Sample records for vapor-liquid contact medium

  1. Method and apparatus for high-efficiency direct contact condensation

    DOEpatents

    Bharathan, Desikan; Parent, Yves; Hassani, A. Vahab

    1999-01-01

    A direct contact condenser having a downward vapor flow chamber and an upward vapor flow chamber, wherein each of the vapor flow chambers includes a plurality of cooling liquid supplying pipes and a vapor-liquid contact medium disposed thereunder to facilitate contact and direct heat exchange between the vapor and cooling liquid. The contact medium includes a plurality of sheets arranged to form vertical interleaved channels or passageways for the vapor and cooling liquid streams. The upward vapor flow chamber also includes a second set of cooling liquid supplying pipes disposed beneath the vapor-liquid contact medium which operate intermittently in response to a pressure differential within the upward vapor flow chamber. The condenser further includes separate wells for collecting condensate and cooling liquid from each of the vapor flow chambers. In alternate embodiments, the condenser includes a cross-current flow chamber and an upward flow chamber, a plurality of upward flow chambers, or a single upward flow chamber. The method of use of the direct contact condenser of this invention includes passing a vapor stream sequentially through the downward and upward vapor flow chambers, where the vapor is condensed as a result of heat exchange with the cooling liquid in the contact medium. The concentration of noncondensable gases in the resulting condensate-liquid mixtures can be minimized by controlling the partial pressure of the vapor, which depends in part upon the geometry of the vapor-liquid contact medium. In another aspect of this invention, the physical and chemical performance of a direct contact condenser can be predicted based on the vapor and coolant compositions, the condensation conditions. and the geometric properties of the contact medium.

  2. Method and apparatus for high-efficiency direct contact condensation

    DOEpatents

    Bharathan, D.; Parent, Y.; Hassani, A.V.

    1999-07-20

    A direct contact condenser having a downward vapor flow chamber and an upward vapor flow chamber, wherein each of the vapor flow chambers includes a plurality of cooling liquid supplying pipes and a vapor-liquid contact medium disposed thereunder to facilitate contact and direct heat exchange between the vapor and cooling liquid. The contact medium includes a plurality of sheets arranged to form vertical interleaved channels or passageways for the vapor and cooling liquid streams. The upward vapor flow chamber also includes a second set of cooling liquid supplying pipes disposed beneath the vapor-liquid contact medium which operate intermittently in response to a pressure differential within the upward vapor flow chamber. The condenser further includes separate wells for collecting condensate and cooling liquid from each of the vapor flow chambers. In alternate embodiments, the condenser includes a cross-current flow chamber and an upward flow chamber, a plurality of upward flow chambers, or a single upward flow chamber. The method of use of the direct contact condenser of this invention includes passing a vapor stream sequentially through the downward and upward vapor flow chambers, where the vapor is condensed as a result of heat exchange with the cooling liquid in the contact medium. The concentration of noncondensable gases in the resulting condensate-liquid mixtures can be minimized by controlling the partial pressure of the vapor, which depends in part upon the geometry of the vapor-liquid contact medium. In another aspect of this invention, the physical and chemical performance of a direct contact condenser can be predicted based on the vapor and coolant compositions, the condensation conditions, and the geometric properties of the contact medium. 39 figs.

  3. Acoustically-Enhanced Direct Contact Vapor Bubble Condensation

    NASA Astrophysics Data System (ADS)

    Boziuk, Thomas; Smith, Marc; Glezer, Ari

    2017-11-01

    Rate-limited, direct contact vapor condensation of vapor bubbles that are formed by direct steam injection through a nozzle in a quiescent subcooled liquid bath is accelerated using ultrasonic (MHz-range) actuation. A submerged, low power actuator produces an acoustic beam whose radiation pressure deforms the liquid-vapor interface, leading to the formation of a liquid spear that penetrates the vapor bubble to form a vapor torus with a significantly larger surface area and condensation rate. Ultrasonic focusing along the spear leads to the ejection of small, subcooled droplets through the vapor volume that impact the vapor-liquid interface and further enhance the condensation. High-speed Schlieren imaging of the formation and collapse of the vapor bubbles in the absence and presence of actuation shows that the impulse associated with the collapse of the toroidal volume leads to the formation of a turbulent vortex ring in the liquid phase. Liquid motions near the condensing vapor volume are investigated in the absence and presence of acoustic actuation using high-magnification PIV and show the evolution of a liquid jet through the center of the condensing toroidal volume and the formation and advection of vortex ring structures whose impulse appear to increase with temperature difference between the liquid and vapor phases. High-speed image processing is used to assess the effect of the actuation on the temporal and spatial variations in the characteristic scales and condensation rates of the vapor bubbles.

  4. Contact angle change during evaporation of near-critical liquids

    NASA Astrophysics Data System (ADS)

    Nikolayev, Vadim; Hegseth, John; Beysens, Daniel

    1998-03-01

    An unexpected change of the dynamic contact angle was recently observed in a near-critical liquid-gas system in a space experiment. While the near-critical liquid completely wets a solid under equilibrium conditions, the apparent contact angle changed from 0^circ to about 120^circ during evaporation. We propose an explanation for this phenomenon by taking into account vapor recoil due to evaporation (motion of the vapor from the free liquid surface). This force is normal to the vapor-liquid interface and is directed towards the liquid. It increases sharply near the triple contact line. Near the critical point, where the surface tension force is very weak, the vapor recoil force can be important enough to change the apparent contact angle. A similar effect can also explain the drying of a heater during boiling at high heat flux. The drying greatly reduces the heat transfer to the liquid causing the heater to melt. This phenomenon is called ``boiling crisis", ``burnout" or ``Departure from Nuclear Boiling".

  5. Composition, diffusion, and antifungal activity of black mustard (Brassica nigra) essential oil when applied by direct addition or vapor phase contact.

    PubMed

    Mejía-Garibay, Beatriz; Palou, Enrique; López-Malo, Aurelio

    2015-04-01

    In this study, we characterized the essential oil (EO) of black mustard (Brassica nigra) and quantified its antimicrobial activity, when applied by direct contact into the liquid medium or by exposure in the vapor phase (in laboratory media or in a bread-type product), against the growth of Aspergillus niger, Aspergillus ochraceus, or Penicillium citrinum. Allyl-isothiocyanate (AITC) was identified as the major component of B. nigra EO with a concentration of 378.35 mg/ml. When B. nigra EO was applied by direct contact into the liquid medium, it inhibited the growth of A. ochraceus and P. citrinum when the concentration was 2 μl/ml of liquid medium (MIC), while for A. niger, a MIC of B. nigra EO was 4 μl/ml of liquid medium. Exposure of molds to B. nigra EO in vapor phase showed that 41.1 μl of B. nigra EO per liter of air delayed the growth of P. citrinum and A. niger by 10 days, while A. ochraceus growth was delayed for 20 days. Exposure to concentrations ≥ 47 μl of B. nigra EO per liter of air (MIC) inhibited the growth of tested molds by 30 days, and they were not able to recover after further incubation into an environment free of EO (fungicidal effect). Adsorbed AITC was quantified by exposing potato dextrose agar to B. nigra EO in a vapor phase, exhibiting that AITC was retained at least 5 days when testing EO at its MIC or with higher concentrations. Mustard EO MIC was also effective against the evaluated molds inhibiting their growth for 30 days in a bread-type product when exposed to EO by vapor contact, demonstrating its antifungal activity.

  6. Contact angle change during evaporation of near-critical liquids

    NASA Astrophysics Data System (ADS)

    Nikolayev, Vadim; Hegseth, John; Beysens, Daniel

    1998-11-01

    An unexpected change of the dynamic contact angle was recently observed in a near-critical liquid-gas system in a space experiment. While the near-critical liquid completely wets a solid under equilibrium conditions, the apparent contact angle changed from 0^circ to about 120^circ during evaporation. We propose an explanation for this phenomenon by taking into account vapor recoil due to evaporation (motion of the vapor from the free liquid surface). This force is normal to the vapor-liquid interface and is directed towards the liquid. It increases sharply near the triple contact line. Near the critical point, where the surface tension force is very weak, the vapor recoil force can be important enough to change the apparent contact angle. A similar effect can also explain the drying of a heater during boiling at high heat flux. The drying greatly reduces the heat transfer to the liquid causing the heater to melt. This phenomenon is called ``boiling crisis", ``burnout" or ``Departure from Nuclear Boiling". We report the preliminary results of the numerical simulation of the liquid evaporation by the Boundary Element method.

  7. Method for analyzing the chemical composition of liquid effluent from a direct contact condenser

    DOEpatents

    Bharathan, Desikan; Parent, Yves; Hassani, A. Vahab

    2001-01-01

    A computational modeling method for predicting the chemical, physical, and thermodynamic performance of a condenser using calculations based on equations of physics for heat, momentum and mass transfer and equations of equilibrium thermodynamics to determine steady state profiles of parameters throughout the condenser. The method includes providing a set of input values relating to a condenser including liquid loading, vapor loading, and geometric characteristics of the contact medium in the condenser. The geometric and packing characteristics of the contact medium include the dimensions and orientation of a channel in the contact medium. The method further includes simulating performance of the condenser using the set of input values to determine a related set of output values such as outlet liquid temperature, outlet flow rates, pressures, and the concentration(s) of one or more dissolved noncondensable gas species in the outlet liquid. The method may also include iteratively performing the above computation steps using a plurality of sets of input values and then determining whether each of the resulting output values and performance profiles satisfies acceptance criteria.

  8. Asymptotic analysis of the contact-line microregion for a perfectly wetting volatile liquid in a pure-vapor atmosphere

    NASA Astrophysics Data System (ADS)

    Rednikov, A. Ye.; Colinet, P.

    2017-12-01

    We revisit the Wayner problem of the microregion of a contact line at rest formed by a perfectly wetting single-component liquid on an isothermal superheated flat substrate in an atmosphere of its own pure vapor. The focus is on the evaporation-induced apparent contact angles. The microregion is shaped by the effects of viscosity, Laplace and disjoining pressures (the latter in the form of an inverse-cubic law), and evaporation. The evaporation is in turn determined by heat conduction across the liquid film, kinetic resistance, and the Kelvin effect (i.e., saturation-condition dependence on the liquid-vapor pressure difference). While an asymptotic limit of large kinetic resistances was considered by Morris nearly two decades ago [J. Fluid Mech. 432, 1 (2001)], here we are concerned rather with matched asymptotic expansions in the limits of weak and strong Kelvin effects. Certain extensions are also touched upon within the asymptotic analysis. These are a more general form of the disjoining pressure and account for the Navier slip. Most notably, these also include the possibility of Wayner's extended microfilms (covering macroscopically dry parts of the substrate) actually getting truncated. A number of isolated cases encountered in the literature are thereby systematically recovered.

  9. First-order wetting transition at a liquid-vapor interface

    NASA Technical Reports Server (NTRS)

    Schmidt, J. W.; Moldover, M. R.

    1983-01-01

    Evidence from reflectance and contact angle measurements is presented that three-phase mixtures of i-C3H7OH-C7F14 exhibit a first-order wetting phase transition at the liquid-vapor interface at 38 C. Equilibration phenomena support this interpretation. Ellipsometry was used to measure the apparent thickness of the intruding layer in the three-phase mixture. At temperatures slightly above the wetting temperature T(w), the intruding layer's thickness is several hundred angstroms and its variation with temperature is extremely weak. Below T(w), three-phase contact can occur between the vapor and both the upper and lower liquid phases; one of the angles which characterizes this contact has a very simple temperature dependence. The thickness of the intruding layer, monitored as the solutions approached equilibrium, is found to depend quite weakly on the height spanned by the upper liquid phase in the vicinity of a first-order wetting transition.

  10. Condensation of acetol and acetic acid vapor with sprayed liquid

    USDA-ARS?s Scientific Manuscript database

    A cellulose-derived fraction of biomass pyrolysis vapor was simulated by evaporating acetol and acetic acid (AA) from flasks on a hot plate. The liquid in the flasks was infused with heated nitrogen. The vapor/nitrogen stream was superheated in a tube oven and condensed by contact with a cloud of ...

  11. On the Method of Efficient Ice Cold Energy Storage Using a Heat Transfer of Direct Contact Phase Change and a Natural Circulation of a Working Medium in an Enclosure

    NASA Astrophysics Data System (ADS)

    Utaka, Yoshio; Saito, Akio; Nakata, Naoki

    The objectives of this report are to propose a new method of the high performance cold energy storage using ice as a phase change material and to clarify the heat transfer characteristics of the apparatus of ice cold energy storage based on the proposed principle. A working medium vapor layer a water layer and a working medium liquid layer stratified in this order from the top were kept in an enclosure composed of a condenser, an evaporator and a condensate receiver-and-return tube. The direct contact heat transfers between water or ice and a working medium in an enclosure were applied for realizing the high performance cold energy storage and release. In the storage and release processes, water changes the phase between the liquid and the solid, and the working medium cnanges between the vapor and the liquid with a natural circulation. Experimental apparatus was manufactured and R12 and R114 were selected as working media in the thermal energy storage enclosure. It was confirmed by the measurements that the efficient formation and melting of ice were achieved. Then, th e heat transfer characteristics were clarified for the effects of the initial water height, the initial height of woking medium liquid layer and the inlet coolant temperature.

  12. Effects of capillary heterogeneity on vapor-liquid counterflow in porous media

    NASA Astrophysics Data System (ADS)

    Stubos, A. K.; Satik, C.; Yortsos, Y. C.

    1992-06-01

    Based on a continuum description, the effect of capillary heterogeneity, induced by variation in permeability, on the steady state, countercurrent, vapor-liquid flow in porous media is analyzed. It is shown that the heterogeneity acts as a body force that may enhance or diminish gravity effects on heat pipes. Selection rules that determine the steady states reached in homogeneous, gravity-driven heat pipes are also formulated. It is shown that the 'infinite' two-phase zone may terminate by a substantial change in the permeability somewhere in the medium. The two possible sequences, liquid-liquid dominated-dry, or liquid-vapor dominated-dry find applications in geothermal systems. Finally, it is shown that although weak heterogeneity affects only gravity controlled flows, stronger variations in permeability can give rise to significant capillary effects.

  13. Corner wetting during the vapor-liquid-solid growth of faceted nanowires

    NASA Astrophysics Data System (ADS)

    Spencer, Brian; Davis, Stephen

    2016-11-01

    We consider the corner wetting of liquid drops in the context of vapor-liquid-solid growth of nanowires. Specifically, we construct numerical solutions for the equilibrium shape of a liquid drop on top of a faceted nanowire by solving the Laplace-Young equation with a free boundary determined by mixed boundary conditions. A key result for nanowire growth is that for a range of contact angles there is no equilibrium drop shape that completely wets the corner of the faceted nanowire. Based on our numerical solutions we determine the scaling behavior for the singular surface behavior near corners of the nanowire in terms of the Young contact angle and drop volume.

  14. Vapor ingestion in Centaur liquid-hydrogen tank

    NASA Technical Reports Server (NTRS)

    Symons, E. P.

    1977-01-01

    Vapor ingestion phenomena were investigated using scale models of the Centaur liquid hydrogen tank to determine the height of the free surface of the liquid when vapor is intially ingested into the tank outlet. Data are compared with an analysin and, is general the agreement is very good. Predictions are presented for minimum liquid levels required in the Centaur liquid hydrogen tank in order to prevent vapor ingestion when restarting the engines in space and the quantities of liquid remaining in the tank at vapor ingestion during main engine firing.

  15. Liquid-vapor interface locations in a spheroidal container under low gravity

    NASA Technical Reports Server (NTRS)

    Carney, M. J.

    1986-01-01

    As a part of the general study of liquid behavior in low gravity environments, an experimental investigation was conducted to determine if there are equilibrium liquid-vapor interface configurations that can exist at more than one location in oblate spheroidal containers under reduced gravity conditions. Static contact angles of the test liquids on the spheroid surface were restricted to near 0 deg. The experiments were conducted in a low gravity environment. An oblate spheroidal tank was tested with an eccentricity of 0.68 and a semimajor axis of 2.0 cm. Both quantitative and qualitative data were obtained on the liquid-vapor interface configuration and position inside the container. The results of these data, and their impat on previous work in this area, are discussed. Of particular interest are those equilibrium interface configurations that can exist at multiple locations in the container.

  16. Experimental study of flash boiling spray vaporization through quantitative vapor concentration and liquid temperature measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Gaoming; Hung, David L. S.; Xu, Min

    2014-08-01

    Flash boiling sprays of liquid injection under superheated conditions provide the novel solutions of fast vaporization and better air-fuel mixture formation for internal combustion engines. However, the physical mechanisms of flash boiling spray vaporization are more complicated than the droplet surface vaporization due to the unique bubble generation and boiling process inside a superheated bulk liquid, which are not well understood. In this study, the vaporization of flash boiling sprays was investigated experimentally through the quantitative measurements of vapor concentration and liquid temperature. Specifically, the laser-induced exciplex fluorescence technique was applied to distinguish the liquid and vapor distributions. Quantitative vapor concentration was obtained by correlating the intensity of vapor-phase fluorescence with vapor concentration through systematic corrections and calibrations. The intensities of two wavelengths were captured simultaneously from the liquid-phase fluorescence spectra, and their intensity ratios were correlated with liquid temperature. The results show that both liquid and vapor phase of multi-hole sprays collapse toward the centerline of the spray with different mass distributions under the flash boiling conditions. Large amount of vapor aggregates along the centerline of the spray to form a "gas jet" structure, whereas the liquid distributes more uniformly with large vortexes formed in the vicinity of the spray tip. The vaporization process under the flash boiling condition is greatly enhanced due to the intense bubble generation and burst. The liquid temperature measurements show strong temperature variations inside the flash boiling sprays with hot zones present in the "gas jet" structure and vortex region. In addition, high vapor concentration and closed vortex motion seem to have inhibited the heat and mass transfer in these regions. In summary, the vapor concentration and liquid temperature provide detailed information

  17. Inactivation of Mold Spores from Moist Carpet Using Steam Vapor: Contact Time and Temperature.

    PubMed

    Ong, Kee-Hean; Emo, Brett; Lewis, Roger D; Kennedy, Jason; Thummalakunta, Laxmi N A; Elliott, Michael

    2015-01-01

    Steam vapor has been shown to reduce viable mold spores in carpet, but the minimal effective temperature and contact time has not been established. This study evaluated the effectiveness of steam vapor in reducing the number of viable mold spores in carpet as a function of temperature and contact time. Seventy carpet samples were inoculated with a liquid suspension of Cladosporium sphaerospermum and incubated over a water-saturated foam carpet pad for 24 hr. Steam was applied to the samples as the temperature was measured from the carpet backing. Contact time was closely monitored over seven time intervals: 0, 2, 4, 8, 12, 16, and 20 sec. Following steam vapor treatment, mold spores were extracted from the carpet samples and the extract was plated on DG-18 plates at 1:1, 1:10, 1:100 dilutions followed by one week of incubation. Raw colony forming units were determined using an automated colony counter and adjusted based on dilution factor, extraction volume, and plated volume. Analysis of variance and linear regression were used to test for statistically significant relationships. Steam contact time exhibited a linear relationship to observed temperature of carpet backing (F = 90.176, R(2) = 0.609). Observed temperature of carpet backing had a positive relationship to percent reduction of mold (F = 76.605, R(2) = 0.569). Twelve seconds of steam vapor contact time was needed to achieve over 90% mold reduction on moist carpet.

  18. Vapor-liquid nucleation: the solid touch.

    PubMed

    Yarom, Michal; Marmur, Abraham

    2015-08-01

    Vapor-liquid nucleation is a ubiquitous process that has been widely researched in many disciplines. Yet, case studies are quite scattered in the literature, and the implications of some of its basic concepts are not always clearly stated. This is especially noticeable for heterogeneous nucleation, which involves a solid surface in touch with the liquid and vapor. The current review attempts to offer a comprehensive, though concise, thermodynamic discussion of homogeneous and heterogeneous nucleation in vapor-liquid systems. The fundamental concepts of nucleation are detailed, with emphasis on the role of the chemical potential, and on intuitive explanations whenever possible. We review various types of nucleating systems and discuss the effect of the solid geometry on the characteristics of the new phase formation. In addition, we consider the effect of mixing on the vapor-liquid equilibrium. An interesting sub-case is that of a non-volatile solute that modifies the chemical potential of the liquid, but not of the vapor. Finally, we point out topics that need either further research or more exact, accurate presentation. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Process for vaporizing a liquid hydrocarbon fuel

    DOEpatents

    Szydlowski, Donald F.; Kuzminskas, Vaidotas; Bittner, Joseph E.

    1981-01-01

    The object of the invention is to provide a process for vaporizing liquid hydrocarbon fuels efficiently and without the formation of carbon residue on the apparatus used. The process includes simultaneously passing the liquid fuel and an inert hot gas downwardly through a plurality of vertically spaed apart regions of high surface area packing material. The liquid thinly coats the packing surface, and the sensible heat of the hot gas vaporizes this coating of liquid. Unvaporized liquid passing through one region of packing is uniformly redistributed over the top surface of the next region until all fuel has been vaporized using only the sensible heat of the hot gas stream.

  20. The competition between liquid and vapor transport in transpiring leaves.

    PubMed

    Rockwell, Fulton Ewing; Holbrook, N Michele; Stroock, Abraham Duncan

    2014-04-01

    In leaves, the transpirational flux of water exits the veins as liquid and travels toward the stomata in both the vapor and liquid phases before exiting the leaf as vapor. Yet, whether most of the evaporation occurs from the vascular bundles (perivascular), from the photosynthetic mesophyll cells, or within the vicinity of the stomatal pore (peristomatal) remains in dispute. Here, a one-dimensional model of the competition between liquid and vapor transport is developed from the perspective of nonisothermal coupled heat and water molecule transport in a composite medium of airspace and cells. An analytical solution to the model is found in terms of the energy and transpirational fluxes from the leaf surfaces and the absorbed solar energy load, leading to mathematical expressions for the proportions of evaporation accounted for by the vascular, mesophyll, and epidermal regions. The distribution of evaporation in a given leaf is predicted to be variable, changing with the local environment, and to range from dominantly perivascular to dominantly peristomatal depending on internal leaf architecture, with mesophyll evaporation a subordinate component. Using mature red oak (Quercus rubra) trees, we show that the model can be solved for a specific instance of a transpiring leaf by combining gas-exchange data, anatomical measurements, and hydraulic experiments. We also investigate the effect of radiation load on the control of transpiration, the potential for condensation on the inside of an epidermis, and the impact of vapor transport on the hydraulic efficiency of leaf tissue outside the xylem.

  1. A three-dimensional phase field model for nanowire growth by the vapor-liquid-solid mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Yanming; Ryu, Seunghwa; McIntyre, Paul C.; Cai, Wei

    2014-07-01

    We present a three-dimensional multi-phase field model for catalyzed nanowire (NW) growth by the vapor-liquid-solid (VLS) mechanism. The equation of motion contains both a Ginzburg-Landau term for deposition and a diffusion (Cahn-Hilliard) term for interface relaxation without deposition. Direct deposition from vapor to solid, which competes with NW crystal growth through the molten catalyst droplet, is suppressed by assigning a very small kinetic coefficient at the solid-vapor interface. The thermodynamic self-consistency of the model is demonstrated by its ability to reproduce the equilibrium contact angles at the VLS junction. The incorporation of orientation dependent gradient energy leads to faceting of the solid-liquid and solid-vapor interfaces. The model successfully captures the curved shape of the NW base and the Gibbs-Thomson effect on growth velocity.

  2. Estimating vapor pressures of pure liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haraburda, S.S.

    1996-03-01

    Calculating the vapor pressures for pure liquid chemicals is a key step in designing equipment for separation of liquid mixtures. Here is a useful way to develop an equation for predicting vapor pressures over a range of temperatures. The technique uses known vapor pressure points for different temperatures. Although a vapor-pressure equation is being showcased in this article, the basic method has much broader applicability -- in fact, users can apply it to develop equations for any temperature-dependent model. The method can be easily adapted for use in software programs for mathematics evaluation, minimizing the need for any programming. Themore » model used is the Antoine equation, which typically provides a good correlation with experimental or measured data.« less

  3. Formation of bubbly horizon in liquid-saturated porous medium by surface temperature oscillation.

    PubMed

    Goldobin, Denis S; Krauzin, Pavel V

    2015-12-01

    We study nonisothermal diffusion transport of a weakly soluble substance in a liquid-saturated porous medium in contact with a reservoir of this substance. The surface temperature of the porous medium half-space oscillates in time, which results in a decaying solubility wave propagating deep into the porous medium. In this system, zones of saturated solution and nondissolved phase coexist with ones of undersaturated solution. The effect is first considered for the case of annual oscillation of the surface temperature of water-saturated ground in contact with the atmosphere. We reveal the phenomenon of formation of a near-surface bubbly horizon due to temperature oscillation. An analytical theory of the phenomenon is developed. Further, the treatment is extended to the case of higher frequency oscillations and the case of weakly soluble solids and liquids.

  4. Constructing a superhydrophobic surface on polydimethylsiloxane via spin coating and vapor-liquid sol-gel process.

    PubMed

    Peng, Yu-Ting; Lo, Kuo-Feng; Juang, Yi-Je

    2010-04-06

    In this study, a superhydrophobic surface on polydimethylsiloxane (PDMS) substrate was constructed via the proposed vapor-liquid sol-gel process in conjunction with spin coating of dodecyltrichlorosilane (DTS). Unlike the conventional sol-gel process where the reaction takes place in the liquid phase, layers of silica (SiO(2)) particles were formed through the reaction between the reactant spin-coated on the PDMS surface and vapor of the acid solution. This led to the SiO(2) particles inlaid on the PDMS surface. Followed by subsequent spin coating of DTS solution, the wrinkle-like structure was formed, and the static contact angle of the water droplet on the surface could reach 162 degrees with 2 degrees sliding angle and less than 5 degrees contact angle hysteresis. The effect of layers of SiO(2) particles, concentrations of DTS solution and surface topography on superhydrophobicity of the surface is discussed.

  5. Recovering hydrocarbons from hydrocarbon-containing vapors

    DOEpatents

    Mirza, Zia I.; Knell, Everett W.; Winter, Bruce L.

    1980-09-30

    Values are recovered from a hydrocarbon-containing vapor by contacting the vapor with quench liquid consisting essentially of hydrocarbons to form a condensate and a vapor residue, the condensate and quench fluid forming a combined liquid stream. The combined liquid stream is mixed with a viscosity-lowering liquid to form a mixed liquid having a viscosity lower than the viscosity of the combined liquid stream to permit easy handling of the combined liquid stream. The quench liquid is a cooled portion of the mixed liquid. Viscosity-lowering liquid is separated from a portion of the mixed liquid and cycled to form additional mixed liquid.

  6. Relaxation of contact-line singularities solely by the Kelvin effect and apparent contact angles for isothermal volatile liquids in contact with air

    NASA Astrophysics Data System (ADS)

    Rednikov, Alexey; Colinet, Pierre

    2013-11-01

    The contact (triple) line of a volatile liquid on a flat solid is studied theoretically. Like with a pure-vapor atmosphere [Phys. Rev. E 87, 010401, 2013], but here for isothermal diffusion-limited evaporation/condensation in the presence of an inert gas, we rigorously show that the notorious contact-line singularities (related to motion or phase change itself) can be regularized solely on account of the Kelvin effect (curvature dependence of the saturation conditions). No disjoining pressure, precursor films or Navier slip are in fact needed to this purpose, and nor are they taken into consideration here (``minimalist'' approach). The model applies to both perfect (zero Young's angle) and partial wetting, and is in particular used to study the related issue of evaporation-induced contact angles. Their modification by the contact-line motion (either advancing or receding) is assessed. The formulation is posed for a distinguished immediate vicinity of the contact line (the ``microregion''), the corresponding problem decoupling to leading order, here up to one unknown coefficient, from what actually happens at the macroscale. The lubrication approximation (implying sufficiently small contact angles) is used in the liquid, coupled with the diffusion equation in the gaz phase. Supported by ESA and BELSPO PRODEX and F.R.S.-FNRS.

  7. Large-capacity pump vaporizer for liquid hydrogen and nitrogen

    NASA Technical Reports Server (NTRS)

    Hauser, J. A.

    1970-01-01

    Pump vaporizer system delivers 500 standard cubic feet per minute of hydrogen or nitrogen, one system delivers both gases. Vacuum-jacketed pump discharges liquid hydrogen or liquid nitrogen into vaporizing system heated by ambient air. Principal characteristics of the flow and discharge system, pump, and vaporizer are given.

  8. Effect of wettability of a porous stainless steel on thermally induced liquid-vapor interface behavior

    NASA Astrophysics Data System (ADS)

    Oka, C.; Odagiri, K.; Nagano, H.

    2017-12-01

    Control of thermally induced liquid-vapor interface behavior at the contact surface of porous media is crucial for development of two-phase heat transfer devices such as loop heat pipes. The behavior experiences three modes with increase of heat flux, and the middle mode possesses the highest heat transfer performance. In this paper, the effect of improving wettability of the porous media is demonstrated experimentally and numerically for the first time, in particular with regard to the effect on a domain of the middle mode. Ethanol wettability of a porous stainless steel was improved via a facile method, which was a simple acid treatment. As a result, the domain of the middle mode was extended as a consequence of the wettability improvement. The mode transfers from the middle to the last one when the pressure drop in the liquid supply exceeds the capillary pressure of liquid bridges formed between the heating plate and the porous medium. Hence, the extension of the domain suggested that the capillary pressure was increased by the wettability improvement. This was verified via numerical calculation. The calculated capillary pressure was increased by 7% after improving wettability, which resulted in the extension of the domain of the middle mode.

  9. Infiltration of Liquid Droplets Into Porous Media: Effects of Dynamic Contact Angle and Contact Angle Hysteresis

    NASA Astrophysics Data System (ADS)

    Hilpert, M.

    2008-12-01

    Infiltration of liquid droplets into dry porous media occurs when rain drops fall onto soil, when accidentally spilling organic liquid (e.g., gasoline and chlorinated solvents) onto ground, or when aerosol pesticides are not intercepted by the vegetation and then released to soils. If harmful chemicals are released from the droplet into the atmosphere through evaporation, it is important to know the time of infiltration. We developed a theory for infiltration, which accounts for a general model for the dynamic contact angle between the droplet and the porous medium as well as contact angle hysteresis. Our theory assumes the droplet to have the shape of a spherical cap and the pressure within the droplet to be uniform. The theory shows that droplet infiltration involves three phases due to contact angle hysteresis: (1) an increasing drawing area (IDA) phase during which the interface between the droplet and the porous medium increases, (2) a constant drawing area (CDA) phase during which the contact line of the droplet remains pinned, and (3) a decreasing drawing area (DDA) phase. We find that infiltration always consists of a cascade process formed by the IDA, CDA, and DDA phases, where the entire process may begin or end in any of the three phases. The entire process is formulated with four nondimensional parameters: three contact angles (initial, advancing, and receding) and a porous permeability parameter that depends on porous medium geometry. The total time of infiltration and the time dependence of drawing area are critically affected by the occurrence of the IDA, CDA, and DDA phases as well as by the permeability. In general, the IDA and DDA phases are described by integro-differential equations. With ordinary differential equations (ODEs), we are able to approximate the IDA phase and to describe exactly infiltration processes that starts out with the CDA or DDA phase.

  10. Transient-pressure analysis in geothermal steam reservoirs with an immobile vaporizing liquid phase

    USGS Publications Warehouse

    Moench, A.F.; Atkinson, P.G.

    1978-01-01

    A finite-difference model for the radial horizontal flow of steam through a porous medium is used to evaluate transient-pressure behavior in the presence of an immobile vaporizing or condensing liquid phase. Graphs of pressure drawdown and buildup in terms of dimensionless pressure and time are obtained for a well discharging steam at a constant mass flow rate for a specified time. The assumptions are made that the steam is in local thermal equilibrium with the reservoir rocks, that temperature changes are due only to phase change, and that effects of vapor-pressure lowering are negligible. Computations show that when a vaporizing liquid phase is present the pressure drawdown exhibits behavior similar to that observed in noncondensable gas reservoirs, but delayed in time. A theoretical analysis allows for the computation of this delay and demonstrates that it is independent of flow geometry. The response that occurs upon pressure buildup is markedly different from that in a noncondensable gas system. This result may provide a diagnostic tool for establishing the existence of phase-change phenomena within a reservoir. ?? 1979.

  11. Compressed liquid densities, saturated liquid densities, and vapor pressures of 1,1-difluoroethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Defibaugh, D.R.; Morrison, G.

    1996-05-01

    The compressed liquid densities and vapor pressures of 1,1-difluoroethane (HFC-152a) have been measured, correlated, and compared with other data. The liquid densities were measured with a combined standard uncertainty of {+-}0.05% using a vibrating tube densimeter over a temperature range of 243 K to 371 K and at pressures from near the saturated vapor pressure to 6,500 kPa; thus the data extend nearly to the critical point ({Tc} = 386.41 K and P{sub c} = 4514.7 kPa). The vapor pressures were measured with a combined standard uncertainty of {+-}0.02% using a stainless steel ebulliometer in the temperature range from 280more » K to 335 K. Saturated liquid densities were calculated by extrapolating the compressed liquid isotherms to the saturation pressure.« less

  12. Nonlinear dynamics of confined thin liquid-vapor bilayer systems with phase change

    NASA Astrophysics Data System (ADS)

    Kanatani, Kentaro; Oron, Alexander

    2011-03-01

    We numerically investigate the nonlinear evolution of the interface of a thin liquid-vapor bilayer system confined by rigid horizontal walls from both below and above. The lateral variation of the vapor pressure arising from phase change is taken into account in the present analysis. When the liquid (vapor) is heated (cooled) and gravity acts toward the liquid, the deflection of the interface monotonically grows, leading to a rupture of the vapor layer, whereas nonruptured stationary states are found when the liquid (vapor) is cooled (heated) and gravity acts toward the vapor. In the latter case, vapor-flow-driven convective cells are found in the liquid phase in the stationary state. The average vapor pressure and interface temperature deviate from their equilibrium values once the interface departs from the flat equilibrium state. Thermocapillarity does not have a significant effect near the thermodynamic equilibrium, but becomes important if the system significantly deviates from it.

  13. Vapor-liquid phase separator studies

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Lee, J. M.; Kim, Y. I.; Hepler, W. A.; Frederking, T. H. K.

    1983-01-01

    Porous plugs serve as both entropy rejection devices and phase separation components separating the vapor phase on the downstream side from liquid Helium 2 upstream. The liquid upstream is the cryo-reservoir fluid needed for equipment cooling by means of Helium 2, i.e Helium-4 below its lambda temperature in near-saturated states. The topics outlined are characteristic lengths, transport equations and plug results.

  14. Stability limit of liquid water in metastable equilibrium with subsaturated vapors.

    PubMed

    Wheeler, Tobias D; Stroock, Abraham D

    2009-07-07

    A pure liquid can reach metastable equilibrium with its subsaturated vapor across an appropriate membrane. This situation is analogous to osmotic equilibrium: the reduced chemical potential of the dilute phase (the subsaturated vapor) is compensated by a difference in pressure between the phases. To equilibrate with subsaturated vapor, the liquid phase assumes a pressure that is lower than its standard vapor pressure, such that the liquid phase is metastable with respect to the vapor phase. For sufficiently subsaturated vapors, the liquid phase can even assume negative pressures. The appropriate membrane for this metastable equilibrium must provide the necessary mechanical support to sustain the difference in pressure between the two phases, limit nonhomogeneous mechanisms of cavitation, and resist the entry of the dilutant (gases) into the pure phase (liquid). In this article, we present a study of the limit of stability of liquid water--the degree of subsaturation at which the liquid cavitates--in this metastable state within microscale voids embedded in hydrogel membranes. We refer to these structures as vapor-coupled voids (VCVs). In these VCVs, we observed that liquid water cavitated when placed in equilibrium with vapors of activity aw,vapairliquid based on thermodynamic calculations, the liquid cavitated at pressures Pvapor nuclei, and (iv

  15. The Competition between Liquid and Vapor Transport in Transpiring Leaves1[W][OPEN

    PubMed Central

    Rockwell, Fulton Ewing; Holbrook, N. Michele; Stroock, Abraham Duncan

    2014-01-01

    In leaves, the transpirational flux of water exits the veins as liquid and travels toward the stomata in both the vapor and liquid phases before exiting the leaf as vapor. Yet, whether most of the evaporation occurs from the vascular bundles (perivascular), from the photosynthetic mesophyll cells, or within the vicinity of the stomatal pore (peristomatal) remains in dispute. Here, a one-dimensional model of the competition between liquid and vapor transport is developed from the perspective of nonisothermal coupled heat and water molecule transport in a composite medium of airspace and cells. An analytical solution to the model is found in terms of the energy and transpirational fluxes from the leaf surfaces and the absorbed solar energy load, leading to mathematical expressions for the proportions of evaporation accounted for by the vascular, mesophyll, and epidermal regions. The distribution of evaporation in a given leaf is predicted to be variable, changing with the local environment, and to range from dominantly perivascular to dominantly peristomatal depending on internal leaf architecture, with mesophyll evaporation a subordinate component. Using mature red oak (Quercus rubra) trees, we show that the model can be solved for a specific instance of a transpiring leaf by combining gas-exchange data, anatomical measurements, and hydraulic experiments. We also investigate the effect of radiation load on the control of transpiration, the potential for condensation on the inside of an epidermis, and the impact of vapor transport on the hydraulic efficiency of leaf tissue outside the xylem. PMID:24572172

  16. Apparent contact angle and contact angle hysteresis on liquid infused surfaces.

    PubMed

    Semprebon, Ciro; McHale, Glen; Kusumaatmaja, Halim

    2016-12-21

    We theoretically investigate the apparent contact angle and contact angle hysteresis of a droplet placed on a liquid infused surface. We show that the apparent contact angle is not uniquely defined by material parameters, but also has a dependence on the relative size between the droplet and its surrounding wetting ridge formed by the infusing liquid. We derive a closed form expression for the contact angle in the limit of vanishing wetting ridge, and compute the correction for small but finite ridge, which corresponds to an effective line tension term. We also predict contact angle hysteresis on liquid infused surfaces generated by the pinning of the contact lines by the surface corrugations. Our analytical expressions for both the apparent contact angle and contact angle hysteresis can be interpreted as 'weighted sums' between the contact angles of the infusing liquid relative to the droplet and surrounding gas phases, where the weighting coefficients are given by ratios of the fluid surface tensions.

  17. Direct Contact Heat Exchange Interfacial Phenomena for Liquid Metal Reactors: Part II - Void Fraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdulla, S.; Liu, X.; Anderson, M.H.

    One concept being considered for steam generation in innovative nuclear reactor applications, involves water coming into direct contact with a circulating molten metal. The vigorous agitation of the two fluids, the direct liquid-liquid contact and the consequent large interfacial area can give rise to large heat transfer coefficients and rapid steam generation. For an optimum design of such direct contact heat exchange and vaporization systems, detailed knowledge is necessary of the various flow regimes, interfacial transport phenomena, heat transfer and operational stability. In order to investigate the interfacial transport phenomena, heat transfer and operational stability of direct liquid-liquid contact, amore » series of experiments are being performed in a 1-d test facility at Argonne National Laboratory and a 2-d experimental facility at UW-Madison. Each of the experimental facilities primarily consist of a liquid-metal melt chamber, heated test section (10 cm diameter tube for 1-d facility and 10 cm 50 cm rectangle for 2-d facility), water injection system and steam suppression tank. This paper is part II which, primarily addresses results and analysis of a set of preliminary experiments and void fraction measurements conducted in the 2-d facility at UW-Madison, part I deals with the heat transfer in the 1-d test facility at Argonne National Laboratory. A real-time high energy X-ray imaging system was developed and utilized to visualize the multiphase flow and measure line-average local void fractions, time-dependent void fraction distribution as well as estimates of the vapor bubble sizes and velocities. These measurements allowed us to determine the volumetric heat transfer coefficient and gain insight into the local heat transfer mechanisms. In this study, the images were captured at frame rates of 100 fps with spatial resolution of about 7 mm with a full-field view of a 15 cm square and five different positions along the test section height. The full

  18. A search for the prewetting line. [in binary liquid system at vapor-liquid interface

    NASA Technical Reports Server (NTRS)

    Schmidt, J. W.; Moldover, M. R.

    1986-01-01

    This paper describes efforts to locate the prewetting line in a binary liquid system (isopropanol-perfluoromethylcyclohexane) at the vapor-liquid interface. Tight upper bounds were placed on the temperature separation (0.2 K) between the prewetting line and the line of bulk liquid phase separation. The prewetting line in systems at equilibrium was not detected. Experimental signatures indicative of the prewetting line occurred only in nonequilibrium situations. Several theories predict that the adsorption of one of the components (the fluorocarbon, in this case) at the liquid-vapor interface should increase abruptly, at a temperature sightly above the temperature at which the mixture separates into two liquid phases. A regular solution calculation indicates that this prewetting line should have been easily detectable with the instruments used in this experiment. Significant features of the experiment are: (1) low-gradient thermostatting, (2) in situ stirring, (3) precision ellipsometry from the vapor-liquid interface, (4) high resolution differential index of refraction measurements using a novel cell design, and (5) computer control.

  19. Isogeometric frictionless contact analysis with the third medium method

    NASA Astrophysics Data System (ADS)

    Kruse, R.; Nguyen-Thanh, N.; Wriggers, P.; De Lorenzis, L.

    2018-01-01

    This paper presents an isogeometric formulation for frictionless contact between deformable bodies, based on the recently proposed concept of the third medium. This concept relies on continuum formulations not only for the contacting bodies but also for a fictitious intermediate medium in which the bodies can move and interact. Key to the formulation is a suitable definition of the constitutive behavior of the third medium. In this work, based on a number of numerical tests, the role of the material parameters of the third medium is systematically assessed. We also assess the rate of spatial convergence for higher-order discretizations, stemming from the regularization of the non-smooth contact problem inherent to the third medium approach. Finally, problems with self contact are considered and turn out to be an attractive application of the method.

  20. A Novel Charged Medium Consisting of Gas-Liquid Interfacial Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneko, Toshiro; Hatakeyama, Rikizo

    Due to the unique properties of ionic liquids such as their extremely low vapor pressure and high heat capacity, we succeed in creating the reactive gas (plasmas)--liquid (ionic liquids) interfacial field under a low gas pressure condition, where the plasma ion behavior can be controlled. The effects of the plasma ion irradiation on the liquid medium are quantitatively revealed for the first time. In connection with the plasma ion irradiation, the potential structure and optical emission properties of the gas-liquid interfacial plasma are investigated by changing a polarity of the electrode in the liquid to evaluate the plasma-liquid interactions. Thesemore » results would contribute to synthesizing the metal nanoparticles with carbon nanotubes as a template in the ionic liquid. It is found that the high density, mono-dispersed, and isolated metal nanoparticles are synthesized between or inside the carbon nanotubes by controlling the gas-liquid interfacial plasmas. Furthermore, we can form novel nano-bio composite materials, such as DNA encapsulated carbon nanotubes using the plasma ion irradiation method in an electrolyte plasma with DNA, and demonstrate modifications of the electrical properties of the carbon nanotubes depending on the kinds of encapsulated DNA for the first time.« less

  1. Recovery of nonwetting characteristics by surface modification of gallium-based liquid metal droplets using hydrochloric acid vapor.

    PubMed

    Kim, Daeyoung; Thissen, Peter; Viner, Gloria; Lee, Dong-Weon; Choi, Wonjae; Chabal, Yves J; Lee, Jeong-Bong J B

    2013-01-01

    The applicability of gallium-based liquid metal alloy has been limited by the oxidation problem. In this paper, we report a simple method to remove the oxide layer on the surface of such alloy to recover its nonwetting characteristics, using hydrochloric acid (HCl) vapor. Through the HCl vapor treatment, we successfully restored the nonwetting characteristics of the alloy and suppressed its viscoelasticity. We analyzed the change of surface chemistry before and after the HCl vapor treatment using X-ray photoelectron spectroscopy (XPS) and low-energy ion-scattering spectroscopy (LEIS). Results showed that the oxidized surface of the commercial gallium-based alloy Galinstan (Ga(2)O(3) and Ga(2)O) was replaced with InCl(3) and GaCl(3) after the treatment. Surface tension and static contact angle on a Teflon-coated glass of the HCl-vapor-treated Galinstan were measured to be 523.8 mN/m and 152.5°. A droplet bouncing test was successfully carried out to demonstrate the nonwetting characteristics of the HCl-vapor-treated Galinstan. Finally, the stability of the transformed surface of the HCl-vapor-treated Galinstan was investigated by measuring the contact angle and LEIS spectra after reoxidation in an ambient environment.

  2. Relations between Mass Change and Frequency Shift of a QCM Sensor in Contact with Viscoelastic Medium

    NASA Astrophysics Data System (ADS)

    Tan, Feng; Huang, Xian-He

    2013-05-01

    We investigate frequency shift of a quartz crystal microbalance (QCM) sensor introduced by mass effect, and properties of material of its coated viscoelastic film are discussed. The validity of the Sauerbrey relation cannot be held if the viscoelastic properties of the contacting medium are considered. When the QCM sensor with a viscoelastic film works in the gas phase, the viscoelastic properties will introduce an extra mass effect. While in the liquid phase, the missing mass effect can be observed. The experimental results demonstrate that the QCM sensor is sensitive to the viscoelastic properties of the coating film. Properties of the viscoelastic contacting medium should be considered.

  3. Means and method for vapor generation

    DOEpatents

    Carlson, Larry W.

    1984-01-01

    A liquid, in heat transfer contact with a surface heated to a temperature well above the vaporization temperature of the liquid, will undergo a multiphase (liquid-vapor) transformation from 0% vapor to 100% vapor. During this transition, the temperature driving force or heat flux and the coefficients of heat transfer across the fluid-solid interface, and the vapor percentage influence the type of heating of the fluid--starting as "feedwater" heating where no vapors are present, progressing to "nucleate" heating where vaporization begins and some vapors are present, and concluding with "film" heating where only vapors are present. Unstable heating between nucleate and film heating can occur, accompanied by possibly large and rapid temperature shifts in the structures. This invention provides for injecting into the region of potential unstable heating and proximate the heated surface superheated vapors in sufficient quantities operable to rapidly increase the vapor percentage of the multiphase mixture by perhaps 10-30% and thereby effectively shift the multiphase mixture beyond the unstable heating region and up to the stable film heating region.

  4. Means and method for vapor generation

    DOEpatents

    Carlson, L.W.

    A liquid, in heat transfer contact with a surface heated to a temperature well above the vaporization temperature of the liquid, will undergo a multiphase (liquid-vapor) transformation from 0% vapor to 100% vapor. During this transition, the temperature driving force or heat flux and the coefficients of heat transfer across the fluid-solid interface, and the vapor percentage influence the type of heating of the fluid - starting as feedwater heating where no vapors are present, progressing to nucleate heating where vaporization begins and some vapors are present, and concluding with film heating where only vapors are present. Unstable heating between nucleate and film heating can occur, accompanied by possibly large and rapid temperature shifts in the structures. This invention provides for injecting into the region of potential unstable heating and proximate the heated surface superheated vapors in sufficient quantities operable to rapidly increase the vapor percentage of the multiphase mixture by perhaps 10 to 30% and thereby effectively shift the multiphase mixture beyond the unstable heating region and up to the stable film heating region.

  5. Numerical simulation of superheated vapor bubble rising in stagnant liquid

    NASA Astrophysics Data System (ADS)

    Samkhaniani, N.; Ansari, M. R.

    2017-09-01

    In present study, the rising of superheated vapor bubble in saturated liquid is simulated using volume of fluid method in OpenFOAM cfd package. The surface tension between vapor-liquid phases is considered using continuous surface force method. In order to reduce spurious current near interface, Lafaurie smoothing filter is applied to improve curvature calculation. Phase change is considered using Tanasawa mass transfer model. The variation of saturation temperature in vapor bubble with local pressure is considered with simplified Clausius-Clapeyron relation. The couple velocity-pressure equation is solved using PISO algorithm. The numerical model is validated with: (1) isothermal bubble rising and (2) one-dimensional horizontal film condensation. Then, the shape and life time history of single superheated vapor bubble are investigated. The present numerical study shows vapor bubble in saturated liquid undergoes boiling and condensation. It indicates bubble life time is nearly linear proportional with bubble size and superheat temperature.

  6. Liquid-Vapor Equilibrium of Multicomponent Cryogenic Systems

    NASA Technical Reports Server (NTRS)

    Thompson, W. Reid; Calado, Jorge C. G.; Zollweg, John A.

    1990-01-01

    Liquid-vapor and solid-vapor equilibria at low to moderate pressures and low temperatures are important in many solar system environments, including the surface and clouds of Titan, the clouds of Uranus and Neptune, and the surfaces of Mars and Triton. The familiar cases of ideal behavior are limiting cases of a general thermodynamic representation for the vapor pressure of each component in a homogeneous multicomponent system. The fundamental connections of laboratory measurements to thermodynamic models are through the Gibbs-Duhem relation and the Gibbs-Helmholtz relation. Using laboratory measurements of the total pressure, temperature, and compositions of the liquid and vapor phases at equilibrium, the values of these parameters can be determined. The resulting model for vapor-liquid equilibrium can then conveniently and accurately be used to calculate pressures, compositions, condensation altitudes, and their dependencies on changing climatic conditions. A specific system being investigated is CH4-C2H6-N2, at conditions relevant to Titan's surface and atmosphere. Discussed are: the modeling of existing data on CH4-N2, with applications to the composition of Titan's condensate clouds; some new measurements on the CH4-C2H6 binary, using a high-precision static/volumetric system, and on the C2H6-N2 binary, using the volumetric system and a sensitive cryogenic flow calorimeter; and describe a new cryogenic phase-equilibrium vessel with which we are beginning a detailed, systematic study of the three constituent binaries and the ternary CH4-C2H6-N2 system at temperatures ranging from 80 to 105 K and pressures from 0.1 to 7 bar.

  7. Vapor-Enabled Propulsion for Plasmonic Photothermal Motor at the Liquid/Air Interface.

    PubMed

    Meng, Fanchen; Hao, Wei; Yu, Shengtao; Feng, Rui; Liu, Yanming; Yu, Fan; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao

    2017-09-13

    This paper explores a new propulsion mechanism that is based on the ejection of hot vapor jet to propel the motor at the liquid/air interface. For conventional photothermal motors, which mostly are driven by Marangoni effect, it is challenging to propel those motors at the surfaces of liquids with low surface tension due to the reduced Marangoni effect. With this new vapor-enabled propulsion mechanism, the motors can move rapidly at the liquid/air interface of liquids with a broad range of surface tensions. A design that can accumulate the hot vapor is further demonstrated to enhance both the propulsion force as well as the applicable range of liquids for such motors. This new propulsion mechanism will help open up new opportunities for the photothermal motors with desired motion controls at a wide range of liquid/air interfaces where hot vapor can be generated.

  8. Impact of air and water vapor environments on the hydrophobicity of surfaces.

    PubMed

    Weisensee, Patricia B; Neelakantan, Nitin K; Suslick, Kenneth S; Jacobi, Anthony M; King, William P

    2015-09-01

    Droplet wettability and mobility play an important role in dropwise condensation heat transfer. Heat exchangers and heat pipes operate at liquid-vapor saturation. We hypothesize that the wetting behavior of liquid water on microstructures surrounded by pure water vapor differs from that for water droplets in air. The static and dynamic contact angles and contact angle hysteresis of water droplets were measured in air and pure water vapor environments inside a pressure vessel. Pressures ranged from 60 to 1000 mbar, with corresponding saturation temperatures between 36 and 100°C. The wetting behavior was studied on four hydrophobic surfaces: flat Teflon-coated, micropillars, micro-scale meshes, and nanoparticle-coated with hierarchical micro- and nanoscale roughness. Static advancing contact angles are 9° lower in the water vapor environment than in air on a flat surface. One explanation for this reduction in contact angles is water vapor adsorption to the Teflon. On microstructured surfaces, the vapor environment has little effect on the static contact angles. In all cases, variations in pressure and temperature do not influence the wettability and mobility of the water droplets. In most cases, advancing contact angles increase and contact angle hysteresis decreases when the droplets are sliding or rolling down an inclined surface. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. The influence of liquid/vapor phase change onto the Nusselt number

    NASA Astrophysics Data System (ADS)

    Popescu, Elena-Roxana; Colin, Catherine; Tanguy, Sebastien

    2017-11-01

    In spite of its significant interest in various fields, there is currently a very few information on how an external flow will modify the evaporation or the condensation of a liquid surface. Although most applications involve turbulent flows, the simpler configuration where a laminar superheated or subcooled vapor flow is shearing a saturated liquid interface has still never been solved. Based on a numerical approach, we propose to characterize the interaction between a laminar boundary layer of a superheated or subcooled vapor flow and a static liquid pool at saturation temperature. By performing a full set of simulations sweeping the parameters space, correlations are proposed for the first time on the Nusselt number depending on the dimensionless numbers that characterize both vaporization and condensation. As attended, the Nusselt number decreases or increases in the configurations involving respectively vaporization or condensation. More unexpected is the behaviour of the friction of the vapor flow on the liquid pool, for which we report that it is weakly affected by the phase change, despite the important variation of the local flow structure due to evaporation or condensation.

  10. Development of a wet vapor homogeneous liquid metal MHD power system

    NASA Astrophysics Data System (ADS)

    1989-04-01

    During the period covered by this report (October 1988 to March 1989), the following work was done: the mixing stream condensation process was analyzed, and a theoretical model for simulating this process was modified. A parametric study is being conducted at the present time; the separation processes were analyzed; and the experimental system was specified and its design is at present in an advanced stage. The mixing stream condensation process was analyzed. For the parameters defined in the SOW of this project the process was found to be a mist flow direct contact condensation, where the hot gas mixture consisting of inert gas and vapor is the continuous phase, and the subcooled liquid on which the vapor is condensed if the droplets dispersed phase. Two possibilities of creating the mist flow were considered. The first, injecting the cold Liquid Metal (LM) into the Mixing Streams Condenser (MSC) entrance as a jet and breaking it into LM fragments and the fragments into droplets by momentum transfer breakup mechanism. The second, atomizing the cooled LM stream into little droplets (approximately 100 micrometers in diameter) and accelerating them by the gas. The second possibility was preferred due to its much higher heat and mass transfer surface and coefficients relative to the first one.

  11. Liquid-vapor rectilinear diameter revisited

    NASA Astrophysics Data System (ADS)

    Garrabos, Y.; Lecoutre, C.; Marre, S.; Beysens, D.; Hahn, I.

    2018-02-01

    In the modern theory of critical phenomena, the liquid-vapor density diameter in simple fluids is generally expected to deviate from a rectilinear law approaching the critical point. However, by performing precise scannerlike optical measurements of the position of the SF6 liquid-vapor meniscus, in an approach much closer to criticality in temperature and density than earlier measurements, no deviation from a rectilinear diameter can be detected. The observed meniscus position from far (10 K ) to extremely close (1 mK ) to the critical temperature is analyzed using recent theoretical models to predict the complete scaling consequences of a fluid asymmetry. The temperature dependence of the meniscus position appears consistent with the law of rectilinear diameter. The apparent absence of the critical hook in SF6 therefore seemingly rules out the need for the pressure scaling field contribution in the complete scaling theoretical framework in this SF6 analysis. More generally, this work suggests a way to clarify the experimental ambiguities in the simple fluids for the near-critical singularities in the density diameter.

  12. Vitrification and levitation of a liquid droplet on liquid nitrogen.

    PubMed

    Song, Young S; Adler, Douglas; Xu, Feng; Kayaalp, Emre; Nureddin, Aida; Anchan, Raymond M; Maas, Richard L; Demirci, Utkan

    2010-03-09

    The vitrification of a liquid occurs when ice crystal formation is prevented in the cryogenic environment through ultrarapid cooling. In general, vitrification entails a large temperature difference between the liquid and its surrounding medium. In our droplet vitrification experiments, we observed that such vitrification events are accompanied by a Leidenfrost phenomenon, which impedes the heat transfer to cool the liquid, when the liquid droplet comes into direct contact with liquid nitrogen. This is distinct from the more generally observed Leidenfrost phenomenon that occurs when a liquid droplet is self-vaporized on a hot plate. In the case of rapid cooling, the phase transition from liquid to vitrified solid (i.e., vitrification) and the levitation of droplets on liquid nitrogen (i.e., Leidenfrost phenomenon) take place simultaneously. Here, we investigate these two simultaneous physical events by using a theoretical model containing three dimensionless parameters (i.e., Stefan, Biot, and Fourier numbers). We explain theoretically and observe experimentally a threshold droplet radius during the vitrification of a cryoprotectant droplet in the presence of the Leidenfrost effect.

