Sample records for vapour phase doping

  1. An in situ vapour phase hydrothermal surface doping approach for fabrication of high performance Co3O4 electrocatalysts with an exceptionally high S-doped active surface.

    PubMed

    Tan, Zhijin; Liu, Porun; Zhang, Haimin; Wang, Yun; Al-Mamun, Mohammad; Yang, Hua Gui; Wang, Dan; Tang, Zhiyong; Zhao, Huijun

    2015-04-04

    A facile in situ vapour phase hydrothermal (VPH) surface doping approach has been developed for fabrication of high performance S-doped Co3O4 electrocatalysts with an unprecedentedly high surface S content (>47%). The demonstrated VPH doping approach could be useful for enrichment of surface active sites for other metal oxide electrocatalysts.

  2. Characterization of doped hydrogenated nanocrystalline silicon films prepared by plasma enhanced chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Wang, Jin-Liang; Wu, Er-Xing

    2007-03-01

    The B- and P-doped hydrogenated nanocrystalline silicon films (nc-Si:H) are prepared by plasma-enhanced chemical vapour deposition (PECVD). The microstructures of doped nc-Si:H films are carefully and systematically characterized by using high resolution electron microscopy (HREM), Raman scattering, x-ray diffraction (XRD), Auger electron spectroscopy (AES), and resonant nucleus reaction (RNR). The results show that as the doping concentration of PH3 increases, the average grain size (d) tends to decrease and the crystalline volume percentage (Xc) increases simultaneously. For the B-doped samples, as the doping concentration of B2H6 increases, no obvious change in the value of d is observed, but the value of Xc is found to decrease. This is especially apparent in the case of heavy B2H6 doped samples, where the films change from nanocrystalline to amorphous.

  3. Metal organic vapour-phase epitaxy growth of GaN wires on Si (111) for light-emitting diode applications

    PubMed Central

    2013-01-01

    GaN wires are grown on a Si (111) substrate by metal organic vapour-phase epitaxy on a thin deposited AlN blanket and through a thin SiNx layer formed spontaneously at the AlN/Si interface. N-doped wires are used as templates for the growth of core-shell InGaN/GaN multiple quantum wells coated by a p-doped shell. Standing single-wire heterostructures are connected using a metallic tip and a Si substrate backside contact, and the electroluminescence at room temperature and forward bias is demonstrated at 420 nm. This result points out the feasibility of lower cost nitride-based wires for light-emitting diode applications. PMID:23391377

  4. Temporal Stability of Metal-Chloride-Doped Chemical-Vapour-Deposited Graphene.

    PubMed

    Kang, Moon H; Milne, William I; Cole, Matthew T

    2016-08-18

    Graphene has proven to be a promising material for transparent flexible electronics. In this study, we report the development of a transfer and doping scheme of large-area chemical vapour deposited (CVD) graphene. A technique to transfer the as-grown material onto mechanically flexible and optically transparent polymeric substrates using an ultraviolet adhesive (UVA) is outlined, along with the temporal stability of the sheet resistance and optical transparency following chemical doping with various metal chlorides (Mx Cly The sheet resistance (RS ) and 550 nm optical transparency (%T550 ) of the transferred un-doped graphene was 3.5 kΩ sq(-1) (±0.2 kΩ sq(-1) ) and 84.1 % (±2.9 %), respectively. Doping with AuCl3 showed a notable reduction in RS by some 71.4 % (to 0.93 kΩ sq(-1) ) with a corresponding %T550 of 77.0 %. After 200 h exposure to air at standard temperature and pressure, the increase in RS was found to be negligible (ΔRS AuCl3 =0.06 kΩ sq(-1) ), indicating that, of the considered Mx Cly species, AuCl3 doping offered the highest degree of time stability under ambient conditions. There appears a tendency of increasing RS with time for the remaining metal chlorides studied. We attribute the observed temporal shift to desorption of molecular dopants. We find that desorption was most significant in RhCl3 -doped samples whereas, in contrast, after 200 h in ambient conditions, AuCl3 -doped graphene showed only marginal desorption. The results of this study demonstrate that chemical doping of UVA-transferred graphene is a promising means for enhancing large-area CVD graphene in order to realise a viable platform for next-generation optically transparent and mechanically flexible electronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Characteristics of Mg-doped and In-Mg co-doped p-type GaN epitaxial layers grown by metal organic chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Chung, S. J.; Senthil Kumar, M.; Lee, Y. S.; Suh, E.-K.; An, M. H.

    2010-05-01

    Mg-doped and In-Mg co-doped p-type GaN epilayers were grown using the metal organic chemical vapour deposition technique. The effect of In co-doping on the physical properties of p-GaN layer was examined by high resolution x-ray diffraction (HRXRD), transmission electron microscopy (TEM), Hall effect, photoluminescence (PL) and persistent photoconductivity (PPC) at room temperature. An improved crystalline quality and a reduction in threading dislocation density are evidenced upon In doping in p-GaN from HRXRD and TEM images. Hole conductivity, mobility and carrier density also significantly improved by In co-doping. PL studies of the In-Mg co-doped sample revealed that the peak position is blue shifted to 3.2 eV from 2.95 eV of conventional p-GaN and the PL intensity is increased by about 25%. In addition, In co-doping significantly reduced the PPC effect in p-type GaN layers. The improved electrical and optical properties are believed to be associated with the active participation of isolated Mg impurities.

  6. Vapour phase motion in cryogenic systems containing superheated and subcooled liquids

    NASA Astrophysics Data System (ADS)

    Kirichenko, Yu. A.; Chernyakov, P. S.; Seregin, V. E.

    The development of vent pipelines, and venting storage tanks for cryogenic liquids requires the knowledge of the law of motion as well as regularities of vapour content variation in the liquid and heat dissipation by the vapour phase. This is a theoretical study of the effect of superheating (subcooling) of the liquid, relative acceleration and reduced pressure upon the size and velocity of noninteracting vapour bubbles, moving in the liquid, and upon their resistance and heat transfer coefficients.

  7. Solvent vapour monitoring in work space by solid phase micro extraction.

    PubMed

    Li, K; Santilli, A; Goldthorp, M; Whiticar, S; Lambert, P; Fingas, M

    2001-05-07

    Solid phase micro extraction (SPME) is a fast, solvent-less alternative to conventional charcoal tube sampling/carbon disulfide extraction for volatile organic compounds (VOC). In this work, SPME was compared to the active sampling technique in a typical lab atmosphere. Two different types of fibre coatings were evaluated for solvent vapour at ambient concentration. A general purpose 100 microm film polydimethylsiloxane (PDMS) fibre was found to be unsuitable for VOC work, despite the thick coating. The mixed-phase carboxen/PDMS fibre was found to be suitable. Sensitivity of the SPME was far greater than charcoal sorbent tube method. Calibration studies using typical solvent such as dichloromethane (DCM), benzene (B) and toluene (T) showed an optimal exposure time of 5 min, with a repeatability of less than 20% for a broad spectrum of organic vapour. Minimum detectable amount for DCM is in the range of 0.01 microg/l (0.003 ppmv). Variation among different fibres was generally within 30% at a vapour concentration of 1 microg DCM/l, which was more than adequate for field monitoring purpose. Adsorption characteristics and calibration procedures were studied. An actual application of SPME was carried out to measure background level of solvent vapour at a bench where DCM was used extensively. Agreement between the SPME and the charcoal sampling method was generally within a factor of two. No DCM concentration was found to be above the regulatory limit of 50 ppmv.

  8. Properties of meso-Erythritol; phase state, accommodation coefficient and saturation vapour pressure

    NASA Astrophysics Data System (ADS)

    Emanuelsson, Eva; Tschiskale, Morten; Bilde, Merete

    2016-04-01

    Introduction Saturation vapour pressure and the associated temperature dependence (enthalpy ΔH), are key parameters for improving predictive atmospheric models. Generally, the atmospheric aerosol community lack experimentally determined values of these properties for relevant organic aerosol compounds (Bilde et al., 2015). In this work we have studied the organic aerosol component meso-Erythritol. Methods Sub-micron airborne particles of meso-Erythritol were generated by nebulization from aqueous solution, dried, and a mono disperse fraction of the aerosol was selected using a differential mobility analyser. The particles were then allowed to evaporate in the ARAGORN (AaRhus Atmospheric Gas phase OR Nano particle) flow tube. It is a temperature controlled 3.5 m long stainless steel tube with an internal diameter of 0.026 m (Bilde et al., 2003, Zardini et al., 2010). Changes in particle size as function of evaporation time were determined using a scanning mobility particle sizer system. Physical properties like air flow, temperature, humidity and pressure were controlled and monitored on several places in the setup. The saturation vapour pressures were then inferred from the experimental results in the MATLAB® program AU_VaPCaP (Aarhus University_Vapour Pressure Calculation Program). Results Following evaporation, meso-Erythriol under some conditions showed a bimodal particle size distribution indicating the formation of particles of two different phase states. The issue of physical phase state, along with critical assumptions e.g. the accommodation coefficient in the calculations of saturation vapour pressures of atmospheric relevant compounds, will be discussed. Saturation vapour pressures from the organic compound meso-Erythritol will be presented at temperatures between 278 and 308 K, and results will be discussed in the context of atmospheric chemistry. References Bilde, M. et al., (2015), Chemical Reviews, 115 (10), 4115-4156. Bilde, M. et. al., (2003

  9. Alcohol vapour detection at the three phase interface using enzyme-conducting polymer composites.

    PubMed

    Winther-Jensen, Orawan; Kerr, Robert; Winther-Jensen, Bjorn

    2014-02-15

    Immobilisation of enzymes on a breathable electrode can be useful for various applications where the three-phase interface between gas or chemical vapour, electrolyte and electrode is crucial for the reaction. In this paper, we report the further development of the breathable electrode concept by immobilisation of alcohol dehydrogenase into vapour-phase polymerised poly(3,4-ethylene dioxythiophene) that has been coated onto a breathable membrane. Typical alcohol sensing, whereby the coenzyme β-Nicotinamide adenine dinucleotide (NADH) is employed as a redox-mediator, was successfully used as a model reaction for the oxidation of ethanol. This indicates that the ethanol vapour from the backside of the membrane has access to the active enzyme embedded in the electrode. The detecting range of the sensor is suitable for the detection of ethanol in fruit juices and for the baseline breath ethanol concentration of drunken driving. After continuous operation for 4.5h the system only showed a 20% decrease in the current output. The electrodes maintained 62% in current output after being refrigerated for 76 days. This work is continuing the progress of the immobilisation of specific enzymes for certain electrochemical reactions whereby the three-phase interface has to be maintained and/or the simultaneous separation of gas from liquid is required. © 2013 Elsevier B.V. All rights reserved.

  10. Vapour-Phase Processes Control Liquid-Phase Isotope Profiles in Unsaturated Sphagnum Moss

    NASA Astrophysics Data System (ADS)

    Edwards, T. W.; Yi, Y.; Price, J. S.; Whittington, P. N.

    2009-05-01

    Seminal work in the early 1980s clearly established the basis for predicting patterns of heavy-isotope enrichment of pore waters in soils undergoing evaporation. A key feature of the process under steady-state conditions is the development of stable, convex-upward profiles whose shape is controlled by the balance between downward-diffusing heavy isotopologues concentrated by evaporative enrichment at the surface and the upward capillary flow of bulk water that maintains the evaporative flux. We conducted an analogous experiment to probe evaporation processes within 20-cm columns of unsaturated, living and dead (but undecomposed) Sphagnum moss evaporating under controlled conditions, while maintaining a constant water table. The experiment provided striking evidence of the importance of vapour-liquid mass and isotope exchange in the air-filled pores of the Sphagnum columns, as evidenced by the rapid development of hydrologic and isotopic steady-state within hours, rather than days, i.e., an order of magnitude faster than possible by liquid-phase processes alone. This is consistent with the notion that vapour-phase processes effectively "short-circuit" mass and isotope fluxes within the Sphagnum columns, as proposed also in recent characterizations of water dynamics in transpiring leaves. Additionally, advection-diffusion modelling of our results supports independent estimates of the effective liquid-phase diffusivities of the respective heavy water isotopologues, 2.380 x 10-5 cm2 s-1 for 1H1H18O and 2.415 x 10-5 cm2 s-1 for 1H2H16O, which are in notably good agreement with the "default" values that are typically assumed in soil and plant water studies.

  11. Liquid and vapour-phase antifungal activities of selected essential oils against candida albicans: microscopic observations and chemical characterization of cymbopogon citratus

    PubMed Central

    2010-01-01

    Background Use of essential oils for controlling Candida albicans growth has gained significance due to the resistance acquired by pathogens towards a number of widely-used drugs. The aim of this study was to test the antifungal activity of selected essential oils against Candida albicans in liquid and vapour phase and to determine the chemical composition and mechanism of action of most potent essential oil. Methods Minimum Inhibitory concentration (MIC) of different essential oils in liquid phase, assayed through agar plate dilution, broth dilution & 96-well micro plate dilution method and vapour phase activity evaluated through disc volatilization method. Reduction of C. albicans cells with vapour exposure was estimated by kill time assay. Morphological alteration in treated/untreated C. albicans cells was observed by the Scanning electron microscopy (SEM)/Atomic force microscopy (AFM) and chemical analysis of the strongest antifungal agent/essential oil has been done by GC, GC-MS. Results Lemon grass (Cymbopogon citratus) essential oil exhibited the strongest antifungal effect followed by mentha (Mentha piperita) and eucalyptus (Eucalyptus globulus) essential oil. The MIC of lemon grass essential oil in liquid phase (288 mg/l) was significantly higher than that in the vapour phase (32.7 mg/l) and a 4 h exposure was sufficient to cause 100% loss in viability of C. albicans cells. SEM/AFM of C. albicans cells treated with lemon grass essential oil at MIC level in liquid and vapour phase showed prominent shrinkage and partial degradation, respectively, confirming higher efficacy of vapour phase. GC-MS analysis revealed that lemon grass essential oil was dominated by oxygenated monoterpenes (78.2%); α-citral or geranial (36.2%) and β-citral or neral (26.5%), monoterpene hydrocarbons (7.9%) and sesquiterpene hydrocarbons (3.8%). Conclusion Lemon grass essential oil is highly effective in vapour phase against C. albicans, leading to deleterious morphological

  12. Surface and Thin Film Analysis during Metal Organic Vapour Phase Epitaxial Growth

    NASA Astrophysics Data System (ADS)

    Richter, Wolfgang

    2007-06-01

    In-situ analysis of epitaxial growth is the essential ingredient in order to understand the growth process, to optimize growth and last but not least to monitor or even control the epitaxial growth on a microscopic scale. In MBE (molecular beam epitaxy) in-situ analysis tools existed right from the beginning because this technique developed from Surface Science technology with all its electron based analysis tools (LEED, RHEED, PES etc). Vapour Phase Epitaxy, in contrast, remained for a long time in an empirical stage ("alchemy") because only post growth characterisations like photoluminescence, Hall effect and electrical conductivity were available. Within the last two decades, however, optical techniques were developed which provide similar capabilities as in MBE for Vapour Phase growth. I will discuss in this paper the potential of Reflectance Anisotropy Spectroscopy (RAS) and Spectroscopic Ellipsometry (SE) for the growth of thin epitaxial semiconductor layers with zincblende (GaAs etc) and wurtzite structure (GaN etc). Other techniques and materials will be also mentioned.

  13. A vapour phase assay for evaluating the antimicrobial activities of essential oils against bovine respiratory bacterial pathogens.

    PubMed

    Amat, S; Baines, D; Alexander, T W

    2017-12-01

    The objectives of this study were to develop a new assay for the evaluation of the antimicrobial activities of essential oils (EOs) in vapour phase and to demonstrate the antimicrobial activities of commercial EOs against BRPs. To achieve the first objective, a microtube cap containing 100 μl of EO was embedded in an agar plate. An agar plug (diameter 13 mm) inoculated with a bacterial suspension containing10 8  CFU per ml was then placed over the cap and incubated at 37°C for 24 h. Subsequently, bacteria were recovered from the agar plug by immersion in 5 ml of broth for 10 min, followed by vortexing for 30 s, and the broths were then plated for enumeration. To demonstrate the usefulness of the assay, nine commercial EOs derived from the following specific plants: ajowan, carrot seed, cinnamon leaf, citronella, fennel, ginger grass, lavender, rosemary and thyme were first evaluated for their vapour phase antimicrobial activities against Mannheimia haemolytica serotype 1. Selected EOs were further tested against Pasteurella multocida and Histophilus somni. The EOs of ajowan, thyme and cinnamon leaf completely or partially inhibited BRPs growth. This new assay provided reproducible results on the vapour phase antimicrobial activities of EOs against BRPs. These results support further study of EOs as a potential mitigation strategy against BRPs. In this study, we present a new vapour phase assay for evaluating the antimicrobial activities of essential oils (EO) against bovine respiratory pathogens (BRPs). Using this assay, we identified EOs, such as ajowan, thyme and cinnamon leaf, that can effectively inhibit growth of the BRPs Mannheimia haemolytica serotype 1, Pasteurella multocida and Histophilus somni. This is the first study to demonstrate the vapour phase antimicrobial activity of EOs against BRPs. © 2017 Her Majesty the Queen in Right of Canada. © 2017 The Society for Applied Microbiology Reproduced with the permission of the Minister of the

  14. Emission characteristics and vapour/particulate phase distributions of PCDD/F in a hazardous waste incinerator under transient conditions

    PubMed Central

    Wang, Chao; Cen, Kefa; Ni, Mingjiang; Li, Xiaodong

    2018-01-01

    Polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/F) emission characteristics and vapour/particulate phase partitions under three continued operation conditions, i.e. shut-down, start-up and after start-up, were investigated by sampling stack gas. The results indicated that the PCDD/F emission levels were 0.40–18.03 ng I-TEQ Nm−3, much higher than the annual monitoring level (0.016 ng I-TEQ Nm−3). Additionally, the PCDD/F emission levels in start-up were higher than the other two conditions. Furthermore, the PCDD/F congener profiles differed markedly between shut-down and start-up, and the chlorination degree of PCDD/F increased in shut-down and decreased evidently in start-up. Moreover, PCDD/F vapour/particulate phase distributions varied significantly under three transient conditions. The PCDD/F vapour phase proportion decreased as the shut-down process continued, then increased as the start-up process proceeded, finally more than 98% of the PCDD/F congeners were distributed in the vapour phase after start-up. The correlations between log(Cv/Cs) versus log pL0 of each PCDD/F congener in stack gas were disorganized in shut-down, and trend to a linear distribution after start-up. Besides, polychlorinated biphenyl emissions show behaviour similar to that of PCDD/F, and the lower chlorinated congeners have a stronger relationship with 2,3,7,8-PCDD/Fs, such as M1CB and D2CB. PMID:29410821

  15. Metal to insulator transition in Sb doped SnO2 monocrystalline nanowires thin films

    NASA Astrophysics Data System (ADS)

    Costa, I. M.; Bernardo, E. P.; Marangoni, B. S.; Leite, E. R.; Chiquito, A. J.

    2016-12-01

    We report on the growth and transport properties of single crystalline Sb doped SnO2 wires grown from chemical vapour deposition. While undoped samples presented semiconducting behaviour, doped ones clearly undergo a transition from an insulating state ( d R /d T <0 ) to a metallic one ( d R /d T >0 ) around 130 -150 K depending on the doping level. Data analysis in the framework of the metal-to-insulator transition theories allowed us to investigate the underlying physics: electron-electron and electron-phonon interactions were identified as the scattering mechanisms present in the metallic phase, while the conduction mechanism of the semiconducting phase (undoped sample) was characterized by thermal activation and variable range hopping mechanisms.

  16. A Theoretical Study of Vapour Phase Nucleation of the Rocket Propellant N2O4

    NASA Astrophysics Data System (ADS)

    Pal, P.

    2003-05-01

    The residual vapour of a rocket fuel at the venting stage develops a potential aerodynamic problem which is linked with the vapour phase nucleation phenomena of the propellant. This study, based entirely on molecular treatment, addresses the problem by focusing specifically on the N2O4 propellant which is used in the ARIANE flight. The phenomenon is examined by considering the thermodynamic free energies of N2O4 clusters, leading to the evaluation of nucleation flux rates of critical nuclei at incipient nucleation. Preliminary examinations of the kinetics of flux pulses provide basic explanation from a molecular perspective.

  17. Combining single source chemical vapour deposition precursors to explore the phase space of titanium oxynitride thin films.

    PubMed

    Rees, Kelly; Lorusso, Emanuela; Cosham, Samuel D; Kulak, Alexander N; Hyett, Geoffrey

    2018-02-14

    In this paper we report on a novel chemical vapour deposition approach to the formation and control of composition of mixed anion materials, as applied to titanium oxynitride thin films. The method used is the aerosol assisted chemical vapour deposition (AACVD) of a mixture of single source precursors. To explore the titanium-oxygen-nitrogen system the single source precursors selected were tetrakis(dimethylamido) titanium and titanium tetraisopropoxide which individually are precursors to thin films of titanium nitride and titanium dioxide respectively. However, by combining these precursors in specific ratios in a series of AACVD reactions at 400 °C, we are able to deposit thin films of titanium oxynitride with three different structure types and a wide range of compositions. Using this precursor system we can observe films of nitrogen doped anatase, with 25% anion doping of nitrogen; a new composition of pseudobrookite titanium oxynitride with a composition of Ti 3 O 3.5 N 1.5 , identified as being a UV photocatalyst; and rock-salt titanium oxynitride in the range TiO 0.41 N 0.59 to TiO 0.05 N 0.95 . The films were characterised using GIXRD, WDX and UV-vis spectroscopy, and in the case of the pseudobrookite films, assessed for photocatalytic activity. This work shows that a so-called dual single-source CVD approach is an effective method for the deposition of ternary mixed anion ceramic films through simple control of the ratio of the precursors, while keeping all other experimental parameters constant.

  18. Magneto-electronic phase separation in doped cobaltites

    NASA Astrophysics Data System (ADS)

    He, Chunyong

    This thesis work mainly focuses on magneto-electronic phase separation (MEPS), an effect where chemically homogeneous materials display inhomogeneous magnetic and electronic properties. A model system La1-xSrxCoO3 (LSCO) is chosen for the study of MEPS. The doping evolution of MEPS in LSCO single crystals is extensively studied through complementary experimental techniques including heat capacity, small angle neutron scattering, magnetometry, and transport. It is found that there exists a finite doping range over which MEPS occurs. The doping range determined from different experimental techniques is found to be in good agreement. Also, this same doping range is reproduced by statistical simulations incorporating local compositional fluctuations. The excellent agreement between experimental data and statistical simulations leads to the conclusion that the MEPS in LSCO is driven solely by inevitable local compositional fluctuations at nanoscopic length scales. Such a conclusion indicates that nanoscopic MEPS is doping fluctuation-driven rather than electronically-driven in LSCO. The effect of microscopic magneto-electronic phase separation on electrical transport in LSCO is also examined. It is demonstrated (i) that the T = 0 metal-insulator transition can be understood within double exchange-modified percolation framework, and, (ii) that the onset of a phase-pure low T ferromagnetic state at high x has a profound effect on the high T transport. In addition, a new origin for finite spin Co ions in LaCoO3 is revealed via a Schottky Anomaly in the heat capacity, which was not previously known. Such a discovery casts a new understanding of the spin state at low temperature. Via small-angle neutron scattering and d.c. susceptibility, it is revealed that short-range ordered FM clusters exist below a well-defined temperature (T*) in highly doped LSCO. It is demonstrated that the characteristics of this clustered state appear quite unlike those of a Griffiths phase

  19. Enhanced water vapour flow in silica microchannels and interdiffusive water vapour flow through anodic aluminium oxide (AAO) membranes

    NASA Astrophysics Data System (ADS)

    Lei, Wenwen; McKenzie, David R.

    2015-12-01

    Enhanced liquid water flows through carbon nanotubes reinvigorated the study of moisture permeation through membranes and micro- and nano-channels. The study of water vapour through micro-and nano-channels has been neglected even though water vapour is as important as liquid water for industry, especially for encapsulation of electronic devices. Here we measure moisture flow rates in silica microchannels and interdiffusive water vapour flows in anodic aluminium oxide (AAO) membrane channels for the first time. We construct theory for the flow rates of the dominant modes of water transport through four previously defined standard configurations and benchmark it against our new measurements. The findings show that measurements of leak behaviour made using other molecules, such as helium, are not reliable. Single phase water vapour flow is overestimated by a helium measurement, while Washburn or capillary flow is underestimated or for all channels when boundary slip applies, to an extent that depends on the slip length for the liquid phase flows.

  20. Analysis of particle and vapour phase PAHs from the personal air samples of bus garage workers exposed to diesel exhaust.

    PubMed

    Kuusimaki, Leea; Peltonen, Kimmo; Mutanen, Pertti; Savela, Kirsti

    2003-07-01

    The levels of particle and vapour phase polycyclic aromatic hydrocarbons (PAHs) derived from the diesel exhaust compounds in bus garage work were measured in winter and in summer. Five personal air samples were collected from the breathing zones of 22 garage workers every other day of consecutive weeks. Control samples (n = 22) were collected from office workers in Helsinki. Fifteen PAHs in the air samples were analysed by HPLC using a fluorescence detector. Statistically significant differences were observed between total PAH levels of the exposed workers (2241 and 1245 ng/m(3)) and the control group (254 and 275 ng/m(3)) in both winter (P < 0.001) and summer (P < 0.001). Phenanthrene, pyrene, benzo[ghi]perylene and fluoranthene were the major compounds in the particle phase, and naphthalene, phenanthrene and fluorene in the vapour phase. About 98% of PAHs measured were related to the vapour phase compounds, whereas the high molecular weight PAH compounds were detected only in the particle phase. The PAH levels in the garages were twice as high (P < 0.001) in winter as in summer. Even though the exposure levels were low in the bus garages, the low level does not allow conclusions to be drawn about the possible adverse health effects due to exposure to diesel exhaust.

  1. The ignitability of petrol vapours and potential for vapour phase explosion by use of TASER® law enforcement electronic control device.

    PubMed

    Clarke, C; Andrews, S P

    2014-12-01

    An experimental study was made of the potential of the TASER-X26™ law enforcement electronic control device to ignite petrol vapours if used by an officer to incapacitate a person soaked in petrol, or within a flammable atmosphere containing petrol vapour. Bench scale tests have shown that a wooden mannequin with pig skin covering the chest was a suitable representation of a human target. Full scale tests using the mannequin have shown that the arc from a TASER-X26™ is capable of igniting petrol/air vapours on a petrol-soaked person. Further tests in a 1/5 scale and a full scale compartment have shown that if a TASER is used within a compartment, a petrol vapour explosion (deflagration) may be achieved. It is evident from this research that if used in a flammable vapour rich environment, the device could prove fatal not only to the target but the TASER® operator as well. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Phase correction for ALMA. Investigating water vapour radiometer scaling: The long-baseline science verification data case study

    NASA Astrophysics Data System (ADS)

    Maud, L. T.; Tilanus, R. P. J.; van Kempen, T. A.; Hogerheijde, M. R.; Schmalzl, M.; Yoon, I.; Contreras, Y.; Toribio, M. C.; Asaki, Y.; Dent, W. R. F.; Fomalont, E.; Matsushita, S.

    2017-09-01

    The Atacama Large millimetre/submillimetre Array (ALMA) makes use of water vapour radiometers (WVR), which monitor the atmospheric water vapour line at 183 GHz along the line of sight above each antenna to correct for phase delays introduced by the wet component of the troposphere. The application of WVR derived phase corrections improve the image quality and facilitate successful observations in weather conditions that were classically marginal or poor. We present work to indicate that a scaling factor applied to the WVR solutions can act to further improve the phase stability and image quality of ALMA data. We find reduced phase noise statistics for 62 out of 75 datasets from the long-baseline science verification campaign after a WVR scaling factor is applied. The improvement of phase noise translates to an expected coherence improvement in 39 datasets. When imaging the bandpass source, we find 33 of the 39 datasets show an improvement in the signal-to-noise ratio (S/N) between a few to 30 percent. There are 23 datasets where the S/N of the science image is improved: 6 by <1%, 11 between 1 and 5%, and 6 above 5%. The higher frequencies studied (band 6 and band 7) are those most improved, specifically datasets with low precipitable water vapour (PWV), <1 mm, where the dominance of the wet component is reduced. Although these improvements are not profound, phase stability improvements via the WVR scaling factor come into play for the higher frequency (>450 GHz) and long-baseline (>5 km) observations. These inherently have poorer phase stability and are taken in low PWV (<1 mm) conditions for which we find the scaling to be most effective. A promising explanation for the scaling factor is the mixing of dry and wet air components, although other origins are discussed. We have produced a python code to allow ALMA users to undertake WVR scaling tests and make improvements to their data.

  3. Dislocations limited electronic transport in hydride vapour phase epitaxy grown GaN templates: A word of caution for the epitaxial growers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Abhishek, E-mail: cabhishek@rrcat.gov.in; Khamari, Shailesh K.; Kumar, R.

    2015-01-12

    GaN templates grown by hydride vapour phase epitaxy (HVPE) and metal organic vapour phase epitaxy (MOVPE) techniques are compared through electronic transport measurements. Carrier concentration measured by Hall technique is about two orders larger than the values estimated by capacitance voltage method for HVPE templates. It is learnt that there exists a critical thickness of HVPE templates below which the transport properties of epitaxial layers grown on top of them are going to be severely limited by the density of charged dislocations lying at layer-substrate interface. On the contrary MOVPE grown templates are found to be free from such limitations.

  4. Yb-doped large-mode-area laser fiber fabricated by halide-gas-phase-doping technique

    NASA Astrophysics Data System (ADS)

    Peng, Kun; Wang, Yuying; Ni, Li; Wang, Zhen; Gao, Cong; Zhan, Huan; Wang, Jianjun; Jing, Feng; Lin, Aoxiang

    2015-06-01

    In this manuscript, we designed a rare-earth-halide gas-phase-doping setup to fabricate a large-mode-area fiber for high power laser applications. YbCl3 and AlCl3 halides are evaporated, carried respectively and finally mixed with usual host gas material SiCl4 at the hot zone of MCVD system. Owing to the all-gas-phasing reaction process and environment, the home-made Yb-doped fiber preform has a homogeneous large core and modulated refractive index profile to keep high beam quality. The drawn fiber core has a small numerical aperture of 0.07 and high Yb concentration of 9500 ppm. By using a master oscillator power amplifier system, nearly kW-level (951 W) laser output power was obtained with a slope efficiency of 83.3% at 1063.8 nm, indicating the competition and potential of the halide-gas-phase-doping technique for high power laser fiber fabrication.

  5. Efficient quantification of water content in edible oils by headspace gas chromatography with vapour phase calibration.

    PubMed

    Xie, Wei-Qi; Gong, Yi-Xian; Yu, Kong-Xian

    2018-06-01

    An automated and accurate headspace gas chromatographic (HS-GC) technique was investigated for rapidly quantifying water content in edible oils. In this method, multiple headspace extraction (MHE) procedures were used to analyse the integrated water content from the edible oil sample. A simple vapour phase calibration technique with an external vapour standard was used to calibrate both the water content in the gas phase and the total weight of water in edible oil sample. After that the water in edible oils can be quantified. The data showed that the relative standard deviation of the present HS-GC method in the precision test was less than 1.13%, the relative differences between the new method and a reference method (i.e. the oven-drying method) were no more than 1.62%. The present HS-GC method is automated, accurate, efficient, and can be a reliable tool for quantifying water content in edible oil related products and research. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Characterization of aqueous interactions of copper-doped phosphate-based glasses by vapour sorption.

    PubMed

    Stähli, Christoph; Shah Mohammadi, Maziar; Waters, Kristian E; Nazhat, Showan N

    2014-07-01

    Owing to their adjustable dissolution properties, phosphate-based glasses (PGs) are promising materials for the controlled release of bioinorganics, such as copper ions. This study describes a vapour sorption method that allowed for the investigation of the kinetics and mechanisms of aqueous interactions of PGs of the formulation 50P2O5-30CaO-(20-x)Na2O-xCuO (x=0, 1, 5 and 10mol.%). Initial characterization was performed using (31)P magic angle spinning nuclear magnetic resonance and attenuated total reflectance-Fourier transform infrared spectroscopy. Increasing CuO content resulted in chemical shifts of the predominant Q(2) NMR peak and of the (POP)as and (PO(-)) Fourier transform infrared absorptions, owing to the higher strength of the POCu bond compared to PONa. Vapour sorption and desorption were gravimetrically measured in PG powders exposed to variable relative humidity (RH). Sorption was negligible below 70% RH and increased exponentially with RH from 70 to 90%, where it exhibited a negative correlation with CuO content. Vapour sorption in 0% and 1% CuO glasses resulted in phosphate chain hydration and hydrolysis, as evidenced by protonated Q(0)(1H) and Q(1)(1H) species. Dissolution rates in deionized water showed a linear correlation (R(2)>0.99) with vapour sorption. Furthermore, cation release rates could be predicted based on dissolution rates and PG composition. The release of orthophosphate and short polyphosphate species corroborates the action of hydrolysis and was correlated with pH changes. In conclusion, the agreement between vapour sorption and routine characterization techniques in water demonstrates the potential of this method for the study of PG aqueous reactions. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Tunable photonic crystals with partial bandgaps from blue phase colloidal crystals and dielectric-doped blue phases.

    PubMed

    Stimulak, Mitja; Ravnik, Miha

    2014-09-07

    Blue phase colloidal crystals and dielectric nanoparticle/polymer doped blue phases are demonstrated to combine multiple components with different symmetries in one photonic material, creating a photonic crystal with variable and micro-controllable photonic band structure. In this composite photonic material, one contribution to the band structure is determined by the 3D periodic birefringent orientational profile of the blue phases, whereas the second contribution emerges from the regular array of the colloidal particles or from the dielectric/nanoparticle-doped defect network. Using the planewave expansion method, optical photonic bands of the blue phase I and II colloidal crystals and related nanoparticle/polymer doped blue phases are calculated, and then compared to blue phases with no particles and to face-centred-cubic and body-centred-cubic colloidal crystals in isotropic background. We find opening of local band gaps at particular points of Brillouin zone for blue phase colloidal crystals, where there were none in blue phases without particles or dopants. Particle size and filling fraction of the blue phase defect network are demonstrated as parameters that can directly tune the optical bands and local band gaps. In the blue phase I colloidal crystal with an additionally doped defect network, interestingly, we find an indirect total band gap (with the exception of one point) at the entire edge of SC irreducible zone. Finally, this work demonstrates the role of combining multiple - by symmetry - differently organised components in one photonic crystal material, which offers a novel approach towards tunable soft matter photonic materials.

  8. Thermodynamically equilibrium roton states of nanoparticles in molten and vapour phases

    NASA Astrophysics Data System (ADS)

    Karasevskii, A. I.

    2015-05-01

    We show a possibility for a thermodynamically equilibrium nanocrystalline structure consisting of nanosized solid inclusions to appear in a melt just beyond the melting curve. Thermodynamic stability of the nanocrystalline structure in the melt results from the free energy lowering due to rotational motion of nanoparticles. The main contribution to the reduction of the free energy of the system is due to an increase in the rotational entropy and change in formation energy of nanocrystals, i.e. the nanocrystalline structure in the melt, like vacancies in a crystal, is an equilibrium defect structure of the melt. It is demonstrated that similar nanocrystalline structures can also appear in the vapour phase in the form of liquid nanodrops and in liquid solutions, e.g. in He II.

  9. Microscopic origin of the magnetoelectronic phase separation in Sr-doped LaCoO3

    NASA Astrophysics Data System (ADS)

    Németh, Zoltán; Szabó, András; Knížek, Karel; Sikora, Marcin; Chernikov, Roman; Sas, Norbert; Bogdán, Csilla; Nagy, Dénes Lajos; Vankó, György

    2013-07-01

    The nanoscopic magnetoelectronic phase separation in doped La1-xSrxCoO3 perovskites was studied with local probes. The phase separation is directly observed by Mössbauer spectroscopy in the studied doping range of 0.05 ≤ x ≤ 0.25 both at room temperature and in the low-temperature magnetic phase. Extended with current synchrotron-based x-ray spectroscopies, these data help to characterize the volume as well as the local electric and magnetic properties of the distinct phases. A simple model based on a random distribution of the doping Sr ions describes well both the evolution of the separated phases and the variation of the Co spin state. The experiments suggest that Sr doping initiates small droplets and a high degree of doping-driven cobalt spin-state transition, while the Sr-free second phase vanishes rapidly with increasing Sr content.

  10. Major element and oxygen isotope geochemistry of vapour-phase garnet from the Topopah Spring Tuff at Yucca Mountain, Nevada, USA

    USGS Publications Warehouse

    Moscati, Richard J.; Johnson, Craig A.

    2014-01-01

    Twenty vapour-phase garnets were studied in two samples of the Topopah Spring Tuff of the Paintbrush Group from Yucca Mountain, in southern Nevada. The Miocene-age Topopah Spring Tuff is a 350 m thick, devitrified, moderately to densely welded ash-flow tuff that is zoned compositionally from high-silica rhyolite to latite. During cooling of the tuff, escaping vapour produced lithophysae (former gas cavities) lined with an assemblage of tridymite (commonly inverted to cristobalite or quartz), sanidine and locally, hematite and/or garnet. Vapour-phase topaz and economic deposits associated commonly with topaz-bearing rhyolites (characteristically enriched in F) were not found in the Topopah Spring Tuff at Yucca Mountain. Based on their occurrence only in lithophysae, the garnets are not primary igneous phenocrysts, but rather crystals that grew from a F-poor magma-derived vapour trapped during and after emplacement of the tuff. The garnets are euhedral, vitreous, reddish brown, trapezohedral, as large as 2 mm in diameter and fractured. The garnets also contain inclusions of tridymite. Electron microprobe analyses of the garnets reveal that they are almandine-spessartine (48.0 and 47.9 mol.%, respectively), have an average composition of (Fe1.46Mn1.45Mg0.03Ca0.10)(Al1.93Ti0.02)Si3.01O12 and are comparatively homogeneous in Fe and Mn concentrations from core to rim. Composited garnets from each sample site have δ18O values of 7.2 and 7.4‰. The associated quartz (after tridymite) has δ18O values of 17.4 and 17.6‰, values indicative of reaction with later, low-temperature water. Unaltered tridymite from higher in the stratigraphic section has a δ18O of 11.1‰ which, when coupled with the garnet δ18O values in a quartz-garnet fractionation equation, indicates isotopic equilibration (vapour-phase crystallization) at temperatures of ~600°C. This high-temperature mineralization, formed during cooling of the tuffs, is distinct from the later and commonly recognized

  11. Convective heat transfer measurements in a vapour-liquid-liquid three-phase direct contact heat exchanger

    NASA Astrophysics Data System (ADS)

    Mahood, Hameed B.; Campbell, A. N.; Baqir, Ali Sh.; Sharif, A. O.; Thorpe, R. B.

    2018-06-01

    Energy usage is increasing around the world due to the continued development of technology, and population growth. Solar energy is a promising low-grade energy resource that can be harvested and utilised in different applications, such solar heater systems, which are used in both domestic and industrial settings. However, the implementation of an efficient energy conversion system or heat exchanger would enhance such low-grade energy processes. The direct contact heat exchanger could be the right choice due to its ability to efficiently transfer significant amounts of heat, simple design, and low cost. In this work, the heat transfer associated with the direct contact condensation of pentane vapour bubbles in a three-phase direct contact condenser is investigated experimentally. Such a condenser could be used in a cycle with a solar water heater and heat recovery systems. The experiments on the steady state operation of the three-phase direct contact condenser were carried out using a short Perspex tube of 70 cm in total height and an internal diameter of 4 cm. Only a height of 48 cm was active as the direct contact condenser. Pentane vapour, (the dispersed phase) with three different initial temperatures (40° C, 43.5° C and 47.5° C) was directly contacted with water (the continuous phase) at 19° C. The experimental results showed that the total heat transfer rate per unit volume along the direct contact condenser gradually decreased upon moving higher up the condenser. Additionally, the heat transfer rate increases with increasing mass flow rate ratio, but no significant effect on the heat transfer rate of varying the initial temperature of the dispersed phase was seen. Furthermore, both the outlet temperature of the continuous phase and the void fraction were positively correlated with the total heat transfer rate per unit volume, with no considerable effect of the initial temperature difference between the dispersed and continuous phases.

  12. Convective heat transfer measurements in a vapour-liquid-liquid three-phase direct contact heat exchanger

    NASA Astrophysics Data System (ADS)

    Mahood, Hameed B.; Campbell, A. N.; Baqir, Ali Sh.; Sharif, A. O.; Thorpe, R. B.

    2017-12-01

    Energy usage is increasing around the world due to the continued development of technology, and population growth. Solar energy is a promising low-grade energy resource that can be harvested and utilised in different applications, such solar heater systems, which are used in both domestic and industrial settings. However, the implementation of an efficient energy conversion system or heat exchanger would enhance such low-grade energy processes. The direct contact heat exchanger could be the right choice due to its ability to efficiently transfer significant amounts of heat, simple design, and low cost. In this work, the heat transfer associated with the direct contact condensation of pentane vapour bubbles in a three-phase direct contact condenser is investigated experimentally. Such a condenser could be used in a cycle with a solar water heater and heat recovery systems. The experiments on the steady state operation of the three-phase direct contact condenser were carried out using a short Perspex tube of 70 cm in total height and an internal diameter of 4 cm. Only a height of 48 cm was active as the direct contact condenser. Pentane vapour, (the dispersed phase) with three different initial temperatures (40° C, 43.5° C and 47.5° C) was directly contacted with water (the continuous phase) at 19° C. The experimental results showed that the total heat transfer rate per unit volume along the direct contact condenser gradually decreased upon moving higher up the condenser. Additionally, the heat transfer rate increases with increasing mass flow rate ratio, but no significant effect on the heat transfer rate of varying the initial temperature of the dispersed phase was seen. Furthermore, both the outlet temperature of the continuous phase and the void fraction were positively correlated with the total heat transfer rate per unit volume, with no considerable effect of the initial temperature difference between the dispersed and continuous phases.

  13. Hidden phase in a two-dimensional Sn layer stabilized by modulation hole doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ming, Fangfei; Mulugeta Amare, Daniel; Tu, Weisong

    Semiconductor surfaces and ultrathin interfaces exhibit an interesting variety of two-dimensional quantum matter phases, such as charge density waves, spin density waves and superconducting condensates. Yet, the electronic properties of these broken symmetry phases are extremely difficult to control due to the inherent difficulty of doping a strictly two-dimensional material without introducing chemical disorder. Here we successfully exploit a modulation doping scheme to uncover, in conjunction with a scanning tunnelling microscope tip-assist, a hidden equilibrium phase in a hole-doped bilayer of Sn on Si(111). This new phase is intrinsically phase separated into insulating domains with polar and nonpolar symmetries. Itsmore » formation involves a spontaneous symmetry breaking process that appears to be electronically driven, notwithstanding the lack of metallicity in this system. This modulation doping approach allows access to novel phases of matter, promising new avenues for exploring competing quantum matter phases on a silicon platform.« less

  14. Hidden phase in a two-dimensional Sn layer stabilized by modulation hole doping

    DOE PAGES

    Ming, Fangfei; Mulugeta Amare, Daniel; Tu, Weisong; ...

    2017-03-07

    Semiconductor surfaces and ultrathin interfaces exhibit an interesting variety of two-dimensional quantum matter phases, such as charge density waves, spin density waves and superconducting condensates. Yet, the electronic properties of these broken symmetry phases are extremely difficult to control due to the inherent difficulty of doping a strictly two-dimensional material without introducing chemical disorder. Here we successfully exploit a modulation doping scheme to uncover, in conjunction with a scanning tunnelling microscope tip-assist, a hidden equilibrium phase in a hole-doped bilayer of Sn on Si(111). This new phase is intrinsically phase separated into insulating domains with polar and nonpolar symmetries. Itsmore » formation involves a spontaneous symmetry breaking process that appears to be electronically driven, notwithstanding the lack of metallicity in this system. This modulation doping approach allows access to novel phases of matter, promising new avenues for exploring competing quantum matter phases on a silicon platform.« less

  15. The millennium water vapour drop in chemistry-climate model simulations

    NASA Astrophysics Data System (ADS)

    Brinkop, Sabine; Dameris, Martin; Jöckel, Patrick; Garny, Hella; Lossow, Stefan; Stiller, Gabriele

    2016-07-01

    This study investigates the abrupt and severe water vapour decline in the stratosphere beginning in the year 2000 (the "millennium water vapour drop") and other similarly strong stratospheric water vapour reductions by means of various simulations with the state-of-the-art Chemistry-Climate Model (CCM) EMAC (ECHAM/MESSy Atmospheric Chemistry Model). The model simulations differ with respect to the prescribed sea surface temperatures (SSTs) and whether nudging is applied or not. The CCM EMAC is able to most closely reproduce the signature and pattern of the water vapour drop in agreement with those derived from satellite observations if the model is nudged. Model results confirm that this extraordinary water vapour decline is particularly obvious in the tropical lower stratosphere and is related to a large decrease in cold point temperature. The drop signal propagates under dilution to the higher stratosphere and to the poles via the Brewer-Dobson circulation (BDC). We found that the driving forces for this significant decline in water vapour mixing ratios are tropical sea surface temperature (SST) changes due to a coincidence with a preceding strong El Niño-Southern Oscillation event (1997/1998) followed by a strong La Niña event (1999/2000) and supported by the change of the westerly to the easterly phase of the equatorial stratospheric quasi-biennial oscillation (QBO) in 2000. Correct (observed) SSTs are important for triggering the strong decline in water vapour. There are indications that, at least partly, SSTs contribute to the long period of low water vapour values from 2001 to 2006. For this period, the specific dynamical state of the atmosphere (overall atmospheric large-scale wind and temperature distribution) is important as well, as it causes the observed persistent low cold point temperatures. These are induced by a period of increased upwelling, which, however, has no corresponding pronounced signature in SSTs anomalies in the tropics. Our free

  16. The rheology and phase separation kinetics of mixed-matrix membrane dopes

    NASA Astrophysics Data System (ADS)

    Olanrewaju, Kayode Olaseni

    Mixed-matrix hollow fiber membranes are being developed to offer more efficient gas separations applications than what the current technologies allow. Mixed-matrix membranes (MMMs) are membranes in which molecular sieves incorporated in a polymer matrix enhance separation of gas mixtures based on the molecular size difference and/or adsorption properties of the component gases in the molecular sieve. The major challenges encountered in the efficient development of MMMs are associated with some of the paradigm shifts involved in their processing, as compared to pure polymer membranes. For instance, mixed-matrix hollow fiber membranes are prepared by a dry-wet jet spinning method. Efficient large scale processing of hollow fibers by this method requires knowledge of two key process variables: the rheology and kinetics of phase separation of the MMM dopes. Predicting the rheological properties of MMM dopes is not trivial; the presence of particles significantly affects neat polymer membrane dopes. Therefore, the need exists to characterize and develop predictive capabilities for the rheology of MMM dopes. Furthermore, the kinetics of phase separation of polymer solutions is not well understood. In the case of MMM dopes, the kinetics of phase separation are further complicated by the presence of porous particles in a polymer solution. Thus, studies on the phase separation kinetics of polymer solutions and suspensions of zeolite particles in polymer solutions are essential. Therefore, this research thesis aims to study the rheology and phase separation kinetics of mixed-matrix membrane dopes. In our research efforts to develop predictive models for the shear rheology of suspensions of zeolite particles in polymer solutions, it was found that MFI zeolite suspensions have relative viscosities that dramatically exceed the Krieger-Dougherty predictions for hard sphere suspensions. Our investigations showed that the major origin of this discrepancy is the selective

  17. Structural phase transition in monolayer MoTe2 driven by electrostatic doping

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Xiao, Jun; Zhu, Hanyu; Li, Yao; Alsaid, Yousif; Fong, King Yan; Zhou, Yao; Wang, Siqi; Shi, Wu; Wang, Yuan; Zettl, Alex; Reed, Evan J.; Zhang, Xiang

    2017-10-01

    Monolayers of transition-metal dichalcogenides (TMDs) exhibit numerous crystal phases with distinct structures, symmetries and physical properties. Exploring the physics of transitions between these different structural phases in two dimensions may provide a means of switching material properties, with implications for potential applications. Structural phase transitions in TMDs have so far been induced by thermal or chemical means; purely electrostatic control over crystal phases through electrostatic doping was recently proposed as a theoretical possibility, but has not yet been realized. Here we report the experimental demonstration of an electrostatic-doping-driven phase transition between the hexagonal and monoclinic phases of monolayer molybdenum ditelluride (MoTe2). We find that the phase transition shows a hysteretic loop in Raman spectra, and can be reversed by increasing or decreasing the gate voltage. We also combine second-harmonic generation spectroscopy with polarization-resolved Raman spectroscopy to show that the induced monoclinic phase preserves the crystal orientation of the original hexagonal phase. Moreover, this structural phase transition occurs simultaneously across the whole sample. This electrostatic-doping control of structural phase transition opens up new possibilities for developing phase-change devices based on atomically thin membranes.

  18. Enhanced doping effect on tuning structural phases of monolayer antimony

    NASA Astrophysics Data System (ADS)

    Wang, Jizhang; Yang, Teng; Zhang, Zhidong; Yang, Li

    2018-05-01

    Doping is capable to control the atomistic structure, electronic structure, and even to dynamically realize a semiconductor-metal transition in two-dimensional (2D) transition metal dichalcogenides (TMDs). However, the high critical doping density (˜1014 electron/cm2), compound nature, and relatively low carrier mobility of TMDs limits broader applications. Using first-principles calculations, we predict that, via a small transition potential, a substantially lower hole doping density (˜6 × 1012 hole/cm2) can switch the ground-state structure of monolayer antimony from the hexagonal β-phase, a 2D semiconductor with excellent transport performance and air stability but an indirect bandgap, to the orthorhombic α phase with a direct bandgap and potentially better carrier mobility. We further show that this structural engineering can be achieved by the established electrostatic doping, surface functional adsorption, or directly using graphene substrate. This gives hope to dynamically tuning and large-scale production of 2D single-element semiconductors that simultaneously exhibit remarkable transport and optical performance.

  19. High temperature superconductivity in distinct phases of amorphous B-doped Q-carbon

    NASA Astrophysics Data System (ADS)

    Narayan, Jagdish; Bhaumik, Anagh; Sachan, Ritesh

    2018-04-01

    Distinct phases of B-doped Q-carbon are formed when B-doped and undoped diamond tetrahedra are packed randomly after nanosecond laser melting and quenching of carbon. By changing the ratio of doped to undoped tetrahedra, distinct phases of B-doped Q-carbon with concentration varying from 5.0% to 50.0% can be created. We have synthesized three distinct phases of amorphous B-doped Q-carbon, which exhibit high-temperature superconductivity following the Bardeen-Cooper-Schrieffer mechanism. The first phase (QB1) has a B-concentration ˜17 at. % (Tc = 37 K), the second phase (QB2) has a B-concentration ˜27 at. % (Tc = 55 K), and the third phase (QB3) has a B-concentration ˜45 at. % (Tc expected over 100 K). From geometrical modeling, we derive that QB1 consists of randomly packed tetrahedra, where one out of every three tetrahedra contains a B atom in the center which is sp3 bonded to four carbon atoms with a concentration of 16.6 at. %. QB2 consists of randomly packed tetrahedra, where one out of every two tetrahedra contains a B atom in the center which is sp3 bonded to four carbon atoms with a concentration of 25 at. %. QB3 consists of randomly packed tetrahedra, where every tetrahedron contains a B atom in the center which is sp3 bonded to four carbon atoms with a concentration of 50 at. %. We present detailed high-resolution TEM results on structural characterization, and EELS and Raman spectroscopy results on the bonding characteristics of B and C atoms. From these studies, we conclude that the high electronic density of states near the Fermi energy level coupled with moderate electron-phonon coupling result in high-temperature superconductivity in B-doped Q-carbon.

  20. Vapour phase techniques for deposition of CZTS thin films: A review

    NASA Astrophysics Data System (ADS)

    Kaur, Ramanpreet; Kumar, Sandeep; Singh, Sukhpal

    2018-05-01

    With the surge of thin film photovoltaic technologies in recent years, for cost reduction and increased production there is a need for earth abundant and non-toxic raw materials. Existing thin film solar cells comprising CuInS2 (CIS), CuInGaSe2 (CIGS) and CdTe contain elements that are rare in earth's crust and in case of CdTe toxic. Cu2ZnSnS4 (CZTS), having Kesterite structure, a direct band gap of 1.4 - 1.5 eV and an absorption coefficient of 104 cm-1 makes a promising candidate for absorber layer in thin film solar cells. So far many physical and chemical techniques have been employed for deposition of CZTS thin films. This review focuses on various vapour phase techniques used for fabrication of films, recent advances in these techniques and their future outlook.

  1. Cubic to tetragonal phase transition of Tm{sup 3+} doped nanocrystals in oxyfluoride glass ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yiming; Fu, Yuting; Shi, Yahui

    2016-02-15

    Tm{sup 3+} ions doped β-PbF{sub 2} nanocrystals in oxyfluoride glass ceramics with different doping concentrations and thermal temperatures are prepared by a traditional melt-quenching and thermal treatment method to investigate the structure and the phase transition of Tm{sup 3+} doped nanocrystals. The structures are characterized by X-ray diffraction Rietveld analysis and confirmed with numerical simulation. The phase transitions are proved further by the emission spectra. Both of the doping concentration and thermal temperature can induce an O{sub h} to D{sub 4h} site symmetry distortion and a cubic to tetragonal phase transition. The luminescence of Tm{sup 3+} doped nanocrystals at 800more » nm was modulated by the phase transition of the surrounding crystal field.« less

  2. Synthesis and characterization of single-phase Mn-doped ZnO

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, S.; Dutta, S.; Banerjee, A.; Jana, D.; Bandyopadhyay, S.; Chattopadhyay, S.; Sarkar, A.

    2009-05-01

    Different samples of Zn 1-xMn xO series have been prepared using conventional solid-state sintering method. We identified up to what extent doping will enable us to synthesize single-phase polycrystalline Mn-doped ZnO sample, which is one of the prerequisites for dilute magnetic semiconductor, and we have analyzed its some other physical aspects. In synthesizing the samples, proportion of Mn varies from 1 to 5 at%. However, the milling time varied (6, 12, 24, 48 and 96 h) only for 2 at% Mn-doped samples while for other samples (1, 3, 4 and 5 at% Mn doped) the milling time has been fixed to 96 h. Room-temperature X-ray diffraction (XRD) data reveal that all of the prepared samples up to 3 at% of Mn doping exhibit wurtzite-type structure, and no segregation of Mn and/or its oxides has been found. The 4 at% Mn-doped samples show a weak peak of ZnMn 2O 4 apart from the other usual peaks of ZnO and the intensity of this impurity peak has been further increased for 5 at% of Mn doping. So beyond 3 at% doping, single-phase behavior is destroyed. Band gap for all the 2 at% Mn-doped samples has been estimated to be between 3.21 and 3.19 eV and the reason for this low band gap values has been explained through the grain boundary trapping model. The room-temperature resistivity measurement shows an increase of resistivity up to 48 h of milling and with further milling it saturates. The defect state of these samples has been investigated using the positron annihilation lifetime (PAL) spectroscopy technique. Here all the relevant lifetime parameters of positron i.e. free annihilation ( τ1) at defect site ( τ2) and average ( τav) increases with milling time.

  3. Gradual tilting of crystallographic orientation and configuration of dislocations in GaN selectively grown by vapour phase epitaxy methods

    PubMed

    Kuwan; Tsukamoto; Taki; Horibuchi; Oki; Kawaguchi; Shibata; Sawaki; Hiramatsu

    2000-01-01

    Cross-sectional transmission electron microscope (TEM) observation was performed for selectively grown gallium nitride (GaN) in order to examine the dependence of GaN microstructure on the growth conditions. The GaN films were grown by hydride vapour phase epitaxy (HVPE) or metalorganic vapour phase epitaxy (MOVPE) on GaN covered with a patterned mask. Thin foil specimens for TEM observation were prepared with focused ion beam (FIB) machining apparatus. It was demonstrated that the c-axis of GaN grown over the terrace of the mask tilts towards the centre of the terrace when the GaN is grown in a carrier gas of N2. The wider terrace results in a larger tilting angle if other growth conditions are identical. The tilting is attributed to 'horizontal dislocations' (HDs) generated during the overgrowth of GaN on the mask terrace. The HDs in HVPE-GaN have a semi-loop shape and are tangled with one another, while those in MOVPE-GaN are straight and lined up to form low-angle grain boundaries.

  4. Deliberate and Accidental Gas-Phase Alkali Doping of Chalcogenide Semiconductors: Cu(In,Ga)Se2

    PubMed Central

    Colombara, Diego; Berner, Ulrich; Ciccioli, Andrea; Malaquias, João C.; Bertram, Tobias; Crossay, Alexandre; Schöneich, Michael; Meadows, Helene J.; Regesch, David; Delsante, Simona; Gigli, Guido; Valle, Nathalie; Guillot, Jérome; El Adib, Brahime; Grysan, Patrick; Dale, Phillip J.

