Sample records for vapor recovery system

  1. Gasoline Vapor Recovery

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Gasoline is volatile and some of it evaporates during storage, giving off hydrocarbon vapor. Formerly, the vapor was vented into the atmosphere but anti-pollution regulations have precluded that practice in many localities, so oil companies and storage terminals are installing systems to recover hydrocarbon vapor. Recovery provides an energy conservation bonus in that most of the vapor can be reconverted to gasoline. Two such recovery systems are shown in the accompanying photographs (mid-photo at right and in the foreground below). They are actually two models of the same system, although.configured differently because they are customized to users' needs. They were developed and are being manufactured by Edwards Engineering Corporation, Pompton Plains, New Jersey. NASA technological information proved useful in development of the equipment.

  2. Vacuum distillation/vapor filtration water recovery

    NASA Technical Reports Server (NTRS)

    Honegger, R. J.; Neveril, R. B.; Remus, G. A.

    1974-01-01

    The development and evaluation of a vacuum distillation/vapor filtration (VD/VF) water recovery system are considered. As a functional model, the system converts urine and condensates waste water from six men to potable water on a steady-state basis. The system is designed for 180-day operating durations and for function on the ground, on zero-g aircraft, and in orbit. Preparatory tasks are summarized for conducting low gravity tests of a vacuum distillation/vapor filtration system for recovering water from urine.

  3. Idle speed and fuel vapor recovery control system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orzel, D.V.

    1993-06-01

    A method for controlling idling speed of an engine via bypass throttle connected in parallel to a primary engine throttle and for controlling purge flow through a vapor recovery system into an air/fuel intake of the engine is described, comprising the steps of: positioning the bypass throttle to decrease any difference between a desired engine idle speed and actual engine idle speed; and decreasing the purge flow when said bypass throttle position is less than a preselected fraction of a maximum bypass throttle position.

  4. Detonation-flame arrester devices for gasoline cargo vapor recovery systems

    NASA Technical Reports Server (NTRS)

    Bjorklund, R. A.; Ryason, P. R.

    1980-01-01

    Empirical data on the deflagration-to-detonation run-up distance for flowing mixtures of gasoline and air in 15.2-cm- (6.0-in.-) diameter piping simulating a vapor recovery system are presented. The quenching capability of eight selected flame control devices subjected to repeated stable detonations was evaluated. The successful detonation-flame arresters were: (1) spiral-wound, crimped aluminum ribbon, (2) foamed nickel-chrome metal, (3) vertically packed bed of aluminum Ballast rings, and (4) water-trap or hydraulic back-pressure valve. Installation configurations for two of the more applicable arresters, the spiral-wound, crimped stainless-steel ribbon and the vertically packed bed of aluminum Ballast rings, were further optimized by a series of parametric tests. The final configuration of these two arresters was demonstrated with repeated detonation tests at conditions that simulated vapor recovery system operation. On these tests, the combustible mixture of gasoline and air continued to flow through the piping for periods up to 120 seconds after the initial detonation had been arrested. There was no indication of continuous burning or reignition occurring on either side of the test arresters.

  5. Water recovery by catalytic treatment of urine vapor

    NASA Technical Reports Server (NTRS)

    Budininkas, P.; Quattrone, P. D.; Leban, M. I.

    1980-01-01

    The objective of this investigation was to demonstrate the feasibility of water recovery on a man-rated scale by the catalytic processing of untreated urine vapor. For this purpose, two catalytic systems, one capable of processing an air stream containing low urine vapor concentrations and another to process streams with high urine vapor concentrations, were designed, constructed, and tested to establish the quality of the recovered water.

  6. Water vapor recovery from plant growth chambers

    NASA Technical Reports Server (NTRS)

    Ray, R. J.; Newbold, D. D.; Colton, R. H.; Mccray, S. B.

    1991-01-01

    NASA is investigating the use of plant growth chambers (PGCs) for space missions and for bases on the moon and Mars. Key to successful development of PGCs is a system to recover and reuse the water vapor that is transpired from the leaves of the plants. A design is presented for a simple, reliable, membrane-based system that allows the recovery, purification, and reuse of the transpired water vapor through control of temperature and humidity levels in PGCs. The system is based on two membrane technologies: (1) dehumidification membrane modules to remove water vapor from the air, and (2) membrane contactors to return water vapor to the PGC (and, in doing so, to control the humidity and temperature within the PGC). The membrane-based system promises to provide an ideal, stable growth environment for a variety of plants, through a design that minimizes energy usage, volume, and mass, while maximizing simplicity and reliability.

  7. Efficient ethanol recovery from fermentation broths with integrated distillation-vapor permeation hybrid process

    EPA Science Inventory

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative hybrid process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane s...

  8. The Exploration Water Recovery System

    NASA Technical Reports Server (NTRS)

    ORourke, Mary Jane E.; Carter, Layne; Holder, Donald W.; Tomes, Kristin M.

    2006-01-01

    The Exploration Water Recovery System is designed towards fulfillment of NASA s Vision for Space Exploration, which will require elevation of existing technologies to higher levels of optimization. This new system, designed for application to the Exploration infrastructure, presents a novel combination of proven air and water purification technologies. The integration of unit operations is modified from that of the current state-of-the-art water recovery system so as to optimize treatment of the various waste water streams, contaminant loads, and flow rates. Optimization is achieved primarily through the removal of volatile organic contaminants from the vapor phase prior to their absorption into the liquid phase. In the current state-of-the-art system, the water vapor in the cabin atmosphere is condensed, and the volatile organic contaminants present in that atmosphere are absorbed into the aqueous phase. Removal of contaminants the5 occurs via catalytic oxidation in the liquid phase. Oxidation kinetics, however, dictate that removal of volatile organic contaminants from the vapor phase can inherently be more efficient than their removal from the aqueous phase. Taking advantage of this efficiency reduces the complexity of the water recovery system. This reduction in system complexity is accompanied by reductions in the weight, volume, power, and resupply requirements of the system. Vapor compression distillation technology is used to treat the urine, condensate, and hygiene waste streams. This contributes to the reduction in resupply, as incorporation of vapor compression distillation technology at this point in the process reduces reliance on the expendable ion exchange and adsorption media used in the current state-of-the-art water recovery system. Other proven technologies that are incorporated into the Exploration Water Recovery System include the Trace Contaminant Control System and the Volatile Removal Assembly.

  9. Wash water recovery system

    NASA Technical Reports Server (NTRS)

    Deckman, G.; Rousseau, J. (Editor)

    1973-01-01

    The Wash Water Recovery System (WWRS) is intended for use in processing shower bath water onboard a spacecraft. The WWRS utilizes flash evaporation, vapor compression, and pyrolytic reaction to process the wash water to allow recovery of potable water. Wash water flashing and foaming characteristics, are evaluated physical properties, of concentrated wash water are determined, and a long term feasibility study on the system is performed. In addition, a computer analysis of the system and a detail design of a 10 lb/hr vortex-type water vapor compressor were completed. The computer analysis also sized remaining system components on the basis of the new vortex compressor design.

  10. Experimental Evaluation of Hybrid Distillation-Vapor Permeation Process for Efficient Ethanol Recovery from Ethanol-Water Mixtures

    EPA Science Inventory

    The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions [1]. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation ...

  11. A novel close-circulating vapor stripping-vapor permeation technique for boosting biobutanol production and recovery.

    PubMed

    Zhu, Chao; Chen, Lijie; Xue, Chuang; Bai, Fengwu

    2018-01-01

    Butanol derived from renewable resources by microbial fermentation is considered as one of not only valuable platform chemicals but alternative advanced biofuels. However, due to low butanol concentration in fermentation broth, butanol production is restricted by high energy consumption for product recovery. For in situ butanol recovery techniques, such as gas stripping and pervaporation, the common problem is their low efficiency in harvesting and concentrating butanol. Therefore, there is a necessity to develop an advanced butanol recovery technique for cost-effective biobutanol production. A close-circulating vapor stripping-vapor permeation (VSVP) process was developed with temperature-difference control for single-stage butanol recovery. In the best scenario, the highest butanol separation factor of 142.7 reported to date could be achieved with commonly used polydimethylsiloxane membrane, when temperatures of feed solution and membrane surroundings were 70 and 0 °C, respectively. Additionally, more ABE (31.2 vs. 17.7 g/L) were produced in the integrated VSVP process, with a higher butanol yield (0.21 vs. 0.17 g/g) due to the mitigation of butanol inhibition. The integrated VSVP process generated a highly concentrated permeate containing 212.7 g/L butanol (339.3 g/L ABE), with the reduced energy consumption of 19.6 kJ/g-butanol. Therefore, the present study demonstrated a well-designed energy-efficient technique named by vapor stripping-vapor permeation for single-stage butanol removal. The butanol separation factor was multiplied by the temperature-difference control strategy which could double butanol recovery performance. This advanced VSVP process can completely eliminate membrane fouling risk for fermentative butanol separation, which is superior to other techniques.

  12. A Water Recovery System Evolved for Exploration

    NASA Technical Reports Server (NTRS)

    ORourke, Mary Jane E.; Perry, Jay L.; Carter, Donald L.

    2006-01-01

    A new water recovery system designed towards fulfillment of NASA's Vision for Space Exploration is presented. This water recovery system is an evolution of the current state-of-the-art system. Through novel integration of proven technologies for air and water purification, this system promises to elevate existing technology to higher levels of optimization. The novel aspect of the system is twofold: Volatile organic contaminants will be removed from the cabin air via catalytic oxidation in the vapor phase, prior to their absorption into the aqueous phase, and vapor compression distillation technology will be used to process the condensate and hygiene waste streams in addition to the urine waste stream. Oxidation kinetics dictate that removal of volatile organic contaminants from the vapor phase is more efficient. Treatment of the various waste streams by VCD will reduce the load on the expendable ion exchange and adsorption media which follow, and on the aqueous-phase volatile removal assembly further downstream. Incorporating these advantages will reduce the weight, volume, and power requirements of the system, as well as resupply.

  13. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: COMM ENGINEERING, USA ENVIRONMENTAL VAPOR RECOVERY UNIT (EVRU)

    EPA Science Inventory

    This report documents the testing of a new technology that recovers and utilizes vapors from crude oil storage tanks employed in the oil production and processing industry. The COMM Engineering, USA Environmental Vapor Recovery Unit (EVRU) is a non-mechanical eductor, or jet pump...

  14. Performance Assessment of the Exploration Water Recovery System

    NASA Technical Reports Server (NTRS)

    Carter. D. Layne; Tabb, David; Perry, Jay

    2008-01-01

    A new water recovery system architecture designed to fulfill the National Aeronautics and Space Administration s (NASA) Space Exploration Policy has been tested at the Marshall Space Flight Center (MSFC). This water recovery system architecture evolved from the current state-of-the-art system developed for the International Space Station (ISS). Through novel integration of proven technologies for air and water purification, this system promises to elevate existing system optimization. The novel aspect of the system is twofold. First, volatile organic compounds (VOC) are removed from the cabin air via catalytic oxidation in the vapor phase, prior to their absorption into the aqueous phase. Second, vapor compression distillation (VCD) technology processes the condensate and hygiene waste streams in addition to the urine waste stream. Oxidation kinetics dictate that removing VOCs from the vapor phase is more efficient. Treating the various waste streams by VCD reduces the load on the expendable ion exchange and adsorption media which follows, as well as the aqueous-phase catalytic oxidation process further downstream. This paper documents the results of testing this new architecture.

  15. Aminosilicone solvent recovery methods and systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spiry, Irina Pavlovna; Perry, Robert James; Wood, Benjamin Rue

    The present invention is directed to aminosilicone solvent recovery methods and systems. The methods and systems disclosed herein may be used to recover aminosilicone solvent from a carbon dioxide containing vapor stream, for example, a vapor stream that leaves an aminosilicone solvent desorber apparatus. The methods and systems of the invention utilize a first condensation process at a temperature from about 80.degree. C. to about 150.degree. C. and a second condensation process at a temperature from about 5.degree. C. to about 75.degree. C. The first condensation process yields recovered aminosilicone solvent. The second condensation process yields water.

  16. Fact Sheet: Final Rule Determining Widespread use of Onboard Refueling Vapor Recovery and Waiver of Stage Two Requirements

    EPA Pesticide Factsheets

    Read the May 2012 factsheet on the rule that waived the requirement that current and former ozone nonattainment areas classifiedSerious and above, implement Stage II vapor recovery systems on gasoline pumps.

  17. Development of a preprototype vapor compression distillation water recovery subsystem

    NASA Technical Reports Server (NTRS)

    Johnson, K. L.

    1978-01-01

    The activities involved in the design, development, and test of a preprototype vapor compression distillation water recovery subsystem are described. This subsystem, part of a larger regenerative life support evaluation system, is designed to recover usable water from urine, urinal rinse water, and concentrated shower and laundry brine collected from three space vehicle crewmen for a period of 180 days without resupply. Details of preliminary design and testing as well as component developments are included. Trade studies, considerations leading to concept selections, problems encountered, and test data are also presented. The rework of existing hardware, subsystem development including computer programs, assembly verification, and comprehensive baseline test results are discussed.

  18. Vacuum distillation/vapor filtration water recovery, phases 1 and 2

    NASA Technical Reports Server (NTRS)

    Honegger, R. J.; Remus, G. A.; Krug, E. K.

    1973-01-01

    The research is reported on the development of an evaporator for vacuum distillation/vapor filtration VD/VF water reclamation system for use on manned space flights. The design, fabrication, and tests of a six-man evaporator are described. It is concluded that: (1) A condenser with an internal rotating impeller and coolant surfaces directly opposite the condensing surfaces is an effective condenser. (2) The VD/VF evaporator, catalyst unit and condenser function satisfactorily based on thermal, mechanical and recovery performance during a 145-hour evaluation test. (3) The quality of recovered water, as measured by analyses for total organic carbon, pH, conductivity, turbidity, and viable bacteria density was within established limits for potability.

  19. Energy efficient of ethanol recovery in pervaporation membrane bioreactor with mechanical vapor compression eliminating the cold traps.

    PubMed

    Fan, Senqing; Xiao, Zeyi; Li, Minghai

    2016-07-01

    An energy efficient pervaporation membrane bioreactor with mechanical vapor compression was developed for ethanol recovery during the process of fermentation coupled with pervaporation. Part of the permeate vapor at the membrane downstream under the vacuum condition was condensed by running water at the first condenser and the non-condensed vapor enriched with ethanol was compressed to the atmospheric pressure and pumped into the second condenser, where the vapor was easily condensed into a liquid by air. Three runs of fermentation-pervaporation experiment have been carried out lasting for 192h, 264h and 360h respectively. Complete vapor recovery validated the novel pervaporation membrane bioreactor. The total flux of the polydimethylsiloxane (PDMS) membrane was in the range of 350gm(-2)h(-1) and 600gm(-2)h(-1). Compared with the traditional cold traps condensation, mechanical vapor compression behaved a dominant energy saving feature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A membrane-based subsystem for water-vapor recovery from plant-growth chambers

    NASA Technical Reports Server (NTRS)

    Ray, R. J.

    1992-01-01

    Bioregenerative systems--life-support systems to regenerate oxygen, food, and water--are the key to establishing man's permanent presence in space. NASA is investigating the use of plant-growth chambers (PGC's) for space missions and for bases on the moon and Mars. PGC's serve several important purposes, including the following: (1) oxygen and food production; (2) carbon-dioxide removal; and (3) water purification and reuse. The key to the successful development of PGC's is a system to recover and reuse the water vapor that is transpired by the leaves of the growing plants. In this program we propose to develop a simple, reliable, membrane-based system that allows the recovery, purification, and reuse of the transpired water vapor through control of temperature and humidity levels in the PGC. This system has characteristics that make it ideally suited to use in space: (1) minimal power requirements; (2) small volume and mass; (3) simplicity; (4) reliability; and (5) versatility. In Phase 1 we will do the following: (1) develop an accurate, predictive model of our temperature- and humidity-control system, based on parametric tests of membrane modules; and (2) use this model to design systems for selected PGC's. In Phase 2, we will seek to design, fabricate, test, and deliver a breadboard unit to NASA for testing on a PGC.

  1. Development of a tritium recovery system from CANDU tritium removal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draghia, M.; Pasca, G.; Porcariu, F.

    2015-03-15

    The main purpose of the Tritium Recovery System (TRS) is to reduce to a maximum possible extent the release of tritium from the facility following a tritium release in confinement boundaries and also to have provisions to recover both elemental and vapors tritium from the purging gases during maintenance and components replacement from various systems processing tritium. This work/paper proposes a configuration of Tritium Recovery System wherein elemental tritium and water vapors are recovered in a separated, parallel manner. The proposed TRS configuration is a combination of permeators, a platinum microreactor (MR) and a trickle bed reactor (TBR) and consistsmore » of two branches: one branch for elemental tritium recovery from tritiated deuterium gas and the second one for tritium recovery from streams containing a significant amount of water vapours but a low amount, below 5%, of tritiated gas. The two branches shall work in a complementary manner in such a way that the bleed stream from the permeators shall be further processed in the MR and TBR in view of achieving the required decontamination level. A preliminary evaluation of the proposed TRS in comparison with state of the art tritium recovery system from tritium processing facilities is also discussed. (authors)« less

  2. Cost analysis of water recovery systems

    NASA Technical Reports Server (NTRS)

    Yakut, M. M.

    1973-01-01

    A methodology was developed to predict the relevant contributions of the more intangible cost elements encountered in the development of flight-qualified hardware based on an extrapolation of past hardware development experience. Major items of costs within water recovery systems were identified and related to physical and/or performance criteria. Cost and performance data from Gemini, Skylab, and other aerospace and biotechnology programs were analyzed to identify major cost elements required to establish cost estimating relationships for advanced water recovery systems. The results of the study are expected to assist NASA in long-range planning and allocation of resources in a cost effective manner in support of earth orbital programs. This report deals with the cost analysis of the five leading water reclamation systems, namely: (1) RITE waste management-water system, (2) reverse osmosis system, (3) multifiltration system, (4) vapor compression system, and (5) closed air evaporation system with electrolytic pretreatment.

  3. Pressure intelligent control strategy of Waste heat recovery system of converter vapors

    NASA Astrophysics Data System (ADS)

    Feng, Xugang; Wu, Zhiwei; Zhang, Jiayan; Qian, Hong

    2013-01-01

    The converter gas evaporative cooling system is mainly used for absorbing heat in the high temperature exhaust gas which produced by the oxygen blowing reaction. Vaporization cooling steam pressure control system of converter is a nonlinear, time-varying, lagging behind, close coupling of multivariable control object. This article based on the analysis of converter operation characteristics of evaporation cooling system, of vaporization in a production run of pipe pressure variation and disturbance factors.For the dynamic characteristics of the controlled objects,we have improved the conventional PID control scheme.In Oxygen blowing process, we make intelligent control by using fuzzy-PID cascade control method and adjusting the Lance,that it can realize the optimization of the boiler steam pressure control.By design simulation, results show that the design has a good control not only ensures drum steam pressure in the context of security, enabling efficient conversion of waste heat.And the converter of 1800 flue gas through pipes and cool and dust removal also can be cooled to about 800. Therefore the converter haze evaporative cooling system has achieved to the converter haze temperature decrease effect and enhanced to the coal gas returns-ratio.

  4. Development of a condenser for the dual catalyst water recovery system

    NASA Technical Reports Server (NTRS)

    Budinikas, P.; Rasouli, F.; Rabadi, N.

    1983-01-01

    Conceptual evaporation/condensation systems suitable for integration with the catalytic water recovery method were evaluated. The primary requirements for each concept were its capability to operate under zero-gravity conditions, condense recovered water from a vapor-noncondensable gas mixture, and integrate with the catalytic system. Specific energy requirements were estimated for concepts meeting the primary requirements, and the concept most suitable for integration with the catalytic system was proposed. A three-man rate condenser capable of integration with the proposed system, condensing water vapor in presence of noncondensables and transferring the heat of condensation to feed urine was designed, fabricated, and tested. It was treated with steam/air mixtures at atmospheric and elevated pressures and integrated with an actual catalytic water recovery system. The condenser has a condensation efficiency exceeding 90% and heat transfer rate of approximately 85% of theoretical value at coolant temperature ranging from 7 to 80 deg C.

  5. Recovery of Platinum Group Metals from Spent Catalysts Using Iron Chloride Vapor Treatment

    NASA Astrophysics Data System (ADS)

    Taninouchi, Yu-ki; Okabe, Toru H.

    2018-05-01

    The recovery of platinum group metals (PGMs) from spent automobile catalysts is a difficult process because of their relatively low contents in the scrap. In this study, to improve the efficiency of the existing recycling techniques, a novel physical concentration method involving treatment with FeCl2 vapor has been examined. The reactions occurring between typical catalyst components and FeCl2 vapor are discussed from the thermodynamic point of view, and the validity of the proposed technique was experimentally verified. The obtained results indicate that the vapor treatment at around 1200 K (927 °C) can effectively alloy PGMs (Pt, Pd, and Rh) with Fe, resulting in the formation of a ferromagnetic alloy. It was also confirmed that cordierite and alumina (the major catalyst components) remained unreacted after the vapor treatment, while ceria species were converted into oxychlorides. The samples simulating the automobile catalyst were also subjected to magnetic separation after the treatment with FeCl2 vapor; as a result, PGMs were successfully extracted and concentrated in the form of a magnetic powder. Thus, the FeCl2 vapor treatment followed by magnetic separation can be utilized for recovering PGMs directly from spent catalysts as an effective pretreatment for the currently used recycling methods.

  6. Water vapor diffusion membrane development. [for water recovery purposes onboard manned spacecraft

    NASA Technical Reports Server (NTRS)

    Tan, M. K.

    1974-01-01

    The phase separator component used as a membrane in the vapor diffusion process (VRD) for the recovery of potable water from urine on manned space missions of extended duration was investigated, with particular emphasis on cation-selective membranes because of their noted mechanical strength, superior resistance to acids, oxidants, and germicides, and their potential resistance to organic foulants. Two of the membranes were tested for 700 hours continuously, and were selected on the basis of criteria deemed important to an effective water reclamation system onboard spacecraft. The samples of urine were successfully processed by removing 93 percent of their water content in 70 hours using the selected membranes. Pretreatment with an acid-oxidant formulation improved product quality. Cation exchange membranes were shown to possess superior mechanical strength and chemical resistance, as compared to cellulosic membranes.

  7. Louisiana SIP: LAC 33:III Ch 2132. Stage II Vapor Recovery Systems for Control of Vehicle Refuelling Emissions at Gasoline Dispensing Facilities; SIP effective 2011-08-04 (LAd34) and 2016-02-29 (LAd47) to 2017-09-27

    EPA Pesticide Factsheets

    Louisiana SIP: LAC 33:III Ch 2132. Stage II Vapor Recovery Systems for Control of Vehicle Refuelling Emissions at Gasoline Dispensing Facilities; SIP effective 2011-08-04 (LAd34) and 2016-02-29 (LAd47) to 2017-09-27

  8. Energy recovery system using an organic rankine cycle

    DOEpatents

    Ernst, Timothy C

    2013-10-01

    A thermodynamic system for waste heat recovery, using an organic rankine cycle is provided which employs a single organic heat transferring fluid to recover heat energy from two waste heat streams having differing waste heat temperatures. Separate high and low temperature boilers provide high and low pressure vapor streams that are routed into an integrated turbine assembly having dual turbines mounted on a common shaft. Each turbine is appropriately sized for the pressure ratio of each stream.

  9. Experimental Validation of Hybrid Distillation-Vapor Permeation Process for Energy Efficient Ethanol-Water Separation

    EPA Science Inventory

    The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation step...

  10. Experimental Validation of Hybrid Distillation-Vapor Permeation Process for Energy Efficient Ethanol-Water Separation

    EPA Science Inventory

    The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation step,...

  11. Rankine cycle waste heat recovery system

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2015-09-22

    A waste heat recovery (WHR) system connects a working fluid to fluid passages formed in an engine block and/or a cylinder head of an internal combustion engine, forming an engine heat exchanger. The fluid passages are formed near high temperature areas of the engine, subjecting the working fluid to sufficient heat energy to vaporize the working fluid while the working fluid advantageously cools the engine block and/or cylinder head, improving fuel efficiency. The location of the engine heat exchanger downstream from an EGR boiler and upstream from an exhaust heat exchanger provides an optimal position of the engine heat exchanger with respect to the thermodynamic cycle of the WHR system, giving priority to cooling of EGR gas. The configuration of valves in the WHR system provides the ability to select a plurality of parallel flow paths for optimal operation.

  12. High bandwidth vapor density diagnostic system

    DOEpatents

    Globig, Michael A.; Story, Thomas W.

    1992-01-01

    A high bandwidth vapor density diagnostic system for measuring the density of an atomic vapor during one or more photoionization events. The system translates the measurements from a low frequency region to a high frequency, relatively noise-free region in the spectrum to provide improved signal to noise ratio.

  13. Multivariable control of vapor compression systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, X.D.; Liu, S.; Asada, H.H.

    1999-07-01

    This paper presents the results of a study of multi-input multi-output (MIMO) control of vapor compression cycles that have multiple actuators and sensors for regulating multiple outputs, e.g., superheat and evaporating temperature. The conventional single-input single-output (SISO) control was shown to have very limited performance. A low order lumped-parameter model was developed to describe the significant dynamics of vapor compression cycles. Dynamic modes were analyzed based on the low order model to provide physical insight of system dynamic behavior. To synthesize a MIMO control system, the Linear-Quadratic Gaussian (LQG) technique was applied to coordinate compressor speed and expansion valve openingmore » with guaranteed stability robustness in the design. Furthermore, to control a vapor compression cycle over a wide range of operating conditions where system nonlinearities become evident, a gain scheduling scheme was used so that the MIMO controller could adapt to changing operating conditions. Both analytical studies and experimental tests showed that the MIMO control could significantly improve the transient behavior of vapor compression cycles compared to the conventional SISO control scheme. The MIMO control proposed in this paper could be extended to the control of vapor compression cycles in a variety of HVAC and refrigeration applications to improve system performance and energy efficiency.« less

  14. Waste heat recovery system for recapturing energy after engine aftertreatment systems

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-06-17

    The disclosure provides a waste heat recovery (WHR) system including a Rankine cycle (RC) subsystem for converting heat of exhaust gas from an internal combustion engine, and an internal combustion engine including the same. The WHR system includes an exhaust gas heat exchanger that is fluidly coupled downstream of an exhaust aftertreatment system and is adapted to transfer heat from the exhaust gas to a working fluid of the RC subsystem. An energy conversion device is fluidly coupled to the exhaust gas heat exchanger and is adapted to receive the vaporized working fluid and convert the energy of the transferred heat. The WHR system includes a control module adapted to control at least one parameter of the RC subsystem based on a detected aftertreatment event of a predetermined thermal management strategy of the aftertreatment system.

  15. Efficient ethanol recovery from fermentation broths with integrated distillation-membrane process

    EPA Science Inventory

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane separati...

  16. Vapor-barrier Vacuum Isolation System

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M. (Inventor); Taminger, Karen M. (Inventor)

    2014-01-01

    A system includes a collimated beam source within a vacuum chamber, a condensable barrier gas, cooling material, a pump, and isolation chambers cooled by the cooling material to condense the barrier gas. Pressure levels of each isolation chamber are substantially greater than in the vacuum chamber. Coaxially-aligned orifices connect a working chamber, the isolation chambers, and the vacuum chamber. The pump evacuates uncondensed barrier gas. The barrier gas blocks entry of atmospheric vapor from the working chamber into the isolation chambers, and undergoes supersonic flow expansion upon entering each isolation chamber. A method includes connecting the isolation chambers to the vacuum chamber, directing vapor to a boundary with the working chamber, and supersonically expanding the vapor as it enters the isolation chambers via the orifices. The vapor condenses in each isolation chamber using the cooling material, and uncondensed vapor is pumped out of the isolation chambers via the pump.

  17. Limited recovery of soil microbial activity after transient exposure to gasoline vapors.

    PubMed

    Modrzyński, Jakub J; Christensen, Jan H; Mayer, Philipp; Brandt, Kristian K

    2016-09-01

    During gasoline spills complex mixtures of toxic volatile organic compounds (VOCs) are released to terrestrial environments. Gasoline VOCs exert baseline toxicity (narcosis) and may thus broadly affect soil biota. We assessed the functional resilience (i.e. resistance and recovery of microbial functions) in soil microbial communities transiently exposed to gasoline vapors by passive dosing via headspace for 40 days followed by a recovery phase of 84 days. Chemical exposure was characterized with GC-MS, whereas microbial activity was monitored as soil respiration (CO2 release) and soil bacterial growth ([(3)H]leucine incorporation). Microbial activity was strongly stimulated and inhibited at low and high exposure levels, respectively. Microbial growth efficiency decreased with increasing exposure, but rebounded during the recovery phase for low-dose treatments. Although benzene, toluene, ethylbenzene and xylene (BTEX) concentrations decreased by 83-97% during the recovery phase, microbial activity in high-dose treatments did not recover and numbers of viable bacteria were 3-4 orders of magnitude lower than in control soil. Re-inoculation with active soil microorganisms failed to restore microbial activity indicating residual soil toxicity, which could not be attributed to BTEX, but rather to mixture toxicity of more persistent gasoline constituents or degradation products. Our results indicate a limited potential for functional recovery of soil microbial communities after transient exposure to high, but environmentally relevant, levels of gasoline VOCs which therefore may compromise ecosystem services provided by microorganisms even after extensive soil VOC dissipation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Numerical simulation of water injection into vapor-dominated reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruess, K.

    1995-01-01

    Water injection into vapor-dominated reservoirs is a means of condensate disposal, as well as a reservoir management tool for enhancing energy recovery and reservoir life. We review different approaches to modeling the complex fluid and heat flow processes during injection into vapor-dominated systems. Vapor pressure lowering, grid orientation effects, and physical dispersion of injection plumes from reservoir heterogeneity are important considerations for a realistic modeling of injection effects. An example of detailed three-dimensional modeling of injection experiments at The Geysers is given.

  19. Vapor Pressure Measurements in a Closed System

    ERIC Educational Resources Information Center

    Iannone, Mark

    2006-01-01

    An alternative method that uses a simple apparatus to measure vapor pressure versus temperature in a closed system, in which the total pressure is the vapor pressure of the liquid sample, is described. The use of this apparatus gives students a more direct picture of vapor pressure than the isoteniscope method and results have generally been quite…

  20. Membrane-assisted vapor stripping: energy efficient hybrid distillation-vapor permeation process for alcohol-water separation

    EPA Science Inventory

    BACKGROUND: Energy efficient alternatives to distillation for alcohol recovery from dilute solution are needed to improve biofuel sustainability. A process integrating steam stripping with a vapor compression step and a vapor permeation membrane separation step is proposed. The...

  1. Automated Test Systems for Toxic Vapor Detectors

    NASA Technical Reports Server (NTRS)

    Mattson, C. B.; Hammond, T. A.; Schwindt, C. J.

    1997-01-01

    The NASA Toxic Vapor Detection Laboratory (TVDL) at the Kennedy Space Center (KSC), Florida, has been using Personal Computer based Data Acquisition and Control Systems (PCDAS) for about nine years. These systems control the generation of toxic vapors of known concentrations under controlled conditions of temperature and humidity. The PCDAS also logs the test conditions and the test article responses in data files for analysis by standard spreadsheets or custom programs. The PCDAS was originally developed to perform standardized qualification and acceptance tests in a search for a commercial off-the-shelf (COTS) toxic vapor detector to replace the hydrazine detectors for the Space Shuttle launch pad. It has since become standard test equipment for the TVDL and is indispensable in producing calibration standards for the new hydrazine monitors at the 10 part per billion (ppb) level. The standard TVDL PCDAS can control two toxic vapor generators (TVG's) with three channels each and two flow/ temperature / humidity (FTH) controllers and it can record data from up to six toxic vapor detectors (TVD's) under test and can deliver flows from 5 to 50 liters per minute (L/m) at temperatures from near zero to 50 degrees Celsius (C) using an environmental chamber to maintain the sample temperature. The concentration range for toxic vapors depends on the permeation source installed in the TVG. The PCDAS can provide closed loop control of temperature and humidity to two sample vessels, typically one for zero gas and one for the standard gas. This is required at very low toxic vapor concentrations to minimize the time required to passivate the sample delivery system. Recently, there have been several requests for information about the PCDAS by other laboratories with similar needs, both on and off KSC. The purpose of this paper is to inform the toxic vapor detection community of the current status and planned upgrades to the automated testing of toxic vapor detectors at the

  2. Automated Test Systems for Toxic Vapor Detectors

    NASA Technical Reports Server (NTRS)

    Mattson, C. B.; Hammond, T. A.; Schwindt, C. J.

    1997-01-01

    The NASA Toxic Vapor Detection Laboratory (TVDL) at the Kennedy Space Center (KSC), Florida, has been using Personal Computer based Data Acquisition and Control Systems (PCDAS) for about nine years. These systems control the generation of toxic vapors of known concentrations under controlled conditions of temperature and humidity. The PCDAS also logs the test conditions and the test article responses in data files for analysis by standard spreadsheets or custom programs. The PCDAS was originally developed to perform standardized qualification and acceptance tests in a search for a commercial off-the-shelf (COTS) toxic vapor detector to replace the hydrazine detectors for the Space Shuttle launch pad. It has since become standard test equipment for the TVDL and is indispensable in producing calibration standards for the new hydrazine monitors at the 10 part per billion (ppb) level. The standard TVDL PCDAS can control two toxic vapor generators (TVG's) with three channels each and two flow/temperature/humidity (FIFH) controllers and it can record data from up to six toxic vapor detectors (TVD's) under test and can deliver flows from 5 to 50 liters per minute (L/m) at temperatures from near zero to 50 degrees Celsius (C) using an environmental chamber to maintain the sample temperature. The concentration range for toxic vapors depends on the permeation source installed in the TVG. The PCDAS can provide closed loop control of temperature and humidity to two sample vessels, typically one for zero gas and one for the standard gas. This is required at very low toxic vapor concentrations to minimize the time required to passivate the sample delivery system. Recently, there have been several requests for information about the PCDAS by other laboratories with similar needs, both on and off KSC. The purpose of this paper is to inform the toxic vapor detection community of the current status and planned upgrades to the automated testing of toxic vapor detectors at the Kennedy

  3. Advanced Atmospheric Water Vapor DIAL Detection System

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Elsayed-Ali, Hani E.; DeYoung, Russell J. (Technical Monitor)

    2000-01-01

    Measurement of atmospheric water vapor is very important for understanding the Earth's climate and water cycle. The remote sensing Differential Absorption Lidar (DIAL) technique is a powerful method to perform such measurement from aircraft and space. This thesis describes a new advanced detection system, which incorporates major improvements regarding sensitivity and size. These improvements include a low noise advanced avalanche photodiode detector, a custom analog circuit, a 14-bit digitizer, a microcontroller for on board averaging and finally a fast computer interface. This thesis describes the design and validation of this new water vapor DIAL detection system which was integrated onto a small Printed Circuit Board (PCB) with minimal weight and power consumption. Comparing its measurements to an existing DIAL system for aerosol and water vapor profiling validated the detection system.

  4. Liquid-Vapor Equilibrium of Multicomponent Cryogenic Systems

    NASA Technical Reports Server (NTRS)

    Thompson, W. Reid; Calado, Jorge C. G.; Zollweg, John A.

    1990-01-01

    Liquid-vapor and solid-vapor equilibria at low to moderate pressures and low temperatures are important in many solar system environments, including the surface and clouds of Titan, the clouds of Uranus and Neptune, and the surfaces of Mars and Triton. The familiar cases of ideal behavior are limiting cases of a general thermodynamic representation for the vapor pressure of each component in a homogeneous multicomponent system. The fundamental connections of laboratory measurements to thermodynamic models are through the Gibbs-Duhem relation and the Gibbs-Helmholtz relation. Using laboratory measurements of the total pressure, temperature, and compositions of the liquid and vapor phases at equilibrium, the values of these parameters can be determined. The resulting model for vapor-liquid equilibrium can then conveniently and accurately be used to calculate pressures, compositions, condensation altitudes, and their dependencies on changing climatic conditions. A specific system being investigated is CH4-C2H6-N2, at conditions relevant to Titan's surface and atmosphere. Discussed are: the modeling of existing data on CH4-N2, with applications to the composition of Titan's condensate clouds; some new measurements on the CH4-C2H6 binary, using a high-precision static/volumetric system, and on the C2H6-N2 binary, using the volumetric system and a sensitive cryogenic flow calorimeter; and describe a new cryogenic phase-equilibrium vessel with which we are beginning a detailed, systematic study of the three constituent binaries and the ternary CH4-C2H6-N2 system at temperatures ranging from 80 to 105 K and pressures from 0.1 to 7 bar.

  5. Application of improved technology to a preprototype vapor compression distillation /VCD/ water recovery subsystem

    NASA Technical Reports Server (NTRS)

    Johnson, K. L.; Reysa, R. P.; Fricks, D. H.

    1981-01-01

    Vapor compression distillation (VCD) is considered the most efficient water recovery process for spacecraft application. This paper reports on a preprototype VCD which has undergone the most extensive operational and component development testing of any VCD subsystem to date. The component development effort was primarily aimed at eliminating corrosion and the need for lubrication, upgrading electronics, and substituting nonmetallics in key rotating components. The VCD evolution is documented by test results on specific design and/or materials changes. Innovations worthy of further investigation and additional testing are summarized for future VCD subsystem development reference. Conclusions on experience gained are presented.

  6. Catalytic distillation water recovery subsystem

    NASA Technical Reports Server (NTRS)

    Budininkas, P.; Rasouli, F.

    1985-01-01

    An integrated engineering breadboard subsystem for the recovery of potable water from untreated urine based on the vapor phase catalytic ammonia removal was designed, fabricated and tested. Unlike other evaporative methods, this process catalytically oxidizes ammonia and volatile hydrocarbons vaporizing with water to innocuous products; therefore, no pretreatment of urine is required. Since the subsystem is fabricated from commercially available components, its volume, weight and power requirements are not optimized; however, it is suitable for zero-g operation. The testing program consists of parametric tests, one month of daily tests and a continuous test of 168 hours duration. The recovered water is clear, odorless, low in ammonia and organic carbon, and requires only an adjustment of its pH to meet potable water standards. The obtained data indicate that the vapor phase catalytic ammonia removal process, if further developed, would also be competitive with other water recovery systems in weight, volume and power requirements.

  7. 46 CFR 39.20-1 - Vapor collection system-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Vapor collection system-TB/ALL. 39.20-1 Section 39.20-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS Design and... line with the bolt hole pattern. (f) Each hose used for transferring vapors must: (1) Have a design...

  8. 46 CFR 39.20-1 - Vapor collection system-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Vapor collection system-TB/ALL. 39.20-1 Section 39.20-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS Design and... line with the bolt hole pattern. (f) Each hose used for transferring vapors must: (1) Have a design...

  9. 46 CFR 39.20-1 - Vapor collection system-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Vapor collection system-TB/ALL. 39.20-1 Section 39.20-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS Design and... line with the bolt hole pattern. (f) Each hose used for transferring vapors must: (1) Have a design...

  10. Intermediate water recovery system

    NASA Technical Reports Server (NTRS)

    Deckman, G.; Anderson, A. R. (Editor)

    1973-01-01

    A water recovery system for collecting, storing, and processing urine, wash water, and humidity condensates from a crew of three aboard a spacecraft is described. The results of a 30-day test performed on a breadboard system are presented. The intermediate water recovery system produced clear, sterile, water with a 96.4 percent recovery rate from the processed urine. Recommendations for improving the system are included.

  11. Compact Water Vapor Exchanger for Regenerative Life Support Systems

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Anderson, Molly; Hodgson, Edward

    2012-01-01

    Thermal and environmental control systems for future exploration spacecraft must meet challenging requirements for efficient operation and conservation of resources. Regenerative CO2 removal systems are attractive for these missions because they do not use consumable CO2 absorbers. However, these systems also absorb and vent water to space along with carbon dioxide. This paper describes an innovative device designed to minimize water lost from regenerative CO2 control systems. Design studies and proof-of-concept testing have shown the feasibility of a compact, efficient membrane water vapor exchanger (WVX) that will conserve water while meeting challenging requirements for operation on future spacecraft. Compared to conventional WVX designs, the innovative membrane WVX described here has the potential for high water recovery efficiency, compact size, and very low pressure losses. The key innovation is a method for maintaining highly uniform flow channels in a WVX core built from water-permeable membranes. The proof-of-concept WVX incorporates all the key design features of a prototypical unit, except that it is relatively small scale (1/23 relative to a unit sized for a crew of six) and some components were fabricated using non-prototypical methods. The proof-of-concept WVX achieved over 90% water recovery efficiency in a compact core in good agreement with analysis models. Furthermore the overall pressure drop is very small (less than 0.5 in. H2O, total for both flow streams) and meets requirements for service in environmental control and life support systems on future spacecraft. These results show that the WVX provides very uniform flow through flow channels for both the humid and dry streams. Measurements also show that CO2 diffusion through the water-permeable membranes will have negligible effect on the CO2 partial pressure in the spacecraft atmosphere.

  12. Water-Vapor Raman Lidar System Reaches Higher Altitude

    NASA Technical Reports Server (NTRS)

    Leblanc, Thierry; McDermid, I. Stewart

    2010-01-01

    A Raman lidar system for measuring the vertical distribution of water vapor in the atmosphere is located at the Table Mountain Facility (TMF) in California. Raman lidar systems for obtaining vertical water-vapor profiles in the troposphere have been in use for some time. The TMF system incorporates a number of improvements over prior such systems that enable extension of the altitude range of measurements through the tropopause into the lower stratosphere. One major obstacle to extension of the altitude range is the fact that the mixing ratio of water vapor in the tropopause and the lower stratosphere is so low that Raman lidar measurements in this region are limited by noise. Therefore, the design of the TMF system incorporates several features intended to maximize the signal-to-noise ratio. These features include (1) the use of 355-nm-wavelength laser pulses having an energy (0.9 J per pulse) that is high relative to the laser-pulse energy levels of prior such systems, (2) a telescope having a large aperture (91 cm in diameter) and a narrow field of view (angular width .0.6 mrad), and (3) narrow-bandpass (wavelength bandwidth 0.6 nm) filters for the water-vapor Raman spectral channels. In addition to the large-aperture telescope, three telescopes having apertures 7.5 cm in diameter are used to collect returns from low altitudes.

  13. Vapor-dominated zones within hydrothermal systems: evolution and natural state

    USGS Publications Warehouse

    Ingebritsen, S.E.; Sorey, M.L.

    1988-01-01

    Three conceptual models illustrate the range of hydrothermal systems in which vapor-dominated conditions are found. The first model (model I) represents a system with an extensive near-vaporstatic vapor-dominated zone and limited liquid throughflow and is analogous to systems such as The Geysers, California. Models II and III represent systems with significant liquid throughflow and include steam-heated discharge features at higher elevations and high-chloride springs at lower elevations connected to and fed by a single circulation system at depth. In model II, as in model I, the vapor-dominated zone has a near-vaporstatic vertical pressure gradient and is generally underpressured with respect to local hydrostatic pressure. The vapor-dominated zone in model III is quite different, in that phase separation takes place at pressures close to local hydrostatic and the overall pressure gradient is near hydrostatic. -from Authors

  14. Systems and methods for generation of hydrogen peroxide vapor

    DOEpatents

    Love, Adam H; Eckels, Joel Del; Vu, Alexander K; Alcaraz, Armando; Reynolds, John G

    2014-12-02

    A system according to one embodiment includes a moisture trap for drying air; at least one of a first container and a second container; and a mechanism for at least one of: bubbling dried air from the moisture trap through a hydrogen peroxide solution in the first container for producing a hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above a hydrogen peroxide solution in the second container for producing a hydrogen peroxide vapor. A method according one embodiment includes at least one of bubbling dried air through a hydrogen peroxide solution in a container for producing a first hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above the hydrogen peroxide solution in a container for producing a second hydrogen peroxide vapor. Additional systems and methods are also presented.

  15. Hybrid Vapor Stripping-Vapor Permeation Process for Recovery and Dehydration of 1-Butanol and Acetone/Butanol/Ethanol from Dilute Aqueous Solutions. Part 2. Experimental Validation with Simple Mixtures and Actual Fermentation Broth

    EPA Science Inventory

    BACKGROUND: In Part1 of this work, a process integrating vapor stripping, vapor compression, and a vapor permeation membrane separation step, Membrane Assisted Vapor Stripping (MAVS), was predicted to produce energy savings compared to traditional distillation systems for separat...

  16. ENHANCED PERVAPORATION SEPARATION EFFICIENCY VIA STAGED FRACTIONAL CONDENSATION (DEPHLEGMATION) OF PERMEATE VAPOR

    EPA Science Inventory

    In traditional pervaporation systems, the permeate vapor is completely condensed to obtain a liquid permeate stream. For example, in the recovery of ethanol from a 5-wt% aqueous stream (such as a biomass fermentation broth), the permeate from a silicone rubber pervaporation membr...

  17. DEMONSTRATION BULLETIN: IN SITU STEAM ENHANCED RECOVERY PROCESS - HUGHES ENVIRONMENTAL SYSTEMS, INC.

    EPA Science Inventory

    The Steam Enhanced Recovery Process (SERP) is designed to remove volatile compounds such as halogenated solvents and petroleum hydrocarbons, and semi-volatile compounds from contaminated soils in situ. The vapor pressures of most contaminants will increase by the addition of ste...

  18. Pervaporation & Vapor Permeation Membrane Processes for the Selective Separation of Liquid and Vapor Mixtures

    EPA Science Inventory

    Pervaporation and vapor permeation are membrane-based processes which have been proposed as alternatives to conventional separation technologies. Applications range from organic solvent removal from water, ethanol or butanol recovery from dilute fermentation broths, solvent/biofu...

  19. Nonlinear dynamics of confined thin liquid-vapor bilayer systems with phase change

    NASA Astrophysics Data System (ADS)

    Kanatani, Kentaro; Oron, Alexander

    2011-03-01

    We numerically investigate the nonlinear evolution of the interface of a thin liquid-vapor bilayer system confined by rigid horizontal walls from both below and above. The lateral variation of the vapor pressure arising from phase change is taken into account in the present analysis. When the liquid (vapor) is heated (cooled) and gravity acts toward the liquid, the deflection of the interface monotonically grows, leading to a rupture of the vapor layer, whereas nonruptured stationary states are found when the liquid (vapor) is cooled (heated) and gravity acts toward the vapor. In the latter case, vapor-flow-driven convective cells are found in the liquid phase in the stationary state. The average vapor pressure and interface temperature deviate from their equilibrium values once the interface departs from the flat equilibrium state. Thermocapillarity does not have a significant effect near the thermodynamic equilibrium, but becomes important if the system significantly deviates from it.

  20. Simulation and Analysis of Isotope Separation System for Fusion Fuel Recovery System

    NASA Astrophysics Data System (ADS)

    Senevirathna, Bathiya; Gentile, Charles

    2011-10-01

    This paper presents results of a simulation of the Fuel Recovery System (FRS) for the Laser Inertial Fusion Engine (LIFE) reactor. The LIFE reaction will produce exhaust gases that will need to be recycled in the FRS along with xenon, the chamber's intervention gas. Solids and liquids will first be removed and then vapor traps are used to remove large gas molecules such as lead. The gas will be reacted with lithium at high temperatures to extract the hydrogen isotopes, protium, deuterium, and tritium in hydride form. The hydrogen isotopes will be recovered using a lithium blanket processing system already in place and this product will be sent to the Isotope Separation System (ISS). The ISS will be modeled in software to analyze its effectiveness. Aspen HYSYS was chosen for this purpose for its widespread use industrial gas processing systems. Reactants and corresponding chemical reactions had to be initialized in the software. The ISS primarily consists of four cryogenic distillation columns and these were modeled in HYSYS based on design requirements. Fractional compositions of the distillate and liquid products were analyzed and used to optimize the overall system.

  1. Vacuum distillation: vapor filtered-catalytic oxidation water reclamation system utilizing radioisotopes

    NASA Technical Reports Server (NTRS)

    Honegger, R. J.; Remus, G. A.; Kurg, E. K.

    1971-01-01

    The development of a functional model water reclamation system is discussed. The system produces potable water by distillation from the urine and respiration-perspiration condensate at the normal rate generated by four men. Basic processes employed are vacuum distillation, vapor filtration, vapor phase catalytic oxidation, and condensation. The system is designed to use four 75-watt isotope heaters for distillation thermal input, and one 45-watt isotope for the catalytic oxidation unit. The system is capable of collecting and storing urine, and provides for stabilizing the urine by chemical pretreatment. The functional model system is designed for operation in a weightless condition with liquid-vapor phase separators for the evaporator still, and centrifugal separators for urine collection and vapor condensation. The system provides for storing and dispensing reclaimed potable water. The system operates in a batch mode for 40 days, with urine residues accumulating in the evaporator. The evaporator still and residue are removed to storage and replaced with a fresh still for the next 40-day period.

  2. 46 CFR 39.10-13 - Submission of vapor control system designs-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Submission of vapor control system designs-TB/ALL. 39.10-13 Section 39.10-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS General § 39.10-13 Submission of vapor control system designs—TB/ALL. (a) Plans, calculations, and...

  3. 46 CFR 39.10-13 - Submission of vapor control system designs-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Submission of vapor control system designs-TB/ALL. 39.10-13 Section 39.10-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS General § 39.10-13 Submission of vapor control system designs—TB/ALL. (a) Plans, calculations, and...

  4. 46 CFR 39.10-13 - Submission of vapor control system designs-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Submission of vapor control system designs-TB/ALL. 39.10-13 Section 39.10-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS General § 39.10-13 Submission of vapor control system designs—TB/ALL. (a) Plans, calculations, and...

  5. Medicinal Cannabis: In Vitro Validation of Vaporizers for the Smoke-Free Inhalation of Cannabis.

    PubMed

    Lanz, Christian; Mattsson, Johan; Soydaner, Umut; Brenneisen, Rudolf

    2016-01-01

    Inhalation by vaporization is a promising application mode for cannabis in medicine. An in vitro validation of 5 commercial vaporizers was performed with THC-type and CBD-type cannabis. Gas chromatography/mass spectrometry was used to determine recoveries of total THC (THCtot) and total CBD (CBDtot) in the vapor. High-performance liquid chromatography with photodiode array detection was used for the quantitation of acidic cannabinoids in the residue and to calculate decarboxylation efficiencies. Recoveries of THCtot and CBDtot in the vapor of 4 electrically-driven vaporizers were 58.4 and 51.4%, 66.8 and 56.1%, 82.7 and 70.0% and 54.6 and 56.7% for Volcano Medic®, Plenty Vaporizer®, Arizer Solo® and DaVinci Vaporizer®, respectively. Decarboxylation efficiency was excellent for THC (≥ 97.3%) and CBD (≥ 94.6%). The gas-powered Vape-or-Smoke™ showed recoveries of THCtot and CBDtot in the vapor of 55.9 and 45.9%, respectively, and a decarboxylation efficiency of ≥ 87.7 for both cannabinoids. However, combustion of cannabis was observed with this device. Temperature-controlled, electrically-driven vaporizers efficiently decarboxylate inactive acidic cannabinoids and reliably release their corresponding neutral, active cannabinoids. Thus, they offer a promising application mode for the safe and efficient administration of medicinal cannabis.

  6. Water vapor diffusion membranes, 2

    NASA Technical Reports Server (NTRS)

    Holland, F. F.; Klein, E.; Smith, J. K.; Eyer, C.

    1976-01-01

    Transport mechanisms were investigated for the three different types of water vapor diffusion membranes. Membranes representing porous wetting and porous nonwetting structures as well as dense diffusive membrane structures were investigated for water permeation rate as a function of: (1) temperature, (2) solids composition in solution, and (3) such hydrodynamic parameters as sweep gas flow rate, solution flow rate and cell geometry. These properties were measured using nitrogen sweep gas to collect the effluent. In addition, the chemical stability to chromic acid-stabilized urine was measured for several of each type of membrane. A technology based on the mechanism of vapor transport was developed, whereby the vapor diffusion rates and relative susceptibility of membranes to fouling and failure could be projected for long-term vapor recovery trials using natural chromic acid-stabilized urine.

  7. Advanced Detector and Waveform Digitizer for Water Vapor DIAL Systems

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Luck, William S., Jr.; DeYoung, Russell J.

    1998-01-01

    Measurement of atmospheric water vapor has become a major requirement for understanding moist-air processes. Differential absorption lidar (DIAL) is a technique best suited for the measurement of atmospheric water vapor. NASA Langley Research Center is continually developing improved DIAL systems. One aspect of current development is focused on the enhancement of a DIAL receiver by applying state-of-the-art technology in building a new compact detection system that will be placed directly on the DIAL receiver telescope. The newly developed detection system has the capability of being digitally interfaced with a simple personal computer, using a discrete input/output interface. This has the potential of transmitting digital data over relatively long distances instead of analog signals, which greatly reduces measurement noise. In this paper, we discuss some results from the new compact water vapor DIAL detection system which includes a silicon based avalanche photodiode (APD) detector, a 14-bit, 10-MHz waveform digitizer, a microcontroller and other auxiliary electronics. All of which are contained on a small printed-circuit-board. This will significantly reduce the weight and volume over the current CAMAC system and eventually will be used in a water vapor DIAL system on an unpiloted atmospheric vehicle (UAV) aircraft, or alternatively on an orbiting spacecraft.

  8. Analysis of a membrane-based condesate recovery heat exchanger (CRX)

    NASA Technical Reports Server (NTRS)

    Newbold, D.D.

    1993-01-01

    The development of a temperature and humidity control system that can remove heat and recover water vapor is key to the development of an Environmental Control and Life Support System (ECLSS). Large quantities of water vapor must be removed from air, and this operation has proven difficult in the absense of gravity. This paper presents the modeling results from a program to develop a novel membrane-based heat exchanger known as the condensate recovery heat exchanger (CRX). This device cools and dehumidifies humid air and simultaneously recovers water-vapor condensate. In this paper, the CRX is described and the results of an analysis of the heat- and mass-transfer characteristics of the device are given.

  9. Design of the Brine Evaporation Bag for Increased Water Recovery in Microgravity

    NASA Technical Reports Server (NTRS)

    Hayden, Anna L.; Delzeit, Lance D.

