrium view cell. The compositions of both vapor and liquid phases were analyzed by an on-line gas chromatographic method. They were compared with PTx equilibrium data measured by the total pressure method. The experimental data were correlated with Anderko`s equation of state using the Wong-Sandler mixing rule as well as the van der Waals one-fluid mixing rule. The Wong-Sandler mixing rule gives better results, and the relevant parameters are presented.

  12. Metal vapor arc switch electromagnetic accelerator technology

    NASA Technical Reports Server (NTRS)

    Mongeau, P. P.

    1984-01-01

    A multielectrode device housed in an insulator vacuum vessel, the metal vapor vacuum switch has high power capability and can hold off voltages up to the 100 kilovolt level. Such switches can be electronically triggered and can interrupt or commutate at a zero current crossing. The physics of arc initiation, arc conduction, and interruption are examined, including material considerations; inefficiencies; arc modes; magnetic field effects; passive and forced extinction; and voltage recovery. Heating, electrode lifetime, device configuration, and external circuit configuration are discussed. The metal vapor vacuum switch is compared with SCRs, GTOs, spark gaps, ignitrons, and mechanical breakers.

  13. Semi-empirical correlation for binary interaction parameters of the Peng-Robinson equation of state with the van der Waals mixing rules for the prediction of high-pressure vapor-liquid equilibrium.

    PubMed

    Fateen, Seif-Eddeen K; Khalil, Menna M; Elnabawy, Ahmed O

    2013-03-01

    Peng-Robinson equation of state is widely used with the classical van der Waals mixing rules to predict vapor liquid equilibria for systems containing hydrocarbons and related compounds. This model requires good values of the binary interaction parameter kij . In this work, we developed a semi-empirical correlation for kij partly based on the Huron-Vidal mixing rules. We obtained values for the adjustable parameters of the developed formula for over 60 binary systems and over 10 categories of components. The predictions of the new equation system were slightly better than the constant-kij model in most cases, except for 10 systems whose predictions were considerably improved with the new correlation.

  14. Climate and Ozone Response to Increased Stratospheric Water Vapor

    NASA Technical Reports Server (NTRS)

    Shindell, Drew T.

    2001-01-01

    Stratospheric water vapor abundance affects ozone, surface climate, and stratospheric temperatures. From 30-50 km altitude, temperatures show global decreases of 3-6 K over recent decades. These may be a proxy for water vapor increases, as the Goddard Institute for Space Studies (GISS) climate model reproduces these trends only when stratospheric water vapor is allowed to increase. Observations suggest that stratospheric water vapor is indeed increasing, however, measurements are extremely limited in either spatial coverage or duration. The model results suggest that the observed changes may be part of a global, long-term trend. Furthermore, the required water vapor change is too large to be accounted for by increased production within the stratosphere, suggesting that ongoing climate change may be altering tropospheric input. The calculated stratospheric water vapor increase contributes an additional approximately equals 24% (approximately equals 0.2 W/m(exp 2)) to the global warming from well-mixed greenhouse gases over the past two decades. Observed ozone depletion is also better reproduced when destruction due to increased water vapor is included. If the trend continues, it could increase future global warming and impede stratospheric ozone recovery.

  15. Combined Carbohydrate and Protein Ingestion During Australian Rules Football Matches and Training Sessions Does Not Reduce Fatigue or Accelerate Recovery Throughout a Weeklong Junior Tournament.

    PubMed

    Lee, Nathan A; Fell, James W; Pitchford, Nathan W; Hall, Andrew H; Leveritt, Michael D; Kitic, Cecilia M

    2018-02-01

    Lee, NA, Fell, JW, Pitchford, NW, Hall, AH, Leveritt, MD, and Kitic, CM. Combined carbohydrate and protein ingestion during Australian rules football matches and training sessions does not reduce fatigue or accelerate recovery throughout a weeklong junior tournament. J Strength Cond Res 32(2): 344-355, 2018-Australian rules football (ARF) is a physically demanding sport that can induce high levels of fatigue. Fatigue may be intensified during periods where multiple matches are played with limited recovery time. Combined carbohydrate and protein (CHO + PRO) intake during physical activity may provide performance and recovery benefits. The aim of this study was to investigate whether CHO + PRO ingestion during ARF matches and training sessions throughout a tournament would enhance performance or recovery in comparison with CHO-only ingestion. Australian rules football players (n = 21) competing in a 7-day national tournament participated in this randomized and double-blinded study. Beverages containing either CHO (n = 10) or CHO + PRO (n = 11) were provided during matches (day 1, day 4, and day 7) and training sessions (day 2 and day 3). Countermovement jumps (CMJs), ratings of muscle soreness, and autonomic function were assessed throughout the tournament. Gastrointestinal tract (GI) discomfort was measured after matches. Countermovement jump peak velocity increased in the CHO + PRO group (p = 0.01) but not in the CHO group. There were no differences in the other CMJ variables. In both groups, muscle soreness increased from days 0 and 1 to day 2 (p ≤ 0.05) but did not remain elevated. R-R intervals (time elapsed between successive peaks in QRS complexes) increased in both groups from day 1 to day 7 (mean difference = 59.85 ms, p < 0.01). Postmatch GI discomfort was not different (p > 0.05) between groups. When daily dietary protein is adequate (>1.8 g·kg·d), the ingestion of CHO + PRO during matches and training sessions throughout a tournament does not reduce

  16. Vapor etching of nuclear tracks in dielectric materials

    DOEpatents

    Musket, Ronald G.; Porter, John D.; Yoshiyama, James M.; Contolini, Robert J.

    2000-01-01

    A process involving vapor etching of nuclear tracks in dielectric materials for creating high aspect ratio (i.e., length much greater than diameter), isolated cylindrical holes in dielectric materials that have been exposed to high-energy atomic particles. The process includes cleaning the surface of the tracked material and exposing the cleaned surface to a vapor of a suitable etchant. Independent control of the temperatures of the vapor and the tracked materials provide the means to vary separately the etch rates for the latent track region and the non-tracked material. As a rule, the tracked regions etch at a greater rate than the non-tracked regions. In addition, the vapor-etched holes can be enlarged and smoothed by subsequent dipping in a liquid etchant. The 20-1000 nm diameter holes resulting from the vapor etching process can be useful as molds for electroplating nanometer-sized filaments, etching gate cavities for deposition of nano-cones, developing high-aspect ratio holes in trackable resists, and as filters for a variety of molecular-sized particles in virtually any liquid or gas by selecting the dielectric material that is compatible with the liquid or gas of interest.

  17. 75 FR 53153 - Federal Acquisition Regulation; American Recovery and Reinvestment Act of 2009 (the Recovery Act...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ...The Civilian Agency Acquisition Council and the Defense Acquisition Regulations Council (the Councils) have adopted as final, with changes, an interim rule amending the Federal Acquisition Regulation (FAR) to implement the American Recovery and Reinvestment Act of 2009 (Recovery Act) with respect to the ``Buy American--Recovery Act'' provision, section 1605 in Division A.

  18. Energy recovery from waste glycerol by utilizing thermal water vapor plasma.

    PubMed

    Tamošiūnas, Andrius; Valatkevičius, Pranas; Gimžauskaitė, Dovilė; Jeguirim, Mejdi; Mėčius, Vladas; Aikas, Mindaugas

    2017-04-01

    Glycerol, considered as a waste feedstock resulting from biodiesel production, has received much attention in recent years due to its properties, which offer to recover energy. The aim of this study was to investigate the use of a thermal water vapor plasma for waste (crude) glycerol conversion to synthesis gas, or syngas (H 2  + CO). In parallel of crude glycerol, a pure glycerol (99.5%) was used as a reference material in order to compare the concentrations of the formed product gas. A direct current (DC) arc plasma torch stabilized by a mixture of argon/water vapor was utilized for the effective glycerol conversion to hydrogen-rich synthesis gas. It was found that after waste glycerol treatment, the main reaction products were gases with corresponding concentrations of H 2 50.7%, CO 23.53%, CO 2 11.45%, and CH 4 3.82%, and traces of C 2 H 2 and C 2 H 6 , which concentrations were below 0.5%. The comparable concentrations of the formed gas products were obtained after pure glycerol conversion-H 2 46.4%, CO 26.25%, CO 2 11.3%, and CH 4 4.7%. The use of thermal water vapor plasma producing synthesis gas is an effective method to recover energy from both crude and pure glycerol. The performance of the glycerol conversion system was defined in terms of the produced gas yield, the carbon conversion efficiency, the cold gas efficiency, and the specific energy requirements.

  19. A Water Recovery System Evolved for Exploration

    NASA Technical Reports Server (NTRS)

    ORourke, Mary Jane E.; Perry, Jay L.; Carter, Donald L.

    2006-01-01

    A new water recovery system designed towards fulfillment of NASA's Vision for Space Exploration is presented. This water recovery system is an evolution of the current state-of-the-art system. Through novel integration of proven technologies for air and water purification, this system promises to elevate existing technology to higher levels of optimization. The novel aspect of the system is twofold: Volatile organic contaminants will be removed from the cabin air via catalytic oxidation in the vapor phase, prior to their absorption into the aqueous phase, and vapor compression distillation technology will be used to process the condensate and hygiene waste streams in addition to the urine waste stream. Oxidation kinetics dictate that removal of volatile organic contaminants from the vapor phase is more efficient. Treatment of the various waste streams by VCD will reduce the load on the expendable ion exchange and adsorption media which follow, and on the aqueous-phase volatile removal assembly further downstream. Incorporating these advantages will reduce the weight, volume, and power requirements of the system, as well as resupply.

  20. ZnO:Al Thin Film Gas Sensor for Detection of Ethanol Vapor

    PubMed Central

    Chou, Shih Min; Teoh, Lay Gaik; Lai, Wei Hao; Su, Yen Hsun; Hon, Min Hsiung

    2006-01-01

    The ZnO:Al thin films were prepared by RF magnetron sputtering on Si substrate using Pt as interdigitated electrodes. The structure was characterized by XRD and SEM analyses, and the ethanol vapor gas sensing as well as electrical properties have been investigated and discussed. The gas sensing results show that the sensitivity for detecting 400 ppm ethanol vapor was ∼20 at an operating temperature of 250°C. The high sensitivity, fast recovery, and reliability suggest that ZnO:Al thin film prepared by RF magnetron sputtering can be used for ethanol vapor gas sensing.

  1. A novel method for furfural recovery via gas stripping assisted vapor permeation by a polydimethylsiloxane membrane

    PubMed Central

    Hu, Song; Guan, Yu; Cai, Di; Li, Shufeng; Qin, Peiyong; Karim, M. Nazmul; Tan, Tianwei

    2015-01-01

    Furfural is an important platform chemical with a wide range of applications. However, due to the low concentration of furfural in the hydrolysate, the conventional methods for furfural recovery are energy-intensive and environmentally unfriendly. Considering the disadvantages of pervaporation (PV) and distillation in furfural separation, a novel energy-efficient ‘green technique’, gas stripping assisted vapor permeation (GSVP), was introduced in this work. In this process, the polydimethylsiloxane (PDMS) membrane was prepared by employing water as solvent. Coking in pipe and membrane fouling was virtually non-existent in this new process. In addition, GSVP was found to achieve the highest pervaporation separation index of 216200 (permeate concentration of 71.1 wt% and furfural flux of 4.09 kgm−2h−1) so far, which was approximately 2.5 times higher than that found in pervaporation at 95°C for recovering 6.0 wt% furfural from water. Moreover, the evaporation energy required for GSVP decreased by 35% to 44% relative to that of PV process. Finally, GSVP also displayed more promising potential in industrial application than PV, especially when coupled with the hydrolysis process or fermentation in biorefinery industry. PMID:25819091

  2. A novel method for furfural recovery via gas stripping assisted vapor permeation by a polydimethylsiloxane membrane

    NASA Astrophysics Data System (ADS)

    Hu, Song; Guan, Yu; Cai, Di; Li, Shufeng; Qin, Peiyong; Karim, M. Nazmul; Tan, Tianwei

    2015-03-01

    Furfural is an important platform chemical with a wide range of applications. However, due to the low concentration of furfural in the hydrolysate, the conventional methods for furfural recovery are energy-intensive and environmentally unfriendly. Considering the disadvantages of pervaporation (PV) and distillation in furfural separation, a novel energy-efficient `green technique', gas stripping assisted vapor permeation (GSVP), was introduced in this work. In this process, the polydimethylsiloxane (PDMS) membrane was prepared by employing water as solvent. Coking in pipe and membrane fouling was virtually non-existent in this new process. In addition, GSVP was found to achieve the highest pervaporation separation index of 216200 (permeate concentration of 71.1 wt% and furfural flux of 4.09 kgm-2h-1) so far, which was approximately 2.5 times higher than that found in pervaporation at 95°C for recovering 6.0 wt% furfural from water. Moreover, the evaporation energy required for GSVP decreased by 35% to 44% relative to that of PV process. Finally, GSVP also displayed more promising potential in industrial application than PV, especially when coupled with the hydrolysis process or fermentation in biorefinery industry.

  3. Performance Assessment of the Exploration Water Recovery System

    NASA Technical Reports Server (NTRS)

    Carter. D. Layne; Tabb, David; Perry, Jay

    2008-01-01

    A new water recovery system architecture designed to fulfill the National Aeronautics and Space Administration s (NASA) Space Exploration Policy has been tested at the Marshall Space Flight Center (MSFC). This water recovery system architecture evolved from the current state-of-the-art system developed for the International Space Station (ISS). Through novel integration of proven technologies for air and water purification, this system promises to elevate existing system optimization. The novel aspect of the system is twofold. First, volatile organic compounds (VOC) are removed from the cabin air via catalytic oxidation in the vapor phase, prior to their absorption into the aqueous phase. Second, vapor compression distillation (VCD) technology processes the condensate and hygiene waste streams in addition to the urine waste stream. Oxidation kinetics dictate that removing VOCs from the vapor phase is more efficient. Treating the various waste streams by VCD reduces the load on the expendable ion exchange and adsorption media which follows, as well as the aqueous-phase catalytic oxidation process further downstream. This paper documents the results of testing this new architecture.

  4. A new vapor-liquid equilibrium apparatus for hydrogen fluoride containing systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jongcheon Lee; Hwayong Kim; Jong Sung Lim

    1996-12-31

    A new circulating type apparatus has been constructed to obtain reliable equilibrium PTxy data for hydrogen fluoride (HF) containing system. Equilibrium cell with Pyrex windows protected by Teflon PFA sheets to prevent the corrosion was used. Isothermal vapor-liquid equilibrium data for the 1,1-difluoroethane (HFC-152a) + HF system at 288.23 and 298.35 K were obtained, and compared with PTx measurement results. Experimental data were correlated using Lencka and Anderko equation of state for HF with the Wong-Sandler mixing rule as well as the van der Waals one fluid mixing rule. The Wong-Sandler mixing rule gives better results. 5 refs., 3 figs.

  5. Louisiana SIP: LAC 33:III Ch 2132. Stage II Vapor Recovery Systems for Control of Vehicle Refuelling Emissions at Gasoline Dispensing Facilities; SIP effective 2011-08-04 (LAd34) and 2016-02-29 (LAd47) to 2017-09-27

    EPA Pesticide Factsheets

    Louisiana SIP: LAC 33:III Ch 2132. Stage II Vapor Recovery Systems for Control of Vehicle Refuelling Emissions at Gasoline Dispensing Facilities; SIP effective 2011-08-04 (LAd34) and 2016-02-29 (LAd47) to 2017-09-27

  6. Recovery of nonwetting characteristics by surface modification of gallium-based liquid metal droplets using hydrochloric acid vapor.

    PubMed

    Kim, Daeyoung; Thissen, Peter; Viner, Gloria; Lee, Dong-Weon; Choi, Wonjae; Chabal, Yves J; Lee, Jeong-Bong J B

    2013-01-01

    The applicability of gallium-based liquid metal alloy has been limited by the oxidation problem. In this paper, we report a simple method to remove the oxide layer on the surface of such alloy to recover its nonwetting characteristics, using hydrochloric acid (HCl) vapor. Through the HCl vapor treatment, we successfully restored the nonwetting characteristics of the alloy and suppressed its viscoelasticity. We analyzed the change of surface chemistry before and after the HCl vapor treatment using X-ray photoelectron spectroscopy (XPS) and low-energy ion-scattering spectroscopy (LEIS). Results showed that the oxidized surface of the commercial gallium-based alloy Galinstan (Ga(2)O(3) and Ga(2)O) was replaced with InCl(3) and GaCl(3) after the treatment. Surface tension and static contact angle on a Teflon-coated glass of the HCl-vapor-treated Galinstan were measured to be 523.8 mN/m and 152.5°. A droplet bouncing test was successfully carried out to demonstrate the nonwetting characteristics of the HCl-vapor-treated Galinstan. Finally, the stability of the transformed surface of the HCl-vapor-treated Galinstan was investigated by measuring the contact angle and LEIS spectra after reoxidation in an ambient environment.

  7. Aminosilicone solvent recovery methods and systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spiry, Irina Pavlovna; Perry, Robert James; Wood, Benjamin Rue

    The present invention is directed to aminosilicone solvent recovery methods and systems. The methods and systems disclosed herein may be used to recover aminosilicone solvent from a carbon dioxide containing vapor stream, for example, a vapor stream that leaves an aminosilicone solvent desorber apparatus. The methods and systems of the invention utilize a first condensation process at a temperature from about 80.degree. C. to about 150.degree. C. and a second condensation process at a temperature from about 5.degree. C. to about 75.degree. C. The first condensation process yields recovered aminosilicone solvent. The second condensation process yields water.

  8. Numerical analysis of heat and mass transfer for water recovery in an evaporative cooling tower

    NASA Astrophysics Data System (ADS)

    Lee, Hyunsub; Son, Gihun

    2017-11-01

    Numerical analysis is performed for water recovery in an evaporative cooling tower using a condensing heat exchanger, which consists of a humid air channel and an ambient dry air channel. The humid air including water vapor produced in an evaporative cooling tower is cooled by the ambient dry air so that the water vapor is condensed and recovered to the liquid water. The conservation equations of mass, momentum, energy and vapor concentration in each fluid region and the energy equation in a solid region are simultaneously solved with the heat and mass transfer boundary conditions coupled to the effect of condensation on the channel surface of humid air. The present computation demonstrates the condensed water film distribution on the humid air channel, which is caused by the vapor mass transfer between the humid air and the colder water film surface, which is coupled to the indirect heat exchange with the ambient air. Computations are carried out to predict water recovery rate in parallel, counter and cross-flow type heat exchangers. The effects of air flow rate and channel interval on the water recovery rate are quantified.

  9. 40 CFR 65.111 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Standards: Pressure relief devices in gas/vapor service. 65.111 Section 65.111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Equipment Leaks § 65.111 Standards...

  10. Development, evaluation and comparison of two independent sampling and analytical methods for ortho-phthalaldehyde vapors and condensation aerosols in air† ‡

    PubMed Central

    2015-01-01

    Two independent sampling and analytical methods for ortho-phthalaldehyde (OPA) in air have been developed, evaluated and compared (1) a reagent-coated solid sorbent HPLC-UV method and (2) an impinger-fluorescence method. In the first method, air sampling is conducted at 1.0 L min−1 with a sampler containing 350 mg of silica gel coated with 1 mg of acidified 2,4-dinitrophenylhydrazine (DNPH). After sampling, excess DNPH in ethyl acetate is added to the sampler prior to storage for 68 hours. The OPA-DNPH derivative is eluted with 4.0 mL of dimethyl sulfoxide (DMSO) for measurement by HPLC with a UV detector set at 3S5 nm. The estimated detection limit is 0.016 µg per sample or 0.067 µg m−3 (0.012 ppb) for a 240 L air sample. Recoveries of vapor spikes at levels of 1.2 to 6.2 µg were 96 to 101%. Recoveries of spikes as mixtures of vapor and condensation aerosols were 97 to 100%. In the second method, air sampling is conducted at 1.0 L mm−1 with a midget impinger containing 10 mL of DMSO solution containing N-acetyl-l-cysteine and ethylenediamine. The fluorescence reading is taken 80 min after the completion of air sampling. Since the time of taking the fluorescence reading is critical, the reading is taken with a portable fluorometer. The estimated detection limit is 0.024 µg per sample or 0.1 µg m−3 (0.018 ppb) for a 240 L air sample. Recoveries of OPA vapor spikes at levels of 1.4 to 5.0 µg per sample were 97 to 105%. Recoveries of spikes as mixtures of vapors and condensation aerosols were 95 to 99%. The collection efficiency for a mixture of vapor and condensation aerosol was 99.4%. The two methods were compared side-by-side in a generation system constructed for producing controlled atmospheres of OPA vapor in air. Average air concentrations of OPA vapor found by both methods agreed within ±10%. PMID:26346658

  11. Hybrid Vapor Stripping-Vapor Permeation Process for Recovery and Dehydration of 1-Butanol and Acetone/Butanol/Ethanol from Dilute Aqueous Solutions. Part 2. Experimental Validation with Simple Mixtures and Actual Fermentation Broth

    EPA Science Inventory

    BACKGROUND: In Part1 of this work, a process integrating vapor stripping, vapor compression, and a vapor permeation membrane separation step, Membrane Assisted Vapor Stripping (MAVS), was predicted to produce energy savings compared to traditional distillation systems for separat...

  12. Extended duration orbiter study: CO2 removal and water recovery

    NASA Technical Reports Server (NTRS)

    Marshall, R. D.; Ellis, G. S.; Schubert, F. H.; Wynveen, R. A.

    1979-01-01

    Two electrochemical depolarized carbon dioxide concentrator subsystems were evaluated against baseline lithium hydroxide for (1) the baseline orbiter when expanded to accommodate a crew of seven (mission option one), (2) an extended duration orbiter with a power extension package to reduce fuel cell expendables (mission option two), and (3) an extended duration orbiter with a full capability power module to eliminate fuel cell expendables (mission option three). The electrochemical depolarized carbon dioxide concentrator was also compared to the solid amine regenerable carbon dioxide removal concept. Water recovery is not required for Mission Option One since sufficient water is generated by the fuel cells. The vapor compression distillation subsystem was evaluated for mission option two and three only. Weight savings attainable using the vapor compression distillation subsystem for water recovery versus on-board water storage were determined. Combined carbon dioxide removal and water recovery was evaluated to determine the effect on regenerable carbon dioxide removal subsystem selection.

  13. ENHANCED PERVAPORATION SEPARATION EFFICIENCY VIA STAGED FRACTIONAL CONDENSATION (DEPHLEGMATION) OF PERMEATE VAPOR

    EPA Science Inventory

    In traditional pervaporation systems, the permeate vapor is completely condensed to obtain a liquid permeate stream. For example, in the recovery of ethanol from a 5-wt% aqueous stream (such as a biomass fermentation broth), the permeate from a silicone rubber pervaporation membr...

  14. Liquid-vapor rectilinear diameter revisited

    NASA Astrophysics Data System (ADS)

    Garrabos, Y.; Lecoutre, C.; Marre, S.; Beysens, D.; Hahn, I.

    2018-02-01

    In the modern theory of critical phenomena, the liquid-vapor density diameter in simple fluids is generally expected to deviate from a rectilinear law approaching the critical point. However, by performing precise scannerlike optical measurements of the position of the SF6 liquid-vapor meniscus, in an approach much closer to criticality in temperature and density than earlier measurements, no deviation from a rectilinear diameter can be detected. The observed meniscus position from far (10 K ) to extremely close (1 mK ) to the critical temperature is analyzed using recent theoretical models to predict the complete scaling consequences of a fluid asymmetry. The temperature dependence of the meniscus position appears consistent with the law of rectilinear diameter. The apparent absence of the critical hook in SF6 therefore seemingly rules out the need for the pressure scaling field contribution in the complete scaling theoretical framework in this SF6 analysis. More generally, this work suggests a way to clarify the experimental ambiguities in the simple fluids for the near-critical singularities in the density diameter.

  15. Integrated distillation-membrane process for bio-ethanol and bio-butanol recovery from actual fermentation broths: Separation energy efficiency and fate of secondary fermentation products

    EPA Science Inventory

    A hybrid process integrating vapor stripping with vapor compression and vapor permeation membrane separation, termed Membrane Assisted Vapor Stripping (MAVS), was evaluated for recovery and dehydration of ethanol and/or 1-butanol from aqueous solution as an alternative to convent...

  16. Thermodynamic models for vapor-liquid equilibria of nitrogen + oxygen + carbon dioxide at low temperatures

    NASA Astrophysics Data System (ADS)

    Vrabec, Jadran; Kedia, Gaurav Kumar; Buchhauser, Ulrich; Meyer-Pittroff, Roland; Hasse, Hans

    2009-02-01

    For the design and optimization of CO 2 recovery from alcoholic fermentation processes by distillation, models for vapor-liquid equilibria (VLE) are needed. Two such thermodynamic models, the Peng-Robinson equation of state (EOS) and a model based on Henry's law constants, are proposed for the ternary mixture N 2 + O 2 + CO 2. Pure substance parameters of the Peng-Robinson EOS are taken from the literature, whereas the binary parameters of the Van der Waals one-fluid mixing rule are adjusted to experimental binary VLE data. The Peng-Robinson EOS describes both binary and ternary experimental data well, except at high pressures approaching the critical region. A molecular model is validated by simulation using binary and ternary experimental VLE data. On the basis of this model, the Henry's law constants of N 2 and O 2 in CO 2 are predicted by molecular simulation. An easy-to-use thermodynamic model, based on those Henry's law constants, is developed to reliably describe the VLE in the CO 2-rich region.

  17. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery.

    PubMed

    Hu, H W; Tang, G H; Niu, D

    2016-06-07

    Recovery of both latent heat and condensate from boiler flue gas is significant for improving boiler efficiency and water conservation. The condensation experiments are carried out to investigate the simultaneous heat and mass transfer across the nanoporous ceramic membranes (NPCMs) which are treated to be hydrophilic and hydrophobic surfaces using the semicontinuous supercritical reactions. The effects of typical parameters including coolant flow rate, vapor/nitrogen gas mixture temperature, water vapor volume fraction and transmembrane pressure on heat and mass transfer performance are studied. The experimental results show that the hydrophilic NPCM exhibits higher performances of condensation heat transfer and condensate recovery. However, the hydrophobic modification results in remarkable degradation of heat and condensate recovery from the mixture. Molecular dynamics simulations are conducted to establish a hydrophilic/hydrophobic nanopore/water liquid system, and the infiltration characteristics of the single hydrophilic/hydrophobic nanopore is revealed.

  18. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery

    NASA Astrophysics Data System (ADS)

    Hu, H. W.; Tang, G. H.; Niu, D.

    2016-06-01

    Recovery of both latent heat and condensate from boiler flue gas is significant for improving boiler efficiency and water conservation. The condensation experiments are carried out to investigate the simultaneous heat and mass transfer across the nanoporous ceramic membranes (NPCMs) which are treated to be hydrophilic and hydrophobic surfaces using the semicontinuous supercritical reactions. The effects of typical parameters including coolant flow rate, vapor/nitrogen gas mixture temperature, water vapor volume fraction and transmembrane pressure on heat and mass transfer performance are studied. The experimental results show that the hydrophilic NPCM exhibits higher performances of condensation heat transfer and condensate recovery. However, the hydrophobic modification results in remarkable degradation of heat and condensate recovery from the mixture. Molecular dynamics simulations are conducted to establish a hydrophilic/hydrophobic nanopore/water liquid system, and the infiltration characteristics of the single hydrophilic/hydrophobic nanopore is revealed.

  19. Drying of pulverized material with heated condensible vapor

    DOEpatents

    Carlson, L.W.

    1984-08-16

    Apparatus for drying pulverized material utilizes a high enthalpy condensable vapor such as steam for removing moisture from the individual particles of the pulverized material. The initially wet particulate material is tangentially delivered by a carrier vapor flow to an upper portion of a generally vertical cylindrical separation drum. The lateral wall of the separation drum is provided with a plurality of flow guides for directing the vapor tangentially therein in the direction of particulate material flow. Positioned concentrically within the separation drum and along the longitudinal axis thereof is a water-cooled condensation cylinder which is provided with a plurality of collection plates, or fines, on the outer lateral surface thereof. The cooled collection fines are aligned counter to the flow of the pulverized material and high enthalpy vapor mixture to maximize water vapor condensation thereon. The condensed liquid which includes moisture removed from the pulverized materials then flows downward along the outer surface of the coolant cylinder and is collected and removed. The particles travel in a shallow helix due to respective centrifugal and vertical acceleration forces applied thereto. The individual particles of the pulverized material are directed outwardly by the vortex flow where they contact the inner cylindrical surface of the separation drum and are then deposited at the bottom thereof for easy collection and removal. The pulverized material drying apparatus is particularly adapted for drying coal fines and facilitates the recovery of the pulverized coal. 2 figs.

  20. Drying of pulverized material with heated condensible vapor

    DOEpatents

    Carlson, Larry W.

    1986-01-01

    Apparatus for drying pulverized material utilizes a high enthalpy condensable vapor such as steam for removing moisture from the individual particles of the pulverized material. The initially wet particulate material is tangentially delivered by a carrier vapor flow to an upper portion of a generally vertical cylindrical separation drum. The lateral wall of the separation drum is provided with a plurality of flow guides for directing the vapor tangentially therein in the direction of particulate material flow. Positioned concentrically within the separation drum and along the longitudinal axis thereof is a water-cooled condensation cylinder which is provided with a plurality of collection plates, or fins, on the outer lateral surface thereof. The cooled collection fins are aligned counter to the flow of the pulverized material and high enthalpy vapor mixture to maximize water vapor condensation thereon. The condensed liquid which includes moisture removed from the pulverized material then flows downward along the outer surface of the coolant cylinder and is collected and removed. The particles travel in a shallow helix due to respective centrifugal and vertical acceleration forces applied thereto. The individual particles of the pulverized material are directed outwardly by the vortex flow where they contact the inner cylindrical surface of the separation drum and are then deposited at the bottom thereof for easy collection and removal. The pulverized material drying apparatus is particularly adapted for drying coal fines and facilitates the recovery of the pulverized coal.

  1. Vapor Phase Catalytic Ammonia Reduction

    NASA Technical Reports Server (NTRS)

    Flynn, Michael T.; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    This paper discusses the development of a Vapor Phase Catalytic Ammonia Reduction (VPCAR) teststand and the results of an experimental program designed to evaluate the potential of the technology as a water purification process. In the experimental program the technology is evaluated based upon product water purity, water recovery rate, and power consumption. The experimental work demonstrates that the technology produces high purity product water and attains high water recovery rates at a relatively high specific power consumption. The experimental program was conducted in 3 phases. In phase I an Igepon(TM) soap and water mixture was used to evaluate the performance of an innovative Wiped-Film Rotating-Disk evaporator and associated demister. In phase II a phenol-water solution was used to evaluate the performance of the high temperature catalytic oxidation reactor. In phase III a urine analog was used to evaluate the performance of the combined distillation/oxidation functions of the processor.

  2. Role of Co-Vapors in Vapor Deposition Polymerization

    PubMed Central

    Lee, Ji Eun; Lee, Younghee; Ahn, Ki-Jin; Huh, Jinyoung; Shim, Hyeon Woo; Sampath, Gayathri; Im, Won Bin; Huh, Yang–Il; Yoon, Hyeonseok

    2015-01-01

    Polypyrrole (PPy)/cellulose (PPCL) composite papers were fabricated by vapor phase polymerization. Importantly, the vapor-phase deposition of PPy onto cellulose was assisted by employing different co-vapors namely methanol, ethanol, benzene, water, toluene and hexane, in addition to pyrrole. The resulting PPCL papers possessed high mechanical flexibility, large surface-to-volume ratio, and good redox properties. Their main properties were highly influenced by the nature of the co-vaporized solvent. The morphology and oxidation level of deposited PPy were tuned by employing co-vapors during the polymerization, which in turn led to change in the electrochemical properties of the PPCL papers. When methanol and ethanol were used as co-vapors, the conductivities of PPCL papers were found to have improved five times, which was likely due to the enhanced orientation of PPy chain by the polar co-vapors with high dipole moment. The specific capacitance of PPCL papers obtained using benzene, toluene, water and hexane co-vapors was higher than those of the others, which is attributed to the enlarged effective surface area of the electrode material. The results indicate that the judicious choice and combination of co-vapors in vapor-deposition polymerization (VDP) offers the possibility of tuning the morphological, electrical, and electrochemical properties of deposited conducting polymers. PMID:25673422

  3. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery

    PubMed Central

    Hu, H. W.; Tang, G. H.; Niu, D.

    2016-01-01

    Recovery of both latent heat and condensate from boiler flue gas is significant for improving boiler efficiency and water conservation. The condensation experiments are carried out to investigate the simultaneous heat and mass transfer across the nanoporous ceramic membranes (NPCMs) which are treated to be hydrophilic and hydrophobic surfaces using the semicontinuous supercritical reactions. The effects of typical parameters including coolant flow rate, vapor/nitrogen gas mixture temperature, water vapor volume fraction and transmembrane pressure on heat and mass transfer performance are studied. The experimental results show that the hydrophilic NPCM exhibits higher performances of condensation heat transfer and condensate recovery. However, the hydrophobic modification results in remarkable degradation of heat and condensate recovery from the mixture. Molecular dynamics simulations are conducted to establish a hydrophilic/hydrophobic nanopore/water liquid system, and the infiltration characteristics of the single hydrophilic/hydrophobic nanopore is revealed. PMID:27270997

  4. Development of a tritium recovery system from CANDU tritium removal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draghia, M.; Pasca, G.; Porcariu, F.

    2015-03-15

    The main purpose of the Tritium Recovery System (TRS) is to reduce to a maximum possible extent the release of tritium from the facility following a tritium release in confinement boundaries and also to have provisions to recover both elemental and vapors tritium from the purging gases during maintenance and components replacement from various systems processing tritium. This work/paper proposes a configuration of Tritium Recovery System wherein elemental tritium and water vapors are recovered in a separated, parallel manner. The proposed TRS configuration is a combination of permeators, a platinum microreactor (MR) and a trickle bed reactor (TBR) and consistsmore » of two branches: one branch for elemental tritium recovery from tritiated deuterium gas and the second one for tritium recovery from streams containing a significant amount of water vapours but a low amount, below 5%, of tritiated gas. The two branches shall work in a complementary manner in such a way that the bleed stream from the permeators shall be further processed in the MR and TBR in view of achieving the required decontamination level. A preliminary evaluation of the proposed TRS in comparison with state of the art tritium recovery system from tritium processing facilities is also discussed. (authors)« less

  5. Method for enhanced oil recovery

    DOEpatents

    Comberiati, Joseph R.; Locke, Charles D.; Kamath, Krishna I.

    1980-01-01

    The present invention is directed to an improved method for enhanced recovery of oil from relatively "cold" reservoirs by carbon dioxide flooding. In oil reservoirs at a temperature less than the critical temperature of 87.7.degree. F. and at a pore pressure greater than the saturation pressure of carbon dioxide at the temperature of the reservoir, the carbon dioxide remains in the liquid state which does not satisfactorily mix with the oil. However, applicants have found that carbon dioxide can be vaporized in situ in the reservoir by selectively reducing the pore pressure in the reservoir to a value less than the particular saturated vapor pressure so as to greatly enhance the mixing of the carbon dioxide with the oil.

  6. Pressure intelligent control strategy of Waste heat recovery system of converter vapors

    NASA Astrophysics Data System (ADS)

    Feng, Xugang; Wu, Zhiwei; Zhang, Jiayan; Qian, Hong

    2013-01-01

    The converter gas evaporative cooling system is mainly used for absorbing heat in the high temperature exhaust gas which produced by the oxygen blowing reaction. Vaporization cooling steam pressure control system of converter is a nonlinear, time-varying, lagging behind, close coupling of multivariable control object. This article based on the analysis of converter operation characteristics of evaporation cooling system, of vaporization in a production run of pipe pressure variation and disturbance factors.For the dynamic characteristics of the controlled objects,we have improved the conventional PID control scheme.In Oxygen blowing process, we make intelligent control by using fuzzy-PID cascade control method and adjusting the Lance,that it can realize the optimization of the boiler steam pressure control.By design simulation, results show that the design has a good control not only ensures drum steam pressure in the context of security, enabling efficient conversion of waste heat.And the converter of 1800 flue gas through pipes and cool and dust removal also can be cooled to about 800. Therefore the converter haze evaporative cooling system has achieved to the converter haze temperature decrease effect and enhanced to the coal gas returns-ratio.

  7. Alcohol vapor sensing by cadmium-doped zinc oxide thick films based chemical sensor

    NASA Astrophysics Data System (ADS)

    Zargar, R. A.; Arora, M.; Chackrabarti, S.; Ahmad, S.; Kumar, J.; Hafiz, A. K.

    2016-04-01

    Cadmium-doped zinc oxide nanoparticles were derived by simple chemical co-precipitation route using zinc acetate dihydrate and cadmium acetate dihydrate as precursor materials. The thick films were casted from chemical co-precipitation route prepared nanoparticles by economic facile screen printing method. The structural, morphological, optical and electrical properties of the film were characterized relevant to alcohol vapor sensing application by powder XRD, SEM, UV-VIS and DC conductivity techniques. The response and sensitivity of alcohol (ethanol) vapor sensor are obtained from the recovery curves at optimum working temperature range from 20∘C to 50∘C. The result shows that maximum sensitivity of the sensor is observed at 25∘C operating temperature. On varying alcohol vapor concentration, minor variation in resistance has been observed. The sensing mechanism of sensor has been described in terms of physical adsorption and chemical absorption of alcohol vapors on cadmium-doped zinc oxide film surface and inside film lattice network through weak hydrogen bonding, respectively.

  8. Method for the removal and recovery of mercury

    DOEpatents

    Easterly, Clay E.; Vass, Arpad A.; Tyndall, Richard L.

    1997-01-01

    The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

  9. Method for the removal and recovery of mercury

    DOEpatents

    Easterly, C.E.; Vass, A.A.; Tyndall, R.L.

    1997-01-28

    The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

  10. Design of the Brine Evaporation Bag for Increased Water Recovery in Microgravity

    NASA Technical Reports Server (NTRS)

    Hayden, Anna L.; Delzeit, Lance D.

    2015-01-01

    The existing water recovery system on the International Space Station (ISS) is limited to 75% reclamation; consequently, long duration space missions are currently unfeasible due to the large quantity of water necessary to sustain the crew. The Brine Evaporation Bag (BEB) is a proposed system to supplement the existing water recovery system aboard the ISS that can to increase water recovery to 99%. The largest barrier to high water recovery is mineral scaling inside the water recovery equipment, which leads to equipment failure; therefore, some water must remain to keep the minerals dissolved. This waste stream is liquid brine containing salts, acids, organics, and water. The BEB is designed to recover this remaining water while protecting the equipment from scale. The BEB consists of a sealed bag containing a hydrophobic membrane that allows water vapor and gas to pass through. It is operated under vacuum, heated, and continuously filled with brine to boil away the water. The water vapor is recovered and the solids are contained inside the bag for disposal. The BEB can dry the brine to a solid block. Ongoing work includes improving the design of the BEB and the evaporator to prevent leaks, maximize the rate of water removal, and minimize energy use and weight. Additional testing will determine whether designs are heat- or mass-transfer limited and the optimal water recovery rate.

  11. Analysis of a membrane-based condesate recovery heat exchanger (CRX)

    NASA Technical Reports Server (NTRS)

    Newbold, D.D.

    1993-01-01

    The development of a temperature and humidity control system that can remove heat and recover water vapor is key to the development of an Environmental Control and Life Support System (ECLSS). Large quantities of water vapor must be removed from air, and this operation has proven difficult in the absense of gravity. This paper presents the modeling results from a program to develop a novel membrane-based heat exchanger known as the condensate recovery heat exchanger (CRX). This device cools and dehumidifies humid air and simultaneously recovers water-vapor condensate. In this paper, the CRX is described and the results of an analysis of the heat- and mass-transfer characteristics of the device are given.

  12. Factsheet -- EPA’s Rule to Implement the Formaldehyde Standards for Composite Wood Products Act

    EPA Pesticide Factsheets

    This factsheet explains EPA's final rule to implement the Formaldehyde Standards for Composite Wood Products Act and reduce exposure to formaldehyde vapors from certain wood products produced domestically or imported into the United States.

  13. Assessment in rats of the reproductive toxicity of gasoline from a gasoline vapor recovery unit.

    PubMed

    McKee, R H; Trimmer, G W; Whitman, F T; Nessel, C S; Mackerer, C R; Hagemann, R; Priston, R A; Riley, A J; Cruzan, G; Simpson, B J; Urbanus, J H

    2000-01-01

    Gasoline (CAS 86290-81-5) is one of the world's largest volume commercial products. Although numerous toxicology studies have been conducted, the potential for reproductive toxicity has not been directly assessed. Accordingly, a two-generation reproductive toxicity study in rats was conducted to provide base data for hazard assessment and risk characterization. The test material, vapor recovery unit gasoline (68514-15-8), is the volatile fraction of formulated gasoline and the material with which humans are most likely to come in contact. The study was of standard design. Exposures were by inhalation at target concentrations of 5000, 10 000, and 20 000 mg/m(3). The highest exposure concentration was approximately 50% of the lower explosive limit and several orders of magnitude above anticipated exposure during refueling. There were no treatment-related clinical or systemic effects in the parental animals, and no microscopic changes other than hyaline droplet nephropathy in the kidneys of the male rats. None of the reproductive parameters were affected, and there were no deleterious effects on offspring survival and growth. The potential for endocrine modulation was also assessed by analysis of sperm count and quality as well as time to onset of developmental landmarks. No toxicologically important differences were found. Therefore, the NOAEL for reproductive toxicity in this study was > or =20 000 mg/m(3). The only systemic effects, in the kidneys of the male rats, were consistent with an alpha-2 u-globulin-mediated process. This is a male rat-specific effect and not relevant to human health risk assessment.

  14. Gas-particle partitioning of alcohol vapors on organic aerosols.

    PubMed

    Chan, Lap P; Lee, Alex K Y; Chan, Chak K

    2010-01-01

    Single particle levitation using an electrodynamic balance (EDB) has been found to give accurate and direct hygroscopic measurements (gas-particle partitioning of water) for a number of inorganic and organic aerosol systems. In this paper, we extend the use of an EDB to examine the gas-particle partitioning of volatile to semivolatile alcohols, including methanol, n-butanol, n-octanol, and n-decanol, on levitated oleic acid particles. The measured K(p) agreed with Pankow's absorptive partitioning model. At high n-butanol vapor concentrations (10(3) ppm), the uptake of n-butanol reduced the average molecular-weight of the oleic acid particle appreciably and hence increased the K(p) according to Pankow's equation. Moreover, the hygroscopicity of mixed oleic acid/n-butanol particles was higher than the predictions given by the UNIFAC model (molecular group contribution method) and the ZSR equation (additive rule), presumably due to molecular interactions between the chemical species in the mixed particles. Despite the high vapor concentrations used, these findings warrant further research on the partitioning of atmospheric organic vapors (K(p)) near sources and how collectively they affect the hygroscopic properties of organic aerosols.