  13. Vitrification and levitation of a liquid droplet on liquid nitrogen

    PubMed Central

    Song, Young S.; Adler, Douglas; Xu, Feng; Kayaalp, Emre; Nureddin, Aida; Anchan, Raymond M.; Maas, Richard L.; Demirci, Utkan

    2010-01-01

    The vitrification of a liquid occurs when ice crystal formation is prevented in the cryogenic environment through ultrarapid cooling. In general, vitrification entails a large temperature difference between the liquid and its surrounding medium. In our droplet vitrification experiments, we observed that such vitrification events are accompanied by a Leidenfrost phenomenon, which impedes the heat transfer to cool the liquid, when the liquid droplet comes into direct contact with liquid nitrogen. This is distinct from the more generally observed Leidenfrost phenomenon that occurs when a liquid droplet is self-vaporized on a hot plate. In the case of rapid cooling, the phase transition from liquid to vitrified solid (i.e., vitrification) and the levitation of droplets on liquid nitrogen (i.e., Leidenfrost phenomenon) take place simultaneously. Here, we investigate these two simultaneous physical events by using a theoretical model containing three dimensionless parameters (i.e., Stefan, Biot, and Fourier numbers). We explain theoretically and observe experimentally a threshold droplet radius during the vitrification of a cryoprotectant droplet in the presence of the Leidenfrost effect. PMID:20176969

  14. Comparison of cryopreserved human sperm in vapor and liquid phases of liquid nitrogen: effect on motility parameters, morphology, and sperm function.

    PubMed

    Punyatanasakchai, Piyaphan; Sophonsritsuk, Areephan; Weerakiet, Sawaek; Wansumrit, Surapee; Chompurat, Deonthip

    2008-11-01

    To compare the effects of cryopreserved sperm in vapor and liquid phases of liquid nitrogen on sperm motility, morphology, and sperm function. Experimental study. Andrology laboratory at Ramathibodi Hospital, Thailand. Thirty-eight semen samples with normal motility and sperm count were collected from 38 men who were either patients of an infertility clinic or had donated sperm for research. Each semen sample was divided into two aliquots. Samples were frozen with static-phase vapor cooling. One aliquot was plunged into liquid nitrogen (-196 degrees C), and the other was stored in vapor-phase nitrogen (-179 degrees C) for 3 days. Thawing was performed at room temperature. Motility was determined by using computer-assisted semen analysis, sperm morphology was determined by using eosin-methylene blue staining, and sperm function was determined by using a hemizona binding test. Most of the motility parameters of sperm stored in the vapor phase were not significantly different from those stored in the liquid phase of liquid nitrogen, except in amplitude of lateral head displacement. The percentages of normal sperm morphology in both vapor and liquid phases also were not significantly different. There was no significant difference in the number of bound sperm in hemizona between sperm cryopreserved in both vapor and liquid phases of liquid nitrogen. Cryopreservation of human sperm in a vapor phase of liquid nitrogen was comparable to cryopreservation in a liquid phase of liquid nitrogen.

  15. Universal adsorption at the vapor-liquid interface near the consolute point

    NASA Technical Reports Server (NTRS)

    Schmidt, James W.

    1990-01-01

    The ellipticity of the vapor-liquid interface above mixtures of methylcyclohexane (C7H14) and perfluoromethylcyclohexane (C7F14) has been measured near the consolute point T(c) = 318.6 K. The data are consistent with a model of the interface that combines a short-ranged density-vs height profile in the vapor phase with a much longer-ranged composition-versus-height profile in the liquid. The value of the free parameter produced by fitting the model to the data is consistent with results from two other simple mixtures and a mixture of a polymer and solvent. This experiment combines precision ellipsometry of the vapor-liquid interface with in situ measurements of refractive indices of the liquid phases, and it precisely locates the consolute point.

  16. Pressurization of a Flightweight, Liquid Hydrogen Tank: Evaporation & Condensation at a Liquid/Vapor Interface

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E. M.

    2017-01-01

    This paper presents an analysis and simulation of evaporation and condensation at a motionless liquid/vapor interface. A 1-D model equation, emphasizing heat and mass transfer at the interface, is solved in two ways, and incorporated into a subgrid interface model within a CFD simulation. Simulation predictions are compared with experimental data from the CPST Engineering Design Unit tank, a cryogenic fluid management test tank in 1-g. The numerical challenge here is the physics of the liquid/vapor interface; pressurizing the ullage heats it by several degrees, and sets up an interfacial temperature gradient that transfers heat to the liquid phase-the rate limiting step of condensation is heat conducted through the liquid and vapor. This physics occurs in thin thermal layers O(1 mm) on either side of the interface which is resolved by the subgrid interface model. An accommodation coefficient of 1.0 is used in the simulations which is consistent with theory and measurements. This model is predictive of evaporation/condensation rates, that is, there is no parameter tuning.

  17. Predicting vapor liquid equilibria using density functional theory: A case study of argon

    NASA Astrophysics Data System (ADS)

    Goel, Himanshu; Ling, Sanliang; Ellis, Breanna Nicole; Taconi, Anna; Slater, Ben; Rai, Neeraj

    2018-06-01

    Predicting vapor liquid equilibria (VLE) of molecules governed by weak van der Waals (vdW) interactions using the first principles approach is a significant challenge. Due to the poor scaling of the post Hartree-Fock wave function theory with system size/basis functions, the Kohn-Sham density functional theory (DFT) is preferred for systems with a large number of molecules. However, traditional DFT cannot adequately account for medium to long range correlations which are necessary for modeling vdW interactions. Recent developments in DFT such as dispersion corrected models and nonlocal van der Waals functionals have attempted to address this weakness with a varying degree of success. In this work, we predict the VLE of argon and assess the performance of several density functionals and the second order Møller-Plesset perturbation theory (MP2) by determining critical and structural properties via first principles Monte Carlo simulations. PBE-D3, BLYP-D3, and rVV10 functionals were used to compute vapor liquid coexistence curves, while PBE0-D3, M06-2X-D3, and MP2 were used for computing liquid density at a single state point. The performance of the PBE-D3 functional for VLE is superior to other functionals (BLYP-D3 and rVV10). At T = 85 K and P = 1 bar, MP2 performs well for the density and structural features of the first solvation shell in the liquid phase.

  18. Liquid fuel vaporizer and combustion chamber having an adjustable thermal conductor

    DOEpatents

    Powell, Michael R; Whyatt, Greg A; Howe, Daniel T; Fountain, Matthew S

    2014-03-04

    The efficiency and effectiveness of apparatuses for vaporizing and combusting liquid fuel can be improved using thermal conductors. For example, an apparatus having a liquid fuel vaporizer and a combustion chamber can be characterized by a thermal conductor that conducts heat from the combustion chamber to the vaporizer. The thermal conductor can be a movable member positioned at an insertion depth within the combustion chamber that corresponds to a rate of heat conduction from the combustion chamber to the vaporizer. The rate of heat conduction can, therefore, be adjusted by positioning the movable member at a different insertion depth.

  19. Towards Cryogenic Liquid-Vapor Energy Storage Units for space applications

    NASA Astrophysics Data System (ADS)

    Afonso, Josiana Prado

    With the development of mechanical coolers and very sensitive cryogenic sensors, it could be interesting to use Energy Storage Units (ESU) and turn off the cryocooler to operate in a free micro vibration environment. An ESU would also avoid cryogenic systems oversized to attenuate temperature fluctuations due to thermal load variations which is useful particularly for space applications. In both cases, the temperature drift must remain limited to keep good detector performances. In this thesis, ESUs based on the high latent heat associated to liquid-vapor phase change to store energy have been studied. To limit temperature drifts while keeping small size cell at low temperature, a potential solution consists in splitting the ESU in two volumes: a low temperature cell coupled to a cryocooler cold finger through a thermal heat switch and an expansion volume at room temperature to reduce the temperature increase occurring during liquid evaporation. To obtain a vanishing temperature drift, a new improvement has been tested using two-phase nitrogen: a controlled valve was inserted between the two volumes in order to control the cold cell pressure. In addition, a porous material was used inside the cell to turn the ESU gravity independent and suitable for space applications. In this case, experiments reveal not fully understood results concerning both energy storage and liquid-wall temperature difference. To capture the thermal influence of the porous media, a dedicated cell with poorly conductive lateral wall was built and operated with two-phase helium. After its characterization outside the saturation conditions (conduction, convection), experiments were performed, with and without porous media, heating at the top or the bottom of the cell with various heat fluxes and for different saturation temperatures. In parallel, a model describing the thermal response for a cell containing liquid and vapor with a porous medium heated at the top ("against gravity") was developed

  20. Paradoxes of thermodynamics of swelling equilibria of polymers in liquids and vapors.

    PubMed

    Davankov, Vadim A; Pastukhov, Alexander V

    2011-12-29

    An automatic registration of the changing size of a single spherical microbead of a cross-linked polymer was applied for studying the swelling process of the bead by the sorption of vapors and/or liquids. Many representatives of all three basic types of polymeric networks, gel-type, hypercrosslinked, and macroporous, were examined. Only the first two display large volume changes and prove suitable for following the kinetics and extent of swelling by the above dilatometric technique. The results unambiguously prove that swelling of all polymeric networks in liquids is always higher than in corresponding saturated vapors (Schroeder's paradox). The general nature of this phenomenon implies that the absolute activity of any sorbate in its liquid form is always larger than in the form of its saturated vapor. Surprisingly, gels with any solvent contents, which fall into the broad range between the vapor-equilibrated and liquid-equilibrated extreme contents, retain their volumes constant in the saturated vapor atmosphere. This paradox of a wide range of gels swollen to a different extent and, nevertheless, standing in equilibrium with saturated vapor is explained by the specificity of the network polymers, namely, that the energy of the solvent-polymer interactions is easily compensated by the energy of remaining between-chain interactions at any solvent content in the above range. Therefore, the strain-free swollen gels do not generate enhanced vapor pressure, but neither display the ability to take up more sorbate from its vapor. © 2011 American Chemical Society

  1. Vapor-Deposited Glasses with Long-Range Columnar Liquid Crystalline Order

    DOE PAGES

    Gujral, Ankit; Gomez, Jaritza; Ruan, Shigang; ...

    2017-10-04

    Anisotropic molecular packing, particularly in highly ordered liquid crystalline arrangements, has the potential for optimizing performance in organic electronic and optoelectronic applications. Here we show that physical vapor deposition can be used to prepare highly organized glassy solids of discotic liquid crystalline systems. Using grazing incidence X-ray scattering, atomic force microscopy, and UV–vis spectroscopy, we compare three systems: a rectangular columnar liquid crystal, a hexagonal columnar liquid crystal, and a nonmesogen. The packing motifs accessible by vapor deposition are highly organized for the liquid crystalline systems with columns propagating either in-plane or out-of-plane depending upon the substrate temperature during deposition.more » As a result, the structures formed at a given substrate temperature can be understood as resulting from partial equilibration toward the structure of the equilibrium liquid crystal surface during the deposition process.« less

  2. Vapor-Deposited Glasses with Long-Range Columnar Liquid Crystalline Order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gujral, Ankit; Gomez, Jaritza; Ruan, Shigang

    Anisotropic molecular packing, particularly in highly ordered liquid crystalline arrangements, has the potential for optimizing performance in organic electronic and optoelectronic applications. Here we show that physical vapor deposition can be used to prepare highly organized glassy solids of discotic liquid crystalline systems. Using grazing incidence X-ray scattering, atomic force microscopy, and UV–vis spectroscopy, we compare three systems: a rectangular columnar liquid crystal, a hexagonal columnar liquid crystal, and a nonmesogen. The packing motifs accessible by vapor deposition are highly organized for the liquid crystalline systems with columns propagating either in-plane or out-of-plane depending upon the substrate temperature during deposition.more » As a result, the structures formed at a given substrate temperature can be understood as resulting from partial equilibration toward the structure of the equilibrium liquid crystal surface during the deposition process.« less

  3. Water injection into vapor- and liquid-dominated reservoirs: Modeling of heat transfer and mass transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruess, K.; Oldenburg, C.; Moridis, G.

    1997-12-31

    This paper summarizes recent advances in methods for simulating water and tracer injection, and presents illustrative applications to liquid- and vapor-dominated geothermal reservoirs. High-resolution simulations of water injection into heterogeneous, vertical fractures in superheated vapor zones were performed. Injected water was found to move in dendritic patterns, and to experience stronger lateral flow effects than predicted from homogeneous medium models. Higher-order differencing methods were applied to modeling water and tracer injection into liquid-dominated systems. Conventional upstream weighting techniques were shown to be adequate for predicting the migration of thermal fronts, while higher-order methods give far better accuracy for tracer transport.more » A new fluid property module for the TOUGH2 simulator is described which allows a more accurate description of geofluids, and includes mineral dissolution and precipitation effects with associated porosity and permeability change. Comparisons between numerical simulation predictions and data for laboratory and field injection experiments are summarized. Enhanced simulation capabilities include a new linear solver package for TOUGH2, and inverse modeling techniques for automatic history matching and optimization.« less

  4. 40 CFR 264.1057 - Standards: Valves in gas/vapor service or in light liquid -service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: Valves in gas/vapor service or in light liquid -service. (a) Each valve in gas/vapor or light liquid... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Standards: Valves in gas/vapor service or in light liquid -service. 264.1057 Section 264.1057 Protection of Environment ENVIRONMENTAL...

  5. 40 CFR 264.1057 - Standards: Valves in gas/vapor service or in light liquid -service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: Valves in gas/vapor service or in light liquid -service. (a) Each valve in gas/vapor or light liquid... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Standards: Valves in gas/vapor service or in light liquid -service. 264.1057 Section 264.1057 Protection of Environment ENVIRONMENTAL...

  6. 40 CFR 264.1057 - Standards: Valves in gas/vapor service or in light liquid -service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: Valves in gas/vapor service or in light liquid -service. (a) Each valve in gas/vapor or light liquid... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Standards: Valves in gas/vapor service or in light liquid -service. 264.1057 Section 264.1057 Protection of Environment ENVIRONMENTAL...

  7. 40 CFR 264.1057 - Standards: Valves in gas/vapor service or in light liquid -service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: Valves in gas/vapor service or in light liquid -service. (a) Each valve in gas/vapor or light liquid... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Standards: Valves in gas/vapor service or in light liquid -service. 264.1057 Section 264.1057 Protection of Environment ENVIRONMENTAL...

  8. 40 CFR 264.1057 - Standards: Valves in gas/vapor service or in light liquid -service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: Valves in gas/vapor service or in light liquid -service. (a) Each valve in gas/vapor or light liquid... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Standards: Valves in gas/vapor service or in light liquid -service. 264.1057 Section 264.1057 Protection of Environment ENVIRONMENTAL...

  9. Dynamic vapor sorption isotherms of medium grain rice varieties

    USDA-ARS?s Scientific Manuscript database

    It is known that the two popular medium rice varieties, namely M202 and M206, in California have different fissuring resistances. Therefore, the main goal of this study was to investigate the sorption behavior of these two varieties by a new approach using dynamic vapor sorption (DVS) method for elu...

  10. Non-aqueous phase liquid spreading during soil vapor extraction

    PubMed Central

    Kneafsey, Timothy J.; Hunt, James R.

    2010-01-01

    Many non-aqueous phase liquids (NAPLs) are expected to spread at the air – water interface, particularly under non-equilibrium conditions. In the vadose zone, this spreading should increase the surface area for mass transfer and the efficiency of volatile NAPL recovery by soil vapor extraction (SVE). Observations of spreading on water wet surfaces led to a conceptual model of oil spreading vertically above a NAPL pool in the vadose zone. Analysis of this model predicts that spreading can enhance the SVE contaminant recovery compared to conditions where the liquid does not spread. Experiments were conducted with spreading volatile oils hexane and heptane in wet porous media and capillary tubes, where spreading was observed at the scale of centimeters. Within porous medium columns up to a meter in height containing stagnant gas, spreading was less than ten centimeters and did not contribute significantly to hexane volatilization. Water film thinning and oil film pinning may have prevented significant oil film spreading, and thus did not enhance SVE at the scale of a meter. The experiments performed indicate that volatile oil spreading at the field scale is unlikely to contribute significantly to the efficiency of SVE. PMID:14734243

  11. Vapor and liquid optical monitoring with sculptured Bragg microcavities

    NASA Astrophysics Data System (ADS)

    Oliva-Ramirez, Manuel; Gil-Rostra, Jorge; López-Santos, Maria C.; González-Elipe, Agustín. R.; Yubero, Francisco

    2017-08-01

    Sculptured porous Bragg Microcavities (BMs) formed by the successive stacking of columnar SiO2 and TiO2 thin films with zig-zag columnar microstructure are prepared by glancing angle deposition. These BMs act as wavelength dependent optical retarders. This optical behavior is attributed to a self-structuration mechanism involving a fence-bundling association of nanocolumns as observed by Focused Ion Beam Scanning Electron Microscopy. The retardance of these optically active BMs can be modulated by dynamic infiltration of their open porosity with vapors, liquids or solutions with different refractive indices. The tunable birefringence of these nanostructured photonic systems have been successfully simulated with a simple model that assumes that each layer within the BMs stack has uniaxial birefringence. This type of self-associated nanostructures has been incorporated to microfluidic chips for free label vapor and liquid sensing. Several examples of the detection performance of these chips, working either in reflection or transmission configuration, for the optical characterization of vapor and liquids of different refractive index and aqueous solutions of glucose flowing through the microfluidic chips are described.

  12. Calculating the enthalpy of vaporization for ionic liquid clusters.

    PubMed

    Kelkar, Manish S; Maginn, Edward J

    2007-08-16

    Classical atomistic simulations are used to compute the enthalpy of vaporization of a series of ionic liquids composed of 1-alkyl-3-methylimidazolium cations paired with the bis(trifluoromethylsulfonyl)imide anion. The calculations show that the enthalpy of vaporization is lowest for neutral ion pairs. The enthalpy of vaporization increases by about 40 kJ/mol with the addition of each ion pair to the vaporizing cluster. Non-neutral clusters have much higher vaporization enthalpies than their neutral counterparts and thus are not expected to make up a significant fraction of volatile species. The enthalpy of vaporization increases slightly as the cation alkyl chain length increases and as temperature decreases. The calculated vaporization enthalpies are consistent with two sets of recent experimental measurements as well as with previous atomistic simulations.

  13. Liquid cooled counter flow turbine bucket

    DOEpatents

    Dakin, James T.

    1982-09-21

    Means and a method are provided whereby liquid coolant flows radially outward through coolant passages in a liquid cooled turbine bucket under the influence of centrifugal force while in contact with countercurrently flowing coolant vapor such that liquid is entrained in the flow of vapor resulting in an increase in the wetted cooling area of the individual passages.

  14. Combination downflow-upflow vapor-liquid separator

    DOEpatents

    Kidwell, John H.; Prueter, William P.; Eaton, Andrew M.

    1987-03-10

    An improved vapor-liquid separator having a vertically disposed conduit for flow of a mixture. A first, second and third plurality of curved arms penetrate and extend within the conduit. A cylindrical member is radially spaced from the conduit forming an annulus therewith and having perforations and a retaining lip at its upper end.

  15. Molecular dynamics study on condensation/evaporation coefficients of chain molecules at liquid-vapor interface

    NASA Astrophysics Data System (ADS)

    Nagayama, Gyoko; Takematsu, Masaki; Mizuguchi, Hirotaka; Tsuruta, Takaharu

    2015-07-01

    The structure and thermodynamic properties of the liquid-vapor interface are of fundamental interest for numerous technological implications. For simple molecules, e.g., argon and water, the molecular condensation/evaporation behavior depends strongly on their translational motion and the system temperature. Existing molecular dynamics (MD) results are consistent with the theoretical predictions based on the assumption that the liquid and vapor states in the vicinity of the liquid-vapor interface are isotropic. Additionally, similar molecular condensation/evaporation characteristics have been found for long-chain molecules, e.g., dodecane. It is unclear, however, whether the isotropic assumption is valid and whether the molecular orientation or the chain length of the molecules affects the condensation/evaporation behavior at the liquid-vapor interface. In this study, MD simulations were performed to study the molecular condensation/evaporation behavior of the straight-chain alkanes, i.e., butane, octane, and dodecane, at the liquid-vapor interface, and the effects of the molecular orientation and chain length were investigated in equilibrium systems. The results showed that the condensation/evaporation behavior of chain molecules primarily depends on the molecular translational energy and the surface temperature and is independent of the molecular chain length. Furthermore, the orientation at the liquid-vapor interface was disordered when the surface temperature was sufficiently higher than the triple point and had no significant effect on the molecular condensation/evaporation behavior. The validity of the isotropic assumption was confirmed, and we conclude that the condensation/evaporation coefficients can be predicted by the liquid-to-vapor translational length ratio, even for chain molecules.

  16. Molecular dynamics study on condensation/evaporation coefficients of chain molecules at liquid-vapor interface.

    PubMed

    Nagayama, Gyoko; Takematsu, Masaki; Mizuguchi, Hirotaka; Tsuruta, Takaharu

    2015-07-07

    The structure and thermodynamic properties of the liquid-vapor interface are of fundamental interest for numerous technological implications. For simple molecules, e.g., argon and water, the molecular condensation/evaporation behavior depends strongly on their translational motion and the system temperature. Existing molecular dynamics (MD) results are consistent with the theoretical predictions based on the assumption that the liquid and vapor states in the vicinity of the liquid-vapor interface are isotropic. Additionally, similar molecular condensation/evaporation characteristics have been found for long-chain molecules, e.g., dodecane. It is unclear, however, whether the isotropic assumption is valid and whether the molecular orientation or the chain length of the molecules affects the condensation/evaporation behavior at the liquid-vapor interface. In this study, MD simulations were performed to study the molecular condensation/evaporation behavior of the straight-chain alkanes, i.e., butane, octane, and dodecane, at the liquid-vapor interface, and the effects of the molecular orientation and chain length were investigated in equilibrium systems. The results showed that the condensation/evaporation behavior of chain molecules primarily depends on the molecular translational energy and the surface temperature and is independent of the molecular chain length. Furthermore, the orientation at the liquid-vapor interface was disordered when the surface temperature was sufficiently higher than the triple point and had no significant effect on the molecular condensation/evaporation behavior. The validity of the isotropic assumption was confirmed, and we conclude that the condensation/evaporation coefficients can be predicted by the liquid-to-vapor translational length ratio, even for chain molecules.

  17. Phase-field model of vapor-liquid-solid nanowire growth

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Upmanyu, Moneesh; Karma, Alain

    2018-03-01

    We present a multiphase-field model to describe quantitatively nanowire growth by the vapor-liquid-solid (VLS) process. The free-energy functional of this model depends on three nonconserved order parameters that distinguish the vapor, liquid, and solid phases and describe the energetic properties of various interfaces, including arbitrary forms of anisotropic γ plots for the solid-vapor and solid-liquid interfaces. The evolution equations for those order parameters describe basic kinetic processes including the rapid (quasi-instantaneous) equilibration of the liquid catalyst to a droplet shape with constant mean curvature, the slow incorporation of growth atoms at the droplet surface, and crystallization within the droplet. The standard constraint that the sum of the phase fields equals unity and the conservation of the number of catalyst atoms, which relates the catalyst volume to the concentration of growth atoms inside the droplet, are handled via separate Lagrange multipliers. An analysis of the model is presented that rigorously maps the phase-field equations to a desired set of sharp-interface equations for the evolution of the phase boundaries under the constraint of force balance at three-phase junctions (triple points) given by the Young-Herring relation that includes torque term related to the anisotropy of the solid-liquid and solid-vapor interface excess free energies. Numerical examples of growth in two dimensions are presented for the simplest case of vanishing crystalline anisotropy and the more realistic case of a solid-liquid γ plot with cusped minima corresponding to two sets of (10 ) and (11 ) facets. The simulations reproduce many of the salient features of nanowire growth observed experimentally, including growth normal to the substrate with tapering of the side walls, transitions between different growth orientations, and crawling growth along the substrate. They also reproduce different observed relationships between the nanowire growth

  18. Vapor and liquid optical monitoring with sculptured Bragg microcavities

    NASA Astrophysics Data System (ADS)

    Oliva-Ramirez, Manuel; Gil-Rostra, Jorge; López-Santos, Maria Carmen; González-Elipe, Agustín R.; Yubero, Francisco

    2017-10-01

    Sculptured porous Bragg microcavities (BMs) formed by the successive stacking of columnar SiO2 and TiO2 thin films with a zig-zag columnar microstructure are prepared by glancing angle deposition. These BMs act as wavelength-dependent optical retarders. This optical behavior is attributed to a self-structuration of the stacked layers involving the lateral association of nanocolumns in the direction perpendicular to the main flux of particles during the multilayer film growth, as observed by focused ion beam scanning electron microscopy. The retardance of these optically active BMs can be modulated by dynamic infiltration of their open porosity with vapors, liquids, or solutions with different refractive indices. The tunable birefringence of these nanostructured photonic systems has been successfully simulated with a simple model that assumes that each layer within the BMs stack has uniaxial birefringence. The sculptured BMs have been incorporated as microfluidic chips for optical transduction for label-free vapor and liquid sensing. Several examples of the detection performance of these chips, working either in reflection or transmission configuration, for the optical monitoring of vapor and liquids of different refractive indices and aqueous solutions of glucose flowing through the microfluidic chips are described.

  19. Condensation on a noncollapsing vapor bubble in a subcooled liquid

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Simoneau, R. J.

    1979-01-01

    An experimental procedure is presented by which an estimate can be made of the condensation coefficient on a noncollapsing stationary vapor bubble in subcooled liquid nitrogen. Film boiling from a thin wire was used to generate vapor bubbles which remain fixed to the wire at their base. A balance was established between the evaporation in the thin annular region along the wire and the condensation in the vapor bubbles.

  20. Student Understanding of Liquid-Vapor Phase Equilibrium

    ERIC Educational Resources Information Center

    Boudreaux, Andrew; Campbell, Craig

    2012-01-01

    Student understanding of the equilibrium coexistence of a liquid and its vapor was the subject of an extended investigation. Written assessment questions were administered to undergraduates enrolled in introductory physics and chemistry courses. Responses have been analyzed to document conceptual and reasoning difficulties in sufficient detail to…

  1. Vapor-liquid phase separator permeability results

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Frederking, T. H. K.

    1981-01-01

    Continued studies are described in the area of vapor-liquid phase separator work with emphasis on permeabilities of porous sintered plugs (stainless steel, nominal pore size 2 micrometer). The temperature dependence of the permeability has been evaluated in classical fluid using He-4 gas at atmospheric pressure and in He-2 on the basis of a modified, thermosmotic permeability of the normal fluid.

  2. Small-scale experimental study of vaporization flux of liquid nitrogen released on water.

    PubMed

    Gopalaswami, Nirupama; Olewski, Tomasz; Véchot, Luc N; Mannan, M Sam

    2015-10-30

    A small-scale experimental study was conducted using liquid nitrogen to investigate the convective heat transfer behavior of cryogenic liquids released on water. The experiment was performed by spilling five different amounts of liquid nitrogen at different release rates and initial water temperatures. The vaporization mass fluxes of liquid nitrogen were determined directly from the mass loss measured during the experiment. A variation of initial vaporization fluxes and a subsequent shift in heat transfer mechanism were observed with changes in initial water temperature. The initial vaporization fluxes were directly dependent on the liquid nitrogen spill rate. The heat flux from water to liquid nitrogen determined from experimental data was validated with two theoretical correlations for convective boiling. It was also observed from validation with correlations that liquid nitrogen was found to be predominantly in the film boiling regime. The substantial results provide a suitable procedure for predicting the heat flux from water to cryogenic liquids that is required for source term modeling. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Temperature gradient effects on vapor diffusion in partially-saturated porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, S.W.

    1999-07-01

    Vapor diffusion in porous media in the presence of its own liquid may be enhanced due to pore-scale processes, such as condensation and evaporation across isolated liquid islands. Webb and Ho (1997) developed one-and two-dimensional mechanistic pore-scale models of these processes in an ideal porous medium. For isothermal and isobaric boundary conditions with a concentration gradient, the vapor diffusion rate was significantly enhanced by these liquid island processes compared to a dry porous media. The influence of a temperature gradient on the enhanced vapor diffusion rate is considered in this paper. The two-dimensional pore network model which is used inmore » the present study is shown. For partially-saturated conditions, a liquid island is introduced into the top center pore. Boundary conditions on the left and right sides of the model are specified to give the desired concentration and temperature gradients. Vapor condenses on one side of the liquid island and evaporates off the other side due to local vapor pressure lowering caused by the interface curvature, even without a temperature gradient. Rather than acting as an impediment to vapor diffusion, the liquid island actually enhances the vapor diffusion rate. The enhancement of the vapor diffusion rate can be significant depending on the liquid saturation. Vapor diffusion is enhanced by up to 40% for this single liquid island compared to a dry porous medium; enhancement factors of up to an order of magnitude have been calculated for other conditions by Webb and Ho (1997). The dominant effect on the enhancement factor is the concentration gradient; the influence of the temperature gradient is smaller. The significance of these results, which need to be confirmed by experiments, is that the dominant model of enhanced vapor diffusion (EVD) by Philip and deVries (1957) predicts that temperature gradients must exist for EVD to occur. If there is no temperature gradient, there is no enhancement. The present

  4. Mid-infrared laser-absorption diagnostic for vapor-phase fuel mole fraction and liquid fuel film thickness

    NASA Astrophysics Data System (ADS)

    Porter, J. M.; Jeffries, J. B.; Hanson, R. K.

    2011-02-01

    A novel two-wavelength mid-infrared laser-absorption diagnostic has been developed for simultaneous measurements of vapor-phase fuel mole fraction and liquid fuel film thickness. The diagnostic was demonstrated for time-resolved measurements of n-dodecane liquid films in the absence and presence of n-decane vapor at 25°C and 1 atm. Laser wavelengths were selected from FTIR measurements of the C-H stretching band of vapor n-decane and liquid n-dodecane near 3.4 μm (3000 cm-1). n-Dodecane film thicknesses <20 μm were accurately measured in the absence of vapor, and simultaneous measurements of n-dodecane liquid film thickness and n-decane vapor mole fraction (300 ppm) were measured with <10% uncertainty for film thicknesses <10 μm. A potential application of the measurement technique is to provide accurate values of vapor mole fraction in combustion environments where strong absorption by liquid fuel or oil films on windows make conventional direct absorption measurements of the gas problematic.

  5. Heat-Exchange Fluids for Sulfuric Acid Vaporizers

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Petersen, G. R.

    1982-01-01

    Some fluorine-substituted organic materials meet criteria for heat-exchange fluids in contact with sulfuric acid. Most promising of these are perfluoropropylene oxide polymers with degree of polymerization (DP) between 10 and 50. It is desirable to have DP in high range because vapor pressure of material decreases as DP increases, and high-DP liquids have lower loss due to vaporization.

  6. Kinetics of the Active Medium of a Copper Vapor Brightness Amplifier

    NASA Astrophysics Data System (ADS)

    Kulagin, A. E.; Torgaev, S. N.; Evtushenko, G. S.; Trigub, M. V.

    2018-03-01

    A spatiotemporal kinetics of the active medium of a copper vapor brightness amplifier is described that allows gain characteristics to be investigated during the pump pulse. Model calculations show that changing the discharge parameters allows the radial gain profiles to be improved significantly, as well as the gain and the inversion duration to be increased. The data obtained will be used to choose the operating conditions for the active medium in the brightness amplifier mode.

  7. 40 CFR 265.1057 - Standards: Valves in gas/vapor service or in light liquid service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....1057 Standards: Valves in gas/vapor service or in light liquid service. (a) Each valve in gas/vapor or... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Standards: Valves in gas/vapor service or in light liquid service. 265.1057 Section 265.1057 Protection of Environment ENVIRONMENTAL...

  8. 40 CFR 265.1057 - Standards: Valves in gas/vapor service or in light liquid service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....1057 Standards: Valves in gas/vapor service or in light liquid service. (a) Each valve in gas/vapor or... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Standards: Valves in gas/vapor service or in light liquid service. 265.1057 Section 265.1057 Protection of Environment ENVIRONMENTAL...

  9. 40 CFR 265.1057 - Standards: Valves in gas/vapor service or in light liquid service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....1057 Standards: Valves in gas/vapor service or in light liquid service. (a) Each valve in gas/vapor or... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Standards: Valves in gas/vapor service or in light liquid service. 265.1057 Section 265.1057 Protection of Environment ENVIRONMENTAL...

  10. 40 CFR 265.1057 - Standards: Valves in gas/vapor service or in light liquid service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....1057 Standards: Valves in gas/vapor service or in light liquid service. (a) Each valve in gas/vapor or... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Standards: Valves in gas/vapor service or in light liquid service. 265.1057 Section 265.1057 Protection of Environment ENVIRONMENTAL...

  11. 40 CFR 265.1057 - Standards: Valves in gas/vapor service or in light liquid service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....1057 Standards: Valves in gas/vapor service or in light liquid service. (a) Each valve in gas/vapor or... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Standards: Valves in gas/vapor service or in light liquid service. 265.1057 Section 265.1057 Protection of Environment ENVIRONMENTAL...

  12. The Relation between Vaporization Enthalpies and Viscosities: Eyring's Theory Applied to Selected Ionic Liquids.

    PubMed

    Bonsa, Anne-Marie; Paschek, Dietmar; Zaitsau, Dzmitry H; Emel'yanenko, Vladimir N; Verevkin, Sergey P; Ludwig, Ralf

    2017-05-19

    Key properties for the use of ionic liquids as electrolytes in batteries are low viscosities, low vapor pressure and high vaporization enthalpies. Whereas the measurement of transport properties is well established, the determination of vaporization enthalpies of these extremely low volatile compounds is still a challenge. At a first glance both properties seem to describe different thermophysical phenomena. However, eighty years ago Eyring suggested a theory which related viscosities and vaporization enthalpies to each other. The model is based on Eyring's theory of absolute reaction rates. Recent attempts to apply Eyring's theory to ionic liquids failed. The motivation of our study is to show that Eyring's theory works, if the assumptions specific for ionic liquids are fulfilled. For that purpose we measured the viscosities of three well selected protic ionic liquids (PILs) at different temperatures. The temperature dependences of viscosities were approximated by the Vogel-Fulcher-Tamann (VFT) relation and extrapolated to the high-temperature regime up to 600 K. Then the VFT-data could be fitted to the Eyring-model. The values of vaporization enthalpies for the three selected PILs predicted by the Eyring model have been very close to the experimental values measured by well-established techniques. We conclude that the Eyring theory can be successfully applied to the chosen set of PILs, if the assumption that ionic pairs of the viscous flow in the liquid and the ionic pairs in the gas phase are similar is fulfilled. It was also noticed that proper transfer of energies can be only derived if the viscosities and the vaporization energies are known for temperatures close to the liquid-gas transition temperature. The idea to correlate easy measurable viscosities of ionic liquids with their vaporization enthalpies opens a new way for a reliable assessment of these thermodynamic properties for a broad range of ionic liquids. © 2017 Wiley-VCH Verlag GmbH & Co. KGa

  13. Nonequilibrium kinetic boundary condition at the vapor-liquid interface of argon

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Fujikawa, Shigeo; Kurz, Thomas; Lauterborn, Werner

    2013-10-01

    A boundary condition for the Boltzmann equation (kinetic boundary condition, KBC) at the vapor-liquid interface of argon is constructed with the help of molecular dynamics (MD) simulations. The KBC is examined at a constant liquid temperature of 85 K in a wide range of nonequilibrium states of vapor. The present investigation is an extension of a previous one by Ishiyama, Yano, and Fujikawa [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.95.084504 95, 084504 (2005)] and provides a more complete form of the KBC. The present KBC includes a thermal accommodation coefficient in addition to evaporation and condensation coefficients, and these coefficients are determined in MD simulations uniquely. The thermal accommodation coefficient shows an anisotropic behavior at the interface for molecular velocities normal versus tangential to the interface. It is also found that the evaporation and condensation coefficients are almost constant in a fairly wide range of nonequilibrium states. The thermal accommodation coefficient of the normal velocity component is almost unity, while that of the tangential component shows a decreasing function of the density of vapor incident on the interface, indicating that the tangential velocity distribution of molecules leaving the interface into the vapor phase may deviate from the tangential parts of the Maxwell velocity distribution at the liquid temperature. A mechanism for the deviation of the KBC from the isotropic Maxwell KBC at the liquid temperature is discussed in terms of anisotropic energy relaxation at the interface. The liquid-temperature dependence of the present KBC is also discussed.

  14. Investigation Of Vapor Explosion Mechanisms Using High Speed Photography

    NASA Astrophysics Data System (ADS)

    Armstrong, Donn R.; Anderson, Richard P.

    1983-03-01

    The vapor explosion, a physical interaction between hot and cold liquids that causes the explosive vaporization of the cold liquid, is a hazard of concern in such diverse industries as metal smelting and casting, paper manufacture, and nuclear power generation. Intensive work on this problem worldwide, for the past 25 years has generated a number of theories and mechanisms proposed to explain vapor explosions. High speed photography has been the major instrument used to test the validity of the theories and to provide the observations that have lead to new theories. Examples are given of experimental techniques that have been used to investigate vapor explosions. Detailed studies of specific mechanisms have included microsecond flash photograph of contact boiling and high speed cinematography of shock driven breakup of liquid drops. Other studies looked at the explosivity of various liquid pairs using cinematography inside a pulsed nuclear reactor and x-ray cinematography of a thermite-sodium interaction.

  15. A "User-Friendly" Program for Vapor-Liquid Equilibrium.

    ERIC Educational Resources Information Center

    Da Silva, Francisco A.; And Others

    1991-01-01

    Described is a computer software package suitable for teaching and research in the area of multicomponent vapor-liquid equilibrium. This program, which has a complete database, can accomplish phase-equilibrium calculations using various models and graph the results. (KR)

  16. Interfacial nonequilibrium and Bénard-Marangoni instability of a liquid-vapor system

    NASA Astrophysics Data System (ADS)

    Margerit, J.; Colinet, P.; Lebon, G.; Iorio, C. S.; Legros, J. C.

    2003-10-01

    We study Bénard-Marangoni instability in a system formed by a horizontal liquid layer and its overlying vapor. The liquid is lying on a hot rigid plate and the vapor is bounded by a cold parallel plate. A pump maintains a reduced pressure in the vapor layer and evacuates the vapor. This investigation is undertaken within the classical quasisteady approximation for both the vapor and the liquid phases. The two layers are separated by a deformable interface. Temporarily frozen temperature and velocity distributions are employed at each instant for the stability analysis, limited to infinitesimal disturbances (linear regime). We use irreversible thermodynamics to model the phase change under interfacial nonequilibrium. Within this description, the interface appears as a barrier for transport of both heat and mass. Hence, in contrast with previous studies, we consider the possibility of a temperature jump across the interface, as recently measured experimentally. The stability analysis shows that the interfacial resistances to heat and mass transfer have a destabilizing influence compared to an interface that is in thermodynamic equilibrium. The role of the fluctuations in the vapor phase on the onset of instability is discussed. The conditions to reduce the system to a one phase model are also established. Finally, the influence of the evaporation parameters and of the presence of an inert gas on the marginal stability curves is discussed.

  17. Surface vibrational structure at alkane liquid/vapor interfaces

    NASA Astrophysics Data System (ADS)

    Esenturk, Okan; Walker, Robert A.

    2006-11-01

    Broadband vibrational sum frequency spectroscopy (VSFS) has been used to examine the surface structure of alkane liquid/vapor interfaces. The alkanes range in length from n-nonane (C9H20) to n-heptadecane (C17H36), and all liquids except heptadecane are studied at temperatures well above their bulk (and surface) freezing temperatures. Intensities of vibrational bands in the CH stretching region acquired under different polarization conditions show systematic, chain length dependent changes. Data provide clear evidence of methyl group segregation at the liquid/vapor interface, but two different models of alkane chain structure can predict chain length dependent changes in band intensities. Each model leads to a different interpretation of the extent to which different chain segments contribute to the anisotropic interfacial region. One model postulates that changes in vibrational band intensities arise solely from a reduced surface coverage of methyl groups as alkane chain length increases. The additional methylene groups at the surface must be randomly distributed and make no net contribution to the observed VSF spectra. The second model considers a simple statistical distribution of methyl and methylene groups populating a three dimensional, interfacial lattice. This statistical picture implies that the VSF signal arises from a region extending several functional groups into the bulk liquid, and that the growing fraction of methylene groups in longer chain alkanes bears responsibility for the observed spectral changes. The data and resulting interpretations provide clear benchmarks for emerging theories of molecular structure and organization at liquid surfaces, especially for liquids lacking strong polar ordering.

  18. Saturated liquid density of 1,1-difluoroethane(R 152a) and thermodynamic properties along the vapor-liquid coexistence curve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, H.; Okada, M.; Uematsu, M.

    1987-01-01

    Saturated liquid densities of 1,1-difluoroethane (CH/sub 3/CHF/sub 2/) are measured at temperatures from 223 K to 363 K with the estimated uncertainty of +-0.2% by a magnetic densimetry. The experimental results are compared with the available experimental data and some correlations and equations of state. A simple correlation for the saturated liquid density is developed as a function of temperature. This correlation covers the temperature range up to the critical point which reproduces the present experimental results with the percent means deviation of 0.11%. Adding the available experimental data with respect to the vapor pressure, critical parameters, saturated vapor density,more » and the second virial coefficient to the present saturated liquid density data, the parameters of the Redlich-Kwong-Soave equation of state are determined and the thermodynamic properties along the vapor-liquid coexistence curve are derived.« less

  19. Buoyancy effects on the vapor condensation rate on a horizontal liquid surface

    NASA Technical Reports Server (NTRS)

    Hasan, Mohammad M.; Lin, Chin-Shun

    1989-01-01

    The results are presented of a numerical study of the effects of buoyancy on the direct condensation of saturated or nearly saturated vapor on a horizontal liquid surface in a cylindrical tank. The liquid motion beneath the liquid-vapor interface is induced by an axisymmetric laminar jet of subcooled liquid. Analysis and numerical results show that the dominant parameter which determines the influence of buoyancy on the condensation rate is the Richardson number. However, the effect of buoyancy on the condensation rate cannot be quantified in terms of the Richardson number alone. The critical value of the Richardson number below which the condensation rate is not significantly reduced depends on the Reynolds number as well as the Prandtl number.

  20. Motion of liquid plugs between vapor bubbles in capillary tubes: a comparison between fluids

    NASA Astrophysics Data System (ADS)

    Bertossi, Rémi; Ayel, Vincent; Mehta, Balkrishna; Romestant, Cyril; Bertin, Yves; Khandekar, Sameer

    2017-11-01

    Pulsating heat pipes (PHP) are now well-known devices in which liquid/vapor slug flow oscillates in a capillary tube wound between hot and cold sources. In this context, this paper focuses on the motion of the liquid plug, trapped between vapor bubbles, moving in capillary tubes, to try to better understand the thermo-physical phenomena involved in such devices. This study is divided into three parts. In the first part, an experimental study presents the evolution of the vapor pressure during the evaporation process of a liquid thin film deposited from a liquid plug flowing in a heated capillary tube: it is found that the behavior of the generated and removed vapor can be very different, according to the thermophysical properties of the fluids. In the second part, a transient model allows to compare, in terms of pressure and duration, the motion of a constant-length liquid plug trapped between two bubbles subjected to a constant difference of vapor pressure: the results highlight that the performances of the four fluids are also very different. Finally, a third model that can be considered as an improvement of the second one, is also presented: here, the liquid slug is surrounded by two vapor bubbles, one subjected to evaporation, the pressure in both bubbles is now a result of the calculation. This model still allows comparing the behaviors of the fluid. Even if our models are quite far from a complete model of a real PHP, results do indicate towards the applicability of different fluids as suitable working fluids for PHPs, particularly in terms of the flow instabilities which they generate.

  1. Molecular dynamics of the water liquid-vapor interface

    NASA Technical Reports Server (NTRS)

    Wilson, M. A.; Pohorille, A.; Pratt, L. R.; MacElroy, R. D. (Principal Investigator)

    1987-01-01

    The results of molecular dynamics calculations on the equilibrium interface between liquid water and its vapor at 325 K are presented. For the TIP4P model of water intermolecular pair potentials, the average surface dipole density points from the vapor to the liquid. The most common orientations of water molecules have the C2 nu molecular axis roughly parallel to the interface. The distributions are quite broad and therefore compatible with the intermolecular correlations characteristic of bulk liquid water. All near-neighbor pairs in the outermost interfacial layers are hydrogen bonded according to the common definition adopted here. The orientational preferences of water molecules near a free surface differ from those near rigidly planar walls which can be interpreted in terms of patterns found in hexagonal ice 1. The mean electric field in the interfacial region is parallel to the mean polarization which indicates that attention cannot be limited to dipolar charge distributions in macroscopic descriptions of the electrical properties of this interface. The value of the surface tension obtained is 132 +/- 46 dyn/cm, significantly different from the value for experimental water of 68 dyn/cm at 325 K.

  2. Using Dalton's Law of Partial Pressures to Determine the Vapor Pressure of a Volatile Liquid

    ERIC Educational Resources Information Center

    Hilgeman, Fred R.; Bertrand, Gary; Wilson, Brent

    2007-01-01

    This experiment, designed for a general chemistry laboratory, illustrates the use of Dalton's law of partial pressures to determine the vapor pressure of a volatile liquid. A predetermined volume of air is injected into a calibrated tube filled with a liquid whose vapor pressure is to be measured. The volume of the liquid displaced is greater than…

  3. 40 CFR 63.1027 - Connectors in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standards § 63.1027 Connectors in gas and vapor service and in light liquid service standards. (a..., the owner or operator shall monitor all connectors in gas and vapor and light liquid service as... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Connectors in gas and vapor service...

  4. 40 CFR 63.1027 - Connectors in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards § 63.1027 Connectors in gas and vapor service and in light liquid service standards. (a..., the owner or operator shall monitor all connectors in gas and vapor and light liquid service as... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Connectors in gas and vapor service...

  5. 40 CFR 63.1027 - Connectors in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Standards § 63.1027 Connectors in gas and vapor service and in light liquid service standards. (a..., the owner or operator shall monitor all connectors in gas and vapor and light liquid service as... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Connectors in gas and vapor service...

  6. 40 CFR 63.1027 - Connectors in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Standards § 63.1027 Connectors in gas and vapor service and in light liquid service standards. (a..., the owner or operator shall monitor all connectors in gas and vapor and light liquid service as... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Connectors in gas and vapor service...

  7. 40 CFR 63.1027 - Connectors in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Standards § 63.1027 Connectors in gas and vapor service and in light liquid service standards. (a..., the owner or operator shall monitor all connectors in gas and vapor and light liquid service as... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Connectors in gas and vapor service...

  8. Pressurization of a Flightweight, Liquid Hydrogen Tank: Evaporation and Condensation at a Liquid Vapor Interface

    NASA Technical Reports Server (NTRS)

    Stewart, Mark

    2017-01-01

    Evaporation and condensation at a liquid-vapor interface is important for long-term, in-space cryogenic propellant storage. Yet the current understanding of inter-facial physics does not consistently predict behavior of evaporation or condensation rates. The proposed paper will present a physical model, based on the 1-D Heat equation and Schrage's equation, which demonstrates thin thermal layers at the fluid vapor interface.

  9. Thermal-hydraulic behaviors of vapor-liquid interface due to arrival of a pressure wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Akira; Fujii, Yoshifumi; Matsuzaki, Mitsuo

    In the vapor explosion, a pressure wave (shock wave) plays a fundamental role for triggering, propagation and enhancement of the explosion. Energy of the explosion is related to the magnitude of heat transfer rate from hot liquid to cold volatile one. This is related to an increasing rate of interface area and to an amount of transient heat flux between the liquids. In this study, the characteristics of transient heat transfer and behaviors of vapor film both on the platinum tube and on the hot melt tin drop, under same boundary conditions have been investigated. It is considered that theremore » exists a fundamental mechanism of the explosion in the initial expansion process of the hot liquid drop immediately after arrival of pressure wave. The growth rate of the vapor film is much faster on the hot liquid than that on the solid surface. Two kinds of roughness were observed, one due to the Taylor instability, by rapid growth of the explosion bubble, and another, nucleation sites were observed at the vapor-liquid interface. Based on detailed observation of early stage interface behaviors after arrival of a pressure wave, the thermal fragmentation mechanism is proposed.« less

  10. Predicting vapor-liquid phase equilibria with augmented ab initio interatomic potentials

    NASA Astrophysics Data System (ADS)

    Vlasiuk, Maryna; Sadus, Richard J.

    2017-06-01

    The ability of ab initio interatomic potentials to accurately predict vapor-liquid phase equilibria is investigated. Monte Carlo simulations are reported for the vapor-liquid equilibria of argon and krypton using recently developed accurate ab initio interatomic potentials. Seventeen interatomic potentials are studied, formulated from different combinations of two-body plus three-body terms. The simulation results are compared to either experimental or reference data for conditions ranging from the triple point to the critical point. It is demonstrated that the use of ab initio potentials enables systematic improvements to the accuracy of predictions via the addition of theoretically based terms. The contribution of three-body interactions is accounted for using the Axilrod-Teller-Muto plus other multipole contributions and the effective Marcelli-Wang-Sadus potentials. The results indicate that the predictive ability of recent interatomic potentials, obtained from quantum chemical calculations, is comparable to that of accurate empirical models. It is demonstrated that the Marcelli-Wang-Sadus potential can be used in combination with accurate two-body ab initio models for the computationally inexpensive and accurate estimation of vapor-liquid phase equilibria.

  11. Predicting vapor-liquid phase equilibria with augmented ab initio interatomic potentials.

    PubMed

    Vlasiuk, Maryna; Sadus, Richard J

    2017-06-28

    The ability of ab initio interatomic potentials to accurately predict vapor-liquid phase equilibria is investigated. Monte Carlo simulations are reported for the vapor-liquid equilibria of argon and krypton using recently developed accurate ab initio interatomic potentials. Seventeen interatomic potentials are studied, formulated from different combinations of two-body plus three-body terms. The simulation results are compared to either experimental or reference data for conditions ranging from the triple point to the critical point. It is demonstrated that the use of ab initio potentials enables systematic improvements to the accuracy of predictions via the addition of theoretically based terms. The contribution of three-body interactions is accounted for using the Axilrod-Teller-Muto plus other multipole contributions and the effective Marcelli-Wang-Sadus potentials. The results indicate that the predictive ability of recent interatomic potentials, obtained from quantum chemical calculations, is comparable to that of accurate empirical models. It is demonstrated that the Marcelli-Wang-Sadus potential can be used in combination with accurate two-body ab initio models for the computationally inexpensive and accurate estimation of vapor-liquid phase equilibria.

  12. 40 CFR 63.1006 - Valves in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... § 63.1006 Valves in gas and vapor service and in light liquid service standards. (a) Compliance... requested by the Administrator. For each such demonstration, all valves in gas and vapor and light liquid... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Valves in gas and vapor service and in...

  13. 40 CFR 63.1006 - Valves in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... § 63.1006 Valves in gas and vapor service and in light liquid service standards. (a) Compliance... requested by the Administrator. For each such demonstration, all valves in gas and vapor and light liquid... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Valves in gas and vapor service and in...

  14. 40 CFR 63.1006 - Valves in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... § 63.1006 Valves in gas and vapor service and in light liquid service standards. (a) Compliance... requested by the Administrator. For each such demonstration, all valves in gas and vapor and light liquid... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Valves in gas and vapor service and in...

  15. 40 CFR 63.1006 - Valves in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... § 63.1006 Valves in gas and vapor service and in light liquid service standards. (a) Compliance... requested by the Administrator. For each such demonstration, all valves in gas and vapor and light liquid... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Valves in gas and vapor service and in...

  16. 40 CFR 63.1006 - Valves in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 63.1006 Valves in gas and vapor service and in light liquid service standards. (a) Compliance... requested by the Administrator. For each such demonstration, all valves in gas and vapor and light liquid... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Valves in gas and vapor service and in...

  17. 40 CFR 63.649 - Alternative means of emission limitation: Connectors in gas/vapor service and light liquid service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... limitation: Connectors in gas/vapor service and light liquid service. 63.649 Section 63.649 Protection of...: Connectors in gas/vapor service and light liquid service. (a) If an owner or operator elects to monitor... gas/vapor service and for connectors in light liquid service. The data for the two groups of...

  18. 40 CFR 63.649 - Alternative means of emission limitation: Connectors in gas/vapor service and light liquid service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... limitation: Connectors in gas/vapor service and light liquid service. 63.649 Section 63.649 Protection of...: Connectors in gas/vapor service and light liquid service. (a) If an owner or operator elects to monitor... gas/vapor service and for connectors in light liquid service. The data for the two groups of...

  19. 40 CFR 63.649 - Alternative means of emission limitation: Connectors in gas/vapor service and light liquid service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... limitation: Connectors in gas/vapor service and light liquid service. 63.649 Section 63.649 Protection of...: Connectors in gas/vapor service and light liquid service. (a) If an owner or operator elects to monitor... gas/vapor service and for connectors in light liquid service. The data for the two groups of...

  20. 40 CFR 63.649 - Alternative means of emission limitation: Connectors in gas/vapor service and light liquid service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... limitation: Connectors in gas/vapor service and light liquid service. 63.649 Section 63.649 Protection of...: Connectors in gas/vapor service and light liquid service. (a) If an owner or operator elects to monitor... gas/vapor service and for connectors in light liquid service. The data for the two groups of...

  1. 40 CFR 63.649 - Alternative means of emission limitation: Connectors in gas/vapor service and light liquid service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... limitation: Connectors in gas/vapor service and light liquid service. 63.649 Section 63.649 Protection of...: Connectors in gas/vapor service and light liquid service. (a) If an owner or operator elects to monitor... gas/vapor service and for connectors in light liquid service. The data for the two groups of...

  2. Effects of Evaporation/Condensation on Spreading and Contact Angle of a Volatile Liquid Drop

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.; Singh, Bhim S. (Technical Monitor)

    2000-01-01

    Effects of evaporation/condensation on spreading and contact angle were experimentally studied. A sessile drop of R-113 was tested at different vapor environments to determine the effects of evaporation/condensation on the evolution of contact diameter and contact angle of the drop. Condensation on the drop surface occurs at both the saturated and a nonsaturated vapor environments and promotes the spreading. When the drop is placed in the saturated vapor environment it tends to completely wetting and spreads rapidly. In a nonsaturated vapor environment, the evolution of the sessile drop is divided three stages: condensation-spreading stage, evaporation-retracting stage and rapid contracting stage. In the first stage the drop behaves as in the saturated environment. In the evaporation -retracting stage, the competition between spreading and evaporation of the drop determines the evolution characteristics of the contact diameter and the contact angle. A lower evaporation rate struggles against the spreading power to turn the drop from spreading to retracting with a continuous increase of the contact angle. The drop placed in open air has a much higher evaporation rate. The strong evaporation suppresses the spreading and accelerates the retraction of the drop with a linear decrease of the contact diameter. The contraction of the evaporating drops is gradually accelerated when the contact diameter decreases to 3 min and less till drying up, though the evaporation rate is gradually slowing down.

  3. 40 CFR 60.482-7 - Standards: Valves in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Before November 7, 2006 § 60.482-7 Standards: Valves in gas/vapor service and in light liquid service. (a... operation in gas/vapor service or light liquid service after the initial startup date for the process unit... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards: Valves in gas/vapor service...

  4. 40 CFR 60.482-7 - Standards: Valves in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Before November 7, 2006 § 60.482-7 Standards: Valves in gas/vapor service and in light liquid service. (a... operation in gas/vapor service or light liquid service after the initial startup date for the process unit... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards: Valves in gas/vapor service...

  5. 40 CFR 60.482-7 - Standards: Valves in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Before November 7, 2006 § 60.482-7 Standards: Valves in gas/vapor service and in light liquid service. (a... operation in gas/vapor service or light liquid service after the initial startup date for the process unit... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards: Valves in gas/vapor service...

  6. 40 CFR 60.482-7 - Standards: Valves in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Before November 7, 2006 § 60.482-7 Standards: Valves in gas/vapor service and in light liquid service. (a... operation in gas/vapor service or light liquid service after the initial startup date for the process unit... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards: Valves in gas/vapor service...

  7. 40 CFR 60.482-7 - Standards: Valves in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Before November 7, 2006 § 60.482-7 Standards: Valves in gas/vapor service and in light liquid service. (a... operation in gas/vapor service or light liquid service after the initial startup date for the process unit... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards: Valves in gas/vapor service...

  8. Comparison of Mycobacterium tuberculosis culture using liquid culture medium and Lowenstein Jensen medium in abdominal tuberculosis.