    2015-01-01

    The existing water recovery system on the International Space Station (ISS) is limited to 75% reclamation; consequently, long duration space missions are currently unfeasible due to the large quantity of water necessary to sustain the crew. The Brine Evaporation Bag (BEB) is a proposed system to supplement the existing water recovery system aboard the ISS that can to increase water recovery to 99%. The largest barrier to high water recovery is mineral scaling inside the water recovery equipment, which leads to equipment failure; therefore, some water must remain to keep the minerals dissolved. This waste stream is liquid brine containing salts, acids, organics, and water. The BEB is designed to recover this remaining water while protecting the equipment from scale. The BEB consists of a sealed bag containing a hydrophobic membrane that allows water vapor and gas to pass through. It is operated under vacuum, heated, and continuously filled with brine to boil away the water. The water vapor is recovered and the solids are contained inside the bag for disposal. The BEB can dry the brine to a solid block. Ongoing work includes improving the design of the BEB and the evaporator to prevent leaks, maximize the rate of water removal, and minimize energy use and weight. Additional testing will determine whether designs are heat- or mass-transfer limited and the optimal water recovery rate.

  10. Energy recovery from waste glycerol by utilizing thermal water vapor plasma.

    PubMed

    Tamošiūnas, Andrius; Valatkevičius, Pranas; Gimžauskaitė, Dovilė; Jeguirim, Mejdi; Mėčius, Vladas; Aikas, Mindaugas

    2017-04-01

    Glycerol, considered as a waste feedstock resulting from biodiesel production, has received much attention in recent years due to its properties, which offer to recover energy. The aim of this study was to investigate the use of a thermal water vapor plasma for waste (crude) glycerol conversion to synthesis gas, or syngas (H 2  + CO). In parallel of crude glycerol, a pure glycerol (99.5%) was used as a reference material in order to compare the concentrations of the formed product gas. A direct current (DC) arc plasma torch stabilized by a mixture of argon/water vapor was utilized for the effective glycerol conversion to hydrogen-rich synthesis gas. It was found that after waste glycerol treatment, the main reaction products were gases with corresponding concentrations of H 2 50.7%, CO 23.53%, CO 2 11.45%, and CH 4 3.82%, and traces of C 2 H 2 and C 2 H 6 , which concentrations were below 0.5%. The comparable concentrations of the formed gas products were obtained after pure glycerol conversion-H 2 46.4%, CO 26.25%, CO 2 11.3%, and CH 4 4.7%. The use of thermal water vapor plasma producing synthesis gas is an effective method to recover energy from both crude and pure glycerol. The performance of the glycerol conversion system was defined in terms of the produced gas yield, the carbon conversion efficiency, the cold gas efficiency, and the specific energy requirements.

  11. Ozone: Stage Two Vapor Recovery Rule and Guidance

    EPA Pesticide Factsheets

    This page includes the guidance document, fact sheet, memorandum, and final rule on removing Stage II Gasoline Vapor Control Programs from State Implementation Plans (SIP) for the Ozone National Ambient Air Quality Standards (NAAQS)

  12. Medicinal Cannabis: In Vitro Validation of Vaporizers for the Smoke-Free Inhalation of Cannabis

    PubMed Central

    Lanz, Christian; Mattsson, Johan; Soydaner, Umut; Brenneisen, Rudolf

    2016-01-01

    Inhalation by vaporization is a promising application mode for cannabis in medicine. An in vitro validation of 5 commercial vaporizers was performed with THC-type and CBD-type cannabis. Gas chromatography/mass spectrometry was used to determine recoveries of total THC (THCtot) and total CBD (CBDtot) in the vapor. High-performance liquid chromatography with photodiode array detection was used for the quantitation of acidic cannabinoids in the residue and to calculate decarboxylation efficiencies. Recoveries of THCtot and CBDtot in the vapor of 4 electrically-driven vaporizers were 58.4 and 51.4%, 66.8 and 56.1%, 82.7 and 70.0% and 54.6 and 56.7% for Volcano Medic®, Plenty Vaporizer®, Arizer Solo® and DaVinci Vaporizer®, respectively. Decarboxylation efficiency was excellent for THC (≥ 97.3%) and CBD (≥ 94.6%). The gas-powered Vape-or-Smoke™ showed recoveries of THCtot and CBDtot in the vapor of 55.9 and 45.9%, respectively, and a decarboxylation efficiency of ≥ 87.7 for both cannabinoids. However, combustion of cannabis was observed with this device. Temperature-controlled, electrically-driven vaporizers efficiently decarboxylate inactive acidic cannabinoids and reliably release their corresponding neutral, active cannabinoids. Thus, they offer a promising application mode for the safe and efficient administration of medicinal cannabis. PMID:26784441

  13. Toward an operational water vapor remote sensing system using the global positioning system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutman, S.I.; Chadwick, R.B.; Wolf, d.W.

    1995-04-01

    Water vapor is one of the most important constituents of the free atmosphere since it is the principal mechanism by which moisture and latent heat are transported and cause weather. Recent experiments have demonstrated that data from Global Positioning System (GPS) satellites can be used to monitor precipitable water vapor (PWV) with millimeter accuracy and sub-hourly temporal resolution. Major advantages of GPS-based systems include the following: they work under virtually all weather conditions; individual systems do not have to be calibrated; and, they are relatively inexpensive.

  14. Melt-Vapor Phase Diagram of the Te-S System

    NASA Astrophysics Data System (ADS)

    Volodin, V. N.; Trebukhov, S. A.; Kenzhaliyev, B. K.; Nitsenko, A. V.; Burabaeva, N. M.

    2018-03-01

    The values of partial pressure of saturated vapor of the constituents of the Te-S system are determined from boiling points. The boundaries of the melt-vapor phase transition at atmospheric pressure and in vacuum of 2000 and 100 Pa are calculated on the basis of partial pressures. A phase diagram that includes vapor-liquid equilibrium fields whose boundaries allow us to assess the behavior of elements upon distillation fractioning is plotted. It is established that the separation of elements is possible at the first evaporation-condensation cycle. Complications can be caused by crystallization of a sulfur solid solution in tellurium.

  15. Pervaporation and Vapor Permeation Tutorial: Membrane Processes for the Selective Separation of Liquid and Vapor Mixtures

    EPA Science Inventory

    Pervaporation and vapor permeation are membrane-based processes proposed as alternatives to conventional separation technologies. Applications range from organic solvent removal from water, ethanol or butanol recovery from fermentation broths, solvent/biofuel dehydration to meet ...

  16. Design, Development, and Testing of a Water Vapor Exchanger for Spacecraft Life Support Systems

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Micka, Daniel J.; Chepko, Ariane B.; Rule, Kyle C.; Anderson, Molly S.

    2016-01-01

    Thermal and environmental control systems for future exploration spacecraft must meet challenging requirements for efficient operation and conservation of resources. Maximizing the use of regenerative systems and conserving water are critical considerations. This paper describes the design, development, and testing of an innovative water vapor exchanger (WVX) that can minimize the amount of water absorbed in, and vented from, regenerative CO2 removal systems. Key design requirements for the WVX are high air flow capacity (suitable for a crew of six), very high water recovery, and very low pressure losses. We developed fabrication and assembly methods that enable high-efficiency mass transfer in a uniform and stable array of Nafion tubes. We also developed analysis and design methods to compute mass transfer and pressure losses. We built and tested subscale units sized for flow rates of 2 and 5 cu ft/min (3.4–8.5 cu m/hr). Durability testing demonstrated that a stable core geometry was sustained over many humid/dry cycles. Pressure losses were very low (less than 0.5 in. H2O (125 Pa) total) and met requirements at prototypical flow rates. We measured water recovery efficiency across a range of flow rates and humidity levels that simulate the range of possible cabin conditions. We measured water recovery efficiencies in the range of 80 to 90%, with the best efficiency at lower flow rates and higher cabin humidity levels. We compared performance of the WVX with similar units built using an unstructured Nafion tube bundle. The WVX achieves higher water recovery efficiency with nearly an order of magnitude lower pressure drop than unstructured tube bundles. These results show that the WVX provides uniform flow through flow channels for both the humid and dry streams and can meet requirements for service on future exploration spacecraft. The WVX technology will be best suited for long-duration exploration vehicles that require regenerative CO2 removal systems while

  17. An exposure system for measuring nasal and lung uptake of vapors in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahl, A.R.; Brookins, L.K.; Gerde, P.

    1995-12-01

    Inhaled gases and vapors often produce biological damage in the nasal cavity and lower respiratory tract. The specific site within the respirator tract at which a gas or vapor is absorbed strongly influences the tissues at risk to potential toxic effects; to predict or to explain tissue or cell specific toxicity of inhaled gases or vapors, the sites at which they are absorbed must be known. The purpose of the work reported here was to develop a system for determining nose and lung absorption of vapors in rats, an animal commonly used in inhalation toxicity studies. In summary, the exposuremore » system described allows us to measure in the rate: (1) nasal absorption and desorption of vapors; (2) net lung uptake of vapors; and (3) the effects of changed breathing parameters on vapor uptake.« less

  18. Development of an improved membrane for a vapor diffusion water recovery process. [onboard manned spacecraft

    NASA Technical Reports Server (NTRS)

    Rich, T. R.; Mix, T. W.

    1974-01-01

    Recovery of potable water from urine on manned space missions of extended duration was the objective of work aimed at the improvement of membrane performance for the vapor diffusion process (VDR). Kynar, Teflon, PVC, and polysulfone candidate membranes were evaluated from chemical, thermal, mechanical, and fabricating standpoints to determine their suitability for operation in the VDR pervaporation module. Pervaporation rates and other performance characteristics were determined in a breadboard pervaporator test rig. Kynar and Teflon membranes were demonstrated to be chemically stable at pervaporation temperatures in urine pretreated with chromic acid bactericide. The separation of the pervaporator and condenser modules, the use of a recirculating sweep gas to conduct pervaporate to the condenser, and the selection of a hollow fiber membrane configuration for pervaporator module design is recommended as a result of the investigation.

  19. Uses and abuses of recovery: implementing recovery-oriented practices in mental health systems

    PubMed Central

    Slade, Mike; Amering, Michaela; Farkas, Marianne; Hamilton, Bridget; O'Hagan, Mary; Panther, Graham; Perkins, Rachel; Shepherd, Geoff; Tse, Samson; Whitley, Rob

    2014-01-01

    An understanding of recovery as a personal and subjective experience has emerged within mental health systems. This meaning of recovery now underpins mental health policy in many countries. Developing a focus on this type of recovery will involve transformation within mental health systems. Human systems do not easily transform. In this paper, we identify seven mis-uses (“abuses”) of the concept of recovery: recovery is the latest model; recovery does not apply to “my” patients; services can make people recover through effective treatment; compulsory detention and treatment aid recovery; a recovery orientation means closing services; recovery is about making people independent and normal; and contributing to society happens only after the person is recovered. We then identify ten empirically-validated interventions which support recovery, by targeting key recovery processes of connectedness, hope, identity, meaning and empowerment (the CHIME framework). The ten interventions are peer support workers, advance directives, wellness recovery action planning, illness management and recovery, REFOCUS, strengths model, recovery colleges or recovery education programs, individual placement and support, supported housing, and mental health trialogues. Finally, three scientific challenges are identified: broadening cultural understandings of recovery, implementing organizational transformation, and promoting citizenship. PMID:24497237

  20. Studies on Vapor Adsorption Systems

    NASA Technical Reports Server (NTRS)

    Shamsundar, N.; Ramotowski, M.

    1998-01-01

    The project consisted of performing experiments on single and dual bed vapor adsorption systems, thermodynamic cycle optimization, and thermal modeling. The work was described in a technical paper that appeared in conference proceedings and a Master's thesis, which were previously submitted to NASA. The present report describes some additional thermal modeling work done subsequently, and includes listings of computer codes developed during the project. Recommendations for future work are provided.

  1. Fluid Dynamics Assessment of the VPCAR Water Recovery System in Partial and Microgravity

    NASA Technical Reports Server (NTRS)

    Niederhaus, Charles; Nahra, Henry; Flynn, Michael

    2006-01-01

    The Vapor Phase Catalytic Ammonia Removal (VPCAR) system is being developed to recycle water for future NASA Exploration Missions. Testing was recently conducted on NASA s C-9B Reduced Gravity Aircraft to determine the microgravity performance of a key component of the VPCAR water recovery system. Six flights were conducted to evaluate the fluid dynamics of the Wiped-Film Rotating Disk (WFRD) distillation component of the VPCAR system in microgravity, focusing on the water delivery method. The experiments utilized a simplified system to study the process of forming a thin film on a disk similar to that in the evaporator section of VPCAR. Fluid issues are present with the current configuration, and the initial alternative configurations were only partial successful in microgravity operation. The underlying causes of these issues are understood, and new alternatives are being designed to rectify the problems.

  2. Water vapor diffusion membranes

    NASA Technical Reports Server (NTRS)

    Holland, F. F., Jr.; Smith, J. K.

    1974-01-01

    The program is reported, which was designed to define the membrane technology of the vapor diffusion water recovery process and to test this technology using commercially available or experimental membranes. One membrane was selected, on the basis of the defined technology, and was subjected to a 30-day demonstration trial.

  3. Study of Hydrogen Recovery Systems for Gas Vented While Refueling Liquid-Hydrogen Fueled Aircraft

    NASA Technical Reports Server (NTRS)

    Baker, C. R.

    1979-01-01

    Methods of capturing and reliquefying the cold hydrogen vapor produced during the fueling of aircraft designed to utilize liquid hydrogen fuel were investigated. An assessment of the most practical, economic, and energy efficient of the hydrogen recovery methods is provided.

  4. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery.

    PubMed

    Hu, H W; Tang, G H; Niu, D

    2016-06-07

    Recovery of both latent heat and condensate from boiler flue gas is significant for improving boiler efficiency and water conservation. The condensation experiments are carried out to investigate the simultaneous heat and mass transfer across the nanoporous ceramic membranes (NPCMs) which are treated to be hydrophilic and hydrophobic surfaces using the semicontinuous supercritical reactions. The effects of typical parameters including coolant flow rate, vapor/nitrogen gas mixture temperature, water vapor volume fraction and transmembrane pressure on heat and mass transfer performance are studied. The experimental results show that the hydrophilic NPCM exhibits higher performances of condensation heat transfer and condensate recovery. However, the hydrophobic modification results in remarkable degradation of heat and condensate recovery from the mixture. Molecular dynamics simulations are conducted to establish a hydrophilic/hydrophobic nanopore/water liquid system, and the infiltration characteristics of the single hydrophilic/hydrophobic nanopore is revealed.

  5. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery

    NASA Astrophysics Data System (ADS)

    Hu, H. W.; Tang, G. H.; Niu, D.

    2016-06-01

    Recovery of both latent heat and condensate from boiler flue gas is significant for improving boiler efficiency and water conservation. The condensation experiments are carried out to investigate the simultaneous heat and mass transfer across the nanoporous ceramic membranes (NPCMs) which are treated to be hydrophilic and hydrophobic surfaces using the semicontinuous supercritical reactions. The effects of typical parameters including coolant flow rate, vapor/nitrogen gas mixture temperature, water vapor volume fraction and transmembrane pressure on heat and mass transfer performance are studied. The experimental results show that the hydrophilic NPCM exhibits higher performances of condensation heat transfer and condensate recovery. However, the hydrophobic modification results in remarkable degradation of heat and condensate recovery from the mixture. Molecular dynamics simulations are conducted to establish a hydrophilic/hydrophobic nanopore/water liquid system, and the infiltration characteristics of the single hydrophilic/hydrophobic nanopore is revealed.

  6. Method and apparatus to measure vapor pressure in a flow system

    DOEpatents

    Grossman, Mark W.; Biblarz, Oscar

    1991-01-01

    The present invention is directed to a method for determining, by a condensation method, the vapor pressure of a material with a known vapor pressure versus temperature characteristic, in a flow system particularly in a mercury isotope enrichment process.

  7. Thermal acidization and recovery process for recovering viscous petroleum

    DOEpatents

    Poston, Robert S.

    1984-01-01

    A thermal acidization and recovery process for increasing production of heavy viscous petroleum crude oil and synthetic fuels from subterranean hydrocarbon formations containing clay particles creating adverse permeability effects is described. The method comprises injecting a thermal vapor stream through a well bore penetrating such formations to clean the formation face of hydrocarbonaceous materials which restrict the flow of fluids into the petroleum-bearing formation. Vaporized hydrogen chloride is then injected simultaneously to react with calcium and magnesium salts in the formation surrounding the bore hole to form water soluble chloride salts. Vaporized hydrogen fluoride is then injected simultaneously with its thermal vapor to dissolve water-sensitive clay particles thus increasing permeability. Thereafter, the thermal vapors are injected until the formation is sufficiently heated to permit increased recovery rates of the petroleum.

  8. Method and apparatus to measure vapor pressure in a flow system

    DOEpatents

    Grossman, M.W.; Biblarz, O.

    1991-10-15

    The present invention is directed to a method for determining, by a condensation method, the vapor pressure of a material with a known vapor pressure versus temperature characteristic, in a flow system particularly in a mercury isotope enrichment process. 2 figures.

  9. Calibrated vapor generator source

    DOEpatents

    Davies, John P.; Larson, Ronald A.; Goodrich, Lorenzo D.; Hall, Harold J.; Stoddard, Billy D.; Davis, Sean G.; Kaser, Timothy G.; Conrad, Frank J.

    1995-01-01

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet.

  10. Calibrated vapor generator source

    DOEpatents

    Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.

    1995-09-26

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.

  11. A Hydrocarbon Fuel Flash Vaporization System for a Pulsed Detonation Engine

    DTIC Science & Technology

    2006-12-01

    Experiments were performed in the Air Force Research Laboratory (AFRL) Pulsed Detonation Research Facility at Wright Patterson AFB, Ohio. The PDE ...AFRL-MN-EG-TP-2006-7420 A HYDROCARBON FUEL FLASH VAPORIZATION SYSTEM FOR A PULSED DETONATION ENGINE (PREPRINT) K. Colin Tucker...85,7<&/$66,),&$7,212) E7(/(3+21(180%(5 ,QFOXGHDUHDFRGH A Hydrocarbon Fuel Flash Vaporization System for a Pulsed Detonation Engine K

  12. Pathogenesis of Acute and Delayed Corneal Lesions After Ocular Exposure to Sulfur Mustard Vapor

    DTIC Science & Technology

    2012-03-01

    using a vapor cup delivery system. The transition from acute to delayed injury was characterized by clinical, histological, and ultrastructural metrics...These data demonstrate a system-based approach combining ultrastructural analysis , histochemistry, and molecular evaluation that links architectural...predictive of the 11% of corneas that underwent asymptomatic recovery. Ultrastructural comparison of asymptomatic and MGK corneas at 8 weeks indicates that MGK

  13. Advanced Water Vapor Lidar Detection System

    NASA Technical Reports Server (NTRS)

    Elsayed-Ali, Hani

    1998-01-01

    In the present water vapor lidar system, the detected signal is sent over long cables to a waveform digitizer in a CAMAC crate. This has the disadvantage of transmitting analog signals for a relatively long distance, which is subjected to pickup noise, leading to a decrease in the signal to noise ratio. Generally, errors in the measurement of water vapor with the DIAL method arise from both random and systematic sources. Systematic errors in DIAL measurements are caused by both atmospheric and instrumentation effects. The selection of the on-line alexandrite laser with a narrow linewidth, suitable intensity and high spectral purity, and its operation at the center of the water vapor lines, ensures minimum influence in the DIAL measurement that are caused by the laser spectral distribution and avoid system overloads. Random errors are caused by noise in the detected signal. Variability of the photon statistics in the lidar return signal, noise resulting from detector dark current, and noise in the background signal are the main sources of random error. This type of error can be minimized by maximizing the signal to noise ratio. The increase in the signal to noise ratio can be achieved by several ways. One way is to increase the laser pulse energy, by increasing its amplitude or the pulse repetition rate. Another way, is to use a detector system with higher quantum efficiency and lower noise, on the other hand, the selection of a narrow band optical filter that rejects most of the day background light and retains high optical efficiency is an important issue. Following acquisition of the lidar data, we minimize random errors in the DIAL measurement by averaging the data, but this will result in the reduction of the vertical and horizontal resolutions. Thus, a trade off is necessary to achieve a balance between the spatial resolution and the measurement precision. Therefore, the main goal of this research effort is to increase the signal to noise ratio by a factor of

  14. Method for the removal and recovery of mercury

    DOEpatents

    Easterly, Clay E.; Vass, Arpad A.; Tyndall, Richard L.

    1997-01-01

    The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

  15. Method for the removal and recovery of mercury

    DOEpatents

    Easterly, C.E.; Vass, A.A.; Tyndall, R.L.

    1997-01-28

    The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

  16. Efficient ethanol recovery from yeast fermentation broth with integrated distillation-membrane process

    EPA Science Inventory

    A hybrid process integrating vapor stripping with vapor compression and vapor permeation membrane separation, termed Membrane Assisted Vapor Stripping (MAVS), was evaluated for recovery and dehydration of ethanol from aqueous solution as an alternative to conventional distillatio...

  17. Assessment in rats of the reproductive toxicity of gasoline from a gasoline vapor recovery unit.

    PubMed

    McKee, R H; Trimmer, G W; Whitman, F T; Nessel, C S; Mackerer, C R; Hagemann, R; Priston, R A; Riley, A J; Cruzan, G; Simpson, B J; Urbanus, J H

    2000-01-01

    Gasoline (CAS 86290-81-5) is one of the world's largest volume commercial products. Although numerous toxicology studies have been conducted, the potential for reproductive toxicity has not been directly assessed. Accordingly, a two-generation reproductive toxicity study in rats was conducted to provide base data for hazard assessment and risk characterization. The test material, vapor recovery unit gasoline (68514-15-8), is the volatile fraction of formulated gasoline and the material with which humans are most likely to come in contact. The study was of standard design. Exposures were by inhalation at target concentrations of 5000, 10 000, and 20 000 mg/m(3). The highest exposure concentration was approximately 50% of the lower explosive limit and several orders of magnitude above anticipated exposure during refueling. There were no treatment-related clinical or systemic effects in the parental animals, and no microscopic changes other than hyaline droplet nephropathy in the kidneys of the male rats. None of the reproductive parameters were affected, and there were no deleterious effects on offspring survival and growth. The potential for endocrine modulation was also assessed by analysis of sperm count and quality as well as time to onset of developmental landmarks. No toxicologically important differences were found. Therefore, the NOAEL for reproductive toxicity in this study was > or =20 000 mg/m(3). The only systemic effects, in the kidneys of the male rats, were consistent with an alpha-2 u-globulin-mediated process. This is a male rat-specific effect and not relevant to human health risk assessment.

  18. Injection locked oscillator system for pulsed metal vapor lasers

    DOEpatents

    Warner, Bruce E.; Ault, Earl R.

    1988-01-01

    An injection locked oscillator system for pulsed metal vapor lasers is disclosed. The invention includes the combination of a seeding oscillator with an injection locked oscillator (ILO) for improving the quality, particularly the intensity, of an output laser beam pulse. The present invention includes means for matching the first seeder laser pulses from the seeding oscillator to second laser pulses of a metal vapor laser to improve the quality, and particularly the intensity, of the output laser beam pulse.

  19. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery

    PubMed Central

    Hu, H. W.; Tang, G. H.; Niu, D.

    2016-01-01

    Recovery of both latent heat and condensate from boiler flue gas is significant for improving boiler efficiency and water conservation. The condensation experiments are carried out to investigate the simultaneous heat and mass transfer across the nanoporous ceramic membranes (NPCMs) which are treated to be hydrophilic and hydrophobic surfaces using the semicontinuous supercritical reactions. The effects of typical parameters including coolant flow rate, vapor/nitrogen gas mixture temperature, water vapor volume fraction and transmembrane pressure on heat and mass transfer performance are studied. The experimental results show that the hydrophilic NPCM exhibits higher performances of condensation heat transfer and condensate recovery. However, the hydrophobic modification results in remarkable degradation of heat and condensate recovery from the mixture. Molecular dynamics simulations are conducted to establish a hydrophilic/hydrophobic nanopore/water liquid system, and the infiltration characteristics of the single hydrophilic/hydrophobic nanopore is revealed. PMID:27270997

  20. High efficiency vapor-fed AMTEC system for direct conversion. Appendices for final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, W.G.; Bland, J.J.

    1997-05-23

    This report consists of four appendices for the final report. They are: Appendix A: 700 C Vapor-Fed AMTEC Cell Calculations; Appendix B: 700 C Vapor-Fed AMTEC Cell Parts Drawings; Appendix C: 800 C Vapor-Fed AMTEC Cell Calculations; and Appendix D: 800 C Wick-Pumped AMTEC Cell System Design.

  1. Airborne differential absorption lidar system for water vapor investigations

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Carter, A. F.; Wilkerson, T. D.

    1981-01-01

    Range-resolved water vapor measurements using the differential-absorption lidar (DIAL) technique is described in detail. The system uses two independently tunable optically pumped lasers operating in the near infrared with laser pulses of less than 100 microseconds separation, to minimize concentration errors caused by atmospheric scattering. Water vapor concentration profiles are calculated for each measurement by a minicomputer, in real time. The work is needed in the study of atmospheric motion and thermodynamics as well as in forestry and agriculture problems.

  2. Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Allada, Rama Kumar; Lange, Kevin; Anderson, Molly

    2011-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA) that were developed using the Aspen Custom Modeler and Aspen Plus process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  3. Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Allada, Rama Kumar; Lange, Kevin E.; Anderson, Molly S.

    2012-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA). These dynamic models were developed using the Aspen Custom Modeler (Registered TradeMark) and Aspen Plus(Registered TradeMark) process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  4. Investigation of Vapor Cooling Enhancements for Applications on Large Cryogenic Systems

    NASA Technical Reports Server (NTRS)

    Ameen, Lauren; Zoeckler, Joseph

    2017-01-01

    The need to demonstrate and evaluate the effectiveness of heat interception methods for use on a relevant cryogenic propulsion stage at a system level has been identified. Evolvable Cryogenics (eCryo) Structural Heat Intercept, Insulation and Vibration Evaluation Rig (SHIIVER) will be designed with vehicle specific geometries (SLS Exploration Upper Stage (EUS) as guidance) and will be subjected to simulated space environments. One method of reducing structure-born heat leak being investigated utilizes vapor-based heat interception. Vapor-based heat interception could potentially reduce heat leak into liquid hydrogen propulsion tanks, increasing potential mission length or payload capability. Due to the high number of unknowns associated with the heat transfer mechanism and integration of vapor-based heat interception on a realistic large-scale skirt design, a sub-scale investigation was developed. The sub-project effort is known as the Small-scale Laboratory Investigation of Cooling Enhancements (SLICE). The SLICE aims to study, design, and test sub-scale multiple attachments and flow configuration concepts for vapor-based heat interception of structural skirts. SLICE will focus on understanding the efficiency of the heat transfer mechanism to the boil-off hydrogen vapor by varying the fluid network designs and configurations. Various analyses were completed in MATLAB, Excel VBA, and COMSOL Multiphysics to understand the optimum flow pattern for heat transfer and fluid dynamics. Results from these analyses were used to design and fabricate test article subsections of a large forward skirt with vapor cooling applied. The SLICE testing is currently being performed to collect thermal mechanical performance data on multiple skirt heat removal designs while varying inlet vapor conditions necessary to intercept a specified amount of heat for a given system. Initial results suggest that applying vapor-cooling provides a 50 heat reduction in conductive heat transmission

  5. ONSITE SOLVENT RECOVERY

    EPA Science Inventory

    This study evaluated the product quality, waste reduction/pollution prevention, and economic aspects of three technologies for onsite solvent recovery. The technologies were (1) atmospheric batch distillation, (2) vacuum heat-pump distillation, and (3) low-emission vapor degreas...

  6. Lognormal Assimilation of Water Vapor in a WRF-GSI Cycled System

    NASA Astrophysics Data System (ADS)

    Fletcher, S. J.; Kliewer, A.; Jones, A. S.; Forsythe, J. M.

    2015-12-01

    Recent publications have shown the viability of both detecting a lognormally-distributed signal for water vapor mixing ratio and the improved quality of satellite retrievals in a 1DVAR mixed lognormal-Gaussian assimilation scheme over a Gaussian-only system. This mixed scheme is incorporated into the Gridpoint Statistical Interpolation (GSI) assimilation scheme with the goal of improving forecasts from the Weather Research and Forecasting (WRF) Model in a cycled system. Results are presented of the impact of treating water vapor as a lognormal random variable. Included in the analysis are: 1) the evolution of Tropical Storm Chris from 2006, and 2) an analysis of a "Pineapple Express" water vapor event from 2005 where a lognormal signal has been previously detected.

  7. Thermoeconomic analysis of an integrated multi-effect desalination thermal vapor compression (MED-TVC) system with a trigeneration system using triple-pressure HRSG

    NASA Astrophysics Data System (ADS)

    Ghaebi, Hadi; Abbaspour, Ghader

    2018-05-01

    In this research, thermoeconomic analysis of a multi-effect desalination thermal vapor compression (MED-TVC) system integrated with a trigeneration system with a gas turbine prime mover is carried out. The integrated system comprises of a compressor, a combustion chamber, a gas turbine, a triple-pressure (low, medium and high pressures) heat recovery steam generator (HRSG) system, an absorption chiller cycle (ACC), and a multi-effect desalination (MED) system. Low pressure steam produced in the HRSG is used to drive absorption chiller cycle, medium pressure is used in desalination system and high pressure superheated steam is used for heating purposes. For thermodynamic and thermoeconomic analysis of the proposed integrated system, Engineering Equation Solver (EES) is used by employing mass, energy, exergy, and cost balance equations for each component of system. The results of the modeling showed that with the new design, the exergy efficiency in the base design will increase to 57.5%. In addition, thermoeconomic analysis revealed that the net power, heating, fresh water and cooling have the highest production cost, respectively.

  8. 46 CFR 39.1013 - U.S.-flagged tank vessel certification procedures for vapor control system designs-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... vapor control system designs-TB/ALL. 39.1013 Section 39.1013 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS General § 39.1013 U.S.-flagged tank vessel certification procedures for vapor control system designs—TB/ALL. (a) For an existing Coast Guard-approved vapor...

  9. 46 CFR 39.1013 - U.S.-flagged tank vessel certification procedures for vapor control system designs-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... vapor control system designs-TB/ALL. 39.1013 Section 39.1013 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS General § 39.1013 U.S.-flagged tank vessel certification procedures for vapor control system designs—TB/ALL. (a) For an existing Coast Guard-approved vapor...

  10. Assessment of Mitigation Systems on Vapor Intrusion ...

    EPA Pesticide Factsheets

    Vapor intrusion is the migration of subsurface vapors, including radon and volatile organic compounds (VOCs), in soil gas from the subsurface to indoor air. Vapor intrusion happens because there are pressure and concentration differentials between indoor air and soil gas. Indoor environments are often negatively pressurized with respect to outdoor air and soil gas (for example, from exhaust fans or the stack effect), and this pressure difference allows soil gas containing subsurface vapors to flow into indoor air through advection. In addition, concentration differentials cause VOCs and radon to migrate from areas of higher to lower concentrations through diffusion, which is another cause of vapor intrusion. Current practice for evaluating the vapor intrusion pathway involves a multiple line of evidence approach based on direct measurements in groundwater, external soil gas, subslab soil gas, and/or indoor air. No single line of evidence is considered definitive, and direct measurements of vapor intrusion can be costly, especially where significant spatial and temporal variability require repeated measurements at multiple locations to accurately assess the chronic risks of long-term exposure to volatile organic compounds (VOCs) like chloroform, perchloroethylene (PCE), and trichloroethylene (TCE).

  11. Design of Advanced Atmospheric Water Vapor Differential Absorption Lidar (DIAL) Detection System

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Luck, William S., Jr.; DeYoung, Russell J.

    1999-01-01

    The measurement of atmospheric water vapor is very important for understanding the Earth's climate and water cycle. The lidar atmospheric sensing experiment (LASE) is an instrument designed and operated by the Langley Research Center for high precision water vapor measurements. The design details of a new water vapor lidar detection system that improves the measurement sensitivity of the LASE instrument by a factor of 10 are discussed. The new system consists of an advanced, very low noise, avalanche photodiode (APD) and a state-of-the-art signal processing circuit. The new low-power system is also compact and lightweight so that it would be suitable for space flight and unpiloted atmospheric vehicles (UAV) applications. The whole system is contained on one small printed circuit board (9 x 15 sq cm). The detection system is mounted at the focal plane of a lidar receiver telescope, and the digital output is read by a personal computer with a digital data acquisition card.

  12. Development, evaluation and comparison of two independent sampling and analytical methods for ortho-phthalaldehyde vapors and condensation aerosols in air† ‡

    PubMed Central

    2015-01-01

    Two independent sampling and analytical methods for ortho-phthalaldehyde (OPA) in air have been developed, evaluated and compared (1) a reagent-coated solid sorbent HPLC-UV method and (2) an impinger-fluorescence method. In the first method, air sampling is conducted at 1.0 L min−1 with a sampler containing 350 mg of silica gel coated with 1 mg of acidified 2,4-dinitrophenylhydrazine (DNPH). After sampling, excess DNPH in ethyl acetate is added to the sampler prior to storage for 68 hours. The OPA-DNPH derivative is eluted with 4.0 mL of dimethyl sulfoxide (DMSO) for measurement by HPLC with a UV detector set at 3S5 nm. The estimated detection limit is 0.016 µg per sample or 0.067 µg m−3 (0.012 ppb) for a 240 L air sample. Recoveries of vapor spikes at levels of 1.2 to 6.2 µg were 96 to 101%. Recoveries of spikes as mixtures of vapor and condensation aerosols were 97 to 100%. In the second method, air sampling is conducted at 1.0 L mm−1 with a midget impinger containing 10 mL of DMSO solution containing N-acetyl-l-cysteine and ethylenediamine. The fluorescence reading is taken 80 min after the completion of air sampling. Since the time of taking the fluorescence reading is critical, the reading is taken with a portable fluorometer. The estimated detection limit is 0.024 µg per sample or 0.1 µg m−3 (0.018 ppb) for a 240 L air sample. Recoveries of OPA vapor spikes at levels of 1.4 to 5.0 µg per sample were 97 to 105%. Recoveries of spikes as mixtures of vapors and condensation aerosols were 95 to 99%. The collection efficiency for a mixture of vapor and condensation aerosol was 99.4%. The two methods were compared side-by-side in a generation system constructed for producing controlled atmospheres of OPA vapor in air. Average air concentrations of OPA vapor found by both methods agreed within ±10%. PMID:26346658

  13. Gas Separation Using Organic-Vapor-Resistent Membranes In Conjunctin With Organic-Vapor-Selective Membranes

    DOEpatents

    Baker, Richard W.; Pinnau, Ingo; He, Zhenjie; Da Costa, Andre R.; Daniels, Ramin; Amo, Karl D.; Wijmans, Johannes G.

    2003-06-03

    A process for treating a gas mixture containing at least an organic compound gas or vapor and a second gas, such as natural gas, refinery off-gas or air. The process uses two sequential membrane separation steps, one using membrane selective for the organic compound over the second gas, the other selective for the second gas over the organic vapor. The second-gas-selective membranes use a selective layer made from a polymer having repeating units of a fluorinated polymer, and demonstrate good resistance to plasticization by the organic components in the gas mixture under treatment, and good recovery after exposure to liquid aromatic hydrocarbons. The membrane steps can be combined in either order.

  14. 46 CFR 39.1015 - Foreign-flagged tank vessel certification procedures for vapor control system designs-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... vapor control system designs-TB/ALL. 39.1015 Section 39.1015 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS General § 39.1015 Foreign-flagged tank vessel certification procedures for vapor control system designs—TB/ALL. As an alternative to meeting the requirements...

  15. 46 CFR 39.1015 - Foreign-flagged tank vessel certification procedures for vapor control system designs-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... vapor control system designs-TB/ALL. 39.1015 Section 39.1015 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS General § 39.1015 Foreign-flagged tank vessel certification procedures for vapor control system designs—TB/ALL. As an alternative to meeting the requirements...

  16. Removal of ammonia from urine vapor by a dual-catalyst system

    NASA Technical Reports Server (NTRS)

    Budininkas, P.

    1977-01-01

    The feasibility of removing ammonia from urine vapor by a low-temperature dual-catalyst system has been demonstrated. The process is based on the catalytic oxidation of ammonia to a mixture of nitrogen, nitrous oxide, and water, followed by a catalytic decomposition of the nitrous oxide into its elements. Potential ammonia oxidation and nitrous oxide decomposition catalysts were first screened with artificial gas mixtures, then tested with the actual urine vapor produced by boiling untreated urine. A suitable dual-catalyst bed arrangement was found that achieved the removal of ammonia and also organic carbon, and recovered water of good quality from urine vapor.

  17. Interfacial nonequilibrium and Bénard-Marangoni instability of a liquid-vapor system

    NASA Astrophysics Data System (ADS)

    Margerit, J.; Colinet, P.; Lebon, G.; Iorio, C. S.; Legros, J. C.

    2003-10-01

    We study Bénard-Marangoni instability in a system formed by a horizontal liquid layer and its overlying vapor. The liquid is lying on a hot rigid plate and the vapor is bounded by a cold parallel plate. A pump maintains a reduced pressure in the vapor layer and evacuates the vapor. This investigation is undertaken within the classical quasisteady approximation for both the vapor and the liquid phases. The two layers are separated by a deformable interface. Temporarily frozen temperature and velocity distributions are employed at each instant for the stability analysis, limited to infinitesimal disturbances (linear regime). We use irreversible thermodynamics to model the phase change under interfacial nonequilibrium. Within this description, the interface appears as a barrier for transport of both heat and mass. Hence, in contrast with previous studies, we consider the possibility of a temperature jump across the interface, as recently measured experimentally. The stability analysis shows that the interfacial resistances to heat and mass transfer have a destabilizing influence compared to an interface that is in thermodynamic equilibrium. The role of the fluctuations in the vapor phase on the onset of instability is discussed. The conditions to reduce the system to a one phase model are also established. Finally, the influence of the evaporation parameters and of the presence of an inert gas on the marginal stability curves is discussed.

  18. Pressure control in interfacial systems: Atomistic simulations of vapor nucleation

    NASA Astrophysics Data System (ADS)

    Marchio, S.; Meloni, S.; Giacomello, A.; Valeriani, C.; Casciola, C. M.

    2018-02-01

    A large number of phenomena of scientific and technological interest involve multiple phases and occur at constant pressure of one of the two phases, e.g., the liquid phase in vapor nucleation. It is therefore of great interest to be able to reproduce such conditions in atomistic simulations. Here we study how popular barostats, originally devised for homogeneous systems, behave when applied straightforwardly to heterogeneous systems. We focus on vapor nucleation from a super-heated Lennard-Jones liquid, studied via hybrid restrained Monte Carlo simulations. The results show a departure from the trends predicted for the case of constant liquid pressure, i.e., from the conditions of classical nucleation theory. Artifacts deriving from standard (global) barostats are shown to depend on the size of the simulation box. In particular, for Lennard-Jones liquid systems of 7000 and 13 500 atoms, at conditions typically found in the literature, we have estimated an error of 10-15 kBT on the free-energy barrier, corresponding to an error of 104-106 s-1σ-3 on the nucleation rate. A mechanical (local) barostat is proposed which heals the artifacts for the considered case of vapor nucleation.

  19. Atmospheric Dispersion about a Heavy Gas Vapor Detention System.

    NASA Astrophysics Data System (ADS)

    Shin, Seong-Hee

    Dispersion of liquefied natural gas (LNG) in the event of an accidental spill is a major concern in LNG storage and transport safety planning, hazard response, and facility siting. Falcon Series large scale LNG spill experiments were planned by Lawrence Livermore National Laboratory (LLNL) for the Department of Transportation (DOT) and the Gas Research Institute (GRI) as part of a joint government/industry study in 1987 to evaluate the effectiveness of vapor fences as a mitigating technique for accidental release of LNG and to assist in validating wind tunnel and numerical methods for vapor dispersion simulation. Post-field-spill wind-tunnel experiments were performed in Environmental Wind Tunnel (EWT) (1988, 1989) to augment the LNG Vapor Fence Program data obtained during the Falcon Test Series. The program included four different model length scales and two different simulant gases. The purpose of this program is to provide a basis for the analysis of the simulation of physical modeling tests using proper physical modeling techniques and to assist in the development and verification of analytical models. Field data and model data were compared and analyzed by surface pattern comparisons and statistical methods. A layer-averaged slab model developed by Meroney et al. (1988) (FENC23) was expanded to evaluate an enhanced entrainment model proposed for dense gas dispersion including the effect of vapor barriers, and the numerical model was simulated for Falcon tests without the fence and with the vapor fence to examine the effectiveness of vapor detention system on heavy gas dispersion. Model data and the field data were compared with the numerical model data, and degree of similarity between data were assessed.

  20. ON-SITE SOLVENT RECOVERY

    EPA Science Inventory

    This study evaluated the product quality, waste reduction/pollution prevention, and economic aspects of three technologies for onsite solvent recovery: atmospheric batch distillation, vacuum heat-pump distillation, and low-emission vapor degreasing. The atmospheric and vacuum ...

  1. Cost analysis of water recovery systems

    NASA Technical Reports Server (NTRS)

    Yakut, M. M.

    1972-01-01

    Cost and performance data from Gemini, Skylab, and other aerospace and biotechnology programs were analyzed to identify major cost elements required to establish cost estimating relationships for advanced life support subsystems for long range planning in support of earth orbital programs. Cost analysis are presented for five leading water reclamation systems; (1) RITE waste management-water system;(2) reverse osmosis system;(3) multifiltration system;(4) vapor compression system; and(5) closed air evaporation system with electrolytic pretreatment.

  2. Deposition of naphthalene and tetradecane vapors in models of the human respiratory system.

    PubMed

    Zhang, Zhe; Kleinstreuer, Clement

    2011-01-01

    Jet-propulsion fuel (particularly JP-8) is currently being used worldwide, exposing especially Air Force personnel and people living near airfields to JP-8 vapors and aerosols during aircraft fueling, maintenance operations, and/or cold starts. JP-8 is a complex mixture containing >200, mostly toxic, aliphatic and aromatic hydrocarbon compounds of which tetradecane and naphthalene were chosen as two representative chemical markers for computer simulations. Thus, transport and deposition of naphthalene and tetradecane vapors have been simulated in models of the human respiratory system. The inspiratory deposition data were analyzed in terms of regional deposition fractions (DFs) and deposition enhancement factors (DEF). The vapor depositions are affected by vapor properties (e.g. diffusivity), airway geometric features, breathing patterns, inspiratory flow rates, as well as airway-wall absorption parameter. Specifically, the respiratory uptake of vapors is greatly influenced by the degree of airway-wall absorption. For example, being an almost insoluble species in the mucus layer, the deposition of tetradecane vapor is nearly zero in the extrathoracic and tracheobronchial (TB) airways, that is, the DF is <1%. The remaining vapors may penetrate further and deposit in the alveolar airways. The DF of tetradecane vapors during inhalation in the alveolar region can range from 7% to 24%, depending on breathing waveform, inhalation rate, and thickness of the mucus layer. In contrast, naphthalene vapor almost completely deposits in the extrathoracic and TB airways and hardly moves downstream and deposits in the respiratory zone. The DFs of naphthalene vapor in the extrathoracic airways from nasal/oral to trachea under normal breathing conditions (Q = 15-60 L/min) are about 12-34%, although they are about 66-87% in the TB airways. In addition, the variation of breathing routes (say, from nasal breathing to oral breathing) may influence the vapor deposition in the

  3. Mercury recovery from mercury-containing wastes using a vacuum thermal desorption system.

    PubMed

    Lee, Woo Rim; Eom, Yujin; Lee, Tai Gyu

    2017-02-01

    Mercury (Hg)-containing waste from various industrial facilities is commonly treated by incineration or stabilization/solidification and retained in a landfill at a managed site. However, when highly concentrated Hg waste is treated using these methods, Hg is released into the atmosphere and soil environment. To eliminate these risks, Hg recovery technology using thermal treatment has been developed and commercialized to recover Hg from Hg-containing waste for safe disposal. Therefore, we developed Hg recovery equipment to treat Hg-containing waste under a vacuum of 6.67kPa (abs) at 400°C and recover the Hg. In addition, the dust generated from the waste was separated by controlling the temperature of the dust filtration unit to 230°C. Additionally, water and Hg vapors were condensed in a condensation unit. The Hg removal rate after waste treatment was 96.75%, and the Hg recovery rate as elemental Hg was 75.23%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Loop system for creating jet fuel vapor standards used in the calibration of infrared spectrophotometers and gas chromatographs.

    PubMed

    Reboulet, James; Cunningham, Robert; Gunasekar, Palur G; Chapman, Gail D; Stevens, Sean C

    2009-02-01

    A whole body inhalation study of mixed jet fuel vapor and its aerosol necessitated the development of a method for preparing vapor only standards from the neat fuel. Jet fuel is a complex mixture of components which partitions between aerosol and vapor when aspirated based on relative volatility of the individual compounds. A method was desired which could separate the vapor portion from the aerosol component to prepare standards for the calibration of infrared spectrophotometers and a head space gas chromatography system. A re-circulating loop system was developed which provided vapor only standards whose composition matched those seen in an exposure system. Comparisons of nominal concentrations in the exposure system to those determined by infrared spectrophotometry were in 92-95% agreement. Comparison of jet fuel vapor concentrations determined by infrared spectrophotometry compared to head space gas chromatography yielded a 93% overall agreement in trial runs. These levels of agreement show the loop system to be a viable method for creating jet fuel vapor standards for calibrating instruments.

  5. Metal vapor arc switch electromagnetic accelerator technology

    NASA Technical Reports Server (NTRS)

    Mongeau, P. P.

    1984-01-01

    A multielectrode device housed in an insulator vacuum vessel, the metal vapor vacuum switch has high power capability and can hold off voltages up to the 100 kilovolt level. Such switches can be electronically triggered and can interrupt or commutate at a zero current crossing. The physics of arc initiation, arc conduction, and interruption are examined, including material considerations; inefficiencies; arc modes; magnetic field effects; passive and forced extinction; and voltage recovery. Heating, electrode lifetime, device configuration, and external circuit configuration are discussed. The metal vapor vacuum switch is compared with SCRs, GTOs, spark gaps, ignitrons, and mechanical breakers.

  6. Vapor phase pyrolysis

    NASA Technical Reports Server (NTRS)

    Steurer, Wolfgang

    1992-01-01

    The vapor phase pyrolysis process is designed exclusively for the lunar production of oxygen. In this concept, granulated raw material (soil) that consists almost entirely of metal oxides is vaporized and the vapor is raised to a temperature where it dissociates into suboxides and free oxygen. Rapid cooling of the dissociated vapor to a discrete temperature causes condensation of the suboxides, while the oxygen remains essentially intact and can be collected downstream. The gas flow path and flow rate are maintained at an optimum level by control of the pressure differential between the vaporization region and the oxygen collection system with the aid of the environmental vacuum.

  7. Design and the parametric testing of the space station prototype integrated vapor compression distillation water recovery module

    NASA Technical Reports Server (NTRS)

    Reveley, W. F.; Nuccio, P. P.

    1975-01-01

    Potable water for the Space Station Prototype life support system is generated by the vapor compression technique of vacuum distillation. A description of a complete three-man modular vapor compression water renovation loop that was built and tested is presented; included are all of the pumps, tankage, chemical post-treatment, instrumentation, and controls necessary to make the loop representative of an automatic, self-monitoring, null gravity system. The design rationale is given and the evolved configuration is described. Presented next are the results of an extensive parametric test during which distilled water was generated from urine and urinal flush water with concentration of solids in the evaporating liquid increasing progressively to 60 percent. Water quality, quantity and production rate are shown together with measured energy consumption rate in terms of watt-hours per kilogram of distilled water produced.

  8. Heat Recovery System

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Ball Metal's design of ducting and controls for series of roof top heat exchangers was inspired by Tech Briefs. Heat exchangers are installed on eight press and coating lines used to decorate sheet metal. The heat recovery system provides an estimated energy savings of more than $250,000 per year.

  9. Climate and Ozone Response to Increased Stratospheric Water Vapor

    NASA Technical Reports Server (NTRS)

    Shindell, Drew T.

    2001-01-01

    Stratospheric water vapor abundance affects ozone, surface climate, and stratospheric temperatures. From 30-50 km altitude, temperatures show global decreases of 3-6 K over recent decades. These may be a proxy for water vapor increases, as the Goddard Institute for Space Studies (GISS) climate model reproduces these trends only when stratospheric water vapor is allowed to increase. Observations suggest that stratospheric water vapor is indeed increasing, however, measurements are extremely limited in either spatial coverage or duration. The model results suggest that the observed changes may be part of a global, long-term trend. Furthermore, the required water vapor change is too large to be accounted for by increased production within the stratosphere, suggesting that ongoing climate change may be altering tropospheric input. The calculated stratospheric water vapor increase contributes an additional approximately equals 24% (approximately equals 0.2 W/m(exp 2)) to the global warming from well-mixed greenhouse gases over the past two decades. Observed ozone depletion is also better reproduced when destruction due to increased water vapor is included. If the trend continues, it could increase future global warming and impede stratospheric ozone recovery.

  10. Design Recovery Technology for Real-Time Systems.

    DTIC Science & Technology

    1995-10-01

    RL-TR-95-208 Final Technical Report October 1995 DESIGN RECOVERY TECHNOLOGY FOR REAL TIME SYSTEMS The MITRE Corporation Lester J. Holtzblatt...92 - Jan 95 4. TTTLE AND SUBTITLE DESIGN RECOVERY TECHNOLOGY FOR REAL - TIME SYSTEMS 6. AUTHOR(S) Lester J. Holtzblatt, Richard Piazza, and Susan...behavior of real - time systems in general, our initial efforts have centered on recovering this information from one system in particular, the Modular

  11. System for the removal of contaminant soil-gas vapors

    DOEpatents

    Weidner, Jerry R.; Downs, Wayne C.; Kaser, Timothy G.; Hall, H. James

    1997-01-01

    A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources.

  12. Automated product recovery in a HG-196 photochemical isotope separation process

    DOEpatents

    Grossman, Mark W.; Speer, Richard

    1992-01-01

    A method of removing deposited product from a photochemical reactor used in the enrichment of .sup.196 Hg has been developed and shown to be effective for rapid re-cycling of the reactor system. Unlike previous methods relatively low temperatures are used in a gas and vapor phase process of removal. Importantly, the recovery process is understood in a quantitative manner so that scaling design to larger capacity systems can be easily carried out.

  13. Refueling emissions from cars in Japan: Compositions, temperature dependence and effect of vapor liquefied collection system

    NASA Astrophysics Data System (ADS)

    Yamada, Hiroyuki; Inomata, Satoshi; Tanimoto, Hiroshi

    2015-11-01

    Refueling emissions from cars available on the Japanese market, which were not equipped with specific controlling devices, were investigated. For the composition analysis, a proton transfer reaction plus switchable reagent ion mass spectrometry (PTR + SRI-MS), which is capable of real-time measurement, was used. In addition, the performance of a vapor liquefied collection system (VLCS), which is a recently developed controlling device, was evaluated and compared with an onboard refueling vapor recovery (ORVR) system. The refueling emission factor of uncontrolled vehicles at 20 °C was 1.02 ± 0.40 g/L in the case dispensing 20 L of fuel. The results of composition analysis indicated that the maximum incremental reactivity (MIR) of refueling emissions in Japan was 3.49 ± 0.83. The emissions consist of 80% alkanes and 20% alkenes, and aromatics and di-enes were negligible. C4 alkene had the highest impact on the MIR of refueling emissions. The amounts of refueling emissions were well reproduced by a function developed by MOVE2010 in the temperature range of 5-35 °C. The compositions of the refueling emissions varied in this temperature range, but the change in MIR was negligible. The trapping efficiency of VLCS was the same level as that of the ORVR (over 95%). The MIRs of refueling and evaporative emissions were strongly affected by that of the test fuel. This study and our previous study indicated that MIRbreakthrough ≈ MIRrefueling ≈ MIRfuel + 0.5 and MIRpermeation ≈ MIRfuel. The real-world estimated average MIRfuel in Japan was about 3.0.

  14. Oxide vapor distribution from a high-frequency sweep e-beam system

    NASA Astrophysics Data System (ADS)

    Chow, R.; Tassano, P. L.; Tsujimoto, N.

    1995-03-01

    Oxide vapor distributions have been determined as a function of operating parameters of a high frequency sweep e-beam source combined with a programmable sweep controller. We will show which parameters are significant, the parameters that yield the broadest oxide deposition distribution, and the procedure used to arrive at these conclusions. A design-of-experimental strategy was used with five operating parameters: evaporation rate, sweep speed, sweep pattern (pre-programmed), phase speed (azimuthal rotation of the pattern), profile (dwell time as a function of radial position). A design was chosen that would show which of the parameters and parameter pairs have a statistically significant effect on the vapor distribution. Witness flats were placed symmetrically across a 25 inches diameter platen. The stationary platen was centered 24 inches above the e-gun crucible. An oxide material was evaporated under 27 different conditions. Thickness measurements were made with a stylus profilometer. The information will enable users of the high frequency e-gun systems to optimally locate the source in a vacuum system and understand which parameters have a major effect on the vapor distribution.

  15. Development of the Next Generation Type Water Recovery System

    NASA Astrophysics Data System (ADS)

    Oguchi, Mitsuo; Tachihara, Satoru; Maeda, Yoshiaki; Ueoka, Terumi; Soejima, Fujito; Teranishi, Hiromitsu

    According to NASA, an astronaut living on the International Space Station (ISS) requires approximately 7 kg of water per day. This includes 2 kg of drinking water as well as sanitary fresh water for hand washing, gargling, etc. This water is carried to the space station from the earth, so when more people are staying on the space station, or staying for a longer period of time, the cost of transporting water increases. Accordingly, water is a valuable commodity, and restrictions are applied to such activities as brushing teeth, washing hair, and washing clothes. The life of an astronaut in space is not necessarily a healthy one. JAXA has experience in the research of water recovery systems. Today, utilizing knowledge learned through experiences living on the space station and space shuttles, and taking advantage of the development of new materials for device construction, it is possible to construct a new water recovery system. Therefore, JAXA and New Medican Tech Corporation (NMT) have created a system for collaborative development. Based on the technologies of both companies, we are proceeding to develop the next generation of water recovery devices in order to contribute to safe, comfortable, and healthy daily life for astronauts in space. The goal of this development is to achieve a water purification system based on reverse osmosis (RO) membranes that can perform the following functions. • Preprocessing that removes ammonia and breaks down organic matter contained in urine. • Post-processing that adds minerals and sterilizes the water. • Online TOC measurement for monitoring water quality. • Functions for measuring harmful substances. The RO membrane is an ultra-low-pressure type membrane with a 0.0001 micron (0.1 nanometer) pore size and an operating pressure of 0.4 to 0.6 MPa. During processing with the RO membrane, nearly all of the minerals contained in the cleaned water are removed, resulting in water that is near the quality of deionized water

  16. Copper vapor laser acoustic thermometry system

    DOEpatents

    Galkowski, Joseph J.