  15. Effects of capillary heterogeneity on vapor-liquid counterflow in porous media

    NASA Astrophysics Data System (ADS)

    Stubos, A. K.; Satik, C.; Yortsos, Y. C.

    1992-06-01

    Based on a continuum description, the effect of capillary heterogeneity, induced by variation in permeability, on the steady state, countercurrent, vapor-liquid flow in porous media is analyzed. It is shown that the heterogeneity acts as a body force that may enhance or diminish gravity effects on heat pipes. Selection rules that determine the steady states reached in homogeneous, gravity-driven heat pipes are also formulated. It is shown that the 'infinite' two-phase zone may terminate by a substantial change in the permeability somewhere in the medium. The two possible sequences, liquid-liquid dominated-dry, or liquid-vapor dominated-dry find applications in geothermal systems. Finally, it is shown that although weak heterogeneity affects only gravity controlled flows, stronger variations in permeability can give rise to significant capillary effects.

  16. Development of a condenser for the dual catalyst water recovery system

    NASA Technical Reports Server (NTRS)

    Budinikas, P.; Rasouli, F.; Rabadi, N.

    1983-01-01

    Conceptual evaporation/condensation systems suitable for integration with the catalytic water recovery method were evaluated. The primary requirements for each concept were its capability to operate under zero-gravity conditions, condense recovered water from a vapor-noncondensable gas mixture, and integrate with the catalytic system. Specific energy requirements were estimated for concepts meeting the primary requirements, and the concept most suitable for integration with the catalytic system was proposed. A three-man rate condenser capable of integration with the proposed system, condensing water vapor in presence of noncondensables and transferring the heat of condensation to feed urine was designed, fabricated, and tested. It was treated with steam/air mixtures at atmospheric and elevated pressures and integrated with an actual catalytic water recovery system. The condenser has a condensation efficiency exceeding 90% and heat transfer rate of approximately 85% of theoretical value at coolant temperature ranging from 7 to 80 deg C.

  17. Reflux condensation of pure vapors with and without a noncondensable gas inside plain and enhanced tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelmessih, A.N.; Rabas, T.J.; Panchal, C.B.

    1997-06-01

    Estimates of the surface-area and vapor-release reductions are obtained when commercially available enhanced tubes (spirally ribbed) replace plain tubes in a reflux unit condensing pure organic vapors with different concentrations of a noncondensable gas. This investigation was undertaken because there are no existing data and/or prediction methods that are applicable for these shell-and-tube condensers commonly used in the process industries. To obtain these estimates, existing design methods published in the open literature were used. The major findings are that (1) surface-area reductions can almost approach the single-phase heat transfer enhancement level, and (2) vapor-release reductions can approach a factor ofmore » four. The important implication is that enhanced tubes appear to be very cost effective for addressing the recovery of volatile organic vapors (VOCs), and for a vast number of different reflux-condenser applications.« less

  18. Calibrated vapor generator source

    DOEpatents

    Davies, John P.; Larson, Ronald A.; Goodrich, Lorenzo D.; Hall, Harold J.; Stoddard, Billy D.; Davis, Sean G.; Kaser, Timothy G.; Conrad, Frank J.

    1995-01-01

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet.

  19. Calibrated vapor generator source

    DOEpatents

    Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.

    1995-09-26

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.

  20. 40 CFR 147.1953 - Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized by rule. 147.1953 Section 147.1953 Protection of... enhanced recovery and hydrocarbon storage) and III wells authorized by rule. Maximum injection pressure...

  1. 40 CFR 147.1953 - Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized by rule. 147.1953 Section 147.1953 Protection of... enhanced recovery and hydrocarbon storage) and III wells authorized by rule. Maximum injection pressure...

  2. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization whichmore » have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.« less

  3. Hybrid Vapor Compression Ejector Cycle: Presentation to IAPG Mechanical Working Group

    DTIC Science & Technology

    2011-08-01

    Compression Ejector Cycle: Presentation to IAPG Mechanical Working Group Parmesh Verma and Tom Radcliff, United Technologies Research Center UNCLASSIFIED... Ejector Cycle Presentation to IAPG Mechanical Working Group 5a. CONTRACT NUMBER W909MY-10-C-0005 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...hybrid vapor compression ejector heat pump cycle developed under an American Recovery and Reinvestment Act funded contract is provided. 15. SUBJECT

  4. DEMONSTRATION BULLETIN: IN SITU STEAM ENHANCED RECOVERY PROCESS - HUGHES ENVIRONMENTAL SYSTEMS, INC.

    EPA Science Inventory

    The Steam Enhanced Recovery Process (SERP) is designed to remove volatile compounds such as halogenated solvents and petroleum hydrocarbons, and semi-volatile compounds from contaminated soils in situ. The vapor pressures of most contaminants will increase by the addition of ste...

  5. 40 CFR 147.903 - Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized by rule. 147.903 Section 147.903 Protection of... recovery and hydrocarbon storage) and III wells authorized by rule. Maximum injection pressure. The owner...

  6. 40 CFR 147.1653 - Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized by rule. 147.1653 Section 147.1653 Protection of... recovery and hydrocarbon storage) and III wells authorized by rule. Maximum injection pressure. The owner...

  7. 40 CFR 147.303 - Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized by rule. 147.303 Section 147.303 Protection of... recovery and hydrocarbon storage) and III wells authorized by rule. Maximum injection pressure. The owner...

  8. 40 CFR 147.2153 - Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized by rule. 147.2153 Section 147.2153 Protection of... recovery and hydrocarbon storage) and III wells authorized by rule. Maximum injection pressure. The owner...

  9. 40 CFR 147.103 - Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized by rule. 147.103 Section 147.103 Protection of... recovery and hydrocarbon storage) and III wells authorized by rule. Maximum injection pressure. The owner...

  10. 40 CFR 147.903 - Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized by rule. 147.903 Section 147.903 Protection of... recovery and hydrocarbon storage) and III wells authorized by rule. Maximum injection pressure. The owner...

  11. 40 CFR 147.303 - Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized by rule. 147.303 Section 147.303 Protection of... recovery and hydrocarbon storage) and III wells authorized by rule. Maximum injection pressure. The owner...

  12. 40 CFR 147.253 - Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized by rule. 147.253 Section 147.253 Protection of... recovery and hydrocarbon storage) and III wells authorized by rule. Maximum injection pressure. The owner...

  13. 40 CFR 147.1353 - Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized by rule. 147.1353 Section 147.1353 Protection of... recovery and hydrocarbon storage) and III wells authorized by rule. Maximum injection pressure. The owner...

  14. 40 CFR 147.1453 - Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized by rule. 147.1453 Section 147.1453 Protection of... recovery and hydrocarbon storage) and III wells authorized by rule. Maximum injection pressure. The owner...

  15. 40 CFR 147.1153 - Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized by rule. 147.1153 Section 147.1153 Protection of... recovery and hydrocarbon storage) and III wells authorized by rule. Maximum injection pressure. The owner...

  16. 40 CFR 147.1353 - Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized by rule. 147.1353 Section 147.1353 Protection of... recovery and hydrocarbon storage) and III wells authorized by rule. Maximum injection pressure. The owner...

  17. 40 CFR 147.253 - Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized by rule. 147.253 Section 147.253 Protection of... recovery and hydrocarbon storage) and III wells authorized by rule. Maximum injection pressure. The owner...

  18. 40 CFR 147.103 - Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized by rule. 147.103 Section 147.103 Protection of... recovery and hydrocarbon storage) and III wells authorized by rule. Maximum injection pressure. The owner...

  19. 40 CFR 147.1653 - Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized by rule. 147.1653 Section 147.1653 Protection of... recovery and hydrocarbon storage) and III wells authorized by rule. Maximum injection pressure. The owner...

  20. 40 CFR 147.1153 - Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized by rule. 147.1153 Section 147.1153 Protection of... recovery and hydrocarbon storage) and III wells authorized by rule. Maximum injection pressure. The owner...

  1. 40 CFR 147.1453 - Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized by rule. 147.1453 Section 147.1453 Protection of... recovery and hydrocarbon storage) and III wells authorized by rule. Maximum injection pressure. The owner...

  2. 40 CFR 147.2153 - Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Existing Class I, II (except enhanced recovery and hydrocarbon storage) and III wells authorized by rule. 147.2153 Section 147.2153 Protection of... recovery and hydrocarbon storage) and III wells authorized by rule. Maximum injection pressure. The owner...

  3. Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus

    ERIC Educational Resources Information Center

    Battino, Rubin; Dolson, David A.; Hall, Michael A.; Letcher, Trevor M.

    2007-01-01

    A simple and inexpensive method to determine the enthalpy of vaporization of liquids by measuring vapor pressure as a function of temperature is described. The vapor pressures measured with the stopcock cell were higher than the literature values and those measured with the sidearm rubber septum cell were both higher and lower than literature…

  4. 77 FR 11127 - Medicaid Program; Announcement of Medicaid Recovery Audit Contractors (RACs) Contingency Fee Update

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ... Medicare Recovery Auditor. Further, we indicated in the final rule that we would make States aware of any... Medicare has increased the maximum contingency fee paid to Recovery Auditors by 5 percent for the recovery... highest fee paid to a Medicare Recovery Auditor, unless the State submits, and CMS approves, an exception...

  5. Petroleum Vapor Intrusion

    EPA Pesticide Factsheets

    One type of vapor intrusion is PVI, in which vapors from petroleum hydrocarbons such as gasoline, diesel, or jet fuel enter a building. Intrusion of contaminant vapors into indoor spaces is of concern.

  6. Preliminary evaluation of the role of K2S in MHD hot stream seed recovery

    NASA Technical Reports Server (NTRS)

    Bennett, J. E.; Kohl, F. J.

    1979-01-01

    Results are presented for recent analytical and experimental studies of the role of K2S in MHD hot stream seed recovery. The existing thermodynamic data base was found to contain large uncertainties and to be nonexistent for vapor phase K2S. Knudsen cell mass spectrometric experiments were undertaken to determine the vapor species in equilibrium with K2S(c). K atoms and S2 molecules ere found to be the major vapor phase species in vacuum, accounting for greater than 99 percent of the vapor phase. Combustion gas deposition studies using No. 2 Diesel fuel were also undertaken and revealed that condensed phase K2SO3 may potentially be an important compound in the MHD stream at near-stoichiometric combustion.

  7. A two-stage stochastic rule-based model to determine pre-assembly buffer content

    NASA Astrophysics Data System (ADS)

    Gunay, Elif Elcin; Kula, Ufuk

    2018-01-01

    This study considers instant decision-making needs of the automobile manufactures for resequencing vehicles before final assembly (FA). We propose a rule-based two-stage stochastic model to determine the number of spare vehicles that should be kept in the pre-assembly buffer to restore the altered sequence due to paint defects and upstream department constraints. First stage of the model decides the spare vehicle quantities, where the second stage model recovers the scrambled sequence respect to pre-defined rules. The problem is solved by sample average approximation (SAA) algorithm. We conduct a numerical study to compare the solutions of heuristic model with optimal ones and provide following insights: (i) as the mismatch between paint entrance and scheduled sequence decreases, the rule-based heuristic model recovers the scrambled sequence as good as the optimal resequencing model, (ii) the rule-based model is more sensitive to the mismatch between the paint entrance and scheduled sequences for recovering the scrambled sequence, (iii) as the defect rate increases, the difference in recovery effectiveness between rule-based heuristic and optimal solutions increases, (iv) as buffer capacity increases, the recovery effectiveness of the optimization model outperforms heuristic model, (v) as expected the rule-based model holds more inventory than the optimization model.

  8. 78 FR 59242 - Approval and Promulgation of Air Quality Implementation Plans; Utah; Maintenance Plan for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-26

    ... Nonattainment and Maintenance Areas and Utah and Weber Counties: Gasoline Transfer and Storage;'' R307-335...: Qualification of Contractors and Test Procedures for Vapor Recovery Systems for Gasoline Delivery Tanks.'' This... Counties: Gasoline Transfer and Storage; Rule R307-335, Ozone Nonattainment and [[Page 59249

  9. Proportional Recovery From Lower Limb Motor Impairment After Stroke.

    PubMed

    Smith, Marie-Claire; Byblow, Winston D; Barber, P Alan; Stinear, Cathy M

    2017-05-01

    In people with preserved corticospinal tract (CST) function after stroke, upper limb impairment resolves by ≈70% within 3 months. This is known as the proportional recovery rule. Patients without CST function do not fit this rule and have worse upper limb outcomes. This study investigated resolution of motor impairment in the lower limb (LL). Patients with stroke and LL weakness were assessed 3 days and 3 months after stroke with the LL Fugl-Meyer. CST integrity was determined in a subset of patients using transcranial magnetic stimulation to test for LL motor-evoked potentials and magnetic resonance imaging to measure CST lesion load. Linear regression analyses were conducted to predict resolution of motor impairment (ΔFugl-Meyer) including factors initial impairment, motor-evoked potential status, CST lesion load, and LL therapy dose. Thirty-two patients completed 3-month follow-up and recovered 74% (95% confidence interval, 60%-88%) of initial LL motor impairment. Initial impairment was the only significant predictor of resolution of motor impairment. There was no identifiable cluster of patients who did not fit the proportional recovery rule. Measures of CST integrity did not predict proportional LL recovery. LL impairment resolves by ≈70% within 3 months after stroke. The absence of a nonfitter group may be because of differences in the neuroanatomical organization of descending motor tracts to the upper limb and LL. Proportional recovery of the LL is not influenced by therapy dose providing further evidence that it reflects a fundamental biological process. © 2017 American Heart Association, Inc.

  10. Vapor phase pyrolysis

    NASA Technical Reports Server (NTRS)

    Steurer, Wolfgang

    1992-01-01

    The vapor phase pyrolysis process is designed exclusively for the lunar production of oxygen. In this concept, granulated raw material (soil) that consists almost entirely of metal oxides is vaporized and the vapor is raised to a temperature where it dissociates into suboxides and free oxygen. Rapid cooling of the dissociated vapor to a discrete temperature causes condensation of the suboxides, while the oxygen remains essentially intact and can be collected downstream. The gas flow path and flow rate are maintained at an optimum level by control of the pressure differential between the vaporization region and the oxygen collection system with the aid of the environmental vacuum.

  11. Hybrid Vapor Stripping-Vapor Permeation Process for Recovery and Dehydration of 1-Butanol and Acetone/Butanol/Ethanol from Dilute Aqueous Solutions. Part 1. Process Simulations

    EPA Science Inventory

    BACKGROUND: Fermentative production of butanol is limited to low concentrations, typically less than 2 wt% solvent, due to product inhibition. The result is high separation energy demand by conventional distillation approaches, despite favorable vapor-liquid equilibrium and parti...

  12. In situ separation of root hydraulic redistribution of soil water from liquid and vapor transport

    Treesearch

    Jeffrey M. Warren; J. Renée Brooks; Maria I. Dragila; Frederick C. Meinzer

    2011-01-01

    Nocturnal increases in water potential and water content in the upper soil profile are often attributed to root water efflux, a process termed hydraulic redistribution (HR). However, unsaturated liquid or vapor flux of water between soil layers independent of roots also contributes to the daily recovery in water content, confounding efforts to determine the actual...

  13. Vapor Bubbles

    NASA Astrophysics Data System (ADS)

    Prosperetti, Andrea

    2017-01-01

    This article reviews the fundamental physics of vapor bubbles in liquids. Work on bubble growth and condensation for stationary and translating bubbles is summarized and the differences with bubbles containing a permanent gas stressed. In particular, it is shown that the natural frequency of a vapor bubble is proportional not to the inverse radius, as for a gas bubble, but to the inverse radius raised to the power 2/3. Permanent gas dissolved in the liquid diffuses into the bubble with strong effects on its dynamics. The effects of the diffusion of heat and mass on the propagation of pressure waves in a vaporous bubbly liquid are discussed. Other topics briefly touched on include thermocapillary flow, plasmonic nanobubbles, and vapor bubbles in an immiscible liquid.

  14. 47 CFR 64.1515 - Recovery of costs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Recovery of costs. 64.1515 Section 64.1515 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) MISCELLANEOUS RULES RELATING TO COMMON CARRIERS Interstate Pay-Per-Call and Other Information Services § 64.1515...

  15. Vacuum vapor deposition

    NASA Technical Reports Server (NTRS)

    Poorman, Richard M. (Inventor); Weeks, Jack L. (Inventor)

    1995-01-01

    A method and apparatus is described for vapor deposition of a thin metallic film utilizing an ionized gas arc directed onto a source material spaced from a substrate to be coated in a substantial vacuum while providing a pressure differential between the source and the substrate so that, as a portion of the source is vaporized, the vapors are carried to the substrate. The apparatus includes a modified tungsten arc welding torch having a hollow electrode through which a gas, preferably inert, flows and an arc is struck between the electrode and the source. The torch, source, and substrate are confined within a chamber within which a vacuum is drawn. When the arc is struck, a portion of the source is vaporized and the vapors flow rapidly toward the substrate. A reflecting shield is positioned about the torch above the electrode and the source to ensure that the arc is struck between the electrode and the source at startup. The electrode and the source may be confined within a vapor guide housing having a duct opening toward the substrate for directing the vapors onto the substrate.

  16. Pathogenesis of Acute and Delayed Corneal Lesions After Ocular Exposure to Sulfur Mustard Vapor

    DTIC Science & Technology

    2012-03-01

    using a vapor cup delivery system. The transition from acute to delayed injury was characterized by clinical, histological, and ultrastructural metrics...These data demonstrate a system-based approach combining ultrastructural analysis , histochemistry, and molecular evaluation that links architectural...predictive of the 11% of corneas that underwent asymptomatic recovery. Ultrastructural comparison of asymptomatic and MGK corneas at 8 weeks indicates that MGK

  17. Probe for measurement of velocity and density of vapor in vapor plume

    DOEpatents

    Berzins, Leon V.; Bratton, Bradford A.; Fuhrman, Paul W.

    1997-01-01

    A probe which directs a light beam through a vapor plume in a first direction at a first angle ranging from greater than 0.degree. to less than 90.degree., reflecting the light beam back through the vapor plume at a 90.degree. angle, and then reflecting the light beam through the vapor plume a third time at a second angle equal to the first angle, using a series of mirrors to deflect the light beam while protecting the mirrors from the vapor plume with shields. The velocity, density, temperature and flow direction of the vapor plume may be determined by a comparison of the energy from a reference portion of the beam with the energy of the beam after it has passed through the vapor plume.

  18. 40 CFR 144.22 - Existing Class II enhanced recovery and hydrocarbon storage wells.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and hydrocarbon storage wells. 144.22 Section 144.22 Protection of Environment ENVIRONMENTAL... of Underground Injection by Rule § 144.22 Existing Class II enhanced recovery and hydrocarbon storage wells. (a) An existing Class II enhanced recovery or hydrocarbon storage injection well is authorized by...

  19. 40 CFR 144.22 - Existing Class II enhanced recovery and hydrocarbon storage wells.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and hydrocarbon storage wells. 144.22 Section 144.22 Protection of Environment ENVIRONMENTAL... of Underground Injection by Rule § 144.22 Existing Class II enhanced recovery and hydrocarbon storage wells. (a) An existing Class II enhanced recovery or hydrocarbon storage injection well is authorized by...

  20. Vapor Intrusion

    EPA Pesticide Factsheets

    Vapor intrusion occurs when there is a migration of volatile chemicals from contaminated groundwater or soil into an overlying building. Volatile chemicals can emit vapors that may migrate through subsurface soils and into indoor air spaces.

  1. Study of Hydrogen Recovery Systems for Gas Vented While Refueling Liquid-Hydrogen Fueled Aircraft

    NASA Technical Reports Server (NTRS)

    Baker, C. R.

    1979-01-01

    Methods of capturing and reliquefying the cold hydrogen vapor produced during the fueling of aircraft designed to utilize liquid hydrogen fuel were investigated. An assessment of the most practical, economic, and energy efficient of the hydrogen recovery methods is provided.

  2. Association between post-game recovery protocols, physical and perceived recovery, and performance in elite Australian Football League players.

    PubMed

    Bahnert, Andrew; Norton, Kevin; Lock, Phillip

    2013-03-01

    To determine the associations between post-game recovery protocols and physical and perceptual recovery, and game performance in Australian Football League players. A longitudinal quasi-experimental study design was used across a season. A full squad of 44 footballers was monitored weekly across a 23-game season. Players were required to choose from a number of recovery modalities available immediately post-game. These included floor stretching, pool stretching, bike active recovery, pool active recovery, cold-water immersion, contrast therapy and use of a compression garment. Perceptual measures of recovery were recorded throughout the week and a test of physical performance was conducted two days post-game. Game performance ratings were also recorded. The associations between the post-game recovery protocols chosen and players' perceived recovery, and physical and game performances were determined by the association rule data-mining strategy. Statistically significant associations were found between a number of post-game recovery protocols and perceptual recovery. In general, players who chose cold-water immersion, floor stretching, no active recovery (neither bike or pool) and the use of a compression garment post-game, had an increased probability of reporting greater perceptual recovery across the following week, relative to all other permutations of recovery protocols chosen. There were no associations found between post-game recovery protocol combinations and physical recovery. No associations were found between the post-game recovery methods and the next game performance. Perceptual recovery among players was enhanced through the selection of specific combinations of recovery protocols post game. However, no links were found between recovery protocols and physical or game performance measures. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  3. Probe for measurement of velocity and density of vapor in vapor plume

    DOEpatents

    Berzins, L.V.; Bratton, B.A.; Fuhrman, P.W.

    1997-03-11

    A probe is disclosed which directs a light beam through a vapor plume in a first direction at a first angle ranging from greater than 0{degree} to less than 90{degree}, reflecting the light beam back through the vapor plume at a 90{degree} angle, and then reflecting the light beam through the vapor plume a third time at a second angle equal to the first angle, using a series of mirrors to deflect the light beam while protecting the mirrors from the vapor plume with shields. The velocity, density, temperature and flow direction of the vapor plume may be determined by a comparison of the energy from a reference portion of the beam with the energy of the beam after it has passed through the vapor plume. 10 figs.

  4. Method and apparatus for producing thermal vapor stream

    DOEpatents

    Cradeur, Robert R.; Sperry, John S.; Krajicek, Richard W.

    1979-01-01

    Method and apparatus for producing a thermal vapor stream for injecting into a subterranean formation for the recovery of liquefiable minerals therefrom, including a pressure vessel containing a high pressure combustion chamber for producing a heating gas for introduction into a heating gas injector. The heating gas injector is partly immersed in a steam generating section of the pressure vessel such that the heating gas is passed through the steam generating section to produce steam and combustion products which are directed between the pressure vessel and the combustion chamber for simultaneously cooling of the combustion chamber by further heating of the steam and combustion gases.

  5. BTSC VAPOR INSTRUSION PRIMER "VAPOR INTRUSION CONSIDERATION FOR REDEVELOPMENT"

    EPA Science Inventory

    This primer is designed for brownfields stakeholders concerned about vapor intrusion, including property owners, real estate developers, and contractors performing environmental site investigations. It provides an overview of the vapor intrusion issue and how it can impact the ap...

  6. The morphologic changes in lamellar bodies and intercorneocyte lipids after tape stripping and occlusion with a water vapor-impermeable membrane.

    PubMed

    Jiang, S; Koo, S W; Lee, S H

    1998-03-01

    It has been reported that artificial restoration of barrier function by a water vapor-impermeable membrane after tape stripping induces barrier abrogation in hairless mice, impeding rather than enhancing barrier recovery. To address this issue, we examined the morphologic changes in the epidermis after tape stripping and occlusion with a water vapor-impermeable membrane in murine skin. Male hairless mice were used for all studies of barrier perturbation and occlusion. Barrier disruption was achieved by repeated application of cellophane tape. Immediately after tape stripping the animals were wrapped in a tightly fitting water vapor-impermeable membrane. Transepidermal water loss (TEWL) was measured 20 min after tape stripping and 14, 24, 36, 48 and 60 h after occlusion. For electron microscopy the samples were treated with osmium tetroxide (OsO4) or ruthenium tetroxide (RuO4). When tape-stripped animals were wrapped in a water vapor-impermeable membrane, thereby preventing water flux, barrier function did not recover normally. These results demonstrate that an artificial block to TEWL with an impermeable membrane did not enhance barrier recovery. By electron microscopy many transitional cells and lacunae of various sizes were seen within the intercellular spaces of the stratum corneum after occlusion following tape stripping. Occlusion also caused alterations in both lipid lamellar membrane structures in the stratum corneum interstices and the lamellar bodies in the cytosol of granulocytes and transitional cells. Secreted lamellar body contents also appeared to be abnormal in the stratum corneum-stratum granulosum junction.

  7. Experimental study of flash boiling spray vaporization through quantitative vapor concentration and liquid temperature measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Gaoming; Hung, David L. S.; Xu, Min

    2014-08-01

    Flash boiling sprays of liquid injection under superheated conditions provide the novel solutions of fast vaporization and better air-fuel mixture formation for internal combustion engines. However, the physical mechanisms of flash boiling spray vaporization are more complicated than the droplet surface vaporization due to the unique bubble generation and boiling process inside a superheated bulk liquid, which are not well understood. In this study, the vaporization of flash boiling sprays was investigated experimentally through the quantitative measurements of vapor concentration and liquid temperature. Specifically, the laser-induced exciplex fluorescence technique was applied to distinguish the liquid and vapor distributions. Quantitative vapor concentration was obtained by correlating the intensity of vapor-phase fluorescence with vapor concentration through systematic corrections and calibrations. The intensities of two wavelengths were captured simultaneously from the liquid-phase fluorescence spectra, and their intensity ratios were correlated with liquid temperature. The results show that both liquid and vapor phase of multi-hole sprays collapse toward the centerline of the spray with different mass distributions under the flash boiling conditions. Large amount of vapor aggregates along the centerline of the spray to form a "gas jet" structure, whereas the liquid distributes more uniformly with large vortexes formed in the vicinity of the spray tip. The vaporization process under the flash boiling condition is greatly enhanced due to the intense bubble generation and burst. The liquid temperature measurements show strong temperature variations inside the flash boiling sprays with hot zones present in the "gas jet" structure and vortex region. In addition, high vapor concentration and closed vortex motion seem to have inhibited the heat and mass transfer in these regions. In summary, the vapor concentration and liquid temperature provide detailed information

  8. Stratospheric water vapor feedback.

    PubMed

    Dessler, A E; Schoeberl, M R; Wang, T; Davis, S M; Rosenlof, K H

    2013-11-05

    We show here that stratospheric water vapor variations play an important role in the evolution of our climate. This comes from analysis of observations showing that stratospheric water vapor increases with tropospheric temperature, implying the existence of a stratospheric water vapor feedback. We estimate the strength of this feedback in a chemistry-climate model to be +0.3 W/(m(2)⋅K), which would be a significant contributor to the overall climate sensitivity. One-third of this feedback comes from increases in water vapor entering the stratosphere through the tropical tropopause layer, with the rest coming from increases in water vapor entering through the extratropical tropopause.

  9. Stratospheric water vapor feedback

    PubMed Central

    Dessler, A. E.; Schoeberl, M. R.; Wang, T.; Davis, S. M.; Rosenlof, K. H.

    2013-01-01

    We show here that stratospheric water vapor variations play an important role in the evolution of our climate. This comes from analysis of observations showing that stratospheric water vapor increases with tropospheric temperature, implying the existence of a stratospheric water vapor feedback. We estimate the strength of this feedback in a chemistry–climate model to be +0.3 W/(m2⋅K), which would be a significant contributor to the overall climate sensitivity. One-third of this feedback comes from increases in water vapor entering the stratosphere through the tropical tropopause layer, with the rest coming from increases in water vapor entering through the extratropical tropopause. PMID:24082126

  10. Cost analysis of water recovery systems

    NASA Technical Reports Server (NTRS)

    Yakut, M. M.

    1973-01-01

    A methodology was developed to predict the relevant contributions of the more intangible cost elements encountered in the development of flight-qualified hardware based on an extrapolation of past hardware development experience. Major items of costs within water recovery systems were identified and related to physical and/or performance criteria. Cost and performance data from Gemini, Skylab, and other aerospace and biotechnology programs were analyzed to identify major cost elements required to establish cost estimating relationships for advanced water recovery systems. The results of the study are expected to assist NASA in long-range planning and allocation of resources in a cost effective manner in support of earth orbital programs. This report deals with the cost analysis of the five leading water reclamation systems, namely: (1) RITE waste management-water system, (2) reverse osmosis system, (3) multifiltration system, (4) vapor compression system, and (5) closed air evaporation system with electrolytic pretreatment.

  11. Energy recovery system using an organic rankine cycle

    DOEpatents

    Ernst, Timothy C

    2013-10-01

    A thermodynamic system for waste heat recovery, using an organic rankine cycle is provided which employs a single organic heat transferring fluid to recover heat energy from two waste heat streams having differing waste heat temperatures. Separate high and low temperature boilers provide high and low pressure vapor streams that are routed into an integrated turbine assembly having dual turbines mounted on a common shaft. Each turbine is appropriately sized for the pressure ratio of each stream.

  12. Health assessment of gasoline and fuel oxygenate vapors: subchronic inhalation toxicity.

    PubMed

    Clark, Charles R; Schreiner, Ceinwen A; Parker, Craig M; Gray, Thomas M; Hoffman, Gary M

    2014-11-01

    Sprague Dawley rats were exposed via inhalation to vapor condensates of either gasoline or gasoline combined with various fuel oxygenates to assess whether their use in gasoline influences the hazard of evaporative emissions. Test substances included vapor condensates prepared from an EPA described "baseline gasoline" (BGVC), or gasoline combined with methyl tertiary butyl ether (G/MTBE), ethyl t-butyl ether (G/ETBE), t-amyl methyl ether (G/TAME), diisopropyl ether (G/DIPE), ethanol (G/EtOH), or t-butyl alcohol (G/TBA). Target concentrations were 0, 2000, 10,000 or 20,000mg/m(3) and exposures were for 6h/day, 5days/week for 13weeks. A portion of the animals were maintained for a four week recovery period to determine the reversibility of potential adverse effects. Increased kidney weight and light hydrocarbon nephropathy (LHN) were observed in treated male rats in all studies which were reversible or nearly reversible after 4weeks recovery. LHN is unique to male rats and is not relevant to human toxicity. The no observed effect level (NOAEL) in all studies was 10,000mg/m(3), except for G/MTBE (<2000) and G/TBA (2000). The results provide evidence that use of the studied oxygenates are unlikely to increase the hazard of evaporative emissions during refueling, compared to those from gasoline alone. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Method and apparatus for vapor detection

    NASA Technical Reports Server (NTRS)

    Lerner, Melvin (Inventor); Hood, Lyal V. (Inventor); Rommel, Marjorie A. (Inventor); Pettitt, Bruce C. (Inventor); Erikson, Charles M. (Inventor)

    1980-01-01

    The method disclosed herein may be practiced by passing the vapors to be sampled along a path with halogen vapor, preferably chlorine vapor, heating the mixed vapors to halogenate those of the sampled vapors subject to halogenation, removing unreacted halogen vapor, and then sensing the vapors for organic halogenated compounds. The apparatus disclosed herein comprises means for flowing the vapors, both sample and halogen vapors, into a common path, means for heating the mixed vapors to effect the halogenation reaction, means for removing unreacted halogen vapor, and a sensing device for sensing halogenated compounds. By such a method and means, the vapors of low molecular weight hydrocarbons, ketones and alcohols, when present, such as methane, ethane, acetone, ethanol, and the like are converted, at least in part, to halogenated compounds, then the excess halogen removed or trapped, and the resultant vapors of the halogenated compounds sensed or detected. The system is highly sensitive. For example, acetone in a concentration of 30 parts per billion (volume) is readily detected.

  14. Analysis of Water Recovery Rate from the Heat Melt Compactor

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Hegde, U.; Gokoglu, S.

    2013-01-01

    Human space missions generate trash with a substantial amount of plastic (20% or greater by mass). The trash also contains water trapped in food residue and paper products and other trash items. The Heat Melt Compactor (HMC) under development by NASA Ames Research Center (ARC) compresses the waste, dries it to recover water and melts the plastic to encapsulate the compressed trash. The resulting waste disk or puck represents an approximately ten-fold reduction in the volume of the initial trash loaded into the HMC. In the current design concept being pursued, the trash is compressed by a piston after it is loaded into the trash chamber. The piston face, the side walls of the waste processing chamber and the end surface in contact with the waste can be heated to evaporate the water and to melt the plastic. Water is recovered by the HMC in two phases. The first is a pre-process compaction without heat or with the heaters initially turned on but before the waste heats up. Tests have shown that during this step some liquid water may be expelled from the chamber. This water is believed to be free water (i.e., not bound with or absorbed in other waste constituents) that is present in the trash. This phase is herein termed Phase A of the water recovery process. During HMC operations, it is desired that liquid water recovery in Phase A be eliminated or minimized so that water-vapor processing equipment (e.g., condensers) downstream of the HMC are not fouled by liquid water and its constituents (i.e., suspended or dissolved matter) exiting the HMC. The primary water recovery process takes place next where the trash is further compacted while the heated surfaces reach their set temperatures for this step. This step will be referred to herein as Phase B of the water recovery process. During this step the waste chamber may be exposed to different selected pressures such as ambient, low pressure (e.g., 0.2 atm), or vacuum. The objective for this step is to remove both bound and

  15. Federal Register Notice: Final Rule Establishing Consolidated Permit Program Requirements Under Several Environmental Statutes

    EPA Pesticide Factsheets

    This final rule establishes consolidated permit program requirements governing the Hazardous Waste Management program under the Resource Conservation and Recovery Act (RCRA) and other related programs.

  16. Design Rules for Life Support Systems

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2002-01-01

    This paper considers some of the common assumptions and engineering rules of thumb used in life support system design. One general design rule is that the longer the mission, the more the life support system should use recycling and regenerable technologies. A more specific rule is that, if the system grows more than half the food, the food plants will supply all the oxygen needed for the crew life support. There are many such design rules that help in planning the analysis of life support systems and in checking results. These rules are typically if-then statements describing the results of steady-state, "back of the envelope," mass flow calculations. They are useful in identifying plausible candidate life support system designs and in rough allocations between resupply and resource recovery. Life support system designers should always review the design rules and make quick steady state calculations before doing detailed design and dynamic simulation. This paper develops the basis for the different assumptions and design rules and discusses how they should be used. We start top-down, with the highest level requirement to sustain human beings in a closed environment off Earth. We consider the crew needs for air, water, and food. We then discuss atmosphere leakage and recycling losses. The needs to support the crew and to make up losses define the fundamental life support system requirements. We consider the trade-offs between resupplying and recycling oxygen, water, and food. The specific choices between resupply and recycling are determined by mission duration, presence of in-situ resources, etc., and are defining parameters of life support system design.

  17. Experiences of marijuana-vaporizer users.

    PubMed

    Malouff, John M; Rooke, Sally E; Copeland, Jan

    2014-01-01

    Using a marijuana vaporizer may have potential harm-reduction advantages on smoking marijuana, in that the user does not inhale smoke. Little research has been published on use of vaporizers. In the first study of individuals using a vaporizer on their own initiative, 96 adults anonymously answered questions about their experiences with a vaporizer and their use of marijuana with tobacco. Users identified 4 advantages to using a vaporizer over smoking marijuana: perceived health benefits, better taste, no smoke smell, and more effect from the same amount of marijuana. Users identified 2 disadvantages: inconvenience of setup and cleaning and the time it takes to get the device operating for each use. Only 2 individuals combined tobacco in the vaporizer mix, whereas 15 combined tobacco with marijuana when they smoked marijuana. Almost all participants intended to continue using a vaporizer. Vaporizers seem to have appeal to marijuana users, who perceive them as having harm-reduction and other benefits. Vaporizers are worthy of experimental research evaluating health-related effects of using them.

  18. Design and the parametric testing of the space station prototype integrated vapor compression distillation water recovery module

    NASA Technical Reports Server (NTRS)

    Reveley, W. F.; Nuccio, P. P.

    1975-01-01

    Potable water for the Space Station Prototype life support system is generated by the vapor compression technique of vacuum distillation. A description of a complete three-man modular vapor compression water renovation loop that was built and tested is presented; included are all of the pumps, tankage, chemical post-treatment, instrumentation, and controls necessary to make the loop representative of an automatic, self-monitoring, null gravity system. The design rationale is given and the evolved configuration is described. Presented next are the results of an extensive parametric test during which distilled water was generated from urine and urinal flush water with concentration of solids in the evaporating liquid increasing progressively to 60 percent. Water quality, quantity and production rate are shown together with measured energy consumption rate in terms of watt-hours per kilogram of distilled water produced.

  19. Petroleum Refineries (Catalytic Cracking, Catalytic Reforming and Sulfur Recovery Units): National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    learn more about the NESHAP for catalytic cracking and reforming units, as well as sulfur recovery units in petroleum refineries by reading the rule history, rule summary, background information documents, and compliance information

  20. Convective Cold Pool Structure and Boundary Layer Recovery in DYNAMO

    NASA Astrophysics Data System (ADS)

    Savarin, A.; Chen, S. S.; Kerns, B. W.; Lee, C.; Jorgensen, D. P.

    2012-12-01

    One of the key factors controlling convective cloud systems in the Madden-Julian Oscillation (MJO) over the tropical Indian Ocean is the property of the atmospheric boundary layer. Convective downdrafts and precipitation from the cloud systems produce cold pools in the boundary layer, which can inhibit subsequent development of convection. The recovery time is the time it takes for the boundary layer to return to pre convective conditions. It may affect the variability of the convection on various time scales during the initiation of MJO. This study examines the convective cold pool structure and boundary layer recovery using the NOAA WP-3D aircraft observations, include the flight-level, Doppler radar, and GPS dropsonde data, collected during the Dynamics of MJO (DYNAMO) field campaign from November-December 2011. The depth and strength of convective cold pools are defined by the negative buoyancy, which can be computed from the dropsonde data. Convective downdraft can be affected by environmental water vapor due to entrainment. Mid-level dry air observed during the convectively suppressed phase of MJO seems to enhance convective downdraft, making the cold pools stronger and deeper. Recovery of the cold pools in the boundary layer is determined by the strength and depth of the cold pools and also the air-sea heat and moisture fluxes. Given that the water vapor and surface winds are distinct for the convectively active and suppressed phases of MJO over the Indian Ocean, the aircraft data are stratified by the two different large-scale regimes of MJO. Preliminary results show that the strength and depth of the cold pools are inversely correlated with the surrounding mid-level moisture. During the convectively suppressed phase, the recovery time is ~5-20 hours in relative weak wind condition with small air-sea fluxes. The recovery time is generally less than 6 hours during the active phase of MJO with moist mid-levels and stronger surface wind and air-sea fluxes.

  1. Implications of Thermal Annealing on the Benzene Vapor Sensing Behavior of PEVA-Graphene Nanocomposite Threads.

    PubMed

    Patel, Sanjay V; Cemalovic, Sabina; Tolley, William K; Hobson, Stephen T; Anderson, Ryan; Fruhberger, Bernd

    2018-03-23

    The effect of thermal treatments, on the benzene vapor sensitivity of polyethylene (co-)vinylacetate (PEVA)/graphene nanocomposite threads, used as chemiresistive sensors, was investigated using DC resistance measurements, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). These flexible threads are being developed as low-cost, easy-to-measure chemical sensors that can be incorporated into smart clothing or disposable sensing patches. Chemiresistive threads were solution-cast or extruded from PEVA and <10% graphene nanoplatelets (by mass) in toluene. Threads were annealed at various temperatures and showed up to 2 orders of magnitude decrease in resistance with successive anneals. Threads heated to ≥80 °C showed improved limits of detection, resulting from improved signal-noise, when exposed to benzene vapor in dry air. In addition, annealing increased the speed of response and recovery upon exposure to and removal of benzene vapor. DSC results showed that the presence of graphene raises the freezing point, and may allow greater crystallinity, in the nanocomposite after annealing. SEM images confirm increased surface roughness/area, which may account for the increase response speed after annealing. Benzene vapor detection at 5 ppm is demonstrated with limits of detection estimated to be as low as 1.5 ppm, reflecting an order of magnitude improvement over unannealed threads.

  2. Means and method for vapor generation

    DOEpatents

    Carlson, Larry W.

    1984-01-01

    A liquid, in heat transfer contact with a surface heated to a temperature well above the vaporization temperature of the liquid, will undergo a multiphase (liquid-vapor) transformation from 0% vapor to 100% vapor. During this transition, the temperature driving force or heat flux and the coefficients of heat transfer across the fluid-solid interface, and the vapor percentage influence the type of heating of the fluid--starting as "feedwater" heating where no vapors are present, progressing to "nucleate" heating where vaporization begins and some vapors are present, and concluding with "film" heating where only vapors are present. Unstable heating between nucleate and film heating can occur, accompanied by possibly large and rapid temperature shifts in the structures. This invention provides for injecting into the region of potential unstable heating and proximate the heated surface superheated vapors in sufficient quantities operable to rapidly increase the vapor percentage of the multiphase mixture by perhaps 10-30% and thereby effectively shift the multiphase mixture beyond the unstable heating region and up to the stable film heating region.

  3. Means and method for vapor generation

    DOEpatents

    Carlson, L.W.

    A liquid, in heat transfer contact with a surface heated to a temperature well above the vaporization temperature of the liquid, will undergo a multiphase (liquid-vapor) transformation from 0% vapor to 100% vapor. During this transition, the temperature driving force or heat flux and the coefficients of heat transfer across the fluid-solid interface, and the vapor percentage influence the type of heating of the fluid - starting as feedwater heating where no vapors are present, progressing to nucleate heating where vaporization begins and some vapors are present, and concluding with film heating where only vapors are present. Unstable heating between nucleate and film heating can occur, accompanied by possibly large and rapid temperature shifts in the structures. This invention provides for injecting into the region of potential unstable heating and proximate the heated surface superheated vapors in sufficient quantities operable to rapidly increase the vapor percentage of the multiphase mixture by perhaps 10 to 30% and thereby effectively shift the multiphase mixture beyond the unstable heating region and up to the stable film heating region.