    PubMed

    Shah, Sudeep R; Shenai, Shubhada; Desai, Devendra C; Joshi, Anand; Abraham, Philip; Rodrigues, Camilla

    2010-11-01

    Traditionally, the Lowenstein Jensen (LJ) medium has been used for culturing Mycobacterium tuberculosis. In abdominal tuberculosis (TB), the reported yield from tissue culture is between 20% and 60%. Liquid cultures are reported to give a higher yield but there is little data available in abdominal TB. To compare the yield of TB culture with BACTEC 460TB liquid medium and LJ medium for patients with suspected abdominal TB and determine cost effectiveness. This prospective study was done in consecutive cases with clinical, radiological, endoscopic/surgical, and histological suspicion of abdominal TB. Tissue biopsies obtained at colonoscopy or surgery were processed and plated on LJ medium as well as the BACTEC 460TB system. NAP (ρ-nitro-α-acetylamino-β-hydroxy-propiophenone) differentiation was carried out to determine species. The cost of each method and cost per yield were calculated. Of the 29 cases, 22 cases (76%) were positive on BACTEC 460TB culture while 14 (48%) were positive on LJ medium giving a 64% increment in yield. However, the culture of one patient grew on LJ medium, where the BACTEC 460TB was negative. The additional cost of BACTEC 460TB is Rs. 460 and LJ is Rs. 40. Samples from patients with abdominal TB should be processed on both liquid and LJ medium. For high yield, the use of a liquid culture medium system is essential.

  9. Prediction of the vapor pressure and vaporization enthalpy of 1-n-alkyl-3-methylimidazolium-bis-(trifluoromethanesulfonyl) amide ionic liquids.

    PubMed

    Diedenhofen, Michael; Klamt, Andreas; Marsh, Kenneth; Schäfer, Ansgar

    2007-09-07

    The vapor pressures and vaporization enthalpies of a series of 1-n-alkyl-3-methylimidazolium-bis-(trifluoromethanesulfonyl) amide ionic liquids have been predicted with two different approaches using the COSMO-RS method and quantum chemical gas phase calculations. While the calculated enthalpies are in good agreement with the experimental data, COSMO-RS seems to underestimate the vapor pressures by roughly 0.5-4 log units dependent on the IL and approach used.

  10. Thermodynamic and structure-property study of liquid-vapor equilibrium for aroma compounds.

    PubMed

    Tromelin, Anne; Andriot, Isabelle; Kopjar, Mirela; Guichard, Elisabeth

    2010-04-14

    Thermodynamic parameters (T, DeltaH degrees , DeltaS degrees , K) were collected from the literature and/or calculated for five esters, four ketones, two aldehydes, and three alcohols, pure compounds and compounds in aqueous solution. Examination of correlations between these parameters and the range values of DeltaH degrees and DeltaS degrees puts forward the key roles of enthalpy for vaporization of pure compounds and of entropy in liquid-vapor equilibrium of compounds in aqueous solution. A structure-property relationship (SPR) study was performed using molecular descriptors on aroma compounds to better understand their vaporization behavior. In addition to the role of polarity for vapor-liquid equilibrium of compounds in aqueous solution, the structure-property study points out the role of chain length and branching, illustrated by the correlation between the connectivity index CHI-V-1 and the difference between T and log K for vaporization of pure compounds and compounds in aqueous solution. Moreover, examination of the esters' enthalpy values allowed a probable conformation adopted by ethyl octanoate in aqueous solution to be proposed.

  11. Natural oscillations of a gas bubble in a liquid-filled cavity located in a viscoelastic medium

    NASA Astrophysics Data System (ADS)

    Doinikov, Alexander A.; Marmottant, Philippe

    2018-04-01

    The present study is motivated by cavitation phenomena that occur in the stems of trees. The internal pressure in tree conduits can drop down to significant negative values. This drop gives rise to cavitation bubbles, which undergo high-frequency eigenmodes. The aim of the present study is to determine the parameters of the bubble natural oscillations. To this end, a theory is developed that describes the pulsation of a spherical bubble located at the center of a spherical cavity surrounded by an infinite solid medium. It is assumed that the medium inside the bubble is a gas-vapor mixture, the cavity is filled with a compressible viscous liquid, and the medium surrounding the cavity behaves as a viscoelastic solid. The theoretical solution takes into account the outgoing acoustic wave produced by the bubble pulsation, the incoming wave caused by reflection from the liquid-solid boundary, and the outgoing wave propagating in the solid. A dispersion equation for the calculation of complex wavenumbers of the bubble eigenmodes is derived. Approximate analytical solutions to the dispersion equation are found. Numerical simulations are performed to reveal the effect of different physical parameters on the resonance frequency and the attenuation coefficient of the bubble oscillations.

  12. 40 CFR 65.108 - Standards: Connectors in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Standards: Connectors in gas/vapor service and in light liquid service. (a) Compliance schedule. Except as... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Standards: Connectors in gas/vapor service and in light liquid service. 65.108 Section 65.108 Protection of Environment ENVIRONMENTAL...

  13. 40 CFR 65.109 - Standards: Agitators in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Standards: Agitators in gas/vapor service and in light liquid service. (a) Compliance schedule. The owner or... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Standards: Agitators in gas/vapor service and in light liquid service. 65.109 Section 65.109 Protection of Environment ENVIRONMENTAL...

  14. 40 CFR 65.109 - Standards: Agitators in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standards: Agitators in gas/vapor service and in light liquid service. (a) Compliance schedule. The owner or... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Standards: Agitators in gas/vapor service and in light liquid service. 65.109 Section 65.109 Protection of Environment ENVIRONMENTAL...

  15. 40 CFR 65.108 - Standards: Connectors in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Standards: Connectors in gas/vapor service and in light liquid service. (a) Compliance schedule. Except as... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Standards: Connectors in gas/vapor service and in light liquid service. 65.108 Section 65.108 Protection of Environment ENVIRONMENTAL...

  16. 40 CFR 65.109 - Standards: Agitators in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards: Agitators in gas/vapor service and in light liquid service. (a) Compliance schedule. The owner or... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Standards: Agitators in gas/vapor service and in light liquid service. 65.109 Section 65.109 Protection of Environment ENVIRONMENTAL...

  17. 40 CFR 65.108 - Standards: Connectors in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards: Connectors in gas/vapor service and in light liquid service. (a) Compliance schedule. Except as... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Standards: Connectors in gas/vapor service and in light liquid service. 65.108 Section 65.108 Protection of Environment ENVIRONMENTAL...

  18. 40 CFR 65.108 - Standards: Connectors in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standards: Connectors in gas/vapor service and in light liquid service. (a) Compliance schedule. Except as... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Standards: Connectors in gas/vapor service and in light liquid service. 65.108 Section 65.108 Protection of Environment ENVIRONMENTAL...

  19. 40 CFR 65.108 - Standards: Connectors in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Standards: Connectors in gas/vapor service and in light liquid service. (a) Compliance schedule. Except as... 40 Protection of Environment 16 2013-07-01 2013-07-01 false Standards: Connectors in gas/vapor service and in light liquid service. 65.108 Section 65.108 Protection of Environment ENVIRONMENTAL...

  20. 40 CFR 65.109 - Standards: Agitators in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Standards: Agitators in gas/vapor service and in light liquid service. (a) Compliance schedule. The owner or... 40 Protection of Environment 16 2013-07-01 2013-07-01 false Standards: Agitators in gas/vapor service and in light liquid service. 65.109 Section 65.109 Protection of Environment ENVIRONMENTAL...

  1. 40 CFR 65.109 - Standards: Agitators in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Standards: Agitators in gas/vapor service and in light liquid service. (a) Compliance schedule. The owner or... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Standards: Agitators in gas/vapor service and in light liquid service. 65.109 Section 65.109 Protection of Environment ENVIRONMENTAL...

  2. Response function of a moving contact line

    NASA Astrophysics Data System (ADS)

    Perrin, H.; Belardinelli, D.; Sbragaglia, M.; Andreotti, B.

    2018-04-01

    The hydrodynamics of a liquid-vapor interface in contact with a heterogeneous surface is largely impacted by the presence of defects at the smaller scales. Such defects introduce morphological disturbances on the contact line and ultimately determine the force exerted on the wedge of liquid in contact with the surface. From the mathematical point of view, defects introduce perturbation modes, whose space-time evolution is governed by the interfacial hydrodynamic equations of the contact line. In this paper we derive the response function of the contact line to such generic perturbations. The contact line response may be used to design simplified one-dimensional time-dependent models accounting for the complexity of interfacial flows coupled to nanoscale defects, yet offering a more tractable mathematical framework to explore contact line motion through a disordered energy landscape.

  3. Toxic Hazard to the Rabbit from Direct and Vapor Contact with HD-Contaminated Plexiglas, Concrete, or XM40 Nylon Carrier Material

    DTIC Science & Technology

    1986-07-01

    for vapor transfer. A toxicological test was c’isigned to evaluate the above models. Animals were exposed to agant vapor and to direct contact with...surfaces contaminated with HD. If the toxicological response is the same from direct contact as from vapor, then only vapor transfer is significant...study were chosen to deter- mine whether partitioning is applicable to nonpermeable materials such as the polymethyl methacrylate ( PMMA ) sheeting or to

  4. 40 CFR 63.173 - Standards: Agitators in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Equipment Leaks § 63.173 Standards: Agitators in gas/vapor service and in light liquid service. (a)(1) Each... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Standards: Agitators in gas/vapor service and in light liquid service. 63.173 Section 63.173 Protection of Environment ENVIRONMENTAL...

  5. 40 CFR 63.173 - Standards: Agitators in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Equipment Leaks § 63.173 Standards: Agitators in gas/vapor service and in light liquid service. (a)(1) Each... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Standards: Agitators in gas/vapor service and in light liquid service. 63.173 Section 63.173 Protection of Environment ENVIRONMENTAL...

  6. 40 CFR 65.106 - Standards: Valves in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards: Valves in gas/vapor service and in light liquid service. (a) Compliance schedule. (1) The owner... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Standards: Valves in gas/vapor service and in light liquid service. 65.106 Section 65.106 Protection of Environment ENVIRONMENTAL PROTECTION...

  7. 40 CFR 63.173 - Standards: Agitators in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Equipment Leaks § 63.173 Standards: Agitators in gas/vapor service and in light liquid service. (a)(1) Each... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Standards: Agitators in gas/vapor service and in light liquid service. 63.173 Section 63.173 Protection of Environment ENVIRONMENTAL...

  8. 40 CFR 63.173 - Standards: Agitators in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Equipment Leaks § 63.173 Standards: Agitators in gas/vapor service and in light liquid service. (a)(1) Each... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Standards: Agitators in gas/vapor service and in light liquid service. 63.173 Section 63.173 Protection of Environment ENVIRONMENTAL...

  9. 40 CFR 63.174 - Standards: Connectors in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Equipment Leaks § 63.174 Standards: Connectors in gas/vapor service and in light liquid service. (a) The... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Standards: Connectors in gas/vapor service and in light liquid service. 63.174 Section 63.174 Protection of Environment ENVIRONMENTAL...

  10. 40 CFR 65.106 - Standards: Valves in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Standards: Valves in gas/vapor service and in light liquid service. (a) Compliance schedule. (1) The owner... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Standards: Valves in gas/vapor service and in light liquid service. 65.106 Section 65.106 Protection of Environment ENVIRONMENTAL PROTECTION...

  11. 40 CFR 63.174 - Standards: Connectors in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Equipment Leaks § 63.174 Standards: Connectors in gas/vapor service and in light liquid service. (a) The... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Standards: Connectors in gas/vapor service and in light liquid service. 63.174 Section 63.174 Protection of Environment ENVIRONMENTAL...

  12. 40 CFR 65.106 - Standards: Valves in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standards: Valves in gas/vapor service and in light liquid service. (a) Compliance schedule. (1) The owner... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Standards: Valves in gas/vapor service and in light liquid service. 65.106 Section 65.106 Protection of Environment ENVIRONMENTAL PROTECTION...

  13. 40 CFR 65.106 - Standards: Valves in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Standards: Valves in gas/vapor service and in light liquid service. (a) Compliance schedule. (1) The owner... 40 Protection of Environment 16 2013-07-01 2013-07-01 false Standards: Valves in gas/vapor service and in light liquid service. 65.106 Section 65.106 Protection of Environment ENVIRONMENTAL PROTECTION...

  14. 40 CFR 63.174 - Standards: Connectors in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Equipment Leaks § 63.174 Standards: Connectors in gas/vapor service and in light liquid service. (a) The... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Standards: Connectors in gas/vapor service and in light liquid service. 63.174 Section 63.174 Protection of Environment ENVIRONMENTAL...

  15. 40 CFR 63.174 - Standards: Connectors in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Equipment Leaks § 63.174 Standards: Connectors in gas/vapor service and in light liquid service. (a) The... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Standards: Connectors in gas/vapor service and in light liquid service. 63.174 Section 63.174 Protection of Environment ENVIRONMENTAL...

  16. 40 CFR 63.174 - Standards: Connectors in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Equipment Leaks § 63.174 Standards: Connectors in gas/vapor service and in light liquid service. (a) The... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Standards: Connectors in gas/vapor service and in light liquid service. 63.174 Section 63.174 Protection of Environment ENVIRONMENTAL...

  17. 40 CFR 63.173 - Standards: Agitators in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Equipment Leaks § 63.173 Standards: Agitators in gas/vapor service and in light liquid service. (a)(1) Each... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Standards: Agitators in gas/vapor service and in light liquid service. 63.173 Section 63.173 Protection of Environment ENVIRONMENTAL...

  18. 40 CFR 65.106 - Standards: Valves in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Standards: Valves in gas/vapor service and in light liquid service. (a) Compliance schedule. (1) The owner... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Standards: Valves in gas/vapor service and in light liquid service. 65.106 Section 65.106 Protection of Environment ENVIRONMENTAL PROTECTION...

  19. 40 CFR 60.482-11a - Standards: Connectors in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-11a Standards: Connectors in gas/vapor service and in light liquid service. (a) The owner or operator... connectors in gas and vapor and light liquid service as specified in paragraphs (a) and (b)(3) of this... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards: Connectors in gas/vapor...

  20. 40 CFR 60.482-11a - Standards: Connectors in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-11a Standards: Connectors in gas/vapor service and in light liquid service. (a) The owner or operator... connectors in gas and vapor and light liquid service as specified in paragraphs (a) and (b)(3) of this... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards: Connectors in gas/vapor...

  1. 40 CFR 60.482-11a - Standards: Connectors in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-11a Standards: Connectors in gas/vapor service and in light liquid service. (a) The owner or operator... connectors in gas and vapor and light liquid service as specified in paragraphs (a) and (b)(3) of this... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards: Connectors in gas/vapor...

  2. 40 CFR 60.482-11a - Standards: Connectors in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-11a Standards: Connectors in gas/vapor service and in light liquid service. (a) The owner or operator... connectors in gas and vapor and light liquid service as specified in paragraphs (a) and (b)(3) of this... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards: Connectors in gas/vapor...

  3. 40 CFR 60.482-11a - Standards: Connectors in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-11a Standards: Connectors in gas/vapor service and in light liquid service. (a) The owner or operator... connectors in gas and vapor and light liquid service as specified in paragraphs (a) and (b)(3) of this... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards: Connectors in gas/vapor...

  4. New Density Functional Approach for Solid-Liquid-Vapor Transitions in Pure Materials

    NASA Astrophysics Data System (ADS)

    Kocher, Gabriel; Provatas, Nikolas

    2015-04-01

    A new phase field crystal (PFC) type theory is presented, which accounts for the full spectrum of solid-liquid-vapor phase transitions within the framework of a single density order parameter. Its equilibrium properties show the most quantitative features to date in PFC modeling of pure substances, and full consistency with thermodynamics in pressure-volume-temperature space is demonstrated. A method to control either the volume or the pressure of the system is also introduced. Nonequilibrium simulations show that 2- and 3-phase growth of solid, vapor, and liquid can be achieved, while our formalism also allows for a full range of pressure-induced transformations. This model opens up a new window for the study of pressure driven interactions of condensed phases with vapor, an experimentally relevant paradigm previously missing from phase field crystal theories.

  5. Method to prepare nanoparticles on porous mediums

    DOEpatents

    Vieth, Gabriel M [Knoxville, TN; Dudney, Nancy J [Oak Ridge, TN; Dai, Sheng [Knoxville, TN

    2010-08-10

    A method to prepare porous medium decorated with nanoparticles involves contacting a suspension of nanoparticles in an ionic liquid with a porous medium such that the particles diffuse into the pores of the medium followed by heating the resulting composition to a temperature equal to or greater than the thermal decomposition temperature of the ionic liquid resulting in the removal of the liquid portion of the suspension. The nanoparticles can be a metal, an alloy, or a metal compound. The resulting compositions can be used as catalysts, sensors, or separators.

  6. Contact line motion over substrates with spatially non-uniform properties

    NASA Astrophysics Data System (ADS)

    Ajaev, Vladimir; Gatapova, Elizaveta; Kabov, Oleg

    2017-11-01

    We develop mathematical models of moving contact lines over flat solid surfaces with spatial variation of temperature and wetting properties under the conditions when evaporation is significant. The gas phase is assumed to be pure vapor and a lubrication-type framework is employed for describing viscous flow in the liquid. Marangoni stresses at the liquid surface arise as a result of temperature variation in the vapor phase, non-equilibrium effects during evaporation at the interface, and Kelvin effect. The relative importance of these three factors is determined. Variation of wetting properties is modeled through a two-component disjoining pressure, with the main focus on spatially periodic patterns leading to time-periodic variation of the contact line speed.

  7. Effect of Liquid Surface Turbulent Motion on the Vapor Condensation in a Mixing Tank

    NASA Technical Reports Server (NTRS)

    Lin, C. S.; Hasan, M. M.

    1991-01-01

    The effect of liquid surface motion on the vapor condensation in a tank mixed by an axial turbulent jet is numerically investigated. The average value (over the interface area) of the root-mean-squared (rms) turbulent velocity at the interface is shown to be linearly increasing with decreasing liquid height and increasing jet diameter for a given tank size. The average rms turbulent velocity is incorporated in Brown et al. (1990) condensation correlation to predict the condensation of vapor on a liquid surface. The results are in good agreement with available condensation data.

  8. Influence of liquid water and water vapor on antimisting kerosene (AMK)

    NASA Technical Reports Server (NTRS)

    Yavrouian, A. H.; Sarolouki, M.; Sarohia, V.

    1983-01-01

    Experiments have been performed to evaluate the compatibility of liquid water and water vapor with antimisting kerosenes (AMK) containing polymer additive FM-9 developed by Imperial Chemical Industries. This effort consists of the determination of water solubility in AMK, influence of water on restoration (degradation) of AMK, and effect of water on standard AMK quality control methods. The principal conclusions of this investigation are: (1) the uptake of water in AMK critically depends upon the degree of agitation and can be as high as 1300 ppm at 20 C, (2) more than 250 to 300 ppm of water in AMK causes an insoluble second phase to form. The amount of this second phase depends on fuel temperature, agitation, degree of restoration (degradation) and the water content of the fuel, (3) laboratory scale experiments indicate precipitate formation when water vapor comes in contact with cold fuel surfaces at a much lower level of water (125 to 150 ppm), (4) precipitate formation is very pronounced in these experiments where humid air is percolated through a cold fuel (-20 C), (5) laboratory tests further indicate that water droplet settling time is markedly reduced in AMK as compared to jet A, (6) limited low temperature testing down to -30 C under laboratory conditions indicates the formation of stable, transparent gels.

  9. LOX droplet vaporization in a supercritical forced convective environment

    NASA Technical Reports Server (NTRS)

    Hsiao, Chia-Chun; Yang, Vigor

    1993-01-01

    Modern liquid rocket engines often use liquid oxygen (LOX) and liquid hydrogen (LH2) as propellants to achieve high performance, with the engine operational conditions in the supercritical regimes of the propellants. Once the propellant exceeds its critical state, it essentially becomes a puff of dense fluid. The entire field becomes a continuous medium, and no distinct interfacial boundary between the liquid and gas exists. Although several studies have been undertaken to investigate the supercritical droplet behavior at quiescent conditions, very little effort has been made to address the fundamental mechanisms associated with LOX droplet vaporization in a supercritical, forced convective environment. The purpose is to establish a theoretical framework within which supercritical droplet dynamics and vaporization can be studied systematically by means of an efficient and robust numerical algorithm.

  10. Ionic liquids: differential scanning calorimetry as a new indirect method for determination of vaporization enthalpies.

    PubMed

    Verevkin, Sergey P; Emel'yanenko, Vladimir N; Zaitsau, Dzmitry H; Ralys, Ricardas V; Schick, Christoph

    2012-04-12

    Differential scanning calorimetry (DSC) has been used to measure enthalpies of synthesis reactions of the 1-alkyl-3-methylimidazolium bromide [C(n)mim][Br] ionic liquids from 1-methylimidazole and n-alkyl bromides (with n = 4, 5, 6, 7, and 8). The optimal experimental conditions have been elaborated. Enthalpies of formation of these ionic liquids in the liquid state have been determined using the DSC results according to the Hess Law. The ideal-gas enthalpies of formation of [C(n)mim][Br] were calculated using the methods of quantum chemistry. They were used together with the DSC results to derive indirectly the enthalpies of vaporization of the ionic liquids under study. In order to validate the indirect determination, the experimental vaporization enthalpy of [C(4)mim][Br] was measured by using a quartz crystal microbalance (QCM). The combination of reaction enthalpy measurements by DSC with modern high-level first-principles calculations opens valuable indirect thermochemical options to obtain values of vaporization enthalpies of ionic liquids.

  11. Self-diffusion Coefficient and Structure of Binary n-Alkane Mixtures at the Liquid-Vapor Interfaces.

    PubMed

    Chilukoti, Hari Krishna; Kikugawa, Gota; Ohara, Taku

    2015-10-15

    The self-diffusion coefficient and molecular-scale structure of several binary n-alkane liquid mixtures in the liquid-vapor interface regions have been examined using molecular dynamics simulations. It was observed that in hexane-tetracosane mixture hexane molecules are accumulated in the liquid-vapor interface region and the accumulation intensity decreases with increase in a molar fraction of hexane in the examined range. Molecular alignment and configuration in the interface region of the liquid mixture change with a molar fraction of hexane. The self-diffusion coefficient in the direction parallel to the interface of both tetracosane and hexane in their binary mixture increases in the interface region. It was found that the self-diffusion coefficient of both tetracosane and hexane in their binary mixture is considerably higher in the vapor side of the interface region as the molar fraction of hexane goes lower, which is mostly due to the increase in local free volume caused by the local structure of the liquid in the interface region.

  12. Improved thermal lattice Boltzmann model for simulation of liquid-vapor phase change

    NASA Astrophysics Data System (ADS)

    Li, Qing; Zhou, P.; Yan, H. J.

    2017-12-01

    In this paper, an improved thermal lattice Boltzmann (LB) model is proposed for simulating liquid-vapor phase change, which is aimed at improving an existing thermal LB model for liquid-vapor phase change [S. Gong and P. Cheng, Int. J. Heat Mass Transfer 55, 4923 (2012), 10.1016/j.ijheatmasstransfer.2012.04.037]. First, we emphasize that the replacement of ∇ .(λ ∇ T ) /∇.(λ ∇ T ) ρ cV ρ cV with ∇ .(χ ∇ T ) is an inappropriate treatment for diffuse interface modeling of liquid-vapor phase change. Furthermore, the error terms ∂t 0(T v ) +∇ .(T vv ) , which exist in the macroscopic temperature equation recovered from the previous model, are eliminated in the present model through a way that is consistent with the philosophy of the LB method. Moreover, the discrete effect of the source term is also eliminated in the present model. Numerical simulations are performed for droplet evaporation and bubble nucleation to validate the capability of the model for simulating liquid-vapor phase change. It is shown that the numerical results of the improved model agree well with those of a finite-difference scheme. Meanwhile, it is found that the replacement of ∇ .(λ ∇ T ) /∇ .(λ ∇ T ) ρ cV ρ cV with ∇ .(χ ∇ T ) leads to significant numerical errors and the error terms in the recovered macroscopic temperature equation also result in considerable errors.

  13. 40 CFR 63.168 - Standards: Valves in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 63.168 Standards: Valves in gas/vapor service and in light liquid service. (a) The provisions of this section apply to valves that are either in gas service or in light liquid service. (1) The provisions are... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Standards: Valves in gas/vapor service...

  14. 40 CFR 63.168 - Standards: Valves in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... § 63.168 Standards: Valves in gas/vapor service and in light liquid service. (a) The provisions of this section apply to valves that are either in gas service or in light liquid service. (1) The provisions are... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Standards: Valves in gas/vapor service...

  15. 40 CFR 63.168 - Standards: Valves in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... § 63.168 Standards: Valves in gas/vapor service and in light liquid service. (a) The provisions of this section apply to valves that are either in gas service or in light liquid service. (1) The provisions are... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Standards: Valves in gas/vapor service...

  16. 40 CFR 63.168 - Standards: Valves in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... § 63.168 Standards: Valves in gas/vapor service and in light liquid service. (a) The provisions of this section apply to valves that are either in gas service or in light liquid service. (1) The provisions are... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Standards: Valves in gas/vapor service...

  17. 40 CFR 63.168 - Standards: Valves in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... § 63.168 Standards: Valves in gas/vapor service and in light liquid service. (a) The provisions of this section apply to valves that are either in gas service or in light liquid service. (1) The provisions are... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Standards: Valves in gas/vapor service...

  18. Liquid-Vapor Interface Configurations Investigated in Low Gravity

    NASA Technical Reports Server (NTRS)

    Concus, Paul; Finn, Robert; Weislogel, Mark M.

    1998-01-01

    The Interface Configuration Experiment (ICE) is part of a multifaceted study that is exploring the often striking behavior of liquid-vapor interfaces in low-gravity environments. Although the experiment was posed largely as a test of current mathematical theory, applications of the results should be manifold. In space almost every fluid system is affected, if not dominated, by capillarity (the effects of surface tension). As a result, knowledge of fluid interface behavior, in particular an equilibrium interface shape from which any analysis must begin, is fundamental--from the control of liquid fuels and oxygen in storage tanks to the design and development of inspace thermal systems, such as heat pipes and capillary pumped loops. ICE has increased, and should continue to increase, such knowledge as it probes the specific peculiarities of current theory upon which our present understanding rests. Several versions of ICE have been conducted in the drop towers at the NASA Lewis Research Center, on the space shuttles during the first and second United States Microgravity Laboratory missions (USML-1 and USML-2), and most recently aboard the Russian Mir space station. These studies focused on interfacial problems concerning the existence, uniqueness, configuration, stability, and flow characteristics of liquid-vapor interfaces. Results to date have clearly demonstrated the value of the present theory and the extent to which it can predict the behavior of capillary systems.

  19. Preparing highly ordered glasses of discotic liquid crystalline systems by vapor deposition

    NASA Astrophysics Data System (ADS)

    Gujral, Ankit; Gomez, Jaritza; Bishop, Camille E.; Toney, Michael F.; Ediger, M. D.

    Anisotropic molecular packing, particularly in highly ordered liquid-crystalline arrangements, has the potential for optimizing performance in organic electronic and optoelectronic applications. Here we show that physical vapor deposition can be used to prepare highly organized out-of-equilibrium (glassy) solids of discotic liquid-crystalline (LC) systems. Using grazing incidence x-ray scattering, we compare 3 systems: a rectangular columnar LC, a hexagonal columnar LC and a non-liquid crystal former. The packing motifs accessible by vapor deposition are highly organized and vary from face-on to edge-on columnar arrangements depending upon substrate temperature. A subset of these structures cannot be accessed under equilibrium conditions. The structures formed at a given substrate temperature can be understood as the result of the system partially equilibrating toward the structure of the free surface of the equilibrium liquid crystal. Consistent with this view, the structures formed are independent of the substrate material.

  20. Interaction of a sodium ion with the water liquid-vapor interface

    NASA Technical Reports Server (NTRS)

    Wilson, M. A.; Pohorille, A.; Pratt, L. R.; MacElroy, R. D. (Principal Investigator)

    1989-01-01

    Molecular dynamics results are presented for the density profile of a sodium ion near the water liquid-vapor interface at 320 K. These results are compared with the predictions of a simple dielectric model for the interaction of a monovalent ion with this interface. The interfacial region described by the model profile is too narrow and the profile decreases too abruptly near the solution interface. Thus, the simple model does not provide a satisfactory description of the molecular dynamics results for ion positions within two molecular diameters from the solution interface where appreciable ion concentrations are observed. These results suggest that surfaces associated with dielectric models of ionic processes at aqueous solution interfaces should be located at least two molecular diameters inside the liquid phase. A free energy expense of about 2 kcal/mol is required to move the ion within two molecular layers of the free water liquid-vapor interface.

  1. Methodology for Assessing a Boiling Liquid Expanding Vapor Explosion (BLEVE) Blast Potential

    NASA Technical Reports Server (NTRS)

    Keddy, Chris P.

    2012-01-01

    Composite Vessels are now used to store a variety of fluids or gases including cryogenic fluids under pressure. Sudden failure of these vessels under certain conditions can lead to a potentially catastrophic vapor expansion if thermal control is not maintained prior to failure. This can lead to a "Boiling Liquid Expanding Vapor Explosion" or BLEVE.

  2. 40 CFR 63.1028 - Agitators in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Standards § 63.1028 Agitators in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Agitators in gas and vapor service and in light liquid service standards. 63.1028 Section 63.1028 Protection of Environment ENVIRONMENTAL...

  3. 40 CFR 63.1028 - Agitators in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Standards § 63.1028 Agitators in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Agitators in gas and vapor service and in light liquid service standards. 63.1028 Section 63.1028 Protection of Environment ENVIRONMENTAL...

  4. 40 CFR 63.1008 - Connectors in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... § 63.1008 Connectors in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Connectors in gas and vapor service and in light liquid service standards. 63.1008 Section 63.1008 Protection of Environment ENVIRONMENTAL...

  5. 40 CFR 63.1025 - Valves in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Standards § 63.1025 Valves in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Valves in gas and vapor service and in light liquid service standards. 63.1025 Section 63.1025 Protection of Environment ENVIRONMENTAL...

  6. 40 CFR 63.1028 - Agitators in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standards § 63.1028 Agitators in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Agitators in gas and vapor service and in light liquid service standards. 63.1028 Section 63.1028 Protection of Environment ENVIRONMENTAL...

  7. 40 CFR 63.1008 - Connectors in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... § 63.1008 Connectors in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Connectors in gas and vapor service and in light liquid service standards. 63.1008 Section 63.1008 Protection of Environment ENVIRONMENTAL...

  8. 40 CFR 63.1025 - Valves in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards § 63.1025 Valves in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Valves in gas and vapor service and in light liquid service standards. 63.1025 Section 63.1025 Protection of Environment ENVIRONMENTAL...

  9. 40 CFR 63.1009 - Agitators in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... § 63.1009 Agitators in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Agitators in gas and vapor service and in light liquid service standards. 63.1009 Section 63.1009 Protection of Environment ENVIRONMENTAL...

  10. 40 CFR 63.1009 - Agitators in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... § 63.1009 Agitators in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Agitators in gas and vapor service and in light liquid service standards. 63.1009 Section 63.1009 Protection of Environment ENVIRONMENTAL...

  11. 40 CFR 63.1025 - Valves in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standards § 63.1025 Valves in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Valves in gas and vapor service and in light liquid service standards. 63.1025 Section 63.1025 Protection of Environment ENVIRONMENTAL...

  12. 40 CFR 63.1008 - Connectors in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 63.1008 Connectors in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Connectors in gas and vapor service and in light liquid service standards. 63.1008 Section 63.1008 Protection of Environment ENVIRONMENTAL...

  13. 40 CFR 63.1028 - Agitators in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Standards § 63.1028 Agitators in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Agitators in gas and vapor service and in light liquid service standards. 63.1028 Section 63.1028 Protection of Environment ENVIRONMENTAL...

  14. 40 CFR 63.1008 - Connectors in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... § 63.1008 Connectors in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Connectors in gas and vapor service and in light liquid service standards. 63.1008 Section 63.1008 Protection of Environment ENVIRONMENTAL...

  15. 40 CFR 63.1009 - Agitators in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 63.1009 Agitators in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Agitators in gas and vapor service and in light liquid service standards. 63.1009 Section 63.1009 Protection of Environment ENVIRONMENTAL...

  16. 40 CFR 63.1009 - Agitators in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... § 63.1009 Agitators in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Agitators in gas and vapor service and in light liquid service standards. 63.1009 Section 63.1009 Protection of Environment ENVIRONMENTAL...

  17. 40 CFR 63.1028 - Agitators in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards § 63.1028 Agitators in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Agitators in gas and vapor service and in light liquid service standards. 63.1028 Section 63.1028 Protection of Environment ENVIRONMENTAL...

  18. 40 CFR 63.1025 - Valves in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Standards § 63.1025 Valves in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Valves in gas and vapor service and in light liquid service standards. 63.1025 Section 63.1025 Protection of Environment ENVIRONMENTAL...

  19. 40 CFR 63.1009 - Agitators in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... § 63.1009 Agitators in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Agitators in gas and vapor service and in light liquid service standards. 63.1009 Section 63.1009 Protection of Environment ENVIRONMENTAL...

  20. 40 CFR 63.1008 - Connectors in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... § 63.1008 Connectors in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Connectors in gas and vapor service and in light liquid service standards. 63.1008 Section 63.1008 Protection of Environment ENVIRONMENTAL...

  1. 40 CFR 63.1025 - Valves in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Standards § 63.1025 Valves in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Valves in gas and vapor service and in light liquid service standards. 63.1025 Section 63.1025 Protection of Environment ENVIRONMENTAL...

  2. Local mass and energy transports in evaporation processes from a vapor-liquid interface in a slit pore based on molecular dynamics

    NASA Astrophysics Data System (ADS)

    Fujiwara, K.; Shibahara, M.

    2018-02-01

    Molecular evaporation processes from a vapor-liquid interface formed in a slit-like pore were examined based on the classical molecular dynamics method, in order to elucidate a molecular mechanism of local mass and energy transports in a slit. The calculation system consisted of monatomic molecules and atoms which interact through the 12-6 Lennard-Jones potential. At first, a liquid was situated in a slit with a vapor-liquid interface, and instantaneous amounts of the mass and energy fluxes defined locally in the slit were obtained in two dimensions to reveal local fluctuation properties of the fluid in equilibrium states. Then, imposing a temperature gradient in the calculation system, non-equilibrium evaporation processes in the slit were investigated in details based on the local mass and energy fluxes. In this study, we focused on the fluid which is in the vicinity of the solid surface and in contact with the vapor phase. In the non-equilibrium evaporation processes, the results revealed that the local energy transport mechanism in the vicinity of the solid surface is different from that of the vapor phase, especially in the case of the relatively strong fluid-solid interaction. The results also revealed that the local mass transport in the vicinity of the solid surface can be interpreted based on the mechanism of the local energy transport, and the mechanism provides valuable information about pictures of the evaporation phenomena especially in the vicinity of the hydrophilic surfaces. It suggests that evaluating and changing this mechanism of the local energy transport are necessary to control the local mass flux more precisely in the vicinity of the solid surface.

  3. Liquid-vapor equilibrium and interfacial properties of square wells in two dimensions

    NASA Astrophysics Data System (ADS)

    Armas-Pérez, Julio C.; Quintana-H, Jacqueline; Chapela, Gustavo A.

    2013-01-01

    Liquid-vapor coexistence and interfacial properties of square wells in two dimensions are calculated. Orthobaric densities, vapor pressures, surface tensions, and interfacial thicknesses are reported. Results are presented for a series of potential widths λ* = 1.4, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5, where λ* is given in units of the hard core diameter σ. Critical and triple points are explored. No critical point was found for λ* < 1.4. Corresponding states principle analysis is performed for the whole series. For λ* = 1.4 and 1.5 evidence is presented that at an intermediate temperature between the critical and the triple point temperatures the liquid branch becomes an amorphous solid. This point is recognized in Armas-Pérez et al. [unpublished] as a hexatic phase transition. It is located at reduced temperatures T* = 0.47 and 0.35 for λ* = 1.4 and 1.5, respectively. Properties such as the surface tension, vapor pressure, and interfacial thickness do not present any discontinuity at these points. This amorphous solid branch does not follow the corresponding state principle, which is only applied to liquids and gases.

  4. The investigation of contact line effect on nanosized droplet wetting behavior with solid temperature condition

    NASA Astrophysics Data System (ADS)

    Haegon, Lee; Joonsang, Lee

    2017-11-01

    In many multi-phase fluidic systems, there are essentially contact interfaces including liquid-vapor, liquid-solid, and solid-vapor phase. There is also a contact line where these three interfaces meet. The existence of these interfaces and contact lines has a considerable impact on the nanoscale droplet wetting behavior. However, recent studies have shown that Young's equation does not accurately represent this behavior at the nanoscale. It also emphasized the importance of the contact line effect.Therefore, We performed molecular dynamics simulation to imitate the behavior of nanoscale droplets with solid temperature condition. And we find the effect of solid temperature on the contact line motion. Furthermore, We figure out the effect of contact line force on the wetting behavior of droplet according to the different solid temperature condition. With solid temperature condition variation, the magnitude of contact line friction decreases significantly. We also divide contact line force by effect of bulk liquid, interfacial tension, and solid surface. This work was also supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (No. 2015R1A5A1037668) and BrainKorea21plus.

  5. Effect of the Thermocouple on Measuring the Temperature Discontinuity at a Liquid-Vapor Interface.

    PubMed

    Kazemi, Mohammad Amin; Nobes, David S; Elliott, Janet A W

    2017-07-18

    The coupled heat and mass transfer that occurs in evaporation is of interest in a large number of fields such as evaporative cooling, distillation, drying, coating, printing, crystallization, welding, atmospheric processes, and pool fires. The temperature jump that occurs at an evaporating interface is of central importance to understanding this complex process. Over the past three decades, thermocouples have been widely used to measure the interfacial temperature jumps at a liquid-vapor interface during evaporation. However, the reliability of these measurements has not been investigated so far. In this study, a numerical simulation of a thermocouple when it measures the interfacial temperatures at a liquid-vapor interface is conducted to understand the possible effects of the thermocouple on the measured temperature and features in the temperature profile. The differential equations of heat transfer in the solid and fluids as well as the momentum transfer in the fluids are coupled together and solved numerically subject to appropriate boundary conditions between the solid and fluids. The results of the numerical simulation showed that while thermocouples can measure the interfacial temperatures in the liquid correctly, they fail to read the actual interfacial temperatures in the vapor. As the results of our numerical study suggest, the temperature jumps at a liquid-vapor interface measured experimentally by using a thermocouple are larger than what really exists at the interface. For a typical experimental study of evaporation of water at low pressure, it was found that the temperature jumps measured by a thermocouple are overestimated by almost 50%. However, the revised temperature jumps are still in agreement with the statistical rate theory of interfacial transport. As well as addressing the specific application of the liquid-vapor temperature jump, this paper provides significant insight into the role that heat transfer plays in the operation of thermocouples

  6. Kinetic and Mechanistic Study of Vapor-Phase Free Radical Polymerization onto Liquid Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Malancha

    The primary objective of this proposal was to study vapor deposition of polymers onto liquid surfaces. Deposition onto liquid surfaces is a relatively new area of research because the past few decades have focused on deposition onto solid materials. We used initiated chemical vapor deposition to deposit polymers onto the liquid surfaces. The process is a one-step, solventless, free-radical polymerization process in which monomer and initiator molecules are flowed into a vacuum chamber. We found that the surface tension interaction between the polymer and the liquid determines whether a film or nanoparticles are formed. We also found that we couldmore » form gels by using soluble monomers. We found that we could tune the size of the nanoparticles by varying the viscosity of the liquid and the process parameters including pressure and time. These insights allow scalable synthesis of polymer materials for a variety of separation and catalysis applications.« less

  7. An optical sensor for detecting the contact location of a gas-liquid interface on a body.

    PubMed

    Belden, Jesse; Jandron, Michael

    2014-08-01

    An optical sensor for detecting the dynamic contact location of a gas-liquid interface along the length of a body is described. The sensor is developed in the context of applications to supercavitating bodies requiring measurement of the dynamic cavity contact location; however, the sensing method is extendable to other applications as well. The optical principle of total internal reflection is exploited to detect changes in refractive index of the medium contacting the body at discrete locations along its length. The derived theoretical operation of the sensor predicts a signal attenuation of 18 dB when a sensed location changes from air-contacting to water-contacting. Theory also shows that spatial resolution (d) scales linearly with sensor length (L(s)) and a resolution of 0.01L(s) can be achieved. A prototype sensor is constructed from simple components and response characteristics are quantified for different ambient light conditions as well as partial wetting states. Three methods of sensor calibration are described and a signal processing framework is developed that allows for robust detection of the gas-liquid contact location. In a tank draining experiment, the prototype sensor resolves the water level with accuracy limited only by the spatial resolution, which is constrained by the experimental setup. A more representative experiment is performed in which the prototype sensor accurately measures the dynamic contact location of a gas cavity on a water tunnel wall.

  8. Compatibility testing of spacecraft materials and spacestorable liquid propellants. [liquid and vapor fluorine and FLOX

    NASA Technical Reports Server (NTRS)

    Denson, J. R.; Toy, A.

    1974-01-01

    Compatibility data for aluminum alloy 2219-T87 and titanium alloy Ti-6Al-4V were obtained while these alloys were exposed to both liquid and vapor fluorine and FLOX at -320 F + or -10 F. These data were obtained using a new low cost compatibility method which incorporates totally sealed containers and double dogbone test specimens and propellants in the simultaneous exposure to vapor and liquid phases. The compatibility investigation covered a storage period in excess of one year. Pitting was more severe in the 2219-T87 aluminum alloy than in the Ti-6Al-4V titanium alloy for both fluorine and FLOX exposure. The degree of chemical attack is more severe in the presence of FLOX than in fluorine and phase. The mechanical properties of the two alloys were not affected by storage in either of the two propellants.

  9. On the equilibrium contact angle of sessile liquid drops from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ravipati, Srikanth; Aymard, Benjamin; Kalliadasis, Serafim; Galindo, Amparo

    2018-04-01

    We present a new methodology to estimate the contact angles of sessile drops from molecular simulations by using the Gaussian convolution method of Willard and Chandler [J. Phys. Chem. B 114, 1954-1958 (2010)] to calculate the coarse-grained density from atomic coordinates. The iso-density contour with average coarse-grained density value equal to half of the bulk liquid density is identified as the average liquid-vapor (LV) interface. Angles between the unit normal vectors to the average LV interface and unit normal vector to the solid surface, as a function of the distance normal to the solid surface, are calculated. The cosines of these angles are extrapolated to the three-phase contact line to estimate the sessile drop contact angle. The proposed methodology, which is relatively easy to implement, is systematically applied to three systems: (i) a Lennard-Jones (LJ) drop on a featureless LJ 9-3 surface; (ii) an SPC/E water drop on a featureless LJ 9-3 surface; and (iii) an SPC/E water drop on a graphite surface. The sessile drop contact angles estimated with our methodology for the first two systems are shown to be in good agreement with the angles predicted from Young's equation. The interfacial tensions required for this equation are computed by employing the test-area perturbation method for the corresponding planar interfaces. Our findings suggest that the widely adopted spherical-cap approximation should be used with caution, as it could take a long time for a sessile drop to relax to a spherical shape, of the order of 100 ns, especially for water molecules initiated in a lattice configuration on a solid surface. But even though a water drop can take a long time to reach the spherical shape, we find that the contact angle is well established much faster and the drop evolves toward the spherical shape following a constant-contact-angle relaxation dynamics. Making use of this observation, our methodology allows a good estimation of the sessile drop contact

  10. On the equilibrium contact angle of sessile liquid drops from molecular dynamics simulations.

    PubMed

    Ravipati, Srikanth; Aymard, Benjamin; Kalliadasis, Serafim; Galindo, Amparo

    2018-04-28

    We present a new methodology to estimate the contact angles of sessile drops from molecular simulations by using the Gaussian convolution method of Willard and Chandler [J. Phys. Chem. B 114, 1954-1958 (2010)] to calculate the coarse-grained density from atomic coordinates. The iso-density contour with average coarse-grained density value equal to half of the bulk liquid density is identified as the average liquid-vapor (LV) interface. Angles between the unit normal vectors to the average LV interface and unit normal vector to the solid surface, as a function of the distance normal to the solid surface, are calculated. The cosines of these angles are extrapolated to the three-phase contact line to estimate the sessile drop contact angle. The proposed methodology, which is relatively easy to implement, is systematically applied to three systems: (i) a Lennard-Jones (LJ) drop on a featureless LJ 9-3 surface; (ii) an SPC/E water drop on a featureless LJ 9-3 surface; and (iii) an SPC/E water drop on a graphite surface. The sessile drop contact angles estimated with our methodology for the first two systems are shown to be in good agreement with the angles predicted from Young's equation. The interfacial tensions required for this equation are computed by employing the test-area perturbation method for the corresponding planar interfaces. Our findings suggest that the widely adopted spherical-cap approximation should be used with caution, as it could take a long time for a sessile drop to relax to a spherical shape, of the order of 100 ns, especially for water molecules initiated in a lattice configuration on a solid surface. But even though a water drop can take a long time to reach the spherical shape, we find that the contact angle is well established much faster and the drop evolves toward the spherical shape following a constant-contact-angle relaxation dynamics. Making use of this observation, our methodology allows a good estimation of the sessile drop contact

  11. Wetting phenomenon in the liquid-vapor phase coexistence of a partially miscible Lennard-Jones binary mixture

    NASA Astrophysics Data System (ADS)

    Ramírez-Santiago, Guillermo; Díaz-Herrera, Enrique; Moreno Razo, José A.

    2004-03-01

    We have carried out extensive equilibrium MD simulations to study wetting phenomena in the liquid-vapor phase coexistence of a partially miscible binary LJ mixture. We find that in the temperature range 0.60 ≤ T^* < 0.80, the system separates forming a liquid A-liquid B interface in coexistence with the vapor phase. At higher temperatures, 0.80 ≤ T^* < 1.25 the liquid phases are wet by the vapor phase. By studying the behavior of the surface tension as a function of temperature we estimate the wetting transition temperature (WTT) to be T^*_w≃ 0.80. The adsorption of molecules at the liquid-liquid interface shows a discontinuity at about T^*≃ 0.79 suggesting that the wetting transition is a first order phase transition. These results are in agreement with some experiments carried out in fluid binary mixtures. In addition, we estimated the consolute temperature to be T^* _cons≃ 1.25. The calculated phase diagram of the mixture suggest the existence of a tricritical point.

  12. Vapor-liquid coexistence of the Stockmayer fluid in nonuniform external fields.

    PubMed

    Samin, Sela; Tsori, Yoav; Holm, Christian

    2013-05-01

    We investigate the structure and phase behavior of the Stockmayer fluid in the presence of nonuniform electric fields using molecular simulation. We find that an initially homogeneous vapor phase undergoes a local phase separation in a nonuniform field due to the combined effect of the field gradient and the fluid vapor-liquid equilibrium. This results in a high-density fluid condensing in the strong field region. The system polarization exhibits a strong field dependence due to the fluid condensation.

  13. Study of role of meniscus and viscous forces during liquid-mediated contacts separation

    NASA Astrophysics Data System (ADS)

    Dhital, Prabin

    Menisci may form between two solid surfaces with the presence of an ultra-thin liquid film. When the separation operation is needed, meniscus and viscous forces contribute to an adhesion leading stiction, high friction, possibly high wear and potential failure of the contact systems, for instance microdevices, magnetic head disks and diesel fuel injectors. The situation may become more pronounced when the contacting surfaces are ultra-smooth and the normal load is small. Various design parameters, such as contact angle, initial separation height, surface tension and liquid viscosity, have been investigated during liquid-mediated contact separation. However, how the involved forces will change roles for various liquid is of interest and is necessary to be studied. In this study, meniscus and viscous forces due to water and liquid lubricants during separation of two flat surfaces are studied. Previously established mathematical model for meniscus and viscous forces during flat on flat contact separation is simulated. The effect of meniscus and viscous force on critical meniscus area at which those forces change role is studied with different liquid properties for flat on flat contact surfaces. The roles of the involved forces at various meniscus areas are analyzed. Experiments are done in concerns to studying the effect of surface roughness on contact angle. The impact of liquid properties, initial separation heights and contact angle on critical meniscus area for different liquid properties are analyzed. The study provides a fundamental understanding of the forces of the separation process and its value for the design of interfaces. The effect of surface roughness and liquid properties on contact angle are studied.

  14. Vapor-liquid equilibrium thermodynamics of N2 + CH4 - Model and Titan applications

    NASA Technical Reports Server (NTRS)

    Thompson, W. R.; Zollweg, John A.; Gabis, David H.

    1992-01-01

    A thermodynamic model is presented for vapor-liquid equilibrium in the N2 + CH4 system, which is implicated in calculations of the Titan tropospheric clouds' vapor-liquid equilibrium thermodynamics. This model imposes constraints on the consistency of experimental equilibrium data, and embodies temperature effects by encompassing enthalpy data; it readily calculates the saturation criteria, condensate composition, and latent heat for a given pressure-temperature profile of the Titan atmosphere. The N2 content of condensate is about half of that computed from Raoult's law, and about 30 percent greater than that computed from Henry's law.

  15. Shock melting and vaporization of metals.

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.

    1972-01-01

    The effect of initial porosity on shock induction of melting and vaporization is investigated for Ba, Sr, Li, Fe, Al, U, and Th. For the less compressible of these metals, it is found that for a given strong shock-generation system (explosive in contact, or flyer-plate impact) an optimum initial specific volume exists such that the total entropy production, and hence the amount of metal liquid or vapor, is a maximum. Initial volumes from 1.4 to 2.0 times crystal volumes, depending on the metal sample and shock-inducing system, will result in optimum post-shock entropies.

  16. Energy-Conversion Properties of Vapor-Liquid-Solid-Grown Silicon Wire-Array Photocathodes

    NASA Astrophysics Data System (ADS)

    Boettcher, Shannon W.; Spurgeon, Joshua M.; Putnam, Morgan C.; Warren, Emily L.; Turner-Evans, Daniel B.; Kelzenberg, Michael D.; Maiolo, James R.; Atwater, Harry A.; Lewis, Nathan S.

    2010-01-01

    Silicon wire arrays, though attractive materials for use in photovoltaics and as photocathodes for hydrogen generation, have to date exhibited poor performance. Using a copper-catalyzed, vapor-liquid-solid-growth process, SiCl4 and BCl3 were used to grow ordered arrays of crystalline p-type silicon (p-Si) microwires on p+-Si(111) substrates. When these wire arrays were used as photocathodes in contact with an aqueous methyl viologen2+/+ electrolyte, energy-conversion efficiencies of up to 3% were observed for monochromatic 808-nanometer light at fluxes comparable to solar illumination, despite an external quantum yield at short circuit of only 0.2. Internal quantum yields were at least 0.7, demonstrating that the measured photocurrents were limited by light absorption in the wire arrays, which filled only 4% of the incident optical plane in our test devices. The inherent performance of these wires thus conceptually allows the development of efficient photovoltaic and photoelectrochemical energy-conversion devices based on a radial junction platform.

  17. Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes.

    PubMed

    Boettcher, Shannon W; Spurgeon, Joshua M; Putnam, Morgan C; Warren, Emily L; Turner-Evans, Daniel B; Kelzenberg, Michael D; Maiolo, James R; Atwater, Harry A; Lewis, Nathan S

    2010-01-08

    Silicon wire arrays, though attractive materials for use in photovoltaics and as photocathodes for hydrogen generation, have to date exhibited poor performance. Using a copper-catalyzed, vapor-liquid-solid-growth process, SiCl4 and BCl3 were used to grow ordered arrays of crystalline p-type silicon (p-Si) microwires on p+-Si(111) substrates. When these wire arrays were used as photocathodes in contact with an aqueous methyl viologen(2+/+) electrolyte, energy-conversion efficiencies of up to 3% were observed for monochromatic 808-nanometer light at fluxes comparable to solar illumination, despite an external quantum yield at short circuit of only 0.2. Internal quantum yields were at least 0.7, demonstrating that the measured photocurrents were limited by light absorption in the wire arrays, which filled only 4% of the incident optical plane in our test devices. The inherent performance of these wires thus conceptually allows the development of efficient photovoltaic and photoelectrochemical energy-conversion devices based on a radial junction platform.

  18. Vapor-liquid phase equilibria of water modelled by a Kim-Gordon potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maerzke, K A; McGrath, M J; Kuo, I W

    2009-03-16

    Gibbs ensemble Monte Carlo simulations were carried out to investigate the properties of a frozen-electron-density (or Kim-Gordon, KG) model of water along the vapor-liquid coexistence curve. Because of its theoretical basis, such a KG model provides for seamless coupling to Kohn-Sham density functional theory for use in mixed quantum mechanics/molecular mechanics (QM/MM) implementations. The Gibbs ensemble simulations indicate rather limited transferability of such a simple KG model to other state points. Specifically, a KG model that was parameterized by Barker and Sprik to the properties of liquid water at 300 K, yields saturated vapor pressures and a critical temperature thatmore » are significantly under- and over-estimated, respectively.« less

  19. How pinning and contact angle hysteresis govern quasi-static liquid drop transfer.

    PubMed

    Chen, H; Tang, T; Zhao, H; Law, K-Y; Amirfazli, A

    2016-02-21

    This paper presents both experimental and numerical simulations of liquid transfer between two solid surfaces with contact angle hysteresis (CAH). Systematic studies on the role of the advancing contact angle (θa), receding contact angle (θr) and CAH in determining the transfer ratio (volume of the liquid transferred onto the acceptor surface over the total liquid volume) and the maximum adhesion force (Fmax) were performed. The transfer ratio was found to be governed by contact line pinning at the end of the transfer process caused by CAH of surfaces. A map based on θr of the two surfaces was generated to identify the three regimes for liquid transfer: (I) contact line pinning occurs only on the donor surface, (II) contact line pinning occurs on both surfaces, and (III) contact line pinning occurs only on the acceptor surface. With this map, an empirical equation is provided which is able to estimate the transfer ratio by only knowing θr of the two surfaces. The value of Fmax is found to be strongly influenced by the contact line pinning in the early stretching stage. For symmetric liquid bridges between two identical surfaces, Fmax may be determined only by θa, only by θr, or by both θa and θr, depending on the magnitude of the contact angles. For asymmetric bridges, Fmax is found to be affected by the period when contact lines are pinned on both surfaces.

  20. Evaluation of Vapor Pressure and Ultra-High Vacuum Tribological Properties of Ionic Liquids (2) Mixtures and Additives

    NASA Technical Reports Server (NTRS)

    Morales, Wilfredo; Koch, Victor R.; Street, Kenneth W., Jr.; Richard, Ryan M.

    2008-01-01

    Ionic liquids are salts, many of which are typically viscous fluids at room temperature. The fluids are characterized by negligible vapor pressures under ambient conditions. These properties have led us to study the effectiveness of ionic liquids containing both organic cations and anions for use as space lubricants. In the previous paper we have measured the vapor pressure and some tribological properties of two distinct ionic liquids under simulated space conditions. In this paper we will present vapor pressure measurements for two new ionic liquids and friction coefficient data for boundary lubrication conditions in a spiral orbit tribometer using stainless steel tribocouples. In addition we present the first tribological data on mixed ionic liquids and an ionic liquid additive. Post mortem infrared and Raman analysis of the balls and races indicates the major degradation pathway for these two organic ionic liquids is similar to those of other carbon based lubricants, i.e. deterioration of the organic structure into amorphous graphitic carbon. The coefficients of friction and lifetimes of these lubricants are comparable to or exceed these properties for several commonly used space oils.

  1. Method for inhibiting gum formation in liquid hydrocarbon mediums

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reid, D.K.

    1990-07-17

    This patent describes a method of inhibiting the formation of gum and sediment in a liquid hydrocarbonaceous medium. It comprises: adding to the medium an inhibiting amount of an alkyl 1,2-dihydroquinoline or polymerized alkyl 1,2-dihydroquinoline.