    2017-01-01

    Alkali metal doping is essential to achieve highly efficient energy conversion in Cu(In,Ga)Se2 (CIGSe) solar cells. Doping is normally achieved through solid state reactions, but recent observations of gas-phase alkali transport in the kesterite sulfide (Cu2ZnSnS4) system (re)open the way to a novel gas-phase doping strategy. However, the current understanding of gas-phase alkali transport is very limited. This work (i) shows that CIGSe device efficiency can be improved from 2% to 8% by gas-phase sodium incorporation alone, (ii) identifies the most likely routes for gas-phase alkali transport based on mass spectrometric studies, (iii) provides thermochemical computations to rationalize the observations and (iv) critically discusses the subject literature with the aim to better understand the chemical basis of the phenomenon. These results suggest that accidental alkali metal doping occurs all the time, that a controlled vapor pressure of alkali metal could be applied during growth to dope the semiconductor, and that it may have to be accounted for during the currently used solid state doping routes. It is concluded that alkali gas-phase transport occurs through a plurality of routes and cannot be attributed to one single source. PMID:28233864

  5. Deliberate and Accidental Gas-Phase Alkali Doping of Chalcogenide Semiconductors: Cu(In,Ga)Se2.

    PubMed

    Colombara, Diego; Berner, Ulrich; Ciccioli, Andrea; Malaquias, João C; Bertram, Tobias; Crossay, Alexandre; Schöneich, Michael; Meadows, Helene J; Regesch, David; Delsante, Simona; Gigli, Guido; Valle, Nathalie; Guillot, Jérome; El Adib, Brahime; Grysan, Patrick; Dale, Phillip J

    2017-02-24

    Alkali metal doping is essential to achieve highly efficient energy conversion in Cu(In,Ga)Se 2 (CIGSe) solar cells. Doping is normally achieved through solid state reactions, but recent observations of gas-phase alkali transport in the kesterite sulfide (Cu 2 ZnSnS 4 ) system (re)open the way to a novel gas-phase doping strategy. However, the current understanding of gas-phase alkali transport is very limited. This work (i) shows that CIGSe device efficiency can be improved from 2% to 8% by gas-phase sodium incorporation alone, (ii) identifies the most likely routes for gas-phase alkali transport based on mass spectrometric studies, (iii) provides thermochemical computations to rationalize the observations and (iv) critically discusses the subject literature with the aim to better understand the chemical basis of the phenomenon. These results suggest that accidental alkali metal doping occurs all the time, that a controlled vapor pressure of alkali metal could be applied during growth to dope the semiconductor, and that it may have to be accounted for during the currently used solid state doping routes. It is concluded that alkali gas-phase transport occurs through a plurality of routes and cannot be attributed to one single source.

  6. Phase transformation and magnetic properties of MnAl powders prepared by elemental-doping and salt-assisted ball milling

    NASA Astrophysics Data System (ADS)

    Qian, Hui-Dong; Si, Ping-Zhan; Choi, Chul-Jin; Park, Jihoon; Cho, Kyung Mox

    2018-05-01

    The effects of elemental doping of Si and Fe on the ɛ→τ phase transformation and the magnetic properties of MnAl were studied. The magnetic powders of Si- and Fe-doped MnAl were prepared by using induction melting followed by water-quenching, annealing, and salt-assisted ball-milling. The Fe-doped MnAl powders are mainly composed of the L10-structured τ-phase, while the Si-doped MnAl are composed of τ-phase and a small fraction of γ2- and β-phases. A unique thin leaves-like morphology with thickness of several tens of nanometers and diameter size up to 500 nm were observed in the Si-doped MnAl powders. The Fe-doped MnAl powders show irregular shape with much larger dimensions in the range from several to 10 μm. The morphology difference of the samples was ascribed to the variation of the mechanical properties affected by different doping elements. The phase transformation temperatures of the ɛ-phase of the samples were measured. The doping of Fe decreases the onset temperature of the massive phase transformation in MnAl, while the Si-doping increases the massive phase transformation temperature. Both Fe and Si increase the Curie temperature of MnAl. A substantially enhanced coercivity up to 0.45 T and 0.42 T were observed in the ball-milled MnAl powders doped with Si and Fe, respectively.

  7. Dark current reduction of Ge photodetector by GeO₂ surface passivation and gas-phase doping.

    PubMed

    Takenaka, Mitsuru; Morii, Kiyohito; Sugiyama, Masakazu; Nakano, Yoshiaki; Takagi, Shinichi

    2012-04-09

    We have investigated the dark current of a germanium (Ge) photodetector (PD) with a GeO₂ surface passivation layer and a gas-phase-doped n+/p junction. The gas-phase-doped PN diodes exhibited a dark current of approximately two orders of magnitude lower than that of the diodes formed by a conventional ion implantation process, indicating that gas-phase doping is suitable for low-damage PN junction formation. The bulk leakage (Jbulk) and surface leakage (Jsurf) components of the dark current were also investigated. We have found that GeO₂ surface passivation can effectively suppress the dark current of a Ge PD in conjunction with gas-phase doping, and we have obtained extremely low values of Jbulk of 0.032 mA/cm² and Jsurf of 0.27 μA/cm.

  8. Phase Constitution in Sr and Mg doped LaGaO3 System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, F; Bordia, Rajendra K.; Pederson, Larry R.

    Sr and Mg doped lanthanum gallate perovskites (La1-xSrxGa1-yMgyO3-delta, shortened as LSGM-XY where X and Y are the doping levels in mole percentage (mol%) at the La- or A-site and the Ga- or B-site, respectively) are promising electrolyte materials for intermediate temperature solid oxide fuel cells (SOFCs). In this study, we have investigated the primary perovskites as well as the secondary phases formed in terms of doping content changes and A/B ratio variations in these materials. Fifteen powder compositions (three doping levels, X = Y = 0, 0.1, and 0.2 mol; and five A/B ratios 0.95, 0.98, 1.00, 1.02, and 1.05)more » were synthesized by the glycine-nitrate combustion process (GNP). These powders were equilibrated by calcining at 1500 degreesC for 9 h prior to crystalline phase characterization by X-ray powder diffraction (XRD). From the results of this study and the available phase diagrams in the literature on constituent binary oxide systems, we propose a crystalline phase diagram of the La2O3-SrO-Ga2O3-MgO quaternary system at elevated temperature (1500 degreesC). (C) 2003 Elsevier Ltd. All rights reserved« less

  9. Simultaneous thermal stability and phase change speed improvement of Sn15Sb85 thin film through erbium doping

    NASA Astrophysics Data System (ADS)

    Zou, Hua; Zhu, Xiaoqin; Hu, Yifeng; Sui, Yongxing; Sun, Yuemei; Zhang, Jianhao; Zheng, Long; Song, Zhitang

    2016-12-01

    In general, there is a trade off between the phase change speed and thermal stability in chalcogenide phase change materials, which leads to sacrifice the one in order to ensure the other. For improving the performance, doping is a widely applied technological process. Here, we fabricated Er doped Sn15Sb85 thin films by magnetron sputtering. Compared with the pure Sn15Sb85, we show that Er doped Sn15Sb85 thin films exhibit simultaneous improvement over the thermal stability and the phase change speed. Thus, our results suggest that Er doping provides the opportunity to solve the contradiction. The main reason for improvement of both thermal stability and crystallization speed is due to the existence of Er-Sb and Er-Sn bonds in Er doped Sn15Sb85 films. Hence, Er doped Sn15Sb85 thin films are promising candidates for the phase change memory application, and this method could be extended to other lanthanide-doped phase change materials.

  10. THE INTERACTION OF VAPOUR PHASE ORGANIC COMPOUNDS WITH INDOOR SINKS

    EPA Science Inventory

    The interaction of indoor air pollutants with interior surfaces (i.e., sinks) is a well known, but poorly understood, phenomenon. Studies have shown that re-emissions of adsorbed organic vapours can contribute to elevated concentrations of organics in indoor environments. Researc...

  11. Vapour loss (``boiling'') as a mechanism for fluid evolution in metamorphic rocks

    NASA Astrophysics Data System (ADS)

    Trommsdorff, Volkmar; Skippen, George

    1986-11-01

    The calculation of fluid evolution paths during reaction progress is considered for multicomponent systems and the results applied to the ternary system, CO2-H2O-NaCl. Fluid evolution paths are considered for systems in which a CO2-rich phase of lesser density (vapour) is preferentially removed from the system leaving behind a saline aqueous phase (liquid). Such “boiling” leads to enrichment of the residual aqueous phase in dissolved components and, for certain reaction stoichiometries, to eventual saturation of the fluids in salt components. Distinctive textures, particularly radiating growths of prismatic minerals such as tremolite or diopside, are associated with saline fluid inclusions and solid syngenetic salt inclusions at a number of field localities. The most thoroughly studied of these localities is Campolungo, Switzerland, where metasomatic rocks have developed in association with fractures and veins at 500° C and 2,000 bars of pressure. The petrography of these rocks suggests that fluid phase separation into liquid and vapour has been an important process during metasomatism. Fracture systems with fluids at pressure less than lithostatic may facilitate the loss of the less dense vapour phase to conditions of the amphibolite facies.

  12. Vapour-phase method in the synthesis of polymer-ibuprofen sodium-silica gel composites.

    PubMed

    Kierys, Agnieszka; Krasucka, Patrycja; Grochowicz, Marta

    2017-11-01

    The study discusses the synthesis of polymer-silica composites comprising water soluble drug (ibuprofen sodium, IBS). The polymers selected for this study were poly(TRIM) and poly(HEMA- co -TRIM) produced in the form of permanently porous beads via the suspension-emulsion polymerization method. The acid and base set ternary composites were prepared by the saturation of the solid dispersions of drug (poly(TRIM)-IBS and/or poly(HEMA- co -TRIM)-IBS) with TEOS, and followed by their exposition to the vapour mixture of water and ammonia, or water and hydrochloric acid, at autogenous pressure. The conducted analyses reveal that the internal structure and total porosity of the resulting composites strongly depend on the catalyst which was used for silica precursor gelation. The parameters characterizing the porosity of both of the acid set composites are much lower than the parameters of the base set composites. Moreover, the basic catalyst supplied in the vapour phase does not affect the ibuprofen sodium molecules, whereas the acid one causes transformation of the ibuprofen sodium into the sodium chloride and a derivative of propanoic acid, which is poorly water soluble. The release profiles of ibuprofen sodium from composites demonstrate that there are differences in the rate and efficiency of drug desorption from them. They are mainly affected by the chemical character of the polymeric carrier but are also associated with the restricted swelling of the composites in the buffer solution after precipitation of silica gel.

  13. Phase stability and processing of strontium and magnesium doped lanthanum gallate

    NASA Astrophysics Data System (ADS)

    Zheng, Feng

    Fuel Cells are one of the most promising energy transformers with respect to ecological and environmental issues. Solid Oxide Fuel Cells (SOFC) are all solid-state devices. One of the challenges to improve a SOFC is to lower the operating temperature while maintaining or increasing its output voltage. Undoped LaGaO3 is an insulator, doping transforms it into an oxygen-ionic conductor. Sr and Mg doped LaGaO3 (LSGM) perovskite is a new oxygen-ionic conductor with higher conductivity than yttria-stabilized zirconia (YSZ). This material is a candidate for a wide variety of electrochemical devices. In order to realize this potential, the phase stability and processing of this material needs to be investigated in detail. In this study, a systematic investigation of the LSGM materials in terms of phase stability, phase transition, sintering, microstructure and electrical conductivity as functions of temperature, doping content and A/B cation ratio has been carried out. The generalized formula of the materials investigated is (La1--xSrx)A(Ga1--yMg y)BO3--delta. Optimized processing parameters have been obtained by investigating their impact on density change and microstructure. Consequently, a suitable compositional window of the LSGM perovskite has been identified for SOFC electrolyte applications. Based on detailed diffraction analysis, it is found that the undoped LaGaO3 takes on the orthorhombic (Pbnm) symmetry at room temperature. This structure changes to rhombohedral (R3c) at 147 +/- 2°C or changes to monoclinic (I2/a) when the doping level increases from 0.1 to 0.2 moles. We have optimized the compositional window to make the single perovskite phase with high oxygen ionic conductivity (x = 0.10 to 0.20 with A/B ratio between 0.98 to 1.02). The best processing condition, starting from glycine nitrate process (GNP) combustion synthesized ultra-fine LSGM powder, is sintering in air at 1500°C for 2 hours. The doped material has higher oxygen ionic conductivity than

  14. Extremely fast and highly selective detection of nitroaromatic explosive vapours using fluorescent polymer thin films.

    PubMed

    Demirel, Gokcen Birlik; Daglar, Bihter; Bayindir, Mehmet

    2013-07-14

    A novel sensing material based on pyrene doped polyethersulfone worm-like structured thin film is developed using a facile technique for detection of nitroaromatic explosive vapours. The formation of π-π stacking in the thin fluorescent film allows a highly sensitive fluorescence quenching which is detectable by the naked eye in a response time of a few seconds.

  15. Carbon-doped Ge2Sb2Te5 phase change material: A candidate for high-density phase change memory application

    NASA Astrophysics Data System (ADS)

    Zhou, Xilin; Wu, Liangcai; Song, Zhitang; Rao, Feng; Zhu, Min; Peng, Cheng; Yao, Dongning; Song, Sannian; Liu, Bo; Feng, Songlin

    2012-10-01

    Carbon-doped Ge2Sb2Te5 material is proposed for high-density phase-change memories. The carbon doping effects on electrical and structural properties of Ge2Sb2Te5 are studied by in situ resistance and x-ray diffraction measurements as well as optical spectroscopy. C atoms are found to significantly enhance the thermal stability of amorphous Ge2Sb2Te5 by increasing the degree of disorder of the amorphous phase. The reversible electrical switching capability of the phase-change memory cells is improved in terms of power consumption with carbon addition. The endurance of ˜2.1 × 104 cycles suggests that C-doped Ge2Sb2Te5 film will be a potential phase-change material for high-density storage application.

  16. Phase Transformation and Lattice Parameter Changes of Non-trivalent Rare Earth-Doped YSZ as a Function of Temperature

    NASA Astrophysics Data System (ADS)

    Jiang, Shengli; Huang, Xiao; He, Zhang; Buyers, Andrew

    2018-01-01

    To examine the effect of doping/co-doping on high-temperature phase compositions of YSZ, stand-alone YSZ and CeO2 and Nb2O5 co-doped YSZ samples were prepared using mechanical alloy and high-temperature sintering. XRD analysis was performed on these samples from room temperature to 1100 °C. The results show that the structure for the co-doped samples tends to be thermally stable when the test temperature is higher than a critical value. Monoclinic phase was dominant in Nb2O5 co-doped YSZ at temperatures lower than 600 °C, while for the YSZ and CeO2 co-doped YSZ, cubic/tetragonal phase was dominant in the whole test temperature range. The lattice parameters for all the samples increase with increasing test temperature generally. The lattice parameters for the two non-trivalent rare earth oxides co-doped YSZ show that the lattice parameter a for the cubic phase of the Ce4+ co-doped YSZ is consistently greater than that of 7YSZ which is related to the presence of larger radius of Ce4+ in the matrix. The lattice parameters a, b, c for the monoclinic phase of Ce4+ co-doped YSZ are much closer to each other than that of the Nb5+ co-doped YSZ, indicating the former has better tendency to form cubic/tetragonal phase, which is desired for vast engineering applications.

  17. Phase Transformation and Lattice Parameter Changes of Non-trivalent Rare Earth-Doped YSZ as a Function of Temperature

    NASA Astrophysics Data System (ADS)

    Jiang, Shengli; Huang, Xiao; He, Zhang; Buyers, Andrew

    2018-05-01

    To examine the effect of doping/co-doping on high-temperature phase compositions of YSZ, stand-alone YSZ and CeO2 and Nb2O5 co-doped YSZ samples were prepared using mechanical alloy and high-temperature sintering. XRD analysis was performed on these samples from room temperature to 1100 °C. The results show that the structure for the co-doped samples tends to be thermally stable when the test temperature is higher than a critical value. Monoclinic phase was dominant in Nb2O5 co-doped YSZ at temperatures lower than 600 °C, while for the YSZ and CeO2 co-doped YSZ, cubic/tetragonal phase was dominant in the whole test temperature range. The lattice parameters for all the samples increase with increasing test temperature generally. The lattice parameters for the two non-trivalent rare earth oxides co-doped YSZ show that the lattice parameter a for the cubic phase of the Ce4+ co-doped YSZ is consistently greater than that of 7YSZ which is related to the presence of larger radius of Ce4+ in the matrix. The lattice parameters a, b, c for the monoclinic phase of Ce4+ co-doped YSZ are much closer to each other than that of the Nb5+ co-doped YSZ, indicating the former has better tendency to form cubic/tetragonal phase, which is desired for vast engineering applications.

  18. Physical properties of antiferromagnetic Mn doped ZnO samples: Role of impurity phase

    NASA Astrophysics Data System (ADS)

    Neogi, S. K.; Karmakar, R.; Misra, A. K.; Banerjee, A.; Das, D.; Bandyopadhyay, S.

    2013-11-01

    Structural, morphological, optical, and magnetic properties of nanocrystalline Zn1-xMnxO samples (x=0.01, 0.02, 0.04, 0.06, 0.08 and 0.10) prepared by the sol-gel route are studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM), UV-visible absorption spectroscopy, Superconducting quantum interference device (SQUID) magnetometry and positron annihilation lifetime spectroscopy (PALS). XRD confirms formation of wurzite structure in all the Mn-substituted samples. A systematic increase in lattice constants and decrease in grain size have been observed with increase in manganese doping concentration up to 6 at% in the ZnO structure. An impurity phase (ZnMnO3) has been detected when percentage of Mn concentration is 6 at% or higher. The optical band gap of the Mn-substituted ZnO samples decrease with increase in doping concentration of manganese whereas the width of the localized states increases. The antiferromagnetic exchange interaction is strong in the samples for 2 and 4 at% of Mn doping but it reduces when the doping level increases from 6 at% and further. Positron life time components τ1 and τ2 are found to decrease when concentration of the dopant exceeds 6 at%. The changes in magnetic properties as well as positron annihilation parameters at higher manganese concentration have been assigned as due to the formation of impurity phase. Single phase structure has been observed up to 6 at% of Mn doping. Impurity phase has been developed above 6 at% of Mn doping. Antiferromagnetic and paramagnetic interactions are present in the samples. Defect parameters show sharp fall as Mn concentration above 6 at%. The magnetic and defect properties are modified by the formation of impurity phase.

  19. Effect of V-Nd co-doping on phase transformation and grain growth process of TiO2

    NASA Astrophysics Data System (ADS)

    Khatun, Nasima; Amin, Ruhul; Anita, Sen, Somaditya

    2018-05-01

    The pure and V-Nd co-doped TiO2 samples are prepared by the modified sol-gel process. The phase formation is confirmed by XRD spectrum. Phase transformation is delayed in V-Nd co-doped TiO2 (TVN) samples compared to pure TiO2. The particle size is comparatively small in TVN samples at both the temperature 450 °C and 900 °C. Hence the effect of Nd doping is dominated over V doping in both phase transformation and grain growth process of TiO2.

  20. Bismuth doping strategies in GeTe nanowires to promote high-temperature phase transition from rhombohedral to face-centered cubic structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jie; Huang, Rong; Wei, Fenfen

    2014-11-17

    The phase transition of Bi-doped (∼3 at. %) GeTe nanowires from a rhombohedral (R) to a face-centered cubic (C) structure was observed in in situ high-temperature X-ray diffraction. The promotion of high-temperature R-C phase transition by a doping approach was revealed. Ab initio energy calculations of doped GeTe at various Bi doping concentrations were performed to interpret the promoted temperature-induced phase transitions. Those results indicated that the total energy differences between R and C structures of doped GeTe decreased as Bi doping concentrations increased, which facilitated R-C phase transitions.

  1. Phase transition in lithium ammonium sulphate doped with cesium metal ions

    NASA Astrophysics Data System (ADS)

    Gaafar, M.; Kassem, M. E.; Kandil, S. H.

    2000-07-01

    Effects of doped cesium (C s+) metal ions (with different molar ratios n) on the phase transition of lithium ammonium sulphate LiNH 4SO 4 system have been studied by measuring the specific heat Cp( T) of the doped systems in the temperature range from 400 to 480 K. The study shows a peculiar phase transition of the pure system ( n=0) characterized by double distinct peaks, changed to a single sharp and narrow one as a result of the doping process. The measurements exhibit different effects of enhanced molar ratios of dopants on the phase transition behaviour of this system. At low dopant content ( n≤3%), the excess specific heat (Δ Cp) max at the transition temperature T1 decreases till a minimum value at n=0.8%, then it increases gradually. In this case, Δ Cp( T) behaviour is varied quantitatively and not modified. Enhanced dopant content ( n>3%) has a pronounced effect on the critical behaviour, which is significantly changed and considerably modified relative to the pure system. In addition, broadening of the critical temperature region, and decrease of (Δ Cp) max associated with changes of the Landau expansion coefficients are obtained and discussed. The study deals with the contribution of the thermally excited dipoles to the specific heat in the ferroelectric region and shows that their energy depends on doping.

  2. Temperature tuning of lasing emission from dye-doped liquid crystal at intermediate twisted phase

    NASA Astrophysics Data System (ADS)

    Liao, Kuan-Cheng; Lin, Ja-Hon; Jian, Li-Hao; Chen, Yao-Hui; Wu, Jin-Jei

    2015-07-01

    Temperature tuning of lasing emission from dye-doped cholesteric liquid crystal (CLC) at intermediate twisted phase has been demonstrated in this work. With heavily doping of 42.5% chiral molecules into the nematic liquid crystals, the shifts of photonic bandgap versus temperature is obviously as thermal controlling of the sample below the certain value. By the differential scanning calorimetr measuremet, we demonstrate the phase transition from the CLC to the smectic phase when the temperature is lowered to be about 15°C. Between CLC and smectic phase, the liquid crystal mixtures are operated at intermediate twisted phase that can be used the temperature related refractive mirror. After pump by the Q-switched Nd:YAG laser, the lasing emission from this dye doped LC mixtures has been demonstrated whose emission wavelength can be tuned from 566 to 637 nm with 1.4°C variation.

  3. High pressure spectroscopic studies of phase transition in VO2

    NASA Astrophysics Data System (ADS)

    Basu, Raktima; Mishra, K. K.; Ravindran, T. R.; Dhara, Sandip

    2018-04-01

    Vanadium dioxide (VO2) exhibits a reversible first-order metal to insulator transition (MIT) at a technologically important temperature of 340K. A structural phase transition (SPT) from monoclinic M1 to rutile tetragonal R is also reported via another two intermediate phases of monoclinic M2 and triclinic T. Metastable monoclinic M2 phase of VO2 was synthesized by Mg doping in the vapour transport process. Raman spectroscopic measurements were carried out at high pressure on V1-xMgxO2 microrods. Two reversible structural phase transitions from monoclinic M2 to triclinic T at 1.6 GPa and T to monoclinic M1 at 3.2 GPa are observed and are explained by structural relaxation of the strained phases.

  4. Electron doped layered nickelates: Spanning the phase diagram of the cuprates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botana, Antia S.; Pardo, Victor; Norman, Michael R.

    2017-07-01

    Pr4Ni3O8 is an overdoped analog of hole-doped layered cuprates. Here we show via ab initio calculations that Ce-doped Pr4Ni3O8 (Pr3CeNi3O8) has the same electronic structure as the antiferromagnetic insulating phase of parent cuprates.We find that substantial Ce doping should be thermodynamically stable and that other 4+ cations would yield a similar antiferromagnetic insulating state, arguing this configuration is robust for layered nickelates of low-enough valence. The analogies with cuprates at different d fillings suggest that intermediate Ce-doping concentrations near 1/8 should be an appropriate place to search for superconductivity in these low-valence Ni oxides.

  5. Anomalous correlation effects and unique phase diagram of electron-doped FeSe revealed by photoemission spectroscopy

    PubMed Central

    Wen, C. H. P.; Xu, H. C.; Chen, C.; Huang, Z. C.; Lou, X.; Pu, Y. J.; Song, Q.; Xie, B. P.; Abdel-Hafiez, Mahmoud; Chareev, D. A.; Vasiliev, A. N.; Peng, R.; Feng, D. L.

    2016-01-01

    FeSe layer-based superconductors exhibit exotic and distinctive properties. The undoped FeSe shows nematicity and superconductivity, while the heavily electron-doped KxFe2−ySe2 and single-layer FeSe/SrTiO3 possess high superconducting transition temperatures that pose theoretical challenges. However, a comprehensive study on the doping dependence of an FeSe layer-based superconductor is still lacking due to the lack of a clean means of doping control. Through angle-resolved photoemission spectroscopy studies on K-dosed thick FeSe films and FeSe0.93S0.07 bulk crystals, here we reveal the internal connections between these two types of FeSe-based superconductors, and obtain superconductivity below ∼46 K in an FeSe layer under electron doping without interfacial effects. Moreover, we discover an exotic phase diagram of FeSe with electron doping, including a nematic phase, a superconducting dome, a correlation-driven insulating phase and a metallic phase. Such an anomalous phase diagram unveils the remarkable complexity, and highlights the importance of correlations in FeSe layer-based superconductors. PMID:26952215

  6. Comprehensive phase diagram of two-dimensional space charge doped Bi2Sr2CaCu2O8+x.

    PubMed

    Sterpetti, Edoardo; Biscaras, Johan; Erb, Andreas; Shukla, Abhay

    2017-12-12

    The phase diagram of hole-doped high critical temperature superconductors as a function of doping and temperature has been intensively studied with chemical variation of doping. Chemical doping can provoke structural changes and disorder, masking intrinsic effects. Alternatively, a field-effect transistor geometry with an electrostatically doped, ultra-thin sample can be used. However, to probe the phase diagram, carrier density modulation beyond 10 14  cm -2 and transport measurements performed over a large temperature range are needed. Here we use the space charge doping method to measure transport characteristics from 330 K to low temperature. We extract parameters and characteristic temperatures over a large doping range and establish a comprehensive phase diagram for one-unit-cell-thick BSCCO-2212 as a function of doping, temperature and disorder.

  7. Phase formation and UV luminescence of Gd3+ doped perovskite-type YScO3

    NASA Astrophysics Data System (ADS)

    Shimizu, Yuhei; Ueda, Kazushige

    2016-10-01

    Synthesis of pure and Gd3+doped perovskite-type YScO3 was attempted by a polymerized complex (PC) method and solid state reaction (SSR) method. Crystalline phases and UV luminescence of samples were examined with varying heating temperatures. The perovskite-type single phase was not simply formed in the SSR method, as reported in some literatures, and two cubic C-type phases of starting oxide materials remained forming slightly mixed solid solutions. UV luminescence of Gd3+ doped samples increased with an increase in heating temperatures and volume of the perovskite-type phase. In contrast, a non-crystalline precursor was crystallized to a single C-type phase at 800 °C in the PC method forming a completely mixed solid solution. Then, the phase of perovskite-type YScO3 formed at 1200 °C and its single phase was obtained at 1400 °C. It was revealed that high homogeneousness of cations was essential to generate the single perovskite-phase of YScO3. Because Gd3+ ions were also dissolved into the single C-type phase in Gd3+ doped samples, intense UV luminescence was observed above 800 °C in both C-type phase and perovskite-type phase.

  8. Water vapour tomography using GPS phase observations: Results from the ESCOMPTE experiment

    NASA Astrophysics Data System (ADS)

    Nilsson, T.; Gradinarsky, L.; Elgered, G.

    2007-10-01

    Global Positioning System (GPS) tomography is a technique for estimating the 3-D structure of the atmospheric water vapour using data from a dense local network of GPS receivers. Several current methods utilize estimates of slant wet delays between the GPS satellites and the receivers on the ground, which are difficult to obtain with millimetre accuracy from the GPS observations. We present results of applying a new tomographic method to GPS data from the Expériance sur site pour contraindre les modèles de pollution atmosphérique et de transport d'emissions (ESCOMPTE) experiment in southern France. This method does not rely on any slant wet delay estimates, instead it uses the GPS phase observations directly. We show that the estimated wet refractivity profiles estimated by this method is on the same accuracy level or better compared to other tomographic methods. The results are in agreement with earlier simulations, for example the profile information is limited above 4 km.

  9. Amplitude and phase modulation in microwave ring resonators by doped CVD graphene.

    PubMed

    Grande, M; Bianco, G V; Capezzuto, P; Petruzzelli, V; Prudenzano, F; Scalora, M; Bruno, G; D'Orazio, A

    2018-08-10

    In this paper, we numerically and experimentally demonstrate how to modulate the amplitude and phase of a microwave ring resonator by means of few-layers chemical vapour deposition graphene. In particular, both numerical and experimental results show a modulation of about 10 dB and a 90 degrees-shift (quadrature phase shift) when the graphene sheet-resistance is varied. These findings prove once again that graphene could be efficiently exploited for the dynamically tuning and modulation of microwave devices fostering the realization of (i) innovative beam-steering and beam-forming systems and (ii) graphene-based sensors.

  10. Solid-state reaction synthesis for mixed-phase Eu3+-doped bismuth molybdate and its luminescence properties

    NASA Astrophysics Data System (ADS)

    Liang, Danyang; Ding, Yu; Wang, Nan; Cai, Xiaomeng; Li, Jia; Han, Linyu; Wang, Shiqi; Han, Yuanyuan; Jia, Guang; Wang, Liyong

    2017-09-01

    A method for mixed-phase bismuth molybdate doped with Eu3+ ions was developed by solid-state reaction assisting with polyvinyl alcohol (PVA). The results of powder X-ray diffraction showed a mixed-phase structure and the microscopical characterization technology revealed the formation process with the addition of PVA. As a structure inducer, the PVA molecules played a vital role in the formation of phase structure. The as-obtained Eu3+-doped bismuth molybdates were also characterized by using different spectroscopic techniques including FTIR and photoluminescence (PL). The results show that doping concentration, PVA addition and calcination temperature affect photoluminescence properties remarkably.

  11. Phase constitution in Sr and Mg doped LaGaO{sub 3} system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Feng; Bordia, Rajendra K.; Pederson, Larry R

    2004-01-03

    Sr and Mg doped lanthanum gallate perovskites (La{sub 1-x}Sr{sub x}Ga{sub 1-y}Mg{sub y}O{sub 3-{delta}}, shortened as LSGM-XY where X and Y are the doping levels in mole percentage (mol%) at the La- or A-site and the Ga- or B-site, respectively) are promising electrolyte materials for intermediate temperature solid oxide fuel cells (SOFCs). In this study, we have investigated the primary perovskites as well as the secondary phases formed in terms of doping content changes and A/B ratio variations in these materials. Fifteen powder compositions (three doping levels, X=Y=0, 0.1, and 0.2 mol; and five A/B ratios 0.95, 0.98, 1.00, 1.02, andmore » 1.05) were synthesized by the glycine-nitrate combustion process (GNP). These powders were equilibrated by calcining at 1500 deg. C for 9 h prior to crystalline phase characterization by X-ray powder diffraction (XRD). From the results of this study and the available phase diagrams in the literature on constituent binary oxide systems, we propose a crystalline phase diagram of the La{sub 2}O{sub 3}-SrO-Ga{sub 2}O{sub 3}-MgO quaternary system at elevated temperature (1500 deg. C)« less

  12. Mechanism of two-step vapour-crystal nucleation in a pore

    NASA Astrophysics Data System (ADS)

    van Meel, J. A.; Liu, Y.; Frenkel, D.

    2015-09-01

    We present a numerical study of the effect of hemispherical pores on the nucleation of Lennard-Jones crystals from the vapour phase. As predicted by Page and Sear, there is a narrow range of pore radii, where vapour-liquid nucleation can become a two-step process. A similar observation was made for different pore geometries by Giacomello et al. We find that the maximum nucleation rate depends on both the size and the adsorption strength of the pore. Moreover, a poe can be more effective than a planar wall with the same strength of attraction. Pore-induced vapour-liquid nucleation turns out to be the rate-limiting step for crystal nucleation. This implies that crystal nucleation can be enhanced by a judicious choice of the wetting properties of a microporous nucleating agent.

  13. Growth of nitrogen-doped graphene on copper: Multiscale simulations

    NASA Astrophysics Data System (ADS)

    Gaillard, P.; Schoenhalz, A. L.; Moskovkin, P.; Lucas, S.; Henrard, L.

    2016-02-01

    We used multiscale simulations to model the growth of nitrogen-doped graphene on a copper substrate by chemical vapour deposition (CVD). Our simulations are based on ab-initio calculations of energy barriers for surface diffusion, which are complemented by larger scale Kinetic Monte Carlo (KMC) simulations. Our results indicate that the shape of grown doped graphene flakes depends on the temperature and deposition flux they are submitted during the process, but we found no significant effect of nitrogen doping on this shape. However, we show that nitrogen atoms have a preference for pyridine-like sites compared to graphite-like sites, as observed experimentally.

  14. Ga-doped indium oxide nanowire phase change random access memory cells

    NASA Astrophysics Data System (ADS)

    Jin, Bo; Lim, Taekyung; Ju, Sanghyun; Latypov, Marat I.; Kim, Hyoung Seop; Meyyappan, M.; Lee, Jeong-Soo

    2014-02-01

    Phase change random access memory (PCRAM) devices are usually constructed using tellurium based compounds, but efforts to seek other materials providing desirable memory characteristics have continued. We have fabricated PCRAM devices using Ga-doped In2O3 nanowires with three different Ga compositions (Ga/(In+Ga) atomic ratio: 2.1%, 11.5% and 13.0%), and investigated their phase switching properties. The nanowires (˜40 nm in diameter) can be repeatedly switched between crystalline and amorphous phases, and Ga concentration-dependent memory switching behavior in the nanowires was observed with ultra-fast set/reset rates of 80 ns/20 ns, which are faster than for other competitive phase change materials. The observations of fast set/reset rates and two distinct states with a difference in resistance of two to three orders of magnitude appear promising for nonvolatile information storage. Moreover, we found that increasing the Ga concentration can reduce the power consumption and resistance drift; however, too high a level of Ga doping may cause difficulty in achieving the phase transition.

  15. Axially engineered metal-insulator phase transition by graded doping VO2 nanowires.

    PubMed

    Lee, Sangwook; Cheng, Chun; Guo, Hua; Hippalgaonkar, Kedar; Wang, Kevin; Suh, Joonki; Liu, Kai; Wu, Junqiao

    2013-03-27

    The abrupt first-order metal-insulator phase transition in single-crystal vanadium dioxide nanowires (NWs) is engineered to be a gradual transition by axially grading the doping level of tungsten. We also demonstrate the potential of these NWs for thermal sensing and actuation applications. At room temperature, the graded-doped NWs show metal phase on the tips and insulator phase near the center of the NW, and the metal phase grows progressively toward the center when the temperature rises. As such, each individual NW acts as a microthermometer that can be simply read out with an optical microscope. The NW resistance decreases gradually with the temperature rise, eventually reaching 2 orders of magnitude drop, in stark contrast to the abrupt resistance change in undoped VO2 wires. This novel phase transition yields an extremely high temperature coefficient of resistivity ~10%/K, simultaneously with a very low resistivity down to 0.001 Ω·cm, making these NWs promising infrared sensing materials for uncooled microbolometers. Lastly, they form bimorph thermal actuators that bend with an unusually high curvature, ~900 m(-1)·K(-1) over a wide temperature range (35-80 °C), significantly broadening the response temperature range of previous VO2 bimorph actuators. Given that the phase transition responds to a diverse range of stimuli-heat, electric current, strain, focused light, and electric field-the graded-doped NWs may find wide applications in thermo-opto-electro-mechanical sensing and energy conversion.

  16. Nanoscale doping of compound semiconductors by solid phase dopant diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Jaehyun, E-mail: jaehyun.ahn@utexas.edu; Koh, Donghyi; Roy, Anupam

    2016-03-21

    Achieving damage-free, uniform, abrupt, ultra-shallow junctions while simultaneously controlling the doping concentration on the nanoscale is an ongoing challenge to the scaling down of electronic device dimensions. Here, we demonstrate a simple method of effectively doping ΙΙΙ-V compound semiconductors, specifically InGaAs, by a solid phase doping source. This method is based on the in-diffusion of oxygen and/or silicon from a deposited non-stoichiometric silicon dioxide (SiO{sub x}) film on InGaAs, which then acts as donors upon activation by annealing. The dopant profile and concentration can be controlled by the deposited film thickness and thermal annealing parameters, giving active carrier concentration ofmore » 1.4 × 10{sup 18 }cm{sup −3}. Our results also indicate that conventional silicon based processes must be carefully reviewed for compound semiconductor device fabrication to prevent unintended doping.« less

  17. Unified electronic phase diagram for hole-doped high- Tc cuprates

    NASA Astrophysics Data System (ADS)

    Honma, T.; Hor, P. H.

    2008-05-01

    We have analyzed various characteristic temperatures and energies of hole-doped high- Tc cuprates as a function of a dimensionless hole-doping concentration (pu) . Entirely based on the experimental grounds, we construct a unified electronic phase diagram (UEPD), where three characteristic temperatures ( T∗ ’s) and their corresponding energies ( E∗ ’s) converge as pu increases in the underdoped regime. T∗ ’s and E∗ ’s merge together with the Tc curve and 3.5kBTc curve at pu˜1.1 in the overdoped regime, respectively. They finally go to zero at pu˜1.3 . The UEPD follows an asymmetric half-dome-shaped Tc curve, in which Tc appears at pu˜0.4 , reaches a maximum at pu˜1 , and rapidly goes to zero at pu˜1.3 . The asymmetric half-dome-shaped Tc curve is at odds with the well-known symmetric superconducting dome for La2-xSrxCuO4 (SrD-La214), in which two characteristic temperatures and energies converge as pu increases and merge together at pu˜1.6 , where Tc goes to zero. The UEPD clearly shows that pseudogap phase precedes and coexists with high temperature superconductivity in the underdoped and overdoped regimes, respectively. It is also clearly seen that the upper limit of high- Tc cuprate physics ends at a hole concentration that equals to 1.3 times the optimal doping concentration for almost all high- Tc cuprate materials and 1.6 times the optimal doping concentration for the SrD-La214. Our analysis strongly suggests that pseudogap is a precursor of high- Tc superconductivity, the observed quantum critical point inside the superconducting dome may be related to the end point of UEPD, and the normal state of the underdoped and overdoped high temperature superconductors cannot be regarded as a conventional Fermi liquid phase.

  18. The vapour of imidazolium-based ionic liquids: a mass spectrometry study.

    PubMed

    Deyko, A; Lovelock, K R J; Licence, P; Jones, R G

    2011-10-06

    Eight common dialkylimidazolium-based ionic liquids have been successfully evaporated in ultra-high vacuum and their vapours analysed by line of sight mass spectrometry using electron ionisation. The ionic liquids investigated were 1-alkyl-3-methylimidazolium bis[(trifluoromethane)sulfonyl]imide, [C(n)C(1)Im][Tf(2)N] (where n = 2, 4, 6, 8), 1-alkyl-3-methylimidazolium tetrafluoroborate, [C(n)C(1)Im][BF(4)] (where n = 4, 8), 1-butyl-3-methylimidazolium octylsulfate, [C(4)C(1)Im][C(8)OSO(3)] and 1-butyl-3-methylimidazolium tetrachloroferrate, [C(4)C(1)Im][FeCl(4)]. All ionic liquids studied here evaporated as neutral ion pairs; no evidence of decomposition products in the vapour phase were observed. Key fragment cations of the ionised vapour of the ionic liquids are identified. The appearance energies, E(app), of the parent cation were measured and used to estimate the ionisation energies, E(i), for the vapour phase neutral ion pairs. Measured ionisation energies ranged from 10.5 eV to 13.0 eV. Using both the identity and E(app) values, the fragmentation pathways for a number of fragment cations are postulated. It will be shown that the enthalpy of vaporisation, Δ(vap)H, can successfully be measured using more than one fragment cation, although caution is required as many fragment cations can also be formed by ionisation of decomposition products.

  19. Energetics of cubic and hexagonal phases in Mn-doped GaN : First-principles pseudopotential calculations

    NASA Astrophysics Data System (ADS)

    Choi, Eun-Ae; Kang, Joongoo; Chang, K. J.

    2006-12-01

    We perform first-principles pseudopotential calculations to study the influence of Mn doping on the stability of two polytypes, wurtzite and zinc-blende, in GaN . In Mn δ -doped GaN and GaMnN alloys, we find similar critical concentrations of the Mn ions for stabilizing the zinc-blende phase against the wurtzite phase. Using a slab geometry of hexagonal lattices, we find that it is energetically unfavorable to form inversion domains with Mn exposure, in contrast to Mg doping. At the initial stage of epitaxial growth, a stacking fault that leads to the cubic bonds can be generated with the Mn exposure to the Ga-polar surface. However, the influence of the Mn δ -doped layer on the formation of the cubic phase is only effective for GaN layers deposited up to two monolayers. We find that the Mn ions are energetically more stable on the growth front than in the bulk, indicating that these ions act as a surfactant. Thus it is possible to grow cubic GaN if the Mn ions are periodically supplied or diffuse out from the Mn δ -doped layer to the growth front during the growth process.

  20. Paramagnetic centers in two phases of manganese-doped lanthanum gallate

    NASA Astrophysics Data System (ADS)

    Vazhenin, V. A.; Potapov, A. P.; Guseva, V. B.; Artyomov, M. Yu.

    2009-05-01

    An EPR study of two phases of manganese-doped lanthanum gallate (with a first-order structural transition occurring at 430 K) has revealed Gd3+, Fe3+, and Mn4+ centers at room temperature and 438 K. The parameters of spin Hamiltonians are determined for the Gd3+, Fe3+, and Mn4+ rhombohedral centers in the high-temperature phase (with no other centers found here) and for the monoclinic center Gd3+ in the low-temperature phase. Both in the orthorhombic and in the rhombohedral phase, crystallographic twins (or ferroelastic domains) are observed.

  1. OM-VPE growth of Mg-doped GaAs. [OrganoMetallic-Vapor Phase Epitaxy

    NASA Technical Reports Server (NTRS)

    Lewis, C. R.; Dietze, W. T.; Ludowise, M. J.

    1982-01-01

    The epitaxial growth of Mg-doped GaAs by the organometallic vapor phase epitaxial process (OM-VPE) has been achieved for the first time. The doping is controllable over a wide range of input fluxes of bis (cyclopentadienyl) magnesium, (C5H5)2Mg, the organometallic precursor to Mg.

  2. Vapour pressure and standard enthalpy of sublimation of KBF 4 by a TG based transpiration technique

    NASA Astrophysics Data System (ADS)

    Pankajavalli, R.; Ananthasivan, K.; Anthonysamy, S.; Vasudeva Rao, P. R.

    2005-10-01

    A horizontal thermobalance was adapted as a transpiration apparatus for the measurement of the vapour pressure of KBF4 (s). Attainment of equilibrium was ascertained by the invariance of the measured values of the vapour pressures over a range of flows under isothermal conditions. Measured values of the vapour pressures could be represented by the least-squares expressions: log (p/Pa) = 8.16(±0.01) - 4892(±248)/T(K)(538-560 K), log (p/Pa) = 6.85(±0.06) - 4158(±240)/T(K) (576-660 K), which correspond to the equilibria of orthorhombic and cubic KBF4 vapours, respectively. From these expressions the temperature of transformation of the orthorhombic to the cubic phase was identified to be 561 K. From the slopes of the above equations, the enthalpies of sublimation of the orthorhombic and cubic phases were found to be (93.7 ± 4.7) and (79.6 ± 4.6) kJ mol-1, respectively. These values differ by 14.1 kJ mol-1 which could be ascribed to the enthalpy of the orthorhombic to cubic phase transition of KBF4. Third-law analysis of the vapour pressure data yielded a value of (104.6 ± 1.0) kJ mol-1 for Δ Hsubo of KBF4 (s) at 298.15 K.

  3. 3D imaging of vapour and liquid inclusions from the Mole Granite, Australia, using helical fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Cauzid, J.; Philippot, P.; Bleuet, P.; Simionovici, A.; Somogyi, A.; Golosio, B.

    2007-08-01

    World class Cu resources are concentrated in porphyry and epithermal ore deposits. Their formation remains partially understood, however, due to a lack of constraints on the partitioning properties of trace elements in general, and Cu in particular, between vapour and liquid phases evolved from boiling fluids at depth in the Earth's crust. Immiscible liquid and vapour fluid inclusions coexisting in a single quartz grain have been imaged in three dimensions by X-ray Fluorescence Computed Tomography (XFCT). Elemental spatial distributions confirm that Cu, and to a lesser extent As, partition into the vapour phase, whereas Mn, Fe, Zn, Br, Rb, Sr and Pb concentrate in the liquid inclusion. High resolution mapping of the vapour inclusions revealed that Cu is heterogeneously distributed at the scale of a single inclusion and is mostly concentrated as tiny daughter crystals.

  4. Atomic Origins of Monoclinic-Tetragonal (Rutile) Phase Transition in Doped VO2 Nanowires.

    PubMed

    Asayesh-Ardakani, Hasti; Nie, Anmin; Marley, Peter M; Zhu, Yihan; Phillips, Patrick J; Singh, Sujay; Mashayek, Farzad; Sambandamurthy, Ganapathy; Low, Ke-Bin; Klie, Robert F; Banerjee, Sarbajit; Odegard, Gregory M; Shahbazian-Yassar, Reza

    2015-11-11

    There has been long-standing interest in tuning the metal-insulator phase transition in vanadium dioxide (VO2) via the addition of chemical dopants. However, the underlying mechanisms by which doping elements regulate the phase transition in VO2 are poorly understood. Taking advantage of aberration-corrected scanning transmission electron microscopy, we reveal the atomistic origins by which tungsten (W) dopants influence the phase transition in single crystalline WxV1-xO2 nanowires. Our atomically resolved strain maps clearly show the localized strain normal to the (122̅) lattice planes of the low W-doped monoclinic structure (insulator). These strain maps demonstrate how anisotropic localized stress created by dopants in the monoclinic structure accelerates the phase transition and lead to relaxation of structure in tetragonal form. In contrast, the strain distribution in the high W-doped VO2 structure is relatively uniform as a result of transition to tetragonal (metallic) phase. The directional strain gradients are furthermore corroborated by density functional theory calculations that show the energetic consequences of distortions to the local structure. These findings pave the roadmap for lattice-stress engineering of the MIT behavior in strongly correlated materials for specific applications such as ultrafast electronic switches and electro-optical sensors.

  5. Observation of long phase-coherence length in epitaxial La-doped CdO thin films

    NASA Astrophysics Data System (ADS)

    Yun, Yu; Ma, Yang; Tao, Songsheng; Xing, Wenyu; Chen, Yangyang; Su, Tang; Yuan, Wei; Wei, Jian; Lin, Xi; Niu, Qian; Xie, X. C.; Han, Wei

    2017-12-01

    The search for long electron phase-coherence length, which is the length that an electron can keep its quantum wavelike properties, has attracted considerable interest in the last several decades. Here, we report the long phase-coherence length of ˜3.7 μm in La-doped CdO thin films at 2 K. Systematical investigations of the La doping and the temperature dependences of the electron mobility and the electron phase-coherence length reveal contrasting scattering mechanisms for these two physical properties. Furthermore, these results show that the oxygen vacancies could be the dominant scatters in CdO thin films that break the electron phase coherence, which would shed light on further investigation of phase-coherence properties in oxide materials.

  6. Single crystalline ZnO radial homojunction light-emitting diodes fabricated by metalorganic chemical vapour deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Jinkyoung; Ahmed, Towfiq; Tang, Wei

    ZnO radial p–n junction architecture has the potential for forward-leap of light-emitting diode (LED) technology in terms of higher efficacy and economical production. Here, we report on ZnO radial p–n junction-based light emitting diodes prepared by full metalorganic chemical vapour deposition (MOCVD) with hydrogen-assisted p-type doping approach. The p-type ZnO(P) thin films were prepared by MOCVD with the precursors of dimethylzinc, tert-butanol, and tertiarybutylphosphine. Controlling the precursor flow for dopant results in the systematic change of doping concentration, Hall mobility, and electrical conductivity. Moreover, the approach of hydrogen-assisted phosphorous doping in ZnO expands the understanding of doping behaviour in ZnO.more » Ultraviolet and visible electroluminescence of ZnO radial p–n junction was demonstrated through a combination of position-controlled nano/microwire and crystalline p-type ZnO(P) radial shell growth on the wires. Lastly, the reported research opens a pathway of realisation of production-compatible ZnO p–n junction LEDs.« less

  7. Single crystalline ZnO radial homojunction light-emitting diodes fabricated by metalorganic chemical vapour deposition

    DOE PAGES

    Yoo, Jinkyoung; Ahmed, Towfiq; Tang, Wei; ...

    2017-09-05

    ZnO radial p–n junction architecture has the potential for forward-leap of light-emitting diode (LED) technology in terms of higher efficacy and economical production. Here, we report on ZnO radial p–n junction-based light emitting diodes prepared by full metalorganic chemical vapour deposition (MOCVD) with hydrogen-assisted p-type doping approach. The p-type ZnO(P) thin films were prepared by MOCVD with the precursors of dimethylzinc, tert-butanol, and tertiarybutylphosphine. Controlling the precursor flow for dopant results in the systematic change of doping concentration, Hall mobility, and electrical conductivity. Moreover, the approach of hydrogen-assisted phosphorous doping in ZnO expands the understanding of doping behaviour in ZnO.more » Ultraviolet and visible electroluminescence of ZnO radial p–n junction was demonstrated through a combination of position-controlled nano/microwire and crystalline p-type ZnO(P) radial shell growth on the wires. Lastly, the reported research opens a pathway of realisation of production-compatible ZnO p–n junction LEDs.« less

  8. Sub-10-nm patterning via directed self-assembly of block copolymer films with a vapour-phase deposited topcoat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suh, Hyo Seon; Kim, Do Han; Moni, Priya

    2017-03-27

    Directed self-assembly (DSA) of the domain structure in block copolymer (BCP) thin films is a promising approach for sub-10-nm surface patterning. DSA requires the control of interfacial properties on both interfaces of a BCP film to induce the formation of domains that traverse the entire film with a perpendicular orientation. Here we show a methodology to control the interfacial properties of BCP films that uses a polymer topcoat deposited by initiated chemical vapour deposition (iCVD). The iCVD topcoat forms a crosslinked network that grafts to and immobilizes BCP chains to create an interface that is equally attractive to both blocksmore » of the underlying copolymer. The topcoat, in conjunction with a chemically patterned substrate, directs the assembly of the grating structures in BCP films with a half-pitch dimension of 9.3 nm. As the iCVD topcoat can be as thin as 7 nm, it is amenable to pattern transfer without removal. As a result, the ease of vapour-phase deposition, applicability to high-resolution BCP systems and integration with pattern-transfer schemes are attractive properties of iCVD topcoats for industrial applications.« less

  9. The frequency-dependent response of single aerosol particles to vapour phase oscillations and its application in measuring diffusion coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preston, Thomas C.; Davies, James F.; Wilson, Kevin R.

    A new method for measuring diffusion in the condensed phase of single aerosol particles is proposed and demonstrated. The technique is based on the frequency-dependent response of a binary particle to oscillations in the vapour phase of one of its chemical components. Here, we discuss how this physical situation allows for what would typically be a non-linear boundary value problem to be approximately reduced to a linear boundary value problem. For the case of aqueous aerosol particles, we investigate the accuracy of the closed-form analytical solution to this linear problem through a comparison with the numerical solution of the fullmore » problem. Then, using experimentally measured whispering gallery modes to track the frequency-dependent response of aqueous particles to relative humidity oscillations, we determine diffusion coefficients as a function of water activity. The measured diffusion coefficients are compared to previously reported values found using the two common experiments: (i) the analysis of the sorption/desorption of water from a particle after a step-wise change to the surrounding relative humidity and (ii) the isotopic exchange of water between a particle and the vapour phase. The technique presented here has two main strengths: first, when compared to the sorption/desorption experiment, it does not require the numerical evaluation of a boundary value problem during the fitting process as a closed-form expression is available. Second, when compared to the isotope exchange experiment, it does not require the use of labeled molecules. Therefore, the frequency-dependent experiment retains the advantages of these two commonly used methods but does not suffer from their drawbacks.« less

  10. The frequency-dependent response of single aerosol particles to vapour phase oscillations and its application in measuring diffusion coefficients

    DOE PAGES

    Preston, Thomas C.; Davies, James F.; Wilson, Kevin R.

    2017-01-13

    A new method for measuring diffusion in the condensed phase of single aerosol particles is proposed and demonstrated. The technique is based on the frequency-dependent response of a binary particle to oscillations in the vapour phase of one of its chemical components. Here, we discuss how this physical situation allows for what would typically be a non-linear boundary value problem to be approximately reduced to a linear boundary value problem. For the case of aqueous aerosol particles, we investigate the accuracy of the closed-form analytical solution to this linear problem through a comparison with the numerical solution of the fullmore » problem. Then, using experimentally measured whispering gallery modes to track the frequency-dependent response of aqueous particles to relative humidity oscillations, we determine diffusion coefficients as a function of water activity. The measured diffusion coefficients are compared to previously reported values found using the two common experiments: (i) the analysis of the sorption/desorption of water from a particle after a step-wise change to the surrounding relative humidity and (ii) the isotopic exchange of water between a particle and the vapour phase. The technique presented here has two main strengths: first, when compared to the sorption/desorption experiment, it does not require the numerical evaluation of a boundary value problem during the fitting process as a closed-form expression is available. Second, when compared to the isotope exchange experiment, it does not require the use of labeled molecules. Therefore, the frequency-dependent experiment retains the advantages of these two commonly used methods but does not suffer from their drawbacks.« less

  11. The ESA DUE GlobVapour Project

    NASA Astrophysics Data System (ADS)

    Schröder, M.; ESA Due Globvapour Project Team

    2010-12-01

    The European Space Agency (ESA) Data User Element (DUE) project series aims at bridging the gap between research projects and the sustainable provision of Earth Observation (EO) climate data products at an information level that fully responds to the operational needs of user communities. The ultimate objective of GlobVapour is to provide long-term coherent water vapour data sets exploiting the synergistic capabilities of different EO missions aiming at improved accuracies and enhanced temporal and spatial sampling better than those provided by the single sources. The project seeks to utilize the increasing potential of the synergistic capabilities of past, existing and upcoming satellite missions (ERS-1 and -2, ENVISAT, METOP, MSG as well as relevant non-European missions and in-situ data) in order to meet the increasing needs for coherent long-term water vapour datasets required by the scientific community. GlobVapour develops, validates and applies novel water vapour climate data sets derived from various sensors. More specifically, the primary objectives of the GlobVapour project are: 1)The development of multi-annual global water vapour data sets inclusive of error estimates based on carefully calibrated and inter-calibrated radiances. 2)The validation of the water vapour products against ground based, airborne and other satellite based measurements. 3) The provision of an assessment of the quality of different IASI water vapour profile algorithms developed by the project partners and other groups. 4) The provision of a complete processing system that can further strengthen operational production of the developed products. 5) A demonstration of the use of the products in the field of climate modelling, including applying alternative ways of climate model validation using forward radiation operators. 6) The promotion of the strategy of data set construction and the data sets themselves to the global research and operational community. The ultimate goal of the

  12. Microscopic Mechanism of Doping-Induced Kinetically Constrained Crystallization in Phase-Change Materials.

    PubMed

    Lee, Tae Hoon; Loke, Desmond; Elliott, Stephen R

    2015-10-07

    A comprehensive microscopic mechanism of doping-induced kinetically constrained crystallization in phase-change materials is provided by investigating structural and dynamical dopant characteristics via ab initio molecular dynamics simulations. The information gained from this study may provide a basis for a fast screening of dopant species for electronic memory devices, or for understanding the general physics involved in the crystallization of doped glasses. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Pressure Dependence of the Liquid-Liquid Phase Transition of Nanopore Water Doped Slightly with Hydroxylamine, and a Phase Behavior Predicted for Pure Water

    NASA Astrophysics Data System (ADS)

    Nagoe, Atsushi; Iwaki, Shinji; Oguni, Masaharu; Tôzaki, Ken-ichi

    2014-09-01

    Phase transition behaviors of confined pure water and confined water doped with a small amount of hydroxylamine (HA) with a mole fraction of xHA = 0.03 were examined by high-pressure differential thermal analyses at 0.1, 50, 100, and 150 MPa; the average diameters of silica pores used were 2.0 and 2.5 nm. A liquid-liquid phase transition (LLPT) of the confined HA-doped water was clearly observed and its pressurization effect could be evaluated, unlike in the experiments on undoped water. It was found that pressurization causes the transition temperature (Ttrs) to linearly decrease, indicating that the low-temperature phase has a lower density than the high-temperature one. Transition enthalpy (ΔtrsH) decreased steeply with increasing pressure. Considering the linear decrease in Ttrs with increasing pressure, the steep decrease in ΔtrsH indicates that the LLPT effect of the HA-doped water attenuates with pressure. We present a new scenario of the phase behavior concerning the LLPT of pure water based on the analogy from the behavior of slightly HA-doped water, where a liquid-liquid critical point (LLCP) and a coexistence line are located in a negative-pressure regime but not in a positive-pressure one. It is reasonably understood that doping a small amount of HA into water results in negative chemical pressurization and causes the LLPT to occur even at ambient pressure.