    1987-01-01

    A copper vapor laser (CVL) acoustic thermometry system is disclosed. The invention couples an acoustic pulse a predetermined distance into a laser tube by means of a transducer and an alumina rod such that an echo pulse is returned along the alumina rod to the point of entry. The time differential between the point of entry of the acoustic pulse into the laser tube and the exit of the echo pulse is related to the temperature at the predetermined distance within the laser tube. This information is processed and can provide an accurate indication of the average temperature within the laser tube.

  17. System for the removal of contaminant soil-gas vapors

    DOEpatents

    Weidner, J.R.; Downs, W.C.; Kaser, T.G.; Hall, H.J.

    1997-12-16

    A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources. 4 figs.

  18. Timing Recovery Strategies in Magnetic Recording Systems

    NASA Astrophysics Data System (ADS)

    Kovintavewat, Piya

    At some point in a digital communications receiver, the received analog signal must be sampled. Good performance requires that these samples be taken at the right times. The process of synchronizing the sampler with the received analog waveform is known as timing recovery. Conventional timing recovery techniques perform well only when operating at high signal-to-noise ratio (SNR). Nonetheless, iterative error-control codes allow reliable communication at very low SNR, where conventional techniques fail. This paper provides a detailed review on the timing recovery strategies based on per-survivor processing (PSP) that are capable of working at low SNR. We also investigate their performance in magnetic recording systems because magnetic recording is a primary method of storage for a variety of applications, including desktop, mobile, and server systems. Results indicate that the timing recovery strategies based on PSP perform better than the conventional ones and are thus worth being employed in magnetic recording systems.

  19. Recovery Systems Design Guide

    DTIC Science & Technology

    1978-12-01

    analysis. retrieval parachute concepts are being investigated. The development of recovery systems for fast flying, possible out-of-control missiles proved...system. 21 •, . , r, _ . .. , . " , , . : . .. . " . , ,- Reference 32 suggests certain applications (speed/ Fast Opening. An emergency escape...operation, physiological aspect of flying and escape. fast parachute opening., Low Rate of Descent. A sea level rate of descent low parachute opening

  20. A novel energy recovery system for parallel hybrid hydraulic excavator.

    PubMed

    Li, Wei; Cao, Baoyu; Zhu, Zhencai; Chen, Guoan

    2014-01-01

    Hydraulic excavator energy saving is important to relieve source shortage and protect environment. This paper mainly discusses the energy saving for the hybrid hydraulic excavator. By analyzing the excess energy of three hydraulic cylinders in the conventional hydraulic excavator, a new boom potential energy recovery system is proposed. The mathematical models of the main components including boom cylinder, hydraulic motor, and hydraulic accumulator are built. The natural frequency of the proposed energy recovery system is calculated based on the mathematical models. Meanwhile, the simulation models of the proposed system and a conventional energy recovery system are built by AMESim software. The results show that the proposed system is more effective than the conventional energy saving system. At last, the main components of the proposed energy recovery system including accumulator and hydraulic motor are analyzed for improving the energy recovery efficiency. The measures to improve the energy recovery efficiency of the proposed system are presented.

  1. A Novel Energy Recovery System for Parallel Hybrid Hydraulic Excavator

    PubMed Central

    Li, Wei; Cao, Baoyu; Zhu, Zhencai; Chen, Guoan

    2014-01-01

    Hydraulic excavator energy saving is important to relieve source shortage and protect environment. This paper mainly discusses the energy saving for the hybrid hydraulic excavator. By analyzing the excess energy of three hydraulic cylinders in the conventional hydraulic excavator, a new boom potential energy recovery system is proposed. The mathematical models of the main components including boom cylinder, hydraulic motor, and hydraulic accumulator are built. The natural frequency of the proposed energy recovery system is calculated based on the mathematical models. Meanwhile, the simulation models of the proposed system and a conventional energy recovery system are built by AMESim software. The results show that the proposed system is more effective than the conventional energy saving system. At last, the main components of the proposed energy recovery system including accumulator and hydraulic motor are analyzed for improving the energy recovery efficiency. The measures to improve the energy recovery efficiency of the proposed system are presented. PMID:25405215

  2. Continuous Estimates of Precipitable Water Vapor Within and Around Hurricane Systems

    NASA Astrophysics Data System (ADS)

    Braun, J. J.; Iwabuchi, T.; van Hove, T.

    2008-12-01

    This study investigates how estimates of precipitable water vapor (PW) from Global Positioning System (GPS) stations can be used to quantify how atmospheric moisture influences the intensity of tropical storms and hurricanes. The motivation for this study is based on the fact that hurricanes derive their strength through water vapor that is both evaporated from warm ocean surfaces and the existing moisture in the surrounding atmospheric environment. Observationally, there are relatively few instruments that can accurately measure water vapor in the presence of clouds and rain. Retrievals of PW using GPS stations may be the most reliable way to continuously monitor column integrated water vapor. Using storm information from the National Hurricane Center (www.nhc.noaa.gov), we have compared storm intensity to PW estimates for all tropical storms and hurricanes making landfall within 100-km of a GPS station between 2003 and 2008. We find that PW is inversely correlated (r**2 < -0.7) to the drop in surface pressure observed at that station. We have also begun to relate atmospheric PW at a station to the local sea surface temperature (SST). This comparison can be used to measure how strongly atmospheric water vapor and SST are coupled. It can also be used to measure how quickly the atmosphere responds to changes in SST. Finally we have compared the estimated PW to the Global Forecast System (GFS) analysis fields that are used to initialize numerical weather prediction models. This comparison indicates that the GFS analysis fields have significantly larger errors in atmospheric moisture in the Caribbean and Gulf of Mexico when compared to differences over the continental United States. These results illustrate that estimates of PW are an important data set for atmospheric scientists and forecasters attempting to improve the prediction of hurricane intensity.

  3. Effects of Vaporized Decontamination Systems on Selected Building Interior Materials: Vaporized Hydrogen Peroxide

    DTIC Science & Technology

    2009-01-01

    surfaces in buildings following a terrorist attack using CB agents. Vaporized hydrogen peroxide ( VHP ) and Cl02 are decontamination technologies that...decontaminant. The focus of this technical report is the evaluation of the building interior materials and the Steris VHP technology. 15. SUBJECT...TERMS Material Compatibility VHP vaporized hydrogen peroxide 16. SECURITY CLASSIFICATION OF: a. REPORT U b. ABSTRACT U c. THIS PAGE U 17

  4. Automated product recovery in a Hg-196 photochemical isotope separation process

    DOEpatents

    Grossman, M.W.; Speer, R.

    1992-07-21

    A method of removing deposited product from a photochemical reactor used in the enrichment of [sup 196]Hg has been developed and shown to be effective for rapid re-cycling of the reactor system. Unlike previous methods relatively low temperatures are used in a gas and vapor phase process of removal. Importantly, the recovery process is understood in a quantitative manner so that scaling design to larger capacity systems can be easily carried out. 2 figs.

  5. Flip-Flop Recovery System for sounding rocket payloads

    NASA Technical Reports Server (NTRS)

    Flores, A., Jr.

    1986-01-01

    The design, development, and testing of the Flip-Flop Recovery System, which protects sensitive forward-mounted instruments from ground impact during sounding rocket payload recovery operations, are discussed. The system was originally developed to reduce the impact damage to the expensive gold-plated forward-mounted spectrometers in two existing Taurus-Orion rocket payloads. The concept of the recovery system is simple: the payload is flipped over end-for-end at a predetermined time just after parachute deployment, thus minimizing the risk of damage to the sensitive forward portion of the payload from ground impact.

  6. Microbial Heat Recovery Cell (MHRC) System Concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This factsheet describes a project that aimed to develop a microbial heat recovery cell (MHRC) system that combines a microbial reverse electrodialysis technology with waste heat recovery to convert industrial effluents into electricity and hydrogen.

  7. Development of Nb{sub 3}Sn Cavity Vapor Diffusion Deposition System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eremeev, Grigory V.; Macha, Kurt M.; Clemens, William A.

    2014-02-01

    Nb{sub 3}Sn is a BCS superconductors with the superconducting critical temperature higher than that of niobium, so theoretically it surpasses the limitations of niobium in RF fields. The feasibility of technology has been demonstrated at 1.5 GHz with Nb{sub 3}Sn vapor deposition technique at Wuppertal University. The benefit at these frequencies is more pronounced at 4.2 K, where Nb{sub 3}Sn coated cavities show RF resistances an order of magnitude lower than that of niobium. At Jefferson Lab we started the development of Nb{sub 3}Sn vapor diffusion deposition system within an R\\&D development program towards compact light sources. Here we presentmore » the current progress of the system development.« less

  8. Cost analysis of oxygen recovery systems

    NASA Technical Reports Server (NTRS)

    Yakut, M. M.

    1973-01-01

    Report is made of the cost analysis of four leading oxygen recovery subsystems which include two carbon dioxide reduction subsystems and two water electrolysis subsystems, namely, the solid polymer electrolyte and the circulating KOH electrolyte. The four oxygen recovery systems were quantitatively evaluated. System characteristics, including process flows, performance, and physical characteristics were also analyzed. Additionally, the status of development of each of the systems considered and the required advance technology efforts required to bring conceptual and/or pre-prototype hardware to an operational prototype status were defined. Intimate knowledge of the operations, development status, and capabilities of the systems to meet space mission requirements were found to be essential in establishing the cost estimating relationships for advanced life support systems.

  9. 46 CFR 182.480 - Flammable vapor detection systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 100 GROSS TONS) MACHINERY INSTALLATION Specific Machinery Requirements § 182.480 Flammable vapor... permit calibration in a vapor free atmosphere. (g) Electrical connections, wiring, and components for a...

  10. TR-IA payload recovery system

    NASA Astrophysics Data System (ADS)

    Kochiyama, Jiro; Kinai, Shigeki; Morita, Shinya

    The TR-IA microgravity-experimentation sounding rocket baseline configuration and recovery system are presented. Aerodynamic braking is incorporated through the requisite positioning of the reentry-body center of gravity. The recovery sequence is initiated by baroswitches, which eject the pilot chute. Even in the event of flotation bag malfunction, the structure containing the experiment is watertight. An account is given of the nature and the results of the performance tests conducted to establish the soundness of various materials and components.

  11. Sabatier Reactor System Integration with Microwave Plasma Methane Pyrolysis Post-Processor for Closed-Loop Hydrogen Recovery

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Miller, Lee A.; Williams, Tom

    2010-01-01

    The Carbon Dioxide Reduction Assembly (CRA) designed and developed for the International Space Station (ISS) represents the state-of-the-art in carbon dioxide reduction (CDRe) technology. The CRA produces water and methane by reducing carbon dioxide with hydrogen via the Sabatier reaction. The water is recycled to the Oxygen Generation Assembly (OGA) and the methane is vented overboard resulting in a net loss of hydrogen. The proximity to earth and the relative ease of logistics resupply from earth allow for a semi-closed system on ISS. However, long-term manned space flight beyond low earth orbit (LEO) dictates a more thoroughly closed-loop system involving significantly higher recovery of hydrogen, and subsequent recovery of oxygen, to minimize costs associated with logistics resupply beyond LEO. The open-loop ISS system for CDRe can be made closed-loop for follow-on missions by further processing methane to recover hydrogen. For this purpose, a process technology has been developed that employs a microwave-generated plasma to reduce methane to hydrogen and acetylene resulting in 75% theoretical recovery of hydrogen. In 2009, a 1-man equivalent Plasma Pyrolysis Assembly (PPA) was delivered to the National Aeronautics and Space Administration (NASA) for technical evaluation. The PPA has been integrated with a Sabatier Development Unit (SDU). The integrated process configuration incorporates a sorbent bed to eliminate residual carbon dioxide and water vapor in the Sabatier methane product stream before it enters the PPA. This paper provides detailed information on the stand-alone and integrated performance of both the PPA and SDU. Additionally, the integrated test stand design and anticipated future work are discussed.

  12. ZnO:Al Thin Film Gas Sensor for Detection of Ethanol Vapor

    PubMed Central

    Chou, Shih Min; Teoh, Lay Gaik; Lai, Wei Hao; Su, Yen Hsun; Hon, Min Hsiung

    2006-01-01

    The ZnO:Al thin films were prepared by RF magnetron sputtering on Si substrate using Pt as interdigitated electrodes. The structure was characterized by XRD and SEM analyses, and the ethanol vapor gas sensing as well as electrical properties have been investigated and discussed. The gas sensing results show that the sensitivity for detecting 400 ppm ethanol vapor was ∼20 at an operating temperature of 250°C. The high sensitivity, fast recovery, and reliability suggest that ZnO:Al thin film prepared by RF magnetron sputtering can be used for ethanol vapor gas sensing.

  13. Development of a Fuel Spill/Vapor Migration Modeling System.

    DTIC Science & Technology

    1985-12-01

    transforms resulting in a direct solution of the differential equation. A second order finite * difference approximation to the Poisson equation A2*j is...7 O-A64 043 DEVELOPMENT OF A FUEL SPILL/VPOR MIGRATION MODELING 1/2 SYSTEM(U) TRACER TECHNOLOGIES ESCONDIDO Cflo IL 0 ENGLAND ET AL. DEC 85 RFURL...AFWAL-TR-85-2089 DEVELOPMENT OF A FUEL SPILL/VAPOR MIGRATION MODELING SYSTEM W.G. England * L.H. Teuscher TRACER TECHNOLOGIES DTIC *2120 WEST MISSION

  14. 33 CFR 154.808 - Vapor control system, general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... inerted vapors of cargoes containing sulfur, provisions must be made to control heating from pyrophoric iron sulfide deposits in the vapor collection line. [CGD 88-102, 55 FR 25429, June 21, 1990, as amended...

  15. 33 CFR 154.808 - Vapor control system, general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... inerted vapors of cargoes containing sulfur, provisions must be made to control heating from pyrophoric iron sulfide deposits in the vapor collection line. [CGD 88-102, 55 FR 25429, June 21, 1990, as amended...

  16. 33 CFR 154.808 - Vapor control system, general.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... inerted vapors of cargoes containing sulfur, provisions must be made to control heating from pyrophoric iron sulfide deposits in the vapor collection line. [CGD 88-102, 55 FR 25429, June 21, 1990, as amended...

  17. 33 CFR 154.808 - Vapor control system, general.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... inerted vapors of cargoes containing sulfur, provisions must be made to control heating from pyrophoric iron sulfide deposits in the vapor collection line. [CGD 88-102, 55 FR 25429, June 21, 1990, as amended...

  18. Low level vapor verification of monomethyl hydrazine

    NASA Technical Reports Server (NTRS)

    Mehta, Narinder

    1990-01-01

    The vapor scrubbing system and the coulometric test procedure for the low level vapor verification of monomethyl hydrazine (MMH) are evaluated. Experimental data on precision, efficiency of the scrubbing liquid, instrument response, detection and reliable quantitation limits, stability of the vapor scrubbed solution, and interference were obtained to assess the applicability of the method for the low ppb level detection of the analyte vapor in air. The results indicated that the analyte vapor scrubbing system and the coulometric test procedure can be utilized for the quantitative detection of low ppb level vapor of MMH in air.

  19. Assessment of the Vapor Phase Catalytic Ammonia Removal (VPCAR) Technology at the MSFC ECLS Test Facility

    NASA Technical Reports Server (NTRS)

    Tomes, Kristin; Long, David; Carter, Layne; Flynn, Michael

    2007-01-01

    The Vapor Phase Catalytic Ammonia. Removal (VPCAR) technology has been previously discussed as a viable option for. the Exploration Water Recovery System. This technology integrates a phase change process with catalytic oxidation in the vapor phase to produce potable water from exploration mission wastewaters. A developmental prototype VPCAR was designed, built and tested under funding provided by a National Research. Announcement (NRA) project. The core technology, a Wiped Film Rotating Device (WFRD) was provided by Water Reuse Technologies under the NRA, whereas Hamilton Sundstrand Space Systems International performed the hardware integration and acceptance test. of the system. Personnel at the-Ames Research Center performed initial systems test of the VPCAR using ersatz solutions. To assess the viability of this hardware for Exploration. Life Support (ELS) applications, the hardware has been modified and tested at the MSFC ECLS Test facility. This paper summarizes the hardware modifications and test results and provides an assessment of this technology for the ELS application.

  20. 75 FR 65151 - Marine Vapor Control Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-21

    ...The Coast Guard proposes to increase maritime domain safety by revising existing safety regulations for facility and vessel vapor control systems (VCSs). The proposed changes would make VCS requirements more compatible with new Federal and State environmental requirements, reflect industry advancements in VCS technology, and codify the standards for the design and operation of a VCS at tank barge cleaning facilities. These changes would increase the safety of operations by regulating the design, installation, and use of VCSs, but would not require anyone to install or use VCSs.

  1. Atomic vapor laser isotope separation process

    DOEpatents

    Wyeth, R.W.; Paisner, J.A.; Story, T.

    1990-08-21

    A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique. 23 figs.

  2. Possibilities of heat energy recovery from greywater systems

    NASA Astrophysics Data System (ADS)

    Niewitecka, Kaja

    2018-02-01

    Waste water contains a large amount of heat energy which is irretrievably lost, so it is worth thinking about the possibilities of its recovery. It is estimated that in a residential building with full sanitary fittings, about 70% of the total tap water supplied is discharged as greywater and could be reused. The subject of the work is the opportunity to reuse waste water as an alternative source of heat for buildings. For this purpose, the design of heat exchangers used in the process of greywater heat recovery in indoor sewage systems, public buildings as well as in industrial plants has been reviewed. The possibility of recovering heat from waste water transported in outdoor sewage systems was also taken into consideration. An exemplary waste water heat recovery system was proposed, and the amount of heat that could be obtained using a greywater heat recovery system in a residential building was presented. The work shows that greywater heat recovery systems allow for significant savings in preheating hot tap water, and the rate of cost reimbursement depends on the purpose of the building and the type of installation. At the same time, the work shows that one should adjust the construction solutions of heat exchangers and indoor installations in buildings to the quality of the medium flowing, which is greywater.

  3. Furfural production from biomass pretreatment hydrolysate using vapor-releasing reactor system.

    PubMed

    Liu, Lu; Chang, Hou-Min; Jameel, Hasan; Park, Sunkyu

    2018-03-01

    Biomass hydrolysate from autohydrolysis pretreatment was used for furfural production considering it is in rich of xylose, xylo-oligomers, and other decomposition products from hemicellulose structure. By using the vapor-releasing reactor system, furfural was protected from degradation by separating it from the reaction media. The maximum furfural yield of 73% was achieved at 200 °C for biomass hydrolysate without the use of the catalyst. This is because the presence of organic acids such as acetic acid in hydrolysate functioned as a catalyst. According to the results in this study, biomass hydrolysate with a vapor-releasing system proves to be efficient for furfural production. The biorefinery process which allows the separation of xylose-rich autohydrolysate from other parts from biomass feedstock also improves the overall application of the biomass. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. SOIL VAPOR EXTRACTION TECHNOLOGY: REFERENCE HANDBOOK

    EPA Science Inventory

    Soil vapor extraction (SVE) systems are being used in Increasing numbers because of the many advantages these systems hold over other soil treatment technologies. SVE systems appear to be simple in design and operation, yet the fundamentals governing subsurface vapor transport ar...

  5. A novel method for furfural recovery via gas stripping assisted vapor permeation by a polydimethylsiloxane membrane

    PubMed Central

    Hu, Song; Guan, Yu; Cai, Di; Li, Shufeng; Qin, Peiyong; Karim, M. Nazmul; Tan, Tianwei

    2015-01-01

    Furfural is an important platform chemical with a wide range of applications. However, due to the low concentration of furfural in the hydrolysate, the conventional methods for furfural recovery are energy-intensive and environmentally unfriendly. Considering the disadvantages of pervaporation (PV) and distillation in furfural separation, a novel energy-efficient ‘green technique’, gas stripping assisted vapor permeation (GSVP), was introduced in this work. In this process, the polydimethylsiloxane (PDMS) membrane was prepared by employing water as solvent. Coking in pipe and membrane fouling was virtually non-existent in this new process. In addition, GSVP was found to achieve the highest pervaporation separation index of 216200 (permeate concentration of 71.1 wt% and furfural flux of 4.09 kgm−2h−1) so far, which was approximately 2.5 times higher than that found in pervaporation at 95°C for recovering 6.0 wt% furfural from water. Moreover, the evaporation energy required for GSVP decreased by 35% to 44% relative to that of PV process. Finally, GSVP also displayed more promising potential in industrial application than PV, especially when coupled with the hydrolysis process or fermentation in biorefinery industry. PMID:25819091

  6. A novel method for furfural recovery via gas stripping assisted vapor permeation by a polydimethylsiloxane membrane

    NASA Astrophysics Data System (ADS)

    Hu, Song; Guan, Yu; Cai, Di; Li, Shufeng; Qin, Peiyong; Karim, M. Nazmul; Tan, Tianwei

    2015-03-01

    Furfural is an important platform chemical with a wide range of applications. However, due to the low concentration of furfural in the hydrolysate, the conventional methods for furfural recovery are energy-intensive and environmentally unfriendly. Considering the disadvantages of pervaporation (PV) and distillation in furfural separation, a novel energy-efficient `green technique', gas stripping assisted vapor permeation (GSVP), was introduced in this work. In this process, the polydimethylsiloxane (PDMS) membrane was prepared by employing water as solvent. Coking in pipe and membrane fouling was virtually non-existent in this new process. In addition, GSVP was found to achieve the highest pervaporation separation index of 216200 (permeate concentration of 71.1 wt% and furfural flux of 4.09 kgm-2h-1) so far, which was approximately 2.5 times higher than that found in pervaporation at 95°C for recovering 6.0 wt% furfural from water. Moreover, the evaporation energy required for GSVP decreased by 35% to 44% relative to that of PV process. Finally, GSVP also displayed more promising potential in industrial application than PV, especially when coupled with the hydrolysis process or fermentation in biorefinery industry.

  7. Convective Cold Pool Structure and Boundary Layer Recovery in DYNAMO

    NASA Astrophysics Data System (ADS)

    Savarin, A.; Chen, S. S.; Kerns, B. W.; Lee, C.; Jorgensen, D. P.

    2012-12-01

    One of the key factors controlling convective cloud systems in the Madden-Julian Oscillation (MJO) over the tropical Indian Ocean is the property of the atmospheric boundary layer. Convective downdrafts and precipitation from the cloud systems produce cold pools in the boundary layer, which can inhibit subsequent development of convection. The recovery time is the time it takes for the boundary layer to return to pre convective conditions. It may affect the variability of the convection on various time scales during the initiation of MJO. This study examines the convective cold pool structure and boundary layer recovery using the NOAA WP-3D aircraft observations, include the flight-level, Doppler radar, and GPS dropsonde data, collected during the Dynamics of MJO (DYNAMO) field campaign from November-December 2011. The depth and strength of convective cold pools are defined by the negative buoyancy, which can be computed from the dropsonde data. Convective downdraft can be affected by environmental water vapor due to entrainment. Mid-level dry air observed during the convectively suppressed phase of MJO seems to enhance convective downdraft, making the cold pools stronger and deeper. Recovery of the cold pools in the boundary layer is determined by the strength and depth of the cold pools and also the air-sea heat and moisture fluxes. Given that the water vapor and surface winds are distinct for the convectively active and suppressed phases of MJO over the Indian Ocean, the aircraft data are stratified by the two different large-scale regimes of MJO. Preliminary results show that the strength and depth of the cold pools are inversely correlated with the surrounding mid-level moisture. During the convectively suppressed phase, the recovery time is ~5-20 hours in relative weak wind condition with small air-sea fluxes. The recovery time is generally less than 6 hours during the active phase of MJO with moist mid-levels and stronger surface wind and air-sea fluxes.

  8. Rankine cycle waste heat recovery system

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2016-05-10

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  9. Rankine cycle waste heat recovery system

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-08-12

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  10. Electrolyte vapor condenser

    DOEpatents

    Sederquist, Richard A.; Szydlowski, Donald F.; Sawyer, Richard D.

    1983-01-01

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well.

  11. Electrolyte vapor condenser

    DOEpatents

    Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

    1983-02-08

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

  12. Vapor generator wand

    NASA Technical Reports Server (NTRS)

    Robelen, David B. (Inventor)

    1996-01-01

    A device for producing a stream of vapor for wind tunnel airflow visualization is described. An electrically conductive heating tube is used to resistively heat a vapor producing liquid. The heating and delivery systems are integrated to allow the device to present a small cross section to the air flow, thereby reducing disturbances due to the device. The simplicity of the design allows for inexpensive implementation and construction. The design is readily scaled for use in various wind tunnel applications. The device may also find uses in manufacturing, producing a vapor for deposition on a substrate.

  13. Retrofit device and method to improve humidity control of vapor compression cooling systems

    DOEpatents

    Roth, Robert Paul; Hahn, David C.; Scaringe, Robert P.

    2016-08-16

    A method and device for improving moisture removal capacity of a vapor compression system is disclosed. The vapor compression system is started up with the evaporator blower initially set to a high speed. A relative humidity in a return air stream is measured with the evaporator blower operating at the high speed. If the measured humidity is above the predetermined high relative humidity value, the evaporator blower speed is reduced from the initially set high speed to the lowest possible speed. The device is a control board connected with the blower and uses a predetermined change in measured relative humidity to control the blower motor speed.

  14. Liquid booster engine reuse - A recovery system

    NASA Technical Reports Server (NTRS)

    Von Eckroth, Wulf; Rohrkaste, Gary R.; Delurgio, Phillip R.

    1991-01-01

    The paper presents the design of a recovery system for a suborbital payload of an Atlas E rocket. This program utilizes off-the-shelf and previously qualified avionics, flotation, and decelerator systems. A brief history of liquid-engine recoveries is presented first, then the system design utilizing two self-contained structurally-identical pods diametrically mounted to the thrust section is outlined. A mortar-deployed drogue and the main parachute are described, and experimental procedures are considered. Data obtained from one tricluster drop employing a cylindrical test vehicle and helicopter is analyzed, and a satisfactory load balance between the parachutes is observed.

  15. Disaster recovery plan for HANDI 2000 business management system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, D.E.

    The BMS production implementation will be complete by October 1, 1998 and the server environment will be comprised of two types of platforms. The PassPort Supply and the PeopleSoft Financials will reside on LNIX servers and the PeopleSoft Human Resources and Payroll will reside on Microsoft NT servers. Because of the wide scope and the requirements of the COTS products to run in various environments backup and recovery responsibilities are divided between two groups in Technical Operations. The Central Computer Systems Management group provides support for the LTNIX/NT Backup Data Center, and the Network Infrastructure Systems group provides support formore » the NT Application Server Backup outside the Data Center. The disaster recovery process is dependent on a good backup and recovery process. Information and integrated system data for determining the disaster recovery process is identified from the Fluor Daniel Hanford (FDH) Risk Assessment Plan, Contingency Plan, and Backup and Recovery Plan, and Backup Form for HANDI 2000 BMS.« less

  16. Delivery of Epinephrine in the Vapor Phase for the Treatment of Croup.

    PubMed

    Leung, Kitty; Newth, Christopher J L; Hotz, Justin C; O'Brien, Kevin C; Fink, James B; Coates, Allan L

    2016-04-01

    The Vapotherm system delivers high humidity to the airway of patients by using semipermeable tubules where heated liquid water is in contact with air. The humidified air is conducted to the patient via a heated tube. Preliminary clinical observations in infants with croup suggested that epinephrine added to the water supplying the humidity was delivered successfully in the vapor phase. The purpose of this study was to evaluate the efficiency of the delivery of epinephrine in the vapor phase and to develop the feasibility criteria for a clinical pilot study. Thirty milligrams of epinephrine in a 1-L bag of sterile water was used as the humidification source for a Vapotherm 2000i. The output of the heated circuit was condensed and collected into a small Erlenmeyer flask via a metal coil while the whole collection system was submerged in an ice slurry to maintain the outflow temperature from the flask between 0°C and 2°C. The in vitro system was tested at 40°C with flows of 5, 10, and 15 L/min and L-epinephrine concentrations of 15, 30, and 60 mg/L. Each test was duplicated at each of the six conditions. Academic children's hospital research laboratory. None. None. The system recovered more than 90% of the water vapor from the fully saturated air at 40°C. The epinephrine concentration recovery quantified by ultraviolet-visible spectrophotometry was 23.9% (27.5-20.4%) (mean and range) of the initial concentration. At flows of 5, 10, and 15 L/min, the delivery of epinephrine would be 1.8, 3.6, and 4.2 μg/min, respectively, which is in the therapeutic range used for parenteral infusion in young children. The Vapotherm system can be used to deliver epinephrine in pharmacological doses to the respiratory system as a vapor and thus as an alternative to droplets by conventional nebulization.

  17. Method and apparatus for vapor detection

    NASA Technical Reports Server (NTRS)

    Lerner, Melvin (Inventor); Hood, Lyal V. (Inventor); Rommel, Marjorie A. (Inventor); Pettitt, Bruce C. (Inventor); Erikson, Charles M. (Inventor)

    1980-01-01

    The method disclosed herein may be practiced by passing the vapors to be sampled along a path with halogen vapor, preferably chlorine vapor, heating the mixed vapors to halogenate those of the sampled vapors subject to halogenation, removing unreacted halogen vapor, and then sensing the vapors for organic halogenated compounds. The apparatus disclosed herein comprises means for flowing the vapors, both sample and halogen vapors, into a common path, means for heating the mixed vapors to effect the halogenation reaction, means for removing unreacted halogen vapor, and a sensing device for sensing halogenated compounds. By such a method and means, the vapors of low molecular weight hydrocarbons, ketones and alcohols, when present, such as methane, ethane, acetone, ethanol, and the like are converted, at least in part, to halogenated compounds, then the excess halogen removed or trapped, and the resultant vapors of the halogenated compounds sensed or detected. The system is highly sensitive. For example, acetone in a concentration of 30 parts per billion (volume) is readily detected.

  18. EPA COMPARES THREE SOIL-GAS SAMPLING SYSTEMS FOR VAPOR INTRUSION INVESTIGATIONS

    EPA Science Inventory

    This newsletter article summarizes the finding of "U.S. Environmental Protection Agency, Comparison of Geoprobe PRT, AMS GVP Soil-Gas Sampling Systems with Dedicated Vapor Probes in Sandy Soils at the Raymark Superfund Site, EPA/600/R-06/11, November 2006. "

  19. Vapor transport mechanisms

    NASA Technical Reports Server (NTRS)

    Workman, G. L.

    1978-01-01

    The Raman scattering furnace for investigating vapor transport mechanisms was completed and checked out. Preliminary experiments demonstate that a temperature resolution of plus and minus 5 C is possible with this system operating in a backscatter mode. In the experiments presented with the GeI 4 plus excess Ge system at temperatures up to 600 C, only the GeI4 band at 150 cm superscript minus 1 was observed. Further experiments are in progress to determine if GeI2 does become the major vapor species above 440 C.

  20. Chemical systems for improved oil recovery: Phase behavior, oil recovery, and mobility control studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Llave, F.; Gall, B.; Gao, H., Scott, L., Cook, I.

    Selected surfactant systems containing a series of ethoxylated nonionic surfactants in combination with an anionic surfactant system have been studied to evaluate phase behavior as well as oil recovery potential. These experiments were conducted to evaluate possible improved phase behavior and overall oil recovery potential of mixed surfactant systems over a broad range of conditions. Both polyacrylamide polymers and Xanthan biopolymers were evaluated. Studies were initiated to use a chemical flooding simulation program, UTCHEM, to simulate oil recovery for laboratory and field applications and evaluate its use to simulate oil saturation distributions obtained in CT-monitoring of oil recovery experiments. Themore » phase behavior studies focused on evaluating the effect of anionic-nonionic surfactant proportion on overall phase behavior. Two distinct transition behaviors were observed, depending on the dominant surfactant in the overall system. The first type of transition corresponded to more conventional behavior attributed to nonionic-dominant surfactant systems. This behavior is manifested by an oil-water-surfactant system that inverts from a water-external (highly conducting) microemulsion to an oil-external (nonconducting) one, as a function of temperature. The latter type which inverts in an opposite manner can be attributed to the separation of the anionic-nonionic mixtures into water- and oil-soluble surfactants. Both types of transition behavior can still be used to identify relative proximity to optimal areas. Determining these transition ranges provided more insight on how the behavior of these surfactant mixtures was affected by altering component proportions. Efforts to optimize the chemical system for oil displacement experiments were also undertaken. Phase behavior studies with systems formulated with biopolymer in solution were conducted.« less

  1. Kinetic energy recovery systems in motor vehicles

    NASA Astrophysics Data System (ADS)

    Śliwiński, C.

    2016-09-01

    The article draws attention to the increasing environmental pollution caused by the development of vehicle transport and motorization. Different types of design solutions used in vehicles for the reduction of fuel consumption, and thereby emission of toxic gasses into the atmosphere, were specified. Historical design solutions concerning energy recovery devices in mechanical vehicles which used flywheels to accumulate kinetic energy were shown. Developmental tendencies in the area of vehicle manufacturing in the form of hybrid electric and electric devices were discussed. Furthermore, designs of energy recovery devices with electrical energy storage from the vehicle braking and shock absorbing systems were presented. A mechanical energy storing device using a flywheel operating under vacuum was presented, as were advantages and disadvantages of both systems, the limitations they impose on individual constructions and safety issues. The paper also discusses a design concept of an energy recovery device in mechanical vehicles which uses torsion springs as the main components of energy accumulation during braking. The desirability of a cooperation of both the mechanical- and electrical energy recovery devices was indicated.

  2. Preparing highly ordered glasses of discotic liquid crystalline systems by vapor deposition

    NASA Astrophysics Data System (ADS)

    Gujral, Ankit; Gomez, Jaritza; Bishop, Camille E.; Toney, Michael F.; Ediger, M. D.

    Anisotropic molecular packing, particularly in highly ordered liquid-crystalline arrangements, has the potential for optimizing performance in organic electronic and optoelectronic applications. Here we show that physical vapor deposition can be used to prepare highly organized out-of-equilibrium (glassy) solids of discotic liquid-crystalline (LC) systems. Using grazing incidence x-ray scattering, we compare 3 systems: a rectangular columnar LC, a hexagonal columnar LC and a non-liquid crystal former. The packing motifs accessible by vapor deposition are highly organized and vary from face-on to edge-on columnar arrangements depending upon substrate temperature. A subset of these structures cannot be accessed under equilibrium conditions. The structures formed at a given substrate temperature can be understood as the result of the system partially equilibrating toward the structure of the free surface of the equilibrium liquid crystal. Consistent with this view, the structures formed are independent of the substrate material.

  3. Space Station Freedom regenerative water recovery system configuration selection

    NASA Technical Reports Server (NTRS)

    Reysa, R.; Edwards, J.

    1991-01-01

    The Space Station Freedom (SSF) must recover water from various waste water sources to reduce 90 day water resupply demands for a four/eight person crew. The water recovery system options considered are summarized together with system configuration merits and demerits, resource advantages and disadvantages, and water quality considerations used to select the SSF water recovery system.

  4. Performance of an electrothermal swing adsorption system with postdesorption liquefaction for organic gas capture and recovery.

    PubMed

    Mallouk, Kaitlin E; Rood, Mark J

    2013-07-02

    The use of adsorption on activated carbon fiber cloth (ACFC) followed by electrothermal swing adsorption (ESA) and postdesorption pressure and temperature control allows organic gases with boiling points below 0 °C to be captured from air streams and recovered as liquids. This technology has the potential to be a more sustainable abatement technique when compared to thermal oxidation. In this paper, we determine the process performance and energy requirements of a gas recovery system (GRS) using ACFC-ESA for three adsorbates with relative pressures between 8.3 × 10(-5) and 3.4 × 10(-3) and boiling points as low as -26.3 °C. The GRS is able to capture > 99% of the organic gas from the feed air stream, which is comparable to destruction efficiencies for thermal oxidizers. The energy used per liquid mole recovered ranges from 920 to 52,000 kJ/mol and is a function of relative pressure of the adsorbate in the feed gas. Quantifying the performance of the bench-scale gas recovery system in terms of its ability to remove organic gases from the adsorption stream and the energy required to liquefy the recovered organic gases is a critical step in developing new technologies to allow manufacturing to occur in a more sustainable manner. To our knowledge, this is the first time an ACFC-ESA system has been used to capture, recover, and liquefy organic compounds with vapor pressures as low as 8.3 × 10(-5) and the first time such a system has been analyzed for process performance and energy consumption.

  5. Microwave Plasma Hydrogen Recovery System

    NASA Technical Reports Server (NTRS)

    Atwater, James; Wheeler, Richard, Jr.; Dahl, Roger; Hadley, Neal

    2010-01-01

    A microwave plasma reactor was developed for the recovery of hydrogen contained within waste methane produced by Carbon Dioxide Reduction Assembly (CRA), which reclaims oxygen from CO2. Since half of the H2 reductant used by the CRA is lost as CH4, the ability to reclaim this valuable resource will simplify supply logistics for longterm manned missions. Microwave plasmas provide an extreme thermal environment within a very small and precisely controlled region of space, resulting in very high energy densities at low overall power, and thus can drive high-temperature reactions using equipment that is smaller, lighter, and less power-consuming than traditional fixed-bed and fluidized-bed catalytic reactors. The high energy density provides an economical means to conduct endothermic reactions that become thermodynamically favorable only at very high temperatures. Microwave plasma methods were developed for the effective recovery of H2 using two primary reaction schemes: (1) methane pyrolysis to H2 and solid-phase carbon, and (2) methane oligomerization to H2 and acetylene. While the carbon problem is substantially reduced using plasma methods, it is not completely eliminated. For this reason, advanced methods were developed to promote CH4 oligomerization, which recovers a maximum of 75 percent of the H2 content of methane in a single reactor pass, and virtually eliminates the carbon problem. These methods were embodied in a prototype H2 recovery system capable of sustained high-efficiency operation. NASA can incorporate the innovation into flight hardware systems for deployment in support of future long-duration exploration objectives such as a Space Station retrofit, Lunar outpost, Mars transit, or Mars base. The primary application will be for the recovery of hydrogen lost in the Sabatier process for CO2 reduction to produce water in Exploration Life Support systems. Secondarily, this process may also be used in conjunction with a Sabatier reactor employed to

  6. Large-capacity pump vaporizer for liquid hydrogen and nitrogen

    NASA Technical Reports Server (NTRS)

    Hauser, J. A.

    1970-01-01

    Pump vaporizer system delivers 500 standard cubic feet per minute of hydrogen or nitrogen, one system delivers both gases. Vacuum-jacketed pump discharges liquid hydrogen or liquid nitrogen into vaporizing system heated by ambient air. Principal characteristics of the flow and discharge system, pump, and vaporizer are given.

  7. Recovery of nonwetting characteristics by surface modification of gallium-based liquid metal droplets using hydrochloric acid vapor.

    PubMed

    Kim, Daeyoung; Thissen, Peter; Viner, Gloria; Lee, Dong-Weon; Choi, Wonjae; Chabal, Yves J; Lee, Jeong-Bong J B

    2013-01-01

    The applicability of gallium-based liquid metal alloy has been limited by the oxidation problem. In this paper, we report a simple method to remove the oxide layer on the surface of such alloy to recover its nonwetting characteristics, using hydrochloric acid (HCl) vapor. Through the HCl vapor treatment, we successfully restored the nonwetting characteristics of the alloy and suppressed its viscoelasticity. We analyzed the change of surface chemistry before and after the HCl vapor treatment using X-ray photoelectron spectroscopy (XPS) and low-energy ion-scattering spectroscopy (LEIS). Results showed that the oxidized surface of the commercial gallium-based alloy Galinstan (Ga(2)O(3) and Ga(2)O) was replaced with InCl(3) and GaCl(3) after the treatment. Surface tension and static contact angle on a Teflon-coated glass of the HCl-vapor-treated Galinstan were measured to be 523.8 mN/m and 152.5°. A droplet bouncing test was successfully carried out to demonstrate the nonwetting characteristics of the HCl-vapor-treated Galinstan. Finally, the stability of the transformed surface of the HCl-vapor-treated Galinstan was investigated by measuring the contact angle and LEIS spectra after reoxidation in an ambient environment.

  8. SOFIA Water Vapor Monitor Design

    NASA Technical Reports Server (NTRS)

    Cooper, R.; Roellig, T. L.; Yuen, L.; Shiroyama, B.; Meyer, A.; Devincenzi, D. (Technical Monitor)

    2002-01-01

    The SOFIA Water Vapor Monitor (WVM) is a heterodyne radiometer designed to determine the integrated amount of water vapor along the telescope line of sight and directly to the zenith. The basic technique that was chosen for the WVM uses radiometric measurements of the center and wings of the 183.3 GHz rotational line of water to measure the water vapor. The WVM reports its measured water vapor levels to the aircraft Mission Controls and Communication System (MCCS) while the SOFIA observatory is in normal operation at flight altitude. The water vapor measurements are also available to other scientific instruments aboard the observatory. The electrical, mechanical and software design of the WVM are discussed.

  9. Non-Ballistic Vapor-Driven Ejecta

    NASA Technical Reports Server (NTRS)

    Wrobel, K. E.; Schultz, P. H.; Heineck, J. T.

    2004-01-01

    Impact-induced vaporization is a key component of early-time cratering mechanics. Previous experimental [1,2] and computational [e.g., 3] studies focused on the generation and expansion of vapor clouds in an attempt to better understand vaporization in hypervelocity impacts. Presented here is a new experimental approach to the study of impact-induced vaporization. The three-dimensional particle image velocimetry (3D PIV) system captures interactions between expanding vapor phases and fine particulates. Particles ejected early in the cratering process may be entrained in expanding gas phases generated at impact, altering their otherwise ballistic path of flight. 3D PIV allows identifying the presence of such non-ballistic ejecta from very early times in the cratering process.

  10. A search for the prewetting line. [in binary liquid system at vapor-liquid interface

    NASA Technical Reports Server (NTRS)

    Schmidt, J. W.; Moldover, M. R.

    1986-01-01

    This paper describes efforts to locate the prewetting line in a binary liquid system (isopropanol-perfluoromethylcyclohexane) at the vapor-liquid interface. Tight upper bounds were placed on the temperature separation (0.2 K) between the prewetting line and the line of bulk liquid phase separation. The prewetting line in systems at equilibrium was not detected. Experimental signatures indicative of the prewetting line occurred only in nonequilibrium situations. Several theories predict that the adsorption of one of the components (the fluorocarbon, in this case) at the liquid-vapor interface should increase abruptly, at a temperature sightly above the temperature at which the mixture separates into two liquid phases. A regular solution calculation indicates that this prewetting line should have been easily detectable with the instruments used in this experiment. Significant features of the experiment are: (1) low-gradient thermostatting, (2) in situ stirring, (3) precision ellipsometry from the vapor-liquid interface, (4) high resolution differential index of refraction measurements using a novel cell design, and (5) computer control.

  11. Molecular-Flow Properties of RIB Type Vapor-Transport Systems Using a Fast-Valve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alton, Gerald D; Bilheux, Hassina Z; Zhang, Y.

    2014-01-01

    The advent of the fast-valve device, described previously, permits measurement of molecular-flow times of chemically active or inactive gaseous species through radioactive ion beam (RIB) target ion source systems, independent of size, geometry and materials of construction. Thus, decay losses of short-half-life RIBs can be determined for a given target/vapor-transport system in advance of on-line operation, thereby ascertaining the feasibility of the system design for successful processing of a given isotope. In this article, molecular-flow-time theory and experimentally measured molecular-flow time data are given for serial- and parallel-coupled Ta metal RIB vapor-transport systems similar to those used at ISOL basedmore » RIB facilities. In addition, the effect of source type on the molecular-flow time properties of a given system is addressed, and a chemical passivation method for negating surface adsorption enthalpies for chemically active gaseous species on Ta surfaces is demonstrated.« less

  12. High efficiency vapor-fed AMTEC system for direct conversion. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, W.G.; Bland, J.J.

    1997-05-23

    The Alkali Metal Thermal to Electric Converter (AMTEC) is a high temperature, high efficiency system for converting thermal to electrical energy, with no moving parts. It is based on the unique properties of {beta}{double_prime}-alumina solid electrolyte (BASE), which is an excellent conductor of sodium ions, but an extremely poor conductor of electrons. When the inside of the BASE is maintained at a higher temperature and pressure, a concentration gradient is created across the BASE. Electrons and sodium atoms cannot pass through the BASE. However, the sodium atoms are ionized, and the sodium ions move through the BASE to the lowermore » potential (temperature) region. The electrons travel externally to the AMTEC cell, providing power. There are a number of potential advantages to a wick-pumped, vapor-fed AMTEC system when compared with other designs. A wick-pumped system uses capillary forces to passively return liquid to the evaporator, and to distribute the liquid in the evaporator. Since the fluid return is self-regulating, multiple BASE tubes can use a single remote condenser, potentially improving efficiency in advanced AMTEC designs. Since the system is vapor-fed, sodium vapor is supplied at a uniform temperature and flux to the BASE tube, even with non-uniform heat fluxes and temperatures at the evaporator. The primary objective of the Phase 2 program was to develop wick-pumped AMTEC cells. During the program, procedures to fabricate wicks with smaller pore sizes were developed, to allow operation of an AMTEC cell at 800 C. A revised design was made for a High-Temperature, Wick-Fed AMTEC cell. In addition to the smaller wick pore size, several other changes were made to increase the cell efficiency: (1) internal artery return of condensate; (2) high temperature electrical feedthrough; and (3) separate heat pipe for providing heat to the BASE.« less

  13. Numerical analysis of heat and mass transfer for water recovery in an evaporative cooling tower

    NASA Astrophysics Data System (ADS)

    Lee, Hyunsub; Son, Gihun

    2017-11-01

    Numerical analysis is performed for water recovery in an evaporative cooling tower using a condensing heat exchanger, which consists of a humid air channel and an ambient dry air channel. The humid air including water vapor produced in an evaporative cooling tower is cooled by the ambient dry air so that the water vapor is condensed and recovered to the liquid water. The conservation equations of mass, momentum, energy and vapor concentration in each fluid region and the energy equation in a solid region are simultaneously solved with the heat and mass transfer boundary conditions coupled to the effect of condensation on the channel surface of humid air. The present computation demonstrates the condensed water film distribution on the humid air channel, which is caused by the vapor mass transfer between the humid air and the colder water film surface, which is coupled to the indirect heat exchange with the ambient air. Computations are carried out to predict water recovery rate in parallel, counter and cross-flow type heat exchangers. The effects of air flow rate and channel interval on the water recovery rate are quantified.

  14. A vapor generator for transonic flow visualization

    NASA Technical Reports Server (NTRS)

    Bruce, Robert A.; Hess, Robert W.; Rivera, Jose A., Jr.

    1989-01-01

    A vapor generator was developed for use in the NASA Langley Transonic Dynamics Tunnel (TDT). Propylene glycol was used as the vapor material. The vapor generator system was evaluated in a laboratory setting and then used in the TDT as part of a laser light sheet flow visualization system. The vapor generator provided satisfactory seeding of the air flow with visible condensate particles, smoke, for tests ranging from low subsonic through transonic speeds for tunnel total pressures from atmospheric pressure down to less than 0.1 atmospheric pressure.

  15. NASA TechPort Entry for Coiled Brine Recovery Assembly (CoBRA) CL IR&D Project

    NASA Technical Reports Server (NTRS)

    Pensinger, Stuart

    2014-01-01

    The Coiled Brine Recovery Assembly (CoBRA) project will result in a proof-of-concept demonstration for a lightweight, compact, affordable, regenerable and disposable solution to brine water recovery. The heart of CoBRA is an evaporator that produces water vapor from brine. This evaporator leverages a novel design that enables passive transport of brine from place to place within the system. While it will be necessary to build or modify a system for testing the CoBRA concept, the emphasis of this project will be on developing the evaporator itself. This project will utilize a “test early, test often” approach, building at least one trial evaporator to guide the design of the final product.

  16. Measurement of Turbulent Water Vapor Fluxes from Lightweight Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Thomas, R. M.; Ramanathan, V.; Nguyen, H.; Lehmann*, K.

    2010-12-01

    Scientists at the Center for Clouds, Chemistry and Climate (C4) at the Scripps Institution of Oceanography have successfully used Unmanned Aircraft Systems (UASs) for measurements of radiation fluxes, aerosol concentrations and cloud microphysical properties. Building on this success, a payload to measure water vapor fluxes using the eddy covariance (EC) technique has been recently developed and tested. To our knowledge this is the first UAS turbulent flux system to incorporate high-frequency water vapor measurements. The driving aim of the water vapor flux system’s development is to investigate ‘atmospheric rivers’ in the north-western Pacific Ocean, these can lead to sporadic yet extreme rainfall and flooding events upon landfall in California. Such a flux system may also be used to investigate other weather events (e.g. the formation of hurricanes) and offers a powerful aerosol-cloud-radiative forcing investigative tool when combined with the existing aerosol/radiation and cloud microphysics UAS payloads. The atmospheric vertical wind component (w) is derived by this system at up to 100Hz using data from a GPS/Inertial Measurement Unit (GPS/IMU) combined with a fast-response gust probe mounted on the UAV. Measurements of w are then combined with equally high frequency water vapor data (collected using a Campbell Scientific Krypton Hygrometer) to calculate latent heat fluxes (λE). Two test flights were conducted at the NASA Dryden test facility on 27th May 2010, located in the Mojave Desert. Horizontal flight legs were recorded at four altitudes between 1000-2500 masl within the convective boundary layer. Preliminary data analysis indicates averaged spectral data follow the theoretical -5/3 slope , and extrapolation of the flux profile to the surface resulted in λE of 1.6 W m-2; in good agreement with 1.0 W m-2 λE measured by NOAA from a surface tower using standard flux techniques. The system performance during the Dryden test, as well as subsequent

  17. Control of flow through a vapor generator

    DOEpatents

    Radcliff, Thomas D.

    2005-11-08

    In a Rankine cycle system wherein a vapor generator receives heat from exhaust gases, provision is made to avoid overheating of the refrigerant during ORC system shut down while at the same time preventing condensation of those gases within the vapor generator when its temperature drops below a threshold temperature by diverting the flow of hot gases to ambient and to thereby draw ambient air through the vapor generator in the process. In one embodiment, a bistable ejector is adjustable between one position, in which the hot gases flow through the vapor generator, to another position wherein the gases are diverted away from the vapor generator. Another embodiment provides for a fixed valve ejector with a bias towards discharging to ambient, but with a fan on the downstream side of said vapor generator for overcoming this bias.

  18. Vapor/Mist Used to Lubricate Gears After Loss of Primary Lubrication System

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Morales, Wilfredo

    2001-01-01

    Loss of lubrication in rotorcraft drive systems is a demanding requirement placed on drive system manufacturers. The drive system must operate for at least 30 minutes once the primary lubrication system has failed. This test is a military requirement that must be passed prior to certification of the aircraft. As new aircraft engines, operating at higher speeds, are fielded, the requirements for the drive system become increasingly more difficult. Also, the drive system must be lightweight, which minimizes the opportunity to use the gear bodies to absorb the tremendous amount of heating that takes place. In many cases, the amount of heat generated because of the high speed and load requires an emergency lubrication system that negatively impacts the aircraft's weight, complexity, and cost. A single mesh spur gear test rig is being used at the NASA Glenn Research Center to investigate possible emergency lubrication system improvements that will minimize the impact of having these systems onboard rotorcraft. A technique currently being investigated uses a vapor/mist system to lubricate the contacting surfaces after the primary lubrication system has been shut down. A number of tests were conducted in which the vapor/mist used the same lubricant as the primary system, but at a greatly reduced flow rate. Each test was initiated with the primary lubrication system operational and at steady-state conditions for a given speed and load. Then the primary lubrication system was shut down, and the vapor/mist lubrication system was initiated. An example of the tests conducted is shown in the figures. These preliminary tests have uncovered a mechanism that provides a lubricious, carbonaceous solid on the surface that actually reduces the surface temperature of the meshing gear teeth during operation. Surface analysis of the carbonaceous solid revealed it was graphitic. This mechanism is the synthetic lubricant "coking" on the active profile of the gears, which reduces the

  19. Extended duration orbiter study: CO2 removal and water recovery

    NASA Technical Reports Server (NTRS)

    Marshall, R. D.; Ellis, G. S.; Schubert, F. H.; Wynveen, R. A.

    1979-01-01

    Two electrochemical depolarized carbon dioxide concentrator subsystems were evaluated against baseline lithium hydroxide for (1) the baseline orbiter when expanded to accommodate a crew of seven (mission option one), (2) an extended duration orbiter with a power extension package to reduce fuel cell expendables (mission option two), and (3) an extended duration orbiter with a full capability power module to eliminate fuel cell expendables (mission option three). The electrochemical depolarized carbon dioxide concentrator was also compared to the solid amine regenerable carbon dioxide removal concept. Water recovery is not required for Mission Option One since sufficient water is generated by the fuel cells. The vapor compression distillation subsystem was evaluated for mission option two and three only. Weight savings attainable using the vapor compression distillation subsystem for water recovery versus on-board water storage were determined. Combined carbon dioxide removal and water recovery was evaluated to determine the effect on regenerable carbon dioxide removal subsystem selection.