  2. Evaporative mass transfer behavior of a complex immiscible liquid.

    PubMed

    McColl, Colleen M; Johnson, Gwynn R; Brusseau, Mark L

    2008-09-01

    A series of laboratory experiments was conducted with a multiple-component immiscible liquid, collected from the Picillo Farm Superfund Site in Rhode Island, to examine liquid-vapor mass-transfer behavior. The immiscible liquid, which comprises solvents, oils, pesticides, PCBs, paint sludges, explosives, and other compounds, was characterized using gas chromatography and gas chromatography/mass spectrometry to determine mole fractions of selected constituents. Batch experiments were conducted to evaluate equilibrium phase-partitioning behavior. Two sets of air-stripping column studies were conducted to examine the mass-transfer dynamics of five selected target compounds present in the immiscible-liquid mixture. One set of column experiments was designed to represent a system with free-phase immiscible liquid present; the other was designed to represent a system with a residual phase of immiscible liquid. Initial elution behavior of all target components generally appeared to be ideal for both systems, as the initial vapor-phase concentrations were similar to vapor-phase concentrations measured for the batch experiment and those estimated using Raoult's law (incorporating the immiscible-liquid composition data). Later-stage removal of 1,2-dichlorobenzene appeared to be rate limited for the columns containing free-phase immiscible liquid and no porous medium. Conversely, evaporative mass transfer appeared to be ideal throughout the experiment conducted with immiscible liquid distributed relatively uniformly as a residual phase within a sandy porous medium.

  3. Evaporative Mass Transfer Behavior of a Complex Immiscible Liquid

    PubMed Central

    McColl, Colleen M.; Johnson, Gwynn R.; Brusseau, Mark L.

    2010-01-01

    A series of laboratory experiments was conducted with a multiple-component immiscible liquid, collected from the Picillo Farm Superfund Site in Rhode Island, to examine liquid-vapor mass-transfer behavior. The immiscible liquid, which comprises solvents, oils, pesticides, PCBs, paint sludges, explosives, and other compounds, was characterized using gas chromatography and gas chromatography/mass spectrometry to determine mole fractions of selected constituents. Batch experiments were conducted to evaluate equilibrium phase-partitioning behavior. Two sets of air-stripping column studies were conducted to examine the mass-transfer dynamics of five selected target compounds present in the immiscible-liquid mixture. One set of column experiments was designed to represent a system with free-phase immiscible liquid present; the other was designed to represent a system with a residual phase of immiscible liquid. Initial elution behavior of all target components generally appeared to be ideal for both systems, as the initial vapor-phase concentrations were similar to vapor-phase concentrations measured for the batch experiment and those estimated using Raoult’s law (incorporating the immiscible-liquid composition data). Later-stage removal of 1,2-dichlorobenzene appeared to be rate limited for the columns containing free-phase immiscible liquid and no porous medium. Conversely, evaporative mass transfer appeared to be ideal throughout the experiment conducted with immiscible liquid distributed relatively uniformly as a residual phase within a sandy porous medium. PMID:18614196

  4. Vapor-liquid interfacial reaction to fabricate superhydrophilic and underwater superoleophobic thiol-ene/silica hybrid decorated fabric for oil/water separation

    NASA Astrophysics Data System (ADS)

    Li, Hongqiang; Liang, Tao; Lai, Xuejun; Su, Xiaojing; Zhang, Lin; Zeng, Xingrong

    2018-01-01

    With oil spill accidents and oil industrial wastewater increasing, oil/water separation has attracted much attention in recent years. Herein, we report the fabrication of superhydrophilic and underwater superoleophobic thiol-ene/silica hybrid decorated fabrics for oil/water separation via vapor-liquid interfacial reaction. It is based on sol-gel reaction of tetraethyl orthosilicate (TEOS) to generate silica and thiol-ene reaction between poly(ethylene glycol) dimethacrylate (PEGDMA) and trimethylolpropane tris(3-mercaptopropionate) (TTMP) to form crosslinked hydrophilic polymer on polyester fabric under the catalysis of butylamine/ammonia vapor. The chemical structure of the surfaces on thiol-ene/silica hybrid decorated fabric was confirmed by FTIR and XPS, and obvious micro-nano morphology and roughness were observed with SEM and AFM. The water contact angle of the fabric attained 0° in 0.36 s, and the underwater oil contact angle reached up to 160°. Importantly, the fabric exhibited high separation efficiency at 99.5%, fast water flux above 71600 Lm-2h-1 and excellent recyclability in oil/water separation. Our findings open a new strategy to fabricate organic-inorganic hybrid superhydrophobic and underwater superoleophobic materials for oil/water separation.

  5. Vapor Bubbles

    NASA Astrophysics Data System (ADS)

    Prosperetti, Andrea

    2017-01-01

    This article reviews the fundamental physics of vapor bubbles in liquids. Work on bubble growth and condensation for stationary and translating bubbles is summarized and the differences with bubbles containing a permanent gas stressed. In particular, it is shown that the natural frequency of a vapor bubble is proportional not to the inverse radius, as for a gas bubble, but to the inverse radius raised to the power 2/3. Permanent gas dissolved in the liquid diffuses into the bubble with strong effects on its dynamics. The effects of the diffusion of heat and mass on the propagation of pressure waves in a vaporous bubbly liquid are discussed. Other topics briefly touched on include thermocapillary flow, plasmonic nanobubbles, and vapor bubbles in an immiscible liquid.

  6. Harvesting liquid from unsaturated vapor - nanoflows induced by capillary condensation

    NASA Astrophysics Data System (ADS)

    Vincent, Olivier; Marguet, Bastien; Stroock, Abraham

    2016-11-01

    A vapor, even subsaturated, can spontaneously form liquid in nanoscale spaces. This process, known as capillary condensation, plays a fundamental role in various contexts, such as the formation of clouds or the dynamics of hydrocarbons in the geological subsurface. However, large uncertainties remain on the thermodynamics and fluid mechanics of the phenomenon, due to experimental challenges as well as outstanding questions about the validity of macroscale physics at the nanometer scale. We studied experimentally the spatio-temporal dynamics of water condensation in a model nanoporous medium (pore radius 2 nm), taking advantage of the color change of the material upon hydration. We found that at low relative humidities (< 60 % RH), capillary condensation progressed in a diffusive fashion, while it occurred through a well-defined capillary-viscous imbibition front at > 60 % RH, driven by a balance between the pore capillary pressure and the condensation stress given by Kelvin equation. Further analyzing the imbibition dynamics as a function of saturation allowed us to extract detailed information about the physics of nano-confined fluids. Our results suggest excellent extension of macroscale fluid dynamics and thermodynamics even in pores 10 molecules in diameter.

  7. 40 CFR 60.482-7a - Standards: Valves in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-7a Standards: Valves in gas/vapor service and in light liquid service. (a)(1) Each valve shall be... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards: Valves in gas/vapor service and in light liquid service. 60.482-7a Section 60.482-7a Protection of Environment ENVIRONMENTAL...

  8. 40 CFR 60.482-7a - Standards: Valves in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-7a Standards: Valves in gas/vapor service and in light liquid service. (a)(1) Each valve shall be... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards: Valves in gas/vapor service and in light liquid service. 60.482-7a Section 60.482-7a Protection of Environment ENVIRONMENTAL...

  9. 40 CFR 60.482-7a - Standards: Valves in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-7a Standards: Valves in gas/vapor service and in light liquid service. (a)(1) Each valve shall be... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards: Valves in gas/vapor service and in light liquid service. 60.482-7a Section 60.482-7a Protection of Environment ENVIRONMENTAL...

  10. 40 CFR 60.482-7a - Standards: Valves in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-7a Standards: Valves in gas/vapor service and in light liquid service. (a)(1) Each valve shall be... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards: Valves in gas/vapor service and in light liquid service. 60.482-7a Section 60.482-7a Protection of Environment ENVIRONMENTAL...

  11. 40 CFR 60.482-7a - Standards: Valves in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-7a Standards: Valves in gas/vapor service and in light liquid service. (a)(1) Each valve shall be... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards: Valves in gas/vapor service and in light liquid service. 60.482-7a Section 60.482-7a Protection of Environment ENVIRONMENTAL...

  12. Water liquid-vapor interface subjected to various electric fields: A molecular dynamics study.

    PubMed

    Nikzad, Mohammadreza; Azimian, Ahmad Reza; Rezaei, Majid; Nikzad, Safoora

    2017-11-28

    Investigation of the effects of E-fields on the liquid-vapor interface is essential for the study of floating water bridge and wetting phenomena. The present study employs the molecular dynamics method to investigate the effects of parallel and perpendicular E-fields on the water liquid-vapor interface. For this purpose, density distribution, number of hydrogen bonds, molecular orientation, and surface tension are examined to gain a better understanding of the interface structure. Results indicate enhancements in parallel E-field decrease the interface width and number of hydrogen bonds, while the opposite holds true in the case of perpendicular E-fields. Moreover, perpendicular fields disturb the water structure at the interface. Given that water molecules tend to be parallel to the interface plane, it is observed that perpendicular E-fields fail to realign water molecules in the field direction while the parallel ones easily do so. It is also shown that surface tension rises with increasing strength of parallel E-fields, while it reduces in the case of perpendicular E-fields. Enhancement of surface tension in the parallel field direction demonstrates how the floating water bridge forms between the beakers. Finally, it is found that application of external E-fields to the liquid-vapor interface does not lead to uniform changes in surface tension and that the liquid-vapor interfacial tension term in Young's equation should be calculated near the triple-line of the droplet. This is attributed to the multi-directional nature of the droplet surface, indicating that no constant value can be assigned to a droplet's surface tension in the presence of large electric fields.

  13. Methods for calculation of engineering parameters for gas separation. [vapor pressure and solubility of gases in organic liquids

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.

    1979-01-01

    A group additivity method is generated which allows estimation, from the structural formulas alone, of the energy of vaporization and the molar volume at 25 C of many nonpolar organic liquids. Using these two parameters and appropriate thermodynamic relations, the vapor pressure of the liquid phase and the solubility of various gases in nonpolar organic liquids are predicted. It is also possible to use the data to evaluate organic and some inorganic liquids for use in gas separation stages or liquids as heat exchange fluids in prospective thermochemical cycles for hydrogen production.

  14. Liquid metal porous matrix sliding electrical contact: A concept

    NASA Technical Reports Server (NTRS)

    Ferguson, H.

    1973-01-01

    Concept utilizes porous metal or nonmetal matrix containing liquid metal in porous structure and confines liquid metal to contact area between rotor and brush by capillary forces. System may also be used to lubricate bearing systems.

  15. Rate correlation for condensation of pure vapor on turbulent, subcooled liquid

    NASA Technical Reports Server (NTRS)

    Brown, J. Steven; Khoo, Boo Cheong; Sonin, Ain A.

    1990-01-01

    An empirical correlation is presented for the condensation of pure vapor on a subcooled, turbulent liquid with a shear-free interface. The correlation expresses the dependence of the condensation rate on fluid properties, on the liquid-side turbulence (which is imposed from below), and on the effects of buoyancy in the interfacial thermal layer. The correlation is derived from experiments with steam and water, but under conditions which simulate typical cryogenic fluids.

  16. Experimental investigation of the physical properties of medium and heavy oils, their vaporization and use in explosion engines. Part III

    NASA Technical Reports Server (NTRS)

    Heinlein, Fritz

    1926-01-01

    The test equipment for studying the vaporization of heavy and medium oils is described as well as some of the experimental properties explored such as vaporization speed and diffusion coefficient. The experiemtal arrangement is also discussed.

  17. Vaporization of irradiated droplets

    NASA Astrophysics Data System (ADS)

    Armstrong, R. L.; O'Rourke, P. J.; Zardecki, A.

    1986-11-01

    The vaporization of a spherically symmetric liquid droplet subject to a high-intensity laser flux is investigated on the basis of a hydrodynamic description of the system composed of the vapor and ambient gas. In the limit of the convective vaporization, the boundary conditions at the fluid-gas interface are formulated by using the notion of a Knudsen layer in which translational equilibrium is established. This leads to approximate jump conditions at the interface. For homogeneous energy deposition, the hydrodynamic equations are solved numerically with the aid of the CON1D computer code (``CON1D: A computer program for calculating spherically symmetric droplet combustion,'' Los Alamos National Laboratory Report No. LA-10269-MS, December, 1984), based on the implict continuous-fluid Eulerian (ICE) [J. Comput. Phys. 8, 197 (1971)] and arbitrary Lagrangian-Eulerian (ALE) [J. Comput. Phys. 14, 1227 (1974)] numerical mehtods. The solutions exhibit the existence of two shock waves propagating in opposite directions with respect to the contact discontinuity surface that separates the ambient gas and vapor.

  18. Effects of water-vapor on friction and deformation of polymeric magnetic media in contact with a ceramic oxide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    The effects of humidity (water-vapor) in nitrogen on the friction and deformation behavior of magnetic tape in contact with a Ni-Zn ferrite spherical pin were studied. The coefficient of friction is markedly dependent on the ambient relative humidity. In elastic contacts the coefficient of friction increased linearly with increasing humidity; it decreased linearly when humidity was lowered. This effect is the result of changes in the chemistry and interaction of tape materials such as degradation of the lubricant. In plastic contacts there was no effect of humidity on friction below 40 percent relative humidity. There is no effect on friction associated with the breakthrough of the adsorbed water-vapor film at the interface of the tape and Ni-Zn ferrite. The coefficient of friction, however, increased rapidly with increasing relative humidity above 40 percent in plastic contacts.

  19. A new method for the determination of vaporization enthalpies of ionic liquids at low temperatures.

    PubMed

    Verevkin, Sergey P; Zaitsau, Dzmitry H; Emelyanenko, Vladimir N; Heintz, Andreas

    2011-11-10

    A new method for the determination of vaporization enthalpies of extremely low volatile ILs has been developed using a newly constructed quartz crystal microbalance (QCM) vacuum setup. Because of the very high sensitivity of the QCM it has been possible to reduce the average temperature of the vaporization studies by approximately 100 K in comparison to other conventional techniques. The physical basis of the evaluation procedure has been developed and test measurements have been performed with the common ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C(2)mim][NTf(2)] extending the range of measuring vaporization enthalpies down to 363 K. The results obtained for [C(2)mim][NTf(2)] have been tested for thermodynamic consistency by comparison with data already available at higher temperatures. Comparison of the temperature-dependent vaporization enthalpy data taken from the literature show only acceptable agreement with the heat capacity difference of -40 J K(-1) mol(-1). The method developed in this work opens also a new way to obtain reliable values of vaporization enthalpies of thermally unstable ionic liquids.

  20. The Observed Properties of Liquid Helium at the Saturated Vapor Pressure

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell J.; Barenghi, Carlo F.

    1998-11-01

    The equilibrium and transport properties of liquid 4He are deduced from experimental observations at the saturated vapor pressure. In each case, the bibliography lists all known measurements. Quantities reported here include density, thermal expansion coefficient, dielectric constant, superfluid and normal fluid densities, first, second, third, and fourth sound velocities, specific heat, enthalpy, entropy, surface tension, ion mobilities, mutual friction, viscosity and kinematic viscosity, dispersion curve, structure factor, thermal conductivity, latent heat, saturated vapor pressure, thermal diffusivity and Prandtl number of helium I, and displacement length and vortex core parameter in helium II.

  1. Feasibility Study of Vapor-Mist Phase Reaction Lubrication Using a Thioether Liquid

    NASA Technical Reports Server (NTRS)

    Morales, Wilfredo; Handschuh, Robert F.; Krantz, Timothy L.

    2007-01-01

    A primary technology barrier preventing the operation of gas turbine engines and aircraft gearboxes at higher temperatures is the inability of currently used liquid lubricants to survive at the desired operating conditions over an extended time period. Current state-of-the-art organic liquid lubricants rapidly degrade at temperatures above 300 C; hence, another form of lubrication is necessary. Vapor or mist phase reaction lubrication is a unique, alternative technology for high temperature lubrication. The majority of past studies have employed a liquid phosphate ester that was vaporized or misted, and delivered to bearings or gears where the phosphate ester reacted with the metal surfaces generating a solid lubricious film. This method resulted in acceptable operating temperatures suggesting some good lubrication properties, but the continuous reaction between the phosphate ester and the iron surfaces led to wear rates unacceptable for gas turbine engine or aircraft gearbox applications. In this study, an alternative non-phosphate liquid was used to mist phase lubricate a spur gearbox rig operating at 10,000 rpm under highly loaded conditions. After 21 million shaft revolutions of operation the gears exhibited only minor wear.

  2. Silicon nanowire synthesis by a vapor-liquid-solid approach.

    PubMed

    Mao, Aaron; Ng, H T; Nguyen, Pho; McNeil, Melanie; Meyyappan, M

    2005-05-01

    Synthesis of silicon nanowires is studied by using a vapor-liquid-solid growth technique. Silicon tetrachloride reduction with hydrogen in the gas phase is used with gold serving as catalyst to facilitate growth. Only a narrow set of conditions of SiCl4 concentration and temperature yield straight nanowires. High concentrations and temperatures generally result in particulates, catalyst coverage and deactivation, and coatinglike materials.

  3. Silicon nanowire synthesis by a vapor-liquid-solid approach

    NASA Technical Reports Server (NTRS)

    Mao, Aaron; Ng, H. T.; Nguyen, Pho; McNeil, Melanie; Meyyappan, M.

    2005-01-01

    Synthesis of silicon nanowires is studied by using a vapor-liquid-solid growth technique. Silicon tetrachloride reduction with hydrogen in the gas phase is used with gold serving as catalyst to facilitate growth. Only a narrow set of conditions of SiCl4 concentration and temperature yield straight nanowires. High concentrations and temperatures generally result in particulates, catalyst coverage and deactivation, and coatinglike materials.

  4. Microspheres for the growth of silicon nanowires via vapor-liquid-solid mechanism

    DOE PAGES

    Gomez-Martinez, Arancha; Marquez, Francisco; Elizalde, Eduardo; ...

    2014-01-01

    Silicon nanowires have been synthesized by a simple process using a suitable support containing silica and carbon microspheres. Nanowires were grown by thermal chemical vapor deposition via a vapor-liquid-solid mechanism with only the substrate as silicon source. The curved surface of the microsized spheres allows arranging the gold catalyst as nanoparticles with appropriate dimensions to catalyze the growth of nanowires. Here, the resulting material is composed of the microspheres with the silicon nanowires attached on their surface.

  5. Water-mediated ion-ion interactions are enhanced at the water vapor-liquid interface.

    PubMed

    Venkateshwaran, Vasudevan; Vembanur, Srivathsan; Garde, Shekhar

    2014-06-17

    There is overwhelming evidence that ions are present near the vapor-liquid interface of aqueous salt solutions. Charged groups can also be driven to interfaces by attaching them to hydrophobic moieties. Despite their importance in many self-assembly phenomena, how ion-ion interactions are affected by interfaces is not understood. We use molecular simulations to show that the effective forces between small ions change character dramatically near the water vapor-liquid interface. Specifically, the water-mediated attraction between oppositely charged ions is enhanced relative to that in bulk water. Further, the repulsion between like-charged ions is weaker than that expected from a continuum dielectric description and can even become attractive as the ions are drawn to the vapor side. We show that thermodynamics of ion association are governed by a delicate balance of ion hydration, interfacial tension, and restriction of capillary fluctuations at the interface, leading to nonintuitive phenomena, such as water-mediated like charge attraction. "Sticky" electrostatic interactions may have important consequences on biomolecular structure, assembly, and aggregation at soft liquid interfaces. We demonstrate this by studying an interfacially active model peptide that changes its structure from α-helical to a hairpin-turn-like one in response to charging of its ends.

  6. Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition – A facile method for encapsulation of diverse cell types in silica matrices

    DOE PAGES

    Johnston, Robert; Rogelj, Snezna; Harper, Jason C.; ...

    2014-12-12

    In nature, cells perform a variety of complex functions such as sensing, catalysis, and energy conversion which hold great potential for biotechnological device construction. However, cellular sensitivity to ex vivo environments necessitates development of bio–nano interfaces which allow integration of cells into devices and maintain their desired functionality. In order to develop such an interface, the use of a novel Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition process for whole cell encapsulation in silica was explored. In SG-CViL, the high vapor pressure of tetramethyl orthosilicate (TMOS) is utilized to deliver silica into an aqueous medium, creating a silica sol. Cellsmore » are then mixed with the resulting silica sol, facilitating encapsulation of cells in silica while minimizing cell contact with the cytotoxic products of silica generating reactions (i.e. methanol), and reduce exposure of cells to compressive stresses induced from silica condensation reactions. Using SG-CVIL, Saccharomyces cerevisiae (S. cerevisiae) engineered with an inducible beta galactosidase system were encapsulated in silica solids and remained both viable and responsive 29 days post encapsulation. By tuning SG-CViL parameters, thin layer silica deposition on mammalian HeLa and U87 human cancer cells was also achieved. Thus, the ability to encapsulate various cell types in either a multi cell (S. cerevisiae) or a thin layer (HeLa and U87 cells) fashion shows the promise of SG-CViL as an encapsulation strategy for generating cell–silica constructs with diverse functions for incorporation into devices for sensing, bioelectronics, biocatalysis, and biofuel applications.« less

  7. Fluorescence detection of trace TNT by novel cross-linking electropolymerized films both in vapor and aqueous medium.

    PubMed

    Nie, Heran; Lv, Ying; Yao, Liang; Pan, Yuyu; Zhao, Yang; Li, Peng; Sun, Guannan; Ma, Yuguang; Zhang, Ming

    2014-01-15

    Electropolymerized (EP) films with high fluorescent efficiency are introduced to the detection of trace 2,4,6-trinitrotoluene (TNT). Three electroactive materials TCPC, OCPC and OCz have been synthesized and their EP films have been demonstrated to be sensitive to TNT. Among them, the TCPC EP films have displayed the highest sensitivity to TNT in both vapor and aqueous medium, even in the natural water. It is proposed that the good performances would be caused by the following two factors: first, the cross-linking network of EP films can generate the cavities which benefit the TNT penetration, and remarkably increase the contact area between the EP films and TNT; second, the frontier orbits distribution leads the fast photo-induced electron transfer (PET) from the TCPC EP films to TNT. Our results prove that these EP films are promising TNT sensing candidates and provide a new method to prepare fluorescent porous films. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Molecular origin of contact line stick-slip motion during droplet evaporation

    PubMed Central

    Wang, FengChao; Wu, HengAn

    2015-01-01

    Understanding and controlling the motion of the contact line is of critical importance for surface science studies as well as many industrial engineering applications. In this work, we elucidate the molecular origin of contact line stick-slip motion during the evaporation of liquid droplets on flexible nano-pillared surfaces using molecular dynamics simulations. We demonstrate that the evaporation-induced stick-slip motion of the contact line is a consequence of competition between pinning and depinning forces. Furthermore, the tangential force exerted by the pillared substrate on the contact line was observed to have a sawtooth-like oscillation. Our analysis also establishes that variations in the pinning force are accomplished through the self-adaptation of solid-liquid intermolecular distances, especially for liquid molecules sitting directly on top of the solid pillar. Consistent with our theoretical analysis, molecular dynamics simulations also show that the maximum pinning force is quantitatively related to both solid-liquid adhesion strength and liquid-vapor surface tension. These observations provide a fundamental understanding of contact line stick-slip motion on pillared substrates and also give insight into the microscopic interpretations of contact angle hysteresis, wetting transitions and dynamic spreading. PMID:26628084

  9. Steady State Vapor Bubble in Pool Boiling

    PubMed Central

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C.; Maroo, Shalabh C.

    2016-01-01

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics. PMID:26837464

  10. Liquid-vapor phase equilibria and the thermodynamic properties of 2-methylpropanol- n-alkyl propanoate solutions

    NASA Astrophysics Data System (ADS)

    Suntsov, Yu. K.; Goryunov, V. A.; Chuikov, A. M.; Meshcheryakov, A. V.

    2016-08-01

    The boiling points of solutions of five binary systems are measured via ebulliometry in the pressure range of 2.05-103.3 kPa. Equilibrium vapor phase compositions, the values of the excess Gibbs energies, enthalpies, and entropies of solution of these systems are calculated. Patterns in the changes of phase equilibria and thermodynamic properties of solutions are established, depending on the compositions and temperatures of the systems. Liquid-vapor equilibria in the systems are described using the equations of Wilson and the NRTL (Non-Random Two-Liquid Model).

  11. Laser vaporization of trace explosives for enhanced non-contact detection

    NASA Astrophysics Data System (ADS)

    Furstenberg, Robert; Papantonakis, Michael; Kendziora, Christopher A.; Bubb, Daniel M.; Corgan, Jeffrey; McGill, R. Andrew

    2010-04-01

    Trace explosives contamination is found primarily in the form of solid particulates on surfaces, due to the low vapor pressure of most explosives materials. Today, the standard sampling procedure involves physical removal of particulate matter from surfaces of interest. A variety of collection methods have been used including air-jetting or swabbing surfaces of interest. The sampled particles are typically heated to generate vapor for analysis in hand held, bench top, or portal detection systems. These sampling methods are time-consuming (and hence costly), require a skilled technician for optimal performance, and are inherently non-selective, allowing non-explosives particles to be co-sampled and analyzed. This can adversely affect the sensitivity and selectivity of detectors, especially those with a limited dynamic range. We present a new approach to sampling solid particles on a solid surface that is targeted, non-contact, and which selectively enhances trace explosive signatures thus improving the selectivity and sensitivity of existing detectors. Our method involves the illumination of a surface of interest with infrared laser light with a wavelength that matches a distinctive vibrational mode of an explosive. The resonant coupling of laser energy results in rapid heating of explosive particles and rapid release of a vapor plume. Neighboring particles unrelated to explosives are generally not directly heated as their vibrational modes are not resonant with the laser. As a result, the generated vapor plume includes a higher concentration of explosives than if the particles were heated with a non-selective light source (e.g. heat lamp). We present results with both benchtop infrared lasers as well as miniature quantum cascade lasers.

  12. A Simple Approach to Characterize Gas-Aqueous Liquid Two-phase Flow Configuration Based on Discrete Solid-Liquid Contact Electrification.

    PubMed

    Choi, Dongwhi; Lee, Donghyeon; Kim, Dong Sung

    2015-10-14

    In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two-phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid-liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability.

  13. Vapor-liquid phase equilibria of water modelled by a Kim-Gordon potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maerzke, Katie A.; McGrath, M. J.; Kuo, I-F W.

    2009-09-07

    Gibbs ensemble Monte Carlo simulations were carried out to investigate the properties of a frozen-electron-density (or Kim-Gordon, KG) model of water along the vapor-liquid coexistence curve. Because of its theoretical basis, such a KG model provides for seamless coupling to Kohn-Sham density functional theory for use in mixed quantum mechanics/molecular mechanics (QM/MM) implementations. The Gibbs ensemble simulations indicate rather limited transferability of such a simple KG model to other state points. Specifically, a KG model that was parameterized by Barker and Sprik to the properties of liquid water at 300 K, yields saturated vapor pressures and a critical temperature thatmore » are significantly under- and overestimated, respectively. We present a comprehensive density functional theory study to asses the accuracy of two popular exchange correlation functionals on the structure and density of liquid water at ambient conditions This work was supported by the US Department of Energy Office of Basic Energy Science Chemical Sciences Program. Battelle operates Pacific Northwest National Laboratory for the US Department of Energy.« less

  14. Study of liquid and vapor flow into a Centaur capillary device

    NASA Technical Reports Server (NTRS)

    Blatt, M. H.; Risberg, J. A.

    1979-01-01

    The following areas of liquid and vapor flow were analyzed and experimentally evaluated; 1) the refilling of capillary devices with settled liquid, and 2) vapor flow across wetted screens. These investigations resulted in: 1) the development of a versatile computer program that was successfully correlated with test data and used to predict Centaur D-1S LO2 and LH2 start basket refilling; 2) the development of a semi-empirical model that was only partially correlated with data due to difficulties in obtaining repeatable test results. Also, a comparison was made to determine the best propellant management system for the Centaur D-1S vehicle. The comparison identified the basline Centaur D-1S system (using pressurization, boost pumps and propellant settling) as the best candidate based on payload weight penalty. However, other comparison criteria and advanced mission condition were identified where pressure fed systems, thermally subcooled boost pumps and capillary devices would be selected as attractive alternatives.

  15. The application of the high-speed photography in the experiments of boiling liquid expanding vapor explosions

    NASA Astrophysics Data System (ADS)

    Chen, Sining; Sun, Jinhua; Chen, Dongliang

    2007-01-01

    The liquefied-petroleum gas tank in some failure situations may release its contents, and then a series of hazards with different degrees of severity may occur. The most dangerous accident is the boiling liquid expanding vapor explosion (BLEVE). In this paper, a small-scale experiment was established to experimentally investigate the possible processes that could lead to a BLEVE. As there is some danger in using LPG in the experiments, water was used as the test fluid. The change of pressure and temperature was measured during the experiment. The ejection of the vapor and the sequent two-phase flow were recorded by a high-speed video camera. It was observed that two pressure peaks result after the pressure is released. The vapor was first ejected at a high speed; there was a sudden pressure drop which made the liquid superheated. The superheated liquid then boiled violently causing the liquid contents to swell, and also, the vapor pressure in the tank increased rapidly. The second pressure peak was possibly due to the swell of this two-phase flow which was likely to violently impact the wall of the tank with high speed. The whole evolution of the two-phase flow was recorded through photos captured by the high-speed video camera, and the "two step" BLEVE process was confirmed.

  16. Vapors-liquid phase separator. [infrared telescope heat sink

    NASA Technical Reports Server (NTRS)

    Frederking, T. H. K.; Brown, G. S.; Chuang, C.; Kamioka, Y.; Kim, Y. I.; Lee, J. M.; Yuan, S. W. K.

    1980-01-01

    The use of porous plugs, mostly with in the form of passive devices with constant area were considered as vapor-liquid phase separators for helium 2 storage vessels under reduced gravity. The incorporation of components with variable cross sectional area as a method of flow rate modification was also investigated. A particular device which uses a shutter-type system for area variation was designed and constructed. This system successfully permitted flor rate changes of up to plus or minus 60% from its mean value.

  17. 40 CFR 264.1062 - Alternative standards for valves in gas/vapor service or in light liquid service: skip period...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gas/vapor service or in light liquid service: skip period leak detection and repair. 264.1062 Section... Emission Standards for Equipment Leaks § 264.1062 Alternative standards for valves in gas/vapor service or in light liquid service: skip period leak detection and repair. (a) An owner or operator subject to...

  18. 40 CFR 265.1061 - Alternative standards for valves in gas/vapor service or in light liquid service: percentage of...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gas/vapor service or in light liquid service: percentage of valves allowed to leak. 265.1061 Section... FACILITIES Air Emission Standards for Equipment Leaks § 265.1061 Alternative standards for valves in gas/vapor service or in light liquid service: percentage of valves allowed to leak. (a) An owner or operator...

  19. 40 CFR 265.1061 - Alternative standards for valves in gas/vapor service or in light liquid service: percentage of...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gas/vapor service or in light liquid service: percentage of valves allowed to leak. 265.1061 Section... FACILITIES Air Emission Standards for Equipment Leaks § 265.1061 Alternative standards for valves in gas/vapor service or in light liquid service: percentage of valves allowed to leak. (a) An owner or operator...

  20. 40 CFR 264.1062 - Alternative standards for valves in gas/vapor service or in light liquid service: skip period...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gas/vapor service or in light liquid service: skip period leak detection and repair. 264.1062 Section... Emission Standards for Equipment Leaks § 264.1062 Alternative standards for valves in gas/vapor service or in light liquid service: skip period leak detection and repair. (a) An owner or operator subject to...

  1. 40 CFR 265.1061 - Alternative standards for valves in gas/vapor service or in light liquid service: percentage of...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gas/vapor service or in light liquid service: percentage of valves allowed to leak. 265.1061 Section... FACILITIES Air Emission Standards for Equipment Leaks § 265.1061 Alternative standards for valves in gas/vapor service or in light liquid service: percentage of valves allowed to leak. (a) An owner or operator...

  2. 40 CFR 265.1062 - Alternative standards for valves in gas/vapor service or in light liquid service: skip period...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gas/vapor service or in light liquid service: skip period leak detection and repair. 265.1062 Section... FACILITIES Air Emission Standards for Equipment Leaks § 265.1062 Alternative standards for valves in gas/vapor service or in light liquid service: skip period leak detection and repair. (a) An owner or...

  3. 40 CFR 264.1062 - Alternative standards for valves in gas/vapor service or in light liquid service: skip period...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gas/vapor service or in light liquid service: skip period leak detection and repair. 264.1062 Section... Emission Standards for Equipment Leaks § 264.1062 Alternative standards for valves in gas/vapor service or in light liquid service: skip period leak detection and repair. (a) An owner or operator subject to...

  4. 40 CFR 265.1062 - Alternative standards for valves in gas/vapor service or in light liquid service: skip period...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gas/vapor service or in light liquid service: skip period leak detection and repair. 265.1062 Section... FACILITIES Air Emission Standards for Equipment Leaks § 265.1062 Alternative standards for valves in gas/vapor service or in light liquid service: skip period leak detection and repair. (a) An owner or...

  5. 40 CFR 264.1061 - Alternative standards for valves in gas/vapor service or in light liquid service: percentage of...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gas/vapor service or in light liquid service: percentage of valves allowed to leak. 264.1061 Section... Emission Standards for Equipment Leaks § 264.1061 Alternative standards for valves in gas/vapor service or in light liquid service: percentage of valves allowed to leak. (a) An owner or operator subject to...

  6. 40 CFR 264.1061 - Alternative standards for valves in gas/vapor service or in light liquid service: percentage of...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gas/vapor service or in light liquid service: percentage of valves allowed to leak. 264.1061 Section... Emission Standards for Equipment Leaks § 264.1061 Alternative standards for valves in gas/vapor service or in light liquid service: percentage of valves allowed to leak. (a) An owner or operator subject to...

  7. 40 CFR 265.1062 - Alternative standards for valves in gas/vapor service or in light liquid service: skip period...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gas/vapor service or in light liquid service: skip period leak detection and repair. 265.1062 Section... FACILITIES Air Emission Standards for Equipment Leaks § 265.1062 Alternative standards for valves in gas/vapor service or in light liquid service: skip period leak detection and repair. (a) An owner or...

  8. 40 CFR 264.1061 - Alternative standards for valves in gas/vapor service or in light liquid service: percentage of...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gas/vapor service or in light liquid service: percentage of valves allowed to leak. 264.1061 Section... Emission Standards for Equipment Leaks § 264.1061 Alternative standards for valves in gas/vapor service or in light liquid service: percentage of valves allowed to leak. (a) An owner or operator subject to...

  9. 40 CFR 264.1061 - Alternative standards for valves in gas/vapor service or in light liquid service: percentage of...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gas/vapor service or in light liquid service: percentage of valves allowed to leak. 264.1061 Section... Emission Standards for Equipment Leaks § 264.1061 Alternative standards for valves in gas/vapor service or in light liquid service: percentage of valves allowed to leak. (a) An owner or operator subject to...

  10. 40 CFR 264.1062 - Alternative standards for valves in gas/vapor service or in light liquid service: skip period...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gas/vapor service or in light liquid service: skip period leak detection and repair. 264.1062 Section... Emission Standards for Equipment Leaks § 264.1062 Alternative standards for valves in gas/vapor service or in light liquid service: skip period leak detection and repair. (a) An owner or operator subject to...

  11. 40 CFR 264.1061 - Alternative standards for valves in gas/vapor service or in light liquid service: percentage of...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gas/vapor service or in light liquid service: percentage of valves allowed to leak. 264.1061 Section... Emission Standards for Equipment Leaks § 264.1061 Alternative standards for valves in gas/vapor service or in light liquid service: percentage of valves allowed to leak. (a) An owner or operator subject to...

  12. 40 CFR 265.1062 - Alternative standards for valves in gas/vapor service or in light liquid service: skip period...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gas/vapor service or in light liquid service: skip period leak detection and repair. 265.1062 Section... FACILITIES Air Emission Standards for Equipment Leaks § 265.1062 Alternative standards for valves in gas/vapor service or in light liquid service: skip period leak detection and repair. (a) An owner or...

  13. 40 CFR 265.1062 - Alternative standards for valves in gas/vapor service or in light liquid service: skip period...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gas/vapor service or in light liquid service: skip period leak detection and repair. 265.1062 Section... FACILITIES Air Emission Standards for Equipment Leaks § 265.1062 Alternative standards for valves in gas/vapor service or in light liquid service: skip period leak detection and repair. (a) An owner or...

  14. 40 CFR 265.1061 - Alternative standards for valves in gas/vapor service or in light liquid service: percentage of...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gas/vapor service or in light liquid service: percentage of valves allowed to leak. 265.1061 Section... FACILITIES Air Emission Standards for Equipment Leaks § 265.1061 Alternative standards for valves in gas/vapor service or in light liquid service: percentage of valves allowed to leak. (a) An owner or operator...

  15. 40 CFR 265.1061 - Alternative standards for valves in gas/vapor service or in light liquid service: percentage of...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gas/vapor service or in light liquid service: percentage of valves allowed to leak. 265.1061 Section... FACILITIES Air Emission Standards for Equipment Leaks § 265.1061 Alternative standards for valves in gas/vapor service or in light liquid service: percentage of valves allowed to leak. (a) An owner or operator...

  16. 40 CFR 264.1062 - Alternative standards for valves in gas/vapor service or in light liquid service: skip period...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gas/vapor service or in light liquid service: skip period leak detection and repair. 264.1062 Section... Emission Standards for Equipment Leaks § 264.1062 Alternative standards for valves in gas/vapor service or in light liquid service: skip period leak detection and repair. (a) An owner or operator subject to...

  17. Polyethylene-Glycol-Mediated Self-Assembly of Magnetite Nanoparticles at the Liquid/Vapor Interface

    DOE PAGES

    Vaknin, David; Wang, Wenjie; Islam, Farhan; ...

    2018-03-23

    It is shown that magnetite nanoparticles (MagNPs) grafted with polyethylene glycol (PEG) self-assemble and short-range-order as 2D films at surfaces of aqueous suspensions by manipulating salt concentrations. Synchrotron X-ray reflectivity and grazing-incidence small angle X-ray scattering studies reveal that K 2CO 3 induces the migration of the PEG-MagNPs to the liquid/vapor interface to form a Gibbs layer of monoparticle in thickness. As the salt concentration and/or nanoparticle concentration increase, the surface-adsorbed nanoparticles become more organized. And further increase in salt concentration leads to the growth of an additional incomplete nanoparticle layer contiguous to the first one at the vapor/liquid interfacemore » that remains intact.« less

  18. Polyethylene-Glycol-Mediated Self-Assembly of Magnetite Nanoparticles at the Liquid/Vapor Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaknin, David; Wang, Wenjie; Islam, Farhan

    It is shown that magnetite nanoparticles (MagNPs) grafted with polyethylene glycol (PEG) self-assemble and short-range-order as 2D films at surfaces of aqueous suspensions by manipulating salt concentrations. Synchrotron X-ray reflectivity and grazing-incidence small angle X-ray scattering studies reveal that K 2CO 3 induces the migration of the PEG-MagNPs to the liquid/vapor interface to form a Gibbs layer of monoparticle in thickness. As the salt concentration and/or nanoparticle concentration increase, the surface-adsorbed nanoparticles become more organized. And further increase in salt concentration leads to the growth of an additional incomplete nanoparticle layer contiguous to the first one at the vapor/liquid interfacemore » that remains intact.« less

  19. The liquid-vapor equilibria of TIP4P/2005 and BLYPSP-4F water models determined through direct simulations of the liquid-vapor interface.

    PubMed

    Hu, Hongyi; Wang, Feng

    2015-06-07

    In this paper, the surface tension and critical properties for the TIP4P/2005 and BLYPSP-4F models are reported. A clear dependence of surface tension on the van der Waals cutoff radius (rvdw) is shown when van der Waals interactions are modeled with a simple cutoff scheme. A linear extrapolation formula is proposed that can be used to determine the infinite rvdw surface tension through a few simulations with finite rvdw. A procedure for determining liquid and vapor densities is proposed that does not require fitting to a profile function. Although the critical temperature of water is also found to depend on the choice of rvdw, the dependence is weaker. We argue that a rvdw of 1.75 nm is a good compromise for water simulations when long-range van der Waals correction is not applied. Since the majority of computational programs do not support rigorous treatment of long-range dispersion, the establishment of a minimal acceptable rvdw is important for the simulation of a variety of inhomogeneous systems, such as water bubbles, and water in confined environments. The BLYPSP-4F model predicts room temperature surface tension marginally better than TIP4P/2005 but overestimates the critical temperature. This is expected since only liquid configurations were fit during the development of the BLYPSP-4F potential. The potential is expected to underestimate the stability of vapor and thus overestimate the region of stability for the liquid.

  20. Direct calculation of liquid-vapor phase equilibria from transition matrix Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Errington, Jeffrey R.

    2003-06-01

    An approach for directly determining the liquid-vapor phase equilibrium of a model system at any temperature along the coexistence line is described. The method relies on transition matrix Monte Carlo ideas developed by Fitzgerald, Picard, and Silver [Europhys. Lett. 46, 282 (1999)]. During a Monte Carlo simulation attempted transitions between states along the Markov chain are monitored as opposed to tracking the number of times the chain visits a given state as is done in conventional simulations. Data collection is highly efficient and very precise results are obtained. The method is implemented in both the grand canonical and isothermal-isobaric ensemble. The main result from a simulation conducted at a given temperature is a density probability distribution for a range of densities that includes both liquid and vapor states. Vapor pressures and coexisting densities are calculated in a straightforward manner from the probability distribution. The approach is demonstrated with the Lennard-Jones fluid. Coexistence properties are directly calculated at temperatures spanning from the triple point to the critical point.

  1. Experimental study of the spill and vaporization of a volatile liquid.

    PubMed

    Bohl, Douglas; Jackson, Gregory

    2007-02-09

    Pool and vapor cloud characteristics of an acetone spill issuing from the downstream wall of a flow obstruction oriented perpendicular to a uniform flow were investigated experimentally. Data indicate that the spill event was largely governed by the temperature of the surface in relation to the boiling point of the spilled liquid. The free stream velocity (ranging from 0.75 to 3.0m/s) also impacted the spreading of the spill. Planar laser-induced fluorescence (PLIF) was used to measure acetone vapor concentrations during the transient pool spreading and vaporization in a window 60cm long by 50cm high and located downstream of the 16cm high obstruction. The recirculation region induced by the flow obstruction caused upstream transport of the acetone vapor along the spill surface, after which it was convected vertically along the obstruction wall before being entrained into the flow and convected downstream. The recirculating flow caused regions of vapor within the flammability limits to be localized near the flow obstruction. These regions moved into and out of the measurement plane by large three-dimensional flow structures. The flammable region of the evolved vapor cloud was observed to grow well past the downstream edge of the measurement domain. With decreasing wind speeds, both the mass of acetone vapor within the flammability limits and the total spill event time increased significantly. The data presented herein provides a basis for validating future spill models of hazardous chemical releases, where complex turbulent flow modeling must be coupled with spill spreading and vaporization dynamics.

  2. A Simple Approach to Characterize Gas-Aqueous Liquid Two-phase Flow Configuration Based on Discrete Solid-Liquid Contact Electrification

    PubMed Central

    Choi, Dongwhi; Lee, Donghyeon; Sung Kim, Dong

    2015-01-01

    In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two–phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid–liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability. PMID:26462437

  3. Developmental Testing of Liquid and Gaseous/Vaporous Decontamination on Bacterial Spores and Other Biological Warfare Agents on Military Relevant Surfaces

    DTIC Science & Technology

    2016-02-11

    process ( gas /vapor or liquid ), sampling will be conducted as soon as possible. Samples will be incubated for 12 to 48 hours (depending on the...Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Test Operations Procedure (TOP) 08-2-065 Developmental Testing of Liquid and Gaseous...biological decontamination protocol to analyze the efficacy of liquid and gaseous/vaporous decontaminants on military-relevant surfaces. The

  4. Temperature-difference-driven mass transfer through the vapor from a cold to a warm liquid.

    PubMed

    Struchtrup, Henning; Kjelstrup, Signe; Bedeaux, Dick

    2012-06-01

    Irreversible thermodynamics provides interface conditions that yield temperature and chemical potential jumps at phase boundaries. The interfacial jumps allow unexpected transport phenomena, such as the inverted temperature profile [Pao, Phys. Fluids 14, 306 (1971)] and mass transfer from a cold to a warm liquid driven by a temperature difference across the vapor phase [Mills and Phillips, Chem. Phys. Lett. 372, 615 (2002)]. Careful evaluation of the thermodynamic laws has shown [Bedeaux et al., Physica A 169, 263 (1990)] that the inverted temperature profile is observed for processes with a high heat of vaporization. In this paper, we show that cold to warm mass transfer through the vapor from a cold to a warm liquid is only possible when the heat of evaporation is sufficiently small. A necessary criterium for the size of the mass transfer coefficient is given.

  5. Stokes flow inside an evaporating liquid line for any contact angle

    NASA Astrophysics Data System (ADS)

    Petsi, A. J.; Burganos, V. N.

    2008-09-01

    Evaporation of droplets or liquid films lying on a substrate induces internal viscous flow, which affects the transport of suspended particles and, thus, the final deposit profile in numerous applications. In this work, the problem of Stokes flow inside a two-dimensional droplet, representing the cross section of an evaporating liquid line lying on a flat surface, is considered. The stream function formulation is adopted, leading to the biharmonic equation in bipolar coordinates. A solution in closed form is obtained for any contact angle in (0,π) and is, thus, valid for both hydrophilic and hydrophobic substrates. The solution can be used with any type of evaporation mechanism, including diffusion, convection, or kinetically controlled modes. Both pinned and depinned contact lines are considered. For the boundary conditions to be compatible at the contact lines, the Navier slip boundary condition is applied on the substrate. Numerical results are presented for kinetically and diffusion controlled evaporation. For pinned contact lines, the flow inside the evaporating liquid line is directed towards the edges, thus, promoting the coffee stain phenomenon. In the case of depinned contact lines and contact angle less than π/2 , the flow is directed towards the center of the droplet, whereas, for strongly hydrophobic substrates it is directed outwards.

  6. Vaporization of liquid Pb-Li eutectic alloy from 1000K to 1200K - A high temperature mass spectrometric study

    NASA Astrophysics Data System (ADS)

    Jain, U.; Mukherjee, A.; Dey, G. K.

    2017-09-01

    Liquid lead-lithium eutectic will be used as a coolant in fusion reactor blanket loop. Vapor pressure of the eutectic is an important parameter to accurately predict its in-loop behavior. Past measurements of vapor pressure of the eutectic relied on indirect methods. In this paper, we report for the first time the in-situ vaporization behavior of the liquid alloy between 1042 and 1176 K by Knudsen effusion mass spectrometry (KEMS). It was seen that the vaporization occurred by independent evaporation of lead and lithium. No complex intermetallic vapor was seen in the mass spectra. The partial pressures and enthalpy of vaporization of Pb and Li were evaluated directly from the measured ion intensities formed from the equilibrium vapor over the alloy. The activity of Li over a temperature range of 1042-1176 K was found to be 4.8 × 10-5 to that of pure Li, indicating its very low activity in the alloy.

  7. X-Ray Scattering Studies of the Liquid-Vapor Interface of Gallium.

    NASA Astrophysics Data System (ADS)

    Kawamoto, Eric Hitoshi

    A UHV system was developed for performing X-ray scattering studies and in situ analyses of liquid metal surfaces. A nearly ideal choice for this study, gallium has a melting point just above room temperature; is amenable to handling in both air and vacuum; its surface oxides can be removed while its cleanliness is maintained and monitored. Using argon glow-discharge sputtering techniques to remove intervening surface oxides, thin wetting layers of gallium were prepared atop nonreactive substrates, to be used as samples suited for liquid surface scattering experiments. Preliminary measurements of X-ray reflectivity from the liquid-vapor interface of gallium were performed with the X-ray UHV chamber configured for use in conjunction with liquid surface spectrometers at two synchrotron beamlines. A novel technique for carrying out and interpreting scattering measurements from curved liquid surfaces was demonstrated. The energy tunability and intense focused white beam flux from a wiggler source was shown to place within reach the large values of wavevector transfer at which specular reflectivity data yield small length scale information about surface structure. Various theoretical treatments and simulations predict quasi-lamellar ordering of atoms near the free surface of metallic liquids due to energetics particular to metals (electron delocalization, the dependence of system energy on ion and electron densities, surface tension and electrostatic energy). However, the experimental data reported to date is insufficient to distinguish between a monotonic, sigmoidal electron density profile found at the free surfaces of dielectric liquids, and the damped oscillatory layer-like profiles anticipated for metallic liquids. Out to a wavevector transfer of Q = 0.55 A ^{-1}, the reflectivity data measured from a curved Ga surface is not inconsistent with what is expected for a liquid-vapor electron density profile of Gaussian width sigma = 1.3 +/- 0.2 A. Subsequent

  8. Vaporization behavior of tetraoctylphosphonium bis(2-ethylhexyl)phosphate ionic liquid

    DOE PAGES

    McMurray, J. W.; Zhou, Y.; Luo, H. M.; ...

    2016-11-18

    We determined the equilibrium vapor pressures, p e, of the ionic liquid tetraoctylphosphonium bis(2-ethylhexyl)phosphate ([P 8888][DEHP]) over the temperature range 409–495 K using mass loss Knudsen effusion. The p e versus temperature relationship compares well to 1-methyl-3-octylimidazolium bis(trifluoromethylsulfonyl)imide ([C 8mim][NTf 2]) but is lower than that of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C 2mim][NTf 2]) when measured using the same technique. Here, we determined the discrepancies between the p e for [C 8mim][NTf 2] and [C 2mim][NTf 2] with previous studies is discussed. Finally, the enthalpy and entropy of vaporization for all three fluids are estimated from the Clasius-Clapeyron relation.

  9. Vaporization behavior of tetraoctylphosphonium bis(2-ethylhexyl)phosphate ionic liquid

    NASA Astrophysics Data System (ADS)

    McMurray, J. W.; Zhou, Y.; Luo, H. M.; Qu, J.

    2017-01-01

    The equilibrium vapor pressures, pe, of the ionic liquid tetraoctylphosphonium bis(2-ethylhexyl)phosphate ([P8888][DEHP]) over the temperature range 409-495 K were determined for the first time using mass loss Knudsen effusion. The pe versus temperature relationship compares well to 1-methyl-3-octylimidazolium bis(trifluoromethylsulfonyl)imide ([C8mim][NTf2]) but is lower than that of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][NTf2]) when measured using the same technique. The discrepancies between the pe determined in this work for [C8mim][NTf2] and [C2mim][NTf2] with previous studies is discussed. The enthalpy and entropy of vaporization for all three fluids are estimated from the Clasius-Clapeyron relation.

  10. On the critical temperature, normal boiling point, and vapor pressure of ionic liquids.

    PubMed

    Rebelo, Luis P N; Canongia Lopes, José N; Esperança, José M S S; Filipe, Eduardo

    2005-04-07

    One-stage, reduced-pressure distillations at moderate temperature of 1-decyl- and 1-dodecyl-3-methylimidazolium bistriflilamide ([Ntf(2)](-)) ionic liquids (ILs) have been performed. These liquid-vapor equilibria can be understood in light of predictions for normal boiling points of ILs. The predictions are based on experimental surface tension and density data, which are used to estimate the critical points of several ILs and their corresponding normal boiling temperatures. In contrast to the situation found for relatively unstable ILs at high-temperature such as those containing [BF(4)](-) or [PF(6)](-) anions, [Ntf(2)](-)-based ILs constitute a promising class in which reliable, accurate vapor pressure measurements can in principle be performed. This property is paramount for assisting in the development and testing of accurate molecular models.

  11. Liquid-bridge stability and breakup on surfaces with contact-angle hysteresis.

    PubMed

    Akbari, Amir; Hill, Reghan J

    2016-08-10

    We study the stability and breakup of liquid bridges with a free contact line on surfaces with contact-angle hysteresis (CAH) under zero-gravity conditions. Non-ideal surfaces exhibit CAH because of surface imperfections, by which the constraints on three-phase contact lines are influenced. Given that interfacial instabilities are constraint-sensitive, understanding how CAH affects the stability and breakup of liquid bridges is crucial for predicting the drop size in contact-drop dispensing. Unlike ideal surfaces on which contact lines are always free irrespective of surface wettability, contact lines may undergo transitions from pinned to free and vice versa during drop deposition on non-ideal surfaces. Here, we experimentally and theoretically examine how stability and breakup are affected by CAH, highlighting cases where stability is lost during a transition from a pinned-pinned (more constrained) to pinned-free (less constrained) interface-rather than a critical state. This provides a practical means of expediting or delaying stability loss. We also demonstrate how the dynamic contact angle can control the contact-line radius following stability loss.

  12. Identifying Liquid-Gas System Misconceptions and Addressing Them Using a Laboratory Exercise on Pressure-Temperature Diagrams of a Mixed Gas Involving Liquid-Vapor Equilibrium

    ERIC Educational Resources Information Center

    Yoshikawa, Masahiro; Koga, Nobuyoshi

    2016-01-01

    This study focuses on students' understandings of a liquid-gas system with liquid-vapor equilibrium in a closed system using a pressure-temperature ("P-T") diagram. By administrating three assessment questions concerning the "P-T" diagrams of liquid-gas systems to students at the beginning of undergraduate general chemistry…

  13. Vapor pressures of 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids with long alkyl chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocha, Marisa A. A., E-mail: lbsantos@fc.up.pt, E-mail: marisa.alexandra.rocha@gmail.com; Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven; Coutinho, João A. P.

    2014-10-07

    This work presents the vapor pressure at several temperatures for the 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide series, [C{sub N/2}C{sub N/2}im][NTf{sub 2}] (N = 14, 16, 18, and 20), measured by a Knudsen effusion method combined with a quartz crystal microbalance. The thermodynamic properties of vaporization of the ionic liquids under study are analysed together with the results obtained previously for the shorter alkyl chain length [C{sub N/2}C{sub N/2}im][NTf{sub 2}] (N = 2, 4, 6, 8, 10, and 12), in order to evaluate the effect of the alkyl side chains of the cation and to get additional insights concerning the nanostructuration of ionic liquids.more » The symmetry effect is explored, based on the comparison with the asymmetric imidazolium based ionic liquids, [C{sub N-1}C{sub 1}im][NTf{sub 2}]. A trend shift on the thermodynamic properties of vaporization along the alkyl side chains of the extended symmetric ionic liquids, around [C{sub 6}C{sub 6}im][NTf{sub 2}], was detected. An intensification of the odd-even effect was observed starting from [C{sub 6}C{sub 6}im][NTf{sub 2}], with higher enthalpies and entropies of vaporization for the odd numbered ionic liquids, [C{sub 7}C{sub 7}im][NTf{sub 2}] and [C{sub 9}C{sub 9}im][NTf{sub 2}]. Similar, but less pronounced, odd-even effect was found for the symmetric ionic liquids with lower alkyl side chains length, [C{sub N/2}C{sub N/2}im][NTf{sub 2}] (with N = 4, 6, 8, 10, and 12). This effect is related with the predominant orientation of the terminal methyl group of the alkyl chain to the imidazolium ring and their influence in the cation-anion interaction. The same Critical Alkyl length at the hexyl, (C{sub 6}C{sub 1}and C{sub 6}C{sub 6}) was found for both asymmetric and symmetric series indicating that the nanostructuration of the ionic liquids is related with alkyl chain length.« less

  14. Vapor-Liquid-Solid Etch of Semiconductor Surface Channels by Running Gold Nanodroplets.

    PubMed

    Nikoobakht, Babak; Herzing, Andrew; Muramoto, Shin; Tersoff, Jerry

    2015-12-09

    We show that Au nanoparticles spontaneously move across the (001) surface of InP, InAs, and GaP when heated in the presence of water vapor. As they move, the particles etch crystallographically aligned grooves into the surface. We show that this process is a negative analogue of the vapor-liquid-solid (VLS) growth of semiconductor nanowires: the semiconductor dissolves into the catalyst and reacts with water vapor at the catalyst surface to create volatile oxides, depleting the dissolved cations and anions and thus sustaining the dissolution process. This VLS etching process provides a new tool for directed assembly of structures with sublithographic dimensions, as small as a few nanometers in diameter. Au particles above 100 nm in size do not exhibit this process but remain stationary, with oxide accumulating around the particles.

  15. Potential heat exchange fluids for use in sulfuric acid vaporizers

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Petersen, G. R.

    1979-01-01

    A series of perhalocarbons are proposed as candidate heat exchange fluids for service in thermochemical cycles for hydrogen production that involve direct contact of the fluid with sulfuric acid and vaporization of the acid. The required chemical and physical criteria of the liquids are described and the results of some preliminary high temperature test data are presented.

  16. Heat transfer characteristics of a surface type direct contact boiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deeds, R.S.; Jacobs, H.R.; Boehm, R.F.