  14. The effect of doping titanium dioxide nanoparticles on phase transformation, photocatalytic activity and anti-bacterial properties

    NASA Astrophysics Data System (ADS)

    Buzby, Scott Edward

    Nanosized titanium dioxide has a variety of important applications in everyday life including a photocatalyst for pollution remediation, photovoltaic devices, sunscreen, etc. This study focuses on the various properties of titanium dioxide nanoparticles doped with various cation and anion species. Samples were produced by various methods including metalorganic chemical vapor deposition (MOCVD), plasma assisted metalorganic chemical vapor deposition (PA-MOCVD) and sol-gel. Numerous techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electron microscopy both scanning (SEM) and transmission (TEM) were used for physical characterization. Photocatalytic properties were determined by the oxidation of methylene blue dye and 2-chlorophenol in water as well as gaseous formic acid with results analyzed by high performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR) and ultra violet - visible spectroscopy (UV-VIS). For the purpose of enhancement of the photocatalytic activity of titanium dioxide nanoparticles, the effect of anion doping and the anatase-rutile phase ratio were studied. Although anatase, rutile and mixed crystallite phases all show some degree of activity in photocatalytic reactions, these results show that anatase is better suited for the degradation of organic compounds in an aqueous medium any advantage in photocatalytic activity gained through the enhancement in optical response from the smaller band gap by addition of rutile was overcome by the negatives associated with the rutile phase. Furthermore substitutional nitrogen doping showed significant improvement in UV photocatalysis as well as allowing for visible light activation of the catalyst. Further studies on the phase transitions in titanium dioxide nanoparticles were carried out by synthesizing various cation doped samples by sol-gel. Analysis of the phases by XRD showed an inverse relationship between dopant size and rutile percentage

  15. Defect phase diagram for doping of Ga2O3

    NASA Astrophysics Data System (ADS)

    Lany, Stephan

    2018-04-01

    For the case of n-type doping of β-Ga2O3 by group 14 dopants (C, Si, Ge, Sn), a defect phase diagram is constructed from defect equilibria calculated over a range of temperatures (T), O partial pressures (pO2), and dopant concentrations. The underlying defect levels and formation energies are determined from first-principles supercell calculations with GW bandgap corrections. Only Si is found to be a truly shallow donor, C is a deep DX-like (lattice relaxed donor) center, and Ge and Sn have defect levels close to the conduction band minimum. The thermodynamic modeling includes the effect of association of dopant-defect pairs and complexes, which causes the net doping to decline when exceeding a certain optimal dopant concentration. The optimal doping levels are surprisingly low, between about 0.01% and 1% of cation substitution, depending on the (T, pO2) conditions. Considering further the stability constraints due to sublimation of molecular Ga2O, specific predictions of optimized pO2 and Si dopant concentrations are given. The incomplete passivation of dopant-defect complexes in β-Ga2O3 suggests a design rule for metastable doping above the solubility limit.

  16. Development of graphene nanoplatelet embedded polymer microcantilever for vapour phase explosive detection applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, Prasenjit; Pandey, Swapnil; Ramgopal Rao, V.

    2014-09-28

    In this work, a graphene based strain sensor has been reported for explosive vapour detection applications by exploiting the piezoresistive property of graphene. Instead of silicon based cantilevers, a low cost polymeric micro-cantilever platform has been used to fabricate this strain sensor by embedding the graphene nanoplatelet layer inside the beam. The fabricated devices were characterized for their mechanical and electromechanical behaviour. This device shows a very high gauge factor which is around ~144. Also the resonant frequency of these cantilevers is high enough such that the measurements are not affected by environmental noise. These devices have been used inmore » this work for reliable detection of explosive vapours such as 2,4,6-Trinitrotoluene down to parts-per-billion concentrations in ambient conditions.« less

  17. Application of lemongrass oil in vapour phase for the effective control of anthracnose of 'Sekaki' papaya.

    PubMed

    Ali, A; Wee Pheng, T; Mustafa, M A

    2015-06-01

    To evaluate the potential use of lemongrass essential oil vapour as an alternative for synthetic fungicides in controlling anthracnose of papaya. Lemongrass oil used in the study was characterized using gas chromatography-flame ionization detection (GC-FID) before it was tested against anthracnose of papaya in vitro and in vivo. The GC-FID analysis showed that geranial (45·6%) and neral (34·3%) were the major components in lemongrass oil. In vitro study revealed that lemongrass oil vapour at all concentrations tested (33, 66, 132, 264 and 528 μl l(-1) ) suppressed the mycelial growth and conidial germination of Colletotrichum gloeosporioides. For the in vivo study, 'Sekaki' papaya were exposed to lemongrass oil fumigation (0, 7, 14, 28 μl l(-1) ) for 18 h and at room temperature for 9 days. Lemongrass oil vapour at the concentration of 28 μl l(-1) was most effective against anthracnose of artificially inoculated papaya fruit while quality parameters of papaya were not significantly altered. This suggests that lemongrass oil vapour can control anthracnose disease development on papaya without affecting its natural ripening process. The potential practical application of this technology can reduce reliance on synthetic fungicides for the control of postharvest diseases in papaya. © 2015 The Society for Applied Microbiology.

  18. Levels of selected carcinogens and toxicants in vapour from electronic cigarettes.

    PubMed

    Goniewicz, Maciej Lukasz; Knysak, Jakub; Gawron, Michal; Kosmider, Leon; Sobczak, Andrzej; Kurek, Jolanta; Prokopowicz, Adam; Jablonska-Czapla, Magdalena; Rosik-Dulewska, Czeslawa; Havel, Christopher; Jacob, Peyton; Benowitz, Neal

    2014-03-01

    Electronic cigarettes, also known as e-cigarettes, are devices designed to imitate regular cigarettes and deliver nicotine via inhalation without combusting tobacco. They are purported to deliver nicotine without other toxicants and to be a safer alternative to regular cigarettes. However, little toxicity testing has been performed to evaluate the chemical nature of vapour generated from e-cigarettes. The aim of this study was to screen e-cigarette vapours for content of four groups of potentially toxic and carcinogenic compounds: carbonyls, volatile organic compounds, nitrosamines and heavy metals. Vapours were generated from 12 brands of e-cigarettes and the reference product, the medicinal nicotine inhaler, in controlled conditions using a modified smoking machine. The selected toxic compounds were extracted from vapours into a solid or liquid phase and analysed with chromatographic and spectroscopy methods. We found that the e-cigarette vapours contained some toxic substances. The levels of the toxicants were 9-450 times lower than in cigarette smoke and were, in many cases, comparable with trace amounts found in the reference product. Our findings are consistent with the idea that substituting tobacco cigarettes with e-cigarettes may substantially reduce exposure to selected tobacco-specific toxicants. E-cigarettes as a harm reduction strategy among smokers unwilling to quit, warrants further study. (To view this abstract in Polish and German, please see the supplementary files online.).

  19. Doping-Based Stabilization of the M2 Phase in Free-Standing VO2 Nanostructures at Room Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strelcov, Evgheni; Tselev, Alexander; Ivanov, Ilia N

    2012-01-01

    A new high-yield method of doping VO2 nanostructures with aluminum is proposed, which renders possible stabilization of the monoclinic M2 phase in free-standing nanoplatelets in ambient conditions and opens an opportunity for realization of a purely electronic Mott Transition Field-Effect Transistor without an accompanying structural transition. The synthesized free-standing M2-phase nanostructures are shown to have very high crystallinity and an extremely sharp temperature-driven metal-insulator transition. A combination of x-ray microdiffraction, micro-Raman spectroscopy, Energy-Dispersive X-ray spectroscopy, and four-probe electrical measurements allowed thorough characterization of the doped nanostructures. Light is shed onto some aspects of the nanostructure growth, and the temperature-doping levelmore » phase diagram is established.« less

  20. Superfluid phase stiffness in electron doped superconducting Gd-123

    NASA Astrophysics Data System (ADS)

    Das, P.; Ghosh, Ajay Kumar

    2018-05-01

    Current-voltage characteristics of Ce substituted Gd-123 superconductor exhibits nonlinearity below a certain temperature below the critical temperature. An exponent is extracted using the nonlinearity of current-voltage relation. Superfluid phase stiffness has been studied as a function of temperature following the Ambegaokar-Halperin-Nelson-Siggia (AHNS) theory. Phase stiffness of the superfluid below the superconducting transition is found to be sensitive to the change in the carrier concentration in superconducting system. There may be a crucial electron density which affects superfluid stiffness strongly. Electron doping is found to be effective even if the coupling of the superconducting planes is changed.

  1. WALES: water vapour lidar experiment in space

    NASA Astrophysics Data System (ADS)

    Guerin, F.; Pain, Th.; Palmade, J.-L.; Pailharey, E.; Giraud, D.; Jubineau, F.

    2017-11-01

    The WAter vapour Lidar Experiment in Space (WALES) mission aims at providing water vapour profiles with high accuracy and vertical resolution through the troposphere and the lower stratosphere on a global scale using an instrument based on Differential Absorption Lidar (DIAL) observation technique, and mounted on an Earth orbiting satellite. This active DIAL technique will also provide data on the cloud coverage by means of the signal reflection on the cloud layers. In DIAL operation, backscatter lidar signals at two wavelengths - at least - are detected. One wavelength (λ ON) is highly absorbed by the species of interest, while the other (λ OFF) is backscattered with minimal absorption. This difference in absorption at the two transmitted wavelengths leads to the determination of the concentration of the species of interest. The DIAL is therefore a dual-wavelength lidar in which the signals detected at the two wavelengths are processed to extract the absolute density of water vapour. The Phase A study performed by ALCATEL Space and their partners under contract of the European Space Agency has led to a credible and innovative concept of instrument, based on a mission performance modelling. The challenge is to foster the scientific return while minimising the development risks and costs of instrument development, in particular the laser transmitter. The paper describes the payload design and the implementation on a low Earth orbiting (LEO) satellite.

  2. WALES: WAter vapour Lidar Experiment in Space

    NASA Astrophysics Data System (ADS)

    Guerin, F.; Pain, Th.; Palmade, J. L.; Pailharey, E.; Giraud, D.; Jubineau, F.

    2004-06-01

    The WAter vapour Lidar Experiment in Space (WALES) mission aims at providing water vapour profiles with high accuracy and vertical resolution through the troposphere and the lower stratosphere on a global scale using an instrument based on Differential Absorption Lidar (DIAL) observation technique, and mounted on an Earth orbiting satellite. This active DIAL technique will also provide data on the cloud coverage by means of the signal reflection on the cloud layers. In DIAL operation, backscatter lidar signals at two wavelengths - at least - are detected. One wavelength (λ ON) is highly absorbed by the species of interest, while the other (λ OFF) is backscattered with minimal absorption. This difference in absorption at the two transmitted wavelengths leads to the determination of the concentration of the species of interest. The DIAL is therefore a dual-wavelength lidar in which the signals detected at the two wavelengths are processed to extract the absolute density of water vapour. The Phase A study performed by ALCATEL Space and their partners under contract of the European Space Agency has led to a credible and innovative concept of instrument, based on a mission performance modelling. The challenge is to foster the scientific return while minimising the development risks and costs of instrument development, in particular the laser transmitter. The paper describes the payload design and the implementation on a low Earth orbiting (LEO) satellite.

  3. Defect phase diagram for doping of Ga 2O 3

    DOE PAGES

    Lany, Stephan

    2018-04-01

    For the case of n-type doping of β-Ga 2O 3 by group 14 dopants (C, Si, Ge, Sn), a defect phase diagram is constructed from defect equilibria calculated over a range of temperatures (T), O partial pressures (pO 2), and dopant concentrations. The underlying defect levels and formation energies are determined from first-principles supercell calculations with GW bandgap corrections. Only Si is found to be a truly shallow donor, C is a deep DX-like (lattice relaxed donor) center, and Ge and Sn have defect levels close to the conduction band minimum. The thermodynamic modeling includes the effect of association ofmore » dopant-defect pairs and complexes, which causes the net doping to decline when exceeding a certain optimal dopant concentration. The optimal doping levels are surprisingly low, between about 0.01% and 1% of cation substitution, depending on the (T, pO 2) conditions. Considering further the stability constraints due to sublimation of molecular Ga 2O, specific predictions of optimized pO 2 and Si dopant concentrations are given. To conclude, the incomplete passivation of dopant-defect complexes in β-Ga 2O 3 suggests a design rule for metastable doping above the solubility limit.« less

  4. Defect phase diagram for doping of Ga 2O 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lany, Stephan

    For the case of n-type doping of β-Ga 2O 3 by group 14 dopants (C, Si, Ge, Sn), a defect phase diagram is constructed from defect equilibria calculated over a range of temperatures (T), O partial pressures (pO 2), and dopant concentrations. The underlying defect levels and formation energies are determined from first-principles supercell calculations with GW bandgap corrections. Only Si is found to be a truly shallow donor, C is a deep DX-like (lattice relaxed donor) center, and Ge and Sn have defect levels close to the conduction band minimum. The thermodynamic modeling includes the effect of association ofmore » dopant-defect pairs and complexes, which causes the net doping to decline when exceeding a certain optimal dopant concentration. The optimal doping levels are surprisingly low, between about 0.01% and 1% of cation substitution, depending on the (T, pO 2) conditions. Considering further the stability constraints due to sublimation of molecular Ga 2O, specific predictions of optimized pO 2 and Si dopant concentrations are given. To conclude, the incomplete passivation of dopant-defect complexes in β-Ga 2O 3 suggests a design rule for metastable doping above the solubility limit.« less

  5. Stabilization and enhanced energy gap by Mg doping in ɛ-phase Ga2O3 thin films

    NASA Astrophysics Data System (ADS)

    Bi, Xiaoyu; Wu, Zhenping; Huang, Yuanqi; Tang, Weihua

    2018-02-01

    Mg-doped Ga2O3 thin films with different doping concentrations were deposited on sapphire substrates using laser molecular beam epitaxy (L-MBE) technique. X-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS) and ultraviolet-visible (UV-vis) absorption spectrum were used to characterize the crystal structure and optical properties of the as-grown films. Compared to pure Ga2O3 thin film, the Mg-doped thin films have transformed from the most stable β-phase into ɛ-phase. The absorption edge shifted to about 205 nm and the optical bandgap increased to ˜ 6 eV. These properties reveal that Mg-doped Ga2O3 films may have potential applications in the field of deep ultraviolet optoelectronic devices, such as deep ultraviolet photodetectors, short wavelength light emitting devices and so on.

  6. Phase segregation and dielectric, ferroelectric, and piezoelectric properties of MgO-doped NBT-BT lead-free ferroelecric ceramics

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Wang, Ziyang; Zhang, Leiyang; Shi, Wenjing; Jing, Jiayi; Chen, Yi; Liu, Hongbo; Yan, Yan

    2018-03-01

    MgO doped NBT-BT ceramics were prepared by the conventional electroceramic processing. The effects of MgO on the phase, microstructures and electrical properties of NBT-BT ceramics were systematically investigated. When doping content is more than 1%, a second phase appeared, which has great effect on dielectric, ferroelectric, and piezoelectric properties, such as the T F-R peak weakened, moved to the higher temperature, and eventually disappeared. When the doping content is above 1.5%, the ceramic samples show a strong relaxation. The detailed analysis and discussion can be found within this study.

  7. Clearing the air: protocol for a systematic meta-narrative review on the harms and benefits of e-cigarettes and vapour devices.

    PubMed

    MacDonald, Marjorie; O'Leary, Renee; Stockwell, Tim; Reist, Dan

    2016-05-21

    Under the shadow of the tobacco epidemic, the sale and use of e-cigarettes and other vapour devices is increasing dramatically. A contentious debate has risen within public health over the harms and benefits of these devices. Clearing the Air seeks to clarify the issues with a systematic review that informs the pressing regulatory and public health decisions to be made regarding these new products. Using an integrated knowledge translation approach, public health researchers and knowledge users will work collaboratively throughout the project. Our research questions are the following: (1) What are the health risks and benefits of vapour devices, and how do these compare to cigarettes? (2) What is the harm reduction potential of vapour devices for individuals, the environment, and society? (3) Does youth vapour device experimentation lead to cigarette use? (4) Can vapour devices be effective aids for tobacco cessation? and (5) What is the potential toxicity of second-hand vapour? We are using meta-narrative review to synthesize studies from diverse research traditions because of its capacity to address contestations around a topic. The project has six phases. In the planning phase, we finalized the research questions. In the search phase, we are locating academic publications and grey literature aided by a research librarian. The mapping phase involves categorizing these papers into research traditions to understand different perspectives on the evidence for each research question. In the appraisal phase, we will select and evaluate the relevant papers. Finally, in the synthesis phase, using analytic techniques unique to meta-narrative methodology, we will compare and contrast the evidence from different research traditions to answer our research questions, identifying overarching meta-narratives. In the final stage, the full team will draft recommendations to be disseminated through a variety of knowledge translation strategies. Meta-narrative synthesis has the

  8. Effect of cobalt doping on the phase transformation of TiO2 nanoparticles.

    PubMed

    Barakat, M A; Hayes, G; Shah, S Ismat

    2005-05-01

    Co-doped TiO2 nanoparticles containing 0.0085, 0.017, 0.0255, 0.034, and 0.085 mol % Co(III) ion dopant were synthesized via sol-gel and dip-coating techniques. The effects of metal ion doping on the transformation of anatase to the rutile phase have been investigated. Several analytical tools, such as X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), and energy dispersive X-ray analysis (EDAX) were used to investigate the nanoparticle structure, size distribution, and composition. Results obtained revealed that the rutile to anatase concentration ratio increases with increase of the cobalt dopant concentration and annealing temperature. The typical composition of Co-doped TiO2 was Ti(1-x)Co(x)O2, where x values ranged from 0.0085 to 0.085. The activation energy for the phase transformation from anatase to rutile was measured to be 229, 222, 211, and 195 kJ/mole for 0.0085, 0.017, 0.0255, and 0.034 mol % Co in TiO2, respectively.

  9. Shape-controlled synthesis and influence of W doping and oxygen nonstoichiometry on the phase transition of VO2

    PubMed Central

    Chen, Ru; Miao, Lei; Liu, Chengyan; Zhou, Jianhua; Cheng, Haoliang; Asaka, Toru; Iwamoto, Yuji; Tanemura, Sakae

    2015-01-01

    Monoclinic VO2(M) in nanostructure is a prototype material for interpreting correlation effects in solids with fully reversible phase transition and for the advanced applications to smart devices. Here, we report a facile one-step hydrothermal method for the controlled growth of single crystalline VO2(M/R) nanorods. Through tuning the hydrothermal temperature, duration of the hydrothermal time and W-doped level, single crystalline VO2(M/R) nanorods with controlled aspect ratio can be synthesized in large quantities, and the crucial parameter for the shape-controlled synthesis is the W-doped content. The dopant greatly promotes the preferential growth of (110) to form pure phase VO2(R) nanorods with high aspect ratio for the W-doped level = 2.0 at% sample. The shape-controlled process of VO2(M/R) nanorods upon W-doping are systematically studied. Moreover, the phase transition temperature (Tc) of VO2 depending on oxygen nonstoichiometry is investigated in detail. PMID:26373612

  10. Influence of Nb doping on the phase transition properties of VO2 thin films prepared by ion beam co-sputtering deposition

    NASA Astrophysics Data System (ADS)

    Zhu, Huiqun; Li, Pengfei; Zhao, Lite; Liu, Jiahuan

    2016-03-01

    The Nb-doped VO2 thin films were successfully prepared on the glass substrates by ion beam co-sputtering at room temperature and post annealing under the air condition. The effects of the preparation processing and Nb doping on the thermal hysteresis loop and phase transition temperature of the VO2 thin films were analyzed by resistancetemperature measurement. The results show that Nb doping significantly changes the surface morphologies of VO2 thin films, and Nb-doped VO2 thin films exhibit VO2(002) preferred orientation growth with greatly improved crystallinity and orientation. Compared with pure VO2, the phase transition temperature of Nb-doped VO2 thin films drops to 40 ºC, and the width of thermal hysteresis loop narrows to 8 ºC. It is demonstrated that Nb-doped VO2 thin films prepared by ion beam co-sputtered at room temperature have an obvious thermal sensitive effect, and keep a good characteristic from metal to semiconductor phase transition.

  11. Decoupling the Lattice Distortion and Charge Doping Effects on the Phase Transition Behavior of VO2 by Titanium (Ti4+) Doping

    PubMed Central

    Wu, Yanfei; Fan, Lele; Liu, Qinghua; Chen, Shi; Huang, Weifeng; Chen, Feihu; Liao, Guangming; Zou, Chongwen; Wu, Ziyu

    2015-01-01

    The mechanism for regulating the critical temperature (TC) of metal-insulator transition (MIT) in ions-doped VO2 systems is still a matter of debate, in particular, the unclear roles of lattice distortion and charge doping effects. To rule out the charge doping effect on the regulation of TC, we investigated Ti4+-doped VO2 (TixV1-xO2) system. It was observed that the TC of TixV1-xO2 samples first slightly decreased and then increased with increasing Ti concentration. X-ray absorption fine structure (XAFS) spectroscopy was used to explore the electronic states and local lattice structures around both Ti and V atoms in TixV1-xO2 samples. Our results revealed the local structure evolution from the initial anatase to the rutile-like structure around the Ti dopants. Furthermore, the host monoclinic VO2 lattice, specifically, the VO6 octahedra would be subtly distorted by Ti doping. The distortion of VO6 octahedra and the variation of TC showed almost the similar trend, confirming the direct effect of local structural perturbations on the phase transition behavior. By comparing other ion-doping systems, we point out that the charge doping is more effective than the lattice distortion in modulating the MIT behavior of VO2 materials. PMID:25950809

  12. Vapour Intrusion into Buildings - A Literature Review

    EPA Science Inventory

    This chapter provides a review of recent research on vapour intrusion of volatile organic compounds (VOCs) into buildings. The chapter builds on a report from Tillman and Weaver (2005) which reviewed the literature on vapour intrusion through 2005. Firstly, the term ‘vapour intru...

  13. Magnetic phase investigations on fluorine (F) doped LiFePO4

    NASA Astrophysics Data System (ADS)

    Radhamani, A. V.

    2018-03-01

    LiFePO4 (LFP) is a very promising cathode material for Li-ion batteries due to its high thermal stability, less toxicity and high theoretical capacity (170 mAh g-1). Anion doping, especially fluorine (F) at the oxygen site is one way to improve the low electronic conductivity of the material. In this line, fluorine doped LFP was prepared at different fluorine concentrations (1 to 40 mol%) to study the structural, spectroscopic and magnetic properties in view of the material property optimization for battery applications. The investigation of the magnetic properties was found to be successful for the determination of small amounts of magnetic impurities which were not noticeably observed from structural characterizations. Determination of conducting magnetic impurities has its own relevance in the current scenario of Li-ion based battery applications. Systematic characterization studies along with the implications of magnetic phases on the material activity of fluorine doped LiFePO4 nanoparticles will be discussed in detail.

  14. Modelling mass transfer during venting/soil vapour extraction: Non-aqueous phase liquid/gas mass transfer coefficient estimation

    NASA Astrophysics Data System (ADS)

    Esrael, D.; Kacem, M.; Benadda, B.

    2017-07-01

    We investigate how the simulation of the venting/soil vapour extraction (SVE) process is affected by the mass transfer coefficient, using a model comprising five partial differential equations describing gas flow and mass conservation of phases and including an expression accounting for soil saturation conditions. In doing so, we test five previously reported quations for estimating the non-aqueous phase liquid (NAPL)/gas initial mass transfer coefficient and evaluate an expression that uses a reference NAPL saturation. Four venting/SVE experiments utilizing a sand column are performed with dry and non-saturated sand at low and high flow rates, and the obtained experimental results are subsequently simulated, revealing that hydrodynamic dispersion cannot be neglected in the estimation of the mass transfer coefficient, particularly in the case of low velocities. Among the tested models, only the analytical solution of a convection-dispersion equation and the equation proposed herein are suitable for correctly modelling the experimental results, with the developed model representing the best choice for correctly simulating the experimental results and the tailing part of the extracted gas concentration curve.

  15. Structural and optical characterization of Eu3+ doped beta-Ga2O3 nanoparticles using a liquid-phase precursor method.

    PubMed

    Kim, Moung-O; Kang, Bongkyun; Yoon, Daeho

    2013-08-01

    Eu3+ doped beta-Ga2O3 and non-doped beta-Ga2O3 nanoparticles were synthesized at 800 degrees C using a liquid-phase precursor (LPP) method, with different annealing times and Eu3+ ion concentrations. Eu3+ doped beta-Ga2O3 nanoparticles showed broad XRD peaks, revealing a second phase compared with the non-doped beta-Ga2O3 nanoparticles. The cathode luminescence (CL) spectra of beta-Ga2O3 and Eu3+ doped beta-Ga2O3 nanoparticles showed a broad band emission (300-500 nm) of imperfection and two component emissions. The luminescence quenching properties of Eu3+ dopant ion concentration appeared gradually beyond 5 mol% in our investigation.

  16. Effects of interaction strength, doping, and frustration on the antiferromagnetic phase of the two-dimensional Hubbard model

    NASA Astrophysics Data System (ADS)

    Fratino, L.; Charlebois, M.; Sémon, P.; Sordi, G.; Tremblay, A.-M. S.

    2017-12-01

    Recent quantum-gas microscopy of ultracold atoms and scanning tunneling microscopy of the cuprates reveal new detailed information about doped Mott antiferromagnets, which can be compared with calculations. Using cellular dynamical mean-field theory, we map out the antiferromagnetic (AF) phase of the two-dimensional Hubbard model as a function of interaction strength U , hole doping δ , and temperature T . The Néel phase boundary is nonmonotonic as a function of U and δ . Frustration induced by second-neighbor hopping reduces Néel order more effectively at small U . The doped AF is stabilized at large U by kinetic energy and at small U by potential energy. The transition between the AF insulator and the doped metallic AF is continuous. At large U , we find in-gap states similar to those observed in scanning tunneling microscopy. We predict that, contrary to the Hubbard bands, these states are only slightly spin polarized.

  17. Multistable Phase-Retardation Plate Based on Gelator-Doped Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Ying-Guey Fuh, Andy; Chiang, Jou-Ting; Chien, Yu-Shein; Chang, Chih-Juang; Lin, Hui-Chi

    2012-07-01

    This work demonstrates a multistable, large phase-retardation plate using gelator-doped liquid crystals (LCs). Multistability is achieved by forming a rubbery LC gel at room temperature. Experimentally, the phase retardation (PR) of an LC-gel film can be varied and fixed by the thermoreversible association and dissociation of the gelator molecules. The PR of the LC plate ranging from 0.3-3.7π can be electrically controllable within 10 V. Half-wave and quarter-wave LC plates were also produced at applied voltages of 3.5 and 6.3 V, respectively. Their properties were examined and found to be stable.

  18. Multistable Phase-Retardation Plate Based on Gelator-Doped Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Fuh, Andy Ying-Guey; Chiang, Jou-Ting; Chien, Yu-Shein; Chang, Chih-Juang; Lin, Hui-Chi

    2012-07-01

    This work demonstrates a multistable, large phase-retardation plate using gelator-doped liquid crystals (LCs). Multistability is achieved by forming a rubbery LC gel at room temperature. Experimentally, the phase retardation (PR) of an LC-gel film can be varied and fixed by the thermoreversible association and dissociation of the gelator molecules. The PR of the LC plate ranging from 0.3--3.7π can be electrically controllable within 10 V. Half-wave and quarter-wave LC plates were also produced at applied voltages of 3.5 and 6.3 V, respectively. Their properties were examined and found to be stable.

  19. Studies of copper and gold vapour lasers

    NASA Astrophysics Data System (ADS)

    Clark, Graeme Lawrence

    The work described in this thesis covers various aspects of pulsed copper and gold vapour lasers. The work is divided into four main parts : a computer model of the kinetics of the copper vapour laser discharge; construction and characterization of a copper vapour laser and a gold vapour laser system (to be used for photodynamic cancer treatment); analysis of the thermal processes occurring in the various forms of thermal insulation used in these lasers; and studies of the use of metal walls to confine a discharge plasma. The results of this work were combined in the design of the first copper vapour laser to use metal rather than an electrically insulating ceramic material for confinement of the discharge plasma. Laser action in copper vapour has been achieved in a number of metal-walled designs, with continuous lengths of metal ranging from 30 mm, in a segmented design, to 400 mm, where the discharge plasma was confined by two molybdenum tubes of this length. A theoretical explanation of the behaviour of plasmas in metal-walled discharge vessels is described.

  20. Growth and characterization of manganese doped gallium nitride nanowires.

    PubMed

    Kumar, V Suresh; Kesavamoorthy, R; Kumar, J

    2008-08-01

    Manganese doped GaN nanowires have been grown by chemical vapour transport method on sapphire (0001) substrates in the temperature range of 800-1050 degrees C. The surface features of nanowires have been investigated using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray analysis (EDAX), Raman scattering studies and Electron Paramagnetic Resonance (EPR). SEM images showed that the morphology of the one dimensional materials included straight nanorods and nanowires around 70-80 nm. Raman spectrum showed the GaMnN vibrational modes at 380, 432 and 445 cm(-1). EPR measurements were performed on Mn doped GaN nanowires in order to evaluate the magnetic behaviour.

  1. Using Peltier Cells to Study Solid-Liquid-Vapour Transitions and Supercooling

    ERIC Educational Resources Information Center

    Torzo, Giacomo; Soletta, Isabella; Branca, Mario

    2007-01-01

    We propose an apparatus for teaching experimental thermodynamics in undergraduate introductory courses, using thermoelectric modules and a real-time data acquisition system. The device may be made at low cost, still providing an easy approach to the investigation of liquid-solid and liquid-vapour phase transitions and of metastable states…

  2. High Chloride Doping Levels Stabilize the Perovskite Phase of Cesium Lead Iodide.

    PubMed

    Dastidar, Subham; Egger, David A; Tan, Liang Z; Cromer, Samuel B; Dillon, Andrew D; Liu, Shi; Kronik, Leeor; Rappe, Andrew M; Fafarman, Aaron T

    2016-06-08

    Cesium lead iodide possesses an excellent combination of band gap and absorption coefficient for photovoltaic applications in its perovskite phase. However, this is not its equilibrium structure under ambient conditions. In air, at ambient temperature it rapidly transforms to a nonfunctional, so-called yellow phase. Here we show that chloride doping, particularly at levels near the solubility limit for chloride in a cesium lead iodide host, provides a new approach to stabilizing the functional perovskite phase. In order to achieve high doping levels, we first co-deposit colloidal nanocrystals of pure cesium lead chloride and cesium lead iodide, thereby ensuring nanometer-scale mixing even at compositions that potentially exceed the bulk miscibility of the two phases. The resulting nanocrystal solid is subsequently fused into a polycrystalline thin film by chemically induced, room-temperature sintering. Spectroscopy and X-ray diffraction indicate that the chloride is further dispersed during sintering and a polycrystalline mixed phase is formed. Using density functional theory (DFT) methods in conjunction with nudged elastic band techniques, low-energy pathways for interstitial chlorine diffusion into a majority-iodide lattice were identified, consistent with the facile diffusion and fast halide exchange reactions observed. By comparison to DFT-calculated values (with the PBE exchange-correlation functional), the relative change in band gap and the lattice contraction are shown to be consistent with a Cl/I ratio of a few percent in the mixed phase. At these incorporation levels, the half-life of the functional perovskite phase in a humid atmosphere increases by more than an order of magnitude.

  3. Phase formation and UV luminescence of Gd{sup 3+} doped perovskite-type YScO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimizu, Yuhei; Ueda, Kazushige, E-mail: kueda@che.kyutech.ac.jp

    Synthesis of pure and Gd{sup 3+}doped perovskite-type YScO{sub 3} was attempted by a polymerized complex (PC) method and solid state reaction (SSR) method. Crystalline phases and UV luminescence of samples were examined with varying heating temperatures. The perovskite-type single phase was not simply formed in the SSR method, as reported in some literatures, and two cubic C-type phases of starting oxide materials remained forming slightly mixed solid solutions. UV luminescence of Gd{sup 3+} doped samples increased with an increase in heating temperatures and volume of the perovskite-type phase. In contrast, a non-crystalline precursor was crystallized to a single C-type phasemore » at 800 °C in the PC method forming a completely mixed solid solution. Then, the phase of perovskite-type YScO{sub 3} formed at 1200 °C and its single phase was obtained at 1400 °C. It was revealed that high homogeneousness of cations was essential to generate the single perovskite-phase of YScO{sub 3}. Because Gd{sup 3+} ions were also dissolved into the single C-type phase in Gd{sup 3+} doped samples, intense UV luminescence was observed above 800 °C in both C-type phase and perovskite-type phase. - Graphical abstract: A pure perovskite-type YScO{sub 3} phase was successfully synthesized by a polymerized complex (PC) method. The perovskite-type YScO{sub 3} was generated through a solid solution of C-type (Y{sub 0.5}Sc{sub 0.5}){sub 2}O{sub 3} with drastic change of morphology. The PC method enabled a preparation of the single phase of the perovskite-type YScO{sub 3} at lower temperature and in shorter heating time. Gd{sup 3+} doped perovskite-type YScO{sub 3} was found to show a strong sharp UV emission at 314 nm. - Highlights: • Pure YScO{sub 3} phase was successfully synthesized by polymerized complex (PC) method. • Pure perovskite-type YScO{sub 3} phase was generated from pure C-type (Y{sub 0.5}Sc{sub 0.5}){sub 2}O{sub 3} one. • YScO{sub 3} was obtained at lower

  4. Chromium doped nano-phase separated yttria-alumina-silica glass based optical fiber preform: fabrication and characterization

    NASA Astrophysics Data System (ADS)

    Dutta, Debjit; Dhar, Anirban; Das, Shyamal; Bysakh, Sandip; Kir'yanov, Alexandar; Paul, Mukul Chandra

    2015-06-01

    Transition metal (TM) doping in silica core optical fiber is one of the research area which has been studied for long time and Chromium (Cr) doping specially attracts a lot of research interest due to their broad emission band covering U, C and L band with many potential application such as saturable absorber or broadband amplifier etc. This paper present fabrication of Cr doped nano-phase separated silica fiber within yttria-alumina-silica core glass through conventional Modified Chemical Vapor Deposition (MCVD) process coupled with solution doping technique along with different material and optical characterization. For the first time scanning electron microscope (SEM) / energy dispersive X-ray (EDX) analysis of porous soot sample and final preform has been utilized to investigate incorporation mechanism of Crions with special emphasis on Cr-species evaporation at different stages of fabrication. We also report that optimized annealing condition of our fabricated preform exhibited enhanced fluorescence emission and a broad band within 550- 800 nm wavelength region under pumping at 532 nm wavelength due to nano-phase restructuration.

  5. Effects of interaction strength, doping, and frustration on the antiferromagnetic phase of the two-dimensional Hubbard model

    DOE PAGES

    Fratino, L.; Charlebois, M.; Sémon, P.; ...

    2017-12-19

    Recent quantum-gas microscopy of ultracold atoms and scanning tunneling microscopy of the cuprates reveal new detailed information about doped Mott antiferromagnets, which can be compared with calculations. Using cellular dynamical mean-field theory, we map out the antiferromagnetic (AF) phase of the two-dimensional Hubbard model as a function of interaction strength U, hole doping δ, and temperature T . The Néel phase boundary is nonmonotonic as a function of U and δ. Frustration induced by second-neighbor hopping reduces Néel order more effectively at small U. The doped AF is stabilized at large U by kinetic energy and at small U bymore » potential energy. The transition between the AF insulator and the doped metallic AF is continuous. At large U, we find in-gap states similar to those observed in scanning tunneling microscopy. Finally, we predict that, contrary to the Hubbard bands, these states are only slightly spin polarized.« less

  6. Modulated optical phase conjugation in rhodamine 110 doped boric acid glass saturable absorber thin films

    NASA Astrophysics Data System (ADS)

    Sharma, Ramesh C.; Waigh, Thomas A.; Singh, Jagdish P.

    2008-03-01

    The optical phase conjugation signal in nearly nondegenerate four wave mixing was studied using a rhodamine 110 doped boric acid glass saturable absorber nonlinear medium. We have demonstrated a narrow band optical filter (2.56±0.15Hz) using an optical phase conjugation signal in the frequency modulation of a weak probe beam in the presence of two strong counterpropagating pump beams in rhodamine 110 doped boric acid glass thin films (10-4m). Both the pump beams and the probe beam are at a wavelength of 488nm (continuous-wave Ar+ laser). The probe beam frequency was detuned with a ramp signal using a piezoelectric transducer mirror.

  7. A comparison of various surface charge transfer hole doping of graphene grown by chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Chandramohan, S.; Seo, Tae Hoon; Janardhanam, V.; Hong, Chang-Hee; Suh, Eun-Kyung

    2017-10-01

    Charge transfer doping is a renowned route to modify the electrical and electronic properties of graphene. Understanding the stability of potentially important charge-transfer materials for graphene doping is a crucial first step. Here we present a systematic comparison on the doping efficiency and stability of single layer graphene using molybdenum trioxide (MoO3), gold chloride (AuCl3), and bis(trifluoromethanesulfonyl)amide (TFSA). Chemical dopants proved to be very effective, but MoO3 offers better thermal stability and device fabrication compatibility. Single layer graphene films with sheet resistance values between 100 and 200 ohm/square were consistently produced by implementing a two-step growth followed by doping without compromising the optical transmittance.

  8. Magnetic phase change in Mn-doped ZnSnAs2 thin films depending on Mn concentration

    NASA Astrophysics Data System (ADS)

    Uchitomi, Naotaka; Hidaka, Shiro; Saito, Shin; Asubar, Joel T.; Toyota, Hideyuki

    2018-04-01

    The relationship between Mn concentration and Curie temperature (TC) is studied for Mn-doped ZnSnAs2 ferromagnetic semiconductors, epitaxially grown on InP substrates by molecular beam epitaxy. In the ferromagnetic phase, Mn distributions in a (Zn,Mn,Sn)As2 thin film with 7.2 cation percent (cat. %) Mn are investigated using three-dimensional atom probe tomography. The results indicate an inhomogeneous distribution which spreads to a relatively high Mn concentration of 9.0 at. % (at. %). In the paramagnetic phase, it is found that the paramagnetic to ferromagnetic transition takes place sharply with a TC of 334 K when the Mn doping concentration increases to about 4 cat. % Mn, which corresponds to a magnetic percolation threshold for ferromagnetism in (Zn,Mn,Sn)As2. An effective Curie temperature ⟨TC⟩ is considered to bridge the Curie temperatures obtained experimentally to those calculated theoretically in inhomogeneous magnetic semiconductors. The behavior of magnetism in Mn-doped ZnSnAs2 can be explained by three different phases within the present framework.

  9. The phases and magnetic properties of (Ti, Co), and Cr doped Zn 2Y-type hexagonal ferrite

    NASA Astrophysics Data System (ADS)

    Chang, Y. H.; Wang, C. C.; Chin, T. S.; Yen, F. S.

    1988-04-01

    The phases and magnetic properties of Y-type hexagonal ferrite, Ba 2Zn 2 (Ti, Co) yFe 12-2 yO 22 doped with two sets of ions, (Ti, Co) and Cr were studied. In (Ti, Co) - doped ferrites the second phase appears at y ⩾ 0.6, which is a spinel type with the formula of (Zn 1-ηCo η)(Fe 2-δCo δ)O 4. Two resonant peaks are observed in ESR studies at the fields of 1020 and 2430 Oe, respectively, at a frequency of 9.684 GHz. The linewidth increases with the addition of the dopants. In chromium doped ferrite, two phases are identified as the amount of chromium is up to 0.2: spinel type of Zn(Fe 2-ɛCr ɛ)O 4 and orthorhombic BaCr 2O 4. Although the amount of Cr used does not influence the resonant field of the unique peak of the derivative curves from ESR, it eventually enlarges the linewidth.

  10. Doped δ-bismuth oxides to investigate oxygen ion transport as a metric for condensed phase thermite ignition.

    PubMed

    Wang, Xizheng; Zhou, Wenbo; DeLisio, Jeffery B; Egan, Garth C; Zachariah, Michael R

    2017-05-24

    Nanothermites offer high energy density and high burn rates, but are mechanistically only now being understood. One question of interest is how initiation occurs and how the ignition temperature is related to microscopic controlling parameters. In this study, we explored the potential role of oxygen ion transport in Bi 2 O 3 as a controlling mechanism for condensed phase ignition reaction. Seven different doped δ-Bi 2 O 3 were synthesized by aerosol spray pyrolysis. The ignition temperatures of Al/doped Bi 2 O 3 , C/doped Bi 2 O 3 and Ta/doped Bi 2 O 3 were measured by temperature-jump/time-of-flight mass spectrometer coupled with a high-speed camera respectively. These results were then correlated to the corresponding oxygen ion conductivity (directly proportional to ion diffusivity) for these doped Bi 2 O 3 measured by impedance spectroscopy. We find that ignition of thermite with doped Bi 2 O 3 as oxidizer occurs at a critical oxygen ion conductivity (∼0.06 S cm -1 ) of doped Bi 2 O 3 in the condensed-phase so long as the aluminum is in a molten state. These results suggest that oxygen ion transport limits the condensed state Bi 2 O 3 oxidized thermite ignition. We also find that the larger oxygen vacancy concentration and the smaller metal-oxide bond energy in doped Bi 2 O 3 , the lower the ignition temperature. The latter suggests that we can consider the possibility of manipulating microscopic properties within a crystal, to tune the resultant energetic properties.

  11. Ultra-wideband microwave photonic phase shifter with a 360° tunable phase shift based on an erbium-ytterbium co-doped linearly chirped FBG.

    PubMed

    Liu, Weilin; Yao, Jianping

    2014-02-15

    A simple photonic approach to implementing an ultra-wideband microwave phase shifter based on an erbium-ytterbium (Er/Yb) co-doped linearly chirped fiber Bragg grating (LCFBG) is proposed and experimentally demonstrated. The LCFBG is designed to have a constant magnitude response over a reflection band, and a phase response that is linear and nonlinear in two sections in the reflection band. When an optical single-sideband with carrier (OSSB+C) signal is sent to the LCFBG, by locating the optical carrier at the section corresponding to the nonlinear phase response and the sideband at the section corresponding to the linear phase response, a phase shift is introduced to the optical carrier, which is then translated to the microwave signal by beating the optical carrier and the sideband at a photodetector. The tuning of the phase shift is realized by optically pumping the Er/Yb co-doped LCFBG by a 980-nm laser diode. The proposed ultra-wideband microwave photonic phase shifter is experimentally demonstrated. A phase shifter with a full 360° phase shift with a bandwidth from 10 to 40 GHz is experimentally demonstrated.

  12. Relation between secondary doping and phase separation in PEDOT:PSS films

    NASA Astrophysics Data System (ADS)

    Donoval, Martin; Micjan, Michal; Novota, Miroslav; Nevrela, Juraj; Kovacova, Sona; Pavuk, Milan; Juhasz, Peter; Jagelka, Martin; Kovac, Jaroslav; Jakabovic, Jan; Cigan, Marek; Weis, Martin

    2017-02-01

    Conductive copolymer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) has been proposed as an alternative to transparent conductive oxides because of its flexibility, transparency, and low-cost production. Four different secondary dopants, namely N,N-dimethylformamide, ethyleneglycol, sorbitol, and dimethyl sulfoxide, have been used to improve the conductivity. The relation between the structure changes and conductivity enhancement is studied in detail. Atomic force microscopy study of the thin film surface reveals the phase separation of PEDOT and PSS. We demonstrate that secondary doping induces the phase separation as well as the conductivity enhancement.

  13. Multi-phase structures of boron-doped copper tin sulfide nanoparticles synthesized by chemical bath deposition for optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Rakspun, Jariya; Kantip, Nathakan; Vailikhit, Veeramol; Choopun, Supab; Tubtimtae, Auttasit

    2018-04-01

    We investigated the influence of boron doping on the structural, optical, and electrical properties of copper tin sulfide (CTS) nanoparticles coated on a WO3 surface and synthesized using chemical bath deposition. Boron doping at concentrations of 0.5, 1.0, 1.5, and 2.0 wt% was investigated. The X-ray diffraction pattern of CTS showed the presence of monoclinic Cu2Sn3S7, cubic Cu2SnS3, and orthorhombic Cu4SnS4. Boron doping influenced the preferred orientation of the nanoparticles for all phase structures and produced a lattice strain effect and changes in the dislocation density. Increasing the concentration of boron in CTS from 0.5 wt% to 2.0 wt% reduced the band gap for all phases of CTS from 1.46 to 1.29 eV and reduced the optical transmittance. Optical constants, such as the refractive index, extinction coefficient, and dissipation factor, were also obtained for B-doped CTS. The dispersion behavior of the refractive index was investigated in terms of a single oscillator model and the physical parameters were determined. Fourier transform infrared spectroscopy confirmed the successful synthesis of CTS nanoparticles. Cyclic voltammetry indicated that optimum boron doping (<1.5 wt% for all phases) resulted in desirable p-n junction behavior for optoelectronic applications.

  14. Vapour growth of argyrodite-type ionic conductors Cu 6PS 5Hal

    NASA Astrophysics Data System (ADS)

    Fiechter, S.; Eckstein, J.; Nitsche, R.

    1983-03-01

    Cu 6PS 5Hal compounds (with Hal = Cl, Br or I) have been crystallized around 950 K by CVT with P, S and Hal (and combinations thereof). Chemical insight into the transport processes was gained from dissociation pressure measurements and spectroscopic vapour analysis. Lacking thermochemical data of the compounds were obtained from Cp measurements. Models, derived for the CVT mechanisms, yield transport rates and directions which agree qualitatively with experiments. The main vapour species (for Hal = C1) are PSCI 3, S 2, PCI 3, P 4S 3 and (CuCl) 3. With a surplus of CuHal, VLS growth via liquid CuHal/Cu 2S phases was observed.

  15. Structural, morphological, magnetic and dielectric characterization of nano-phased antimony doped manganese zinc ferrites

    NASA Astrophysics Data System (ADS)

    Sridhar, Ch. S. L. N.; Lakshmi, Ch. S.; Govindraj, G.; Bangarraju, S.; Satyanarayana, L.; Potukuchi, D. M.

    2016-05-01

    Nano-phased doped Mn-Zn ferrites, viz., Mn0.5-x/2Zn0.5-x/2SbXFe2O4 for x=0 to 0.3 (in steps of 0.05) prepared by hydrothermal method are characterized by X-ray diffraction, Infrared and scanning electron microscopy. XRD and SEM infer the growth of nano-crystalline cubic and hematite (α-Fe2O3) phase structures. IR reveals the ferrite phase abundance and metal ion replacement with dopant. Decreasing trend of lattice constant with dopant reflects the preferential replacement of Fe3+ions by Sb5+ion. Doping is found to cause for the decrease (i.e., 46-14 nm) of grain size. An overall trend of decreasing saturation magnetization is observed with doping. Low magnetization is attributed to the diamagnetic nature of dopant, abundance of hematite (α-Fe2O3) phase, non-stoichiometry and low temperature (800 °C) sintering conditions. Increasing Yafet-Kittel angle reflects surface spin canting to pronounce lower Ms. Lower coercivity is observed for x≤0.1, while a large Hc results for higher concentrations. High ac resistivity (~106 ohm-cm) and low dielectric loss factor (tan δ~10-2-10-3) are witnessed. Resistivity is explained on the base of a transformation in the Metal Cation-to-Oxide anion bond configuration and blockade of conductivity path. Retarded hopping (between adjacent B-sites) of carriers across the grain boundaries is addressed. Relatively higher resistivity and low dielectric loss in Sbdoped Mn-Zn ferrite systems pronounce their utility in high frequency applications.

  16. Phase Segregation in Potassium-Doped Lead Halide Perovskites from 39K Solid-State NMR at 21.1 T.

    PubMed

    Kubicki, Dominik J; Prochowicz, Daniel; Hofstetter, Albert; Zakeeruddin, Shaik M; Grätzel, Michael; Emsley, Lyndon

    2018-06-13

    Organic-inorganic lead halide perovskites are a promising family of light absorbers for a new generation of solar cells, with reported efficiencies currently exceeding 22%. A common problem of solar cells fabricated using these materials is that their efficiency depends on their cycling history, an effect known as current-voltage ( J- V) hysteresis. Potassium doping has recently emerged as a universal way to overcome this adverse phenomenon. While the atomistic origins of J- V hysteresis are still not fully understood, it is essential to rationalize the atomic-level effect of protocols that lead to its suppression. Here, using 39 K MAS NMR at 21.1 T we provide for the first time atomic-level characterization of the potassium-containing phases that are formed upon KI doping of multication and multianion lead halide perovskites. We find no evidence of potassium incorporation into 3D perovskite lattices of the recently reported materials. Instead, we observe formation of a mixture of potassium-rich phases and unreacted KI. In the case of Br-containing lead halide perovskites doped with KI, a mixture of KI and KBr ensues, leading to a change in the Br/I ratio in the perovskite phase with respect to the undoped perovskite. Simultaneous Cs and K doping leads to the formation of nonperovskite Cs/K lead iodide phases.

  17. Effects of Nickel Doping on the Multiferroic and Magnetic Phases of MnWO 4

    DOE PAGES

    Poudel, N.; Lorenz, B.; Lv, B.; ...

    2015-12-15

    There are various orders in multiferroic materials with a frustrated spiral spin modulation inducing a ferroelectric state are extremely sensitive to small perturbations such as magnetic and electric fields, external pressure, or chemical substitutions. A classical multiferroic, the mineral Hubnerite with chemical formula MnWO 4, shows three different magnetic phases at low temperature. The intermediate phase between 7.5K < T < 12.7K is multiferroic and ferroelectricity is induced by an inversion symmetry breaking spiral Mn-spin order and strong spin-lattice interactions. Furthermore, the substitution of Ni 2+ (spin 1) for Mn 2+ (spin 5/2) in MnWO 4 and its effects onmore » the magnetic and multiferroic phases are studied. The ferroelectric phase is stabilized for low Ni content (up to 10%). Upon further Ni doping, the polarization in the ferroelectric phase is quickly suppressed while a collinear and commensurate magnetic phase, characteristic of the magnetic structure in NiWO 4, appears first at higher temperature, gradually extends to lower temperature, and becomes the ground state above 30% doping. Between 10% and 30%, the multiferroic phase coexists with the collinear commensurate phase. In this concentration region, the spin spiral plane is close to the a-b plane which explains the drop of the ferroelectric polarization. Finally, the phase diagram of Mn 1-xNi xWO 4 is derived by a combination of magnetic susceptibility, specific heat, electric polarization, and neutron scattering measurements.« less

  18. Electron Number-Based Phase Diagram of Pr1 -xLaCex CuO4 -δ and Possible Absence of Disparity between Electron- and Hole-Doped Cuprate Phase Diagrams

    NASA Astrophysics Data System (ADS)

    Song, Dongjoon; Han, Garam; Kyung, Wonshik; Seo, Jeongjin; Cho, Soohyun; Kim, Beom Seo; Arita, Masashi; Shimada, Kenya; Namatame, Hirofumi; Taniguchi, Masaki; Yoshida, Y.; Eisaki, H.; Park, Seung Ryong; Kim, C.

    2017-03-01

    We performed annealing and angle resolved photoemission spectroscopy studies on electron-doped cuprate Pr1 -xLaCex CuO4 -δ (PLCCO). It is found that the optimal annealing condition is dependent on the Ce content x . The electron number (n ) is estimated from the experimentally obtained Fermi surface volume for x =0.10 , 0.15 and 0.18 samples. It clearly shows a significant and annealing dependent deviation from the nominal x . In addition, we observe that the pseudo-gap at hot spots is also closely correlated with n ; the pseudogap gradually closes as n increases. We established a new phase diagram of PLCCO as a function of n . Different from the x -based one, the new phase diagram shows similar antiferromagnetic and superconducting phases to those of hole doped ones. Our results raise a possibility for absence of disparity between the phase diagrams of electron- and hole-doped cuprates

  19. Rapid solid-phase microwave synthesis of highly photoluminescent nitrogen-doped carbon dots for Fe3+ detection and cellular bioimaging

    NASA Astrophysics Data System (ADS)

    He, Guili; Xu, Minghan; Shu, Mengjun; Li, Xiaolin; Yang, Zhi; Zhang, Liling; Su, Yanjie; Hu, Nantao; Zhang, Yafei

    2016-09-01

    Recently, carbon dots (CDs) have been playing an increasingly important role in industrial production and biomedical field because of their excellent properties. As such, finding an efficient method to quickly synthesize a large scale of relatively high purity CDs is of great interest. Herein, a facile and novel microwave method has been applied to prepare nitrogen doped CDs (N-doped CDs) within 8 min using L-glutamic acid as the sole reaction precursor in the solid phase condition. The as-prepared N-doped CDs with an average size of 1.64 nm are well dispersed in aqueous solution. The photoluminescence of N-doped CDs is pH-sensitive and excitation-dependent. The N-doped CDs show a strong blue fluorescence with relatively high fluorescent quantum yield of 41.2%, which remains stable even under high ionic strength. Since the surface is rich in oxygen-containing functional groups, N-doped CDs can be applied to selectively detect Fe3+ with the limit of detection of 10-5 M. In addition, they are also used for cellular bioimaging because of their high fluorescent intensity and nearly zero cytotoxicity. The solid-phase microwave method seems to be an effective strategy to rapidly obtain high quality N-doped CDs and expands their applications in ion detection and cellular bioimaging.

  20. Electrical and optical performance of transparent conducting oxide films deposited by electrostatic spray assisted vapour deposition.

    PubMed

    Hou, Xianghui; Choy, Kwang-Leong; Liu, Jun-Peng

    2011-09-01

    Transparent conducting oxide (TCO) films have the remarkable combination of high electrical conductivity and optical transparency. There is always a strong motivation to produce TCO films with good performance at low cost. Electrostatic Spray Assisted Vapor Deposition (ESAVD), as a variant of chemical vapour deposition (CVD), is a non-vacuum and low-cost deposition method. Several types of TCO films have been deposited using ESAVD process, including indium tin oxide (ITO), antimony-doped tin oxide (ATO), and fluorine doped tin oxide (FTO). This paper reports the electrical and optical properties of TCO films produced by ESAVD methods, as well as the effects of post treatment by plasma hydrogenation on these TCO films. The possible mechanisms involved during plasma hydrogenation of TCO films are also discussed. Reduction and etching effect during plasma hydrogenation are the most important factors which determine the optical and electrical performance of TCO films.

  1. Phase transitions in methyl parben doped dipalmitoyl phosphatidylethanolamine vesicles

    NASA Astrophysics Data System (ADS)

    Panicker, Lata

    2013-02-01

    Influence of the preservative, methyl paraben (MPB), on the thermal properties of dipalmitoyl phosphatidylethanolamine (DPPE) vesicles was investigated using DSC. DSC measurement of the lipid acyl chain melting transition in DPPE membrane doped with MPB, showed MPB concentration dependant modifications in the membrane thermal properties. The interesting findings are: (1) the presence of parabens increases the membrane fluidity. (2) the MPB molecules seem to be present in the aqueous bilayer interfacial region intercalated between the neighboring lipid polar headgroup (3) high concentration of MPB favored formation of crystalline and glassy phases.

  2. Stabilization of Phase IV in CexLa1-xB6 (x=0.4, 0.5) by Pr and Nd Ion Dopings

    NASA Astrophysics Data System (ADS)

    Kondo, Akihiro; Taniguchi, Toshihiro; Tanida, Hiroshi; Matsumura, Takeshi; Sera, Masafumi; Iga, Fumitoshi; Tou, Hideki; Sakakibara, Toshiro; Kunii, Satoru

    2009-09-01

    We have studied the effect of magnetic rare-earth ion (Pr, Nd) doping on phase IV in CexLa1-xB6 (x=0.4, 0.5) systems. An unexpected large increase in the IV-I transition temperature TIV--I by Pr and Nd dopings was observed, while no such increase was observed for x≥ 0.6. Although we do not know the reason why the doping effect markedly differs between x≤ 0.5 and x≥ 0.6 at present, the order parameter in phase IV for x≤ 0.5 is coupled with the magnetic dipole moment of Pr and Nd ions and phase IV is stabilized.

  3. Observation of Phase-Filling Singularities in the Optical Dielectric Function of Highly Doped n-Type Ge.

    PubMed

    Xu, Chi; Fernando, Nalin S; Zollner, Stefan; Kouvetakis, John; Menéndez, José

    2017-06-30

    Phase-filling singularities in the optical response function of highly doped (>10^{19}  cm^{-3}) germanium are theoretically predicted and experimentally confirmed using spectroscopic ellipsometry. Contrary to direct-gap semiconductors, which display the well-known Burstein-Moss phenomenology upon doping, the critical point in the joint density of electronic states associated with the partially filled conduction band in n-Ge corresponds to the so-called E_{1} and E_{1}+Δ_{1} transitions, which are two-dimensional in character. As a result of this reduced dimensionality, there is no edge shift induced by Pauli blocking. Instead, one observes the "original" critical point (shifted only by band gap renormalization) and an additional feature associated with the level occupation discontinuity at the Fermi level. The experimental observation of this feature is made possible by the recent development of low-temperature, in situ doping techniques that allow the fabrication of highly doped films with exceptionally flat doping profiles.

  4. Simple interface of high-performance liquid chromatography-atomic fluorescence spectrometry hyphenated system for speciation of mercury based on photo-induced chemical vapour generation with formic acid in mobile phase as reaction reagent.

    PubMed

    Yin, Yongguang; Liu, Jingfu; He, Bin; Shi, Jianbo; Jiang, Guibin

    2008-02-15

    Photo-induced chemical vapour generation (CVG) with formic acid in mobile phase as reaction reagent was developed as interface to on-line couple HPLC with atomic fluorescence spectrometry for the separation and determination of inorganic mercury, methylmercury (MeHg), ethylmercury (EtHg) and phenylmercury (PhHg). In the developed procedure, formic acid in mobile phase was used to decompose organomercuries and reduce Hg(2+) to mercury cold vapour under UV irradiation. Therefore, no post-column reagent was used and the flow injection system in traditional procedure is omitted. A number of operating parameters including pH of mobile phase, concentration of formate, flow rate of mobile phase, length of PTFE reaction coil, flow rate of carrier gas and Na(2)S(2)O(3) in sample matrix were optimized. The limits of detection at the optimized conditions were 0.085, 0.033, 0.029 and 0.038 microg L(-1) for inorganic mercury, MeHg, EtHg and PhHg, respectively. The developed method was validated by determination of certified reference material DORM-2 and was further applied in analyses of seafood samples from Yantai port, China. The UV-CVG with formic acid simplifies the instrumentation and reduces the analytical cost significantly.