  20. Multivessel system for cold-vapor mercury generation. Determination of mercury in hair and fish.

    PubMed

    Boaventura, G R; Barbosa, A C; East, G A

    1997-01-01

    A multivessel system for the determination of mercury (Hg) by cold-vapor atomic absorption spectrometry (CV-AAS) and inductively coupled plasma atomic emission spectrometry (ICP-AES) was developed. The performance of the proposed device was tested by determining total Hg in quality-control samples of hair and fishes following acid digestion. Application of the apparatus to the determination of Hg by CV-AAS following alkaline digestion was studied as well. The detection limit obtained for CV-AAS was 0.11 ng/mL and for ICP-AES 1.39 ng/mL. The results show that the system is appropriate to be used in techniques involving cold-vapor generation of Hg.

  1. GPS meteorology - Remote sensing of atmospheric water vapor using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Bevis, Michael; Businger, Steven; Herring, Thomas A.; Rocken, Christian; Anthes, Richard A.; Ware, Randolph H.

    1992-01-01

    We present a new approach to remote sensing of water vapor based on the Global Positioning System (GPS). Geodesists and geophysicists have devised methods for estimating the extent to which signals propagating from GPS satellites to ground-based GPS receivers are delayed by atmospheric water vapor. This delay is parameterized in terms of a time-varying zenith wet delay (ZWD) which is retrieved by stochastic filtering of the GPS data. Given surface temperature and pressure readings at the GPS receiver, the retrieved ZWD can be transformed with very little additional uncertainty into an estimate of the integrated water vapor (IWV) overlying that receiver. Networks of continuously operating GPS receivers are being constructed by geodesists, geophysicists, and government and military agencies, in order to implement a wide range of positioning capabilities. These emerging GPS networks offer the possibility of observing the horizontal distribution of IWV or, equivalently, precipitate water with unprecedented coverage and a temporal resolution of the order of 10 min. These measurements could be utilized in operational weather forecasting and in fundamental research into atmospheric storm systems, the hydrologic cycle, atmospheric chemistry, and global climate change.

  2. Airborne water vapor DIAL research: System development and field measurements

    NASA Technical Reports Server (NTRS)

    Higdon, Noah S.; Browell, Edward V.; Ponsardin, Patrick; Chyba, Thomas H.; Grossmann, Benoist E.; Butler, Carolyn F.; Fenn, Marta A.; Mayor, Shane D.; Ismail, Syed; Grant, William B.

    1992-01-01

    This paper describes the airborne differential absorption lidar (DIAL) system developed at the NASA Langley Research Center for remote measurement of water vapor (H2O) and aerosols in the lower atmosphere. The airborne H2O DIAL system was flight tested aboard the NASA Wallops Flight Facility (WFF) Electra aircraft in three separate field deployments between 1989 and 1991. Atmospheric measurements were made under a variety of atmospheric conditions during the flight tests, and several modifications were implemented during this development period to improve system operation. A brief description of the system and major modifications will be presented, and the most significant atmospheric observations will be described.

  3. Integrated distillation-membrane process for bio-ethanol and bio-butanol recovery from actual fermentation broths: Separation energy efficiency and fate of secondary fermentation products

    EPA Science Inventory

    A hybrid process integrating vapor stripping with vapor compression and vapor permeation membrane separation, termed Membrane Assisted Vapor Stripping (MAVS), was evaluated for recovery and dehydration of ethanol and/or 1-butanol from aqueous solution as an alternative to convent...

  4. Vapor cycle cooling system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Midolo, L.

    1980-07-08

    A description is given of a rotary vane cooling system including a two phase coolant, comprising: a vaporizable liquid working medium within said cooling system; an evaporator having an inlet and an outlet; a condenser having an inlet and an outlet; a two stage rotary vane compressor, including means for connecting the outlet of a first compressor stage to the inlet of a second compressor stage; said two stage rotary vane compressor being connected between the outlet of said evaporator and the inlet at said condenser; an expansion device connected between the outlet of said condenser and the inlet ofmore » said evaporator; said two stage compressor including a housing having a chamber therein, a rotor on a rotatable shaft; said rotor being positioned within said chamber; said rotor having a plurality of slidable vanes which form a plurality of cells, within said chamber, which change in volume as the rotor rotates; said plurality of cells including a pluraity of cells on one side of said rotor which corresponds to said first compressor stage and a plurality of cells on the other side of said rotor which corresponds to said second compressor stage; said cells corresponding to said first compressor stage having a greater maximum volume than the cells corresponding to said second compressor stage; and means for supplying at least a portion of the vapor resulting from the expansion in said expansion device to the inlet of the second compressor stage for providing cooling in the inlet of said second compressor stage.« less

  5. 40 CFR 35.928-1 - Approval of the industrial cost recovery system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... recovery system. 35.928-1 Section 35.928-1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS...-Clean Water Act § 35.928-1 Approval of the industrial cost recovery system. The Regional Administrator may approve an industrial cost recovery system if it meets the following requirements: (a) General...

  6. 40 CFR 35.928-1 - Approval of the industrial cost recovery system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... recovery system. 35.928-1 Section 35.928-1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS...-Clean Water Act § 35.928-1 Approval of the industrial cost recovery system. The Regional Administrator may approve an industrial cost recovery system if it meets the following requirements: (a) General...

  7. 40 CFR 35.928-1 - Approval of the industrial cost recovery system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... recovery system. 35.928-1 Section 35.928-1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS...-Clean Water Act § 35.928-1 Approval of the industrial cost recovery system. The Regional Administrator may approve an industrial cost recovery system if it meets the following requirements: (a) General...

  8. Fault recovery for real-time, multi-tasking computer system

    NASA Technical Reports Server (NTRS)

    Hess, Richard (Inventor); Kelly, Gerald B. (Inventor); Rogers, Randy (Inventor); Stange, Kent A. (Inventor)

    2011-01-01

    System and methods for providing a recoverable real time multi-tasking computer system are disclosed. In one embodiment, a system comprises a real time computing environment, wherein the real time computing environment is adapted to execute one or more applications and wherein each application is time and space partitioned. The system further comprises a fault detection system adapted to detect one or more faults affecting the real time computing environment and a fault recovery system, wherein upon the detection of a fault the fault recovery system is adapted to restore a backup set of state variables.

  9. A spin-recovery parachute system for light general-aviation airplanes

    NASA Technical Reports Server (NTRS)

    Bradshaw, C.

    1980-01-01

    A tail mounted spin recovery parachute system was designed and developed for use on light general aviation airplanes. The system was designed for use on typical airplane configurations, including low wing, high wing, single engine and twin engine designs. A mechanically triggered pyrotechnic slug gun is used to forcibly deploy a pilot parachute which extracts a bag that deploys a ring slot spin recovery parachute. The total system weighs 8.2 kg. System design factors included airplane wake effects on parachute deployment, prevention of premature parachute deployment, positive parachute jettison, compact size, low weight, system reliability, and pilot and ground crew safety. Extensive ground tests were conducted to qualify the system. The recovery parachute was used successfully in flight 17 times.

  10. Drying of pulverized material with heated condensible vapor

    DOEpatents

    Carlson, L.W.

    1984-08-16

    Apparatus for drying pulverized material utilizes a high enthalpy condensable vapor such as steam for removing moisture from the individual particles of the pulverized material. The initially wet particulate material is tangentially delivered by a carrier vapor flow to an upper portion of a generally vertical cylindrical separation drum. The lateral wall of the separation drum is provided with a plurality of flow guides for directing the vapor tangentially therein in the direction of particulate material flow. Positioned concentrically within the separation drum and along the longitudinal axis thereof is a water-cooled condensation cylinder which is provided with a plurality of collection plates, or fines, on the outer lateral surface thereof. The cooled collection fines are aligned counter to the flow of the pulverized material and high enthalpy vapor mixture to maximize water vapor condensation thereon. The condensed liquid which includes moisture removed from the pulverized materials then flows downward along the outer surface of the coolant cylinder and is collected and removed. The particles travel in a shallow helix due to respective centrifugal and vertical acceleration forces applied thereto. The individual particles of the pulverized material are directed outwardly by the vortex flow where they contact the inner cylindrical surface of the separation drum and are then deposited at the bottom thereof for easy collection and removal. The pulverized material drying apparatus is particularly adapted for drying coal fines and facilitates the recovery of the pulverized coal. 2 figs.

  11. Drying of pulverized material with heated condensible vapor

    DOEpatents

    Carlson, Larry W.

    1986-01-01

    Apparatus for drying pulverized material utilizes a high enthalpy condensable vapor such as steam for removing moisture from the individual particles of the pulverized material. The initially wet particulate material is tangentially delivered by a carrier vapor flow to an upper portion of a generally vertical cylindrical separation drum. The lateral wall of the separation drum is provided with a plurality of flow guides for directing the vapor tangentially therein in the direction of particulate material flow. Positioned concentrically within the separation drum and along the longitudinal axis thereof is a water-cooled condensation cylinder which is provided with a plurality of collection plates, or fins, on the outer lateral surface thereof. The cooled collection fins are aligned counter to the flow of the pulverized material and high enthalpy vapor mixture to maximize water vapor condensation thereon. The condensed liquid which includes moisture removed from the pulverized material then flows downward along the outer surface of the coolant cylinder and is collected and removed. The particles travel in a shallow helix due to respective centrifugal and vertical acceleration forces applied thereto. The individual particles of the pulverized material are directed outwardly by the vortex flow where they contact the inner cylindrical surface of the separation drum and are then deposited at the bottom thereof for easy collection and removal. The pulverized material drying apparatus is particularly adapted for drying coal fines and facilitates the recovery of the pulverized coal.

  12. Vapor Phase Catalytic Ammonia Reduction

    NASA Technical Reports Server (NTRS)

    Flynn, Michael T.; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    This paper discusses the development of a Vapor Phase Catalytic Ammonia Reduction (VPCAR) teststand and the results of an experimental program designed to evaluate the potential of the technology as a water purification process. In the experimental program the technology is evaluated based upon product water purity, water recovery rate, and power consumption. The experimental work demonstrates that the technology produces high purity product water and attains high water recovery rates at a relatively high specific power consumption. The experimental program was conducted in 3 phases. In phase I an Igepon(TM) soap and water mixture was used to evaluate the performance of an innovative Wiped-Film Rotating-Disk evaporator and associated demister. In phase II a phenol-water solution was used to evaluate the performance of the high temperature catalytic oxidation reactor. In phase III a urine analog was used to evaluate the performance of the combined distillation/oxidation functions of the processor.

  13. Retrofit device to improve vapor compression cooling system performance by dynamic blower speed modulation

    DOEpatents

    Roth, Robert Paul; Hahn, David C.; Scaringe, Robert P.

    2015-12-08

    A device and method are provided to improve performance of a vapor compression system using a retrofittable control board to start up the vapor compression system with the evaporator blower initially set to a high speed. A baseline evaporator operating temperature with the evaporator blower operating at the high speed is recorded, and then the device detects if a predetermined acceptable change in evaporator temperature has occurred. The evaporator blower speed is reduced from the initially set high speed as long as there is only a negligible change in the measured evaporator temperature and therefore a negligible difference in the compressor's power consumption so as to obtain a net increase in the Coefficient of Performance.

  14. Observing Tropospheric Water Vapor by Radio Occultation using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Kursinski, E. R.; Hajj, G. A.; Hardy, K. R.; Romans, L. J.; Schofield, J. T.

    1995-01-01

    Given the importance of water vapor to weather, climate and hydrology, global humidity observations from satellites are critical. At low latitudes, radio occultation observations of Earth's atmosphere using the Global Positioning System (GPS) satellites allow water vapor profiles to be retrieved with accuracies of 10 to 20% below 6 to 7 km altitude and approx. 5% or better within the boundary layer. GPS observations provide a unique combination of accuracy, vertical resolution (less than or equal to 1 km) and insensitivity to cloud and aerosol particles that is well suited to observations of the lower troposphere. These characteristics combined with the inherent stability of radio occultation observations make it an excellent candidate for the measurement of long term trends.

  15. Development of Raman-Mie lidar system for aerosol and water vapor profiling

    NASA Astrophysics Data System (ADS)

    Deng, Qian; Wang, Zhenzhu; Xu, Jiwei; Tan, Min; Wu, Decheng; Xie, Chenbo; Liu, Dong; Wang, Yingjian

    2018-03-01

    Aerosol and water vapor are two important atmospheric parameters. The accurate quantification of diurnal variation of these parameters are very useful for environment assessment and climate change studies. A moveable, compact and unattended lidar system based on modular design is developed for aerosol extinction coefficients and water vapor mixing ratios measurements. In the southern suburbs of Beijing, the continuous observation was carried out by this lidar since the middle of the year of 2017. The lidar equipment is presented and the case study is also described in this paper. The observational results show that the lidar kept a very good status from the long-time continuous measurements which is suitable for networking especially in meteorological research field.

  16. Parachute Recovery Systems Design Manual

    DTIC Science & Technology

    1991-03-01

    CUTTER BLADE ’S ACTUATOR ASSEMBLY ASSEMBL WELDED CLOSURE DISK LINE BORON/CALCIUM CHROMATE 1OHM BRIDGE -. (47gm Dia. Wire Tophet C) DAP RING POLVIMIDE...8.124 J. A. Buckley. "Missile Recovery System for High-Speed Small-Caliber Missiles." AIAA Paper, October 1986. (AIAA 86-2462.) 8.125 S. K. Ibrahim

  17. Chemistry of vaporization of refractory materials

    NASA Technical Reports Server (NTRS)

    Gilles, P. W.

    1975-01-01

    A discussion is given of the principles of physical chemistry important in vaporization studies, notably the concepts of equilibrium, phase behavior, thermodynamics, solid solution, and kinetics. The important factors influencing equilibrium vaporization phenomena are discussed and illustrated. A proper course of a vaporization study consisting of 9 stages is proposed. The important experimental techniques of Knudsen effusion, Langmuir vaporization and mass spectrometry are discussed. The principles, the factors, the course of a study and the experimental techniques and procedures are illustrated by recent work on the Ti-O system.

  18. Modeling Two-Phase Flow and Vapor Cycles Using the Generalized Fluid System Simulation Program

    NASA Technical Reports Server (NTRS)

    Smith, Amanda D.; Majumdar, Alok K.

    2017-01-01

    This work presents three new applications for the general purpose fluid network solver code GFSSP developed at NASA's Marshall Space Flight Center: (1) cooling tower, (2) vapor-compression refrigeration system, and (3) vapor-expansion power generation system. These systems are widely used across engineering disciplines in a variety of energy systems, and these models expand the capabilities and the use of GFSSP to include fluids and features that are not part of its present set of provided examples. GFSSP provides pressure, temperature, and species concentrations at designated locations, or nodes, within a fluid network based on a finite volume formulation of thermodynamics and conservation laws. This paper describes the theoretical basis for the construction of the models, their implementation in the current GFSSP modeling system, and a brief evaluation of the usefulness of the model results, as well as their applicability toward a broader spectrum of analytical problems in both university teaching and engineering research.

  19. Energy saving and recovery measures in integrated urban water systems

    NASA Astrophysics Data System (ADS)

    Freni, Gabriele; Sambito, Mariacrocetta

    2017-11-01

    The present paper describes different energy production, recovery and saving measures which can be applied in an integrated urban water system. Production measures are often based on the installation of photovoltaic systems; the recovery measures are commonly based on hydraulic turbines, exploiting the available pressure potential to produce energy; saving measures are based on substitution of old pumps with higher efficiency ones. The possibility of substituting some of the pipes of the water supply system can be also considered in a recovery scenario in order to reduce leakages and recovery part of the energy needed for water transport and treatment. The reduction of water losses can be obtained through the Active Leakage Control (ALC) strategies resulting in a reduction in energy consumption and in environmental impact. Measures were applied to a real case study to tested it the efficiency, i.e., the integrated urban water system of the Palermo metropolitan area in Sicily (Italy).

  20. Role of Co-Vapors in Vapor Deposition Polymerization

    PubMed Central

    Lee, Ji Eun; Lee, Younghee; Ahn, Ki-Jin; Huh, Jinyoung; Shim, Hyeon Woo; Sampath, Gayathri; Im, Won Bin; Huh, Yang–Il; Yoon, Hyeonseok

    2015-01-01

    Polypyrrole (PPy)/cellulose (PPCL) composite papers were fabricated by vapor phase polymerization. Importantly, the vapor-phase deposition of PPy onto cellulose was assisted by employing different co-vapors namely methanol, ethanol, benzene, water, toluene and hexane, in addition to pyrrole. The resulting PPCL papers possessed high mechanical flexibility, large surface-to-volume ratio, and good redox properties. Their main properties were highly influenced by the nature of the co-vaporized solvent. The morphology and oxidation level of deposited PPy were tuned by employing co-vapors during the polymerization, which in turn led to change in the electrochemical properties of the PPCL papers. When methanol and ethanol were used as co-vapors, the conductivities of PPCL papers were found to have improved five times, which was likely due to the enhanced orientation of PPy chain by the polar co-vapors with high dipole moment. The specific capacitance of PPCL papers obtained using benzene, toluene, water and hexane co-vapors was higher than those of the others, which is attributed to the enlarged effective surface area of the electrode material. The results indicate that the judicious choice and combination of co-vapors in vapor-deposition polymerization (VDP) offers the possibility of tuning the morphological, electrical, and electrochemical properties of deposited conducting polymers. PMID:25673422

  1. Methane Post-Processor Development to Increase Oxygen Recovery beyond State-of-the-Art Carbon Dioxide Reduction Technology

    NASA Technical Reports Server (NTRS)

    Abney, Morgan; Miller, Lee; Greenwood, Zach; Iannantuono, Michelle; Jones, Kenny

    2013-01-01

    State-of-the-art life support carbon dioxide (CO2) reduction technology, based on the Sabatier reaction, is theoretically capable of 50% recovery of oxygen from metabolic CO2. This recovery is constrained by the limited availability of reactant hydrogen. Post-processing of the methane byproduct from the Sabatier reactor results in hydrogen recycle and a subsequent increase in oxygen recovery. For this purpose, a Methane Post-Processor Assembly containing three sub-systems has been developed and tested. The assembly includes a Methane Purification Assembly (MePA) to remove residual CO2 and water vapor from the Sabatier product stream, a Plasma Pyrolysis Assembly (PPA) to partially pyrolyze methane into hydrogen and acetylene, and an Acetylene Separation Assembly (ASepA) to purify the hydrogen product for recycle. The results of partially integrated testing of the sub-systems are reported.

  2. Methane Post-Processor Development to Increase Oxygen Recovery beyond State-of-the-Art Carbon Dioxide Reduction Technology

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Greenwood, Zachary; Miller, Lee A.; Alvarez, Giraldo; Iannantuono, Michelle; Jones, Kenny

    2013-01-01

    State-of-the-art life support carbon dioxide (CO2) reduction technology, based on the Sabatier reaction, is theoretically capable of 50% recovery of oxygen from metabolic CO2. This recovery is constrained by the limited availability of reactant hydrogen. Post-processing of the methane byproduct from the Sabatier reactor results in hydrogen recycle and a subsequent increase in oxygen recovery. For this purpose, a Methane Post-Processor Assembly containing three sub-systems has been developed and tested. The assembly includes a Methane Purification Assembly (MePA) to remove residual CO2 and water vapor from the Sabatier product stream, a Plasma Pyrolysis Assembly (PPA) to partially pyrolyze methane into hydrogen and acetylene, and an Acetylene Separation Assembly (ASepA) to purify the hydrogen product for recycle. The results of partially integrated testing of the sub-systems are reported

  3. Water vapor measurement system in global atmospheric sampling program, appendix

    NASA Technical Reports Server (NTRS)

    Englund, D. R.; Dudzinski, T. J.

    1982-01-01

    The water vapor measurement system used in the NASA Global Atmospheric Sampling Program (GASP) is described. The system used a modified version of a commercially available dew/frostpoint hygrometer with a thermoelectrically cooled mirror sensor. The modifications extended the range of the hygrometer to enable air sample measurements with frostpoint temperatures down to -80 C at altitudes of 6 to 13 km. Other modifications were made to permit automatic, unattended operation in an aircraft environment. This report described the hygrometer, its integration with the GASP system, its calibration, and operational aspects including measurement errors. The estimated uncertainty of the dew/frostpoint measurements was + or - 1.7 Celsius.

  4. 33 CFR 154.2201 - Vapor control system-general requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... high liquid level sensor that activates an alarm that satisfies the requirements of 33 CFR 154.2100(e); and (3) A high-high liquid level sensor that closes the remotely operated cargo vapor shutoff valve... vapor-moving device. One sensor with two stages may be used to meet this requirement as well as...

  5. Method for enhanced oil recovery

    DOEpatents

    Comberiati, Joseph R.; Locke, Charles D.; Kamath, Krishna I.

    1980-01-01

    The present invention is directed to an improved method for enhanced recovery of oil from relatively "cold" reservoirs by carbon dioxide flooding. In oil reservoirs at a temperature less than the critical temperature of 87.7.degree. F. and at a pore pressure greater than the saturation pressure of carbon dioxide at the temperature of the reservoir, the carbon dioxide remains in the liquid state which does not satisfactorily mix with the oil. However, applicants have found that carbon dioxide can be vaporized in situ in the reservoir by selectively reducing the pore pressure in the reservoir to a value less than the particular saturated vapor pressure so as to greatly enhance the mixing of the carbon dioxide with the oil.

  6. Probabilistic approach: back pressure turbine for geothermal vapor-dominated system

    NASA Astrophysics Data System (ADS)

    Alfandi Ahmad, Angga; Xaverius Guwowijoyo, Fransiscus; Pratama, Heru Berian

    2017-12-01

    Geothermal bussiness nowadays needs to be accelerated in a way that profit can be obtained as soon as reasonable possible. One of the many ways to do this is by using one of geothermal wellhead generating unit (GWGU), called backpressure turbine. Backpressure turbine can be used in producing electricity as soon as there is productive or rather small-scale productive well existed after finished drilling. In a vapor dominated system, steam fraction in the wellhead capable to produce electricity based on each well productivity immediately. The advantage for using vapor dominated system is reduce brine disposal in the wellhead so it will be a cost benefit in operation. The design and calculation for backpressure turbine will use probablistic approach with Monte Carlo simulation. The parameter that will be evaluated in sensitivity would be steam flow rate, turbine inlet pressure, and turbine exhaust pressure/atmospheric pressure. The result are probability for P10, P50, and P90 of gross power output which are 1.78 MWe, 2.22 MWe and 2.66 Mwe respectively. Whereas the P10, P50, and P90 of SSC are 4.67 kg/s/MWe, 5.19 kg/s/MWe and 5.78 kg/s/MWe respectively.

  7. 16. VIEW OF THE ENRICHED URANIUM RECOVERY SYSTEM. ENRICHED URANIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW OF THE ENRICHED URANIUM RECOVERY SYSTEM. ENRICHED URANIUM RECOVERY PROCESSED RELATIVELY PURE MATERIALS AND SOLUTIONS AND SOLID RESIDUES WITH RELATIVELY LOW URANIUM CONTENT. URANIUM RECOVERY INVOLVED BOTH SLOW AND FAST PROCESSES. (4/4/66) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  8. Piezoelectric trace vapor calibrator

    NASA Astrophysics Data System (ADS)

    Verkouteren, R. Michael; Gillen, Greg; Taylor, David W.

    2006-08-01

    The design and performance of a vapor generator for calibration and testing of trace chemical sensors are described. The device utilizes piezoelectric ink-jet nozzles to dispense and vaporize precisely known amounts of analyte solutions as monodisperse droplets onto a hot ceramic surface, where the generated vapors are mixed with air before exiting the device. Injected droplets are monitored by microscope with strobed illumination, and the reproducibility of droplet volumes is optimized by adjustment of piezoelectric wave form parameters. Complete vaporization of the droplets occurs only across a 10°C window within the transition boiling regime of the solvent, and the minimum and maximum rates of trace analyte that may be injected and evaporated are determined by thermodynamic principles and empirical observations of droplet formation and stability. By varying solution concentrations, droplet injection rates, air flow, and the number of active nozzles, the system is designed to deliver—on demand—continuous vapor concentrations across more than six orders of magnitude (nominally 290fg/lto1.05μg/l). Vapor pulses containing femtogram to microgram quantities of analyte may also be generated. Calibrated ranges of three explosive vapors at ng/l levels were generated by the device and directly measured by ion mobility spectrometry (IMS). These data demonstrate expected linear trends within the limited working range of the IMS detector and also exhibit subtle nonlinear behavior from the IMS measurement process.

  9. Optical monitor for water vapor concentration

    DOEpatents

    Kebabian, Paul

    1998-01-01

    A system for measuring and monitoring water vapor concentration in a sample uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to a water vapor absorption line. In a preferred embodiment, the argon line is split by a magnetic field parallel to the direction of light propagation from the lamp into sets of components of downshifted and upshifted frequencies of approximately 1575 Gauss. The downshifted components are centered on a water vapor absorption line and are thus readily absorbed by water vapor in the sample; the upshifted components are moved away from that absorption line and are minimally absorbed. A polarization modulator alternately selects the upshifted components or downshifted components and passes the selected components to the sample. After transmission through the sample, the transmitted intensity of a component of the argon line varies as a result of absorption by the water vapor. The system then determines the concentration of water vapor in the sample based on differences in the transmitted intensity between the two sets of components. In alternative embodiments alternate selection of sets of components is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to the emitting plasma.

  10. Optical monitor for water vapor concentration

    DOEpatents

    Kebabian, P.

    1998-06-02

    A system for measuring and monitoring water vapor concentration in a sample uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to a water vapor absorption line. In a preferred embodiment, the argon line is split by a magnetic field parallel to the direction of light propagation from the lamp into sets of components of downshifted and upshifted frequencies of approximately 1575 Gauss. The downshifted components are centered on a water vapor absorption line and are thus readily absorbed by water vapor in the sample; the upshifted components are moved away from that absorption line and are minimally absorbed. A polarization modulator alternately selects the upshifted components or downshifted components and passes the selected components to the sample. After transmission through the sample, the transmitted intensity of a component of the argon line varies as a result of absorption by the water vapor. The system then determines the concentration of water vapor in the sample based on differences in the transmitted intensity between the two sets of components. In alternative embodiments alternate selection of sets of components is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to the emitting plasma. 5 figs.

  11. Investigating the interactions of decentralized and centralized wastewater heat recovery systems.

    PubMed

    Sitzenfrei, Robert; Hillebrand, Sebastian; Rauch, Wolfgang

    2017-03-01

    In the urban water cycle there are different sources for extracting energy. In addition to potential and chemical energy in the wastewater, thermal energy can also be recovered. Heat can be recovered from the wastewater with heat exchangers that are located decentralized and/or centralized at several locations throughout the system. It can be recovered directly at the source (e.g. in the showers and bathrooms), at building block level (e.g. warm water tanks collecting all grey water), in sewers or at the wastewater treatment plant. However, an uncoordinated installation of systems on such different levels can lead to competing technologies. To investigate these interactions, a modelling environment is set up, tested and calibrated based on continuous sewer temperature and flow measurements. With that approach different heat recovery scenarios on a household level (decentralized) and of in-sewer heat recovery (centralized) are investigated. A maximum performance drop of 40% for a centralized energy recovery system was estimated when all bathrooms are equipped with decentralized recovery systems. Therefore, the proposed modelling approach is suitable for testing different future conditions and to identify robust strategies for heat recovery systems from wastewater.

  12. Performance modeling of ultraviolet Raman lidar systems for daytime profiling of atmospheric water vapor

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Whiteman, D. N.; Melfi, S. H.; Goldsmith, J. E. M.; Bisson, S. E.; Lapp, M.

    1991-01-01

    We describe preliminary results from a comprehensive computer model developed to guide optimization of a Raman lidar system for measuring daytime profiles of atmospheric water vapor, emphasizing an ultraviolet, solar-blind approach.

  13. Application of laser Doppler velocimeter to chemical vapor laser system

    NASA Technical Reports Server (NTRS)

    Gartrell, Luther R.; Hunter, William W., Jr.; Lee, Ja H.; Fletcher, Mark T.; Tabibi, Bagher M.

    1993-01-01

    A laser Doppler velocimeter (LDV) system was used to measure iodide vapor flow fields inside two different-sized tubes. Typical velocity profiles across the laser tubes were obtained with an estimated +/-1 percent bias and +/-0.3 to 0.5 percent random uncertainty in the mean values and +/-2.5 percent random uncertainty in the turbulence-intensity values. Centerline velocities and turbulence intensities for various longitudinal locations ranged from 13 to 17.5 m/sec and 6 to 20 percent, respectively. In view of these findings, the effects of turbulence should be considered for flow field modeling. The LDV system provided calibration data for pressure and mass flow systems used routinely to monitor the research laser gas flow velocity.

  14. Controls on water vapor isotopes over Roorkee, India: Impact of convective activities and depression systems

    NASA Astrophysics Data System (ADS)

    Saranya, P.; Krishan, Gopal; Rao, M. S.; Kumar, Sudhir; Kumar, Bhishm

    2018-02-01

    The study evaluates the water vapor isotopic compositions and its controls with special reference to Indian Summer Monsoon (ISM) season at Roorkee, India. Precipitation is usually a discrete event spatially and temporally in this part of the country, therefore, the information provided is limited, while, the vapors have all time availability and have a significant contribution in the hydrological cycle locally or over a regional scale. Hence for understanding the processes altering the various sources, its isotopic signatures were studied. The Isotope Water Vapour Line (Iso Val) was drawn together with the Global Meteoric Water Line (GMWL) and the best fit line was δD = 5.42 * δ18O + 27.86. The precipitation samples were also collected during the study period and were best fitted with δD = 8.20(±0.18) * δ18O + 9.04(±1.16) in the Local Meteoric Water Line (LMWL). From the back trajectory analysis of respective vapor samples, it is unambiguous that three major sources viz; local vapor, western disturbance and monsoon vapor are controlling the fate of moisture over Roorkee. The d-excess in ground-level vapor (GLV) reveals the supply of recycled moisture from continental water bodies and evapo-transpiration as additional moisture sources to the study area. The intensive depletion in isotopic ratios was associated with the large-scale convective activity and low-pressure/cyclonic/depression systems formed over Bay of Bengal.

  15. Water vapor radiometry research and development phase

    NASA Technical Reports Server (NTRS)

    Resch, G. M.; Chavez, M. C.; Yamane, N. L.; Barbier, K. M.; Chandlee, R. C.

    1985-01-01

    This report describes the research and development phase for eight dual-channel water vapor radiometers constructed for the Crustal Dynamics Project at the Goddard Space Flight Center, Greenbelt, Maryland, and for the NASA Deep Space Network. These instruments were developed to demonstrate that the variable path delay imposed on microwave radio transmissions by atmospheric water vapor can be calibrated, particularly as this phenomenon affects very long baseline interferometry measurement systems. Water vapor radiometry technology can also be used in systems that involve moist air meteorology and propagation studies.

  16. Service Providers’ Experiences and Perspectives on Recovery-Oriented Mental Health System Reform

    PubMed Central

    Piat, Myra; Lal, Shalini

    2016-01-01

    Objective With the use of a qualitative approach, this study focuses on service providers’ experiences and perspectives on recovery-oriented reform. Methods Nine focus groups were conducted with a sample of 68 service providers recruited from three Canadian sites. Results Three major themes were identified: 1) positive attitudes towards recovery-oriented reform; 2) skepticism towards recovery-oriented reform; and 3) challenges associated with implementing recovery-oriented practice. These challenges pertained to conceptual uncertainty and consistency around the meanings of recovery; application of recovery-oriented practice with certain populations and in certain contexts; bureaucratization of recovery-oriented tools; limited leadership support; and, societal stigma and social exclusion of persons with mental illnesses. Conclusions and Implications for Practice The findings point towards challenges that might arise as system planners move ahead in their efforts toward implementing recovery within the mental health system. In this regard, we offer several recommendations for the planning of organizational and educational practices that support the implementation of recovery-oriented practice. PMID:22491368

  17. Method and Apparatus for Concentrating Vapors for Analysis

    DOEpatents

    Grate, Jay W.; Baldwin, David L.; Anheier, Jr., Norman C.

    2008-10-07

    An apparatus and method are disclosed for pre-concentrating gaseous vapors for analysis. The invention finds application in conjunction with, e.g., analytical instruments where low detection limits for gaseous vapors are desirable. Vapors sorbed and concentrated within the bed of the apparatus can be thermally desorbed achieving at least partial separation of vapor mixtures. The apparatus is suitable, e.g., for preconcentration and sample injection, and provides greater resolution of peaks for vapors within vapor mixtures, yielding detection levels that are 10-10,000 times better than for direct sampling and analysis systems. Features are particularly useful for continuous unattended monitoring applications.

  18. Alcohol vapor sensing by cadmium-doped zinc oxide thick films based chemical sensor

    NASA Astrophysics Data System (ADS)

    Zargar, R. A.; Arora, M.; Chackrabarti, S.; Ahmad, S.; Kumar, J.; Hafiz, A. K.

    2016-04-01

    Cadmium-doped zinc oxide nanoparticles were derived by simple chemical co-precipitation route using zinc acetate dihydrate and cadmium acetate dihydrate as precursor materials. The thick films were casted from chemical co-precipitation route prepared nanoparticles by economic facile screen printing method. The structural, morphological, optical and electrical properties of the film were characterized relevant to alcohol vapor sensing application by powder XRD, SEM, UV-VIS and DC conductivity techniques. The response and sensitivity of alcohol (ethanol) vapor sensor are obtained from the recovery curves at optimum working temperature range from 20∘C to 50∘C. The result shows that maximum sensitivity of the sensor is observed at 25∘C operating temperature. On varying alcohol vapor concentration, minor variation in resistance has been observed. The sensing mechanism of sensor has been described in terms of physical adsorption and chemical absorption of alcohol vapors on cadmium-doped zinc oxide film surface and inside film lattice network through weak hydrogen bonding, respectively.

  19. 77 FR 27243 - Notice of Proposed Information Collection: Disaster Recovery Grant Reporting (DRGR) System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-09

    ... Information Collection: Disaster Recovery Grant Reporting (DRGR) System AGENCY: Office of the Assistant... use: The Disaster Recovery Grant Reporting (DRGR) System is a grants management system used by the... response: Community Development Block Grant Disaster Recovery (CDBG-DR) Grants: The DRGR system has...

  20. The activated iron system for phosphorus recovery in aqueous environments.

    PubMed

    Wan, Jun; Jiang, Xiaoqing; Zhang, Tian C; Hu, Jiong; Richter-Egger, Dana; Feng, Xiaonan; Zhou, Aijiao; Tao, Tao

    2018-04-01

    Finding a good sorbent for phosphorus (P) recovery from the aquatic environment is critical for preventing eutrophication and providing P resources. The activated iron system (mainly consisted of zero-valent iron (ZVI), Fe 3 O 4 and Fe 2+ ) has been reported to exhibit a favorable performance towards various contaminants in wastewater, but its effect on P recovery has not been studied systematically. In this study, we used Fe 2+ -nitrate pretreatment reaction to prepare the activated iron system and then applied it to P recovery. Results show that more than 99% P was removed from water in 60 min; co-existing anions (NO 3 - , Cl - and SO 4 2- ) and natural organic matter (NOM) had little effect on P removal. The P removal capacity of activated iron system is very high compared with currently reported sorbents. Externally-supplied Fe 2+ plays an important role on P removal in the system. Regeneration study shows that the activated iron system exhibited stable P recovery ability by using 0.1 M NaOH solution. Various methods were applied to characterize the ZVI and iron corrosion, and results conclude that sorption precipitation, and co-precipitation contribute to P removal. This method will be promising and have an application potential in the field for efficient and cost-effective recovery of P with cheap microscale zero valent iron. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. An Evaluation of the Vapor Phase Catalytic Ammonia Removal Process for Use in a Mars Transit Vehicle

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Borchers, Bruce

    1998-01-01

    An experimental program has been developed to evaluate the potential of the Vapor Phase Catalytic Ammonia Reduction (VPCAR) technology for use as a Mars Transit Vehicle water purification system. Design modifications which will be required to ensure proper operation of the VPCAR system in reduced gravity are also evaluated. The VPCAR system is an integrated wastewater treatment technology that combines a distillation process with high temperature catalytic oxidation. The distillation portion of the system utilizes a vapor compression distillation process to provide an energy efficient phase change separation. This portion of the system removes any inorganic salts and large molecular weight, organic contaminates, i.e., non-volatile, from the product water stream and concentrates these contaminates into a byproduct stream. To oxidize the volatile organic compounds and ammonia, a vapor phase, high temperature catalytic oxidizer is used. This catalytic system converts these compounds along with the aqueous product into CO2, H2O, and N2O. A secondary catalytic bed can then be used to reduce the N2O to nitrogen and oxygen (although not evaluated in this study). This paper describes the design specification of the VPCAR process, the relative benefits of its utilization in a Mars Transit Vehicle, and the design modification which will be required to ensure its proper operation in reduced gravity. In addition, the results of an experimental evaluation of the processors is presented. This evaluation presents the processors performance based upon product water purity, water recovery rates, and power.

  2. Design and experimental study of an integrated vapor chamber-thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Kota, Krishna M.

    Future defense, aerospace and automotive technologies involve electronic systems that release high pulsed waste heat like during high power microwave and laser diode applications in tactical and combat aircraft, and electrical and electronic systems in hybrid electric vehicles, which will require the development of an efficient thermal management system. A key design issue is the need for fast charging so as not to overheat the key components. The goal of this work is to study the fabrication and technology implementation feasibility of a novel high energy storage, high heat flux passive heat sink. Key focus is to verify by theory and experiments, the practicability of using phase change materials as a temporary storage of waste heat for heat sink applications. The reason for storing the high heat fluxes temporarily is to be able to reject the heat at the average level when the heat source is off. Accordingly, a concept of a dual latent heat sink intended for moderate to low thermal duty cycle electronic heat sink applications is presented. This heat sink design combines the features of a vapor chamber with rapid thermal energy storage employing graphite foam inside the heat storage facility along with phase change materials and is attractive owing to its passive operation unlike some of the current thermal management techniques for cooling of electronics employing forced air circulation or external heat exchangers. In addition to the concept, end-application dependent criteria to select an optimized design for this dual latent heat sink are presented. A thermal resistance concept based design tool/model has been developed to analyze and optimize the design for experiments. The model showed that it is possible to have a dual latent heat sink design capable of handling 7 MJ of thermal load at a heat flux of 500 W/cm2 (over an area of 100 cm 2) with a volume of 0.072 m3 and weighing about 57.5 kg. It was also found that with such high heat flux absorption capability

  3. Vapor-liquid nucleation: the solid touch.

    PubMed

    Yarom, Michal; Marmur, Abraham

    2015-08-01

    Vapor-liquid nucleation is a ubiquitous process that has been widely researched in many disciplines. Yet, case studies are quite scattered in the literature, and the implications of some of its basic concepts are not always clearly stated. This is especially noticeable for heterogeneous nucleation, which involves a solid surface in touch with the liquid and vapor. The current review attempts to offer a comprehensive, though concise, thermodynamic discussion of homogeneous and heterogeneous nucleation in vapor-liquid systems. The fundamental concepts of nucleation are detailed, with emphasis on the role of the chemical potential, and on intuitive explanations whenever possible. We review various types of nucleating systems and discuss the effect of the solid geometry on the characteristics of the new phase formation. In addition, we consider the effect of mixing on the vapor-liquid equilibrium. An interesting sub-case is that of a non-volatile solute that modifies the chemical potential of the liquid, but not of the vapor. Finally, we point out topics that need either further research or more exact, accurate presentation. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Study of the liquid vapor equilibrium in the bromine-hydrobromic acid-water system

    NASA Technical Reports Server (NTRS)

    Benizri, R.; Lessart, P.; Courvoisier, P.

    1984-01-01

    A glass ebullioscope was built and at atmospheric pressure, liquid-vapor equilibria relative to the Br2-HBr-H2O system, in the concentration range of interest for evaluation of the Mark 13 cycle was studied. Measurements were performed for the brome-azeotrope (HBr-H2O) pseudo-binary system and for the ternary system at temperatures lower than 125 C and in the bromine concentration range up to 13% wt.

  5. 40 CFR 60.692-5 - Standards: Closed vent systems and control devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... residence time of 0.75 seconds at a minimum temperature of 816 °C (1,500 °F). (b) Vapor recovery systems... comply with provisions of this subpart shall be operated at all times when emissions may be vented to... purged to direct vapor to the control device. (3) A flow indicator shall be installed on a vent stream to...

  6. 40 CFR 60.692-5 - Standards: Closed vent systems and control devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... residence time of 0.75 seconds at a minimum temperature of 816 °C (1,500 °F). (b) Vapor recovery systems... comply with provisions of this subpart shall be operated at all times when emissions may be vented to... purged to direct vapor to the control device. (3) A flow indicator shall be installed on a vent stream to...

  7. 40 CFR 60.692-5 - Standards: Closed vent systems and control devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... residence time of 0.75 seconds at a minimum temperature of 816 °C (1,500 °F). (b) Vapor recovery systems... comply with provisions of this subpart shall be operated at all times when emissions may be vented to... purged to direct vapor to the control device. (3) A flow indicator shall be installed on a vent stream to...

  8. 40 CFR 60.692-5 - Standards: Closed vent systems and control devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... residence time of 0.75 seconds at a minimum temperature of 816 °C (1,500 °F). (b) Vapor recovery systems... comply with provisions of this subpart shall be operated at all times when emissions may be vented to... purged to direct vapor to the control device. (3) A flow indicator shall be installed on a vent stream to...

  9. Comparative study of the vapor analytes of trinitrotoluene (TNT)

    NASA Astrophysics Data System (ADS)

    Edge, Cindy C.; Gibb, Julie; Dugan, Regina E.

    1998-12-01

    Trinitrotoluene (TNT) is a high explosive used in most antipersonnel and antitank landmines. The Institute for Biological Detection Systems (IBDS) has developed a quantitative vapor delivery system, termed olfactometer, for conducting canine olfactory research. The research is conducted utilizing dynamic conditions, therefore, it is imperative to evaluate the headspace of TNT to ensure consistency with the dynamic generation of vapor. This study quantified the vapor headspace of military- grade TNT utilizing two different vapor generated methodologies, static and dynamic, reflecting differences between field and laboratory environments. Static vapor collection, which closely mimics conditions found during field detection, is defined as vapor collected in an open-air environment at ambient temperature. Dynamic vapor collection incorporates trapping of gases from a high flow vapor generation cell used during olfactometer operation. Analysis of samples collected by the two methodologies was performed by gas chromatography/mass spectrometry and the results provided information with regard to the constituents detected. However, constituent concentration did vary between the sampling methods. This study provides essential information regarding the vapor constituents associated with the TNT sampled using different sampling methods. These differences may be important in determining the detection signature dogs use to recognize TNT.

  10. DEVELOPMENT OF A SORBENT DISTRIBUTION AND RECOVERY SYSTEM

    EPA Science Inventory

    This report describes the design, fabrication, and test of a prototype system for the recovery of spilled oil from the surface of river, estuarine, and harbor waters. The system utilizes an open cell polyurethane foam in small cubes to absorb the floating oil. The system is highl...

  11. Remote sensing of water vapor features

    NASA Technical Reports Server (NTRS)

    Fuelberg, Henry E.

    1993-01-01

    Water vapor plays a critical role in the atmosphere. It is an important medium of energy exchange between air, land, and water; it is a major greenhouse gas, providing a crucial radiative role in the global climate system; and it is intimately involved in many regional scale atmospheric processes. Our research has been aimed at improving satellite remote sensing of water vapor and better understanding its role in meteorological processes. Our early studies evaluated the current GOES VAS system for measuring water vapor and have used VAS-derived water vapor data to examine pre-thunderstorm environments. Much of that research was described at the 1991 Research Review. A second research component has considered three proposed sensors--the High resolution Interferometer Sounder (HIS), the Multispectral Atmospheric Mapping Sensor (MAMS), and the Advanced Microwave Sounding Unit (AMSU). We have focused on MAMS and AMSU research during the past year and the accomplishments made in this effort are presented.

  12. Method and apparatus for concentrating vapors for analysis

    DOEpatents

    Grate, Jay W [West Richland, WA; Baldwin, David L [Kennewick, WA; Anheier, Jr., Norman C.

    2012-06-05

    A pre-concentration device and a method are disclosed for concentrating gaseous vapors for analysis. Vapors sorbed and concentrated within the bed of the pre-concentration device are thermally desorbed, achieving at least partial separation of the vapor mixtures. The pre-concentration device is suitable, e.g., for pre-concentration and sample injection, and provides greater resolution of peaks for vapors within vapor mixtures, yielding detection levels that are 10-10,000 times better than direct sampling and analysis systems. Features are particularly useful for continuous unattended monitoring applications. The invention finds application in conjunction with, e.g., analytical instruments where low detection limits for gaseous vapors are desirable.

  13. Development of the automated circulating tumor cell recovery system with microcavity array.

    PubMed

    Negishi, Ryo; Hosokawa, Masahito; Nakamura, Seita; Kanbara, Hisashige; Kanetomo, Masafumi; Kikuhara, Yoshihito; Tanaka, Tsuyoshi; Matsunaga, Tadashi; Yoshino, Tomoko

    2015-05-15

    Circulating tumor cells (CTCs) are well recognized as useful biomarker for cancer diagnosis and potential target of drug discovery for metastatic cancer. Efficient and precise recovery of extremely low concentrations of CTCs from blood has been required to increase the detection sensitivity. Here, an automated system equipped with a microcavity array (MCA) was demonstrated for highly efficient and reproducible CTC recovery. The use of MCA allows selective recovery of cancer cells from whole blood on the basis of differences in size between tumor and blood cells. Intra- and inter-assays revealed that the automated system achieved high efficiency and reproducibility equal to the assay manually performed by well-trained operator. Under optimized assay workflow, the automated system allows efficient and precise cell recovery for non-small cell lung cancer cells spiked in whole blood. The automated CTC recovery system will contribute to high-throughput analysis in the further clinical studies on large cohort of cancer patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Vapor Pressures in the Al(I)+Al2O3(s) System: Reconsidering Al2O3(s) Condensation

    NASA Technical Reports Server (NTRS)

    Copland, Evan

    2005-01-01

    The vaporization behavior of the A1-O system has been studied on numerous occasions but significant uncertainties remain. The origin of this uncertainty must be understood before A1-O vaporization behavior can be accurately determined. The condensation of A12O3 and clogging of the effusion orifice is a difficult problem for the Knudsen effusion technique that influences the measured vaporization behavior but has only received limited attention. This study reconsiders this behavior in detail. A new theory for A12O3 condensation is proposed together with procedures that will improve the measured thermodynamic properties of A1-O vaporization.

  15. Evaluation of FIDC system. [fuel vapor injector/ogniter and lean limit controller for automobile engines

    NASA Technical Reports Server (NTRS)

    Hall, R. A.; Dowdy, M. W.; Price, T. W.

    1978-01-01

    A fuel vapor injector/igniter system was evaluated for its effect on automobile engine performance, fuel economy, and exhaust emissions. Improved fuel economy and emissions, found during the single cylinder tests were not realized with a multicylinder engine. Multicylinder engine tests were conducted to compare the system with both a stock and modified stock configuration. A comparison of cylinder-to-cylinder equivalence ratio distribution was also obtained from the multicylinder engine tests. The multicylinder engine was installed in a vehicle was tested on a chassis dynamometer to compare the system with stock and modified stock configurations. The fuel vapor injector/igniter system (FIDC) configuration demonstrated approximately five percent improved fuel economy over the stock configuration, but the modified stock configuration demonstrated approximately twelve percent improved fuel economy. The hydrocarbon emissions were approximately two-hundred-thirty percent higher with the FIDC system than with the stock configuration. Both the FIDC system and the modified stock configuration adversely affected driveability. The FIDC system demonstrated a modest fuel savings, but with the penalty of increased emissions, and loss of driveability.

  16. Vaporizing particle velocimeter

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M. (Inventor)

    1992-01-01

    A velocimeter measures flow characteristics of a flow traveling through a chamber in a given direction. Tracer particles are entrained in the flow and a source of radiant energy produces an output stream directed transversely to the chamber, having a sufficient intensity to vaporize the particles as they pass through the output stream. Each of the vaporized particles explodes to produce a shock wave and a hot core, and a flow visualization system tracks the motion of the hot cores and shock waves to measure the velocity of each tracer particle and the temperature of the flow around the tracer.

  17. Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system.

    PubMed

    Yang, Fan; Kubota, Fukiko; Baba, Yuzo; Kamiya, Noriho; Goto, Masahiro

    2013-06-15

    The recycling of rare earth metals from phosphor powders in waste fluorescent lamps by solvent extraction using ionic liquids was studied. Acid leaching of rare earth metals from the waste phosphor powder was examined first. Yttrium (Y) and europium (Eu) dissolved readily in the acid solution; however, the leaching of other rare earth metals required substantial energy input. Ionization of target rare earth metals from the waste phosphor powders into the leach solution was critical for their successful recovery. As a high temperature was required for the complete leaching of all rare earth metals, ionic liquids, for which vapor pressure is negligible, were used as an alternative extracting phase to the conventional organic diluent. An extractant, N, N-dioctyldiglycol amic acid (DODGAA), which was recently developed, showed a high affinity for rare earth metal ions in liquid-liquid extraction although a conventional commercial phosphonic extractant did not. An effective recovery of the rare earth metals, Y, Eu, La and Ce, from the metal impurities, Fe, Al and Zn, was achieved from the acidic leach solution of phosphor powders using an ionic liquid containing DODGAA as novel extractant system. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. An expert system for benzole recovery plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishiguro, H.; Matsumura, S.; Kawashima, A.

    1993-01-01

    In the By-Product Plant of NKK's Keihin Works, systematization efforts were made in 1988, including integration of the control rooms, introduction of computers and installation of automatic analyzers. This has however increased the burden on operators with a huge volume of data, and a delay in coping with an operational abnormality might expand risk and extent of damages. There is, on the other hand, a pressing need to take measures to accommodate sophisticated operations resulting from the pursuit of high productivity operation. For the purpose of avoiding these possible inconveniences, development of a real-time operation system has been tried inmore » an attempt to improve safety and operating techniques and productivity in the benzole recovery plant. An offline system based on manual entry of operating data for diagnosis of operation and abnormality was developed in 1990, and an online real-time system operating by incorporating real-time operating data was developed in 1991, which is now smoothly operating in commercial operations. This report presents an outline of the benzole recovery operation diagnosis control expert system.« less

  19. Metals removal and recovery in bioelectrochemical systems: A review.

    PubMed

    Nancharaiah, Y V; Venkata Mohan, S; Lens, P N L

    2015-11-01

    Metal laden wastes and contamination pose a threat to ecosystem well being and human health. Metal containing waste streams are also a valuable resource for recovery of precious and scarce elements. Although biological methods are inexpensive and effective for treating metal wastewaters and in situ bioremediation of metal(loid) contamination, little progress has been made towards metal(loid) recovery. Bioelectrochemical systems are emerging as a new technology platform for removal and recovery of metal ions from metallurgical wastes, process streams and wastewaters. Biodegradation of organic matter by electroactive biofilms at the anode has been successfully coupled to cathodic reduction of metal ions. Until now, leaching of Co(II) from LiCoO2 particles, and removal of metal ions i.e. Co(III/II), Cr(VI), Cu(II), Hg(II), Ag(I), Se(IV), and Cd(II) from aqueous solutions has been demonstrated. This article reviews the state of art research of bioelectrochemical systems for removal and recovery of metal(loid) ions and pertaining removal mechanisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. External fuel vaporization study, phase 2

    NASA Technical Reports Server (NTRS)

    Szetela, E. J.; Chiappetta, L.

    1981-01-01

    An analytical study was conducted to evaluate the effect of variations in fuel properties on the design of an external fuel vaporizaton system. The fuel properties that were considered included thermal stability, critical temperature, enthalpy a critical conditions, volatility, and viscosity. The design parameters that were evaluated included vaporizer weight and the impact on engine requirement such as maintenance, transient response, performance, and altitude relight. The baseline fuel properties were those of Jet A. The variation in thermal stability was taken as the thermal stability variation for Experimental Referee Broad Specification (ERBS) fuel. The results of the analysis indicate that a change in thermal stability equivalent to that of ERBS would increase the vaporization system weight by 20 percent, decrease oprating time between cleaning by 40 percent and make altitude relight more difficult. An increase in fuel critical temperature of 39 K would require a 40 percent increase in vaporization system weight. The assumed increase in enthalpy and volatility would also increase vaporizer weight by 40 percent and make altitude relight extremely difficult. The variation in fuel viscosity would have a negligible effect on the design parameters.

  1. 26 CFR 1.168(a)-1 - Modified accelerated cost recovery system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Modified accelerated cost recovery system. 1.168(a)-1 Section 1.168(a)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Corporations § 1.168(a)-1 Modified accelerated cost recovery system. (a) Section 168 determines the...

  2. 26 CFR 1.168(a)-1 - Modified accelerated cost recovery system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 2 2011-04-01 2011-04-01 false Modified accelerated cost recovery system. 1.168(a)-1 Section 1.168(a)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Corporations § 1.168(a)-1 Modified accelerated cost recovery system. (a) Section 168 determines the...

  3. 26 CFR 1.168(a)-1 - Modified accelerated cost recovery system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 2 2013-04-01 2013-04-01 false Modified accelerated cost recovery system. 1.168(a)-1 Section 1.168(a)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Corporations § 1.168(a)-1 Modified accelerated cost recovery system. (a) Section 168 determines the...

  4. 26 CFR 1.168(a)-1 - Modified accelerated cost recovery system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 2 2012-04-01 2012-04-01 false Modified accelerated cost recovery system. 1.168(a)-1 Section 1.168(a)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Corporations § 1.168(a)-1 Modified accelerated cost recovery system. (a) Section 168 determines the...

  5. 26 CFR 1.168(a)-1 - Modified accelerated cost recovery system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 2 2014-04-01 2014-04-01 false Modified accelerated cost recovery system. 1.168(a)-1 Section 1.168(a)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Corporations § 1.168(a)-1 Modified accelerated cost recovery system. (a) Section 168 determines the...