    1976-03-01

    Two direct contact heat exchangers were constructed and test results were obtained using water and refrigerant 113 as the working fluids. The heat exchangers were operated in a three-phase mode; the water remained liquid throughout the vessel and the liquid refrigerant 113 underwent vaporization following direct injection into the water. The effect of important operational parameters--operating heights, refrigerant 113 injection techniques, mass flow ratios, and temperatures--was studied to determine generalized trends important in the design and operation of a prototype three-phase direct contact heat exchanger. The primary system used in this study performed well overall. The initial favorable results ofmore » this study warrant further investigation of direct contact heat exchange as a means of utilizing geothermal energy.« less

  17. Naturally occurring vapor-liquid-solid (VLS) Whisker growth of germanium sulfide

    USGS Publications Warehouse

    Finkelman, R.B.; Larson, R.R.; Dwornik, E.J.

    1974-01-01

    The first naturally occurring terrestrial example of vapor-liquid-solid (VLS) growth has been observed in condensates from gases released by burning coal in culm banks. Scanning electron microscopy, X-ray diffraction, and energy dispersive analysis indicate that the crystals consist of elongated rods (??? 100 ??m) of germanium sulfide capped by bulbs depleted in germanium. ?? 1974.

  18. Slosh wave excitation due to cryogenic liquid reorientation in space-based propulsion system

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Shyu, K. L.; Lee, C. C.

    1991-01-01

    The objective of the cryogenic fluid management of the spacecraft propulsion system is to develop the technology necessary for acquistion or positioning of liquid and vapor within a tank in reduced gravity to enable liquid outflow or vapor venting. In this study slosh wave excitation induced by the resettling flow field activated by 1.0 Hz medium frequency impulsive reverse gravity acceleration during the course of liquid fluid reorientation with the initiation of geyser for liquid filled levels of 30, 50, and 80 percent have been studied. Characteristics of slosh waves with various frequencies excited are discussed.

  19. Quantifying liquid boundary and vapor distributions in a fuel spray by rainbow schlieren deflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taber Wanstall, C.; Agrawal, Ajay K.; Bittle, Joshua A.

    The rainbow schlieren deflectometry (RSD) technique is used to determine the liquid boundary and the fuel volume fraction distributions in the vapor region of a high-pressure fuel spray. Experiments were conducted in a constant pressure flow vessel, whereby a customized single-hole common-rail diesel injector is used to introduce n-heptane fuel into a coflow of low-speed ambient air at two different test conditions. Only the quasi-steady period of the fuel spray is considered, and multiple injections are performed to acquire statistically significant data at an image acquisition rate of 20 kHz. An algorithm to identify the liquid boundary using intensity recordedmore » by the RSD images is presented. The results are compared against measurements obtained by the Mie scattering technique. Our results demonstrate that the RSD can be a powerful optical diagnostics technique to simultaneously quantify both the vapor and liquid regions in the high-pressure fuel sprays.« less

  20. Quantifying liquid boundary and vapor distributions in a fuel spray by rainbow schlieren deflectometry.

    PubMed

    Taber Wanstall, C; Agrawal, Ajay K; Bittle, Joshua A

    2017-10-20

    The rainbow schlieren deflectometry (RSD) technique is used to determine the liquid boundary and the fuel volume fraction distributions in the vapor region of a high-pressure fuel spray. Experiments were conducted in a constant pressure flow vessel, whereby a customized single-hole common-rail diesel injector is used to introduce n-heptane fuel into a coflow of low-speed ambient air at two different test conditions. Only the quasi-steady period of the fuel spray is considered, and multiple injections are performed to acquire statistically significant data at an image acquisition rate of 20 kHz. An algorithm to identify the liquid boundary using intensity recorded by the RSD images is presented. The results are compared against measurements obtained by the Mie scattering technique. Results demonstrate that the RSD can be a powerful optical diagnostics technique to simultaneously quantify both the vapor and liquid regions in the high-pressure fuel sprays.

  1. Quantifying liquid boundary and vapor distributions in a fuel spray by rainbow schlieren deflectometry

    DOE PAGES

    Taber Wanstall, C.; Agrawal, Ajay K.; Bittle, Joshua A.

    2017-01-01

    The rainbow schlieren deflectometry (RSD) technique is used to determine the liquid boundary and the fuel volume fraction distributions in the vapor region of a high-pressure fuel spray. Experiments were conducted in a constant pressure flow vessel, whereby a customized single-hole common-rail diesel injector is used to introduce n-heptane fuel into a coflow of low-speed ambient air at two different test conditions. Only the quasi-steady period of the fuel spray is considered, and multiple injections are performed to acquire statistically significant data at an image acquisition rate of 20 kHz. An algorithm to identify the liquid boundary using intensity recordedmore » by the RSD images is presented. The results are compared against measurements obtained by the Mie scattering technique. Our results demonstrate that the RSD can be a powerful optical diagnostics technique to simultaneously quantify both the vapor and liquid regions in the high-pressure fuel sprays.« less

  2. Dynamic equilibrium under vibrations of H2 liquid-vapor interface at various gravity levels

    NASA Astrophysics Data System (ADS)

    Gandikota, G.; Chatain, D.; Lyubimova, T.; Beysens, D.

    2014-06-01

    Horizontal vibration applied to the support of a simple pendulum can deviate from the equilibrium position of the pendulum to a nonvertical position. A similar phenomenon is expected when a liquid-vapor interface is subjected to strong horizontal vibration. Beyond a threshold value of vibrational velocity the interface should attain an equilibrium position at an angle to the initial horizontal position. In the present paper experimental investigation of this phenomenon is carried out in a magnetic levitation device to study the effect of the vibration parameters, gravity acceleration, and the liquid-vapor density on the interface position. The results compare well with the theoretical expression derived by Wolf [G. H. Wolf, Z. Phys. B 227, 291 (1969), 10.1007/BF01397662].

  3. Steady boiling of vapor bubbles in rectangular channels

    NASA Astrophysics Data System (ADS)

    Ajaev, Vladimir S.; Homsy, George M.

    2000-11-01

    We consider vapor bubbles in microchannels in which the vapor is produced by a heater element and condenses in cooler parts of the interface. The free boundary problem is formulated for a long steady-state bubble in a rectangular channel with a heated bottom. The shape of the liquid-vapor interface is described using lubrication-type equations in the regime in which the vapor phase fills most of the cross-section. Contact lines may be present, marking the transitions between molecularly thin films and macroscopic ones. The main parameters are the differences between heater, saturation, and top wall temperatures. The equations are solved numerically over a range of parameter values with an integral condition requiring the evaporation near the heater to balance condensation in colder areas of the interface. Depending on the temperature, the side walls can be either dry or covered with a liquid film; we identify criteria for these two different regimes. The asymptotic method breaks down in the limit when capillary condensation becomes important near the bubble top and a different approach is used to determine the shape of the bubble in this limit. Solutions here involve localized regions of large mass fluxes, which are asymptotically matched to capillary-statics regions where the heat transfer is negligible.

  4. Experimental investigation of the physical properties of medium and heavy oils, their vaporization and use in explosion engines. Part IV

    NASA Technical Reports Server (NTRS)

    Heinlein, Fritz

    1926-01-01

    This report presents a theoretical treatment of the vaporization process of medium and heavy oils. The results of this investigation, which were mostly obtained from the lighter components of the heavy fuels, require a 10- or 16-fold vaporization in comparison with gasoline. We must attain a still finer degree of atomization, in order to include the heavier components.

  5. Vapor-liquid equilibria for hydrogen fluoride + 1,1-difluoroethane at 288.23 and 298.35 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.; Kim, H.; Lim, J.S.

    1997-07-01

    Isothermal vapor-liquid equilibria for hydrogen fluoride + 1,1-difluoroethane at 288.23 and 298.35 K were measured using a circulation type apparatus equipped with an equilibrium view cell. The compositions of both vapor and liquid phases were analyzed by an on-line gas chromatographic method. They were compared with PTx equilibrium data measured by the total pressure method. The experimental data were correlated with Anderko`s equation of state using the Wong-Sandler mixing rule as well as the van der Waals one-fluid mixing rule. The Wong-Sandler mixing rule gives better results, and the relevant parameters are presented.

  6. "Pressure Blocking" Effect in the Growing Vapor Bubble in a Highly Superheated Liquid

    NASA Astrophysics Data System (ADS)

    Zudin, Yu. B.; Zenin, V. V.

    2016-09-01

    The problem on the growth of a vapor bubble in a liquid whose superheating enthalpy exceeds the phase transition heat has been considered. A physical model of the "pressure blocking" in the bubble is presented. The problem for the conditions of the experiment on the effervescence of a butane drop has been solved numerically. An algorithm for constructing an analytical solution of the problem on the bubble growth in a highly superheated liquid is proposed.

  7. SEPARATION OF VAPOR-PHASE ALCOHOL/WATER MIXTURES VIA FRACTIONAL CONDENSATION USING A PILOT-SCALE DEPHLEGMATOR: ENHANCEMENT OF THE PREVAPORATION PROCESS SEPARATION FACTOR

    EPA Science Inventory

    In prevaporation, a liquid mixture contacts a membrane surface that preferentially permeates one of the liquid components as a vapor. Our approach to improving pervaporation performance is to replace the one-stage condenser traditionally used to condense the permeate with a frac...

  8. Vaporization of the prototypical ionic liquid BMImNTf₂ under equilibrium conditions: a multitechnique study.

    PubMed

    Brunetti, Bruno; Ciccioli, Andrea; Gigli, Guido; Lapi, Andrea; Misceo, Nicolaemanuele; Tanzi, Luana; Vecchio Ciprioti, Stefano

    2014-08-07

    The vaporization behaviour and thermodynamics of the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethyl)sulfonylimide (BMImNTf2) were studied by combining the Knudsen Effusion Mass Loss (KEML) and Knudsen Effusion Mass Spectrometry (KEMS) techniques. KEML studies were carried out in a large temperature range (398-567) K by using effusion orifices with 0.3, 1, and 3 mm diameters. The vapor pressures so measured revealed no kinetically hindered vaporization effects and provided second-law vaporization enthalpies at the mean experimental temperatures in close agreement with literature. By exploiting the large temperature range covered, the heat capacity change associated with vaporization was estimated, resulting in a value of -66.8 J K(-1) mol(-1), much lower than that predicted from calorimetric measurements on the liquid phase and theoretical calculations on the gas phase. The conversion of the high temperature vaporization enthalpy to 298 K was discussed and the value Δ(l)(g)H(m)(298 K) = (128.6 ± 1.3) kJ mol(-1) assessed on the basis of data from literature and present work. Vapor pressure data were also processed by the third-law procedure using different estimations for the auxiliary thermal functions, and a Δ(l)(g)H(m)(298 K) consistent with the assessed value was obtained, although the overall agreement is sensitive to the accuracy of heat capacity data. KEMS measurements were carried out in the lower temperature range (393-467) K and showed that the largely prevailing ion species is BMIm(+), supporting the common view of BMImNTf2 vaporizing as individual, neutral ion pairs also under equilibrium conditions. By monitoring the mass spectrometric signal of this ion as a function of temperature, a second-law Δ(l)(g)H(m)(298 K) of 129.4 ± 7.3 kJ mol(-1) was obtained, well consistent with KEML and literature results. Finally, by combining KEML and KEMS measurements, the electron impact ionization cross section of BMIm(+) was estimated.

  9. Hidden Nanobubbles in Undersaturated Liquids.

    PubMed

    Guo, Zhenjiang; Liu, Yawei; Xiao, Qianxiang; Zhang, Xianren

    2016-11-01

    Here, we propose theoretically the existence of a new type of nanobubble in undersaturated liquids. These nanobubbles have a concave vapor-liquid interface featured with a negative curvature rather than a positive curvature for nanobubbles in supersaturated liquids, so that they often hide inside of the substrate textures and it might not be easy to characterize them through atomic force microscopy (AFM) measurements. However, these hidden nanobubbles are still stabilized by the contact line pinning effect and stay at the thermodynamically metastable state. We further demonstrate that similar to the nanobubbles in supersaturated liquids the contact angle of the hidden nanobubbles is more sensitive to the nanobubble size rather than the substrate chemistry, and their curvature radius is dependent on the chemical potential but independent of the base radius. Finally, we show several potential situations for the appearance of the hidden nanobubbles.

  10. Patterned Liquid Metal Contacts for Printed Carbon Nanotube Transistors.

    PubMed

    Andrews, Joseph B; Mondal, Kunal; Neumann, Taylor V; Cardenas, Jorge A; Wang, Justin; Parekh, Dishit P; Lin, Yiliang; Ballentine, Peter; Dickey, Michael D; Franklin, Aaron D

    2018-05-14

    Flexible and stretchable electronics are poised to enable many applications that cannot be realized with traditional, rigid devices. One of the most promising options for low-cost stretchable transistors are printed carbon nanotubes (CNTs). However, a major limiting factor in stretchable CNT devices is the lack of a stable and versatile contact material that forms both the interconnects and contact electrodes. In this work, we introduce the use of eutectic gallium-indium (EGaIn) liquid metal for electrical contacts to printed CNT channels. We analyze thin-film transistors (TFTs) fabricated using two different liquid metal deposition techniques-vacuum-filling polydimethylsiloxane (PDMS) microchannel structures and direct-writing liquid metals on the CNTs. The highest performing CNT-TFT was realized using vacuum-filled microchannel deposition with an in situ annealing temperature of 150 °C. This device exhibited an on/off ratio of more than 10 4 and on-currents as high as 150 μA/mm-metrics that are on par with other printed CNT-TFTs. Additionally, we observed that at room temperature the contact resistances of the vacuum-filled microchannel structures were 50% lower than those of the direct-write structures, likely due to the poor adhesion between the materials observed during the direct-writing process. The insights gained in this study show that stretchable electronics can be realized using low-cost and solely solution processing techniques. Furthermore, we demonstrate methods that can be used to electrically characterize semiconducting materials as transistors without requiring elevated temperatures or cleanroom processes.

  11. Multiphase, multicomponent parameter estimation for liquid and vapor fluxes in deep arid systems using hydrologic data and natural environmental tracers

    USGS Publications Warehouse

    Kwicklis, Edward M.; Wolfsberg, Andrew V.; Stauffer, Philip H.; Walvoord, Michelle Ann; Sully, Michael J.

    2006-01-01

    Multiphase, multicomponent numerical models of long-term unsaturated-zone liquid and vapor movement were created for a thick alluvial basin at the Nevada Test Site to predict present-day liquid and vapor fluxes. The numerical models are based on recently developed conceptual models of unsaturated-zone moisture movement in thick alluvium that explain present-day water potential and tracer profiles in terms of major climate and vegetation transitions that have occurred during the past 10 000 yr or more. The numerical models were calibrated using borehole hydrologic and environmental tracer data available from a low-level radioactive waste management site located in a former nuclear weapons testing area. The environmental tracer data used in the model calibration includes tracers that migrate in both the liquid and vapor phases (??D, ??18O) and tracers that migrate solely as dissolved solutes (Cl), thus enabling the estimation of some gas-phase as well as liquid-phase transport parameters. Parameter uncertainties and correlations identified during model calibration were used to generate parameter combinations for a set of Monte Carlo simulations to more fully characterize the uncertainty in liquid and vapor fluxes. The calculated background liquid and vapor fluxes decrease as the estimated time since the transition to the present-day arid climate increases. However, on the whole, the estimated fluxes display relatively little variability because correlations among parameters tend to create parameter sets for which changes in some parameters offset the effects of others in the set. Independent estimates on the timing since the climate transition established from packrat midden data were essential for constraining the model calibration results. The study demonstrates the utility of environmental tracer data in developing numerical models of liquid- and gas-phase moisture movement and the importance of considering parameter correlations when using Monte Carlo analysis to

  12. Deconstructing Temperature Gradients across Fluid Interfaces: The Structural Origin of the Thermal Resistance of Liquid-Vapor Interfaces

    NASA Astrophysics Data System (ADS)

    Muscatello, Jordan; Chacón, Enrique; Tarazona, Pedro; Bresme, Fernando

    2017-07-01

    The interfacial thermal resistance determines condensation-evaporation processes and thermal transport across material-fluid interfaces. Despite its importance in transport processes, the interfacial structure responsible for the thermal resistance is still unknown. By combining nonequilibrium molecular dynamics simulations and interfacial analyses that remove the interfacial thermal fluctuations we show that the thermal resistance of liquid-vapor interfaces is connected to a low density fluid layer that is adsorbed at the liquid surface. This thermal resistance layer (TRL) defines the boundary where the thermal transport mechanism changes from that of gases (ballistic) to that characteristic of dense liquids, dominated by frequent particle collisions involving very short mean free paths. We show that the thermal conductance is proportional to the number of atoms adsorbed in the TRL, and hence we explain the structural origin of the thermal resistance in liquid-vapor interfaces.

  13. Sorption of vapors of some organic liquids on soil humic acid and its relation to partitioning of organic compounds in soil organic matter

    USGS Publications Warehouse

    Chlou, G.T.; Kile, D.E.; Malcolm, R.L.

    1988-01-01

    Vapor sorption of water, ethanol, benzene, hexane, carbon tetrachloride, 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene, and 1,2-dibromoethane on (Sanhedron) soil humic acid has been determined at room temperature. Isotherms for all organic liquids are highly linear over a wide range of relative pressure (P/P??), characteristic of the partitioning (dissolution) of the organic compounds in soil humic acid. Polar liquids exhibit markedly greater sorption capacities on soil humic acid than relatively nonpolar liquids, in keeping with the polar nature of the soil humic acid as a partition medium. The limiting sorption (partition) capacities of relatively non-polar liquids are remarkably similar when expressed in terms of volumes per unit weight of soil humic acid. The soil humic acid is found to be about half as effective as soil organic matter in sorption of relatively nonpolar organic compounds. The nearly constant limiting sorption capacity for nonpolar organic liquids with soil humic acid on a volume-to-weight basis and its efficiency in sorption relative to soil organic matter provide a basis for predicting the approximate sorption (partition) coefficients of similar compounds in uptake by soil in aqueous systems.

  14. Vapor bridges between solid substrates in the presence of the contact line pinning effect: Stability and capillary force

    NASA Astrophysics Data System (ADS)

    Liu, Yawei; Zhang, Xianren

    2016-12-01

    In this work, we focus on investigating how nanobubbles mediate long-range interaction between neighboring solid substrates in the presence of the contact line pinning effect caused by surface heterogeneities. Using the constrained lattice density functional theory (LDFT), we prove that the nanobubbles, which take the form of vapor bridges here, are stabilized by the pinning effect if the separation between two substrates is less than a critical distance. The critical distance strongly depends on the chemical potential (i.e., the degree of saturation) and could become extremely long at a special chemical potential. Moreover, under the pinning effect, the substrate chemistry only determines the stability of the vapor bridges and the range of the capillary force, but has less influences on the magnitude of the capillary force, indicating that the substrate chemistry or the apparent contact angle for droplets or bubbles on the substrates is no longer a direct parameter to determine the magnitude of capillary force. A qualitative analysis for the two dimensional vapor bridges by considering the feedback mechanism can explain the results from the LDFT calculations.

  15. Vapor condensation on liquid surface due to laminar jet-induced mixing: The effects of system parameters

    NASA Technical Reports Server (NTRS)

    Lin, Chin-Shun; Hasan, Mohammad M.

    1989-01-01

    The effects of system parameters on the interface condensation rate in a laminar jet induced mixing tank are numerically studied. The physical system consists of a partially filled cylindrical tank with a slightly subcooled jet discharged from the center of the tank bottom toward the liquid-vapor interface which is at a saturation temperature corresponding to the constant tank pressure. Liquid is also withdrawn from the outer part of the tank bottom to maintain the constant liquid level. The jet velocity is selected to be low enough such that the free surface is approximately flat. The effect of vapor superheat is assumed to be negligible. Therefore, the interface condensation rate can be determined from the resulting temperature field in the liquid region alone. The nondimensional form of the steady state conservation equations are solved by a finite difference method for various system parameters including liquid height to tank diameter ratio, tank to jet diameter ratio, liquid inflow to outflow area ratio, and a heat leak parameter which characterizes the uniform wall heat flux. Detailed analyses based on the numerical solutions are performed and simplified equations are suggested for the prediction of condensation rate.

  16. Understanding the influence of capillary waves on solvation at the liquid-vapor interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rane, Kaustubh, E-mail: rane@csi.tu-darmstadt.de; Vegt, Nico F. A. van der

    2016-03-21

    This work investigates the question if surface capillary waves (CWs) affect interfacial solvation thermodynamic properties that determine the propensity of small molecules toward the liquid-vapor interface. We focus on (1) the evaluation of these properties from molecular simulations in a practical manner and (2) understanding them from the perspective of theories in solvation thermodynamics, especially solvent reorganization effects. Concerning the former objective, we propose a computational method that exploits the relationship between an external field acting on the liquid-vapor interface and the magnitude of CWs. The system considered contains the solvent, an externally applied field (f) and the solute moleculemore » fixed at a particular location. The magnitude of f is selected to induce changes in CWs. The difference between the solvation free energies computed in the presence and in the absence of f is then shown to quantify the contribution of CWs to interfacial solvation. We describe the implementation of this method in the canonical ensemble by using a Lennard-Jones solvent and a non-ionic solute. Results are shown for three types of solutes that differ in the nature of short-ranged repulsive (hard-core) interactions. Overall, we observe that CWs have a negligible or very small effect on the interfacial solvation free energy of a solute molecule fixed near the liquid-vapor interface for the above systems. We also explain how the effects of pinning or dampening of CWs caused by a fixed solute are effectively compensated and do not contribute to the solvation free energy.« less

  17. Evaluation of the Antibacterial Potential of Liquid and Vapor Phase Phenolic Essential Oil Compounds against Oral Microorganisms

    PubMed Central

    Wu, Chi-Hao; Ko, Shun-Yao; Chen, Michael Yuanchien; Shih, Yin-Hua; Shieh, Tzong-Ming; Chuang, Li-Chuan; Wu, Ching-Yi

    2016-01-01

    The aim of the present study was to determine the antibacterial activities of the phenolic essential oil (EO) compounds hinokitiol, carvacrol, thymol, and menthol against oral pathogens. Aggregatibacter actinomycetemcomitans, Streptococcus mutans, Methicillin-resistant Staphylococcus aureus (MRSA), and Escherichia. coli were used in this study. The minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs), bacterial growth curves, temperature and pH stabilities, and synergistic effects of the liquid and vapor EO compounds were tested. The MIC/MBC of the EO compounds, ranging from the strongest to weakest, were hinokitiol (40–60 μg/mL/40-100 μg/mL), thymol (100–200 μg/mL/200-400 μg/mL), carvacrol (200–400 μg/mL/200-600 μg/mL), and menthol (500-more than 2500 μg/mL/1000-more than 2500 μg/mL). The antibacterial activities of the four EO phenolic compound based on the agar diffusion test and bacterial growth curves showed that the four EO phenolic compounds were stable under different temperatures for 24 h, but the thymol activity decreased when the temperature was higher than 80°C. The combination of liquid carvacrol with thymol did not show any synergistic effects. The activities of the vaporous carvacrol and thymol were inhibited by the presence of water. Continual violent shaking during culture enhanced the activity of menthol. Both liquid and vaporous hinokitiol were stable at different temperatures and pH conditions. The combination of vaporous hinokitiol with zinc oxide did not show synergistic effects. These results showed that the liquid and vapor phases of hinokitiol have strong anti-oral bacteria abilities. Hinokitiol has the potential to be applied in oral health care products, dental materials, and infection controls to exert antimicrobial activity. PMID:27681039

  18. Evaporation-induced flow in an inviscid liquid line at any contact angle

    NASA Astrophysics Data System (ADS)

    Petsi, A. J.; Burganos, V. N.

    2006-04-01

    The problem of potential flow inside an evaporating liquid line, shaped as an infinitely long cylindrical segment lying on a flat surface, is considered and an analytical solution is obtained for any contact angle in (0,π) . In this way, microflow details inside linear liquid bodies evaporating on hydrophilic, hydrophobic, and strongly hydrophobic substrates can now be obtained. The mathematical formulation employs the velocity potential and stream function formulations in bipolar coordinates and the solution is obtained using the technique of Fourier transform. Both pinned and depinned contact lines are considered. The solution is applicable to any evaporation mechanism but for illustration purposes numerical results are presented here for the particular case of kinetically controlled evaporation. For hydrophilic substrates, the flow inside the evaporating liquid line is directed towards the edges for pinned contact lines, thus, promoting a coffee stain effect. The opposite flow direction is observed for depinned contact lines. However, for strongly hydrophobic substrates, flow is directed outwards for both pinned and depinned contact lines, but owing to its low magnitude compared to that on hydrophilic substrates, a craterlike colloidal deposit should be expected rather than a ringlike deposit, in agreement with experimental observations.

  19. Thermophysical properties of hydrogen along the liquid-vapor coexistence

    NASA Astrophysics Data System (ADS)

    Osman, S. M.; Sulaiman, N.; Bahaa Khedr, M.

    2016-05-01

    We present Theoretical Calculations for the Liquid-Vapor Coexistence (LVC) curve of fluid Hydrogen within the first order perturbation theory with a suitable first order quantum correction to the free energy. In the present equation of state, we incorporate the dimerization of H2 molecule by treating the fluid as a hard convex body fluid. The thermophysical properties of fluid H2 along the LVC curve, including the pressure-temperature dependence, density-temperature asymmetry, volume expansivity, entropy and enthalpy, are calculated and compared with computer simulation and empirical results.

  20. Liquid additives for particulate emissions control

    DOEpatents

    Durham, Michael Dean; Schlager, Richard John; Ebner, Timothy George; Stewart, Robin Michele; Hyatt, David E.; Bustard, Cynthia Jean; Sjostrom, Sharon

    1999-01-01

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency.

  1. Liquid additives for particulate emissions control

    DOEpatents

    Durham, M.D.; Schlager, R.J.; Ebner, T.G.; Stewart, R.M.; Hyatt, D.E.; Bustard, C.J.; Sjostrom, S.

    1999-01-05

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency. 11 figs.

  2. Vapor condensation onto a non-volatile liquid drop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inci, Levent; Bowles, Richard K., E-mail: richard.bowles@usask.ca

    2013-12-07

    Molecular dynamics simulations of miscible and partially miscible binary Lennard–Jones mixtures are used to study the dynamics and thermodynamics of vapor condensation onto a non-volatile liquid drop in the canonical ensemble. When the system volume is large, the driving force for condensation is low and only a submonolayer of the solvent is adsorbed onto the liquid drop. A small degree of mixing of the solvent phase into the core of the particles occurs for the miscible system. At smaller volumes, complete film formation is observed and the dynamics of film growth are dominated by cluster-cluster coalescence. Mixing into the coremore » of the droplet is also observed for partially miscible systems below an onset volume suggesting the presence of a solubility transition. We also develop a non-volatile liquid drop model, based on the capillarity approximations, that exhibits a solubility transition between small and large drops for partially miscible mixtures and has a hysteresis loop similar to the one observed in the deliquescence of small soluble salt particles. The properties of the model are compared to our simulation results and the model is used to study the formulation of classical nucleation theory for systems with low free energy barriers.« less

  3. Simplified thermodynamic functions for vapor-liquid phase separation and fountain effect pumps

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Hepler, W. A.; Frederking, T. H. K.

    1984-01-01

    He-4 fluid handling devices near 2 K require novel components for non-Newtonian fluid transport in He II. Related sizing of devices has to be based on appropriate thermophysical property functions. The present paper presents simplified equilibrium state functions for porous media components which serve as vapor-liquid phase separators and fountain effect pumps.

  4. Liquid ``Coffee Rings'' and the Spreading of Volatile Liquid Mixtures

    NASA Astrophysics Data System (ADS)

    Wood, Clay; Pye, Justin; Burton, Justin

    When a volatile liquid drop is placed on a wetting surface, it rapidly spreads and evaporates. The spreading dynamics and drop geometry are determined by a balance between thermal and interfacial forces, including Marangoni effects. However, this spreading behavior is drastically altered when drops contain a miniscule amount of a less-volatile miscible liquid (solute) in the bulk (solvent); contact line instabilities in the form of ``fingers'' develop. Characteristic finger size increases with increasing solute concentration and is apparent for concentrations as small as 0.1% by volume. Also, the spreading rate depends sensitively on the solute concentration, especially if the solute preferentially wets the substrate. At higher solute concentrations, the spreading droplet will form ``beads'' at the contact line, rather than fingers, and are deposited as the solvent recedes and evaporates, leaving behind a complex pattern of solute micro-droplets. Liquid ``coffee rings'' are often left behind after evaporation because there is a high evaporation rate of the solvent at the contact line, which increases the concentration of the solute, and the longevity of the rings depends on the solute vapor pressure. These results highlight the unusual sensitivity to contamination of volatile spreading, and the complex patterns of liquid contamination deposited following evaporation from a wetted surface. NSF 1455086.

  5. Temporal changes in endmember abundances, liquid water and water vapor over vegetation at Jasper Ridge

    NASA Technical Reports Server (NTRS)

    Roberts, Dar A.; Green, Robert O.; Sabol, Donald E.; Adams, John B.

    1993-01-01

    Imaging spectrometry offers a new way of deriving ecological information about vegetation communities from remote sensing. Applications include derivation of canopy chemistry, measurement of column atmospheric water vapor and liquid water, improved detectability of materials, more accurate estimation of green vegetation cover and discrimination of spectrally distinct green leaf, non-photosynthetic vegetation (NPV: litter, wood, bark, etc.) and shade spectra associated with different vegetation communities. Much of our emphasis has been on interpreting Airborne Visible/Infrared Imaging Spectrometry (AVIRIS) data spectral mixtures. Two approaches have been used, simple models, where the data are treated as a mixture of 3 to 4 laboratory/field measured spectra, known as reference endmembers (EM's), applied uniformly to the whole image, to more complex models where both the number of EM's and the types of EM's vary on a per-pixel basis. Where simple models are applied, materials, such as NPV, which are spectrally similar to soils, can be discriminated on the basis of residual spectra. One key aspect is that the data are calibrated to reflectance and modeled as mixtures of reference EM's, permitting temporal comparison of EM fractions, independent of scene location or data type. In previous studies the calibration was performed using a modified-empirical line calibration, assuming a uniform atmosphere across the scene. In this study, a Modtran-based calibration approach was used to map liquid water and atmospheric water vapor and retrieve surface reflectance from three AVIRIS scenes acquired in 1992 over the Jasper Ridge Biological Preserve. The data were acquired on June 2nd, September 4th and October 6th. Reflectance images were analyzed as spectral mixtures of reference EM's using a simple 4 EM model. Atmospheric water vapor derived from Modtran was compared to elevation, and community type. Liquid water was compare to the abundance of NPV, Shade and Green Vegetation

  6. Superamphiphobic Silicon-Nanowire-Embedded Microsystem and In-Contact Flow Performance of Gas and Liquid Streams.

    PubMed

    Ko, Dong-Hyeon; Ren, Wurong; Kim, Jin-Oh; Wang, Jun; Wang, Hao; Sharma, Siddharth; Faustini, Marco; Kim, Dong-Pyo

    2016-01-26

    Gas and liquid streams are invariably separated either by a solid wall or by a membrane for heat or mass transfer between the gas and liquid streams. Without the separating wall, the gas phase is present as bubbles in liquid or, in a microsystem, as gas plugs between slugs of liquid. Continuous and direct contact between the two moving streams of gas and liquid is quite an efficient way of achieving heat or mass transfer between the two phases. Here, we report a silicon nanowire built-in microsystem in which a liquid stream flows in contact with an underlying gas stream. The upper liquid stream does not penetrate into the lower gas stream due to the superamphiphobic nature of the silicon nanowires built into the bottom wall, thereby preserving the integrity of continuous gas and liquid streams, although they are flowing in contact. Due to the superamphiphobic nature of silicon nanowires, the microsystem provides the best possible interfacial mass transfer known to date between flowing gas and liquid phases, which can achieve excellent chemical performance in two-phase organic syntheses.

  7. Evaluation of E-cigarette liquid vapor and mainstream cigarette smoke after direct exposure of primary human bronchial epithelial cells.

    PubMed

    Scheffler, Stefanie; Dieken, Hauke; Krischenowski, Olaf; Förster, Christine; Branscheid, Detlev; Aufderheide, Michaela

    2015-04-08

    E-cigarettes are emerging products, often described as "reduced-risk" nicotine products or alternatives to combustible cigarettes. Many smokers switch to e-cigarettes to quit or significantly reduce smoking. However, no regulations for e-cigarettes are currently into force, so that the quality and safety of e-liquids is not necessarily guaranteed. We exposed primary human bronchial epithelial cells of two different donors to vapor of e-cigarette liquid with or without nicotine, vapor of the carrier substances propylene glycol and glycerol as well as to mainstream smoke of K3R4F research cigarettes. The exposure was done in a CULTEX® RFS compact  module, allowing the exposure of the cells at the air-liquid interface. 24 h post-exposure, cell viability and oxidative stress levels in the cells were analyzed. We found toxicological effects of e-cigarette vapor and the pure carrier substances, whereas the nicotine concentration did not have an effect on the cell viability. The viability of mainstream smoke cigarette exposed cells was 4.5-8 times lower and the oxidative stress levels 4.5-5 times higher than those of e-cigarette vapor exposed cells, depending on the donor. Our experimental setup delivered reproducible data and thus provides the opportunity for routine testing of e-cigarette liquids to ensure safety and quality for the user.

  8. Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus

    ERIC Educational Resources Information Center

    Battino, Rubin; Dolson, David A.; Hall, Michael A.; Letcher, Trevor M.

    2007-01-01

    A simple and inexpensive method to determine the enthalpy of vaporization of liquids by measuring vapor pressure as a function of temperature is described. The vapor pressures measured with the stopcock cell were higher than the literature values and those measured with the sidearm rubber septum cell were both higher and lower than literature…

  9. Vapor-Liquid Equilibrium in the Mixture 1,1-Difluoroethane C2H4F2 + C4H8 2-Methylpropene (EVLM1131, LB5730_E)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Vapor-Liquid Equilibrium in the Mixture 1,1-Difluoroethane C2H4F2 + C4H8 2-Methylpropene (EVLM1131, LB5730_E)' providing data from direct measurement of pressure and mole fraction in vapor phase at variable mole fraction in liquid phase and constant temperature.

  10. Studies on preparation of medium fat liquid dairy whitener from buffalo milk employing ultrafiltration process.

    PubMed

    Khatkar, Sunil Kumar; Gupta, Vijay Kumar; Khatkar, Anju Boora

    2014-09-01

    A study was conducted to develop good quality medium fat liquid dairy whitener from buffalo milk employing ultrafiltration (UF) process. The buffalo skim milk was UF concentrated to 4.05 to 4.18 (23.63 ± 0.30 % TS) fold and standardized to 10 % fat (on Dry Matter Basis) (i.e. formulation) and homogenized at 175.76 kg/cm(2). The addition of 0.4 % mixture of monosodium and disodium phosphate (2:1 w/w) improved the heat stability of homogenized formulation to an optimum of 66 min. The bland flavour of homogenized formulation with added 0.4 % mixture of monosodium phosphate and disodium phosphate (2:1 w/w) and 18 % sugar (on DMB) (i.e. medium fat liquid dairy whitener) was improved significantly (P < 0.01) with the addition of 0.2 % potassium chloride, but heat stability of medium fat liquid dairy whitener got reduced substantially (i.e. 19 min). With subsequent heat treatment to 85 °C for 5 min, heat stability of medium fat liquid dairy whitener got improved to reasonable level of 27 min. Whitening ability in terms of L* value of medium fat liquid dairy whitener in both tea and coffee was significantly (P < 0.01) better when homogenized at 175.76 kg/cm(2) vis-à-vis 140.61 kg/cm(2). Standardized medium fat liquid dairy whitener had significantly (P < 0.01) greater protein content (i.e. approximately 2.43 times) compared to market dairy whitener samples. At 2 % solids level, standardized medium fat liquid dairy whitener in tea/coffee fetched significantly (P < 0.01) better sensory attributes and instrumental whitening ability compared to market sample at 3 % solids level. There could be clear 33 % solids quantity saving in case of developed product compared to market dairy whitener sample.

  11. Vapor-Liquid Equilibria Using the Gibbs Energy and the Common Tangent Plane Criterion

    ERIC Educational Resources Information Center

    Olaya, Maria del Mar; Reyes-Labarta, Juan A.; Serrano, Maria Dolores; Marcilla, Antonio

    2010-01-01

    Phase thermodynamics is often perceived as a difficult subject with which many students never become fully comfortable. The Gibbsian geometrical framework can help students to gain a better understanding of phase equilibria. An exercise to interpret the vapor-liquid equilibrium of a binary azeotropic mixture, using the equilibrium condition based…

  12. Semiempirical self-consistent polarization description of bulk water, the liquid-vapor interface, and cubic ice.

    PubMed

    Murdachaew, Garold; Mundy, Christopher J; Schenter, Gregory K; Laino, Teodoro; Hutter, Jürg

    2011-06-16

    We have applied an efficient electronic structure approach, the semiempirical self-consistent polarization neglect of diatomic differential overlap (SCP-NDDO) method, previously parametrized to reproduce properties of water clusters by Chang, Schenter, and Garrett [ J. Chem. Phys. 2008 , 128 , 164111 ] and now implemented in the CP2K package, to model ambient liquid water at 300 K (both the bulk and the liquid-vapor interface) and cubic ice at 15 and 250 K. The SCP-NDDO potential retains its transferability and good performance across the full range of conditions encountered in the clusters and the bulk phases of water. In particular, we obtain good results for the density, radial distribution functions, enthalpy of vaporization, self-diffusion coefficient, molecular dipole moment distribution, and hydrogen bond populations, in comparison to experimental measurements. © 2011 American Chemical Society

  13. Space cryogenics components based on the thermomechanical effect - Vapor-liquid phase separation

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Frederking, T. H. K.

    1989-01-01

    Applications of the thermomechanical effect has been qualified including incorporation in large-scale space systems in the area of vapor-liquid phase separation (VLPS). The theory of the porous-plug phase separator is developed for the limit of a high thermal impedance of the solid-state grains. Extensions of the theory of nonlinear turbulent flow are presented based on experimental results.

  14. Boiler for generating high quality vapor

    NASA Technical Reports Server (NTRS)

    Gray, V. H.; Marto, P. J.; Joslyn, A. W.

    1972-01-01

    Boiler supplies vapor for use in turbines by imparting a high angular velocity to the liquid annulus in heated rotating drum. Drum boiler provides a sharp interface between boiling liquid and vapor, thereby, inhibiting the formation of unwanted liquid droplets.

  15. Thermodynamic Modeling and Mechanical Design of a Liquid Nitrogen Vaporization and Pressure Building Device

    NASA Astrophysics Data System (ADS)

    Leege, Brian J.

    The design of a liquid nitrogen vaporization and pressure building device that has zero product waste while recovering some of its stored energy is of interest for the cost reduction of nitrogen for use in industrial processes. Current devices may waste up to 30% of the gaseous nitrogen product by venting it to atmosphere. Furthermore, no attempt is made to recover the thermal energy available in the coldness of the cryogen. A seven step cycle with changing volumes and ambient heat addition is proposed, eliminating all product waste and providing the means of energy recovery from the nitrogen. This thesis discusses the new thermodynamic cycle and modeling as well as the mechanical design and testing of a prototype device. The prototype was able to achieve liquid nitrogen vaporization and pressurization up to 1000 psi, while full cycle validation is ongoing with promising initial results.

  16. Apparent-contact-angle model at partial wetting and evaporation: Impact of surface forces

    NASA Astrophysics Data System (ADS)

    Janeček, V.; Nikolayev, V. S.

    2013-01-01

    This theoretical and numerical study deals with evaporation of a fluid wedge in contact with its pure vapor. The model describes a regime where the continuous wetting film is absent and the actual line of the triple gas-liquid-solid contact appears. A constant temperature higher than the saturation temperature is imposed at the solid substrate. The fluid flow is solved in the lubrication approximation. The introduction of the surface forces in the case of the partial wetting is discussed. The apparent contact angle (the gas-liquid interface slope far from the contact line) is studied numerically as a function of the substrate superheating, contact line velocity, and parameters related to the solid-fluid interaction (Young and microscopic contact angles, Hamaker constant, etc.). The dependence of the apparent contact angle on the substrate temperature is in agreement with existing approaches. For water, the apparent contact angle may be 20∘ larger than the Young contact angle for 1 K superheating. The effect of the surface forces on the apparent contact angle is found to be weak.

  17. Apparent-contact-angle model at partial wetting and evaporation: impact of surface forces.

    PubMed

    Janeček, V; Nikolayev, V S

    2013-01-01

    This theoretical and numerical study deals with evaporation of a fluid wedge in contact with its pure vapor. The model describes a regime where the continuous wetting film is absent and the actual line of the triple gas-liquid-solid contact appears. A constant temperature higher than the saturation temperature is imposed at the solid substrate. The fluid flow is solved in the lubrication approximation. The introduction of the surface forces in the case of the partial wetting is discussed. The apparent contact angle (the gas-liquid interface slope far from the contact line) is studied numerically as a function of the substrate superheating, contact line velocity, and parameters related to the solid-fluid interaction (Young and microscopic contact angles, Hamaker constant, etc.). The dependence of the apparent contact angle on the substrate temperature is in agreement with existing approaches. For water, the apparent contact angle may be 20° larger than the Young contact angle for 1 K superheating. The effect of the surface forces on the apparent contact angle is found to be weak.

  18. Contact-angle hysteresis on periodic microtextured surfaces: Strongly corrugated liquid interfaces.

    PubMed

    Iliev, Stanimir; Pesheva, Nina

    2016-06-01

    We study numerically the shapes of a liquid meniscus in contact with ultrahydrophobic pillar surfaces in Cassie's wetting regime, when the surface is covered with identical and periodically distributed micropillars. Using the full capillary model we obtain the advancing and the receding equilibrium meniscus shapes when the cross-sections of the pillars are both of square and circular shapes, for a broad interval of pillar concentrations. The bending of the liquid interface in the area between the pillars is studied in the framework of the full capillary model and compared to the results of the heterogeneous approximation model. The contact angle hysteresis is obtained when the three-phase contact line is located on one row (block case) or several rows (kink case) of pillars. It is found that the contact angle hysteresis is proportional to the line fraction of the contact line on pillars tops in the block case and to the surface fraction for pillar concentrations 0.1-0.5 in the kink case. The contact angle hysteresis does not depend on the shape (circular or square) of the pillars cross-section. The expression for the proportionality of the receding contact angle to the line fraction [Raj et al., Langmuir 28, 15777 (2012)LANGD50743-746310.1021/la303070s] in the case of block depinning is theoretically substantiated through the capillary force, acting on the solid plate at the meniscus contact line.

  19. A single surgeon's experience with contact laser vaporization of the prostate

    NASA Astrophysics Data System (ADS)

    Mueller, Edward J.

    1995-05-01

    Herein, I report on my first 50 contact laser prostatectomies performed with the SLT Nd:YAG laser. The obstructed prostatic urethra is opened via contact laser vaporization of the obstructing adenoma. The average pre-op AUA symptom score was 22.9 (range 14 - 30). The average 3 month post-op AUA symptom score was 2.1 (range 0 -8). Eighteen of the patients had the foley catheter removed approximately 4 - 6 hours post-op and were discharged the same day. Thirty patients had the foley catheter removed the morning following surgery and were discharged. And two patients had the foley catheter removed the morning following surgery, but remained in the hospital for medical reasons unrelated to the TURP. Thus, 48 (96%) of the patients were discharged within 24 hours of admission. No patient had to be readmitted to the hospital for any reason. All patients were allowed to return to full activity within 24 hours of discharge. The average hospital cost for the 48 patients discharged within 24 hours was DOL4,694. This compares to the average hospital cost of an electrocautery TURP of DOL6-8000. In summary, contact laser TURP using the SLT Nd:YAG laser relived the symptoms of an obstructing prostate comparable to electrocautery TURP. However, these results were achieved with a much shorter hospitalization, a quicker return to full activity and at a lower cost.

  20. Case Studies of Water Vapor and Surface Liquid Water from AVIRIS Data Measured Over Denver, CO and Death Valley, CA

    NASA Technical Reports Server (NTRS)

    Gao, B.-C.; Kierein-Young, K. S.; Goetz, A. F. H.; Westwater, E. R.; Stankov, B. B.; Birkenheuer, D.

    1991-01-01

    High spatial resolution column atmospheric water vapor amounts and equivalent liquid water thicknesses of surface targets are retrieved from spectral data collected by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). The retrievals are made using a nonlinear least squares curve fitting technique. Two case studies from AVIRIS data acquired over Denver-Platteville area, Colorado and over Death Valley, California are presented. The column water vapor values derived from AVIRIS data over the Denver-Platteville area are compared with those obtained from radiosondes, ground level upward-looking microwave radiometers, and geostationary satellite measurements. The column water vapor image shows spatial variation patterns related to the passage of a weather front system. The column water vapor amounts derived from AVIRIS data over Death Valley decrease with increasing surface elevation. The derived liquid water image clearly shows surface drainage patterns.

  1. A unified mechanism for the stability of surface nanobubbles: contact line pinning and supersaturation.

    PubMed

    Liu, Yawei; Zhang, Xianren

    2014-10-07

    In this paper, we apply the molecular dynamics simulation method to study the stability of surface nanobubbles in both pure fluids and gas-liquid mixtures. First, we demonstrate with molecular simulations, for the first time, that surface nanobubbles can be stabilized in superheated or gas supersaturated liquid by the contact line pinning caused by the surface heterogeneity. Then, a unified mechanism for nanobubble stability is put forward here that stabilizing nanobubbles require both the contact line pinning and supersaturation. In the mechanism, the supersaturation refers to superheating for pure fluids and gas supersaturation or superheating for the gas-liquid mixtures, both of which exert the same effect on nanobubble stability. As the level of supersaturation increases, we found a Wenzel or Cassie wetting state for undersaturated and saturated fluids, stable nanobubbles at moderate supersaturation with decreasing curvature radius and contact angle, and finally the liquid-to-vapor phase transition at high supersaturation.

  2. Distillation Separation of Hydrofluoric Acid and Nitric Acid from Acid Waste Using the Salt Effect on Vapor-Liquid Equilibrium

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hideki; Sumoge, Iwao

    2011-03-01

    This study presents the distillation separation of hydrofluoric acid with use of the salt effect on the vapor-liquid equilibrium for acid aqueous solutions and acid mixtures. The vapor-liquid equilibrium of hydrofluoric acid + salt systems (fluorite, potassium nitrate, cesium nitrate) was measured using an apparatus made of perfluoro alkylvinylether. Cesium nitrate showed a salting-out effect on the vapor-liquid equilibrium of the hydrofluoric acid-water system. Fluorite and potassium nitrate showed a salting-in effect on the hydrofluoric acid-water system. Separation of hydrofluoric acid from an acid mixture containing nitric acid and hydrofluoric acid was tested by the simple distillation treatment using the salt effect of cesium nitrate (45 mass%). An acid mixture of nitric acid (5.0 mol · dm-3) and hydrofluoric acid (5.0 mol · dm-3) was prepared as a sample solution for distillation tests. The concentration of nitric acid in the first distillate decreased from 5.0 mol · dm-3 to 1.13 mol · dm-3, and the concentration of hydrofluoric acid increased to 5.41 mol · dm-3. This first distillate was further distilled without the addition of salt. The concentrations of hydrofluoric acid and nitric acid in the second distillate were 7.21 mol · dm-3 and 0.46 mol · dm-3, respectively. It was thus found that the salt effect on vapor-liquid equilibrium of acid mixtures was effective for the recycling of acids from acid mixture wastes.

  3. A Generalized Eulerian-Lagrangian Analysis, with Application to Liquid Flows with Vapor Bubbles

    NASA Technical Reports Server (NTRS)

    Dejong, Frederik J.; Meyyappan, Meyya

    1993-01-01

    Under a NASA MSFC SBIR Phase 2 effort an analysis has been developed for liquid flows with vapor bubbles such as those in liquid rocket engine components. The analysis is based on a combined Eulerian-Lagrangian technique, in which Eulerian conservation equations are solved for the liquid phase, while Lagrangian equations of motion are integrated in computational coordinates for the vapor phase. The novel aspect of the Lagrangian analysis developed under this effort is that it combines features of the so-called particle distribution approach with those of the so-called particle trajectory approach and can, in fact, be considered as a generalization of both of those traditional methods. The result of this generalization is a reduction in CPU time and memory requirements. Particle time step (stability) limitations have been eliminated by semi-implicit integration of the particle equations of motion (and, for certain applications, the particle temperature equation), although practical limitations remain in effect for reasons of accuracy. The analysis has been applied to the simulation of cavitating flow through a single-bladed section of a labyrinth seal. Models for the simulation of bubble formation and growth have been included, as well as models for bubble drag and heat transfer. The results indicate that bubble formation is more or less 'explosive'. for a given flow field, the number density of bubble nucleation sites is very sensitive to the vapor properties and the surface tension. The bubble motion, on the other hand, is much less sensitive to the properties, but is affected strongly by the local pressure gradients in the flow field. In situations where either the material properties or the flow field are not known with sufficient accuracy, parametric studies can be carried out rapidly to assess the effect of the important variables. Future work will include application of the analysis to cavitation in inducer flow fields.

  4. Simulation of water vapor condensation on LOX droplet surface using liquid nitrogen

    NASA Technical Reports Server (NTRS)

    Powell, Eugene A.

    1988-01-01

    The formation of ice or water layers on liquid oxygen (LOX) droplets in the Space Shuttle Main Engine (SSME) environment was investigated. Formulation of such ice/water layers is indicated by phase-equilibrium considerations under conditions of high partial pressure of water vapor (steam) and low LOX droplet temperature prevailing in the SSME preburner or main chamber. An experimental investigation was begun using liquid nitrogen as a LOX simulant. A monodisperse liquid nitrogen droplet generator was developed which uses an acoustic driver to force the stream of liquid emerging from a capillary tube to break up into a stream of regularly space uniformly sized spherical droplets. The atmospheric pressure liquid nitrogen in the droplet generator reservoir was cooled below its boiling point to prevent two phase flow from occurring in the capillary tube. An existing steam chamber was modified for injection of liquid nitrogen droplets into atmospheric pressure superheated steam. The droplets were imaged using a stroboscopic video system and a laser shadowgraphy system. Several tests were conducted in which liquid nitrogen droplets were injected into the steam chamber. Under conditions of periodic droplet formation, images of 600 micron diameter liquid nitrogen droplets were obtained with the stroboscopic video systems.

  5. IR and SFG vibrational spectroscopy of the water bend in the bulk liquid and at the liquid-vapor interface, respectively.

    PubMed

    Ni, Yicun; Skinner, J L

    2015-07-07

    Vibrational spectroscopy of the water bending mode has been investigated experimentally to study the structure of water in condensed phases. In the present work, we calculate the theoretical infrared (IR) and sum-frequency generation (SFG) spectra of the HOH bend in liquid water and at the water liquid/vapor interface using a mixed quantum/classical approach. Classical molecular dynamics simulation is performed by using a recently developed water model that explicitly includes three-body interactions and yields a better description of the water surface. Ab-initio-based transition frequency, dipole, polarizability, and intermolecular coupling maps are developed for the spectral calculations. The calculated IR and SFG spectra show good agreement with the experimental measurements. In the theoretical imaginary part of the SFG susceptibility for the water liquid/vapor interface, we find two features: a negative band centered at 1615 cm(-1) and a positive band centered at 1670 cm(-1). We analyze this spectrum in terms of the contributions from molecules in different hydrogen-bond classes to the SFG spectral density and also compare to SFG results for the OH stretch. SFG of the water bending mode provides a complementary picture of the heterogeneous hydrogen-bond configurations at the water surface.

  6. IR and SFG vibrational spectroscopy of the water bend in the bulk liquid and at the liquid-vapor interface, respectively

    NASA Astrophysics Data System (ADS)

    Ni, Yicun; Skinner, J. L.

    2015-07-01

    Vibrational spectroscopy of the water bending mode has been investigated experimentally to study the structure of water in condensed phases. In the present work, we calculate the theoretical infrared (IR) and sum-frequency generation (SFG) spectra of the HOH bend in liquid water and at the water liquid/vapor interface using a mixed quantum/classical approach. Classical molecular dynamics simulation is performed by using a recently developed water model that explicitly includes three-body interactions and yields a better description of the water surface. Ab-initio-based transition frequency, dipole, polarizability, and intermolecular coupling maps are developed for the spectral calculations. The calculated IR and SFG spectra show good agreement with the experimental measurements. In the theoretical imaginary part of the SFG susceptibility for the water liquid/vapor interface, we find two features: a negative band centered at 1615 cm-1 and a positive band centered at 1670 cm-1. We analyze this spectrum in terms of the contributions from molecules in different hydrogen-bond classes to the SFG spectral density and also compare to SFG results for the OH stretch. SFG of the water bending mode provides a complementary picture of the heterogeneous hydrogen-bond configurations at the water surface.

  7. IR and SFG vibrational spectroscopy of the water bend in the bulk liquid and at the liquid-vapor interface, respectively

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ni, Yicun; Skinner, J. L.

    Vibrational spectroscopy of the water bending mode has been investigated experimentally to study the structure of water in condensed phases. In the present work, we calculate the theoretical infrared (IR) and sum-frequency generation (SFG) spectra of the HOH bend in liquid water and at the water liquid/vapor interface using a mixed quantum/classical approach. Classical molecular dynamics simulation is performed by using a recently developed water model that explicitly includes three-body interactions and yields a better description of the water surface. Ab-initio-based transition frequency, dipole, polarizability, and intermolecular coupling maps are developed for the spectral calculations. The calculated IR and SFGmore » spectra show good agreement with the experimental measurements. In the theoretical imaginary part of the SFG susceptibility for the water liquid/vapor interface, we find two features: a negative band centered at 1615 cm{sup −1} and a positive band centered at 1670 cm{sup −1}. We analyze this spectrum in terms of the contributions from molecules in different hydrogen-bond classes to the SFG spectral density and also compare to SFG results for the OH stretch. SFG of the water bending mode provides a complementary picture of the heterogeneous hydrogen-bond configurations at the water surface.« less

  8. The generation of HCl in the system CaCl2-H2O: Vapor-liquid relations from 380-500°C

    USGS Publications Warehouse

    Bischoff, James L.; Rosenbauer, Robert J.; Fournier, Robert O.

    1996-01-01

    We determined vapor-liquid relations (P-T-x) and derived critical parameters for the system CaCl2-H2O from 380-500??C. Results show that the two-phase region of this system is extremely large and occupies a significant portion of the P-T space to which circulation of fluids in the Earth's crust is constrained. Results also show the system generates significant amounts of HCl (as much as 0.1 mol/kg) in the vapor phase buffered by the liquid at surprisingly high pressures (???230 bars at 380??C, <580 bars at 500??C), presumably by hydrolysis of CaCl2: CaCl2 + 2H2O = Ca(OH)2 + 2HCl. We interpret the abundance of HCl in the vapor as due to its preference for the vapor phase, and by the preference of Ca(OH)2 for either the liquid phase or solid. The recent recognition of the abundance of CaCl2 in deep brines of the Earth's crust and their hydrothermal mobilization makes the hydrolysis of CaCl2 geologically important. The boiling of Ca-rich brines produces abundant HCl buffered by the presence of the liquid at moderate pressures. The resultant Ca(OH)2 generated by this process reacts with silicates to form a variety of alteration products, such as epidote, whereas the vapor produces acid-alteration of rocks through which it ascends.

  9. Effects of gas adsorption isotherm and liquid contact angle on capillary force for sphere-on-flat and cone-on-flat geometries.

    PubMed

    Hsiao, Erik; Marino, Matthew J; Kim, Seong H

    2010-12-15

    This paper explains the origin of the vapor pressure dependence of the asperity capillary force in vapor environments. A molecular adsorbate layer is readily formed on solid surface in ambient conditions unless the surface energy of the solid is low enough and unfavorable for vapor adsorption. Then, the capillary meniscus formed around the solid asperity contact should be in equilibrium with the adsorbate layer, not with the bare solid surface. A theoretical model incorporating the vapor adsorption isotherm into the solution of the Young-Laplace equation is developed. Two contact geometries--sphere-on-flat and cone-on-flat--are modeled. The calculation results show that the experimentally-observed strong vapor pressure dependence can be explained only when the adsorption isotherm of the vapor on the solid surface is taken into account. The large relative partial pressure dependence mainly comes from the change in the meniscus size due to the presence of the adsorbate layer. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Order parameter free enhanced sampling of the vapor-liquid transition using the generalized replica exchange method.