  4. Recycling of PVC Waste via Environmental Friendly Vapor Treatment

    NASA Astrophysics Data System (ADS)

    Cui, Xin; Jin, Fangming; Zhang, Guangyi; Duan, Xiaokun

    2010-11-01

    This paper focused on the dechlorination of polyvinyl chloride (PVC), a plastic which is widely used in the human life and thereby is leading to serious "white pollution", via vapor treatment process to recycle PVC wastes. In the process, HCl emitted was captured into water solution to avoid hazardous gas pollution and corruption, and remaining polymers free of chlorine could be thermally degraded for further energy recovery. Optimal conditions for the dechlorination of PVC using vapor treatment was investigated, and economic feasibility of this method was also analyzed based on the experimental data. The results showed that the efficiency of dechlorination increased as the temperature increased from 200° C to 250° C, and the rate of dechlorination up to 100% was obtained at the temperature near 250° C. Meanwhile, about 12% of total organic carbon was detected in water solution, which indicated that PVC was slightly degraded in this process. The main products in solution were identified to be acetone, benzene and toluene. In addition, the effects of alkali catalysis on dechlorination were also studied in this paper, and it showed that alkali could not improve the efficiency of the dechlorination of PVC.

  5. Electrical stimulation and motor recovery.

    PubMed

    Young, Wise

    2015-01-01

    In recent years, several investigators have successfully regenerated axons in animal spinal cords without locomotor recovery. One explanation is that the animals were not trained to use the regenerated connections. Intensive locomotor training improves walking recovery after spinal cord injury (SCI) in people, and >90% of people with incomplete SCI recover walking with training. Although the optimal timing, duration, intensity, and type of locomotor training are still controversial, many investigators have reported beneficial effects of training on locomotor function. The mechanisms by which training improves recovery are not clear, but an attractive theory is available. In 1949, Donald Hebb proposed a famous rule that has been paraphrased as "neurons that fire together, wire together." This rule provided a theoretical basis for a widely accepted theory that homosynaptic and heterosynaptic activity facilitate synaptic formation and consolidation. In addition, the lumbar spinal cord has a locomotor center, called the central pattern generator (CPG), which can be activated nonspecifically with electrical stimulation or neurotransmitters to produce walking. The CPG is an obvious target to reconnect after SCI. Stimulating motor cortex, spinal cord, or peripheral nerves can modulate lumbar spinal cord excitability. Motor cortex stimulation causes long-term changes in spinal reflexes and synapses, increases sprouting of the corticospinal tract, and restores skilled forelimb function in rats. Long used to treat chronic pain, motor cortex stimuli modify lumbar spinal network excitability and improve lower extremity motor scores in humans. Similarly, epidural spinal cord stimulation has long been used to treat pain and spasticity. Subthreshold epidural stimulation reduces the threshold for locomotor activity. In 2011, Harkema et al. reported lumbosacral epidural stimulation restores motor control in chronic motor complete patients. Peripheral nerve or functional electrical

  6. Pyrometallurgical Recovery of Platinum Group Metals from Spent Catalysts

    NASA Astrophysics Data System (ADS)

    Peng, Zhiwei; Li, Zhizhong; Lin, Xiaolong; Tang, Huimin; Ye, Lei; Ma, Yutian; Rao, Mingjun; Zhang, Yuanbo; Li, Guanghui; Jiang, Tao

    2017-09-01

    As an important secondary resource with abundant platinum group metals (PGMs), spent catalysts demand recycling for both economic and environmental benefits. This article reviews the main pyrometallurgical processes for PGM recovery from spent catalysts. Existing processes, including smelting, vaporization, and sintering processes, are discussed based in part on a review of the physiochemical characteristics of PGMs in spent catalysts. The smelting technology, which produces a PGM-containing alloy, is significantly influenced by the addition of various collectors, such as lead, copper, iron, matte, or printed circuit board (PCB), considering their chemical affinities for PGMs. The vaporization process can recover PGMs in vapor form at low temperatures (250-700°C), but it suffers high corrosion and potential environmental and health risks as a result of involvement of the hazardous gases, mainly Cl2 and CO. The sintering process serves as a reforming means for recycling of the spent catalysts by in situ reduction of their oxidized PGMs components. Among these processes, the smelting process seems more promising although its overall performance can be further improved by seeking a suitable target-oriented collector and flux, together with proper pretreatment and process intensification using an external field.

  7. Vitamins A and E reverse gasoline vapors-induced hematotoxicity and weight loss in female rats.

    PubMed

    Uboh, F E; Eteng, M U; Ebong, P E; Umoh, I B

    2010-10-01

    In this study, gasoline vapors-induced hematotoxicity, growth-depression and weight-loss reversal effect of vitamins A (retinol) and E (α-tocopherol) was assessed in female Wistar albino rats. The rats were exposed to gasoline vapors (17.8 ± 2.6 cm(3)/h/m(3)/day), 6 hours/day, 6 days/week, for 20 weeks. Vitamins A and E at prophylactic dosage (400 and 200 IU/kg/day, respectively) were orally administered to the rats, separately, in the last 2 weeks of exposure. The levels of hemoglobin (Hb), hematocrit or packed cell volume (PCV), red blood cells (RBC), growth rate and weight gain in the rats exposed to the vapors were significantly lower (p < 0.05) compared, respectively, to the levels obtained for control rats. On the other hand, the levels of white blood cells (WBCs) in the test rats were significantly higher (p < 0.05) compared, respectively, with the level obtained for female control rats. These observations indicated that exposure to gasoline vapors may cause hematotoxicity, growth depression and weight loss in female rats. However, administration of vitamins A and E was observed to produce a significant recovery (p < 0.05) in hematotoxicity, growth depression and weight loss observed to be associated with exposure to gasoline vapors, although the rats administered with vitamin E were noted to respond more favorably than those administered with vitamin A. This suggests that although retinol and α-tocopherol may be used to reverse or prevent hematotoxicity, growth depression and weight loss in subjects exposed to gasoline vapors, the reversal potency of α-tocopherol is higher than that of retinol.

  8. The aerodynamic challenges of SRB recovery

    NASA Technical Reports Server (NTRS)

    Bacchus, D. L.; Kross, D. A.; Moog, R. D.

    1985-01-01

    Recovery and reuse of the Space Shuttle solid rocket boosters was baselined to support the primary goal to develop a low cost space transportation system. The recovery system required for the 170,000-lb boosters was for the largest and heaviest object yet to be retrieved from exoatmospheric conditions. State-of-the-art design procedures were ground-ruled and development testing minimized to produce both a reliable and cost effective system. The ability to utilize the inherent drag of the boosters during the initial phase of reentry was a key factor in minimizing the parachute loads, size and weight. A wind tunnel test program was devised to enable the accurate prediction of booster aerodynamic characteristics. Concurrently, wind tunnel, rocket sled and air drop tests were performed to develop and verify the performance of the parachute decelerator subsystem. Aerodynamic problems encountered during the overall recovery system development and the respective solutions are emphasized.

  9. Implementation of the Provision of the Comprehensive Addiction and Recovery Act of 2016 Relating to the Dispensing of Narcotic Drugs for Opioid Use Disorder. Final rule.

    PubMed

    2018-01-23

    The Comprehensive Addiction and Recovery Act (CARA) of 2016, which became law on July 22, 2016, amended the Controlled Substances Act (CSA) to expand the categories of practitioners who may, under certain conditions on a temporary basis, dispense a narcotic drug in Schedule III, IV, or V for the purpose of maintenance treatment or detoxification treatment. Separately, the Department of Health and Human Services, by final rule effective August 8, 2016, increased to 275 the maximum number of patients that a practitioner may treat for opioid use disorder without being separately registered under the CSA for that purpose. The Drug Enforcement Administration (DEA) is hereby amending its regulations to incorporate these statutory and regulatory changes.

  10. Vapor generator wand

    NASA Technical Reports Server (NTRS)

    Robelen, David B. (Inventor)

    1996-01-01

    A device for producing a stream of vapor for wind tunnel airflow visualization is described. An electrically conductive heating tube is used to resistively heat a vapor producing liquid. The heating and delivery systems are integrated to allow the device to present a small cross section to the air flow, thereby reducing disturbances due to the device. The simplicity of the design allows for inexpensive implementation and construction. The design is readily scaled for use in various wind tunnel applications. The device may also find uses in manufacturing, producing a vapor for deposition on a substrate.

  11. Vapor spill monitoring method

    DOEpatents

    Bianchini, Gregory M.; McRae, Thomas G.

    1985-01-01

    Method for continuous sampling of liquified natural gas effluent from a spill pipe, vaporizing the cold liquified natural gas, and feeding the vaporized gas into an infrared detector to measure the gas composition. The apparatus utilizes a probe having an inner channel for receiving samples of liquified natural gas and a surrounding water jacket through which warm water is flowed to flash vaporize the liquified natural gas.

  12. Piezoelectric trace vapor calibrator

    NASA Astrophysics Data System (ADS)

    Verkouteren, R. Michael; Gillen, Greg; Taylor, David W.

    2006-08-01

    The design and performance of a vapor generator for calibration and testing of trace chemical sensors are described. The device utilizes piezoelectric ink-jet nozzles to dispense and vaporize precisely known amounts of analyte solutions as monodisperse droplets onto a hot ceramic surface, where the generated vapors are mixed with air before exiting the device. Injected droplets are monitored by microscope with strobed illumination, and the reproducibility of droplet volumes is optimized by adjustment of piezoelectric wave form parameters. Complete vaporization of the droplets occurs only across a 10°C window within the transition boiling regime of the solvent, and the minimum and maximum rates of trace analyte that may be injected and evaporated are determined by thermodynamic principles and empirical observations of droplet formation and stability. By varying solution concentrations, droplet injection rates, air flow, and the number of active nozzles, the system is designed to deliver—on demand—continuous vapor concentrations across more than six orders of magnitude (nominally 290fg/lto1.05μg/l). Vapor pulses containing femtogram to microgram quantities of analyte may also be generated. Calibrated ranges of three explosive vapors at ng/l levels were generated by the device and directly measured by ion mobility spectrometry (IMS). These data demonstrate expected linear trends within the limited working range of the IMS detector and also exhibit subtle nonlinear behavior from the IMS measurement process.

  13. Holographic studies of the vapor explosion of vaporizing water-in-fuel emulsion droplets

    NASA Technical Reports Server (NTRS)

    Sheffield, S. A.; Hess, C. F.; Trolinger, J. D.

    1982-01-01

    Holographic studies were performed which examined the fragmentation process during vapor explosion of a water-in-fuel (hexadecane/water) emulsion droplet. Holograms were taken at 700 to 1000 microseconds after the vapor explosion. Photographs of the reconstructed holograms reveal a wide range of fragment droplet sizes created during the explosion process. Fragment droplet diameters range from below 10 microns to over 100 microns. It is estimated that between ten thousand and a million fragment droplets can result from this extremely violent vapor explosion process. This enhanced atomization is thus expected to have a pronounced effect on vaporization processes which are present during combustion of emulsified fuels.

  14. SOFIA Water Vapor Monitor Design

    NASA Technical Reports Server (NTRS)

    Cooper, R.; Roellig, T. L.; Yuen, L.; Shiroyama, B.; Meyer, A.; Devincenzi, D. (Technical Monitor)

    2002-01-01

    The SOFIA Water Vapor Monitor (WVM) is a heterodyne radiometer designed to determine the integrated amount of water vapor along the telescope line of sight and directly to the zenith. The basic technique that was chosen for the WVM uses radiometric measurements of the center and wings of the 183.3 GHz rotational line of water to measure the water vapor. The WVM reports its measured water vapor levels to the aircraft Mission Controls and Communication System (MCCS) while the SOFIA observatory is in normal operation at flight altitude. The water vapor measurements are also available to other scientific instruments aboard the observatory. The electrical, mechanical and software design of the WVM are discussed.

  15. Non-Ballistic Vapor-Driven Ejecta

    NASA Technical Reports Server (NTRS)

    Wrobel, K. E.; Schultz, P. H.; Heineck, J. T.

    2004-01-01

    Impact-induced vaporization is a key component of early-time cratering mechanics. Previous experimental [1,2] and computational [e.g., 3] studies focused on the generation and expansion of vapor clouds in an attempt to better understand vaporization in hypervelocity impacts. Presented here is a new experimental approach to the study of impact-induced vaporization. The three-dimensional particle image velocimetry (3D PIV) system captures interactions between expanding vapor phases and fine particulates. Particles ejected early in the cratering process may be entrained in expanding gas phases generated at impact, altering their otherwise ballistic path of flight. 3D PIV allows identifying the presence of such non-ballistic ejecta from very early times in the cratering process.

  16. 21 CFR 868.5880 - Anesthetic vaporizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Anesthetic vaporizer. 868.5880 Section 868.5880...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5880 Anesthetic vaporizer. (a) Identification. An anesthetic vaporizer is a device used to vaporize liquid anesthetic and deliver a controlled...

  17. 21 CFR 868.5880 - Anesthetic vaporizer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Anesthetic vaporizer. 868.5880 Section 868.5880...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5880 Anesthetic vaporizer. (a) Identification. An anesthetic vaporizer is a device used to vaporize liquid anesthetic and deliver a controlled...

  18. 21 CFR 868.5880 - Anesthetic vaporizer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Anesthetic vaporizer. 868.5880 Section 868.5880...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5880 Anesthetic vaporizer. (a) Identification. An anesthetic vaporizer is a device used to vaporize liquid anesthetic and deliver a controlled...

  19. 21 CFR 868.5880 - Anesthetic vaporizer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Anesthetic vaporizer. 868.5880 Section 868.5880...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5880 Anesthetic vaporizer. (a) Identification. An anesthetic vaporizer is a device used to vaporize liquid anesthetic and deliver a controlled...

  20. 21 CFR 868.5880 - Anesthetic vaporizer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Anesthetic vaporizer. 868.5880 Section 868.5880...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5880 Anesthetic vaporizer. (a) Identification. An anesthetic vaporizer is a device used to vaporize liquid anesthetic and deliver a controlled...

  1. Thermodynamic Modeling and Mechanical Design of a Liquid Nitrogen Vaporization and Pressure Building Device

    NASA Astrophysics Data System (ADS)

    Leege, Brian J.

    The design of a liquid nitrogen vaporization and pressure building device that has zero product waste while recovering some of its stored energy is of interest for the cost reduction of nitrogen for use in industrial processes. Current devices may waste up to 30% of the gaseous nitrogen product by venting it to atmosphere. Furthermore, no attempt is made to recover the thermal energy available in the coldness of the cryogen. A seven step cycle with changing volumes and ambient heat addition is proposed, eliminating all product waste and providing the means of energy recovery from the nitrogen. This thesis discusses the new thermodynamic cycle and modeling as well as the mechanical design and testing of a prototype device. The prototype was able to achieve liquid nitrogen vaporization and pressurization up to 1000 psi, while full cycle validation is ongoing with promising initial results.

  2. 75 FR 74673 - Approval and Promulgation of Implementation Plans; Georgia: Stage II Vapor Recovery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-01

    ... includes multiple modifications to Georgia's Air Quality Rules found at Chapter 391-3-1. Previously, EPA...., Atlanta, Georgia 30303-8960. 5. Hand Delivery or Courier: Ms. Lynorae Benjamin, Regulatory Development... (404) 562-9029. Ms. Spann can also be reached via electronic mail at [email protected]epa.gov . SUPPLEMENTARY...

  3. AMTEC vapor-vapor series connected cells

    NASA Technical Reports Server (NTRS)

    Underwood, Mark L. (Inventor); Williams, Roger M. (Inventor); Ryan, Margaret A. (Inventor); Nakamura, Barbara J. (Inventor); Oconnor, Dennis E. (Inventor)

    1995-01-01

    An alkali metal thermoelectric converter (AMTEC) having a plurality of cells structurally connected in series to form a septum dividing a plenum into two chambers, and electrically connected in series, is provided with porous metal anodes and porous metal cathodes in the cells. The cells may be planar or annular, and in either case a metal alkali vapor at a high temperature is provided to the plenum through one chamber on one side of the wall and returned to a vapor boiler after condensation at a chamber on the other side of the wall in the plenum. If the cells are annular, a heating core may be placed along the axis of the stacked cells. This arrangement of series-connected cells allows efficient generation of power at high voltage and low current.

  4. Solvent vapor collector

    DOEpatents

    Ellison, Kenneth; Whike, Alan S.

    1979-01-30

    A solvent vapor collector is mounted on the upstream inlet end of an oven having a gas-circulating means and intended for curing a coating applied to a strip sheet metal at a coating station. The strip sheet metal may be hot and solvent vapors are evaporated at the coating station and from the strip as it passes from the coating station to the oven. Upper and lower plenums within a housing of the collector are supplied with oven gases or air from the gas-circulating means and such gases or air are discharged within the collector obliquely in a downstream direction against the strip passing through that collector to establish downstream gas flows along the top and under surfaces of the strip so as, in turn, to induct solvent vapors into the collector at the coating station. A telescopic multi-piece shroud is usefully provided on the housing for movement between an extended position in which it overlies the coating station to collect solvent vapors released thereat and a retracted position permitting ready cleaning and adjustment of that coating station.

  5. Effect of cooling rate on the survival of cryopreserved rooster sperm: Comparison of different distances in the vapor above the surface of the liquid nitrogen.

    PubMed

    Madeddu, M; Mosca, F; Abdel Sayed, A; Zaniboni, L; Mangiagalli, M G; Colombo, E; Cerolini, S

    2016-08-01

    The aim of the present trial was to study the effect of different freezing rates on the survival of cryopreserved rooster semen packaged in straws. Slow and fast freezing rates were obtained keeping straws at different distances in the vapor above the surface of the nitrogen during freezing. Adult Lohmann roosters (n=27) were used. Two experiments were conducted. In Experiment 1, semen was packaged in straws and frozen comparing the distances of 1, 3 and 5cm in nitrogen vapor above the surface of the liquid nitrogen. In Experiment 2, the distances of 3, 7 and 10cm above the surfaces of the liquid nitrogen were compared. Sperm viability, motility and progressive motility and the kinetic variables were assessed in fresh and cryopreserved semen samples. The recovery rates after freezing/thawing were also calculated. In Experiment 1, there were no significant differences among treatments for all semen quality variables. In Experiment 2, the percentage of viable (46%) and motile (22%) sperm in cryopreserved semen was greater when semen was placed 3cm compared with 7 and 10cm in the vapor above the surface of the liquid nitrogen. The recovery rate of progressive motile sperm after thawing was also greater when semen was stored 3cm in the vapor above the surface of the liquid nitrogen. More rapid freezing rates are required to improve the survival of rooster sperm after cryopreservation and a range of distances from 1 to 5cm in nitrogen vapor above the surface of the liquid nitrogen is recommended for optimal sperm viability. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Automated product recovery in a HG-196 photochemical isotope separation process

    DOEpatents

    Grossman, Mark W.; Speer, Richard

    1992-01-01

    A method of removing deposited product from a photochemical reactor used in the enrichment of .sup.196 Hg has been developed and shown to be effective for rapid re-cycling of the reactor system. Unlike previous methods relatively low temperatures are used in a gas and vapor phase process of removal. Importantly, the recovery process is understood in a quantitative manner so that scaling design to larger capacity systems can be easily carried out.

  7. A 90-day continuous vapor inhalation toxicity study of JP-8 jet fuel followed by 20 or 21 months of recovery in Fischer 344 rats and C57BL/6 mice.

    PubMed

    Mattie, D R; Alden, C L; Newell, T K; Gaworski, C L; Flemming, C D

    1991-01-01

    The kerosene-type jet fuel, JP-8, consists of a complex mixture of aliphatic and aromatic hydrocarbons. Because of the utility of JP-8, studies have been conducted to identify the potential long-term consequence of occupational inhalation exposure. Fischer 344 rats and C57BL/6 mice of both sexes were exposed to JP-8 vapors at 0, 500, and 1,000 mg/m3 on a continuous basis for 90 days, then followed by recovery until approximately 24 months of age. Occurrence of necrotizing dermatitis associated with fighting resulted in an increase in mortality in mice (male greater than female) during the 2 week to 9 month post-exposure recovery period. The male rat kidney developed a reversible ultrastructural increase in size and propensity for crystalloid changes of phagolysosomal proteinic reabsorption droplets in the proximal convoluted tubular epithelium. A specific triad of persisting light microscopic renal lesions occurred but functional change was limited to a decrease in urine concentration compared to controls that persisted throughout the recovery period. The response is comparable to the chronic effect of lifetime exposure of the male rat to unleaded gasoline, d-limonene, and p-dichlorobenzene, except for the absence of tubular tumorigenesis. The active toxicologic response presumably must occur over a greater proportion of the male rat's life span for the tumor component of this male rat hydrocarbon nephropathy syndrome. The predictiveness for humans must be questioned, since the pathologic response to JP-8 involved only one tissue in one sex of one species, and since the male rat response appears to be linked to an inherent renal protein peculiarity.

  8. Non-aqueous phase liquid spreading during soil vapor extraction

    PubMed Central

    Kneafsey, Timothy J.; Hunt, James R.

    2010-01-01

    Many non-aqueous phase liquids (NAPLs) are expected to spread at the air – water interface, particularly under non-equilibrium conditions. In the vadose zone, this spreading should increase the surface area for mass transfer and the efficiency of volatile NAPL recovery by soil vapor extraction (SVE). Observations of spreading on water wet surfaces led to a conceptual model of oil spreading vertically above a NAPL pool in the vadose zone. Analysis of this model predicts that spreading can enhance the SVE contaminant recovery compared to conditions where the liquid does not spread. Experiments were conducted with spreading volatile oils hexane and heptane in wet porous media and capillary tubes, where spreading was observed at the scale of centimeters. Within porous medium columns up to a meter in height containing stagnant gas, spreading was less than ten centimeters and did not contribute significantly to hexane volatilization. Water film thinning and oil film pinning may have prevented significant oil film spreading, and thus did not enhance SVE at the scale of a meter. The experiments performed indicate that volatile oil spreading at the field scale is unlikely to contribute significantly to the efficiency of SVE. PMID:14734243

  9. Final Rule: 2013 Conditional Exclusions From Solid Waste and Hazardous Waste for Solvent-Contaminated Wipes

    EPA Pesticide Factsheets

    This is a regulation page for the final rule EPA issued on July 31, 2013 that modifies the hazardous waste management regulations for solvent-contaminated wipes under the Resource Conservation and Recovery Act (RCRA).

  10. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium.

    PubMed

    McCarron, Daniel J; Hughes, Ifan G; Tierney, Patrick; Cornish, Simon L

    2007-09-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D(2) transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude.

  11. Vapor Compression Distillation Subsystem (VCDS) component enhancement, testing and expert fault diagnostics development, volume 1

    NASA Technical Reports Server (NTRS)

    Kovach, L. S.; Zdankiewicz, E. M.

    1987-01-01

    Vapor compression distillation technology for phase change recovery of potable water from wastewater has evolved as a technically mature approach for use aboard the Space Station. A program to parametrically test an advanced preprototype Vapor Compression Distillation Subsystem (VCDS) was completed during 1985 and 1986. In parallel with parametric testing, a hardware improvement program was initiated to test the feasibility of incorporating several key improvements into the advanced preprototype VCDS following initial parametric tests. Specific areas of improvement included long-life, self-lubricated bearings, a lightweight, highly-efficient compressor, and a long-life magnetic drive. With the exception of the self-lubricated bearings, these improvements are incorporated. The advanced preprototype VCDS was designed to reclaim 95 percent of the available wastewater at a nominal water recovery rate of 1.36 kg/h achieved at a solids concentration of 2.3 percent and 308 K condenser temperature. While this performance was maintained for the initial testing, a 300 percent improvement in water production rate with a corresponding lower specific energy was achieved following incorporation of the improvements. Testing involved the characterization of key VCDS performance factors as a function of recycle loop solids concentration, distillation unit temperature and fluids pump speed. The objective of this effort was to expand the VCDS data base to enable defining optimum performance characteristics for flight hardware development.

  12. Estimated vapor pressure for WTP process streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pike, J.; Poirier, M.

    Design assumptions during the vacuum refill phase of the Pulsed Jet Mixers (PJMs) in the Hanford Waste Treatment and Immobilization Plant (WTP) equate the vapor pressure of all process streams to that of water when calculating the temperature at which the vacuum refill is reduced or eliminated. WTP design authority asked the authors to assess this assumption by performing calculations on proposed feed slurries to calculate the vapor pressure as a function of temperature. The vapor pressure was estimated for each WTP waste group. The vapor pressure suppression caused by dissolved solids is much greater than the increase caused bymore » organic components such that the vapor pressure for all of the waste group compositions is less than that of pure water. The vapor pressure for each group at 145°F ranges from 81% to 98% of the vapor pressure of water. If desired, the PJM could be operated at higher temperatures for waste groups with high dissolved solids that suppress vapor pressure. The SO4 group with the highest vapor pressure suppression could be operated up to 153°F before reaching the same vapor pressure of water at 145°F. However, most groups would reach equivalent vapor pressure at 147 to 148°F. If any of these waste streams are diluted, the vapor pressure can exceed the vapor pressure of water at mass dilution ratios greater than 10, but the overall effect is less than 0.5%.« less

  13. Process for recovering organic vapors from air

    DOEpatents

    Baker, Richard W.

    1985-01-01

    A process for recovering and concentrating organic vapor from a feed stream of air having an organic vapor content of no more than 20,000 ppm by volume. A thin semipermeable membrane is provided which has a feed side and a permeate side, a selectivity for organic vapor over air of at least 50, as measured by the ratio of organic vapor permeability to nitrogen permeability, and a permeability of organic vapor of at least 3.times.10.sup.-7 cm.sup.3 (STP) cm/cm.sup.2 sec.cm Hg. The feed stream is passed across the feed side of the thin semipermeable membrane while providing a pressure on the permeate side which is lower than the feed side by creating a partial vacuum on the permeate side so that organic vapor passes preferentially through the membrane to form an organic vapor depleted air stream on the feed side and an organic vapor enriched stream on the permeate side. The organic vapor which has passed through the membrane is compressed and condensed to recover the vapor as a liquid.

  14. Hazardous Waste Management System - Identification and Listing of Hazardous Waste - Toxicity Characteristic - Hydrocarbon Recovery Operations - Federal Register Notice, October 5, 1990

    EPA Pesticide Factsheets

    The Agency is promulgating an interim final rule to extend the compliance date of the Toxicity Characteristic rule for petroleum refining facilities, marketing terminals and bulk plants engaged in the recovery and remediation operation for 120 days.

  15. Alcohol Exposure after Mild Focal Traumatic Brain Injury Impairs Neurological Recovery and Exacerbates Localized Neuroinflammation

    PubMed Central

    Teng, Sophie X; Katz, Paige S; Maxi, John K; Mayeux, Jacques P; Gilpin, Nicholas W; Molina, Patricia E

    2014-01-01

    Traumatic brain injury (TBI) represents a leading cause of morbidity and mortality among young individuals. Alcohol abuse is a risk factor associated with increased TBI incidence. In addition, up to 26% of TBI patients engage in alcohol consumption after TBI. Limited preclinical studies have examined the impact of post-injury alcohol exposure on TBI recovery. The aim of this study was to determine the isolated and combined effects of TBI and alcohol on cognitive, behavioral, and physical recovery, as well as on associated neuroinflammatory changes. Male Sprague-Dawley rats (~300 g) were subjected to a mild focal TBI by lateral fluid percussion (~30 PSI, ~25 ms) under isoflurane anesthesia. On day 4 after TBI, animals were exposed to either sub-chronic intermittent alcohol vapor (95% ethanol 14h on /10h off; BAL~200 mg/dL) or room air for 10 days. TBI induced neurological dysfunction reflected by an increased neurological severity score (NSS) showed progressive improvement in injured animals exposed to room air (TBI/air). In contrast, TBI animals exposed to alcohol vapor (TBI/alcohol) showed impaired NSS recovery throughout the 10-day period of alcohol exposure. Open-field exploration test revealed an increased anxiety-like behavior in TBI/alcohol group compared to TBI/air group. Additionally, alcohol-exposed animals showed decreased locomotion and impaired novel object recognition. Immunofluorescence showed enhanced reactive astrocytes, microglial activation, and HMGB1 expression localized to the injured cortex of TBI/alcohol as compared to TBI/air animals. The expression of neuroinflammatory markers showed significant positive correlation with NSS. These findings indicated a close relationship between accentuated neuroinflammation and impaired neurological recovery from post-TBI alcohol exposure. The clinical implications of long-term consequences in TBI patients exposed to alcohol during recovery warrant further investigation. PMID:25489880

  16. BioVapor Model Evaluation

    EPA Science Inventory

    General background on modeling and specifics of modeling vapor intrusion are given. Three classical model applications are described and related to the problem of petroleum vapor intrusion. These indicate the need for model calibration and uncertainty analysis. Evaluation of Bi...

  17. Automated product recovery in a Hg-196 photochemical isotope separation process

    DOEpatents

    Grossman, M.W.; Speer, R.

    1992-07-21

    A method of removing deposited product from a photochemical reactor used in the enrichment of [sup 196]Hg has been developed and shown to be effective for rapid re-cycling of the reactor system. Unlike previous methods relatively low temperatures are used in a gas and vapor phase process of removal. Importantly, the recovery process is understood in a quantitative manner so that scaling design to larger capacity systems can be easily carried out. 2 figs.

  18. Vapor-barrier Vacuum Isolation System

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M. (Inventor); Taminger, Karen M. (Inventor)

    2014-01-01

    A system includes a collimated beam source within a vacuum chamber, a condensable barrier gas, cooling material, a pump, and isolation chambers cooled by the cooling material to condense the barrier gas. Pressure levels of each isolation chamber are substantially greater than in the vacuum chamber. Coaxially-aligned orifices connect a working chamber, the isolation chambers, and the vacuum chamber. The pump evacuates uncondensed barrier gas. The barrier gas blocks entry of atmospheric vapor from the working chamber into the isolation chambers, and undergoes supersonic flow expansion upon entering each isolation chamber. A method includes connecting the isolation chambers to the vacuum chamber, directing vapor to a boundary with the working chamber, and supersonically expanding the vapor as it enters the isolation chambers via the orifices. The vapor condenses in each isolation chamber using the cooling material, and uncondensed vapor is pumped out of the isolation chambers via the pump.

  19. 75 FR 8363 - Office for Civil Rights; Workshop on the HIPAA Privacy Rule's De-Identification Standard; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... Recovery and Reinvestment Act of 2009 (ARRA),\\1\\ requires HHS to issue guidance on methods for de...). --Methodological Issues Associated with HIPAA Privacy Rule De- Identification. --Statistical Disclosure Control and...

  20. Plant hydrocarbon recovery process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzadzic, P.M.; Price, M.C.; Shih, C.J.

    1982-01-26

    A process for production and recovery of hydrocarbons from hydrocarbon-containing whole plants in a form suitable for use as chemical feedstocks or as hydrocarbon energy sources which process comprises: (A) pulverizing by grinding or chopping hydrocarbon-containing whole plants selected from the group consisting of euphorbiaceae, apocynaceae, asclepiadaceae, compositae, cactaceae and pinaceae families to a suitable particle size, (B) drying and preheating said particles in a reducing atmosphere under positive pressure (C) passing said particles through a thermal conversion zone containing a reducing atmosphere and with a residence time of 1 second to about 30 minutes at a temperature within themore » range of from about 200* C. To about 1000* C., (D) separately recovering the condensable vapors as liquids and the noncondensable gases in a condition suitable for use as chemical feedstocks or as hydrocarbon fuels.« less

  1. A Simple Experiment for Determining Vapor Pressure and Enthalpy of Vaporization of Water.

    ERIC Educational Resources Information Center

    Levinson, Gerald S.

    1982-01-01

    Laboratory procedures, calculations, and sample results are described for a freshman chemistry experiment in which the Clausius-Clapeyron equation is introduced as a means of describing the variation of vapor pressure with temperature and for determining enthalpy of vaporization. (Author/SK)

  2. Prospects and challenges for the recovery of 2-butanol produced by vacuum fermentation - a techno-economic analysis.

    PubMed

    Pereira, Joana P C; Lopez-Gomez, Gustavo; Reyes, Noelia G; van der Wielen, Luuk A M; Straathof, Adrie J J

    2017-07-01

    The conceptual design of a bio-based process for 2-butanol production is presented for the first time. Considering a hypothetical efficient producing strain, a vacuum fermentation is proposed to alleviate product toxicity, but the main challenge is the energy-efficient product recovery from the vapor. Three downstream scenarios were examined for this purpose: 1) multi-stage vapor recompression; 2) temperature swing adsorption; and 3) vapor absorption. The processes were simulated using Aspen Plus, considering a production capacity of 101 kton/yr. Process optimization was performed targeting the minimum selling price of 2-butanol. The feasibility of the different configurations was analyzed based on the global energy requirements and capital expenditure. The use of integrated adsorption and absorption minimized the energy duty required for azeotrope purification, which represents 11% of the total operational expenditure in Scenario 1. The minimum selling price of 2-butanol as commodity chemical was estimated as 1.05 $/kg, 1.21 $/kg, and 1.03 $/kg regarding the fermentation integrated with downstream scenarios 1), 2), and 3), respectively. Significant savings in 2-butanol production could be achieved in the suggested integrated configurations if more efficient microbial strains were engineered, and more selective adsorption and absorption materials were found for product recovery. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Creep of chemically vapor deposited SiC fibers

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1984-01-01

    The creep, thermal expansion, and elastic modulus properties for chemically vapor deposited SiC fibers were measured between 1000 and 1500 C. Creep strain was observed to increase logarithmically with time, monotonically with temperature, and linearly with tensile stress up to 600 MPa. The controlling activation energy was 480 + or - 20 kJ/mole. Thermal pretreatments near 1200 and 1450 C were found to significantly reduce fiber creep. These results coupled with creep recovery observations indicate that below 1400 C fiber creep is anelastic with neglible plastic component. This allowed a simple predictive method to be developed for describing fiber total deformation as a function of time, temperature, and stress. Mechanistic analysis of the property data suggests that fiber creep is the result of beta-SiC grain boundary sliding controlled by a small percent of free silicon in the grain boundaries.

  4. Low level vapor verification of monomethyl hydrazine

    NASA Technical Reports Server (NTRS)

    Mehta, Narinder

    1990-01-01

    The vapor scrubbing system and the coulometric test procedure for the low level vapor verification of monomethyl hydrazine (MMH) are evaluated. Experimental data on precision, efficiency of the scrubbing liquid, instrument response, detection and reliable quantitation limits, stability of the vapor scrubbed solution, and interference were obtained to assess the applicability of the method for the low ppb level detection of the analyte vapor in air. The results indicated that the analyte vapor scrubbing system and the coulometric test procedure can be utilized for the quantitative detection of low ppb level vapor of MMH in air.

  5. Vapor pressures of new fluorocarbons

    NASA Astrophysics Data System (ADS)

    Kubota, H.; Yamashita, T.; Tanaka, Y.; Makita, T.

    1989-05-01

    The vapor pressures of four fluorocarbons have been measured at the following temperature ranges: R123 (2,2-dichloro-l,l,l-trifluoroethane), 273 457 K; R123a (1,2-dichloro-1,1,2-trifluoroethane), 303 458 K; R134a (1,1,1,2-tetrafluoroethane), 253 373 K; and R132b (l,2-dichloro-l,l-difluoroethane), 273 398 K. Determinations of the vapor pressure were carried out by a constant-volume apparatus with an uncertainty of less than 1.0%. The vapor pressures of R123 and R123a are very similar to those of R11 over the whole experimental temperature range, but the vapor pressures of R134a and R132b differ somewhat from those of R12 and R113, respectively, as the temperature increases. The numerical vapor pressure data can be fitted by an empirical equation using the Chebyshev polynomial with a mean deviation of less than 0.3 %.

  6. Vapor pressures of new fluorocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubota, H.; Yamashita, T.; Tanaka, Y.

    1989-05-01

    The vapor pressures of four fluorocarbons have been measured at the following temperature ranges: R123 (2,2-dichloro-1,1,1-trifluoroethane), 273-457 K; R123a (1,2-dichloro-1,1,2-trifluoroethane), 303-458 K; R134a (1,1,1,2-tetrafluoroethane), 253-373 K; and R132b (1,2-dichloro-1,1-difluoroethane), 273-398 K. Determinations of the vapor pressure were carried out by a constant-volume apparatus with an uncertainty of less than 1.0%. The vapor pressures of R123 and R123a are very similar to those of R11 over the whole experimental temperature range, but the vapor pressures of R134a and R132b differ somewhat from those of R12 and R113, respectively, as the temperature increases. The numerical vapor pressure data can be fitted bymore » an empirical equation using the Chebyshev polynomial with a mean deviation of less than 0.3%.« less

  7. DSMC simulations of vapor transport toward development of the lithium vapor box divertor concept

    NASA Astrophysics Data System (ADS)

    Jagoe, Christopher; Schwartz, Jacob; Goldston, Robert

    2016-10-01

    The lithium vapor divertor box concept attempts to achieve volumetric dissipation of the high heat efflux from a fusion power system. The vapor extracts the heat of the incoming plasma by ionization and radiation, while remaining localized in the vapor box due to differential pumping based on rapid condensation. Preliminary calculations with lithium vapor at densities appropriate for an NSTX-U-scale machine give Knudsen numbers between 0.01 and 1, outside both the range of continuum fluid dynamics and of collisionless Monte Carlo. The direct-simulation Monte Carlo (DSMC) method, however, can simulate rarefied gas flows in this regime. Using the solver contained in the OpenFOAM package, pressure-driven flows of water vapor will be analyzed. The use of water vapor in the relevant range of Knudsen number allows for a flexible similarity experiment to verify the reliability of the code before moving to tests with lithium. The simulation geometry consists of chains of boxes on a temperature gradient, connected by slots with widths that are a representative fraction of the dimensions of the box. We expect choked flow, sonic shocks, and order-of-magnitude pressure and density drops from box to box, but this expectation will be tested in the simulation and then experiment. This work is supported by the Princeton Environmental Institute.

  8. Water Vapor Feedbacks to Climate Change

    NASA Technical Reports Server (NTRS)

    Rind, David

    1999-01-01

    The response of water vapor to climate change is investigated through a series of model studies with varying latitudinal temperature gradients, mean temperatures, and ultimately, actual climate change configurations. Questions to be addressed include: what role does varying convection have in water vapor feedback; do Hadley Circulation differences result in differences in water vapor in the upper troposphere; and, does increased eddy energy result in greater eddy vertical transport of water vapor in varying climate regimes?

  9. Acoustically-Enhanced Direct Contact Vapor Bubble Condensation

    NASA Astrophysics Data System (ADS)

    Boziuk, Thomas; Smith, Marc; Glezer, Ari

    2017-11-01

    Rate-limited, direct contact vapor condensation of vapor bubbles that are formed by direct steam injection through a nozzle in a quiescent subcooled liquid bath is accelerated using ultrasonic (MHz-range) actuation. A submerged, low power actuator produces an acoustic beam whose radiation pressure deforms the liquid-vapor interface, leading to the formation of a liquid spear that penetrates the vapor bubble to form a vapor torus with a significantly larger surface area and condensation rate. Ultrasonic focusing along the spear leads to the ejection of small, subcooled droplets through the vapor volume that impact the vapor-liquid interface and further enhance the condensation. High-speed Schlieren imaging of the formation and collapse of the vapor bubbles in the absence and presence of actuation shows that the impulse associated with the collapse of the toroidal volume leads to the formation of a turbulent vortex ring in the liquid phase. Liquid motions near the condensing vapor volume are investigated in the absence and presence of acoustic actuation using high-magnification PIV and show the evolution of a liquid jet through the center of the condensing toroidal volume and the formation and advection of vortex ring structures whose impulse appear to increase with temperature difference between the liquid and vapor phases. High-speed image processing is used to assess the effect of the actuation on the temporal and spatial variations in the characteristic scales and condensation rates of the vapor bubbles.

  10. Petroleum Vapor - Field Technical

    EPA Science Inventory

    The screening approach being developed by EPA OUST to evaluate petroleum vapor intrusion (PVI) requires information that has not be routinely collected in the past at vapor intrusion sites. What is the best way to collect this data? What are the relevant data quality issues and ...

  11. Sensor-triggered sampling to determine instantaneous airborne vapor exposure concentrations.

    PubMed

    Smith, Philip A; Simmons, Michael K; Toone, Phillip

    2018-06-01

    It is difficult to measure transient airborne exposure peaks by means of integrated sampling for organic chemical vapors, even with very short-duration sampling. Selection of an appropriate time to measure an exposure peak through integrated sampling is problematic, and short-duration time-weighted average (TWA) values obtained with integrated sampling are not likely to accurately determine actual peak concentrations attained when concentrations fluctuate rapidly. Laboratory analysis for integrated exposure samples is preferred from a certainty standpoint over results derived in the field from a sensor, as a sensor user typically must overcome specificity issues and a number of potential interfering factors to obtain similarly reliable data. However, sensors are currently needed to measure intra-exposure period concentration variations (i.e., exposure peaks). In this article, the digitized signal from a photoionization detector (PID) sensor triggered collection of whole-air samples when toluene or trichloroethylene vapors attained pre-determined levels in a laboratory atmosphere generation system. Analysis by gas chromatography-mass spectrometry of whole-air samples (with both 37 and 80% relative humidity) collected using the triggering mechanism with rapidly increasing vapor concentrations showed good agreement with the triggering set point values. Whole-air samples (80% relative humidity) in canisters demonstrated acceptable 17-day storage recoveries, and acceptable precision and bias were obtained. The ability to determine exceedance of a ceiling or peak exposure standard by laboratory analysis of an instantaneously collected sample, and to simultaneously provide a calibration point to verify the correct operation of a sensor was demonstrated. This latter detail may increase the confidence in reliability of sensor data obtained across an entire exposure period.

  12. Spin accumulation in thin Cs salts on contact with optically polarized Cs vapor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishikawa, Kiyoshi

    2011-09-15

    The spin angular momentum accumulates in the Cs nuclei of salt on contact with optically pumped Cs vapor. The spin polarization in stable chloride as well as dissociative hydride indicates that nuclear dipole interaction works in spin transferring with a lesser role of atom exchange. In the solid film, not only the spin buildup but also the decay of enhanced polarization is faster than the thermal recovery rate for the bulk salt. Eliminating the signal of thick salt, we find that the nuclear spin polarization in the chloride film reaches over 100 times the thermal equilibrium.