  6. Lamp mapping technique for independent determination of the water vapor mixing ratio calibration factor for a Raman lidar system

    NASA Astrophysics Data System (ADS)

    Venable, Demetrius D.; Whiteman, David N.; Calhoun, Monique N.; Dirisu, Afusat O.; Connell, Rasheen M.; Landulfo, Eduardo

    2011-08-01

    We have investigated a technique that allows for the independent determination of the water vapor mixing ratio calibration factor for a Raman lidar system. This technique utilizes a procedure whereby a light source of known spectral characteristics is scanned across the aperture of the lidar system's telescope and the overall optical efficiency of the system is determined. Direct analysis of the temperature-dependent differential scattering cross sections for vibration and vibration-rotation transitions (convolved with narrowband filters) along with the measured efficiency of the system, leads to a theoretical determination of the water vapor mixing ratio calibration factor. A calibration factor was also obtained experimentally from lidar measurements and radiosonde data. A comparison of the theoretical and experimentally determined values agrees within 5%. We report on the sensitivity of the water vapor mixing ratio calibration factor to uncertainties in parameters that characterize the narrowband transmission filters, the temperature-dependent differential scattering cross section, and the variability of the system efficiency ratios as the lamp is scanned across the aperture of the telescope used in the Howard University Raman Lidar system.

  7. The Lithium Vapor Box Divertor

    NASA Astrophysics Data System (ADS)

    Goldston, Robert; Hakim, Ammar; Hammett, Gregory; Jaworski, Michael; Myers, Rachel; Schwartz, Jacob

    2015-11-01

    Projections of scrape-off layer width to a demonstration power plant suggest an immense parallel heat flux, of order 12 GW/m2, which will necessitate nearly fully detached operation. Building on earlier work by Nagayama et al. and by Ono et al., we propose to use a series of differentially pumped boxes filled with lithium vapor to isolate the buffering vapor from the main plasma chamber, allowing stable detachment. This powerful differential pumping is only available for condensable vapors, not conventional gases. We demonstrate the properties of such a system through conservation laws for vapor mass and enthalpy, and then include plasma entrainment and ultimately an estimate of radiated power. We find that full detachment should be achievable with little leakage of lithium to the main plasma chamber. We also present progress towards solving the Navier-Stokes equation numerically for the chain of vapor boxes, including self-consistent wall boundary conditions and fully-developed shocks, as well as concepts for an initial experimental demonstration-of-concept. This work supported by DOE Contract No. DE-AC02-09CH11466.

  8. A Recovery System for Unmanned Underwater Vehicles

    DTIC Science & Technology

    2017-09-28

    300170 1 of 10 A RECOVERY SYSTEM FOR UNMANNED UNDERWATER VEHICLES STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may...6 of 10 forces cannot be easily predicted and can be strong enough to require a significantly larger handling system and significantly more...the sea state, the ship handling system , the capture mechanism and the design of the capture mechanism 400. [0024] The water jets 100 will increase

  9. Artificial Olfactory System for Trace Identification of Explosive Vapors Realized by Optoelectronic Schottky Sensing.

    PubMed

    Guo, Linjuan; Yang, Zheng; Dou, Xincun

    2017-02-01

    A rapid, ultrasensitive artificial olfactory system based on an individual optoelectronic Schottky junction is demonstrated for the discriminative detection of explosive vapors, including military explosives and improvised explosives. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Sri Lanka's post-tsunami health system recovery: a qualitative analysis of physician perspectives.

    PubMed

    Schenk, William Collin; Bui, Thuy

    2018-01-01

    The 2004 Indian Ocean tsunami caused significant damage to the health system in Sri Lanka. Rebuilding infrastructure and improving the mental health system were targets of recovery policies. Retrospective analyses of the post-tsunami health system recovery in Sri Lanka lack the perspectives of local stakeholders, including health care providers. In 2014 we interviewed 23 Sri Lankan physicians from the Eastern and Southern regions. Participants were recruited with snowball sampling. We used a content analysis approach in analysing the transcriptions. Sri Lankan physicians critiqued governance, sustainability and equity in the health system recovery. They held leadership roles as facilitators and sustainers of specific projects but were rarely formally consulted in recovery strategic planning. They identified instances of poor coordination among partners, corruption trends, local resource mismatches, regional resource disparities and the influence of the Sri Lankan civil war. Post-tsunami health system recovery planning and implementation in Sri Lanka did not involve local physician stakeholders in ways that have been prioritized more recently in other recovery frameworks. Despite limited formal inclusion, local physicians developed significant leadership roles that have informed their critical perspectives on the health system recovery. © The Author(s) 2018. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. An Efficient Image Recovery Algorithm for Diffraction Tomography Systems

    NASA Technical Reports Server (NTRS)

    Jin, Michael Y.

    1993-01-01

    A diffraction tomography system has potential application in ultrasonic medical imaging area. It is capable of achieving imagery with the ultimate resolution of one quarter the wavelength by collecting ultrasonic backscattering data from a circular array of sensors and reconstructing the object reflectivity using a digital image recovery algorithm performed by a computer. One advantage of such a system is that is allows a relatively lower frequency wave to penetrate more deeply into the object and still achieve imagery with a reasonable resolution. An efficient image recovery algorithm for the diffraction tomography system was originally developed for processing a wide beam spaceborne SAR data...

  12. Spacecraft Parachute Recovery System Testing from a Failure Rate Perspective

    NASA Technical Reports Server (NTRS)

    Stewart, Christine E.

    2013-01-01

    Spacecraft parachute recovery systems, especially those with a parachute cluster, require testing to identify and reduce failures. This is especially important when the spacecraft in question is human-rated. Due to the recent effort to make spaceflight affordable, the importance of determining a minimum requirement for testing has increased. The number of tests required to achieve a mature design, with a relatively constant failure rate, can be estimated from a review of previous complex spacecraft recovery systems. Examination of the Apollo parachute testing and the Shuttle Solid Rocket Booster recovery chute system operation will clarify at which point in those programs the system reached maturity. This examination will also clarify the risks inherent in not performing a sufficient number of tests prior to operation with humans on-board. When looking at complex parachute systems used in spaceflight landing systems, a pattern begins to emerge regarding the need for a minimum amount of testing required to wring out the failure modes and reduce the failure rate of the parachute system to an acceptable level for human spaceflight. Not only a sufficient number of system level testing, but also the ability to update the design as failure modes are found is required to drive the failure rate of the system down to an acceptable level. In addition, sufficient data and images are necessary to identify incipient failure modes or to identify failure causes when a system failure occurs. In order to demonstrate the need for sufficient system level testing prior to an acceptable failure rate, the Apollo Earth Landing System (ELS) test program and the Shuttle Solid Rocket Booster Recovery System failure history will be examined, as well as some experiences in the Orion Capsule Parachute Assembly System will be noted.

  13. Combined rankine and vapor compression cycles

    DOEpatents

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2005-04-19

    An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

  14. Vaporization chemistry of hypo-stoichiometric (U,Pu)O 2

    NASA Astrophysics Data System (ADS)

    Viswanathan, R.; Krishnaiah, M. V.

    2001-04-01

    Calculations were performed on hypo-stoichiometric uranium plutonium di-oxide to examine its vaporization behavior as a function of O/ M ( M= U+ Pu) ratio and plutonium content. The phase U (1- y) Pu yO z was treated as an ideal solid solution of (1- y)UO 2+ yPuO (2- x) such that x=(2- z)/ y. Oxygen potentials for different desired values of y, z, and temperature were used as the primary input to calculate the corresponding partial pressures of various O-, U-, and Pu-bearing gaseous species. Relevant thermodynamic data for the solid phases UO 2 and PuO (2- x) , and the gaseous species were taken from the literature. Total vapor pressure varies with O/M and goes through a minimum. This minimum does not indicate a congruently vaporizing composition. Vaporization behavior of this system can at best be quasi-congruent. Two quasi-congruently vaporizing compositions (QCVCs) exist, representing the equalities (O/M) vapor=(O/M) mixed-oxide and (U/Pu) vapor=(U/Pu) mixed-oxide, respectively. The (O/M) corresponding to QCVC1 is lower than that corresponding to QCVC2, but very close to the value where vapor pressure minimum occurs. The O/M values of both QCVCs increase with decrease in plutonium content. The vaporization chemistry of this system, on continuous vaporization under dynamic condition, is discussed.

  15. Vaporization of irradiated droplets

    NASA Astrophysics Data System (ADS)

    Armstrong, R. L.; O'Rourke, P. J.; Zardecki, A.

    1986-11-01

    The vaporization of a spherically symmetric liquid droplet subject to a high-intensity laser flux is investigated on the basis of a hydrodynamic description of the system composed of the vapor and ambient gas. In the limit of the convective vaporization, the boundary conditions at the fluid-gas interface are formulated by using the notion of a Knudsen layer in which translational equilibrium is established. This leads to approximate jump conditions at the interface. For homogeneous energy deposition, the hydrodynamic equations are solved numerically with the aid of the CON1D computer code (``CON1D: A computer program for calculating spherically symmetric droplet combustion,'' Los Alamos National Laboratory Report No. LA-10269-MS, December, 1984), based on the implict continuous-fluid Eulerian (ICE) [J. Comput. Phys. 8, 197 (1971)] and arbitrary Lagrangian-Eulerian (ALE) [J. Comput. Phys. 14, 1227 (1974)] numerical mehtods. The solutions exhibit the existence of two shock waves propagating in opposite directions with respect to the contact discontinuity surface that separates the ambient gas and vapor.

  16. 40 CFR 35.928-3 - Implementation of the industrial cost recovery system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Implementation of the industrial cost...-Clean Water Act § 35.928-3 Implementation of the industrial cost recovery system. (a) When a grantee's industrial cost recovery system is approved, implementation of the approved system shall become a condition...

  17. DSMC simulations of vapor transport toward development of the lithium vapor box divertor concept

    NASA Astrophysics Data System (ADS)

    Jagoe, Christopher; Schwartz, Jacob; Goldston, Robert

    2016-10-01

    The lithium vapor divertor box concept attempts to achieve volumetric dissipation of the high heat efflux from a fusion power system. The vapor extracts the heat of the incoming plasma by ionization and radiation, while remaining localized in the vapor box due to differential pumping based on rapid condensation. Preliminary calculations with lithium vapor at densities appropriate for an NSTX-U-scale machine give Knudsen numbers between 0.01 and 1, outside both the range of continuum fluid dynamics and of collisionless Monte Carlo. The direct-simulation Monte Carlo (DSMC) method, however, can simulate rarefied gas flows in this regime. Using the solver contained in the OpenFOAM package, pressure-driven flows of water vapor will be analyzed. The use of water vapor in the relevant range of Knudsen number allows for a flexible similarity experiment to verify the reliability of the code before moving to tests with lithium. The simulation geometry consists of chains of boxes on a temperature gradient, connected by slots with widths that are a representative fraction of the dimensions of the box. We expect choked flow, sonic shocks, and order-of-magnitude pressure and density drops from box to box, but this expectation will be tested in the simulation and then experiment. This work is supported by the Princeton Environmental Institute.

  18. A Low Cost, Self Acting, Liquid Hydrogen Boil-Off Recovery System

    NASA Technical Reports Server (NTRS)

    Pelfrey, Joy W.; Sharp, Kirk V. (Technical Monitor)

    2001-01-01

    The purpose of this research was to develop a prototype liquid hydrogen boll-off recovery system. Perform analyses to finalize recovery system cycle, design detail components, fabricate hardware, and conduct sub-component, component, and system level tests leading to the delivery of a prototype system. The design point and off-design analyses identified cycle improvements to increase the robustness of the system by adding a by-pass heat exchanger. Based on the design, analysis, and testing conducted, the recovery system will liquefy 31% of the gaseous boil off from a liquid hydrogen storage tank. All components, including a high speed, miniature turbocompressor, were designed and manufacturing drawings were created. All hardware was fabricated and tests were conducted in air, helium, and hydrogen. Testing validated the design, except for the turbocompressor. A rotor-to-stator clearance issue was discovered as a result of a concentricity tolerance stack-up.

  19. Recovery of the immune system after exercise.

    PubMed

    Peake, Jonathan M; Neubauer, Oliver; Walsh, Neil P; Simpson, Richard J

    2017-05-01

    The notion that prolonged, intense exercise causes an "open window" of immunodepression during recovery after exercise is well accepted. Repeated exercise bouts or intensified training without sufficient recovery may increase the risk of illness. However, except for salivary IgA, clear and consistent markers of this immunodepression remain elusive. Exercise increases circulating neutrophil and monocyte counts and reduces circulating lymphocyte count during recovery. This lymphopenia results from preferential egress of lymphocyte subtypes with potent effector functions [e.g., natural killer (NK) cells, γδ T cells, and CD8 + T cells]. These lymphocytes most likely translocate to peripheral sites of potential antigen encounter (e.g., lungs and gut). This redeployment of effector lymphocytes is an integral part of the physiological stress response to exercise. Current knowledge about changes in immune function during recovery from exercise is derived from assessment at the cell population level of isolated cells ex vivo or in blood. This assessment can be biased by large changes in the distribution of immune cells between blood and peripheral tissues during and after exercise. Some evidence suggests that reduced immune cell function in vitro may coincide with changes in vivo and rates of illness after exercise, but more work is required to substantiate this notion. Among the various nutritional strategies and physical therapies that athletes use to recover from exercise, carbohydrate supplementation is the most effective for minimizing immune disturbances during exercise recovery. Sleep is an important aspect of recovery, but more research is needed to determine how sleep disruption influences the immune system of athletes. Copyright © 2017 the American Physiological Society.

  20. External fuel vaporization study, phase 1

    NASA Technical Reports Server (NTRS)

    Szetela, E. J.; Chiappetta, L.

    1980-01-01

    A conceptual design study was conducted to devise and evaluate techniques for the external vaporization of fuel for use in an aircraft gas turbine with characteristics similar to the Energy Efficient Engine (E(3)). Three vaporizer concepts were selected and they were analyzed from the standpoint of fuel thermal stability, integration of the vaporizer system into the aircraft engine, engine and vaporizer dynamic response, startup and altitude restart, engine performance, control requirements, safety, and maintenance. One of the concepts was found to improve the performance of the baseline E(3) engine without seriously compromising engine startup and power change response. Increased maintenance is required because of the need for frequent pyrolytic cleaning of the surfaces in contact with hot fuel.

  1. Copper vapor laser precision processing

    NASA Astrophysics Data System (ADS)

    Nikonchuk, Michail O.

    1991-05-01

    Copper vapor laser (CVL) was designed on the basis master oscillator (MO) - spatial filter - amplifier (AMP) system which is placed in thermostable volume. Processing material is moved by means of CNC system GPM-AP-400 with +/- 5 micrometers accuracy. Several cutting parameters are considered which define the quality and productivity of vaporization cutting: efficiency, cutwidth, height of upper and lower burr, roughness, laser and heat affected zones. Estimates are made for some metals with thickness 0.02 - 0.3 mm and cutwidth 0.01 - 0.03 mm. The examples of workpieces produced by CVL are presented.

  2. EVALUATION OF THE HIGH VOLUME COLLECTION SYSTEM (HVCS) FOR QUANTIFYING FUGITIVE ORGANIC VAPOR LEAKS

    EPA Science Inventory

    The report discusses a recently developed measurements technique that offers the potential for providing an easy-to-use and cost effective means to directly measure organic vapor leaks. The method, called High Volume Collection System (HVCS), uses a high volume sampling device an...

  3. Affordable Rankine Cycle Waste Heat Recovery for Heavy Duty Trucks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramanian, Swami Nathan

    Nearly 30% of fuel energy is not utilized and wasted in the engine exhaust. Organic Rankine Cycle (ORC) based waste heat recovery (WHR) systems offer a promising approach on waste energy recovery and improving the efficiency of Heavy-Duty diesel engines. Major barriers in the ORC WHR system are the system cost and controversial waste heat recovery working fluids. More than 40% of the system cost is from the additional heat exchangers (recuperator, condenser and tail pipe boiler). The secondary working fluid loop designed in ORC system is either flammable or environmentally sensitive. The Eaton team investigated a novel approach tomore » reduce the cost of implementing ORC based WHR systems to Heavy-Duty (HD) Diesel engines while utilizing safest working fluids. Affordable Rankine Cycle (ARC) concept aimed to define the next generation of waste energy recuperation with a cost optimized WHR system. ARC project used engine coolant as the working fluid. This approach reduced the need for a secondary working fluid circuit and subsequent complexity. A portion of the liquid phase engine coolant has been pressurized through a set of working fluid pumps and used to recover waste heat from the exhaust gas recirculation (EGR) and exhaust tail pipe exhaust energy. While absorbing heat, the mixture is partially vaporized but remains a wet binary mixture. The pressurized mixed-phase engine coolant mixture is then expanded through a fixed-volume ratio expander that is compatible with two-phase conditions. Heat rejection is accomplished through the engine radiator, avoiding the need for a separate condenser. The ARC system has been investigated for PACCAR’s MX-13 HD diesel engine.« less

  4. Vapor Compression and Thermoelectric Heat Pump Heat Exchangers for a Condensate Distillation System: Design and Experiment

    NASA Technical Reports Server (NTRS)

    Erickson, Lisa R.; Ungar, Eugene K.

    2013-01-01

    Maximizing the reuse of wastewater while minimizing the use of consumables is critical in long duration space exploration. One of the more promising methods of reclaiming urine is the distillation/condensation process used in the cascade distillation system (CDS). This system accepts a mixture of urine and toxic stabilizing agents, heats it to vaporize the water and condenses and cools the resulting water vapor. The CDS wastewater flow requires heating and its condensate flow requires cooling. Performing the heating and cooling processes separately requires two separate units, each of which would require large amounts of electrical power. By heating the wastewater and cooling the condensate in a single heat pump unit, mass, volume, and power efficiencies can be obtained. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump performance tests are provided. A summary is provided of the heat pump mass, volume and power trades and a selection recommendation is made.

  5. Optimal control of Formula One car energy recovery systems

    NASA Astrophysics Data System (ADS)

    Limebeer, D. J. N.; Perantoni, G.; Rao, A. V.

    2014-10-01

    The utility of orthogonal collocation methods in the solution of optimal control problems relating to Formula One racing is demonstrated. These methods can be used to optimise driver controls such as the steering, braking and throttle usage, and to optimise vehicle parameters such as the aerodynamic down force and mass distributions. Of particular interest is the optimal usage of energy recovery systems (ERSs). Contemporary kinetic energy recovery systems are studied and compared with future hybrid kinetic and thermal/heat ERSs known as ERS-K and ERS-H, respectively. It is demonstrated that these systems, when properly controlled, can produce contemporary lap time using approximately two-thirds of the fuel required by earlier generation (2013 and prior) vehicles.

  6. Sustainable Remediation for Enhanced NAPL Recovery from Groundwater

    NASA Astrophysics Data System (ADS)

    Javaher, M.

    2012-12-01

    Sustainable remediation relates to the achievement of balance between environmental, social, and economic elements throughout the remedial lifecycle. A significant contributor to this balance is the use of green and sustainable technologies which minimize environmental impacts, while maximizing social and economic benefits of remedial implementation. To this end, a patented mobile vapor energy generation (VEG) technology has been developed targeting variable applications, including onsite soil remediation for unrestricted reuse and enhanced non-aqueous phase liquid (NAPL) recover at the water table. At the core of the mobile VEG technology is a compact, high efficiency vapor generator, which utilizes recycled water and propane within an entirely enclosed system to generate steam as high as 1100°F. Operating within a fully enclosed system and capturing all heat that is generated within this portable system, the VEG technology eliminates all emissions to the atmosphere and yields an undetected carbon footprint with resulting carbon dioxide concentrations that are below ambient levels. Introduction of the steam to the subsurface via existing wells results in a desired change in the NAPL viscosity and the interfacial tension at the soil, water, NAPL interface; in turn, this results in mobilization and capture of the otherwise trapped, weathered NAPL. Approved by the California Air Resources Control Board (and underlying Air Quality Management Districts) and applied in California's San Joaquin Valley, in-well heating of NAPLs trapped at the water table using the VEG technology has proven as effective as electrical resistivity heating (ERH) in changing the viscosity of and mobilizing NAPLs in groundwater in support of recovery, but has achieved these results while minimizing the remedial carbon footprint by 90%, reducing energy use by 99%, and reducing remedial costs by more than 95%. NAPL recovery using VEG has also allowed for completion of source removal historically

  7. Material and energy recovery in integrated waste management systems: the potential for energy recovery.

    PubMed

    Consonni, Stefano; Viganò, Federico

    2011-01-01

    This article is part of a set of six coordinated papers reporting the main findings of a research project carried out by five Italian universities on "Material and energy recovery in Integrated Waste Management Systems (IWMS)". An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy potential only by one fourth. Consequently, even at high SSL energy recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its energy and environmental

  8. Vapor core propulsion reactors

    NASA Technical Reports Server (NTRS)

    Diaz, Nils J.

    1991-01-01

    Many research issues were addressed. For example, it became obvious that uranium tetrafluoride (UF4) is a most preferred fuel over uranium hexafluoride (UF6). UF4 has a very attractive vaporization point (1 atm at 1800 K). Materials compatible with UF4 were looked at, like tungsten, molybdenum, rhenium, carbon. It was found that in the molten state, UF4 and uranium attacked most everything, but in the vapor state they are not that bad. Compatible materials were identified for both the liquid and vapor states. A series of analyses were established to determine how the cavity should be designed. A series of experiments were performed to determine the properties of the fluid, including enhancement of the electrical conductivity of the system. CFD's and experimental programs are available that deal with most of the major issues.

  9. COMPARISON OF CFC-114 AND HFC-236EA PERFORMANCE IN SHIPBOARD VAPOR COMPRESSION SYSTEMS

    EPA Science Inventory

    The report gives results of a comparison of the performance of two refrigerants - 1,1,1,2,3,3-hexafluoropropane (HFC-236ea) and 1,2-dichloro-tetrafluoroethane (CFC-114) - in shipboard vapor compression refrigeration systems. (NOTE: In compliance with the Montreal Protocol and Dep...

  10. Process Control for Precipitation Prevention in Space Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam; Callahan, Michael R.; Muirhead, Dean

    2015-01-01

    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, rotary distillation systems have been actively pursued by NASA as one of the technologies for water recovery from wastewater primarily comprised of human urine. A specific area of interest is the prevention of the formation of solids that could clog fluid lines and damage rotating equipment. To mitigate the formation of solids, operational constraints are in place that limits such that the concentration of key precipitating ions in the wastewater brine are below the theoretical threshold. This control in effected by limiting the amount of water recovered such that the risk of reaching the precipitation threshold is within acceptable limits. The water recovery limit is based on an empirically derived worst case wastewater composition. During the batch process, water recovery is estimated by monitoring the throughput of the system. NASA Johnson Space Center is working on means of enhancing the process controls to increase water recovery. Options include more precise prediction of the precipitation threshold. To this end, JSC is developing a means of more accurately measuring the constituent of the brine and/or wastewater. Another means would be to more accurately monitor the throughput of the system. In spring of 2015, testing will be performed to test strategies for optimizing water recovery without increasing the risk of solids formation in the brine.

  11. Reflux condensation of pure vapors with and without a noncondensable gas inside plain and enhanced tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelmessih, A.N.; Rabas, T.J.; Panchal, C.B.

    1997-06-01

    Estimates of the surface-area and vapor-release reductions are obtained when commercially available enhanced tubes (spirally ribbed) replace plain tubes in a reflux unit condensing pure organic vapors with different concentrations of a noncondensable gas. This investigation was undertaken because there are no existing data and/or prediction methods that are applicable for these shell-and-tube condensers commonly used in the process industries. To obtain these estimates, existing design methods published in the open literature were used. The major findings are that (1) surface-area reductions can almost approach the single-phase heat transfer enhancement level, and (2) vapor-release reductions can approach a factor ofmore » four. The important implication is that enhanced tubes appear to be very cost effective for addressing the recovery of volatile organic vapors (VOCs), and for a vast number of different reflux-condenser applications.« less

  12. Sensor-triggered sampling to determine instantaneous airborne vapor exposure concentrations.

    PubMed

    Smith, Philip A; Simmons, Michael K; Toone, Phillip

    2018-06-01

    It is difficult to measure transient airborne exposure peaks by means of integrated sampling for organic chemical vapors, even with very short-duration sampling. Selection of an appropriate time to measure an exposure peak through integrated sampling is problematic, and short-duration time-weighted average (TWA) values obtained with integrated sampling are not likely to accurately determine actual peak concentrations attained when concentrations fluctuate rapidly. Laboratory analysis for integrated exposure samples is preferred from a certainty standpoint over results derived in the field from a sensor, as a sensor user typically must overcome specificity issues and a number of potential interfering factors to obtain similarly reliable data. However, sensors are currently needed to measure intra-exposure period concentration variations (i.e., exposure peaks). In this article, the digitized signal from a photoionization detector (PID) sensor triggered collection of whole-air samples when toluene or trichloroethylene vapors attained pre-determined levels in a laboratory atmosphere generation system. Analysis by gas chromatography-mass spectrometry of whole-air samples (with both 37 and 80% relative humidity) collected using the triggering mechanism with rapidly increasing vapor concentrations showed good agreement with the triggering set point values. Whole-air samples (80% relative humidity) in canisters demonstrated acceptable 17-day storage recoveries, and acceptable precision and bias were obtained. The ability to determine exceedance of a ceiling or peak exposure standard by laboratory analysis of an instantaneously collected sample, and to simultaneously provide a calibration point to verify the correct operation of a sensor was demonstrated. This latter detail may increase the confidence in reliability of sensor data obtained across an entire exposure period.

  13. The lithium vapor box divertor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldston, R. J.; Myers, R.; Schwartz, J.

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Our recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m -2, implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et almore » as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. Furthermore, at the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required in order to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma.« less

  14. The lithium vapor box divertor

    NASA Astrophysics Data System (ADS)

    Goldston, R. J.; Myers, R.; Schwartz, J.

    2016-02-01

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m-2, implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. At the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma.

  15. The lithium vapor box divertor

    DOE PAGES

    Goldston, R. J.; Myers, R.; Schwartz, J.

    2016-01-13

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Our recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m -2, implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et almore » as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. Furthermore, at the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required in order to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma.« less

  16. Performance Modeling of an Airborne Raman Water Vapor Lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Schwemmer, G.; Berkoff, T.; Plotkin, H.; Ramos-Izquierdo, L.; Pappalardo, G.

    2000-01-01

    A sophisticated Raman lidar numerical model had been developed. The model has been used to simulate the performance of two ground-based Raman water vapor lidar systems. After tuning the model using these ground-based measurements, the model is used to simulate the water vapor measurement capability of an airborne Raman lidar under both day-and night-time conditions for a wide range of water vapor conditions. The results indicate that, under many circumstances, the daytime measurements possess comparable resolution to an existing airborne differential absorption water vapor lidar while the nighttime measurement have higher resolution. In addition, a Raman lidar is capable of measurements not possible using a differential absorption system.

  17. Optical gain in an optically driven three-level ? system in atomic Rb vapor

    NASA Astrophysics Data System (ADS)

    Ballmann, C. W.; Yakovlev, V. V.

    2018-06-01

    In this work, we report experimentally achieved optical gain of a weak probe beam in a three-level ? system in a low density Rubidium vapor cell driven by a single pump beam. The maximum measured gain of the probe beam was about 0.12%. This work could lead to new approaches for enhancing molecular spectroscopy applications.

  18. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization whichmore » have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.« less

  19. Hybrid Vapor Compression Ejector Cycle: Presentation to IAPG Mechanical Working Group

    DTIC Science & Technology

    2011-08-01

    Compression Ejector Cycle: Presentation to IAPG Mechanical Working Group Parmesh Verma and Tom Radcliff, United Technologies Research Center UNCLASSIFIED... Ejector Cycle Presentation to IAPG Mechanical Working Group 5a. CONTRACT NUMBER W909MY-10-C-0005 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...hybrid vapor compression ejector heat pump cycle developed under an American Recovery and Reinvestment Act funded contract is provided. 15. SUBJECT

  20. A new vapor-liquid equilibrium apparatus for hydrogen fluoride containing systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jongcheon Lee; Hwayong Kim; Jong Sung Lim

    1996-12-31

    A new circulating type apparatus has been constructed to obtain reliable equilibrium PTxy data for hydrogen fluoride (HF) containing system. Equilibrium cell with Pyrex windows protected by Teflon PFA sheets to prevent the corrosion was used. Isothermal vapor-liquid equilibrium data for the 1,1-difluoroethane (HFC-152a) + HF system at 288.23 and 298.35 K were obtained, and compared with PTx measurement results. Experimental data were correlated using Lencka and Anderko equation of state for HF with the Wong-Sandler mixing rule as well as the van der Waals one fluid mixing rule. The Wong-Sandler mixing rule gives better results. 5 refs., 3 figs.

  1. Oxidation/vaporization of silicide coated columbium base alloys

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.; Stearns, C. A.

    1971-01-01

    Mass spectrometric and target collection experiments were made at 1600 K to elucidate the mode of oxidative vaporization of two columbium alloys, fused-slurry-coated with a complex silicide former (Si-20Cr-Fe). At oxygen pressures up to 0.0005 torr the major vapor component detected by mass spectrometry for oxidized samples was gaseous silicon monoxide. Analysis of condensates collected at oxygen pressures of 0.1, 1.0 and 10 torr revealed that chromium-, silicon-, iron- and tungsten- containing species were the major products of vaporization. Equilibrium thermochemical diagrams were constructed for the metal-oxygen system corresponding to each constituent metal in both the coating and base alloy. The major vaporizing species are expected to be the gaseous oxides of chromium, silicon, iron and tungsten. Plots of vapor phase composition and maximum vaporization rate versus oxygen pressure were calculated for each coating constituent. The major contribution to weight loss by vaporization at oxygen pressures above 1 torr was shown to be the chromium-containing species.

  2. Packed-bed catalytic cracking of oak derived pyrolytic vapors

    USDA-ARS?s Scientific Manuscript database

    Catalytic upgrading of pyrolysis vapors derived from oak was carried out using a fixed-bed catalytic column at 425 deg C. The vapors were drawn by splitting a fraction from the full stream of vapors produced at 500 deg C in a 5 kg/hr bench-scale fast pyrolysis reactor system downstream the cyclone s...

  3. 33 CFR 157.132 - Cargo tanks: Hydrocarbon vapor emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Cargo tanks: Hydrocarbon vapor... § 157.132 Cargo tanks: Hydrocarbon vapor emissions. Each tank vessel having a COW system under § 157.10a... must have— (a) A means to discharge hydrocarbon vapors from each cargo tank that is ballasted to a...

  4. Spectral control of an alexandrite laser for an airborne water-vapor differential absorption lidar system

    NASA Technical Reports Server (NTRS)

    Ponsardin, Patrick; Grossmann, Benoist E.; Browell, Edward V.

    1994-01-01

    A narrow-linewidth pulsed alexandrite laser has been greatly modified for improved spectral stability in an aircraft environment, and its operation has been evaluated in the laboratory for making water-vapor differential absorption lidar measurements. An alignment technique is described to achieve the optimum free spectral range ratio for the two etalons inserted in the alexandrite laser cavity, and the sensitivity of this ratio is analyzed. This technique drastically decreases the occurrence of mode hopping, which is commonly observed in a tunable, two-intracavity-etalon laser system. High spectral purity (greater than 99.85%) at 730 nm is demonstrated by the use of a water-vapor absorption line as a notch filter. The effective cross sections of 760-nm oxygen and 730-nm water-vapor absorption lines are measured at different pressures by using this laser, which has a finite linewidth of 0.02 cm(exp -1) (FWHM). It is found that for water-vapor absorption linewidths greater than 0.04 cm(exp -1) (HWHM), or for altitudes below 10 km, the laser line can be considered monochromatic because the measured effective absorption cross section is within 1% of the calculated monochromatic cross section. An analysis of the environmental sensitivity of the two intracavity etalons is presented, and a closed-loop computer control for active stabilization of the two intracavity etalons in the alexandrite laser is described. Using a water-vapor absorption line as a wavelength reference, we measure a long-term frequency drift (approximately 1.5 h) of less than 0.7 pm in the laboratory.

  5. Headspace vapor characterization of Hanford Waste Tank 241-BY-108: Results from samples collected January 23, 1996. Tank Vapor Characterization Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pool, K.H.; Evans, J.C.; Thomas, B.L.

    1996-07-01

    This report describes the results of vapor samples obtained to compare vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling System (ISVS) with and without particulate prefiltration. Samples were collected from the headspace of waste storage tank 241-BY-108 (Tank BY-108) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) was contracted by Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for water, ammonia, permanent gases, total nonmethane hydrocarbons (TNMHCs, also known as TO-12), and organic analytes in samples collected in SUMMA{trademark} canisters and on triple sorbentmore » traps (TSTs) from the tank headspace. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sampling and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was {open_quotes}Sampling and Analysis Plan for Tank Vapor Sampling Comparison Test{close_quotes}, and the sample jobs were designated S6004, S6005, and S6006. Samples were collected by WHC on January 23, 1996, using the VSS, a truck-based sampling method using a heated probe; and the ISVS with and without particulate prefiltration.« less

  6. Performance Analysis of Stirling Engine-Driven Vapor Compression Heat Pump System

    NASA Astrophysics Data System (ADS)

    Kagawa, Noboru

    Stirling engine-driven vapor compression systems have many unique advantages including higher thermal efficiencies, preferable exhaust gas characteristics, multi-fuel usage, and low noise and vibration which can play an important role in alleviating environmental and energy problems. This paper introduces a design method for the systems based on reliable mathematical methods for Stirling and Rankin cycles using reliable thermophysical information for refrigerants. The model deals with a combination of a kinematic Stirling engine and a scroll compressor. Some experimental coefficients are used to formulate the model. The obtained results show the performance behavior in detail. The measured performance of the actual system coincides with the calculated results. Furthermore, the calculated results clarify the performance using alternative refrigerants for R-22.

  7. Development of Vapor-Phase Catalytic Ammonia Removal System

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Fisher, John; Kiss, Mark; Borchers, Bruce; Tleimat, Badawi; Tleimat, Maher; Quinn, Gregory; Fort, James; Nalette, Tim; Baker, Gale; hide

    2007-01-01

    A report describes recent accomplishments of a continuing effort to develop the vapor-phase catalytic ammonia removal (VPCAR) process for recycling wastewater for consumption by humans aboard a spacecraft in transit to Mars.

  8. An Assessment of Upper Tropospheric Water Vapor in the MERRA-2 Reanalysis: Comparisons with MLS and In Situ Water Vapor Measurements

    NASA Astrophysics Data System (ADS)

    Selkirk, H. B.; Molod, A.; Pawson, S.; Douglass, A. R.; Voemel, H.; Hurst, D. F.; Jiang, J. H.; Read, W. G.; Schwartz, M. J.; Manyin, M.

    2015-12-01

    The recently released MERRA-2 reanalysis represents a significant evolution of the GEOS-5 atmospheric general circulation model and data assimilation system since the original MERRA project, and it is expected that MERRA-2 will be widely used in climate change studies as has its predecessor. A number of studies have demonstrated critical sensitivities of the climate system to the water vapor content of the upper troposphere and lower stratosphere (UT/LS) and it is therefore important to assess how well the MERRA-2 reanalysis represents the mean structure and variability of water vapor in this part of the atmosphere. Recent comparisons with MLS water vapor indicate that the ECMWF and original MERRA reanalyses overestimate water vapor throughout the global upper troposphere by 50-80%. These overestimates are particularly acute at 147 hPa and 215 hPa and occur in all seasons. In this presentation, we analyze differences between the MLS v.4.2 water vapor data and the new MERRA-2 reanalysis to assess improvements in the treatment of water vapor in the GEOS-5 system since MERRA. We also include in our analysis a comparison of MERRA-2 profiles with water vapor and relative humidity profiles from frostpoint hygrometers at five sites with long-term records and a sixth with an intensive campaign of one month. Three of the long-term sites, Boulder, Colorado, Lindenburg, Germany and Lauder, New Zealand, lie in middle latitudes, and two sites, San José, Costa Rica and Hilo, Hawaii, are in the tropics and subtropics, respectively. The campaign-only database is from the NASA SEAC4RS mission at Ellington Field, Houston, TX in 2013.

  9. Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus

    ERIC Educational Resources Information Center

    Battino, Rubin; Dolson, David A.; Hall, Michael A.; Letcher, Trevor M.

    2007-01-01

    A simple and inexpensive method to determine the enthalpy of vaporization of liquids by measuring vapor pressure as a function of temperature is described. The vapor pressures measured with the stopcock cell were higher than the literature values and those measured with the sidearm rubber septum cell were both higher and lower than literature…

  10. Explosive vapor detection payload for small robots

    NASA Astrophysics Data System (ADS)

    Stimac, Phil J.; Pettit, Michael; Wetzel, John P.; Haas, John W.

    2013-05-01

    Detection of explosive hazards is a critical component of enabling and improving operational mobility and protection of US Forces. The Autonomous Mine Detection System (AMDS) developed by the US Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD) is addressing this challenge for dismounted soldiers. Under the AMDS program, ARA has developed a vapor sampling system that enhances the detection of explosive residues using commercial-off-the-shelf (COTS) sensors. The Explosives Hazard Trace Detection (EHTD) payload is designed for plug-and-play installation and operation on small robotic platforms, addressing critical Army needs for more safely detecting concealed or exposed explosives in areas such as culverts, walls and vehicles. In this paper, we describe the development, robotic integration and performance of the explosive vapor sampling system, which consists of a sampling "head," a vapor transport tube and an extendable "boom." The sampling head and transport tube are integrated with the boom, allowing samples to be collected from targeted surfaces up to 7-ft away from the robotic platform. During sample collection, an IR lamp in the sampling head is used to heat a suspected object/surface and the vapors are drawn through the heated vapor transport tube to an ion mobility spectrometer (IMS) for detection. The EHTD payload is capable of quickly (less than 30 seconds) detecting explosives such as TNT, PETN, and RDX at nanogram levels on common surfaces (brick, concrete, wood, glass, etc.).

  11. Prototype sampling system for measuring workplace protection factors for gases and vapors.

    PubMed

    Groves, William A; Reynolds, Stephen J

    2003-05-01

    A prototype sampling system for measuring respirator workplace protection factors (WPFs) was developed. Methods for measuring the concentration of contaminants inside respirators have previously been described; however, these studies have typically involved continuous sampling of aerosols. Our work focuses on developing an intermittent sampling system designed to measure the concentration of gases and vapors during inspiration. This approach addresses two potential problems associated with continuous sampling: biased results due to lower contaminant concentrations and high humidity in exhaled air. The system consists of a pressure transducer circuit designed to activate a pair of personal sampling pumps during inspiration based on differential pressure inside the respirator. One pump draws air from inside the respirator while the second samples the ambient air. Solid granular adsorbent tubes are used to trap the contaminants, making the approach applicable to a large number of gases and vapors. Laboratory testing was performed using a respirator mounted on a headform connected to a breathing machine producing a sinusoidal flow pattern with an average flow rate of 20 L/min and a period of 3 seconds. The sampling system was adjusted to activate the pumps when the pressure inside the respirator was less than -0.1 inch H(2)O. Quantitative fit-tests using human subjects were conducted to evaluate the effect of the sampling system on respirator performance. A total of 299 fit-tests were completed for two different types of respirators (half- and full-facepiece) from two different manufacturers (MSA and North). Statistical tests showed no significant differences between mean fit factors for respirators equipped with the sampling system versus unmodified respirators. Field testing of the prototype sampling system was performed in livestock production facilities and estimates of WPFs for ammonia were obtained. Results demonstrate the feasibility of this approach and will be

  12. Advanced Raman water vapor lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Melfi, S. Harvey; Ferrare, Richard A.; Evans, Keith A.; Ramos-Izquierdo, Luis; Staley, O. Glenn; Disilvestre, Raymond W.; Gorin, Inna; Kirks, Kenneth R.; Mamakos, William A.

    1992-01-01

    Water vapor and aerosols are important atmospheric constituents. Knowledge of the structure of water vapor is important in understanding convective development, atmospheric stability, the interaction of the atmosphere with the surface, and energy feedback mechanisms and how they relate to global warming calculations. The Raman Lidar group at the NASA Goddard Space Flight Center (GSFC) developed an advanced Raman Lidar for use in measuring water vapor and aerosols in the earth's atmosphere. Drawing on the experience gained through the development and use of our previous Nd:YAG based system, we have developed a completely new lidar system which uses a XeF excimer laser and a large scanning mirror. The additional power of the excimer and the considerably improved optical throughput of the system have resulted in approximately a factor of 25 improvement in system performance for nighttime measurements. Every component of the current system has new design concepts incorporated. The lidar system consists of two mobile trailers; the first (13m x 2.4m) houses the lidar instrument, the other (9.75m x 2.4m) is for system control, realtime data display, and analysis. The laser transmitter is a Lambda Physik LPX 240 iCC operating at 400 Hz with a XeF gas mixture (351 nm). The telescope is a .75m horizontally mounted Dall-Kirkham system which is bore sited with a .8m x 1.1m elliptical flat which has a full 180 degree scan capability - horizon to horizon within a plane perpendicular to the long axis of the trailer. The telescope and scan mirror assembly are mounted on a 3.65m x .9m optical table which deploys out the rear of the trailer through the use of a motor driven slide rail system. The Raman returns from water vapor (403 nm), nitrogen (383 nm) and oxygen (372 nm) are measured in addition to the direct Rayleigh/Mie backscatter (351). The signal from each of these is split at about a 5/95 ratio between two photomultiplier detectors. The 5 percent detector is used for

  13. Procedure 5 Quality Assurance Requirements For Vapor Phase Mercury Continuous Emissions Monitoring Systems And Sorbent Trap Monitoring Systems Used For Compliance Determination At Stationary Sources

    EPA Pesticide Factsheets

    Promulgated quality assurance Procedure 5 Quality Assurance Requirements For Vapor Phase Mercury Continuous Emissions Monitoring Systems And Sorbent Trap Monitoring Systems Used For Compliance Determination At Stationary Sources

  14. Identification of V-type nerve agents in vapor samples using a field-portable capillary gas chromatography/membrane-interfaced electron ionization quadrupole mass spectrometry instrument with Tri-Bed concentrator and fluoridating conversion tube.

    PubMed

    Ohrui, Y; Nagoya, T; Kurimata, N; Sodeyama, M; Seto, Y

    2017-07-01

    A field-portable gas chromatography-mass spectrometry (GC-MS) system (Hapsite ER) was evaluated for the detection of nonvolatile V-type nerve agents (VX and Russian VX (RVX)) in the vapor phase. The Hapsite ER system consists of a Tri-Bed concentrator gas sampler, a nonpolar low thermal-mass capillary GC column and a hydrophobic membrane-interfaced electron ionization quadrupole mass spectrometer evacuated by a non-evaporative getter pump. The GC-MS system was attached to a VX-G fluoridating conversion tube containing silver nitrate and potassium fluoride. Sample vapors of VX and RVX were converted into O-ethyl methylphosphonofluoridate (EtGB) and O-isobutyl methylphosphonofluoridate (iBuGB), respectively. These fluoridated derivatives were detected within 10 min. No compounds were detected when the VX and RVX samples were analyzed without the conversion tube. A vapor sample of tabun (GA) was analyzed, in which GA and O-ethyl N,N-dimethylphosphoramidofluoridate were detected. The molar recovery percentages of EtGB and iBuGB from VX and RVX vapors varied from 0.3 to 17%, which was attributed to variations in the vaporization efficiency of the glass vapor container. The conversion efficiencies of the VX-G conversion tube for VX and RVX to their phosphonate derivatives were estimated to be 40%. VX and RVX vapors were detected at concentrations as low as 0.3 mg m -3 . Gasoline vapor was found to interfere with the analyses of VX and RVX. In the presence of 160 mg m -3 gasoline, the detection limits of VX and RVX vapor were increased to 20 mg m -3 . Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  15. A Thermoelectric Waste-Heat-Recovery System for Portland Cement Rotary Kilns

    NASA Astrophysics Data System (ADS)

    Luo, Qi; Li, Peng; Cai, Lanlan; Zhou, Pingwang; Tang, Di; Zhai, Pengcheng; Zhang, Qingjie

    2015-06-01

    Portland cement is produced by one of the most energy-intensive industrial processes. Energy consumption in the manufacture of Portland cement is approximately 110-120 kWh ton-1. The cement rotary kiln is the crucial equipment used for cement production. Approximately 10-15% of the energy consumed in production of the cement clinker is directly dissipated into the atmosphere through the external surface of the rotary kiln. Innovative technology for energy conservation is urgently needed by the cement industry. In this paper we propose a novel thermoelectric waste-heat-recovery system to reduce heat losses from cement rotary kilns. This system is configured as an array of thermoelectric generation units arranged longitudinally on a secondary shell coaxial with the rotary kiln. A mathematical model was developed for estimation of the performance of waste heat recovery. Discussions mainly focus on electricity generation and energy saving, taking a Φ4.8 × 72 m cement rotary kiln as an example. Results show that the Bi2Te3-PbTe hybrid thermoelectric waste-heat-recovery system can generate approximately 211 kW electrical power while saving 3283 kW energy. Compared with the kiln without the thermoelectric recovery system, the kiln with the system can recover more than 32.85% of the energy that used to be lost as waste heat through the kiln surface.

  16. 46 CFR 39.20-11 - Vapor overpressure and vacuum protection-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-11 Section 39.20-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS Design and Equipment § 39.20-11 Vapor overpressure and vacuum protection—TB/ALL. (a) The cargo... connected to the vapor collection system does not exceed: (i) The maximum design working pressure for the...

  17. 46 CFR 39.20-11 - Vapor overpressure and vacuum protection-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-11 Section 39.20-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS Design and Equipment § 39.20-11 Vapor overpressure and vacuum protection—TB/ALL. (a) The cargo... connected to the vapor collection system does not exceed: (i) The maximum design working pressure for the...

  18. 46 CFR 39.20-11 - Vapor overpressure and vacuum protection-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-11 Section 39.20-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS Design and Equipment § 39.20-11 Vapor overpressure and vacuum protection—TB/ALL. (a) The cargo... connected to the vapor collection system does not exceed: (i) The maximum design working pressure for the...

  19. The Design of Data Disaster Recovery of National Fundamental Geographic Information System

    NASA Astrophysics Data System (ADS)

    Zhai, Y.; Chen, J.; Liu, L.; Liu, J.

    2014-04-01

    With the development of information technology, data security of information system is facing more and more challenges. The geographic information of surveying and mapping is fundamental and strategic resource, which is applied in all areas of national economic, defence and social development. It is especially vital to national and social interests when such classified geographic information is directly concerning Chinese sovereignty. Several urgent problems that needs to be resolved for surveying and mapping are how to do well in mass data storage and backup, establishing and improving the disaster backup system especially after sudden natural calamity accident, and ensuring all sectors rapidly restored on information system will operate correctly. For overcoming various disaster risks, protect the security of data and reduce the impact of the disaster, it's no doubt the effective way is to analysis and research on the features of storage and management and security requirements, as well as to ensure that the design of data disaster recovery system suitable for the surveying and mapping. This article analyses the features of fundamental geographic information data and the requirements of storage management, three site disaster recovery system of DBMS plan based on the popular network, storage and backup, data replication and remote switch of application technologies. In LAN that synchronous replication between database management servers and the local storage of backup management systems, simultaneously, remote asynchronous data replication between local storage backup management systems and remote database management servers. The core of the system is resolving local disaster in the remote site, ensuring data security and business continuity of local site. This article focuses on the following points: background, the necessity of disaster recovery system, the analysis of the data achievements and data disaster recovery plan. Features of this program is to use a

  20. ATALARS Operational Requirements: Automated Tactical Aircraft Launch and Recovery System

    DOT National Transportation Integrated Search

    1988-04-01

    The Automated Tactical Aircraft Launch and Recovery System (ATALARS) is a fully automated air traffic management system intended for the military service but is also fully compatible with civil air traffic control systems. This report documents a fir...

  1. Petroleum Vapor Intrusion

    EPA Pesticide Factsheets

    One type of vapor intrusion is PVI, in which vapors from petroleum hydrocarbons such as gasoline, diesel, or jet fuel enter a building. Intrusion of contaminant vapors into indoor spaces is of concern.

  2. Headspace vapor characterization of Hanford Waste Tank 241-S-102: Results from samples collected on January 26, 1996. Tank Vapor Characterization Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, J.C.; Thomas, B.L.; Pool, K.H.

    1996-07-01

    This report describes the results of vapor samples obtained to compare vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling System (ISVS) with and without particulate prefiltration. Samples were collected from the headspace of waste storage tank 241-S-102 (Tank S-102) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) was contracted by Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for water, ammonia, permanent gases, total nonmethane hydrocarbons (TNMHCs, also known as TO-12), and organic analytes in samples collected in SUMMA{trademark} canisters and on triple sorbentmore » traps (TSTs) from the tank headspace. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sampling and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was {open_quotes}Sampling and Analysis Plan for Tank Vapor Sampling Comparison Test{close_quote}, and the sample jobs were designated S6007, S6008, and S6009. Samples were collected by WHC on January 26, 1996, using the VSS, a truck-based sampling method using a heated probe; and the ISVS with and without particulate prefiltration.« less

  3. Nanostructured systems for enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Altunina, L. K.; Kuvshinov, V. A.; Kuvshinov, I. V.

    2015-10-01

    The reservoir energy or that of the injected heat carrier was used to generate in situ intelligent chemical systems—nanostructured gels, sols and oil-displacing surfactants systems, preserving for a long time in the reservoir a complex of the properties being optimal for oil displacement. The results of field tests and commercial application of physicochemical technologies using nanostructured systems for enhanced oil recovery in oilfields with difficult-to-recover reserves, including deposits of high-viscosity oils, have been presented. Field tests of new "cold" technologies on the deposit of high-viscosity oil in Usinskoye oilfield proved their high efficiency.

  4. A flow-system comparison of the reactivities of calcium superoxide and potassium superoxide with carbon dioxide and water vapor

    NASA Technical Reports Server (NTRS)

    Wood, P. C.; Ballou, E. V.; Spitze, L. A.; Wydeven, T.

    1982-01-01

    A single pass flow system was used to test the reactivity of calcium superoxide with respiratory gases and the performance was compared to that of potassium superoxide. The KO2 system is used by coal miners as a self-contained unit in rescue operations. Particular attention was given to the reactivity with carbon dioxide and water vapor at different temperatures and partial pressures of oxygen, carbon dioxide, and water vapor. The calcium superoxide beds were found to absorb CO2 and H2O vapor, releasing O2. The KO2 bed, however, released O2 at twice the rate of CO2 absorption at 37 C. It is concluded that the calcium superoxide material is not a suitable replacement for the KO2 bed, although Ca(O2)2 may be added to the KO2 bed to enhance the CO2 absorption.

  5. Preliminary evaluation of the role of K2S in MHD hot stream seed recovery

    NASA Technical Reports Server (NTRS)

    Bennett, J. E.; Kohl, F. J.

    1979-01-01

    Results are presented for recent analytical and experimental studies of the role of K2S in MHD hot stream seed recovery. The existing thermodynamic data base was found to contain large uncertainties and to be nonexistent for vapor phase K2S. Knudsen cell mass spectrometric experiments were undertaken to determine the vapor species in equilibrium with K2S(c). K atoms and S2 molecules ere found to be the major vapor phase species in vacuum, accounting for greater than 99 percent of the vapor phase. Combustion gas deposition studies using No. 2 Diesel fuel were also undertaken and revealed that condensed phase K2SO3 may potentially be an important compound in the MHD stream at near-stoichiometric combustion.

  6. Research on an IP disaster recovery storage system

    NASA Astrophysics Data System (ADS)

    Zeng, Dong; Wang, Yusheng; Zhu, Jianfeng

    2008-12-01

    According to both the Fibre Channel (FC) Storage Area Network (SAN) switch and Fabric Application Interface Standard (FAIS) mechanism, an iSCSI storage controller is put forward and based upon it, an internet Small Computer System Interface (iSCSI) SAN construction strategy for disaster recovery (DR) is proposed and some multiple sites replication models and a closed queue performance analysis method are also discussed in this paper. The iSCSI storage controller lies in the fabric level of the networked storage infrastructure, and it can be used to connect to both the hybrid storage applications and storage subsystems, besides, it can provide virtualized storage environment and support logical volume access control, and by cooperating with the remote peerparts, a disaster recovery storage system can be built on the basis of the data replication, block-level snapshot and Internet Protocol (IP) take-over functions.

  7. Shock melting and vaporization of metals.

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.

    1972-01-01

    The effect of initial porosity on shock induction of melting and vaporization is investigated for Ba, Sr, Li, Fe, Al, U, and Th. For the less compressible of these metals, it is found that for a given strong shock-generation system (explosive in contact, or flyer-plate impact) an optimum initial specific volume exists such that the total entropy production, and hence the amount of metal liquid or vapor, is a maximum. Initial volumes from 1.4 to 2.0 times crystal volumes, depending on the metal sample and shock-inducing system, will result in optimum post-shock entropies.

  8. Preprototype Vapor Compression Distillation Subsystem development

    NASA Technical Reports Server (NTRS)

    Thompson, C. D.; Ellis, G. S.; Schubert, F. H.

    1981-01-01

    Vapor Compression Distillation (VCD) has evolved as the most promising approach to reclaim potable water from wastewater for future long-term manned space missions. Life Systems, Inc. (LSI), working with NASA, has developed a preprototype Vapor Compression Distillation Subsystem (VCDS) which processes wastewater at 1.4 kg/h. The preprototype unit weighs 143 kg, occupies a volume of 0.47 cu m, and will reclaim 96 percent of the available wastewater. This unit has been tested by LSI and is scheduled for further testing at NASA-JSC. This paper presents the preprototype VCDS design, configuration, performance data, test results and flight system projections.

  9. Memory management and compiler support for rapid recovery from failures in computer systems

    NASA Technical Reports Server (NTRS)

    Fuchs, W. K.

    1991-01-01

    This paper describes recent developments in the use of memory management and compiler technology to support rapid recovery from failures in computer systems. The techniques described include cache coherence protocols for user transparent checkpointing in multiprocessor systems, compiler-based checkpoint placement, compiler-based code modification for multiple instruction retry, and forward recovery in distributed systems utilizing optimistic execution.

  10. Numerical analysis of the in-well vapor-stripping system demonstration at Edwards Air Force Base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, M.D.; Gilmore, T.J.

    1996-10-01

    Numerical simulations, with the Subsurface Transport Over Multiple Phases (STOMP) simulator, were applied to the field demonstration of an in-well vapor-stripping system at Edwards Air Force Base (AFB), near Mojave, California. The demonstration field site on the Edwards AFB was previously contaminated from traversing groundwater that was contained a varied composition of volatile organic compounds (VOCs), which primarily includes trichloroethylene (TCE). Contaminant TCE originated from surface basin that had been used to collect runoff during the cleaning of experimental rocket powered planes in the 1960s and 1970s. This report documents those simulations and associated numerical analyses. A companion report documentsmore » the in- well vapor-stripping demonstration from a field perspective.« less

  11. Reduction in the microbial load on high-touch surfaces in hospital rooms by treatment with a portable saturated steam vapor disinfection system.