  5. Ti(IV)-doped γ-Fe2O3 nanoparticles possessing unique textural and chemical properties: Enhanced suppression of phase transformation and promising catalytic activity

    NASA Astrophysics Data System (ADS)

    Khaleel, Abbas; Parvin, Maliha; AlTabaji, Moahmmed; Al-zamly, Ahmed

    2018-03-01

    Nanostructured Ti(IV)-doped γ-Fe2O3 was prepared via a sol-gel method, and the effect of doping on the phase stability, textural properties, and catalytic activity was investigated. Well-dispersed 10% Ti in γ-Fe2O3 structure was found to significantly suppress its conversion to α-Fe2O3. While undoped product contained both phases, γ- and α-Fe2O3, at 400 °C, its doped counterpart contained γ-Fe2O3 as the sole phase at temperatures as high as 500 °C and partial conversion started only at 550 °C. Doping also resulted in modified textural properties, including smaller particles, larger surface areas, and higher mesoporosity, as well as enhanced reducibility and catalytic activity.

  6. Phase, current, absorbance, and photoluminescence of double and triple metal ion-doped synthetic and salmon DNA thin films

    NASA Astrophysics Data System (ADS)

    Chopade, Prathamesh; Reddy Dugasani, Sreekantha; Reddy Kesama, Mallikarjuna; Yoo, Sanghyun; Gnapareddy, Bramaramba; Lee, Yun Woo; Jeon, Sohee; Jeong, Jun-Ho; Park, Sung Ha

    2017-10-01

    We fabricated synthetic double-crossover (DX) DNA lattices and natural salmon DNA (SDNA) thin films, doped with 3 combinations of double divalent metal ions (M2+)-doped groups (Co2+-Ni2+, Cu2+-Co2+, and Cu2+-Ni2+) and single combination of a triple M2+-doped group (Cu2+-Ni2+-Co2+) at various concentrations of M2+ ([M2+]). We evaluated the optimum concentration of M2+ ([M2+]O) (the phase of M2+-doped DX DNA lattices changed from crystalline (up to ([M2+]O) to amorphous (above [M2+]O)) and measured the current, absorbance, and photoluminescent characteristics of multiple M2+-doped SDNA thin films. Phase transitions (visualized in phase diagrams theoretically as well as experimentally) from crystalline to amorphous for double (Co2+-Ni2+, Cu2+-Co2+, and Cu2+-Ni2+) and triple (Cu2+-Ni2+-Co2+) dopings occurred between 0.8 mM and 1.0 mM of Ni2+ at a fixed 0.5 mM of Co2+, between 0.6 mM and 0.8 mM of Co2+ at a fixed 3.0 mM of Cu2+, between 0.6 mM and 0.8 mM of Ni2+ at a fixed 3.0 mM of Cu2+, and between 0.6 mM and 0.8 mM of Co2+ at fixed 2.0 mM of Cu2+ and 0.8 mM of Ni2+, respectively. The overall behavior of the current and photoluminescence showed increments as increasing [M2+] up to [M2+]O, then decrements with further increasing [M2+]. On the other hand, absorbance at 260 nm showed the opposite behavior. Multiple M2+-doped DNA thin films can be used in specific devices and sensors with enhanced optoelectric characteristics and tunable multi-functionalities.

  7. Plasma-assisted nitrogen doping of VACNTs for efficiently enhancing the supercapacitor performance

    NASA Astrophysics Data System (ADS)

    Mashayekhi, Alireza; Hosseini, Seyed Mahmoud; Hassanpour Amiri, Morteza; Namdar, Naser; Sanaee, Zeinab

    2016-06-01

    Nitrogen doping of vertically aligned carbon nanotubes (VACNTs) using plasma-enhanced chemical vapour deposition has been investigated to improve the supercapacitance performance of CNTs. Incorporating electrochemical measurements on the open-ended nitrogen-doped CNTs, showed the achievement of 6 times improvement in the capacitance value. For nitrogen-doped CNTs on silicon substrate, specific capacitance of 60 F g-1 was obtained in 0.5 M KCl solution, with capacity retention ratio above 90 % after cycled at 0.1 A g-1 for 5000 cycles. Using this sample, a symmetric supercapacitance was fabricated which showed the power density of 37.5 kW kg-1. The facile fabrication approach and its excellent capacitance improvement, propose it as an efficient technique for enhancing the supercapacitance performance of the carbon-based electrodes.

  8. Modelling and intepreting the isotopic composition of water vapour in convective updrafts

    NASA Astrophysics Data System (ADS)

    Bolot, M.; Legras, B.; Moyer, E. J.

    2012-08-01

    The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener-Bergeron-Findeisen process). As all of these processes are related to updraft strength, droplet size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  9. Modelling and interpreting the isotopic composition of water vapour in convective updrafts

    NASA Astrophysics Data System (ADS)

    Bolot, M.; Legras, B.; Moyer, E. J.

    2013-08-01

    The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed-phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters, including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener-Bergeron-Findeisen process). As all of these processes are related to updraft strength, particle size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  10. Atomic origins of water-vapour-promoted alloy oxidation

    NASA Astrophysics Data System (ADS)

    Luo, Langli; Su, Mao; Yan, Pengfei; Zou, Lianfeng; Schreiber, Daniel K.; Baer, Donald R.; Zhu, Zihua; Zhou, Guangwen; Wang, Yanting; Bruemmer, Stephen M.; Xu, Zhijie; Wang, Chongmin

    2018-06-01

    The presence of water vapour, intentional or unavoidable, is crucial to many materials applications, such as in steam generators, turbine engines, fuel cells, catalysts and corrosion1-4. Phenomenologically, water vapour has been noted to accelerate oxidation of metals and alloys5,6. However, the atomistic mechanisms behind such oxidation remain elusive. Through direct in situ atomic-scale transmission electron microscopy observations and density functional theory calculations, we reveal that water-vapour-enhanced oxidation of a nickel-chromium alloy is associated with proton-dissolution-promoted formation, migration, and clustering of both cation and anion vacancies. Protons derived from water dissociation can occupy interstitial positions in the oxide lattice, consequently lowering vacancy formation energy and decreasing the diffusion barrier of both cations and anions, which leads to enhanced oxidation in moist environments at elevated temperatures. This work provides insights into water-vapour-enhanced alloy oxidation and has significant implications in other material and chemical processes involving water vapour, such as corrosion, heterogeneous catalysis and ionic conduction.

  11. Atomic origins of water-vapour-promoted alloy oxidation.

    PubMed

    Luo, Langli; Su, Mao; Yan, Pengfei; Zou, Lianfeng; Schreiber, Daniel K; Baer, Donald R; Zhu, Zihua; Zhou, Guangwen; Wang, Yanting; Bruemmer, Stephen M; Xu, Zhijie; Wang, Chongmin

    2018-06-01

    The presence of water vapour, intentional or unavoidable, is crucial to many materials applications, such as in steam generators, turbine engines, fuel cells, catalysts and corrosion 1-4 . Phenomenologically, water vapour has been noted to accelerate oxidation of metals and alloys 5,6 . However, the atomistic mechanisms behind such oxidation remain elusive. Through direct in situ atomic-scale transmission electron microscopy observations and density functional theory calculations, we reveal that water-vapour-enhanced oxidation of a nickel-chromium alloy is associated with proton-dissolution-promoted formation, migration, and clustering of both cation and anion vacancies. Protons derived from water dissociation can occupy interstitial positions in the oxide lattice, consequently lowering vacancy formation energy and decreasing the diffusion barrier of both cations and anions, which leads to enhanced oxidation in moist environments at elevated temperatures. This work provides insights into water-vapour-enhanced alloy oxidation and has significant implications in other material and chemical processes involving water vapour, such as corrosion, heterogeneous catalysis and ionic conduction.

  12. Oxidation of volatile organic vapours in air by solid potassium permanganate.

    PubMed

    Mahmoodlu, Mojtaba Ghareh; Hartog, Niels; Majid Hassanizadeh, S; Raoof, Amir

    2013-06-01

    Volatile organic compounds (VOCs) may frequently contaminate groundwater and pose threat to human health when migrating into the unsaturated soil zone and upward to the indoor air. The kinetic of chemical oxidation has been investigated widely for dissolved VOCs in the saturated zone. But, so far there have been few studies on the use of in situ chemical oxidation (ISCO) of vapour phase contaminants. In this study, batch experiments were carried out to evaluate the oxidation of trichloroethylene (TCE), ethanol, and toluene vapours by solid potassium permanganate. Results revealed that solid potassium permanganate is able to transform the vapour of these compounds into harmless oxidation products. The degradation rates for TCE and ethanol were higher than for toluene. The degradation process was modelled using a kinetic model, linear in the gas concentration of VOC [ML(-3)] and relative surface area of potassium permanganate grains (surface area of potassium permanganate divided by gas volume) [L(-1)]. The second-order reaction rate constants for TCE, ethanol, and toluene were found to be equal to 2.0×10(-6) cm s(-1), 1.7×10(-7) cm s(-1), and 7.0×10(-8) cm s(-1), respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Theoretical and experimental investigations of the properties of Ge2Sb2Te5 and indium-doped Ge2Sb2Te5 phase change material

    NASA Astrophysics Data System (ADS)

    Singh, Gurinder; Kaura, Aman; Mukul, Monika; Singh, Janpreet; Tripathi, S. K.

    2014-06-01

    We have carried out comprehensive computational and experimental study on the face-centered cubic Ge2Sb2Te5 (GST) and indium (In)-doped GST phase change materials. Structural calculations, total density of states and crystal orbital Hamilton population have been calculated using first-principle calculation. 5 at.% doping of In weakens the Ge-Te, Sb-Te and Te-Te bond lengths. In element substitutes Sb to form In-Te-like structure in the GST system. In-Te has a weaker bond strength compared with the Sb-Te bond. However, both GST and doped alloy remain in rock salt structure. It is more favorable to replace Sb with In than with any other atomic position. X-ray diffraction (XRD) analysis has been carried out on thin film of In-doped GST phase change materials. XRD graph reveals that In-doped phase change materials have rock salt structure with the formation of In2Te3 crystallites in the material. Temperature dependence of impedance spectra has been calculated for thin films of GST and doped material. Thickness of the as-deposited films is calculated from Swanepoel method. Absorption coefficient (α) has been calculated for amorphous and crystalline thin films of the alloys. The optical gap (indirect band gap) energy of the amorphous and crystalline thin films has also been calculated by the equation α hν = β (hν - E_{{g }} )2 . Optical contrast (C) of pure and doped phase change materials have also been calculated. Sufficient optical contrast has been found for pure and doped phase change materials.

  14. In situ probing of doping- and stress-mediated phase transitions in a single-crystalline VO2 nanobeam by spatially resolved Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Chang, Sung-Jin; Park, Jong Bae; Lee, Gaehang; Kim, Hae Jin; Lee, Jin-Bae; Bae, Tae-Sung; Han, Young-Kyu; Park, Tae Jung; Huh, Yun Suk; Hong, Woong-Ki

    2014-06-01

    We demonstrate an experimental in situ observation of the temperature-dependent evolution of doping- and stress-mediated structural phase transitions in an individual single-crystalline VO2 nanobeam on a Au-coated substrate under exposure to hydrogen gas using spatially resolved Raman spectroscopy. The nucleation temperature of the rutile R structural phase in the VO2 nanobeam upon heating under hydrogen gas was lower than that under air. The spatial structural phase evolution behavior along the length of the VO2 nanobeam under hydrogen gas upon heating was much more inhomogeneous than that along the length of the same nanobeam under air. The triclinic T phase of the VO2 nanobeam upon heating under hydrogen gas transformed to the R phase and this R phase was stabilized even at room temperature in air after sample cooling. In particular, after the VO2 nanobeam with the R phase was annealed at approximately 250 °C in air, it exhibited the monoclinic M1 phase (not the T phase) at room temperature during heating and cooling cycles. These results were attributed to the interplay between hydrogen doping and stress associated with nanobeam-substrate interactions. Our study has important implications for engineering metal-insulator transition properties and developing functional devices based on VO2 nanostructures through doping and stress.We demonstrate an experimental in situ observation of the temperature-dependent evolution of doping- and stress-mediated structural phase transitions in an individual single-crystalline VO2 nanobeam on a Au-coated substrate under exposure to hydrogen gas using spatially resolved Raman spectroscopy. The nucleation temperature of the rutile R structural phase in the VO2 nanobeam upon heating under hydrogen gas was lower than that under air. The spatial structural phase evolution behavior along the length of the VO2 nanobeam under hydrogen gas upon heating was much more inhomogeneous than that along the length of the same nanobeam under

  15. A calorimetric study on the low temperature dynamics of doped ice V and its reversible phase transition to hydrogen ordered ice XIII.

    PubMed

    Salzmann, Christoph G; Radaelli, Paolo G; Finney, John L; Mayer, Erwin

    2008-11-07

    Doped ice V samples made from solutions containing 0.01 M HCl (DCl), HF (DF), or KOH (KOD) in H(2)O (D(2)O) were slow-cooled from 250 to 77 K at 0.5 GPa. The effect of the dopant on the hydrogen disorder --> order transition and formation of hydrogen ordered ice XIII was studied by differential scanning calorimetry (DSC) with samples recovered at 77 K. DSC scans of acid-doped samples are consistent with a reversible ice XIII <--> ice V phase transition at ambient pressure, showing an endothermic peak on heating due to the hydrogen ordered ice XIII --> disordered ice V phase transition, and an exothermic peak on subsequent cooling due to the ice V --> ice XIII phase transition. The equilibrium temperature (T(o)) for the ice V <--> ice XIII phase transition is 112 K for both HCl doped H(2)O and DCl doped D(2)O. From the maximal enthalpy change of 250 J mol(-1) on the ice XIII --> ice V phase transition and T(o) of 112 K, the change in configurational entropy for the ice XIII --> ice V transition is calculated as 2.23 J mol(-1) K(-1) which is 66% of the Pauling entropy. For HCl, the most effective dopant, the influence of HCl concentration on the formation of ice XIII was determined: on decreasing the concentration of HCl from 0.01 to 0.001 M, its effectiveness is only slightly lowered. However, further HCl decrease to 0.0001 M drastically lowered its effectiveness. HF (DF) doping is less effective in inducing formation of ice XIII than HCl (DCl) doping. On heating at a rate of 5 K min(-1), kinetic unfreezing starts in pure ice V at approximately 132 K, whereas in acid doped ice XIII it starts at about 105 K due to acceleration of reorientation of water molecules. KOH doping does not lead to formation of hydrogen ordered ice XIII, a result which is consistent with our powder neutron diffraction study (C. G. Salzmann, P. G. Radaelli, A. Hallbrucker, E. Mayer, J. L. Finney, Science, 2006, 311, 1758). We further conjecture whether or not ice XIII has a stable region in

  16. Pump-induced phase aberrations in Yb3+-doped materials(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Keppler, Sebastian; Tamer, Issa; Hornung, Marco; Körner, Jörg; Liebetrau, Hartmut; Hein, Joachim; Kaluza, Malte C.

    2017-05-01

    Optical pumping of laser materials is an effective way to create a population inversion necessary for laser operation. However, a fraction of the pump energy is always transfered as heat into the laser material, which is mainly caused by the quantum defect. For Yb3+-doped materials, the small energy difference between the pump level and the laser level and the pumping with narrowband high-power laser diodes result in a quantum defect of approx. 9%, which is significantly lower compared to other dopants e.g. Ti3+ (33%) or Nd3+ (24%). Due to the low heat introduction, high optical-to-optical efficiency and high repetition rate laser systems based on diode-pumping are well-suited for a number of applications. Here, however, laser beam quality is of crucial importance. Phase distortions and beam profile modulations can lead to optical damages as well as a significant reduction of the focal spot intensity. Pump-induced phase aberrations are the main cause for phase distortions of the amplified laser beam. The heat transferred to the material causes a change of the refractive index (dn/dT), thermal expansion and stress within the laser material, eventually leading to spatial phase aberrations (also called `thermal lens'). However, the spatially dependent distribution of the population inversion itself also leads to spatial phase aberrations. Since electron excitation directly leads to a change in the charge distribution of the laser active ions, the dynamic response of the material to external fields changes. These electronic phase aberrations (also called `population lens') are described by a change in the polarizability of the material. Due to the low quantum defect of Yb3+-doped materials, this effect becomes more important. We show the first comprehensive spatio-temporal characterization of the pump-induced phase aberration including both effects. A high-resolution interference measurement was carried out with time steps of 50µs for times during the pump period and

  17. Multi-susceptibile Single-Phased Ceramics with Both Considerable Magnetic and Dielectric Properties by Selectively Doping

    PubMed Central

    Liu, Chuyang; Zhang, Yujing; Jia, Jingguo; Sui, Qiang; Ma, Ning; Du, Piyi

    2015-01-01

    Multiferroic ceramics with extraordinary susceptibilities coexisting are vitally important for the multi-functionality and integration of electronic devices. However, multiferroic composites, as the most potential candidates, will introduce inevitable interface deficiencies and thus dielectric loss from dissimilar phases. In this study, single-phased ferrite ceramics with considerable magnetic and dielectric performances appearing simultaneously were fabricated by doping target ions in higher valence than that of Fe3+, such as Ti4+, Nb5+ and Zr4+, into BaFe12O19. In terms of charge balance, Fe3+/Fe2+ pair dipoles are produced through the substitution of Fe3+ by high-valenced ions. The electron hopping between Fe3+ and Fe2+ ions results in colossal permittivity. Whilst the single-phased ceramics doped by target ions exhibit low dielectric loss naturally due to the diminishment of interfacial polarization and still maintain typical magnetic properties. This study provides a convenient method to attain practicable materials with both outstanding magnetic and dielectric properties, which may be of interest to integration and multi-functionality of electronic devices. PMID:25835175

  18. Multi-susceptibile single-phased ceramics with both considerable magnetic and dielectric properties by selectively doping.

    PubMed

    Liu, Chuyang; Zhang, Yujing; Jia, Jingguo; Sui, Qiang; Ma, Ning; Du, Piyi

    2015-04-02

    Multiferroic ceramics with extraordinary susceptibilities coexisting are vitally important for the multi-functionality and integration of electronic devices. However, multiferroic composites, as the most potential candidates, will introduce inevitable interface deficiencies and thus dielectric loss from dissimilar phases. In this study, single-phased ferrite ceramics with considerable magnetic and dielectric performances appearing simultaneously were fabricated by doping target ions in higher valence than that of Fe(3+), such as Ti(4+), Nb(5+) and Zr(4+), into BaFe12O19. In terms of charge balance, Fe(3+)/Fe(2+) pair dipoles are produced through the substitution of Fe(3+) by high-valenced ions. The electron hopping between Fe(3+) and Fe(2+) ions results in colossal permittivity. Whilst the single-phased ceramics doped by target ions exhibit low dielectric loss naturally due to the diminishment of interfacial polarization and still maintain typical magnetic properties. This study provides a convenient method to attain practicable materials with both outstanding magnetic and dielectric properties, which may be of interest to integration and multi-functionality of electronic devices.

  19. Multi-susceptibile Single-Phased Ceramics with Both Considerable Magnetic and Dielectric Properties by Selectively Doping

    NASA Astrophysics Data System (ADS)

    Liu, Chuyang; Zhang, Yujing; Jia, Jingguo; Sui, Qiang; Ma, Ning; Du, Piyi

    2015-04-01

    Multiferroic ceramics with extraordinary susceptibilities coexisting are vitally important for the multi-functionality and integration of electronic devices. However, multiferroic composites, as the most potential candidates, will introduce inevitable interface deficiencies and thus dielectric loss from dissimilar phases. In this study, single-phased ferrite ceramics with considerable magnetic and dielectric performances appearing simultaneously were fabricated by doping target ions in higher valence than that of Fe3+, such as Ti4+, Nb5+ and Zr4+, into BaFe12O19. In terms of charge balance, Fe3+/Fe2+ pair dipoles are produced through the substitution of Fe3+ by high-valenced ions. The electron hopping between Fe3+ and Fe2+ ions results in colossal permittivity. Whilst the single-phased ceramics doped by target ions exhibit low dielectric loss naturally due to the diminishment of interfacial polarization and still maintain typical magnetic properties. This study provides a convenient method to attain practicable materials with both outstanding magnetic and dielectric properties, which may be of interest to integration and multi-functionality of electronic devices.

  20. Doping dependence of ordered phases and emergent quasiparticles in the doped Hubbard-Holstein model

    DOE PAGES

    Mendl, C. B.; Nowadnick, E. A.; Huang, E. W.; ...

    2017-11-15

    Here, we present determinant quantum Monte Carlo simulations of the hole-doped single-band Hubbard-Holstein model on a square lattice, to investigate how quasiparticles emerge when doping a Mott insulator (MI) or a Peierls insulator (PI). The MI regime at large Hubbard interaction U and small relative e-ph coupling strength λ is quickly suppressed upon doping, by drawing spectral weight from the upper Hubbard band and shifting the lower Hubbard band towards the Fermi level, leading to a metallic state with emergent quasiparticles at the Fermi level. On the other hand, the PI regime at large λ and small U persists outmore » to relatively high doping levels. We study the evolution of the d-wave superconducting susceptibility with doping, and find that it increases with lowering temperature in a regime of intermediate values of U and λ.« less

  1. Doping dependence of ordered phases and emergent quasiparticles in the doped Hubbard-Holstein model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendl, C. B.; Nowadnick, E. A.; Huang, E. W.

    Here, we present determinant quantum Monte Carlo simulations of the hole-doped single-band Hubbard-Holstein model on a square lattice, to investigate how quasiparticles emerge when doping a Mott insulator (MI) or a Peierls insulator (PI). The MI regime at large Hubbard interaction U and small relative e-ph coupling strength λ is quickly suppressed upon doping, by drawing spectral weight from the upper Hubbard band and shifting the lower Hubbard band towards the Fermi level, leading to a metallic state with emergent quasiparticles at the Fermi level. On the other hand, the PI regime at large λ and small U persists outmore » to relatively high doping levels. We study the evolution of the d-wave superconducting susceptibility with doping, and find that it increases with lowering temperature in a regime of intermediate values of U and λ.« less

  2. Water Vapour Effects in Mass Measurement

    NASA Astrophysics Data System (ADS)

    Khélifa, N.

    2008-01-01

    Water vapour density inside the mass comparator enclosure is a critical parameter whose fluctuations during mass weighing can lead to errors in the determination of an unknown mass. To monitor them, a method using DFB laser diode in the near infrared has been proposed and tested. Preliminary results of our observation of water vapour sorption and de-sorption processes from the walls and the mass standard are reported.

  3. Synergistic Effects of Sm and C Co-Doped Mixed Phase Crystalline TiO2 for Visible Light Photocatalytic Activity

    PubMed Central

    Peng, Fuchang; Gao, Honglin; Zhang, Genlin; Zhu, Zhongqi; Zhang, Jin; Liu, Qingju

    2017-01-01

    Mixed phase TiO2 nanoparticles with element doping by Sm and C were prepared via a facile sol-gel procedure. The UV-Vis light-diffuse reflectance spectroscopy analysis showed that the absorption region of co-doped TiO2 was shifted to the visible-light region, which was attributed to incorporation of samarium and carbon into the TiO2 lattice during high-temperature reaction. Samarium effectively decreased the anatase-rutile phase transformation. The grain size can be controlled by Sm doping to achieve a large specific surface area useful for the enhancement of photocatalytic activity. The photocatalytic activities under visible light irradiation were evaluated by photocatalytic degradation of methylene blue (MB). The degradation rate of MB over the Sm-C co-doped TiO2 sample was the best. Additionally, first-order apparent rate constants increased by about 4.3 times compared to that of commercial Degusssa P25 under the same experimental conditions. Using different types of scavengers, the results indicated that the electrons, holes, and •OH radicals are the main active species for the MB degradation. The high visible-light photocatalytic activity was attributed to low recombination of the photo-generated electrons and holes which originated from the synergistic effect of the co-doped ions and the heterostructure. PMID:28772569

  4. Effect of Bi doping on morphotropic phase boundary and dielectric properties of PZT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Shraddha; Acharya, Smita, E-mail: saha275@yahoo.com

    2016-05-23

    In our present attempt, Pb{sub (1-x)}Bi{sub x}Zr{sub 0.52}Ti{sub 0.48}O{sub 3} [PBZT] {where x = 0, 0.05, 0.1} is synthesized by sol-gel route. Effect of Bi addition on structure, sinterability and dielectric properties are observed. The presence of morphotropic phase boundary (coexistence of tetragonal and rhombohedral symmetry) is confirmed by X-ray diffraction. Enhancement of sinterability after Bi doping is observed through a systematic sintering program. Frequency and temperature dependent dielectric constant are studied. Bi doping in PZT is found to enhance room temperature dielectric constant. However, at high temperature the dielectric constant of pure PZT is more than that of dopedmore » PZT.« less

  5. Water vapour condensation in a partly closed structure. Comparison between results obtained with an inside wet or dry bottom wall

    NASA Astrophysics Data System (ADS)

    Batina, Jean; Peyrous, René

    2018-04-01

    We are interested in the determination of the more significant parameters acting on the water vapour condensation in a partly closed structure, submitted to external constraints (temperature and humidity), in view to recover the generated droplets as an additional source of potable water. External temperature variations, by inducing temperature differences between outside and inside of the structure, lead to convective movements and thermal variations inside this structure. Through an orifice, these movements permit a renewing of the humid inner air and can lead to the condensation of the water vapour initially contained in the inner air volume and/or on the walls. With the above hypotheses, and by using a numerical simulation [1] based on the ambient air characteristics and a finite volumes method, it appears that condensed water quantities are mainly depending on the boundary conditions imposed. These conditions are: 1) dimensions of the structure; 2) external temperature and relative hygrometry; 3) the phase φ (T/RH) linking thermal and hydrometric conditions; 4) the air renewing and its hygrometry for each phase; and 5) for each case, the fact that the inside bottom wall can be wet or dry. The resulting condensed water vapour quantities obtained, for the width section, point out clearly that they are very depending on this phase φ (T/RH) which appears as the more significant parameter and can be modified by the presence or not of a thin layer of water vapour on the inside bottom wall. Condensation phenomenon could be increased if φ could be optimized.

  6. Phase Stability and Mechanisms of Transformation of La-Doped γ-Alumina.

    PubMed

    Ren, Tianqi; Nforbi, Lum-Ngwegia N; Kanakala, Raghunath; Graeve, Olivia A

    2018-03-19

    We report the phase stability of cubic γ-Al 2 O 3 with respect to lanthanum dopant amount and describe a complete phase transition sequence up to a temperature of 1800 °C, which proceeds from La-doped γ-Al 2 O 3 to LaAlO 3 /γ-Al 2 O 3 to LaAl 11 O 18 . For this purpose, lanthanum contents from 0.81 to 10.0 atom % were incorporated into Al 2 O 3 powders. X-ray diffraction analyses show that only γ-Al 2 O 3 phase was present after heat treatment at 1000 °C for 2 h with 0.81, 1.68, 2.24, and 2.62 atom % lanthanum concentrations. The phase stabilization can be mainly attributed to the combined effects of small crystallite size of the Al 2 O 3 powders and the presence of the lanthanum dopant, which occupies the Al 2 O 3 octahedral sites. At compositions of 3.63, 5.00, 7.49, and 10.0 atom %, the amount of LaAlO 3 phase formed by the solid phase reaction between Al 2 O 3 and La 3+ ions becomes detectable under X-ray diffraction.

  7. Magnetic quantum phase transition in Cr-doped Bi2(SexTe1-x)3 driven by the Stark effect

    NASA Astrophysics Data System (ADS)

    Zhang, Zuocheng; Feng, Xiao; Wang, Jing; Lian, Biao; Zhang, Jinsong; Chang, Cuizu; Guo, Minghua; Ou, Yunbo; Feng, Yang; Zhang, Shou-Cheng; He, Ke; Ma, Xucun; Xue, Qi-Kun; Wang, Yayu

    2017-10-01

    The recent experimental observation of the quantum anomalous Hall effect has cast significant attention on magnetic topological insulators. In these magnetic counterparts of conventional topological insulators such as Bi2Te3, a long-range ferromagnetic state can be established by chemical doping with transition-metal elements. However, a much richer electronic phase diagram can emerge and, in the specific case of Cr-doped Bi2(SexTe1-x)3, a magnetic quantum phase transition tuned by the actual chemical composition has been reported. From an application-oriented perspective, the relevance of these results hinges on the possibility to manipulate magnetism and electronic band topology by external perturbations such as an electric field generated by gate electrodes—similar to what has been achieved in conventional diluted magnetic semiconductors. Here, we investigate the magneto-transport properties of Cr-doped Bi2(SexTe1-x)3 with different compositions under the effect of a gate voltage. The electric field has a negligible effect on magnetic order for all investigated compositions, with the remarkable exception of the sample close to the topological quantum critical point, where the gate voltage reversibly drives a ferromagnetic-to-paramagnetic phase transition. Theoretical calculations show that a perpendicular electric field causes a shift in the electronic energy levels due to the Stark effect, which induces a topological quantum phase transition and, in turn, a magnetic phase transition.

  8. High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil

    NASA Astrophysics Data System (ADS)

    Montgomery, J. M.; Samudrala, G. K.; Velisavljevic, N.; Vohra, Y. K.

    2016-04-01

    A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high-pressure area on the order of a few tens of seconds. This device is then used to scan the phase diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in this experiment, the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp → αSm transition proceeds in discontinuous steps at points along the expected phase boundary. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0-10 GPa and 300-650 K.

  9. New method to assess the water vapour permeance of wound coverings.

    PubMed

    Jonkman, M F; Molenaar, I; Nieuwenhuis, P; Bruin, P; Pennings, A J

    1988-05-01

    A new method for assessing the permeability to water vapour of wound coverings is presented, using the evaporimeter developed by Nilsson. This new method combines the water vapour transmission rate (WVTR) and the vapour pressure difference across a wound covering in one absolute measure: the water vapour permeance (WVP). The WVP of a wound covering is the steady flow (g) of water vapour per unit (m2) area of surface in unit (h) time induced by unit (kPa) vapour pressure difference, g.m-2.h-1.kPa-1. Since the WVP of a wound covering is a more accurate measure for the permeability than the WVTR is, it facilitates the prediction of the water exchange of a wound covering in clinical situations.

  10. High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, J. M.; Samudrala, G. K.; Velisavljevic, N.

    A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially-grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high pressure area on the order of a few tens of seconds. This device is then used to scanmore » the phase diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in the experiment the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp→αSm transition proceeds in discontinuous steps at points along the expected phase boundary. Additionally, the unit cell volumes of each phase deviate from the expected thermal expansion behavior just before each transition is observed from the diffraction data. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0 - 10 GPa and 300 - 650 K.« less

  11. High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil

    DOE PAGES

    Montgomery, J. M.; Samudrala, G. K.; Velisavljevic, N.; ...

    2016-04-07

    A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially-grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high pressure area on the order of a few tens of seconds. This device is then used to scanmore » the phase diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in the experiment the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp→αSm transition proceeds in discontinuous steps at points along the expected phase boundary. Additionally, the unit cell volumes of each phase deviate from the expected thermal expansion behavior just before each transition is observed from the diffraction data. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0 - 10 GPa and 300 - 650 K.« less

  12. Growth, improved thermal stability and spectral properties of Yb3+-ions doped high temperature phase α-Ba3Gd(BO3)3 crystals co-doped by Sr2+, Ca2+ and La3+ ions

    NASA Astrophysics Data System (ADS)

    Pan, Shangke; Zhang, Jianyu; Pan, Jianguo

    2018-02-01

    To investigate the cause of the thermal instability of Yb3+-ions doped Ba3Gd(BO3)3 crystal grown from Czochralski technique, the low temperature phase β-Ba3Gd(BO3)3 powder was synthesized at the temperature of 800 °C. To inhibit the phase transition of high temperature phase Yb:α-Ba3Gd(BO3)3 during the crystal growth process, co-doping ions Sr2+, Ca2+ and La3+ ions were introduced in Yb:α-Ba3Gd(BO3)3 crystal. The melting point increased and the thermal stability of Yb:α-Ba3Gd(BO3)3 crystal was improved by co-doping ions. The absorption peaks of co-doped crystals centered at 976 nm with FWHM of 11, 11 and 12 nm and the absorption cross sections were 3.40 × 10-21 cm2, 4.00 × 10-21 cm2 and 2.66 × 10-21 cm2, respectively. The emission cross sections at 1040 nm were 2.19 × 10-21 cm2, 2.53 × 10-21 cm2 and 1.93 × 10-21 cm2, respectively. The fluorescence times of co-doped by Sr2+, Ca2+ and La3+ ions were shorter than that of Yb:α-Ba3Gd(BO3)3 crystal. So Yb:α-Ba3Gd(BO3)3 crystals co-doped by Sr2+, Ca2+ and La3+ ions will be more suitable for LD-pumping laser.

  13. Phase stability and lattice thermal conductivity reduction in CoSb{sub 3} skutterudites, doped with chalcogen atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battabyal, M., E-mail: manjusha.battabyal@project.arci.res.in; Priyadarshini, B.; Gopalan, R.

    We report a significant reduction in the lattice thermal conductivity of the CoSb{sub 3} skuttertudites, doped with chalcogen atoms. Te/Se chalcogen atoms doped CoSb{sub 3} skutterudite samples (Te{sub 0.1}Co{sub 4}Sb{sub 12}, Se{sub 0.1}Co{sub 4}Sb{sub 12}, Te{sub 0.05}Se{sub 0.05}Co{sub 4}Sb{sub 12}) are processed by ball milling and spark plasma sintering. X-ray diffraction data combined with energy dispersive X-ray spectra indicate the doping of Te/Se chalcogen atoms in the skutterudite. The temperature dependent X-ray diffraction confirms the stability of the Te/Se doped CoSb{sub 3} skutterudite phase and absence of any secondary phase in the temperature range starting from 300 K to 773more » K. The Raman spectroscopy reveals that different chalcogen dopant atoms cause different resonant optical vibrational modes between the dopant atom and the host CoSb{sub 3} skutterudite lattice. These optical vibrational modes do scatter heat carrying acoustic phonons in a different spectral range. It was found that among the Te/Se chalcogen atoms, Te atoms alter the host CoSb{sub 3} skutterudite lattice vibrations to a larger extent than Se atoms, and can potentially scatter more Sb related acoustic phonons. The Debye model of lattice thermal conductivity confirms that the resonant phonon scattering has important contributions to the reduction of lattice thermal conductivity in CoSb{sub 3} skutterudites doped with Te/Se chalcogen atoms. Lattice thermal conductivity ∼ 0.9 W/mK at 773 K is achieved in Te{sub 0.1}Co{sub 4}Sb{sub 12} skutterudites, which is the lowest value reported so far in CoSb{sub 3} skutterudites, doped with single Te chalcogen atom.« less

  14. Competition for water vapour results in suppression of ice formation in mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Simpson, Emma L.; Connolly, Paul J.; McFiggans, Gordon

    2018-05-01

    The formation of ice in clouds can initiate precipitation and influence a cloud's reflectivity and lifetime, affecting climate to a highly uncertain degree. Nucleation of ice at elevated temperatures requires an ice nucleating particle (INP), which results in so-called heterogeneous freezing. Previously reported measurements for the ability of a particle to nucleate ice have been made in the absence of other aerosol which will act as cloud condensation nuclei (CCN) and are ubiquitous in the atmosphere. Here we show that CCN can outcompete INPs for available water vapour thus suppressing ice formation, which has the potential to significantly affect the Earth's radiation budget. The magnitude of this suppression is shown to be dependent on the mass of condensed water required for freezing. Here we show that ice formation in a state-of-the-art cloud parcel model is strongly dependent on the criteria for heterogeneous freezing selected from those previously hypothesised. We have developed an alternative criteria which agrees well with observations from cloud chamber experiments. This study demonstrates the dominant role that competition for water vapour can play in ice formation, highlighting both a need for clarity in the requirements for heterogeneous freezing and for measurements under atmospherically appropriate conditions.

  15. Medical cannabis use in Canada: vapourization and modes of delivery.

    PubMed

    Shiplo, Samantha; Asbridge, Mark; Leatherdale, Scott T; Hammond, David

    2016-10-29

    The mode of medical cannabis delivery-whether cannabis is smoked, vapourized, or consumed orally-may have important implications for its therapeutic efficacy and health risks. However, there is very little evidence on current patterns of use among Canadian medical cannabis users, particularly with respect to modes of delivery. The current study examined modes of medical cannabis delivery following regulatory changes in 2014 governing how Canadians access medical cannabis. A total of 364 approved adult Canadian medical cannabis users completed an online cross-sectional survey between April and June 2015. The survey examined patterns of medical cannabis use, modes of delivery used, and reasons for use. Participants were recruited through a convenience sample from nine Health Canada licensed producers. Using a vapourizer was the most popular mode of delivery for medical cannabis (53 %), followed by smoking a joint (47 %). The main reason for using a vapourizer was to reduce negative health consequences associated with smoking. A majority of current vapourizer users reported using a portable vapourizer (67.2 %), followed by a stationary vapourizer (41.7 %), and an e-cigarette or vape pen (19.3 %). Current use of a vapourizer was associated with fewer respiratory symptoms (AOR = 1.28, 95 % CI 1.05-1.56, p = 0.01). The findings suggest an increase in the popularity of vapourizers as the primary mode of delivery among approved medical users. Using vapourizers has the potential to prevent some of the adverse respiratory health consequences associated with smoking and may serve as an effective harm reduction method. Monitoring implications of such current and future changes to medical cannabis regulations may be beneficial to policymakers.

  16. Tuning Phase Composition of TiO2 by Sn(4+) Doping for Efficient Photocatalytic Hydrogen Generation.

    PubMed

    Wang, Fenglong; Ho, Jie Hui; Jiang, Yijiao; Amal, Rose

    2015-11-04

    The anatase-rutile mixed-phase photocatalysts have attracted extensive research interest because of the superior activity compared to their single phase counterparts. In this study, doping of Sn(4+) ions into the lattice of TiO2 facilitates the phase transformation from anatase to rutile at a lower temperature while maintaining the same crystal sizes compared to the conventional annealling approach. The mass ratios between anatase and rutile phases can be easily manipulated by varying the Sn-dopant content. Characterization results reveal that the Sn(4+) ions entered into the lattice of TiO2 by substituting some of the Ti(4+) ions and distributed evenly in the matrix of TiO2. The substitution induced the distortion of the lattice structure, which realized the phase transformation from anatase to rutile at a lower temperature and the close-contact phase junctions were consequently formed between anatase and rutile, accounting for the efficient charge separations. The mixed-phase catalysts prepared by doping Sn(4+) ions into the TiO2 exhibit superior activity for photocatalytic hydrogen generation in the presence of Au nanoparticles, relatively to their counterparts prepared by the conventional annealling at higher temperatures. The band allignment between anatase and rutile phases is established based on the valence band X-ray photoelectron spectra and diffuse reflectance spectra to understand the spatial charge separation process at the heterojunction between the two phases. The study provides a new route for the synthesis of mixed-phase TiO2 catalysts for photocatalytic applications and advances the understanding on the enhanced photocatalytic properties of anatase-rutile mixtures.

  17. Magnetic properties of Y3+ doped Bi4-xTi2FeO12 aurivillius phase ceramics

    NASA Astrophysics Data System (ADS)

    Tirupathi, Patri; Reddy, H. Satish Kumar; Babu, P. D.

    2018-05-01

    In the present paper reports a comprehensive investigation of structural, microstructural and magnetic phase transition in Y3+ doped BITF Aurivillius phase compounds. The study of surface morphology by scanning electron microscope reveals the growth of plate-like grains and further the grain size increase with increasing Y3+ composition. Low temperature magnetic studies reveals enhanced magnetic property with doping of Y3+ in BITF. It was explained by considering exchange interaction between the neighboring Fe+3 ions via electron trapped electrons at oxygen vacancies. Temperature dependent dc-magnetic studies exhibit a magnetic transitions TC = 750 K for x=0.0 TC ˜ 674 K for x=1.0 & TC ˜ 645 K for x=1.50 ceramics respectively in high temperature magnetization studies

  18. Detecting vapour bubbles in simulations of metastable water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    González, Miguel A.; Abascal, Jose L. F.; Valeriani, Chantal, E-mail: christoph.dellago@univie.ac.at, E-mail: cvaleriani@quim.ucm.es

    2014-11-14

    The investigation of cavitation in metastable liquids with molecular simulations requires an appropriate definition of the volume of the vapour bubble forming within the metastable liquid phase. Commonly used approaches for bubble detection exhibit two significant flaws: first, when applied to water they often identify the voids within the hydrogen bond network as bubbles thus masking the signature of emerging bubbles and, second, they lack thermodynamic consistency. Here, we present two grid-based methods, the M-method and the V-method, to detect bubbles in metastable water specifically designed to address these shortcomings. The M-method incorporates information about neighbouring grid cells to distinguishmore » between liquid- and vapour-like cells, which allows for a very sensitive detection of small bubbles and high spatial resolution of the detected bubbles. The V-method is calibrated such that its estimates for the bubble volume correspond to the average change in system volume and are thus thermodynamically consistent. Both methods are computationally inexpensive such that they can be used in molecular dynamics and Monte Carlo simulations of cavitation. We illustrate them by computing the free energy barrier and the size of the critical bubble for cavitation in water at negative pressure.« less

  19. Controlled in situ boron doping of diamond thin films using solution phase

    NASA Astrophysics Data System (ADS)

    Roy, M.; Dua, A. K.; Nuwad, J.; Girija, K. G.; Tyagi, A. K.; Kulshreshtha, S. K.

    2006-12-01

    Controlled boron doping of diamond film using nontoxic reagents is a challenge in itself. During the present study, attempts have been made to dope diamond films in situ with boron from a solution of boric acid (H3BO3) in methanol (CH3OH) using a specially designed bubbler that ensured continuous and controlled flow of vapors of boron precursors during deposition. The samples are thoroughly characterized using a host of techniques comprising of x-ray photoelectron spectroscopy, Raman, x-ray diffraction, and current-voltage measurements (I-V). Cross-sectional micro-Raman spectroscopy has been used to obtain depth profile of boron in diamond films. Boron concentration ([B]) in the films is found to vary linearly on a semilog scale with molarity (M) of H3BO3 in CH3OH. Lattice constant of our samples is smaller than the reported American society for testing and materials (ASTM) values due to oxygen incorporation and it increases with [B] in the diamond samples. Heavily boron doped samples exhibit Fano deformation of the Raman line shape and negative and/zero activation barrier in temperature dependent I-V measurements that indicate the formation of metallic phase in the samples. The present study illustrates the feasibility of safe and controlled boron doping of diamond films using a solution of H3BO3 in CH3OH over a significant range of [B] from semiconductor to metallic regime but with a little adverse effect due to unintentional but unavoidable incorporation of oxygen.

  20. Impact of water vapour and carbon dioxide on surface composition of C{sub 3}A polymorphs studied by X-ray photoelectron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubina, E.; Plank, J.; Black, L., E-mail: l.black@leeds.ac.uk

    2015-07-15

    The surface specific analytical method, X-ray photoelectron spectroscopy (XPS), has been used to study the effects of water vapour and CO{sub 2} on the cubic and orthorhombic polymorphs of C{sub 3}A. Significant differences between the two polymorphs were observed in the XPS spectra. Upon exposure to water vapour, both polymorphs produced C{sub 4}AH{sub 13} on their surfaces. Additionally, the sodium-doped o-C{sub 3}A developed NaOH and traces of C{sub 3}AH{sub 6} on its surface. Subsequent carbonation yielded mono carboaluminate on both polymorphs. Large amounts of Na{sub 2}CO{sub 3} also formed on the surface of o-C{sub 3}A as a result of carbonationmore » of NaOH. Furthermore, the extent of carbonation was much more pronounced for o-C{sub 3}A{sub o} than for c-C{sub 3}A.« less

  1. Optical properties of C-doped bulk GaN wafers grown by halide vapor phase epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khromov, S.; Hemmingsson, C.; Monemar, B.

    2014-12-14

    Freestanding bulk C-doped GaN wafers grown by halide vapor phase epitaxy are studied by optical spectroscopy and electron microscopy. Significant changes of the near band gap (NBG) emission as well as an enhancement of yellow luminescence have been found with increasing C doping from 5 × 10{sup 16} cm{sup −3} to 6 × 10{sup 17} cm{sup −3}. Cathodoluminescence mapping reveals hexagonal domain structures (pits) with high oxygen concentrations formed during the growth. NBG emission within the pits even at high C concentration is dominated by a rather broad line at ∼3.47 eV typical for n-type GaN. In the area without pits,more » quenching of the donor bound exciton (DBE) spectrum at moderate C doping levels of 1–2 × 10{sup 17} cm{sup −3} is observed along with the appearance of two acceptor bound exciton lines typical for Mg-doped GaN. The DBE ionization due to local electric fields in compensated GaN may explain the transformation of the NBG emission.« less

  2. No sodium in the vapour plumes of Enceladus.

    PubMed

    Schneider, Nicholas M; Burger, Matthew H; Schaller, Emily L; Brown, Michael E; Johnson, Robert E; Kargel, Jeffrey S; Dougherty, Michele K; Achilleos, Nicholas A

    2009-06-25

    The discovery of water vapour and ice particles erupting from Saturn's moon Enceladus fuelled speculation that an internal ocean was the source. Alternatively, the source might be ice warmed, melted or crushed by tectonic motions. Sodium chloride (that is, salt) is expected to be present in a long-lived ocean in contact with a rocky core. Here we report a ground-based spectroscopic search for atomic sodium near Enceladus that places an upper limit on the mixing ratio in the vapour plumes orders of magnitude below the expected ocean salinity. The low sodium content of escaping vapour, together with the small fraction of salt-bearing particles, argues against a situation in which a near-surface geyser is fuelled by a salty ocean through cracks in the crust. The lack of observable sodium in the vapour is consistent with a wide variety of alternative eruption sources, including a deep ocean, a freshwater reservoir, or ice. The existing data may be insufficient to distinguish between these hypotheses.

  3. Prediction of vapour-liquid and vapour-liquid-liquid equilibria of nitrogen-hydrocarbon mixtures used in J-T refrigerators

    NASA Astrophysics Data System (ADS)

    Narayanan, Vineed; Venkatarathnam, G.

    2018-03-01

    Nitrogen-hydrocarbon mixtures are widely used as refrigerants in J-T refrigerators operating with mixtures, as well as in natural gas liquefiers. The Peng-Robinson equation of state has traditionally been used to simulate the above cryogenic process. Multi parameter Helmholtz energy equations are now preferred for determining the properties of natural gas. They have, however, been used only to predict vapour-liquid equilibria, and not vapour-liquid-liquid equilibria that can occur in mixtures used in cryogenic mixed refrigerant processes. In this paper the vapour-liquid equilibrium of binary mixtures of nitrogen-methane, nitrogen-ethane, nitrogen-propane, nitrogen-isobutane and three component mixtures of nitrogen-methane-ethane and nitrogen-methane-propane have been studied with the Peng-Robinson and the Helmholtz energy equations of state of NIST REFPROP and compared with experimental data available in the literature.

  4. Gelator-doped liquid-crystal phase grating with multistable and dynamic modes

    NASA Astrophysics Data System (ADS)

    Lin, Hui-Chi; Yang, Meng-Ru; Tsai, Sheng-Feng; Yan, Shih-Chiang

    2014-01-01

    We demonstrate a gelator-doped nematic liquid-crystal (LC) phase grating, which can be operated in both the multistable mode and the dynamic mode. Thermoreversible association and dissociation of the gelator molecules can vary and fix the multistable diffraction efficiencies of the gratings. A voltage (V) can also be applied to modulate dynamically the diffraction efficiencies of the grating, which behaves as a conventional LC grating. Experimental results show that the variations of the diffraction efficiencies in the multistable and dynamic modes are similar. The maximum diffraction efficiency is approximately 30% at V = 2 V.

  5. Catalyst-free growth of Al-doped SnO2 zigzag-nanobelts for low ppm detection of organic vapours

    NASA Astrophysics Data System (ADS)

    Sinha, Sudip Kumar; Ghosh, Saptarshi

    2016-10-01

    In this effort, we report on development of specific sensors dedicated for detection of two of these volatiles, namely ethanol and acetone, below the prescribed statutory limits. Single crystalline Al-doped SnO2 zigzag nanobelt structures were deposited on Si substrate by a catalyst-free thermal evaporation method. The Al-doped SnO2 zigzag nanostructures exhibit high sensitivity and repeatability together with coveted features like fast response and excellent stability. Structural attributes involving the crystal quality and morphology of Al-doped SnO2 zigzag nanobelts were analyzed using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy and transmission electron microscopy. The microscopic images revealed formation of randomly oriented 'zigzag-like' nanobelts with characteristic width between 60 nm and 200 nm and length of 50-300 μm. The Al-doping was observed to have a discerning effect in enhancing the sensitivity in comparison to the pristine nanowires by creating excess oxygen vacancies in the crystal lattice, confirmed through XPS and PL spectra.

  6. Implementation of nitrogen-doped titanium-tungsten tunable heater in phase change random access memory and its effects on device performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Chun Chia; Zhao, Rong, E-mail: zhao-rong@sutd.edu.sg; Chong, Tow Chong

    2014-10-13

    Nitrogen-doped titanium-tungsten (N-TiW) was proposed as a tunable heater in Phase Change Random Access Memory (PCRAM). By tuning N-TiW's material properties through doping, the heater can be tailored to optimize the access speed and programming current of PCRAM. Experiments reveal that N-TiW's resistivity increases and thermal conductivity decreases with increasing nitrogen-doping ratio, and N-TiW devices displayed (∼33% to ∼55%) reduced programming currents. However, there is a tradeoff between the current and speed for heater-based PCRAM. Analysis of devices with different N-TiW heaters shows that N-TiW doping levels could be optimized to enable low RESET currents and fast access speeds.

  7. High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, J. M.; Samudrala, G. K.; Vohra, Y. K.

    A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high-pressure area on the order of a few tens of seconds. This device is then used to scan the phasemore » diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in this experiment, the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp → αSm transition proceeds in discontinuous steps at points along the expected phase boundary. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0–10 GPa and 300–650 K.« less

  8. CMOS-compatible method for doping of buried vertical polysilicon structures by solid phase diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turkulets, Yury; Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer-Sheva 8410501; Silber, Amir

    2016-03-28

    Polysilicon receives attention nowadays as a means to incorporate 3D-structured photonic devices into silicon processes. However, doping of buried layers of a typical 3D structure has been a challenge. We present a method for doping of buried polysilicon layers by solid phase diffusion. Using an underlying silicon oxide layer as a dopant source facilitates diffusion of dopants into the bottom side of the polysilicon layer. The polysilicon is grown on top of the oxide layer, after the latter has been doped by ion implantation. Post-growth heat treatment drives in the dopant from the oxide into the polysilicon. To model themore » process, we studied the diffusion of the two most common silicon dopants, boron (B) and phosphorus (P), using secondary ion mass spectroscopy profiles. Our results show that shallow concentration profiles can be achieved in a buried polysilicon layer using the proposed technique. We present a quantitative 3D model for the diffusion of B and P in polysilicon, which turns the proposed method into an engineerable technique.« less

  9. Preparation of manganese doped cadmium sulfide nanoparticles in zincblende phase and their magnetic properties.

    PubMed

    Nakaya, Masafumi; Tanaka, Itaru; Muramatsu, Atsushi

    2012-12-01

    In this study, the random dope of Mn into CdS nanoparticles in zincblende phase has been carried out under the mild reaction condition. The resulting nanoparticles were characterized by energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), X-ray diffractometer (XRD), UV-Vis spectrometer, PL spectrometer, and SQUID. EDX showed that the compositions of Mn doped CdS nanoparticles were readily controlled. TEM showed the particle sizes were not significantly affected by the compositions, retaining to be ca. 3 nm with a narrow size distribution. UV-Vis and PL spectra of the resulting nanoparticles showed the intra-Mn level may be affected by the quantum size effect. SQUID measurement showed that the resulting nanoparticles showed diamagnetism, paramagnetism and superparamagnetism dependent on Mn content.

  10. Phase diagram of boron-doped diamond revisited by thickness-dependent transport studies

    NASA Astrophysics Data System (ADS)

    Bousquet, J.; Klein, T.; Solana, M.; Saminadayar, L.; Marcenat, C.; Bustarret, E.

    2017-04-01

    We report on a detailed study of the electronic properties of a series of boron-doped diamond epilayers with dopant concentration ranging from 1 ×1020 to 3 ×1021cm-3 and thicknesses (d⊥) ranging from 2 μ m to 8 nm. By using well-defined mesa patterns that minimize the parasitic currents induced by doping inhomogeneities, we have been able to unveil a new phase diagram differing from all previous reports. We first show that the boron concentration corresponding to the onset of superconductivity (above 50 mK) does not coincide with that of the metal-insulator transition; the latter one corresponding to the vanishing of the residual conductivity σ0 (deduced from σ (T ) =σ (0 ) +A √{T } fits to the low temperature data). Moreover, a dimensional crossover from 3D to 2D transport properties could be induced by reducing d⊥ in both (metallic) nonsuperconducting and superconducting epilayers but without any reduction of Tc in the latter.

  11. Stable tetragonal phase and magnetic properties of Fe-doped HfO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Sales, T. S. N.; Cavalcante, F. H. M.; Bosch-Santos, B.; Pereira, L. F. D.; Cabrera-Pasca, G. A.; Freitas, R. S.; Saxena, R. N.; Carbonari, A. W.

    2017-05-01

    In this paper, the effect in structural and magnetic properties of iron doping with concentration of 20% in hafnium dioxide (HfO2) nanoparticles is investigated. HfO2 is a wide band gap oxide with great potential to be used as high-permittivity gate dielectrics, which can be improved by doping. Nanoparticle samples were prepared by sol-gel chemical method and had their structure, morphology, and magnetic properties, respectively, investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) with electron back scattering diffraction (EBSD), and magnetization measurements. TEM and SEM results show size distribution of particles in the range from 30 nm to 40 nm with small dispersion. Magnetization measurements show the blocking temperature at around 90 K with a strong paramagnetic contribution. XRD results show a major tetragonal phase (94%).

  12. M2+ Doping Induced Simultaneous Phase/Size Control and Remarkable Enhanced Upconversion Luminescence of NaLnF4 Probes for Optical-Guided Tiny Tumor Diagnosis.

    PubMed

    Li, Youbin; Li, Xiaolong; Xue, Zhenluan; Jiang, Mingyang; Zeng, Songjun; Hao, Jianhua

    2017-05-01

    Doping has played a vital role in constructing desirable hybrid materials with tunable functions and properties via incorporating atoms into host matrix. Herein, a simple strategy for simultaneously modifying the phase, size, and upconversion luminescence (UCL) properties of the NaLnF 4 (Ln = Y, Yb) nanocrystals by high-temperature coprecipitation through nonequivalent M 2+ doping (M = Mg 2+ , Co 2+ ) has been demonstrated. The phase transformation from cubic to hexagonal is readily achieved by doping M 2+ . Compared with Mg-free sample, a remarkable enhancement of overall UCL (≈27.5 times) is obtained by doping Mg 2+ . Interestingly, owing to the efficient UCL, red UCL-guided tiny tumor (down to 3 mm) diagnosis is demonstrated for the first time. The results open up a new way of designing high efficient UCL probe with combination of hexagonal phase and small size for tiny tumor detection. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A study of suppressed formation of low-conductivity phases in doped Li 7La 3Zr 2O 12 garnets by in situ neutron diffraction

    DOE PAGES

    Chen, Yan; Rangasamy, Ezhiylmurugan; dela Cruz, Clarina R.; ...

    2015-09-28

    Doped Li 7La 3Zr 2O 12 garnets, oxide-based solids with good Li + conductivity and compatibility, show great potential as leading electrolyte material candidates for all-solid-state lithium ion batteries. Still yet, the conductive bulk usually suffers from the presence of secondary phases and the transition towards a low-conductivity tetragonal phase during synthesis. Dopants are designed to stabilize the high-conductive cubic phase and suppress the formation of the low-conductivity phases. In situ neutron diffraction enables a direct observation of the doping effects by monitoring the phase evolutions during garnet synthesis. It reveals the reaction mechanism involving the temporary presence of intermediatemore » phases. The off-stoichiometry due to the liquid Li 2CO 3 evaporation leads to the residual of the low-conductivity intermediate phase in the as-synthesized bulk. Appropriate doping of an active element may alter the component of the intermediate phases and promote the completion of the reaction. While the dopants aid to stabilize most of the cubic phase, a small amount of tetragonal phase tends to form under a diffusion process. Lastly, the in situ observations provide the guideline of process optimization to suppress the formation of unwanted low-conductivity phases.« less

  14. Intercomparison of TCCON and MUSICA Water Vapour Products

    NASA Astrophysics Data System (ADS)

    Weaver, D.; Strong, K.; Deutscher, N. M.; Schneider, M.; Blumenstock, T.; Robinson, J.; Notholt, J.; Sherlock, V.; Griffith, D. W. T.; Barthlott, S.; García, O. E.; Smale, D.; Palm, M.; Jones, N. B.; Hase, F.; Kivi, R.; Ramos, Y. G.; Yoshimura, K.; Sepúlveda, E.; Gómez-Peláez, Á. J.; Gisi, M.; Kohlhepp, R.; Warneke, T.; Dohe, S.; Wiegele, A.; Christner, E.; Lejeune, B.; Demoulin, P.