    PubMed

    Lu, Qing; Kim, Jaegil; Straub, John E

    2013-03-14

    The generalized Replica Exchange Method (gREM) is extended into the isobaric-isothermal ensemble, and applied to simulate a vapor-liquid phase transition in Lennard-Jones fluids. Merging an optimally designed generalized ensemble sampling with replica exchange, gREM is particularly well suited for the effective simulation of first-order phase transitions characterized by "backbending" in the statistical temperature. While the metastable and unstable states in the vicinity of the first-order phase transition are masked by the enthalpy gap in temperature replica exchange method simulations, they are transformed into stable states through the parameterized effective sampling weights in gREM simulations, and join vapor and liquid phases with a succession of unimodal enthalpy distributions. The enhanced sampling across metastable and unstable states is achieved without the need to identify a "good" order parameter for biased sampling. We performed gREM simulations at various pressures below and near the critical pressure to examine the change in behavior of the vapor-liquid phase transition at different pressures. We observed a crossover from the first-order phase transition at low pressure, characterized by the backbending in the statistical temperature and the "kink" in the Gibbs free energy, to a continuous second-order phase transition near the critical pressure. The controlling mechanisms of nucleation and continuous phase transition are evident and the coexistence properties and phase diagram are found in agreement with literature results.

  11. Determination of the mass-transfer coefficient in liquid phase in a stream-bubble contact device

    NASA Astrophysics Data System (ADS)

    Dmitriev, A. V.; Dmitrieva, O. S.; Madyshev, I. N.

    2016-09-01

    One of the most effective energy saving technologies is the improvement of existing heat and mass exchange units. A stream-bubble contact device is designed to enhance the operation efficiency of heat and mass exchange units. The stages of the stream-bubble units that are proposed by the authors for the decarbonization process comprise contact devices with equivalent sizes, whose number is determined by the required performance of a unit. This approach to the structural design eliminates the problems that arise upon the transition from laboratory samples to industrial facilities and makes it possible to design the units of any required performance without a decrease in the effectiveness of mass exchange. To choose the optimal design that provides the maximum effectiveness of the mass-exchange processes in units and their intensification, the change of the mass-transfer coefficient is analyzed with the assumption of a number of parameters. The results of the study of the effect of various structural parameters of a stream-bubble contact device on the mass-transfer coefficient in the liquid phase are given. It is proven that the mass-transfer coefficient increases in the liquid phase, in the first place, with the growth of the level of liquid in the contact element, because the rate of the liquid run-off grows in this case and, consequently, the time of surface renewal is reduced; in the second place, with an increase in the slot diameter in the downpipe, because the jet diameter and, accordingly, their section perimeter and the area of the surface that is immersed in liquid increase; and, in the third place, with an increase in the number of slots in the downpipe, because the area of the surface that is immersed in the liquid of the contact element increases. Thus, in order to increase the mass-transfer coefficient in the liquid phase, it is necessary to design the contact elements with a minimum width and a large number of slots and their increased diameter; in

  12. Isomerization reaction dynamics and equilibrium at the liquid-vapor interface of water. A molecular-dynamics study

    NASA Technical Reports Server (NTRS)

    Benjamin, Ilan; Pohorille, Andrew

    1993-01-01

    The gauche-trans isomerization reaction of 1,2-dichloroethane at the liquid-vapor interface of water is studied using molecular-dynamics computer simulations. The solvent bulk and surface effects on the torsional potential of mean force and on barrier recrossing dynamics are computed. The isomerization reaction involves a large change in the electric dipole moment, and as a result the trans/gauche ratio is considerably affected by the transition from the bulk solvent to the surface. Reactive flux correlation function calculations of the reaction rate reveal that deviation from the transition-state theory due to barrier recrossing is greater at the surface than in the bulk water. This suggests that the system exhibits non-Rice-Ramsperger-Kassel-Marcus behavior due to the weak solvent-solute coupling at the water liquid-vapor interface.

  13. Isothermogravimetric determination of the enthalpies of vaporization of 1-alkyl-3-methylimidazolium ionic liquids.

    PubMed

    Luo, Huimin; Baker, Gary A; Dai, Sheng

    2008-08-21

    Vaporization enthalpies for two series of ionic liquids (ILs) composed of 1- n-alkyl-3-methylimidazolium cations, [Imm1+] (m=2, 3, 4, 6, 8, or 10), paired with either the bis(trifluoromethanesulfonyl)amide, [Tf2N-], or the bis(perfluoroethylsulfonyl)amide anion, [beti-], were determined using a simple, convenient, and highly reproducible thermogravimetric approach, and from these values, Hildebrand solubility parameters were estimated. Our results reveal two interesting and unanticipated outcomes: (i) methylation at the C2 position of [Imm1+] affords a significantly higher vaporization enthalpy; (ii) in all cases, the [beti-] anion served to lower the enthalpy of vaporization relative to [Tf2N-]. The widespread availability of the apparatus required for these measurements coupled with the ease of automation suggests the broad potential of this methodology for determining this critical parameter in a multitude of ILs.

  14. Liquid-Desiccant Vapor Separation Reduces the Energy Requirements of Atmospheric Moisture Harvesting.

    PubMed

    Gido, Ben; Friedler, Eran; Broday, David M

    2016-08-02

    An innovative atmospheric moisture harvesting system is proposed, where water vapor is separated from the air prior to cooling and condensation. The system was studied using a model that simulates its three interconnected cycles (air, desiccant, and water) over a range of ambient conditions, and optimal configurations are reported for different operation conditions. Model results were compared to specifications of commercial atmospheric moisture harvesting systems and found to represent saving of 5-65% of the electrical energy requirements due to the vapor separation process. We show that the liquid desiccant separation stage that is integrated into atmospheric moisture harvesting systems can work under a wide range of environmental conditions using low grade or solar heating as a supplementary energy source, and that the performance of the combined system is superior.

  15. Spreading of a liquid film on a substrate by the evaporation-adsorption process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wayner, P.C. Jr.; Schonberg, J.

    1992-09-01

    The importance of evaporation followed by multilayer adsorption in comparison to liquid flow at the leading edge of a volatile spreading film is analyzed. Presuming that both flows are functions of the same chemical potential gradient, a dimensionless group (N) which delineates the relative importance of vapor diffusion flow to viscous flow on the surface is obtained: N = [rho][sub i]D[nu]x/([minus][bar A][pi]). The relative importance of vapor flow increases with the vapor-pressure dependent partial density, [rho][sub i], and diffusivity, D, of the diffusing vapor, the kinematic viscosity of the liquid, [nu], and the distance downstream from the bulk liquid region,more » x, and decreases with the Hamaker constant, 6[pi][bar A]. Using physical properties the modifiers volatile'' and nonvolatile'' can thereby be put in perspective. Changes in the interfacial force field are a function of [bar A]. The spreading velocity due to the vapor diffusion process is obtained and is found to decrease with a decrease in the interfacial force field and the bulk vapor pressure. The infinite stress at the contact line can be easily relieved by evaporation-adsorption in many systems.« less

  16. Core-shell chromium silicide-silicon nanopillars: a contact material for future nanosystems.

    PubMed

    Chang, Mu-Tung; Chen, Chih-Yen; Chou, Li-Jen; Chen, Lih-Juann

    2009-11-24

    Chromium silicide nanostructures are fabricated inside silicon nanopillars grown by the vapor-liquid-solid mechanism. The remarkable field-emission behavior of these nanostructures results from extensive improvement of carrier transport due to the reduced energy barrier between the metal and semiconductor layers. The results warrant consideration of chromium silicide as a potentially important contact material in future nanosystems.

  17. Structure of water at zwitterionic copolymer film-liquid water interfaces as examined by the sum frequency generation method.

    PubMed

    Kondo, Takuya; Nomura, Kouji; Gemmei-Ide, Makoto; Kitano, Hiromi; Noguchi, Hidenori; Uosaki, Kohei; Saruwatari, Yoshiyuki

    2014-01-01

    A copolymer film composed of zwitterionic carboxymethylbetaine (CMB) and n-butyl methacrylate (BMA), Poly(CMB-r-BMA), was cast on a flat plane of an octadecyltrichlorosilane (ODS)-modified fused quartz prism with a semi-cylindrical shape. CH stretching of the polymer film and O-H stretching of water at the surface of the film were examined using the sum frequency generation (SFG) technique. The C-H stretching band of the cast film, indicating a gauche defect of the film, was affected by the contact medium including dry nitrogen, water vapor-saturated nitrogen and liquid water. In contrast, the C-H stretching of an octadecyl group introduced onto the quartz prism for stable attachment of the cast film was not significantly changed by the contact medium. The O-H stretching band indicated that water molecules at the surface of the Poly(CMB-r-BMA) film in contact with liquid water were not greatly oriented in comparison with those at the surfaces of a bare prism, an ODS SAM-modified prism, and a prism covered with a PolyBMA film or a copolymer film of BMA and methacrylic acid or 2-(dimethylamino)ethyl methacrylate. A similar small perturbation of the structure of water was previously observed in the vicinity of water-soluble zwitterionic polymers and zwitterionic copolymer films using Raman and attenuated total reflection infrared spectroscopies, respectively. A distinct effect of charge neutralization to diminish the perturbation of the structure of interfacial water around polymer materials was suggested. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Alpha-Voltaic Sources Using Liquid Ga as Conversion Medium

    NASA Technical Reports Server (NTRS)

    Patel, Jagdish U.; Fleurial, Jean-Pierre; Snyder, G. Jeffrey

    2006-01-01

    A family of proposed miniature sources of power would exploit the direct conversion of the kinetic energy of alpha particles into electricity. In addition to having long operational lives, these sources are expected to operate with energy-conversion efficiencies from 70 to 90 percent. A power source as proposed (see figure) would be an electrolytic cell in which liquid gallium would serve as both an electrolyte and an energy-conversion medium. The cell would contain an iridium cathode and a zirconium anode. The alpha particles, each with a kinetic energy approx.5.8 MeV, would be emitted by radioactive decay of Cm-244, which has a half-life of 18 years. The Cm-244 source would be positioned so that the a particles would enter the liquid gallium, where their kinetic energy would be dissipated mostly through ionization of Ga atoms, creating Ga(+) ions and free electrons. The electrons would be collected by iridium cathode, and the Ga(+) ions would be neutralized at the zirconium cathode by electrons returning after flowing through an external circuit. Gallium is a candidate for use as the electrolyte and the energy-conversion medium because in the liquid state it is a semimetal: its electrical conductivity is greater than that of a typical semiconductor but small in comparison with the conductivities of metals. Consequently, in liquid gallium, electrons and Ga(+) can exist without immediate recombination and can be moved by electric fields. It is expected that electric fields, resulting at least partly from the difference between the work functions of the electrode metals, would move the electrons and ions to their respective electrodes. The open-circuit potential of the cell is expected to be 1.62 V - equal to the difference between the work functions of iridium and zirconium. Unlike in a solid-state energy conversion medium, the impingement of energetic a particles would not give rise to displacement damage in the liquid gallium. Hence, the cell should have a long

  19. Computer simulation of liquid-vapor coexistence of confined quantum fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trejos, Víctor M.; Gil-Villegas, Alejandro, E-mail: gil@fisica.ugto.mx; Martinez, Alejandro

    2013-11-14

    The liquid-vapor coexistence (LV) of bulk and confined quantum fluids has been studied by Monte Carlo computer simulation for particles interacting via a semiclassical effective pair potential V{sub eff}(r) = V{sub LJ} + V{sub Q}, where V{sub LJ} is the Lennard-Jones 12-6 potential (LJ) and V{sub Q} is the first-order Wigner-Kirkwood (WK-1) quantum potential, that depends on β = 1/kT and de Boer's quantumness parameter Λ=h/σ√(mε), where k and h are the Boltzmann's and Planck's constants, respectively, m is the particle's mass, T is the temperature of the system, and σ and ε are the LJ potential parameters. The non-conformalmore » properties of the system of particles interacting via the effective pair potential V{sub eff}(r) are due to Λ, since the LV phase diagram is modified by varying Λ. We found that the WK-1 system gives an accurate description of the LV coexistence for bulk phases of several quantum fluids, obtained by the Gibbs Ensemble Monte Carlo method (GEMC). Confinement effects were introduced using the Canonical Ensemble (NVT) to simulate quantum fluids contained within parallel hard walls separated by a distance L{sub p}, within the range 2σ ⩽ L{sub p} ⩽ 6σ. The critical temperature of the system is reduced by decreasing L{sub p} and increasing Λ, and the liquid-vapor transition is not longer observed for L{sub p}/σ < 2, in contrast to what has been observed for the classical system.« less

  20. Numerical modelling of multiphase liquid-vapor-gas flows with interfaces and cavitation

    NASA Astrophysics Data System (ADS)

    Pelanti, Marica

    2017-11-01

    We are interested in the simulation of multiphase flows where the dynamical appearance of vapor cavities and evaporation fronts in a liquid is coupled to the dynamics of a third non-condensable gaseous phase. We describe these flows by a single-velocity three-phase compressible flow model composed of the phasic mass and total energy equations, the volume fraction equations, and the mixture momentum equation. The model includes stiff mechanical and thermal relaxation source terms for all the phases, and chemical relaxation terms to describe mass transfer between the liquid and vapor phases of the species that may undergo transition. The flow equations are solved by a mixture-energy-consistent finite volume wave propagation scheme, combined with simple and robust procedures for the treatment of the stiff relaxation terms. An analytical study of the characteristic wave speeds of the hierarchy of relaxed models associated to the parent model system is also presented. We show several numerical experiments, including two-dimensional simulations of underwater explosive phenomena where highly pressurized gases trigger cavitation processes close to a rigid surface or to a free surface. This work was supported by the French Government Grant DGA N. 2012.60.0011.00.470.75.01, and partially by the Norwegian Grant RCN N. 234126/E30.

  1. Improvement of post-thaw sperm survivals using liquid nitrogen vapor in a spermcasting oyster Ostrea angasi.

    PubMed

    Hassan, Md Mahbubul; Li, Xiaoxu; Qin, Jian G

    2017-10-01

    Low survival of cryopreserved sperm impedes the application of cryopreservation technique in spermcasting oyster species. This study developed a simple method of liquid nitrogen vapor freezing to improve post-thaw sperm survival in the spermcasting oyster Ostrea angasi. The results indicate that the permeable cryoprotectants, dimethyl sulfoxide (DMSO), ethylene glycol (EG) and propylene glycol (PG) were non-toxic to sperm up to 20% concentration and 90 min exposure whereas methanol at 10% or higher was toxic to sperm for any exposure over 30 min. Among the treatments with permeable cryoprotectants, 15% EG produced the highest post-thaw sperm motility. Sperm motility was further improved by the addition of non-permeable cryoprotectants (trehalose and glucose), with 15% EG + 0.2 M trehalose resulting in the highest post-thaw sperm motility among all the combinations evaluated. The durations of 20, 30 and 60 min equilibrations produced a higher post-thaw sperm motility and plasma membrane integrity (PMI) than 10 min. Higher post-thaw motility and PMI were achieved by freezing sperm at the 8 cm height from the liquid nitrogen surface than at the 2, 4, 6, 10 or 12 cm height. Holding sperm for 10 min in liquid nitrogen vapor produced higher post-thaw motility and PMI than for 2, 5 or 20 min. The cryopreservation protocol developed in this study improved both post-thaw motility and PMI of O. angasi sperm at least 15% higher than those cryopreserved using programmable freezing method. Liquid nitrogen vapor freezing might have greater applicability in improving post-thaw sperm quality of spermcasting oyster species. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Cryopreservation of Cynomolgus Macaque (Macaca fascicularis) Sperm by Using a Commercial Egg-YolkFree Freezing Medium.

    PubMed

    Yan, Yaping; Ao, Lei; Wang, Hong; Duan, Yanchao; Chang, Shaohui; Chen, Bingbing; Zhi, Dalong; Li, Sujuan; Niu, Yuyu; Ji, Weizhi; Si, Wei

    2016-11-01

    Conventional TRISegg yolk (TEY) freezing medium for the cryopreservation of NHP sperm has the risk of contamination due to widespread zoonotic diseases. This study was aimed at determining the optimal glycerol concentration, freezing rate, and holding time in liquid N2 vapor for the cryopreservation of cynomolgus macaque sperm by using a commercial egg-yolkfree freezing medium (SC medium) designed for human sperm cryopreservation. Sperm motility and acrosomal integrity after freezing were assessed. Sperm in SC medium (dilution ratio, 3:1) frozen at cooling rates of 67 and 183C/min in liquid N2 vapor showed higher post-thaw motility than did samples frozen at 435C/min. At the cooling rate of 183C/min and dilution in SC medium at a 3:1 ratio, post-thaw motility was higher after a holding time of 10 min than after 30 min (recommended by the manufacturer). In addition, post-thaw motility of sperm frozen in SC medium was higher with dilution ratios of 3:1, 4.5:1, and 6:1 compared with 9:1, 10.5:1, and 12:1, and the sample diluted 12:1 showed the lowest percentage of thawed sperm with intact acrosomes. Sperm showed higher post-thaw motility after freezing in TEY than in SC medium; acrosomal integrity did not differ between the 2 media. Our results indicated that cynomolgus macaque sperm can be cryopreserved successfully by using a commercial egg-yolkfree freezing medium, which provides an option for genetic preservation with decreased zoonotic risk in this important NHP species.

  3. Spin accumulation in thin Cs salts on contact with optically polarized Cs vapor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishikawa, Kiyoshi

    2011-09-15

    The spin angular momentum accumulates in the Cs nuclei of salt on contact with optically pumped Cs vapor. The spin polarization in stable chloride as well as dissociative hydride indicates that nuclear dipole interaction works in spin transferring with a lesser role of atom exchange. In the solid film, not only the spin buildup but also the decay of enhanced polarization is faster than the thermal recovery rate for the bulk salt. Eliminating the signal of thick salt, we find that the nuclear spin polarization in the chloride film reaches over 100 times the thermal equilibrium.

  4. Proliferation and glucosinolates accumulation of broccoli adventitious roots in liquid medium

    NASA Astrophysics Data System (ADS)

    Nhut, Nguyen Minh; Tien, Le Thi Thuy

    2017-09-01

    Cotyledons from 7-day-old in vitro broccoli seedling were used as explant source in adventitious root induction on MS medium supplemented with 30 g/l sucrose, 1.6 mg/l IBA and 7 g/l agar. Adventitious roots from cotyledons were transferred to liquid medium containing the same components as rooting medium for two weeks, then subcultured to MS medium with diferent sugar, macrominerals and casein hydrolysate concentrations. The best adventitious root growth was observed in half-strength MS medium supplemented with 40 g/l sucrose, 600 mg/l casein hydrolysate and 1.6 mg/l IBA (growth index of 4.00 in about 14 culture days with inoculum density of 1.0 g fresh weight / 30 ml of culture medium). The culturing process can be stopped on the 28th day for root biomass and on the 35th day for glucosinolates.

  5. Passive Vaporizing Heat Sink

    NASA Technical Reports Server (NTRS)

    Knowles, TImothy R.; Ashford, Victor A.; Carpenter, Michael G.; Bier, Thomas M.

    2011-01-01

    A passive vaporizing heat sink has been developed as a relatively lightweight, compact alternative to related prior heat sinks based, variously, on evaporation of sprayed liquids or on sublimation of solids. This heat sink is designed for short-term dissipation of a large amount of heat and was originally intended for use in regulating the temperature of spacecraft equipment during launch or re-entry. It could also be useful in a terrestrial setting in which there is a requirement for a lightweight, compact means of short-term cooling. This heat sink includes a hermetic package closed with a pressure-relief valve and containing an expendable and rechargeable coolant liquid (e.g., water) and a conductive carbon-fiber wick. The vapor of the liquid escapes when the temperature exceeds the boiling point corresponding to the vapor pressure determined by the setting of the pressure-relief valve. The great advantage of this heat sink over a melting-paraffin or similar phase-change heat sink of equal capacity is that by virtue of the =10x greater latent heat of vaporization, a coolant-liquid volume equal to =1/10 of the paraffin volume can suffice.

  6. Glasses and Liquids Low on the Energy Landscape Prepared by Physical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Dalal, Shakeel; Fakhraai, Zahra; Ediger, Mark

    2014-03-01

    The lower portions of the potential energy landscape for glass-forming materials such as polymers and small molecules were historically inaccessible by experiments. Physical vapor deposition is uniquely able to prepare materials in this portion of the energy landscape, with the properties of the deposited material primarily modulated by the substrate temperature. Here we report on high-throughput experiments which utilize a temperature gradient stage to enable rapid screening of vapor-deposited organic glasses. Using ellipsometry, we characterize a 100 K range of substrate temperatures in a single experiment, allowing us to rapidly determine the density, kinetic stability, fictive temperature and molecular orientation of these glasses. Their properties fall into three temperature regimes. At substrate temperatures as low as 0.97Tg, we prepare materials which are equivalent to the supercooled liquid produced by cooling the melt. Below 0.9Tg (1.16TK) the properties of materials are kinetically controlled and highly tunable. At intermediate substrate temperatures we are able to produce materials whose bulk properties match those expected for the equilibrium supercooled liquid, down to 1.16TK, but are structurally anisotropic.

  7. Influence of phase transition on the instability of a liquid-vapor interface in a gravitational field

    NASA Astrophysics Data System (ADS)

    Konovalov, V. V.; Lyubimov, D. V.; Lyubimova, T. P.

    2017-06-01

    This study is concerned with the linear stability of the horizontal interface between thick layers of a viscous heat-conducting liquid and its vapor in a gravitational field subject to phase transition. We consider the case when the hydrostatic base state is consistent with a balanced heat flux at the liquid-vapor interface. The corrections to the growth rate of the most dangerous perturbations and cutoff wave number, characterizing the influence of phase transition on the Rayleigh-Taylor instability, are found to be different from the data in the literature. Most of the previous results were obtained in the framework of a quasiequilibrium approximation, which had been shown to conform to the limit of thin media layers under equality of the interface temperature to a saturation temperature. The main difference from the results obtained with the quasiequilibrium approach is new values of the proportionality coefficients that correlate our corrections with the intensity of weak heating. Moreover, at large values of the heat flux rate, when deviations from the approximate linear law are important, the effect of phase transition is limited and does not exceed the size of the vapor viscosity effect.

  8. n-Type Doping of Vapor-Liquid-Solid Grown GaAs Nanowires.

    PubMed

    Gutsche, Christoph; Lysov, Andrey; Regolin, Ingo; Blekker, Kai; Prost, Werner; Tegude, Franz-Josef

    2011-12-01

    In this letter, n-type doping of GaAs nanowires grown by metal-organic vapor phase epitaxy in the vapor-liquid-solid growth mode on (111)B GaAs substrates is reported. A low growth temperature of 400°C is adjusted in order to exclude shell growth. The impact of doping precursors on the morphology of GaAs nanowires was investigated. Tetraethyl tin as doping precursor enables heavily n-type doped GaAs nanowires in a relatively small process window while no doping effect could be found for ditertiarybutylsilane. Electrical measurements carried out on single nanowires reveal an axially non-uniform doping profile. Within a number of wires from the same run, the donor concentrations ND of GaAs nanowires are found to vary from 7 × 10(17) cm(-3) to 2 × 10(18) cm(-3). The n-type conductivity is proven by the transfer characteristics of fabricated nanowire metal-insulator-semiconductor field-effect transistor devices.

  9. Aircraft millimeter-wave passive sensing of cloud liquid water and water vapor during VOCALS-REx

    DOE PAGES

    Zuidema, P.; Leon, D.; Pazmany, A.; ...

    2012-01-05

    Routine liquid water path measurements and water vapor path are valuable for process studies of the cloudy marine boundary layer and for the assessment of large-scale models. The VOCALS Regional Experiment respected this goal by including a small, inexpensive, upwardpointing millimeter-wavelength passive radiometer on the fourteen research flights of the NCAR C-130 plane, the Gband (183 GHz) Vapor Radiometer (GVR). The radiometer permitted above-cloud retrievals of the free-tropospheric water vapor path (WVP). Retrieved free-tropospheric (abovecloud) water vapor paths possessed a strong longitudinal gradient, with off-shore values of one to twomm and nearcoastal values reaching tenmm. The VOCALS-REx free troposphere wasmore » drier than that of previous years. Cloud liquid water paths (LWPs) were retrieved from the sub-cloud and cloudbase aircraft legs through a combination of the GVR, remotely-sensed cloud boundary information, and insitu thermodynamic data. The absolute (between-leg) and relative (within-leg) accuracy of the LWP retrievals at 1 Hz (≈100 m) resolution was estimated at 20 gm -2 and 3 gm -2 respectively for well-mixed conditions, and 25 gm -2 absolute uncertainty for decoupled conditions where the input WVP specification was more uncertain. Retrieved liquid water paths matched adiabatic values derived from coincident cloud thickness measurements exceedingly well. A significant contribution of the GVR dataset was the extended information on the thin clouds, with 62% (28 %) of the retrieved LWPs <100 (40) gm -2. Coastal LWPs values were lower than those offshore. For the four dedicated 20° S flights, the mean (median) coastal LWP was 67 (61) gm -2, increasing to 166 (120) gm -2 1500 km offshore. Finally, the overall LWP cloud fraction from thirteen research flights was 63 %, higher than that of adiabatic LWPs at 40 %, but lower than the lidar-determined cloud cover of 85 %, further testifying to the frequent occurrence of thin clouds.« less

  10. On the universal behavior of some thermodynamic properties along the whole liquid-vapor coexistence curve

    NASA Astrophysics Data System (ADS)

    Román, F. L.; White, J. A.; Velasco, S.; Mulero, A.

    2005-09-01

    When thermodynamic properties of a pure substance are transformed to reduced form by using both critical- and triple-point values, the corresponding experimental data along the whole liquid-vapor coexistence curve can be correlated with a very simple analytical expression that interpolates between the behavior near the triple and the critical points. The leading terms of this expression contain only two parameters: the critical exponent and the slope at the triple point. For a given thermodynamic property, the critical exponent has a universal character but the slope at the triple point can vary significantly from one substance to another. However, for certain thermodynamic properties including the difference of coexisting densities, the enthalpy of vaporization, and the surface tension of the saturated liquid, one finds that the slope at the triple point also has a nearly universal value for a wide class of fluids. These thermodynamic properties thus show a corresponding apparently universal behavior along the whole coexistence curve.

  11. Dispersion polymerization of L-lactide utilizing ionic liquids as reaction medium

    NASA Astrophysics Data System (ADS)

    Fahmiati, Sri; Minami, Hideto; Haryono, Agus; Adilina, Indri B.

    2017-11-01

    Dispersion polymerization of L-lactide was proceeded in various ionic liquids. Ionic liquids as 1-Hexyl-3-methylimidazolium bis (trifluormethylsulfonyl) imide, [HMIM] [TFSI], 1-Butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide, [BMP] [TFSI], and N,N,N-Trimethyl-N-Propylammonium Bis (trifloromethanesulfonyl) imide, [TMPA] [TFSI], were employed as reaction medium that dissolved both of lactide and stabilizer (polyvinylprrolidone). Sn-supported on bentonite was used as a ring opening catalyst of L-lactide. Gel Permeation Chromatography result showed that poly-(L-lactic acid) were formed in ionic liquids [HMIM] [TFSI] and [BMP] [TFSI] with molecular weight as 19390 and 20844, respectively.

  12. CuInGaSe{sub 2} nanoparticles by pulsed laser ablation in liquid medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendivil, M.I.; García, L.V.; Krishnan, B.

    2015-12-15

    Highlights: • CIGS nanocolloids were synthesized using PLAL technique. • Characterized their morphology, structure, composition and optical properties. • Morphologies were dependent on ablation wavelength and liquid medium. • Optical absorption and bandgap of these nanocolloids were tunable. - Abstract: Pulsed laser ablation in liquid medium (PLALM) is a nanofabrication technique to produce complex nanostructures. CuInGaSe{sub 2} (CIGS) is an alloy with applications in photovoltaic industry. In this work, we studied the effects of laser ablation wavelength, energy fluence and liquid medium on the properties of the CIGS nanoparticles synthesized by PLALM. The nanoparticles obtained were analyzed by transmission electronmore » microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), selected area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS) and UV–vis absorption spectroscopy. XPS results confirmed the chemical states and composition of the ablated products. TEM analysis showed different morphologies for the nanomaterials obtained in different liquid media and ablation wavelengths. The optical properties for these CIGS nanocolloids were analyzed using UV–vis absorption spectroscopy. The results demonstrated the use of PLALM as a useful synthesis technique for nanoparticles of quaternary photovoltaic materials.« less

  13. G-Band Vapor Radiometer Profiler (GVRP) Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caddeau, MP

    2010-06-23

    The G-Band Vapor Radiometer Profiler (GVRP) provides time-series measurements of brightness temperatures from 15 channels between 170 and 183.310 GHz. Atmospheric emission in this spectral region is primarily due to water vapor, with some influence from liquid water. Channels between 170.0 and 176.0 GHz are particularly sensitive to the presence of liquid water. The sensitivity to water vapor of the 183.31-GHz line is approximately 30 times higher than at the frequencies of the two-channel microwave radiometer (MWR) for a precipitable water vapor (PWV) amount of less than 2.5 mm. Measurements from the GVRP instrument are therefore especially useful during low-humiditymore » conditions (PWV < 5 mm). In addition to integrated water vapor and liquid water, the GVRP can provide low-resolution vertical profiles of water vapor in very dry conditions.« less

  14. Extended vapor-liquid-solid growth of silicon carbide nanowires.

    PubMed

    Rajesh, John Anthuvan; Pandurangan, Arumugam

    2014-04-01

    We developed an alloy catalytic method to explain extended vapor-liquid-solid (VLS) growth of silicon carbide nanowires (SiC NWs) by a simple thermal evaporation of silicon and activated carbon mixture using lanthanum nickel (LaNi5) alloy as catalyst in a chemical vapor deposition process. The LaNi5 alloy binary phase diagram and the phase relationships in the La-Ni-Si ternary system were play a key role to determine the growth parameters in this VLS mechanism. Different reaction temperatures (1300, 1350 and 1400 degrees C) were applied to prove the established growth process by experimentally. Scanning electron microscopy and transmission electron microscopy studies show that the crystalline quality of the SiC NWs increases with the temperature at which they have been synthesized. La-Ni alloyed catalyst particles observed on the top of the SiC NWs confirms that the growth process follows this extended VLS mechanism. The X-ray diffraction and confocal Raman spectroscopy analyses demonstrate that the crystalline structure of the SiC NWs was zinc blende 3C-SiC. Optical property of the SiC NWs was investigated by photoluminescence technique at room temperature. Such a new alloy catalytic method may be extended to synthesis other one-dimensional nanostructures.

  15. Theory of hydrophobicity: transient cavities in molecular liquids

    NASA Technical Reports Server (NTRS)

    Pratt, L. R.; Pohorille, A.

    1992-01-01

    Observation of the size distribution of transient cavities in computer simulations of water, n-hexane, and n-dodecane under benchtop conditions shows that the sizes of cavities are more sharply defined in liquid water but the most-probable-size cavities are about the same size in each of these liquids. The calculated solvent atomic density in contact with these cavities shows that water applies more force per unit area of cavity surface than do the hydrocarbon liquids. This contact density, or "squeezing" force, reaches a maximum near cavity diameters of 2.4 angstroms. The results for liquid water are compared to the predictions of simple theories and, in addition, to results for a reference simple liquid. The numerical data for water at a range of temperatures are analyzed to extract a surface free energy contribution to the work of formation of atomic-size cavities. Comparison with the liquid-vapor interfacial tensions of the model liquids studied here indicates that the surface free energies extracted for atomic-size cavities cannot be accurately identified with the macroscopic surface tensions of the systems.

  16. Theory of hydrophobicity: Transient cavities in molecular liquids

    PubMed Central

    Pratt, Lawrence R.; Pohorille, Andrew

    1992-01-01

    Observation of the size distribution of transient cavities in computer simulations of water, n-hexane, and n-dodecane under benchtop conditions shows that the sizes of cavities are more sharply defined in liquid water but the most-probable-size cavities are about the same size in each of these liquids. The calculated solvent atomic density in contact with these cavities shows that water applies more force per unit area of cavity surface than do the hydrocarbon liquids. This contact density, or “squeezing” force, reaches a maximum near cavity diameters of 2.4 Å. The results for liquid water are compared to the predictions of simple theories and, in addition, to results for a reference simple liquid. The numerical data for water at a range of temperatures are analyzed to extract a surface free energy contribution to the work of formation of atomic-size cavities. Comparison with the liquid-vapor interfacial tensions of the model liquids studies here indicates that the surface free energies extracted for atomic-size cavities cannot be accurately identified with the macroscopic surface tensions of the systems. PMID:11537863

  17. Vapor-liquid-solid growth of silicon and silicon germanium nanowires

    NASA Astrophysics Data System (ADS)

    Nimmatoori, Pramod

    2009-12-01

    Si and Si1-xGex nanowires are promising materials with potential applications in various disciplines of science and technology. Small diameter nanowires can act as model systems to study interesting phenomena such as tunneling that occur in the nanometer regime. Furthermore, technical challenges in fabricating nanoscale size devices from thin films have resulted in interest and research on nanowires. In this perspective, vertical integrated nanowire field effect transistors (VINFETs) fabricated from Si nanowires are promising devices that offer better control on device properties and push the transistor architecture into the third dimension potentially enabling ultra-high transistor density circuits. Transistors fabricated from Si/Si 1-xGex nanowires have also been proposed that can have high carrier mobility. In addition, the Si and Si1-xGe x nanowires have potential to be used in various applications such as sensing, thermoelectrics and solar cells. Despite having considerable potential, the understanding of the vapor-liquid-solid (VLS) mechanism utilized to fabricate these wires is still rudimentary. Hence, the objective of this thesis is to understand the effects of nanoscale size and the role of catalyst that mediates the wire growth on the growth rate of Si and Si1-xGe x nanowires and interfacial abruptness in Si/Si1-xGe x axial heterostructure nanowires. Initially, the growth and structural properties of Si nanowires with tight diameter distribution grown from 10, 20 and 50 nm Au particles dispersed on a polymer-modified substrate was studied. A nanoparticle application process was developed to disperse Au particles on the substrate surface with negligible agglomeration and sufficient density. The growth temperature and SiH4 partial pressure were varied to optimize the growth conditions amenable to VLS growth with smooth wire morphology and negligible Si thin film deposition on wire sidewalls. The Si nanowire growth rate was studied as a function of growth

  18. Thermal diode utilizing asymmetric contacts to heat baths.

    PubMed

    Komatsu, Teruhisa S; Ito, Nobuyasu

    2010-01-01

    We propose a simple thermal diode passively acting as a rectifier of heat current. The key design of the diode is the size asymmetry of the areas in contact with two distinct heat baths. The heat-conducting medium is liquid, inside of which gaslike regions are induced depending on the applied conditions. Simulating nanoscale systems of this diode, the rectification of heat current is demonstrated. If the packing density of the medium and the working regime of temperature are properly chosen, the heat current is effectively cut off when the heat bath with narrow contact is hotter, but it flows normally under opposite temperature conditions. In the former case, the gaslike region is induced in the system and it acts as a thermal insulator because it covers the entire narrow area of contact with the bath.

  19. Stacked vapor fed amtec modules

    DOEpatents

    Sievers, Robert K.

    1989-01-01

    The present invention pertains to a stacked AMTEC module. The invention includes a tubular member which has an interior. The member is comprised of a ion conductor that substantially conducts ions relative to electrons, preferably a beta"-alumina solid electrolyte, positioned about the interior. A porous electrode for conducting electrons and allowing sodium ions to pass therethrough, and wherein electrons and sodium ions recombine to form sodium is positioned about the beta"-alumina solid electrolyte. The electrode is operated at a temperature and a pressure that allows the recombined sodium to vaporize. Additionally, an outer current collector grid for distributing electrons throughout the porous electrode is positioned about and contacts the porous electrode. Also included in the invention is transporting means for transporting liquid sodium to the beta"-alumina solid electrolyte of the tubular member. A transition piece is positioned about the interior of the member and contacts the transporting means. The transition piece divides the member into a first cell and a second cell such that each first and second cell has a beta"-alumina solid electrolyte, a first and second porous electrode and a grid. The transition piece conducts electrons from the interior of the tubular member. There is supply means for supplying sodium to the transporting means. Preferably the supply means is a shell which surrounds the tubular member and is operated at a temperature such that the vaporized sodium condenses thereon. Returning means for returning the condensed sodium from the shell to the transporting means provides a continuous supply of liquid sodium to the transporting means. Also, there are first conducting means for conducting electric current from the transition piece which extends through the shell, and second conducting means for conducting electric current to the grid of the first cell which extends through the shell.

  20. Intermolecular network analysis of the liquid and vapor interfaces of pentane and water: microsolvation does not trend with interfacial properties.

    PubMed

    Ghadar, Yasaman; Clark, Aurora E

    2014-06-28

    Liquid:vapor and liquid:liquid interfaces exhibit complex organizational structure and dynamics at the molecular level. In the case of water and organic solvents, the hydrophobicity of the organic, its conformational flexibility, and compressibility, all influence interfacial properties. This work compares the interfacial tension, width, molecular conformations and orientations at the vapor and aqueous liquid interfaces of two solvents, n-pentane and neopentane, whose varying molecular shapes can lead to significantly different interfacial behavior. Particular emphasis has been dedicated toward understanding how the hydrogen bond network of water responds to the pentane relative to the vapor interface and the sensitivity of the network to the individual pentane isomer and system temperature. Interfacial microsolvation of the immiscible solvents has been examined using graph theoretical methods that quantify the structure and dynamics of microsolvated species (both H2O in C5H12 and C5H12 in H2O). At room temperature, interfacial water at the pentane phase boundary is found to have markedly different organization and dynamics than at the vapor interface (as indicated by the hydrogen bond distributions and hydrogen bond persistence in solution). While the mesoscale interfacial properties (e.g. interfacial tension) are sensitive to the specific pentane isomer, the distribution and persistence of microsolvated species at the interface is nearly identical for both systems, irrespective of temperature (between 273 K and 298 K). This has important implications for understanding how properties defined by the interfacial organization are related to the underlying solvation reactions that drive formation of the phase boundary.

  1. Making sense of enthalpy of vaporization trends for ionic liquids: new experimental and simulation data show a simple linear relationship and help reconcile previous data.

    PubMed

    Verevkin, Sergey P; Zaitsau, Dzmitry H; Emel'yanenko, Vladimir N; Yermalayeu, Andrei V; Schick, Christoph; Liu, Hongjun; Maginn, Edward J; Bulut, Safak; Krossing, Ingo; Kalb, Roland

    2013-05-30

    Vaporization enthalpy of an ionic liquid (IL) is a key physical property for applications of ILs as thermofluids and also is useful in developing liquid state theories and validating intermolecular potential functions used in molecular modeling of these liquids. Compilation of the data for a homologous series of 1-alkyl-3-methylimidazolium bis(trifluoromethane-sulfonyl)imide ([C(n)mim][NTf2]) ILs has revealed an embarrassing disarray of literature results. New experimental data, based on the concurring results from quartz crystal microbalance, thermogravimetric analyses, and molecular dynamics simulation have revealed a clear linear dependence of IL vaporization enthalpies on the chain length of the alkyl group on the cation. Ambiguity of the procedure for extrapolation of vaporization enthalpies to the reference temperature 298 K was found to be a major source of the discrepancies among previous data sets. Two simple methods for temperature adjustment of vaporization enthalpies have been suggested. Resulting vaporization enthalpies obey group additivity, although the values of the additivity parameters for ILs are different from those for molecular compounds.

  2. Vapor-liquid-solid growth of <110> silicon nanowire arrays

    NASA Astrophysics Data System (ADS)

    Eichfeld, Sarah M.; Hainey, Mel F.; Shen, Haoting; Kendrick, Chito E.; Fucinato, Emily A.; Yim, Joanne; Black, Marcie R.; Redwing, Joan M.

    2013-09-01

    The epitaxial growth of <110> silicon nanowires on (110) Si substrates by the vapor-liquid-solid growth process was investigated using SiCl4 as the source gas. A high percentage of <110> nanowires was obtained at high temperatures and reduced SiCl4 partial pressures. Transmission electron microscopy characterization of the <110> Si nanowires revealed symmetric V-shaped {111} facets at the tip and large {111} facets on the sidewalls of the nanowires. The symmetric {111} tip faceting was explained as arising from low catalyst supersaturation during growth which is expected to occur given the near-equilibrium nature of the SiCl4 process. The predominance of {111} facets obtained under these conditions promotes the growth of <110> SiNWs.

  3. Water-vapor effects on friction of magnetic tape in contact with nickel-zinc ferrite

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    The effects of humidity of moist nitrogen on the friction and deformation behavior of magnetic tape in contact with a nickel-zinc ferrite spherical pin were studied. The results indicate that the coefficient of friction is markedly dependent on the ambient relative humidity. Although the coefficient of friction remains low below 40-percent relative humidity, it increases rapidly with increasing relative humidity above 40 percent. The general ambient environment of the tape does not have any effect on the friction behavior if the area where the tape is in sliding contact with the ferrite pin is flooded with controlled nitrogen. The response time for the friction of the tape to humidity changes is about 10 sec. The effect of friction as a function of relative humidity on dehumidifying is very similar to that on humidifying. A surface softening of the tape due to water vapor increases the friction of the tape.

  4. On the behavior and stability of a liquid metal in quasi-planar electric contacts

    NASA Astrophysics Data System (ADS)

    Samuilov, S. D.

    2016-06-01

    The contacts between conductors formed under relatively low pressures can be treated as quasi-planar. Melting of the material of such contacts upon the passage of electric current is used in some technological processes, but the behavior of liquid in these conditions has not been analyzed. In this study, such an estimate was obtained for specific conditions appearing under electric-pulse compacting (briquetting) of metal shavings. Analysis of derived relations shows that this estimate is valid for any quasi-2D contacts upon passage of a pulsed current of duration from microseconds to milliseconds. It is shown that the spacing between contact surfaces decreases, the liquid metal is extruded in the lateral directions, and the area of the contact and its conductivity increase. Sausage-type magnetohydrodynamic (MHD) instability and overheating instability do not evolve in these conditions because the instability wavelength is larger than the rated thickness of the molten layer; screw MHD instability can appear in slower processes.

  5. Efficient gas-liquid contact using microfluidic membrane devices with staggered herringbone mixers.

    PubMed

    Femmer, Tim; Eggersdorfer, Max L; Kuehne, Alexander J C; Wessling, Matthias

    2015-08-07

    We describe a novel membrane based gas-liquid-contacting device with increased mass transport and reduced pressure loss by combining a membrane with a staggered herringbone static mixer. Herringbone structures are imposed on the microfluidic channel geometry via soft lithography, acting as mixers which introduce secondary flows at the membrane interface. Such flows include Dean vortices and Taylor flows generating effective mixing while improving mass transport and preventing concentration polarization in microfluidic channels. Furthermore, our static herringbone mixer membranes effectively reduce pressure losses leading to devices with enhanced transfer properties for microfluidic gas-liquid contact. We investigate the red blood cell distribution to tailor our devices towards miniaturised extracorporeal membrane oxygenation and improved comfort of patients with lung insufficiencies.

  6. Cryopreservation of Cynomolgus Macaque (Macaca fascicularis) Sperm by Using a Commercial Egg-Yolk–Free Freezing Medium

    PubMed Central

    Yan, Yaping; Ao, Lei; Wang, Hong; Duan, Yanchao; Chang, Shaohui; Chen, Bingbing; Zhi, Dalong; Li, Sujuan; Niu, Yuyu; Ji, Weizhi; Si, Wei

    2016-01-01

    Conventional TRIS–egg yolk (TEY) freezing medium for the cryopreservation of NHP sperm has the risk of contamination due to widespread zoonotic diseases. This study was aimed at determining the optimal glycerol concentration, freezing rate, and holding time in liquid N2 vapor for the cryopreservation of cynomolgus macaque sperm by using a commercial egg-yolk–free freezing medium (SC medium) designed for human sperm cryopreservation. Sperm motility and acrosomal integrity after freezing were assessed. Sperm in SC medium (dilution ratio, 3:1) frozen at cooling rates of –67° and –183°C/min in liquid N2 vapor showed higher post-thaw motility than did samples frozen at –435 °C/min. At the cooling rate of –183 °C/min and dilution in SC medium at a 3:1 ratio, post-thaw motility was higher after a holding time of 10 min than after 30 min (recommended by the manufacturer). In addition, post-thaw motility of sperm frozen in SC medium was higher with dilution ratios of 3:1, 4.5:1, and 6:1 compared with 9:1, 10.5:1, and 12:1, and the sample diluted 12:1 showed the lowest percentage of thawed sperm with intact acrosomes. Sperm showed higher post-thaw motility after freezing in TEY than in SC medium; acrosomal integrity did not differ between the 2 media. Our results indicated that cynomolgus macaque sperm can be cryopreserved successfully by using a commercial egg-yolk–free freezing medium, which provides an option for genetic preservation with decreased zoonotic risk in this important NHP species. PMID:27931311

  7. Perspective: Highly stable vapor-deposited glasses

    NASA Astrophysics Data System (ADS)

    Ediger, M. D.

    2017-12-01

    This article describes recent progress in understanding highly stable glasses prepared by physical vapor deposition and provides perspective on further research directions for the field. For a given molecule, vapor-deposited glasses can have higher density and lower enthalpy than any glass that can be prepared by the more traditional route of cooling a liquid, and such glasses also exhibit greatly enhanced kinetic stability. Because vapor-deposited glasses can approach the bottom of the amorphous part of the potential energy landscape, they provide insights into the properties expected for the "ideal glass." Connections between vapor-deposited glasses, liquid-cooled glasses, and deeply supercooled liquids are explored. The generality of stable glass formation for organic molecules is discussed along with the prospects for stable glasses of other types of materials.

  8. Dancing droplets: Contact angle, drag, and confinement

    NASA Astrophysics Data System (ADS)

    Benusiglio, Adrien; Cira, Nate; Prakash, Manu

    2015-11-01

    When deposited on a clean glass slide, a mixture of water and propylene glycol forms a droplet of given contact angle, when both pure liquids spread. (Cira, Benusiglio, Prakash: Nature, 2015). The droplet is stabilized by a gradient of surface tension due to evaporation that induces a Marangoni flow from the border to the apex of the droplets. The apparent contact angle of the droplets depends on both their composition and the external humidity as captured by simple models. These droplets present remarkable properties such as lack of a large pinning force. We discuss the drag on these droplets as a function of various parameters. We show theoretical and experimental results of how various confinement geometries change the vapor gradient and the dynamics of droplet attraction.

  9. Properties of water along the liquid-vapor coexistence curve via molecular dynamics simulations using the polarizable TIP4P-QDP-LJ water model

    PubMed Central

    Bauer, Brad A.; Patel, Sandeep

    2009-01-01

    We present an extension of the TIP4P-QDP model, TIP4P-QDP-LJ, that is designed to couple changes in repulsive and dispersive nonbond interactions to changes in polarizability. Polarizability is intimately related to the dispersion component of classical force field models of interactions, and we explore the effect of incorporating this connection explicitly on properties along the liquid-vapor coexistence curve of pure water. Parametrized to reproduce condensed-phase liquid water properties at 298 K, the TIP4P-QDP-LJ model predicts density, enthalpy of vaporization, self-diffusion constant, and the dielectric constant at ambient conditions to about the same accuracy as TIP4P-QDP but shows remarkable improvement in reproducing the liquid-vapor coexistence curve. TIP4P-QDP-LJ predicts critical constants of Tc=623 K, ρc=0.351 g∕cm3, and Pc=250.9 atm, which are in good agreement with experimental values of Tc=647.1 K, ρc=0.322 g∕cm3, and Pc=218 atm, respectively. Applying a scaling factor correction (obtained by fitting the experimental vapor-liquid equilibrium data to the law of rectilinear diameters using a three-term Wegner expansion) the model predicts critical constants (Tc=631 K and ρc=0.308 g∕cm3). Dependence of enthalpy of vaporization, self-diffusion constant, surface tension, and dielectric constant on temperature are shown to reproduce experimental trends. We also explore the interfacial potential drop across the liquid-vapor interface for the temperatures studied. The interfacial potential demonstrates little temperature dependence at lower temperatures (300–450 K) and significantly enhanced (exponential) dependence at elevated temperatures. Terms arising from the decomposition of the interfacial potential into dipole and quadrupole contributions are shown to monotonically approach zero as the temperature approaches the critical temperature. Results of this study suggest that self-consistently treating the coupling of phase

  10. Properties of water along the liquid-vapor coexistence curve via molecular dynamics simulations using the polarizable TIP4P-QDP-LJ water model.

    PubMed

    Bauer, Brad A; Patel, Sandeep

    2009-08-28

    We present an extension of the TIP4P-QDP model, TIP4P-QDP-LJ, that is designed to couple changes in repulsive and dispersive nonbond interactions to changes in polarizability. Polarizability is intimately related to the dispersion component of classical force field models of interactions, and we explore the effect of incorporating this connection explicitly on properties along the liquid-vapor coexistence curve of pure water. Parametrized to reproduce condensed-phase liquid water properties at 298 K, the TIP4P-QDP-LJ model predicts density, enthalpy of vaporization, self-diffusion constant, and the dielectric constant at ambient conditions to about the same accuracy as TIP4P-QDP but shows remarkable improvement in reproducing the liquid-vapor coexistence curve. TIP4P-QDP-LJ predicts critical constants of T(c)=623 K, rho(c)=0.351 g/cm(3), and P(c)=250.9 atm, which are in good agreement with experimental values of T(c)=647.1 K, rho(c)=0.322 g/cm(3), and P(c)=218 atm, respectively. Applying a scaling factor correction (obtained by fitting the experimental vapor-liquid equilibrium data to the law of rectilinear diameters using a three-term Wegner expansion) the model predicts critical constants (T(c)=631 K and rho(c)=0.308 g/cm(3)). Dependence of enthalpy of vaporization, self-diffusion constant, surface tension, and dielectric constant on temperature are shown to reproduce experimental trends. We also explore the interfacial potential drop across the liquid-vapor interface for the temperatures studied. The interfacial potential demonstrates little temperature dependence at lower temperatures (300-450 K) and significantly enhanced (exponential) dependence at elevated temperatures. Terms arising from the decomposition of the interfacial potential into dipole and quadrupole contributions are shown to monotonically approach zero as the temperature approaches the critical temperature. Results of this study suggest that self-consistently treating the coupling of phase

  11. Liquid-vapor phase relations in the Si-O system: A calorically constrained van der Waals-type model

    NASA Astrophysics Data System (ADS)

    Connolly, James A. D.

    2016-09-01

    This work explores the use of several van der Waals (vW)-type equations of state (EoS) for predicting vaporous phase relations and speciation in the Si-O system, with emphasis on the azeotropic boiling curve of SiO2-rich liquid. Comparison with the observed Rb and Hg boiling curves demonstrates that prediction accuracy is improved if the a-parameter of the EoS, which characterizes vW forces, is constrained by ambient pressure heat capacities. All EoS considered accurately reproduce metal boiling curve trajectories, but absent knowledge of the true critical compressibility factor, critical temperatures remain uncertain by ~500 K. The EoS plausibly represent the termination of the azeotropic boiling curve of silica-rich liquid by a critical point across which the dominant Si oxidation state changes abruptly from the tetravalent state characteristic of the liquid to the divalent state characteristic of the vapor. The azeotropic composition diverges from silica toward metal-rich compositions with increasing temperature. Consequently, silica boiling is divariant and atmospheric loss after a giant impact would enrich residual silicate liquids in reduced silicon. Two major sources of uncertainty in the boiling curve prediction are the heat capacity of silica liquid, which may decay during depolymerization from the near-Dulong-Petit limit heat capacity of the ionic liquid to value characteristic of the molecular liquid, and the unknown liquid affinity of silicon monoxide. Extremal scenarios for these uncertainties yield critical temperatures and compositions of 5200-6200 K and Si1.1O2-Si1.4O2. The lowest critical temperatures are marginally consistent with shock experiments and are therefore considered more probable.

  12. Liquid-liquid extraction of neodymium(III) by dialkylphosphate ionic liquids from acidic medium: the importance of the ionic liquid cation.

    PubMed

    Rout, Alok; Kotlarska, Justyna; Dehaen, Wim; Binnemans, Koen

    2013-10-21

    The ionic liquids 1-hexyl-3-methylimidazolium bis(2-ethylhexyl)phosphate, [C6mim][DEHP], 1-hexyl-1-methylpyrrolidinium bis(2-ethylhexyl)phosphate, [C6mpyr][DEHP], and tetrabutylammonium bis(2-ethylhexyl)phosphate, [N4444][DEHP], were prepared and characterized using (1)H and (13)C NMR spectroscopy. The extraction behavior of neodymium(iii) from nitrate medium by these ionic liquids, diluted with the room temperature ionic liquids 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C6mim][NTf2], 1-hexyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [C6mpyr][NTf2], and tributylmethylammonium bis(trifluoromethylsulfonyl)imide, [N1444][NTf2], was studied. The distribution ratio of neodymium(iii) was measured as a function of various parameters, such as pH, concentration of the ionic liquid extractant, nature of diluents, concentration of ionic liquid cations and nitrate anions in the aqueous phase. The extraction behavior was compared with that obtained for a solution of the molecular extractant bis(2-ethylhexyl)phosphoric acid (DEHPA) in an ionic liquid diluent. The extraction of neodymium(iii) in the ionic liquids [C6mim][DEHP] and [C6mpyr][DEHP] showed markedly different extraction properties in comparison with that of the quaternary ammonium analogue [N4444][DEHP], especially concerning the pH dependence of the extraction process. These results show that the extraction process can be tuned by the selection of the ionic liquid cation. The extraction experiments also included the trivalent rare-earth ions lanthanum(iii), cerium(iii), praseodymium(iii), ytterbium(iii) and yttrium(iii). Studies of the stripping behavior and the reusability of the ionic liquids were carried out, which indicate that the ionic liquids can be reused with no loss in activity.

  13. Effect of perfluorocarbon (perfluorooctyl bromide) vapor on tidal volume measurement during partial liquid ventilation.

    PubMed

    Davies, Mark W; Dunster, Kimble R

    2002-05-01

    To compare measured tidal volumes with and without perfluorocarbon (perfluorooctyl bromide) vapor, by using tidal volumes in the range suitable for neonates ventilated with partial liquid ventilation. We also aimed to determine the correction factor needed to calculate tidal volumes measured in the presence of perfluorooctyl bromide vapor. Prospective, experimental study. Neonatal research laboratory. Reproducible tidal volumes from 5 to 30 mL were produced with a rodent ventilator and drawn from humidifier chambers immersed in a water bath at 37 degrees C. Control tidal volumes were drawn from a chamber containing oxygen and water vapor, and the perfluorocarbon tidal volumes were drawn from a chamber containing oxygen, water vapor, and perfluorooctyl bromide vapor. Tidal volumes were measured by a VenTrak respiratory mechanics monitor with a neonatal flow sensor and a Dräger pneumotachometer attached to a Dräger neonatal ventilator. All tidal volumes measured with perfluorooctyl bromide vapor were increased compared with control. The VenTrak-measured tidal volumes increased by 1.8% to 3.5% (an overall increase of 2.2%). The increase was greater with the Dräger hot-wire anemometer: from 2.4% to 6.1% (an overall increase of 5.9%). Regression equations for mean control tidal volumes (response, Y) vs. mean perfluorooctyl bromide tidal volumes (predictor, X) are as follows: for the VenTrak, Y = -0.026 + (0.978 x X), r =.9999, p <.0001; and for the Dräger, Y = 0.251 + (0.944 x X), r =.9996, p <.0001. The presence of perfluorooctyl bromide vapor in the gas flowing through pneumotachometers gives falsely high tidal volume measurements. An estimate of the true tidal volume allowing for the presence of perfluorooctyl bromide vapor can be made from regression equations. Any calculation of lung mechanics must take into account the effect of perfluorooctyl bromide vapor on the measurement of tidal volume.

  14. 21 CFR 868.5880 - Anesthetic vaporizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Anesthetic vaporizer. 868.5880 Section 868.5880...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5880 Anesthetic vaporizer. (a) Identification. An anesthetic vaporizer is a device used to vaporize liquid anesthetic and deliver a controlled...

  15. 21 CFR 868.5880 - Anesthetic vaporizer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Anesthetic vaporizer. 868.5880 Section 868.5880...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5880 Anesthetic vaporizer. (a) Identification. An anesthetic vaporizer is a device used to vaporize liquid anesthetic and deliver a controlled...

  16. 21 CFR 868.5880 - Anesthetic vaporizer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Anesthetic vaporizer. 868.5880 Section 868.5880...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5880 Anesthetic vaporizer. (a) Identification. An anesthetic vaporizer is a device used to vaporize liquid anesthetic and deliver a controlled...

  17. 21 CFR 868.5880 - Anesthetic vaporizer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Anesthetic vaporizer. 868.5880 Section 868.5880...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5880 Anesthetic vaporizer. (a) Identification. An anesthetic vaporizer is a device used to vaporize liquid anesthetic and deliver a controlled...