    PubMed

    Sexton, Jonathan D; Tanner, Benjamin D; Maxwell, Sheri L; Gerba, Charles P

    2011-10-01

    Recent scientific literature suggests that portable steam vapor systems are capable of rapid, chemical-free surface disinfection in controlled laboratory studies. This study evaluated the efficacy of a portable steam vapor system in a hospital setting. The study was carried out in 8 occupied rooms of a long-term care wing of a hospital. Six surfaces per room were swabbed before and after steam treatment and analyzed for heterotrophic plate count (HPC), total coliforms, methicillin-intermediate and -resistant Staphylococcus aureus (MISA and MRSA), and Clostridium difficile. The steam vapor device consistently reduced total microbial and pathogen loads on hospital surfaces, to below detection in most instances. Treatment reduced the presence of total coliforms on surfaces from 83% (40/48) to 13% (6/48). Treatment reduced presumptive MISA (12/48) and MRSA (3/48) to below detection after cleaning, except for 1 posttreatment isolation of MISA (1/48). A single C difficile colony was isolated from a door push panel before treatment, but no C difficile was detected after treatment. The steam vapor system reduced bacterial levels by >90% and reduced pathogen levels on most surfaces to below the detection limit. The steam vapor system provides a means to reduce levels of microorganisms on hospital surfaces without the drawbacks associated with chemicals, and may decrease the risk of cross-contamination. Copyright © 2011 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  12. Reduction in infection risk through treatment of microbially contaminated surfaces with a novel, portable, saturated steam vapor disinfection system.

    PubMed

    Tanner, Benjamin D

    2009-02-01

    Surface-mediated infectious disease transmission is a major concern in various settings, including schools, hospitals, and food-processing facilities. Chemical disinfectants are frequently used to reduce contamination, but many pose significant risks to humans, surfaces, and the environment, and all must be properly applied in strict accordance with label instructions to be effective. This study set out to determine the capability of a novel chemical-free, saturated steam vapor disinfection system to kill microorganisms, reduce surface-mediated infection risks, and serve as an alternative to chemical disinfectants. High concentrations of Escherichia coli, Shigella flexneri, vancomycin-resistant Enterococcus faecalis (VRE), methicillin-resistant Staphylococcus aureus (MRSA), Salmonella enterica, methicillin-sensitive Staphylococcus aureus, MS2 coliphage (used as a surrogate for nonenveloped viruses including norovirus), Candida albicans, Aspergillus niger, and the endospores of Clostridium difficile were dried individually onto porous clay test surfaces. Surfaces were treated with the saturated steam vapor disinfection system for brief periods and then numbers of surviving microorganisms were determined. Infection risks were calculated from the kill-time data using microbial dose-response relationships published in the scientific literature, accounting for surface-to-hand and hand-to-mouth transfer efficiencies. A diverse assortment of pathogenic microorganisms was rapidly killed by the steam disinfection system; all of the pathogens tested were completely inactivated within 5 seconds. Risks of infection from the contaminated surfaces decreased rapidly with increasing periods of treatment by the saturated steam vapor disinfection system. The saturated steam vapor disinfection system tested for this study is chemical-free, broadly active, rapidly efficacious, and therefore represents a novel alternative to liquid chemical disinfectants.

  13. Status of the Regenerative ECLS Water Recovery System

    NASA Technical Reports Server (NTRS)

    Carter, Donald Layne

    2010-01-01

    The regenerative Water Recovery System (WRS) has completed its first full year of operation on the International Space Station (ISS). The major assemblies included in this system are the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of May 2010, and describes the technical challenges encountered and lessons learned over the past year.

  14. Conceptual energy and water recovery system for self-sustained nano membrane toilet.

    PubMed

    Hanak, Dawid P; Kolios, Athanasios J; Onabanjo, Tosin; Wagland, Stuart T; Patchigolla, Kumar; Fidalgo, Beatriz; Manovic, Vasilije; McAdam, Ewan; Parker, Alison; Williams, Leon; Tyrrel, Sean; Cartmell, Elise

    2016-10-15

    With about 2.4 billion people worldwide without access to improved sanitation facilities, there is a strong incentive for development of novel sanitation systems to improve the quality of life and reduce mortality. The Nano Membrane Toilet is expected to provide a unique household-scale system that would produce electricity and recover water from human excrement and urine. This study was undertaken to evaluate the performance of the conceptual energy and water recovery system for the Nano Membrane Toilet designed for a household of ten people and to assess its self-sustainability. A process model of the entire system, including the thermochemical conversion island, a Stirling engine and a water recovery system was developed in Aspen Plus®. The energy and water recovery system for the Nano Membrane Toilet was characterised with the specific net power output of 23.1 Wh/kg settledsolids and water recovery rate of 13.4 dm 3 /day in the nominal operating mode. Additionally, if no supernatant was processed, the specific net power output was increased to 69.2 Wh/kg settledsolids . Such household-scale system would deliver the net power output (1.9-5.8 W). This was found to be enough to charge mobile phones or power clock radios, or provide light for the household using low-voltage LED bulbs.

  15. Auxiliary Electrodes for Chromium Vapor Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fergus, Jeffrey; Shahzad, Moaiz; Britt, Tommy

    Measurement of chromia-containing vapors in solid oxide fuel cell systems is useful for monitoring and addressing cell degradation caused by oxidation of the chomia scale formed on alloys for interconnects and balance-of-plant components. One approach to measuring chromium is to use a solid electrolyte with an auxiliary electrode that relates the partial pressure of the chromium containing species to the mobile species in the electrolyte. One example is YCrO3 which can equilibrate with the chromium containing vapor and yttrium in yttria stabilized zirconia to establish an oxygen activity. Another is Na2CrO4 which can equilibrate with the chromium-containing vapor to establishmore » a sodium activity.« less

  16. Detection of vapor-phase organophosphate threats using wearable conformable integrated epidermal and textile wireless biosensor systems.

    PubMed

    Mishra, Rupesh K; Martín, Aida; Nakagawa, Tatsuo; Barfidokht, Abbas; Lu, Xialong; Sempionatto, Juliane R; Lyu, Kay Mengjia; Karajic, Aleksandar; Musameh, Mustafa M; Kyratzis, Ilias L; Wang, Joseph

    2018-03-15

    Flexible epidermal tattoo and textile-based electrochemical biosensors have been developed for vapor-phase detection of organophosphorus (OP) nerve agents. These new wearable sensors, based on stretchable organophosphorus hydrolase (OPH) enzyme electrodes, are coupled with a fully integrated conformal flexible electronic interface that offers rapid and selective square-wave voltammetric detection of OP vapor threats and wireless data transmission to a mobile device. The epidermal tattoo and textile sensors display a good reproducibility (with RSD of 2.5% and 4.2%, respectively), along with good discrimination against potential interferences and linearity over the 90-300mg/L range, with a sensitivity of 10.7µA∙cm 3 ∙mg -1 (R 2 = 0.983) and detection limit of 12mg/L in terms of OP air density. Stress-enduring inks, used for printing the electrode transducers, ensure resilience against mechanical deformations associated with textile and skin-based on-body sensing operations. Theoretical simulations are used to estimate the OP air density over the sensor surface. These fully integrated wearable wireless tattoo and textile-based nerve-agent vapor biosensor systems offer considerable promise for rapid warning regarding personal exposure to OP nerve-agent vapors in variety of decentralized security applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The generation of HCl in the system CaCl2-H2O: Vapor-liquid relations from 380-500°C

    USGS Publications Warehouse

    Bischoff, James L.; Rosenbauer, Robert J.; Fournier, Robert O.

    1996-01-01

    We determined vapor-liquid relations (P-T-x) and derived critical parameters for the system CaCl2-H2O from 380-500??C. Results show that the two-phase region of this system is extremely large and occupies a significant portion of the P-T space to which circulation of fluids in the Earth's crust is constrained. Results also show the system generates significant amounts of HCl (as much as 0.1 mol/kg) in the vapor phase buffered by the liquid at surprisingly high pressures (???230 bars at 380??C, <580 bars at 500??C), presumably by hydrolysis of CaCl2: CaCl2 + 2H2O = Ca(OH)2 + 2HCl. We interpret the abundance of HCl in the vapor as due to its preference for the vapor phase, and by the preference of Ca(OH)2 for either the liquid phase or solid. The recent recognition of the abundance of CaCl2 in deep brines of the Earth's crust and their hydrothermal mobilization makes the hydrolysis of CaCl2 geologically important. The boiling of Ca-rich brines produces abundant HCl buffered by the presence of the liquid at moderate pressures. The resultant Ca(OH)2 generated by this process reacts with silicates to form a variety of alteration products, such as epidote, whereas the vapor produces acid-alteration of rocks through which it ascends.

  18. Hybrid Vapor Stripping-Vapor Permeation Process for Recovery and Dehydration of 1-Butanol and Acetone/Butanol/Ethanol from Dilute Aqueous Solutions. Part 1. Process Simulations

    EPA Science Inventory

    BACKGROUND: Fermentative production of butanol is limited to low concentrations, typically less than 2 wt% solvent, due to product inhibition. The result is high separation energy demand by conventional distillation approaches, despite favorable vapor-liquid equilibrium and parti...

  19. Ultrahigh temperature vapor core reactor-MHD system for space nuclear electric power

    NASA Technical Reports Server (NTRS)

    Maya, Isaac; Anghaie, Samim; Diaz, Nils J.; Dugan, Edward T.

    1991-01-01

    The conceptual design of a nuclear space power system based on the ultrahigh temperature vapor core reactor with MHD energy conversion is presented. This UF4 fueled gas core cavity reactor operates at 4000 K maximum core temperature and 40 atm. Materials experiments, conducted with UF4 up to 2200 K, demonstrate acceptable compatibility with tungsten-molybdenum-, and carbon-based materials. The supporting nuclear, heat transfer, fluid flow and MHD analysis, and fissioning plasma physics experiments are also discussed.

  20. Metal Vapor Arcing Risk Assessment Tool

    NASA Technical Reports Server (NTRS)

    Hill, Monika C.; Leidecker, Henning W.

    2010-01-01

    The Tin Whisker Metal Vapor Arcing Risk Assessment Tool has been designed to evaluate the risk of metal vapor arcing and to help facilitate a decision toward a researched risk disposition. Users can evaluate a system without having to open up the hardware. This process allows for investigating components at risk rather than spending time and money analyzing every component. The tool points to a risk level and provides direction for appropriate action and documentation.

  1. Performance Measurements and Mapping of a R-407C Vapor Injection Scroll Compressor

    NASA Astrophysics Data System (ADS)

    Lumpkin, Domenique; Spielbauer, Niklas; Groll, Eckhard

    2017-08-01

    Environmental conditions significantly define the performance of HVAC&R systems. Vapor compression systems in hot climates tend to operate at higher pressure ratios, leading to increased discharge temperatures. Higher discharge temperatures can lead to higher irreversibilities in the compression process, lower specific enthalpies differences across the evaporator, and possibly a reduction in the compressor life due to the breakdown of the oil used for lubrication. To counter these effects, the use of economized, vapor injection compressors is proposed for vapor compression systems in high temperature climates. Such compressors are commercially available for refrigeration applications, in particular, supermarket refrigeration systems. However, compressor maps for vapor injection compressors are limited and none exist for R-407C. Through calorimeter testing, a compressor map for a single-port vapor injection compressor using R-407C was developed. A standard correlation for mapping single-port vapor injection compressors is proposed and validated using the compressor test results. The system and compressor performance with and without vapor injection was considered. As expected, with vapor injection there was a reduction in compressor discharge temperatures and an increase in the system coefficient of performance. The proposed dimensionless correlation is more accurate than the AHRI polynomial for mapping the injection ratio, discharge temperature, and compressor heat loss. The predicted volumetric efficiency values from the dimensionless correlation is within 1% of the measured valued. Similarly, the predicted isentropic efficiency values are within 2% of the measured values.

  2. Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems

    DOEpatents

    Meisner, Gregory P

    2013-10-08

    Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

  3. Energy recovery system

    DOEpatents

    Moore, Albert S.; Verhoff, Francis H.

    1980-01-01

    The present invention is directed to an improved wet air oxidation system and method for reducing the chemical oxygen demand (COD) of waste water used from scrubbers of coal gasification plants, with this COD reduction being sufficient to effectively eliminate waste water as an environmental pollutant. The improvement of the present invention is provided by heating the air used in the oxidation process to a temperature substantially equal to the temperature in the oxidation reactor before compressing or pressurizing the air. The compression of the already hot air further heats the air which is then passed in heat exchange with gaseous products of the oxidation reaction for "superheating" the gaseous products prior to the use thereof in turbines as the driving fluid. The superheating of the gaseous products significantly minimizes condensation of gaseous products in the turbine so as to provide a substantially greater recovery of mechanical energy from the process than heretofore achieved.

  4. Convective Radiofrequency Water Vapor Thermal Therapy with Rezūm System.

    PubMed

    Helo, Sevann; Holland, Bradley; McVary, Kevin T

    2017-10-01

    Lower urinary tract symptoms (LUTS) secondary to benign prostatic hyperplasia (BPH) are amongst the most commonly treated conditions by urologists. Minimally invasive therapies for the treatment of BPH/LUTS have garnered increased interest as new technology has emerged, improving durability, efficacy, and safety. This paper reviews the most recent literature regarding water vapor therapy, a convective thermal therapy that ablates prostatic tissue. The current literature includes a pilot study of 65 men and a randomized controlled trial (RCT) of 197 men investigating the efficacy and safety profile of water vapor therapy up to 2 years. Subjects treated with water vapor therapy demonstrated a 51% reduction in IPSS from baseline, sustained at 24 months (p < 0.0001). Durable improvements in max flow rate (Qmax) and quality of life (QoL) were also achieved, while no changes in sexual function were observed. Reporting of adverse events (AEs) reveals predominantly Clavien grade I complications that were self-limited. The clinical efficacy and safety of water vapor therapy are durable to 24 months making it an attractive alternative for patients seeking a minimally invasive treatment for LUTS due to BPH.

  5. In situ separation of root hydraulic redistribution of soil water from liquid and vapor transport

    Treesearch

    Jeffrey M. Warren; J. Renée Brooks; Maria I. Dragila; Frederick C. Meinzer

    2011-01-01

    Nocturnal increases in water potential and water content in the upper soil profile are often attributed to root water efflux, a process termed hydraulic redistribution (HR). However, unsaturated liquid or vapor flux of water between soil layers independent of roots also contributes to the daily recovery in water content, confounding efforts to determine the actual...

  6. Vapor Bubbles

    NASA Astrophysics Data System (ADS)

    Prosperetti, Andrea

    2017-01-01

    This article reviews the fundamental physics of vapor bubbles in liquids. Work on bubble growth and condensation for stationary and translating bubbles is summarized and the differences with bubbles containing a permanent gas stressed. In particular, it is shown that the natural frequency of a vapor bubble is proportional not to the inverse radius, as for a gas bubble, but to the inverse radius raised to the power 2/3. Permanent gas dissolved in the liquid diffuses into the bubble with strong effects on its dynamics. The effects of the diffusion of heat and mass on the propagation of pressure waves in a vaporous bubbly liquid are discussed. Other topics briefly touched on include thermocapillary flow, plasmonic nanobubbles, and vapor bubbles in an immiscible liquid.

  7. Approaches to resource recovery in controlled ecological life support systems

    NASA Technical Reports Server (NTRS)

    Bubenheim, D. L.; Wydeven, T.

    1994-01-01

    Recovery of resources from waste streams in a space habitat is essential to minimize the resupply burden and achieve self sufficiency. The ultimate goal of a Controlled Ecological Life Support System (CELSS) is to achieve the greatest practical level of mass recycle and provide self sufficiency and safety for humans. Several mission scenarios leading to the ultimate application could employ CELSS component technologies or subsystems with initial emphasis on recycle of the largest mass components of the waste stream. Candidate physical/chemical and biological processes for resource recovery from liquid and solid waste streams are discussed and the current fundamental recovery potentials are estimated.

  8. Preliminary characterization of a water vaporizer for resistojet applications

    NASA Technical Reports Server (NTRS)

    Morren, W. Earl

    1992-01-01

    A series of tests was conducted to explore the characteristics of a water vaporizer intended for application to resistojet propulsion systems. The objectives of these tests were to (1) observe the effect of orientation with respect to gravity on vaporizer stability, (2) characterize vaporizer efficiency and outlet conditions over a range of flow rates, and (3) measure the thrust performance of a vaporizer/resistojet thruster assembly. A laboratory model of a forced-flow, once-through water vaporizer employing a porous heat exchange medium was built and characterized over a range of flow rates and power levels of interest for application to water resistojets. In a test during which the vaporizer was rotated about a horizontal axis normal to its own axis, the outlet temperature and mass flow rate through the vaporizer remained steady. Throttlability to 30 percent of the maximum flow rate tested was demonstrated. The measured thermal efficiency of the vaporizer was near 0.9 for all tests. The water vaporizer was integrated with an engineering model multipropellant resistojet. Performance of the vaporizer/thruster assembly was measured over a narrow range of operating conditions. The maximum specific impulse measured was 234 s at a mass flow rate and specific power level (vaporizer and thruster combined) of 154 x 10(exp-6)kg/s and 6.8 MJ/kg, respectively.

  9. Experimental study on the performance of the vapor injection refrigeration system with an economizer for intermediate pressures

    NASA Astrophysics Data System (ADS)

    Moon, Chang-Uk; Choi, Kwang-Hwan; Yoon, Jung-In; Kim, Young-Bok; Son, Chang-Hyo; Ha, Soo-Jung; Jeon, Min-Ju; An, Sang-Young; Lee, Joon-Hyuk

    2018-04-01

    In this study, to investigate the performance characteristics of vapor injection refrigeration system with an economizer at an intermediate pressure, the vapor injection refrigeration system was analyzed under various experiment conditions. As a result, the optimum design data of the vapor injection refrigeration system with an economizer were obtained. The findings from this study can be summarized as follows. The mass flow rate through the compressor increases with intermediate pressure. The compression power input showed an increasing trend under all the test conditions. The evaporation capacity increased and then decreased at the intermediate pressure, and as such, it became maximum at the given intermediate pressure. The increased mass flow rate of the by-passed refrigerant enhanced the evaporation capacity at the low medium pressure range, but the increased saturation temperature limited the subcooling degree of the liquid refrigerant after the application of the economizer when the intermediate pressure kept rising, and degenerated the evaporation capacity. The coefficient of performance (COP) increased and then decreased with respect to the intermediate pressures under all the experiment conditions. Nevertheless, there was an optimum intermediate pressure for the maximum COP under each experiment condition. Therefore, the optimum intermediate pressure in this study was found at -99.08 kPa, which is the theoretical standard medium pressure under all the test conditions.

  10. Vacuum vapor deposition

    NASA Technical Reports Server (NTRS)

    Poorman, Richard M. (Inventor); Weeks, Jack L. (Inventor)

    1995-01-01

    A method and apparatus is described for vapor deposition of a thin metallic film utilizing an ionized gas arc directed onto a source material spaced from a substrate to be coated in a substantial vacuum while providing a pressure differential between the source and the substrate so that, as a portion of the source is vaporized, the vapors are carried to the substrate. The apparatus includes a modified tungsten arc welding torch having a hollow electrode through which a gas, preferably inert, flows and an arc is struck between the electrode and the source. The torch, source, and substrate are confined within a chamber within which a vacuum is drawn. When the arc is struck, a portion of the source is vaporized and the vapors flow rapidly toward the substrate. A reflecting shield is positioned about the torch above the electrode and the source to ensure that the arc is struck between the electrode and the source at startup. The electrode and the source may be confined within a vapor guide housing having a duct opening toward the substrate for directing the vapors onto the substrate.

  11. Chemical vapor deposition growth

    NASA Technical Reports Server (NTRS)

    Ruth, R. P.; Manasevit, H. M.; Kenty, J. L.; Moudy, L. A.; Simpson, W. I.; Yang, J. J.

    1976-01-01

    A chemical vapor deposition (CVD) reactor system with a vertical deposition chamber was used for the growth of Si films on glass, glass-ceramic, and polycrystalline ceramic substrates. Silicon vapor was produced by pyrolysis of SiH4 in a H2 or He carrier gas. Preliminary deposition experiments with two of the available glasses were not encouraging. Moderately encouraging results, however, were obtained with fired polycrystalline alumina substrates, which were used for Si deposition at temperatures above 1,000 C. The surfaces of both the substrates and the films were characterized by X-ray diffraction, reflection electron diffraction, scanning electron microscopy optical microscopy, and surface profilometric techniques. Several experiments were conducted to establish baseline performance data for the reactor system, including temperature distributions on the sample pedestal, effects of carrier gas flow rate on temperature and film thickness, and Si film growth rate as a function of temperature.

  12. Development of an in-line filter to prevent intrusion of NO2 toxic vapors into A/C systems

    NASA Technical Reports Server (NTRS)

    Meneghelli, Barry; Mcnulty, R. J.; Springer, Mike; Lueck, Dale E.

    1995-01-01

    The hypergolic propellant nitrogen tetroxide (N2O4 or NTO) is routinely used in spacecraft launched at Kennedy Space Center (KSC) and Cape Canaveral Air Station (CCAS). In the case of a catastrophic failure of the spacecraft, there would be a release of the unspent propellant in the form of a toxic cloud. Inhalation of this material at downwind concentrations which may be as high as 20 parts per million (ppm) for 30 minutes in duration, may produce irritation to the eyes, nose and respiratory tract. Studies at both KSC and CCAS have shown that the indoor concentrations of N2O4 during a toxic release may range from 1 to 15 ppm and depend on the air change rate (ACR) for a particular building and whether or not the air conditioning (A/C) system has been shut down or left in an operating mode. This project was initiated in order to assess how current A/C systems could be easily modified to prevent personnel from being exposed to toxic vapors. A sample system has been constructed to test the ability of several types of filter material to capture the N2O4 vapors prior to their infiltration into the A/C system. Test results will be presented which compare the efficiencies of standard A/C filters, water wash systems, and chemically impregnated filter material in taking toxic vapors out of the incoming air stream.

  13. Electron energy recovery system for negative ion sources

    DOEpatents

    Dagenhart, William K.; Stirling, William L.

    1982-01-01

    An electron energy recovery system for negative ion sources is provided. The system, employs crossed electric and magnetic fields to separate the electrons from ions as they are extracted from a negative ion source plasma generator and before the ions are accelerated to their full kinetic energy. With the electric and magnetic fields oriented 90.degree. to each other, the electrons are separated from the plasma and remain at approximately the electrical potential of the generator in which they were generated. The electrons migrate from the ion beam path in a precessing motion out of the ion accelerating field region into an electron recovery region provided by a specially designed electron collector electrode. The electron collector electrode is uniformly spaced from a surface of the ion generator which is transverse to the direction of migration of the electrons and the two surfaces are contoured in a matching relationship which departs from a planar configuration to provide an electric field component in the recovery region which is parallel to the magnetic field thereby forcing the electrons to be directed into and collected by the electron collector electrode. The collector electrode is maintained at a potential slightly positive with respect to the ion generator so that the electrons are collected at a small fraction of the full accelerating supply voltage energy.

  14. Space Shuttle Solid Rocket Booster Lightweight Recovery System

    NASA Technical Reports Server (NTRS)

    Wolf, Dean; Runkle, Roy E.

    1995-01-01

    The cancellation of the Advanced Solid Rocket Booster Project and the earth-to-orbit payload requirements for the Space Station dictated that the National Aeronautics and Space Administration (NASA) look at performance enhancements from all Space Transportation System (STS) elements (Orbiter Project, Space Shuttle Main Engine Project, External Tank Project, Solid Rocket Motor Project, & Solid Rocket Booster Project). The manifest for launching of Space Station components indicated that an additional 12-13000 pound lift capability was required on 10 missions and 15-20,000 pound additional lift capability is required on two missions. Trade studies conducted by all STS elements indicate that by deleting the parachute Recovery System (and associated hardware) from the Solid Rocket Boosters (SRBS) and going to a lightweight External Tank (ET) the 20,000 pound additional lift capability can be realized for the two missions. The deletion of the parachute Recovery System means the loss of four SRBs and this option is two expensive (loss of reusable hardware) to be used on the other 10 Space Station missions. Accordingly, each STS element looked at potential methods of weight savings, increased performance, etc. As the SRB and ET projects are non-propulsive (i.e. does not have launch thrust elements) their only contribution to overall payload enhancement can be achieved by the saving of weight while maintaining adequate safety factors and margins. The enhancement factor for the SRB project is 1:10. That is for each 10 pounds saved on the two SRBS; approximately 1 additional pound of payload in the orbiter bay can be placed into orbit. The SRB project decided early that the SRB recovery system was a prime candidate for weight reduction as it was designed in the early 1970s and weight optimization had never been a primary criteria.

  15. Recovery Migration After Hurricanes Katrina and Rita: Spatial Concentration and Intensification in the Migration System.

    PubMed

    Curtis, Katherine J; Fussell, Elizabeth; DeWaard, Jack

    2015-08-01

    Changes in the human migration systems of the Gulf of Mexico coastline counties affected by Hurricanes Katrina and Rita provide an example of how climate change may affect coastal populations. Crude climate change models predict a mass migration of "climate refugees," but an emerging literature on environmental migration suggests that most migration will be short-distance and short-duration within existing migration systems, with implications for the population recovery of disaster-stricken places. In this research, we derive a series of hypotheses on recovery migration predicting how the migration system of hurricane-affected coastline counties in the Gulf of Mexico was likely to have changed between the pre-disaster and the recovery periods. We test these hypotheses using data from the Internal Revenue Service on annual county-level migration flows, comparing the recovery period migration system (2007-2009) with the pre-disaster period (1999-2004). By observing county-to-county ties and flows, we find that recovery migration was strong: the migration system of the disaster-affected coastline counties became more spatially concentrated, while flows within it intensified and became more urbanized. Our analysis demonstrates how migration systems are likely to be affected by the more intense and frequent storms anticipated by climate change scenarios, with implications for the population recovery of disaster-affected places.

  16. Isobaric vapor-liquid equilibria for binary systems α-phenylethylamine + toluene and α-phenylethylamine + cyclohexane at 100 kPa

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoru; Gao, Yingyu; Ban, Chunlan; Huang, Qiang

    2016-09-01

    In this paper the results of the vapor-liquid equilibria study at 100 kPa are presented for two binary systems: α-phenylethylamine(1) + toluene (2) and (α-phenylethylamine(1) + cyclohexane(2)). The binary VLE data of the two systems were correlated by the Wilson, NRTL, and UNIQUAC models. For each binary system the deviations between the results of the correlations and the experimental data have been calculated. For the both binary systems the average relative deviations in temperature for the three models were lower than 0.99%. The average absolute deviations in vapour phase composition (mole fractions) and in temperature T were lower than 0.0271 and 1.93 K, respectively. Thermodynamic consistency has been tested for all vapor-liquid equilibrium data by the Herrington method. The values calculated by Wilson and NRTL equations satisfied the thermodynamics consistency test for the both two systems, while the values calculated by UNIQUAC equation didn't.

  17. Probe for measurement of velocity and density of vapor in vapor plume

    DOEpatents

    Berzins, Leon V.; Bratton, Bradford A.; Fuhrman, Paul W.

    1997-01-01

    A probe which directs a light beam through a vapor plume in a first direction at a first angle ranging from greater than 0.degree. to less than 90.degree., reflecting the light beam back through the vapor plume at a 90.degree. angle, and then reflecting the light beam through the vapor plume a third time at a second angle equal to the first angle, using a series of mirrors to deflect the light beam while protecting the mirrors from the vapor plume with shields. The velocity, density, temperature and flow direction of the vapor plume may be determined by a comparison of the energy from a reference portion of the beam with the energy of the beam after it has passed through the vapor plume.

  18. Vapor Intrusion

    EPA Pesticide Factsheets

    Vapor intrusion occurs when there is a migration of volatile chemicals from contaminated groundwater or soil into an overlying building. Volatile chemicals can emit vapors that may migrate through subsurface soils and into indoor air spaces.

  19. Electron energy recovery system for negative ion sources

    DOEpatents

    Dagenhart, W.K.; Stirling, W.L.

    1979-10-25

    An electron energy recovery system for negative ion sources is provided. The system, employing crossed electric and magnetic fields, separates the electrons from the ions as they are extracted from the ion source plasma generator and before the ions are accelerated to their full energy. With the electric and magnetic fields oriented 90/sup 0/ to each other, the electrons remain at approximately the electrical potential at which they were generated. The electromagnetic forces cause the ions to be accelerated to the full accelerating supply voltage energy while being deflected through an angle of less than 90/sup 0/. The electrons precess out of the accelerating field region into an electron recovery region where they are collected at a small fraction of the full accelerating supply energy. It is possible, by this method, to collect > 90% of the electrons extracted along with the negative ions from a negative ion source beam at < 4% of full energy.

  20. A technique to depress desflurane vapor pressure.

    PubMed

    Brosnan, Robert J; Pypendop, Bruno H

    2006-09-01

    To determine whether the vapor pressure of desflurane could be decreased by using a solvent to reduce the anesthetic molar fraction in a solution (Raoult's Law). We hypothesized that such an anesthetic mixture could produce anesthesia using a nonprecision vaporizer instead of an agent-specific, electronically controlled, temperature and pressure compensated vaporizer currently required for desflurane administration. One healthy adult female dog. Propylene glycol was used as a solvent for desflurane, and the physical characteristics of this mixture were evaluated at various molar concentrations and temperatures. Using a circle system with a breathing bag attached at the patient end and a mechanical ventilator to simulate respiration, an in-circuit, nonprecision vaporizer containing 40% desflurane and 60% propylene glycol achieved an 11.5% +/- 1.0% circuit desflurane concentration with a 5.2 +/- 0.4 (0 = off, 10 = maximum) vaporizer setting. This experiment was repeated with a dog attached to the breathing circuit under spontaneous ventilation with a fresh gas flow of 0.5 L minute(-1). Anesthesia was maintained for over 2 hours at a mean vaporizer setting of 6.2 +/- 0.4, yielding mean inspired and end-tidal desflurane concentrations of 8.7% +/- 0.5% and 7.9% +/- 0.7%, respectively. Rather than alter physical properties of vaporizers to suit a particular anesthetic agent, this study demonstrates that it is also possible to alter physical properties of anesthetic agents to suit a particular vaporizer. However, propylene glycol may not prove an ideal solvent for desflurane because of its instability in solution and substantial-positive deviation from Raoult's Law.

  1. Water-vapor pressure control in a volume

    NASA Technical Reports Server (NTRS)

    Scialdone, J. J.

    1978-01-01

    The variation with time of the partial pressure of water in a volume that has openings to the outside environment and includes vapor sources was evaluated as a function of the purging flow and its vapor content. Experimental tests to estimate the diffusion of ambient humidity through openings and to validate calculated results were included. The purging flows required to produce and maintain a certain humidity in shipping containers, storage rooms, and clean rooms can be estimated with the relationship developed here. These purging flows are necessary to prevent the contamination, degradation, and other effects of water vapor on the systems inside these volumes.

  2. Development of a wet vapor homogeneous liquid metal MHD power system

    NASA Astrophysics Data System (ADS)

    1989-04-01

    During the period covered by this report (October 1988 to March 1989), the following work was done: the mixing stream condensation process was analyzed, and a theoretical model for simulating this process was modified. A parametric study is being conducted at the present time; the separation processes were analyzed; and the experimental system was specified and its design is at present in an advanced stage. The mixing stream condensation process was analyzed. For the parameters defined in the SOW of this project the process was found to be a mist flow direct contact condensation, where the hot gas mixture consisting of inert gas and vapor is the continuous phase, and the subcooled liquid on which the vapor is condensed if the droplets dispersed phase. Two possibilities of creating the mist flow were considered. The first, injecting the cold Liquid Metal (LM) into the Mixing Streams Condenser (MSC) entrance as a jet and breaking it into LM fragments and the fragments into droplets by momentum transfer breakup mechanism. The second, atomizing the cooled LM stream into little droplets (approximately 100 micrometers in diameter) and accelerating them by the gas. The second possibility was preferred due to its much higher heat and mass transfer surface and coefficients relative to the first one.

  3. Tank vapor characterization project. Headspace vapor characterization of Hanford waste tank 241-BY-108: Second comparison study results from samples collected on 3/28/96

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, B.L.; Pool, K.H.; Evans, J.C.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of waste storage tank 241-BY-108 (Tank BY-108) at the Hanford Site in Washington State. The results described in this report is the second in a series comparing vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling (ISVS) system without high efficiency particulate air (HEPA) prefiltration. The results include air concentrations of water (H{sub 2}O) and ammonia (NH{sub 3}), permanent gases, total non-methane organic compounds (TO-12), and individual organic analytes collected in SUMMA{trademark} canisters and on triple sorbent traps (TSTs).more » Samples were collected by Westinghouse Hanford Company (WHC) and analyzed by Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volume measurements provided by WHC.« less

  4. Probe for measurement of velocity and density of vapor in vapor plume

    DOEpatents

    Berzins, L.V.; Bratton, B.A.; Fuhrman, P.W.

    1997-03-11

    A probe is disclosed which directs a light beam through a vapor plume in a first direction at a first angle ranging from greater than 0{degree} to less than 90{degree}, reflecting the light beam back through the vapor plume at a 90{degree} angle, and then reflecting the light beam through the vapor plume a third time at a second angle equal to the first angle, using a series of mirrors to deflect the light beam while protecting the mirrors from the vapor plume with shields. The velocity, density, temperature and flow direction of the vapor plume may be determined by a comparison of the energy from a reference portion of the beam with the energy of the beam after it has passed through the vapor plume. 10 figs.

  5. Recovery and nonrecovery of the untrained state in an exchange-coupled system

    NASA Astrophysics Data System (ADS)

    Jutimoosik, Jaru; Yimnirun, Rattikorn; Setzer, Annette; Esquinazi, Pablo; Stahn, Jochen; Paul, Amitesh

    2015-06-01

    We report depth sensitive investigations of the magnetic interaction between exchange-coupled stacked CoO and ferromagnetic Co bilayers (separated by thick Au layers) as we explore the degree of recovery of the untrained state after the first two field cycles. Such a recovery is expected by field cycling a reorientation field (HRE) along a direction (ΩRE) away from the initial field cooling direction. Measurements as a function of ΩRE and the strength of HRE (along each direction) map the influence of ΩRE on the reversal mechanism in the layers and thereby the degree of recovery. Our results are consistent with the earlier observations in similar systems that was realized with ΩRE=90∘ . We ascribe these partial and/or significant recoveries to the unchanged sense of rotation after initial field cooling of the ferromagnetic magnetization upon each field cycling. Furthermore, in our system, we find that this recovery can be regulated by choosing various other HRE and ΩRE values without changing the rotational sense. The best recipe for recovery is identified for ΩRE=45∘ , that can be achieved partially with HRE=3.0 kOe and remain significant even with HRE=10.0 kOe. In this study we not only understand the fundamental mechanism in the recovery of training, but also instigate its technological prospects by lifting the directional restrictions of the reorientation field.

  6. A Novel Low-Power, High-Performance, Zero-Maintenance Closed-Path Trace Gas Eddy Covariance System with No Water Vapor Dilution or Spectroscopic Corrections

    NASA Astrophysics Data System (ADS)

    Sargent, S.; Somers, J. M.

    2015-12-01

    Trace-gas eddy covariance flux measurement can be made with open-path or closed-path analyzers. Traditional closed-path trace-gas analyzers use multipass absorption cells that behave as mixing volumes, requiring high sample flow rates to achieve useful frequency response. The high sample flow rate and the need to keep the multipass cell extremely clean dictates the use of a fine-pore filter that may clog quickly. A large-capacity filter cannot be used because it would degrade the EC system frequency response. The high flow rate also requires a powerful vacuum pump, which will typically consume on the order of 1000 W. The analyzer must measure water vapor for spectroscopic and dilution corrections. Open-path analyzers are available for methane, but not for nitrous oxide. The currently available methane analyzers have low power consumption, but are very large. Their large size degrades frequency response and disturbs the air flow near the sonic anemometer. They require significant maintenance to keep the exposed multipass optical surfaces clean. Water vapor measurements for dilution and spectroscopic corrections require a separate water vapor analyzer. A new closed-path eddy covariance system for measuring nitrous oxide or methane fluxes provides an elegant solution. The analyzer (TGA200A, Campbell Scientific, Inc.) uses a thermoelectrically-cooled interband cascade laser. Its small sample-cell volume and unique sample-cell configuration (200 ml, 1.5 m single pass) provide excellent frequency response with a low-power scroll pump (240 W). A new single-tube Nafion® dryer removes most of the water vapor, and attenuates fluctuations in the residual water vapor. Finally, a vortex intake assembly eliminates the need for an intake filter without adding volume that would degrade system frequency response. Laboratory testing shows the system attenuates the water vapor dilution term by more than 99% and achieves a half-power band width of 3.5 Hz.

  7. Method and apparatus for producing thermal vapor stream

    DOEpatents

    Cradeur, Robert R.; Sperry, John S.; Krajicek, Richard W.

    1979-01-01

    Method and apparatus for producing a thermal vapor stream for injecting into a subterranean formation for the recovery of liquefiable minerals therefrom, including a pressure vessel containing a high pressure combustion chamber for producing a heating gas for introduction into a heating gas injector. The heating gas injector is partly immersed in a steam generating section of the pressure vessel such that the heating gas is passed through the steam generating section to produce steam and combustion products which are directed between the pressure vessel and the combustion chamber for simultaneously cooling of the combustion chamber by further heating of the steam and combustion gases.

  8. Vapor-fed bio-hybrid fuel cell.

    PubMed

    Benyamin, Marcus S; Jahnke, Justin P; Mackie, David M

    2017-01-01

    Concentration and purification of ethanol and other biofuels from fermentations are energy-intensive processes, with amplified costs at smaller scales. To circumvent the need for these processes, and to potentially reduce transportation costs as well, we have previously investigated bio-hybrid fuel cells (FCs), in which a fermentation and FC are closely coupled. However, long-term operation requires strictly preventing the fermentation and FC from harming each other. We introduce here the concept of the vapor-fed bio-hybrid FC as a means of continuously extracting power from ongoing fermentations at ambient conditions. By bubbling a carrier gas (N 2 ) through a yeast fermentation and then through a direct ethanol FC, we protect the FC anode from the catalyst poisons in the fermentation (which are non-volatile), and also protect the yeast from harmful FC products (notably acetic acid) and from build-up of ethanol. Since vapor-fed direct ethanol FCs at ambient conditions have never been systematically characterized (in contrast to vapor-fed direct methanol FCs), we first assess the effects on output power and conversion efficiency of ethanol concentration, vapor flow rate, and FC voltage. The results fit a continuous stirred-tank reactor model. Over a wide range of ethanol partial pressures (2-8 mmHg), power densities are comparable to those for liquid-fed direct ethanol FCs at the same temperature, with power densities >2 mW/cm 2 obtained. We then demonstrate the continuous operation of a vapor-fed bio-hybrid FC with fermentation for 5 months, with no indication of performance degradation due to poisoning (of either the FC or the fermentation). It is further shown that the system is stable, recovering quickly from disturbances or from interruptions in maintenance. The vapor-fed bio-hybrid FC enables extraction of power from dilute bio-ethanol streams without costly concentration and purification steps. The concept should be scalable to both large and small

  9. A Micro-Preconcentrator Combined Olfactory Sensing System with a Micromechanical Cantilever Sensor for Detecting 2,4-Dinitrotoluene Gas Vapor

    PubMed Central

    Chae, Myung-Sic; Kim, Jinsik; Yoo, Yong Kyoung; Kang, Ji Yoon; Lee, Jeong Hoon; Hwang, Kyo Seon

    2015-01-01

    Preventing unexpected explosive attacks and tracing explosion-related molecules require the development of highly sensitive gas-vapor detection systems. For that purpose, a micromechanical cantilever-based olfactory sensing system including a sample preconcentrator was developed to detect 2,4-dinitrotoluene (2,4-DNT), which is a well-known by-product of the explosive molecule trinitrotoluene (TNT) and exists in concentrations on the order of parts per billion in the atmosphere at room temperature. A peptide receptor (His-Pro-Asn-Phe-Ser-Lys-Tyr-Ile-Leu-His-Gln-Arg) that has high binding affinity for 2,4-DNT was immobilized on the surface of the cantilever sensors to detect 2,4-DNT vapor for highly selective detection. A micro-preconcentrator (µPC) was developed using Tenax-TA adsorbent to produce higher concentrations of 2,4-DNT molecules. The preconcentration was achieved via adsorption and thermal desorption phenomena occurring between target molecules and the adsorbent. The µPC directly integrated with a cantilever sensor and enhanced the sensitivity of the cantilever sensor as a pretreatment tool for the target vapor. The response was rapidly saturated within 5 min and sustained for more than 10 min when the concentrated vapor was introduced. By calculating preconcentration factor values, we verified that the cantilever sensor provides up to an eightfold improvement in sensing performance. PMID:26213944

  10. Recovery Migration after Hurricanes Katrina and Rita: Spatial Concentration and Intensification in the Migration System

    PubMed Central

    Fussell, Elizabeth; DeWaard, Jack

    2015-01-01

    Changes in the human migration systems of Hurricane Katrina- and Rita-affected Gulf of Mexico coastline counties provide an example of how climate change may affect coastal populations. Crude climate change models predict a mass migration of “climate refugees,” but an emerging literature on environmental migration suggests most migration will be short-distance and short-duration within existing migration systems, with implications for the population recovery of disaster-struck places. In this research, we derive a series of hypotheses on recovery migration predicting how the migration system of hurricane-affected coastline counties in the Gulf of Mexico was likely to have changed between the pre-disaster and the recovery periods. We test these hypotheses using data from the Internal Revenue Service on annual county-level migration flows, comparing the recovery period migration system (2007–2009) to the pre-disaster period (1999–2004). By observing county-to-county ties and flows we find that recovery migration was strong, as the migration system of the disaster-affected coastline counties became more spatially concentrated while flows within it intensified and became more urbanized. Our analysis demonstrates how migration systems are likely to be affected by the more intense and frequent storms anticipated by climate change scenarios with implications for the population recovery of disaster-affected places. PMID:26084982

  11. A Burst Mode, Ultrahigh Temperature UF4 Vapor Core Reactor Rankine Cycle Space Power System Concept

    NASA Technical Reports Server (NTRS)

    Dugan, E. T.; Kahook, S. D.; Diaz, N. J.

    1996-01-01

    Static and dynamic neutronic analyses have been performed on an innovative burst mode (100's of MW output for a few thousand seconds) Ulvahigh Temperature Vapor Core Reactor (UTVR) space nuclear power system. The NVTR employs multiple, neutronically-coupled fissioning cores and operates on a direct, closed Rankine cycle using a disk Magnetohydrodynamic (MHD) generater for energy conversion. The UTVR includes two types of fissioning core regions: (1) the central Ultrahigh Temperature Vapor Core (UTVC) which contains a vapor mixture of highly enriched UF4 fuel and a metal fluoride working fluid and (2) the UF4 boiler column cores located in the BeO moderator/reflector region. The gaseous nature of the fuel the fact that the fuel is circulating, the multiple coupled fissioning cores, and the use of a two phase fissioning fuel lead to unique static and dynamic neutronic characteristics. Static neutronic analysis was conducted using two-dimensional S sub n, transport theory calculations and three-dimensional Monte Carlo transport theory calculations. Circulating-fuel, coupled-core point reactor kinetics equations were used for analyzing the dynamic behavior of the UTVR. In addition to including reactivity feedback phenomena associated with the individual fissioning cores, the effects of core-to-core neutronic and mass flow coupling between the UTVC and the surrounding boiler cores were also included in the dynamic model The dynamic analysis of the UTVR reveals the existence of some very effectlve inherent reactivity feedback effects that are capable of quickly stabilizing this system, within a few seconds, even when large positive reactivity insertions are imposed. If the UTVC vapor fuel density feedback is suppressed, the UTVR is still inherently stable because of the boiler core liquid-fuel volume feedback; in contrast, suppression of the vapor fuel density feedback in 'conventional" gas core cavity reactors causes them to become inherently unstable. Due to the

  12. Effect of Common Faults on the Performance of Different Types of Vapor Compression Systems.

    PubMed

    Du, Zhimin; Domanski, Piotr A; Payne, W Vance

    2016-04-05

    The effect of faults on the cooling capacity, coefficient of performance, and sensible heat ratio, was analyzed and compared for five split and rooftop systems, which use different types of expansion devices, compressors and refrigerants. The study applied multivariable polynomial and normalized performance models, which were developed for the studied systems for both fault-free and faulty conditions based on measurements obtained in a laboratory under controlled conditions. The analysis indicated differences in responses and trends between the studied systems, which underscores the challenge to devise a universal FDD algorithm for all vapor compression systems and the difficulty to develop a methodology for rating the performance of different FDD algorithms.

  13. Determination of mercury in fish tissue using a minianalyzer based on cold vapor atomic absorption spectrometry at the 184.9 nm line.

    PubMed

    Rizea, Maria-Cristina; Bratu, Maria-Cristina; Danet, Andrei Florin; Bratu, Adrian

    2007-09-01

    A sensitive method was proposed and optimized for the determination of total mercury in fish tissue by using wet digestion, followed by cold vapor atomic absorption spectrometry (CVAAS) at the main resonance line of mercury (184.9 nm). The measurements were made using a new type of a non-dispersive mercury minianalyzer. This instrument was initially designed and built for atmospheric mercury-vapor detection. For determining mercury in aqueous samples, the minianalyzer was linked with a mercury/hydride system, Perkin Elmer Model MHS-10. To check the method, the analyzed samples were spiked with a standard solution of mercury. The recoveries of mercury spiked to wet fish tissue were >90% for 0.5 - 0.8 g samples. The results showed a better sensitivity (about 2.5 times higher) when using the mercury absorption line at 184.9 nm compared with the sensitivity obtained by conventional CVAAS at 253.7 nm.

  14. BTSC VAPOR INSTRUSION PRIMER "VAPOR INTRUSION CONSIDERATION FOR REDEVELOPMENT"

    EPA Science Inventory

    This primer is designed for brownfields stakeholders concerned about vapor intrusion, including property owners, real estate developers, and contractors performing environmental site investigations. It provides an overview of the vapor intrusion issue and how it can impact the ap...

  15. Rydberg interaction induced enhanced excitation in thermal atomic vapor.

    PubMed

    Kara, Dushmanta; Bhowmick, Arup; Mohapatra, Ashok K

    2018-03-27

    We present the experimental demonstration of interaction induced enhancement in Rydberg excitation or Rydberg anti-blockade in thermal atomic vapor. We have used optical heterodyne detection technique to measure Rydberg population due to two-photon excitation to the Rydberg state. The anti-blockade peak which doesn't satisfy the two-photon resonant condition is observed along with the usual two-photon resonant peak which can't be explained using the model with non-interacting three-level atomic system. A model involving two interacting atoms is formulated for thermal atomic vapor using the dressed states of three-level atomic system to explain the experimental observations. A non-linear dependence of vapor density is observed for the anti-blockade peak which also increases with increase in principal quantum number of the Rydberg state. A good agreement is found between the experimental observations and the proposed interacting model. Our result implies possible applications towards quantum logic gates using Rydberg anti-blockade in thermal atomic vapor.

  16. Recovery of Lunar Surface Access Module Residual and Reserve Propellants

    NASA Technical Reports Server (NTRS)

    Notardonato, William U.

    2007-01-01

    The Vision for Space Exploration calls for human exploration of the lunar surface in the 2020 timeframe. Sustained human exploration of the lunar surface will require supply, storage, and distribution of consumables for a variety of mission elements. These elements include propulsion systems for ascent and descent stages, life support for habitats and extra-vehicular activity, and reactants for power systems. NASA KSC has been tasked to develop technologies and strategies for consumables transfer for lunar exploration as part of the Exploration Technology Development Program. This paper will investigate details of operational concepts to scavenge residual propellants from the lunar descent propulsion system. Predictions on the mass of residuals and reserves are made. Estimates of heat transfer and boiloff rates are calculated and transient tank thermodynamic issues post-engine cutoff are modeled. Recovery and storage options including cryogenic liquid, vapor and water are discussed, and possible reuse of LSAM assets is presented.

  17. Vapor phase tri-methyl-indium seeding system suitable for high temperature spectroscopy and thermometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiddon, R.; Zhou, B.; Borggren, J.

    2015-09-15

    Tri-methyl-indium (TMI) is used as an indium transport molecule to introduce indium atoms to reactive hot gas flows/combustion environments for spectroscopic diagnostics. A seeding system was constructed to allow the addition of an inert TMI laden carrier gas into an air/fuel mixture burning consequently on a burner. The amount of the seeded TMI in the carrier gas can be readily varied by controlling the vapor pressure through the temperature of the container. The seeding process was calibrated using the fluorescent emission intensity from the indium 6{sup 2}S{sub 1/2} → 5{sup 2}P{sub 1/2} and 6{sup 2}S{sub 1/2} → 5{sup 2}P{sub 3/2}more » transitions as a function of the calculated TMI seeding concentration over a range of 2–45 ppm. The response was found to be linear over the range 3–22.5 ppm; at concentrations above 25 ppm there is a loss of linearity attributable to self-absorption or loss of saturation of TMI vapor pressure in the carrier gas flow. When TMI was introduced into a post-combustion environment via an inert carrier gas, molecular transition from InH and InOH radicals were observed in the flame emission spectrum. Combined laser-induced fluorescence and absorption spectroscopy were applied to detect indium atoms in the TMI seeded flame and the measured atomic indium concentration was found to be at the ppm level. This method of seeding organometallic vapor like TMI to a reactive gas flow demonstrates the feasibility for quantitative spectroscopic investigations that may be applicable in various fields, e.g., chemical vapor deposition applications or temperature measurement in flames with two-line atomic fluorescence.« less

  18. Water vapor adsorption on goethite.

    PubMed

    Song, Xiaowei; Boily, Jean-François

    2013-07-02

    Goethite (α-FeOOH) is an important mineral contributing to processes of atmospheric and terrestrial importance. Their interactions with water vapor are particularly relevant in these contexts. In this work, molecular details of water vapor (0.0-19.0 Torr; 0-96% relative humidity at 25 °C) adsorption at surfaces of synthetic goethite nanoparticles reacted with and without HCl and NaCl were resolved using vibrational spectroscopy. This technique probed interactions between surface (hydr)oxo groups and liquid water-like films. Molecular dynamics showed that structures and orientations adopted by these waters are comparable to those adopted at the interface with liquid water. Particle surfaces reacted with HCl accumulated less water than acid-free surfaces due to disruptions in hydrogen bond networks by chemisorbed waters and chloride. Particles reacted with NaCl had lower loadings below ∼10 Torr water vapor but greater loadings above this value than salt-free surfaces. Water adsorption reactions were here affected by competitive hydration of coexisting salt-free surface regions, adsorbed chloride and sodium, as well as precipitated NaCl. Collectively, the findings presented in this study add further insight into the initial mechanisms of thin water film formation at goethite surfaces subjected to variations in water vapor pressure that are relevant to natural systems.

  19. The morphologic changes in lamellar bodies and intercorneocyte lipids after tape stripping and occlusion with a water vapor-impermeable membrane.

    PubMed

    Jiang, S; Koo, S W; Lee, S H

    1998-03-01

    It has been reported that artificial restoration of barrier function by a water vapor-impermeable membrane after tape stripping induces barrier abrogation in hairless mice, impeding rather than enhancing barrier recovery. To address this issue, we examined the morphologic changes in the epidermis after tape stripping and occlusion with a water vapor-impermeable membrane in murine skin. Male hairless mice were used for all studies of barrier perturbation and occlusion. Barrier disruption was achieved by repeated application of cellophane tape. Immediately after tape stripping the animals were wrapped in a tightly fitting water vapor-impermeable membrane. Transepidermal water loss (TEWL) was measured 20 min after tape stripping and 14, 24, 36, 48 and 60 h after occlusion. For electron microscopy the samples were treated with osmium tetroxide (OsO4) or ruthenium tetroxide (RuO4). When tape-stripped animals were wrapped in a water vapor-impermeable membrane, thereby preventing water flux, barrier function did not recover normally. These results demonstrate that an artificial block to TEWL with an impermeable membrane did not enhance barrier recovery. By electron microscopy many transitional cells and lacunae of various sizes were seen within the intercellular spaces of the stratum corneum after occlusion following tape stripping. Occlusion also caused alterations in both lipid lamellar membrane structures in the stratum corneum interstices and the lamellar bodies in the cytosol of granulocytes and transitional cells. Secreted lamellar body contents also appeared to be abnormal in the stratum corneum-stratum granulosum junction.

  20. Isothermal vapor-liquid equilibria for the systems 1-chloro-1,1-difluoroethane + hydrogen fluoride, 1,1-dichloro-1-fluoroethane + hydrogen fluoride, and chlorodifluoromethane + hydrogen fluoride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Y.W.; Lee, Y.Y.

    1997-03-01

    Isothermal vapor-liquid equilibria for the three binary systems (1-chloro-1,1-difluoroethane + hydrogen fluoride, 1,1-dichloro-1-fluoroethane + hydrogen fluoride, and chlorodifluoromethane + hydrogen fluoride) have been measured. The experimental data for the binary systems are correlated with the NRTL equation with the vapor-phase association model for the mixtures containing hydrogen fluoride, and the relevant parameters are presented. All of the systems form minimum boiling heterogeneous azeotropes.

  1. Biofiltration for control of carbon disulfide and hydrogen sulfide vapors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fucich, W.J.; Yang, Y.; Togna, A.P.