    2014-12-01

    We present an intercomparison between the water vapour products from the Total Carbon Column Observing Network (TCCON) and the MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA), two datasets from ground-based Fourier Transform InfraRed (FTIR) spectrometers with good global representation. Where possible, comparisons to radiosondes are also included. The near-infrared TCCON measurements are optimized to provide precise monitoring of greenhouse gases for carbon cycle studies; however, TCCON's retrievals also produce water vapour products. The mid-infrared MUSICA products result from retrievals optimized to give precise and accurate information about H2O, HDO, and δD. The MUSICA water vapour products have been validated by extensive intercomparisons with H2O and δD in-situ measurements made from ground, radiosonde, and aircraft (Schneider et al. 2012, 2014), as well as by intercomparisons with satellite-based H2O and δD remote sensing measurements (Wiegele et al., 2014). This dataset provides a valuable reference point for other measurements of water vapour. This study is motivated by the limited intercomparisons performed for TCCON water vapour products and limited characterisation of their uncertainties. We compare MUSICA and TCCON products to assess the potential for TCCON measurements to contribute to studies of the water cycle, water vapour's role in climate and use as a tracer for atmospheric dynamics, and to evaluate the performance of climate models. The TCCON and MUSICA products result from measurements taken using the same FTIR instruments, enabling a comparison with constant instrumentation. The retrieval techniques differ, however, in their method and a priori information. We assess the impact of these differences and characterize the comparability of the TCCON and MUSICA datasets.

  15. Determination of diffusion and partition coefficients of model migrants by direct contact and vapour phase transfer from low-density polyethylene films into cake.

    PubMed

    Paseiro-Cerrato, Rafael; Rodríguez-Bernaldo de Quirós, Ana; Otero-Pazos, Pablo; Sendón, Raquel; Paseiro-Losada, Perfecto

    2018-03-01

    The aim of the present study was to determine the migration kinetics of one photoinitiator, benzophenone, and two optical brighteners, Uvitex OB and 1,4-diphenyl-1,3-butadiene (DPBD), from low-density polyethylene (LDPE) films into cake. Transfer was assessed by both direct contact and also the vapour phase. To perform the migration tests by direct contact, plastic films enriched with the additives were placed between two cake slices. To evaluate the migration through the gas phase, cake and the fortified LDPE film were placed with no direct contact in a glass container that was hermetically closed. Samples were stored at different time-temperature conditions. Target compounds were extracted from the films with ethanol (70°C, 24 h) and analysed by HPLC-DAD. Relevant parameters such as partition and diffusion coefficients between food and plastic film were calculated. The Arrhenius equation was applied to estimate the diffusion coefficient at any temperature. The data indicate that migration of benzophenone occurs in a significant extent into cake by both direct contact and through the gas phase (no direct contact). Conversely, very little migration occurred for Uvitex OB by direct contact and none through the gas phase. Results for benzophenone suggest that migration through the gas phase should be considered when evaluating migration from food packaging materials into food.

  16. Supercooled liquid vapour pressures and related thermodynamic properties of polycyclic aromatic hydrocarbons determined by gas chromatography.

    PubMed

    Haftka, Joris J H; Parsons, John R; Govers, Harrie A J

    2006-11-24

    A gas chromatographic method using Kováts retention indices has been applied to determine the liquid vapour pressure (P(i)), enthalpy of vaporization (DeltaH(i)) and difference in heat capacity between gas and liquid phase (DeltaC(i)) for a group of polycyclic aromatic hydrocarbons (PAHs). This group consists of 19 unsubstituted, methylated and sulphur containing PAHs. Differences in log P(i) of -0.04 to +0.99 log units at 298.15K were observed between experimental values and data from effusion and gas saturation studies. These differences in log P(i) have been fitted with multilinear regression resulting in a compound and temperature dependent correction. Over a temperature range from 273.15 to 423.15K, differences in corrected log P(i) of a training set (-0.07 to +0.03 log units) and a validation set (-0.17 to 0.19 log units) were within calculated error ranges. The corrected vapour pressures also showed a good agreement with other GC determined vapour pressures (average -0.09 log units).

  17. Tm-doped TiO2 and Tm2Ti2O7 pyrochlore nanoparticles: enhancing the photocatalytic activity of rutile with a pyrochlore phase.

    PubMed

    De Los Santos, Desiré M; Navas, Javier; Aguilar, Teresa; Sánchez-Coronilla, Antonio; Fernández-Lorenzo, Concha; Alcántara, Rodrigo; Piñero, Jose Carlos; Blanco, Ginesa; Martín-Calleja, Joaquín

    2015-01-01

    Tm-doped TiO2 nanoparticles were synthesized using a water-controlled hydrolysis reaction. Analysis was performed in order to determine the influence of the dopant concentration and annealing temperature on the phase, crystallinity, and electronic and optical properties of the resulting material. Various characterization techniques were utilized such as X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and UV-vis spectroscopy. For the samples annealed at 773 and 973 K, anatase phase TiO2 was obtained, predominantly internally doped with Tm(3+). ICP-AES showed that a doping concentration of up to 5.8 atom % was obtained without reducing the crystallinity of the samples. The presence of Tm(3+) was confirmed by X-ray photoelectron spectroscopy and UV-vis spectroscopy: the incorporation of Tm(3+) was confirmed by the generation of new absorption bands that could be assigned to Tm(3+) transitions. Furthermore, when the samples were annealed at 1173 K, a pyrochlore phase (Tm2Ti2O7) mixed with TiO2 was obtained with a predominant rutile phase. The photodegradation of methylene blue showed that this pyrochlore phase enhanced the photocatalytic activity of the rutile phase.

  18. Gelator-doped liquid-crystal phase grating with multistable and dynamic modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Hui-Chi, E-mail: huichilin@nfu.edu.tw; Yang, Meng-Ru; Tsai, Sheng-Feng

    2014-01-06

    We demonstrate a gelator-doped nematic liquid-crystal (LC) phase grating, which can be operated in both the multistable mode and the dynamic mode. Thermoreversible association and dissociation of the gelator molecules can vary and fix the multistable diffraction efficiencies of the gratings. A voltage (V) can also be applied to modulate dynamically the diffraction efficiencies of the grating, which behaves as a conventional LC grating. Experimental results show that the variations of the diffraction efficiencies in the multistable and dynamic modes are similar. The maximum diffraction efficiency is approximately 30% at V = 2 V.

  19. Boiling vapour-type fluids from the Nifonea vent field (New Hebrides Back-Arc, Vanuatu, SW Pacific): Geochemistry of an early-stage, post-eruptive hydrothermal system

    NASA Astrophysics Data System (ADS)

    Schmidt, Katja; Garbe-Schönberg, Dieter; Hannington, Mark D.; Anderson, Melissa O.; Bühring, Benjamin; Haase, Karsten; Haruel, Christy; Lupton, John; Koschinsky, Andrea

    2017-06-01

    In 2013, high-temperature vent fluids were sampled in the Nifonea vent field. This field is located within the caldera of a large shield-type volcano of the Vate Trough, a young extensional rift in the New Hebrides back-arc. Hydrothermal venting occurs as clear and black smoker fluids with temperatures up to 368 °C, the hottest temperatures measured so far in the western Pacific. The physico-chemical conditions place the fluids within the two-phase field of NaCl-H2O, and venting is dominated by vapour phase fluids with Cl concentrations as low as 25 mM. The fluid composition, which differs between the individual vent sites, is interpreted to reflect the specific geochemical fluid signature of a hydrothermal system in its initial, post-eruptive stage. The strong Cl depletion is accompanied by low alkali/Cl ratios compared to more evolved hydrothermal systems, and very high Fe/Cl ratios. The concentrations of REY (180 nM) and As (21 μM) in the most Cl-depleted fluid are among the highest reported so far for submarine hydrothermal fluids, whereas the inter-element REY fractionation is only minor. The fluid signature, which has been described here for the first time in a back-arc setting, is controlled by fast fluid passage through basaltic volcanic rocks, with extremely high water-rock ratios and only limited water-rock exchange, phase separation and segregation, and (at least) two-component fluid mixing. Metals and metalloids are unexpectedly mobile in the vapour phase fluids, and the strong enrichments of Fe, REY, and As highlight the metal transport capacity of low-salinity, low-density vapours at the specific physico-chemical conditions at Nifonea. One possible scenario is that the fluids boiled before the separated vapour phase continued to react with fresh glassy lavas. The mobilization of metals is likely to occur by leaching from fresh glass and grain boundaries and is supported by the high water/rock ratios. The enrichment of B and As is further controlled

  20. Water vapour and wind measurements by a two micron space lidar

    NASA Astrophysics Data System (ADS)

    Ghibaudo, J.-B.; Labandibar, J.-Y.

    2018-04-01

    AEROSPATIALE presents the main results of the feasibility study under ESA contract on a coherent 2μm lidar instrument capable of measuring water vapour and wind velocity in the planetary boundary layer. The selected instrument configuration and the associated performance are provided, and the main critical subsystems identified (laser configuration, coherent receiver chain architecture, frequency locking and offsetting architecture. The second phase of this study is dedicated to breadboard the most critical elements of such an instrument in order to technologically consolidate its feasibility.

  1. Chemical analysis of superconducting phase in K-doped picene

    NASA Astrophysics Data System (ADS)

    Kambe, Takashi; Nishiyama, Saki; Nguyen, Huyen L. T.; Terao, Takahiro; Izumi, Masanari; Sakai, Yusuke; Zheng, Lu; Goto, Hidenori; Itoh, Yugo; Onji, Taiki; Kobayashi, Tatsuo C.; Sugino, Hisako; Gohda, Shin; Okamoto, Hideki; Kubozono, Yoshihiro

    2016-11-01

    Potassium-doped picene (K3.0picene) with a superconducting transition temperature (T C) as high as 14 K at ambient pressure has been prepared using an annealing technique. The shielding fraction of this sample was 5.4% at 0 GPa. The T C showed a positive pressure-dependence and reached 19 K at 1.13 GPa. The shielding fraction also reached 18.5%. To investigate the chemical composition and the state of the picene skeleton in the superconducting sample, we used energy-dispersive x-ray (EDX) spectroscopy, MALDI-time-of-flight (MALDI-TOF) mass spectroscopy and x-ray diffraction (XRD). Both EDX and MALDI-TOF indicated no contamination with materials other than K-doped picene or K-doped picene fragments, and supported the preservation of the picene skeleton. However, it was also found that a magnetic K-doped picene sample consisted mainly of picene fragments or K-doped picene fragments. Thus, removal of the component contributing the magnetic quality to a superconducting sample should enhance the volume fraction.

  2. Synthesis and impurity doping of GaN powders by the two-stage vapor-phase method for phosphor applications

    NASA Astrophysics Data System (ADS)

    Hara, K.; Okuyama, E.; Yonemura, A.; Uchida, T.; Okamoto, N.

    2006-09-01

    The analysis of particle formation and the doping of luminescent impurities during the two-stage vapor-phase synthesis of GaN powder were carried. GaN particles were grown very fast during the second stage of this method, and the increment in particle size was larger for higher reaction temperature in the region between 800 and 1000 °C. The analysis on the behaviour of particle growth based on the reaction kinetics suggested that the growth almost finishes in a few seconds with an extremely high rate at the early stage at 1000 °C, whereas the growth lasts with relatively low rates for a time longer than the actual growth duration for the case of lower temperature synthesis. GaN powders doped with various impurity atoms were synthesized by supplying impurity sources with GaCl during the second stage. The samples doped with Zn, Mg and Tb showed emissions characteristic for each doped impurity.

  3. Femtosecond laser pulse induced phase transition of Cr-doped Sb2Te1 films studied with a pump-probe system

    NASA Astrophysics Data System (ADS)

    Jiang, Minghui; Wang, Qing; Lei, Kai; Wang, Yang; Liu, Bo; Song, Zhitang

    2016-10-01

    The Femtosecond laser pulse induced phase transition dynamics of Cr-doped Sb2Te1 films was studied by real-time reflectivity measurements with a pump-probe system. It was found that crystallization of the as-deposited CrxSb2Te1 phase-change thin films exhibits a multi-stage process lasting for about 40ns.The time required for the multi-stage process seems to be not related to the contents of Cr element. The durations of the crystallization and amorphization processes are approximately the same. Doping Cr into Sb2Te1 thin film can improve its photo-thermal stability without obvious change in the crystallization rate. Optical images and image intensity cross sections are used to visualize the transformed regions. This work may provide further insight into the phase-change mechanism of CrxSb2Te1 under extra-non-equilibrium conditions and aid to develop new ultrafast phase-change memory materials.

  4. Growth and optical characteristics of Tm-doped AlGaN layer grown by organometallic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Takatsu, J.; Fuji, R.; Tatebayashi, J.; Timmerman, D.; Lesage, A.; Gregorkiewicz, T.; Fujiwara, Y.

    2018-04-01

    We report on the growth and optical properties of Tm-doped AlGaN layers by organometallic vapor phase epitaxy (OMVPE). The morphological and optical properties of Tm-doped GaN (GaN:Tm) and Tm-doped AlGaN (AlGaN:Tm) were investigated by Nomarski differential interference contrast microscopy and photoluminescence (PL) characterization. Nomarski images reveal an increase of surface roughness upon doping Tm into both GaN and AlGaN layers. The PL characterization of GaN:Tm shows emission in the near-infrared range originating from intra-4f shell transitions of Tm3+ ions. In contrast, AlGaN:Tm also exhibits blue light emission from Tm3+ ions. In that case, the wider band gap of the AlGaN host allows energy transfer to higher states of the Tm3+ ions. With time-resolved PL measurements, we could distinguish three types of luminescent sites of Tm3+ in the AlGaN:Tm layer, having different decay times. Our results confirm that Tm ions can be doped into GaN and AlGaN by OMVPE, and show potential for the fabrication of novel high-color-purity blue light emitting diodes.

  5. Effects of boron addition on a-Si(90)Ge(10):H films obtained by low frequency plasma enhanced chemical vapour deposition.

    PubMed

    Pérez, Arllene M; Renero, Francisco J; Zúñiga, Carlos; Torres, Alfonso; Santiago, César

    2005-06-29

    Optical, structural and electric properties of (a-(Si(90)Ge(10))(1-y)B(y):H) thin film alloys, deposited by low frequency plasma enhanced chemical vapour deposition, are presented. The chemical bonding structure has been studied by IR spectroscopy, while the composition was investigated by Raman spectroscopy. A discussion about boron doping effects, in the composition and bonding of samples, is presented. Transport of carriers has been studied by measurement of the conductivity dependence on temperature, which increases from 10(-3) to 10(1) Ω(-1) cm(-1) when the boron content varies from 0 to 50%. Similarly, the activation energy is between 0.62 and 0.19 eV when the doping increases from 0 to 83%. The optical properties have been determined from the film's optical transmission, using Swanepoel's method. It is shown that the optical gap varies from 1.3 to 0.99 eV.

  6. Computer simulation study of the nematic-vapour interface in the Gay-Berne model

    NASA Astrophysics Data System (ADS)

    Rull, Luis F.; Romero-Enrique, José Manuel

    2017-06-01

    We present computer simulations of the vapour-nematic interface of the Gay-Berne model. We considered situations which correspond to either prolate or oblate molecules. We determine the anchoring of the nematic phase and correlate it with the intermolecular potential parameters. On the other hand, we evaluate the surface tension associated to this interface. We find a corresponding states law for the surface tension dependence on the temperature, valid for both prolate and oblate molecules.

  7. Liquid and vapour-phase antifungal activities of essential oils against Candida albicans and non-albicans Candida.

    PubMed

    Mandras, Narcisa; Nostro, Antonia; Roana, Janira; Scalas, Daniela; Banche, Giuliana; Ghisetti, Valeria; Del Re, Simonetta; Fucale, Giacomo; Cuffini, Anna Maria; Tullio, Vivian

    2016-08-30

    , thymol and α-pinene against Candida spp., including fluconazole/voriconazole resistant strains. These data encourage adequately controlled and randomized clinical investigations. The use in vapour phase could have additional advantages without requiring direct contact, resulting in easy of environmental application such as in hospital, and/or in school.

  8. Behaviour of the iron vapour core in the arc of a controlled short-arc GMAW process with different shielding gases

    NASA Astrophysics Data System (ADS)

    Wilhelm, G.; Kozakov, R.; Gött, G.; Schöpp, H.; Uhrlandt, D.

    2012-02-01

    The controlled metal transfer process (CMT) is a variation of the gas metal arc welding (GMAW) process which periodically varies wire feeding speed. Using a short-arc burning phase to melt the wire tip before the short circuit, heat input to the workpiece is reduced. Using a steel wire and a steel workpiece, iron vapour is produced in the arc, its maximum concentration lying centrally. The interaction of metal vapour and welding gas considerably impacts the arc profile and, consequently, the heat transfer to the weldpool. Optical emission spectroscopy has been applied to determine the radial profiles of the plasma temperature and iron vapour concentration, as well as their temporal behaviour in the arc period for different mixtures of Ar, O2 and CO2 as shielding gases. Both the absolute iron vapour density and the temporal expansion of the iron core differ considerably for the gases Ar + 8%O2, Ar + 18% CO2 and 100% CO2 respectively. Pronounced minimum in the radial temperature profile is found in the arc centre in gas mixtures with high Ar content under the presence of metal vapour. This minimum disappears in pure CO2 gas. Consequently, the temperature and electrical and thermal conductivity in the arc when CO2 is used as a shielding gas are considerably lower.

  9. Combustion dynamics of low vapour pressure nanofuel droplets

    NASA Astrophysics Data System (ADS)

    Pandey, Khushboo; Chattopadhyay, Kamanio; Basu, Saptarshi

    2017-07-01

    manifested in two frequency ranges: (i) buoyant flame flickering and (ii) auxiliary frequencies arising from high intensity secondary ejections due to bubble ruptures. Addition of alumina NPs enhances the heat absorption rate and ensures the rapid transfer of fuel parcels (detached daughter droplets) from droplet surface to flame front through secondary ejections. Therefore, average HR shows an increasing trend with particle loading rate (PLR). The perikinetic agglomeration model is used to explain the formation of gelatinous sheath during the last phase of droplet burning. Gelatinous mass formed results in bubble entrapment. SEM images of combustion precipitates show entrapped bubble cavities along with surface and sub-surface blowholes. Morphology of combustion precipitate shows a strong variation with PLRs. We have established the coupling mechanisms among heat release, shape oscillations, and secondary atomizations that underline the combustion behaviour of such low vapour pressure nanofuels.

  10. Claims in vapour device (e-cigarette) regulation: A Narrative Policy Framework analysis.

    PubMed

    O'Leary, Renée; Borland, Ron; Stockwell, Tim; MacDonald, Marjorie

    2017-06-01

    The electronic cigarette or e-cigarette (vapour device) is a consumer product undergoing rapid growth, and governments have been adopting regulations on the sale of the devices and their nicotine liquids. Competing claims about vapour devices have ignited a contentious debate in the public health community. What claims have been taken up in the state arena, and how have they possibly influenced regulatory outcomes? This study utilized Narrative Policy Framework to analyze the claims made about vapour devices in legislation recommendation reports from Queensland Australia, Canada, and the European Union, and the 2016 deeming rule legislation from the United States, and examined the claims and the regulatory outcomes in these jurisdictions. The vast majority of claims in the policy documents represented vapour devices as a threat: an unsafe product harming the health of vapour device users, a gateway product promoting youth tobacco uptake, and a quasi-tobacco product impeding tobacco control. The opportunity for vapour devices to promote cessation or reduce exposure to toxins was very rarely presented, and these positive claims were not discussed at all in two of the four documents studied. The dominant claims of vapour devices as a public health threat have supported regulations that have limited their potential as a harm reduction strategy. Future policy debates should evaluate the opportunities for vapour devices to decrease the health and social burdens of the tobacco epidemic. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Mixed garnet laser crystals for water vapour DIAL transmitter

    NASA Astrophysics Data System (ADS)

    Treichel, Rainer; Czeranowsky, Christoph; Ileri, Bilge; Petermann, Klaus; Huber, Günter

    2017-11-01

    There are more or less well established technologies such as the optical-parametric-oscillator (OPO), the Raman-laser, and the Ti-Sapphire laser, which are able to emit laser light in the region of the water vapour absorption lines. For WALES the regions of about 935 nm, 942 nm, and 944 nm have been identified as the most suitable wavelength ranges. However, each of these laser designs is highly sophisticated. Current baseline for WALES is the Ti-Sapphire laser. A fourth possibility to achieve these wavelength ranges is to shift the groundstate laser lines (938 nm and 946 nm) of the Nd:YAG laser by replacing Aluminium and Yttrium by other rare earth elements. Changes of the host lattice characteristics lead to a shift of the upper and lower laser levels. These modified crystals are summarized under the name of "Mixed Garnet" crystals. Only the Mixed Garnet lasers can be pumped directly with diode laser and use a direct approach to generate the required laser pulses without frequency conversion. Therefore no additional non-linear crystals are needed and a higher electric to optical efficiency is expected as well as single frequency operation using spectral tuning elements like etalons. Such lasers have the great potential to fulfil the requirements and to become the preferred transmitter concept for WALES as well as for follow up missions. Within a ESA study several crystal compositions have been grown, spectrally characterised and analysed. Absorbed space radiation energy in the crystal lattice causes colour centres, which can reabsorb the pump and laser wavelength and consequently reduce the laser gain considerably. Co-dopants such as Chromium and Cerium are able to suppress the colour centres and are candidates for effective radiation hardening. The results of the crystal tuning, the co-doping with different radiation hardeners and the radiation tests will be presented. There applicability for a space based water vapour DIAL transmitter will be discussed.

  12. Atrial and ventricular septal changes in ethanol vapour exposed chick embryos.

    PubMed

    Kamran, Kiran; Khan, Muhammad Yunus; Minhas, Liaqat Ali

    2015-03-01

    To study the effects of ethanol vapour exposure on development of atrial and ventricular septa of chick embryo. The experimental study was conducted at the College of Physicians and Surgeons, Islamabad, from 2006 to 2007. The experimental and control groups were further divided into three subgroups based on the day of sacrifice. The experimental group was exposed to ethanol vapours produced in a specially-designed vapour chamber and then compared with age-matched controls. There were 90 eggs in each of the two groups. The development of inter-ventricular septum completed at day 7 of development in chick embryo. Ethanol vapour exposure produced a small discontinuity at day 10 of development in a chick embryo which may be labelled as ventricular septal defect since ventricular development is completed by day 7. Interatrial septum formed till day 7 with small perforations which persisted till hatching. Ethanol vapour exposure may lead to ventricular septal defect.

  13. Sensing response of copper phthalocyanine salt dispersed glass with organic vapours

    NASA Astrophysics Data System (ADS)

    Ridhi, R.; Sachdeva, Sheenam; Saini, G. S. S.; Tripathi, S. K.

    2016-05-01

    Copper Phthalocyanine and other Metal Phthalocyanines are very flexible and tuned easily to modify their structural, spectroscopic, optical and electrical properties by either functionalizing them with various substituent groups or by replacing or adding a ligand to the central metal atom in the phthalocyanine ring and accordingly can be made sensitive and selective to various organic species or gaseous vapours. In the present work, we have dispersed Copper Phthalocyanine Salt (CuPcS) in sol-gel glass form using chemical route sol-gel method and studied its sensing mechanism with organic vapours like methanol and benzene and found that current increases onto their exposure with vapours. A variation in the activation energies was also observed with exposure of vapours.

  14. Impact of carrier doping on electrical properties of laser-induced liquid-phase-crystallized silicon thin films for solar cell application

    NASA Astrophysics Data System (ADS)

    Umishio, Hiroshi; Matsui, Takuya; Sai, Hitoshi; Sakurai, Takeaki; Matsubara, Koji

    2018-02-01

    Large-grain-size (>1 mm) liquid-phase-crystallized silicon (LPC-Si) films with a wide range of carrier doping levels (1016-1018 cm-3 either of the n- or p-type) were prepared by irradiating amorphous silicon with a line-shaped 804 nm laser, and characterized for solar cell applications. The LPC-Si films show high electron and hole mobilities with maximum values of ˜800 and ˜200 cm2 V-1 s-1, respectively, at a doping level of ˜(2-4) × 1016 cm-3, while their carrier lifetime monotonically increases with decreasing carrier doping level. A grain-boundary charge-trapping model provides good fits to the measured mobility-carrier density relations, indicating that the potential barrier at the grain boundaries limits the carrier transport in the lowly doped films. The open-circuit voltage and short-circuit current density of test LPC-Si solar cells depend strongly on the doping level, peaking at (2-5) × 1016 cm-3. These results indicate that the solar cell performance is governed by the minority carrier diffusion length for the highly doped films, while it is limited by majority carrier transport as well as by device design for the lowly doped films.

  15. Charge partitioning and anomalous hole doping in Rh-doped Sr 2 IrO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chikara, S.; Fabbris, G.; Terzic, J.

    2017-02-01

    The simultaneous presence of sizable spin-orbit interactions and electron correlations in iridium oxides has led to predictions of novel ground states including Dirac semimetals, Kitaev spin liquids, and superconductivity. Electron and hole doping studies of spin-orbit assisted Mott insulator Sr2IrO4 are being intensively pursued due to extensive parallels with the La2CuO4 parent compound of cuprate superconductors. In particular, the mechanism of charge doping associated with replacement of Ir with Rh ions remains controversial with profound consequences for the interpretation of electronic structure and transport data. Using x-ray absorption near edge structure measurements at the Rh L, K, and Ir Lmore » edges we observe anomalous evolution of charge partitioning between Rh and Ir with Rh doping. The partitioning of charge between Rh and Ir sites progresses in a way that holes are initially doped into the J(eff) = 1/2 band at low x only to be removed from it at higher x values. This anomalous hole doping naturally explains the reentrant insulating phase in the phase diagram of Sr2Ir1-x Rh-x O-4 and ought to be considered when searching for superconductivity and other emergent phenomena in iridates doped with 4d elements.« less

  16. Charge partitioning and anomalous hole doping in Rh-doped Sr2IrO4

    NASA Astrophysics Data System (ADS)

    Chikara, S.; Fabbris, G.; Terzic, J.; Cao, G.; Khomskii, D.; Haskel, D.

    2017-02-01

    The simultaneous presence of sizable spin-orbit interactions and electron correlations in iridium oxides has led to predictions of novel ground states including Dirac semimetals, Kitaev spin liquids, and superconductivity. Electron and hole doping studies of spin-orbit assisted Mott insulator Sr2Ir O4 are being intensively pursued due to extensive parallels with the La2CuO4 parent compound of cuprate superconductors. In particular, the mechanism of charge doping associated with replacement of Ir with Rh ions remains controversial with profound consequences for the interpretation of electronic structure and transport data. Using x-ray absorption near edge structure measurements at the Rh L, K, and Ir L edges we observe anomalous evolution of charge partitioning between Rh and Ir with Rh doping. The partitioning of charge between Rh and Ir sites progresses in a way that holes are initially doped into the Jeff=1 /2 band at low x only to be removed from it at higher x values. This anomalous hole doping naturally explains the reentrant insulating phase in the phase diagram of Sr2Ir1 -xRhxO4 and ought to be considered when searching for superconductivity and other emergent phenomena in iridates doped with 4 d elements.

  17. Diode laser-induced infrared fluorescence of water vapour

    NASA Astrophysics Data System (ADS)

    Li, Hejie; Hanson, Ronald K.; Jeffries, Jay B.

    2004-07-01

    Infrared laser-induced fluorescence (LIF) of water vapour was investigated for its potential as a spatially resolved gasdynamic diagnostic. A cw diode laser operating near 1392 nm was scanned across a single absorption transition in the ngr1 + ngr3 band of H2O in a static cell, and the resulting fluorescence signal was collected near 2.7 µm (both ngr1 and ngr3 bands). Experiments were conducted at low pressure in pure water vapour and mixtures of water vapour and N2 using a 20 mW laser in a double-pass arrangement. A simple analytical model was developed to relate LIF intensity to gas properties as a function of laser power. The spectrally resolved, single-line excitation spectrum was fitted with a Voigt profile, allowing inference of the water vapour temperature from the Doppler-broadened component of the measured fluorescence lineshape. A two-line excitation scheme was also investigated as a means of measuring temperature with reduced measurement time. From these initial measurements, we estimate that a practical sensor for atmospheric pressure applications would require a minimum of 1-2 W of laser power for two-line, fixed-wavelength temperature measurements and a minimum of about 70 W of power for scanned-wavelength measurements.

  18. CO 2-fluxing collapses metal mobility in magmatic vapour

    DOE PAGES

    van Hinsberg, V. J.; Berlo, K.; Migdisov, A. A.; ...

    2016-05-18

    Magmatic systems host many types of ore deposits, including world-class deposits of copper and gold. Magmas are commonly an important source of metals and ore-forming fluids in these systems. In many magmatic-hydrothermal systems, low-density aqueous fluids, or vapours, are significant metal carriers. Such vapours are water-dominated shallowly, but fluxing of CO 2-rich vapour exsolved from deeper magma is now recognised as ubiquitous during open-system magma degassing. Furthermore, we show that such CO 2-fluxing leads to a sharp drop in element solubility, up to a factor of 10,000 for Cu, and thereby provides a highly efficient, but as yet unrecognised mechanismmore » for metal deposition.« less

  19. Effect of Mg(2+) doping on beta-alpha phase transition in tricalcium phosphate (TCP) bioceramics.

    PubMed

    Frasnelli, Matteo; Sglavo, Vincenzo M

    2016-03-01

    The beta to alpha transition in tricalcium phosphate (TCP) bioceramics containing different amount of magnesium was studied in the present work. Mg-doped TCP powder was obtained by solid-state reaction starting from pure calcium carbonate, ammonium phosphate dibasic and magnesium oxide powders. The β to α transformation temperature was identified by dilatometric and thermo-differential analyses. Small pellets produced by uniaxial pressing samples were employed to study the influence of Mg(2+) on the transition kinetic, after sintering at 1550°C and subsequent slow or fast cooling down to room temperature. The evolution of β- and α-TCP crystalline phases during each thermal treatment was determined by X-ray powder diffraction analysis combined with Rietveld method-based software An annealing treatment, suitable to reconvert metastable α phase to the more clinically suitable β phase, was also investigated. It is shown that the presence of magnesium within the TCP lattice strongly influences the kinetic of the β⇆α phase transition, promoting the spontaneous α→β reconversion even upon fast cooling, or slowing down the β→α transition during heating. Similarly, it allows the α→β transformation in TCP sintered components by optimized annealing treatment at 850°C. This work concerns the effect of Mg(2+) doping on the β→α phase reconstructive transition in tricalcium phosphate (TCP), one of the most important bio-resorbable materials for bone tissue regeneration. The transition occurs upon the sintering process and is has been shown to be strongly irreversible upon cooling, leading to technological issues such as poor mechanical properties and excessive solubility due to the presence of metastable α-phase. This paper points out the kinetic contribution of Mg(2+) on the spontaneous α→β reconversion also upon fast cooling (i.e. quenching). Moreover, an annealing treatment has been shown to be beneficial to remove the retained α-phase in

  20. A full-spectrum photocatalyst with strong near-infrared photoactivity derived from synergy of nano-heterostructured Er3+-doped multi-phase oxides.

    PubMed

    Chen, Huabin; Liu, Wenxia; Hu, Bin; Qin, Zhuozhuo; Liu, Hong

    2017-12-07

    The development of full-spectrum photocatalysts active in the near-infrared (NIR) region has gained increasing attention in the photodegradation of organic pollutants. Herein, we designed a full-spectrum photocatalyst with strong NIR photoactivity based on the synergy of Er 3+ -doped ZnO-CuO-ZnAl 2 O 4 multi-phase oxides (Er 3+ -doped Zn/Cu/Al-MPO) via the formation of n-p-n double heterojunctions. The photocatalyst was prepared by synthesizing nanosheets of a Zn/Cu/Al/Er hydrotalcite-like compound (Zn/Cu/Al/Er-HLC) with a co-precipitation method followed by calcination of the nanosheets at 800 °C. The as-prepared Er 3+ -doped Zn/Cu/Al-MPO inherits the nanosheet morphology of Zn/Cu/Al/Er-HLC, and displays over-doubled photoactivity in the entire ultraviolet (UV), visible and NIR regions compared to undoped Zn/Cu/Al-MPO. The excellent photocatalytic activity of Er 3+ -doped Zn/Cu/Al-MPO, especially its strong NIR photoactivity, is ascribed to its Er 3+ -doped CuO-involved multi-crystalline phase heterostructure, i.e., n-p-n double heterojunctions, which does not only offer an enhanced NIR absorption but also promotes the separation of photogenerated charge carriers. Importantly, the synergy of all the parts of the n-p-n double heterojuctions plays an important role in interface band structure regulation for the enhancement of the photocatalytic properties of Er 3+ -doped Zn/Cu/Al-MPO. This work has demonstrated the feasibility of utilizing hydrotalcite-like precursors in the design of full-spectrum photocatalysts active in the NIR region.

  1. Sensing response of copper phthalocyanine salt dispersed glass with organic vapours

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridhi, R.; Sachdeva, Sheenam; Saini, G. S. S.

    2016-05-06

    Copper Phthalocyanine and other Metal Phthalocyanines are very flexible and tuned easily to modify their structural, spectroscopic, optical and electrical properties by either functionalizing them with various substituent groups or by replacing or adding a ligand to the central metal atom in the phthalocyanine ring and accordingly can be made sensitive and selective to various organic species or gaseous vapours. In the present work, we have dispersed Copper Phthalocyanine Salt (CuPcS) in sol-gel glass form using chemical route sol-gel method and studied its sensing mechanism with organic vapours like methanol and benzene and found that current increases onto their exposuremore » with vapours. A variation in the activation energies was also observed with exposure of vapours.« less

  2. Structure and Magnetic Properties of Rare Earth Doped Transparent Alumina

    NASA Astrophysics Data System (ADS)

    Limmer, Krista; Neupane, Mahesh; Chantawansri, Tanya

    Recent experimental studies of rare earth (RE) doped alumina suggest that the RE induced novel phase-dependent structural and magnetic properties. Motivated by these efforts, the effects of RE doping of alpha and theta alumina on the local structure, magnetic properties, and phase stability have been examined in this first principles study. Although a direct correlation between the magnetic field dependent materials properties observed experimentally and calculated from first principles is not feasible because of the applied field and the scale, the internal magnetic properties and other properties of the doped materials are evaluated. The RE dopants are shown to increase the substitutional site volume as well as increasingly distort the site structure as a function of ionic radii. Doping both the alpha (stable) and theta (metastable) phases enhanced the relative stability of the theta phase. The energetic doping cost and internal magnetic moment were shown to be a function of the electronic configuration of the RE-dopant, with magnetic moment directly proportional to the number of unpaired electrons and doping cost being inversely related.

  3. Comparative study on the roles of anisotropic epitaxial strain and chemical doping in inducing the antiferromagnetic insulator phase in manganite films

    NASA Astrophysics Data System (ADS)

    Jin, Feng; Feng, Qiyuan; Guo, Zhuang; Lan, Da; Wang, Lingfei; Gao, Guanyin; Xu, Haoran; Chen, Binbin; Chen, Feng; Lu, Qingyou; Wu, Wenbin

    2017-11-01

    Epitaxial strain and chemical doping are two different methods that are commonly used to tune the physical properties of epitaxial perovskite oxide films, but their cooperative effects are less addressed. Here we try to tune the phase separation (PS) in (La1-xP rx) 2 /3C a1 /3Mn O3 (0 ≤x ≤0.4 , LPCMO) films via cooperatively controlling the anisotropic epitaxial strain (AES) and the Pr doping. These films are grown simultaneously on NdGa O3(110 ) ,(LaAlO3) 0.3(SrAl0.5Ta0.5O3 ) 0.7(001 ) , and NdGa O3(001 ) substrates with progressively increased in-plane AES, and probed by x-ray diffraction, magnetotransport, and magnetic force microscopy (MFM) measurements. Although it is known that for x =0 the AES can enhance the orthorhombicity of the films yielding a phase diagram with the antiferromagnetic charge-ordered insulator (AF-COI) state induced, which is quite different from the bulk one, we illustrate that the Pr doping can further drive the films towards a more robust COI state. This cooperative effect is reflected by the increasing magnetic fields needed to melt the COI phase as a function of AES and the doping level. More strikingly, by directly imaging the phase competition morphology of the LPCMO /NdGa O3(001 ) films via MFM, we find that during COI melting the PS domain structure is subject to both AES and the quenched disorder. However, in the reverse process, as the magnetic field is decreased, the COI phase reappears and the AES dominates leaving a crystalline-orientation determined self-organized microstructure. This finding suggests that the PS states and the domain configurations can be selectively controlled by the AES and/or the quenched disorder, which may shed some light on the engineering of PS domains for device fabrications.

  4. Electrochemically modulated liquid chromatography using a boron-doped diamond particle stationary phase

    PubMed Central

    Muna, Grace W.; Swope, Vernon M.; Swain, Greg M.; Porter, Marc D.

    2011-01-01

    This paper reports on preliminary tests of the performance of boron-doped diamond powder (BDDP) as a stationary phase in electrochemically modulated liquid chromatography (EMLC). EMLC manipulates retention through changes in the potential applied (Eappl) to a conductive packing. Porous graphitic carbon (PGC) has routinely been utilized as a material in EMLC separations. Herein the utility of BDDP as a stationary phase in EMLC was investigated and its stability, both compositionally and microstructurally, relative to PGC was compared. The results show that BDDP is stable over a wide range of Eappl values (i.e., −1.2 to +1.2 V vs. Ag/AgCl, sat’d NaCl). The data also reveal that electrostatics play a key role in the adsorption of the aromatic sulfonates on the BDDP stationary phase, and that these analytes are more weakly retained in comparison to the PGC support. The potential for this methodology to provide a means to advance the understanding of molecular adsorption and retention mechanisms on carbonaceous materials is briefly discussed. PMID:18922535

  5. Stabilization of high Tc phase in bismuth cuprate superconductor by lead doping

    NASA Technical Reports Server (NTRS)

    Gupta, Ram. P.; Pachauri, J. P.; Khokle, W. S.; Nagpal, K. C.; Date, S. K.

    1991-01-01

    It has been widely ascertained that doping of lead in Bi-Sr-Ca-Cu-O systems promotes the growth of high T sub c (110 K) phase, improves critical current density, and lowers processing temperature. A systematic study was undertaken to determine optimum lead content and processing conditions to achieve these properties. A large number of samples with cationic compositions of Bi(2-x)Pb(x)Sr2Ca2Cu3 (x = 0.2 to 2.0) were prepared by conventional solid state reaction technique. Samples of all compositions were annealed together at a temperature and characterized through resistance temperature (R-T) measurements and x ray diffraction to determine the zero resistance temperature, T sub c(0) and to identify presence of phases, respectively. The annealing temperature was varied between 790 and 880 C to optimize processing parameters. Results are given. In brief, an optimum process is reported along with composition of leaded bismuth cuprate superconductor which yields nearly a high T sub c single phase with highly stable superconducting properties.

  6. Rare-earth-doped optical-fiber core deposition using full vapor-phase SPCVD process

    NASA Astrophysics Data System (ADS)

    Barnini, A.; Robin, T.; Cadier, B.; Aka, G.; Caurant, D.; Gotter, T.; Guyon, C.; Pinsard, E.; Guitton, P.; Laurent, A.; Montron, R.

    2017-02-01

    One key parameter in the race toward ever-higher power fiber lasers remains the rare earth doped optical core quality. Modern Large Mode Area (LMA) fibers require a fine radial control of the core refractive index (RI) close to the silica level. These low RI are achieved with multi-component materials that cannot be readily obtained using conventional solution doping based Modified Chemical Vapor Deposition (MCVD) technology. This paper presents a study of such optical material obtained through a full-vapor phase Surface Plasma Chemical Vapor Deposition (SPCVD). The SPCVD process generates straight glassy films on the inner surface of a thermally regulated synthetic silica tube under vacuum. The first part of the presented results points out the feasibility of ytterbium-doped aluminosilicate fibers by this process. In the second part we describe the challenge controlling the refractive index throughout the core diameter when using volatile fluorine to create efficient LMA fiber profiles. It has been demonstrated that it is possible to counter-act the loss of fluorine at the center of the core by adjusting the core composition locally. Our materials yielded, when used in optical fibers with numerical apertures ranging from 0.07 to 0.09, power conversion efficiency up to 76% and low background losses below 20 dB/km at 1100nm. Photodarkening has been measured to be similar to equivalent MCVD based fibers. The use of cerium as a co-dopant allowed for a complete mitigation of this laser lifetime detrimental effect. The SPCVD process enables high capacity preforms and is particularly versatile when it comes to radial tailoring of both rare earth doping level and RI. Large core diameter preforms - up to 4mm - were successfully produced.

  7. A water vapour monitor at Paranal Observatory

    NASA Astrophysics Data System (ADS)

    Kerber, Florian; Rose, Thomas; Chacón, Arlette; Cuevas, Omar; Czekala, Harald; Hanuschik, Reinhard; Momany, Yazan; Navarrete, Julio; Querel, Richard R.; Smette, Alain; van den Ancker, Mario E.; Cure, Michel; Naylor, David A.

    2012-09-01

    We present the performance characteristics of a water vapour monitor that has been permanently deployed at ESO's Paranal observatory as a part of the VISIR upgrade project. After a careful analysis of the requirements and an open call for tender, the Low Humidity and Temperature Profiling microwave radiometer (LHATPRO), manufactured by Radiometer Physics GmbH (RPG), has been selected. The unit measures several channels across the strong water vapour emission line at 183 GHz, necessary for resolving the low levels of precipitable water vapour (PWV) that are prevalent on Paranal (median ~2.5 mm). The unit comprises the above humidity profiler (183-191 GHz), a temperature profiler (51-58 GHz), and an infrared radiometer (~10 μm) for cloud detection. The instrument has been commissioned during a 2.5 week period in Oct/Nov 2011, by comparing its measurements of PWV and atmospheric profiles with the ones obtained by 22 radiosonde balloons. In parallel an IR radiometer (Univ. Lethbridge) has been operated, and various observations with ESO facility spectrographs have been taken. The RPG radiometer has been validated across the range 0.5 - 9 mm demonstrating an accuracy of better than 0.1 mm. The saturation limit of the radiometer is about 20 mm. Currently, the radiometer is being integrated into the Paranal infrastructure to serve as a high time-resolution monitor in support of VLT science operations. The water vapour radiometer's ability to provide high precision, high time resolution information on this important aspect of the atmosphere will be most useful for conducting IR observations with the VLT under optimal conditions.

  8. Stratospheric water vapour in the vicinity of the Arctic polar vortex

    NASA Astrophysics Data System (ADS)

    Maturilli, M.; Fierli, F.; Yushkov, V.; Lukyanov, A.; Khaykin, S.; Hauchecorne, A.

    2006-07-01

    The stratospheric water vapour mixing ratio inside, outside, and at the edge of the polar vortex has been accurately measured by the FLASH-B Lyman-Alpha hygrometer during the LAUTLOS campaign in Sodankylä, Finland, in January and February 2004. The retrieved H2O profiles reveal a detailed view on the Arctic lower stratospheric water vapour distribution, and provide a valuable dataset for the validation of model and satellite data. Analysing the measurements with the semi-lagrangian advection model MIMOSA, water vapour profiles typical for the polar vortex' interior and exterior have been identified, and laminae in the observed profiles have been correlated to filamentary structures in the potential vorticity field. Applying the validated MIMOSA transport scheme to specific humidity fields from operational ECMWF analyses, large discrepancies from the observed profiles arise. Although MIMOSA is able to reproduce weak water vapour filaments and improves the shape of the profiles compared to operational ECMWF analyses, both models reveal a dry bias of about 1 ppmv in the lower stratosphere above 400 K, accounting for a relative difference from the measurements in the order of 20%. The large dry bias in the analysis representation of stratospheric water vapour in the Arctic implies the need for future regular measurements of water vapour in the polar stratosphere to allow the validation and improvement of climate models.

  9. Vapour-Deposited Cesium Lead Iodide Perovskites: Microsecond Charge Carrier Lifetimes and Enhanced Photovoltaic Performance

    PubMed Central

    2017-01-01

    Metal halide perovskites such as methylammonium lead iodide (MAPbI3) are highly promising materials for photovoltaics. However, the relationship between the organic nature of the cation and the optoelectronic quality remains debated. In this work, we investigate the optoelectronic properties of fully inorganic vapour-deposited and spin-coated black-phase CsPbI3 thin films. Using the time-resolved microwave conductivity technique, we measure charge carrier mobilities up to 25 cm2/(V s) and impressively long charge carrier lifetimes exceeding 10 μs for vapour-deposited CsPbI3, while the carrier lifetime reaches less than 0.2 μs in the spin-coated samples. Finally, we show that these improved lifetimes result in enhanced device performance with power conversion efficiencies close to 9%. Altogether, these results suggest that the charge carrier mobility and recombination lifetime are mainly dictated by the inorganic framework rather than the organic nature of the cation. PMID:28852710

  10. The effect of deuteration and doping on the phase transition temperature of grown glycine phosphite single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perumal, R., E-mail: perumal-cgc@yahoo.co.uk; Chandru, A. Lakshmi; Babu, S. Moorthy

    The Glycinium Phosphite (GPI) compound is a representative of hydrogen-bonded ferroelectric crystals. The ordering of protons could be expected below the room temperature (225 K). Crystals grown from the milipore water as well as deuterated solvents respectively. The corresponding hydrogen bond distance was stretched out due to the effect of isotopic substitution that increase the phase transition temperature. Further to improve the phase transition temperature, GPI crystal was doped with organic complexing agent and various metals and the obtained results are presented.

  11. Modulation-doped growth of mosaic graphene with single-crystalline p–n junctions for efficient photocurrent generation

    PubMed Central

    Yan, Kai; Wu, Di; Peng, Hailin; Jin, Li; Fu, Qiang; Bao, Xinhe; Liu, Zhongfan

    2012-01-01

    Device applications of graphene such as ultrafast transistors and photodetectors benefit from the combination of both high-quality p- and n-doped components prepared in a large-scale manner with spatial control and seamless connection. Here we develop a well-controlled chemical vapour deposition process for direct growth of mosaic graphene. Mosaic graphene is produced in large-area monolayers with spatially modulated, stable and uniform doping, and shows considerably high room temperature carrier mobility of ~5,000 cm2 V−1 s−1 in intrinsic portion and ~2,500 cm2 V−1 s−1 in nitrogen-doped portion. The unchanged crystalline registry during modulation doping indicates the single-crystalline nature of p–n junctions. Efficient hot carrier-assisted photocurrent was generated by laser excitation at the junction under ambient conditions. This study provides a facile avenue for large-scale synthesis of single-crystalline graphene p–n junctions, allowing for batch fabrication and integration of high-efficiency optoelectronic and electronic devices within the atomically thin film. PMID:23232410

  12. Observation of reduced phase transition temperature in N-doped thermochromic film of monoclinic VO2

    NASA Astrophysics Data System (ADS)

    Wan, Meinan; Xiong, Mo; Li, Neng; Liu, Baoshun; Wang, Shuo; Ching, Wai-Yim; Zhao, Xiujian

    2017-07-01

    Research on monoclinic (M1) phase of VO2 has attracted a great of interest for smart coating applications due to its exceptional thermochromic property. Herein, we report the results using a novel approach to synthesize N-doped VO2(M1) thin films with high purity by heat treatment in NH3 atmosphere. The N dopant in the film can be regulated by varying NH3 concentration during the annealing process. We find that the N atoms are located at the interstitial sites or substitute oxygen atoms, and the V-N bonds in the VO2 thin films increase with NH3 concentration. The metal to insulator transition (MIT) temperature (τc,h) of the VO2 thin film is effectively reduced from 80.0 to 62.9 °C, while the solar modulation efficiency (ΔTsol) and the modulation efficiency at 2000 nm (ΔT2000nm) are 7.36% and 55.6% respectively. The band gap of N-doped VO2 thin films related to MIT (Eg1) is estimated to be as low as 0.18-0.25 eV whereas the band gap associated with the visible transparency (Eg2) is about 1.50-1.58 eV. Based on the highly accurate first-principles calculations, the Eg1 of VO2 (M1) is reduced after substituted or interstitial N-doping, while the Eg2 alters with the mode of N-doping, which is excellent agreement with experimental measurement.

  13. Light emitting diodes as a monitor to study P-type doping of GaN-based heterostructures grown by MOVPE

    NASA Astrophysics Data System (ADS)

    Schineller, B.; Guttzeit, A.; Vertommen, F.; Schön, O.; Heuken, M.; Heime, K.; Beccard, R.

    1998-06-01

    The group-III nitrides are an interesting material system for applications in the blue spectral region and for high-power and high-temperature devices. P-type doping in the metalorganic vapour-phase growth process, however, suffers from the material's high-background donor concentration. Hydrogen passivation furthermore decreases the number of activated acceptors [N.M. Johnson, W. Götz, J. Neugebauer, C.G. van de Walle, Mater. Res. Soc. Symp. Proc. 395 (1996) 723; A. Bosin, V. Fiorentini, Mater. Res. Soc. Symp. Proc. 395 (1996) 503] [1, 2]. Thermal treatment was found to increase the amount of activated acceptors [S.J. Pearton, S. Bendi, K.S. Jones, V. Krishnamoorthy, R.G. Wilson, F. Ren, R.F. Karlicek, R.A. Stall, Appl. Phys. Lett. 69 (1996) 1879; Y. Li, Y. Lu, H. Shen, M. Wraback, C.Y. Hwang, M. Schurman, W. Mayo, T. Salagaj, R.A. Stall, Mater. Res. Soc. Symp. Proc. 395 (1996) 369] [3, 4]. We have investigated the influences of thermal treatment process steps on the electrical and optical properties of Mg-doped single layers and used the results to fabricate AlGaN/GaN heterostructure LED layers. A simple test structure was employed to assess the electro-optical properties of the LED structures.

  14. Charge partitioning and anomalous hole doping in Rh-doped Sr 2 IrO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chikara, Shalinee; Fabbris, G.; Terzic, J.

    2017-02-15

    The simultaneous presence of sizable spin-orbit interactions and electron correlations in iridium oxides has led to predictions of novel ground states including Dirac semimetals, Kitaev spin liquids, and superconductivity. Electron and hole doping studies of spin-orbit assisted Mott insulator Sr 2IrO 4 are being intensively pursued due to extensive parallels with the La 2CuO 4 parent compound of cuprate superconductors. In particular, the mechanism of charge doping associated with replacement of Ir with Rh ions remains controversial with profound consequences for the interpretation of electronic structure and transport data. Using x-ray absorption near edge structure measurements at the Rh L,more » K, and Ir L edges we observe anomalous evolution of charge partitioning between Rh and Ir with Rh doping. The partitioning of charge between Rh and Ir sites progresses in a way that holes are initially doped into the J eff = 1/2 band at low x only to be removed from it at higher x values. Furthermore, this anomalous hole doping naturally explains the reentrant insulating phase in the phase diagram of Sr 2Ir 1–xRh xO 4 and ought to be considered when searching for superconductivity and other emergent phenomena in iridates doped with 4d elements.« less

  15. Electronic phase diagram of disordered Co doped BaFe2As2-δ

    NASA Astrophysics Data System (ADS)

    Kurth, F.; Iida, K.; Trommler, S.; Hänisch, J.; Nenkov, K.; Engelmann, J.; Oswald, S.; Werner, J.; Schultz, L.; Holzapfel, B.; Haindl, S.

    2013-02-01

    Superconducting and normal state transport properties in iron pnictides are sensitive to disorder and impurity scattering. By investigation of Ba(Fe1-xCox)2As2-δ thin films with varying Co concentrations we demonstrate that in the dirty limit the superconducting dome in the electronic phase diagram of Ba(Fe1-xCox)2As2-δ shifts towards lower doping concentrations, which differs significantly from observations in single crystals. We show that especially in the underdoped regime superconducting transition temperatures higher than 27 K are possible.

  16. Statistical transmutation in doped quantum dimer models.

    PubMed

    Lamas, C A; Ralko, A; Cabra, D C; Poilblanc, D; Pujol, P

    2012-07-06

    We prove a "statistical transmutation" symmetry of doped quantum dimer models on the square, triangular, and kagome lattices: the energy spectrum is invariant under a simultaneous change of statistics (i.e., bosonic into fermionic or vice versa) of the holes and of the signs of all the dimer resonance loops. This exact transformation enables us to define the duality equivalence between doped quantum dimer Hamiltonians and provides the analytic framework to analyze dynamical statistical transmutations. We investigate numerically the doping of the triangular quantum dimer model with special focus on the topological Z(2) dimer liquid. Doping leads to four (instead of two for the square lattice) inequivalent families of Hamiltonians. Competition between phase separation, superfluidity, supersolidity, and fermionic phases is investigated in the four families.

  17. The dynamic effects of metal vapour in gas metal arc welding

    NASA Astrophysics Data System (ADS)

    Haidar, Jawad

    2010-04-01

    Numerical simulations for the dynamic effects of metal vapour in gas metal arc welding (GMAW) suggest that vapour from the welding droplet at the tip of the welding wire has a significant influence on the plasma properties. It is found that for the evaporation rates calculated for arcs in pure argon, the dynamic effects of metal vapour markedly cool down the plasma in the central region of the arc, leading to the formation of a low temperature zone centred on the arc axis, in agreement with experimental measurements in the literature. Radiation effects, omitted in this paper, may produce further cooling of the plasma gas. The results highlight major deficiencies in the common approach to modelling the GMAW process and suggest that accurate description of GMAW must include the influence of metal vapour on the plasma.

  18. GPS tomographic experiment on water vapour dynamics in the troposphere over Lisbon

    NASA Astrophysics Data System (ADS)

    Benevides, Pedro; Catalao, Joao; Miranda, Pedro

    2015-04-01

    Quantification of the water vapour variability on the atmosphere remains a difficult task, affecting the weather prediction. Coarse water vapour resolution measurements in space and time affect the numerical weather prediction solution models causing artifacts in the prediction of severe weather phenomena. The GNSS atmospheric processing has been developed in the past years providing integrated water vapour estimates comparable with the meteorological sensor measurements, with studies registering 1 to 2 kg/m2 bias, but lack a vertical determination of the atmospheric processes. The GNSS tomography in the troposphere is one of the most promising techniques for sensing the three-dimensional water vapour state of the atmosphere. The determination of the integrated water vapour profile by means of the widely accepted GNSS meteorology techniques, allows the reconstruction of several slant path delay rays in the satellite line of view, providing an opportunity to sense the troposphere at tree-dimensions plus time. The tomographic system can estimate an image solution of the water vapour but impositions have to be introduced to the system of equations inversion because of the non-optimal GNSS observation geometry. Application of this technique on atmospheric processes like large convective precipitation or mesoscale water vapour circulation have been able to describe its local dynamic vertical variation. A 3D tomographic experiment was developed over an area of 60x60 km2 around Lisbon (Portugal). The GNSS network available composed by 9 receivers was used for an experiment of densification of the permanent network using 8 temporarily installed GPS receivers (totalling 17 stations). This study was performed during several weeks in July 2013, where a radiosonde campaign was also held in order to validate the tomographic inversion solution. 2D integrated water vapour maps directly obtained from the GNSS processing were also evaluated and local coastal breeze circulation

  19. Measurements of the levels of organic solvent vapours by personal air samplers and the levels of urinary metabolites of workers. Part 2. Toluene vapour in a shipbuilding yard (author's transl).

    PubMed

    Kira, S

    1977-05-01

    Personal air samplers were applied to shipyard's painters putting on gas masks during the spraying work, and the levels of toluene vapour surrounding the workers were measured. On the other hand, levels of urinary hippuric acid (metabolites of toluene) of the workers were measured, and the levels of toluene vapour inhaled were calculated from the levels of urinary hippuric acid. Then the actual removing-efficiencies of toluene vapours by the use of gas masks were estimated from these two levels (i.e., toluene vapours exposed and inhaled). The values of removing-efficiencies were found to be 65.9-98.1%. The concentrations of hippuric and methylhippuric acids in the urine of workers exposed to toluene and xylene for 3 hours, collected just after the exposure, are valuable indices of these organic solvent vapours inhaled. A minute amount of urinary methylhippuric acid can be determined by means of gas chromatography.

  20. Vapour sensitivity of an ALD hierarchical photonic structure inspired by Morpho.

    PubMed

    Poncelet, Olivier; Tallier, Guillaume; Mouchet, Sébastien R; Crahay, André; Rasson, Jonathan; Kotipalli, Ratan; Deparis, Olivier; Francis, Laurent A

    2016-05-09

    The unique architecture of iridescent Morpho butterfly scales is known to exhibit different optical responses to various vapours. However, the mechanism behind this phenomenon is not fully quantitatively understood. This work reports on process developments in the micro-fabrication of a Morpho-inspired photonic structure in atomic layer deposited (ALD) materials in order to investigate the vapour optical sensitivity of such artificial nanostructures. By developing recipes for dry and wet etching of ALD oxides, we micro-fabricated two structures: one combining Al2O3 and TiO2, and the other combining Al2O3 and HfO2. For the first time, we report the optical response of such ALD Morpho-like structures measured under a controlled flow of either ethanol or isopropyl alcohol (IPA) vapour. In spite of the small magnitude of the effect, the results show a selective vapour response (depending on the materials used).