  18. 21 CFR 868.5880 - Anesthetic vaporizer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Anesthetic vaporizer. 868.5880 Section 868.5880...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5880 Anesthetic vaporizer. (a) Identification. An anesthetic vaporizer is a device used to vaporize liquid anesthetic and deliver a controlled...

  19. Liquid densities and vapor pressures of 1-chloro-1, 1-difluorethane (HCFC 142b)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maezawa, Yl; Sato, H.; Watanabe, K.

    1991-04-01

    In this paper, thirty-six saturated liquid densities of HCFC 142b (1-chloro-1,1-difluoroethane) are measured in a range of temperatures from 210 to 400 K. Twelve vapor pressures, from 320 to 400 K, and six compressed liquid PVT properties, from 320 to 360 K and of pressures up to 2 MPa, are also measured. All measurements were made by a magnetic densimeter coupled with a variable volume cell. The experimental uncertainties in temperature, pressure, and density were estimated to be not greater than [plus minus]15 mK, [plus minus]10 kPa, and [plus minus]0.2%, respectively. The purity of the sample used was 99.8 wtmore » % or better. The simple correlation for the saturated liquid density of HCFC 142b was developed.« less

  20. Condensation of vapor bubble in subcooled pool

    NASA Astrophysics Data System (ADS)

    Horiuchi, K.; Koiwa, Y.; Kaneko, T.; Ueno, I.

    2017-02-01

    We focus on condensation process of vapor bubble exposed to a pooled liquid of subcooled conditions. Two different geometries are employed in the present research; one is the evaporation on the heated surface, that is, subcooled pool boiling, and the other the injection of vapor into the subcooled pool. The test fluid is water, and all series of the experiments are conducted under the atmospheric pressure condition. The degree of subcooling is ranged from 10 to 40 K. Through the boiling experiment, unique phenomenon known as microbubble emission boiling (MEB) is introduced; this phenomenon realizes heat flux about 10 times higher than the critical heat flux. Condensation of the vapor bubble is the key phenomenon to supply ambient cold liquid to the heated surface. In order to understand the condensing process in the MEB, we prepare vapor in the vapor generator instead of the evaporation on the heated surface, and inject the vapor to expose the vapor bubble to the subcooled liquid. Special attention is paid to the dynamics of the vapor bubble detected by the high-speed video camera, and on the enhancement of the heat transfer due to the variation of interface area driven by the condensation.

  1. Study of the liquid vapor equilibrium in the bromine-hydrobromic acid-water system

    NASA Technical Reports Server (NTRS)

    Benizri, R.; Lessart, P.; Courvoisier, P.

    1984-01-01

    A glass ebullioscope was built and at atmospheric pressure, liquid-vapor equilibria relative to the Br2-HBr-H2O system, in the concentration range of interest for evaluation of the Mark 13 cycle was studied. Measurements were performed for the brome-azeotrope (HBr-H2O) pseudo-binary system and for the ternary system at temperatures lower than 125 C and in the bromine concentration range up to 13% wt.

  2. A nonadditive methanol force field: Bulk liquid and liquid-vapor interfacial properties via molecular dynamics simulations using a fluctuating charge model

    NASA Astrophysics Data System (ADS)

    Patel, Sandeep; Brooks, Charles L.

    2005-01-01

    We study the bulk and interfacial properties of methanol via molecular dynamics simulations using a CHARMM (Chemistry at HARvard Molecular Mechanics) fluctuating charge force field. We discuss the parametrization of the electrostatic model as part of the ongoing CHARMM development for polarizable protein force fields. The bulk liquid properties are in agreement with available experimental data and competitive with existing fixed-charge and polarizable force fields. The liquid density and vaporization enthalpy are determined to be 0.809 g/cm3 and 8.9 kcal/mol compared to the experimental values of 0.787 g/cm3 and 8.94 kcal/mol, respectively. The liquid structure as indicated by radial distribution functions is in keeping with the most recent neutron diffraction results; the force field shows a slightly more ordered liquid, necessarily arising from the enhanced condensed phase electrostatics (as evidenced by an induced liquid phase dipole moment of 0.7 D), although the average coordination with two neighboring molecules is consistent with the experimental diffraction study as well as with recent density functional molecular dynamics calculations. The predicted surface tension of 19.66±1.03 dyn/cm is slightly lower than the experimental value of 22.6 dyn/cm, but still competitive with classical force fields. The interface demonstrates the preferential molecular orientation of molecules as observed via nonlinear optical spectroscopic methods. Finally, via canonical molecular dynamics simulations, we assess the model's ability to reproduce the vapor-liquid equilibrium from 298 to 423 K, the simulation data then used to obtain estimates of the model's critical temperature and density. The model predicts a critical temperature of 470.1 K and critical density of 0.312 g/cm3 compared to the experimental values of 512.65 K and 0.279 g/cm3, respectively. The model underestimates the critical temperature by 8% and overestimates the critical density by 10%, and in this sense

  3. In situ separation of root hydraulic redistribution of soil water from liquid and vapor transport

    Treesearch

    Jeffrey M. Warren; J. Renée Brooks; Maria I. Dragila; Frederick C. Meinzer

    2011-01-01

    Nocturnal increases in water potential and water content in the upper soil profile are often attributed to root water efflux, a process termed hydraulic redistribution (HR). However, unsaturated liquid or vapor flux of water between soil layers independent of roots also contributes to the daily recovery in water content, confounding efforts to determine the actual...

  4. Interfacial Properties and Mechanisms Dominating Gas Hydrate Cohesion and Adhesion in Liquid and Vapor Hydrocarbon Phases.

    PubMed

    Hu, Sijia; Koh, Carolyn A

    2017-10-24

    The interfacial properties and mechanisms of gas hydrate systems play a major role in controlling their interparticle and surface interactions, which is desirable for nearly all energy applications of clathrate hydrates. In particular, preventing gas hydrate interparticle agglomeration and/or particle-surface deposition is critical to the prevention of gas hydrate blockages during the exploration and transportation of oil and gas subsea flow lines. These agglomeration and deposition processes are dominated by particle-particle cohesive forces and particle-surface adhesive force. In this study, we present the first direct measurements on the cohesive and adhesive forces studies of the CH 4 /C 2 H 6 gas hydrate in a liquid hydrocarbon-dominated system utilizing a high-pressure micromechanical force (HP-MMF) apparatus. A CH 4 /C 2 H 6 gas mixture was used as the gas hydrate former in the model liquid hydrocarbon phase. For the cohesive force baseline test, it was found that the addition of liquid hydrocarbon changed the interfacial tension and contact angle of water in the liquid hydrocarbon compared to water in the gas phase, resulting in a force of 23.5 ± 2.5 mN m -1 at 3.45 MPa and 274 K for a 2 h annealing time period in which hydrate shell growth occurs. It was observed that the cohesive force was inversely proportional to the annealing time, whereas the force increased with increasing contact time. For a longer contact time (>12 h), the force could not be measured because the two hydrate particles adhered permanently to form one large particle. The particle-surface adhesive force in the model liquid hydrocarbon was measured to be 5.3 ± 1.1 mN m -1 under the same experimental condition. Finally, with a 1 h contact time, the hydrate particle and the carbon steel (CS) surface were sintered together and the force was higher than what could be measured by the current apparatus. A possible mechanism is presented in this article to describe the effect of contact time

  5. Ionic-Liquid-Infused Nanostructures as Repellent Surfaces.

    PubMed

    Galvan, Yaraset; Phillips, Katherine R; Haumann, Marco; Wasserscheid, Peter; Zarraga, Ramon; Vogel, Nicolas

    2018-06-12

    In order to prepare lubricant-infused repellent coatings on silica nanostructures using low vapor pressure ionic liquids as lubricants, we study the wetting behavior of a set of imidazolium-based ionic liquids with different alkyl side chains as a function of the applied surface functionalities. We take advantage of the structural color of inverse opals prepared from a colloidal coassembly technique to study the infiltration of ionic liquids into these nanoporous structures. We find that the more hydrophobic ionic liquids with butyl and hexyl side chains can completely infiltrate inverse opals functionalized with mixed self-assembled monolayers composed of imidazole groups and aliphatic hydrocarbon chains, which we introduce via silane chemistry. These molecular species reflect the chemical nature of the ionic liquid, thereby increasing the affinity between the liquid and solid surface. The mixed surface chemistry provides sufficiently small contact angles with the ionic liquid to infiltrate the nanopores while maximizing the contact angle with water. As a result, the mixed monolayers enable the design of a stable ionic liquid/solid interface that is able to repel water as a test liquid. Our results underline the importance of matching chemical affinities to predict and control the wetting behavior in complex, multiphase systems.

  6. Thermodynamic Analysis of a Mixed Refrigerant Ejector Refrigeration Cycle Operating with Two Vapor-liquid Separators

    NASA Astrophysics Data System (ADS)

    Tan, Yingying; Chen, Youming; Wang, Lin

    2018-06-01

    A mixed refrigerant ejector refrigeration cycle operating with two-stage vapor-liquid separators (MRERC2) is proposed to obtain refrigeration temperature at -40°C. The thermodynamic investigations on performance of MRERC2 using zeotropic mixture refrigerant R23/R134a are performed, and the comparisons of cycle performance between MRERC2 and MRERC1 (MRERC with one-stage vapor-liquid separator) are conducted. The results show that MRERC2 can achieve refrigeration temperature varying between -23.9°C and -42.0°C when ejector pressure ratio ranges from 1.6 to 2.3 at the generation temperature of 57.3-84.9°C. The parametric analysis indicates that increasing condensing temperature decreases coefficient of performance ( COP) of MRERC2, and increasing ejector pressure ratio and mass fraction of the low boiling point component in the mixed refrigerant can improve COP of MRERC2. The MRERC2 shows its potential in utilizing low grade thermal energy as driving power to obtain low refrigeration temperature for the ejector refrigeration cycle.

  7. Interfacial Dynamics of Condensing Vapor Bubbles in an Ultrasonic Acoustic Field

    NASA Astrophysics Data System (ADS)

    Boziuk, Thomas; Smith, Marc; Glezer, Ari

    2016-11-01

    Enhancement of vapor condensation in quiescent subcooled liquid using ultrasonic actuation is investigated experimentally. The vapor bubbles are formed by direct injection from a pressurized steam reservoir through nozzles of varying characteristic diameters, and are advected within an acoustic field of programmable intensity. While kHz-range acoustic actuation typically couples to capillary instability of the vapor-liquid interface, ultrasonic (MHz-range) actuation leads to the formation of a liquid spout that penetrates into the vapor bubble and significantly increases its surface area and therefore condensation rate. Focusing of the ultrasonic beam along the spout leads to ejection of small-scale droplets from that are propelled towards the vapor liquid interface and result in localized acceleration of the condensation. High-speed video of Schlieren images is used to investigate the effects of the ultrasonic actuation on the thermal boundary layer on the liquid side of the vapor-liquid interface and its effect on the condensation rate, and the liquid motion during condensation is investigated using high-magnification PIV measurements. High-speed image processing is used to assess the effect of the actuation on the dynamics and temporal variation in characteristic scale (and condensation rate) of the vapor bubbles.

  8. Gravitational instability of thin gas layer between two thick liquid layers

    NASA Astrophysics Data System (ADS)

    Pimenova, A. V.; Goldobin, D. S.

    2016-12-01

    We consider the problem of gravitational instability (Rayleigh-Taylor instability) of a horizontal thin gas layer between two liquid half-spaces (or thick layers), where the light liquid overlies the heavy one. This study is motivated by the phenomenon of boiling at the surface of direct contact between two immiscible liquids, where the rate of the "break-away" of the vapor layer growing at the contact interface due to development of the Rayleigh-Taylor instability on the upper liquid-gas interface is of interest. The problem is solved analytically under the assumptions of inviscid liquids and viscous weightless vapor. These assumptions correspond well to the processes in real systems, e.g., they are relevant for the case of interfacial boiling in the system water- n-heptane. In order to verify the results, the limiting cases of infinitely thin and infinitely thick gas layers were considered, for which the results can be obviously deduced from the classical problem of the Rayleigh-Taylor instability. These limiting cases are completely identical to the well-studied cases of gravity waves at the liquidliquid and liquid-gas interfaces. When the horizontal extent of the system is long enough, the wavenumber of perturbations is not limited from below, and the system is always unstable. The wavelength of the most dangerous perturbations and the rate of their exponential growth are derived as a function of the layer thickness. The dependence of the exponential growth rate on the gas layer thickness is cubic.

  9. On the existence of vapor-liquid phase transition in dusty plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kundu, M.; Sen, A.; Ganesh, R.

    2014-10-15

    The phenomenon of phase transition in a dusty-plasma system (DPS) has attracted some attention in the past. Earlier Farouki and Hamaguchi [J. Chem. Phys. 101, 9876 (1994)] have demonstrated the existence of a liquid to solid transition in DPS where the dust particles interact through a Yukawa potential. However, the question of the existence of a vapor-liquid (VL) transition in such a system remains unanswered and relatively unexplored so far. We have investigated this problem by performing extensive molecular dynamics simulations which show that the VL transition does not have a critical curve in the pressure versus volume diagram formore » a large range of the Yukawa screening parameter κ and the Coulomb coupling parameter Γ. Thus, the VL phase transition is found to be super-critical, meaning that this transition is continuous in the dusty plasma model given by Farouki and Hamaguchi. We provide an approximate analytic explanation of this finding by means of a simple model calculation.« less

  10. Liquid-vapor transition on patterned solid surfaces in a shear flow

    NASA Astrophysics Data System (ADS)

    Yao, Wenqi; Ren, Weiqing

    2015-12-01

    Liquids on a solid surface patterned with microstructures can exhibit the Cassie-Baxter (Cassie) state and the wetted Wenzel state. The transitions between the two states and the effects of surface topography, surface chemistry as well as the geometry of the microstructures on the transitions have been extensively studied in earlier work. However, most of these work focused on the study of the free energy landscape and the energy barriers. In the current work, we consider the transitions in the presence of a shear flow. We compute the minimum action path between the Wenzel and Cassie states using the minimum action method [W. E, W. Ren, and E. Vanden-Eijnden, Commun. Pure Appl. Math. 57, 637 (2004)]. Numerical results are obtained for transitions on a surface patterned with straight pillars. It is found that the shear flow facilitates the transition from the Wenzel state to the Cassie state, while it inhibits the transition backwards. The Wenzel state becomes unstable when the shear rate reaches a certain critical value. Two different scenarios for the Wenzel-Cassie transition are observed. At low shear rate, the transition happens via nucleation of the vapor phase at the bottom of the groove followed by its growth. At high shear rate, in contrary, the nucleation of the vapor phase occurs at the top corner of a pillar. The vapor phase grows in the direction of the flow, and the system goes through an intermediate metastable state before reaching the Cassie state.

  11. Structure and dynamics of single hydrophobic/ionic heteropolymers at the vapor-liquid interface of water.

    PubMed

    Vembanur, Srivathsan; Venkateshwaran, Vasudevan; Garde, Shekhar

    2014-04-29

    We focus on the conformational stability, structure, and dynamics of hydrophobic/charged homopolymers and heteropolymers at the vapor-liquid interface of water using extensive molecular dynamics simulations. Hydrophobic polymers collapse into globular structures in bulk water but unfold and sample a broad range of conformations at the vapor-liquid interface of water. We show that adding a pair of charges to a hydrophobic polymer at the interface can dramatically change its conformations, stabilizing hairpinlike structures, with molecular details depending on the location of the charged pair in the sequence. The translational dynamics of homopolymers and heteropolymers are also different, whereas the homopolymers skate on the interface with low drag, the tendency of charged groups to remain hydrated pulls the heteropolymers toward the liquid side of the interface, thus pinning them, increasing drag, and slowing the translational dynamics. The conformational dynamics of heteropolymers are also slower than that of the homopolymer and depend on the location of the charged groups in the sequence. Conformational dynamics are most restricted for the end-charged heteropolymer and speed up as the charge pair is moved toward the center of the sequence. We rationalize these trends using the fundamental understanding of the effects of the interface on primitive pair-level interactions between two hydrophobic groups and between oppositely charged ions in its vicinity.

  12. The gaseous enthalpy of formation of the ionic liquid 1-butyl-3-methylimidazolium dicyanamide from combustion calorimetry, vapor pressure measurements, and ab initio calculations.

    PubMed

    Emel'yanenko, Vladimir N; Verevkin, Sergey P; Heintz, Andreas

    2007-04-04

    Ionic liquids are attracting growing interest as alternatives to conventional molecular solvents. Experimental values of vapor pressure, enthalpy of vaporization, and enthalpy of formation of ionic liquids are the key thermodynamic quantities, which are required for the validation and development of the molecular modeling and ab initio methods toward this new class of solvents. In this work, the molar enthalpy of formation of the liquid 1-butyl-3-methylimidazolium dicyanamide, 206.2 +/- 2.5 kJ.mol-1, was measured by means of combustion calorimetry. The molar enthalpy of vaporization of 1-butyl-3-methylimidazolium dicyanamide, 157.2 +/- 1.1 kJ.mol-1, was obtained from the temperature dependence of the vapor pressure measured using the transpiration method. The latter method has been checked with measurements of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, where data are available from the effusion technique. The first experimental determination of the gaseous enthalpy of formation of the ionic liquid 1-butyl-3-methylimidazolium dicyanamide, 363.4 +/- 2.7 kJ.mol-1, from thermochemical measurements (combustion and transpiration) is presented. Ab initio calculations of the enthalpy of formation in the gaseous phase have been performed for 1-butyl-3-methylimidazolium dicyanamide using the G3MP2 theory. Excellent agreement with experimental results has been observed. The method developed opens a new way to obtain thermodynamic properties of ionic liquids which have not been available so far.

  13. Relation between heat of vaporization, ion transport, molar volume, and cation-anion binding energy for ionic liquids.

    PubMed

    Borodin, Oleg

    2009-09-10

    A number of correlations between heat of vaporization (H(vap)), cation-anion binding energy (E(+/-)), molar volume (V(m)), self-diffusion coefficient (D), and ionic conductivity for 29 ionic liquids have been investigated using molecular dynamics (MD) simulations that employed accurate and validated many-body polarizable force fields. A significant correlation between D and H(vap) has been found, while the best correlation was found for -log(DV(m)) vs H(vap) + 0.28E(+/-). A combination of enthalpy of vaporization and a fraction of the cation-anion binding energy was suggested as a measure of the effective cohesive energy for ionic liquids. A deviation of some ILs from the reported master curve is explained based upon ion packing and proposed diffusion pathways. No general correlations were found between the ion diffusion coefficient and molecular volume or the diffusion coefficient and cation/anion binding energy.

  14. Biotransformation of tryptophan by liquid medium culture of Psilocybe coprophila (Basidiomycetes).

    PubMed

    Alarcón, Julio; Foncea, Leyla; Aguila, Sergio; Alderete, Joel B

    2006-01-01

    Chemical reactions performed by fungi have been used as a modern tool in chemistry. In this work, we show the tryptophan biotransformation with Psilocybe coprophila on liquid culture medium. The results prove once more the versatility of fungi in performing a wide range of industrially attractive chemical reactions.

  15. CRYOCHEM, Thermodynamic Model for Cryogenic Chemical Systems: Solid-Vapor and Solid-Liquid-Vapor Phase Equilibria Toward Applications on Titan and Pluto

    NASA Astrophysics Data System (ADS)

    Tan, S. P.; Kargel, J. S.; Adidharma, H.; Marion, G. M.

    2014-12-01

    Until in-situ measurements can be made regularly on extraterrestrial bodies, thermodynamic models are the only tools to investigate the properties and behavior of chemical systems on those bodies. The resulting findings are often critical in describing physicochemical processes in the atmosphere, surface, and subsurface in planetary geochemistry and climate studies. The extremely cold conditions on Triton, Pluto and other Kuiper Belt Objects, and Titan introduce huge non-ideality that prevents conventional models from performing adequately. At such conditions, atmospheres as a whole—not components individually—are subject to phase equilibria with their equilibrium solid phases or liquid phases or both. A molecular-based thermodynamic model for cryogenic chemical systems, referred to as CRYOCHEM, the development of which is still in progress, was shown to reproduce the vertical composition profile of Titan's atmospheric methane measured by the Huygens probe (Tan et al., Icarus 2013, 222, 53). Recently, the model was also used to describe Titan's global circulation where the calculated composition of liquid in Ligeia Mare is consistent with the bathymetry and microwave absorption analysis of T91 Cassini fly-by data (Tan et al., 2014, submitted). Its capability to deal with equilibria involving solid phases has also been demonstrated (Tan et al., Fluid Phase Equilib. 2013, 360, 320). With all those previous works done, our attention is now shifting to the lower temperatures in Titan's tropopause and on Pluto's surface, where much technical development remains for CRYOCHEM to assure adequate performance at low temperatures. In these conditions, solid-vapor equilibrium (SVE) is the dominant phase behavior that determines the composition of the atmosphere and the existing ices. Another potential application is for the subsurface phase equilibrium, which also involves liquid, thus three-phase equilibrium: solid-liquid-vapor (SLV). This presentation will discuss the

  16. International Union of Theoretical and Applied Mechanics: Symposium on Adiabatic Waves in liquid-Vapor Systems Held at Goettingen (Germany, F.R.) on 28 August-1 September 1989. Abstracts of the Contributed Papers

    DTIC Science & Technology

    1989-09-01

    THE LIQUID- VAPOR CRITICAL POINT" P.A. Thompson, J.E. Shepherd, H.J. Cho, S.Can Gulen (Troy). Non-euilibrium in dinamic systems , critical phenomena...IN LIQUID-VAPOR SYSTEMS G~ttingen: 28. August - 1. September 1989 Chairmen: Gerd E.A. Meier & Philip A. Thompson Secretary: Tomasz A. Kowalewski...is a great pleasure to welcome you on behalf of the Organizing Committee to the IUTAM Symposium on Adiabatic Waves in Liquid Vapor Systems . We are

  17. Agile lensing-based non-contact liquid level optical sensor for extreme environments

    NASA Astrophysics Data System (ADS)

    Reza, Syed Azer; Riza, Nabeel A.

    2010-09-01

    To the best of the author's knowledge, demonstrated is the first opto-fluidic technology- based sensor for detection of liquid levels. An opto-fluidic Electronically Controlled Variable Focus Lens (ECVFL) is used to change the spatial intensity profile of the low power optical beam falling on the liquid surface. By observing, tuning and measuring the liquid surface reflected intensity profile to reach its smallest size, the liquid level is determined through a beam spot size versus ECVFL focal length calibration table. Using a 50 μW 632.8 nm laser wavelength liquid illuminating beam, a proof-of-concept sensor is tested using engine oil, vegetable oil, and detergent fluid with measured liquid levels over a 75 cm range. This non-contact Radio Frequency (RF) modulation-free sensor is particularly suited for hazardous fluids in window-accessed sealed containers including liquid carrying vessels in Electromagnetic Interference (EMI) rich environments.

  18. Dispersed bubble reactor for enhanced gas-liquid-solids contact and mass transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vimalchand, Pannalal; Liu, Guohai; Peng, WanWang

    An apparatus to promote gas-liquid contact and facilitate enhanced mass transfer. The dispersed bubble reactor (DBR) operates in the dispersed bubble flow regime to selectively absorb gas phase constituents into the liquid phase. The dispersion is achieved by shearing the large inlet gas bubbles into fine bubbles with circulating liquid and additional pumped liquid solvent when necessary. The DBR is capable of handling precipitates that may form during absorption or fine catalysts that may be necessary to promote liquid phase reactions. The DBR can be configured with multistage counter current flow sections by inserting concentric cylindrical sections into the risermore » to facilitate annular flow. While the DBR can absorb CO.sub.2 in liquid solvents that may lead to precipitates at high loadings, it is equally capable of handling many different types of chemical processes involving solids (precipitates/catalysts) along with gas and liquid phases.« less

  19. Liquid level detector

    DOEpatents

    Grasso, A.P.

    1984-02-21

    A liquid level detector for low pressure boilers. A boiler tank, from which vapor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

  20. Temperature Dependence and Energetics of Single Ions at the Aqueous Liquid-Vapor Interface

    PubMed Central

    Ou, Shuching; Patel, Sandeep

    2014-01-01

    We investigate temperature-dependence of free energetics with two single halide anions, I− and Cl−, crossing the aqueous liquid-vapor interface through molecular dynamics simulations. The result shows that I− has a modest surface stability of 0.5 kcal/mol at 300 K and the stability decreases as the temperature increases, indicating the surface adsorption process for the anion is entropically disfavored. In contrast, Cl− shows no such surface state at all temperatures. Decomposition of free energetics reveals that water-water interactions provide a favorable enthalpic contribution, while the desolvation of ion induces an increase in free energy. Calculations of surface fluctuations demonstrate that I− generates significantly greater interfacial fluctuations compared to Cl−. The fluctuation is attributed to the malleability of the solvation shells, which allows for more long-ranged perturbations and solvent density redistribution induced by I− as the anion approaches the liquid-vapor interface. The increase in temperature of the solvent enhances the inherent thermally-excited fluctuations and consequently reduces the relative contribution from anion to surface fluctuations, which is consistent with the decrease in surface-stability of I−. Our results indicate a strong correlation with induced interfacial fluctuations and anion surface stability; moreover, resulting temperature dependent behavior of induced fluctuations suggests the possibility of a critical level of induced fluctuations associated with surface stability. PMID:23537166

  1. Effect of cooling rate on the survival of cryopreserved rooster sperm: Comparison of different distances in the vapor above the surface of the liquid nitrogen.

    PubMed

    Madeddu, M; Mosca, F; Abdel Sayed, A; Zaniboni, L; Mangiagalli, M G; Colombo, E; Cerolini, S

    2016-08-01

    The aim of the present trial was to study the effect of different freezing rates on the survival of cryopreserved rooster semen packaged in straws. Slow and fast freezing rates were obtained keeping straws at different distances in the vapor above the surface of the nitrogen during freezing. Adult Lohmann roosters (n=27) were used. Two experiments were conducted. In Experiment 1, semen was packaged in straws and frozen comparing the distances of 1, 3 and 5cm in nitrogen vapor above the surface of the liquid nitrogen. In Experiment 2, the distances of 3, 7 and 10cm above the surfaces of the liquid nitrogen were compared. Sperm viability, motility and progressive motility and the kinetic variables were assessed in fresh and cryopreserved semen samples. The recovery rates after freezing/thawing were also calculated. In Experiment 1, there were no significant differences among treatments for all semen quality variables. In Experiment 2, the percentage of viable (46%) and motile (22%) sperm in cryopreserved semen was greater when semen was placed 3cm compared with 7 and 10cm in the vapor above the surface of the liquid nitrogen. The recovery rate of progressive motile sperm after thawing was also greater when semen was stored 3cm in the vapor above the surface of the liquid nitrogen. More rapid freezing rates are required to improve the survival of rooster sperm after cryopreservation and a range of distances from 1 to 5cm in nitrogen vapor above the surface of the liquid nitrogen is recommended for optimal sperm viability. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. An assessment of the liquid-gas partitioning behavior of major wastewater odorants using two comparative experimental approaches: liquid sample-based vaporization vs. impinger-based dynamic headspace extraction into sorbent tubes.

    PubMed

    Iqbal, Mohammad Asif; Kim, Ki-Hyun; Szulejko, Jan E; Cho, Jinwoo

    2014-01-01

    The gas-liquid partitioning behavior of major odorants (acetic acid, propionic acid, isobutyric acid, n-butyric acid, i-valeric acid, n-valeric acid, hexanoic acid, phenol, p-cresol, indole, skatole, and toluene (as a reference)) commonly found in microbially digested wastewaters was investigated by two experimental approaches. Firstly, a simple vaporization method was applied to measure the target odorants dissolved in liquid samples with the aid of sorbent tube/thermal desorption/gas chromatography/mass spectrometry. As an alternative method, an impinger-based dynamic headspace sampling method was also explored to measure the partitioning of target odorants between the gas and liquid phases with the same detection system. The relative extraction efficiency (in percent) of the odorants by dynamic headspace sampling was estimated against the calibration results derived by the vaporization method. Finally, the concentrations of the major odorants in real digested wastewater samples were also analyzed using both analytical approaches. Through a parallel application of the two experimental methods, we intended to develop an experimental approach to be able to assess the liquid-to-gas phase partitioning behavior of major odorants in a complex wastewater system. The relative sensitivity of the two methods expressed in terms of response factor ratios (RFvap/RFimp) of liquid standard calibration between vaporization and impinger-based calibrations varied widely from 981 (skatole) to 6,022 (acetic acid). Comparison of this relative sensitivity thus highlights the rather low extraction efficiency of the highly soluble and more acidic odorants from wastewater samples in dynamic headspace sampling.

  3. New frontiers in materials science opened by ionic liquids.

    PubMed

    Torimoto, Tsukasa; Tsuda, Tetsuya; Okazaki, Ken-ichi; Kuwabata, Susumu

    2010-03-19

    Ionic liquids (ILs) including ambient-temperature molten salts, which exist in the liquid state even at room temperature, have a long research history. However, their applications were once limited because ILs were considered as highly moisture-sensitive solvents that should be handled in a glove box. After the first synthesis of moisture-stable ILs in 1992, their unique physicochemical properties became known in all scientific fields. ILs are composed solely of ions and exhibit several specific liquid-like properties, e.g., some ILs enable dissolution of insoluble bio-related materials and the use as tailor-made lubricants in industrial applications under extreme physicochemical conditions. Hybridization of ILs and other materials provides quasi-solid materials, which can be used to fabricate highly functional devices. ILs are also used as reaction media for electrochemical and chemical synthesis of nanomaterials. In addition, the negligible vapor pressure of ILs allows the fabrication of electrochemical devices that are operated under ambient conditions, and many liquid-vacuum technologies, such as X-ray photoelectron spectroscopy (XPS) analysis of liquids, electron microscopy of liquids, and sputtering and physical vapor deposition onto liquids. In this article, we review recent studies on ILs that are employed as functional advanced materials, advanced mediums for materials production, and components for preparing highly functional materials.

  4. Vapor-liquid equilibria for R-22, R-134a, R-125, and R-32/125 with a polyol ester lubricant: Measurements and departure from ideality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martz, W.L.; Burton, C.M.; Jacobi, A.M.

    1996-11-01

    The effect of a polyol ester lubricant on equilibrium pressure, liquid density, and viscosity is presented for R-22, R-125, and R-134a at varying temperatures and concentrations. Preliminary vapor-liquid equilibrium (VLE) data and miscibility observations are also presented for an R-32/R-125 blend (50%/50%) with the ISO 68 polyol ester (POE). Real-gas behavior is modeled using the vapor-phase fugacity, and vapor pressure effects on liquid fugacities are taken into account with the Poynting effect. Positive, negative, and mixed deviations form the Lewis-Randall rule are observed in the activity coefficient behavior. Departures from ideality are related to molecular size differences, intermolecular forces inmore » the mixture, and other factors. The data are discussed in the context of previous results for other refrigerants and thermodynamic modeling of refrigerant and oil mixtures.« less

  5. Superfluid helium 2 liquid-vapor phase separation: Technology assessment

    NASA Technical Reports Server (NTRS)

    Lee, J. M.

    1984-01-01

    A literature survey of helium 2 liquid vapor phase separation is presented. Currently, two types of He 2 phase separators are being investigated: porous, sintered metal plugs and the active phase separator. The permeability K(P) shows consistency in porous plug geometric characterization. Both the heat and mass fluxes increase with K(P). Downstream pressure regulation to adjust for varying heat loads and both temperatures is possible. For large dynamic heat loads, the active phase separator shows a maximum heat rejection rate of up to 2 W and bath temperature stability of 0.1 mK. Porous plug phase separation performance should be investigated for application to SIRTF and, in particular, that plugs of from 10 to the minus ninth square centimeters to 10 to the minus eighth square centimeters in conjunction with downstream pressure regulation be studied.

  6. Fragment structure from vapor explosions during the impact of molten metal droplets into a liquid pool

    NASA Astrophysics Data System (ADS)

    Kouraytem, Nadia; Li, Er Qiang; Vakarelski, Ivan Uriev; Thoroddsen, Sigurdur

    2015-11-01

    High-speed video imaging is used in order to look at the impact of a molten metal drop falling into a liquid pool. The interaction regimes are three: film boiling, nucleate boiling or vapor explosion. Following the vapor explosion, the metal fragments and different textures are observed. It was seen that, using a tin alloy, a porous structure results whereas using a distinctive eutectic metal, Field's metal, micro beads are formed. Different parameters such as the metal type, molten metal temperature, pool surface tension and pool boiling temperature have been altered in order to assess the role they play on the explosion dynamics and the molten metal's by product.

  7. A new vapor-liquid equilibrium apparatus for hydrogen fluoride containing systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jongcheon Lee; Hwayong Kim; Jong Sung Lim

    1996-12-31

    A new circulating type apparatus has been constructed to obtain reliable equilibrium PTxy data for hydrogen fluoride (HF) containing system. Equilibrium cell with Pyrex windows protected by Teflon PFA sheets to prevent the corrosion was used. Isothermal vapor-liquid equilibrium data for the 1,1-difluoroethane (HFC-152a) + HF system at 288.23 and 298.35 K were obtained, and compared with PTx measurement results. Experimental data were correlated using Lencka and Anderko equation of state for HF with the Wong-Sandler mixing rule as well as the van der Waals one fluid mixing rule. The Wong-Sandler mixing rule gives better results. 5 refs., 3 figs.

  8. Thermal singularity and contact line motion in pool boiling: Effects of substrate wettability.

    PubMed

    Taylor, M T; Qian, Tiezheng

    2016-03-01

    The dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)] is employed to model the growth of a single vapor bubble in a superheated liquid on a flat homogeneous substrate. The bubble spreading dynamics in the pool boiling regime has been numerically investigated for one-component van der Waals fluids close to the critical point, with a focus on the effect of the substrate wettability on bubble growth and contact line motion. The substrate wettability is found to control the apparent contact angle and the rate of bubble growth (the rate of total evaporation), through which the contact line speed is determined. An approximate expression is derived for the contact line speed, showing good agreement with the simulation results. This demonstrates that the contact line speed is primarily governed by (1) the circular shape of interface (for slow bubble growth), (2) the constant apparent contact angle, and (3) the constant bubble growth rate. It follows that the contact line speed has a sensitive dependence on the substrate wettability via the apparent contact angle which also determines the bubble growth rate. Compared to hydrophilic surfaces, hydrophobic surfaces give rise to a thinner shape of bubble and a higher rate of total evaporation, which combine to result in a much faster contact line speed. This can be linked to the earlier formation of a vapor film and hence the onset of boiling crisis.

  9. Characteristics of plasma in culture medium generated by positive pulse voltage and effects of organic compounds on its characteristics

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Sato, T.; Yoshino, D.

    2016-12-01

    We describe a positive pulse voltage method for generating plasma in culture medium with a composition similar to biological fluids. We also describe the plasma’s characteristics, liquid quality, and the effect of organic compounds in the culture medium on the plasma characteristics through comparisons to a solution containing inorganic salts at the same concentrations as in the culture medium. Light emission with Na and OH spectra was observed within a vapor bubble produced by Joule heating at the tip of the electrode. A downward thermal flow and shock wave were caused by the behavior of the vapor bubble. The culture medium pH gradually increased from 7.9 to 8.3 over the discharge time of 300 s. H2O2 was generated 1.1 mg l-1 in the culture medium after discharge for 300 s, and this value was 0.5 mg l-1 lower than the inorganic salts solution which does not contain organic compounds. This study provides important data that will help facilitate more widespread application of plasma medicine.

  10. Physical vapor deposition as a route to glasses with liquid crystalline order

    NASA Astrophysics Data System (ADS)

    Gomez, Jaritza

    Physical vapor deposition (PVD) is an effective route to prepare glasses with a unique combination of properties. Substrate temperatures near the glass transition (Tg) and slow deposition rates can access enhanced mobility at the surface of the glass allowing molecules at the surface additional time to sample different molecular configurations. The temperature of the substrate can be used to control molecular mobility during deposition and properties in the resulting glasses such as higher density, kinetic stability and preferential molecular orientation. PVD was used to prepare glasses of itraconazole, a smectic A liquid crystal. We characterized molecular orientation using infrared and ellipsometry. Molecular orientation can be controlled by choice of Tsubstrate in a range of temperatures near Tg. Glasses deposited at Tsubstrate = Tg show nearly vertical molecular orientation relative to the substrate; at lower Tsubstrate, molecules are nearly parallel to the substrate. The molecular orientation depends on the temperature of the substrate during preparation and not on the molecular orientation of the underlying layer. This allows preparing samples of layers with differing orientations. We find these glasses are homogeneous solids without evidence of domain boundaries and are molecularly flat. We interpret the combination of properties obtained for vapor-deposited glasses of itraconazole to result from a process where molecular orientation is determined by the structure and dynamics at the free surface of the glass during deposition. We report the thermal and structural properties of glasses prepared using PVD of a rod-like molecule, posaconazole, which does not show equilibrium liquid crystal phases. These glasses show substantial molecular orientation that can be controlled by choice of Tsubstrate during deposition. Ellipsometry and IR indicate that glasses prepared at Tg - 3 K are highly ordered. At these Tsubstrate, molecules show preferential vertical

  11. Thermodynamic Properties of Nitrogen Including Liquid and Vapor Phases from 63K to 2000K with Pressures to 10,000 Bar

    NASA Technical Reports Server (NTRS)

    Jacobsen, Richard T.; Stewart, Richard B.

    1973-01-01

    Tables of thermodynamic properties of nitrogen are presented for the liquid and vapor phases for temperatures from the freezing line to 2000K and pressures to 10,000 bar. The tables include values of density, internal energy, enthalpy, entropy, isochoric heat capacity, isobaric heat capacity velocity of sound, the isotherm derivative, and the isochor derivative. The thermodynamic property tables are based on an equation of state, P=P (p,T), which accurately represents liquid and gaseous nitrogen for the range of pressures and temperatures covered by the tables. Comparisons of property values calculated from the equation of state with measured values for P-p-T, heat capacity, enthalpy, latent heat, and velocity of sound are included to illustrate the agreement between the experimental data and the tables of properties presented here. The coefficients of the equation of state were determined by a weighted least squares fit to selected P-p-T data and, simultaneously, to isochoric heat capacity data determined by corresponding states analysis from oxygen data, and to data which define the phase equilibrium criteria for the saturated liquid and the saturated vapor. The vapor pressure equation, melting curve equation, and an equation to represent the ideal gas heat capacity are also presented. Estimates of the accuracy of the equation of state, the vapor pressure equation, and the ideal gas heat capacity equation are given. The equation of state, derivatives of the equation, and the integral functions for calculating derived thermodynamic properties are included.

  12. Technique for detecting liquid metal leaks

    DOEpatents

    Bauerle, James E.

    1979-01-01

    In a system employing flowing liquid metal as a heat transfer medium in contact with tubular members containing a working fluid, i.e., steam, liquid metal leaks through the wall of the tubular member are detected by dislodging the liquid metal compounds forming in the tubular member at the leak locations and subsequently transporting the dislodged compound in the form of an aerosol to a detector responsive to the liquid metal compound. In the application to a sodium cooled tubular member, the detector would consist of a sodium responsive device, such as a sodium ion detector.

  13. Modeling contact angle hysteresis of a liquid droplet sitting on a cosine wave-like pattern surface.

    PubMed

    Promraksa, Arwut; Chen, Li-Jen

    2012-10-15

    A liquid droplet sitting on a hydrophobic surface with a cosine wave-like square-array pattern in the Wenzel state is simulated by using the Surface Evolver to determine the contact angle. For a fixed drop volume, multiple metastable states are obtained at two different surface roughnesses. Unusual and non-circular shape of the three-phase contact line of a liquid droplet sitting on the model surface is observed due to corrugation and distortion of the contact line by structure of the roughness. The contact angle varies along the contact line for each metastable state. The maximum and minimum contact angles among the multiple metastable states at a fixed viewing angle correspond to the advancing and the receding contact angles, respectively. It is interesting to observe that the advancing/receding contact angles (and contact angle hysteresis) are a function of viewing angle. In addition, the receding (or advancing) contact angles at different viewing angles are determined at different metastable states. The contact angle of minimum energy among the multiple metastable states is defined as the most stable (equilibrium) contact angle. The Wenzel model is not able to describe the contact angle along the three-phase contact line. The contact angle hysteresis at different drop volumes is determined. The number of the metastable states increases with increasing drop volume. Drop volume effect on the contact angles is also discussed. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  14. DETERMINATION OF HEAT TRANSFER COEFFICIENTS FOR FRENCH PLASTIC SEMEN STRAW SUSPENDED IN STATIC NITROGEN VAPOR OVER LIQUID NITROGEN.

    PubMed

    Santo, M V; Sansinena, M; Chirife, J; Zaritzky, N

    2015-01-01

    The use of mathematical models describing heat transfer during the freezing process is useful for the improvement of cryopreservation protocols. A widespread practice for cryopreservation of spermatozoa of domestic animal species consists of suspending plastic straws in nitrogen vapor before plunging into liquid nitrogen. Knowledge of surface heat transfer coefficient (h) is mandatory for computational modelling; however, h values for nitrogen vapor are not available. In the present study, surface heat transfer coefficients for plastic French straws immersed in nitrogen vapor over liquid nitrogen was determined; vertical and horizontal positions were considered. Heat transfer coefficients were determined from the measurement of time-temperature curves and from numerical solution of heat transfer partial differential equation under transient conditions using finite elements. The h values experimentally obtained for horizontal and vertically placed straws were compared to those calculated using correlations based on the Nusselt number for natural convection. For horizontal straws the average obtained value was h=12.5 ± 1.2 W m(2) K and in the case of vertical straws h=16 ± 2.48 W m(2) K. The numerical simulation validated against experimental measurements, combined with accurate h values provides a reliable tool for the prediction of freezing curves of semen-filled straws immersed in nitrogen vapor. The present study contributes to the understanding of the cryopreservation techniques for sperm freezing based on engineering concepts, improving the cooling protocols and the manipulation of the straws.

  15. METHOD OF PROTECTING TANTALUM CRUCIBLES AGAINST REACTION WITH MOLTEN URANIUM

    DOEpatents

    Feder, H.M.; Chellew, N.R.

    1960-08-16

    Tantalum crucibles against reaction with molten uranium by contacting the surfaces to be protected with metallic boron (as powder, vapor, or suspension in a liquid-volatilenonreacting medium, such as acetone and petroleum oil) at about 1800 deg C in vacuum, discontinuing contact with the boron, and heating the crucibles to a temperature of between 1800 aad 2000 deg C, whereby the tantalum boride formed in the first heating step is converted to tantalum monoboride.

  16. Towards a more accurate microscopic description of the moving contact line problem - incorporating nonlocal effects through a statistical mechanics framework

    NASA Astrophysics Data System (ADS)

    Nold, Andreas; Goddard, Ben; Sibley, David; Kalliadasis, Serafim

    2014-03-01

    Multiscale effects play a predominant role in wetting phenomena such as the moving contact line. An accurate description is of paramount interest for a wide range of industrial applications, yet it is a matter of ongoing research, due to the difficulty of incorporating different physical effects in one model. Important small-scale phenomena are corrections to the attractive fluid-fluid and wall-fluid forces in inhomogeneous density distributions, which often previously have been accounted for by the disjoining pressure in an ad-hoc manner. We systematically derive a novel model for the description of a single-component liquid-vapor multiphase system which inherently incorporates these nonlocal effects. This derivation, which is inspired by statistical mechanics in the framework of colloidal density functional theory, is critically discussed with respect to its assumptions and restrictions. The model is then employed numerically to study a moving contact line of a liquid fluid displacing its vapor phase. We show how nonlocal physical effects are inherently incorporated by the model and describe how classical macroscopic results for the contact line motion are retrieved. We acknowledge financial support from ERC Advanced Grant No. 247031 and Imperial College through a DTG International Studentship.

  17. Drying of pulverized material with heated condensible vapor

    DOEpatents

    Carlson, L.W.

    1984-08-16

    Apparatus for drying pulverized material utilizes a high enthalpy condensable vapor such as steam for removing moisture from the individual particles of the pulverized material. The initially wet particulate material is tangentially delivered by a carrier vapor flow to an upper portion of a generally vertical cylindrical separation drum. The lateral wall of the separation drum is provided with a plurality of flow guides for directing the vapor tangentially therein in the direction of particulate material flow. Positioned concentrically within the separation drum and along the longitudinal axis thereof is a water-cooled condensation cylinder which is provided with a plurality of collection plates, or fines, on the outer lateral surface thereof. The cooled collection fines are aligned counter to the flow of the pulverized material and high enthalpy vapor mixture to maximize water vapor condensation thereon. The condensed liquid which includes moisture removed from the pulverized materials then flows downward along the outer surface of the coolant cylinder and is collected and removed. The particles travel in a shallow helix due to respective centrifugal and vertical acceleration forces applied thereto. The individual particles of the pulverized material are directed outwardly by the vortex flow where they contact the inner cylindrical surface of the separation drum and are then deposited at the bottom thereof for easy collection and removal. The pulverized material drying apparatus is particularly adapted for drying coal fines and facilitates the recovery of the pulverized coal. 2 figs.

  18. Drying of pulverized material with heated condensible vapor

    DOEpatents

    Carlson, Larry W.

    1986-01-01

    Apparatus for drying pulverized material utilizes a high enthalpy condensable vapor such as steam for removing moisture from the individual particles of the pulverized material. The initially wet particulate material is tangentially delivered by a carrier vapor flow to an upper portion of a generally vertical cylindrical separation drum. The lateral wall of the separation drum is provided with a plurality of flow guides for directing the vapor tangentially therein in the direction of particulate material flow. Positioned concentrically within the separation drum and along the longitudinal axis thereof is a water-cooled condensation cylinder which is provided with a plurality of collection plates, or fins, on the outer lateral surface thereof. The cooled collection fins are aligned counter to the flow of the pulverized material and high enthalpy vapor mixture to maximize water vapor condensation thereon. The condensed liquid which includes moisture removed from the pulverized material then flows downward along the outer surface of the coolant cylinder and is collected and removed. The particles travel in a shallow helix due to respective centrifugal and vertical acceleration forces applied thereto. The individual particles of the pulverized material are directed outwardly by the vortex flow where they contact the inner cylindrical surface of the separation drum and are then deposited at the bottom thereof for easy collection and removal. The pulverized material drying apparatus is particularly adapted for drying coal fines and facilitates the recovery of the pulverized coal.

  19. Extracting the pair distribution function of liquids and liquid-vapor surfaces by grazing incidence x-ray diffraction mode.

    PubMed

    Vaknin, David; Bu, Wei; Travesset, Alex

    2008-07-28

    We show that the structure factor S(q) of water can be obtained from x-ray synchrotron experiments at grazing angle of incidence (in reflection mode) by using a liquid surface diffractometer. The corrections used to obtain S(q) self-consistently are described. Applying these corrections to scans at different incident beam angles (above the critical angle) collapses the measured intensities into a single master curve, without fitting parameters, which within a scale factor yields S(q). Performing the measurements below the critical angle for total reflectivity yields the structure factor of the top most layers of the water/vapor interface. Our results indicate water restructuring at the vapor/water interface. We also introduce a new approach to extract g(r), the pair distribution function (PDF), by expressing the PDF as a linear sum of error functions whose parameters are refined by applying a nonlinear least square fit method. This approach enables a straightforward determination of the inherent uncertainties in the PDF. Implications of our results to previously measured and theoretical predictions of the PDF are also discussed.

  20. Liquid nitrogen vapor is comparable to liquid nitrogen for storage of cryopreserved human sperm: evidence from the characteristics of post-thaw human sperm.

    PubMed

    Hu, Jingmei; Zhao, Shidou; Xu, Chengyan; Zhang, Lin; Lu, Shaoming; Cui, Linlin; Ma, Jinlong; Chen, Zi-Jiang

    2015-11-01

    To compare the differences in the characteristics of post-thaw human sperm after storage in either liquid nitrogen (LN2; -196 °C) or LN2 vapor (-167 °C). Experimental study. University hospital. Thirty healthy volunteers who agreed to donate their normal semen samples for infertility or research were included in the study. Semen samples (n = 30) were divided into eight aliquots and frozen. Four aliquots of each human semen sample were stored in LN2 (-196 °C), and the other four aliquots were stored in LN2 vapor (-167 °C). After 1, 3, 6, or 12 months, samples were thawed and analyzed. The motility was evaluated by the manual counting method. The viability was estimated by eosin staining. The morphology was analyzed by Diff-Quik staining. The sperm DNA integrity was determined with acridine orange fluorescent staining, and acrosin activity was assayed by the modified Kennedy method. The characteristics of post-thaw human sperm, including motility, viability, morphology, DNA integrity, and acrosin activity, showed no significant difference between LN2 and LN2 vapor storage for the different time periods. LN2 vapor was comparable to LN2 in post-thaw sperm characteristics, suggesting that LN2 vapor may be substituted for LN2 for the long-term storage of human sperm. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  1. Vapor-liquid phase equilibria of potassium chloride-water mixtures: Equation-of-state representation for KCl-H2O and NaCl-H2O

    USGS Publications Warehouse

    Hovey, J.K.; Pitzer, Kenneth S.; Tanger, J.C.; Bischoff, J.L.; Rosenbauer, R.J.

    1990-01-01

    Measurements of isothermal vapor-liquid compositions for KCl-H2O as a function of pressure are reported. An equation of state, which was originally proposed by Pitzer and was improved and used by Tanger and Pitzer to fit the vapor-liquid coexistence surface for NaCl-H2O, has been used for representation of the KCl-H2O system from 300 to 410??C. Improved parameters are also reported for NaCl-H2O from 300 to 500??C. ?? 1990 American Chemical Society.

  2. Discontinuous contact line motion of evaporating particle-laden droplet on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Yamada, Yutaka; Horibe, Akihiko

    2018-04-01

    The three-phase contact line motion on a superhydrophobic surface through particle-laden sessile droplet evaporation was investigated. Sample surfaces with micro- and nanoscale structures were generated by various durations of chemical treatment and Si O2 spherical particles with different sizes were used as additives of test liquid. The contact angle and contact radius profiles were studied, and the discontinuous motion of those profiles on micro- and nanostructured hierarchical surfaces was observed, while it was not observed on a nanostructured superhydrophobic surface. Suspensions with low particle concentration induced a relatively large contact radius jump compared to the high-concentrated condition; in contrast, the previous report showed the opposite trend for flat surfaces. In order to explain this result, a simple explanation was provided—that the stacked particles at the contact line region suppressed to the deformation of the liquid-vapor interface near the contact line. This is confirmed by side-view images of the deposition results because the contact line region after evaporation of the dense suspension showed a large contact angle compared to that of the diluted suspension. In addition, deposition at the contact line region was observed by scanning electron microscopy to discuss the effect of the characteristic length scale of the surface structure and particles on the contact line motion. We believe that these results will help one to understand the deposition phenomenon during particle-laden droplet evaporation on the superhydrophobic surface and its applications such as evaporation-driven materials deposition.

  3. Understanding the Vapor-Liquid-Solid and Vapor-Solid-Solid Mechanisms of Si Nanowire Growth to Synthetically Encode Precise Nanoscale Morphology

    NASA Astrophysics Data System (ADS)

    Pinion, Christopher William

    Precise patterning of semiconductor materials utilizing top-down lithographic techniques is integral to the advanced electronics we use on a daily basis. However, continuing development of these lithographic technologies often results in the trade-off of either high cost or low throughput, and three-dimensional (3D) patterning can be difficult to achieve. Bottom-up, chemical methods to control the 3D nanoscale morphology of semiconductor nanostructures have received significant attention as a complementary technique. Semiconductor nanowires, nanoscale filaments of semiconductor material 10-500 nm in diameter and 1-50 microns in length, are an especially promising platform because the wire composition can be modulated during growth and the high aspect ratio, one-dimensional structure enables integration in a range of devices. In this thesis, we first report a bottom-up method to break the conventional "wire" symmetry and synthetically encode a high-resolution array of arbitrary shapes along the nanowire growth axis. Rapid modulation of phosphorus doping combined with selective wet-chemical etching enables morphological features as small as 10 nm to be patterned over wires more than 50 ?m in length. Next, our focus shifts to more fundamental studies of the nanowire synthetic mechanisms. We presented comprehensive experimental measurements on the growth rate of Au catalyzed Si nanowires and developed a kinetic model of vapor-liquid-solid growth. Our analysis revealed an abrupt transition from a diameter-independent growth rate that is limited by incorporation to a diameter-dependent growth rate that is limited by crystallization. While investigating the vapor-liquid-solid mechanism, we noticed instances of unique catalyst behavior. Upon further study, we showed that it is possible to instantaneously and reversibly switch the phase of the catalyst between a liquid and superheated solid state under isothermal conditions above the eutectic temperature. The solid catalyst

  4. Information system of quality assessment for liquid and gaseous medium production

    NASA Astrophysics Data System (ADS)

    Bobrov, V. N.; Us, N. A.; Davidov, I. S.

    2018-05-01

    A method and a technical solution for controlling the quality of production of liquid and gaseous media is proposed. It is also proposed to monitor harmful factors in production while ensuring safe working conditions. Initially, using the mathematical model of an ideal atmosphere, the projection to the horizontal surface of the observation trajectory is calculated. At the second stage, the horizontal projection of the observation trajectory in real conditions is measured. The quality of the medium is judged by the difference between the projections of observation trajectories. The technical result is presented in the form of a device allowing obtaining information about the quality of the medium under investigation.

  5. Contact stiffness and damping of liquid films in dynamic atomic force microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Rong-Guang; Leng, Yongsheng, E-mail: leng@gwu.edu

    2016-04-21

    The mechanical properties and dissipation behaviors of nanometers confined liquid films have been long-standing interests in surface force measurements. The correlation between the contact stiffness and damping of the nanoconfined film is still not well understood. We establish a novel computational framework through molecular dynamics (MD) simulation for the first time to study small-amplitude dynamic atomic force microscopy (dynamic AFM) in a simple nonpolar liquid. Through introducing a tip driven dynamics to mimic the mechanical oscillations of the dynamic AFM tip-cantilever assembly, we find that the contact stiffness and damping of the confined film exhibit distinct oscillations within 6-7 monolayermore » distances, and they are generally out-of-phase. For the solid-like film with integer monolayer thickness, further compression of the film before layering transition leads to higher stiffness and lower damping, while much lower stiffness and higher damping occur at non-integer monolayer distances. These two alternating mechanisms dominate the mechanical properties and dissipation behaviors of simple liquid films under cyclic elastic compression and inelastic squeeze-out. Our MD simulations provide a direct picture of correlations between the structural property, mechanical stiffness, and dissipation behavior of the nanoconfined film.« less

  6. Molecular simulation of the thermodynamic, structural, and vapor-liquid equilibrium properties of neon

    NASA Astrophysics Data System (ADS)

    Vlasiuk, Maryna; Frascoli, Federico; Sadus, Richard J.

    2016-09-01

    The thermodynamic, structural, and vapor-liquid equilibrium properties of neon are comprehensively studied using ab initio, empirical, and semi-classical intermolecular potentials and classical Monte Carlo simulations. Path integral Monte Carlo simulations for isochoric heat capacity and structural properties are also reported for two empirical potentials and one ab initio potential. The isobaric and isochoric heat capacities, thermal expansion coefficient, thermal pressure coefficient, isothermal and adiabatic compressibilities, Joule-Thomson coefficient, and the speed of sound are reported and compared with experimental data for the entire range of liquid densities from the triple point to the critical point. Lustig's thermodynamic approach is formally extended for temperature-dependent intermolecular potentials. Quantum effects are incorporated using the Feynman-Hibbs quantum correction, which results in significant improvement in the accuracy of predicted thermodynamic properties. The new Feynman-Hibbs version of the Hellmann-Bich-Vogel potential predicts the isochoric heat capacity to an accuracy of 1.4% over the entire range of liquid densities. It also predicts other thermodynamic properties more accurately than alternative intermolecular potentials.

  7. Optimization of the Liquid Culture Medium Composition to Obtain the Mycelium of Agaricus bisporus Rich in Essential Minerals.