  13. Impact Vaporization of Planetesimal Cores

    NASA Astrophysics Data System (ADS)

    Kraus, R. G.; Root, S.; Lemke, R. W.; Stewart, S. T.; Jacobsen, S. B.; Mattsson, T. R.

    2013-12-01

    The degree of mixing and chemical equilibration between the iron cores of planetesimals and the mantle of the growing Earth has important consequences for understanding the end stages of Earth's formation and planet formation in general. At the Sandia Z machine, we developed a new shock-and-release technique to determine the density on the liquid-vapor dome of iron, the entropy on the iron shock Hugoniot, and the criteria for shock-induced vaporization of iron. We find that the critical shock pressure to vaporize iron is 507(+65,-85) GPa and show that decompression from a 15 km/s impact will initiate vaporization of iron cores, which is a velocity that is readily achieved at the end stages of planet formation. Vaporization of the iron cores increases dispersal of planetesimal cores, enables more complete chemical equilibration of the planetesimal cores with Earth's mantle, and reduces the highly siderophile element abundance on the Moon relative to Earth due to the expanding iron vapor exceeding the Moon's escape velocity. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Securities Administration under Contract No. DE-AC04-94AL85000.

  14. Mercury recovery from mercury-containing wastes using a vacuum thermal desorption system.

    PubMed

    Lee, Woo Rim; Eom, Yujin; Lee, Tai Gyu

    2017-02-01

    Mercury (Hg)-containing waste from various industrial facilities is commonly treated by incineration or stabilization/solidification and retained in a landfill at a managed site. However, when highly concentrated Hg waste is treated using these methods, Hg is released into the atmosphere and soil environment. To eliminate these risks, Hg recovery technology using thermal treatment has been developed and commercialized to recover Hg from Hg-containing waste for safe disposal. Therefore, we developed Hg recovery equipment to treat Hg-containing waste under a vacuum of 6.67kPa (abs) at 400°C and recover the Hg. In addition, the dust generated from the waste was separated by controlling the temperature of the dust filtration unit to 230°C. Additionally, water and Hg vapors were condensed in a condensation unit. The Hg removal rate after waste treatment was 96.75%, and the Hg recovery rate as elemental Hg was 75.23%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. 21 CFR 868.1975 - Water vapor analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Water vapor analyzer. 868.1975 Section 868.1975...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1975 Water vapor analyzer. (a) Identification. A water vapor analyzer is a device intended to measure the concentration of water vapor in a...

  16. 21 CFR 868.1975 - Water vapor analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Water vapor analyzer. 868.1975 Section 868.1975...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1975 Water vapor analyzer. (a) Identification. A water vapor analyzer is a device intended to measure the concentration of water vapor in a...

  17. 21 CFR 868.1975 - Water vapor analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Water vapor analyzer. 868.1975 Section 868.1975...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1975 Water vapor analyzer. (a) Identification. A water vapor analyzer is a device intended to measure the concentration of water vapor in a...

  18. 21 CFR 868.1975 - Water vapor analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Water vapor analyzer. 868.1975 Section 868.1975...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1975 Water vapor analyzer. (a) Identification. A water vapor analyzer is a device intended to measure the concentration of water vapor in a...

  19. 21 CFR 868.1975 - Water vapor analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Water vapor analyzer. 868.1975 Section 868.1975...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1975 Water vapor analyzer. (a) Identification. A water vapor analyzer is a device intended to measure the concentration of water vapor in a...

  20. The lithium vapor box divertor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldston, R. J.; Myers, R.; Schwartz, J.

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Our recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m -2, implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et almore » as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. Furthermore, at the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required in order to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma.« less

  1. The lithium vapor box divertor

    NASA Astrophysics Data System (ADS)

    Goldston, R. J.; Myers, R.; Schwartz, J.

    2016-02-01

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m-2, implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. At the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma.

  2. The lithium vapor box divertor

    DOE PAGES

    Goldston, R. J.; Myers, R.; Schwartz, J.

    2016-01-13

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Our recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m -2, implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et almore » as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. Furthermore, at the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required in order to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma.« less

  3. Vapor-liquid equilibria for R-22, R-134a, R-125, and R-32/125 with a polyol ester lubricant: Measurements and departure from ideality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martz, W.L.; Burton, C.M.; Jacobi, A.M.

    1996-11-01

    The effect of a polyol ester lubricant on equilibrium pressure, liquid density, and viscosity is presented for R-22, R-125, and R-134a at varying temperatures and concentrations. Preliminary vapor-liquid equilibrium (VLE) data and miscibility observations are also presented for an R-32/R-125 blend (50%/50%) with the ISO 68 polyol ester (POE). Real-gas behavior is modeled using the vapor-phase fugacity, and vapor pressure effects on liquid fugacities are taken into account with the Poynting effect. Positive, negative, and mixed deviations form the Lewis-Randall rule are observed in the activity coefficient behavior. Departures from ideality are related to molecular size differences, intermolecular forces inmore » the mixture, and other factors. The data are discussed in the context of previous results for other refrigerants and thermodynamic modeling of refrigerant and oil mixtures.« less

  4. 78 FR 22451 - Cost Recovery for Permit Processing, Administration, and Enforcement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-16

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Parts 701, 736, 737, 738, and 750 [Docket ID OSM-2012-0003] RIN 1029-AC65 Cost Recovery for Permit Processing, Administration, and Enforcement Correction In proposed rule document R1-2013-06950, appearing on pages 20394...

  5. 46 CFR 153.526 - Toxic vapor detectors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Toxic vapor detectors. 153.526 Section 153.526 Shipping... Requirements § 153.526 Toxic vapor detectors. (a) When Table 1 refers to this section, a tankship must have two toxic vapor detectors, at least one of which must be portable, each able to measure vapor concentrations...

  6. 46 CFR 153.526 - Toxic vapor detectors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Toxic vapor detectors. 153.526 Section 153.526 Shipping... Requirements § 153.526 Toxic vapor detectors. (a) When Table 1 refers to this section, a tankship must have two toxic vapor detectors, at least one of which must be portable, each able to measure vapor concentrations...

  7. 46 CFR 153.526 - Toxic vapor detectors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Toxic vapor detectors. 153.526 Section 153.526 Shipping... Requirements § 153.526 Toxic vapor detectors. (a) When Table 1 refers to this section, a tankship must have two toxic vapor detectors, at least one of which must be portable, each able to measure vapor concentrations...

  8. 46 CFR 153.526 - Toxic vapor detectors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Toxic vapor detectors. 153.526 Section 153.526 Shipping... Requirements § 153.526 Toxic vapor detectors. (a) When Table 1 refers to this section, a tankship must have two toxic vapor detectors, at least one of which must be portable, each able to measure vapor concentrations...

  9. 46 CFR 153.526 - Toxic vapor detectors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Toxic vapor detectors. 153.526 Section 153.526 Shipping... Requirements § 153.526 Toxic vapor detectors. (a) When Table 1 refers to this section, a tankship must have two toxic vapor detectors, at least one of which must be portable, each able to measure vapor concentrations...

  10. The Lithium Vapor Box Divertor

    NASA Astrophysics Data System (ADS)

    Goldston, Robert; Hakim, Ammar; Hammett, Gregory; Jaworski, Michael; Myers, Rachel; Schwartz, Jacob

    2015-11-01

    Projections of scrape-off layer width to a demonstration power plant suggest an immense parallel heat flux, of order 12 GW/m2, which will necessitate nearly fully detached operation. Building on earlier work by Nagayama et al. and by Ono et al., we propose to use a series of differentially pumped boxes filled with lithium vapor to isolate the buffering vapor from the main plasma chamber, allowing stable detachment. This powerful differential pumping is only available for condensable vapors, not conventional gases. We demonstrate the properties of such a system through conservation laws for vapor mass and enthalpy, and then include plasma entrainment and ultimately an estimate of radiated power. We find that full detachment should be achievable with little leakage of lithium to the main plasma chamber. We also present progress towards solving the Navier-Stokes equation numerically for the chain of vapor boxes, including self-consistent wall boundary conditions and fully-developed shocks, as well as concepts for an initial experimental demonstration-of-concept. This work supported by DOE Contract No. DE-AC02-09CH11466.

  11. Chemistry of vaporization of refractory materials

    NASA Technical Reports Server (NTRS)

    Gilles, P. W.

    1975-01-01

    A discussion is given of the principles of physical chemistry important in vaporization studies, notably the concepts of equilibrium, phase behavior, thermodynamics, solid solution, and kinetics. The important factors influencing equilibrium vaporization phenomena are discussed and illustrated. A proper course of a vaporization study consisting of 9 stages is proposed. The important experimental techniques of Knudsen effusion, Langmuir vaporization and mass spectrometry are discussed. The principles, the factors, the course of a study and the experimental techniques and procedures are illustrated by recent work on the Ti-O system.

  12. 76 FR 74649 - Harmonization of Various Airworthiness Standards for Transport Category Airplanes-Flight Rules

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-01

    ...-directional stability, speed increase and recovery characteristics, and the stall warning margin for the... which the onset of natural or artificial stall warning occurs. VSR reference stall speed. VSR1 reference.... Lastly, this rule adds a requirement that the non-icing stall warning requirements prescribing the speed...

  13. Vaporization of irradiated droplets

    NASA Astrophysics Data System (ADS)

    Armstrong, R. L.; O'Rourke, P. J.; Zardecki, A.

    1986-11-01

    The vaporization of a spherically symmetric liquid droplet subject to a high-intensity laser flux is investigated on the basis of a hydrodynamic description of the system composed of the vapor and ambient gas. In the limit of the convective vaporization, the boundary conditions at the fluid-gas interface are formulated by using the notion of a Knudsen layer in which translational equilibrium is established. This leads to approximate jump conditions at the interface. For homogeneous energy deposition, the hydrodynamic equations are solved numerically with the aid of the CON1D computer code (``CON1D: A computer program for calculating spherically symmetric droplet combustion,'' Los Alamos National Laboratory Report No. LA-10269-MS, December, 1984), based on the implict continuous-fluid Eulerian (ICE) [J. Comput. Phys. 8, 197 (1971)] and arbitrary Lagrangian-Eulerian (ALE) [J. Comput. Phys. 14, 1227 (1974)] numerical mehtods. The solutions exhibit the existence of two shock waves propagating in opposite directions with respect to the contact discontinuity surface that separates the ambient gas and vapor.

  14. Vapor-liquid equilibria for 1,1-difluoroethane + acetylene and 1,1-difluoroethane + 1,1-dichloroethane at 303.2 K and 323.2 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, J.S.; Lee, Y.W.; Kim, J.D.

    1996-09-01

    Isothermal vapor-liquid equilibria for 1,1-difluoroethane (HFC-152a) + acetylene and 1,1-difluoroethane + 1,1-dichloroethane (HCC-150a) were measured in a circulation type apparatus at 303.2 K and 323.2 K. The experimental data were correlated with the Peng-Robinson equation of state using the Wong and Sandler mixing rule, and the relevant parameters are presented.

  15. 77 FR 37321 - Safety Zone, Barrel Recovery, Lake Superior; Duluth, MN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ... 1625-AA00 Safety Zone, Barrel Recovery, Lake Superior; Duluth, MN AGENCY: Coast Guard, DHS. ACTION... suspected to contain munitions waste materials which were dumped in the 1960's in a portion of Lake Superior... offshore in a portion of Lake Superior approximately 50 years ago. C. Discussion of the Final Rule The...

  16. Water Vapor Effects on Silica-Forming Ceramics

    NASA Technical Reports Server (NTRS)

    Opila, E. J.; Greenbauer-Seng, L. (Technical Monitor)

    2000-01-01

    Silica-forming ceramics such as SiC and Si3N4 are proposed for applications in combustion environments. These environments contain water vapor as a product of combustion. Oxidation of silica-formers is more rapid in water vapor than in oxygen. Parabolic oxidation rates increase with the water vapor partial pressure with a power law exponent value close to one. Molecular water vapor is therefore the mobile species in silica. Rapid oxidation rates and large amounts of gases generated during the oxidation reaction in high water vapor pressures may result in bubble formation in the silica and nonprotective scale formation. It is also shown that silica reacts with water vapor to form Si(OH)4(g). Silica volatility has been modeled using a laminar flow boundary layer controlled reaction equation. Silica volatility depends on the partial pressure of water vapor, the total pressure, and the gas velocity. Simultaneous oxidation and volatilization reactions have been modeled with paralinear kinetics.

  17. Bioeffects due to acoustic droplet vaporization

    NASA Astrophysics Data System (ADS)

    Bull, Joseph

    2015-11-01

    Encapsulated micro- and nano-droplets can be vaporized via ultrasound, a process termed acoustic droplet vaporization. Our interest is primarily motivated by a developmental gas embolotherapy technique for cancer treatment. In this methodology, infarction of tumors is induced by selectively formed vascular gas bubbles that arise from the acoustic vaporization of vascular microdroplets. Additionally, the microdroplets may be used as vehicles for localized drug delivery, with or without flow occlusion. In this talk, we examine the dynamics of acoustic droplet vaporization through experiments and theoretical/computational fluid mechanics models, and investigate the bioeffects of acoustic droplet vaporization on endothelial cells and in vivo. Early timescale vaporization events, including phase change, are directly visualized using ultra-high speed imaging, and the influence of acoustic parameters on droplet/bubble dynamics is discussed. Acoustic and fluid mechanics parameters affecting the severity of endothelial cell bioeffects are explored. These findings suggest parameter spaces for which bioeffects may be reduced or enhanced, depending on the objective of the therapy. This work was supported by NIH grant R01EB006476.

  18. Portable vapor diffusion coefficient meter

    DOEpatents

    Ho, Clifford K [Albuquerque, NM

    2007-06-12

    An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.

  19. Long-term mucosal recovery and healing in celiac disease is the rule - not the exception.

    PubMed

    Hære, Petter; Høie, Ole; Schulz, Tom; Schönhardt, Irina; Raki, Melinda; Lundin, Knut E A

    2016-12-01

    The prevalence of persistent villous atrophy (VA) in patients with celiac disease (CD) on a gluten-free diet (GFD) varies greatly between studies. Most studies show a relatively high prevalence of mucosal atrophy and inflammation in treated patients, a finding which have led to a concept of non-responsive CD. Few studies have examined the prevalence of long-term mucosal healing. Our study aimed to determine the extent of mucosal healing in a cohort of Norwegian patients with CD treated with GFD for several years. Adult patients diagnosed with VA between 1989 and 2009 were included. We performed a follow-up gastroscopy with duodenal biopsies. Two pathologists evaluated the biopsies according to the Marsh-Oberhuber classification. Mucosal healing was defined as Marsh 0 while mucosal recovery was defined as Marsh 0-2. Duodenal biopsies were obtained from 127 adult patients with established CD. After a follow-up time of 8.1 years (median, range 2.3-22.3), 103 (81%) of the patients showed mucosal healing, 120 patients (94%) showed mucosal recovery, and 7 patients (6%) showed persistent VA. In addition, 103 of the 127 patients (81%) had undergone a routine follow-up biopsy 12.6 months (median, range 5.2-28.8) after diagnosis. At the time of the routine follow-up, only 52 of these patients (50.5%) had achieved mucosal recovery. Although half of the patients had persistent VA at the time of routine follow-up, both long-term mucosal recovery and healing is possible for the vast majority of adult patients with CD.

  20. A Citizen's Guide to Vapor Intrusion Mitigation

    EPA Pesticide Factsheets

    This guide describes how vapor intrusion is the movement of chemical vapors from contaminated soil and groundwater into nearby buildings.Vapors primarily enter through openings in the building foundation or basement walls.

  1. Vapor Wall Deposition in Chambers: Theoretical Considerations

    NASA Astrophysics Data System (ADS)

    McVay, R.; Cappa, C. D.; Seinfeld, J.

    2014-12-01

    In order to constrain the effects of vapor wall deposition on measured secondary organic aerosol (SOA) yields in laboratory chambers, Zhang et al. (2014) varied the seed aerosol surface area in toluene oxidation and observed a clear increase in the SOA yield with increasing seed surface area. Using a coupled vapor-particle dynamics model, we examine the extent to which this increase is the result of vapor wall deposition versus kinetic limitations arising from imperfect accommodation of organic species into the particle phase. We show that a seed surface area dependence of the SOA yield is present only when condensation of vapors onto particles is kinetically limited. The existence of kinetic limitation can be predicted by comparing the characteristic timescales of gas-phase reaction, vapor wall deposition, and gas-particle equilibration. The gas-particle equilibration timescale depends on the gas-particle accommodation coefficient αp. Regardless of the extent of kinetic limitation, vapor wall deposition depresses the SOA yield from that in its absence since vapor molecules that might otherwise condense on particles deposit on the walls. To accurately extrapolate chamber-derived yields to atmospheric conditions, both vapor wall deposition and kinetic limitations must be taken into account.

  2. Condensation of vapor bubble in subcooled pool

    NASA Astrophysics Data System (ADS)

    Horiuchi, K.; Koiwa, Y.; Kaneko, T.; Ueno, I.

    2017-02-01

    We focus on condensation process of vapor bubble exposed to a pooled liquid of subcooled conditions. Two different geometries are employed in the present research; one is the evaporation on the heated surface, that is, subcooled pool boiling, and the other the injection of vapor into the subcooled pool. The test fluid is water, and all series of the experiments are conducted under the atmospheric pressure condition. The degree of subcooling is ranged from 10 to 40 K. Through the boiling experiment, unique phenomenon known as microbubble emission boiling (MEB) is introduced; this phenomenon realizes heat flux about 10 times higher than the critical heat flux. Condensation of the vapor bubble is the key phenomenon to supply ambient cold liquid to the heated surface. In order to understand the condensing process in the MEB, we prepare vapor in the vapor generator instead of the evaporation on the heated surface, and inject the vapor to expose the vapor bubble to the subcooled liquid. Special attention is paid to the dynamics of the vapor bubble detected by the high-speed video camera, and on the enhancement of the heat transfer due to the variation of interface area driven by the condensation.

  3. 75 FR 57384 - Rescission of Rules Pertaining to the Payment of Bounties for Information Leading to the Recovery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    .... SUPPLEMENTARY INFORMATION: The Insider Trading and Securities Fraud Enforcement Act of 1988 authorized the... SECURITIES AND EXCHANGE COMMISSION 17 CFR Part 201 [Release No. 34-62921] Rescission of Rules... Trading AGENCY: Securities and Exchange Commission. ACTION: Final rule. SUMMARY: The Dodd-Frank Wall...

  4. Vapor Pressure Data Analysis and Statistics

    DTIC Science & Technology

    2016-12-01

    sublimation for solids), volatility, and entropy of volatilization. Vapor pressure can be reported several different ways, including tables of experimental ...account the variation in heat of vaporization with temperature, and accurately describes data over broad experimental ranges, thereby enabling...pressure is incorrect at temperatures far below the experimental temperature limit; the calculated vapor pressure becomes undefined when the

  5. VAPOR SHIELD FOR INDUCTION FURNACE

    DOEpatents

    Reese, S.L.; Samoriga, S.A.

    1958-03-11

    This patent relates to a water-cooled vapor shield for an inductlon furnace that will condense metallic vapors arising from the crucible and thus prevent their condensation on or near the induction coils, thereby eliminating possible corrosion or shorting out of the coils. This is accomplished by placing, about the top, of the crucible a disk, apron, and cooling jacket that separates the area of the coils from the interior of the cruclbIe and provides a cooled surface upon whlch the vapors may condense.

  6. Evidence of a sewer vapor transport pathway at the USEPA vapor intrusion research duplex

    EPA Science Inventory

    The role of sewer lines as preferential pathways for vapor intrusion is poorly understood. Although the importance of sewer lines for volatile organic compound (VOC) transport has been documented at a small number of sites with vapor intrusion, sewer lines are not routinely sampl...

  7. Evidence of a sewer vapor transport pathway at the USEPA vapor intrusion research duplex.

    PubMed

    McHugh, Thomas; Beckley, Lila; Sullivan, Terry; Lutes, Chris; Truesdale, Robert; Uppencamp, Rob; Cosky, Brian; Zimmerman, John; Schumacher, Brian

    2017-11-15

    The role of sewer lines as preferential pathways for vapor intrusion is poorly understood. Although the importance of sewer lines for volatile organic compound (VOC) transport has been documented at a small number of sites with vapor intrusion, sewer lines are not routinely sampled during most vapor intrusion investigations. We have used a tracer study and VOC concentration measurements to evaluate the role of the combined sanitary/storm sewer line in VOC transport at the USEPA vapor intrusion research duplex in Indianapolis, Indiana. The results from the tracer study demonstrated gas migration from the sewer main line into the duplex. The migration pathway appears to be complex and may include leakage from the sewer lateral at a location below the building foundation. Vapor samples collected from the sewer line demonstrated the presence of tetrachloroethene (PCE) and chloroform in the sewer main in front of the duplex and at multiple sample locations within the sewer line upstream of the duplex. These test results combined with results from the prior multi-year study of the duplex indicate that the sewer line plays an important role in transport of VOCs from the subsurface source to the immediate vicinity of the duplex building envelope. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Evidence of a sewer vapor transport pathway at the USEPA vapor intrusion research duplex

    DOE PAGES

    McHugh, Thomas; Beckley, Lila; Sullivan, Terry; ...

    2017-04-26

    We report the role of sewer lines as preferential pathways for vapor intrusion is poorly understood. Although the importance of sewer lines for volatile organic compound (VOC) transport has been documented at a small number of sites with vapor intrusion, sewer lines are not routinely sampled during most vapor intrusion investigations. We have used a tracer study and VOC concentration measurements to evaluate the role of the combined sanitary/storm sewer line in VOC transport at the USEPA vapor intrusion research duplex in Indianapolis, Indiana. The results from the tracer study demonstrated gas migration from the sewer main line into themore » duplex. The migration pathway appears to be complex and may include leakage from the sewer lateral at a location below the building foundation. Vapor samples collected from the sewer line demonstrated the presence of tetrachloroethene (PCE) and chloroform in the sewer main in front of the duplex and at multiple sample locations within the sewer line upstream of the duplex. Finally, these test results combined with results from the prior multi-year study of the duplex indicate that the sewer line plays an important role in transport of VOCs from the subsurface source to the immediate vicinity of the duplex building envelope.« less

  9. Evidence of a sewer vapor transport pathway at the USEPA vapor intrusion research duplex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McHugh, Thomas; Beckley, Lila; Sullivan, Terry

    We report the role of sewer lines as preferential pathways for vapor intrusion is poorly understood. Although the importance of sewer lines for volatile organic compound (VOC) transport has been documented at a small number of sites with vapor intrusion, sewer lines are not routinely sampled during most vapor intrusion investigations. We have used a tracer study and VOC concentration measurements to evaluate the role of the combined sanitary/storm sewer line in VOC transport at the USEPA vapor intrusion research duplex in Indianapolis, Indiana. The results from the tracer study demonstrated gas migration from the sewer main line into themore » duplex. The migration pathway appears to be complex and may include leakage from the sewer lateral at a location below the building foundation. Vapor samples collected from the sewer line demonstrated the presence of tetrachloroethene (PCE) and chloroform in the sewer main in front of the duplex and at multiple sample locations within the sewer line upstream of the duplex. Finally, these test results combined with results from the prior multi-year study of the duplex indicate that the sewer line plays an important role in transport of VOCs from the subsurface source to the immediate vicinity of the duplex building envelope.« less

  10. Vapor pressure measured with inflatable plastic bag

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Deflated plastic bag in a vacuum chamber measures initial low vapor pressures of materials. The bag captures the test sample vapors and visual observation of the vapor-inflated bag under increasing external pressures yields pertinent data.

  11. Electrolyte vapor condenser

    DOEpatents

    Sederquist, Richard A.; Szydlowski, Donald F.; Sawyer, Richard D.

    1983-01-01

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well.

  12. Electrolyte vapor condenser

    DOEpatents

    Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

    1983-02-08

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

  13. Ecosystem context and historical contingency in apex predator recoveries.

    PubMed

    Stier, Adrian C; Samhouri, Jameal F; Novak, Mark; Marshall, Kristin N; Ward, Eric J; Holt, Robert D; Levin, Phillip S

    2016-05-01

    Habitat loss, overexploitation, and numerous other stressors have caused global declines in apex predators. This "trophic downgrading" has generated widespread concern because of the fundamental role that apex predators can play in ecosystem functioning, disease regulation, and biodiversity maintenance. In attempts to combat declines, managers have conducted reintroductions, imposed stricter harvest regulations, and implemented protected areas. We suggest that full recovery of viable apex predator populations is currently the exception rather than the rule. We argue that, in addition to well-known considerations, such as continued exploitation and slow life histories, there are several underappreciated factors that complicate predator recoveries. These factors include three challenges. First, a priori identification of the suite of trophic interactions, such as resource limitation and competition that will influence recovery can be difficult. Second, defining and accomplishing predator recovery in the context of a dynamic ecosystem requires an appreciation of the timing of recovery, which can determine the relative density of apex predators and other predators and therefore affect competitive outcomes. Third, successful recovery programs require designing adaptive sequences of management strategies that embrace key environmental and species interactions as they emerge. Consideration of recent research on food web modules, alternative stable states, and community assembly offer important insights for predator recovery efforts and restoration ecology more generally. Foremost among these is the importance of a social-ecological perspective in facilitating a long-lasting predator restoration while avoiding unintended consequences.

  14. Ecosystem context and historical contingency in apex predator recoveries

    PubMed Central

    Stier, Adrian C.; Samhouri, Jameal F.; Novak, Mark; Marshall, Kristin N.; Ward, Eric J.; Holt, Robert D.; Levin, Phillip S.

    2016-01-01

    Habitat loss, overexploitation, and numerous other stressors have caused global declines in apex predators. This “trophic downgrading” has generated widespread concern because of the fundamental role that apex predators can play in ecosystem functioning, disease regulation, and biodiversity maintenance. In attempts to combat declines, managers have conducted reintroductions, imposed stricter harvest regulations, and implemented protected areas. We suggest that full recovery of viable apex predator populations is currently the exception rather than the rule. We argue that, in addition to well-known considerations, such as continued exploitation and slow life histories, there are several underappreciated factors that complicate predator recoveries. These factors include three challenges. First, a priori identification of the suite of trophic interactions, such as resource limitation and competition that will influence recovery can be difficult. Second, defining and accomplishing predator recovery in the context of a dynamic ecosystem requires an appreciation of the timing of recovery, which can determine the relative density of apex predators and other predators and therefore affect competitive outcomes. Third, successful recovery programs require designing adaptive sequences of management strategies that embrace key environmental and species interactions as they emerge. Consideration of recent research on food web modules, alternative stable states, and community assembly offer important insights for predator recovery efforts and restoration ecology more generally. Foremost among these is the importance of a social-ecological perspective in facilitating a long-lasting predator restoration while avoiding unintended consequences. PMID:27386535

  15. Temperature dependences of saturated vapor pressure and the enthalpy of vaporization of n-pentyl esters of dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Portnova, S. V.; Krasnykh, E. L.; Levanova, S. V.

    2016-05-01

    The saturated vapor pressures and enthalpies of vaporization of n-pentyl esters of linear C2-C6 dicarboxylic acids are determined by the transpiration method in the temperature range of 309.2-361.2 K. The dependences of enthalpies of vaporization on the number of carbon atoms in the molecule and on the retention indices have been determined. The predictive capabilities of the existing calculation schemes for estimation of enthalpy of vaporization of the studied compounds have been analyzed.

  16. Tested Demonstrations. Gasoline Vapor: An Invisible Pollutant

    ERIC Educational Resources Information Center

    Stephens, Edgar R.

    1977-01-01

    Describes a demonstration concerning the air pollution aspects of gasoline vapor which provides an estimation of the vapor pressure of test fuel, the molecular weight of the vapor, and illustrates a method of controlling the pollution. (SL)

  17. Mercury speciation by differential photochemical vapor generation at UV-B vs. UV-C wavelength

    NASA Astrophysics Data System (ADS)

    Chen, Guoying; Lai, Bunhong; Mei, Ni; Liu, Jixin; Mao, Xuefei

    2017-11-01

    Photochemical vapor generation (PVG) is an effective sample introduction scheme for volatile mercury (Hg). Speciation of Hg++ and MeHg+ was fulfilled for the first time by differential PVG under UV-B vs. UV-C wavelength and applied to fish oil supplements. After liquid-liquid extraction, the aqueous extract was mixed with 0.4% anthranilic acid (AA)-20% formic acid (FA) in a quartz coil, and exposed sequentially to 311 nm or 254 nm UV light. The resulting Hg0 vapor was detected by atomic fluorescence spectrometry (AFS). At each wavelength, the AFS intensity was a linear function of Hg++ and MeHg+ concentrations, which were solvable from a set of two equations. This method achieved ultrahigh sensitivity with 0.50 and 0.63 ng mL- 1 limits of detection for Hg++ and MeHg+, respectively, and 73% recovery for MeHg+ at 10 ng mL- 1. Validation was performed by ICP-MS on total Hg. Obviation of chemical or chromatographic separation rendered this method rapid, green, and cost-effective.

  18. Assessment of the Vapor Phase Catalytic Ammonia Removal (VPCAR) Technology at the MSFC ECLS Test Facility

    NASA Technical Reports Server (NTRS)

    Tomes, Kristin; Long, David; Carter, Layne; Flynn, Michael

    2007-01-01

    The Vapor Phase Catalytic Ammonia. Removal (VPCAR) technology has been previously discussed as a viable option for. the Exploration Water Recovery System. This technology integrates a phase change process with catalytic oxidation in the vapor phase to produce potable water from exploration mission wastewaters. A developmental prototype VPCAR was designed, built and tested under funding provided by a National Research. Announcement (NRA) project. The core technology, a Wiped Film Rotating Device (WFRD) was provided by Water Reuse Technologies under the NRA, whereas Hamilton Sundstrand Space Systems International performed the hardware integration and acceptance test. of the system. Personnel at the-Ames Research Center performed initial systems test of the VPCAR using ersatz solutions. To assess the viability of this hardware for Exploration. Life Support (ELS) applications, the hardware has been modified and tested at the MSFC ECLS Test facility. This paper summarizes the hardware modifications and test results and provides an assessment of this technology for the ELS application.

  19. Control of flow through a vapor generator

    DOEpatents

    Radcliff, Thomas D.

    2005-11-08

    In a Rankine cycle system wherein a vapor generator receives heat from exhaust gases, provision is made to avoid overheating of the refrigerant during ORC system shut down while at the same time preventing condensation of those gases within the vapor generator when its temperature drops below a threshold temperature by diverting the flow of hot gases to ambient and to thereby draw ambient air through the vapor generator in the process. In one embodiment, a bistable ejector is adjustable between one position, in which the hot gases flow through the vapor generator, to another position wherein the gases are diverted away from the vapor generator. Another embodiment provides for a fixed valve ejector with a bias towards discharging to ambient, but with a fan on the downstream side of said vapor generator for overcoming this bias.

  20. G-Band Vapor Radiometer Profiler (GVRP) Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caddeau, MP

    2010-06-23

    The G-Band Vapor Radiometer Profiler (GVRP) provides time-series measurements of brightness temperatures from 15 channels between 170 and 183.310 GHz. Atmospheric emission in this spectral region is primarily due to water vapor, with some influence from liquid water. Channels between 170.0 and 176.0 GHz are particularly sensitive to the presence of liquid water. The sensitivity to water vapor of the 183.31-GHz line is approximately 30 times higher than at the frequencies of the two-channel microwave radiometer (MWR) for a precipitable water vapor (PWV) amount of less than 2.5 mm. Measurements from the GVRP instrument are therefore especially useful during low-humiditymore » conditions (PWV < 5 mm). In addition to integrated water vapor and liquid water, the GVRP can provide low-resolution vertical profiles of water vapor in very dry conditions.« less

  1. What Good is Raman Water Vapor Lidar?

    NASA Technical Reports Server (NTRS)

    Whitman, David

    2011-01-01

    Raman lidar has been used to quantify water vapor in the atmosphere for various scientific studies including mesoscale meteorology and satellite validation. Now the international networks of NDACC and GRUAN have interest in using Raman water vapor lidar for detecting trends in atmospheric water vapor concentrations. What are the data needs for addressing these very different measurement challenges. We will review briefly the scientific needs for water vapor accuracy for each of these three applications and attempt to translate that into performance specifications for Raman lidar in an effort to address the question in the title of "What good is Raman water vapor Iidar."

  2. Method and Apparatus for Concentrating Vapors for Analysis

    DOEpatents

    Grate, Jay W.; Baldwin, David L.; Anheier, Jr., Norman C.

    2008-10-07

    An apparatus and method are disclosed for pre-concentrating gaseous vapors for analysis. The invention finds application in conjunction with, e.g., analytical instruments where low detection limits for gaseous vapors are desirable. Vapors sorbed and concentrated within the bed of the apparatus can be thermally desorbed achieving at least partial separation of vapor mixtures. The apparatus is suitable, e.g., for preconcentration and sample injection, and provides greater resolution of peaks for vapors within vapor mixtures, yielding detection levels that are 10-10,000 times better than for direct sampling and analysis systems. Features are particularly useful for continuous unattended monitoring applications.

  3. Preparation Of Sources For Plasma Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Waters, William J.; Sliney, Hal; Kowalski, D.

    1993-01-01

    Multicomponent metal targets serving as sources of vapor for plasma vapor deposition made in modified pressureless-sintering process. By use of targets made in modified process, one coats components with materials previously plasma-sprayed or sintered but not plasma-vapor-deposited.

  4. Vapor deposition routes to conformal polymer thin films

    PubMed Central

    Moni, Priya; Al-Obeidi, Ahmed

    2017-01-01

    Vapor phase syntheses, including parylene chemical vapor deposition (CVD) and initiated CVD, enable the deposition of conformal polymer thin films to benefit a diverse array of applications. This short review for nanotechnologists, including those new to vapor deposition methods, covers the basic theory in designing a conformal polymer film vapor deposition, sample preparation and imaging techniques to assess film conformality, and several applications that have benefited from vapor deposited, conformal polymer thin films. PMID:28487816

  5. Passive Vaporizing Heat Sink

    NASA Technical Reports Server (NTRS)

    Knowles, TImothy R.; Ashford, Victor A.; Carpenter, Michael G.; Bier, Thomas M.

    2011-01-01

    A passive vaporizing heat sink has been developed as a relatively lightweight, compact alternative to related prior heat sinks based, variously, on evaporation of sprayed liquids or on sublimation of solids. This heat sink is designed for short-term dissipation of a large amount of heat and was originally intended for use in regulating the temperature of spacecraft equipment during launch or re-entry. It could also be useful in a terrestrial setting in which there is a requirement for a lightweight, compact means of short-term cooling. This heat sink includes a hermetic package closed with a pressure-relief valve and containing an expendable and rechargeable coolant liquid (e.g., water) and a conductive carbon-fiber wick. The vapor of the liquid escapes when the temperature exceeds the boiling point corresponding to the vapor pressure determined by the setting of the pressure-relief valve. The great advantage of this heat sink over a melting-paraffin or similar phase-change heat sink of equal capacity is that by virtue of the =10x greater latent heat of vaporization, a coolant-liquid volume equal to =1/10 of the paraffin volume can suffice.

  6. Vapor transport mechanisms

    NASA Technical Reports Server (NTRS)

    Workman, G. L.

    1978-01-01

    The Raman scattering furnace for investigating vapor transport mechanisms was completed and checked out. Preliminary experiments demonstate that a temperature resolution of plus and minus 5 C is possible with this system operating in a backscatter mode. In the experiments presented with the GeI 4 plus excess Ge system at temperatures up to 600 C, only the GeI4 band at 150 cm superscript minus 1 was observed. Further experiments are in progress to determine if GeI2 does become the major vapor species above 440 C.

  7. 78 FR 25129 - Self-Regulatory Organizations; ICE Clear Europe Limited; Notice of Withdrawal of Proposed Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-29

    ...-Regulatory Organizations; ICE Clear Europe Limited; Notice of Withdrawal of Proposed Rule Change Regarding Central Counterparty Resolution and Recovery Procedures April 22, 2013. On March 7, 2013, ICE Clear Europe Limited (``ICE Clear Europe'') filed with the Securities and Exchange Commission (``Commission...

  8. Health assessment of gasoline and fuel oxygenate vapors: neurotoxicity evaluation.

    PubMed

    O'Callaghan, James P; Daughtrey, Wayne C; Clark, Charles R; Schreiner, Ceinwen A; White, Russell

    2014-11-01

    Sprague-Dawley rats were exposed via inhalation to vapor condensates of either gasoline or gasoline combined with various fuel oxygenates to assess potential neurotoxicity of evaporative emissions. Test articles included vapor condensates prepared from "baseline gasoline" (BGVC), or gasoline combined with methyl tertiary butyl ether (G/MTBE), ethyl t-butyl ether (G/ETBE), t-amyl methyl ether (G/TAME), diisopropyl ether (G/DIPE), ethanol (G/EtOH), or t-butyl alcohol (G/TBA). Target concentrations were 0, 2000, 10,000 or 20,000mg/mg(3) and exposures were for 6h/day, 5days/week for 13weeks. The functional observation battery (FOB) with the addition of motor activity (MA) testing, hematoxylin and eosin staining of brain tissue sections, and brain regional analysis of glial fibrillary acidic protein (GFAP) were used to assess behavioral changes, traditional neuropathology and astrogliosis, respectively. FOB and MA data for all agents, except G/TBA, were negative. G/TBA behavioral effects resolved during recovery. Neuropathology was negative for all groups. Analyses of GFAP revealed increases in multiplebrain regions largely limited to males of the G/EtOH group, findings indicative of minor gliosis, most significantly in the cerebellum. Small changes (both increases and decreases) in GFAP were observed for other test agents but effects were not consistent across sex, brain region or exposure concentration. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Health assessment of gasoline and fuel oxygenate vapors: Neurotoxicity evaluation

    PubMed Central

    O’Callaghan, James P.; Daughtrey, Wayne C.; Clark, Charles R.; Schreiner, Ceinwen A.; White, Russell

    2016-01-01

    Sprague–Dawley rats were exposed via inhalation to vapor condensates of either gasoline or gasoline combined with various fuel oxygenates to assess potential neurotoxicity of evaporative emissions. Test articles included vapor condensates prepared from “baseline gasoline” (BGVC), or gasoline combined with methyl tertiary butyl ether (G/MTBE), ethyl t-butyl ether (G/ETBE), t-amyl methyl ether (G/TAME), diisopropyl ether (G/DIPE), ethanol (G/EtOH), or t-butyl alcohol (G/TBA). Target concentrations were 0, 2000, 10,000 or 20,000 mg/mg3 and exposures were for 6 h/day, 5 days/week for 13 weeks. The functional observation battery (FOB) with the addition of motor activity (MA) testing, hematoxylin and eosin staining of brain tissue sections, and brain regional analysis of glial fibrillary acidic protein (GFAP) were used to assess behavioral changes, traditional neuropathology and astrogliosis, respectively. FOB and MA data for all agents, except G/TBA, were negative. G/TBA behavioral effects resolved during recovery. Neuropathology was negative for all groups. Analyses of GFAP revealed increases in multiple brain regions largely limited to males of the G/EtOH group, findings indicative of minor gliosis, most significantly in the cerebellum. Small changes (both increases and decreases) in GFAP were observed for other test agents but effects were not consistent across sex, brain region or exposure concentration. PMID:24879970

  10. NASA TechPort Entry for Coiled Brine Recovery Assembly (CoBRA) CL IR&D Project

    NASA Technical Reports Server (NTRS)

    Pensinger, Stuart

    2014-01-01

    The Coiled Brine Recovery Assembly (CoBRA) project will result in a proof-of-concept demonstration for a lightweight, compact, affordable, regenerable and disposable solution to brine water recovery. The heart of CoBRA is an evaporator that produces water vapor from brine. This evaporator leverages a novel design that enables passive transport of brine from place to place within the system. While it will be necessary to build or modify a system for testing the CoBRA concept, the emphasis of this project will be on developing the evaporator itself. This project will utilize a “test early, test often” approach, building at least one trial evaporator to guide the design of the final product.

  11. Method and apparatus for concentrating vapors for analysis

    DOEpatents

    Grate, Jay W [West Richland, WA; Baldwin, David L [Kennewick, WA; Anheier, Jr., Norman C.

    2012-06-05

    A pre-concentration device and a method are disclosed for concentrating gaseous vapors for analysis. Vapors sorbed and concentrated within the bed of the pre-concentration device are thermally desorbed, achieving at least partial separation of the vapor mixtures. The pre-concentration device is suitable, e.g., for pre-concentration and sample injection, and provides greater resolution of peaks for vapors within vapor mixtures, yielding detection levels that are 10-10,000 times better than direct sampling and analysis systems. Features are particularly useful for continuous unattended monitoring applications. The invention finds application in conjunction with, e.g., analytical instruments where low detection limits for gaseous vapors are desirable.

  12. Assessment of Mitigation Systems on Vapor Intrusion ...

    EPA Pesticide Factsheets

    Vapor intrusion is the migration of subsurface vapors, including radon and volatile organic compounds (VOCs), in soil gas from the subsurface to indoor air. Vapor intrusion happens because there are pressure and concentration differentials between indoor air and soil gas. Indoor environments are often negatively pressurized with respect to outdoor air and soil gas (for example, from exhaust fans or the stack effect), and this pressure difference allows soil gas containing subsurface vapors to flow into indoor air through advection. In addition, concentration differentials cause VOCs and radon to migrate from areas of higher to lower concentrations through diffusion, which is another cause of vapor intrusion. Current practice for evaluating the vapor intrusion pathway involves a multiple line of evidence approach based on direct measurements in groundwater, external soil gas, subslab soil gas, and/or indoor air. No single line of evidence is considered definitive, and direct measurements of vapor intrusion can be costly, especially where significant spatial and temporal variability require repeated measurements at multiple locations to accurately assess the chronic risks of long-term exposure to volatile organic compounds (VOCs) like chloroform, perchloroethylene (PCE), and trichloroethylene (TCE).

  13. Energy impact of cathode drying and solvent recovery during lithium-ion battery manufacturing

    NASA Astrophysics Data System (ADS)

    Ahmed, Shabbir; Nelson, Paul A.; Gallagher, Kevin G.; Dees, Dennis W.