  1. Sorption and phase distribution of ethanol and butanol blended gasoline vapours in the vadose zone after release.

    PubMed

    Ugwoha, Ejikeme; Andresen, John M

    2014-03-01

    The sorption and phase distribution of 20% ethanol and butanol blended gasoline (E20 and B20) vapours have been examined in soils with varying soil organic matter (SOM) and water contents via laboratory microcosm experiments. The presence of 20% alcohol reduced the sorption of gasoline compounds by soil as well as the mass distribution of the compounds to soil solids. This effect was greater for ethanol than butanol. Compared with the sorption coefficient (Kd) of unblended gasoline compounds, the Kd of E20 gasoline compounds decreased by 54% for pentane, 54% for methylcyclopentane (MCP) and 63% for benzene, while the Kd of B20 gasoline compounds decreased by 39% for pentane, 38% for MCP and 49% for benzene. The retardation factor (R) of E20 gasoline compounds decreased by 53% for pentane, 53% for MCP and 48% for benzene, while the R of B20 gasoline compounds decreased by 39% for pentane, 37% for MCP and 38% for benzene. For all SOM and water contents tested, the Kd and R of all gasoline compounds were in the order of unblended gasoline > B20 > E20, indicating that the use of high ethanol volume in gasoline to combat climate change could put the groundwater at greater risk of contamination. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  2. Simultaneous Graphite Exfoliation and N Doping in Supercritical Ammonia.

    PubMed

    Sasikala, Suchithra Padmajan; Huang, Kai; Giroire, Baptiste; Prabhakaran, Prem; Henry, Lucile; Penicaud, Alain; Poulin, Philippe; Aymonier, Cyril

    2016-11-16

    We report the exfoliation of graphite and simultaneous N doping of graphene by two methods: supercritical ammonia treatment and liquid-phase exfoliation with NH 4 OH. While the supercritical ammonia allowed N doping at a level of 6.4 atom % in 2 h, the liquid-phase exfoliation with NH 4 OH allowed N doping at a level of 2.7 atom % in 6 h. The N doped graphene obtained via the supercritical ammonia route had few layers (<5) and showed large lateral flake size (∼8 μm) and low defect density (I D /I G < 0.6) in spite of their high level of N doping. This work is the first demonstration of supercritical ammonia as an exfoliation agent and N doping precursor for graphene. Notably, the N doped graphene showed electrocatalytic activity toward oxygen reduction reaction with high durability and good methanol tolerance compared to those of commercial Pt/C catalyst.

  3. Can percolation control doping, diffusion and phase segregation in (Hg,Cd)Te?

    NASA Astrophysics Data System (ADS)

    Cahen, David; Melamed, Ofer; Lubomirski, Igor

    1999-02-01

    We show that percolation can control not only diffusion in solids, but in the case of semiconductors also their electrical activity, via the doping action of the diffusing species. This occurs in (Hg 1- xCd x)Te (MCT) when xCd<0.8. The 10 7 times higher diffusivity at xCd<0.8 can be understood by realizing that the percolation threshold for an ideal FCC lattice is at 0.19. While normally Ag is a donor, it can be an acceptor by stabilizing the Hg(I) state. This is possible by interaction with 2 Hg neighbors, a process that will be favorable above the Hg percolation limit. The fast Ag diffusion also holds the clue for the occurrence of ultra-low concentration phase separation in this system, the result of a balance between elastic attraction and Coulombic repulsion between the charged dopants. Prima facie evidence for this phase separation comes from coulometric Ag titration in and out of MCT.

  4. Cr-doped Ge{sub 2}Sb{sub 2}Te{sub 5} for ultra-long data retention phase change memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qing; Xia, Yangyang; Zheng, Yonghui

    Phase change memory is regarded as one of the most promising candidates for the next-generation non-volatile memory. Its storage medium, phase change material, has attracted continuous exploration. Ge{sub 2}Sb{sub 2}Te{sub 5} (GST) is the most popular phase change material, but its thermal stability needs to be improved when used in some fields at high temperature (more than 120 °C). In this paper, we doped Cr atoms into GST and obtained Cr{sub 10}(Ge{sub 2}Sb{sub 2}Te{sub 5}){sub 90} (labeled as Cr-GST) with high thermal stability. For Cr-GST film, the sheet resistance ratio between amorphous and crystalline states is high up to 3 ordersmore » of magnitude. The crystalline Cr-GST film inherits the phase structure of GST, with metastable face-centered cubic phase and/or stable hexagonal phase. The doped Cr atoms not only bond with other atoms but also help to improve the anti-oxidation property of Cr-GST. As for the amorphous thermal stability, the calculated temperature for 10-year-data-retention of Cr-GST film, based on the Arrhenius equation, is about 180 °C. The threshold current and threshold voltage of a cell based on Cr-GST are about 6 μA and 2.7 V. The cell could be operated by suitable voltages for more than 40 000 cycles. Thus, Cr-GST is proved to be a promising phase change material with ultra-long data retention.« less

  5. Anatase phase stability and doping concentration dependent refractivity in codoped transparent conducting TiO2 films

    NASA Astrophysics Data System (ADS)

    Chen, T. L.; Furubayashi, Y.; Hirose, Y.; Hitosugi, T.; Shimada, T.; Hasegawa, T.

    2007-10-01

    Nb0.06SnxTi0.94-xO2 (x <= 0.3) thin films were grown by a pulsed-laser deposition method with varying Sn concentration. Through a combinatorial technique, we find that Sn concentration can reach a maximum of about x = 0.3 while maintaining the stable anatase phase and epitaxy. A doping concentration dependence of the refractivity is revealed, in which refractivity reduction at a wavelength of λ = 500 nm is estimated to be 12.4% for Nb0.06Sn0.3 Ti0.64O2 thin film. Sn doping induced band-gap blue shift can be contributed to the mixing of extended Sn 5s orbitals with the conduction band of TiO2. Low resistivity on the order of 10-4 Ω cm at room temperature and high internal transmittance of more than 95% in the visible light region are exhibited for Nb0.06Snx Ti0.94-xO2 thin films (x <= 0.2). Optical and transport analyses demonstrate that doping Sn into Nb0.06 Ti0.94O2 can reduce the refractivity while maintaining low resistivity and high transparency.

  6. Exploration of metastability and hidden phases in correlated electron crystals visualized by femtosecond optical doping and electron crystallography

    PubMed Central

    Han, Tzong-Ru T.; Zhou, Faran; Malliakas, Christos D.; Duxbury, Phillip M.; Mahanti, Subhendra D.; Kanatzidis, Mercouri G.; Ruan, Chong-Yu

    2015-01-01

    Characterizing and understanding the emergence of multiple macroscopically ordered electronic phases through subtle tuning of temperature, pressure, and chemical doping has been a long-standing central issue for complex materials research. We report the first comprehensive studies of optical doping–induced emergence of stable phases and metastable hidden phases visualized in situ by femtosecond electron crystallography. The electronic phase transitions are triggered by femtosecond infrared pulses, and a temperature–optical density phase diagram is constructed and substantiated with the dynamics of metastable states, highlighting the cooperation and competition through which the macroscopic quantum orders emerge. These results elucidate key pathways of femtosecond electronic switching phenomena and provide an important new avenue to comprehensively investigate optical doping–induced transition states and phase diagrams of complex materials with wide-ranging applications. PMID:26601190

  7. Vertical structure of stratospheric water vapour trends derived from merged satellite data

    PubMed Central

    Hegglin, M. I.; Plummer, D. A.; Shepherd, T. G.; Scinocca, J. F.; Anderson, J.; Froidevaux, L.; Funke, B.; Hurst, D.; Rozanov, A.; Urban, J.; von Clarmann, T.; Walker, K. A.; Wang, H. J.; Tegtmeier, S.; Weigel, K.

    2017-01-01

    Stratospheric water vapour is a powerful greenhouse gas. The longest available record from balloon observations over Boulder, Colorado, USA shows increases in stratospheric water vapour concentrations that cannot be fully explained by observed changes in the main drivers, tropical tropopause temperatures and methane. Satellite observations could help resolve the issue, but constructing a reliable long-term data record from individual short satellite records is challenging. Here we present an approach to merge satellite data sets with the help of a chemistry-climate model nudged to observed meteorology. We use the models' water vapour as a transfer function between data sets that overcomes issues arising from instrument drift and short overlap periods. In the lower stratosphere, our water vapour record extends back to 1988 and water vapour concentrations largely follow tropical tropopause temperatures. Lower and mid-stratospheric long-term trends are negative, and the trends from Boulder are shown not to be globally representative. In the upper stratosphere, our record extends back to 1986 and shows positive long-term trends. The altitudinal differences in the trends are explained by methane oxidation together with a strengthened lower-stratospheric and a weakened upper-stratospheric circulation inferred by this analysis. Our results call into question previous estimates of surface radiative forcing based on presumed global long-term increases in water vapour concentrations in the lower stratosphere. PMID:29263751

  8. Vertical structure of stratospheric water vapour trends derived from merged satellite data.

    PubMed

    Hegglin, M I; Plummer, D A; Shepherd, T G; Scinocca, J F; Anderson, J; Froidevaux, L; Funke, B; Hurst, D; Rozanov, A; Urban, J; von Clarmann, T; Walker, K A; Wang, H J; Tegtmeier, S; Weigel, K

    2014-01-01

    Stratospheric water vapour is a powerful greenhouse gas. The longest available record from balloon observations over Boulder, Colorado, USA shows increases in stratospheric water vapour concentrations that cannot be fully explained by observed changes in the main drivers, tropical tropopause temperatures and methane. Satellite observations could help resolve the issue, but constructing a reliable long-term data record from individual short satellite records is challenging. Here we present an approach to merge satellite data sets with the help of a chemistry-climate model nudged to observed meteorology. We use the models' water vapour as a transfer function between data sets that overcomes issues arising from instrument drift and short overlap periods. In the lower stratosphere, our water vapour record extends back to 1988 and water vapour concentrations largely follow tropical tropopause temperatures. Lower and mid-stratospheric long-term trends are negative, and the trends from Boulder are shown not to be globally representative. In the upper stratosphere, our record extends back to 1986 and shows positive long-term trends. The altitudinal differences in the trends are explained by methane oxidation together with a strengthened lower-stratospheric and a weakened upper-stratospheric circulation inferred by this analysis. Our results call into question previous estimates of surface radiative forcing based on presumed global long-term increases in water vapour concentrations in the lower stratosphere.

  9. Water vapour correction of the daily 1 km AVHRR global land dataset: Part I validation and use of the Water Vapour input field

    USGS Publications Warehouse

    DeFelice, Thomas P.; Lloyd, D.; Meyer, D.J.; Baltzer, T. T.; Piraina, P.

    2003-01-01

    An atmospheric correction algorithm developed for the 1 km Advanced Very High Resolution Radiometer (AVHRR) global land dataset was modified to include a near real-time total column water vapour data input field to account for the natural variability of atmospheric water vapour. The real-time data input field used for this study is the Television and Infrared Observational Satellite (TIROS) Operational Vertical Sounder (TOVS) Pathfinder A global total column water vapour dataset. It was validated prior to its use in the AVHRR atmospheric correction process using two North American AVHRR scenes, namely 13 June and 28 November 1996. The validation results are consistent with those reported by others and entail a comparison between TOVS, radiosonde, experimental sounding, microwave radiometer, and data from a hand-held sunphotometer. The use of this data layer as input to the AVHRR atmospheric correction process is discussed.

  10. Spectroscopic interaction studies of substituted and unsubstituted copper phthalocyanine with adsorbed organic vapours

    NASA Astrophysics Data System (ADS)

    Ridhi, R.; Kang, Jasmeen; Saini, G. S. S.; Tripathi, S. K.

    2018-05-01

    The present study deals with comparing the interaction mechanism of adsorbed organic vapours with Copper Phthalocyanine thin films in its substituted and unsubstituted forms. For this purpose, the variations in vibrational levels of substituted CuPc (CuPcS) functionalized with tetrasulfonic acid tetrasodium salt and unsubstituted CuPc after exposure with methanol and benzene vapours is analyzed. Fourier transform infrared (FTIR) is used to study the interaction behaviour. The bulkier group tetrasulfonic acid tetrasodium salt added to CuPc leads to occupation of more space in the molecular arrangement as compared to unsubstituted CuPc and hence alteration of its properties. FTIR spectra of CuPc and CuPcS before and after vapours exposures highlighted the effect of these vapours on the various bonds and the role of functional group in altering the molecular structure of CuPcS during interaction with adsorbed vapours.

  11. Antifungal activity of clove essential oil and its volatile vapour against dermatophytic fungi.

    PubMed

    Chee, Hee Youn; Lee, Min Hee

    2007-12-01

    Antifungal activities of clove essential oil and its volatile vapour against dermatophytic fungi including Candida albicans, Epidermophyton floccosum. Microsporum audouinii, Trichophyton mentagrophytes, and Trichophyton rubrum were investigated. Both clove essential oil and its volatile vapour strongly inhibit spore germination and mycelial growth of the dermatophytic fungi tested. The volatile vapour of clove essential oil showed fungistatic activity whereas direct application of clove essential oil showed fungicidal activity.

  12. Post-Contamination Vapour Hazards from Military Vehicles Contaminated with Thickened and Unthickened GD

    DTIC Science & Technology

    1979-02-01

    The residual vapour hazards from four types of military vehicles previously contaminated with either thickened or unthickened GD have been measured...magnitude of these hazards have been investigated and an assessment made of their relevance to contamination control. It was found that on permeable... contamination had been applied were ineffective in reducing the subsequent vapour hazard; the vapour hazard arising from thickened GD contamination was less

  13. Critical behaviour and vapour-liquid coexistence of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ionic liquids via Monte Carlo simulations.

    PubMed

    Rai, Neeraj; Maginn, Edward J

    2012-01-01

    Atomistic Monte Carlo simulations are used to compute vapour-liquid coexistence properties of a homologous series of [C(n)mim][NTf2] ionic liquids, with n = 1, 2, 4, 6. Estimates of the critical temperatures range from 1190 K to 1257 K, with longer cation alkyl chains serving to lower the critical temperature. Other quantities such as critical density, critical pressure, normal boiling point, and accentric factor are determined from the simulations. Vapour pressure curves and the temperature dependence of the enthalpy of vapourisation are computed and found to have a weak dependence on the length of the cation alkyl chain. The ions in the vapour phase are predominately in single ion pairs, although a significant number of ions are found in neutral clusters of larger sizes as temperature is increased. It is found that previous estimates of the critical point obtained from extrapolating experimental surface tension data agree reasonably well with the predictions obtained here, but group contribution methods and primitive models of ionic liquids do not capture many of the trends observed in the present study

  14. Influence of Surrounding Dielectrics on the Data Retention Time of Doped Sb2Te Phase Change Material

    NASA Astrophysics Data System (ADS)

    Jedema, Friso; in `t Zandt, Micha; Wolters, Rob; Gravesteijn, Dirk

    2011-02-01

    The crystallization properties of as-deposited and laser written amorphous marks of doped Sb2Te phase change material are found to be only dependent on the top dielectric layer. A ZnS:SiO2 top dielectric layer yields a higher crystallization temperature and a larger crystal growth activation energy as compared to a SiO2 top dielectric layer, leading to superior data retention times at ambient temperatures. The observed correlation between the larger crystallization temperatures and larger crystal growth activation energies indicates that the viscosity of the phase change material in the amorphous state is dependent on the interfacial energy between the phase change material and the top dielectric layer.

  15. The Seasonal Cycle of Water Vapour on Mars from Assimilation of Thermal Emission Spectrometer Data

    NASA Technical Reports Server (NTRS)

    Steele, Liam J.; Lewis, Stephen R.; Patel, Manish R.; Montmessin, Franck; Forget, Francois; Smith, Michael D.

    2014-01-01

    We present for the first time an assimilation of Thermal Emission Spectrometer (TES) water vapour column data into a Mars global climate model (MGCM). We discuss the seasonal cycle of water vapour, the processes responsible for the observed water vapour distribution, and the cross-hemispheric water transport. The assimilation scheme is shown to be robust in producing consistent reanalyses, and the global water vapour column error is reduced to around 2-4 pr micron depending on season. Wave activity is shown to play an important role in the water vapour distribution, with topographically steered flows around the Hellas and Argyre basins acting to increase transport in these regions in all seasons. At high northern latitudes, zonal wavenumber 1 and 2 stationary waves during northern summer are responsible for spreading the sublimed water vapour away from the pole. Transport by the zonal wavenumber 2 waves occurs primarily to the west of Tharsis and Arabia Terra and, combined with the effects of western boundary currents, this leads to peak water vapour column abundances here as observed by numerous spacecraft. A net transport of water to the northern hemisphere over the course of one Mars year is calculated, primarily because of the large northwards flux of water vapour which occurs during the local dust storm around L(sub S) = 240-260deg. Finally, outlying frost deposits that surround the north polar cap are shown to be important in creating the peak water vapour column abundances observed during northern summer.

  16. Comparison of interaction mechanisms of copper phthalocyanine and nickel phthalocyanine thin films with chemical vapours

    NASA Astrophysics Data System (ADS)

    Ridhi, R.; Singh, Sukhdeep; Saini, G. S. S.; Tripathi, S. K.

    2018-04-01

    The present study deals with comparing interaction mechanisms of copper phthalocyanine and nickel phthalocyanine with versatile chemical vapours: reducing, stable aromatic and oxidizing vapours namely; diethylamine, benzene and bromine. The variation in electrical current of phthalocyanines with exposure of chemical vapours is used as the detection parameter for studying interaction behaviour. Nickel phthalocyanine is found to exhibit anomalous behaviour after exposure of reducing vapour diethylamine due to alteration in its spectroscopic transitions and magnetic states. The observed sensitivities of copper phthalocyanine and nickel phthalcyanine films are different in spite of their similar bond numbers, indicating significant role of central metal atom in interaction mechanism. The variations in electronic transition levels after vapours exposure, studied using UV-Visible spectroscopy confirmed our electrical sensing results. Bromine exposure leads to significant changes in vibrational bands of metal phthalocyanines as compared to other vapours.

  17. N-doped carbon nanotubes-reinforced hollow fiber solid-phase microextraction coupled with high performance liquid chromatography for the determination of phytohormones in tomatoes.

    PubMed

    Han, Xiao-Fei; Chen, Juan; Shi, Yan-Ping

    2018-08-01

    A N-doped carbon nanotubes-reinforced hollow fiber solid-phase microextraction (N-doped CNTs-HF-SPME) method was developed for determination of two naphthalene-derived phytohormones, 1-naphthalene acetic acid (NAA) and 2-naphthoxyacetic acid (2-NOA), at trace levels in tomatoes. N-doped CNTs were dispersed in ultrapure water with the assistance of surfactant, and then immobilized into the pores of hollow fiber by capillary forces and sonification. The resultant N-doped CNTs-HF was wetted with 1-octanol, subsequently immersed into the tomato samples to extract the target analytes under a magnetic stirring, and then desorbed with methanol by sonication prior to chromatographic analysis. Compared with CNTs, the surface hydrophilicity of N-doped CNTs was improved owing to the doping of nitrogen atoms, and a uniform dispersion was formed, thus greatly simplifying the preparation process and reducing waste of materials. In addition, N-doped CNTs-HF exhibits a more effective extraction performance for NAA and 2-NOA on account of the introduction of Lewis-basic nitrogen. It is worth to mention that owing to the clean-up function of HF, there are not any complicated sample pretreatment procedures prior to the microextraction. To achieve the highest extraction efficiency, important microextraction parameters including the length and the concentration level of N-doped CNTs in surfactant solution, extraction time, desorption conditions such as the type and volume of solvents, pH value, stirring rate and volume of the donor phase were thoroughly investigated and optimized. Under the optimal conditions, the method showed 165- and 123-fold enrichment factors of NAA and 2-NOA, good inter-fiber repeatability and batch-to-batch reproducibility, good linearity with correlation coefficients higher than 0.9990, low limits of detection and quantification (at ng g -1 levels), and satisfactory recoveries in the range of 83.10-108.32% at three spiked levels. The proposed method taking

  18. Transition metal doping of GaSe implemented with low temperature liquid phase growth

    NASA Astrophysics Data System (ADS)

    Lei, Nuo; Sato, Youhei; Tanabe, Tadao; Maeda, Kensaku; Oyama, Yutaka

    2017-02-01

    Our group works on improving the conversion efficiencies of terahertz (THz) wave generation using GaSe crystals. The operating principle is based on difference frequency generation (DFG) which has the advantages such as high output power, a single tunable frequency, and room temperature operation. In this study, GaSe crystals were grown by the temperature difference method under controlled vapor pressure (TDM-CVP). It is a liquid phase growth method with temperature 300 °C lower than that of the Bridgman method. Using this method, the point defects concentration is decreased and the polytype can be controlled. The transition metal Ti was used to dope the GaSe in order to suppress free carrier absorption in the low frequency THz region. As a result, a deep acceptor level of 38 meV was confirmed as being formed in GaSe with 1.4 at% Ti doping. Compared with undoped GaSe, a decrease in carrier concentration ( 1014 cm-3) at room temperature was also confirmed. THz wave transmittance measurements reveal the tendency for the absorption coefficient to increase as the amount of dopant is increased. It is expected that there is an optimum amount of dopant.

  19. High-pressure studies on Ba-doped cobalt perovskites by neutron diffraction

    NASA Astrophysics Data System (ADS)

    Cao, Huibo; Garlea, Vasile; Wang, Fangwei; Dos Santos, Antonio; Cheng, Zhaohua

    2012-02-01

    Cobalt perovskite possess rich structural, magnetic and electrical properties depending on the subtle balance of the interactions among the spin, charge, and orbital degrees of freedom. Divalent hole-doped cobalt perovskites LaA^2+CoO3 exhibit structural phase transitions, metal-insulator transitions, and multi-magnetic phase transitions. High-pressure measurement is believed to mimic the size effects of the doped ions. We performed neutron diffraction experiments on selected Ba-doped LaCoO3 under pressures up to 6.3 GPa at SNAP at Spallation Neutron Source of ORNL. This work focuses on the high-pressure effects of the selected Ba-doped samples and the change of the phase diagram with pressure.

  20. Low Thermal Conductivity of RE-Doped SrO(SrTiO3)1 Ruddlesden Popper Phase Bulk Materials Prepared by Molten Salt Method

    NASA Astrophysics Data System (ADS)

    Putri, Yulia Eka; Said, Suhana Mohd; Refinel, Refinel; Ohtaki, Michitaka; Syukri, Syukri

    2018-04-01

    The SrO(SrTiO3)1 (Sr2TiO4) Ruddlesden Popper (RP) phase is a natural superlattice comprising of alternately stacking perovskite-type SrTiO3 layers and rock salt SrO layers along the crystallographic c direction. This paper discusses the properties of the Sr2TiO4 and (La, Sm)-doped Sr2TiO4 RP phase synthesized via molten salt method, within the context of thermoelectric applications. A good thermoelectric material requires high electrical conductivity, high Seebeck coefficient and low thermal conductivity. All three conditions have the potential to be fulfilled by the Sr2TiO4 RP phase, in particular, the superlattice structure allows a higher degree of phonon scattering hence resulting in lowered thermal conductivity. In this work, the Sr2TiO4 RP phase is doped with Sm and La respectively, which allows injection of charge carriers, modification of its electronic structure for improvement of the Seebeck coefficient, and most significantly, reduction of thermal conductivity. The particles with submicron size allows excessive phonon scattering along the boundaries, thus reduces the thermal conductivity by fourfold. In particular, the Sm-doped sample exhibited even lower lattice thermal conductivity, which is believed to be due to the mismatch in the ionic radius of Sr and Sm. This finding is useful as a strategy to reduce thermal conductivity of Sr2TiO4 RP phase materials as thermoelectric candidates, by employing dopants of differing ionic radius.

  1. Evaluating the virucidal efficacy of hydrogen peroxide vapour.

    PubMed

    Goyal, S M; Chander, Y; Yezli, S; Otter, J A

    2014-04-01

    Surface contamination has been implicated in the transmission of certain viruses, and surface disinfection can be an effective measure to interrupt the spread of these agents. To evaluate the in-vitro efficacy of hydrogen peroxide vapour (HPV), a vapour-phase disinfection method, for the inactivation of a number of structurally distinct viruses of importance in the healthcare, veterinary and public sectors. The viruses studied were: feline calicivirus (FCV, a norovirus surrogate); human adenovirus type 1; transmissible gastroenteritis coronavirus of pigs (TGEV, a severe acute respiratory syndrome coronavirus [SARS-CoV] surrogate); avian influenza virus (AIV); and swine influenza virus (SwIV). The viruses were dried on stainless steel discs in 20- or 40-μL aliquots and exposed to HPV produced by a Clarus L generator (Bioquell, Horsham, PA, USA) in a 0.2-m(3) environmental chamber. Three vaporized volumes of hydrogen peroxide were tested in triplicate for each virus: 25, 27 and 33 mL. No viable viruses were identified after HPV exposure at any of the vaporized volumes tested. HPV was virucidal (>4-log reduction) against FCV, adenovirus, TGEV and AIV at the lowest vaporized volume tested (25 mL). For SwIV, due to low virus titre on the control discs, >3.8-log reduction was shown for the 25-mL vaporized volume and >4-log reduction was shown for the 27-mL and 33-mL vaporized volumes. HPV was virucidal for structurally distinct viruses dried on surfaces, suggesting that HPV can be considered for the disinfection of virus-contaminated surfaces. Copyright © 2014 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  2. Structural and optical inhomogeneities of Fe doped GaN grown by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Malguth, E.; Hoffmann, A.; Phillips, M. R.

    2008-12-01

    We present the results of cathodoluminescence experiments on a set of Fe doped GaN samples with Fe concentrations of 5×1017, 1×1018, 1×1019, and 2×1020 cm-3. These specimens were grown by hydride vapor phase epitaxy with different concentrations of Fe. The introduction of Fe is found to promote the formation of structurally inhomogeneous regions of increased donor concentration. We detect a tendency of these regions to form hexagonal pits at the surface. The locally increased carrier concentration leads to enhanced emission from the band edge and the internal T41(G)-A61(S) transition of Fe3+. In these areas, the luminescence forms a finely structured highly symmetric pattern, which is attributed to defect migration along strain-field lines. Fe doping is found to quench the yellow defect luminescence band and to enhance the blue luminescence band due to the lowering of the Fermi level and the formation of point defects, respectively.

  3. Impact of major volcanic eruptions on stratospheric water vapour

    NASA Astrophysics Data System (ADS)

    Löffler, Michael; Brinkop, Sabine; Jöckel, Patrick

    2016-05-01

    Volcanic eruptions can have a significant impact on the Earth's weather and climate system. Besides the subsequent tropospheric changes, the stratosphere is also influenced by large eruptions. Here changes in stratospheric water vapour after the two major volcanic eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo on the Philippines in 1991 are investigated with chemistry-climate model simulations. This study is based on two simulations with specified dynamics of the European Centre for Medium-Range Weather Forecasts Hamburg - Modular Earth Submodel System (ECHAM/MESSy) Atmospheric Chemistry (EMAC) model, performed within the Earth System Chemistry integrated Modelling (ESCiMo) project, of which only one includes the long-wave volcanic forcing through prescribed aerosol optical properties. The results show a significant increase in stratospheric water vapour induced by the eruptions, resulting from increased heating rates and the subsequent changes in stratospheric and tropopause temperatures in the tropics. The tropical vertical advection and the South Asian summer monsoon are identified as sources for the additional water vapour in the stratosphere. Additionally, volcanic influences on tropospheric water vapour and El Niño-Southern Oscillation (ENSO) are evident, if the long-wave forcing is strong enough. Our results are corroborated by additional sensitivity simulations of the Mount Pinatubo period with reduced nudging and reduced volcanic aerosol extinction.

  4. Thermodynamic fluctuation in doped BiSrCaCuO superconductors with 110K phase

    NASA Astrophysics Data System (ADS)

    Han, S. H.; Andersson, M.

    1994-02-01

    The resistivity has been carefully measured for four sintered samples of Pb and Pb/Sb doped BiSrCaCuO superconductors with the 110 K phase from zero resistance temperature up to 300 K. The thermodynamical fluctuation have been fitted on the form Δσ∝ε x ( ε=( {T- T c)/ }/{T c}) in the regions -4 < ln ε < -2. By choosing T c in different ways, it is shown that consistent results only could be obtained when T c is defined according to the Lawrence-Doniach theory.

  5. Improving and assessing vapour pressure estimation methods for organic compounds of atmospheric relevance using a Knudsen Effusion Mass Spectrometer (KEMS)

    NASA Astrophysics Data System (ADS)

    Booth, A. M.; Topping, D. O.; McFiggans, G. B.; Garforth, A.; Percival, C. J.

    2009-12-01

    functional groups and interaction parameters, derived from experimental data, to reliably predict boiling points and vapour pressures. A sensitivity study was undertaken to establish the impact of the new experimentally determined vapour pressures on partitioning models. Jacobson, M.C., et al. Rev Geophys, 38 (2), 267-294, 2000. Houghton et al. Climate Change 2001: The Scientific Basis. Contribution of Working Group 1 to the Third Assessment Report of the IPCC., 881 pp., Cambridge University Press, 2001. Johnson, D. , et al. Atmo. Chem. Phys., Vol. 6, 419-431, 2006 Yu, J. Z., et al. J Atmos Chem. 34, 207-258, 1999 Booth, A.M. et al Atmos. Meas. Tech.,2,355-361, 2009 Nanoolal, Y. et al Fluid Phase Equilibria, 269,117-133., 2008. Barley, M. et al Atmos. Chem. Phys., -,to be submitted.

  6. Mixing of multiple metal vapours into an arc plasma in gas tungsten arc welding of stainless steel

    NASA Astrophysics Data System (ADS)

    Park, Hunkwan; Trautmann, Marcus; Tanaka, Keigo; Tanaka, Manabu; Murphy, Anthony B.

    2017-11-01

    A computational model of the mixing of multiple metal vapours, formed by vaporization of the surface of an alloy workpiece, into the thermal arc plasma in gas tungsten arc welding (GTAW) is presented. The model incorporates the combined diffusion coefficient method extended to allow treatment of three gases, and is applied to treat the transport of both chromium and iron vapour in the helium arc plasma. In contrast to previous models of GTAW, which predict that metal vapours are swept away to the edge of the arc by the plasma flow, it is found that the metal vapours penetrate strongly into the arc plasma, reaching the cathode region. The predicted results are consistent with published measurements of the intensity of atomic line radiation from the metal vapours. The concentration of chromium vapour is predicted to be higher than that of iron vapour due to its larger vaporization rate. An accumulation of chromium vapour is predicted to occur on the cathode at about 1.5 mm from the cathode tip, in agreement with published measurements. The arc temperature is predicted to be strongly reduced due to the strong radiative emission from the metal vapours. The driving forces causing the diffusion of metal vapours into the helium arc are examined, and it is found that diffusion due to the applied electric field (cataphoresis) is dominant. This is explained in terms of large ionization energies and the small mass of helium compared to those of the metal vapours.

  7. Kinetic model of water vapour adsorption by gluten-free starch

    NASA Astrophysics Data System (ADS)

    Ocieczek, Aneta; Kostek, Robert; Ruszkowska, Millena

    2015-01-01

    This study evaluated the kinetics of water vapour adsorption on the surface of starch molecules derived from wheat. The aim of the study was to determine an equation that would allow estimation of water content in tested material in any timepoint of the adsorption process aimed at settling a balance with the environment. An adsorption isotherm of water vapour on starch granules was drawn. The parameters of the Guggenheim, Anderson, and De Boer equation were determined by characterizing the tested product and adsorption process. The equation of kinetics of water vapour adsorption on the surface of starch was determined based on the Guggenheim, Anderson, and De Boer model describing the state of equilibrium and on the model of a first-order linear inert element describing the changes in water content over time.

  8. Doping concentration dependence of microstructure and magnetic behaviours in Co-doped TiO2 nanorods

    PubMed Central

    2014-01-01

    Co-doped titanium dioxide (TiO2) nanorods with different doping concentrations were fabricated by a molten salt method. It is found that the morphology of TiO2 changes from nanorods to nanoparticles with increasing doping concentration. The mechanism for the structure and phase evolution is investigated in detail. Undoped TiO2 nanorods show strong ferromagnetism at room temperature, whereas incorporating of Co deteriorates the ferromagnetic ordering. X-ray photoelectron spectroscopy (XPS) and electron spin resonance (ESR) results demonstrate that the ferromagnetism is associated with Ti vacancy. PMID:25593558

  9. Breath alcohol analysis incorporating standardization to water vapour is as precise as blood alcohol analysis.

    PubMed

    Grubb, D; Rasmussen, B; Linnet, K; Olsson, S G; Lindberg, L

    2012-03-10

    A novel breath-alcohol analyzer based on the standardization of the breath alcohol concentration (BrAC) to the alveolar-air water vapour concentration has been developed and evaluated. The present study compares results with this particular breath analyzer with arterial blood alcohol concentrations (ABAC), the most relevant quantitative measure of brain alcohol exposure. The precision of analysis of alcohol in arterial blood and breath were determined as well as the agreement between ABAC and BrAC over time post-dosing. Twelve healthy volunteers were administered 0.6g alcohol/kg bodyweight via an orogastric tube. Duplicate breath and arterial blood samples were obtained simultaneously during the absorption, distribution and elimination phases of the alcohol metabolism with particular emphasis on the absorption phase. The precision of the breath analyzer was similar to the determination of blood alcohol concentration by headspace gas chromatography (CV 2.40 vs. 2.38%, p=0.43). The ABAC/BrAC ratio stabilized 30min post-dosing (2089±99; mean±SD). Before this the BrAC tended to underestimate the coexisting ABAC. In conclusion, breath alcohol analysis utilizing standardization of alcohol to water vapour was as precise as blood alcohol analysis, the present "gold standard" method. The BrAC reliably predicted the coexisting ABAC from 30min onwards after the intake of alcohol. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. The speed of sound in a gas–vapour bubbly liquid

    PubMed Central

    Prosperetti, Andrea

    2015-01-01

    In addition to the vapour of the liquid, bubbles in cavitating flows usually contain also a certain amount of permanent gas that diffuses out of the liquid as they grow. This paper presents a simplified linear model for the propagation of monochromatic pressure waves in a bubbly liquid with these characteristics. Phase change effects are included in detail, while the gas is assumed to follow a polytropic law. It is shown that even a small amount of permanent gas can have a major effect on the behaviour of the system. Particular attention is paid to the low-frequency range, which is of special concern in flow cavitation. Numerical results for water and liquid oxygen illustrate the implications of the model. PMID:26442146

  11. The speed of sound in a gas-vapour bubbly liquid.

    PubMed

    Prosperetti, Andrea

    2015-10-06

    In addition to the vapour of the liquid, bubbles in cavitating flows usually contain also a certain amount of permanent gas that diffuses out of the liquid as they grow. This paper presents a simplified linear model for the propagation of monochromatic pressure waves in a bubbly liquid with these characteristics. Phase change effects are included in detail, while the gas is assumed to follow a polytropic law. It is shown that even a small amount of permanent gas can have a major effect on the behaviour of the system. Particular attention is paid to the low-frequency range, which is of special concern in flow cavitation. Numerical results for water and liquid oxygen illustrate the implications of the model.

  12. Oxygen stoichiometry, phase stability, and thermodynamic behavior of the lead-doped Bi-2223 and Ag/Bi-2223 systems

    NASA Astrophysics Data System (ADS)

    Tetenbaum, M.; Hash, M.; Tani, B. S.; Luo, J. S.; Maroni, V. A.

    1995-02-01

    Electromotive-force (EMF) measurements of oxygen fugacities as a function of stoichiometry have been made in the lead-doped Bi-2223 superconducting system in the temperature range 700-815°C by means of an oxygen titration technique that employs an yttria-stabilized zirconia electrolyte. The results of our studies indicate that processing or annealing lead-doped Bi-2223 at temperatures ranging from 750 to 815°C and at oxygen partial pressures ranging from ∼ 0.02 to 0.2 atm should preserve Bi-2223 as essentially single-phase material. Thermodynamic assessments of the partial molar quantities ΔS¯( O2) andΔH¯( O2) indicate that the plateau regions in the plot of oxygen partial pressure versus oxygen stoichiometry ( x) can be represented by the diphasic CuOCu 2O system. In accord with the EMF measurements, it was found that lead-doped Bi-2223 in a silver sheath is stable at 815°C for oxygen partial pressures between 0.02 and 0.13 atm.

  13. Structural phase analysis and photoluminescence properties of Mg-doped TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ali, T.; Ashraf, M. Anas; Ali, S. Asad; Ahmed, Ateeq; Tripathi, P.

    2018-05-01

    In this paper, we report the synthesis, characterization and photoluminescence properties of Mg-doped TiO2 nanoparticles (NPs). The samples were synthesized by sol-gel method and characterized using the standard analytical techniques such as X-ray diffraction (XRD), Transmission electron microscope (TEM), Energy dispersive X-ray spectroscopy (EDX), UV-visible and photoluminescence spectroscopy. The powder XRD spectra revealed that the synthesized samples are pure and crystalline in nature and showing tetragonal anatase phase of TiO2 NPs. UV-visible spectrum illustrates that an absorption edge shifts toward the visible region. This study may provide a new insight for making the nanomaterials which can be used in photocatalytic applications.

  14. Studies on transport properties of copper doped tungsten diselenide single crystals

    NASA Astrophysics Data System (ADS)

    Deshpande, M. P.; Parmar, M. N.; Pandya, Nilesh N.; Chaki, Sunil; Bhatt, Sandip V.

    2012-02-01

    During recent years, transition metal dichalcogenides of groups IVB, VB and VIB have received considerable attention because of the great diversity in their transport properties. 2H-WSe 2 (Tungsten diselenide) is an interesting member of the transition metal dichalcogenide (TMDC's) family and known to be a semiconductor useful for photovoltaic and optoelectronic applications. The anisotropy usually observed in this diamagnetic semiconductor material is a result of the sandwich structure of Se-W-Se layers interacting with each other, loosely bonded by the weak Van der Waals forces. Recent efforts in studying the influence of the anisotropic electrical and optical properties of this layered-type transition metal dichalcogenides have been implemented by doping the samples with different alkali group elements. Unfortunately, little work is reported on doping of metals in WSe 2. Therefore, it is proposed in this work to carry out a systematic growth of single crystals of WSe 2 by doping it with copper in different proportions i.e. Cu xWSe 2 ( x=0, 0.5, 1.0) by direct vapour transport technique. Transport properties like low and high temperature resistivity measurements, high pressure resistivity, Seebeck coefficient measurements at low temperature and Hall Effect at room temperature were studied in detail on all these samples. These measurements show that tungsten diselenide single crystals are p-type whereas doped with copper makes it n-type in nature. The results obtained and their implications are discussed in this paper.

  15. Review on dielectric properties of rare earth doped barium titanate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, Fatin Adila, E-mail: fatinadilaismail@gmail.com; Osman, Rozana Aina Maulat, E-mail: rozana@unimap.edu.my; Frontier Materials Research, Seriab, 01000 Kangar, Perlis

    2016-07-19

    Rare earth doped Barium Titanate (BaTiO{sub 3}) were studied due to high permittivity, excellent electrical properties and have wide usage in various applications. This paper reviewed on the electrical properties of RE doped BaTiO{sub 3} (RE: Lanthanum (La), Erbium (Er), Samarium (Sm), Neodymium (Nd), Cerium (Ce)), processing method, phase transition occurred and solid solution range for complete study. Most of the RE doped BaTiO{sub 3} downshifted the Curie temperature (T{sub C}). Transition temperature also known as Curie temperature, T{sub C} where the ceramics had a transition from ferroelectric to a paraelectric phase. In this review, the dielectric constant of La-dopedmore » BaTiO{sub 3}, Er-doped BaTiO{sub 3}, Sm-doped BaTiO{sub 3}, Nd-doped BaTiO{sub 3} and Ce-doped BaTiO{sub 3} had been proved to increase and the transition temperature or also known as T{sub C} also lowered down to room temperature as for all the RE doped BaTiO{sub 3} except for Er-doped BaTiO{sub 3}.« less

  16. Influence of B4C-doping and high-energy ball milling on phase formation and critical current density of (Bi,Pb)-2223 HTS

    NASA Astrophysics Data System (ADS)

    Margiani, N. G.; Mumladze, G. A.; Adamia, Z. A.; Kuzanyan, A. S.; Zhghamadze, V. V.

    2018-05-01

    In this paper, the combined effects of B4C-doping and planetary ball milling on the phase evolution, microstructure and transport properties of Bi1.7Pb0.3Sr2Ca2Cu3Oy(B4C)x HTS with x = 0 ÷ 0.125 were studied through X-ray diffraction (XRD), scanning electron microscopy (SEM), resistivity and critical current density measurements. Obtained results have shown that B4C additive leads to the strong acceleration of high-Tc phase formation and substantial enhancement in Jc. High-energy ball milling seems to produce a more homogeneous distribution of refined doped particles in the (Bi,Pb)-2223 HTS which results in an improved intergranular flux pinning and better self-field Jc performance.

  17. Unsaturation of vapour pressure inside leaves of two conifer species

    DOE PAGES

    Cernusak, Lucas A.; Ubierna, Nerea; Jenkins, Michael W.; ...

    2018-05-16

    Stomatal conductance (g s) impacts both photosynthesis and transpiration, and is therefore fundamental to the global carbon and water cycles, food production, and ecosystem services. Mathematical models provide the primary means of analysing this important leaf gas exchange parameter. A nearly universal assumption in such models is that the vapour pressure inside leaves (e i) remains saturated under all conditions. The validity of this assumption has not been well tested, because so far e i cannot be measured directly. Here, we test this assumption using a novel technique, based on coupled measurements of leaf gas exchange and the stable isotopemore » compositions of CO 2 and water vapour passing over the leaf. We applied this technique to mature individuals of two semiarid conifer species. In both species, e i routinely dropped below saturation when leaves were exposed to moderate to high air vapour pressure deficits. Typical values of relative humidity in the intercellular air spaces were as low 0.9 in Juniperus monosperma and 0.8 in Pinus edulis. These departures of e i from saturation caused significant biases in calculations of g s and the intercellular CO 2 concentration. Thus, our results refute the longstanding assumption of saturated vapour pressure in plant leaves under all conditions.« less

  18. Unsaturation of vapour pressure inside leaves of two conifer species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cernusak, Lucas A.; Ubierna, Nerea; Jenkins, Michael W.

    Stomatal conductance (g s) impacts both photosynthesis and transpiration, and is therefore fundamental to the global carbon and water cycles, food production, and ecosystem services. Mathematical models provide the primary means of analysing this important leaf gas exchange parameter. A nearly universal assumption in such models is that the vapour pressure inside leaves (e i) remains saturated under all conditions. The validity of this assumption has not been well tested, because so far e i cannot be measured directly. Here, we test this assumption using a novel technique, based on coupled measurements of leaf gas exchange and the stable isotopemore » compositions of CO 2 and water vapour passing over the leaf. We applied this technique to mature individuals of two semiarid conifer species. In both species, e i routinely dropped below saturation when leaves were exposed to moderate to high air vapour pressure deficits. Typical values of relative humidity in the intercellular air spaces were as low 0.9 in Juniperus monosperma and 0.8 in Pinus edulis. These departures of e i from saturation caused significant biases in calculations of g s and the intercellular CO 2 concentration. Thus, our results refute the longstanding assumption of saturated vapour pressure in plant leaves under all conditions.« less

  19. A supercell approach to the doping effect on the thermoelectric properties of SnSe.

    PubMed

    Suzuki, Yasumitsu; Nakamura, Hisao

    2015-11-28

    We study the thermoelectric properties of tin selenide (SnSe) by using first-principles calculations coupled with the Boltzmann transport theory. A recent experimental study showed that SnSe gives an unprecedented thermoelectric figure of merit ZT of 2.6 ± 0.3 in the high-temperature (>750 K) phase, while ZT in the low-temperature phase (<750 K) is much smaller than that of the high-temperature phase. Here we explore the possibility of increasing ZT in the low-temperature regime by carrier doping. For this purpose, we adopt a supercell approach to model the doped systems. We first examine the validity of the conventional rigid-band approximation (RBA), and then investigate the thermoelectric properties of Ag or Bi doped SnSe as p- or n-type doped materials using our supercell method. We found that both types of doping improve ZT and/or the power factor of the low-temperature phase SnSe, but only after the adjustment of the appropriate doping level is achieved.

  20. Gene doping.

    PubMed

    Haisma, H J; de Hon, O

    2006-04-01

    Together with the rapidly increasing knowledge on genetic therapies as a promising new branch of regular medicine, the issue has arisen whether these techniques might be abused in the field of sports. Previous experiences have shown that drugs that are still in the experimental phases of research may find their way into the athletic world. Both the World Anti-Doping Agency (WADA) and the International Olympic Committee (IOC) have expressed concerns about this possibility. As a result, the method of gene doping has been included in the list of prohibited classes of substances and prohibited methods. This review addresses the possible ways in which knowledge gained in the field of genetic therapies may be misused in elite sports. Many genes are readily available which may potentially have an effect on athletic performance. The sporting world will eventually be faced with the phenomena of gene doping to improve athletic performance. A combination of developing detection methods based on gene arrays or proteomics and a clear education program on the associated risks seems to be the most promising preventive method to counteract the possible application of gene doping.

  1. Thermoelectric Properties of Poly(3-hexylthiophene) (P3HT) Doped with 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F 4TCNQ) by Vapor-Phase Infiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Eunhee; Peterson, Kelly A.; Su, Gregory M.

    Doping of thin films of semiconducting polymers provides control of their electrical conductivity and thermopower. The electrical conductivity of semiconducting polymers rises nonlinearly with the carrier concentration, and there is a lack of understanding of the detailed factors that lead to this behavior. Here, we report a study of the morphological effects of doping on the electrical conductivity of poly(3-hexylthiophene) (P3HT) thin films doped with small molecule 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F 4TCNQ). Resonant soft X-ray scattering shows that the morphology of films of P3HT is not strongly changed by infiltration of F 4TCNQ from the vapor phase. We show that the localmore » ordering of P3HT, the texture and form factor of crystallites, and the long-range connectivity of crystalline domains contribute to the electrical conductivity in thin films. The thermopower of films of P3HT doped with F 4TCNQ from the vapor phase is not strongly enhanced relative to films doped from solution, but the electrical conductivity is significantly higher, improving the thermoelectric power factor.« less

  2. Thermoelectric Properties of Poly(3-hexylthiophene) (P3HT) Doped with 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F 4TCNQ) by Vapor-Phase Infiltration

    DOE PAGES

    Lim, Eunhee; Peterson, Kelly A.; Su, Gregory M.; ...

    2018-01-29

    Doping of thin films of semiconducting polymers provides control of their electrical conductivity and thermopower. The electrical conductivity of semiconducting polymers rises nonlinearly with the carrier concentration, and there is a lack of understanding of the detailed factors that lead to this behavior. Here, we report a study of the morphological effects of doping on the electrical conductivity of poly(3-hexylthiophene) (P3HT) thin films doped with small molecule 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F 4TCNQ). Resonant soft X-ray scattering shows that the morphology of films of P3HT is not strongly changed by infiltration of F 4TCNQ from the vapor phase. We show that the localmore » ordering of P3HT, the texture and form factor of crystallites, and the long-range connectivity of crystalline domains contribute to the electrical conductivity in thin films. The thermopower of films of P3HT doped with F 4TCNQ from the vapor phase is not strongly enhanced relative to films doped from solution, but the electrical conductivity is significantly higher, improving the thermoelectric power factor.« less

  3. Characterisation and source attribution of the semi-volatile organic content of atmospheric particles and associated vapour phase in Birmingham, UK

    NASA Astrophysics Data System (ADS)

    Harrad, Stuart; Hassoun, Suzanne; Callén Romero, María. S.; Harrison, Roy M.

    Concentrations of n-alkanes, petroleum biomarkers such as hopanes and steranes, n-alkanoic acids, n-alkanols, polycyclic aromatic hydrocarbons (PAH), dicarboxylic acids, and selected oxygenated PAH were separately determined in total suspended particulate matter and associated vapour phase in ambient air in Birmingham, UK. Samples were taken simultaneously at two locations on 24 separate occasions every 1-2 weeks between August 1999 and August 2000. Site A was 10 m from a busy road, 800 m from site B that was located within the "green space" of the University of Birmingham campus. Despite some differences in concentrations of some compounds, data from this study is in line with that reported in London, UK and in California. Differences between Sites A and B in both concentrations and carbon preference indices are consistent with greater traffic inputs at Site A, with some evidence of an appreciable biogenic input of n-alkanols and n-alkanes at the less-traffic influenced and more vegetated Site B. The biogenic input at Site B appears greater in the spring and summer months and suggests that biogenic emissions are appreciable even in British urban areas. Secondary formation mechanisms for some compounds including dicarboxylic acids and oxygenated PAH like fluoren-9-one are indicated by the lack of any significant intersite difference in concentrations. Intersite differences in concentrations provide new evidence that while petroleum biomarkers arise predominantly from local traffic, regional as well as local sources play an important rôle for the higher molecular weight PAH which exist predominantly in the particle phase.

  4. Synthesis and characterization of a mixed phase of anatase TiO2 and TiO2(B) by low pressure chemical vapour deposition (LPCVD) for high photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Chimupala, Y.; Hyett, G.; Simpson, R.; Brydson, R.

    2014-06-01

    This project is concerned with enhancing photocatalytic activity by preparing a mixed phase of nano-sized TiO2. TiO2 thin films were synthesized by using Low Pressure Chemical Vapour Deposition (LPCVD). Titanium isopropoxide and N2 gas were used as the precursor and carrier gas respectively. The effects of reaction temperature, carrier gas flow rate and deposited area were studied. TiO2 thin films with nano-sized TiO2 particles were obtained under suitable conditions and SEM, TEM, powder XRD and Raman spectroscopy were employed to characterize the phase and physical appearance of synthesized materials. Preliminary results show that a dual phase (TiO2(B) and anatase) thin film nanopowder was successfully prepared by LPCVD with needle- and polygonal plate-shape crystallites respectively. This thin film deposit produced a preferred orientation of TiO2(B) needles in the [001] direction of average crystallite size 50-80 nm in length and 5-10 nm in width, whilst the crystallite size of anatase polygonal-plates was around 200 nm. The optimal LPCVD condition for preparing this mixed phase of TiO2 was 600°C with a 1 mL/s N2 flow rate.

  5. Water vapour and methane coupling in the stratosphere observed using SCIAMACHY solar occultation measurements

    NASA Astrophysics Data System (ADS)

    Noël, Stefan; Weigel, Katja; Bramstedt, Klaus; Rozanov, Alexei; Weber, Mark; Bovensmann, Heinrich; Burrows, John P.

    2018-04-01

    An improved stratospheric water vapour data set has been retrieved from SCIAMACHY/ENVISAT solar occultation measurements. It is similar to that successfully applied to methane and carbon dioxide. There is now a consistent set of data products for the three constituents covering the altitudes 17-45 km, the latitude range between about 50 and 70° N, and the period August 2002 to April 2012. The new water vapour concentration profiles agree with collocated results from ACE-FTS and MLS/Aura to within ˜ 5 %. A significant positive linear change in water vapour for the time 2003-2011 is observed at lower stratospheric altitudes with a value of about 0.015 ± 0.008 ppmv year-1 around 17 km. Between 30 and 37 km the changes become significantly negative (about -0.01 ± 0.008 ppmv year-1); all errors are 2σ values. The combined analysis of the SCIAMACHY methane and water vapour time series shows the expected anti-correlation between stratospheric methane and water vapour and a clear temporal variation related to the Quasi-Biennial Oscillation (QBO). Above about 20 km most of the additional water vapour is attributed to the oxidation of methane. In addition short-term fluctuations and longer-term variations on a timescale of 5-6 years are observed. The SCIAMACHY data confirm that at lower altitudes the amount of water vapour and methane are transported from the tropics to higher latitudes via the shallow branch of the Brewer-Dobson circulation.

  6. Magnetic State of Quasiordered Fe-Al Alloys Doped with Ga and B: Magnetic Phase Separation and Spin Order

    NASA Astrophysics Data System (ADS)

    Voronina, E. V.; Ivanova, A. G.; Arzhnikov, A. K.; Chumakov, A. I.; Chistyakova, N. I.; Pyataev, A. V.; Korolev, A. V.

    2018-04-01

    Results of structural, magnetic, and Mössbauer studies of quasi ordered alloys Fe65Al35 - x M x ( M x = Ga, B; x = 0, 5 at %) are presented. The magnetic state of examined structurally-single-phase alloys at low temperatures is interpreted from the viewpoint of magnetic phase separation. An explanation is proposed for the observed behavior of magnetic characteristics of Fe65Al35 and Fe65Al30Ga5 in the framework of the model of two magnetic phases, a ferromagnetic-type one and a spin density wave. The boron-doped alloy Fe65Al30B5 is shown to demonstrate behavior that is typical of materials with the ferromagnetic type of ordering.

  7. Effects of germanium and nitrogen incorporation on crystallization of N-doped Ge2+xSb2Te5 (x = 0,1) thin films for phase-change memory

    NASA Astrophysics Data System (ADS)

    Cheng, Limin; Wu, Liangcai; Song, Zhitang; Rao, Feng; Peng, Cheng; Yao, Dongning; Liu, Bo; Xu, Ling

    2013-01-01

    The phase-change behavior and microstructure changes of N-doped Ge3Sb2Te5 [N-GST(3/2/5)] and Ge2Sb2Te5 [GST(2/2/5)] films during the phase transition from an amorphous to a crystalline phase were studied using in situ temperature-dependent sheet resistance measurements, X-ray diffraction, and transmission electron microscopy. The optical band gaps of N-GST(3/2/5) films are higher than that of GST(2/2/5) film in both the amorphous and face-centered-cubic (fcc) phases. Ge nitride formation by X-ray photoelectron spectroscopy analysis increased the optical band gap and suppressed crystalline grain growth, resulting in an increase in the crystallization temperature and resistance in the fcc phase. As a result, the Ge- and N-doped GST(2/2/5) composite films can be considered as a promising material for phase-change memory application because of improved thermal stability and reduced power consumption.

  8. A sensor of alcohol vapours based on thin polyaniline base film and quartz crystal microbalance.

    PubMed

    Ayad, Mohamad M; El-Hefnawey, Gad; Torad, Nagy L

    2009-08-30

    Thin films of polyaniline base, emeraldine base (EB), coating on the quartz crystal microbalance (QCM) electrode were used as a sensitive layer for the detection of a number of primary aliphatic alcohols such as ethanol, methanol, 2-propanol and 1-propanol vapours. The frequency shifts (Deltaf) of the QCM were increased due to the vapour adsorption into the EB film. Deltaf were found to be linearly correlated with the concentrations of alcohols vapour in part per million (ppm). The sensitivity of the sensor was found to be governed by the chemical structure of the alcohol. The sensor shows a good reproducibility and reversibility. The diffusions of different alcohols vapour were studied and the diffusion coefficients (D) were calculated. It is concluded that the diffusion of the vapours into the EB film follows Fickian kinetics.

  9. Investigation of phase segregation using Rietveld refinement in Mg doped BaTiO3 solid solutions and their ferroelectric properties

    NASA Astrophysics Data System (ADS)

    Aanchal, Kaur, Kiranpreet; Singh, Anupinder; Singh, Mandeep

    2018-05-01

    Ba(1-x) Mgx Ti O3 (BMT) samples were synthesised using solid state reaction route with `x' varying from 0.025 to 0.10. The structural and ferroelectric properties of the bulk samples were investigated. The XRD analysis shows the presence of two phases, the first phase being magnesium doped BT (space group P4mm) and the second phase being Ba2TiO4 (space group Pna21). The tetragonal phase was found to be the major phase in the samples. The double phase Rietveld refinement was done and the weight percentage of orthorhombic phase was found to vary from 3.43% to 6.96% for x varying from 0.025≤x≤0.10. The P - E measurements reveal that all the samples exhibit lossy behaviour.

  10. Sustained phase separation and spin glass in Co-doped K x Fe 2 - y Se 2 single crystals

    DOE PAGES

    Ryu, Hyejin; Wang, Kefeng; Opacic, M.; ...

    2015-11-19

    We describe Co substitution effects in K xFe 2-y-zCo zSe 2 (0.06 ≤ z ≤ 1.73) single crystal alloys. By 3.5% of Co doping superconductivity is suppressed whereas phase separation of semiconducting K 2Fe 4Se 5 and superconducting/metallic K xFe 2Se 2 is still present. We show that the arrangement and distribution of superconducting phase (stripe phase) is connected with the arrangement of K, Fe and Co atoms. Semiconducting spin glass is found in proximity to superconducting state, persisting for large Co concentrations. At high Co concentrations ferromagnetic metallic state emerges above the spin glass. This is coincident withmore » changes of the unit cell, arrangement and connectivity of stripe conducting phase.« less

  11. The effect of sub-oxide phases on the transparency of tin-doped gallium oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, K.; Schelhas, L. T.; Siah, S. C.

    2016-10-03

    There have been a number of studies on the fabrication of Sn-doped gallium oxide (Ga 2O 3:Sn) films with both conductive and transparent properties using a variety of deposition methods. However, often, synthesis results in films that are not transparent. In this paper, we examine the mechanisms underlying these results in Ga 2O 3:Sn thin films prepared at various growth temperatures, Sn concentrations, and oxygen partial pressures. With X-ray absorption spectroscopy, transmission electron microscopy and energy dispersive spectroscopy, we find that when films are grown under the oxygen deficient conditions there are Ga sub-oxide and SnOx phases in the Gamore » 2O 3:Sn thin film. These Ga sub-oxide phases are only found in non-transparent films, and so we infer that the Ga sub-oxide is responsible for the non-transparency. These observations suggest that to obtain transparent Ga 2O 3:Sn, films deposition or subsequent annealing must be carefully controlled in both temperature and oxygen partial pressure to avoid the formation of Ga sub-oxide phases.« less

  12. Stabilization of high T(sub c) phase in bismuth cuprate superconductor by lead doping

    NASA Technical Reports Server (NTRS)

    Gupta, Ram. P.; Pachauri, J. P.; Khokle, W. S.; Nagpal, K. C.; Date, S. K.