    PubMed

    Krakowska, Agata; Reczyński, Witold; Muszyńska, Bożena

    2016-09-01

    Agaricus bisporus species (J.E. Lange) Imbach one of the most popular Basidiomycota species was chosen for the research because of its dietary and medicinal value. The presented herein studies included determination of essential mineral accumulation level in the mycelium of A. bisporus, cultivated on liquid cultures in the medium supplemented with addition of the chosen metals' salts. Quantitative analyses of Zn, Cu, Mg, and Fe in liquid cultures made it possible to determine the relationship between accumulation of the selected mineral in A. bisporus mycelium and the culture conditions. Monitoring of the liquid cultures and determination of the elements' concentrations in mycelium of A. bisporus were performed using the flame technique of AAS method. Concentration of Zn in the mycelium, maintained in the medium with the addition of its salt, was in a very wide range from 95.9 to 4462.0 mg/g DW. In the analyzed A. bisporus mycelium, cultured in the medium enriched with copper salt, this metal concentration changed from 89.79 to 7491.50 mg/g DW; considering Mg in liquid cultured mycelium (medium with Mg addition), its concentration has changed from 0.32 to 10.55 mg/g DW. The medium enriched with iron salts has led to bioaccumulation of Fe in mycelia of A. bisporus. Determined Fe concentration was in the range from 0.62 to 161.28 mg/g DW. The proposed method of liquid A. bisporus culturing on medium enriched with the selected macro- and microelements in proper concentrations ratio have led to obtaining maximal growth of biomass, characterized by high efficiency of the mineral accumulation. As a result, a dietary component of increased nutritive value was obtained.

  8. Liquid-Phase Circulation and Mixing in Multicomponent Droplets Vaporizing in a Laminar Convective Environment

    DTIC Science & Technology

    1993-10-15

    included an f/2.8 dual port long-distance microscope coupled to a black d•rl white CCD video camera. A long-pass filter (with a cut-off at 530 nm) was...evaporation rates of multicomponent droplets is needed for the calibration of exciplex -based vapor/liquid visualization techniques that are employed today in...Publishing Co., Houston. Texas. Hanlon. T. R.. and Melton. L. A. (1992). Exciplex fluorescence thermometry of falling hexadecane droplets. Journal of Heat

  9. Process for the production of liquid hydrocarbons

    DOEpatents

    Bhatt, Bharat Lajjaram; Engel, Dirk Coenraad; Heydorn, Edward Clyde; Senden, Matthijis Maria Gerardus

    2006-06-27

    The present invention concerns a process for the preparation of liquid hydrocarbons which process comprises contacting synthesis gas with a slurry of solid catalyst particles and a liquid in a reactor vessel by introducing the synthesis gas at a low level into the slurry at conditions suitable for conversion of the synthesis gas into liquid hydrocarbons, the solid catalyst particles comprising a catalytic active metal selected from cobalt or iron on a porous refractory oxide carrier, preferably selected from silica, alumina, titania, zirconia or mixtures thereof, the catalyst being present in an amount between 10 and 40 vol. percent based on total slurry volume liquids and solids, and separating liquid material from the solid catalyst particles by using a filtration system comprising an asymmetric filtration medium (the selective side at the slurry side), in which filtration system the average pressure differential over the filtration medium is at least 0.1 bar, in which process the particle size distribution is such that at least a certain amount of the catalyst particles is smaller than the average pore size of the selective layer of the filtration medium. The invention also comprises an apparatus to carry out the process described above.

  10. MACROSCOPIC PATTERNS OF BACTERIA AFTER DEVELOPMENT IN DROPS OF LIQUID MEDIUM

    PubMed Central

    Lorian, Victor

    1963-01-01

    Lorian, Victor (Laboratório Central de Tuberculose, Rio de Janeiro, Brazil). Macroscopic patterns of bacteria after development in drops of liquid medium. J. Bacteriol. 86:582–584. 1963.—Cultures of bacteria in liquid media with 0.06% triphenyltetrazolium hydrochloride showed visible macroscopic development and a characteristic pattern for each strain, when deposited in 0.35-ml drops on the surface of silicone-coated glass or in concavities of slides, after 3 to 4 hr of immobility in an incubator at 37 C. These patterns could be due to sedimentation or autoagglutination occurring as the bacteria developed under these conditions. Images PMID:14066441

  11. Liquid-vapor relations for the system NaCl-H2O: summary of the P-T- x surface from 300° to 500°C

    USGS Publications Warehouse

    Bischoff, J.L.; Pitzer, Kenneth S.

    1989-01-01

    Experimental data on the vapor-liquid equilibrium relations for the system NaCl-H2O were compiled and compared in order to provide an improved estimate of the P-T-x surface between 300° to 500°C, a range for which the system changes from subcritical to critical behavior. Data for the three-phase curve (halite + liquid + vapor) and the NaCl-H2O critical curve were evaluated, and the best fits for these extrema then were used to guide selection of best fit for isothermal plots for the vapor-liquid region in-between. Smoothing was carried out in an iterative procedure by replotting the best-fit data as isobars and then as isopleths, until an internally consistent set of data was obtained. The results are presented in table form that will have application to theoretical modelling and to the understanding of two-phase behavior in saline geothermal systems.

  12. Liquid Nitrogen as Fast High Voltage Switching Medium

    NASA Astrophysics Data System (ADS)

    Dickens, J.; Neuber, A.; Haustein, M.; Krile, J.; Krompholz, H.

    2002-12-01

    Compact pulsed power systems require new switching technologies. For high voltages, liquid nitrogen seems to be a suitable switching medium, with high hold-off voltage, low dielectric constant, and no need for pressurized systems as in high pressure gas switches. The discharge behavior in liquid nitrogen, such as breakdown voltages, formative times, current rise as function of voltage, recovery, etc. are virtually unknown, however. The phenomenology of breakdown in liquid nitrogen is investigated with high speed (temporal resolution < 1 ns) electrical and optical diagnostics, in a coaxial system with 50-Ohm impedance. Discharge current and voltage are determined with transmission line type current sensors and capacitive voltage dividers. The discharge luminosity is measured with photomultiplier tubes. Preliminary results of self-breakdown investigations (gap 1 mm, breakdown voltage 44 kV, non-boiling supercooled nitrogen) show a fast (2 ns) transition from an unknown current level to several mA, a long-duration (100 ns) phase with constant current superimposed by ns-spikes, and a final fast transition to the impedance limited current during several nanoseconds. The optical measurements will be expanded toward spectroscopy and high speed photography with the aim of clarifying the overall breakdown mechanisms, including electronic initiation, bubble formation, bubble dynamics, and their role in breakdown, for different electrode geometries (different macroscopic field enhancements).

  13. High throughput liquid absorption preconcentrator sampling instrument

    DOEpatents

    Zaromb, Solomon; Bozen, Ralph M.

    1992-01-01

    A system for detecting trace concentrations of an analyte in air includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container comprising a wettable material. The wettable material is continuously wetted with an analyte-sorbing liquid which flows from one part of the container to a lower end. Sampled air flows through the container in contact with the wetted material with a swirling motion which results in efficient transfer of analyte vapors or aerosol particles to the sorbing liquid and preconcentration of traces of analyte in the liquid. The preconcentrated traces of analyte may be either detected within the container or removed therefrom for injection into a separate detection means or for subsequent analysis.

  14. High-throughput liquid-absorption preconcentrator sampling methods

    DOEpatents

    Zaromb, Solomon

    1994-01-01

    A system for detecting trace concentrations of an analyte in air includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container comprising a wettable material. The wettable material is continuously wetted with an analyte-sorbing liquid which flows from one part of the container to a lower end. Sampled air flows through the container in contact with the wetted material with a swirling motion which results in efficient transfer of analyte vapors or aerosol particles to the sorbing liquid and preconcentration of traces of analyte in the liquid. The preconcentrated traces of analyte may be either detected within the container or removed therefrom for injection into a separate detection means or for subsequent analysis.

  15. High throughput liquid absorption preconcentrator sampling instrument

    DOEpatents

    Zaromb, S.; Bozen, R.M.

    1992-12-22

    A system for detecting trace concentrations of an analyte in air includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container comprising a wettable material. The wettable material is continuously wetted with an analyte-sorbing liquid which flows from one part of the container to a lower end. Sampled air flows through the container in contact with the wetted material with a swirling motion which results in efficient transfer of analyte vapors or aerosol particles to the sorbing liquid and preconcentration of traces of analyte in the liquid. The preconcentrated traces of analyte may be either detected within the container or removed therefrom for injection into a separate detection means or for subsequent analysis. 12 figs.

  16. High-throughput liquid-absorption preconcentrator sampling methods

    DOEpatents

    Zaromb, S.

    1994-07-12

    A system for detecting trace concentrations of an analyte in air includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container comprising a wettable material. The wettable material is continuously wetted with an analyte-sorbing liquid which flows from one part of the container to a lower end. Sampled air flows through the container in contact with the wetted material with a swirling motion which results in efficient transfer of analyte vapors or aerosol particles to the sorbing liquid and preconcentration of traces of analyte in the liquid. The preconcentrated traces of analyte may be either detected within the container or removed therefrom for injection into a separate detection means or for subsequent analysis. 12 figs.

  17. Perspective: Highly stable vapor-deposited glasses

    DOE PAGES

    Ediger, M. D.

    2017-12-07

    This paper describes recent progress in understanding highly stable glasses prepared by physical vapor deposition and provides perspective on further research directions for the field. For a given molecule, vapor-deposited glasses can have higher density and lower enthalpy than any glass that can be prepared by the more traditional route of cooling a liquid, and such glasses also exhibit greatly enhanced kinetic stability. Because vapor-deposited glasses can approach the bottom of the amorphous part of the potential energy landscape, they provide insights into the properties expected for the “ideal glass”. Connections between vapor-deposited glasses, liquid-cooled glasses, and deeply supercooled liquidsmore » are explored. The generality of stable glass formation for organic molecules is discussed along with the prospects for stable glasses of other types of materials.« less

  18. Perspective: Highly stable vapor-deposited glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ediger, M. D.

    This paper describes recent progress in understanding highly stable glasses prepared by physical vapor deposition and provides perspective on further research directions for the field. For a given molecule, vapor-deposited glasses can have higher density and lower enthalpy than any glass that can be prepared by the more traditional route of cooling a liquid, and such glasses also exhibit greatly enhanced kinetic stability. Because vapor-deposited glasses can approach the bottom of the amorphous part of the potential energy landscape, they provide insights into the properties expected for the “ideal glass”. Connections between vapor-deposited glasses, liquid-cooled glasses, and deeply supercooled liquidsmore » are explored. The generality of stable glass formation for organic molecules is discussed along with the prospects for stable glasses of other types of materials.« less

  19. Isobaric vapor-liquid equilibria for binary systems α-phenylethylamine + toluene and α-phenylethylamine + cyclohexane at 100 kPa

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoru; Gao, Yingyu; Ban, Chunlan; Huang, Qiang

    2016-09-01

    In this paper the results of the vapor-liquid equilibria study at 100 kPa are presented for two binary systems: α-phenylethylamine(1) + toluene (2) and (α-phenylethylamine(1) + cyclohexane(2)). The binary VLE data of the two systems were correlated by the Wilson, NRTL, and UNIQUAC models. For each binary system the deviations between the results of the correlations and the experimental data have been calculated. For the both binary systems the average relative deviations in temperature for the three models were lower than 0.99%. The average absolute deviations in vapour phase composition (mole fractions) and in temperature T were lower than 0.0271 and 1.93 K, respectively. Thermodynamic consistency has been tested for all vapor-liquid equilibrium data by the Herrington method. The values calculated by Wilson and NRTL equations satisfied the thermodynamics consistency test for the both two systems, while the values calculated by UNIQUAC equation didn't.

  20. Production of long-term global water vapor and liquid water data set using ultra-fast methods to assimilate multi-satellite and radiosonde observations

    NASA Technical Reports Server (NTRS)

    Vonderhaar, T. H.; Reinke, Donald L.; Randel, David L.; Stephens, Graeme L.; Combs, Cynthia L.; Greenwald, Thomas J.; Ringerud, Mark A.; Wittmeyer, Ian L.

    1993-01-01

    During the next decade, many programs and experiments under the Global Energy and Water Cycle Experiment (GEWEX) will utilize present day and future data sets to improve our understanding of the role of moisture in climate, and its interaction with other variables such as clouds and radiation. An important element of GEWEX will be the GEWEX Water Vapor Project (GVaP), which will eventually initiate a routine, real-time assimilation of the highest quality, global water vapor data sets including information gained from future data collection systems, both ground and space based. The comprehensive global water vapor data set being produced by METSAT Inc. uses a combination of ground-based radiosonde data, and infrared and microwave satellite retrievals. This data is needed to provide the desired foundation from which future GEWEX-related research, such as GVaP, can build. The first year of this project was designed to use a combination of the best available atmospheric moisture data including: radiosonde (balloon/acft/rocket), HIRS/MSU (TOVS) retrievals, and SSM/I retrievals, to produce a one-year, global, high resolution data set of integrated column water vapor (precipitable water) with a horizontal resolution of 1 degree, and a temporal resolution of one day. The time period of this pilot product was to be det3ermined by the availability of all the input data sets. January 1988 through December 1988 were selected. In addition, a sample of vertically integrated liquid water content (LWC) was to be produced with the same temporal and spatial parameters. This sample was to be produced over ocean areas only. Three main steps are followed to produce a merged water vapor and liquid water product. Input data from Radiosondes, TOVS, and SSMI/I is quality checked in steps one and two. Processing is done in step two to generate individual total column water vapor and liquid water data sets. The third step, and final processing task, involves merging the individual output

  1. Correlation effects during liquid infiltration into hydrophobic nanoporous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borman, V. D., E-mail: vdborman@mephi.ru; Belogorlov, A. A.; Byrkin, V. A.

    To explain the thermal effects observed during the infiltration of a nonwetting liquid into a disordered nanoporous medium, we have constructed a model that includes correlation effects in a disordered medium. It is based on analytical methods of the percolation theory. The infiltration of a porous medium is considered as the infiltration of pores in an infinite cluster of interconnected pores. Using the model of randomly situated spheres (RSS), we have been able to take into account the correlation effect of the spatial arrangement and connectivity of pores in the medium. The other correlation effect of the mutual arrangement ofmore » filled and empty pores on the shell of an infinite percolation cluster of filled pores determines the infiltration fluctuation probability. This probability has been calculated analytically. Allowance for these correlation effects during infiltration and defiltration makes it possible to suggest a physical mechanism of the contact angle hysteresis and to calculate the dependences of the contact angles on the degree of infiltration, porosity of the medium, and temperature. Based on the suggested model, we have managed to describe the temperature dependences of the infiltration and defiltration pressures and the thermal effects that accompany the absorption of energy by disordered porous medium-nonwetting liquid systems with various porosities in a unified way.« less

  2. Solid and Liquid Waste Drying Bag

    NASA Technical Reports Server (NTRS)

    Litwiller, Eric (Inventor); Hogan, John A. (Inventor); Fisher, John W. (Inventor)

    2009-01-01

    Method and system for processing waste from human activities, including solids, liquids and vapors. A fluid-impermeable bag, lined with a liquid-impermeable but vapor-permeable membrane, defining an inner bag, is provided. A vacuum force is provided to extract vapors so that the waste is moved toward a selected region in the inner bag, extracted vapors, including the waste vapors and vaporized portions of the waste liquids are transported across the membrane, and most or all of the solids remain within the liner. Extracted vapors are filtered, and sanitized components thereof are isolated and optionally stored. The solids remaining within the liner are optionally dried and isolated for ultimate disposal.

  3. Vapor generator wand

    NASA Technical Reports Server (NTRS)

    Robelen, David B. (Inventor)

    1996-01-01

    A device for producing a stream of vapor for wind tunnel airflow visualization is described. An electrically conductive heating tube is used to resistively heat a vapor producing liquid. The heating and delivery systems are integrated to allow the device to present a small cross section to the air flow, thereby reducing disturbances due to the device. The simplicity of the design allows for inexpensive implementation and construction. The design is readily scaled for use in various wind tunnel applications. The device may also find uses in manufacturing, producing a vapor for deposition on a substrate.

  4. Development and Validation of a Liquid Medium (M7H9C) for Routine Culture of Mycobacterium avium subsp. paratuberculosis To Replace Modified Bactec 12B Medium

    PubMed Central

    Whittington, Ann-Michele; Waldron, Anna; Begg, Douglas J.; de Silva, Kumi; Purdie, Auriol C.; Plain, Karren M.

    2013-01-01

    Liquid culture of Mycobacterium avium subsp. paratuberculosis from clinical samples, such as feces, is the most sensitive antemortem test for the diagnosis of Johne's disease in ruminants. In Australia, New Zealand, the United States, and some other countries, the Bactec 460 system with modified Bactec 12B medium (Becton, Dickinson) has been the most commonly used liquid culture system, but it was discontinued in 2012. In this study, a new liquid culture medium, M7H9C, was developed. It consists of a Middlebrook 7H9 medium base with added Casitone, albumin, dextrose, catalase, egg yolk, mycobactin J, and a cocktail of antibiotics. We found that polyoxyethylene stearate (POES) was not essential for the cultivation of M. avium subsp. paratuberculosis in either the Bactec 12B or the M7H9C medium. The limit of detection determined using pure cultures of the C and S strains of M. avium subsp. paratuberculosis was 7 bacilli per 50 μl inoculum in the two media. The new medium was validated using 784 fecal and tissue samples from sheep and cattle, >25% of which contained viable M. avium subsp. paratuberculosis. Discrepant results for the clinical samples between the two media were mostly associated with samples that contained <10 viable bacilli per gram, but these results were relatively uncommon, and the performances of the two media were not significantly different. M7H9C medium was less than half the cost of the Bactec 12B medium and did not require regular examination during incubation, but a confirmatory IS900 PCR test had to be performed on every culture after the predetermined incubation period. PMID:24048541

  5. Volatile times for the very first ionic liquid: understanding the vapor pressures and enthalpies of vaporization of ethylammonium nitrate.

    PubMed

    Emel'yanenko, Vladimir N; Boeck, Gisela; Verevkin, Sergey P; Ludwig, Ralf

    2014-09-08

    A hundred years ago, Paul Walden studied ethyl ammonium nitrate (EAN), which became the first widely known ionic liquid. Although EAN has been investigated extensively, some important issues still have not been addressed; they are now tackled in this communication. By combining experimental thermogravimetric analysis with time of flight mass spectrometry (TGA-ToF-MS) and transpiration method with theoretical methods, we clarify the volatilisation of EAN from ambient to elevated temperatures. It was observed that up to 419 K, EAN evaporates as contact-ion pairs leading to very low vapour pressures of a few Pascal. Starting from 419 K, the decomposition to nitric acid and ethylamine becomes more thermodynamically favourable than proton transfer. This finding was supported by DFT calculations, which provide the free energies of all possible gas-phase species, and show that neutral molecules dominate over ion pairs above 500 K, an observation that is in nearly prefect agreement with the experimental boiling point of 513 K. This result is crucial for the ongoing practical applications of protic ionic liquids such as electrolytes for batteries and fuel cells because, in contrast to high-boiling conventional solvents, EAN exhibits no significant vapour pressure below 419 K and this property fulfils the requirements for the thermal behaviour of safe electrolytes. Overall, EAN shows the same barely measurable vapour pressures as typical aprotic ionic liquids at temperatures only 70 K lower. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The effect of changing the contact surface area between pleural liquid and pleura on the turnover of pleural liquid.

    PubMed

    Nakamura, T; Hara, H; Ijima, F; Arai, T; Kira, S

    1984-03-01

    To study the dynamics of pleural liquid, 250 ml of saline labeled with markers were injected into the pleural cavity of anesthetized dogs. For 3 h, liquid volume and concentration of these markers were measured. In a control group of dogs, the turnover rate of pleural liquid was 19.6 +/- 5.6 ml/min and lymphatic flow was 0.58 +/- 0.07 ml/min. In a group of pneumonectomized dogs, the turnover rate and lymphatic flow fell to about one fourth of those in the control group. When the left pulmonary artery was occluded, the turnover rate was halved, but lymphatic flow was not significantly different from that in the control group. These results suggest that the turnover rate of pleural liquid is dependent on the area of contact between pleural liquid and pleura and on the blood flow of the pleura. In addition, it appears that changes in pleural liquid volume are dependent on lymphatic flow.

  7. Understanding the vapor-liquid-solid growth and composition of ternary III-V nanowires and nanowire heterostructures

    NASA Astrophysics Data System (ADS)

    Dubrovskii, V. G.

    2017-11-01

    Based on the recent achievements in vapor-liquid-solid (VLS) synthesis, characterization and modeling of ternary III-V nanowires and axial heterostructures within such nanowires, we try to understand the major trends in their compositional evolution from a general theoretical perspective. Clearly, the VLS growth of ternary materials is much more complex than in standard vapor-solid epitaxy techniques, and even maintaining the necessary control over the composition of steady-state ternary nanowires is far from straightforward. On the other hand, VLS nanowires offer otherwise unattainable material combinations without introducing structural defects and hence are very promising for next-generation optoelectronic devices, in particular those integrated with a silicon electronic platform. In this review, we consider two main problems. First, we show how and by means of which parameters the steady-state composition of Au-catalyzed or self-catalyzed ternary III-V nanowires can be tuned to a desired value and why it is generally different from the vapor composition. Second, we present some experimental data and modeling results for the interfacial abruptness across axial nanowire heterostructures, both in Au-catalyzed and self-catalyzed VLS growth methods. Refined modeling allows us to formulate some general growth recipes for suppressing the unwanted reservoir effect in the droplet and sharpening the nanowire heterojunctions. We consider and refine two approaches developed to date, namely the regular crystallization model for a liquid alloy with a critical size of only one III-V pair at high supersaturations or classical binary nucleation theory with a macroscopic critical nucleus at modest supersaturations.

  8. GaN-based vertical-cavity surface-emitting lasers with tunnel junction contacts grown by metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Lee, SeungGeun; Forman, Charles A.; Lee, Changmin; Kearns, Jared; Young, Erin C.; Leonard, John T.; Cohen, Daniel A.; Speck, James S.; Nakamura, Shuji; DenBaars, Steven P.

    2018-06-01

    We report the first demonstration of III–nitride vertical-cavity surface-emitting lasers (VCSELs) with tunnel junction (TJ) intracavity contacts grown completely by metal–organic chemical vapor deposition (MOCVD). For the TJs, n++-GaN was grown on in-situ activated p++-GaN after buffered HF surface treatment. The electrical properties and epitaxial morphologies of the TJs were first investigated on TJ LED test samples. A VCSEL with a TJ intracavity contact showed a lasing wavelength of 408 nm, a threshold current of ∼15 mA (10 kA/cm2), a threshold voltage of 7.8 V, a maximum output power of 319 µW, and a differential efficiency of 0.28%.

  9. Estimating enthalpy of vaporization from vapor pressure using Trouton's rule.

    PubMed

    MacLeod, Matthew; Scheringer, Martin; Hungerbühler, Konrad

    2007-04-15

    The enthalpy of vaporization of liquids and subcooled liquids at 298 K (delta H(VAP)) is an important parameter in environmental fate assessments that consider spatial and temporal variability in environmental conditions. It has been shown that delta H(VAP)P for non-hydrogen-bonding substances can be estimated from vapor pressure at 298 K (P(L)) using an empirically derived linear relationship. Here, we demonstrate that the relationship between delta H(VAP)and PL is consistent with Trouton's rule and the ClausiusClapeyron equation under the assumption that delta H(VAP) is linearly dependent on temperature between 298 K and the boiling point temperature. Our interpretation based on Trouton's rule substantiates the empirical relationship between delta H(VAP) degree and P(L) degrees for non-hydrogen-bonding chemicals with subcooled liquid vapor pressures ranging over 15 orders of magnitude. We apply the relationship between delta H(VAP) degrees and P(L) degrees to evaluate data reported in literature reviews for several important classes of semivolatile environmental contaminants, including polycyclic aromatic hydrocarbons, chlorobenzenes, polychlorinated biphenyls and polychlorinated dibenzo-dioxins and -furans and illustrate the temperature dependence of results from a multimedia model presented as a partitioning map. The uncertainty associated with estimating delta H(VAP)degrees from P(L) degrees using this relationship is acceptable for most environmental fate modeling of non-hydrogen-bonding semivolatile organic chemicals.

  10. Ionic liquids. Combination of combustion calorimetry with high-level quantum chemical calculations for deriving vaporization enthalpies.

    PubMed

    Emel'yanenko, Vladimir N; Verevkin, Sergey P; Heintz, Andreas; Schick, Christoph

    2008-07-10

    In this work, the molar enthalpies of formation of the ionic liquids [C2MIM][NO3] and [C4MIM][NO3] were measured by means of combustion calorimetry. The molar enthalpy of fusion of [C2MIM][NO3] was measured using differential scanning calorimetry. Ab initio calculations of the enthalpy of formation in the gaseous phase have been performed for the ionic species using the G3MP2 theory. We have used a combination of traditional combustion calorimetry with modern high-level ab initio calculations in order to obtain the molar enthalpies of vaporization of a series of the ionic liquids under study.

  11. Study of the Vapor-Liquid Coexistence Curve and the Critical Curve for Nonazeotropic Refrigerant Mixture R152a + R114 System

    NASA Astrophysics Data System (ADS)

    Kabata, Yasuo; Higashi, Yukihiro; Uematsu, Masahiko; Watanabe, Koichi

    Measurements of the vapor-liquid coexistence curve in the critical region for the refrigerant mixture of R152a (CH3CHF2: 1, l-difluoroethane) +R 114 (CCIF2CCIF2 :1, 2-dichloro-1, 1, 2, 2-tetrafluoroethane) system were made by visual observation of the disappearance of the meniscus at the vapor-liquid interface within an optical cell. Forty-eight saturated densities along the vapor-liquid coexistence curve between 204 and 861 kg·m-3 for five different compositions of 10, 20, 50, 80 and 90 wt% R 152a were obtained in the temperature range 370 to 409 K. The experimental errors of temperature, density, and mass fraction were estimated within ±10mK, ±0.5% and +0.05 %, respectively. On the basis of these measurements, the critical parameters of five different compositions for the R 152a +R 114 system were determined in consideration of the meniscus disappearance level as well as intensity of the critical opalescence. In accordance with the previous results of three other refrigerant mixtures, i.e., R 12 +R 22 system, R 22 +R 114 system and R 13B1 + R 114 system, the coexistence curve and critical curve on the temperature-density diagram for binary refrigerant mixtures were discussed. In addition, correlations of its composition dependence for this system were proposed.

  12. Effect of nanoparticle size on sessile droplet contact angle

    NASA Astrophysics Data System (ADS)

    Munshi, A. M.; Singh, V. N.; Kumar, Mukesh; Singh, J. P.

    2008-04-01

    We report a significant variation in the static contact angle measured on indium oxide (IO) nanoparticle coated Si substrates that have different nanoparticle sizes. These IO nanoparticles, which have well defined shape and sizes, were synthesized by chemical vapor deposition in a horizontal alumina tube furnace. The size of the IO nanoparticles was varied by changing the source material, substrate temperature, and the deposition time. A sessile droplet method was used to determine the macroscopic contact angle on these IO nanoparticle covered Si substrate using two different liquids: de-ionized water and diethylene glycol (DEG). It was observed that contact angle depends strongly on the nanoparticle size. The contact angle was found to vary from 24° to 67° for de-ionized water droplet and from 15° to 60° for DEG droplet, for the nanoparticle sizes varying from 14 to 620 nm. The contact angle decreases with a decrease in the particles size. We have performed a theoretical analysis to determine the dependence of contact angle on the nanoparticle size. This formulation qualitatively shows a similar trend of decrease in the contact angle with a decrease in nanoparticle size. Providing a rough estimate of nanoparticle size by sessile droplet contact angle measurement is the novelty in this work.

  13. Measurement of Capillary Radius and Contact Angle within Porous Media.

    PubMed

    Ravi, Saitej; Dharmarajan, Ramanathan; Moghaddam, Saeed

    2015-12-01

    The pore radius (i.e., capillary radius) and contact angle determine the capillary pressure generated in a porous medium. The most common method to determine these two parameters is through measurement of the capillary pressure generated by a reference liquid (i.e., a liquid with near-zero contact angle) and a test liquid. The rate of rise technique, commonly used to determine the capillary pressure, results in significant uncertainties. In this study, we utilize a recently developed technique for independently measuring the capillary pressure and permeability to determine the equivalent minimum capillary radii and contact angle of water within micropillar wick structures. In this method, the experimentally measured dryout threshold of a wick structure at different wicking lengths is fit to Darcy's law to extract the maximum capillary pressure generated by the test liquid. The equivalent minimum capillary radii of different wick geometries are determined by measuring the maximum capillary pressures generated using n-hexane as the working fluid. It is found that the equivalent minimum capillary radius is dependent on the diameter of pillars and the spacing between pillars. The equivalent capillary radii of micropillar wicks determined using the new method are found to be up to 7 times greater than the current geometry-based first-order estimates. The contact angle subtended by water at the walls of the micropillars is determined by measuring the capillary pressure generated by water within the arrays and the measured capillary radii for the different geometries. This mean contact angle of water is determined to be 54.7°.

  14. Nimbus 7 SMMR Derived Seasonal Variations in the Water Vapor, Liquid Water and Surface Winds over the Global Oceans

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Short, D. A.

    1984-01-01

    Monthly mean distributions of water vapor and liquid water contained in a vertical column of the atmosphere and the surface wind speed were derived from Nimbus Scanning Multichannel Microwave Radiometer (SMMR) observations over the global oceans for the period November 1978 to November 1979. The remote sensing techniques used to estimate these parameters from SMMR are presented to reveal the limitations, accuracies, and applicability of the satellite-derived information for climate studies. On a time scale of the order of a month, the distribution of atmospheric water vapor over the oceans is controlled by the sea surface temperature and the large scale atmospheric circulation. The monthly mean distribution of liquid water content in the atmosphere over the oceans closely reflects the precipitation patterns associated with the convectively and baroclinically active regions. Together with the remotely sensed surface wind speed that is causing the sea surface stress, the data collected reveal the manner in which the ocean-atmosphere system is operating. Prominent differences in the water vapor patterns from one year to the next, or from month to month, are associated with anomalies in the wind and geopotential height fields. In association with such circulation anomalies the precipitation patterns deduced from the meteorological network over adjacent continents also reveal anomalous distributions.

  15. A novel liquid medium for the efficient growth of the salmonid pathogen Piscirickettsia salmonis and optimization of culture conditions.

    PubMed

    Henríquez, Mirtha; González, Ernesto; Marshall, Sergio H; Henríquez, Vitalia; Gómez, Fernando A; Martínez, Irene; Altamirano, Claudia

    2013-01-01

    Piscirickettsia salmonis is the bacterium that causes Piscirickettsiosis, a systemic disease of salmonid fish responsible for significant economic losses within the aquaculture industry worldwide. The growth of the bacterium for vaccine formulation has been traditionally accomplished by infecting eukaryotic cell lines, a process that involves high production costs and is time-consuming. Recent research has demonstrated that it is possible to culture pure P. salmonis in a blood containing (cell-free) medium. In the present work we demonstrate the growth of P. salmonis in a liquid medium free from blood and serum components, thus establishing a novel and simplified bacteriological medium. Additionally, the new media reported provides improved growth conditions for P. salmonis, where biomass concentrations of approximately 800 mg cell dry weight L(-1) were obtained, about eight times higher than those reported for the blood containing medium. A 2- level full factorial design was employed to evaluate the significance of the main medium components on cell growth and an optimal temperature range of 23-27°C was determined for the microorganism to grow in the novel liquid media. Therefore, these results represent a breakthrough regarding P. salmonis research in order to optimize pure P. salmonis growth in liquid blood and serum free medium.

  16. The partitioning of Cu, Au and Mo between liquid and vapor at magmatic temperatures and its implications for the genesis of magmatic-hydrothermal ore deposits

    NASA Astrophysics Data System (ADS)

    Zajacz, Zoltán; Candela, Philip A.; Piccoli, Philip M.

    2017-06-01

    The partition coefficients of Cu, Au and Mo between liquid and vapor were determined at P = 130 MPa and T = 900 °C, and P = 90 MPa and T = 650 °C and redox conditions favoring the dominance of reduced S species in the fluid. The experiments at 900 °C were conducted in rapid-quench Molybdenum-Hafnium Carbide externally-heated pressure vessel assemblies, whereas those at 650 °C were run in René41 pressure vessels. The fluids were sampled at run conditions using the synthetic fluid inclusion technique. The host quartz was fractured in situ during the experiments ensuring the entrapment of equilibrium fluids. A new method was developed to quantify the composition of the vapor inclusions from LA-ICPMS analyses relying on the use of boron as an internal standard, an element that fractionates between vapor and liquid to a very small degree. The bulk starting fluid compositions closely represented those expected to exsolve from felsic silicate melts in upper crustal magma reservoirs (0.64 m NaCl, 0.32 m KCl, ±0.2 m HCl and/or 4 wt% S). The experiments were conducted in Au97Cu3 alloy capsules allowing the simultaneous determination of apparent Au and Cu solubilities in the liquid and the vapor phase. Though the apparent metal solubilities were strongly affected by the addition of HCl and S in both phases, all three elements were found to preferentially partition to a liquid phase at all studied conditions with an increasing degree of preference for the liquid in the following order Au < Cu < Mo. The presence of HCl and S did not have a significant effect on the liquid/vapor partition coefficients of either Au or Cu, whereas the presence of HCl slightly shifted the partitioning of Mo in favor of the vapor. Ore metal partition coefficients normalized to that of Na (Ki-Naliq/ vap =Diliq/vap /DNaliq/vap) fall in the following ranges respectively for each studied metal: KAu-Naliq / vap = 0.20 ± 0.07-0.50 ± 0.19 (1σ); KCu-Naliq / vap = 0.36 ± 0.12-0.76 ± 0.22; KMo

  17. Research on the relation between the contact angle and the interface curvature radius of electrowetting liquid zoom lens

    NASA Astrophysics Data System (ADS)

    Zhao, Cunhua; Liang, Huiqin; Cui, Dongqing; Hong, Xinhua; Wei, Daling; Gao, Changliu

    2011-08-01

    In the ultralight or ultrathin applied domain of zoom lens, the traditional glass / plastic lens is limited for manufacture technology or cost. Therefore, a liquid lens was put forward to solve the problems. The liquid zoom lens has the merits of lower cost, smaller volume, quicker response, lower energy consumption, continuous zoom and higher accuracy. In liquid zoom lens the precise focal length is obtained by the contact angle changing to affect the curvature radius of interface. In our works, the relations of the exerted voltage, the contact angle, the curvature radius and the focal length were researched and accurately calculated. The calculation of the focal length provides an important theoretical basis for instructing the design of liquid zoom lens.

  18. Short-range precipitation forecasts using assimilation of simulated satellite water vapor profiles and column cloud liquid water amounts

    NASA Technical Reports Server (NTRS)

    Wu, Xiaohua; Diak, George R.; Hayden, Cristopher M.; Young, John A.

    1995-01-01

    These observing system simulation experiments investigate the assimilation of satellite-observed water vapor and cloud liquid water data in the initialization of a limited-area primitive equations model with the goal of improving short-range precipitation forecasts. The assimilation procedure presented includes two aspects: specification of an initial cloud liquid water vertical distribution and diabatic initialization. The satellite data is simulated for the next generation of polar-orbiting satellite instruments, the Advanced Microwave Sounding Unit (AMSU) and the High-Resolution Infrared Sounder (HIRS), which are scheduled to be launched on the NOAA-K satellite in the mid-1990s. Based on cloud-top height and total column cloud liquid water amounts simulated for satellite data a diagnostic method is used to specify an initial cloud water vertical distribution and to modify the initial moisture distribution in cloudy areas. Using a diabatic initialization procedure, the associated latent heating profiles are directly assimilated into the numerical model. The initial heating is estimated by time averaging the latent heat release from convective and large-scale condensation during the early forecast stage after insertion of satellite-observed temperature, water vapor, and cloud water formation. The assimilation of satellite-observed moisture and cloud water, together withy three-mode diabatic initialization, significantly alleviates the model precipitation spinup problem, especially in the first 3 h of the forecast. Experimental forecasts indicate that the impact of satellite-observed temperature and water vapor profiles and cloud water alone in the initialization procedure shortens the spinup time for precipitation rates by 1-2 h and for regeneration of the areal coverage by 3 h. The diabatic initialization further reduces the precipitation spinup time (compared to adiabatic initialization) by 1 h.

  19. Molecular dynamic approach to the study of the intense heat and mass transfer processes on the vapor-liquid interface

    NASA Astrophysics Data System (ADS)

    Levashov, V. Yu; Kamenov, P. K.

    2017-10-01

    The paper is devoted to research of the heat and mass transfer processes on the vapor-liquid interface. These processes can be realized for example at metal tempering, accidents at nuclear power stations, followed by the release of the corium into the heat carrier, getting hot magma into the water during volcanic eruptions and other. In all these examples the vapor film can arise on the heated body surface. In this paper the vapor film formation process will be considered with help of molecular dynamics simulation methods. The main attention during this process modeling will be focused on the subject of the fluid and vapor interactions with the heater surface. Another direction of this work is to study of the processes inside the droplet that may take place as result of impact of the high-power laser radiation. Such impact can lead to intensive evaporation and explosive destruction of the droplet. At that the duration of heat and mass transfer processes in droplet substance is tens of femtoseconds. Thus, the methods of molecular dynamics simulation can give the possibilities describe the heat and mass transfer processes in the droplet and the vapor phase formation.

  20. Proposed method to estimate the liquid-vapor accommodation coefficient based on experimental sonoluminescence data.

    PubMed

    Puente, Gabriela F; Bonetto, Fabián J

    2005-05-01

    We used the temporal evolution of the bubble radius in single-bubble sonoluminescence to estimate the water liquid-vapor accommodation coefficient. The rapid changes in the bubble radius that occur during the bubble collapse and rebounds are a function of the actual value of the accommodation coefficient. We selected bubble radius measurements obtained from two different experimental techniques in conjunction with a robust parameter estimation strategy and we obtained that for water at room temperature the mass accommodation coefficient is in the confidence interval [0.217,0.329].

  1. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography.

    PubMed

    Pauling, L; Robinson, A B; Teranishi, R; Cary, P

    1971-10-01

    When a human being is placed for several days on a completely defined diet, consisting almost entirely of small molecules that are absorbed from the stomach into the blood, intestinal flora disappear because of lack of nutrition. By this technique, the composition of body fluids can be made constant (standard deviation about 10%) after a few days, permitting significant quantitative analyses to be performed. A method of temperature-programmed gas-liquid partition chromatography has been developed for this purpose. It permits the quantitative determination of about 250 substances in a sample of breath, and of about 280 substances in a sample of urine vapor. The technique should be useful in the application of the principles of orthomolecular medicine.

  2. 33 CFR 154.2201 - Vapor control system-general requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... high liquid level sensor that activates an alarm that satisfies the requirements of 33 CFR 154.2100(e); and (3) A high-high liquid level sensor that closes the remotely operated cargo vapor shutoff valve... vapor-moving device. One sensor with two stages may be used to meet this requirement as well as...

  3. Columnar Transitions in Microscale Evaporating Liquid Jets

    NASA Astrophysics Data System (ADS)

    Hunter, Hanif; Glezer, Ari

    2007-11-01

    Microscale evaporating liquid jets that are injected into a quiescent gaseous medium having adjustable ambient pressure are investigated over a range of jet speeds using a shadowgraph technique. The jets are formed by a laser-drilled 10 μm nozzle from a small-scale pressurized reservoir, and sub-atmospheric ambient pressure is maintained using a controllable, metered Venturi pump. The near-field jet features are captured by shadowgraph imaging using a pulsed ND-Yag laser and a 12 bit CCD camera where the field of view measured 200 μm on the side. As the ambient pressure is reduced, the jet column undergoes a series of spectacular transitions that are first marked by the appearance of vapor bubbles within the jet column. The transitions progress from columnar instabilities to series of column bifurcations to high-order branching and film formation and culminate in conical atomization of the jet column. In addition to the effects of the ambient pressure, the present investigation also considers effects of the liquid surface tension and vapor pressure on the onset, evolution, and hysteresis of the columnar transitions.

  4. Stratified vapor generator

    DOEpatents

    Bharathan, Desikan [Lakewood, CO; Hassani, Vahab [Golden, CO

    2008-05-20

    A stratified vapor generator (110) comprises a first heating section (H.sub.1) and a second heating section (H.sub.2). The first and second heating sections (H.sub.1, H.sub.2) are arranged so that the inlet of the second heating section (H.sub.2) is operatively associated with the outlet of the first heating section (H.sub.1). A moisture separator (126) having a vapor outlet (164) and a liquid outlet (144) is operatively associated with the outlet (124) of the second heating section (H.sub.2). A cooling section (C.sub.1) is operatively associated with the liquid outlet (144) of the moisture separator (126) and includes an outlet that is operatively associated with the inlet of the second heating section (H.sub.2).

  5. Density Relaxation of Liquid-Vapor Critical Fluids Examined in Earth's Gravity

    NASA Technical Reports Server (NTRS)

    Wilkinson, R. Allen

    2000-01-01

    This work shows quantitatively the pronounced differences between the density equilibration of very compressible dense fluids in Earth's gravity and those in microgravity. The work was performed onsite at the NASA Glenn Research Center at Lewis Field and is complete. Full details are given in references 1 and 2. Liquid-vapor critical fluids (e.g., water) at their critical temperature and pressure, are very compressible. They collapse under their own weight in Earth's gravity, allowing only a thin meniscus-like layer with the critical pressure to survive. This critical layer, however, greatly slows down the equilibration process of the entire sample. A complicating feature is the buoyancy-driven slow flows of layers of heavier and lighter fluid. This work highlights the incomplete understanding of the hydrodynamics involved in these fluids.

  6. Two-channel microwave radiometer for observations of total column precipitable water vapor and cloud liquid water path

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liljegren, J.C.

    1994-01-01

    The Atmospheric Radiation Measurement (ARM) Program is focused on improving the treatment of radiation transfer in models of the atmospheric general circulation, as well as on improving parameterizations of cloud properties and formation processes in these models (USDOE, 1990). To help achieve these objectives, ARM is deploying several two-channel, microwave radiometers at the Cloud and Radiation Testbed (CART) site in Oklahoma for the purpose of obtaining long time series observations of total precipitable water vapor (PWV) and cloud liquid water path (LWP). The performance of the WVR-1100 microwave radiometer deployed by ARM at the Oklahoma CART site central facility tomore » provide time series measurements precipitable water vapor (PWV) and liquid water path (LWP) has been presented. The instrument has proven to be durable and reliable in continuous field operation since June, 1992. The accuracy of the PWV has been demonstrated to achieve the limiting accuracy of the statistical retrieval under clear sky conditions, degrading with increasing LWP. Improvements are planned to address moisture accumulation on the Teflon window, as well as to identity the presence of clouds with LWP at or below the retrieval uncertainty.« less

  7. Vapor Pressure Measurements in a Closed System

    ERIC Educational Resources Information Center

    Iannone, Mark

    2006-01-01

    An alternative method that uses a simple apparatus to measure vapor pressure versus temperature in a closed system, in which the total pressure is the vapor pressure of the liquid sample, is described. The use of this apparatus gives students a more direct picture of vapor pressure than the isoteniscope method and results have generally been quite…

  8. Construction of a wireless communication contact closure system for liquid chromatography with multiple parallel mass spectrometers and other detectors

    USDA-ARS?s Scientific Manuscript database

    A contact closure system has been constructed and implemented that utilizes two contact closure sender boards that communicate wirelessly to four contact closure receiver boards to distribute start signals from two or three liquid chromatographs to fourteen instruments, pumps, detectors, or other co...

  9. Formation of the racemic compound of ephedrine base from a physical mixture of its enantiomers in the solid, liquid, solution, or vapor state.

    PubMed

    Duddu, S P; Grant, D J

    1992-08-01

    Physical mixtures (conglomerates) of the two enantiomers of ephedrine base, each containing 0.5% (w/w) of water, were observed to be converted to the 1:1 racemic compound in the solid, liquid, solution, or vapor state. From a geometrically mixed racemic conglomerate of particle size 250-300 microns (50-60 mesh), the formation of the racemic compound follows second-order kinetics (first order with respect to each enantiomer), with a rate constant of 392 mol-1 hr-1 at 22 degrees C. The reaction appears to proceed via the vapor phase as indicated by the growth of the crystals of the racemic compound between diametrically separated crystals of the two enantiomers in a glass petri dish. The observed kinetics of conversion in the solid state are explained by a homogeneous reaction model via the vapor and/or liquid states. Formation of the racemic compound from the crystals of ephedrine enantiomers in the solution state may explain why Schmidt et al. (Pharm. Res. 5:391-395, 1988) observed a consistently lower aqueous solubility of the mixture than of the pure enantiomers. The solid phase in equilibrium with the solution at the end of the experiment was found to be the racemic compound, whose melting point and heat of fusion are higher than those of the enantiomers. An association reaction, of measurable rate, between the opposite enantiomers in a binary mixture in the solid, liquid, solution, or vapor state to form the racemic compound may be more common than is generally realized.

  10. Vapor etching of nuclear tracks in dielectric materials

    DOEpatents

    Musket, Ronald G.; Porter, John D.; Yoshiyama, James M.; Contolini, Robert J.

    2000-01-01

    A process involving vapor etching of nuclear tracks in dielectric materials for creating high aspect ratio (i.e., length much greater than diameter), isolated cylindrical holes in dielectric materials that have been exposed to high-energy atomic particles. The process includes cleaning the surface of the tracked material and exposing the cleaned surface to a vapor of a suitable etchant. Independent control of the temperatures of the vapor and the tracked materials provide the means to vary separately the etch rates for the latent track region and the non-tracked material. As a rule, the tracked regions etch at a greater rate than the non-tracked regions. In addition, the vapor-etched holes can be enlarged and smoothed by subsequent dipping in a liquid etchant. The 20-1000 nm diameter holes resulting from the vapor etching process can be useful as molds for electroplating nanometer-sized filaments, etching gate cavities for deposition of nano-cones, developing high-aspect ratio holes in trackable resists, and as filters for a variety of molecular-sized particles in virtually any liquid or gas by selecting the dielectric material that is compatible with the liquid or gas of interest.

  11. An evaluation of clinical performance of FTA cards for HPV 16/18 detection using cobas 4800 HPV Test compared to dry swab and liquid medium.

    PubMed

    Dong, Li; Lin, Chunqing; Li, Li; Wang, Margaret; Cui, Jianfeng; Feng, Ruimei; Liu, Bin; Wu, Zeni; Lian, Jia; Liao, Guangdong; Chen, Wen; Qiao, Youlin

    2017-09-01

    Effective dry storage and transport media as an alternative to conventional liquid-based medium would facilitate the accessibility of women in the low-resource settings to human papillomavirus (HPV)- based cervical cancer screening. To evaluate analytical and clinical performance of indicating FTA™ Elute Cartridge (FTA card) for the detection of HPV16/18 and cervical precancerous lesions and cancer compared to dry swab and liquid medium. Ninety patients with abnormal cytology and/or HPV infection were included for analysis. Three specimens of cervical exfoliated cells from each woman were randomly collected by FTA card, dry swab or liquid-based medium prior to colposcopy examination. The subsequent HPV DNA tests were performed on cobas 4800 HPV platform. High-risk HPV (hrHPV) positivity rate was 63.3%, 62.2% and 65.6% for samples collected by FTA card, dry swab and liquid medium, respectively. The overall agreements and kappa values for the detection of hrHPV, HPV 16 and HPV 18 between FTA card and liquid-based medium were 88.9% (κ=0.76), 97.8% (κ=0.94) and 100% (κ=1.0),respectively; between FTA card and dry swab were 92.1% (κ=0.83), 94.5% (κ=0.87) and 100% (κ=1.0), respectively. The performances of hrHPV tested by FTA card, dry swab, and liquid-based medium for detecting CIN2+ were comparable in terms of the sensitivity and specificity. The specificity of detection of CIN2+ by HPV16/18 increased by approximately 40% compared to hrHPV for any medium albeit at cost of a moderate loss of sensitivity. Dry medium might offer an alternative to conventional liquid-based medium in the HPV-based cervical cancer screening program especially in low-resource settings but still needs further evaluation. Copyright © 2017. Published by Elsevier B.V.

  12. Convergent strand array liquid pumping system

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr. (Inventor)

    1989-01-01

    A surface-tension liquid pumping system is provided by one or more arrays of converging solid monofilament fibers or metal wires (strands) spaced apart at an input end to gather liquid, and gathered close together at the opposite end where menisci forms between wetted strands to force liquid in the direction of convergence of the strands. The liquid pumping system is independent of gravity. It is illustrated as being used in a heat pump having a heating box to vaporize the liquid and a condensing chamber. Condensed liquid is returned by the pumping system to the heating box where it is again vaporized. A vapor tube carries the vapor to the condensing chamber. In that way, a closed system pumps heat from the heating box to the evaporating chamber and from there radiated to the atmosphere.

  13. Finite-element lattice Boltzmann simulations of contact line dynamics

    NASA Astrophysics Data System (ADS)

    Matin, Rastin; Krzysztof Misztal, Marek; Hernández-García, Anier; Mathiesen, Joachim

    2018-01-01

    The lattice Boltzmann method has become one of the standard techniques for simulating a wide range of fluid flows. However, the intrinsic coupling of momentum and space discretization restricts the traditional lattice Boltzmann method to regular lattices. Alternative off-lattice Boltzmann schemes exist for both single- and multiphase flows that decouple the velocity discretization from the underlying spatial grid. The current study extends the applicability of these off-lattice methods by introducing a finite element formulation that enables simulating contact line dynamics for partially wetting fluids. This work exemplifies the implementation of the scheme and furthermore presents benchmark experiments that show the scheme reduces spurious currents at the liquid-vapor interface by at least two orders of magnitude compared to a nodal implementation and allows for predicting the equilibrium states accurately in the range of moderate contact angles.

  14. Liquid level detector

    DOEpatents

    Grasso, Albert P.

    1986-01-01

    A liquid level detector for low pressure boilers. A boiler tank, from which apor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

  15. On the spatial stability of a liquid jet in the presence of vapor cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lü, Ming; Ning, Zhi, E-mail: zhining@bjtu.edu.cn; Lu, Mei

    2013-11-15

    A dispersion equation describing the effect of temperature differences on the stability of three-dimensional cylindrical liquid jets in the presence of vapor cavities is presented by the use of linear stability analysis. The mathematical model and its solving method are verified by comparing them with the data in the literature, and then the effect of temperature differences between jet and surrounding gas on the spatial stability of liquid jet is investigated. Some conclusions can be drawn from the results of this investigation: (1) the temperature difference destabilizes the liquid jet when the jet liquid is cooler than the surrounding gas,more » (2) the smallest atomized droplet without taking into account the effect of temperature differences is significantly larger than that when the effect of temperature differences is taken into account, (3) the effect of temperature differences on the stability of liquid jet has little relationship with azimuthal wave modes, (4) cavitation destabilizes the liquid jet when the value of the bubble volume fraction is not greater than 0.1 (0 ≤ α ≤ 0.1), and the temperature difference can weaken this effect of cavitation on the stability of liquid jet, and (5) cavitation is responsible for generating smaller droplets, the effect of cavitation on the critical wave number with and without taking into account the effect of temperature differences is quite different, and temperature difference is likely to fully restrain the effect of cavitation on the critical wave number; however, cavitation is again responsible for generating smaller droplets despite the effect of temperature differences when the bubble volume fraction α = 0.1. These findings may explain some observations of practical atomizer performance.« less

  16. Low level vapor verification of monomethyl hydrazine

    NASA Technical Reports Server (NTRS)

    Mehta, Narinder

    1990-01-01

    The vapor scrubbing system and the coulometric test procedure for the low level vapor verification of monomethyl hydrazine (MMH) are evaluated. Experimental data on precision, efficiency of the scrubbing liquid, instrument response, detection and reliable quantitation limits, stability of the vapor scrubbed solution, and interference were obtained to assess the applicability of the method for the low ppb level detection of the analyte vapor in air. The results indicated that the analyte vapor scrubbing system and the coulometric test procedure can be utilized for the quantitative detection of low ppb level vapor of MMH in air.

  17. Impact of electromagnetic microwaves on the germination of spores of Streptomyces xanthochromogenes in a peat soil and in a liquid nutrient medium

    NASA Astrophysics Data System (ADS)

    Komarova, A. S.; Likhacheva, A. A.; Lapygina, E. V.; Maksimova, I. A.; Pozdnyakov, A. I.

    2010-01-01

    The impact of microwaves on the germination of spores of Streptomyces xanthochromogenes in a liquid nutrient medium and in a peat soil was studied. The treatment of inoculums with microwave radiation affected the development of the microorganisms from the stage of spore germination to the stage of the formation of microcolonies of actinomycetes upon the spore cultivation in the liquid medium. Typical hypnum-herbaceous peat was used to study the rate of germination of the actinomycetal spores in soil. The study of the dynamics of the Streptomyces xanthochromogenes population in the control soil (without treatment with microwaves) showed that the most active development of the culture took place in the soil moistened to 60% of the maximum water capacity. When the soil was moistened to the minimum adsorption capacity, the streptomyces did not complete their full cycle of development. The stimulation of the spore germination and mycelium growth with microwaves in the soil medium required a longer period in comparison with that for the liquid medium. The stimulation of the spore germination was observed in the liquid nutrient medium in the case of 30-s treatment and in the soil in the case of 60-s treatment.

  18. Linear Stability Analysis of an Acoustically Vaporized Droplet

    NASA Astrophysics Data System (ADS)

    Siddiqui, Junaid; Qamar, Adnan; Samtaney, Ravi

    2015-11-01

    Acoustic droplet vaporization (ADV) is a phase transition phenomena of a superheat liquid (Dodecafluoropentane, C5F12) droplet to a gaseous bubble, instigated by a high-intensity acoustic pulse. This approach was first studied in imaging applications, and applicable in several therapeutic areas such as gas embolotherapy, thrombus dissolution, and drug delivery. High-speed imaging and theoretical modeling of ADV has elucidated several physical aspects, ranging from bubble nucleation to its subsequent growth. Surface instabilities are known to exist and considered responsible for evolving bubble shapes (non-spherical growth, bubble splitting and bubble droplet encapsulation). We present a linear stability analysis of the dynamically evolving interfaces of an acoustically vaporized micro-droplet (liquid A) in an infinite pool of a second liquid (liquid B). We propose a thermal ADV model for the base state. The linear analysis utilizes spherical harmonics (Ynm, of degree m and order n) and under various physical assumptions results in a time-dependent ODE of the perturbed interface amplitudes (one at the vapor/liquid A interface and the other at the liquid A/liquid B interface). The perturbation amplitudes are found to grow exponentially and do not depend on m. Supported by KAUST Baseline Research Funds.

  19. Simulations of the effects of water vapor, cloud liquid water, and ice on AMSU moisture channel brightness temperatures

    NASA Technical Reports Server (NTRS)

    Muller, Bradley M.; Fuelberg, Henry E.; Xiang, Xuwu

    1994-01-01

    Radiative transfer simulations are performed to determine how water vapor and nonprecipitating cloud liquid water and ice particles within typical midlatitude atmospheres affect brightness temperatures T(sub B)'s of moisture sounding channels used in the Advanced Microwave Sounding Unit (AMSU) and AMSU-like instruments. The purpose is to promote a general understanding of passive top-of-atmosphere T(sub B)'s for window frequencies at 23.8, 89.0, and 157.0 GHz, and water vapor frequencies at 176.31, 180.31, and 182.31 GHz by documenting specific examples. This is accomplished through detailed analyses of T(sub B)'s for idealized atmospheres, mostly representing temperate conditions over land. Cloud effects are considered in terms of five basic properties: droplet size distribution, phase, liquid or ice water content, altitude, and thickness. Effects on T(sub B) of changing surface emissivity also are addressed. The brightness temperature contribution functions are presented as an aid to physically interpreting AMSU T(sub B)'s. Both liquid and ice clouds impact the T(sub B)'s in a variety of ways. The T(sub B)'s at 23.8 and 89 GHz are more strongly affected by altostratus liquid clouds than by cirrus clouds for equivalent water paths. In contrast, channels near 157 and 183 GHz are more strongly affected by ice clouds. Higher clouds have a greater impact on 157- and 183-GHz T(sub B)'s than do lower clouds. Clouds depress T(sub B)'s of the higher-frequency channels by suppressing, but not necessarily obscuring, radiance contributions from below. Thus, T(sub B)'s are less closely associated with cloud-top temperatures than are IR radiometric temperatures. Water vapor alone accounts for up to 89% of the total attenuation by a midtropospheric liquid cloud for channels near 183 GHz. The Rayleigh approximation is found to be adequate for typical droplet size distributions; however, Mie scattering effects from liquid droplets become important for droplet size distribution

  20. Reply to "On Vaporization of liquid Pb-Li eutectic alloy from 1000 K to 1200 K- A high temperature mass spectrometric study"

    NASA Astrophysics Data System (ADS)

    Jain, Uttam; Mukherjee, Abhishek

    2018-03-01

    This communication is in response to a letter to editor commenting on the authors' earlier paper "Vaporization of liquid Pb-Li eutectic alloy from 1000 K to 1200 K - A high temperature mass spectrometric study".