    1997-12-31

    A full-scale biofiltration system has been installed to control carbon disulfide (CS{sub 2}) and hydrogen sulfide (H{sub 2}S) vapor emissions at Nylonge Corporation (Nylonge), a cellulose sponge manufacturing facility in Elyria, Ohio. Both CS{sub 2} and H{sub 2}S are toxic and odorous. In addition, the US Environmental Protection Agency (EPA) has classified CS{sub 2} as one of the 189 hazardous air pollutants listed under Title 3 of the 1990 Clean Air Act Amendments. Nylonge evaluated several technologies to control CS{sub 2} and H{sub 2}S vapor emissions. After careful consideration of both removal efficiency requirements and cost, Nylonge selected biological treatmentmore » as the best overall technology for their application. A biological based technology has been developed to effectively degrade CS{sub 2} and H{sub 2}S vapors. Biofiltration is a process that aerobically converts particular vapor phase compounds into CO{sub 2}, biomass, and water vapor. In this process, microorganisms, in the form of a moistened biofilm layer, immobilized on an organic packing material, such as compost, peat, wood chips, etc., are used to catalyze beneficial chemical reactions. As a contaminated vapor stream passes through the biofilter bed, the contaminants are transferred to the biofilm and are degraded by the microorganisms. This paper describes the CS{sub 2} and H{sub 2}S biofiltration process and the full-scale biofilter system installed at Nylonge`s facility. The system was started in October of 1995, and is designed to treat a 30,000 CFM exhaust stream contaminated with CS{sub 2} and H{sub 2}S vapors.« less

  2. Status of the Regenerative ECLSS Water Recovery System

    NASA Technical Reports Server (NTRS)

    Carter, Donald Layne

    2009-01-01

    NASA has completed the delivery of the regenerative Water Recovery System (WRS) for the International Space Station (ISS). The major assemblies included in this system are the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the final effort to deliver the hardware to the Kennedy Space Center for launch on STS-126, the on-orbit status as of April 2009, and describes some of the technical challenges encountered and lessons learned over the past year.

  3. Application of an automatic cloud tracking technique to Meteosat water vapor and infrared observations

    NASA Technical Reports Server (NTRS)

    Endlich, R. M.; Wolf, D. E.

    1980-01-01

    The automatic cloud tracking system was applied to METEOSAT 6.7 micrometers water vapor measurements to learn whether the system can track the motions of water vapor patterns. Data for the midlatitudes, subtropics, and tropics were selected from a sequence of METEOSAT pictures for 25 April 1978. Trackable features in the water vapor patterns were identified using a clustering technique and the features were tracked by two different methods. In flat (low contrast) water vapor fields, the automatic motion computations were not reliable, but in areas where the water vapor fields contained small scale structure (such as in the vicinity of active weather phenomena) the computations were successful. Cloud motions were computed using METEOSAT infrared observations (including tropical convective systems and midlatitude jet stream cirrus).

  4. From the Kinetic Energy Recovery System to the Thermo-Hydraulic Hybrid Motor Vehicle

    NASA Astrophysics Data System (ADS)

    Cristescu, Corneliu; Drumea, Petrin; Guta, Dragos; Dumitrescu, Catalin

    2011-12-01

    The paper presents some theoretical and experimental results obtained by the Hydraulics and Pneumatics Research Institute INOE 2000-IHP with its partners, regarding the creating of one hydraulic system able to recovering the kinetic energy of the motor vehicles, in the braking phases, and use this recovered energy in the starting and accelerating phases. Also, in the article is presented a testing stand, which was especially designed for testing the hydraulic system for recovery the kinetic energy. Through mounting of the kinetic energy recovering hydraulic system, on one motor vehicle, this vehicle became a thermo-hydraulic hybrid vehicle. Therefore, the dynamic behavior was analyzed for the whole hybrid motor vehicle, which includes the energy recovery system. The theoretical and experimental results demonstrate the possible performances of the hybrid vehicle and that the kinetic energy recovery hydraulic systems are good means to increase energy efficiency of the road motor vehicles and to decrease of the fuel consumption.

  5. Study of removal of ammonia from urine vapor by dual catalyst

    NASA Technical Reports Server (NTRS)

    Budininkas, P.

    1976-01-01

    The feasibility of ammonia removal from urine vapor by a low temperature dual-catalyst system was investigated. The process is based on the initial catalytic oxidation of ammonia present in urine vapor to nitrogen and nitrous oxide, followed by a catalytic decomposition of the nitrous oxide formed into its elements. The most active catalysts for the oxidation of ammonia and for the decomposition of N2O, identified in screening tests, were then combined into dual catalyst systems and tested to establish their overall efficiencies for the removal of ammonia from artificial gas mixtures. Dual catalyst systems capable of ammonia removal from the artificial gas mixtures were then tested with the actual urine vapor produced by boiling untreated urine. A suitable dual catalyst bed arrangement was found that achieved the removal of ammonia and organic carbon, and recovered water of good quality from urine vapor.

  6. Impact vaporization: Late time phenomena from experiments

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.; Gault, D. E.

    1987-01-01

    While simple airflow produced by the outward movement of the ejecta curtain can be scaled to large dimensions, the interaction between an impact-vaporized component and the ejecta curtain is more complicated. The goal of these experiments was to examine such interaction in a real system involving crater growth, ejection of material, two phased mixtures of gas and dust, and strong pressure gradients. The results will be complemented by theoretical studies at laboratory scales in order to separate the various parameters for planetary scale processes. These experiments prompt, however, the following conclusions that may have relevance at broader scales. First, under near vacuum or low atmospheric pressures, an expanding vapor cloud scours the surrounding surface in advance of arriving ejecta. Second, the effect of early-time vaporization is relatively unimportant at late-times. Third, the overpressure created within the crater cavity by significant vaporization results in increased cratering efficiency and larger aspect ratios.

  7. Fiber-optic-based laser vapor screen flow visualization system for aerodynamic research in larger scale subsonic and transonic wind tunnels

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Inenaga, Andrew S.

    1994-01-01

    Laser vapor screen (LVS) flow visualization systems that are fiber-optic based were developed and installed for aerodynamic research in the Langley 8-Foot Transonic Pressure Tunnel and the Langley 7- by 10-Foot High Speed Tunnel. Fiber optics are used to deliver the laser beam through the plenum shell that surrounds the test section of each facility and to the light-sheet-generating optics positioned in the ceiling window of the test section. Water is injected into the wind tunnel diffuser section to increase the relative humidity and promote condensation of the water vapor in the flow field about the model. The condensed water vapor is then illuminated with an intense sheet of laser light to reveal features of the flow field. The plenum shells are optically sealed; therefore, video-based systems are used to observe and document the flow field. Operational experience shows that the fiber-optic-based systems provide safe, reliable, and high-quality off-surface flow visualization in smaller and larger scale subsonic and transonic wind tunnels. The design, the installation, and the application of the Langley Research Center (LaRC) LVS flow visualization systems in larger scale wind tunnels are highlighted. The efficiency of the fiber optic LVS systems and their insensitivity to wind tunnel vibration, the tunnel operating temperature and pressure variations, and the airborne contaminants are discussed.

  8. Experimental study of flash boiling spray vaporization through quantitative vapor concentration and liquid temperature measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Gaoming; Hung, David L. S.; Xu, Min

    2014-08-01

    Flash boiling sprays of liquid injection under superheated conditions provide the novel solutions of fast vaporization and better air-fuel mixture formation for internal combustion engines. However, the physical mechanisms of flash boiling spray vaporization are more complicated than the droplet surface vaporization due to the unique bubble generation and boiling process inside a superheated bulk liquid, which are not well understood. In this study, the vaporization of flash boiling sprays was investigated experimentally through the quantitative measurements of vapor concentration and liquid temperature. Specifically, the laser-induced exciplex fluorescence technique was applied to distinguish the liquid and vapor distributions. Quantitative vapor concentration was obtained by correlating the intensity of vapor-phase fluorescence with vapor concentration through systematic corrections and calibrations. The intensities of two wavelengths were captured simultaneously from the liquid-phase fluorescence spectra, and their intensity ratios were correlated with liquid temperature. The results show that both liquid and vapor phase of multi-hole sprays collapse toward the centerline of the spray with different mass distributions under the flash boiling conditions. Large amount of vapor aggregates along the centerline of the spray to form a "gas jet" structure, whereas the liquid distributes more uniformly with large vortexes formed in the vicinity of the spray tip. The vaporization process under the flash boiling condition is greatly enhanced due to the intense bubble generation and burst. The liquid temperature measurements show strong temperature variations inside the flash boiling sprays with hot zones present in the "gas jet" structure and vortex region. In addition, high vapor concentration and closed vortex motion seem to have inhibited the heat and mass transfer in these regions. In summary, the vapor concentration and liquid temperature provide detailed information

  9. Stratospheric water vapor feedback.

    PubMed

    Dessler, A E; Schoeberl, M R; Wang, T; Davis, S M; Rosenlof, K H

    2013-11-05

    We show here that stratospheric water vapor variations play an important role in the evolution of our climate. This comes from analysis of observations showing that stratospheric water vapor increases with tropospheric temperature, implying the existence of a stratospheric water vapor feedback. We estimate the strength of this feedback in a chemistry-climate model to be +0.3 W/(m(2)⋅K), which would be a significant contributor to the overall climate sensitivity. One-third of this feedback comes from increases in water vapor entering the stratosphere through the tropical tropopause layer, with the rest coming from increases in water vapor entering through the extratropical tropopause.

  10. Stratospheric water vapor feedback

    PubMed Central

    Dessler, A. E.; Schoeberl, M. R.; Wang, T.; Davis, S. M.; Rosenlof, K. H.

    2013-01-01

    We show here that stratospheric water vapor variations play an important role in the evolution of our climate. This comes from analysis of observations showing that stratospheric water vapor increases with tropospheric temperature, implying the existence of a stratospheric water vapor feedback. We estimate the strength of this feedback in a chemistry–climate model to be +0.3 W/(m2⋅K), which would be a significant contributor to the overall climate sensitivity. One-third of this feedback comes from increases in water vapor entering the stratosphere through the tropical tropopause layer, with the rest coming from increases in water vapor entering through the extratropical tropopause. PMID:24082126

  11. Hybrid Physical Vapor Deposition Instrument for Advanced Functional Multilayers and Materials

    DTIC Science & Technology

    2016-04-27

    Hybrid Physical Vapor Deposition Instrument for Advanced Functional Multilayers and Materials PI Maria received support to construct a physical... vapor deposition (PVD) system that combines electron beam (e- beam) evaporation, magnetron sputtering, pulsed laser ablation, and ion-assisted deposition ...peer-reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: Hybrid Physical Vapor Deposition Instrument for Advanced

  12. Effect of Common Faults on the Performance of Different Types of Vapor Compression Systems

    PubMed Central

    Du, Zhimin; Domanski, Piotr A.; Payne, W. Vance

    2016-01-01

    The effect of faults on the cooling capacity, coefficient of performance, and sensible heat ratio, was analyzed and compared for five split and rooftop systems, which use different types of expansion devices, compressors and refrigerants. The study applied multivariable polynomial and normalized performance models, which were developed for the studied systems for both fault-free and faulty conditions based on measurements obtained in a laboratory under controlled conditions. The analysis indicated differences in responses and trends between the studied systems, which underscores the challenge to devise a universal FDD algorithm for all vapor compression systems and the difficulty to develop a methodology for rating the performance of different FDD algorithms. PMID:26929732

  13. Enhancing Nervous System Recovery through Neurobiologics, Neural Interface Training, and Neurorehabilitation

    PubMed Central

    Krucoff, Max O.; Rahimpour, Shervin; Slutzky, Marc W.; Edgerton, V. Reggie; Turner, Dennis A.

    2016-01-01

    After an initial period of recovery, human neurological injury has long been thought to be static. In order to improve quality of life for those suffering from stroke, spinal cord injury, or traumatic brain injury, researchers have been working to restore the nervous system and reduce neurological deficits through a number of mechanisms. For example, neurobiologists have been identifying and manipulating components of the intra- and extracellular milieu to alter the regenerative potential of neurons, neuro-engineers have been producing brain-machine and neural interfaces that circumvent lesions to restore functionality, and neurorehabilitation experts have been developing new ways to revitalize the nervous system even in chronic disease. While each of these areas holds promise, their individual paths to clinical relevance remain difficult. Nonetheless, these methods are now able to synergistically enhance recovery of native motor function to levels which were previously believed to be impossible. Furthermore, such recovery can even persist after training, and for the first time there is evidence of functional axonal regrowth and rewiring in the central nervous system of animal models. To attain this type of regeneration, rehabilitation paradigms that pair cortically-based intent with activation of affected circuits and positive neurofeedback appear to be required—a phenomenon which raises new and far reaching questions about the underlying relationship between conscious action and neural repair. For this reason, we argue that multi-modal therapy will be necessary to facilitate a truly robust recovery, and that the success of investigational microscopic techniques may depend on their integration into macroscopic frameworks that include task-based neurorehabilitation. We further identify critical components of future neural repair strategies and explore the most updated knowledge, progress, and challenges in the fields of cellular neuronal repair, neural

  14. Overview of case studies on recovery of aquatic systems from disturbance

    NASA Astrophysics Data System (ADS)

    Niemi, Gerald J.; Devore, Philip; Detenbeck, Naomi; Taylor, Debra; Lima, Ann; Pastor, John; Yount, J. David; Naiman, Robert J.

    1990-09-01

    An extensive review of the published literature identified more than 150 case studies in which some aspect of resilience in freshwater systems was reported. Approximately 79% of systems studied were lotic and the remainder lentic. Most of the stressor types were chemical with DDT (N=29) and rotenone (N=15) the most common. The most common nonchemical stressors were logging activity (N=16), flooding (N=8), dredging (N=3), and drought (N=7). The variety of endpoints to which recovery could be measured ranged from sparse data for phytoplankton (N=13), periphyton (N=6), and macrophytes (N=8) to relatively more data for fish (N=412) and macroinvertebrates (N=698). Unfortunately the same characteristics were rarely measured consistently among sites. For example, with respect to fish, more than 30 different species were studied and recovery was measured in many ways, most commonly on the basis of: (1) first reappearance of the species, (2) return time of predisturbance densities, and (3) return time of predisturbance average individual size. Based on these criteria, all systems in these studies seem to be resilient to most disturbances with most recovery times being less than three years. Exceptions included when (1) the disturbance resulted in physical alteration of the existing habitat, (2) residual pollutants remained in the system, or (3) the system was isolated and recolonization was suppressed.

  15. Intensified fractionation of brewery yeast waste for the recovery of invertase using aqueous two-phase systems.

    PubMed

    De León-González, Grecia; González-Valdez, José; Mayolo-Deloisa, Karla; Rito-Palomares, Marco

    2016-11-01

    The potential recovery of high-value products from brewery yeast waste confers value to this industrial residue. Aqueous two-phase systems (ATPS) have demonstrated to be an attractive alternative for the primary recovery of biological products and are therefore suitable for the recovery of invertase from this residue. Sixteen different polyethylene glycol (PEG)-potassium phosphate ATPS were tested to evaluate the effects of PEG molecular weight (MW) and tie-line length (TLL) upon the partition behavior of invertase. Concentrations of crude extract from brewery yeast waste were then varied in the systems that presented the best behaviors to intensify the potential recovery of the enzyme. Results show that the use of a PEG MW 400 g mol -1 system with a TLL of 45.0% (w/w) resulted in an invertase bottom phase recovery with a purification factor of 29.5 and a recovery yield of up to 66.2% after scaling the system to a total weight of 15.0 g. This represents 15.1 mg of invertase per mL of processed bottom phase. With these results, a single-stage ATPS process for the recovery of invertase is proposed. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  16. Health assessment of gasoline and fuel oxygenate vapors: subchronic inhalation toxicity.

    PubMed

    Clark, Charles R; Schreiner, Ceinwen A; Parker, Craig M; Gray, Thomas M; Hoffman, Gary M

    2014-11-01

    Sprague Dawley rats were exposed via inhalation to vapor condensates of either gasoline or gasoline combined with various fuel oxygenates to assess whether their use in gasoline influences the hazard of evaporative emissions. Test substances included vapor condensates prepared from an EPA described "baseline gasoline" (BGVC), or gasoline combined with methyl tertiary butyl ether (G/MTBE), ethyl t-butyl ether (G/ETBE), t-amyl methyl ether (G/TAME), diisopropyl ether (G/DIPE), ethanol (G/EtOH), or t-butyl alcohol (G/TBA). Target concentrations were 0, 2000, 10,000 or 20,000mg/m(3) and exposures were for 6h/day, 5days/week for 13weeks. A portion of the animals were maintained for a four week recovery period to determine the reversibility of potential adverse effects. Increased kidney weight and light hydrocarbon nephropathy (LHN) were observed in treated male rats in all studies which were reversible or nearly reversible after 4weeks recovery. LHN is unique to male rats and is not relevant to human toxicity. The no observed effect level (NOAEL) in all studies was 10,000mg/m(3), except for G/MTBE (<2000) and G/TBA (2000). The results provide evidence that use of the studied oxygenates are unlikely to increase the hazard of evaporative emissions during refueling, compared to those from gasoline alone. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Analysis of Water Recovery Rate from the Heat Melt Compactor

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Hegde, U.; Gokoglu, S.

    2013-01-01

    Human space missions generate trash with a substantial amount of plastic (20% or greater by mass). The trash also contains water trapped in food residue and paper products and other trash items. The Heat Melt Compactor (HMC) under development by NASA Ames Research Center (ARC) compresses the waste, dries it to recover water and melts the plastic to encapsulate the compressed trash. The resulting waste disk or puck represents an approximately ten-fold reduction in the volume of the initial trash loaded into the HMC. In the current design concept being pursued, the trash is compressed by a piston after it is loaded into the trash chamber. The piston face, the side walls of the waste processing chamber and the end surface in contact with the waste can be heated to evaporate the water and to melt the plastic. Water is recovered by the HMC in two phases. The first is a pre-process compaction without heat or with the heaters initially turned on but before the waste heats up. Tests have shown that during this step some liquid water may be expelled from the chamber. This water is believed to be free water (i.e., not bound with or absorbed in other waste constituents) that is present in the trash. This phase is herein termed Phase A of the water recovery process. During HMC operations, it is desired that liquid water recovery in Phase A be eliminated or minimized so that water-vapor processing equipment (e.g., condensers) downstream of the HMC are not fouled by liquid water and its constituents (i.e., suspended or dissolved matter) exiting the HMC. The primary water recovery process takes place next where the trash is further compacted while the heated surfaces reach their set temperatures for this step. This step will be referred to herein as Phase B of the water recovery process. During this step the waste chamber may be exposed to different selected pressures such as ambient, low pressure (e.g., 0.2 atm), or vacuum. The objective for this step is to remove both bound and

  18. Vapor condensation on liquid surface due to laminar jet-induced mixing: The effects of system parameters

    NASA Technical Reports Server (NTRS)

    Lin, Chin-Shun; Hasan, Mohammad M.

    1989-01-01

    The effects of system parameters on the interface condensation rate in a laminar jet induced mixing tank are numerically studied. The physical system consists of a partially filled cylindrical tank with a slightly subcooled jet discharged from the center of the tank bottom toward the liquid-vapor interface which is at a saturation temperature corresponding to the constant tank pressure. Liquid is also withdrawn from the outer part of the tank bottom to maintain the constant liquid level. The jet velocity is selected to be low enough such that the free surface is approximately flat. The effect of vapor superheat is assumed to be negligible. Therefore, the interface condensation rate can be determined from the resulting temperature field in the liquid region alone. The nondimensional form of the steady state conservation equations are solved by a finite difference method for various system parameters including liquid height to tank diameter ratio, tank to jet diameter ratio, liquid inflow to outflow area ratio, and a heat leak parameter which characterizes the uniform wall heat flux. Detailed analyses based on the numerical solutions are performed and simplified equations are suggested for the prediction of condensation rate.

  19. Experiences of marijuana-vaporizer users.

    PubMed

    Malouff, John M; Rooke, Sally E; Copeland, Jan

    2014-01-01

    Using a marijuana vaporizer may have potential harm-reduction advantages on smoking marijuana, in that the user does not inhale smoke. Little research has been published on use of vaporizers. In the first study of individuals using a vaporizer on their own initiative, 96 adults anonymously answered questions about their experiences with a vaporizer and their use of marijuana with tobacco. Users identified 4 advantages to using a vaporizer over smoking marijuana: perceived health benefits, better taste, no smoke smell, and more effect from the same amount of marijuana. Users identified 2 disadvantages: inconvenience of setup and cleaning and the time it takes to get the device operating for each use. Only 2 individuals combined tobacco in the vaporizer mix, whereas 15 combined tobacco with marijuana when they smoked marijuana. Almost all participants intended to continue using a vaporizer. Vaporizers seem to have appeal to marijuana users, who perceive them as having harm-reduction and other benefits. Vaporizers are worthy of experimental research evaluating health-related effects of using them.

  20. Improved waste water vapor compression distillation technology. [for Spacelab

    NASA Technical Reports Server (NTRS)

    Johnson, K. L.; Nuccio, P. P.; Reveley, W. F.

    1977-01-01

    The vapor compression distillation process is a method of recovering potable water from crewman urine in a manned spacecraft or space station. A description is presented of the research and development approach to the solution of the various problems encountered with previous vapor compression distillation units. The design solutions considered are incorporated in the preliminary design of a vapor compression distillation subsystem. The new design concepts are available for integration in the next generation of support systems and, particularly, the regenerative life support evaluation intended for project Spacelab.

  1. Study of the Vapor-Liquid Coexistence Curve and the Critical Curve for Nonazeotropic Refrigerant Mixture R152a + R114 System

    NASA Astrophysics Data System (ADS)

    Kabata, Yasuo; Higashi, Yukihiro; Uematsu, Masahiko; Watanabe, Koichi

    Measurements of the vapor-liquid coexistence curve in the critical region for the refrigerant mixture of R152a (CH3CHF2: 1, l-difluoroethane) +R 114 (CCIF2CCIF2 :1, 2-dichloro-1, 1, 2, 2-tetrafluoroethane) system were made by visual observation of the disappearance of the meniscus at the vapor-liquid interface within an optical cell. Forty-eight saturated densities along the vapor-liquid coexistence curve between 204 and 861 kg·m-3 for five different compositions of 10, 20, 50, 80 and 90 wt% R 152a were obtained in the temperature range 370 to 409 K. The experimental errors of temperature, density, and mass fraction were estimated within ±10mK, ±0.5% and +0.05 %, respectively. On the basis of these measurements, the critical parameters of five different compositions for the R 152a +R 114 system were determined in consideration of the meniscus disappearance level as well as intensity of the critical opalescence. In accordance with the previous results of three other refrigerant mixtures, i.e., R 12 +R 22 system, R 22 +R 114 system and R 13B1 + R 114 system, the coexistence curve and critical curve on the temperature-density diagram for binary refrigerant mixtures were discussed. In addition, correlations of its composition dependence for this system were proposed.

  2. 78 FR 54267 - 30-Day Notice of Proposed Information Collection: Disaster Recovery Grant Reporting System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-03

    ... Information Collection: Disaster Recovery Grant Reporting System AGENCY: Office of the Chief Information...-free Federal Relay Service at (800) 877-8339. This is not a toll- free number. Copies of available... Title of Information Collection: Disaster Recovery Grant Reporting System. OMB Approval Number: 2506...

  3. Energy efficiency of acetone, butanol, and ethanol (ABE) recovery by heat-integrated distillation.

    PubMed

    Grisales Diaz, Victor Hugo; Olivar Tost, Gerard

    2018-03-01

    Acetone, butanol, and ethanol (ABE) is an alternative biofuel. However, the energy requirement of ABE recovery by distillation is considered elevated (> 15.2 MJ fuel/Kg-ABE), due to the low concentration of ABE from fermentation broths (between 15 and 30 g/l). In this work, to reduce the energy requirements of ABE recovery, four processes of heat-integrated distillation were proposed. The energy requirements and economic evaluations were performed using the fermentation broths of several biocatalysts. Energy requirements of the processes with four distillation columns and three distillation columns were similar (between 7.7 and 11.7 MJ fuel/kg-ABE). Double-effect system (DED) with four columns was the most economical process (0.12-0.16 $/kg-ABE). ABE recovery from dilute solutions by DED achieved energy requirements between 6.1 and 8.7 MJ fuel/kg-ABE. Vapor compression distillation (VCD) reached the lowest energy consumptions (between 4.7 and 7.3 MJ fuel/kg-ABE). Energy requirements for ABE recovery DED and VCD were lower than that for integrated reactors. The energy requirements of ABE production were between 1.3- and 2.0-fold higher than that for alternative biofuels (ethanol or isobutanol). However, the energy efficiency of ABE production was equivalent than that for ethanol and isobutanol (between 0.71 and 0.76) because of hydrogen production in ABE fermentation.

  4. Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marker, Terry L.; Felix, Larry G.; Linck, Martin B.

    A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H.sub.2, CH.sub.4, CO, CO.sub.2, ammonia and hydrogen sulfide.

  5. Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors

    DOEpatents

    Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J

    2014-10-14

    A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H.sub.2, CH.sub.4, CO, CO.sub.2, ammonia and hydrogen sulfide.

  6. Upgrades to the ISS Water Recovery System

    NASA Technical Reports Server (NTRS)

    Pruitt, Jennifer M.; Carter, Layne; Bagdigian, Robert M.; Kayatin, Mattthew J.

    2015-01-01

    The ISS Water Recovery System (WRS) includes the Water Processor Assembly (WPA) and the Urine Processor Assembly (UPA). The WRS produces potable water from a combination of crew urine (first processed through the UPA), crew latent, and Sabatier product water. The WRS has been operational on ISS since November 2008, producing over 21,000 L of potable water during that time. Though the WRS has performed well during this time, several modifications have been identified to improve the overall system performance. These modifications can reduce resupply and improve overall system reliability, which is beneficial for the ongoing ISS mission as well as for future NASA manned missions. The following paper lists these modifications, how they improve WRS performance, and a status on the ongoing development effort.

  7. A unified equation for calculating methane vapor pressures in the CH4-H2O system with measured Raman shifts

    USGS Publications Warehouse

    Lu, W.; Chou, I.-Ming; Burruss, R.C.; Song, Y.

    2007-01-01

    A unified equation has been derived by using all available data for calculating methane vapor pressures with measured Raman shifts of C-H symmetric stretching band (??1) in the vapor phase of sample fluids near room temperature. This equation eliminates discrepancies among the existing data sets and can be applied at any Raman laboratory. Raman shifts of C-H symmetric stretching band of methane in the vapor phase of CH4-H2O mixtures prepared in a high-pressure optical cell were also measured at temperatures between room temperature and 200 ??C, and pressures up to 37 MPa. The results show that the CH4 ??1 band position shifts to higher wavenumber as temperature increases. We also demonstrated that this Raman band shift is a simple function of methane vapor density, and, therefore, when combined with equation of state of methane, methane vapor pressures in the sample fluids at elevated temperatures can be calculated from measured Raman peak positions. This method can be applied to determine the pressure of CH4-bearing systems, such as methane-rich fluid inclusions from sedimentary basins or experimental fluids in hydrothermal diamond-anvil cell or other types of optical cell. ?? 2007 Elsevier Ltd. All rights reserved.

  8. 36. VIEW EAST OF WASTE HEAT RECOVERY SYSTEM IN BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. VIEW EAST OF WASTE HEAT RECOVERY SYSTEM IN BUILDING 43A; THIS WAS PART OF A SYSTEM WHICH PROVIDED HOT WATER FOR OFFICE AND FACTORY BUILDING HEATING IN THE WEST PLANT; NOTE FACTORY WHISTLE TIMER ON TOP OF HEAT EXCHANGER - Scovill Brass Works, 59 Mill Street, Waterbury, New Haven County, CT

  9. Evaluation of energy in heated water vapor for the application of lung volume reduction in patients with severe emphysema.

    PubMed

    Henne, Erik; Kesten, Steven; Herth, Felix J F

    2013-01-01

    A method of achieving endoscopic lung volume reduction for emphysema has been developed that utilizes precise amounts of thermal energy in the form of water vapor to ablate lung tissue. This study evaluates the energy output and implications of the commercial InterVapor system and compares it to the clinical trial system. Two methods of evaluating the energy output of the vapor systems were used, a direct energy measurement and a quantification of resultant thermal profile in a lung model. Direct measurement of total energy and the component attributable to gas (vapor energy) was performed by condensing vapor in a water bath and measuring the temperature and mass changes. Infrared images of a lung model were taken after vapor delivery. The images were quantified to characterize the thermal profile. The total energy and vapor energy of the InterVapor system was measured at various dose levels and compared to the clinical trial system at a dose of 10.0 cal/g. An InterVapor dose of 8.5 cal/g was found to have the most similar vapor energy output with the smallest associated reduction in total energy. This was supported by characterization of the thermal profile in the lung model that demonstrated the profile of InterVapor at 8.5 cal/g to not exceed the profile of the clinical trial system. Considering both total energy and vapor energy is important during the development of clinical vapor applications. For InterVapor, a closer study of both energy types justified a reduced target vapor-dosing range for lung volume reduction. The clinical implication is a potential improvement for benefiting the risk profile. Copyright © 2013 S. Karger AG, Basel.

  10. Mental health reform at a systems level: widening the lens on recovery-oriented care.

    PubMed

    Kidd, Sean A; Mckenzie, Kwame J; Virdee, Gursharan

    2014-05-01

    This paper is an initial attempt to collate the literature on psychiatric inpatient recovery-based care and, more broadly, to situate the inpatient care sector within a mental health reform dialogue that, to date, has focused almost exclusively on outpatient and community practices. We make the argument that until an evidence base is developed for recovery-oriented practices on hospital wards, the effort to advance recovery-oriented systems will stagnate. Our scoping review was conducted in line with the 2009 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (commonly referred to as PRISMA) guidelines. Among the 27 papers selected for review, most were descriptive or uncontrolled outcome studies. Studies addressing strategies for improving care quality provide some modest evidence for reflective dialogue with former inpatient clients, role play and mentorship, and pairing general training in recovery oriented care with training in specific interventions, such as Illness Management and Recovery. Relative to some other fields of medicine, evidence surrounding the question of recovery-oriented care on psychiatric wards and how it may be implemented is underdeveloped. Attention to mental health reform in hospitals is critical to the emergence of recovery-oriented systems of care and the realization of the mandate set forward in the Mental Health Strategy for Canada.

  11. Trade study for water and waste management concepts. Task 7: Support special analysis. [cost analysis of life support systems for waste utilization during space missions

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Cost analyses and tradeoff studies are given for waste management in the Space Station, Lunar Surface Bases, and interplanetary space missions. Crew drinking water requirements are discussed and various systems to recycle water are examined. The systems were evaluated for efficiency and weight savings. The systems considered effective for urine water recovery were vapor compression, flash evaporation, and air evaporation with electrolytic pretreatment. For wash water recovery, the system of multifiltration was selected. A wet oxidation system, which can process many kinds of wastes, is also considered.

  12. Apollo Recovery Operations

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    Objectives include: a) Describe the organization of recovery force command and control and landing areas; b) Describe the function and timeline use of the Earth Landing System (ELS); c) Describe Stable 1 vs Stable 2 landing configurations and the function of the Command Module Uprighting System; d) Explain the activities of the helicopter and swimmer teams in egress and recovery of the crew; e)Explain the activities of the swimmer teams and primary recovery ship in recovery of the Command Module; and f) Describe several landing incidents that occurred during Apollo.

  13. Lithium vapor/aerosol studies. Interim summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitlow, G.A.; Bauerle, J.E.; Down, M.G.

    1979-04-01

    The temperature/cover gas pressure regime, in which detectable lithium aerosol is formed in a static system has been mapped for argon and helium cover gases using a portable He--Ne laser device. At 538/sup 0/C (1000/sup 0/F), lithium aerosol particles were observed over the range 0.5 to 20 torr and 2 to 10 torr for argon and helium respectively. The experimental conditions in this study were more conducive to aerosol formation than in a fusion reactor. In the real reactor system, very high intensity mechanical and thermal disturbances will be made to the liquid lithium. These disturbances, particularly transient increases inmore » lithium vapor pressure appear to be capable of producing high concentrations of optically-dense aerosol. A more detailed study is, therefore, proposed using the basic information generated in these preliminary experiments, as a starting point. Areas recommended include the kinetics of aerosol formation and the occurrence of supersaturated vapor during rapid vapor pressure transients, and also the effect of lithium agitation (falls, jets, splashing, etc.) on aerosol formation.« less

  14. Summary of design considerations for airplane spin-recovery parachute systems

    NASA Technical Reports Server (NTRS)

    Burk, S. M., Jr.

    1972-01-01

    A compilation of design considerations applicable to spin-recovery parachute systems for military airplanes has been made so that the information will be readily available to persons responsible for the design of such systems. This information was obtained from a study of available documents and from discussions with persons in both government and industry experienced in parachute technology, full-scale and model spin testing, and related systems.

  15. Phosphorus and water recovery by a novel osmotic membrane bioreactor-reverse osmosis system.

    PubMed

    Luo, Wenhai; Hai, Faisal I; Price, William E; Guo, Wenshan; Ngo, Hao H; Yamamoto, Kazuo; Nghiem, Long D

    2016-01-01

    An osmotic membrane bioreactor-reverse osmosis (OMBR-RO) hybrid system integrated with periodic microfiltration (MF) extraction was evaluated for simultaneous phosphorus and clean water recovery from raw sewage. In this hybrid system, the forward osmosis membrane effectively retained inorganic salts and phosphate in the bioreactor, while the MF membrane periodically bled them out for phosphorus recovery with pH adjustment. The RO process was used for draw solute recovery and clean water production. Results show that phosphorus recuperation from the MF permeate was most effective when the solution pH was adjusted to 10, whereby the recovered precipitate contained 15-20% (wt/wt) of phosphorus. Periodic MF extraction also limited salinity build-up in the bioreactor, resulting in a stable biological performance and an increase in water flux during OMBR operation. Despite the build-up of organic matter and ammonia in the draw solution, OMBR-RO allowed for the recovery of high quality reused water. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  16. Structural Characterization of Vapor-deposited Organic Glasses

    NASA Astrophysics Data System (ADS)

    Gujral, Ankit

    Physical vapor deposition, a common route of thin film fabrication for organic electronic devices, has recently been shown to produce organic glassy films with enhanced kinetic stability and anisotropic structure. Anisotropic structures are of interest in the organic electronics community as it has been shown that certain structures lead to enhanced device performance, such as higher carrier mobility and better light outcoupling. A mechanism proposed to explain the origin of the stability and anisotropy of vapor-deposited glasses relies on two parameters: 1) enhanced molecular mobility at the free surface (vacuum interface) of a glass, and 2) anisotropic molecular packing at the free surface of the supercooled liquid of the glass-forming system. By vapor-depositing onto a substrate maintained at Tsubstrate < Tg (where Tg is the glass transition temperature), the enhanced molecular mobility at the free surface allows every molecule that lands on the surface to at least partially equilibrate to the preferred anisotropic molecular packing motifs before being buried by further deposition. The extent of equilibration depends on the mobility at the surface, controlled by Tsubstrate, and the residence time on the free surface, controlled by the rate of deposition. This body of work deals with the optimization of deposition conditions and system chemistry to prepare and characterize films with functional anisotropic structures. Here, we show that structural anisotropy can be attained for a variety of molecular systems including a rod-shaped non-mesogen, TPD, a rod-shaped smectic mesogen, itraconazole, two discotic mesogens, phenanthroperylene-ester and triphenylene-ester, and a disc-shaped non-mesogen, m-MTDATA. Experimental evidence is also provided of the anisotropic molecular packing at the free surface (vacuum interface) for the disc-shaped systems that are consistent with the expectations of the proposed mechanism and the final bulk state of the vapor

  17. Potassium Rankine cycle vapor chamber (heat pipe) radiator study

    NASA Technical Reports Server (NTRS)

    Gerrels, E. E.; Killen, R. E.

    1971-01-01

    A structurally integrated vapor chamber fin (heat pipe) radiator is defined and evaluated as a potential candidate for rejecting waste heat from the potassium Rankine cycle powerplant. Several vapor chamber fin geometries, using stainless steel construction, are evaluated and an optimum is selected. A comparison is made with an operationally equivalent conduction fin radiator. Both radiators employ NaK-78 in the primary coolant loop. In addition, the Vapor Chamber Fin (VCF) radiator utilizes sodium in the vapor chambers. Preliminary designs are developed for the conduction fin and VCF concepts. Performance tests on a single vapor chamber were conducted to verify the VCF design. A comparison shows the conduction fin radiator easier to fabricate, but heavier in weight, particularly as meteoroid protection requirements become more stringent. While the analysis was performed assuming the potassium Rankine cycle powerplant, the results are equally applicable to any system radiating heat to space in the 900 to 1400 F temperature range.

  18. Characterization of upper troposphere water vapor measurements during AFWEX using LASE.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrare, R. A.; Browell, E. V.; Ismail, I.

    2002-07-15

    Water vapor profiles from NASA's Lidar Atmospheric Sensing Experiment (LASE) system acquired during the ARM/FIRE Water Vapor Experiment (AFWEX) are used to characterize upper troposphere (UT) water vapor measured by ground-based Raman lidars, radiosondes, and in situ aircraft sensors. Initial comparisons showed the average Vaisala radiosonde measurements to be 5-15% drier than the average LASE, Raman lidar, and DC-8 in situ diode laser hygrometer measurements. They show that corrections to the Raman lidar and Vaisala measurements significantly reduce these differences. Precipitable water vapor (PWV) derived from the LASE water vapor profiles agrees within 3% on average with PWV derived frommore » the ARM ground-based microwave radiometer (MWR). The agreement among the LASE, Raman lidar, and MWR measurements demonstrates how the LASE measurements can be used to characterize both profile and column water vapor measurements and that ARM Raman lidar, when calibrated using the MWR PWV, can provide accurate UT water vapor measurements.« less

  19. Effects of 1980 technology on weight of a recovery system for a one million pound booster

    NASA Technical Reports Server (NTRS)

    Eckstrom, C. V.

    1975-01-01

    The effects were evaluated of 1980 technology on the weight of recovery systems capable of decelerating a one-million-pound booster to vertical velocities of 60 or 30 ft/sec at sea level impact. A nominal set of booster staging conditions were assumed and there were no constraints on parachute size, number or type. The effects of new materials that would be available by 1980, the effects of booster attitude during entry, various parachute staging methods, parachute reefing schemes, parachute-retro rocket hybrid systems, and the effects of dividing the booster into separate pieces for recovery were evaluated. It was determined that for the systems considered, a hybrid parachute-retro-rocket recovery system would have the minimum weight. New materials now becoming available for parachute fabrication should result in a 37-percent reduction in hybrid recovery system weight for an impact velocity of 30 fps.

  20. Waste heat recovery system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernst, Timothy C.; Zigan, James A.

    A waste heat recovery system includes a Rankine cycle (RC) circuit having a pump, a boiler, an energy converter, and a condenser fluidly coupled via conduits in that order, to provide additional work. The additional work is fed to an input of a gearbox assembly including a capacity for oil by mechanically coupling to the energy converter to a gear assembly. An interface is positioned between the RC circuit and the gearbox assembly to partially restrict movement of oil present in the gear assembly into the RC circuit and partially restrict movement of working fluid present in the RC circuitmore » into the gear assembly. An oil return line is fluidly connected to at least one of the conduits fluidly coupling the RC components to one another and is operable to return to the gear assembly oil that has moved across the interface from the gear assembly to the RC circuit.« less

  1. Implications of Thermal Annealing on the Benzene Vapor Sensing Behavior of PEVA-Graphene Nanocomposite Threads.

    PubMed

    Patel, Sanjay V; Cemalovic, Sabina; Tolley, William K; Hobson, Stephen T; Anderson, Ryan; Fruhberger, Bernd

    2018-03-23

    The effect of thermal treatments, on the benzene vapor sensitivity of polyethylene (co-)vinylacetate (PEVA)/graphene nanocomposite threads, used as chemiresistive sensors, was investigated using DC resistance measurements, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). These flexible threads are being developed as low-cost, easy-to-measure chemical sensors that can be incorporated into smart clothing or disposable sensing patches. Chemiresistive threads were solution-cast or extruded from PEVA and <10% graphene nanoplatelets (by mass) in toluene. Threads were annealed at various temperatures and showed up to 2 orders of magnitude decrease in resistance with successive anneals. Threads heated to ≥80 °C showed improved limits of detection, resulting from improved signal-noise, when exposed to benzene vapor in dry air. In addition, annealing increased the speed of response and recovery upon exposure to and removal of benzene vapor. DSC results showed that the presence of graphene raises the freezing point, and may allow greater crystallinity, in the nanocomposite after annealing. SEM images confirm increased surface roughness/area, which may account for the increase response speed after annealing. Benzene vapor detection at 5 ppm is demonstrated with limits of detection estimated to be as low as 1.5 ppm, reflecting an order of magnitude improvement over unannealed threads.

  2. A hybrid regenerative water recovery system for lunar/Mars life support applications

    NASA Technical Reports Server (NTRS)

    Verostko, Charles E.; Edeen, Marybeth A.; Packham, Nigel J. C.

    1992-01-01

    Long-duration manned space missions will require integrated biological and physicochemical processes for recovery of resources from wastes. This paper discusses a hybrid regenerative biological and physicochemical water recovery system designed and built at NASA's Crew and Thermal Systems Division at Johnson Space Center. The system is sized for a four-person crew and consists of a two-stage, aerobic, trickling filter bioreactor; a reverse osmosis system; and a photocatalytic oxidation system. The system was designed to accommodate high organic and inorganic loadings and a low hydraulic loading. The bioreactor was designed to oxidize organics to carbon dioxide and water; the reverse osmosis system reduces inorganic content to potable quality; and the photocatalytic oxidation unit removes residual organic impurities (part per million range) and provides in situ disinfection. The design and performance of the hybrid system for producing potable/hygiene water is described. Aspects of the system such as closure, automation and integration are discussed and preliminary results presented.

  3. Secondary electrospray ionization of complex vapor mixtures. Theoretical and experimental approach.

    PubMed

    Vidal-de-Miguel, Guillermo; Herrero, Ana

    2012-06-01

    In secondary electrospray ionization (SESI) systems, gaseous analytes exposed to an electrospray plume become ionized after charge is transferred from the charging electrosprayed particles (the charging agent) to the vapor species. Currently available SESI models are valid for simplified systems having only one type of electrosprayed species, which ionizes only one single vapor species, and for the limit of low vapor concentration. More realistic models require considering other effects. Here we develop a theoretical model that accounts for the effects of high vapor concentration, saturation effects, interferences between different vapor species, and electrosprays producing different types of species from the liquid phase. In spite of the relatively high complexity of the problem, we find simple relations between the different ionic species concentrations that hold independently of the particular ion source configuration. Our model suggests that an ideal SESI system should use highly concentrated charging agents composed preferably of only one dominating species with low mobility. Experimental measurements with a MeOH-H(2)O-NH(3) electrospray and a mixture of fatty acids and lactic acid served to test the theory, which gives good qualitative results. These results also suggest that the SESI ionization mechanism is primarily based on ions rather than on charged droplets.

  4. Means and method for vapor generation

    DOEpatents

    Carlson, Larry W.

    1984-01-01

    A liquid, in heat transfer contact with a surface heated to a temperature well above the vaporization temperature of the liquid, will undergo a multiphase (liquid-vapor) transformation from 0% vapor to 100% vapor. During this transition, the temperature driving force or heat flux and the coefficients of heat transfer across the fluid-solid interface, and the vapor percentage influence the type of heating of the fluid--starting as "feedwater" heating where no vapors are present, progressing to "nucleate" heating where vaporization begins and some vapors are present, and concluding with "film" heating where only vapors are present. Unstable heating between nucleate and film heating can occur, accompanied by possibly large and rapid temperature shifts in the structures. This invention provides for injecting into the region of potential unstable heating and proximate the heated surface superheated vapors in sufficient quantities operable to rapidly increase the vapor percentage of the multiphase mixture by perhaps 10-30% and thereby effectively shift the multiphase mixture beyond the unstable heating region and up to the stable film heating region.

  5. Means and method for vapor generation

    DOEpatents

    Carlson, L.W.

    A liquid, in heat transfer contact with a surface heated to a temperature well above the vaporization temperature of the liquid, will undergo a multiphase (liquid-vapor) transformation from 0% vapor to 100% vapor. During this transition, the temperature driving force or heat flux and the coefficients of heat transfer across the fluid-solid interface, and the vapor percentage influence the type of heating of the fluid - starting as feedwater heating where no vapors are present, progressing to nucleate heating where vaporization begins and some vapors are present, and concluding with film heating where only vapors are present. Unstable heating between nucleate and film heating can occur, accompanied by possibly large and rapid temperature shifts in the structures. This invention provides for injecting into the region of potential unstable heating and proximate the heated surface superheated vapors in sufficient quantities operable to rapidly increase the vapor percentage of the multiphase mixture by perhaps 10 to 30% and thereby effectively shift the multiphase mixture beyond the unstable heating region and up to the stable film heating region.

  6. Understanding Interactions between Hydrogeologic Factors, Design Variables, and System Operations for Multi-Well Aquifer Storage and Recovery Systems

    NASA Astrophysics Data System (ADS)

    Majumdar, S.; Miller, G. R.; Smith, B.; Sheng, Z.

    2017-12-01

    Aquifer Storage and Recovery (ASR) system is a powerful tool for managing our present and future freshwater supplies. It involves injection of excess water into an aquifer, storing and later recovering it when needed, such as in a drought or during peak demand periods. Multi-well ASR systems, such as the Twin Oaks Facility in San Antonio, consist of a group of wells that are used for simultaneous injection and extraction of stored water. While significant research has gone into examining the effects of hydraulic and operational factors on recovery efficiency for single ASR well, little is known about how multi-well systems respond to these factors and how energy uses may vary. In this study, we created a synthetic ASR model in MODFLOW to test a range of multi-well scenarios. We altered design parameters (well spacing, pumping capacity, well configuration), hydrogeologic factors (regional hydraulic gradient, hydraulic conductivity, dispersivity), and operational variables (injection and withdrawal durations; pumping rates) to determine the response of the system across a realistic range of interrelated parameters. We then computed energy use for each simulation, based on the hydraulic head in each well and standard pump factors, as well as recovery efficiency, based on tracer concentration in recovered water from the wells. The tracer concentration in the groundwater was determined using MT3DMS. We observed that the recovery and energy efficiencies for the Multi-well ASR system decrease with the increase in well spacing and hydraulic gradient. When longitudinal dispersivity was doubled, the recovery and energy efficiencies were nearly halved. Another finding from our study suggests that we can recover nearly 90% of the water after two successive cycles of operation. The results will be used to develop generalized operational guidelines for meeting freshwater demands and also optimise the energy consumed during pumping.

  7. Water-Vapor-Mediated Close-Spaced Vapor Transport Growth of Epitaxial Gallium Indium Phosphide Films on Gallium Arsenide Substrates

    DOE PAGES

    Greenaway, Ann L.; Bachman, Benjamin F.; Boucher, Jason W.; ...

    2018-01-12

    Ga 1–xIn xP is a technologically important III–V ternary semiconductor widely utilized in commercial and record-efficiency solar cells. We report the growth of Ga 1–xIn xP by water-vapor-mediated close-spaced vapor transport. Because growth of III–V semiconductors in this system is controlled by diffusion of metal oxide species, we find that congruent transport from the mixed powder source requires complete annealing to form a single alloy phase. Growth from a fully alloyed source at water vapor concentrations of ~7000 ppm in H 2 at 850 °C affords smooth films with electron mobility of 1070 cm 2 V –1 s –1 andmore » peak internal quantum efficiency of ~90% for carrier collection in a nonaqueous photoelectrochemical test cell.« less

  8. Water-Vapor-Mediated Close-Spaced Vapor Transport Growth of Epitaxial Gallium Indium Phosphide Films on Gallium Arsenide Substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenaway, Ann L.; Bachman, Benjamin F.; Boucher, Jason W.

    Ga 1–xIn xP is a technologically important III–V ternary semiconductor widely utilized in commercial and record-efficiency solar cells. We report the growth of Ga 1–xIn xP by water-vapor-mediated close-spaced vapor transport. Because growth of III–V semiconductors in this system is controlled by diffusion of metal oxide species, we find that congruent transport from the mixed powder source requires complete annealing to form a single alloy phase. Growth from a fully alloyed source at water vapor concentrations of ~7000 ppm in H 2 at 850 °C affords smooth films with electron mobility of 1070 cm 2 V –1 s –1 andmore » peak internal quantum efficiency of ~90% for carrier collection in a nonaqueous photoelectrochemical test cell.« less

  9. 33 CFR 154.2103 - Facility requirements for vessel vapor overpressure and vacuum protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... HAZARDOUS MATERIAL IN BULK Marine Vapor Control Systems Transfer Facilities-Vcs Design and Installation... rate, unless there is experimental data for actual vapor growth for turbulent transferring under the... vapor growth. (b) A facility VCS must be designed to prevent the pressure in a vessel's cargo tanks from...

  10. CRYOCHEM, Thermodynamic Model for Cryogenic Chemical Systems: Solid-Vapor and Solid-Liquid-Vapor Phase Equilibria Toward Applications on Titan and Pluto

    NASA Astrophysics Data System (ADS)

    Tan, S. P.; Kargel, J. S.; Adidharma, H.; Marion, G. M.

    2014-12-01

    Until in-situ measurements can be made regularly on extraterrestrial bodies, thermodynamic models are the only tools to investigate the properties and behavior of chemical systems on those bodies. The resulting findings are often critical in describing physicochemical processes in the atmosphere, surface, and subsurface in planetary geochemistry and climate studies. The extremely cold conditions on Triton, Pluto and other Kuiper Belt Objects, and Titan introduce huge non-ideality that prevents conventional models from performing adequately. At such conditions, atmospheres as a whole—not components individually—are subject to phase equilibria with their equilibrium solid phases or liquid phases or both. A molecular-based thermodynamic model for cryogenic chemical systems, referred to as CRYOCHEM, the development of which is still in progress, was shown to reproduce the vertical composition profile of Titan's atmospheric methane measured by the Huygens probe (Tan et al., Icarus 2013, 222, 53). Recently, the model was also used to describe Titan's global circulation where the calculated composition of liquid in Ligeia Mare is consistent with the bathymetry and microwave absorption analysis of T91 Cassini fly-by data (Tan et al., 2014, submitted). Its capability to deal with equilibria involving solid phases has also been demonstrated (Tan et al., Fluid Phase Equilib. 2013, 360, 320). With all those previous works done, our attention is now shifting to the lower temperatures in Titan's tropopause and on Pluto's surface, where much technical development remains for CRYOCHEM to assure adequate performance at low temperatures. In these conditions, solid-vapor equilibrium (SVE) is the dominant phase behavior that determines the composition of the atmosphere and the existing ices. Another potential application is for the subsurface phase equilibrium, which also involves liquid, thus three-phase equilibrium: solid-liquid-vapor (SLV). This presentation will discuss the

  11. Recycling of PVC Waste via Environmental Friendly Vapor Treatment

    NASA Astrophysics Data System (ADS)

    Cui, Xin; Jin, Fangming; Zhang, Guangyi; Duan, Xiaokun

    2010-11-01

    This paper focused on the dechlorination of polyvinyl chloride (PVC), a plastic which is widely used in the human life and thereby is leading to serious "white pollution", via vapor treatment process to recycle PVC wastes. In the process, HCl emitted was captured into water solution to avoid hazardous gas pollution and corruption, and remaining polymers free of chlorine could be thermally degraded for further energy recovery. Optimal conditions for the dechlorination of PVC using vapor treatment was investigated, and economic feasibility of this method was also analyzed based on the experimental data. The results showed that the efficiency of dechlorination increased as the temperature increased from 200° C to 250° C, and the rate of dechlorination up to 100% was obtained at the temperature near 250° C. Meanwhile, about 12% of total organic carbon was detected in water solution, which indicated that PVC was slightly degraded in this process. The main products in solution were identified to be acetone, benzene and toluene. In addition, the effects of alkali catalysis on dechlorination were also studied in this paper, and it showed that alkali could not improve the efficiency of the dechlorination of PVC.

  12. Shale-oil-recovery systems incorporating ore beneficiation. Final report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, M.A.; Klumpar, I.V.; Peterson, C.R.

    This study analyzed the recovery of oil from oil shale by use of proposed systems which incorporate beneficiation of the shale ore (that is concentration of the kerogen before the oil-recovery step). The objective was to identify systems which could be more attractive than conventional surface retorting of ore. No experimental work was carried out. The systems analyzed consisted of beneficiation methods which could increase kerogen concentrations by at least four-fold. Potentially attractive low-enrichment methods such as density separation were not examined. The technical alternatives considered were bounded by the secondary crusher as input and raw shale oil as output.more » A sequence of ball milling, froth flotation, and retorting concentrate is not attractive for Western shales compared to conventional ore retorting; transporting the concentrate to another location for retorting reduces air emissions in the ore region but cost reduction is questionable. The high capital and energy cost s results largely from the ball milling step which is very inefficient. Major improvements in comminution seem achievable through research and such improvements, plus confirmation of other assumptions, could make high-enrichment beneficiation competitive with conventional processing. 27 figures, 23 tables.« less

  13. Upgrades to the ISS Water Recovery System

    NASA Technical Reports Server (NTRS)

    Kayatin, Matthew J.; Carter, Donald L.; Schunk, Richard G.; Pruitt, Jennifer M.

    2016-01-01

    The International Space Station Water Recovery System (WRS) is comprised of the Water Processor Assembly (WPA) and the Urine Processor Assembly (UPA). The WRS produces potable water from a combination of crew urine (first processed through the UPA), crew latent, and Sabatier product water. Though the WRS has performed well since operations began in November 2008, several modifications have been identified to improve the overall system performance. These modifications can reduce resupply and improve overall system reliability, which is beneficial for the ongoing ISS mission as well as for future NASA manned missions. The following paper details efforts to reduce the resupply mass of the WPA Multifiltration Bed, develop improved catalyst for the WPA Catalytic Reactor, evaluate optimum operation of UPA through parametric testing, and improve reliability of the UPA fluids pump and Distillation Assembly.

  14. The reconstruction of narrative identity during mental health recovery: a complex adaptive systems perspective.

    PubMed

    Kerr, Douglas J R; Crowe, Trevor P; Oades, Lindsay G

    2013-06-01

    1) to understand the reconstruction of narrative identity during mental health recovery using a complex adaptive systems perspective, 2) to address the need for alternative approaches that embrace the complexities of health care. A narrative review of published literature was conducted. A complex adaptive systems perspective offers a framework and language that can assist individuals to make sense of their experiences and reconstruct their narratives during an often erratic and uncertain life transition. It is a novel research direction focused on a critical area of recovery and addresses the need for alternative approaches that embrace the complexities of health care. A complexity research approach to narrative identity reconstruction is valuable. It is an accessible model for addressing the complexities of recovery and may underpin the development of simple, practical recovery coaching tools. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  15. Orion Landing and Recovery Systems Development - Government Contributions

    NASA Technical Reports Server (NTRS)

    Machin, Ricardo A.