    2016-08-01

    Successful deployment of electric vehicles requires maturity of the manufacturing process to reduce the cost of the lithium ion battery (LIB) pack. Drying the coated cathode layer and subsequent recovery of the solvent for recycle is a vital step in the lithium ion battery manufacturing plant and offers significant potential for cost reduction. A spreadsheet model of the drying and recovery of the solvent, is used to study the energy demand of this step and its contribution towards the cost of the battery pack. The base case scenario indicates that the drying and recovery process imposes an energy demand of ∼10 kWh per kg of the solvent n-methyl pyrrolidone (NMP), and is almost 45 times the heat needed to vaporize the NMP. For a plant producing 100 K battery packs per year for 10 kWh plug-in hybrid vehicles (PHEV), the energy demand is ∼5900 kW and the process contributes 107 or 3.4% to the cost of the battery pack. The cost of drying and recovery is equivalent to 1.12 per kg of NMP recovered, saving 2.08 per kg in replacement purchase.

  14. Effects of Vaporized Decontamination Systems on Selected Building Interior Materials: Vaporized Hydrogen Peroxide

    DTIC Science & Technology

    2009-01-01

    surfaces in buildings following a terrorist attack using CB agents. Vaporized hydrogen peroxide ( VHP ) and Cl02 are decontamination technologies that...decontaminant. The focus of this technical report is the evaluation of the building interior materials and the Steris VHP technology. 15. SUBJECT...TERMS Material Compatibility VHP vaporized hydrogen peroxide 16. SECURITY CLASSIFICATION OF: a. REPORT U b. ABSTRACT U c. THIS PAGE U 17

  15. Optical monitor for water vapor concentration

    DOEpatents

    Kebabian, Paul

    1998-01-01

    A system for measuring and monitoring water vapor concentration in a sample uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to a water vapor absorption line. In a preferred embodiment, the argon line is split by a magnetic field parallel to the direction of light propagation from the lamp into sets of components of downshifted and upshifted frequencies of approximately 1575 Gauss. The downshifted components are centered on a water vapor absorption line and are thus readily absorbed by water vapor in the sample; the upshifted components are moved away from that absorption line and are minimally absorbed. A polarization modulator alternately selects the upshifted components or downshifted components and passes the selected components to the sample. After transmission through the sample, the transmitted intensity of a component of the argon line varies as a result of absorption by the water vapor. The system then determines the concentration of water vapor in the sample based on differences in the transmitted intensity between the two sets of components. In alternative embodiments alternate selection of sets of components is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to the emitting plasma.

  16. Optical monitor for water vapor concentration

    DOEpatents

    Kebabian, P.

    1998-06-02

    A system for measuring and monitoring water vapor concentration in a sample uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to a water vapor absorption line. In a preferred embodiment, the argon line is split by a magnetic field parallel to the direction of light propagation from the lamp into sets of components of downshifted and upshifted frequencies of approximately 1575 Gauss. The downshifted components are centered on a water vapor absorption line and are thus readily absorbed by water vapor in the sample; the upshifted components are moved away from that absorption line and are minimally absorbed. A polarization modulator alternately selects the upshifted components or downshifted components and passes the selected components to the sample. After transmission through the sample, the transmitted intensity of a component of the argon line varies as a result of absorption by the water vapor. The system then determines the concentration of water vapor in the sample based on differences in the transmitted intensity between the two sets of components. In alternative embodiments alternate selection of sets of components is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to the emitting plasma. 5 figs.

  17. Determination of vapor pressure of low-volatility compounds using a method to obtain saturated vapor with coated capillary columns.

    PubMed

    Rittfeldt, L

    2001-06-01

    The vapor pressures of O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX), O-isobutyl S-2-diethylaminoethyl methylphosphonothiolate (RVX), and 2,4-dinitrotoluene (2,4-DNT) were determined with the gas saturation method in temperatures ranging from -12 to 103 degrees C. The saturated vapor was generated using a fused-silica column coated with the compound. This column was placed in a gas chromatograph, and the vapor pressure was determined directly from the detector signal or by sampling on Tenax tubes that were subsequently analyzed. From the linear relationships obtained by plotting log P vs 1/T, the enthalpies of vaporization (deltaHvap) and the vapor pressures at selected temperatures were determined. The vapor pressure of VX at 25 degrees C was 0.110 Pa and the deltaHvap 77.9 kJ x mol(-1). The corresponding results for RVX were 0.082 Pa and 76.6 kJ x mol(-1). The vapor pressure of 2,4-DNT at 72 degrees C (melting point) was determined to 6.0 Pa, and the enthalpies of the solid and the liquid state were 94.2 and 75.3 kJ x mol(-1), respectively. Using capillary columns to generate saturated vapors has three major advantages: short equilibrium time, low consumption of sample, and safe handling of toxic compounds.

  18. Delivery of Epinephrine in the Vapor Phase for the Treatment of Croup.

    PubMed

    Leung, Kitty; Newth, Christopher J L; Hotz, Justin C; O'Brien, Kevin C; Fink, James B; Coates, Allan L

    2016-04-01

    The Vapotherm system delivers high humidity to the airway of patients by using semipermeable tubules where heated liquid water is in contact with air. The humidified air is conducted to the patient via a heated tube. Preliminary clinical observations in infants with croup suggested that epinephrine added to the water supplying the humidity was delivered successfully in the vapor phase. The purpose of this study was to evaluate the efficiency of the delivery of epinephrine in the vapor phase and to develop the feasibility criteria for a clinical pilot study. Thirty milligrams of epinephrine in a 1-L bag of sterile water was used as the humidification source for a Vapotherm 2000i. The output of the heated circuit was condensed and collected into a small Erlenmeyer flask via a metal coil while the whole collection system was submerged in an ice slurry to maintain the outflow temperature from the flask between 0°C and 2°C. The in vitro system was tested at 40°C with flows of 5, 10, and 15 L/min and L-epinephrine concentrations of 15, 30, and 60 mg/L. Each test was duplicated at each of the six conditions. Academic children's hospital research laboratory. None. None. The system recovered more than 90% of the water vapor from the fully saturated air at 40°C. The epinephrine concentration recovery quantified by ultraviolet-visible spectrophotometry was 23.9% (27.5-20.4%) (mean and range) of the initial concentration. At flows of 5, 10, and 15 L/min, the delivery of epinephrine would be 1.8, 3.6, and 4.2 μg/min, respectively, which is in the therapeutic range used for parenteral infusion in young children. The Vapotherm system can be used to deliver epinephrine in pharmacological doses to the respiratory system as a vapor and thus as an alternative to droplets by conventional nebulization.

  19. Chemical agent simulant release from clothing following vapor exposure.

    PubMed

    Feldman, Robert J

    2010-02-01

    Most ambulatory victims of a terrorist chemical attack will have exposure to vapor only. The study objective was to measure the duration of chemical vapor release from various types of clothing. A chemical agent was simulated using methyl salicylate (MeS), which has similar physical properties to sulfur mustard and was the agent used in the U.S. Army's Man-In-Simulant Test (MIST). Vapor concentration was measured with a Smiths Detection Advanced Portable Detector (APD)-2000 unit. The clothing items were exposed to vapor for 1 hour in a sealed cabinet; vapor concentration was measured at the start and end of each exposure. Clothing was then removed and assessed every 5 minutes with the APD-2000, using a uniform sweep pattern, until readings remained 0. Concentration and duration of vapor release from clothing varied with clothing composition and construction. Lightweight cotton shirts and jeans had the least trapped vapor; down outerwear, the most. Vapor concentration near the clothing often increased for several minutes after the clothing was removed from the contaminated environment. Compression of thick outerwear released additional vapor. Mean times to reach 0 ranged from 7 minutes for jeans to 42 minutes for down jackets. This simulation model of chemical vapor release demonstrates persistent presence of simulant vapor over time. This implies that chemical vapor may be released from the victims' clothing after they are evacuated from the site of exposure, resulting in additional exposure of victims and emergency responders. Insulated outerwear can release additional vapor when handled. If a patient has just moved to a vapor screening point, immediate assessment before additional vapor can be released from the clothing can lead to a false-negative assessment of contamination.

  20. Near real time vapor detection and enhancement using aerosol adsorption

    DOEpatents

    Novick, Vincent J.; Johnson, Stanley A.

    1999-01-01

    A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

  1. Vaporizing particle velocimeter

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M. (Inventor)

    1992-01-01

    A velocimeter measures flow characteristics of a flow traveling through a chamber in a given direction. Tracer particles are entrained in the flow and a source of radiant energy produces an output stream directed transversely to the chamber, having a sufficient intensity to vaporize the particles as they pass through the output stream. Each of the vaporized particles explodes to produce a shock wave and a hot core, and a flow visualization system tracks the motion of the hot cores and shock waves to measure the velocity of each tracer particle and the temperature of the flow around the tracer.

  2. Student Exposure to Mercury Vapors.

    ERIC Educational Resources Information Center

    Weber, Joyce

    1986-01-01

    Discusses the problem of mercury vapors caused by spills in high school and college laboratories. Describes a study which compared the mercury vapor levels of laboratories in both an older and a newer building. Concludes that the mercurial contamination of chemistry laboratories presents minimal risks to the students. (TW)

  3. Atomic vapor laser isotope separation process

    DOEpatents

    Wyeth, R.W.; Paisner, J.A.; Story, T.

    1990-08-21

    A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique. 23 figs.

  4. Vapor core propulsion reactors

    NASA Technical Reports Server (NTRS)

    Diaz, Nils J.

    1991-01-01

    Many research issues were addressed. For example, it became obvious that uranium tetrafluoride (UF4) is a most preferred fuel over uranium hexafluoride (UF6). UF4 has a very attractive vaporization point (1 atm at 1800 K). Materials compatible with UF4 were looked at, like tungsten, molybdenum, rhenium, carbon. It was found that in the molten state, UF4 and uranium attacked most everything, but in the vapor state they are not that bad. Compatible materials were identified for both the liquid and vapor states. A series of analyses were established to determine how the cavity should be designed. A series of experiments were performed to determine the properties of the fluid, including enhancement of the electrical conductivity of the system. CFD's and experimental programs are available that deal with most of the major issues.

  5. External fuel vaporization study, phase 1

    NASA Technical Reports Server (NTRS)

    Szetela, E. J.; Chiappetta, L.

    1980-01-01

    A conceptual design study was conducted to devise and evaluate techniques for the external vaporization of fuel for use in an aircraft gas turbine with characteristics similar to the Energy Efficient Engine (E(3)). Three vaporizer concepts were selected and they were analyzed from the standpoint of fuel thermal stability, integration of the vaporizer system into the aircraft engine, engine and vaporizer dynamic response, startup and altitude restart, engine performance, control requirements, safety, and maintenance. One of the concepts was found to improve the performance of the baseline E(3) engine without seriously compromising engine startup and power change response. Increased maintenance is required because of the need for frequent pyrolytic cleaning of the surfaces in contact with hot fuel.

  6. Estimating vapor pressures of pure liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haraburda, S.S.

    1996-03-01

    Calculating the vapor pressures for pure liquid chemicals is a key step in designing equipment for separation of liquid mixtures. Here is a useful way to develop an equation for predicting vapor pressures over a range of temperatures. The technique uses known vapor pressure points for different temperatures. Although a vapor-pressure equation is being showcased in this article, the basic method has much broader applicability -- in fact, users can apply it to develop equations for any temperature-dependent model. The method can be easily adapted for use in software programs for mathematics evaluation, minimizing the need for any programming. Themore » model used is the Antoine equation, which typically provides a good correlation with experimental or measured data.« less

  7. A vapor generator for transonic flow visualization

    NASA Technical Reports Server (NTRS)

    Bruce, Robert A.; Hess, Robert W.; Rivera, Jose A., Jr.

    1989-01-01

    A vapor generator was developed for use in the NASA Langley Transonic Dynamics Tunnel (TDT). Propylene glycol was used as the vapor material. The vapor generator system was evaluated in a laboratory setting and then used in the TDT as part of a laser light sheet flow visualization system. The vapor generator provided satisfactory seeding of the air flow with visible condensate particles, smoke, for tests ranging from low subsonic through transonic speeds for tunnel total pressures from atmospheric pressure down to less than 0.1 atmospheric pressure.

  8. Vapor ingestion in Centaur liquid-hydrogen tank

    NASA Technical Reports Server (NTRS)

    Symons, E. P.

    1977-01-01

    Vapor ingestion phenomena were investigated using scale models of the Centaur liquid hydrogen tank to determine the height of the free surface of the liquid when vapor is intially ingested into the tank outlet. Data are compared with an analysin and, is general the agreement is very good. Predictions are presented for minimum liquid levels required in the Centaur liquid hydrogen tank in order to prevent vapor ingestion when restarting the engines in space and the quantities of liquid remaining in the tank at vapor ingestion during main engine firing.

  9. Online intelligent controllers for an enzyme recovery plant: design methodology and performance.

    PubMed

    Leite, M S; Fujiki, T L; Silva, F V; Fileti, A M F

    2010-12-27

    This paper focuses on the development of intelligent controllers for use in a process of enzyme recovery from pineapple rind. The proteolytic enzyme bromelain (EC 3.4.22.4) is precipitated with alcohol at low temperature in a fed-batch jacketed tank. Temperature control is crucial to avoid irreversible protein denaturation. Fuzzy or neural controllers offer a way of implementing solutions that cover dynamic and nonlinear processes. The design methodology and a comparative study on the performance of fuzzy-PI, neurofuzzy, and neural network intelligent controllers are presented. To tune the fuzzy PI Mamdani controller, various universes of discourse, rule bases, and membership function support sets were tested. A neurofuzzy inference system (ANFIS), based on Takagi-Sugeno rules, and a model predictive controller, based on neural modeling, were developed and tested as well. Using a Fieldbus network architecture, a coolant variable speed pump was driven by the controllers. The experimental results show the effectiveness of fuzzy controllers in comparison to the neural predictive control. The fuzzy PI controller exhibited a reduced error parameter (ITAE), lower power consumption, and better recovery of enzyme activity.

  10. Near real time vapor detection and enhancement using aerosol adsorption

    DOEpatents

    Novick, V.J.; Johnson, S.A.

    1999-08-03

    A vapor sample detection method is described where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample. 13 figs.

  11. Water vapor profiling using microwave radiometry

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Wilheit, T. T.

    1988-01-01

    Water vapor is one of the most important constituents in the Earth's atmosphere. Its spatial and temporal variations affect a wide spectrum of meteorological phenomena ranging from the formation of clouds to the development of severe storms. The passive microwave technique offers an excellent means for water vapor measurements. It can provide both day and night coverage under most cloud conditions. Two water vapor absorption features, at 22 and 183 GHz, were explored in the past years. The line strengths of these features differ by nearly two orders of magnitude. As a consequence, the techniques and the final products of water vapor measurements are also quite different. The research effort in the past few years was to improve and extend the retrieval algorithm to the measurements of water vapor profiles under cloudy conditions. In addition, the retrieval of total precipitable water using 183 GHz measurements, but in a manner analogous to the use of 22 GHz measurements, to increase measurement sensitivity for atmospheres of very low moisture content was also explored.

  12. Oxidation/vaporization of silicide coated columbium base alloys

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.; Stearns, C. A.

    1971-01-01

    Mass spectrometric and target collection experiments were made at 1600 K to elucidate the mode of oxidative vaporization of two columbium alloys, fused-slurry-coated with a complex silicide former (Si-20Cr-Fe). At oxygen pressures up to 0.0005 torr the major vapor component detected by mass spectrometry for oxidized samples was gaseous silicon monoxide. Analysis of condensates collected at oxygen pressures of 0.1, 1.0 and 10 torr revealed that chromium-, silicon-, iron- and tungsten- containing species were the major products of vaporization. Equilibrium thermochemical diagrams were constructed for the metal-oxygen system corresponding to each constituent metal in both the coating and base alloy. The major vaporizing species are expected to be the gaseous oxides of chromium, silicon, iron and tungsten. Plots of vapor phase composition and maximum vaporization rate versus oxygen pressure were calculated for each coating constituent. The major contribution to weight loss by vaporization at oxygen pressures above 1 torr was shown to be the chromium-containing species.

  13. 78 FR 54959 - Revision of Fee Schedules; Fee Recovery for Fiscal Year 2013; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-09

    ...;Federal Register / Vol. 78, No. 174 / Monday, September 9, 2013 / Rules and Regulations#0;#0; [[Page 54959... Recovery for Fiscal Year 2013; Correction AGENCY: Nuclear Regulatory Commission. ACTION: Correcting... Register on July 1, 2013 (78 FR 39461), amending the licensing, inspection, and annual fees charged to its...

  14. 46 CFR 153.465 - Flammable vapor detector.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Flammable vapor detector. 153.465 Section 153.465... Requirements for Flammable Or Combustible Cargoes § 153.465 Flammable vapor detector. (a) A tankship that carries a flammable cargo must have two vapor detectors that meet § 35.30-15(b) of this chapter. (b) At...

  15. 46 CFR 153.465 - Flammable vapor detector.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Flammable vapor detector. 153.465 Section 153.465... Requirements for Flammable Or Combustible Cargoes § 153.465 Flammable vapor detector. (a) A tankship that carries a flammable cargo must have two vapor detectors that meet § 35.30-15(b) of this chapter. (b) At...

  16. 46 CFR 153.465 - Flammable vapor detector.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Flammable vapor detector. 153.465 Section 153.465... Requirements for Flammable Or Combustible Cargoes § 153.465 Flammable vapor detector. (a) A tankship that carries a flammable cargo must have two vapor detectors that meet § 35.30-15(b) of this chapter. (b) At...

  17. 46 CFR 153.465 - Flammable vapor detector.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Flammable vapor detector. 153.465 Section 153.465... Requirements for Flammable Or Combustible Cargoes § 153.465 Flammable vapor detector. (a) A tankship that carries a flammable cargo must have two vapor detectors that meet § 35.30-15(b) of this chapter. (b) At...

  18. 46 CFR 153.465 - Flammable vapor detector.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Flammable vapor detector. 153.465 Section 153.465... Requirements for Flammable Or Combustible Cargoes § 153.465 Flammable vapor detector. (a) A tankship that carries a flammable cargo must have two vapor detectors that meet § 35.30-15(b) of this chapter. (b) At...

  19. Water vapor distribution in protoplanetary disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Fujun; Bergin, Edwin A., E-mail: fdu@umich.edu

    Water vapor has been detected in protoplanetary disks. In this work, we model the distribution of water vapor in protoplanetary disks with a thermo-chemical code. For a set of parameterized disk models, we calculate the distribution of dust temperature and radiation field of the disk with a Monte Carlo method, and then solve the gas temperature distribution and chemical composition. The radiative transfer includes detailed treatment of scattering by atomic hydrogen and absorption by water of Lyα photons, since the Lyα line dominates the UV spectrum of accreting young stars. In a fiducial model, we find that warm water vapormore » with temperature around 300 K is mainly distributed in a small and well-confined region in the inner disk. The inner boundary of the warm water region is where the shielding of UV field due to dust and water itself become significant. The outer boundary is where the dust temperature drops below the water condensation temperature. A more luminous central star leads to a more extended distribution of warm water vapor, while dust growth and settling tends to reduce the amount of warm water vapor. Based on typical assumptions regarding the elemental oxygen abundance and the water chemistry, the column density of warm water vapor can be as high as 10{sup 22} cm{sup –2}. A small amount of hot water vapor with temperature higher than ∼300 K exists in a more extended region in the upper atmosphere of the disk. Cold water vapor with temperature lower than 100 K is distributed over the entire disk, produced by photodesorption of the water ice.« less

  20. Analyses on Water Vapor Resource in Chengdu City

    NASA Astrophysics Data System (ADS)

    Liu, B.; Xiao, T.; Wang, C.; Chen, D.

    2017-12-01

    Chengdu is located in the Sichuan basin, and it is the most famous inland city in China. With suitable temperatures and rainfall, Chengdu is the most livable cities in China. With the development of urban economy and society, the population has now risen to 16 million, and it will up to 22 million in 2030. This will cause the city water resources demand, and the carrying capacity of water resources become more and more serious. In order to improve the contradiction between urban waterlogging and water shortage, sponge city planning was proposed by Chengdu government, and this is of great practical significance for promoting the healthy development of the city. Base on the reanalysis data from NCEP during 2007-2016, the characters of Water Vapor Resources was analyzed, and the main contents of this research are summarized as follows: The water vapor resource in Chengdu plain is more than that in Southeast China and less in Northwest China. The annual average water vapor resource is approximately 160 mm -320 mm, and the water vapor resource in summer can reach 3 times in winter. But the annual average precipitation in Chengdu is about 800 mm -1200 mm and it is far greater than the water vapor resource, this is because of the transport of water vapor. Using the formula of water vapor flux, the water vapor in Chengdu is comes from the west and the south, and the value is around 50kg/(ms). Base on the calculation of boundary vapor budget, the water vapor transport under 500hPa accounted for 97% of the total. Consider the water vapor transport, transformation and urban humidification effect, the Water Vapor Resource in Chengdu is 2500mm, and it can be used by artificial precipitation enhancement. Therefore, coordinated development of weather modification and sponge city construction, the shortage of water resources in Chengdu plain can be solved. Key words: Chengdu; Sponge city; Water vapor resource; Precipitation; Artificial precipitation enhancement Acknowledgements

  1. Methane Post-Processor Development to Increase Oxygen Recovery beyond State-of-the-Art Carbon Dioxide Reduction Technology

    NASA Technical Reports Server (NTRS)

    Abney, Morgan; Miller, Lee; Greenwood, Zach; Iannantuono, Michelle; Jones, Kenny

    2013-01-01

    State-of-the-art life support carbon dioxide (CO2) reduction technology, based on the Sabatier reaction, is theoretically capable of 50% recovery of oxygen from metabolic CO2. This recovery is constrained by the limited availability of reactant hydrogen. Post-processing of the methane byproduct from the Sabatier reactor results in hydrogen recycle and a subsequent increase in oxygen recovery. For this purpose, a Methane Post-Processor Assembly containing three sub-systems has been developed and tested. The assembly includes a Methane Purification Assembly (MePA) to remove residual CO2 and water vapor from the Sabatier product stream, a Plasma Pyrolysis Assembly (PPA) to partially pyrolyze methane into hydrogen and acetylene, and an Acetylene Separation Assembly (ASepA) to purify the hydrogen product for recycle. The results of partially integrated testing of the sub-systems are reported.

  2. Methane Post-Processor Development to Increase Oxygen Recovery beyond State-of-the-Art Carbon Dioxide Reduction Technology

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Greenwood, Zachary; Miller, Lee A.; Alvarez, Giraldo; Iannantuono, Michelle; Jones, Kenny

    2013-01-01

    State-of-the-art life support carbon dioxide (CO2) reduction technology, based on the Sabatier reaction, is theoretically capable of 50% recovery of oxygen from metabolic CO2. This recovery is constrained by the limited availability of reactant hydrogen. Post-processing of the methane byproduct from the Sabatier reactor results in hydrogen recycle and a subsequent increase in oxygen recovery. For this purpose, a Methane Post-Processor Assembly containing three sub-systems has been developed and tested. The assembly includes a Methane Purification Assembly (MePA) to remove residual CO2 and water vapor from the Sabatier product stream, a Plasma Pyrolysis Assembly (PPA) to partially pyrolyze methane into hydrogen and acetylene, and an Acetylene Separation Assembly (ASepA) to purify the hydrogen product for recycle. The results of partially integrated testing of the sub-systems are reported

  3. 40 CFR 796.1950 - Vapor pressure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gases until the measured vapor pressure is constant, a process called “degassing.” Impurities more... simulations. Vapor pressure is computed on the assumption that the total pressure of a mixture of gases is...

  4. Rule-Based Event Processing and Reaction Rules

    NASA Astrophysics Data System (ADS)

    Paschke, Adrian; Kozlenkov, Alexander

    Reaction rules and event processing technologies play a key role in making business and IT / Internet infrastructures more agile and active. While event processing is concerned with detecting events from large event clouds or streams in almost real-time, reaction rules are concerned with the invocation of actions in response to events and actionable situations. They state the conditions under which actions must be taken. In the last decades various reaction rule and event processing approaches have been developed, which for the most part have been advanced separately. In this paper we survey reaction rule approaches and rule-based event processing systems and languages.

  5. Vapor Pressure Measurements in a Closed System

    ERIC Educational Resources Information Center

    Iannone, Mark

    2006-01-01

    An alternative method that uses a simple apparatus to measure vapor pressure versus temperature in a closed system, in which the total pressure is the vapor pressure of the liquid sample, is described. The use of this apparatus gives students a more direct picture of vapor pressure than the isoteniscope method and results have generally been quite…

  6. A technique to depress desflurane vapor pressure.

    PubMed

    Brosnan, Robert J; Pypendop, Bruno H

    2006-09-01

    To determine whether the vapor pressure of desflurane could be decreased by using a solvent to reduce the anesthetic molar fraction in a solution (Raoult's Law). We hypothesized that such an anesthetic mixture could produce anesthesia using a nonprecision vaporizer instead of an agent-specific, electronically controlled, temperature and pressure compensated vaporizer currently required for desflurane administration. One healthy adult female dog. Propylene glycol was used as a solvent for desflurane, and the physical characteristics of this mixture were evaluated at various molar concentrations and temperatures. Using a circle system with a breathing bag attached at the patient end and a mechanical ventilator to simulate respiration, an in-circuit, nonprecision vaporizer containing 40% desflurane and 60% propylene glycol achieved an 11.5% +/- 1.0% circuit desflurane concentration with a 5.2 +/- 0.4 (0 = off, 10 = maximum) vaporizer setting. This experiment was repeated with a dog attached to the breathing circuit under spontaneous ventilation with a fresh gas flow of 0.5 L minute(-1). Anesthesia was maintained for over 2 hours at a mean vaporizer setting of 6.2 +/- 0.4, yielding mean inspired and end-tidal desflurane concentrations of 8.7% +/- 0.5% and 7.9% +/- 0.7%, respectively. Rather than alter physical properties of vaporizers to suit a particular anesthetic agent, this study demonstrates that it is also possible to alter physical properties of anesthetic agents to suit a particular vaporizer. However, propylene glycol may not prove an ideal solvent for desflurane because of its instability in solution and substantial-positive deviation from Raoult's Law.

  7. Preliminary characterization of a water vaporizer for resistojet applications

    NASA Technical Reports Server (NTRS)

    Morren, W. Earl

    1992-01-01

    A series of tests was conducted to explore the characteristics of a water vaporizer intended for application to resistojet propulsion systems. The objectives of these tests were to (1) observe the effect of orientation with respect to gravity on vaporizer stability, (2) characterize vaporizer efficiency and outlet conditions over a range of flow rates, and (3) measure the thrust performance of a vaporizer/resistojet thruster assembly. A laboratory model of a forced-flow, once-through water vaporizer employing a porous heat exchange medium was built and characterized over a range of flow rates and power levels of interest for application to water resistojets. In a test during which the vaporizer was rotated about a horizontal axis normal to its own axis, the outlet temperature and mass flow rate through the vaporizer remained steady. Throttlability to 30 percent of the maximum flow rate tested was demonstrated. The measured thermal efficiency of the vaporizer was near 0.9 for all tests. The water vaporizer was integrated with an engineering model multipropellant resistojet. Performance of the vaporizer/thruster assembly was measured over a narrow range of operating conditions. The maximum specific impulse measured was 234 s at a mass flow rate and specific power level (vaporizer and thruster combined) of 154 x 10(exp-6)kg/s and 6.8 MJ/kg, respectively.

  8. Perspective: Highly stable vapor-deposited glasses

    NASA Astrophysics Data System (ADS)

    Ediger, M. D.

    2017-12-01

    This article describes recent progress in understanding highly stable glasses prepared by physical vapor deposition and provides perspective on further research directions for the field. For a given molecule, vapor-deposited glasses can have higher density and lower enthalpy than any glass that can be prepared by the more traditional route of cooling a liquid, and such glasses also exhibit greatly enhanced kinetic stability. Because vapor-deposited glasses can approach the bottom of the amorphous part of the potential energy landscape, they provide insights into the properties expected for the "ideal glass." Connections between vapor-deposited glasses, liquid-cooled glasses, and deeply supercooled liquids are explored. The generality of stable glass formation for organic molecules is discussed along with the prospects for stable glasses of other types of materials.

  9. Perspective: Highly stable vapor-deposited glasses

    DOE PAGES

    Ediger, M. D.

    2017-12-07

    This paper describes recent progress in understanding highly stable glasses prepared by physical vapor deposition and provides perspective on further research directions for the field. For a given molecule, vapor-deposited glasses can have higher density and lower enthalpy than any glass that can be prepared by the more traditional route of cooling a liquid, and such glasses also exhibit greatly enhanced kinetic stability. Because vapor-deposited glasses can approach the bottom of the amorphous part of the potential energy landscape, they provide insights into the properties expected for the “ideal glass”. Connections between vapor-deposited glasses, liquid-cooled glasses, and deeply supercooled liquidsmore » are explored. The generality of stable glass formation for organic molecules is discussed along with the prospects for stable glasses of other types of materials.« less

  10. Perspective: Highly stable vapor-deposited glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ediger, M. D.

    This paper describes recent progress in understanding highly stable glasses prepared by physical vapor deposition and provides perspective on further research directions for the field. For a given molecule, vapor-deposited glasses can have higher density and lower enthalpy than any glass that can be prepared by the more traditional route of cooling a liquid, and such glasses also exhibit greatly enhanced kinetic stability. Because vapor-deposited glasses can approach the bottom of the amorphous part of the potential energy landscape, they provide insights into the properties expected for the “ideal glass”. Connections between vapor-deposited glasses, liquid-cooled glasses, and deeply supercooled liquidsmore » are explored. The generality of stable glass formation for organic molecules is discussed along with the prospects for stable glasses of other types of materials.« less

  11. Vapor purification with self-cleaning filter

    DOEpatents

    Josephson, Gary B.; Heath, William O.; Aardahl, Christopher L.

    2003-12-09

    A vapor filtration device including a first electrode, a second electrode, and a filter between the first and second electrodes is disclosed. The filter is formed of dielectric material and the device is operated by applying a first electric potential between the electrodes to polarize the dielectric material such that upon passing a vapor stream through the filter, particles from the vapor stream are deposited onto the filter. After depositing the particles a second higher voltage is applied between the electrodes to form a nonthermal plasma around the filter to vaporize the collected particles thereby cleaning the filter. The filter can be a packed bed or serpentine filter mat, and an optional upstream corona wire can be utilized to charge airborne particles prior to their deposition on the filter.

  12. Quantitative organic vapor-particle sampler

    DOEpatents

    Gundel, Lara; Daisey, Joan M.; Stevens, Robert K.

    1998-01-01

    A quantitative organic vapor-particle sampler for sampling semi-volatile organic gases and particulate components. A semi-volatile organic reversible gas sorbent macroreticular resin agglomerates of randomly packed microspheres with the continuous porous structure of particles ranging in size between 0.05-10 .mu.m for use in an integrated diffusion vapor-particle sampler.

  13. 77 FR 52977 - Regulatory Capital Rules: Advanced Approaches Risk-Based Capital Rule; Market Risk Capital Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ... Corporation 12 CFR Parts 324, 325 Regulatory Capital Rules: Advanced Approaches Risk-Based Capital Rule... 325 RIN 3064-AD97 Regulatory Capital Rules: Advanced Approaches Risk-Based Capital Rule; Market Risk... the agencies' current capital rules. In this NPR (Advanced Approaches and Market Risk NPR) the...

  14. Vapor concentration monitor

    DOEpatents

    Bayly, John G.; Booth, Ronald J.

    1977-01-01

    An apparatus for monitoring the concentration of a vapor, such as heavy water, having at least one narrow bandwidth in its absorption spectrum, in a sample gas such as air. The air is drawn into a chamber in which the vapor content is measured by means of its radiation absorption spectrum. High sensitivity is obtained by modulating the wavelength at a relatively high frequency without changing its optical path, while high stability against zero drift is obtained by the low frequency interchange of the sample gas to be monitored and of a reference sample. The variable HDO background due to natural humidity is automatically corrected.

  15. Hazardous Waste Management System - Definition of Hazardous Waste - Mixture and Derived- From Rules - Federal Register Notice, October 30, 1992

    EPA Pesticide Factsheets

    This action responds to public comment on two proposals (57 FR 7636, March 3, 1992, and 57 FR 21450, May 20, 1992) to modify EPA's hazardous waste identification rules under the Resource Conservation and Recovery Act (RCRA).

  16. Shock vaporization of carbonate and sulfate minerals

    NASA Astrophysics Data System (ADS)

    Shen, A. H.; Ahrens, T. J.; O'Keefe, J. D.

    2001-12-01

    Strong shock waves induced by impacts can cause vaporization of rocks and minerals. The products of such process play important roles in planetary differentiation (Yakovlev et al., Geochem. International, 38, 1027, 2000) and in effecting the planetary climate. Many experiments and computer simulations have been performed to simulate the Chicxulub impact at Cretaceous/Tertiary boundary (see, for example, Pierazzo et al., J. Geophys. Res., 103, 28607, 1998 and Pope et al., J. Geophys. Res., 102, 21645, 1997). However, the pressure range for incipient and complete vaporization of carbonates and sulfates are not well constrained, especially, for minerals with various initial porosities. Furthermore, evidence for chemical species in the products of vaporized carbonate and sulfate minerals is almost non-existing. In this study, we employed published Hugoniot data for carbonate and sulfate minerals. By using the methods described in Ahrens (J. Appl. Phys., 43, 2443, 1972) and Ahrens and O'Keefe (The Moon, 4, 214, 1972), we calculated the entropy associated with the thermodynamic states produced by hypervelocity impacts at various velocities for carbonate and sulfate minerals with different initial porosities. The results were compared with the entropy of incipient vaporization and complete vaporization of these minerals to determine the degree of vaporization due to impacts. Moreover, these results are utilized to guide our experimental study in speciation reactions in shock-induced vaporization of carbonates and sulfates.

  17. Pushing the rules: effects and aftereffects of deliberate rule violations.

    PubMed

    Wirth, Robert; Pfister, Roland; Foerster, Anna; Huestegge, Lynn; Kunde, Wilfried

    2016-09-01

    Most of our daily life is organized around rules and social norms. But what makes rules so special? And what if one were to break a rule intentionally? Can we simply free us from the present set of rules or do we automatically adhere to them? How do rule violations influence subsequent behavior? To investigate the effects and aftereffects of violating simple S-R rule, we conducted three experiments that investigated continuous finger-tracking responses on an iPad. Our experiments show that rule violations are distinct from rule-based actions in both response times and movement trajectories, they take longer to initiate and execute, and their movement trajectory is heavily contorted. Data not only show differences between the two types of response (rule-based vs. violation), but also yielded a characteristic pattern of aftereffects in case of rule violations: rule violations do not trigger adaptation effects that render further rule violations less difficult, but every rule violation poses repeated effort on the agent. The study represents a first step towards understanding the signature and underlying mechanisms of deliberate rule violations, they cannot be acted out by themselves, but require the activation of the original rule first. Consequently, they are best understood as reformulations of existing rules that are not accessible on their own, but need to be constantly derived from the original rule, with an add-on that might entail an active tendency to steer away from mental representations that reflect (socially) unwanted behavior.

  18. Mechanisms of rule acquisition and rule following in inductive reasoning.

    PubMed

    Crescentini, Cristiano; Seyed-Allaei, Shima; De Pisapia, Nicola; Jovicich, Jorge; Amati, Daniele; Shallice, Tim

    2011-05-25

    Despite the recent interest in the neuroanatomy of inductive reasoning processes, the regional specificity within prefrontal cortex (PFC) for the different mechanisms involved in induction tasks remains to be determined. In this study, we used fMRI to investigate the contribution of PFC regions to rule acquisition (rule search and rule discovery) and rule following. Twenty-six healthy young adult participants were presented with a series of images of cards, each consisting of a set of circles numbered in sequence with one colored blue. Participants had to predict the position of the blue circle on the next card. The rules that had to be acquired pertained to the relationship among succeeding stimuli. Responses given by subjects were categorized in a series of phases either tapping rule acquisition (responses given up to and including rule discovery) or rule following (correct responses after rule acquisition). Mid-dorsolateral PFC (mid-DLPFC) was active during rule search and remained active until successful rule acquisition. By contrast, rule following was associated with activation in temporal, motor, and medial/anterior prefrontal cortex. Moreover, frontopolar cortex (FPC) was active throughout the rule acquisition and rule following phases before a rule became familiar. We attributed activation in mid-DLPFC to hypothesis generation and in FPC to integration of multiple separate inferences. The present study provides evidence that brain activation during inductive reasoning involves a complex network of frontal processes and that different subregions respond during rule acquisition and rule following phases.

  19. Enhanced recovery pathways in gynecologic oncology.

    PubMed

    Nelson, Gregg; Kalogera, Eleftheria; Dowdy, Sean C

    2014-12-01

    Many commonplace perioperative practices are lacking in scientific evidence and may interfere with the goal of optimizing patient recovery. Individual components of perioperative care have therefore been scrutinized, resulting in the creation of so-called "enhanced recovery" pathways (ERP), with the goal of hastening surgical recovery through attenuation of the stress response. In this review we examine the evidence for ERP in gynecologic oncology using data from our specialty and general surgery. We performed a systematic literature search on ERP in gynecologic oncology in June 2014 using PubMed/MEDLINE, EMBASE, and The Cochrane Library. All study types were included. References were hand reviewed to ensure completeness. The Enhanced Recovery After Surgery (ERAS) Society was contacted to identify any unpublished protocols. Seven investigations were identified that examined the role of ERP in gynecologic oncology. Common interventions included allowing oral intake of fluids up to 2 hours before induction of anesthesia, solids up to 6 hours before anesthesia, carbohydrate supplementation, intra- and postoperative euvolemia, aggressive nausea/vomiting prophylaxis, and oral nutrition and ambulation the day of surgery. In addition, bowel preparations, the NPO after midnight rule, nasogastric tubes, and intravenous opioids were discontinued. While no randomized data are available in gynecologic oncology, significant improvements in patient satisfaction, length of stay (up to 4 days), and cost (up to $7600 in savings per patient) were observed in ERP cohorts compared to historical controls. Morbidity, mortality, and readmission rates were no different between groups. Enhanced recovery is a safe perioperative management strategy for patients undergoing surgery for gynecologic malignancies, reduces length of stay and cost, and is considered standard of care at a growing number of institutions. Our specialty would benefit from a formalized ERP such as ERAS which audits

  20. Rankine cycle waste heat recovery system

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2015-09-22

    A waste heat recovery (WHR) system connects a working fluid to fluid passages formed in an engine block and/or a cylinder head of an internal combustion engine, forming an engine heat exchanger. The fluid passages are formed near high temperature areas of the engine, subjecting the working fluid to sufficient heat energy to vaporize the working fluid while the working fluid advantageously cools the engine block and/or cylinder head, improving fuel efficiency. The location of the engine heat exchanger downstream from an EGR boiler and upstream from an exhaust heat exchanger provides an optimal position of the engine heat exchanger with respect to the thermodynamic cycle of the WHR system, giving priority to cooling of EGR gas. The configuration of valves in the WHR system provides the ability to select a plurality of parallel flow paths for optimal operation.

  1. The role of water vapor in climate. A strategic research plan for the proposed GEWEX water vapor project (GVaP)

    NASA Technical Reports Server (NTRS)

    Starr, D. OC. (Editor); Melfi, S. Harvey (Editor)

    1991-01-01

    The proposed GEWEX Water Vapor Project (GVaP) addresses fundamental deficiencies in the present understanding of moist atmospheric processes and the role of water vapor in the global hydrologic cycle and climate. Inadequate knowledge of the distribution of atmospheric water vapor and its transport is a major impediment to progress in achieving a fuller understanding of various hydrologic processes and a capability for reliable assessment of potential climatic change on global and regional scales. GVap will promote significant improvements in knowledge of atmospheric water vapor and moist processes as well as in present capabilities to model these processes on global and regional scales. GVaP complements a number of ongoing and planned programs focused on various aspects of the hydrologic cycle. The goal of GVaP is to improve understanding of the role of water vapor in meteorological, hydrological, and climatological processes through improved knowledge of water vapor and its variability on all scales. A detailed description of the GVaP is presented.

  2. 18 CFR 385.104 - Rule of construction (Rule 104).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Rule of construction (Rule 104). 385.104 Section 385.104 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Definitions § 385.104 Rule of construction (Rule 104). To the extent that the text of a rule is inconsistent...

  3. 18 CFR 385.104 - Rule of construction (Rule 104).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Rule of construction (Rule 104). 385.104 Section 385.104 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Definitions § 385.104 Rule of construction (Rule 104). To the extent that the text of a rule is inconsistent...

  4. Association rule mining on grid monitoring data to detect error sources

    NASA Astrophysics Data System (ADS)

    Maier, Gerhild; Schiffers, Michael; Kranzlmueller, Dieter; Gaidioz, Benjamin

    2010-04-01

    Error handling is a crucial task in an infrastructure as complex as a grid. There are several monitoring tools put in place, which report failing grid jobs including exit codes. However, the exit codes do not always denote the actual fault, which caused the job failure. Human time and knowledge is required to manually trace back errors to the real fault underlying an error. We perform association rule mining on grid job monitoring data to automatically retrieve knowledge about the grid components' behavior by taking dependencies between grid job characteristics into account. Therewith, problematic grid components are located automatically and this information - expressed by association rules - is visualized in a web interface. This work achieves a decrease in time for fault recovery and yields an improvement of a grid's reliability.

  5. Phonological reduplication in sign language: Rules rule

    PubMed Central

    Berent, Iris; Dupuis, Amanda; Brentari, Diane

    2014-01-01

    Productivity—the hallmark of linguistic competence—is typically attributed to algebraic rules that support broad generalizations. Past research on spoken language has documented such generalizations in both adults and infants. But whether algebraic rules form part of the linguistic competence of signers remains unknown. To address this question, here we gauge the generalization afforded by American Sign Language (ASL). As a case study, we examine reduplication (X→XX)—a rule that, inter alia, generates ASL nouns from verbs. If signers encode this rule, then they should freely extend it to novel syllables, including ones with features that are unattested in ASL. And since reduplicated disyllables are preferred in ASL, such a rule should favor novel reduplicated signs. Novel reduplicated signs should thus be preferred to nonreduplicative controls (in rating), and consequently, such stimuli should also be harder to classify as nonsigns (in the lexical decision task). The results of four experiments support this prediction. These findings suggest that the phonological knowledge of signers includes powerful algebraic rules. The convergence between these conclusions and previous evidence for phonological rules in spoken language suggests that the architecture of the phonological mind is partly amodal. PMID:24959158

  6. Thermodynamics and Kinetics of Silicate Vaporization

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Costa, Gustavo C. C.