    1990-01-01

    It has widely been ascertained that doping of lead in Bi:Sr:Ca:Cu:O systems promotes the growth of high T(sub c) (110 K) phase, improves critical current density, and lowers processing temperature. A systematic investigation is undertaken to determine optimum lead content and processing conditions to achieve these. A large number of samples with cationic compositions of Bi(2-x)Pb(x)Sr2Ca2Cu3 (x = 0.2 to 2.0) were prepared by conventional solid state reaction technique. Samples of all compositions were annealed together at a temperature and characterized through resistance-temperature (R-T) measurements and x ray diffraction (XRD) to determine the zero resistance temperature, T(sub c)(0) and to identify presence of phases, respectively. The annealing temperature was varied between 790 C to optimize processing parameters. Results are given. In brief, an optimum process is reported along with composition of leaded bismuth cuprate superconductor which yields nearly a high T(sub c) single phase with highly stable superconducting properties.

  13. Room temperature ferromagnetism in Mn-doped NiO nanoparticles

    NASA Astrophysics Data System (ADS)

    Layek, Samar; Verma, H. C.

    2016-01-01

    Mn-doped NiO nanoparticles of the series Ni1-xMnxO (x=0.00, 0.02, 0.04 and 0.06) are successfully synthesized using a low temperature hydrothermal method. Samples up to 6% Mn-doping are single phase in nature as observed from powder x-ray diffraction (XRD) studies. Rietveld refinement of the XRD data shows that all the single phase samples crystallize in the NaCl like fcc structure with space group Fm-3m. Unit cell volume decreases with increasing Mn-doping. Pure NiO nanoparticles show weak ferromagnetism, may be due to nanosize nature. Introduction of Mn within NiO lattice improves the magnetic properties significantly. Room temperature ferromagnetism is found in all the doped samples whereas the magnetization is highest for 2% Mn-doping and then decreases with further doping. The ZFC and FC branches in the temperature dependent magnetization separate well above 350 K indicating transition temperature well above room temperature for 2% Mn-doped NiO Nanoparticle. The ferromagnetic Curie temperature is found to be 653 K for the same sample as measured by temperature dependent magnetization study using vibrating sample magnetometer (VSM) in high vacuum.

  14. High p-type doping, mobility, and photocarrier lifetime in arsenic-doped CdTe single crystals

    NASA Astrophysics Data System (ADS)

    Nagaoka, Akira; Kuciauskas, Darius; McCoy, Jedidiah; Scarpulla, Michael A.

    2018-05-01

    Group-V element doping is promising for simultaneously maximizing the hole concentration and minority carrier lifetime in CdTe for thin film solar cells, but there are roadblocks concerning point defects including the possibility of self-compensation by AX metastability. Herein, we report on doping, lifetime, and mobility of CdTe single crystals doped with As between 1016 and 1020 cm-3 grown from the Cd solvent by the travelling heater method. Evidence consistent with AX instability as a major contributor to compensation in samples doped below 1017 cm-3 is presented, while for higher-doped samples, precipitation of a second phase on planar structural defects is also observed and may explain spatial variation in properties such as lifetime. Rapid cooling after crystal growth increases doping efficiency and mobility for times up to 20-30 days at room temperature with the highest efficiencies observed close to 45% and a hole mobility of 70 cm2/Vs at room temperature. A doping limit in the low 1017/cm3 range is observed for samples quenched at 200-300 °C/h. Bulk minority carrier lifetimes exceeding 20 ns are observed for samples doped near 1016 cm-3 relaxed in the dark and for unintentionally doped samples, while a lifetime of nearly 5 ns is observed for 1018 cm-3 As doping. These results help us to establish limits on properties expected for group-V doped CdTe polycrystalline thin films for use in photovoltaics.

  15. Layered Lithium-Rich Oxide Nanoparticles Doped with Spinel Phase: Acidic Sucrose-Assistant Synthesis and Excellent Performance as Cathode of Lithium Ion Battery.

    PubMed

    Chen, Min; Chen, Dongrui; Liao, Youhao; Zhong, Xiaoxin; Li, Weishan; Zhang, Yuegang

    2016-02-01

    Nanolayered lithium-rich oxide doped with spinel phase is synthesized by acidic sucrose-assistant sol-gel combustion and evaluated as the cathode of a high-energy-density lithium ion battery. Physical characterizations indicate that the as-synthesized oxide (LR-SN) is composed of uniform and separated nanoparticles of about 200 nm, which are doped with about 7% spinel phase, compared to the large aggregated ones of the product (LR) synthesized under the same condition but without any assistance. Charge/discharge demonstrates that LR-SN exhibits excellent rate capability and cyclic stability: delivering an average discharge capacity of 246 mAh g(-1) at 0.2 C (1C = 250 mA g(-1)) and earning a capacity retention of 92% after 100 cycles at 4 C in the lithium anode-based half cell, compared to the 227 mA g(-1) and the 63% of LR, respectively. Even in the graphite anode-based full cell, LR-SN still delivers a capacity of as high as 253 mAh g(-1) at 0.1 C, corresponding to a specific energy density of 801 Wh kg(-1), which are the best among those that have been reported in the literature. The separated nanoparticles of the LR-SN provide large sites for charge transfer, while the spinel phase doped in the nanoparticles facilitates lithium ion diffusion and maintains the stability of the layered structure during cycling.

  16. Transport properties of Cu-doped bismuth selenide single crystals at high magnetic fields up to 60 Tesla: Shubnikov-de Haas oscillations and π-Berry phase

    NASA Astrophysics Data System (ADS)

    Romanova, Taisiia A.; Knyazev, Dmitry A.; Wang, Zhaosheng; Sadakov, Andrey V.; Prudkoglyad, Valery A.

    2018-05-01

    We report Shubnikov-de Haas (SdH) and Hall oscillations in Cu-doped high quality bismuth selenide single crystals. To increase the accuracy of Berry phase determination by means of the of the SdH oscillations phase analysis we present a study of n-type samples with bulk carrier density n ∼1019 -1020cm-3 at high magnetic field up to 60 Tesla. In particular, Landau level fan diagram starting from the value of the Landau index N = 4 was plotted. Thus, from our data we found π-Berry phase that directly indicates the Dirac nature of the carriers in three-dimensional topological insulator (3D TI) based on Cu-doped bismuth selenide. We argued that in our samples the magnetotransport is determined by a general group of carriers that exhibit quasi-two-dimensional (2D) behaviour and are characterized by topological π-Berry phase. Along with the main contribution to the conductivity the presence of a small group of bulk carriers was registered. For 3D-pocket Berry phase was identified as zero, which is a characteristic of trivial metallic states.

  17. Effect of doping on all TMC vertical heterointerfaces

    NASA Astrophysics Data System (ADS)

    Nair, Salil; Joy, Jolly; Patel, K. D.; Pataniya, Pratik; Solanki, G. K.; Pathak, V. M.; Sumesh, C. K.

    2018-05-01

    The present work reports the growth and basic characterizations of GeSePbx (x=0, 0.02, 0.04) layered mono chalcogenide single crystal substrates for preparation of heterojunction devices. These crystals are grown by Direct Vapour Transport (DVT) Technique [1,2]. Heterojunction interfaces on these substrates are prepared using thermal evaporation of nanocrystalline SnSe thin films having 5kÅ thickness. The electrical characterizations reveal the rectifying behavior of the devices based on which its ideality factor, barrier height, saturation current, series resistance etc. have been determined using thermionic emission model [3,4]. The device parameters have been determined and analyzed by three different methods viz. LnI-V, Cheung's method and Norde method [5]. The variation in the device parameters in light of doping is reported in the present work.

  18. Growth studies of erbium-doped GaAs deposited by metalorganic vapor phase epitaxy using noval cyclopentadienyl-based erbium sources

    NASA Technical Reports Server (NTRS)

    Redwing, J. M.; Kuech, T. F.; Gordon, D. C.; Vaartstra, B. A.; Lau, S. S.

    1994-01-01

    Erbium-doped GaAS layers were grown by metalorganic vapor phase epitaxy using two new sources, bis(i-propylcyclopentadienyl)cyclopentadienyl erbium and tris(t-butylcyclopentadienyl) erbium. Controlled Er doping in the range of 10(exp 17) - 10(exp 18)/cu cm was achieved using a relatively low source temperature of 90 C. The doping exhibits a second-order dependence on inlet source partial pressure, similar to behavior obtained with cyclopentadienyl Mg dopant sources. Equivalent amounts of oxygen and Er are present in 'as-grown' films indicating that the majority of Er dopants probably exist as Er-O complexes in the material. Er(+3) luminescence at 1.54 micrometers was measured from the as-grown films, but ion implantation of additional oxygen decreases the emission intensity. Electrical compensation of n-type GaAs layers codoped with Er and Si is directly correlated to the Er concentration is proposed to arise from the deep centers associated with Er which are responsible for a broad emission band near 0.90 micrometers present in the photoluminescence spectra of GaAs:Si, Er films.

  19. Photocatalytic characteristics of single phase Fe-doped anatase TiO{sub 2} nanoparticles sensitized with vitamin B{sub 12}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gharagozlou, Mehrnaz, E-mail: gharagozlou@icrc.ac.ir; Bayati, R.

    Highlights: • Anatase TiO{sub 2}/B{sub 12} hybrid nanostructured catalyst was successfully synthesized by sol–gel technique. • The nanoparticle catalyst was doped with iron at several concentrations. • Nanoparticles were characterized in detail by XRD, Raman, TEM, EDS, and spectroscopy techniques. • The formation mechanism and role of point defects on photocatalytic properties were discussed. • A structure-property-processing correlation was established. - Abstract: We report a processing-structure-property correlation in B{sub 12}-anatase titania hybrid catalysts doped with several concentrations of iron. Our results clearly show that low-level iron doping alters structure, defect content, and photocatalytic characteristics of TiO{sub 2}. XRD and Ramanmore » studies revealed formation of a single-phase anatase TiO{sub 2} where no iron based segregation in particular iron oxide, was detected. FT-IR spectra clearly confirmed sensitization of TiO{sub 2} nanoparticles with vitamin B{sub 12}. TEM micrographs and diffraction patterns confirmed crystallization of anatase nanoparticles with a radius of 15–20 nm. Both XRD and Raman signals showed a peak shift and a peak broadening which are surmised to originate from creation of point defects, namely oxygen vacancy and titanium interstitial. The doped samples revealed a narrower band gap as compared to undoped samples. Photocatalytic activity of the samples was assessed through measuring the decomposition rate of rhodamine B. It was found that sensitization with vitamin B{sub 12} and Fe-doping significantly enhances the photocatalytic efficiency of the anatase nanoparticles. We also showed that there is an optimum Fe-doping level where the maximum photocatalytic activity is achieved. The boost of photocatalytic activity was qualitatively understood to originate from a more effective use of the light photons, formation of point defects, which enhance the charge separation, higher carrier mobility.« less

  20. Intercomparison of atmospheric water vapour measurements at a Canadian High Arctic site

    NASA Astrophysics Data System (ADS)

    Weaver, Dan; Strong, Kimberly; Schneider, Matthias; Rowe, Penny M.; Sioris, Chris; Walker, Kaley A.; Mariani, Zen; Uttal, Taneil; McElroy, C. Thomas; Vömel, Holger; Spassiani, Alessio; Drummond, James R.

    2017-08-01

    Water vapour is a critical component of the Earth system. Techniques to acquire and improve measurements of atmospheric water vapour and its isotopes are under active development. This work presents a detailed intercomparison of water vapour total column measurements taken between 2006 and 2014 at a Canadian High Arctic research site (Eureka, Nunavut). Instruments include radiosondes, sun photometers, a microwave radiometer, and emission and solar absorption Fourier transform infrared (FTIR) spectrometers. Close agreement is observed between all combination of datasets, with mean differences ≤ 1.0 kg m-2 and correlation coefficients ≥ 0.98. The one exception in the observed high correlation is the comparison between the microwave radiometer and a radiosonde product, which had a correlation coefficient of 0.92.A variety of biases affecting Eureka instruments are revealed and discussed. A subset of Eureka radiosonde measurements was processed by the Global Climate Observing System (GCOS) Reference Upper Air Network (GRUAN) for this study. Comparisons reveal a small dry bias in the standard radiosonde measurement water vapour total columns of approximately 4 %. A recently produced solar absorption FTIR spectrometer dataset resulting from the MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) retrieval technique is shown to offer accurate measurements of water vapour total columns (e.g. average agreement within -5.2 % of GRUAN and -6.5 % of a co-located emission FTIR spectrometer). However, comparisons show a small wet bias of approximately 6 % at the high-latitude Eureka site. In addition, a new dataset derived from Atmospheric Emitted Radiance Interferometer (AERI) measurements is shown to provide accurate water vapour measurements (e.g. average agreement was within 4 % of GRUAN), which usefully enables measurements to be taken during day and night (especially valuable during polar night).

  1. The Droplets Condensate Centering in the Vapour Channel of Short Low Temperature Heat Pipes at High Heat Loads

    NASA Astrophysics Data System (ADS)

    Seryakov, A. V.; Shakshin, S. L.; Alekseev, A. P.

    2017-11-01

    The results of experimental studies of the process of condensate microdroplets centering contained in the moving moist vapour in the vapour channel of short heat pipes (HPs) for large thermal loads are presented. A vapour channel formed by capillary-porous insert in the form of the inner Laval-liked nozzle along the entire length of the HP. In the upper cover forming a condensation surface in the HP, on the diametrical line are installed capacitive sensors, forming three capacitors located at different distances from the longitudinal axis of the vapour channel. With increasing heat load and the boil beginning in the evaporator a large amount of moist vapour in the vapour channel of HP occur the pressure pulsation with frequency of 400-500 Hz and amplitude up to 1·104Pa. These pulsations affect the moving of the inertial droplets subsystem of the vapour and due to the heterogeneity of the velocity profile around the particle flow in the vapour channel at the diameter of microdroplets occurs transverse force, called the Saffman force and shear microdroplets to the center of vapour channel. Using installed in the top cover capacitors we can record the radial displacement of the condensable microdroplets.

  2. Alcohol vapours sensor based on thin polyaniline salt film and quartz crystal microbalance.

    PubMed

    Ayad, Mohamad M; Torad, Nagy L

    2009-06-15

    A sensor based on the quartz crystal microbalance (QCM) technique was developed for detection of a number of primary aliphatic alcohols such as ethanol, methanol, 1-propanol, and 2-propanol vapours. Detection was based on a sensitive and a thin film of polyaniline, emeraldine salt (ES), coated the QCM electrode. The frequency shifts (Delta f) of the QCM were increased due to the vapour absorption into the ES film. The values of Delta f were found to be linearly correlated with the concentrations of alcohols vapour in mg L(-1). The changes in frequency are due to the hydrophilic character of the ES and the electrostatic interaction as well as the type of the alcohol. The sensor shows a good reproducibility and reversibility. The diffusion and diffusion coefficient (D) of different alcohols vapour were determined. It was found that the sensor follows Fickian kinetics.

  3. Saturated Vapour Pressure and Refrigeration - Part I

    ERIC Educational Resources Information Center

    Bunker, C. A.

    1973-01-01

    The first part of a two-part article describes an experimental approach that can be used in teaching the concept of saturated vapour pressure. This leads to a discussion of refrigeration cycles in the second part of the article. (JR)

  4. High p-type doping, mobility, and photocarrier lifetime in arsenic-doped CdTe single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagaoka, Akira; Kuciauskas, Darius; McCoy, Jedidiah

    Here, Group-V element doping is promising for simultaneously maximizing the hole concentration and minority carrier lifetime in CdTe for thin film solar cells, but there are roadblocks concerning point defects including the possibility of self-compensation by AX metastability. Herein, we report on doping, lifetime, and mobility of CdTe single crystals doped with As between 10 16 and 10 20 cm –3 grown from the Cd solvent by the travelling heater method. Evidence consistent with AX instability as a major contributor to compensation in samples doped below 10 17 cm –3 is presented, while for higher-doped samples, precipitation of a secondmore » phase on planar structural defects is also observed and may explain spatial variation in properties such as lifetime. Rapid cooling after crystal growth increases doping efficiency and mobility for times up to 20–30 days at room temperature with the highest efficiencies observed close to 45% and a hole mobility of 70 cm 2/Vs at room temperature. A doping limit in the low 10 17/cm 3 range is observed for samples quenched at 200–300 °C/h. Bulk minority carrier lifetimes exceeding 20 ns are observed for samples doped near 10 16 cm –3 relaxed in the dark and for unintentionally doped samples, while a lifetime of nearly 5 ns is observed for 10 18 cm –3 As doping. These results help us to establish limits on properties expected for group-V doped CdTe polycrystalline thin films for use in photovoltaics.« less

  5. High p-type doping, mobility, and photocarrier lifetime in arsenic-doped CdTe single crystals

    DOE PAGES

    Nagaoka, Akira; Kuciauskas, Darius; McCoy, Jedidiah; ...

    2018-05-07

    Here, Group-V element doping is promising for simultaneously maximizing the hole concentration and minority carrier lifetime in CdTe for thin film solar cells, but there are roadblocks concerning point defects including the possibility of self-compensation by AX metastability. Herein, we report on doping, lifetime, and mobility of CdTe single crystals doped with As between 10 16 and 10 20 cm –3 grown from the Cd solvent by the travelling heater method. Evidence consistent with AX instability as a major contributor to compensation in samples doped below 10 17 cm –3 is presented, while for higher-doped samples, precipitation of a secondmore » phase on planar structural defects is also observed and may explain spatial variation in properties such as lifetime. Rapid cooling after crystal growth increases doping efficiency and mobility for times up to 20–30 days at room temperature with the highest efficiencies observed close to 45% and a hole mobility of 70 cm 2/Vs at room temperature. A doping limit in the low 10 17/cm 3 range is observed for samples quenched at 200–300 °C/h. Bulk minority carrier lifetimes exceeding 20 ns are observed for samples doped near 10 16 cm –3 relaxed in the dark and for unintentionally doped samples, while a lifetime of nearly 5 ns is observed for 10 18 cm –3 As doping. These results help us to establish limits on properties expected for group-V doped CdTe polycrystalline thin films for use in photovoltaics.« less

  6. Erbium Doped GaN Lasers by Optical Pumping

    DTIC Science & Technology

    2016-07-13

    obtained via growth by hydride vapor phase epitaxy (HVPE) in conjunction with a laser-lift-off (LLO) process. An Er doping level of 1.4 × 10^20 atoms/cm3... conjunction with a laser-lift-off (LLO) 2 process. An Er doping level

  7. Ion transport mechanisms in lamellar phases of salt-doped PS-PEO block copolymer electrolytes.

    PubMed

    Sethuraman, Vaidyanathan; Mogurampelly, Santosh; Ganesan, Venkat

    2017-11-01

    We use a multiscale simulation strategy to elucidate, at an atomistic level, the mechanisms underlying ion transport in the lamellar phase of polystyrene-polyethylene oxide (PS-PEO) block copolymer (BCP) electrolytes doped with LiPF 6 salts. Explicitly, we compare the results obtained for ion transport in the microphase separated block copolymer melts to those for salt-doped PEO homopolymer melts. In addition, we also present results for dynamics of the ions individually in the PEO and PS domains of the BCP melt, and locally as a function of the distance from the lamellar interfaces. When compared to the PEO homopolymer melt, ions were found to exhibit slower dynamics in both the block copolymer (overall) and in the PEO phase of the BCP melt. Such results are shown to arise from the effects of slower polymer segmental dynamics in the BCP melt and the coordination characteristics of the ions. Polymer backbone-ion residence times analyzed as a function of distance from the interface indicate that ions have a larger residence time near the interface compared to that near the bulk of lamella, and demonstrates the influence of the glassy PS blocks and microphase segregation on the ion transport properties. Ion transport mechanisms in BCP melts reveal that there exist five distinct mechanisms for ion transport along the backbone of the chain and exhibit qualitative differences from the behavior in homopolymer melts. We also present results as a function of salt concentration which show that the mean-squared displacements of the ions decrease with increasing salt concentration, and that the ion residence times near the polymer backbone increase with increasing salt concentration.

  8. Re Doping in 2D Transition Metal Dichalcogenides as a New Route to Tailor Structural Phases and Induced Magnetism

    DOE PAGES

    Kochat, Vidya; Apte, Amey; Hachtel, Jordan A.; ...

    2017-10-09

    Alloying in 2D results in the development of new, diverse, and versatile systems with prospects in bandgap engineering, catalysis, and energy storage. Tailoring structural phase transitions using alloying is a novel idea with implications in designing all 2D device architecture as the structural phases in 2D materials such as transition metal dichalcogenides are correlated with electronic phases. In this paper, this study develops a new growth strategy employing chemical vapor deposition to grow monolayer 2D alloys of Re-doped MoSe 2 with show composition tunable structural phase variations. The compositions where the phase transition is observed agree well with the theoreticalmore » predictions for these 2D systems. Finally, it is also shown that in addition to the predicted new electronic phases, these systems also provide opportunities to study novel phenomena such as magnetism which broadens the range of their applications.« less

  9. Phase stability and photocatalytic activity of Zr-doped anatase synthesized in miniemulsion

    NASA Astrophysics Data System (ADS)

    Schiller, Renate; Weiss, Clemens K.; Landfester, Katharina

    2010-10-01

    A series of mesoporous anatase-type TiO2 doped with zirconium (0-50 mol% Zr) was synthesized by combining the sol-gel process with the inverse miniemulsion technique. Nanoparticles between 100 and 300 nm were directly prepared from acidic precursor solutions of titanium glycolate (EGMT) and zirconium isopropoxide. The miniemulsion technique is a simple and convenient method to synthesize nanoparticles of homogeneous size because the reactions (here hydrolysis and condensation) take place in the confined space of nanodroplets (several hundreds of nanometres) and therefore in a highly controlled manner. For low doping levels (0-7.1 mol% Zr), ZrxTi1 - xO2 solid solutions were formed where Zr was uniformly dispersed into the anatase framework. For higher amounts of zirconium (Zr >= 7.1 mol%), the crystallization of zirconium titanate (ZrTiO4) occurred at a low temperature of 650 °C and it was obtained as a pure material for 47.4 mol% <= Zr <= 50 mol%. The influence of the amount of zirconium on the crystallinity, crystallite size, phase composition and stability, morphology and specific surface area was investigated. For the characterization transmission electron microscopy (TEM), x-ray diffraction (XRD), nitrogen sorption (BET) and inductively coupled plasma-optical emission spectrometry (ICP-OES) were used. The photocatalytic activity of the crystalline mixed oxides (0-9.4 mol% Zr) was examined for the degradation of methylene blue under UV irradiation.

  10. Self-doped Ti(3+)-TiO2 as a photocatalyst for the reduction of CO2 into a hydrocarbon fuel under visible light irradiation.

    PubMed

    Sasan, Koroush; Zuo, Fan; Wang, Yuan; Feng, Pingyun

    2015-08-28

    Self-doped TiO2 shows visible light photocatalytic activity, while commercial TiO2 (P25) is only UV responsive. The incorporation of Ti(3+) into TiO2 structures narrows the band gap (2.90 eV), leading to significantly increased photocatalytic activity for the reduction of CO2 into a renewable hydrocarbon fuel (CH4) in the presence of water vapour under visible light irradiation.

  11. Synergistic effect of non-covalent interaction in colloidal nematic liquid crystal doped with magnetic functionalized single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Dalir, Nima; Javadian, Soheila

    2018-03-01

    Single-walled carbon nanotubes (SWCNTs), CNT@Fe3O4, and Fe3O4 nanocomposites were doped to eutectic uniaxial nematic liquid crystal (NLC's) (E5CN7) to improve physiochemical properties such as phase transition temperature, activation energy (Ea), dielectric anisotropy, and electro-optical properties. The thermal study of nematic phase shows a decrease in the nematic to isotropic phase transition temperature as CNT is doped. However, higher doping concentration of CNTs leads to the further increase in transition temperature. The anchoring effect or π-π interaction plays a key role in N-I phase transition. The functionalization of SWCNTs with Fe3O4 diminishes the CNT aggregation while the magnetic susceptibility is increased. The functionalized CNT doping to NLC's decrease significantly the phase transition temperature compared to doping of non-functionalized CNTs. Attractive interaction between guest and host molecules by magnetic and geometry effect increased the enthalpy and entropy of phase transition in the SWCNT@Fe3O4 sample compared to non-functionalized CNT doped system. Also, the Ea values are decreased as SWCNT@Fe3O4 is doped to pure E5CN7. The difference of N-I phase transition temperature was observed in Fe3O4 and CNT@Fe3O4 compared to SWCNT doped systems. Finally, dielectric anisotropy was increased in the doped system compared to pure NLC.

  12. Room temperature ferromagnetism in Fe-doped CuO nanoparticles.

    PubMed

    Layek, Samar; Verma, H C

    2013-03-01

    The pure and Fe-doped CuO nanoparticles of the series Cu(1-x)Fe(x)O (x = 0.00, 0.02, 0.04, 0.06 and 0.08) were successfully prepared by a simple low temperature sol-gel method using metal nitrates and citric acid. Rietveld refinement of the X-ray diffraction data showed that all the samples were single phase crystallized in monoclinic structure of space group C2/c with average crystallite size of about 25 nm and unit cell volume decreases with increasing iron doping concentration. TEM micrograph showed nearly spherical shaped agglomerated particles of 4% Fe-doped CuO with average diameter 26 nm. Pure CuO showed weak ferromagnetic behavior at room temperature with coercive field of 67 Oe. The ferromagnetic properties were greatly enhanced with Fe-doping in the CuO matrix. All the doped samples showed ferromagnetism at room temperature with a noticeable coercive field. Saturation magnetization increases with increasing Fe-doping, becomes highest for 4% doping then decreases for further doping which confirms that the ferromagnetism in these nanoparticles are intrinsic and are not resulting from any impurity phases. The ZFC and FC branches of the temperature dependent magnetization (measured in the range of 10-350 K by SQUID magnetometer) look like typical ferromagnetic nanoparticles and indicates that the ferromagnetic Curie temperature is above 350 K.

  13. Structural, Optical, and Electronic Characterization of Fe-Doped Alumina Nanoparticles

    NASA Astrophysics Data System (ADS)

    Heiba, Zein K.; Mohamed, Mohamed Bakr; Wahba, Adel Maher; Imam, N. G.

    2018-01-01

    The effects of iron doping on the structural, optical, and electronic properties of doped alumina have been studied. Single-phase iron-doped alumina Al2- x Fe x O3 ( x = 0.00 to 0.30) nanoparticles were synthesized via citrate-precursor method. Formation of single-phase hexagonal corundum structure with no other separate phases was demonstrated by x-ray diffraction (XRD) analysis and Fourier-transform infrared spectroscopy. The effects of iron doping on the α-Al2O3 structural parameters, viz. atomic coordinates, lattice parameters, crystallite size, and microstrain, were estimated from XRD data by applying the Rietveld profile fitting method. Transmission electron microscopy further confirmed the nanosize nature of the prepared samples with size ranging from 12 nm to 83 nm. The electronic band structure was investigated using density functional theory calculations to explain the decrease in the energy gap of Al2- x Fe x O3 as the amount of Fe was increased. The colored emission peaks in the visible region (blue, red, violet) of the electromagnetic spectrum obtained for the Fe-doped α-Al2O3 nanoparticles suggest their potential application as ceramic nanopigments.

  14. Kinetic studies of BTEX vapour adsorption onto surfaces of calix-4-resorcinarene films

    NASA Astrophysics Data System (ADS)

    Hassan, A. K.; Ray, A. K.; Nabok, A. V.; Wilkop, T.

    2001-10-01

    The exposure of spun films of an amphiphilic calix-4-resorcinarene (C-4-RA) derivative to vapours of benzene, toluene, ethylbenzene, and m-xylene (BTEX) has produced a graded response, promising for the development of multisensor arrays. Fast and reversible adsorption of ethylbenzene was associated with changing the refractive index of the sensing layer and is believed to be due to the host-guest interaction between the cavitand C-4-RA molecules and the vapour molecules. Prolonged irradiation of the films with a focused laser beam has resulted in an initial increase of film sensitivity to the different organic vapours.

  15. Evidence of phase transition in Nd3+ doped phosphate glass determined by thermal lens spectrometry.

    PubMed

    Andrade, Acácio A; Lourenço, Sidney A; Pilla, Viviane; Silva, Anielle C Almeida; Dantas, Noelio O

    2014-01-28

    Thermal lens spectroscopy (TLS), differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) techniques were applied to the thermo-optical property analysis of a new phosphate glass matrix PANK with nominal composition 40P2O5·20Al2O3·35Na2O·5K2O (mol%), doped with different Nd(3+) compositions. This glass system, synthesized by the fusion protocol, presents high transparency from UV to the near infrared, excellent thermo-optical properties at room temperature and high fluorescence quantum efficiency. Thermal lens phase shift parameters, thermal diffusivity and the DSC signal present pronounced changes at about 61 °C for the PANK glass system. This anomalous behavior was associated with a phase transition in the nanostructured glass materials. The FTIR signal confirms the presence of isolated PO4 tetrahedron groups connected to different cations in PANK glass. As a main result, our experimental data suggest that these tetrahedron groups present a structural phase transition, paraelectric-ferroelectric phase transition, similar to that in potassium dihydrogen phosphate, KH2PO4, nanocrystals and which TLS technique can be used as a sensitive method to investigate changes in the structural level of nanostructured materials.

  16. Magnetic N-doped mesoporous carbon as an adsorbent for the magnetic solid-phase extraction of phthalate esters from soft drinks.

    PubMed

    Li, Menghua; Jiao, Caina; Yang, Xiumin; Wang, Chun; Wu, Qiuhua; Wang, Zhi

    2017-04-01

    A new kind of magnetic N-doped mesoporous carbon was prepared by the one-step carbonization of a hybrid precursor (glucose, melamine, and iron chloride) in a N 2 atmosphere with a eutectic salt (KCl/ZnCl 2 ) as the porogen. The obtained magnetic N-doped mesoporous carbon showed excellent characteristics, such as strong magnetic response, high surface area, large pore volume, and abundant π-electron system, which endow it with a great potential as a magnetic solid-phase extraction adsorbent. To evaluate its adsorption performance, the magnetic N-doped mesoporous carbon was used for the extraction of three phthalate esters from soft drink samples followed by high-performance liquid chromatographic analysis. Under the optimum conditions, the developed method showed a good linearity (1.0-120.0 ng/mL), low limit of detection (0.1-0.3 ng/mL, S/N = 3), and good recoveries (83.2-119.0%) in soft drink samples. The results indicated that the magnetic N-doped mesoporous carbon has an excellent adsorption capacity for phthalate esters and the present method is simple, accurate, and highly efficient for the extraction and determination of phthalate esters in complex matrix samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Aerosol assisted chemical vapour deposition of gas sensitive SnO2 and Au-functionalised SnO2 nanorods via a non-catalysed vapour solid (VS) mechanism

    PubMed Central

    Vallejos, Stella; Selina, Soultana; Annanouch, Fatima Ezahra; Gràcia, Isabel; Llobet, Eduard; Blackman, Chris

    2016-01-01

    Tin oxide nanorods (NRs) are vapour synthesised at relatively lower temperatures than previously reported and without the need for substrate pre-treatment, via a vapour-solid mechanism enabled using an aerosol-assisted chemical vapour deposition method. Results demonstrate that the growth of SnO2 NRs is promoted by a compression of the nucleation rate parallel to the substrate and a decrease of the energy barrier for growth perpendicular to the substrate, which are controlled via the deposition conditions. This method provides both single-step formation of the SnO2 NRs and their integration with silicon micromachined platforms, but also allows for in-situ functionalization of the NRs with gold nanoparticles via co-deposition with a gold precursor. The functional properties are demonstrated for gas sensing, with microsensors using functionalised NRs demonstrating enhanced sensing properties towards H2 compared to those based on non-functionalised NRs. PMID:27334232

  18. Dimethylalkoxygallane incorporating a donor-functionalised alkoxide: the monomeric gas-phase structure.

    PubMed

    Knapp, Caroline E; Carmalt, Claire J; McMillan, Paul F; Wann, Derek A; Robertson, Heather E; Rankin, David W H

    2008-12-28

    The structure of the vapour produced upon heating the dimethylalkoxygallane [Me(2)GaOCH(2)CH(2)NMe(2)](2) has been studied by gas-phase electron diffraction and ab initio molecular orbital calculations; only the monomeric form [Me(2)GaOCH(2)CH(2)NMe(2)] is observed in the vapour, with the nitrogen atom forming a dative bond with the metal centre.

  19. First-principles study of Co- and Cu-doped Ni2MnGa along the tetragonal deformation path

    NASA Astrophysics Data System (ADS)

    Zelený, M.; Sozinov, A.; Straka, L.; Björkman, T.; Nieminen, R. M.

    2014-05-01

    The influence of Co and Cu doping on Ni-Mn-Ga Heusler alloy is investigated using the first-principles exact muffin-tin orbital method in combination with the coherent-potential approximation. Single-element doping and simultaneous doping by both elements are investigated in Ni50-xCoxMn25-yGa25-zCuy+z alloys, with dopant concentrations x ,y, and z up to 7.5 at. %. Doping with Co in the Ni sublattice decreases the (c/a)NM ratio of the nonmodulated (NM) martensite, but it simultaneously increases the cubic phase stability with respect to the NM phase. Doping with Cu in the Mn or in Ga sublattices does not change the (c/a)NM ratio significantly and it decreases the cubic phase stability. For simultaneous doping by Co in the Ni sublattice and Cu in the Mn or Ga sublattices, the effects of the individual dopants are independent and about the same as for the single-element doping. Thus, the (c/a)NM ratio can be adjusted by Co doping while the phase stability can be balanced by Cu doping, resulting in stable martensite with a reduced (c/a)NM. The local stability of the cubic phase with respect to the tetragonal deformation can be understood on the basis of a density-of-states analysis.

  20. Water vapour emission in vegetable fuel: absorption cell measurements and detection limits of our CO II Dial system

    NASA Astrophysics Data System (ADS)

    Bellecci, C.; De Leo, L.; Gaudio, P.; Gelfusa, M.; Lo Feudo, T.; Martellucci, S.; Richetta, M.

    2006-09-01

    Forest fires can be the cause of serious environmental and economic damages. For this reason a considerable effort has been directed toward the forest protection and fire fighting. In the early forest fire detection, Lidar technique present considerable advantages compared to the passive detection methods based on infrared cameras currently in common use, due its higher sensitivity and ability to accurately locate the fire. The combustion phase of the vegetable matter causes a great amount of water vapour emission, thus the water molecule behaviour will be studied to obtain a fire detection system ready and efficient also before the flame propagation. A first evaluation of increment of the water vapour concentration compared to standard one will be estimated by a numerical simulation. These results will be compared with the experimental measurements carried out into a cell with a CO II Dial system, burning different kinds of vegetable fuel. Our results and their comparison will be reported in this paper.

  1. Cation distribution, magnetic properties and cubic-perovskite phase transition in bismuth-doped nickel ferrite

    NASA Astrophysics Data System (ADS)

    Gore, Shyam K.; Jadhav, Santosh S.; Tumberphale, Umakant B.; Shaikh, Shoyeb M.; Naushad, Mu; Mane, Rajaram S.

    2017-12-01

    The phase transition of bismuth-substituted nickel ferrite, synthesized by using a simple sol-gel autocombustion method, from cubic to perovskite is confirmed from the X-ray diffraction spectrums. The changes in isomer shift, hyperfine field and cation distribution are obtained from the Mossbauer spectroscopy analysis. The cation distribution demonstrates Ni2+ cations occupy tetrahedral sites, while Fe3+ and Bi3+ occupy both tetrahedral as well as octahedral sites. For higher concentrations of bismuth, saturation magnetization is increased whereas, coercivity is decreased which is related to phase change. The variations of dielectric constant, tangent loss and conductivity (ac) with frequency (10 Hz-5 MHz) have been explored with Bi3+-doping i.e. 'x'. According to Maxwell-Wagener model, there is an involvement of electron hopping kinetics as both dielectric constant and tangent loss are decreased with increasing frequency. Increase of conductivity with frequency (measured at room temperature, 27 °C) is attributed to increase of number of carriers and mobility.

  2. Structural and spectroscopic characterization of irreversible phase changes in rapidly heated precursors of europium-doped titania nanoparticles

    NASA Astrophysics Data System (ADS)

    Gunawidjaja, Ray; Anderson, Benjamin R.; Eilers, Hergen

    2018-02-01

    We observe temperature-dependent phase changes in a precursor of europium-doped titania (p-Eu:TiO2) that is prepared via precipitation and is laser-heated to temperatures between 473 K and 1246 K within sub-second heating durations. The phase changes are characterized using X-ray diffraction and site-selective photoluminescence spectroscopy. We find that upon heating, the initially amorphous p-Eu:TiO2 first transforms into the anatase phase and then into a mixed anatase/rutile phase. These phase transformations change the local environment of the dopant Eu3+ ions resulting in modifications to the Eu3+ ions spectroscopic properties, with the modifications occurring for calcination temperatures above approximately 573 K following sub-second durations. These results demonstrate the temperature sensing ability of p-Eu:TiO2 nanoparticles for use in sub-second heating events. Moreover, at 573 K this temperature is lower than other host materials that we have evaluated (i.e., La2O3, ZrO2 and Y2O3).

  3. Highly photostable NV centre ensembles in CVD diamond produced by using N2O as the doping gas

    NASA Astrophysics Data System (ADS)

    Tallaire, A.; Mayer, L.; Brinza, O.; Pinault-Thaury, M. A.; Debuisschert, T.; Achard, J.

    2017-10-01

    High density Nitrogen-Vacancy (NV) centre ensembles incorporated in plasma assisted chemical vapour deposition (CVD) diamond are crucial to the development of more efficient sensing devices that use the properties of luminescent defects. Achieving high NV doping with N2 as the dopant gas source during diamond growth is, however, plagued by the formation of macroscopic and point defects that quench luminescence. Moreover, such NVs are found to exhibit poor photostability under high laser powers. Although this effect can be harnessed to locally and durably switch off NV luminescence for data storage, it is usually undesirable for most applications. In this work, the use of N2O as an alternative doping source is proposed. Much higher amounts of the doping gas can be added without significantly generating defects, which allows the incorporation of perfectly photostable and higher density NV ensembles. This effect is believed to be related to the lower dissociation energy of the N2O molecule together with the beneficial effect of the presence of a low and controlled amount of oxygen near the growing surface.

  4. The effect of sub-oxide phases on the transparency of tin-doped gallium oxide

    DOE PAGES

    Lim, K.; Schelhas, L. T.; Siah, S. C.; ...

    2016-10-07

    There have been a number of studies on the fabrication of Sn-doped gallium oxide (Ga 2O 3:Sn) films with both conductive and transparent properties using a variety of deposition methods. However, often, synthesis results in films that are not transparent. In this paper, we examine the mechanisms underlying these results in Ga 2O 3:Sn thin films prepared at various growth temperatures, Sn concentrations, and oxygen partial pressures. With X-ray absorption spectroscopy, transmission electron microscopy and energy dispersive spectroscopy, we find that when films are grown under the oxygen deficient conditions there are Ga sub-oxide and SnO x phases in themore » Ga 2O 3:Sn thin film. These Ga sub-oxide phases are only found in non-transparent films, and so we infer that the Ga sub-oxide is responsible for the non-transparency. Furthermore, these observations suggest that to obtain transparent Ga 2O 3:Sn, films deposition or subsequent annealing must be carefully controlled in both temperature and oxygen partial pressure to avoid the formation of Ga sub-oxide phases.« less

  5. Observation of the magnetic C 4 phase in Ca 1 - x Na x Fe 2 As 2 and its universality in the hole-doped 122 superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taddei, K. M.; Allred, J. M.; Bugaris, D. E.

    Since its discovery in 2014, the magnetic tetragonal C 4 phase has been identified in a growing number of hole-doped 122 Fe-based superconducting compounds. Exhibiting a unique double-Q magnetic structure and a strong competition with both superconducting and magnetic order parameters, the C 4 phase and the conditions of its formation are of significant interest to understanding the fundamental mechanisms in these materials. Particularly, separating the importance of direct changes to the relative size of hole and electron pockets at the Fermi surface (achieved via charge doping) from the role of structural changes due to differences of ionic radii ofmore » dopants is useful to determine the underlying parameter which causes the C 4 instability. Here, we report the discovery of the C 4 phase in a fourth member of the hole-doped 122 materials Ca 1-xNa xFe 2As 2(0.20 ≤ x ≤ 0.50) as determined from neutron and x-ray powder diffraction studies. The maximum of the C 4 dome is observed at x = 0.44 with a reentrant temperature T r = 52 K and an extent of Δx ~ 0.07 in composition. It is observed that for a range of compositions within the C 4 dome (0.40 ≤ x ≤ 0.42), there is a second reentrance (Tr 2 < Tr) where the antiferromagnetic C 2 phase is recovered—a feature previously only seen in Ba 1-xK xFe 2As 2. A phase diagram is presented for Ca 1-xNa xFe 2As 2 and compared to the other Na-doped 122's—A 1-xNa xFe 2As 2 with A = Ba, Sr, and Ca. Lastly, the structural parameters for these three systems are compared and the importance of the “chemical pressure” due to changing the A-site ion (A = Ba, Sr, Ca) is discussed.« less

  6. Observation of the magnetic C 4 phase in Ca 1 - x Na x Fe 2 As 2 and its universality in the hole-doped 122 superconductors

    DOE PAGES

    Taddei, K. M.; Allred, J. M.; Bugaris, D. E.; ...

    2017-02-15

    Since its discovery in 2014, the magnetic tetragonal C 4 phase has been identified in a growing number of hole-doped 122 Fe-based superconducting compounds. Exhibiting a unique double-Q magnetic structure and a strong competition with both superconducting and magnetic order parameters, the C 4 phase and the conditions of its formation are of significant interest to understanding the fundamental mechanisms in these materials. Particularly, separating the importance of direct changes to the relative size of hole and electron pockets at the Fermi surface (achieved via charge doping) from the role of structural changes due to differences of ionic radii ofmore » dopants is useful to determine the underlying parameter which causes the C 4 instability. Here, we report the discovery of the C 4 phase in a fourth member of the hole-doped 122 materials Ca 1-xNa xFe 2As 2(0.20 ≤ x ≤ 0.50) as determined from neutron and x-ray powder diffraction studies. The maximum of the C 4 dome is observed at x = 0.44 with a reentrant temperature T r = 52 K and an extent of Δx ~ 0.07 in composition. It is observed that for a range of compositions within the C 4 dome (0.40 ≤ x ≤ 0.42), there is a second reentrance (Tr 2 < Tr) where the antiferromagnetic C 2 phase is recovered—a feature previously only seen in Ba 1-xK xFe 2As 2. A phase diagram is presented for Ca 1-xNa xFe 2As 2 and compared to the other Na-doped 122's—A 1-xNa xFe 2As 2 with A = Ba, Sr, and Ca. Lastly, the structural parameters for these three systems are compared and the importance of the “chemical pressure” due to changing the A-site ion (A = Ba, Sr, Ca) is discussed.« less

  7. Modification of graphene electronic properties via controllable gas-phase doping with copper chloride

    NASA Astrophysics Data System (ADS)

    Rybin, Maxim G.; Islamova, Vera R.; Obraztsova, Ekaterina A.; Obraztsova, Elena D.

    2018-01-01

    Molecular doping is an efficient, non-destructive, and simple method for changing the electronic structure of materials. Here, we present a simple air ambient vapor deposition method for functionalization of pristine graphene with a strong electron acceptor: copper chloride. The doped graphene was characterized by Raman spectroscopy, UV-vis-NIR optical absorption spectroscopy, scanning electron microscopy, and electro-physical measurements performed using the 4-probe method. The effect of charge transfer from graphene to a dopant results in shifting the Fermi level in doped graphene. The change of the electronic structure of doped graphene was confirmed by the tangential Raman peak (G-peak) shift and by the appearance of the gap in the UV-vis-NIR spectrum after doping. Moreover, the charge transfer resulted in a substantial decrease in electrical sheet resistance depending on the doping level. At the highest concentration of copper chloride, a Fermi level shift into the valence band up to 0.64 eV and a decrease in the sheet resistance value by 2.36 times were observed (from 888 Ω/sq to 376 Ω/sq for a single graphene layer with 97% of transparency).

  8. Exposure to oil mist and oil vapour during offshore drilling in norway, 1979-2004.

    PubMed

    Steinsvåg, Kjersti; Bråtveit, Magne; Moen, Bente E

    2006-03-01

    To describe personal exposure to airborne hydrocarbon contaminants (oil mist and oil vapour) from 1979 to 2004 in the mud-handling areas of offshore drilling facilities operating on the Norwegian continental shelf when drilling with oil-based muds. Qualitative and quantitative information was gathered during visits to companies involved in offshore oil and gas production in Norway. Monitoring reports on oil mist and oil vapour exposure covered 37 drilling facilities. Exposure data were analysed using descriptive statistics and by constructing linear mixed-effects models. Samples had been taken during the use of three generations of hydrocarbon base oils, namely diesel oils (1979-1984), low-aromatic mineral oils (1985-1997) and non-aromatic mineral oils (1998-2004). Sampling done before 1984 showed high exposure to diesel vapour (arithmetic mean, AM = 1217 mg m(-3)). When low-aromatic mineral oils were used, the exposure to oil mist and oil vapour was 4.3 and 36 mg m(-3), and the respective AMs for non-aromatic mineral oils were reduced to 0.54 and 16 mg m(-3). Downward time trends were indicated for both oil mist (6% per year) and oil vapour (8% per year) when the year of monitoring was introduced as a fixed effect in a linear mixed-effects model analysis. Rig type, technical control measures and mud temperature significantly determined exposure to oil mist. Rig type, type of base oil, viscosity of the base oil, work area, mud temperature and season significantly determined exposure to oil vapour. Major decreases in variability were found for the between-rig components. Exposure to oil mist and oil vapour declined over time in the mud-handling areas of offshore drilling facilities. Exposure levels were associated with rig type, mud temperature, technical control measures, base oil, viscosity of the base oil, work area and season.

  9. In-vitro and in-vivo anti-Trichophyton activity of essential oils by vapour contact.

    PubMed

    Inouye, S; Uchida, K; Yamaguchi, H

    2001-05-01

    The minimum inhibitory doses (MIDs) of essential oils by vapour contact to inhibit the growth of Trichophyton mentagrophytes and Trichophyton rubrum on agar medium were determined using airtight boxes. Among seven essential oils examined, cinnamon bark oil showed the least MID, followed by lemongrass, thyme and perilla oils. Lavender and tea tree oils showed moderate MID, and citron oil showed the highest MID, being 320 times higher than that of cinnamon bark oil. The MID values were less than the minimum inhibitory concentration (MIC) values determined by agar dilution assay. Furthermore, the minimum agar concentration (MAC) of essential oils absorbed from vapour was determined at the time of MID determination as the second antifungal measure. The MAC value by vapour contact was 1.4 to 4.7 times less than the MAC remaining in the agar at the time of MIC determination by agar dilution assay. Using selected essential oils, the anti-Trichophyton activity by vapour contact was examined in more detail. Lemongrass, thyme and perilla oils killed the conidia, inhibited germination and hyphal elongation at 1-4 micrograms ml-1 air, whereas lavender oil was effective at 40-160 micrograms ml-1 air. The in-vivo efficacy of thyme and perilla oils by vapour contact was shown against an experimental tinea pedis in guinea pigs infected with T. mentagrophytes. These results indicated potent anti-Trichophyton action of essential oils by vapour contact.

  10. The effect of perfluorocarbon vapour on the measurement of respiratory tidal volume during partial liquid ventilation.

    PubMed

    Davies, M W; Dunster, K R

    2000-08-01

    During partial liquid ventilation perfluorocarbon vapour is present in the exhaled gases. The volumes of these gases are measured by pneumotachometers. Error in measuring tidal volumes will give erroneous measurement of lung compliance during partial liquid ventilation. We aim to compare measured tidal volumes with and without perfluorocarbon vapour using tidal volumes suitable for use in neonates. Tidal volumes were produced with a 100 ml calibration syringe from 20 to 100 ml and with a calibrated Harvard rodent ventilator from 2.5 to 20 ml. Control tidal volumes were drawn from a humidifier chamber containing water vapour and the PFC tidal volumes were drawn from a humidifier chamber containing water and perfluorocarbon (FC-77) vapour. Tidal volumes were measured by a fixed orifice, target, differential pressure flowmeter (VenTrak) or a hot-wire anenometer (Bear Cub) placed between the calibration syringe or ventilator and the humidifier chamber. All tidal volumes measured with perfluorocarbon vapour were increased compared with control (ANOVA p < 0.001 and post t-test p < 0.0001). Measured tidal volume increased from 7 to 16% with the fixed orifice type flow-meter, and from 35 to 41% with the hot-wire type. In conclusion, perfluorocarbon vapour flowing through pneumotachometers gives falsely high tidal volume measurements. Calculation of lung compliance must take into account the effect of perfluorocarbon vapour on the measurement of tidal volume.

  11. Thermoelectric properties of Sn doped BiCuSeO

    NASA Astrophysics Data System (ADS)

    Das, Sayan; Chetty, Raju; Wojciechowski, Krzysztof; Suwas, Satyam; Mallik, Ramesh Chandra

    2017-10-01

    BiCuSeO and Bi1-xSnxCuSeO (x = 0.02, 0.04, 0.06, 0.08) were prepared by a two-step solid state synthesis. The phase purity and the crystal structure were investigated by the X-Ray Diffraction (XRD) and confirmed by Energy Dispersive Spectroscopy (EDS). The volatilization of Bi and Bi2O3 lead to off-stoichiometry of the main phase and the formation of CuSe2 secondary phase in the undoped sample. SnO2 secondary phases were found in the doped samples. Both the Seebeck coefficient and the electrical resistivity, measured from the room temperature to 773 K linearly increases with the temperature, which indicates that the sample have metallic like behavior. The origin of such a behavior is due to high hole concentration originating from the Bi and the O vacancies. The Sn +4 valence state was confirmed from the X-Ray Photoelectron Spectroscopy (XPS) and from the reduction of lattice parameter 'a' with doping. The substitution of Sn+4 in the place of Bi+3 leads to the higher Seebeck coefficient and electrical resistivity in the doped samples. Highest power-factor (∼1 mW/m-K2 at 773 K), was obtained for the undoped sample and the 4% Sn doped sample (Bi0.96Sn0.04CuSeO). The lowest thermal conductivity was obtained for the undoped sample, from the room temperature to 773 K. The presence of thermally-conducting SnO2 secondary phases in the doped samples increases the thermal conductivity in comparison with the undoped sample. The zTs of the doped samples were lower compared to the undoped sample, owing to their higher thermal conductivity. The oxygen vacancies as well as the all-length scale phonon scattering, lowers the thermal conductivity of the undoped sample and, as a result, a maximum zT of 1.09 was achieved at 773 K.

  12. Impurity doping: a novel strategy for controllable synthesis of functional lanthanide nanomaterials.

    PubMed

    Chen, Daqin; Wang, Yuansheng

    2013-06-07

    Many technological nanomaterials are intentionally 'doped' by introducing appropriate amounts of foreign elements into hosts to impart electronic, magnetic and optical properties. In fact, impurity doping was recently found to have significant influence on nucleation and growth of many functional nanocrystals (NCs), and provide a fundamental approach to modify the crystallographic phase, size, morphology, and electronic configuration of nanomaterials. In this feature article, we provide an overview of the most recent progresses in doping-induced control of phase structures, sizes, shapes, as well as performances of functional nanomaterials for the first time. Two kinds of impurity doping strategies, including the homo-valence ion doping and hetero-valence ion doping, are discussed in detail. We lay emphases on impurity doping induced modifications of microstructures and optical properties of upconversion (UC) lanthanide (Ln(3+)) NCs, but do not limit to them. In addition, we also illustrate the control of Ln(3+) activator distribution in the core@shell architecture, which has recently provided scientists with new opportunities for designing and tuning the multi-color emissions of Ln(3+)-doped UC NCs. Finally, the challenges and future perspectives of this novel impurity doping strategy are pointed out.

  13. GPS water vapour tomography: preliminary results from the ESCOMPTE field experiment

    NASA Astrophysics Data System (ADS)

    Champollion, C.; Masson, F.; Bouin, M.-N.; Walpersdorf, A.; Doerflinger, E.; Bock, O.; Van Baelen, J.

    2005-03-01

    Water vapour plays a major role in atmospheric processes but remains difficult to quantify due to its high variability in time and space and the sparse set of available measurements. The GPS has proved its capacity to measure the integrated water vapour at zenith with the same accuracy as other methods. Recent studies show that it is possible to quantify the integrated water vapour in the line of sight of the GPS satellite. These observations can be used to study the 3D heterogeneity of the troposphere using tomographic techniques. We develop three-dimensional tomographic software to model the three-dimensional distribution of the tropospheric water vapour from GPS data. First, the tomographic software is validated by simulations based on the realistic ESCOMPTE GPS network configuration. Without a priori information, the absolute value of water vapour is less resolved as opposed to relative horizontal variations. During the ESCOMPTE field experiment, a dense network of 17 dual frequency GPS receivers was operated for 2 weeks within a 20×20-km area around Marseille (southern France). The network extends from sea level to the top of the Etoile chain (˜700 m high). Optimal results have been obtained with time windows of 30-min intervals and input data evaluation every 15 min. The optimal grid for the ESCOMTE geometrical configuration has a horizontal step size of 0.05°×0.05° and 500 m vertical step size. Second, we have compared the results of real data inversions with independent observations. Three inversions have been compared to three successive radiosonde launches and shown to be consistent. A good resolution compared to the a priori information is obtained up to heights of 3000 m. A humidity spike at 4000-m altitude remains unresolved. The reason is probably that the signal is spread homogeneously over the whole network and that such a feature is not resolvable by tomographic techniques. The results of our pure GPS inversion show a correlation with

  14. Modelling Phase Transition Phenomena in Fluids

    DTIC Science & Technology

    2015-07-01

    Sublimation line r @@I Triple point ? Vapourisation liner @@I Critical point -Fusion line Solid Liquid Gas Figure 1: Schematic of a phase diagram means that the...velocity field can be set zero, and only the balance of energy constitutes the Stefan model. In contrast to this the liquid - gas phase transitions...defined by requiring that the phase-transition line is crossed in a direction from solid to liquid or from liquid to gas (vapour) phases. The term T∗ δs is

  15. Dew-point measurements at high water vapour pressure

    NASA Astrophysics Data System (ADS)

    Lomperski, S.; Dreier, J.

    1996-05-01

    A dew-point meter capable of measuring humidity at high vapour pressure and high temperature has been constructed and tested. Humidity measurements in pure steam were made over the temperature range 100 - 1500957-0233/7/5/003/img1C and a vapour pressure range of 1 - 4 bar. The dew-point meter performance was assessed by comparing measurements with a pressure transmitter and agreement between the two was within 0957-0233/7/5/003/img2% relative humidity. Humidity measurements in steam - air mixtures were also made and the dew-point meter readings were compared to those of a zirconia oxygen sensor. For these tests the dew-point meter readings were generally within 0957-0233/7/5/003/img2% relative humidity of the oxygen sensor measurements.

  16. Ultra high performance supercritical fluid chromatography coupled with tandem mass spectrometry for screening of doping agents. I: Investigation of mobile phase and MS conditions.

    PubMed

    Nováková, Lucie; Grand-Guillaume Perrenoud, Alexandre; Nicoli, Raul; Saugy, Martial; Veuthey, Jean-Luc; Guillarme, Davy

    2015-01-01

    The conditions for the analysis of selected doping substances by UHPSFC-MS/MS were optimized to ensure suitable peak shapes and maximized MS responses. A representative mixture of 31 acidic and basic doping agents was analyzed, in both ESI+ and ESI- modes. The best compromise for all compounds in terms of MS sensitivity and chromatographic performance was obtained when adding 2% water and 10mM ammonium formate in the CO2/MeOH mobile phase. Beside mobile phase, the nature of the make-up solvent added for interfacing UHPSFC with MS was also evaluated. Ethanol was found to be the best candidate as it was able to compensate for the negative effect of 2% water addition in ESI- mode and provided a suitable MS response for all doping agents. Sensitivity of the optimized UHPSFC-MS/MS method was finally assessed and compared to the results obtained in conventional UHPLC-MS/MS. Sensitivity was improved by 5-100-fold in UHPSFC-MS/MS vs. UHPLC-MS/MS for 56% of compounds, while only one compound (bumetanide) offered a significantly higher MS response (4-fold) under UHPLC-MS/MS conditions. In the second paper of this series, the optimal conditions for UHPSFC-MS/MS analysis will be employed to screen >100 doping agents in urine matrix and results will be compared to those obtained by conventional UHPLC-MS/MS. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Oil mist and vapour concentrations from drilling fluids: inter- and intra-laboratory comparison of chemical analyses.