    2010-01-01

    This slide presentation reviews NASA's work in development of landing and recovery systems for the Orion space craft. It includes a review of the available tools and skills that assist in analyzing the aerodynamic decelerators. There is a description of the work that is being done on the Government Furnished Equipment (GFE) parachutes that will be used with the Orion Crew Exploration Vehicle (CEV)

  16. Morphological stability and kinetics in crystal growth from vapors

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1990-01-01

    The following topics are discussed: (1) microscopy image storage and processing system; (2) growth kinetics and morphology study with carbon tetrabromide; (3) photothermal deflection vapor growth setup; (4) bridgman growth of iodine single crystals; (5) vapor concentration distribution measurement during growth; and (6) Monte Carlo modeling of anisotropic growth kinetics and morphology. A collection of presentations and publications of these results are presented.

  17. International Union of Theoretical and Applied Mechanics: Symposium on Adiabatic Waves in liquid-Vapor Systems Held at Goettingen (Germany, F.R.) on 28 August-1 September 1989. Abstracts of the Contributed Papers

    DTIC Science & Technology

    1989-09-01

    THE LIQUID- VAPOR CRITICAL POINT" P.A. Thompson, J.E. Shepherd, H.J. Cho, S.Can Gulen (Troy). Non-euilibrium in dinamic systems , critical phenomena...IN LIQUID-VAPOR SYSTEMS G~ttingen: 28. August - 1. September 1989 Chairmen: Gerd E.A. Meier & Philip A. Thompson Secretary: Tomasz A. Kowalewski...is a great pleasure to welcome you on behalf of the Organizing Committee to the IUTAM Symposium on Adiabatic Waves in Liquid Vapor Systems . We are

  18. Stand-off detection of explosives vapors by resonance-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Johansson, Ida; Ceco, Ema; Ehlerding, Anneli; Östmark, Henric

    2013-06-01

    This paper describes a system for stand-off vapor detection based on Resonant Raman spectroscopy, RRS. The system is a step towards a RRS LIDAR (Light Detection And Ranging) system, capable of detecting vapors from explosives and explosives precursors at long distances. The current system was used to detect the vapor of nitromethane and mononitrotoluene outdoors in the open air, at a stand-off distance of 11-13 meters. Also, the signal dependence upon irradiation wavelength and sample concentration was studied in controlled laboratory conditions. A tunable Optical Parametric Oscillator pumped by an Nd:YAG laser, with a pulse length of 6 ns, was operated in the UV range of interest, 210-400 nm, illuminating the sample vapor. The backscattered Raman signal was collected by a telescope and a roundto- slit optical fiber was used to transmit collected light to the spectrometer with minimum losses. A gated intensified charge-coupled device (ICCD) registered the spectra. The nitromethane cross section was resonance enhanced more than a factor 30 700, when measured at 220 nm, compared to the 532 nm value. The results show that a decrease in concentration can have a positive effect on the sensitivity of the system, due to a decrease in absorption and selfabsorption in the sample.

  19. Heat Pipe Vapor Dynamics. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Issacci, Farrokh

    1990-01-01

    -filled heat pipe is on the order of seconds. Depending on the time constant for the overall system, the vapor transient time may be very short. Therefore, the vapor core may be assumed to be quasi-steady in the transient analysis of a heat pipe operation.

  20. Evolution of melt-vapor surface tension in silicic volcanic systems: Experiments with hydrous melts

    USGS Publications Warehouse

    Mangan, M.; Sisson, T.

    2005-01-01

    We evaluate the melt-vapor surface tension (??) of natural, water-saturated dacite melt at 200 MPa, 950-1055??C, and 4.8-5.7 wt % H2O. We experimentally determine the critical supersaturation pressure for bubble nucleation as a function of dissolved water and then solve for ?? at those conditions using classical nucleation theory. The solutions obtained give dacite melt-vapor surface tensions that vary inversely with dissolved water from 0.042 (??0.003) J m-2 at 5.7 wt% H2O to 0.060 (??0.007) J m-2 at 5.2 wt% H2O to 0.073 (??0.003) J m-2 at 4.8 wt% H2O. Combining our dacite results with data from published hydrous haplogranite and high-silica rhyolite experiments reveals that melt-vapor surface tension also varies inversely with the concentration of mafic melt components (e.g., CaO, FeOtotal, MgO). We develop a thermodynamic context for these observations in which melt-vapor surface tension is represented by a balance of work terms controlled by melt structure. Overall, our results suggest that cooling, crystallization, and vapor exsolution cause systematic changes in ?? that should be considered in dynamic modeling of magmatic processes.

  1. Heat recovery system series arrangements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kauffman, Justin P.; Welch, Andrew M.; Dawson, Gregory R.

    The present disclosure is directed to heat recovery systems that employ two or more organic Rankine cycle (ORC) units disposed in series. According to certain embodiments, each ORC unit includes an evaporator that heats an organic working fluid, a turbine generator set that expands the working fluid to generate electricity, a condenser that cools the working fluid, and a pump that returns the working fluid to the evaporator. The heating fluid is directed through each evaporator to heat the working fluid circulating within each ORC unit, and the cooling fluid is directed through each condenser to cool the working fluidmore » circulating within each ORC unit. The heating fluid and the cooling fluid flow through the ORC units in series in the same or opposite directions.« less

  2. NMR transmit-receive system with short recovery time and effective isolation

    NASA Astrophysics Data System (ADS)

    Jurga, K.; Reynhardt, E. C.; Jurga, S.

    A transmit-receive system with a short recovery time and excellent isolation has been developed. The system operates in conjunction with an ENI Model 3200L broadband amplifier and a spin-lock NMR pulse spectrometer. The system has been tested in the frequency range 5.5 to 52 MHz and seems not to generate any background noise.

  3. Pyrometallurgical Recovery of Platinum Group Metals from Spent Catalysts

    NASA Astrophysics Data System (ADS)

    Peng, Zhiwei; Li, Zhizhong; Lin, Xiaolong; Tang, Huimin; Ye, Lei; Ma, Yutian; Rao, Mingjun; Zhang, Yuanbo; Li, Guanghui; Jiang, Tao

    2017-09-01

    As an important secondary resource with abundant platinum group metals (PGMs), spent catalysts demand recycling for both economic and environmental benefits. This article reviews the main pyrometallurgical processes for PGM recovery from spent catalysts. Existing processes, including smelting, vaporization, and sintering processes, are discussed based in part on a review of the physiochemical characteristics of PGMs in spent catalysts. The smelting technology, which produces a PGM-containing alloy, is significantly influenced by the addition of various collectors, such as lead, copper, iron, matte, or printed circuit board (PCB), considering their chemical affinities for PGMs. The vaporization process can recover PGMs in vapor form at low temperatures (250-700°C), but it suffers high corrosion and potential environmental and health risks as a result of involvement of the hazardous gases, mainly Cl2 and CO. The sintering process serves as a reforming means for recycling of the spent catalysts by in situ reduction of their oxidized PGMs components. Among these processes, the smelting process seems more promising although its overall performance can be further improved by seeking a suitable target-oriented collector and flux, together with proper pretreatment and process intensification using an external field.

  4. Minimizing temperature instability of heat recovery hot water system utilizing optimized thermal energy storage

    NASA Astrophysics Data System (ADS)

    Suamir, I. N.; Sukadana, I. B. P.; Arsana, M. E.

    2018-01-01

    One energy-saving technology that starts gaining attractive for hotel industry application in Indonesia is the utilization of waste heat of a central air conditioning system to heat water for domestic hot water supply system. Implementing the technology for such application at a hotel was found that hot water capacity generated from the heat recovery system could satisfy domestic hot water demand of the hotel. The gas boilers installed in order to back up the system have never been used. The hot water supply, however, was found to be instable with hot water supply temperature fluctuated ranging from 45 °C to 62 °C. The temperature fluctuations reaches 17 °C, which is considered instable and can reduce hot water usage comfort level. This research is aimed to optimize the thermal energy storage in order to minimize the temperature instability of heat recovery hot water supply system. The research is a case study approach based on cooling and hot water demands of a hotel in Jakarta-Indonesia that has applied water cooled chillers with heat recovery systems. The hotel operation with 329 guest rooms and 8 function rooms showed that hot water production in the heat recovery system completed with 5 m3 thermal energy storage (TES) could not hold the hot water supply temperature constantly. The variations of the cooling demand and hot water demands day by day were identified. It was found that there was significant mismatched of available time (hours) between cooling demand which is directly correlated to the hot water production from the heat recovery system and hot water usage. The available TES system could not store heat rejected from the condenser of the chiller during cooling demand peak time between 14.00 and 18.00 hours. The extra heat from the heat recovery system consequently increases the temperature of hot water up to 62 °C. It is about 12 K above 50 °C the requirement hot water temperature of the hotel. In contrast, the TES could not deliver proper

  5. Potentiometric detection of chemical vapors using molecularly imprinted polymers as receptors

    PubMed Central

    Liang, Rongning; Chen, Lusi; Qin, Wei

    2015-01-01

    Ion-selective electrode (ISE) based potentiometric gas sensors have shown to be promising analytical tools for detection of chemical vapors. However, such sensors are only capable of detecting those vapors which can be converted into ionic species in solution. This paper describes for the first time a polymer membrane ISE based potentiometric sensing system for sensitive and selective determination of neutral vapors in the gas phase. A molecularly imprinted polymer (MIP) is incorporated into the ISE membrane and used as the receptor for selective adsorption of the analyte vapor from the gas phase into the sensing membrane phase. An indicator ion with a structure similar to that of the vapor molecule is employed to indicate the change in the MIP binding sites in the membrane induced by the molecular recognition of the vapor. The toluene vapor is used as a model and benzoic acid is chosen as its indicator. Coupled to an apparatus manifold for preparation of vapor samples, the proposed ISE can be utilized to determine volatile toluene in the gas phase and allows potentiometric detection down to parts per million levels. This work demonstrates the possibility of developing a general sensing principle for detection of neutral vapors using ISEs. PMID:26215887

  6. Vitamins A and E reverse gasoline vapors-induced hematotoxicity and weight loss in female rats.

    PubMed

    Uboh, F E; Eteng, M U; Ebong, P E; Umoh, I B

    2010-10-01

    In this study, gasoline vapors-induced hematotoxicity, growth-depression and weight-loss reversal effect of vitamins A (retinol) and E (α-tocopherol) was assessed in female Wistar albino rats. The rats were exposed to gasoline vapors (17.8 ± 2.6 cm(3)/h/m(3)/day), 6 hours/day, 6 days/week, for 20 weeks. Vitamins A and E at prophylactic dosage (400 and 200 IU/kg/day, respectively) were orally administered to the rats, separately, in the last 2 weeks of exposure. The levels of hemoglobin (Hb), hematocrit or packed cell volume (PCV), red blood cells (RBC), growth rate and weight gain in the rats exposed to the vapors were significantly lower (p < 0.05) compared, respectively, to the levels obtained for control rats. On the other hand, the levels of white blood cells (WBCs) in the test rats were significantly higher (p < 0.05) compared, respectively, with the level obtained for female control rats. These observations indicated that exposure to gasoline vapors may cause hematotoxicity, growth depression and weight loss in female rats. However, administration of vitamins A and E was observed to produce a significant recovery (p < 0.05) in hematotoxicity, growth depression and weight loss observed to be associated with exposure to gasoline vapors, although the rats administered with vitamin E were noted to respond more favorably than those administered with vitamin A. This suggests that although retinol and α-tocopherol may be used to reverse or prevent hematotoxicity, growth depression and weight loss in subjects exposed to gasoline vapors, the reversal potency of α-tocopherol is higher than that of retinol.

  7. System and method for conditioning a hardwood pulp liquid hydrolysate

    DOEpatents

    Waite, Darrell M; Arnold, Richard; St. Pierre, James; Pendse, Hemant P; Ceckler, William H

    2013-12-17

    A system and method for hardwood pulp liquid hydrolysate conditioning includes a first evaporator receives a hardwood mix extract and outputting a quantity of vapor and extract. A hydrolysis unit receives the extract, hyrolyzes and outputs to a lignin separation device, which separates and recovers a quantity of lignin. A neutralization device receives extract from the lignin separation device and a neutralizing agent, producing a mixture of solid precipitate and a fifth extract. The solid precipitate is removed from the fifth extract. A second evaporator removes a quantity of acid from the fifth extract in a vapor form. This vapor may be recycled to improve total acid recovery or discarded. A desalination device receives the diluted extract, separates out some of the acid and salt and outputs a desalinated solution.

  8. Shock wave induced vaporization of porous solids

    NASA Astrophysics Data System (ADS)

    Shen, Andy H.; Ahrens, Thomas J.; O'Keefe, John D.

    2003-05-01

    Strong shock waves generated by hypervelocity impact can induce vaporization in solid materials. To pursue knowledge of the chemical species in the shock-induced vapors, one needs to design experiments that will drive the system to such thermodynamic states that sufficient vapor can be generated for investigation. It is common to use porous media to reach high entropy, vaporized states in impact experiments. We extended calculations by Ahrens [J. Appl. Phys. 43, 2443 (1972)] and Ahrens and O'Keefe [The Moon 4, 214 (1972)] to higher distentions (up to five) and improved their method with a different impedance match calculation scheme and augmented their model with recent thermodynamic and Hugoniot data of metals, minerals, and polymers. Although we reconfirmed the competing effects reported in the previous studies: (1) increase of entropy production and (2) decrease of impedance match, when impacting materials with increasing distentions, our calculations did not exhibit optimal entropy-generating distention. For different materials, very different impact velocities are needed to initiate vaporization. For aluminum at distention (m)<2.2, a minimum impact velocity of 2.7 km/s is required using tungsten projectile. For ionic solids such as NaCl at distention <2.2, 2.5 km/s is needed. For carbonate and sulfate minerals, the minimum impact velocities are much lower, ranging from less than 1 to 1.5 km/s.

  9. Vapor Measurement System of Essential Oil Based on MOS Gas Sensors Driven with Advanced Temperature Modulation Technique

    NASA Astrophysics Data System (ADS)

    Sudarmaji, A.; Margiwiyatno, A.; Ediati, R.; Mustofa, A.

    2018-05-01

    The aroma/vapor of essential oils is complex compound which depends on the content of the gases and volatiles generated from essential oil. This paper describes a design of quick, simple, and low-cost static measurement system to acquire vapor profile of essential oil. The gases and volatiles are captured in a chamber by means of 9 MOS gas sensors which driven with advance temperature modulation technique. A PSoC CY8C28445-24PVXI based-interface unit is built to generate the modulation signal and acquire all sensor output into computer wirelessly via radio frequency serial communication using Digi International Inc., XBee (IEEE 802.15.4) through developed software under Visual.Net. The system was tested to measure 2 kinds of essential oil (Patchouli and Clove Oils) in 4 temperature modulations (without, 0.25 Hz, 1 Hz, and 4 Hz). A cycle measurement consists of reference and sample measurement sequentially which is set during 2 minutes in every 1 second respectively. It is found that the suitable modulation is 0,25Hz; 75%, and the results of Principle Component Analysis show that the system is able to distinguish clearly between Patchouli Oil and Clove Oil.

  10. Validation of Safety-Critical Systems for Aircraft Loss-of-Control Prevention and Recovery

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.

    2012-01-01

    Validation of technologies developed for loss of control (LOC) prevention and recovery poses significant challenges. Aircraft LOC can result from a wide spectrum of hazards, often occurring in combination, which cannot be fully replicated during evaluation. Technologies developed for LOC prevention and recovery must therefore be effective under a wide variety of hazardous and uncertain conditions, and the validation framework must provide some measure of assurance that the new vehicle safety technologies do no harm (i.e., that they themselves do not introduce new safety risks). This paper summarizes a proposed validation framework for safety-critical systems, provides an overview of validation methods and tools developed by NASA to date within the Vehicle Systems Safety Project, and develops a preliminary set of test scenarios for the validation of technologies for LOC prevention and recovery

  11. Development of Bottom Oil Recovery Systems. Revised

    DTIC Science & Technology

    2014-02-01

    designed a recovery system based on dredging technology. It could handle harsh wind /wave conditions but has significant logistical requirements, due...Knots m/s Meter(s) per second M/T Motor tanker M/V Motor vessel m Meter or meters m2 Square meters m3 Cubic meters MBTA Migratory Bird ...usable for some bottom types. Wind 30 kts (45-kt gusts) Wave 0-2m (0-5ft) Current 0-2 kts Lightning ɝmiles Minimum depth of about 9m (30 ft

  12. Bronze Alloy Development for Zinc Vapor Capture

    DOE PAGES

    Korinko, Paul S.

    2017-04-24

    After gamma-emitting 65Zinc was detected in a vacuum pumping system contained in a tritium glovebox, a series of experiments were undertaken to develop a method and material to trap zinc vapors in an area that is more suitable for preventing dose to workers. In this study, bronze alloys with 0–30% tin were prepared using a powder metallurgical process and exposed to three levels of zinc vapors. Furthermore, all of the alloys demonstrated acceptable zinc gettering capacity; however, low tin content bronzes are considered for further testing.

  13. Energy-Efficient Ammonia Recovery in an Up-Scaled Hydrogen Gas Recycling Electrochemical System

    PubMed Central

    2018-01-01

    Nutrient and energy recovery is becoming more important for a sustainable future. Recently, we developed a hydrogen gas recycling electrochemical system (HRES) which combines a cation exchange membrane (CEM) and a gas-permeable hydrophobic membrane for ammonia recovery. This allowed for energy-efficient ammonia recovery, since hydrogen gas produced at the cathode was oxidized at the anode. Here, we successfully up-scaled and optimized this HRES for ammonia recovery. The electrode surface area was increased to 0.04 m2 to treat up to 11.5 L/day (∼46 gN/day) of synthetic urine. The system was operated stably for 108 days at current densities of 20, 50, and 100 A/m2. Compared to our previous prototype, this new cell design reduced the anode overpotential and ionic losses, while the use of an additional membrane reduced the ion transport losses. Overall, this reduced the required energy input from 56.3 kJ/gN (15.6 kW h/kgN) at 50 A/m2 (prototype) to 23.4 kJ/gN (6.5 kW h/kgN) at 100 A/m2 (this work). At 100 A/m2, an average recovery of 58% and a TAN (total ammonia nitrogen) removal rate of 598 gN/(m2 day) were obtained across the CEM. The TAN recovery was limited by TAN transport from the feed to concentrate compartment. PMID:29888142

  14. Vapor feed direct methanol fuel cells with passive thermal-fluids management system

    NASA Astrophysics Data System (ADS)

    Guo, Zhen; Faghri, Amir

    The present paper describes a novel technology that can be used to manage methanol and water in miniature direct methanol fuel cells (DMFCs) without the need for a complex micro-fluidics subsystem. At the core of this new technology is a unique passive fuel delivery system that allows for fuel delivery at an adjustable rate from a reservoir to the anode. Furthermore, the fuel cell is designed for both passive water management and effective carbon dioxide removal. The innovative thermal management mechanism is the key for effective operation of the fuel cell system. The vapor feed DMFC reached a power density of 16.5 mW cm -2 at current density of 60 mA cm -2. A series of fuel cell prototypes in the 0.5 W range have been successfully developed. The prototypes have demonstrated long-term stable operation, easy fuel delivery control and are scalable to larger power systems. A two-cell stack has successfully operated for 6 months with negligible degradation.

  15. Triple-effect absorption refrigeration system with double-condenser coupling

    DOEpatents

    DeVault, R.C.; Biermann, W.J.

    1993-04-27

    A triple effect absorption refrigeration system is provided with a double-condenser coupling and a parallel or series circuit for feeding the refrigerant-containing absorbent solution through the high, medium, and low temperature generators utilized in the triple-effect system. The high temperature condenser receiving vaporous refrigerant from the high temperature generator is double coupled to both the medium temperature generator and the low temperature generator to enhance the internal recovery of heat within the system and thereby increase the thermal efficiency thereof.

  16. Triple-effect absorption refrigeration system with double-condenser coupling

    DOEpatents

    DeVault, Robert C.; Biermann, Wendell J.

    1993-01-01

    A triple effect absorption refrigeration system is provided with a double-condenser coupling and a parallel or series circuit for feeding the refrigerant-containing absorbent solution through the high, medium, and low temperature generators utilized in the triple-effect system. The high temperature condenser receiving vaporous refrigerant from the high temperature generator is double coupled to both the medium temperature generator and the low temperature generator to enhance the internal recovery of heat within the system and thereby increase the thermal efficiency thereof.

  17. A Water Vapor Differential Absorption LIDAR Design for Unpiloted Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell J.; Mead, Patricia F.

    2004-01-01

    This system study proposes the deployment of a water vapor Differential Absorption LIDAR (DIAL) system on an Altair unmanned aerial vehicle (UAV) platform. The Altair offers improved payload weight and volume performance, and longer total flight time as compared to other commercial UAV's. This study has generated a preliminary design for an Altair based water vapor DIAL system. The design includes a proposed DIAL schematic, a review of mechanical challenges such as temperature and humidity stresses on UAV deployed DIAL systems, an assessment of the available capacity for additional instrumentation (based on the proposed design), and an overview of possible weight and volume improvements associated with the use of customized electronic and computer hardware, and through the integration of advanced fiber-optic and laser products. The results of the study show that less than 17% of the available weight, less than 19% of the volume capacity, and approximately 11% of the electrical capacity is utilized by the proposed water vapor DIAL system on the Altair UAV.

  18. Multiple volatile organic compound vapor chamber testing with a frequency-agile CO2 DIAL system: field-test results

    NASA Astrophysics Data System (ADS)

    Carr, Lewis W.; Warren, Russell E.; Carlisle, Clinton B.; Carlisle, Sylvie A.; Cooper, David E.; Fletcher, Leland; Gotoff, Steven W.; Reyes, Felix

    1995-02-01

    Many of the 189 hazardous air pollutants (HAPs) listed in the Environmental Protection Agency regulations can be monitored by frequency agile CO2 DIAL (FACD) systems. These systems can be used to survey industrial and military installations and toxic waste repositories at ranges of a few kilometers from emission sources. FACD systems may become a valuable tool for detection and estimation of a wide array of HAPs. However, in most cases, several of the listed HAPs will be present simultaneously and discrimination of one HAP from another based on differences in spectral characteristics can be challenging for FACD systems. While FACD hardware is mature and is capable of addressing these discrimination issues, multiple-contaminate separation algorithms need to be developed. A one week field test was conducted at Los Banos, California, to gather multiple HAP data that will be used for future algorithm development. A vapor chamber was used to control disseminated concentrations of each HAP and reduce effects of atmospheric turbulence and wind direction and speed. Data was collected for several chemicals injected into the vapor chamber simultaneously. The data and results from the field test are presented and calibration issues are discussed.

  19. Iodine Hall Thruster Propellant Feed System for a CubeSat

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Peeples, Steven

    2014-01-01

    The components required for an in-space iodine vapor-fed Hall effect thruster propellant management system are described. A laboratory apparatus was assembled and used to produce iodine vapor and control the flow through the application of heating to the propellant reservoir and through the adjustment of the opening in a proportional flow control valve. Changing of the reservoir temperature altered the flowrate on the timescale of minutes while adjustment of the proportional flow control valve changed the flowrate immediately without an overshoot or undershoot in flowrate with the requisite recovery time associated with thermal control systems. The flowrates tested spanned a range from 0-1.5 mg/s of iodine, which is sufficient to feed a 200-W Hall effect thruster.

  20. Determination of As, Se, and Hg in fuel samples by in-chamber chemical vapor generation ICP OES using a Flow Blurring® multinebulizer.

    PubMed

    García, Miriam; Aguirre, Miguel Ángel; Canals, Antonio

    2017-09-01

    In this work, a new and simple analytical methodology based on in-chamber chemical vapor generation has been developed for the spectrochemical analysis of commercial fuel samples. A multiple nebulizer with three nebulization units has been employed for this purpose: One unit was used for sample introduction, while the other two were used for the necessary reagent introduction. In this way, the aerosols were mixed inside the spray chamber. Through this method, analyte transport and, therefore, sensitivity are improved in inductively coupled plasma-optical emission spectrometry. The factors (i.e., variables), influencing chemical vapor generation, have been optimized using a multivariate approach. Under optimum chemical vapor generation conditions ([NaBH 4 ] = 1.39%, [HCl] = 2.97 M, total liquid flow = 936 μL min -1 ), the proposed sample introduction system allowed the determination of arsenic, selenium, and mercury up to 5 μg g -1 with a limit of detection of 25, 140, and 13 μg kg -1 , respectively. Analyzing spiked commercial fuel samples, recovery values obtained were between 96 and 113%, and expanded uncertainty values ranged from 4 to 16%. The most striking practical conclusion of this investigation is that no carbon deposit appears on the plasma torch after extended periods of working. Graphical abstract A new and simple analytical methodology based on in-chamber chemical vapor generation has been developed for the spectrochemical analysis of commercial fuel samples in ICP OES.

  1. 33 CFR 154.2108 - Vapor-moving devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Marine Vapor Control Systems Transfer... vibration; (4) Low lube oil level; (5) Low lube oil pressure; and (6) Excessive shaft bearing temperature...

  2. Systemic molecular and cellular changes induced in rats upon inhalation of JP-8 petroleum fuel vapor.

    PubMed

    Hanas, Jay S; Bruce Briggs, G; Lerner, Megan R; Lightfoot, Stan A; Larabee, Jason L; Karsies, Todd J; Epstein, Robert B; Hanas, Rushie J; Brackett, Daniel J; Hocker, James R

    2010-05-01

    Limited information is available regarding systemic changes in mammals associated with exposures to petroleum/hydrocarbon fuels. In this study, systemic toxicity of JP-8 jet fuel was observed in a rat inhalation model at different JP-8 fuel vapor concentrations (250, 500, or 1000 mg/m(3), for 91 days). Gel electrophoresis and mass spectrometry sequencing identified the alpha-2 microglobulin protein to be elevated in rat kidney in a JP-8 dose-dependent manner. Western blot analysis of kidney and lung tissue extracts revealed JP-8 dependent elevation of inducible heat shock protein 70 (HSP70). Tissue changes were observed histologically (hematoxylin and eosin staining) in liver, kidney, lung, bone marrow, and heart, and more prevalently at medium or high JP-8 vapor phase exposures (500-1000 mg/m(3)) than at low vapor phase exposure (250 mg/m(3)) or non-JP-8 controls. JP-8 fuel-induced liver alterations included dilated sinusoids, cytoplasmic clumping, and fat cell deposition. Changes to the kidneys included reduced numbers of nuclei, and cytoplasmic dumping in the lumen of proximal convoluted tubules. JP-8 dependent lung alterations were edema and dilated alveolar capillaries, which allowed clumping of red blood cells (RBCs). Changes in the bone marrow in response to JP-8 included reduction of fat cells and fat globules, and cellular proliferation (RBCs, white blood cells-WBCs, and megakaryocytes). Heart tissue from JP-8 exposed animals contained increased numbers of inflammatory and fibroblast cells, as well as myofibril scarring. cDNA array analysis of heart tissue revealed a JP-8 dependent increase in atrial natriuretic peptide precursor mRNA and a decrease in voltage-gated potassium (K+) ion channel mRNA.

  3. On resilience studies of system detection and recovery techniques against stealthy insider attacks

    NASA Astrophysics Data System (ADS)

    Wei, Sixiao; Zhang, Hanlin; Chen, Genshe; Shen, Dan; Yu, Wei; Pham, Khanh D.; Blasch, Erik P.; Cruz, Jose B.

    2016-05-01

    With the explosive growth of network technologies, insider attacks have become a major concern to business operations that largely rely on computer networks. To better detect insider attacks that marginally manipulate network traffic over time, and to recover the system from attacks, in this paper we implement a temporal-based detection scheme using the sequential hypothesis testing technique. Two hypothetical states are considered: the null hypothesis that the collected information is from benign historical traffic and the alternative hypothesis that the network is under attack. The objective of such a detection scheme is to recognize the change within the shortest time by comparing the two defined hypotheses. In addition, once the attack is detected, a server migration-based system recovery scheme can be triggered to recover the system to the state prior to the attack. To understand mitigation of insider attacks, a multi-functional web display of the detection analysis was developed for real-time analytic. Experiments using real-world traffic traces evaluate the effectiveness of Detection System and Recovery (DeSyAR) scheme. The evaluation data validates the detection scheme based on sequential hypothesis testing and the server migration-based system recovery scheme can perform well in effectively detecting insider attacks and recovering the system under attack.

  4. Vapor spill monitoring method

    DOEpatents

    Bianchini, Gregory M.; McRae, Thomas G.

    1985-01-01

    Method for continuous sampling of liquified natural gas effluent from a spill pipe, vaporizing the cold liquified natural gas, and feeding the vaporized gas into an infrared detector to measure the gas composition. The apparatus utilizes a probe having an inner channel for receiving samples of liquified natural gas and a surrounding water jacket through which warm water is flowed to flash vaporize the liquified natural gas.

  5. Design study of arresting gear system for recovery of space shuttle orbiters

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A plan is reported for the design, manufacture, development, test, and production of an emergency arrestment system for the recovery of shuttle orbiters. Time and cost estimates are included. System testing and several optional test programs are discussed.

  6. Characterization of Upper Troposphere Water Vapor Measurements during AFWEX using LASE

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Browell, E. V.; Ismail, S.; Kooi, S.; Brasseur, L. H.; Brackett, V. G.; Clayton, M.; Barrick, J.; Linne, H.; Lammert, A.

    2002-01-01

    Water vapor profiles from NASA's Lidar Atmospheric Sensing Experiment (LASE) system acquired during the ARM/FIRE Water Vapor Experiment (AFWEX) are used to characterize upper troposphere water vapor (UTWV) measured by ground-based Raman lidars, radiosondes, and in situ aircraft sensors. Initial comparisons showed the average Vaisala radiosonde measurements to be 5-15% drier than the average LASE, Raman lidar, and DC-8 in situ diode laser hygrometer measurements. We show that corrections to the Raman lidar and Vaisala measurements significantly reduce these differences. Precipitable water vapor (PWV) derived from the LASE water vapor profiles agrees within 3% on average with PWV derived from the ARM ground-based microwave radiometer (MWR). The agreement among the LASE, Raman lidar, and MWR measurements demonstrates how the LASE measurements can be used to characterize both profile and column water vapor measurements and that ARM Raman lidar, when calibrated using the MWR PWV, can provide accurate UTWV measurements.

  7. a Thermally Desorbable Miniature Passive Dosimeter for Organic Vapors

    NASA Astrophysics Data System (ADS)

    Gonzalez, Jesus Antonio

    A thermally desorbable miniature passive dosimeter (MPD) for organic vapors has been developed in conformity with theoretical and practical aspects of passive dosimeter design. The device was optimized for low sample loadings resulting from short-term and/or low concentration level exposure. This was accomplished by the use of thermal desorption rather than solvent elution, which provided the GC method with significantly higher sensitivity. Laboratory evaluation of this device for factors critical to the performance of passive dosimeters using benzene as the test vapor included: desorption efficiency (97.2%), capacity (1400 ppm-min), sensitivity (7ng/sample or 0.06 ppmv for 15 minutes sampling) accuracy and precision, concentration level, environmental conditions (i.e., air face velocity, relative humidity) and sample stability during short (15 minutes) and long periods of time (15 days). This device has demonstrated that its overall accuracy meets NIOSH and OSHA requirements for a sampling and analytical method for the exposure concentration range of 0.1 to 50 ppm (v/v) and 15 minutes exposures. It was demonstrated that the MPD operates in accordance with theoretically predicted performance and should be adequate for short-term and/or low concentration exposure monitoring of organic vapors in the workplace. In addition a dynamic vapor exposure evaluation system for passive dosimeters have been validated using benzene as the test vapor. The system is capable of generating well defined short-square wave concentration profiles suitable for the evaluation of passive dosimeters for ceiling exposure monitoring.

  8. Mass spectrometry for water vapor measurements in the UT/LS

    NASA Astrophysics Data System (ADS)

    Kaufmann, S.; Voigt, C.; Schäuble, D.; Schäfler, A.; Schlager, H.; Thornberry, T. D.; Fahey, D. W.

    2012-12-01

    Water vapor in the lower stratosphere plays a crucial role for the atmospheric radiation budget (Solomon et al., 2011). However, large uncertainties remain in measuring atmospheric water vapor mixing ratios below 10 ppmv typical for the lower stratosphere. To this end, we have developed the Atmospheric Ionization Mass Spectrometer (AIMS) for the accurate and fast detection of water vapor in the UT/LS from aircraft. In the AIMS instrument atmospheric air is directly ionized in a discharge ion source and the resulting water vapor clusters H3O+(H2O)n (n = 0..3) are detected with a linear quadrupole mass spectrometer as a direct measure of the atmospheric water vapor mixing ratio. AIMS is calibrated in-flight with a H2O calibration source using the catalytic reaction of H2 and O2 on a heated platinum surface to form gaseous H2O. This calibration setup combined with the water vapor mass spectrometry offers a powerful technical development in atmospheric hygrometry, enriching existing H2O measurement techniques by a new independent method. Here, we present AIMS water vapor measurements performed during the CONCERT2011 campaign (Contrail and Cirrus Experiment) with the DLR research aircraft Falcon. In September 2011 a deep stratospheric intrusion was probed over northern Europe with a dynamical tropopause lowered down to 6 km. We found sharp humidity gradients between tropospheric and stratospheric air at the edge of the tropopause fold, which we crossed 4 times at altitudes between 6 and 11 km. In the center of the tropopause fold, we measured water vapor mixing ratios down to 4 ppmv. The observed water vapor distribution is compared to water vapor analysis fields of the ECMWF's Integrated Forecast System (IFS) to evaluate the representation water vapor in this specific meteorological situation.

  9. Holographic studies of the vapor explosion of vaporizing water-in-fuel emulsion droplets

    NASA Technical Reports Server (NTRS)

    Sheffield, S. A.; Hess, C. F.; Trolinger, J. D.

    1982-01-01

    Holographic studies were performed which examined the fragmentation process during vapor explosion of a water-in-fuel (hexadecane/water) emulsion droplet. Holograms were taken at 700 to 1000 microseconds after the vapor explosion. Photographs of the reconstructed holograms reveal a wide range of fragment droplet sizes created during the explosion process. Fragment droplet diameters range from below 10 microns to over 100 microns. It is estimated that between ten thousand and a million fragment droplets can result from this extremely violent vapor explosion process. This enhanced atomization is thus expected to have a pronounced effect on vaporization processes which are present during combustion of emulsified fuels.

  10. Provable Transient Recovery for Frame-Based, Fault-Tolerant Computing Systems

    NASA Technical Reports Server (NTRS)

    DiVito, Ben L.; Butler, Ricky W.

    1992-01-01

    We present a formal verification of the transient fault recovery aspects of the Reliable Computing Platform (RCP), a fault-tolerant computing system architecture for digital flight control applications. The RCP uses NMR-style redundancy to mask faults and internal majority voting to purge the effects of transient faults. The system design has been formally specified and verified using the EHDM verification system. Our formalization accommodates a wide variety of voting schemes for purging the effects of transients.

  11. A new mass spectrometer system for investigating laser-induced vaporization phenomena

    NASA Technical Reports Server (NTRS)

    Lincoln, K. A.

    1974-01-01

    A laser has been combined with a mass spectrometer in a new configuration developed for studies of high-temperature materials. A vacuum-lock, solid-sample inlet is mounted at one end of a cylindrical, high-vacuum chamber one meter in length with a nude ion-source, time-of-flight mass spectrometer at the opposite end. The samples are positioned along the axis of the chamber at distances up to one meter from the ion source, and their surfaces are vaporized by a pulsed laser beam entering via windows on one side of the chamber. The instrumentation along with its capabilities is described, and results from laser-induced vaporization of several graphites are presented.

  12. Log-Based Recovery in Asynchronous Distributed Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Kane, Kenneth Paul

    1989-01-01

    A log-based mechanism is described for restoring consistent states to replicated data objects after failures. Preserving a causal form of consistency based on the notion of virtual time is focused upon in this report. Causal consistency has been shown to apply to a variety of applications, including distributed simulation, task decomposition, and mail delivery systems. Several mechanisms have been proposed for implementing causally consistent recovery, most notably those of Strom and Yemini, and Johnson and Zwaenepoel. The mechanism proposed here differs from these in two major respects. First, a roll-forward style of recovery is implemented. A functioning process is never required to roll-back its state in order to achieve consistency with a recovering process. Second, the mechanism does not require any explicit information about the causal dependencies between updates. Instead, all necessary dependency information is inferred from the orders in which updates are logged by the object servers. This basic recovery technique appears to be applicable to forms of consistency other than causal consistency. In particular, it is shown how the recovery technique can be modified to support an atomic form of consistency (grouping consistency). By combining grouping consistency with casual consistency, it may even be possible to implement serializable consistency within this mechanism.

  13. Understanding Ammonium Transport in Bioelectrochemical Systems towards its Recovery

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Qin, Mohan; Luo, Shuai; He, Zhen; Qiao, Rui

    2016-03-01

    We report an integrated experimental and simulation study of ammonia recovery using microbial electrolysis cells (MECs). The transport of various species during the batch-mode operation of an MEC was examined experimentally and the results were used to validate the mathematical model for such an operation. It was found that, while the generated electrical current through the system tends to acidify (or basify) the anolyte (or catholyte), their effects are buffered by a cascade of chemical groups such as the NH3/NH4+ group, leading to relatively stable pH values in both anolyte and catholyte. The transport of NH4+ ions accounts for ~90% of the total current, thus quantitatively confirming that the NH4+ ions serve as effective proton shuttles during MEC operations. Analysis further indicated that, because of the Donnan equilibrium at cation exchange membrane-anolyte/catholyte interfaces, the Na+ ion in the anolyte actually facilitates the transport of NH4+ ions during the early stage of a batch cycle and they compete with the NH4+ ions weakly at later time. These insights, along with a new and simple method for predicting the strength of ammonia diffusion from the catholyte toward the anolyte, will help effective design and operation of bioeletrochemical system-based ammonia recovery systems.

  14. Stability of Materials in High Temperature Water Vapor: SOFC Applications

    NASA Technical Reports Server (NTRS)

    Opila, E. J.; Jacobson, N. S.

    2010-01-01

    Solid oxide fuel cell material systems require long term stability in environments containing high-temperature water vapor. Many materials in fuel cell systems react with high-temperature water vapor to form volatile hydroxides which can degrade cell performance. In this paper, experimental methods to characterize these volatility reactions including the transpiration technique, thermogravimetric analysis, and high pressure mass spectrometry are reviewed. Experimentally determined data for chromia, silica, and alumina volatility are presented. In addition, data from the literature for the stability of other materials important in fuel cell systems are reviewed. Finally, methods for predicting material recession due to volatilization reactions are described.

  15. Fluorometric Biosniffer Camera "Sniff-Cam" for Direct Imaging of Gaseous Ethanol in Breath and Transdermal Vapor.

    PubMed

    Arakawa, Takahiro; Sato, Toshiyuki; Iitani, Kenta; Toma, Koji; Mitsubayashi, Kohji

    2017-04-18

    Various volatile organic compounds can be found in human transpiration, breath and body odor. In this paper, a novel two-dimensional fluorometric imaging system, known as a "sniffer-cam" for ethanol vapor released from human breath and palm skin was constructed and validated. This imaging system measures ethanol vapor concentrations as intensities of fluorescence through an enzymatic reaction induced by alcohol dehydrogenase (ADH). The imaging system consisted of multiple ultraviolet light emitting diode (UV-LED) excitation sheet, an ADH enzyme immobilized mesh substrate and a high-sensitive CCD camera. This imaging system uses ADH for recognition of ethanol vapor. It measures ethanol vapor by measuring fluorescence of nicotinamide adenine dinucleotide (NADH), which is produced by an enzymatic reaction on the mesh. This NADH fluorometric imaging system achieved the two-dimensional real-time imaging of ethanol vapor distribution (0.5-200 ppm). The system showed rapid and accurate responses and a visible measurement, which could lead to an analysis of metabolism function at real time in the near future.

  16. Process Model of A Fusion Fuel Recovery System for a Direct Drive IFE Power Reactor

    NASA Astrophysics Data System (ADS)

    Natta, Saswathi; Aristova, Maria; Gentile, Charles

    2008-11-01

    A task has been initiated to develop a detailed representative model for the fuel recovery system (FRS) in the prospective direct drive inertial fusion energy (IFE) reactor. As part of the conceptual design phase of the project, a chemical process model is developed in order to observe the interaction of system components. This process model is developed using FEMLAB Multiphysics software with the corresponding chemical engineering module (CEM). Initially, the reactants, system structure, and processes are defined using known chemical species of the target chamber exhaust. Each step within the Fuel recovery system is modeled compartmentally and then merged to form the closed loop fuel recovery system. The output, which includes physical properties and chemical content of the products, is analyzed after each step of the system to determine the most efficient and productive system parameters. This will serve to attenuate possible bottlenecks in the system. This modeling evaluation is instrumental in optimizing and closing the fusion fuel cycle in a direct drive IFE power reactor. The results of the modeling are presented in this paper.

  17. Biological Assessment to Support Ecological Recovery of a Degraded Headwater System

    NASA Astrophysics Data System (ADS)

    Longing, Scott D.; Haggard, Brian E.

    2010-09-01

    An assessment of the benthic macroinvertebrate community was conducted to characterize the ecological recovery of a channelized main stem and two small tributaries at the Watershed Research and Education Center (WREC, Arkansas, USA). Three other headwater streams in the same basin were also sampled as controls and for biological reference information. A principal components analysis produced stream groupings along an overall gradient of physical habitat integrity, with degraded reaches showing lower RBP habitat scores, reduced flow velocities, smaller substrate sizes, greater conductivity, and higher percentages of sand and silt substrate. The benthic macroinvertebrate assemblage at WREC was dominated by fast-reproducing dipteran larvae (midge and mosquito larvae) and physid snails, which comprised 71.3% of the total macroinvertebrate abundance over three sampling periods. Several macroinvertebrate assemblage metrics should provide effective targets for monitoring overall improvements in the invertebrate assemblage including recovery towards a more complex food web (e.g., total number of taxa, number of EPT taxa, percent 2 dominant taxa). However, current habitat conditions and the extent of existing degradation, system isolation and surrounding urban or agricultural land-uses might affect the level of positive change to the system. We therefore suggest a preliminary restoration strategy involving the addition of pool habitats in the system. At one pool we collected a total of 29 taxa (dominated by water beetle predators), which was 59% of total number of taxa collected at WREC. Maintaining water-retentive pools to collect flows and maintain water permanence focuses on enhancing known biology and habitat, thus reducing the effects of abiotic filters on macroinvertebrate assemblage recovery. Furthermore, biological assessment prior to restoration supports a strategy primarily focused on improving the existing macroinvertebrate community in the current context of the

  18. Potassium permanganate for mercury vapor environmental control

    NASA Technical Reports Server (NTRS)

    Kuivinen, D. E.

    1972-01-01

    Potassium permanganate (KMnO4) was evaluated for application in removing mercury vapor from exhaust air systems. The KMnO4 may be used in water solution with a liquid spray scrubber system or as a solid adsorber bed material when impregnated onto a zeolite. Air samples contaminated with as much as 112 mg/cu m of mercury were scrubbed to 0.06mg/cum with the KMnO4-impregnated zeolite (molecular sieve material). The water spray solution of permanganate was also found to be as effective as the impregnated zeolite. The KMnO4-impregnated zeolite was applied as a solid adsorber material to (1) a hardware decontamination system, (2) a model incinerator, and (3) a high vacuum chamber for ion engine testing with mercury as the propellant. A liquid scrubber system was also applied in an incinerator system. Based on the results of these experiments, it is concluded that the use of KMnO4 can be an effective method for controlling noxious mercury vapor.

  19. Detailed Modeling of Distillation Technologies for Closed-Loop Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Allada, Rama Kumar; Lange, Kevin E.; Anderson, Molly S.

    2011-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA?s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents efforts to develop chemical process simulations for three technologies: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system and the Wiped-Film Rotating Disk (WFRD) using the Aspen Custom Modeler and Aspen Plus process simulation tools. The paper discusses system design, modeling details, and modeling results for each technology and presents some comparisons between the model results and recent test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  20. 21 CFR 868.5880 - Anesthetic vaporizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Anesthetic vaporizer. 868.5880 Section 868.5880...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5880 Anesthetic vaporizer. (a) Identification. An anesthetic vaporizer is a device used to vaporize liquid anesthetic and deliver a controlled...

  1. 21 CFR 868.5880 - Anesthetic vaporizer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Anesthetic vaporizer. 868.5880 Section 868.5880...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5880 Anesthetic vaporizer. (a) Identification. An anesthetic vaporizer is a device used to vaporize liquid anesthetic and deliver a controlled...

  2. 21 CFR 868.5880 - Anesthetic vaporizer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Anesthetic vaporizer. 868.5880 Section 868.5880...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5880 Anesthetic vaporizer. (a) Identification. An anesthetic vaporizer is a device used to vaporize liquid anesthetic and deliver a controlled...

  3. 21 CFR 868.5880 - Anesthetic vaporizer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Anesthetic vaporizer. 868.5880 Section 868.5880...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5880 Anesthetic vaporizer. (a) Identification. An anesthetic vaporizer is a device used to vaporize liquid anesthetic and deliver a controlled...

  4. 21 CFR 868.5880 - Anesthetic vaporizer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Anesthetic vaporizer. 868.5880 Section 868.5880...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5880 Anesthetic vaporizer. (a) Identification. An anesthetic vaporizer is a device used to vaporize liquid anesthetic and deliver a controlled...

  5. [Experimental research of oil vapor pollution control for gas station with membrane separation technology].

    PubMed

    Zhu, Ling; Chen, Jia-Qing; Zhang, Bao-Sheng; Wang, Jian-Hong

    2011-12-01

    Two kinds of membranes modules, vapor retained glassy membrane based on PEEK hollow fiber membrane modules and vapor permeated rubbery membrane system based on GMT plate-and-frame membrane modules, were used to control the oil vapor pollution during the course of receiving and transferring gasoline in oil station. The efficiencies of the membrane module and the membrane system of them were evaluated and compared respectively in the facilities which were developed by ourselves. It was found that both the two kinds of membranes modules had high efficiency for the separation of VOCs-air mixed gases, and the outlet vapor after treatment all can meet the national standard. When the vapor-enriched gas was returned to the oil tank to simulate the continuously cycle test, the concentration of VOCs in the outlet was also below 25 g x m(-3).

  6. Focusing Light Beams To Improve Atomic-Vapor Optical Buffers

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatoliy

    2010-01-01

    Specially designed focusing of light beams has been proposed as a means of improving the performances of optical buffers based on cells containing hot atomic vapors (e.g., rubidium vapor). There is also a companion proposal to improve performance by use of incoherent optical pumping under suitable conditions. Regarding the proposal to use focusing: The utility of atomic-vapor optical buffers as optical storage and processing devices has been severely limited by nonuniform spatial distributions of intensity in optical beams, arising from absorption of the beams as they propagate in atomic-vapor cells. Such nonuniformity makes it impossible to optimize the physical conditions throughout a cell, thereby making it impossible to optimize the performance of the cell as an optical buffer. In practical terms simplified for the sake of brevity, "to optimize" as used here means to design the cell so as to maximize the group delay of an optical pulse while keeping the absorption and distortion of the pulse reasonably small. Regarding the proposal to use incoherent optical pumping: For reasons too complex to describe here, residual absorption of light is one of the main impediments to achievement of desirably long group delays in hot atomic vapors. The present proposal is directed toward suppressing residual absorption of light. The idea of improving the performance of slow-light optical buffers by use of incoherent pumping overlaps somewhat with the basic idea of Raman-based slow-light systems. However, prior studies of those systems did not quantitatively answer the question of whether the performance of an atomic vapor or other medium that exhibits electromagnetically induced transparency (EIT) with Raman gain is superior to that of a medium that exhibits EIT without Raman gain.

  7. The Use of Ion Vapor Deposited Aluminum (IVD) for the Space Shuttle Solid Rocket Booster (SRB)

    NASA Technical Reports Server (NTRS)

    Novak, Howard L.

    2003-01-01

    This viewgraph representation provides an overview of the use of ion vapor deposited aluminum (IVD) for use in the Space Shuttle Solid Rocket Booster (SRB). Topics considered include: schematics of ion vapor deposition system, production of ion vapor deposition system, IVD vs. cadmium coated drogue ratchets, corrosion exposure facilities and tests, seawater immersion facilities and tests and continued research and development issues.

  8. Color recovery effect of different bleaching systems on a discolored composite resin.

    PubMed

    Gul, P; Harorlı, O T; Ocal, I B; Ergin, Z; Barutcigil, C

    2017-10-01

    Discoloration of resin-based composites is a commonly encountered problem, and bleaching agents may be used for the therapy of the existing discoloration. The purpose of this study was to investigate in vitro color recovery effect of different bleaching systems on the heavily discolored composite resin. Fifty disk-shaped dental composite specimens were prepared using A2 shade nanohybrid universal composite resin (3M ESPE Filtek Z550, St. Paul, MN, USA). Composite samples were immersed in coffee and turnip juice for 1 week in each. One laser activated bleaching (LB) (Biolase Laserwhite*20) and three conventional bleaching systems (Ultradent Opalescence Boost 40% (OB), Ultradent Opalescence PF 15% home bleaching (HB), Crest 3D White [Whitening Mouthwash]) were tested in this study. Distilled water was used as control group. The color of the samples were measured using a spectrophotometer (VITA Easy shade Compact, VITA Zahnfabrik, Bad Säckingen, Germany). Color changes (ΔE00) were calculated using the CIEDE2000 formula. Statistical analyses were conducted using paired samples test, one-way analysis of variance, and Tukey's multiple comparison tests (α = 0.05). The staining beverages caused perceptible discoloration (ΔE00 > 2.25). The color recovery effect of all bleaching systems was statistically determined to be more effective than the control group (P < 0.05). Although OB group was found as the most effective bleaching system, there was no statistically significant difference among HB, OB, and LB groups (P > 0.05). Within the limitation of this in vitro study, the highest recovery effect was determined in office bleaching system among all bleaching systems. However, home and laser bleaching systems were determined as effective as office bleaching system.

  9. Liquid-vapor relations for the system NaCl-H2O: summary of the P-T- x surface from 300° to 500°C

    USGS Publications Warehouse

    Bischoff, J.L.; Pitzer, Kenneth S.

    1989-01-01

    Experimental data on the vapor-liquid equilibrium relations for the system NaCl-H2O were compiled and compared in order to provide an improved estimate of the P-T-x surface between 300° to 500°C, a range for which the system changes from subcritical to critical behavior. Data for the three-phase curve (halite + liquid + vapor) and the NaCl-H2O critical curve were evaluated, and the best fits for these extrema then were used to guide selection of best fit for isothermal plots for the vapor-liquid region in-between. Smoothing was carried out in an iterative procedure by replotting the best-fit data as isobars and then as isopleths, until an internally consistent set of data was obtained. The results are presented in table form that will have application to theoretical modelling and to the understanding of two-phase behavior in saline geothermal systems.

  10. Thermodynamic Modeling and Mechanical Design of a Liquid Nitrogen Vaporization and Pressure Building Device

    NASA Astrophysics Data System (ADS)

    Leege, Brian J.

    The design of a liquid nitrogen vaporization and pressure building device that has zero product waste while recovering some of its stored energy is of interest for the cost reduction of nitrogen for use in industrial processes. Current devices may waste up to 30% of the gaseous nitrogen product by venting it to atmosphere. Furthermore, no attempt is made to recover the thermal energy available in the coldness of the cryogen. A seven step cycle with changing volumes and ambient heat addition is proposed, eliminating all product waste and providing the means of energy recovery from the nitrogen. This thesis discusses the new thermodynamic cycle and modeling as well as the mechanical design and testing of a prototype device. The prototype was able to achieve liquid nitrogen vaporization and pressurization up to 1000 psi, while full cycle validation is ongoing with promising initial results.

  11. ETV REPORT AND VERIFICATION STATEMENT; EVALUATION OF LOBO LIQUIDS RINSE WATER RECOVERY SYSTEM

    EPA Science Inventory

    The Lobo Liquids Rinse Water Recovery System (Lobo Liquids system) was tested, under actual production conditions, processing metal finishing wastewater, at Gull Industries in Houston, Texas. The verification test evaluated the ability of the ion exchange (IX) treatment system t...

  12. 14 CFR 29.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.975 Fuel tank vents and carburetor vapor vents. (a) Fuel tank vents. Each fuel tank must be vented from the... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank vents and carburetor vapor vents...

  13. 14 CFR 29.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.975 Fuel tank vents and carburetor vapor vents. (a) Fuel tank vents. Each fuel tank must be vented from the... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank vents and carburetor vapor vents...

  14. 14 CFR 23.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.975 Fuel tank vents and carburetor vapor vents. (a) Each fuel tank must be vented... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank vents and carburetor vapor vents...

  15. 14 CFR 25.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.975 Fuel tank vents and carburetor vapor vents. (a) Fuel tank vents. Each fuel tank must be vented from the... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank vents and carburetor vapor vents...

  16. 14 CFR 29.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.975 Fuel tank vents and carburetor vapor vents. (a) Fuel tank vents. Each fuel tank must be vented from the... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank vents and carburetor vapor vents...

  17. 14 CFR 29.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.975 Fuel tank vents and carburetor vapor vents. (a) Fuel tank vents. Each fuel tank must be vented from the... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank vents and carburetor vapor vents...

  18. 14 CFR 29.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.975 Fuel tank vents and carburetor vapor vents. (a) Fuel tank vents. Each fuel tank must be vented from the... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank vents and carburetor vapor vents...

  19. 14 CFR 23.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.975 Fuel tank vents and carburetor vapor vents. (a) Each fuel tank must be vented... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank vents and carburetor vapor vents...

  20. 14 CFR 25.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.975 Fuel tank vents and carburetor vapor vents. (a) Fuel tank vents. Each fuel tank must be vented from the... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank vents and carburetor vapor vents...