    2015-01-01

    Silicates are a common class of materials that are often exposed to high temperatures. The behavior of these materials needs to be understood for applications as high temperature coatings in material science as well as the constituents of lava for geological considerations. The vaporization behavior of these materials is an important aspect of their high temperature behavior and it also provides fundamental thermodynamic data. The application of Knudsen effusion mass spectrometry (KEMS) to silicates is discussed. There are several special considerations for silicates. The first is selection of an appropriate cell material, which is either nearly inert or has well-understood interactions with the silicate. The second consideration is proper measurement of the low vapor pressures. This can be circumvented by using a reducing agent to boost the vapor pressure without changing the solid composition or by working at very high temperatures. The third consideration deals with kinetic barriers to vaporization. The measurement of these barriers, as encompassed in a vaporization coefficient, is discussed. Current measured data of rare earth silicates for high temperature coating applications are discussed. In addition, data on magnesium-iron-silicates (olivine) are presented and discussed.

  7. Vapor-liquid nucleation: the solid touch.

    PubMed

    Yarom, Michal; Marmur, Abraham

    2015-08-01

    Vapor-liquid nucleation is a ubiquitous process that has been widely researched in many disciplines. Yet, case studies are quite scattered in the literature, and the implications of some of its basic concepts are not always clearly stated. This is especially noticeable for heterogeneous nucleation, which involves a solid surface in touch with the liquid and vapor. The current review attempts to offer a comprehensive, though concise, thermodynamic discussion of homogeneous and heterogeneous nucleation in vapor-liquid systems. The fundamental concepts of nucleation are detailed, with emphasis on the role of the chemical potential, and on intuitive explanations whenever possible. We review various types of nucleating systems and discuss the effect of the solid geometry on the characteristics of the new phase formation. In addition, we consider the effect of mixing on the vapor-liquid equilibrium. An interesting sub-case is that of a non-volatile solute that modifies the chemical potential of the liquid, but not of the vapor. Finally, we point out topics that need either further research or more exact, accurate presentation. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Calculating the enthalpy of vaporization for ionic liquid clusters.

    PubMed

    Kelkar, Manish S; Maginn, Edward J

    2007-08-16

    Classical atomistic simulations are used to compute the enthalpy of vaporization of a series of ionic liquids composed of 1-alkyl-3-methylimidazolium cations paired with the bis(trifluoromethylsulfonyl)imide anion. The calculations show that the enthalpy of vaporization is lowest for neutral ion pairs. The enthalpy of vaporization increases by about 40 kJ/mol with the addition of each ion pair to the vaporizing cluster. Non-neutral clusters have much higher vaporization enthalpies than their neutral counterparts and thus are not expected to make up a significant fraction of volatile species. The enthalpy of vaporization increases slightly as the cation alkyl chain length increases and as temperature decreases. The calculated vaporization enthalpies are consistent with two sets of recent experimental measurements as well as with previous atomistic simulations.

  9. GUIDELINES FOR INSTALLATION AND SAMPLING OF SUB-SLAB VAPOR PROBES TO SUPPORT ASSESSMENT OF VAPOR INTRUSION

    EPA Science Inventory

    The purpose of this paper is to provide guidelines for sub-slab sampling using dedicated vapor probes. Use of dedicated vapor probes allows for multiple sample events before and after corrective action and for vacuum testing to enhance the design and monitoring of a corrective m...

  10. Comparative study of the vapor analytes of trinitrotoluene (TNT)

    NASA Astrophysics Data System (ADS)

    Edge, Cindy C.; Gibb, Julie; Dugan, Regina E.

    1998-12-01

    Trinitrotoluene (TNT) is a high explosive used in most antipersonnel and antitank landmines. The Institute for Biological Detection Systems (IBDS) has developed a quantitative vapor delivery system, termed olfactometer, for conducting canine olfactory research. The research is conducted utilizing dynamic conditions, therefore, it is imperative to evaluate the headspace of TNT to ensure consistency with the dynamic generation of vapor. This study quantified the vapor headspace of military- grade TNT utilizing two different vapor generated methodologies, static and dynamic, reflecting differences between field and laboratory environments. Static vapor collection, which closely mimics conditions found during field detection, is defined as vapor collected in an open-air environment at ambient temperature. Dynamic vapor collection incorporates trapping of gases from a high flow vapor generation cell used during olfactometer operation. Analysis of samples collected by the two methodologies was performed by gas chromatography/mass spectrometry and the results provided information with regard to the constituents detected. However, constituent concentration did vary between the sampling methods. This study provides essential information regarding the vapor constituents associated with the TNT sampled using different sampling methods. These differences may be important in determining the detection signature dogs use to recognize TNT.

  11. Coupling apparatus for a metal vapor laser

    DOEpatents

    Ball, D.G.; Miller, J.L.

    1993-02-23

    Coupling apparatus for a large bore metal vapor laser is disclosed. The coupling apparatus provides for coupling high voltage pulses (approximately 40 KV) to a metal vapor laser with a high repetition rate (approximately 5 KHz). The coupling apparatus utilizes existing thyratron circuits and provides suitable power input to a large bore metal vapor laser while maintaining satisfactory operating lifetimes for the existing thyratron circuits.

  12. Profiling atmospheric water vapor by microwave radiometry

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Wilheit, T. T.; Szejwach, G.; Gesell, L. H.; Nieman, R. A.; Niver, D. S.; Krupp, B. M.; Gagliano, J. A.; King, J. L.

    1983-01-01

    High-altitude microwave radiometric observations at frequencies near 92 and 183.3 GHz were used to study the potential of retrieving atmospheric water vapor profiles over both land and water. An algorithm based on an extended kalman-Bucy filter was implemented and applied for the water vapor retrieval. The results show great promise in atmospheric water vapor profiling by microwave radiometry heretofore not attainable at lower frequencies.

  13. Coupling apparatus for a metal vapor laser

    DOEpatents

    Ball, Don G.; Miller, John L.

    1993-01-01

    Coupling apparatus for a large bore metal vapor laser is disclosed. The coupling apparatus provides for coupling high voltage pulses (approximately 40 KV) to a metal vapor laser with a high repetition rate (approximately 5 KHz). The coupling apparatus utilizes existing thyratron circuits and provides suitable power input to a large bore metal vapor laser while maintaining satisfactory operating lifetimes for the existing thyratron circuits.

  14. ON-LINE CALCULATOR: VAPOR INTRUSION MODELING

    EPA Science Inventory

    Migration of volatile chemicals from the subsurface into overlying buildings is called vapor intrusion (VI). Volatile organic chemicals in contaminated soils or groundwater can emit vapors, which may migrate through subsurface soils and may enter the indoor air of overlying build...

  15. Evaluation of the BioVapor Model

    EPA Science Inventory

    The BioVapor model addresses transport and biodegradation of petroleum vapors in the subsurface. This presentation describes basic background on the nature and scientific basis of environmental transport models. It then describes a series of parameter uncertainty runs of the Bi...

  16. Boiler for generating high quality vapor

    NASA Technical Reports Server (NTRS)

    Gray, V. H.; Marto, P. J.; Joslyn, A. W.

    1972-01-01

    Boiler supplies vapor for use in turbines by imparting a high angular velocity to the liquid annulus in heated rotating drum. Drum boiler provides a sharp interface between boiling liquid and vapor, thereby, inhibiting the formation of unwanted liquid droplets.

  17. Automated Test Systems for Toxic Vapor Detectors

    NASA Technical Reports Server (NTRS)

    Mattson, C. B.; Hammond, T. A.; Schwindt, C. J.

    1997-01-01

    The NASA Toxic Vapor Detection Laboratory (TVDL) at the Kennedy Space Center (KSC), Florida, has been using Personal Computer based Data Acquisition and Control Systems (PCDAS) for about nine years. These systems control the generation of toxic vapors of known concentrations under controlled conditions of temperature and humidity. The PCDAS also logs the test conditions and the test article responses in data files for analysis by standard spreadsheets or custom programs. The PCDAS was originally developed to perform standardized qualification and acceptance tests in a search for a commercial off-the-shelf (COTS) toxic vapor detector to replace the hydrazine detectors for the Space Shuttle launch pad. It has since become standard test equipment for the TVDL and is indispensable in producing calibration standards for the new hydrazine monitors at the 10 part per billion (ppb) level. The standard TVDL PCDAS can control two toxic vapor generators (TVG's) with three channels each and two flow/ temperature / humidity (FTH) controllers and it can record data from up to six toxic vapor detectors (TVD's) under test and can deliver flows from 5 to 50 liters per minute (L/m) at temperatures from near zero to 50 degrees Celsius (C) using an environmental chamber to maintain the sample temperature. The concentration range for toxic vapors depends on the permeation source installed in the TVG. The PCDAS can provide closed loop control of temperature and humidity to two sample vessels, typically one for zero gas and one for the standard gas. This is required at very low toxic vapor concentrations to minimize the time required to passivate the sample delivery system. Recently, there have been several requests for information about the PCDAS by other laboratories with similar needs, both on and off KSC. The purpose of this paper is to inform the toxic vapor detection community of the current status and planned upgrades to the automated testing of toxic vapor detectors at the

  18. Automated Test Systems for Toxic Vapor Detectors

    NASA Technical Reports Server (NTRS)

    Mattson, C. B.; Hammond, T. A.; Schwindt, C. J.

    1997-01-01

    The NASA Toxic Vapor Detection Laboratory (TVDL) at the Kennedy Space Center (KSC), Florida, has been using Personal Computer based Data Acquisition and Control Systems (PCDAS) for about nine years. These systems control the generation of toxic vapors of known concentrations under controlled conditions of temperature and humidity. The PCDAS also logs the test conditions and the test article responses in data files for analysis by standard spreadsheets or custom programs. The PCDAS was originally developed to perform standardized qualification and acceptance tests in a search for a commercial off-the-shelf (COTS) toxic vapor detector to replace the hydrazine detectors for the Space Shuttle launch pad. It has since become standard test equipment for the TVDL and is indispensable in producing calibration standards for the new hydrazine monitors at the 10 part per billion (ppb) level. The standard TVDL PCDAS can control two toxic vapor generators (TVG's) with three channels each and two flow/temperature/humidity (FIFH) controllers and it can record data from up to six toxic vapor detectors (TVD's) under test and can deliver flows from 5 to 50 liters per minute (L/m) at temperatures from near zero to 50 degrees Celsius (C) using an environmental chamber to maintain the sample temperature. The concentration range for toxic vapors depends on the permeation source installed in the TVG. The PCDAS can provide closed loop control of temperature and humidity to two sample vessels, typically one for zero gas and one for the standard gas. This is required at very low toxic vapor concentrations to minimize the time required to passivate the sample delivery system. Recently, there have been several requests for information about the PCDAS by other laboratories with similar needs, both on and off KSC. The purpose of this paper is to inform the toxic vapor detection community of the current status and planned upgrades to the automated testing of toxic vapor detectors at the Kennedy

  19. Vaporization chemistry of hypo-stoichiometric (U,Pu)O 2

    NASA Astrophysics Data System (ADS)

    Viswanathan, R.; Krishnaiah, M. V.

    2001-04-01

    Calculations were performed on hypo-stoichiometric uranium plutonium di-oxide to examine its vaporization behavior as a function of O/ M ( M= U+ Pu) ratio and plutonium content. The phase U (1- y) Pu yO z was treated as an ideal solid solution of (1- y)UO 2+ yPuO (2- x) such that x=(2- z)/ y. Oxygen potentials for different desired values of y, z, and temperature were used as the primary input to calculate the corresponding partial pressures of various O-, U-, and Pu-bearing gaseous species. Relevant thermodynamic data for the solid phases UO 2 and PuO (2- x) , and the gaseous species were taken from the literature. Total vapor pressure varies with O/M and goes through a minimum. This minimum does not indicate a congruently vaporizing composition. Vaporization behavior of this system can at best be quasi-congruent. Two quasi-congruently vaporizing compositions (QCVCs) exist, representing the equalities (O/M) vapor=(O/M) mixed-oxide and (U/Pu) vapor=(U/Pu) mixed-oxide, respectively. The (O/M) corresponding to QCVC1 is lower than that corresponding to QCVC2, but very close to the value where vapor pressure minimum occurs. The O/M values of both QCVCs increase with decrease in plutonium content. The vaporization chemistry of this system, on continuous vaporization under dynamic condition, is discussed.

  20. Differential absorption radar techniques: water vapor retrievals

    NASA Astrophysics Data System (ADS)

    Millán, Luis; Lebsock, Matthew; Livesey, Nathaniel; Tanelli, Simone

    2016-06-01

    Two radar pulses sent at different frequencies near the 183 GHz water vapor line can be used to determine total column water vapor and water vapor profiles (within clouds or precipitation) exploiting the differential absorption on and off the line. We assess these water vapor measurements by applying a radar instrument simulator to CloudSat pixels and then running end-to-end retrieval simulations. These end-to-end retrievals enable us to fully characterize not only the expected precision but also their potential biases, allowing us to select radar tones that maximize the water vapor signal minimizing potential errors due to spectral variations in the target extinction properties. A hypothetical CloudSat-like instrument with 500 m by ˜ 1 km vertical and horizontal resolution and a minimum detectable signal and radar precision of -30 and 0.16 dBZ, respectively, can estimate total column water vapor with an expected precision of around 0.03 cm, with potential biases smaller than 0.26 cm most of the time, even under rainy conditions. The expected precision for water vapor profiles was found to be around 89 % on average, with potential biases smaller than 77 % most of the time when the profile is being retrieved close to surface but smaller than 38 % above 3 km. By using either horizontal or vertical averaging, the precision will improve vastly, with the measurements still retaining a considerably high vertical and/or horizontal resolution.

  1. Vapor Phase Deposition Using Plasma Spray-PVD™

    NASA Astrophysics Data System (ADS)

    von Niessen, K.; Gindrat, M.; Refke, A.

    2010-01-01

    Plasma spray—physical vapor deposition (PS-PVD) is a low pressure plasma spray technology to deposit coatings out of the vapor phase. PS-PVD is a part of the family of new hybrid processes recently developed by Sulzer Metco AG (Switzerland) on the basis of the well-established low pressure plasma spraying (LPPS) technology. Included in this new process family are plasma spray—chemical vapor deposition (PS-CVD) and plasma spray—thin film (PS-TF) processes. In comparison to conventional vacuum plasma spraying and LPPS, these new processes use a high energy plasma gun operated at a work pressure below 2 mbar. This leads to unconventional plasma jet characteristics which can be used to obtain specific and unique coatings. An important new feature of PS-PVD is the possibility to deposit a coating not only by melting the feed stock material which builds up a layer from liquid splats, but also by vaporizing the injected material. Therefore, the PS-PVD process fills the gap between the conventional PVD technologies and standard thermal spray processes. The possibility to vaporize feedstock material and to produce layers out of the vapor phase results in new and unique coating microstructures. The properties of such coatings are superior to those of thermal spray and EB-PVD coatings. This paper reports on the progress made at Sulzer Metco to develop functional coatings build up from vapor phase of oxide ceramics and metals.

  2. Vaporization and atomization of uranium in a graphite tube electrothermal vaporizer: a mechanistic study using electrothermal vaporization inductively coupled plasma mass spectrometry and graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Goltz, D. M.; Grégoire, D. C.; Byrne, J. P.; Chakrabarti, C. L.

    1995-07-01

    The mechanism of vaporization and atomization of U in a graphite tube electrothermal vaporizer was studied using graphite furnace atomic absorption spectrometry (GFAAS) and electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS). Graphite furnace AAS studies indicate U atoms are formed at temperatures above 2400°C. Using ETV-ICP-MS, an appearance temperature of 1100°C was obtained indicating that some U vaporizes as U oxide. Although U carbides form at temperatures above 2000°C, ETV-ICP-MS studies show that they do not vaporize until 2600°C. In the temperature range between 2200°C and 2600°C, U atoms in GFAAS are likely formed by thermal dissociation of U oxide, whereas at higher temperatures, U atoms are formed via thermal dissociation of U carbide. The origin of U signal suppression in ETV-ICP-MS by NaCl was also investigated. At temperatures above 2000°C, signal suppression may be caused by the accelerated rate of formation of carbide species while at temperatures below 2000°C, the presence of NaCl may cause intercalation of the U in the graphite layers resulting in partial retention of U during the vaporization step. The use of 0.3% freon-23 (CHF 3) mixed with the argon carrier gas was effective in preventing the intercalation of U in graphite and U carbide formation at 2700°C.

  3. Vapor Pressure of GB

    DTIC Science & Technology

    2009-04-01

    equation. The Podoll and Parish low temperature measured vapor pressure data (-35 and -25 °C) were included in our analysis . Penski summarized the...existing literature data for GB in his 1994 data review and analysis .6 He did not include the 0 °C Podoll and Parish measured vapor pressure data point...35.9 Pa) in his analysis because the error associated with this point was Ŗ to 10 times greater than the other values". He did not include the -10 °C

  4. SOIL VAPOR EXTRACTION TECHNOLOGY: REFERENCE HANDBOOK

    EPA Science Inventory

    Soil vapor extraction (SVE) systems are being used in Increasing numbers because of the many advantages these systems hold over other soil treatment technologies. SVE systems appear to be simple in design and operation, yet the fundamentals governing subsurface vapor transport ar...

  5. IN SITU SOIL VAPOR EXTRACTION TREATMENT

    EPA Science Inventory

    Soil vapor extraction (SVE) is designed to physically remove volatile compounds, generally from the vadose or unsaturated zone. t is an in situ process employing vapor extraction wells alone or in combination with air injection wells. acuum blowers supply the motive force, induci...

  6. Bionanomaterials and Bioinspired Nanostructures for Selective Vapor Sensing

    NASA Astrophysics Data System (ADS)

    Potyrailo, Radislav; Naik, Rajesh R.

    2013-07-01

    At present, monitoring of air at the workplace, in urban environments, and on battlefields; exhaled air from medical patients; air in packaged food containers; and so forth can be accomplished with different types of analytical instruments. Vapor sensors have their niche in these measurements when an unobtrusive, low-power, and cost-sensitive technical solution is required. Unfortunately, existing vapor sensors often degrade their vapor-quantitation accuracy in the presence of high levels of interferences and cannot quantitate several components in complex gas mixtures. Thus, new sensing approaches with improved sensor selectivity are required. This technological task can be accomplished by the careful design of sensing materials with new performance properties and by coupling these materials with the suitable physical transducers. This review is focused on the assessment of the capabilities of bionanomaterials and bioinspired nanostructures for selective vapor sensing. We demonstrate that these sensing materials can operate with diverse transducers based on electrical, mechanical, and optical readout principles and can provide vapor-response selectivity previously unattainable by using other sensing materials. This ability for selective vapor sensing provides opportunities to significantly impact the major directions in development and application scenarios of vapor sensors.

  7. Vapor-liquid equilibria for difluoromethane + dichloromethane at 303.2 and 313.2 K and 1,1-difluoroethane + vinyl chloride at 303.2 and 323.2 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, J.S.; Lee, Y.W.; Lee, Y.Y.

    1997-05-01

    Isothermal vapor-liquid equilibria for difluoromethane (HFC-32) + dichloromethane at 303.2 K and 313.2 K and 1,1-difluoroethane (HFC-152a) + vinyl chloride at 303.2 K and 323.2 K were measured in a circulation-type apparatus. The experimental data were correlated with the Peng-Robinson equation of state using the Wong and Sandler mixing rule, and the relevant parameters are presented.

  8. Hydrazine vapor inactivates Bacillus spores

    NASA Astrophysics Data System (ADS)

    Schubert, Wayne W.; Engler, Diane L.; Beaudet, Robert A.

    2016-05-01

    NASA policy restricts the total number of bacterial spores that can remain on a spacecraft traveling to any planetary body which might harbor life or have evidence of past life. Hydrazine, N2H4, is commonly used as a propellant on spacecraft. Hydrazine as a liquid is known to inactivate bacterial spores. We have now verified that hydrazine vapor also inactivates bacterial spores. After Bacillus atrophaeus ATCC 9372 spores deposited on stainless steel coupons were exposed to saturated hydrazine vapor in closed containers, the spores were recovered from the coupons, serially diluted, pour plated and the surviving bacterial colonies were counted. The exposure times required to reduce the spore population by a factor of ten, known as the D-value, were 4.70 ± 0.50 h at 25 °C and 2.85 ± 0.13 h at 35 °C. These inactivation rates are short enough to ensure that the bioburden of the surfaces and volumes would be negligible after prolonged exposure to hydrazine vapor. Thus, all the propellant tubing and internal tank surfaces exposed to hydrazine vapor do not contribute to the total spore count.

  9. Direct synthesis of large area graphene on insulating substrate by gallium vapor-assisted chemical vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murakami, Katsuhisa, E-mail: k.murakami@bk.tsukuba.ac.jp; Hiyama, Takaki; Kuwajima, Tomoya

    2015-03-02

    A single layer of graphene with dimensions of 20 mm × 20 mm was grown directly on an insulating substrate by chemical vapor deposition using Ga vapor catalysts. The graphene layer showed highly homogeneous crystal quality over a large area on the insulating substrate. The crystal quality of the graphene was measured by Raman spectroscopy and was found to improve with increasing Ga vapor density on the reaction area. High-resolution transmission electron microscopy observations showed that the synthesized graphene had a perfect atomic-scale crystal structure within its grains, which ranged in size from 50 nm to 200 nm.

  10. 46 CFR 153.372 - Gauges and vapor return for cargo vapor pressures exceeding 100 kPa (approx. 14.7 psia).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Gauges and vapor return for cargo vapor pressures exceeding 100 kPa (approx. 14.7 psia). 153.372 Section 153.372 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... return for cargo vapor pressures exceeding 100 kPa (approx. 14.7 psia). When table 1 references this...

  11. RuleMonkey: software for stochastic simulation of rule-based models

    PubMed Central

    2010-01-01

    Background The system-level dynamics of many molecular interactions, particularly protein-protein interactions, can be conveniently represented using reaction rules, which can be specified using model-specification languages, such as the BioNetGen language (BNGL). A set of rules implicitly defines a (bio)chemical reaction network. The reaction network implied by a set of rules is often very large, and as a result, generation of the network implied by rules tends to be computationally expensive. Moreover, the cost of many commonly used methods for simulating network dynamics is a function of network size. Together these factors have limited application of the rule-based modeling approach. Recently, several methods for simulating rule-based models have been developed that avoid the expensive step of network generation. The cost of these "network-free" simulation methods is independent of the number of reactions implied by rules. Software implementing such methods is now needed for the simulation and analysis of rule-based models of biochemical systems. Results Here, we present a software tool called RuleMonkey, which implements a network-free method for simulation of rule-based models that is similar to Gillespie's method. The method is suitable for rule-based models that can be encoded in BNGL, including models with rules that have global application conditions, such as rules for intramolecular association reactions. In addition, the method is rejection free, unlike other network-free methods that introduce null events, i.e., steps in the simulation procedure that do not change the state of the reaction system being simulated. We verify that RuleMonkey produces correct simulation results, and we compare its performance against DYNSTOC, another BNGL-compliant tool for network-free simulation of rule-based models. We also compare RuleMonkey against problem-specific codes implementing network-free simulation methods. Conclusions RuleMonkey enables the simulation of

  12. Optical Sensor for Diverse Organic Vapors at ppm Concentration Ranges

    PubMed Central

    Thomas, J. Christopher; Trend, John E.; Rakow, Neal A.; Wendland, Michael S.; Poirier, Richard J.; Paolucci, Dora M.

    2011-01-01

    A broadly responsive optical organic vapor sensor is described that responds to low concentrations of organic vapors without significant interference from water vapor. Responses to several classes of organic vapors are highlighted, and trends within classes are presented. The relationship between molecular properties (vapor pressure, boiling point, polarizability, and refractive index) and sensor response are discussed. PMID:22163798

  13. 46 CFR 30.10-59 - Reid vapor pressure-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-59 Reid vapor pressure—TB/ALL. The term Reid vapor pressure means the vapor pressure of a liquid at a... 46 Shipping 1 2013-10-01 2013-10-01 false Reid vapor pressure-TB/ALL. 30.10-59 Section 30.10-59....01-3), Method of Test for Vapor Pressure of Petroleum Products. This Standard is available at...

  14. 46 CFR 30.10-59 - Reid vapor pressure-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-59 Reid vapor pressure—TB/ALL. The term Reid vapor pressure means the vapor pressure of a liquid at a... 46 Shipping 1 2012-10-01 2012-10-01 false Reid vapor pressure-TB/ALL. 30.10-59 Section 30.10-59....01-3), Method of Test for Vapor Pressure of Petroleum Products. This Standard is available at...

  15. 46 CFR 30.10-59 - Reid vapor pressure-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-59 Reid vapor pressure—TB/ALL. The term Reid vapor pressure means the vapor pressure of a liquid at a... 46 Shipping 1 2014-10-01 2014-10-01 false Reid vapor pressure-TB/ALL. 30.10-59 Section 30.10-59....01-3), Method of Test for Vapor Pressure of Petroleum Products. This Standard is available at...

  16. 40 CFR 52.787 - Gasoline transfer vapor control.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Gasoline transfer vapor control. 52.787... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Indiana § 52.787 Gasoline transfer vapor control. (a) Gasoline means any petroleum distillate having a Reid vapor pressure of 4 pounds or greater...

  17. 40 CFR 52.787 - Gasoline transfer vapor control.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Gasoline transfer vapor control. 52.787... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Indiana § 52.787 Gasoline transfer vapor control. (a) Gasoline means any petroleum distillate having a Reid vapor pressure of 4 pounds or greater...

  18. 40 CFR 52.787 - Gasoline transfer vapor control.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Gasoline transfer vapor control. 52.787... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Indiana § 52.787 Gasoline transfer vapor control. (a) Gasoline means any petroleum distillate having a Reid vapor pressure of 4 pounds or greater...

  19. 40 CFR 52.787 - Gasoline transfer vapor control.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Gasoline transfer vapor control. 52.787... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Indiana § 52.787 Gasoline transfer vapor control. (a) Gasoline means any petroleum distillate having a Reid vapor pressure of 4 pounds or greater...

  20. 40 CFR 52.787 - Gasoline transfer vapor control.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Gasoline transfer vapor control. 52.787... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Indiana § 52.787 Gasoline transfer vapor control. (a) Gasoline means any petroleum distillate having a Reid vapor pressure of 4 pounds or greater...

  1. Multivariable control of vapor compression systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, X.D.; Liu, S.; Asada, H.H.

    1999-07-01

    This paper presents the results of a study of multi-input multi-output (MIMO) control of vapor compression cycles that have multiple actuators and sensors for regulating multiple outputs, e.g., superheat and evaporating temperature. The conventional single-input single-output (SISO) control was shown to have very limited performance. A low order lumped-parameter model was developed to describe the significant dynamics of vapor compression cycles. Dynamic modes were analyzed based on the low order model to provide physical insight of system dynamic behavior. To synthesize a MIMO control system, the Linear-Quadratic Gaussian (LQG) technique was applied to coordinate compressor speed and expansion valve openingmore » with guaranteed stability robustness in the design. Furthermore, to control a vapor compression cycle over a wide range of operating conditions where system nonlinearities become evident, a gain scheduling scheme was used so that the MIMO controller could adapt to changing operating conditions. Both analytical studies and experimental tests showed that the MIMO control could significantly improve the transient behavior of vapor compression cycles compared to the conventional SISO control scheme. The MIMO control proposed in this paper could be extended to the control of vapor compression cycles in a variety of HVAC and refrigeration applications to improve system performance and energy efficiency.« less

  2. Trapping of water vapor from an atmosphere by condensed silicate matter formed by high-temperature pulse vaporization

    NASA Technical Reports Server (NTRS)

    Gerasimov, M. V.; Dikov, Yu. P.; Yakovlev, O. I.; Wlotzka, F.

    1993-01-01

    The origin of planetary atmospheres is thought to be the result of bombardment of a growing planet by massive planetesimals. According to some models, the accumulation of released water vapor and/or carbon dioxide can result in the formation of a dense and hot primordial atmosphere. Among source and sink processes of atmospheric water vapor the formation of hydroxides was considered mainly as rehydration of dehydrated minerals (foresterite and enstatite). From our point of view, the formation of hydroxides is not limited to rehydration. Condensation of small silicate particles in a spreading vapor cloud and their interaction with a wet atmosphere can also result in the origin of hydrated phases which have no genetic connections with initial water bearing minerals. We present results of two experiments of a simulated interaction of condensed silicate matter which originated during vaporization of dry clinopyroxene in a wet helium atmosphere.

  3. 78 FR 28680 - Self-Regulatory Organizations; ICE Clear Credit LLC; Notice of Withdrawal of Proposed Rule Change...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-69545; File No. SR-ICC-2013-03] Self-Regulatory Organizations; ICE Clear Credit LLC; Notice of Withdrawal of Proposed Rule Change Relating to Recovery and Resolution Arrangements May 9, 2013. On March 7, 2013, ICE Clear Credit LLC (``ICC'') filed with the...

  4. 4 CFR 22.1 - Applicability of Rules [Rule 1].

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 4 Accounts 1 2010-01-01 2010-01-01 false Applicability of Rules [Rule 1]. 22.1 Section 22.1... ACCOUNTABILITY OFFICE CONTRACT APPEALS BOARD § 22.1 Applicability of Rules [Rule 1]. The Government... all appeals filed with the Board on or after October 1, 2007. ...

  5. 40 CFR 52.255 - Gasoline transfer vapor control.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Gasoline transfer vapor control. 52.255... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.255 Gasoline transfer vapor control. (a) “Gasoline” means any petroleum distillate having a Reid vapor pressure of 4 pounds or greater...

  6. 40 CFR 52.255 - Gasoline transfer vapor control.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Gasoline transfer vapor control. 52.255... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.255 Gasoline transfer vapor control. (a) “Gasoline” means any petroleum distillate having a Reid vapor pressure of 4 pounds or greater...

  7. 40 CFR 52.255 - Gasoline transfer vapor control.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Gasoline transfer vapor control. 52.255... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.255 Gasoline transfer vapor control. (a) “Gasoline” means any petroleum distillate having a Reid vapor pressure of 4 pounds or greater...

  8. 40 CFR 52.255 - Gasoline transfer vapor control.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Gasoline transfer vapor control. 52.255... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.255 Gasoline transfer vapor control. (a) “Gasoline” means any petroleum distillate having a Reid vapor pressure of 4 pounds or greater...

  9. 40 CFR 52.255 - Gasoline transfer vapor control.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Gasoline transfer vapor control. 52.255... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.255 Gasoline transfer vapor control. (a) “Gasoline” means any petroleum distillate having a Reid vapor pressure of 4 pounds or greater...

  10. 33 CFR 154.826 - Vapor compressors and blowers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Excessive shaft bearing temperature. (d) If a centrifugal compressor, fan, or lobe blower handles vapor in... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vapor compressors and blowers....826 Vapor compressors and blowers. (a) Each inlet and outlet to a compressor or blower which handles...

  11. EDUCTOR VAPOR RECOVERY UNIT

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) Environmental Technology Verification (ETV) program evaluates the performance of innovative air, water, pollution prevention and monitoring technologies that have the potential to improve human health and the environment. This techn...

  12. Remote sensing of water vapor features

    NASA Technical Reports Server (NTRS)

    Fuelberg, Henry E.

    1993-01-01

    Water vapor plays a critical role in the atmosphere. It is an important medium of energy exchange between air, land, and water; it is a major greenhouse gas, providing a crucial radiative role in the global climate system; and it is intimately involved in many regional scale atmospheric processes. Our research has been aimed at improving satellite remote sensing of water vapor and better understanding its role in meteorological processes. Our early studies evaluated the current GOES VAS system for measuring water vapor and have used VAS-derived water vapor data to examine pre-thunderstorm environments. Much of that research was described at the 1991 Research Review. A second research component has considered three proposed sensors--the High resolution Interferometer Sounder (HIS), the Multispectral Atmospheric Mapping Sensor (MAMS), and the Advanced Microwave Sounding Unit (AMSU). We have focused on MAMS and AMSU research during the past year and the accomplishments made in this effort are presented.

  13. Investigation and optimization of the depth of flue gas heat recovery in surface heat exchangers

    NASA Astrophysics Data System (ADS)

    Bespalov, V. V.; Bespalov, V. I.; Melnikov, D. V.

    2017-09-01

    Economic issues associated with designing deep flue gas heat recovery units for natural gas-fired boilers are examined. The governing parameter affecting the performance and cost of surface-type condensing heat recovery heat exchangers is the heat transfer surface area. When firing natural gas, the heat recovery depth depends on the flue gas temperature at the condenser outlet and determines the amount of condensed water vapor. The effect of the outlet flue gas temperature in a heat recovery heat exchanger on the additionally recovered heat power is studied. A correlation has been derived enabling one to determine the best heat recovery depth (or the final cooling temperature) maximizing the anticipated reduced annual profit of a power enterprise from implementation of energy-saving measures. Results of optimization are presented for a surface-type condensing gas-air plate heat recovery heat exchanger for the climatic conditions and the economic situation in Tomsk. The predictions demonstrate that it is economically feasible to design similar heat recovery heat exchangers for a flue gas outlet temperature of 10°C. In this case, the payback period for the investment in the heat recovery heat exchanger will be 1.5 years. The effect of various factors on the optimal outlet flue gas temperature was analyzed. Most climatic, economical, or technological factors have a minor effect on the best outlet temperature, which remains between 5 and 20°C when varying the affecting factors. The derived correlation enables us to preliminary estimate the outlet (final) flue gas temperature that should be used in designing the heat transfer surface of a heat recovery heat exchanger for a gas-fired boiler as applied to the specific climatic conditions.

  14. Vapor crystal growth technology development: Application to cadmium telluride

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Banish, Michael; Duval, Walter M. B.

    1991-01-01

    Growth of bulk crystals by physical vapor transport was developed and applied to cadmium telluride. The technology makes use of effusive ampoules, in which part of the vapor contents escapes to a vacuum shroud through defined leaks during the growth process. This approach has the advantage over traditional sealed ampoule techniques that impurity vapors and excess vapor constituents are continuously removed from the vicinity of the growing crystal. Thus, growth rates are obtained routinely at magnitudes that are rather difficult to achieve in closed ampoules. Other advantages of this effusive ampoule physical vapor transport (EAPVT) technique include the predetermination of transport rates based on simple fluid dynamics and engineering considerations, and the growth of the crystal from close to congruent vapors, which largely alleviates the compositional nonuniformities resulting from buoyancy driven convective transport. After concisely reviewing earlier work on improving transport rates, nucleation control, and minimization of crystal wall interactions in vapor crystal growth, a detail account is given of the largely computer controlled EAPVT experimentation.

  15. Vapor Deposition Rig

    NASA Image and Video Library

    2015-01-27

    The Plasma Spray-Physical Vapor Deposition (PS-PVD) Rig at NASA Glenn Research Center. The rig helps develop coatings for next-generation aircraft turbine components and create more efficient engines.

  16. Online Intelligent Controllers for an Enzyme Recovery Plant: Design Methodology and Performance

    PubMed Central

    Leite, M. S.; Fujiki, T. L.; Silva, F. V.; Fileti, A. M. F.

    2010-01-01

    This paper focuses on the development of intelligent controllers for use in a process of enzyme recovery from pineapple rind. The proteolytic enzyme bromelain (EC 3.4.22.4) is precipitated with alcohol at low temperature in a fed-batch jacketed tank. Temperature control is crucial to avoid irreversible protein denaturation. Fuzzy or neural controllers offer a way of implementing solutions that cover dynamic and nonlinear processes. The design methodology and a comparative study on the performance of fuzzy-PI, neurofuzzy, and neural network intelligent controllers are presented. To tune the fuzzy PI Mamdani controller, various universes of discourse, rule bases, and membership function support sets were tested. A neurofuzzy inference system (ANFIS), based on Takagi-Sugeno rules, and a model predictive controller, based on neural modeling, were developed and tested as well. Using a Fieldbus network architecture, a coolant variable speed pump was driven by the controllers. The experimental results show the effectiveness of fuzzy controllers in comparison to the neural predictive control. The fuzzy PI controller exhibited a reduced error parameter (ITAE), lower power consumption, and better recovery of enzyme activity. PMID:21234106

  17. 18 CFR 385.103 - References to rules (Rule 103).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false References to rules (Rule 103). 385.103 Section 385.103 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Definitions § 385.103 References to rules (Rule 103). This part cross-references its sections according to...

  18. 18 CFR 385.103 - References to rules (Rule 103).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false References to rules (Rule 103). 385.103 Section 385.103 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Definitions § 385.103 References to rules (Rule 103). This part cross-references its sections according to...

  19. High-resolution mass spectrometric analysis of biomass pyrolysis vapors

    DOE PAGES

    Christensen, Earl; Evans, Robert J.; Carpenter, Daniel

    2017-01-19

    Vapors generated from the pyrolysis of lignocellulosic biomass are made up of a complex mixture of oxygenated compounds. Direct analysis of these vapors provides insight into the mechanisms of depolymerization of cellulose, hemicellulose, and lignin as well as insight into reactions that may occur during condensation of pyrolysis vapors into bio-oil. Studies utilizing pyrolysis molecular beam mass spectrometry have provided valuable information regarding the chemical composition of pyrolysis vapors. Mass spectrometers generally employed with these instruments have low mass resolution of approximately a mass unit. The presence of chemical species with identical unit mass but differing elemental formulas cannot bemore » resolved with these instruments and are therefore detected as a single ion. In this study we analyzed the pyrolysis vapors of several biomass sources using a high-resolution double focusing mass spectrometer. High-resolution analysis of pyrolysis vapors allowed for speciation of several compounds that would be detected as a single ion with unit mass resolution. Lastly, these data not only provide greater detail into the composition of pyrolysis vapors but also highlight differences between vapors generated from multiple biomass feedstocks.« less

  20. 21 CFR 888.4220 - Cement monomer vapor evacuator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cement monomer vapor evacuator. 888.4220 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a device intended for use during surgery to contain or remove...

  1. 21 CFR 888.4220 - Cement monomer vapor evacuator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cement monomer vapor evacuator. 888.4220 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a device intended for use during surgery to contain or remove...

  2. 21 CFR 888.4220 - Cement monomer vapor evacuator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cement monomer vapor evacuator. 888.4220 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a device intended for use during surgery to contain or remove...

  3. 21 CFR 888.4220 - Cement monomer vapor evacuator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cement monomer vapor evacuator. 888.4220 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a device intended for use during surgery to contain or remove...

  4. 21 CFR 888.4220 - Cement monomer vapor evacuator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement monomer vapor evacuator. 888.4220 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a device intended for use during surgery to contain or remove...

  5. Multiple-rule bias in the comparison of classification rules

    PubMed Central

    Yousefi, Mohammadmahdi R.; Hua, Jianping; Dougherty, Edward R.

    2011-01-01

    Motivation: There is growing discussion in the bioinformatics community concerning overoptimism of reported results. Two approaches contributing to overoptimism in classification are (i) the reporting of results on datasets for which a proposed classification rule performs well and (ii) the comparison of multiple classification rules on a single dataset that purports to show the advantage of a certain rule. Results: This article provides a careful probabilistic analysis of the second issue and the ‘multiple-rule bias’, resulting from choosing a classification rule having minimum estimated error on the dataset. It quantifies this bias corresponding to estimating the expected true error of the classification rule possessing minimum estimated error and it characterizes the bias from estimating the true comparative advantage of the chosen classification rule relative to the others by the estimated comparative advantage on the dataset. The analysis is applied to both synthetic and real data using a number of classification rules and error estimators. Availability: We have implemented in C code the synthetic data distribution model, classification rules, feature selection routines and error estimation methods. The code for multiple-rule analysis is implemented in MATLAB. The source code is available at http://gsp.tamu.edu/Publications/supplementary/yousefi11a/. Supplementary simulation results are also included. Contact: edward@ece.tamu.edu Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:21546390

  6. Prediction of the vapor pressure and vaporization enthalpy of 1-n-alkyl-3-methylimidazolium-bis-(trifluoromethanesulfonyl) amide ionic liquids.

    PubMed

    Diedenhofen, Michael; Klamt, Andreas; Marsh, Kenneth; Schäfer, Ansgar

    2007-09-07

    The vapor pressures and vaporization enthalpies of a series of 1-n-alkyl-3-methylimidazolium-bis-(trifluoromethanesulfonyl) amide ionic liquids have been predicted with two different approaches using the COSMO-RS method and quantum chemical gas phase calculations. While the calculated enthalpies are in good agreement with the experimental data, COSMO-RS seems to underestimate the vapor pressures by roughly 0.5-4 log units dependent on the IL and approach used.

  7. Effects of vertical distribution of water vapor and temperature on total column water vapor retrieval error

    NASA Technical Reports Server (NTRS)

    Sun, Jielun

    1993-01-01

    Results are presented of a test of the physically based total column water vapor retrieval algorithm of Wentz (1992) for sensitivity to realistic vertical distributions of temperature and water vapor. The ECMWF monthly averaged temperature and humidity fields are used to simulate the spatial pattern of systematic retrieval error of total column water vapor due to this sensitivity. The estimated systematic error is within 0.1 g/sq cm over about 70 percent of the global ocean area; systematic errors greater than 0.3 g/sq cm are expected to exist only over a few well-defined regions, about 3 percent of the global oceans, assuming that the global mean value is unbiased.

  8. Heat Pipe Vapor Dynamics. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Issacci, Farrokh

    1990-01-01

    The dynamic behavior of the vapor flow in heat pipes is investigated at startup and during operational transients. The vapor is modeled as two-dimensional, compressible viscous flow in an enclosure with inflow and outflow boundary conditions. For steady-state and operating transients, the SIMPLER method is used. In this method a control volume approach is employed on a staggered grid which makes the scheme very stable. It is shown that for relatively low input heat fluxes the compressibility of the vapor flow is low and the SIMPLER scheme is suitable for the study of transient vapor dynamics. When the input heat flux is high or the process under a startup operation starts at very low pressures and temperatures, the vapor is highly compressible and a shock wave is created in the evaporator. It is shown that for a wide range of input heat fluxes, the standard methods, including the SIMPLER scheme, are not suitable. A nonlinear filtering technique, along with the centered difference scheme, are then used for shock capturing as well as for the solution of the cell Reynolds-number problem. For high heat flux, the startup transient phase involves multiple shock reflections in the evaporator region. Each shock reflection causes a significant increase in the local pressure and a large pressure drop along the heat pipe. Furthermore, shock reflections cause flow reversal in the evaporation region and flow circulations in the adiabatic region. The maximum and maximum-averaged pressure drops in different sections of the heat pipe oscillate periodically with time because of multiple shock reflections. The pressure drop converges to a constant value at steady state. However, it is significantly higher than its steady-state value at the initiation of the startup transient. The time for the vapor core to reach steady-state condition depends on the input heat flux, the heat pipe geometry, the working fluid, and the condenser conditions. However, the vapor transient time, for an Na

  9. High bandwidth vapor density diagnostic system

    DOEpatents

    Globig, Michael A.; Story, Thomas W.

    1992-01-01

    A high bandwidth vapor density diagnostic system for measuring the density of an atomic vapor during one or more photoionization events. The system translates the measurements from a low frequency region to a high frequency, relatively noise-free region in the spectrum to provide improved signal to noise ratio.

  10. Vapor pressures of a homologous series of polyethylene glycols as a reference data set for validating vapor pressure measurement techniques.

    NASA Astrophysics Data System (ADS)

    Krieger, Ulrich; Marcolli, Claudia; Siegrist, Franziska

    2015-04-01

    The production of secondary organic aerosol (SOA) by gas-to-particle partitioning is generally represented by an equilibrium partitioning model. A key physical parameter which governs gas-particle partitioning is the pure component vapor pressure, which is difficult to measure for low- and semivolatile compounds. For typical atmospheric compounds like e.g. citric acid or tartaric acid, vapor pressures have been reported in the literature which differ by up to six orders of magnitude [Huisman et al., 2013]. Here, we report vapor pressures of a homologous series of polyethylene glycols (triethylene glycol to octaethylene glycol) determined by measuring the evaporation rate of single, levitated aerosol particles in an electrodynamic balance. We propose to use those as a reference data set for validating different vapor pressure measurement techniques. With each addition of a (O-CH2-CH2)-group the vapor pressure is lowered by about one order of magnitude which makes it easy to detect the lower limit of vapor pressures accessible with a particular technique down to a pressure of 10-8 Pa at room temperature. Reference: Huisman, A. J., Krieger, U. K., Zuend, A., Marcolli, C., and Peter, T., Atmos. Chem. Phys., 13, 6647-6662, 2013.

  11. 77 FR 50671 - Withdrawal of Proposed Rule on Insurer Reporting Requirements; List of Insurers Required To File...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... reports on their motor vehicle theft loss experiences. An insurer included in any of the appendices that...: Congress enacted the Motor Vehicle Theft Law Enforcement Act of 1984 (Pub. L. 98-547). This legislation... report includes information about thefts and recoveries of motor vehicles, the rating rules used by the...

  12. Water vapor measurements in- and outside cirrus with the novel water vapor mass spectrometer AIMS-H2O

    NASA Astrophysics Data System (ADS)

    Kaufmann, Stefan; Schlage, Romy; Voigt, Christiane; Jurkat, Tina; Krämer, Martina; Rolf, Christian; Zöger, Martin; Schäfler, Andreas; Dörnbrack, Andreas

    2015-04-01

    Water vapor plays a crucial role for the earth's climate both directly via its radiative properties and indirectly due to its ability to form clouds. However, accurate measurements of especially low water vapor concentrations prevalent in the upper troposphere and lower stratosphere are difficult and exhibit large discrepancies between different instruments and methods. In order to address this issue and to provide a comprehensive water vapor data set necessary to gather a complete picture of cloud formation processes, four state-of-the-art hygrometers including the novel water vapor mass spectrometer AIMS-H2O were deployed on the DLR research aircraft HALO during the ML-Cirrus campaign in March/April 2014 over Europe. Here, we present first water vapor measurements of AIMS-H2O on HALO. The instrument performance is validated by intercomparison with the fluorescence hygrometer FISH and the laser hygrometer SHARC, both also mounted in the aircraft. This intercomparison shows good agreement between the instruments from low stratospheric mixing ratios up to higher H2O concentrations at upper tropospheric conditions. Gathering data from over 24 flight hours, no significant offsets between the instruments were found (mean of relative deviation

  13. Recovering hydrocarbons from hydrocarbon-containing vapors

    DOEpatents

    Mirza, Zia I.; Knell, Everett W.; Winter, Bruce L.

    1980-09-30

    Values are recovered from a hydrocarbon-containing vapor by contacting the vapor with quench liquid consisting essentially of hydrocarbons to form a condensate and a vapor residue, the condensate and quench fluid forming a combined liquid stream. The combined liquid stream is mixed with a viscosity-lowering liquid to form a mixed liquid having a viscosity lower than the viscosity of the combined liquid stream to permit easy handling of the combined liquid stream. The quench liquid is a cooled portion of the mixed liquid. Viscosity-lowering liquid is separated from a portion of the mixed liquid and cycled to form additional mixed liquid.

  14. Water vapor adsorption on goethite.

    PubMed

    Song, Xiaowei; Boily, Jean-François

    2013-07-02

    Goethite (α-FeOOH) is an important mineral contributing to processes of atmospheric and terrestrial importance. Their interactions with water vapor are particularly relevant in these contexts. In this work, molecular details of water vapor (0.0-19.0 Torr; 0-96% relative humidity at 25 °C) adsorption at surfaces of synthetic goethite nanoparticles reacted with and without HCl and NaCl were resolved using vibrational spectroscopy. This technique probed interactions between surface (hydr)oxo groups and liquid water-like films. Molecular dynamics showed that structures and orientations adopted by these waters are comparable to those adopted at the interface with liquid water. Particle surfaces reacted with HCl accumulated less water than acid-free surfaces due to disruptions in hydrogen bond networks by chemisorbed waters and chloride. Particles reacted with NaCl had lower loadings below ∼10 Torr water vapor but greater loadings above this value than salt-free surfaces. Water adsorption reactions were here affected by competitive hydration of coexisting salt-free surface regions, adsorbed chloride and sodium, as well as precipitated NaCl. Collectively, the findings presented in this study add further insight into the initial mechanisms of thin water film formation at goethite surfaces subjected to variations in water vapor pressure that are relevant to natural systems.

  15. Electrical Breakdown in Water Vapor

    NASA Astrophysics Data System (ADS)

    Škoro, N.; Marić, D.; Malović, G.; Graham, W. G.; Petrović, Z. Lj.

    2011-11-01

    In this paper investigations of the voltage required to break down water vapor are reported for the region around the Paschen minimum and to the left of it. In spite of numerous applications of discharges in biomedicine, and recent studies of discharges in water and vapor bubbles and discharges with liquid water electrodes, studies of the basic parameters of breakdown are lacking. Paschen curves have been measured by recording voltages and currents in the low-current Townsend regime and extrapolating them to zero current. The minimum electrical breakdown voltage for water vapor was found to be 480 V at a pressure times electrode distance (pd) value of around 0.6 Torr cm (˜0.8 Pa m). The present measurements are also interpreted using (and add additional insight into) the developing understanding of relevant atomic and particularly surface processes associated with electrical breakdown.

  16. Model for the Vaporization of Mixed Organometallic Compounds in the Metalorganic Chemical Vapor Deposition of High Temperature Superconducting Films

    NASA Technical Reports Server (NTRS)

    Meng, Guangyao; Zhou, Gang; Schneider, Roger L.; Sarma, Bimal K.; Levy, Moises

    1993-01-01

    A model of the vaporization and mass transport of mixed organometallics from a single source for thin film metalorganic chemical vapor deposition is presented. A stoichiometric gas phase can be obtained from a mixture of the organometallics in the desired mole ratios, in spite of differences in the volatilities of the individual compounds. Proper film composition and growth rates are obtained by controlling the velocity of a carriage containing the organometallics through the heating zone of a vaporizer.

  17. Molecular dynamics study of the vaporization of an ionic drop.

    PubMed

    Galamba, N

    2010-09-28

    The melting of a microcrystal in vacuum and subsequent vaporization of a drop of NaCl were studied through molecular dynamics simulations with the Born-Mayer-Huggins-Tosi-Fumi rigid-ion effective potential. The vaporization was studied for a single isochor at increasing temperatures until the drop completely vaporized, and gaseous NaCl formed. Examination of the vapor composition shows that the vapor of the ionic drop and gaseous NaCl are composed of neutral species, the most abundant of which, ranging from simple NaCl monomers (ion pairs) to nonlinear polymers, (Na(n)Cl(n))(n=2-4). The enthalpies of sublimation, vaporization, and dissociation of the different vapor species are found to be in reasonable agreement with available experimental data. The decrease of the enthalpy of vaporization of the vapor species, with the radius of the drop decrease, accounts for a larger fraction of trimers and tetramers than that inferred from experiments. Further, the rhombic dimer is significantly more abundant than its linear isomer although the latter increases with the temperature. The present results suggest that both trimers and linear dimers may be important to explain the vapor pressure of molten NaCl at temperatures above 1500 K.

  18. Vapor deposition of hardened niobium

    DOEpatents

    Blocher, Jr., John M.; Veigel, Neil D.; Landrigan, Richard B.

    1983-04-19

    A method of coating ceramic nuclear fuel particles containing a major amount of an actinide ceramic in which the particles are placed in a fluidized bed maintained at ca. 800.degree. to ca. 900.degree. C., and niobium pentachloride vapor and carbon tetrachloride vapor are led into the bed, whereby niobium metal is deposited on the particles and carbon is deposited interstitially within the niobium. Coating apparatus used in the method is also disclosed.

  19. Vapor pressure of germanium precursors

    NASA Astrophysics Data System (ADS)

    Pangrác, J.; Fulem, M.; Hulicius, E.; Melichar, K.; Šimeček, T.; Růžička, K.; Morávek, P.; Růžička, V.; Rushworth, S. A.

    2008-11-01

    The vapor pressure of two germanium precursors tetrakis(methoxy)germanium (Ge(OCH 3) 4, CASRN 992-91-6) and tetrakis(ethoxy)germanium (Ge(OC 2H 5) 4, CASRN 14165-55-0) was determined using a static method in the temperature range 259-303 K. The experimental vapor pressure data were fit with the Antoine equation. The mass spectra before and after degassing by vacuum distillation at low temperature are also reported and discussed.

  20. Retrofitting the Williams Energy Services Ignacio Plant for higher throughput and recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, J.T.; Pitman, R.N.

    1999-07-01

    The Ignacio Plant located near Durango, Colorado was originally designed to process 346 MMscfd of feed gas and to recover approximately 82% of the contained ethane. Based on increasing volumes of available feed gas, Williams Energy Services (WES) undertook a study to investigate alternatives for increasing plant capacity and ethane recovery. This study led to the selection of Ortloff's Recycle Split-Vapor (RSV) process for retrofitting the existing facility because it offered several very important advantages: maximum utilization of existing equipment, a 30% increase in plant feed handling capacity and an increase in average ethane recovery to 94% without adding residuemore » compressors. This paper presents the comparative case analysis that led to the selection of the RSV design. It also describes the modifications required for the retrofit, all of which can be accomplished with minimum plant down time. The modified Ignacio Plant is scheduled for startup in March 1999.« less

  1. Vapor Intrusion Characterization Report (Revision 1.0)

    EPA Pesticide Factsheets

    Vapor Intrusion Characterization Report (Revision 1) - February 5, 2015: This report, which was approved by the EPA on February 18, 2015, documents the results from implementation of the Final Vapor Intrusion Characterization Work Plan.

  2. Water Vapor Remote Sensing Techniques: Radiometry and Solar Spectrometry

    NASA Astrophysics Data System (ADS)

    Somieski, A.; Buerki, B.; Cocard, M.; Geiger, A.; Kahle, H.-G.

    The high variability of atmospheric water vapor content plays an important role in space geodesy, climatology and meteorology. Water vapor has a strong influence on transatmospheric satellite signals, the Earth's climate and thus the weather forecasting. Several remote sensing techniques have been developed for the determination of inte- grated precipitable water vapor (IPWV). The Geodesy and Geodynamics Lab (GGL) utilizes the methods of Water Vapor Radiometry and Solar Spectrometry to quantify the amount of tropospheric water vapor and its temporal variations. The Water Vapor Radiometer (WVR) measures the radiation intensity of the atmosphere in a frequency band ranging from 20 to 32 GHz. The Solar Atmospheric MOnitoring Spectrome- ter (SAMOS) of GGL is designed for high-resolution measurements of water vapor absorption lines using solar radiation. In the framework of the ESCOMPTE (ExpÊrience sur Site pour COntraindre les Mod- Éles de Pollution atmosphÊrique et de Transport d'Emissions) field campaign these instruments have been operated near Marseille in 2001. They have aquired a long time series of integrated precipitable water vapor content (IPWV). The accuracy of IPWV measured by WVR and SAMOS is 1 kg/m2. Furthermore meteorological data from radiosondes were used to calculate the IPWV in order to provide comparisons with the results of WVR and SAMOS. The methods of Water Vapor Radiometry and So- lar Spectrometry will be discussed and first preliminary results retrieved from WVR, SAMOS and radiosondes during the ESCOMPTE field campaign will be presented.

  3. Sustainable Remediation for Enhanced NAPL Recovery from Groundwater

    NASA Astrophysics Data System (ADS)

    Javaher, M.

    2012-12-01

    Sustainable remediation relates to the achievement of balance between environmental, social, and economic elements throughout the remedial lifecycle. A significant contributor to this balance is the use of green and sustainable technologies which minimize environmental impacts, while maximizing social and economic benefits of remedial implementation. To this end, a patented mobile vapor energy generation (VEG) technology has been developed targeting variable applications, including onsite soil remediation for unrestricted reuse and enhanced non-aqueous phase liquid (NAPL) recover at the water table. At the core of the mobile VEG technology is a compact, high efficiency vapor generator, which utilizes recycled water and propane within an entirely enclosed system to generate steam as high as 1100°F. Operating within a fully enclosed system and capturing all heat that is generated within this portable system, the VEG technology eliminates all emissions to the atmosphere and yields an undetected carbon footprint with resulting carbon dioxide concentrations that are below ambient levels. Introduction of the steam to the subsurface via existing wells results in a desired change in the NAPL viscosity and the interfacial tension at the soil, water, NAPL interface; in turn, this results in mobilization and capture of the otherwise trapped, weathered NAPL. Approved by the California Air Resources Control Board (and underlying Air Quality Management Districts) and applied in California's San Joaquin Valley, in-well heating of NAPLs trapped at the water table using the VEG technology has proven as effective as electrical resistivity heating (ERH) in changing the viscosity of and mobilizing NAPLs in groundwater in support of recovery, but has achieved these results while minimizing the remedial carbon footprint by 90%, reducing energy use by 99%, and reducing remedial costs by more than 95%. NAPL recovery using VEG has also allowed for completion of source removal historically

  4. RECOVERY OF URANIUM FROM LOW GRADE URANIUM BEARING ORES

    DOEpatents

    Rhodes, H.B.; Pesold, W.F.; Hirshon, J.M.

    1959-06-01

    Recovery of U, Fe, and Al from Chattanooga shale is described. Ground shale (-4 to +325 mesh) is roasted to remove organic and volatile matter. The heated shale is then reacted with a chlorinating agent (CCl/sub 4/, COCl/sub 2/, Cl, and SCl) at 600 to 1000 C. The metal chloride vapor is separated from entrained solids and then contacted with a liquid alkali metal chloride which removes U. The U is reeovered by cooling and dissolving the bath followed by acidification and solvent extraction. A condensed phase of Al, Fe, and K chlorides is treated to separate Al as alumina by passing through a Fe/sub 2/O/ sub 3/ bed. The remaining FeCl/sub 3/ is oxidized by O/sub 2/ at 1000 C to form Fe/sub 2/O/sub 3/ and Cl/sub 2/. Alternatively, vapor from the U separation step may be passed to a liquid KCl bath at 500 to 650 C. The resulting mixture is oxidized to form Cl/sub 2/ and Fe/sub 2/O/sub 3/ + Al/sub 2/O/sub 3/. The Al and Fe are separated by reaction with NaOH at high temperatures and pressures. (T.R.H.)

  5. Metal vapor laser including hot electrodes and integral wick

    DOEpatents

    Ault, Earl R.; Alger, Terry W.

    1995-01-01

    A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube.

  6. Metal vapor laser including hot electrodes and integral wick

    DOEpatents

    Ault, E.R.; Alger, T.W.

    1995-03-07

    A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube. 5 figs.

  7. A novel vaporization-enucleation technique for benign prostate hyperplasia using 120-W HPS GreenLight™ laser: Seoul technique II in comparison with vaporization and previously reported modified vaporization-resection technique.

    PubMed

    Yoo, Sangjun; Park, Juhyun; Cho, Sung Yong; Cho, Min Chul; Jeong, Hyeon; Son, Hwancheol

    2017-12-01

    We developed a novel vaporization-enucleation technique (Seoul II), which consists of vaporization-enucleation of the prostate using 120-W HPS GreenLight laser, and enucleated prostate resection using bipolar devices for tissue removal. We compared the outcomes of the Seoul II with vaporization and a previously reported modified vaporization-resection technique (Seoul I). Among patients with benign prostate hyperplasia who underwent transurethral surgery using GreenLight laser at our institute, 347 patients with prostate volume ≥ 40 ml were included. The impact of surgical techniques on efficacy and postoperative functional outcomes was compared. No difference was found in baseline characteristics, although the prostate volume was marginally greater in Seoul II (p = 0.051). Prostate volume reduction per operation time (p < 0.001) and lasing time (p = 0.016) were greater in Seoul II. At postoperative 12 months, the International Prostate Symptom Score (I-PSS) was lower (p = 0.011), and the decrement in I-PSS was greater in Seoul II (p = 0.001) than other techniques. In multivariate analysis, postoperative 12-month I-PSS for Seoul II was significantly superior to vaporization (p < 0.001), although it was similar to Seoul I. The maintenance of immediate postoperative I-PSS decrement, until postoperative 12 months was superior in Seoul II compared with vaporization (p = 0.014) and Seoul I (p = 0.048). Seoul II showed improved efficacy and voiding functional maintenance over postoperative 12 months in patients with prostate volume ≥ 40 ml compared with vaporization and Seoul I. This technique could be easily accepted by clinicians who are familiar with GreenLight lasers and add flexibility to surgery without additional equipment.

  8. Soil radon survey to assess NAPL contamination from an ancient spill. Do kerosene vapors affect radon partition ?

    PubMed

    De Simone, Gabriele; Lucchetti, Carlo; Pompilj, Francesca; Galli, Gianfranco; Tuccimei, Paola; Curatolo, Pierpaolo; Giorgi, Riccardo

    2017-05-01

    A soil radon-deficit survey was carried out in a site polluted with kerosene (Rome, Italy) in winter 2016 to assess the contamination due to the NAPL residual component in the vadose zone and to investigate the role of the vapor plume. Radon is indeed more soluble in the residual NAPL than in air or water, but laboratory experiments demonstrated that it is also preferentially partitioned in the NAPL vapors that transport it and may influence soil radon distribution patterns. Specific experimental configurations were designed and applied to a 31-station grid to test this hypothesis; two RAD7 radon monitors were placed in-series and connected to the top of a hollow probe driven up to 80-cm depth; the first instrument was directly attached to the probe and received humid soil gas, which was counted and then conveyed to the second monitor through a desiccant (drierite) cylinder capturing moisture and eventually the NAPL volatile component plus the radon dissolved in vapors. The values from the two instruments were cross-calibrated through specifically designed laboratory experiments and compared. The results are in agreement within the error range, so the presence of significant NAPL vapors, eventually absorbed by drierite, was ruled out. This is in agreement with low concentrations of soil VOCs. Accordingly, the radon-deficit is ascribed to the residual NAPL in the soil pores, as shown very well also by the obtained maps. Preferential areas of radon-deficit were recognised, as in previous surveys. An average estimate of 21 L (17 Kg) of residual NAPL per cubic meter of terrain is provided on the basis of original calculations, developed from published equations. A comparison with direct determination of total hydrocarbon concentration (23 kg per cubic meter of terrain) is provided. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Recovery of transplantable organs after cardiac or circulatory death: Transforming the paradigm for the ethics of organ donation

    PubMed Central

    Verheijde, Joseph L; Rady, Mohamed Y; McGregor, Joan

    2007-01-01

    Organ donation after cardiac or circulatory death (DCD) has been introduced to increase the supply of transplantable organs. In this paper, we argue that the recovery of viable organs useful for transplantation in DCD is not compatible with the dead donor rule and we explain the consequential ethical and legal ramifications. We also outline serious deficiencies in the current consent process for DCD with respect to disclosure of necessary elements for voluntary informed decision making and respect for the donor's autonomy. We compare two alternative proposals for increasing organ donation consent in society: presumed consent and mandated choice. We conclude that proceeding with the recovery of transplantable organs from decedents requires a paradigm change in the ethics of organ donation. The paradigm change to ensure the legitimacy of DCD practice must include: (1) societal agreement on abandonment of the dead donor rule, (2) legislative revisions reflecting abandonment of the dead donor rule, and (3) requirement of mandated choice to facilitate individual participation in organ donation and to ensure that decisions to participate are made in compliance with the societal values of respect for autonomy and self-determination. PMID:17519030

  10. 7 CFR 305.24 - Vapor heat treatment schedules.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... increased using saturated water vapor at 112 °F until the approximate center of the fruit reaches 112 °F.... The temperature of the fruit must be increased using saturated water vapor at 117.5 °F until the pulp... be increased using saturated water vapor at 117.5 °F until the center of the fruit reaches 114.8 °F...

  11. Stratified vapor generator

    DOEpatents

    Bharathan, Desikan [Lakewood, CO; Hassani, Vahab [Golden, CO

    2008-05-20

    A stratified vapor generator (110) comprises a first heating section (H.sub.1) and a second heating section (H.sub.2). The first and second heating sections (H.sub.1, H.sub.2) are arranged so that the inlet of the second heating section (H.sub.2) is operatively associated with the outlet of the first heating section (H.sub.1). A moisture separator (126) having a vapor outlet (164) and a liquid outlet (144) is operatively associated with the outlet (124) of the second heating section (H.sub.2). A cooling section (C.sub.1) is operatively associated with the liquid outlet (144) of the moisture separator (126) and includes an outlet that is operatively associated with the inlet of the second heating section (H.sub.2).

  12. 40 CFR 796.1950 - Vapor pressure.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to a wide variety of chemical types and structures, EPA has sponsored research and development work... Chemistry, 3:664-670 (1969). (3) Spencer, W.F. and Cliath, M.M. “Vapor Density and Apparent Vapor Pressure of Lindane,” Journal of Agricultural and Food Chemistry, 18:529-530 (1970). [50 FR 39252, Sept. 27...

  13. 40 CFR 796.1950 - Vapor pressure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to a wide variety of chemical types and structures, EPA has sponsored research and development work... Chemistry, 3:664-670 (1969). (3) Spencer, W.F. and Cliath, M.M. “Vapor Density and Apparent Vapor Pressure of Lindane,” Journal of Agricultural and Food Chemistry, 18:529-530 (1970). [50 FR 39252, Sept. 27...

  14. 40 CFR 796.1950 - Vapor pressure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to a wide variety of chemical types and structures, EPA has sponsored research and development work... Chemistry, 3:664-670 (1969). (3) Spencer, W.F. and Cliath, M.M. “Vapor Density and Apparent Vapor Pressure of Lindane,” Journal of Agricultural and Food Chemistry, 18:529-530 (1970). [50 FR 39252, Sept. 27...

  15. 40 CFR 796.1950 - Vapor pressure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to a wide variety of chemical types and structures, EPA has sponsored research and development work... Chemistry, 3:664-670 (1969). (3) Spencer, W.F. and Cliath, M.M. “Vapor Density and Apparent Vapor Pressure of Lindane,” Journal of Agricultural and Food Chemistry, 18:529-530 (1970). [50 FR 39252, Sept. 27...

  16. Headspace vapor characterization of Hanford Waste Tank 241-BY-108: Results from samples collected January 23, 1996. Tank Vapor Characterization Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pool, K.H.; Evans, J.C.; Thomas, B.L.

    1996-07-01

    This report describes the results of vapor samples obtained to compare vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling System (ISVS) with and without particulate prefiltration. Samples were collected from the headspace of waste storage tank 241-BY-108 (Tank BY-108) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) was contracted by Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for water, ammonia, permanent gases, total nonmethane hydrocarbons (TNMHCs, also known as TO-12), and organic analytes in samples collected in SUMMA{trademark} canisters and on triple sorbentmore » traps (TSTs) from the tank headspace. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sampling and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was {open_quotes}Sampling and Analysis Plan for Tank Vapor Sampling Comparison Test{close_quotes}, and the sample jobs were designated S6004, S6005, and S6006. Samples were collected by WHC on January 23, 1996, using the VSS, a truck-based sampling method using a heated probe; and the ISVS with and without particulate prefiltration.« less

  17. Propagation of detonations in hydrazine vapor

    NASA Technical Reports Server (NTRS)

    Heinrich, H. J.

    1985-01-01

    In the range of greater hydrazine vapor pressure, detonation speed depends exclusively on the extent of the ammonia decomposition in the second reaction stage. As vapor pressure decreases, the ammonia disintegration speed becomes increasingly slower and the reaction reached in the reaction zone increasingly decreases until finally, in the vapor pressure range between 53 and 16 Torr, the contribution of the second stage to detonation propagation disappears, and only the first stage remains active. Since the disintegration speed of the hydrazine in this pressure range has decreased markedly as well, no level, but rather only spinning, detonations occur. Temporary separations of the impact front and the reaction zone in the process lead to fluctuations of the detonation speed.

  18. Auxiliary Electrodes for Chromium Vapor Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fergus, Jeffrey; Shahzad, Moaiz; Britt, Tommy

    Measurement of chromia-containing vapors in solid oxide fuel cell systems is useful for monitoring and addressing cell degradation caused by oxidation of the chomia scale formed on alloys for interconnects and balance-of-plant components. One approach to measuring chromium is to use a solid electrolyte with an auxiliary electrode that relates the partial pressure of the chromium containing species to the mobile species in the electrolyte. One example is YCrO3 which can equilibrate with the chromium containing vapor and yttrium in yttria stabilized zirconia to establish an oxygen activity. Another is Na2CrO4 which can equilibrate with the chromium-containing vapor to establishmore » a sodium activity.« less

  19. [The Global Model of Public Mental Health and Recovery Mentors].

    PubMed

    Pelletier, Jean-François; Auclair, Émilie

    Objectives The aim of this paper is to revisit the Global Model of Public Mental Health (GMPMH) in light of the 4th Civic Forum. Recovery mentors of the University of Recovery chaired this public event, which was held in East-end Montreal, Canada, in 2016. The University of Recovery is a concept of co-learning among its members.Methods Being able to refer to international conventions and human rights standards is a key component of a genuine global approach that is supportive of individuals and communities in their quest for recovery and full citizenship. The GMPMH was inspired by the ecological approach in public health and health promotion programs, while adding to that approach the recovery mentors, as agents of mental health policies and legislation transformation. The GMPMH integrates recovery- and citizenship-oriented practices through the Ottawa Charter for Health Promotion of the World Health Organization. Indeed, here the GMPMH is said to be global in that the supranational and individual levels reinforce each other, taking turns with a) a set of legal rules and international conventions on human rights, including those of disabled persons, and b) the active involvement and agency of recovery mentors who can evoke these rules and conventions as part of a plea for the recognition of their personal and collective capacity for change; they acted as tracers of recovery trajectories during the Civic Forum. The GMPMH was first published in 2009, and revisited in 2013. While this latter revision was based on the 3rd Civic Forum, in this paper we use the same approach to revisit the GMPMH as underpinned by the findings and recommendations of the 4th Civic Forum, which discussed questions related to work and employment.Results Updating the GMPMH in light of the Civic Forum underlines the need for a more inclusive type of governance regarding policy and systems transformation. Local communities and persons in recovery can reach each other to promote change and

  20. 76 FR 24376 - Commission's Ex Parte Rules and Other Procedural Rules

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ...'s Ex Parte Rules and Other Procedural Rules AGENCY: Federal Communications Commission. ACTION: Final rule. SUMMARY: In this document the Commission revises certain ex parte and organizational rules. This document amends and reforms the Commission's rules on ex parte presentations made in the course of...

  1. Room temperature ammonia vapor sensing properties of transparent single walled carbon nanotube thin film

    NASA Astrophysics Data System (ADS)

    Shobin, L. R.; Manivannan, S.

    2014-10-01

    Carbon nanotube (CNT) networks are identified as potential substitute and surpass the conventional indium doped tin oxide (ITO) in transparent conducting electrodes, thin-film transistors, solar cells, and chemical sensors. Among them, CNT based gas sensors gained more interest because of its need in environmental monitoring, industrial control, and detection of gases in warfare or for averting security threats. The unique properties of CNT networks such as high surface area, low density, high thermal conductivity and chemical sensitivity making them as a potential candidate for gas sensing applications. Commercial unsorted single walled carbon nanotubes (SWCNT) were purified by thermal oxidation and acid treatment processes and dispersed in organic solvent N-methyl pyrolidone using sonication process in the absence of polymer or surfactant. Optically transparent SWCNT networks are realized on glass substrate by coating the dispersed SWCNT with the help of dynamic spray coating process at 200ºC. The SWCNT random network was characterized by scanning electron microscopy and UV-vis-NIR spectroscopy. Gas sensing property of transparent film towards ammonia vapor is studied at room temperature by measuring the resistance change with respect to the concentration in the range 0-1000 ppm. The sensor response is increased logarithmically in the concentration range 0 to 1000 ppm with the detection limit 0.007 ppm. The random networks are able to detect ammonia vapor selectively because of the high electron donating nature of ammonia molecule to the SWCNT. The sensor is reversible and selective to ammonia vapor with response time 70 seconds and recovery time 423 seconds for 62.5 ppm with 90% optical transparency at 550 nm.

  2. Influence of relative permeabilities on chemical enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Destefanis, M. F.; Savioli, G. B.

    2011-05-01

    The main objective of chemical flooding is to mobilize the trapped oil remaining after a secondary recovery by waterflooding. This purpose is achieved by lowering the oil-water interfacial tension and producing partial miscibility between both phases. The chemical partition among phases (phase behavior) influences all other physical properties. In particular, it affects residual saturations determining relative permeability curves. Relative permeabilities rule the flow of each phase through the porous medium, so they play an essential role in oil recovery. Therefore, in this work we study the influence of relative permeabilities on the behavior of a surfactant-polymer flooding for the three different types of phase behavior. This analysis is performed applying the 3D compositional numerical simulator UTCHEM developed at the University of Texas at Austin. From the examples studied, we conclude that the influence of relative permeabilities depends on the type of phase behavior, i.e., as microemulsion relative permeability decreases, oil recovery increases for Types II(+) and III while slightly decreases for Type II(-). Moreover, a better displacement efficiency is observed for Types II(+) and III, because they behave similarly to a miscible displacement.

  3. Water Vapor Corrosion in EBC Constituent Materials

    NASA Technical Reports Server (NTRS)

    Kowalski, Benjamin; Fox, Dennis; Jacobson, Nathan S.

    2017-01-01

    Environmental Barrier Coating (EBC) materials are sought after to protect ceramic matrix composites (CMC) in high temperature turbine engines. CMCs are particularly susceptible to degradation from oxidation, Ca-Al-Mg-Silicate (CMAS), and water vapor during high temperature operation which necessitates the use of EBCs. However, the work presented here focuses on water vapor induced recession in EBC constituent materials. For example, in the presence of water vapor, silica will react to form Si(OH)4 (g) which will eventually corrode the material away. To investigate the recession rate in EBC constituent materials under high temperature water vapor conditions, thermal gravimetric analysis (TGA) is employed. The degradation process can then be modeled through a simple boundary layer expression. Ultimately, comparisons are made between various single- and poly-crystalline materials (e.g. TiO2, SiO2) against those found in literature.

  4. Combustion chamber and thermal vapor stream producing apparatus and method

    DOEpatents

    Sperry, John S.; Krajicek, Richard W.; Cradeur, Robert R.

    1978-01-01

    A new and improved method and apparatus for burning a hydrocarbon fuel for producing a high pressure thermal vapor stream comprising steam and combustion gases for injecting into a subterranean formation for the recovery of liquefiable minerals therefrom, wherein a high pressure combustion chamber having multiple refractory lined combustion zones of varying diameters is provided for burning a hydrocarbon fuel and pressurized air in predetermined ratios injected into the chamber for producing hot combustion gases essentially free of oxidizing components and solid carbonaceous particles. The combustion zones are formed by zones of increasing diameters up a final zone of decreasing diameter to provide expansion zones which cause turbulence through controlled thorough mixing of the air and fuel to facilitate complete combustion. The high pressure air and fuel is injected into the first of the multiple zones where ignition occurs with a portion of the air injected at or near the point of ignition to further provide turbulence and more complete combustion.

  5. Vapor Pressure of Methyl Salicylate and n-Hexadecane

    DTIC Science & Technology

    2014-01-01

    VAPOR PRESSURE OF METHYL SALICYLATE AND N-HEXADECANE ECBC-TR-1184 David E. Tevault Leonard C. Buettner...REPORT TYPE Final 3. DATES COVERED (From - To) Mar 2000-Dec 2001 4. TITLE AND SUBTITLE Vapor Pressure of Methyl Salicylate and n-Hexadecane 5a...ABSTRACT Vapor pressure data are reported for O-hydroxybenzoic acid, methyl ester, more commonly known as methyl salicylate (MeS), and n-hexadecane in

  6. Vaporization characteristics of carbon heat shields under radiative heating.

    NASA Technical Reports Server (NTRS)

    Davy, W. C.; Bar-Nun, A.

    1972-01-01

    Study of the vaporization characteristics of samples of ATJ graphite, a material that has been considered for use on a Jovian probe. These samples were subjected to radiative heating loads of approximately 2 kW/sq cm in argon atmospheres of pressures from 0.00046 to 1 atm. Surface temperatures, mass loss rates, and spatially resolved emission spectral data were recorded. These data are analyzed to determine carbon vapor pressure as a function of temperature and are compared with current models for the vapor pressure of carbon. The effects of finite vaporization (i.e., nonequilibrium) rates are considered and compared with experiment. Estimates of the heat of vaporization from an energy balance are also presented.

  7. Water vapor radiometry research and development phase

    NASA Technical Reports Server (NTRS)

    Resch, G. M.; Chavez, M. C.; Yamane, N. L.; Barbier, K. M.; Chandlee, R. C.

    1985-01-01

    This report describes the research and development phase for eight dual-channel water vapor radiometers constructed for the Crustal Dynamics Project at the Goddard Space Flight Center, Greenbelt, Maryland, and for the NASA Deep Space Network. These instruments were developed to demonstrate that the variable path delay imposed on microwave radio transmissions by atmospheric water vapor can be calibrated, particularly as this phenomenon affects very long baseline interferometry measurement systems. Water vapor radiometry technology can also be used in systems that involve moist air meteorology and propagation studies.

  8. Energy efficiency of acetone, butanol, and ethanol (ABE) recovery by heat-integrated distillation.

    PubMed

    Grisales Diaz, Victor Hugo; Olivar Tost, Gerard

    2018-03-01

    Acetone, butanol, and ethanol (ABE) is an alternative biofuel. However, the energy requirement of ABE recovery by distillation is considered elevated (> 15.2 MJ fuel/Kg-ABE), due to the low concentration of ABE from fermentation broths (between 15 and 30 g/l). In this work, to reduce the energy requirements of ABE recovery, four processes of heat-integrated distillation were proposed. The energy requirements and economic evaluations were performed using the fermentation broths of several biocatalysts. Energy requirements of the processes with four distillation columns and three distillation columns were similar (between 7.7 and 11.7 MJ fuel/kg-ABE). Double-effect system (DED) with four columns was the most economical process (0.12-0.16 $/kg-ABE). ABE recovery from dilute solutions by DED achieved energy requirements between 6.1 and 8.7 MJ fuel/kg-ABE. Vapor compression distillation (VCD) reached the lowest energy consumptions (between 4.7 and 7.3 MJ fuel/kg-ABE). Energy requirements for ABE recovery DED and VCD were lower than that for integrated reactors. The energy requirements of ABE production were between 1.3- and 2.0-fold higher than that for alternative biofuels (ethanol or isobutanol). However, the energy efficiency of ABE production was equivalent than that for ethanol and isobutanol (between 0.71 and 0.76) because of hydrogen production in ABE fermentation.

  9. Mountain waves modulate the water vapor distribution in the UTLS

    NASA Astrophysics Data System (ADS)

    Heller, Romy; Voigt, Christiane; Beaton, Stuart; Dörnbrack, Andreas; Giez, Andreas; Kaufmann, Stefan; Mallaun, Christian; Schlager, Hans; Wagner, Johannes; Young, Kate; Rapp, Markus

    2017-12-01

    The water vapor distribution in the upper troposphere-lower stratosphere (UTLS) region has a strong impact on the atmospheric radiation budget. Transport and mixing processes on different scales mainly determine the water vapor concentration in the UTLS. Here, we investigate the effect of mountain waves on the vertical transport and mixing of water vapor. For this purpose we analyze measurements of water vapor and meteorological parameters recorded by the DLR Falcon and NSF/NCAR Gulfstream V research aircraft taken during the Deep Propagating Gravity Wave Experiment (DEEPWAVE) in New Zealand. By combining different methods, we develop a new approach to quantify location, direction and irreversibility of the water vapor transport during a strong mountain wave event on 4 July 2014. A large positive vertical water vapor flux is detected above the Southern Alps extending from the troposphere to the stratosphere in the altitude range between 7.7 and 13.0 km. Wavelet analysis for the 8.9 km altitude level shows that the enhanced upward water vapor transport above the mountains is caused by mountain waves with horizontal wavelengths between 22 and 60 km. A downward transport of water vapor with 22 km wavelength is observed in the lee-side of the mountain ridge. While it is a priori not clear whether the observed fluxes are irreversible, low Richardson numbers derived from dropsonde data indicate enhanced turbulence in the tropopause region related to the mountain wave event. Together with the analysis of the water vapor to ozone correlation, we find indications for vertical transport followed by irreversible mixing of water vapor. For our case study, we further estimate greater than 1 W m-2 radiative forcing by the increased water vapor concentrations in the UTLS above the Southern Alps of New Zealand, resulting from mountain waves relative to unperturbed conditions. Hence, mountain waves have a great potential to affect the water vapor distribution in the UTLS. Our

  10. The biosphere rules.

    PubMed

    Unruh, Gregory C

    2008-02-01

    Sustainability, defined by natural scientists as the capacity of healthy ecosystems to function indefinitely, has become a clarion call for business. Leading companies have taken high-profile steps toward achieving it: Wal-Mart, for example, with its efforts to reduce packaging waste, and Nike, which has removed toxic chemicals from its shoes. But, says Unruh, the director of Thunderbird's Lincoln Center for Ethics in Global Management, sustainability is more than an endless journey of incremental steps. It is a destination, for which the biosphere of planet Earth--refined through billions of years of trial and error--is a perfect model. Unruh distills some lessons from the biosphere into three rules: Use a parsimonious palette. Managers can rethink their sourcing strategies and dramatically simplify the number and types of materials their companies use in production, making recycling cost-effective. After the furniture manufacturer Herman Miller discovered that its leading desk chair had 200 components made from more than 800 chemical compounds, it designed an award-winning successor whose far more limited materials palette is 96% recyclable. Cycle up, virtuously. Manufacturers should design recovery value into their products at the outset. Shaw Industries, for example, recycles the nylon fiber from its worn-out carpet into brand-new carpet tile. Exploit the power of platforms. Platform design in industry tends to occur at the component level--but the materials in those components constitute a more fundamental platform. Patagonia, by recycling Capilene brand performance underwear, has achieved energy costs 76% below those for virgin sourcing. Biosphere rules can teach companies how to build ecologically friendly products that both reduce manufacturing costs and prove highly attractive to consumers. And managers need not wait for a green technological revolution to implement them.

  11. A Portable Electronic Nose For Toxic Vapor Detection, Identification, and Quantification

    NASA Technical Reports Server (NTRS)

    Linnell, B. R.; Young, R. C.; Griffin, T. P.; Meneghelli, B. J.; Peterson, B. V.; Brooks, K. B.

    2005-01-01

    A new prototype instrument based on electronic nose (e-nose) technology has demonstrated the ability to identify and quantify many vapors of interest to the Space Program at their minimum required concentrations for both single vapors and two-component vapor mixtures, and may easily be adapted to detect many other toxic vapors. To do this, it was necessary to develop algorithms to classify unknown vapors, recognize when a vapor is not any of the vapors of interest, and estimate the concentrations of the contaminants. This paper describes the design of the portable e-nose instrument, test equipment setup, test protocols, pattern recognition algorithms, concentration estimation methods, and laboratory test results.

  12. BioVapor Model Evaluation (St. Louis, MO)

    EPA Science Inventory

    The BioVapor model addresses transport and biodegradation of petroleum vapors in the subsurface. This presentation describes basic background on the nature and scientific basis of environmental transport models. It then describes a series of parameter uncertainty runs of the Bi...

  13. The Foundation GPS Water Vapor Inversion and its Application Research

    NASA Astrophysics Data System (ADS)

    Liu, R.; Lee, T.; Lv, H.; Fan, C.; Liu, Q.

    2018-04-01

    Using GPS technology to retrieve atmospheric water vapor is a new water vapor detection method, which can effectively compensate for the shortcomings of conventional water vapor detection methods, to provide high-precision, large-capacity, near real-time water vapor information. In-depth study of ground-based GPS detection of atmospheric water vapor technology aims to further improve the accuracy and practicability of GPS inversion of water vapor and to explore its ability to detect atmospheric water vapor information to better serve the meteorological services. In this paper, the influence of the setting parameters of initial station coordinates, satellite ephemeris and solution observation on the total delay accuracy of the tropospheric zenith is discussed based on the observed data. In this paper, the observations obtained from the observation network consisting of 8 IGS stations in China in June 2013 are used to inverse the water vapor data of the 8 stations. The data of Wuhan station is further selected and compared with the data of Nanhu Sounding Station in Wuhan The error between the two data was between -6mm-6mm, and the trend of the two was almost the same, the correlation reached 95.8 %. The experimental results also verify the reliability of ground-based GPS inversion of water vapor technology.

  14. [Analysis of operative complications of photoselective vaporization of prostate (120 W) for treatment of benign prostatic hyperplasia].

    PubMed

    Huang, Chen; Chen, Li-jun; Zhao, Li; Qu, Nan; Mai, Hai-xing; Tang, Fei

    2013-02-01

    To explore operative complications of photoselective vaporization of prostate (120 W) for treatment of benign prostatic hyperplasia (BPH). The clinical data of 186 cases who underwent photoselective vaporization of prostate (120 W) for the treatment of BPH from May 2010 to April 2012, was statistically analyzed. The operative time ranged from 7 to 147 minutes, and the average time was (37.7 ± 21.5) minutes. No patient accepted intraoperative blood transfusion, and occurred transurethral resection syndrome or capsular perforation. The time of postoperative indwelling catheter ranged from 1 to 11 days, and average time was (4.3 ± 2.2) days. Surgical outcome was satisfactory. Early postoperative complications included bladder spasm (3 cases), transient dysuria (19 cases), urinary tractirritation (94 cases), secondary hemorrhage (26 cases), transient urge incontinence (19 cases), all cases were relieved after treatment. Long-term complications, including recurrence (1 case), bladder neck stenosis (2 cases) and urethral stricture (2 cases), who had required reoperation. Postoperative patients with international prostate symptom score (29.4 ± 3.4), maximum urinary flow rate ((6.0 ± 1.6) ml/s) and residual urine ((167 ± 150) ml) had improved (t = -76.0 - 61.4, P < 0.01). With less invasive, less bleeding and rapid postoperative recovery, photoselective vaporization of prostate (120 W) is a safe and effective minimally invasive treatment techniques for BPH. But there is still some complications after surgery and proper handling is required.

  15. Profiling of Atmospheric Water Vapor with MIR and LASE

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Racette, P.; Triesly, M. E.; Browell, E. V.; Ismail, S.; Chang, L. A.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    This paper presents the first and the only simultaneous measurements of water vapor by MIR (Millimeter-wave Imaging Radiometer) and LASE (Lidar Atmospheric Sounding Experiment) on board the same ER-2 aircraft. Water vapor is one of the most important constituents in the Earth's atmosphere, as its spatial and temporal variations affect a wide spectrum of meteorological phenomena ranging from the formation of clouds to the development of severe storms. Its concentration, as measured in terms of relative humidity, determines the extinction coefficient of atmospheric aerosol particles and therefore visibility. These considerations point to the need for effective and frequent measurements of the atmospheric water vapor. The MIR and LASE instruments provide measurements of water vapor profiles with two markedly different techniques. LASE can give water vapor profiles with excellent vertical resolution under clear condition, while MIR can retrieve water vapor profiles with a crude vertical resolution even under a moderate cloud cover. Additionally, millimeter-wave measurements are relatively simple and provide better spatial coverage.

  16. Fuel Vapor Pressures and the Relation of Vapor Pressure to the Preparation of Fuel for Combustion in Fuel Injection Engines

    NASA Technical Reports Server (NTRS)

    Joachim, William F; Rothrock, A M

    1930-01-01

    This investigation on the vapor pressure of fuels was conducted in connection with the general research on combustion in fuel injection engines. The purpose of the investigation was to study the effects of high temperatures such as exist during the first stages of injection on the vapor pressures of several fuels and certain fuel mixtures, and the relation of these vapor pressures to the preparation of the fuel for combustion in high-speed fuel injection engines.

  17. Exploration of SWRL Rule Bases through Visualization, Paraphrasing, and Categorization of Rules

    NASA Astrophysics Data System (ADS)

    Hassanpour, Saeed; O'Connor, Martin J.; Das, Amar K.

    Rule bases are increasingly being used as repositories of knowledge content on the Semantic Web. As the size and complexity of these rule bases increases, developers and end users need methods of rule abstraction to facilitate rule management. In this paper, we describe a rule abstraction method for Semantic Web Rule Language (SWRL) rules that is based on lexical analysis and a set of heuristics. Our method results in a tree data structure that we exploit in creating techniques to visualize, paraphrase, and categorize SWRL rules. We evaluate our approach by applying it to several biomedical ontologies that contain SWRL rules, and show how the results reveal rule patterns within the rule base. We have implemented our method as a plug-in tool for Protégé-OWL, the most widely used ontology modeling software for the Semantic Web. Our tool can allow users to rapidly explore content and patterns in SWRL rule bases, enabling their acquisition and management.

  18. Risk assessment of metal vapor arcing

    NASA Technical Reports Server (NTRS)

    Hill, Monika C. (Inventor); Leidecker, Henning W. (Inventor)

    2009-01-01

    A method for assessing metal vapor arcing risk for a component is provided. The method comprises acquiring a current variable value associated with an operation of the component; comparing the current variable value with a threshold value for the variable; evaluating compared variable data to determine the metal vapor arcing risk in the component; and generating a risk assessment status for the component.

  19. SAMPLING-BASED APPROACH TO INVESTIGATING VAPOR INTRUSION

    EPA Science Inventory

    Vapor intrusion is defined as the migration of volatile organic compounds (VOCs) into occupied buildings from contaminated soil or ground water. EPA recently developed guidance to facilitate assessment of vapor intrusion at sites regulated by RCRA and CERCLA. The EPA guidance e...

  20. Large-capacity pump vaporizer for liquid hydrogen and nitrogen

    NASA Technical Reports Server (NTRS)

    Hauser, J. A.

    1970-01-01

    Pump vaporizer system delivers 500 standard cubic feet per minute of hydrogen or nitrogen, one system delivers both gases. Vacuum-jacketed pump discharges liquid hydrogen or liquid nitrogen into vaporizing system heated by ambient air. Principal characteristics of the flow and discharge system, pump, and vaporizer are given.

  1. Water vapor diffusion membrane development

    NASA Technical Reports Server (NTRS)

    Tan, M. K.

    1977-01-01

    An application of the water vapor diffusion technique is examined whereby the permeated water vapor is vented to space vacuum to alleviate on-board waste storage and provide supplemental cooling. The work reported herein deals primarily with the vapor diffusion-heat rejection (VD-HR) as it applies to the Space Shuttle. A stack configuration was selected, designed and fabricated. An asymmetric cellulose acetate membrane, used in reverse osmosis application was selected and a special spacer was designed to enhance mixing and promote mass transfer. A skid-mount unit was assembled from components used in the bench unit although no attempt was made to render it flight-suitable. The operating conditions of the VD-HR were examined and defined and a 60-day continuous test was carried out. The membranes performed very well throughout the test; no membrane rupture and no unusual flux decay was observed. In addition, a tentative design for a flight-suitable VD-HR unit was made.

  2. Determination of mercury in fish tissue using a minianalyzer based on cold vapor atomic absorption spectrometry at the 184.9 nm line.

    PubMed

    Rizea, Maria-Cristina; Bratu, Maria-Cristina; Danet, Andrei Florin; Bratu, Adrian

    2007-09-01

    A sensitive method was proposed and optimized for the determination of total mercury in fish tissue by using wet digestion, followed by cold vapor atomic absorption spectrometry (CVAAS) at the main resonance line of mercury (184.9 nm). The measurements were made using a new type of a non-dispersive mercury minianalyzer. This instrument was initially designed and built for atmospheric mercury-vapor detection. For determining mercury in aqueous samples, the minianalyzer was linked with a mercury/hydride system, Perkin Elmer Model MHS-10. To check the method, the analyzed samples were spiked with a standard solution of mercury. The recoveries of mercury spiked to wet fish tissue were >90% for 0.5 - 0.8 g samples. The results showed a better sensitivity (about 2.5 times higher) when using the mercury absorption line at 184.9 nm compared with the sensitivity obtained by conventional CVAAS at 253.7 nm.

  3. Vapor Cavitation in Dynamically Loaded Journal Bearings

    NASA Technical Reports Server (NTRS)

    Jacobson, B. O.; Hamrock, B. J.

    1983-01-01

    High speed motion camera experiments were performed on dynamically loaded journal bearings. The length to diameter ratio of the bearing, the speed of the roller and the tube, the surface material of the roller, and the static and dynamic eccentricity of the bearing were varied. One hundred and thirty-four cases were filmed. The occurrence of vapor cavitation was clearly evident in the films and figures presented. Vapor cavitation was found to occur when the tensile stress applied to the oil exceeded the tensile strength of the oil or the binding of the oil to the surface. The physical situation in which vapor cavitation occurs is during the squeezing and sliding motion within a bearing. Besides being able to accurately capture the vapor cavitation on film, an analysis of the formation and collapse of the cavitation bubbles and characteristics of the bubble content are presented.

  4. Australian road rules

    DOT National Transportation Integrated Search

    2009-02-01

    *These are national-level rules. Australian Road Rules - 2009 Version, Part 18, Division 1, Rule 300 "Use of Mobile Phones" describes restrictions of mobile phone use while driving. The rule basically states that drivers cannot make or receive calls ...

  5. Rules and Self-Rules: Effects of Variation upon Behavioral Sensitivity to Change

    ERIC Educational Resources Information Center

    Baumann, Ana A.; Abreu-Rodrigues, Josele; da Silva Souza, Alessandra

    2009-01-01

    Four experiments compared the effects of self-rules and rules, and varied and specific schedules of reinforcement. Participants were first exposed to either several schedules (varied groups) or to one schedule (specific groups) and either were asked to generate rules (self-rule groups), were provided rules (rule groups), or were not asked nor…

  6. Estimating evaporative vapor generation from automobiles based on parking activities.

    PubMed

    Dong, Xinyi; Tschantz, Michael; Fu, Joshua S

    2015-07-01

    A new approach is proposed to quantify the evaporative vapor generation based on real parking activity data. As compared to the existing methods, two improvements are applied in this new approach to reduce the uncertainties: First, evaporative vapor generation from diurnal parking events is usually calculated based on estimated average parking duration for the whole fleet, while in this study, vapor generation rate is calculated based on parking activities distribution. Second, rather than using the daily temperature gradient, this study uses hourly temperature observations to derive the hourly incremental vapor generation rates. The parking distribution and hourly incremental vapor generation rates are then adopted with Wade-Reddy's equation to estimate the weighted average evaporative generation. We find that hourly incremental rates can better describe the temporal variations of vapor generation, and the weighted vapor generation rate is 5-8% less than calculation without considering parking activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Role of Stratospheric Water Vapor in Global Warming from GCM Simulations Constrained by MLS Observation

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Stek, P. C.; Su, H.; Jiang, J. H.; Livesey, N. J.; Santee, M. L.

    2014-12-01

    Over the past century, global average surface temperature has warmed by about 0.16°C/decade, largely due to anthropogenic increases in well-mixed greenhouse gases. However, the trend in global surface temperatures has been nearly flat since 2000, raising a question regarding the exploration of the drivers of climate change. Water vapor is a strong greenhouse gas in the atmosphere. Previous studies suggested that the sudden decrease of stratospheric water vapor (SWV) around 2000 may have contributed to the stall of global warming. Since 2004, the SWV observed by Microwave Limb Sounder (MLS) on Aura satellite has shown a slow recovery. The role of recent SWV variations in global warming has not been quantified. We employ a coupled atmosphere-ocean climate model, the NCAR CESM, to address this issue. It is found that the CESM underestimates the stratospheric water vapor by about 1 ppmv due to limited representations of the stratospheric dynamic and chemical processes important for water vapor variabilities. By nudging the modeled SWV to the MLS observation, we find that increasing SWV by 1 ppmv produces a robust surface warming about 0.2°C in global-mean when the model reaches equilibrium. Conversely, the sudden drop of SWV from 2000 to 2004 would cause a surface cooling about -0.08°C in global-mean. On the other hand, imposing the observed linear trend of SWV based on the 10-year observation of MLS in the CESM yields a rather slow surface warming, about 0.04°C/decade. Our model experiments suggest that SWV contributes positively to the global surface temperature variation, although it may not be the dominant factor that drives the recent global warming hiatus. Additional sensitivity experiments show that the impact of SWV on surface climate is mostly governed by the SWV amount at 100 hPa in the tropics. Furthermore, the atmospheric model simulations driven by observed sea surface temperature (SST) show that the inter-annual variation of SWV follows that of SST

  8. Low temperature photochemical vapor deposition of alloy and mixed metal oxide films

    DOEpatents

    Liu, David K.

    1992-01-01

    Method and apparatus for formation of an alloy thin film, or a mixed metal oxide thin film, on a substrate at relatively low temperatures. Precursor vapor(s) containing the desired thin film constituents is positioned adjacent to the substrate and irradiated by light having wavelengths in a selected wavelength range, to dissociate the gas(es) and provide atoms or molecules containing only the desired constituents. These gases then deposit at relatively low temperatures as a thin film on the substrate. The precursor vapor(s) is formed by vaporization of one or more precursor materials, where the vaporization temperature(s) is selected to control the ratio of concentration of metals present in the precursor vapor(s) and/or the total precursor vapor pressure.

  9. Low temperature photochemical vapor deposition of alloy and mixed metal oxide films

    DOEpatents

    Liu, D.K.

    1992-12-15

    Method and apparatus are described for formation of an alloy thin film, or a mixed metal oxide thin film, on a substrate at relatively low temperatures. Precursor vapor(s) containing the desired thin film constituents is positioned adjacent to the substrate and irradiated by light having wavelengths in a selected wavelength range, to dissociate the gas(es) and provide atoms or molecules containing only the desired constituents. These gases then deposit at relatively low temperatures as a thin film on the substrate. The precursor vapor(s) is formed by vaporization of one or more precursor materials, where the vaporization temperature(s) is selected to control the ratio of concentration of metals present in the precursor vapor(s) and/or the total precursor vapor pressure. 7 figs.

  10. 46 CFR 182.480 - Flammable vapor detection systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 100 GROSS TONS) MACHINERY INSTALLATION Specific Machinery Requirements § 182.480 Flammable vapor... permit calibration in a vapor free atmosphere. (g) Electrical connections, wiring, and components for a...

  11. External fuel vaporization study, phase 2

    NASA Technical Reports Server (NTRS)

    Szetela, E. J.; Chiappetta, L.

    1981-01-01

    An analytical study was conducted to evaluate the effect of variations in fuel properties on the design of an external fuel vaporizaton system. The fuel properties that were considered included thermal stability, critical temperature, enthalpy a critical conditions, volatility, and viscosity. The design parameters that were evaluated included vaporizer weight and the impact on engine requirement such as maintenance, transient response, performance, and altitude relight. The baseline fuel properties were those of Jet A. The variation in thermal stability was taken as the thermal stability variation for Experimental Referee Broad Specification (ERBS) fuel. The results of the analysis indicate that a change in thermal stability equivalent to that of ERBS would increase the vaporization system weight by 20 percent, decrease oprating time between cleaning by 40 percent and make altitude relight more difficult. An increase in fuel critical temperature of 39 K would require a 40 percent increase in vaporization system weight. The assumed increase in enthalpy and volatility would also increase vaporizer weight by 40 percent and make altitude relight extremely difficult. The variation in fuel viscosity would have a negligible effect on the design parameters.

  12. Headspace vapor characterization of Hanford Waste Tank 241-S-102: Results from samples collected on January 26, 1996. Tank Vapor Characterization Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, J.C.; Thomas, B.L.; Pool, K.H.

    1996-07-01

    This report describes the results of vapor samples obtained to compare vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling System (ISVS) with and without particulate prefiltration. Samples were collected from the headspace of waste storage tank 241-S-102 (Tank S-102) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) was contracted by Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for water, ammonia, permanent gases, total nonmethane hydrocarbons (TNMHCs, also known as TO-12), and organic analytes in samples collected in SUMMA{trademark} canisters and on triple sorbentmore » traps (TSTs) from the tank headspace. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sampling and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was {open_quotes}Sampling and Analysis Plan for Tank Vapor Sampling Comparison Test{close_quote}, and the sample jobs were designated S6007, S6008, and S6009. Samples were collected by WHC on January 26, 1996, using the VSS, a truck-based sampling method using a heated probe; and the ISVS with and without particulate prefiltration.« less

  13. Mass spectrometry for water vapor measurements in the UT/LS

    NASA Astrophysics Data System (ADS)

    Kaufmann, S.; Voigt, C.; Schäuble, D.; Schäfler, A.; Schlager, H.; Thornberry, T. D.; Fahey, D. W.

    2012-12-01

    Water vapor in the lower stratosphere plays a crucial role for the atmospheric radiation budget (Solomon et al., 2011). However, large uncertainties remain in measuring atmospheric water vapor mixing ratios below 10 ppmv typical for the lower stratosphere. To this end, we have developed the Atmospheric Ionization Mass Spectrometer (AIMS) for the accurate and fast detection of water vapor in the UT/LS from aircraft. In the AIMS instrument atmospheric air is directly ionized in a discharge ion source and the resulting water vapor clusters H3O+(H2O)n (n = 0..3) are detected with a linear quadrupole mass spectrometer as a direct measure of the atmospheric water vapor mixing ratio. AIMS is calibrated in-flight with a H2O calibration source using the catalytic reaction of H2 and O2 on a heated platinum surface to form gaseous H2O. This calibration setup combined with the water vapor mass spectrometry offers a powerful technical development in atmospheric hygrometry, enriching existing H2O measurement techniques by a new independent method. Here, we present AIMS water vapor measurements performed during the CONCERT2011 campaign (Contrail and Cirrus Experiment) with the DLR research aircraft Falcon. In September 2011 a deep stratospheric intrusion was probed over northern Europe with a dynamical tropopause lowered down to 6 km. We found sharp humidity gradients between tropospheric and stratospheric air at the edge of the tropopause fold, which we crossed 4 times at altitudes between 6 and 11 km. In the center of the tropopause fold, we measured water vapor mixing ratios down to 4 ppmv. The observed water vapor distribution is compared to water vapor analysis fields of the ECMWF's Integrated Forecast System (IFS) to evaluate the representation water vapor in this specific meteorological situation.

  14. Spill-Resistant Alkali-Metal-Vapor Dispenser

    NASA Technical Reports Server (NTRS)

    Klipstein, William

    2005-01-01

    A spill-resistant vessel has been developed for dispensing an alkali-metal vapor. Vapors of alkali metals (most commonly, cesium or rubidium, both of which melt at temperatures slightly above room temperature) are needed for atomic frequency standards, experiments in spectroscopy, and experiments in laser cooling. Although the present spill-resistant alkali-metal dispenser was originally intended for use in the low-gravity environment of outer space, it can also be used in normal Earth gravitation: indeed, its utility as a vapor source was confirmed by use of cesium in a ground apparatus. The vessel is made of copper. It consists of an assembly of cylinders and flanges, shown in the figure. The uppermost cylinder is a fill tube. Initially, the vessel is evacuated, the alkali metal charge is distilled into the bottom of the vessel, and then the fill tube is pinched closed to form a vacuum seal. The innermost cylinder serves as the outlet for the vapor, yet prevents spilling by protruding above the surface of the alkali metal, no matter which way or how far the vessel is tilted. In the event (unlikely in normal Earth gravitation) that any drops of molten alkali metal have been shaken loose by vibration and are floating freely, a mesh cap on top of the inner cylinder prevents the drops from drifting out with the vapor. Liquid containment of the equivalent of 1.2 grams of cesium was confirmed for all orientations with rubbing alcohol in one of the prototypes later used with cesium.

  15. Analysis of organic vapors with laser induced breakdown spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nozari, Hadi; Tavassoli, Seyed Hassan; Rezaei, Fatemeh, E-mail: fatemehrezaei@kntu.ac.ir

    2015-09-15

    In this paper, laser induced breakdown spectroscopy (LIBS) is utilized in the study of acetone, ethanol, methanol, cyclohexane, and nonane vapors. Carbon, hydrogen, oxygen, and nitrogen atomic emission spectra have been recorded following laser-induced breakdown of the organic vapors that are mixed with air inside a quartz chamber at atmospheric pressure. The plasma is generated with focused, Q-switched Nd:YAG radiation at the wavelength of 1064 nm. The effects of ignition and vapor pressure are discussed in view of the appearance of the emission spectra. The recorded spectra are proportional to the vapor pressure in air. The hydrogen and oxygen contributions diminishmore » gradually with consecutive laser-plasma events without gas flow. The results show that LIBS can be used to characterize organic vapor.« less

  16. Phytotoxicity of citrus and subtropical fruits to acetaldehyde vapor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, K.

    1975-01-01

    Several citrus and subtropical fruits (oranges, limes, lemons, mangos and papayas) were evaluated for phytotoxicity to acetaldehyde vapor. Exposure of fruits to 0.5 or 1% acetaldehyde vapor for 24 hr (low concentration-long exposure) did not produce skin injury or off-flavor in comparison with non-exposed fruits. This non-phytotoxic effect was also obtained at 5 to 20% acetaldehyde vapor for 10 to 15 min (high concentration-short exposure). However, acetaldehyde vapor concentration of 4% for 1 hr or 5% for 30 min (high concentration-long exposure) produced severe lenticel and skin injuries to the fruits. Exposure of fruits at these concentration also produced lackmore » of or off-flavor. Phytotoxicity of fruits to acetaldhyde vapor was a function of concentration and exposure.« less

  17. Vapor-fed bio-hybrid fuel cell.

    PubMed

    Benyamin, Marcus S; Jahnke, Justin P; Mackie, David M

    2017-01-01

    Concentration and purification of ethanol and other biofuels from fermentations are energy-intensive processes, with amplified costs at smaller scales. To circumvent the need for these processes, and to potentially reduce transportation costs as well, we have previously investigated bio-hybrid fuel cells (FCs), in which a fermentation and FC are closely coupled. However, long-term operation requires strictly preventing the fermentation and FC from harming each other. We introduce here the concept of the vapor-fed bio-hybrid FC as a means of continuously extracting power from ongoing fermentations at ambient conditions. By bubbling a carrier gas (N 2 ) through a yeast fermentation and then through a direct ethanol FC, we protect the FC anode from the catalyst poisons in the fermentation (which are non-volatile), and also protect the yeast from harmful FC products (notably acetic acid) and from build-up of ethanol. Since vapor-fed direct ethanol FCs at ambient conditions have never been systematically characterized (in contrast to vapor-fed direct methanol FCs), we first assess the effects on output power and conversion efficiency of ethanol concentration, vapor flow rate, and FC voltage. The results fit a continuous stirred-tank reactor model. Over a wide range of ethanol partial pressures (2-8 mmHg), power densities are comparable to those for liquid-fed direct ethanol FCs at the same temperature, with power densities >2 mW/cm 2 obtained. We then demonstrate the continuous operation of a vapor-fed bio-hybrid FC with fermentation for 5 months, with no indication of performance degradation due to poisoning (of either the FC or the fermentation). It is further shown that the system is stable, recovering quickly from disturbances or from interruptions in maintenance. The vapor-fed bio-hybrid FC enables extraction of power from dilute bio-ethanol streams without costly concentration and purification steps. The concept should be scalable to both large and small

  18. Impact vaporization: Late time phenomena from experiments

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.; Gault, D. E.

    1987-01-01

    While simple airflow produced by the outward movement of the ejecta curtain can be scaled to large dimensions, the interaction between an impact-vaporized component and the ejecta curtain is more complicated. The goal of these experiments was to examine such interaction in a real system involving crater growth, ejection of material, two phased mixtures of gas and dust, and strong pressure gradients. The results will be complemented by theoretical studies at laboratory scales in order to separate the various parameters for planetary scale processes. These experiments prompt, however, the following conclusions that may have relevance at broader scales. First, under near vacuum or low atmospheric pressures, an expanding vapor cloud scours the surrounding surface in advance of arriving ejecta. Second, the effect of early-time vaporization is relatively unimportant at late-times. Third, the overpressure created within the crater cavity by significant vaporization results in increased cratering efficiency and larger aspect ratios.

  19. General well function for soil vapor extraction

    NASA Astrophysics Data System (ADS)

    Perina, Tomas

    2014-04-01

    This paper develops a well function applicable to extraction of groundwater or soil vapor from a well under the most common field test conditions. The general well function (Perina and Lee, 2006) [12] is adapted to soil vapor extraction and constant head boundary at the top. For groundwater flow, the general well function now applies to an extraction well of finite diameter with uniform drawdown along the screen, finite-thickness skin, and partially penetrating an unconfined, confined, and leaky aquifer, or an aquifer underneath a reservoir. With a change of arguments, the model applies to soil vapor extraction from a vadose zone with no cover or with leaky cover at the ground surface. The extraction well can operate in specified drawdown (pressure for soil vapor) or specified flowrate mode. Frictional well loss is computed as flow-only dependent component of the drawdown inside the extraction well. In general case, the calculated flow distribution is not proportional to screen length for a multiscreen well.

  20. Packed-bed catalytic cracking of oak derived pyrolytic vapors

    USDA-ARS?s Scientific Manuscript database

    Catalytic upgrading of pyrolysis vapors derived from oak was carried out using a fixed-bed catalytic column at 425 deg C. The vapors were drawn by splitting a fraction from the full stream of vapors produced at 500 deg C in a 5 kg/hr bench-scale fast pyrolysis reactor system downstream the cyclone s...

  1. 33 CFR 157.132 - Cargo tanks: Hydrocarbon vapor emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Cargo tanks: Hydrocarbon vapor... § 157.132 Cargo tanks: Hydrocarbon vapor emissions. Each tank vessel having a COW system under § 157.10a... must have— (a) A means to discharge hydrocarbon vapors from each cargo tank that is ballasted to a...

  2. Active Raman sounding of the earth's water vapor field.

    PubMed

    Tratt, David M; Whiteman, David N; Demoz, Belay B; Farley, Robert W; Wessel, John E

    2005-08-01

    The typically weak cross-sections characteristic of Raman processes has historically limited their use in atmospheric remote sensing to nighttime application. However, with advances in instrumentation and techniques, it is now possible to apply Raman lidar to the monitoring of atmospheric water vapor, aerosols and clouds throughout the diurnal cycle. Upper tropospheric and lower stratospheric measurements of water vapor using Raman lidar are also possible but are limited to nighttime and require long integration times. However, boundary layer studies of water vapor variability can now be performed with high temporal and spatial resolution. This paper will review the current state-of-the-art of Raman lidar for high-resolution measurements of the atmospheric water vapor, aerosol and cloud fields. In particular, we describe the use of Raman lidar for mapping the vertical distribution and variability of atmospheric water vapor, aerosols and clouds throughout the evolution of dynamic meteorological events. The ability of Raman lidar to detect and characterize water in the region of the tropopause and the importance of high-altitude water vapor for climate-related studies and meteorological satellite performance are discussed.

  3. Optimization of the freezing process for hematopoietic progenitor cells: effect of precooling, initial dimethyl sulfoxide concentration, freezing program, and storage in vapor-phase or liquid nitrogen on in vitro white blood cell quality.

    PubMed

    Dijkstra-Tiekstra, Margriet J; Setroikromo, Airies C; Kraan, Marcha; Gkoumassi, Effimia; de Wildt-Eggen, Janny

    2014-12-01

    Adding dimethyl sulfoxide (DMSO) to hematopoietic progenitor cells (HPCs) causes an exothermic reaction, potentially affecting their viability. The freezing method might also influence this. The aim was to investigate the effect of 1) precooling of DMSO and plasma (D/P) and white blood cell (WBC)-enriched product, 2) DMSO concentration of D/P, 3) freezing program, and 4) storage method on WBC quality. WBC-enriched product without CD34+ cells was used instead of HPCs. This was divided into six or eight portions. D/P (20 or 50%; precooled or room temperature [RT]) was added to the WBC-enriched product (precooled or RT), resulting in 10% DMSO, while monitoring temperature. The product was frozen using controlled-rate freezing ("fast-rate" or "slow-rate") and placed in vapor-phase or liquid nitrogen. After thawing, WBC recovery and viability were determined. Temperature increased most for precooled D/P to precooled WBC-enriched product, without influence of 20 or 50% D/P, but remained for all variations below 30°C. WBC recovery for both freezing programs was more than 95%. Recovery of WBC viability was higher for slow-rate freezing compared to fast-rate freezing (74% vs. 61%; p < 0.05) and also for 50% compared to 20% D/P (two test variations). Effect of precooling D/P or WBC-enriched product and of storage in vapor-phase or liquid nitrogen was marginal. Based on these results, precooling is not necessary. Fifty percent D/P is preferred over 20% D/P. Slow-rate freezing is preferred over fast-rate freezing. For safety reasons storage in vapor-phase nitrogen is preferred over storage in liquid nitrogen. Additional testing using real HPCs might be necessary. © 2014 AABB.

  4. Secondhand Exposure to Vapors From Electronic Cigarettes

    PubMed Central

    Czogala, Jan; Fidelus, Bartlomiej; Zielinska-Danch, Wioleta; Travers, Mark J.; Sobczak, Andrzej

    2014-01-01

    Introduction: Electronic cigarettes (e-cigarettes) are designed to generate inhalable nicotine aerosol (vapor). When an e-cigarette user takes a puff, the nicotine solution is heated and the vapor is taken into lungs. Although no sidestream vapor is generated between puffs, some of the mainstream vapor is exhaled by e-cigarette user. The aim of this study was to evaluate the secondhand exposure to nicotine and other tobacco-related toxicants from e-cigarettes. Materials and Methods: We measured selected airborne markers of secondhand exposure: nicotine, aerosol particles (PM2.5), carbon monoxide, and volatile organic compounds (VOCs) in an exposure chamber. We generated e-cigarette vapor from 3 various brands of e-cigarette using a smoking machine and controlled exposure conditions. We also compared secondhand exposure with e-cigarette vapor and tobacco smoke generated by 5 dual users. Results: The study showed that e-cigarettes are a source of secondhand exposure to nicotine but not to combustion toxicants. The air concentrations of nicotine emitted by various brands of e-cigarettes ranged from 0.82 to 6.23 µg/m3. The average concentration of nicotine resulting from smoking tobacco cigarettes was 10 times higher than from e-cigarettes (31.60±6.91 vs. 3.32±2.49 µg/m3, respectively; p = .0081). Conclusions: Using an e-cigarette in indoor environments may involuntarily expose nonusers to nicotine but not to toxic tobacco-specific combustion products. More research is needed to evaluate health consequences of secondhand exposure to nicotine, especially among vulnerable populations, including children, pregnant women, and people with cardiovascular conditions. PMID:24336346

  5. Validation on MERSI/FY-3A precipitable water vapor product

    NASA Astrophysics Data System (ADS)

    Gong, Shaoqi; Fiifi Hagan, Daniel; Lu, Jing; Wang, Guojie

    2018-01-01

    The precipitable water vapor is one of the most active gases in the atmosphere which strongly affects the climate. China's second-generation polar orbit meteorological satellite FY-3A equipped with a Medium Resolution Spectral Imager (MERSI) is able to detect atmospheric water vapor. In this paper, water vapor data from AERONET, radiosonde and MODIS were used to validate the accuracy of the MERSI water vapor product in the different seasons and climatic regions of East Asia. The results show that the values of MERSI water vapor product are relatively lower than that of the other instruments and its accuracy is generally lower. The mean bias (MB) was -0.8 to -12.7 mm, the root mean square error (RMSE) was 2.2-17.0 mm, and the mean absolute percentage error (MAPE) varied from 31.8% to 44.1%. On the spatial variation, the accuracy of MERSI water vapor product in a descending order was from North China, West China, Japan -Korea, East China, to South China, while the seasonal variation of accuracy was the best for winter, followed by spring, then in autumn and the lowest in summer. It was found that the errors of MERSI water vapor product was mainly due to the low accuracy of radiation calibration of the MERSI absorption channel, along with the inaccurate look-up table of apparent reflectance and water vapor within the water vapor retrieved algorithm. In addition, the surface reflectance, the mixed pixels of image cloud, the humidity and temperature of atmospheric vertical profile and the haze were also found to have affected the accuracy of MERSI water vapor product.

  6. Water vapor: An extraordinary terahertz wave source under optical excitation

    NASA Astrophysics Data System (ADS)

    Johnson, Keith; Price-Gallagher, Matthew; Mamer, Orval; Lesimple, Alain; Fletcher, Clark; Chen, Yunqing; Lu, Xiaofei; Yamaguchi, Masashi; Zhang, X.-C.

    2008-09-01

    In modern terahertz (THz) sensing and imaging spectroscopy, water is considered a nemesis to be avoided due to strong absorption in the THz frequency range. Here we report the first experimental demonstration and theoretical implications of using femtosecond laser pulses to generate intense broadband THz emission from water vapor. When we focused an intense laser pulse in water vapor contained in a gas cell or injected from a gas jet nozzle, an extraordinarily strong THz field from optically excited water vapor is observed. Water vapor has more than 50% greater THz generation efficiency than dry nitrogen. It had previously been assumed that the nonlinear generation of THz waves in this manner primarily involves a free-electron plasma, but we show that the molecular structure plays an essential role in the process. In particular, we found that THz wave generation from H2O vapor is significantly stronger than that from D2O vapor. Vibronic activities of water cluster ions, occurring naturally in water vapor, may possibly contribute to the observed isotope effect along with rovibrational contributions from the predominant monomers.

  7. Stable indium oxide thin-film transistors with fast threshold voltage recovery

    NASA Astrophysics Data System (ADS)

    Vygranenko, Yuriy; Wang, Kai; Nathan, Arokia

    2007-12-01

    Stable thin-film transistors (TFTs) with semiconducting indium oxide channel and silicon dioxide gate dielectric were fabricated by reactive ion beam assisted evaporation and plasma-enhanced chemical vapor deposition. The field-effect mobility is 3.3cm2/Vs, along with an on/off current ratio of 106, and subthreshold slope of 0.5V/decade. When subject to long-term gate bias stress, the TFTs show fast recovery of the threshold voltage (VT) when relaxed without annealing, suggesting that charge trapping at the interface and/or in the bulk gate dielectric to be the dominant mechanism underlying VT instability. Device performance and stability make indium oxide TFTs promising for display applications.

  8. Vapor Intrusion Assessment and Mitigation 2012

    DTIC Science & Technology

    2012-03-26

    1 Geosyntec 0 consultants Vapor Intrusion Assessment and Mitigation 2012 Robert Ettinger, M.S., P.E., Todd McAiary, M.Sc., P.Eng., P.G...REPORT DATE 26 MAR 2012 2. REPORT TYPE 3. DATES COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Vapor Intrusion Assessment and...Updates • Typical Assessment Approaches and Common Challenges • Methods to Distinguish Background Sources (McHugh) • Significance • Compound

  9. Killing effect of peppermint vapor against pink-slime forming microorganisms.

    PubMed

    Ihara, Nozomi; Sakamoto, Jin; Yoshida, Munehiro; Tsuchido, Tetsuaki

    2015-01-01

    The killing effect of peppermint vapor (PMV) against pink-slime forming microorganisms, Methylobacterium mesophilicum as a bacterium and Rhodotorula mucilaginosa as a yeast, was investigated by the agar vapor assay. In this method, microbial cells were spread over the agar surface exposed to PMV in a petri dish, and then transferred into a recovery liquid. When 60μl of the peppermint liquid was added to a paper disc, a marked killing effect of PMV was observed after 48h against M. mesophilicum and after 168h against R. mucilaginosa. M. mesophilicum and R. mucilaginosa were found to be more resistant to PMV than Escherichia coli and Candida albicans, used as reference microorganisms, respectively. With the addition of 0.03% sodium pyruvate as a hydrogen peroxide scavenger in agar, the killing effect of PMV against E. coli and C. albicans was decreased, whereas it was little changed against M. mesophilicum and R. mucilaginosa. In fact, the properties of the killing effect of hydrogen peroxide solution at 0.2-1.0mM was in accord with those of PMV. M. mesophilicum and R. mucilaginosa were more resistant to the oxidant than E. coli and C. albicans, respectively. Results obtained suggested that reactive oxygen species (ROS) may be involved in the killing action of PMV and therefore pink-slime formers are more resistant to PMV than non-pink-slime formers because of the presence of carotenoids as an antioxidant in cells. We also suggest that the use of PMV appeared to be a potential tool for the control of pink-slime forming microorganisms occurring in wet areas of houses such as the bathroom and washing room.

  10. Water-vapor pressure control in a volume

    NASA Technical Reports Server (NTRS)

    Scialdone, J. J.

    1978-01-01

    The variation with time of the partial pressure of water in a volume that has openings to the outside environment and includes vapor sources was evaluated as a function of the purging flow and its vapor content. Experimental tests to estimate the diffusion of ambient humidity through openings and to validate calculated results were included. The purging flows required to produce and maintain a certain humidity in shipping containers, storage rooms, and clean rooms can be estimated with the relationship developed here. These purging flows are necessary to prevent the contamination, degradation, and other effects of water vapor on the systems inside these volumes.

  11. Process for vaporizing a liquid hydrocarbon fuel

    DOEpatents

    Szydlowski, Donald F.; Kuzminskas, Vaidotas; Bittner, Joseph E.

    1981-01-01

    The object of the invention is to provide a process for vaporizing liquid hydrocarbon fuels efficiently and without the formation of carbon residue on the apparatus used. The process includes simultaneously passing the liquid fuel and an inert hot gas downwardly through a plurality of vertically spaed apart regions of high surface area packing material. The liquid thinly coats the packing surface, and the sensible heat of the hot gas vaporizes this coating of liquid. Unvaporized liquid passing through one region of packing is uniformly redistributed over the top surface of the next region until all fuel has been vaporized using only the sensible heat of the hot gas stream.

  12. 46 CFR 154.445 - Design vapor pressure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Design vapor pressure. 154.445 Section 154.445 Shipping... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type B § 154.445 Design vapor pressure. If the surfaces of an independent tank type B are...

  13. Determination of As, Se, and Hg in fuel samples by in-chamber chemical vapor generation ICP OES using a Flow Blurring® multinebulizer.

    PubMed

    García, Miriam; Aguirre, Miguel Ángel; Canals, Antonio

    2017-09-01

    In this work, a new and simple analytical methodology based on in-chamber chemical vapor generation has been developed for the spectrochemical analysis of commercial fuel samples. A multiple nebulizer with three nebulization units has been employed for this purpose: One unit was used for sample introduction, while the other two were used for the necessary reagent introduction. In this way, the aerosols were mixed inside the spray chamber. Through this method, analyte transport and, therefore, sensitivity are improved in inductively coupled plasma-optical emission spectrometry. The factors (i.e., variables), influencing chemical vapor generation, have been optimized using a multivariate approach. Under optimum chemical vapor generation conditions ([NaBH 4 ] = 1.39%, [HCl] = 2.97 M, total liquid flow = 936 μL min -1 ), the proposed sample introduction system allowed the determination of arsenic, selenium, and mercury up to 5 μg g -1 with a limit of detection of 25, 140, and 13 μg kg -1 , respectively. Analyzing spiked commercial fuel samples, recovery values obtained were between 96 and 113%, and expanded uncertainty values ranged from 4 to 16%. The most striking practical conclusion of this investigation is that no carbon deposit appears on the plasma torch after extended periods of working. Graphical abstract A new and simple analytical methodology based on in-chamber chemical vapor generation has been developed for the spectrochemical analysis of commercial fuel samples in ICP OES.

  14. 33 CFR 154.808 - Vapor control system, general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... inerted vapors of cargoes containing sulfur, provisions must be made to control heating from pyrophoric iron sulfide deposits in the vapor collection line. [CGD 88-102, 55 FR 25429, June 21, 1990, as amended...

  15. 33 CFR 154.808 - Vapor control system, general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... inerted vapors of cargoes containing sulfur, provisions must be made to control heating from pyrophoric iron sulfide deposits in the vapor collection line. [CGD 88-102, 55 FR 25429, June 21, 1990, as amended...

  16. 33 CFR 154.808 - Vapor control system, general.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... inerted vapors of cargoes containing sulfur, provisions must be made to control heating from pyrophoric iron sulfide deposits in the vapor collection line. [CGD 88-102, 55 FR 25429, June 21, 1990, as amended...

  17. 33 CFR 154.808 - Vapor control system, general.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... inerted vapors of cargoes containing sulfur, provisions must be made to control heating from pyrophoric iron sulfide deposits in the vapor collection line. [CGD 88-102, 55 FR 25429, June 21, 1990, as amended...

  18. Continuous flow, explosives vapor generator and sensor chamber.

    PubMed

    Collins, Greg E; Giordano, Braden C; Sivaprakasam, Vasanthi; Ananth, Ramagopal; Hammond, Mark; Merritt, Charles D; Tucker, John E; Malito, Michael; Eversole, Jay D; Rose-Pehrsson, Susan

    2014-05-01

    A novel liquid injection vapor generator (LIVG) is demonstrated that is amenable to low vapor pressure explosives, 2,4,6-trinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine. The LIVG operates in a continuous manner, providing a constant and stable vapor output over a period of days and whose concentration can be extended over as much as three orders of magnitude. In addition, a large test atmosphere chamber attached to the LIVG is described, which enables the generation of a stable test atmosphere with controllable humidity and temperature. The size of the chamber allows for the complete insertion of testing instruments or arrays of materials into a uniform test atmosphere, and various electrical feedthroughs, insertion ports, and sealed doors permit simple and effective access to the sample chamber and its vapor.

  19. Stratospheric water vapor in the NCAR CCM2

    NASA Technical Reports Server (NTRS)

    Mote, Philip W.; Holton, James R.

    1992-01-01

    Results are presented of the water vapor distribution in a 3D GCM with good vertical resolution, a state-of-the-art transport scheme, and a realistic water vapor source in the middle atmosphere. In addition to water vapor, the model transported methane and an idealized clock tracer, which provides transport times to and within the middle atmosphere. The water vapor and methane distributions are compared with Nimbus 7 SAMS and LIMS data and with in situ measurements. It is argued that the hygropause in the model is maintained not by 'freeze-drying' at the tops of tropical cumulonimbus, but by a balance between two sources and one sink. Since the southern winter dehydration is unrealistically intense, this balance most likely does not resemble the balance in the real atmosphere.

  20. Shock wave induced vaporization of porous solids

    NASA Astrophysics Data System (ADS)

    Shen, Andy H.; Ahrens, Thomas J.; O'Keefe, John D.

    2003-05-01

    Strong shock waves generated by hypervelocity impact can induce vaporization in solid materials. To pursue knowledge of the chemical species in the shock-induced vapors, one needs to design experiments that will drive the system to such thermodynamic states that sufficient vapor can be generated for investigation. It is common to use porous media to reach high entropy, vaporized states in impact experiments. We extended calculations by Ahrens [J. Appl. Phys. 43, 2443 (1972)] and Ahrens and O'Keefe [The Moon 4, 214 (1972)] to higher distentions (up to five) and improved their method with a different impedance match calculation scheme and augmented their model with recent thermodynamic and Hugoniot data of metals, minerals, and polymers. Although we reconfirmed the competing effects reported in the previous studies: (1) increase of entropy production and (2) decrease of impedance match, when impacting materials with increasing distentions, our calculations did not exhibit optimal entropy-generating distention. For different materials, very different impact velocities are needed to initiate vaporization. For aluminum at distention (m)<2.2, a minimum impact velocity of 2.7 km/s is required using tungsten projectile. For ionic solids such as NaCl at distention <2.2, 2.5 km/s is needed. For carbonate and sulfate minerals, the minimum impact velocities are much lower, ranging from less than 1 to 1.5 km/s.