    PubMed

    Galea, Karen S; Searl, Alison; Sánchez-Jiménez, Araceli; Woldbæk, Torill; Halgard, Kristin; Thorud, Syvert; Steinsvåg, Kjersti; Krüger, Kirsti; Maccalman, Laura; Cherrie, John W; van Tongeren, Martie

    2012-01-01

    There are no recognized analytical methods for measuring oil mist and vapours arising from drilling fluids used in offshore petroleum drilling industry. To inform the future development of improved methods of analysis for oil mist and vapours this study assessed the inter- and intra-laboratory variability in oil mist and vapour analysis. In addition, sample losses during transportation and storage were assessed. Replicate samples for oil mist and vapour were collected using the 37-mm Millipore closed cassette and charcoal tube assembly. Sampling was conducted in a simulated shale shaker room, similar to that found offshore for processing drilling fluids. Samples were analysed at two different laboratories, one in Norway and one in the UK. Oil mist samples were analysed using Fourier transform infrared spectroscopy (FTIR), while oil vapour samples were analysed by gas chromatography (GC). The comparison of replicate samples showed substantial within- and between-laboratory variability in reported oil mist concentrations. The variability in oil vapour results was considerably reduced compared to oil mist, provided that a common method of calibration and quantification was adopted. The study also showed that losses can occur during transportation and storage of samples. There is a need to develop a harmonized method for the quantification of oil mist on filter and oil vapour on charcoal supported by a suitable proficiency testing scheme for laboratories involved in the analysis of occupational hygiene samples for the petroleum industry. The uncertainties in oil mist and vapour measurement have substantial implications in relation to compliance with occupational exposure limits and also in the reliability of any exposure-response information reported in epidemiological studies.

  18. Structural, magnetic and electronic structure properties of Co doped ZnO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Shalendra, E-mail: shailuphy@gmail.com; School of Materials Science and Engineering, Changwon National University, Changwon, Gyeongnam 641-773; Song, T.K., E-mail: tksong@changwon.ac.kr

    Highlights: • XRD and HR-TEM results show the single phase nature of Co doped ZnO nanoparticles. • XMCD and dc magnetization results indicate the RT-FM in Co doped ZnO nanoparticles. • Co L{sub 3,2} NEXAFS spectra infer that Co ions are in 2+ valence state. • O K edge NEXAFS spectra show that O vacancy increases with Co doping in ZnO. - Abstract: We reported structural, magnetic and electronic structure studies of Co doped ZnO nanoparticles. Doping of Co ions in ZnO host matrix has been studied and confirmed using various methods; such as X-ray diffraction (XRD), field emission scanningmore » electron microscopy (FE-SEM), energy dispersed X-ray (EDX), high resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), near edge X-ray absorption fine structure (NEXAFS) spectroscopy, magnetic hysteresis loop measurements and X-ray magnetic circular dichroism (XMCD). From the XRD and HR-TEM results, it is observed that Co doped ZnO nanoparticles have single phase nature with wurtzite structure and exclude the possibility of secondary phase formation. FE-SEM and TEM micrographs show that pure and Co doped nanoparticles are nearly spherical in shape. O K edge NEXAFS spectra indicate that O vacancies increase with Co doping. The Co L{sub 3,2} edge NEXAFS spectra revealed that Co ions are in 2+ valence state. DC magnetization hysteresis loops and XMCD results clearly showed the intrinsic origin of temperature ferromagnetism in Co doped ZnO nanoparticles.« less

  19. Importance of doping and frustration in itinerant Fe-doped Cr 2Al

    DOE PAGES

    Susner, M. A.; Parker, D. S.; Sefat, A. S.

    2015-05-12

    We performed an experimental and theoretical study comparing the effects of Fe-doping of Cr 2Al, an antiferromagnet with a N el temperature of 670 K, with known results on Fe-doping of antiferromagnetic bcc Cr. (Cr 1-xFe x) 2Al materials are found to exhibit a rapid suppression of antiferromagnetic order with the presence of Fe, decreasing T N to 170 K for x=0.10. Antiferromagnetic behavior disappears entirely at x≈0.125 after which point increasing paramagnetic behavior is exhibited. Moreover, this is unlike the effects of Fe doping of bcc antiferromagnetic Cr, in which T N gradually decreases followed by the appearance ofmore » a ferromagnetic state. Theoretical calculations explain that the Cr 2Al-Fe suppression of magnetic order originates from two effects: the first is band narrowing caused by doping of additional electrons from Fe substitution that weakens itinerant magnetism; the second is magnetic frustration of the Cr itinerant moments in Fe-substituted Cr 2Al. In pure-phase Cr 2Al, the Cr moments have an antiparallel alignment; however, these are destroyed through Fe substitution and the preference of Fe for parallel alignment with Cr. This is unlike bulk Fe-doped Cr alloys in which the Fe anti-aligns with the Cr atoms, and speaks to the importance of the Al atoms in the magnetic structure of Cr 2Al and Fe-doped Cr 2Al.« less

  20. Reaction pathway in vapour phase hydrogenation of maleic anhydride and its esters to {gamma}-butyrolactone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messori, M.; Vaccari, A.

    1994-11-01

    The catalytic reactivity of maleic anhydride (MA), succinic anhydride (SA) and their dimethyl esters (dimethyl maleate and dimethyl succinate) in the vapour phase hydrogenation to {gamma}-butyrolacetone (GBL) was investigated. In order to obtain general data, both a multicomponent catalyst (CAT 1: Cu/Zn/Mg/Cr = 40:5:5:50, atomic ratio %), obtained by reduction of a nonstoichiometric spinel-type precursor, and a commercial catalyst (CAT 2: Cu/Mn/Ba/Cr = 44:8:1:47, atomic ratio %) were used. The MA/GBL solution exhibited the highest GBL production, while the SA/GBL solution was converted only partially due to a competitive adsorption of GBL on the active sites, as evidenced by themore » similar reactivities observed with pure anhydrides. The best carbon balances were observed with the esters, probably the result of lowest light hydrocarbon synthesis and tar formation. With all the feedstocks, the activity of CAT 2 is higher than that of CAT 1, which, however, gives the best yield in GBL due its lower activity in the overhydrogenation and hydrogenolysis reaction. It was found that n-butanol (BuOH) and butyric acid (BuA) derived mainly from GBL. On this basis, the reactivities of the main products observed were investigated separately, confirming the stability of tetrahydrofuran (THF), which reacted only at high temperature with low conversions to ethanol. On the other hand, GBL gave rise to overhydrogenation and/or hydrogenolysis, with high conversion (mainly with CAT 2), confirming its key role in both reactions. Furthermore, the formation in the catalytic tests with BuA and BuOH of n-butanal, notwithstanding the high H{sub 2}/organic ratio, implies that it is the main intermediate in the hydrogenolysis reactions. A new reaction scheme is proposed, pointing out the key role of GBL as the {open_quotes}intersection{close_quotes} of two possible reaction pathways, giving rise to THF or overhydrogenation and hydrogenolysis products, respectively. 44 refs., 4 figs., 6

  1. Electronic structure, magnetic and structural properties of Ni doped ZnO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Shalendra, E-mail: shailuphy@gmail.com; Vats, Prashant; Gautam, S.

    Highlights: • XRD, and HR-TEM results show the single phase nature of Ni doped ZnO nanoparticles. • dc magnetization results indicate the RT-FM in Ni doped ZnO nanoparticles. • Ni L{sub 3,2} edge NEXAFS spectra infer that Ni ions are in +2 valence state. • O K edge NEXAFS spectra show that O vacancy increases with Ni doping in ZnO. - Abstract: We report structural, magnetic and electronic structural properties of Ni doped ZnO nanoparticles prepared by auto-combustion method. The prepared nanoparticles were characterized by using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), near edge X-ray absorption finemore » structure (NEXAFS) spectroscopy, and dc magnetization measurements. The XRD and HR-TEM results indicate that Ni doped ZnO nanoparticles have single phase nature with wurtzite lattice and exclude the presence of secondary phase. NEXAFS measurements performed at Ni L{sub 3,2}-edges indicates that Ni ions are in +2 valence state and exclude the presence of Ni metal clusters. O K-edge NEXAFS spectra indicate an increase in oxygen vacancies with Ni-doping, while Zn L{sub 3,2}-edge show the absence of Zn-vacancies. The magnetization measurements performed at room temperature shows that pure and Ni doped ZnO exhibits ferromagnetic behavior.« less

  2. Different physiological and behavioural effects of e-cigarette vapour and cigarette smoke in mice.

    PubMed

    Ponzoni, L; Moretti, M; Sala, M; Fasoli, F; Mucchietto, V; Lucini, V; Cannazza, G; Gallesi, G; Castellana, C N; Clementi, F; Zoli, M; Gotti, C; Braida, D

    2015-10-01

    Nicotine is the primary addictive substance in tobacco smoke and electronic cigarette (e-cig) vapour. Methodological limitations have made it difficult to compare the role of the nicotine and non-nicotine constituents of tobacco smoke. The aim of this study was to compare the effects of traditional cigarette smoke and e-cig vapour containing the same amount of nicotine in male BALB/c mice exposed to the smoke of 21 cigarettes or e-cig vapour containing 16.8 mg of nicotine delivered by means of a mechanical ventilator for three 30-min sessions/day for seven weeks. One hour after the last session, half of the animals were sacrificed for neurochemical analysis, and the others underwent mecamylamine-precipitated or spontaneous withdrawal for the purposes of behavioural analysis. Chronic intermittent non-contingent, second-hand exposure to cigarette smoke or e-cig vapour led to similar brain cotinine and nicotine levels, similar urine cotinine levels and the similar up-regulation of α4β2 nicotinic acetylcholine receptors in different brain areas, but had different effects on body weight, food intake, and the signs of mecamylamine-precipitated and spontaneous withdrawal episodic memory and emotional responses. The findings of this study demonstrate for the first time that e-cig vapour induces addiction-related neurochemical, physiological and behavioural alterations. The fact that inhaled cigarette smoke and e-cig vapour have partially different dependence-related effects indicates that compounds other than nicotine contribute to tobacco dependence. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  3. Quasiparticle mass enhancement approaching optimal doping in a high-T c superconductor

    DOE PAGES

    Ramshaw, B. J.; Sebastian, S. E.; McDonald, R. D.; ...

    2015-03-26

    In the quest for superconductors with higher transition temperatures (T c), one emerging motif is that electronic interactions favorable for superconductivity can be enhanced by fluctuations of a broken-symmetry phase. In recent experiments it is suggested that the existence of the requisite broken-symmetry phase in the high-T c cuprates, but the impact of such a phase on the ground-state electronic interactions has remained unclear. Here, we used magnetic fields exceeding 90 tesla to access the underlying metallic state of the cuprate YBa 2Cu 3O 6+δ over a wide range of doping, and observed magnetic quantum oscillations that reveal a strongmore » enhancement of the quasiparticle effective mass toward optimal doping. Finally, this mass enhancement results from increasing electronic interactions approaching optimal doping, and suggests a quantum critical point at a hole doping of p crit ≈ 0.18.« less

  4. Quasiparticle mass enhancement approaching optimal doping in a high-T c superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramshaw, B. J.; Sebastian, S. E.; McDonald, R. D.

    In the quest for superconductors with higher transition temperatures (T c), one emerging motif is that electronic interactions favorable for superconductivity can be enhanced by fluctuations of a broken-symmetry phase. In recent experiments it is suggested that the existence of the requisite broken-symmetry phase in the high-T c cuprates, but the impact of such a phase on the ground-state electronic interactions has remained unclear. Here, we used magnetic fields exceeding 90 tesla to access the underlying metallic state of the cuprate YBa 2Cu 3O 6+δ over a wide range of doping, and observed magnetic quantum oscillations that reveal a strongmore » enhancement of the quasiparticle effective mass toward optimal doping. Finally, this mass enhancement results from increasing electronic interactions approaching optimal doping, and suggests a quantum critical point at a hole doping of p crit ≈ 0.18.« less

  5. Atomic-scale Studies of Uranium Oxidation and Corrosion by Water Vapour.

    PubMed

    Martin, T L; Coe, C; Bagot, P A J; Morrall, P; Smith, G D W; Scott, T; Moody, M P

    2016-07-12

    Understanding the corrosion of uranium is important for its safe, long-term storage. Uranium metal corrodes rapidly in air, but the exact mechanism remains subject to debate. Atom Probe Tomography was used to investigate the surface microstructure of metallic depleted uranium specimens following polishing and exposure to moist air. A complex, corrugated metal-oxide interface was observed, with approximately 60 at.% oxygen content within the oxide. Interestingly, a very thin (~5 nm) interfacial layer of uranium hydride was observed at the oxide-metal interface. Exposure to deuterated water vapour produced an equivalent deuteride signal at the metal-oxide interface, confirming the hydride as originating via the water vapour oxidation mechanism. Hydroxide ions were detected uniformly throughout the oxide, yet showed reduced prominence at the metal interface. These results support a proposed mechanism for the oxidation of uranium in water vapour environments where the transport of hydroxyl species and the formation of hydride are key to understanding the observed behaviour.

  6. Atomic-scale Studies of Uranium Oxidation and Corrosion by Water Vapour

    NASA Astrophysics Data System (ADS)

    Martin, T. L.; Coe, C.; Bagot, P. A. J.; Morrall, P.; Smith, G. D. W.; Scott, T.; Moody, M. P.

    2016-07-01

    Understanding the corrosion of uranium is important for its safe, long-term storage. Uranium metal corrodes rapidly in air, but the exact mechanism remains subject to debate. Atom Probe Tomography was used to investigate the surface microstructure of metallic depleted uranium specimens following polishing and exposure to moist air. A complex, corrugated metal-oxide interface was observed, with approximately 60 at.% oxygen content within the oxide. Interestingly, a very thin (~5 nm) interfacial layer of uranium hydride was observed at the oxide-metal interface. Exposure to deuterated water vapour produced an equivalent deuteride signal at the metal-oxide interface, confirming the hydride as originating via the water vapour oxidation mechanism. Hydroxide ions were detected uniformly throughout the oxide, yet showed reduced prominence at the metal interface. These results support a proposed mechanism for the oxidation of uranium in water vapour environments where the transport of hydroxyl species and the formation of hydride are key to understanding the observed behaviour.

  7. Preliminary Martian Atmospheric Water Vapour Column Abundances with Mars Climate Sounder

    NASA Astrophysics Data System (ADS)

    Lolachi, Ramin; Irwin, P. G. J.; Teanby, N.; Calcutt, S.; Howett, C. J. A.; Bowles, N. E.; Taylor, F. W.; Schofield, J. T.; Kleinboehl, A.; McCleese, D. J.

    2007-12-01

    Mars Climate Sounder (MCS) is an infra-red radiometer on board NASA's Mars Reconnaissance Orbiter (MRO) launched in August 2005 and now orbiting Mars in a near circular polar orbit. MCS has nine spectral channels in the range 0.3-50 µm. Goals of MCS include global characterization of atmospheric temperature, dust and water profiles observing temporal and spatial variation. Using Oxford University's multivariate retrieval algorithm, NEMESIS, we present preliminary determinations of the water vapour column abundance in the Martian atmosphere during the period September-October 2006 (Ls range 111-129°, i.e. northern hemisphere summer). A combination of spectral channels inside and outside the water vapour rotation band (at 50 µm) are used to retrieve the column abundances mainly using nadir observations (as aerosol opacity is less important relative to water vapour opacity in nadir viewing geometry). We then compare these column abundances to earlier results from the Viking Orbiter Mars Atmospheric Water Detectors (MAWD) and the Thermal Emission Spectrometer (TES) on Mars Global Surveyor.

  8. Atomic-scale Studies of Uranium Oxidation and Corrosion by Water Vapour

    PubMed Central

    Martin, T. L.; Coe, C.; Bagot, P. A. J.; Morrall, P.; Smith, G. D. W; Scott, T.; Moody, M. P.

    2016-01-01

    Understanding the corrosion of uranium is important for its safe, long-term storage. Uranium metal corrodes rapidly in air, but the exact mechanism remains subject to debate. Atom Probe Tomography was used to investigate the surface microstructure of metallic depleted uranium specimens following polishing and exposure to moist air. A complex, corrugated metal-oxide interface was observed, with approximately 60 at.% oxygen content within the oxide. Interestingly, a very thin (~5 nm) interfacial layer of uranium hydride was observed at the oxide-metal interface. Exposure to deuterated water vapour produced an equivalent deuteride signal at the metal-oxide interface, confirming the hydride as originating via the water vapour oxidation mechanism. Hydroxide ions were detected uniformly throughout the oxide, yet showed reduced prominence at the metal interface. These results support a proposed mechanism for the oxidation of uranium in water vapour environments where the transport of hydroxyl species and the formation of hydride are key to understanding the observed behaviour. PMID:27403638

  9. MEDUSA: The ExoMars experiment for in-situ monitoring of dust and water vapour

    NASA Astrophysics Data System (ADS)

    Colangeli, L.; Lopez-Moreno, J. J.; Nørnberg, P.; Della Corte, V.; Esposito, F.; Mazzotta Epifani, E.; Merrison, J.; Molfese, C.; Palumbo, P.; Rodriguez-Gomez, J. F.; Rotundi, A.; Visconti, G.; Zarnecki, J. C.; The International Medusa Team

    2009-07-01

    Dust and water vapour are fundamental components of the Martian atmosphere. In view of tracing the past environmental conditions on Mars, that possibly favoured the appearing of life forms, it is important to study the present climate and its evolution. Here dust and water vapour have (and have had) strong influence. Of major scientific interest is the quantity and physical, chemical and electrical properties of dust and the abundance of water vapour dispersed in the atmosphere and their exchange with the surface. Moreover, in view of the exploration of the planet with automated systems and in the future by manned missions, it is of primary importance to analyse the hazards linked to these environmental factors. The Martian Environmental Dust Systematic Analyser (MEDUSA) experiment, included in the scientific payload of the ESA ExoMars mission, accommodates a complement of sensors, based on optical detection and cumulative mass deposition, that aims to study dust and water vapour in the lower Martian atmosphere. The goals are to study, for the first time, in-situ and quantitatively, physical properties of the airborne dust, including the cumulative dust mass flux, the dust deposition rate, the physical and electrification properties, the size distribution of sampled particles and the atmospheric water vapour abundance versus time.

  10. Vapours of US and EU Market Leader Electronic Cigarette Brands and Liquids Are Cytotoxic for Human Vascular Endothelial Cells.

    PubMed

    Putzhammer, Raphaela; Doppler, Christian; Jakschitz, Thomas; Heinz, Katharina; Förste, Juliane; Danzl, Katarina; Messner, Barbara; Bernhard, David

    2016-01-01

    The present study was conducted to provide toxicological data on e-cigarette vapours of different e-cigarette brands and liquids from systems viewed as leaders in the e-cigarette market and to compare e-cigarette vapour toxicity to the toxicity of conventional strong high-nicotine cigarette smoke. Using an adapted version of a previously constructed cigarette smoke constituent sampling device, we collected the hydrophilic fraction of e-cigarette vapour and exposed human umbilical vein endothelial cells (HUVECs) to the mixture of compounds present in the vapour of 4 different single-use e-cigarettes, 6 different liquid vapours produced by the same refillable e-cigarette, and one e-cigarette with an exchangeable liquid cartridge. After incubation of cells with various concentrations and for various periods of time we analysed cell death induction, proliferation rates, the occurrence of intra-cellular reactive oxygen species, cell morphology, and we also measured e-cigarette heating coil temperatures. Overall, conventional cigarette smoke extract showed the most severe impact on endothelial cells. However, some e-cigarette vapour extracts showed high cytotoxicity, inhibition of cell proliferation, and alterations in cell morphology, which were comparable to conventional high-nicotine cigarettes. The vapours generated from different liquids using the same e-cigarette show substantial differences, pointing to the liquids as an important source for toxicity. E-cigarette vapour-mediated induction of oxidative stress was significant in one out of the 11 analysed vapours. There is a high variability in the acute cytotoxicity of e-cigarette vapours depending on the liquid and on the e-cigarettes used. Some products showed toxic effects close to a conventional high-nicotine cigarette. Liquid nicotine, menthol content, and the formation of acute intracellular reactive oxygen species do not seem to be the central elements in e-cigarette vapour toxicity.

  11. Vapours of US and EU Market Leader Electronic Cigarette Brands and Liquids Are Cytotoxic for Human Vascular Endothelial Cells

    PubMed Central

    Putzhammer, Raphaela; Doppler, Christian; Jakschitz, Thomas; Heinz, Katharina; Förste, Juliane; Danzl, Katarina; Messner, Barbara; Bernhard, David

    2016-01-01

    The present study was conducted to provide toxicological data on e-cigarette vapours of different e-cigarette brands and liquids from systems viewed as leaders in the e-cigarette market and to compare e-cigarette vapour toxicity to the toxicity of conventional strong high-nicotine cigarette smoke. Using an adapted version of a previously constructed cigarette smoke constituent sampling device, we collected the hydrophilic fraction of e-cigarette vapour and exposed human umbilical vein endothelial cells (HUVECs) to the mixture of compounds present in the vapour of 4 different single-use e-cigarettes, 6 different liquid vapours produced by the same refillable e-cigarette, and one e-cigarette with an exchangeable liquid cartridge. After incubation of cells with various concentrations and for various periods of time we analysed cell death induction, proliferation rates, the occurrence of intra-cellular reactive oxygen species, cell morphology, and we also measured e-cigarette heating coil temperatures. Overall, conventional cigarette smoke extract showed the most severe impact on endothelial cells. However, some e-cigarette vapour extracts showed high cytotoxicity, inhibition of cell proliferation, and alterations in cell morphology, which were comparable to conventional high-nicotine cigarettes. The vapours generated from different liquids using the same e-cigarette show substantial differences, pointing to the liquids as an important source for toxicity. E-cigarette vapour-mediated induction of oxidative stress was significant in one out of the 11 analysed vapours. There is a high variability in the acute cytotoxicity of e-cigarette vapours depending on the liquid and on the e-cigarettes used. Some products showed toxic effects close to a conventional high-nicotine cigarette. Liquid nicotine, menthol content, and the formation of acute intracellular reactive oxygen species do not seem to be the central elements in e-cigarette vapour toxicity. PMID:27351725

  12. Aspects of rf-heating and gas-phase doping of large scale silicon crystals grown by the Float Zone technique

    NASA Astrophysics Data System (ADS)

    Zobel, F.; Mosel, F.; Sørensen, J.; Dold, P.

    2018-05-01

    Float Zone growth of silicon crystals is known as the method for providing excellent material properties. Basic principle of this technique is the radiofrequency induction heating, main aspects of this method will be discussed in this article. In contrast to other methods, one of the advantages of the Float Zone technique is the possibility for in-situ doping via gas phase. Experimental results on this topic will be shown and discussed.

  13. Formation of nanodiamonds at near-ambient conditions via microplasma dissociation of ethanol vapour.

    PubMed

    Kumar, Ajay; Ann Lin, Pin; Xue, Albert; Hao, Boyi; Khin Yap, Yoke; Sankaran, R Mohan

    2013-01-01

    Clusters of diamond-phase carbon, known as nanodiamonds, exhibit novel mechanical, optical and biological properties that have elicited interest for a wide range of technological applications. Although diamond is predicted to be more stable than graphite at the nanoscale, extreme environments are typically used to produce nanodiamonds. Here we show that nanodiamonds can be stably formed in the gas phase at atmospheric pressure and neutral gas temperatures <100 °C by dissociation of ethanol vapour in a novel microplasma process. Addition of hydrogen gas to the process allows in flight purification by selective etching of the non-diamond carbon and stabilization of the nanodiamonds. The nanodiamond particles are predominantly between 2 and 5 nm in diameter, and exhibit cubic diamond, n-diamond and lonsdaleite crystal structures, similar to nanodiamonds recovered from meteoritic residues. These results may help explain the origin of nanodiamonds in the cosmos, and offer a simple and inexpensive route for the production of high-purity nanodiamonds.

  14. p-type doping efficiency in CdTe: Influence of second phase formation

    NASA Astrophysics Data System (ADS)

    McCoy, Jedidiah J.; Swain, Santosh K.; Sieber, John R.; Diercks, David R.; Gorman, Brian P.; Lynn, Kelvin G.

    2018-04-01

    Cadmium telluride (CdTe) high purity, bulk, crystal ingots doped with phosphorus were grown by the vertical Bridgman melt growth technique to understand and improve dopant solubility and activation. Large net carrier densities have been reproducibly obtained from as-grown ingots, indicating successful incorporation of dopants into the lattice. However, net carrier density values are orders of magnitude lower than the solubility of P in CdTe as reported in literature, 1018/cm3 to 1019/cm3 [J. H. Greenberg, J. Cryst. Growth 161, 1-11 (1996) and R. B. Hall and H. H. Woodbury, J. Appl. Phys. 39(12), 5361-5365 (1968)], despite comparable starting charge dopant densities. Growth conditions, such as melt stoichiometry and post growth cooling, are shown to have significant impacts on dopant solubility. This study demonstrates that a significant portion of the dopant becomes incorporated into second phase defects as compounds of cadmium and phosphorous, such as cadmium phosphide, which inhibits dopant incorporation into the lattice and limits maximum attainable net carrier density in bulk crystals. Here, we present an extensive study on the characteristics of these second phase defects in relation to their composition and formation kinetics while providing a pathway to minimize their formation and enhance solubility.

  15. Preparation of fungal conidia impacts their susceptibility to inactivation by ethanol vapours.

    PubMed

    Dao, Thien; Dantigny, Philippe

    2009-11-15

    A common protocol employed for the preparation of conidia employs flooding a fungal colony grown on semi-solid media under optimum conditions with an aqueous solution. In contrast, conidia produced in a natural environment are usually not hydrated when disseminated in air and can be produced under water stress. In order to simulate the latter conditions, cultures were grown at different water activities and conidia were dry-harvested on the lid by turning the dishes upside-down then gently tapping the bottom of the box. This study aimed at assessing the effect of the preparation of fungal conidia on their inactivation by ethanol vapours. Firstly ethanol vapours (either 0.30 or 0.45 kPa) were applied to conidia obtained from the standardised protocol and to dry-harvested conidia for some species of Penicillium. While all dry-harvested conidia remained viable after 24 h of treatment, about 1.0, 3.5 and 2.5 log(10) reductions were observed for hydrated conidia of Penicillium chrysogenum, Penicillium digitatum and Penicillium italicum respectively. Secondly ethanol vapours (0.67 kPa) were applied to dry-harvested conidia obtained from cultures grown at 0.99 a(w) and at reduced water activities. For all species, the susceptibility to ethanol vapours of conidia obtained at 0.99 a(w) was significantly greater than that of conidia obtained at reduced water activities. Conidia produced in a natural environment under non-optimal conditions would be much more resistant to ethanol vapours than those produced in the laboratory. This phenomenon may be due to a reduced intracellular water activity of dry-harvested conidia.

  16. Mixed conductivity, structural and microstructural characterization of titania-doped yttria tetragonal zirconia polycrystalline/titania-doped yttria stabilized zirconia composite anode matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colomer, M.T., E-mail: tcolomer@icv.csic.e; Maczka, M.

    2011-02-15

    Taking advantage of the fact that TiO{sub 2} additions to 8YSZ cause not only the formation of a titania-doped YSZ solid solution but also a titania-doped YTZP solid solution, composite materials based on both solutions were prepared by solid state reaction. In particular, additions of 15 mol% of TiO{sub 2} give rise to composite materials constituted by 0.51 mol fraction titania-doped yttria tetragonal zirconia polycrystalline and 0.49 mol fraction titania-doped yttria stabilized zirconia (0.51TiYTZP/0.49TiYSZ). Furthermore, Y{sub 2}(Ti{sub 1-y}Zr{sub y}){sub 2}O{sub 7} pyrochlore is present as an impurity phase with y close to 1, according to FT-Raman results. Lower and highermore » additions of titania than that of 15 mol%, i.e., x=0, 5, 10, 20, 25 and 30 mol% were considered to study the evolution of 8YSZ phase as a function of the TiO{sub 2} content. Furthermore, zirconium titanate phase (ZrTiO{sub 4}) is detected when the titania content is equal or higher than 20 mol% and this phase admits Y{sub 2}O{sub 3} in solid solution according to FE-SEM-EDX. The 0.51TiYTZP/0.49TiYSZ duplex material was selected in this study to establish the mechanism of its electronic conduction under low oxygen partial pressures. In the pO{sub 2} range from 0.21 to 10{sup -7.5} atm. the conductivity is predominantly ionic and constant over the range and its value is 0.01 S/cm. The ionic plus electronic conductivity is 0.02 S/cm at 1000 {sup o}C and 10{sup -12.3} atm. Furthermore, the onset of electronic conductivity under reducing conditions exhibits a -1/4 pO{sub 2} dependence. Therefore, it is concluded that the n-type electronic conduction in the duplex material can be due to a small polaron-hopping between Ti{sup 3+} and Ti{sup 4+}. -- Graphical abstract: FE-SEM micrograph of a polished and thermal etched surface of a Ti-doped YTZP/Ti-doped YSZ composite material. Display Omitted Research highlights: {yields} Ti-doped YTZP/Ti-doped YSZ composite materials are mixed conductors

  17. Effect of drilling fluid systems and temperature on oil mist and vapour levels generated from shale shaker.

    PubMed

    Steinsvåg, Kjersti; Galea, Karen S; Krüger, Kirsti; Peikli, Vegard; Sánchez-Jiménez, Araceli; Sætvedt, Esther; Searl, Alison; Cherrie, John W; van Tongeren, Martie

    2011-05-01

    Workers in the drilling section of the offshore petroleum industry are exposed to air pollutants generated by drilling fluids. Oil mist and oil vapour concentrations have been measured in the drilling fluid processing areas for decades; however, little work has been carried out to investigate exposure determinants such as drilling fluid viscosity and temperature. A study was undertaken to investigate the effect of two different oil-based drilling fluid systems and their temperature on oil mist, oil vapour, and total volatile organic compounds (TVOC) levels in a simulated shale shaker room at a purpose-built test centre. Oil mist and oil vapour concentrations were sampled simultaneously using a sampling arrangement consisting of a Millipore closed cassette loaded with glass fibre and cellulose acetate filters attached to a backup charcoal tube. TVOCs were measured by a PhoCheck photo-ionization detector direct reading instrument. Concentrations of oil mist, oil vapour, and TVOC in the atmosphere surrounding the shale shaker were assessed during three separate test periods. Two oil-based drilling fluids, denoted 'System 2.0' and 'System 3.5', containing base oils with a viscosity of 2.0 and 3.3-3.7 mm(2) s(-1) at 40°C, respectively, were used at temperatures ranging from 40 to 75°C. In general, the System 2.0 yielded low oil mist levels, but high oil vapour concentrations, while the opposite was found for the System 3.5. Statistical significant differences between the drilling fluid systems were found for oil mist (P = 0.025),vapour (P < 0.001), and TVOC (P = 0.011). Increasing temperature increased the oil mist, oil vapour, and TVOC levels. Oil vapour levels at the test facility exceeded the Norwegian oil vapour occupational exposure limit (OEL) of 30 mg m(-3) when the drilling fluid temperature was ≥50°C. The practice of testing compliance of oil vapour exposure from drilling fluids systems containing base oils with viscosity of ≤2.0 mm(2) s(-1) at 40

  18. Non-equilibrium surface tension of the vapour-liquid interface of active Lennard-Jones particles

    NASA Astrophysics Data System (ADS)

    Paliwal, Siddharth; Prymidis, Vasileios; Filion, Laura; Dijkstra, Marjolein

    2017-08-01

    We study a three-dimensional system of self-propelled Brownian particles interacting via the Lennard-Jones potential. Using Brownian dynamics simulations in an elongated simulation box, we investigate the steady states of vapour-liquid phase coexistence of active Lennard-Jones particles with planar interfaces. We measure the normal and tangential components of the pressure tensor along the direction perpendicular to the interface and verify mechanical equilibrium of the two coexisting phases. In addition, we determine the non-equilibrium interfacial tension by integrating the difference of the normal and tangential components of the pressure tensor and show that the surface tension as a function of strength of particle attractions is well fitted by simple power laws. Finally, we measure the interfacial stiffness using capillary wave theory and the equipartition theorem and find a simple linear relation between surface tension and interfacial stiffness with a proportionality constant characterized by an effective temperature.

  19. Identification of selected in vitro generated phase-I metabolites of the steroidal selective androgen receptor modulator MK-0773 for doping control purposes.

    PubMed

    Lagojda, Andreas; Kuehne, Dirk; Krug, Oliver; Thomas, Andreas; Wigger, Tina; Karst, Uwe; Schänzer, Wilhelm; Thevis, Mario

    2016-01-01

    Research into developing anabolic agents for various therapeutic purposes has been pursued for decades. As the clinical utility of anabolic-androgenic steroids has been found to be limited because of their lack of tissue selectivity and associated off-target effects, alternative drug entities have been designed and are commonly referred to as selective androgen receptor modulators (SARMs). While most of these SARMs are of nonsteroidal structure, the drug candidate MK-0773 comprises a 4-aza-steroidal nucleus. Besides the intended therapeutic use, SARMs have been found to be illicitly distributed and misused as doping agents in sport, necessitating frequently updated doping control analytical assays. As steroidal compounds reportedly undergo considerable metabolic transformations, the phase-I metabolism of MK-0773 was simulated using human liver microsomal (HLM) preparations and electrochemical conversion. Subsequently, major metabolic products were identified and characterized employing liquid chromatography-high-resolution/high- accuracy tandem mass spectrometry with electrospray (ESI) and atmospheric pressure chemical ionization (APCI) as well as nuclear magnetic resonance (NMR) spectroscopy. MK-0773 produced numerous phase-I metabolites under the chosen in vitro incubation reactions, mostly resulting from mono- and bisoxygenation of the steroid. HLM yielded at least 10 monooxygenated species, while electrochemistry-based experiments resulted predominantly in three monohydroxylated metabolites. Elemental composition data and product ion mass spectra were generated for these analytes, ESI/APCI measurements corroborated the formation of at least two N-oxygenated metabolites, and NMR data obtained from electrochemistry-derived products supported structures suggested for three monohydroxylated compounds. Hereby, the hydroxylation of the A-ring located N- bound methyl group was found to be of particular intensity. In the absence of controlled elimination studies, the

  20. Magnesium isotope evidence that accretional vapour loss shapes planetary compositions

    PubMed Central

    Hin, Remco C.; Coath, Christopher D.; Carter, Philip J.; Nimmo, Francis; Lai, Yi-Jen; Pogge von Strandmann, Philip A.E.; Willbold, Matthias; Leinhardt, Zoë M.; Walter, Michael J.; Elliott, Tim

    2017-01-01

    It has long been recognised that Earth and other differentiated planetary bodies are chemically fractionated compared to primitive, chondritic meteorites and by inference the primordial disk from which they formed. An important question has been whether the notable volatile depletions of planetary bodies are a consequence of accretion1, or inherited from prior nebular fractionation2. The isotopic compositions of the main constituents of planetary bodies can contribute to this debate3–6. Using a new analytical approach to address key issues of accuracy inherent in conventional methods, we show that all differentiated bodies have isotopically heavier magnesium compositions than chondritic meteorites. We argue that possible magnesium isotope fractionation during condensation of the solar nebula, core formation and silicate differentiation cannot explain these observations. However, isotopic fractionation between liquid and vapour followed by vapour escape during accretionary growth of planetesimals generates appropriate residual compositions. Our modelling implies that the isotopic compositions of Mg, Si and Fe and the relative abundances of the major elements of Earth, and other planetary bodies, are a natural consequence of substantial (~40% by mass) vapour loss from growing planetesimals by this mechanism. PMID:28959965

  1. Land cover change and water vapour flows: learning from Australia.

    PubMed Central

    Gordon, Line; Dunlop, Michael; Foran, Barney

    2003-01-01

    Australia is faced with large-scale dryland salinization problems, largely as a consequence of the clearing of native vegetation for cropland and grassland. We estimate the change in continental water vapour flow (evapotranspiration) of Australia during the past 200 years. During this period there has been a substantial decrease in woody vegetation and a corresponding increase in croplands and grasslands. The shift in land use has caused a ca. 10% decrease in water vapour flows from the continent. This reduction corresponds to an annual freshwater flow of almost 340 km(3). The society-induced alteration of freshwater flows is estimated at more than 15 times the volume of run-off freshwater that is diverted and actively managed in the Australian society. These substantial water vapour flow alterations were previously not addressed in water management but are now causing serious impacts on the Australian society and local economies. Global and continental freshwater assessments and policy often neglects the interplay between freshwater flows and landscape dynamics. Freshwater issues on both regional and global levels must be rethought and the interplay between terrestrial ecosystems and freshwater better incorporated in freshwater and ecosystem management. PMID:14728792

  2. the Characteristic Phase Transitions of Co-doped BaFe2 As2 Synthesized via Flux Growth

    NASA Astrophysics Data System (ADS)

    Shea, C. H.; Roncaioli, C.; Eckberg, C.; Drye, T.; Sulliavan, M. C.; Paglione, J.

    2015-03-01

    Since the discovery of a new family of type II superconductors in 2008, the iron pnictides, researches have had suspicions that they might bear similar electronic properties to the well-known (but not easily understood) oxide superconductors. For this reason studies on this family of compounds has been of great interest to the materials science community. Our efforts have been aimed at single crystal growth and measurement of a particular member of this family, BaFe2As2. While this material is not superconducting at standard pressure, the partial substitution of cobalt on the iron site has been shown to suppresses an anti-ferromagnetic phase transition occurring at lower temperatures allowing for the appearance of a superconducting phase. Transport and low field magnetization measurements taken on our samples show clean transitions, indicating Tc's of up to 24 K in optimally doped samples. We will discuss the growth methods and temperature dependent phase transitions of this material at different cobalt concentrations. This work was supported by NSF Grant DMR-1305637.

  3. Review of vortex tube expansion in vapour compression refrigeration system

    NASA Astrophysics Data System (ADS)

    Liu, Yefeng; Yu, Jun

    2018-05-01

    A vortex tube expansion device replacing the throttle valve is proposed to improve the efficiency of vapour compression refrigeration cycle by reducing the loss of irreversibility in expansion process. The vortex tube is well-suited for these applications because it is simple, compact, light, quiet. Thus, this paper presents an overview of the thermodynamic analysis of vapour compression refrigeration cycle with vortex tube expansion device using different refrigerants. The paper also reviews the experiments and the calculations presented in previous studies on temperature separation in the vortex tube. The temperature separation mechanism and the flow-field inside the vortex tubes is explored by measuring the pressure, velocity, and temperature fields.

  4. Thermal analysis, phase equilibria, and superconducting properties in magnesium boride and carbon doped magnesium boride

    NASA Astrophysics Data System (ADS)

    Bohnenstiehl, Scot David

    In this work, the low temperature synthesis of MgB2 from Mg/B and MgH2/B powder mixtures was studied using Differential Scanning Calorimetry (DSC). For the Mg/B powder mixture, two exothermic reaction events were observed and the first reaction event was initiated by the decomposition of Mg(OH)2 on the surface of the magnesium powder. For the MgH 2/B powder mixture, there was an endothermic event at ˜375 °C (the decomposition of MgH2 into H2 and Mg) and an exothermic event ˜600 °C (the reaction of Mg and B). The Kissinger analysis method was used to estimate the apparent activation energy of the Mg and B reaction using DSC data with different furnace ramp rates. The limitations of MgB2 low temperature synthesis led to the development of a high pressure induction furnace that was constructed using a pressure vessel and an induction heating power supply. The purpose was to not only synthesize more homogeneous MgB2 samples, but also to determine whether MgB2 melts congruently or incongruently. A custom implementation of the Smith Thermal Analysis method was developed and tested on aluminum and AlB2, the closest analogue to MgB2. Measurements on MgB2 powder and a high purity Mg/B elemental mixture confirmed that MgB2 melts incongruently and decomposes into a liquid and MgB4 at ˜1445 °C at 10 MPa via peritectic decomposition. Another measurement using a Mg/B elemental mixture with impure boron suggested that ˜0.7 wt% carbon impurity in the boron raised the incongruent melting temperature to ˜1490-1500 °C. Lastly, the solubility limit for carbon in MgB2 was studied by making samples from B4C and Mg at 1530 °C, 1600 °C and 1700 °C in the high pressure furnace. All three samples had three phases: Mg, MgB2C2, and carbon doped MgB2. The MgB 2C2 and carbon doped MgB2 grain size increased with temperature and the 1700 °C sample had needle-like grains for both phases. The presence of the ternary phase, MgB2C2, suggested that the maximum doping limit for carbon in

  5. On the relationship between atmospheric water vapour transport and extra-tropical cyclones development

    NASA Astrophysics Data System (ADS)

    Ferreira, Juan A.; Liberato, Margarida L. R.; Ramos, Alexandre M.

    2016-08-01

    In this study we seek to investigate the role of atmospheric water vapour on the intensification of extra-tropical cyclones over the North Atlantic Ocean and more specifically to investigate the linkage between atmospheric rivers' conditions leading to the explosive development of extra-tropical cyclones. Several WRF-ARW simulations for three recent extra-tropical storms that had major negative socio-economic impacts in the Iberian Peninsula and south-western Europe (Klaus, 2009; Gong, 2013 and Stephanie, 2014) are performed in which the water vapour content of the initial and boundary conditions are tuned. Analyses of the vertically integrated vapour transport show the dependence of the storms' development on atmospheric water vapour. In addition, results also show changes in the shape of the jet stream resulting in a reduction of the upper wind divergence, which in turn affects the intensification of the extra-tropical cyclones studied. This study suggests that atmospheric rivers tend to favour the conditions for explosive extra-tropical storms' development in the three case studies, as simulations performed without the existence of atmospheric rivers produce shallow mid-latitude cyclones, that is, cyclones that are not so intense as those on the reference simulations.

  6. Mass-independent fractionation of oxygen isotopes during H2O2 formation by gas-phase discharge from water vapour

    NASA Astrophysics Data System (ADS)

    Velivetskaya, Tatiana A.; Ignatiev, Alexander V.; Budnitskiy, Sergey Y.; Yakovenko, Victoria V.; Vysotskiy, Sergey V.

    2016-11-01

    Hydrogen peroxide is an important atmospheric component involved in various gas-phase and aqueous-phase transformation processes in the Earth's atmosphere. A study of mass-independent 17O anomalies in H2O2 can provide additional insights into the chemistry of the modern atmosphere and, possibly, of the ancient atmosphere. Here, we report the results of laboratory experiments to study the fractionation of three oxygen isotopes (16O, 17O, and 18O) during H2O2 formation from products of water vapour dissociation. The experiments were carried out by passing an electrical discharge through a gaseous mixture of helium and water at atmospheric pressure. The effect of the presence of O2 in the gas mixture on the isotopic composition of H2O2 was also investigated. All of the experiments showed that H2O2 produced under two different conditions (with or without O2 added in the gas mixtures) was mass-independently fractionated (MIF). We found a positive MIF signal (∼1.4‰) in the no-O2 added experiments, and this signal increased to ∼2.5‰ once O2 was added (1.6% mixing ratio). We suggest that if O2 concentrations are very low, the hydroxyl radical recombination reaction is the dominant pathway for H2O2 formation and is the source of MIF in H2O2. Although H2O2 formation via a hydroxyl radical recombination process is limited in the modern atmosphere, it would be possible in the Archean atmosphere when O2 was a trace constituent, and H2O2 would be mass-independently fractionated. The anomalous 17O excess, which was observed in H2O2 produced by spark discharge experiments, may provide useful information about the radical chemistry of the ancient atmosphere and the role of H2O2 in maintaining and controlling the atmospheric composition.

  7. Microscopic study of thermoelectric In-doped SnTe

    NASA Astrophysics Data System (ADS)

    Nan, Pengfei; Liu, Ruibin; Chang, Yunjie; Wu, Hongbo; Wang, Yumei; Yu, Richeng; Shen, Jun; Guo, Wei; Ge, Binghui

    2018-06-01

    SnTe is a p-type thermoelectric material that is isostructural with PbTe, for which it is a potential environmentally friendly replacement. By doping the SnTe lattice with In, the thermal conductivity of SnTe can be significantly reduced and the thermoelectric conversion efficiency improved. A large number of precipitates were present in the In-doped SnTe samples; based on atomic-resolution high-angle annular dark-field images and electron energy loss spectra, these precipitates were identified as the zinc-blende phase of In2Te3. Through geometry phase analysis, a new phonon scattering mechanism is discussed.

  8. Topological nodal superconducting phases and topological phase transition in the hyperhoneycomb lattice

    NASA Astrophysics Data System (ADS)

    Bouhon, Adrien; Schmidt, Johann; Black-Schaffer, Annica M.

    2018-03-01

    We establish the topology of the spin-singlet superconducting states in the bare hyperhoneycomb lattice, and we derive analytically the full phase diagram using only symmetry and topology in combination with simple energy arguments. The phase diagram is dominated by two states preserving time-reversal symmetry. We find a line-nodal state dominating at low doping levels that is topologically nontrivial and exhibits surface Majorana flatbands, which we show perfectly match the bulk-boundary correspondence using the Berry phase approach. At higher doping levels, we find a fully gapped state with trivial topology. By analytically calculating the topological invariant of the nodal lines, we derive the critical point between the line-nodal and fully gapped states as a function of both pairing parameters and doping. We find that the line-nodal state is favored not only at lower doping levels but also if symmetry-allowed deformations of the lattice are present. Adding simple energy arguments, we establish that a fully gapped state with broken time-reversal symmetry likely appears covering the actual phase transition. We find this fully gapped state to be topologically trivial, while we find an additional point-nodal state at very low doing levels that also break time-reversal symmetry and has nontrivial topology with associated Fermi surface arcs. We eventually address the robustness of the phase diagram to generalized models also including adiabatic spin-orbit coupling, and we show how all but the point-nodal state are reasonably stable.

  9. Superconductivity. Quasiparticle mass enhancement approaching optimal doping in a high-T(c) superconductor.

    PubMed

    Ramshaw, B J; Sebastian, S E; McDonald, R D; Day, James; Tan, B S; Zhu, Z; Betts, J B; Liang, Ruixing; Bonn, D A; Hardy, W N; Harrison, N

    2015-04-17

    In the quest for superconductors with higher transition temperatures (T(c)), one emerging motif is that electronic interactions favorable for superconductivity can be enhanced by fluctuations of a broken-symmetry phase. Recent experiments have suggested the existence of the requisite broken-symmetry phase in the high-T(c) cuprates, but the impact of such a phase on the ground-state electronic interactions has remained unclear. We used magnetic fields exceeding 90 tesla to access the underlying metallic state of the cuprate YBa2Cu3O(6+δ) over a wide range of doping, and observed magnetic quantum oscillations that reveal a strong enhancement of the quasiparticle effective mass toward optimal doping. This mass enhancement results from increasing electronic interactions approaching optimal doping, and suggests a quantum critical point at a hole doping of p(crit) ≈ 0.18. Copyright © 2015, American Association for the Advancement of Science.

  10. Characteristics and anticorrosion performance of Fe-doped TiO2 films by liquid phase deposition method

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Xu, Chao; Feng, ZuDe

    2014-09-01

    Fe-doped TiO2 thin films were fabricated by liquid phase deposition (LPD) method, using Fe(III) nitrate as both Fe element source and fluoride scavenger instead of commonly-used boric acid (H3BO3). Scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-vis spectrum were employed to examine the effects of Fe element on morphology, structure and optical characteristics of TiO2 films. The as-prepared films were served as photoanode applied to photogenerated cathodic protection of SUS304 stainless steel (304SS). It was observed that the photoelectrochemical properties of the as-prepared films were enhanced with the addition of Fe element compared to the undoped TiO2 film. The highest photoactivity was achieved for Ti13Fe (Fe/Ti = 3 molar ratio) film prepared in precursor bath containing 0.02 M TiF4 + 0.06 M Fe(NO3)3 under white-light illumination. The effective anticorrosion behaviors can be attributed to the Fe element incorporation which decreases the probability of photogenerated charge-carrier recombination and extends the light response range of Fe-doped TiO2 films appeared to visible-light region.

  11. Superparamagnetic behavior of Fe-doped SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Hachisu, M.; Onuma, K.; Kondo, T.; Miike, K.; Miyasaka, T.; Mori, K.; Ichiyanagi, Y.

    2014-02-01

    SnO2 is an n-type semiconductor with a wide band gap of 3.62 eV, and SnO2 nanoparticles doped with magnetic ions are expected to realized new diluted magnetic semiconductors (DMSs). Realizing ferromagnetism at room temperature is important for spintronics device applications, and it is interesting that the magnetic properties of these DMS systems can be varied significantly by modifying the preparation methods or conditions. In this study, the magnetic properties of Fe-doped (3% and 5%) SnO2 nanoparticles, prepared using our novel chemical preparation method and encapsulated in amorphous SiO2, were investigated. The particle size (1.8-16.9 nm) and crystal phase were controlled by the annealing temperature. X-ray diffraction confirmed a rutile SnO2 single-phase structure for samples annealed at 1073-1373 K, and the composition was confirmed using X-ray fluorescence analysis. SQUID magnetometer measurements revealed superparamagnetic behavior of the 5%-Fe-doped sample at room temperature, although SnO2 is known to be diamagnetic. Magnetization curves at 5 K indicated that the 3%-Fe-doped has a larger magnetization than that of the 5%-Fe-doped sample. We conclude that the magnetization of the 5%-Fe-doped sample decreased at 5 K due to the superexchange interaction between the antiferromagnetic coupling in the nanoparticle system.

  12. Hydrothermal synthesis of Nd3+-doped heterojunction ms/tz-BiVO4 and its enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Chen, Ruizhi; Wang, Weixuan; Jiang, Dongmei; Chu, Xiaoxuan; Ma, Xueming; Zhan, Qingfeng

    2018-06-01

    BiVO4 photocatalysts with different Nd3+ doping content were prepared by a hydrothermal method with varied hydrothermal reaction time. The effects of Nd3+ doping on phase transformation, morphology, chemical valence, optical properties and photocatalytic activities were investigated. With different reaction time, phase transformation from tetragonal zircon (tz-BiVO4) to monoclinic scheelite (ms-BiVO4) could be found, and Nd3+ doping played a suppressive role in this process. Scanning electron microscopy showed the morphology evolved from irregular structure to rod-like shapes with phase transformation. The photoluminescence induced by Nd3+ doping could be confirmed by UV-vis diffuse reflectance spectra. Photocatalytic performance tests had been performed under simulated solar conditions and sample with 1 at% Nd3+ doping and 5 h reaction time showed the best performance (89% degradation rate in 90 min). The pH also showed great influence on morphology and phase transformation of samples. Finally, the phyotocatalytic mechanism and effects of Nd3+ in phase transformation were discussed.

  13. Co-doping of (Bi(0.5)Na(0.5))TiO(3): secondary phase formation and lattice site preference of Co.

    PubMed

    Schmitt, V; Staab, T E M

    2012-11-14

    Bismuth sodium titanate (Bi(0.5)Na(0.5))TiO(3) (BNT) is considered to be one of the most promising lead-free alternatives to piezoelectric lead zirconate titanate (PZT). However, the effect of dopants on the material has so far received little attention from an atomic point of view. In this study we investigated the effects of cobalt-doping on the formation of additional phases and determined the preferred lattice site of cobalt in BNT. The latter was achieved by comparing the measured x-ray absorption near-edge structure (XANES) spectra to numerically calculated spectra of cobalt on various lattice sites in BNT. (Bi(0.5)Na(0.5))TiO(3) + x mol% Co (x = 0.0, 0.5, 1.0, 2.6) was synthesized via solid state reaction. As revealed by SEM backscattering images, a secondary phase formed in all doped specimens. Using both XRD and SEM-EDX, it was identified as Co(2)TiO(4) for dopant levels >0.5 mol%. In addition, a certain amount of cobalt was incorporated into BNT, as shown by electron probe microanalysis. This amount increased with increasing dopant levels, suggesting that an equilibrium forms together with the secondary phase. The XANES experiments revealed that cobalt occupies the octahedral B-site in the BNT perovskite lattice, substituting Ti and promoting the formation of oxygen vacancies in the material.

  14. Magnetic phase separation and unusual scenario of its temperature evolution in porous carbon-based nanomaterials doped with Au and Co

    NASA Astrophysics Data System (ADS)

    Ryzhov, V. A.; Lashkul, A. V.; Matveev, V. V.; Molkanov, P. L.; Kurbakov, A. I.; Kiselev, I. A.; Lisunov, K. G.; Galimov, D.; Lähderanta, E.

    2018-01-01

    Two porous glassy carbon-based samples doped with Au and Co were investigated. The magnetization study as well as measurements of the nonlinear longitudinal response to a weak ac field (NLR) and electron magnetic resonance give evidences for a presence of magnetic nanoparticles (MNPs) embedded in paramagnetic/ferromagnetic matrix respectively, both samples being in magnetically phase-separated state at temperatures above 300 K. Matrix, forming by paramagnetic centers located in matrix outside the MNPs, reveals exchange interactions providing its ferromagnetic (FM) ordering below TC ≈ 210 K in Au-doped sample and well above 350 K in Co-doped one. For the former, NLR data suggest a percolation character of the matrix long-range FM order, which is mainly caused by a porous amorphous sample structure. Temperature dependence of the magnetization in the Au-doped sample evidences presence of antiferromagnetic (AF) interactions of MNPs with surrounding matrix centers. At magnetic ordering below TC these interactions promote origination of "domains" involving matrix fragment and surrounding MNPs with near opposite orientation of their moments that decreases the magnetostatic energy. On further cooling, the domains exhibit AF ordering below Tcr ∼ 140 K < TC, resulting in formation of a peculiar "ferrimagnet". The porous amorphous structure leads to absence of translational and other symmetry features through the samples that allows canted ordering of magnetic moments in domains and in whole sample providing "canted ferrimagnetism". At low temperatures Ttr ∼ 3 K, "order-oder" transition, evidencing the non-Heisenberg character of this magnetic material, occurs from ordering like "canted ferrimagnet" to FM alignment, which is stimulated by external magnetic field. The data for Co-doped sample imply the similar evolution of magnetic state but at higher temperatures above 350 K. This state exhibits more homogeneous arrangement of the FM nanoparticles and the FM matrix

  15. Numerical Simulation of Pulsation Flow in the Vapour Channel of Short Low Temperature Heat Pipes at High Heat Loads

    NASA Astrophysics Data System (ADS)

    Seryakov, A. V.; Konkin, A. V.

    2017-11-01

    The results of the numerical simulation of pulsations in the Laval-liked vapour channel of short low-temperature range heat pipes (HPs) are presented. The numerical results confirmed the experimentally obtained increase of the frequency of pulsations in the vapour channel of short HPs with increasing overheat of the porous evaporator relative to the boiling point of the working fluid. The occurrence of pressure pulsations inside the vapour channel in a short HPs is a complex phenomenon associated with the boiling beginning in the capillary-porous evaporator at high heat loads, and appearance the excess amount of vapour above it, leading to the increase in pressure P to a value at which the boiling point TB of the working fluid becomes higher than the evaporator temperature Tev. Vapour clot spreads through the vapour channel and condense, and then a rarefaction wave return from condenser in the evaporator, the boiling in which is resumed and the next cycle of the pulsations is repeated. Numerical simulation was performed using finite element method implemented in the commercial program ANSYS Multiphisics 14.5 in the two-dimensional setting of axis symmetric moist vapour flow with third kind boundary conditions.

  16. Time-dependent calculations of molten pool formation and thermal plasma with metal vapour in gas tungsten arc welding

    NASA Astrophysics Data System (ADS)

    Tanaka, M.; Yamamoto, K.; Tashiro, S.; Nakata, K.; Yamamoto, E.; Yamazaki, K.; Suzuki, K.; Murphy, A. B.; Lowke, J. J.

    2010-11-01

    A gas tungsten arc (GTA) was modelled taking into account the contamination of the plasma by metal vapour from the molten anode. The whole region of GTA atmosphere including the tungsten cathode, the arc plasma and the anode was treated using a unified numerical model. A viscosity approximation was used to express the diffusion coefficient in terms of viscosity of the shielding gas and metal vapour. The transient two-dimensional distributions of temperature, velocity of plasma flow and iron vapour concentration were predicted, together with the molten pool as a function of time for a 150 A arc current at atmospheric pressure, both for helium and argon gases. It was shown that the thermal plasma in the GTA was influenced by iron vapour from the molten pool surface and that the concentration of iron vapour in the plasma was dependent on the temperature of the molten pool. GTA on high sulfur stainless steel was calculated to discuss the differences between a low sulfur and a high sulfur stainless steel anode. Helium was selected as the shielding gas because a helium GTA produces more metal vapour than an argon GTA. In the GTA on a high sulfur stainless steel anode, iron vapour and current path were constricted. Radiative emission density in the GTA on high sulfur stainless steel was also concentrated in the centre area of the arc plasma together with the iron vapour although the temperature distributions were almost the same as that in the case of a low sulfur stainless steel anode.

  17. Multivalent Mn-doped TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Lin, C. Y. W.; Channei, D.; Koshy, P.; Nakaruk, A.; Sorrell, C. C.

    2012-07-01

    Thin films of TiO2 doped with Mn were deposited on F-doped SnO2-coated glass using spin coating. The concentration of the dopant was in the range 0-7 wt% Mn (metal basis). The films were examined in terms of the structural, chemical, and optical properties. Glancing angle X-ray diffraction data show that the films consisted of the anatase polymorph of TiO2, without any contaminant phases. The X-ray photoelectron spectroscopy data indicate the presence of Mn3+ and Mn4+ in the doped films as well as atomic disorder and associated structural distortion. Ultraviolet-visible spectrophotometry data show that the optical indirect band gap of the films decreased significantly with increasing manganese doping, from 3.32 eV for the undoped composition to 2.90 eV for that doped with 7 wt% Mn.

  18. Direct synthesis of nitrogen-doped graphene on platinum wire as a new fiber coating method for the solid-phase microextraction of BXes in water samples: Comparison of headspace and cold-fiber headspace modes.

    PubMed

    Memarian, Elham; Hosseiny Davarani, Saied Saeed; Nojavan, Saeed; Movahed, Siyavash Kazemi

    2016-09-07

    In this work, a new solid-phase microextraction fiber was prepared based on nitrogen-doped graphene (N-doped G). Moreover, a new strategy was proposed to solve problems dealt in direct coating of N-doped G. For this purpose, first, Graphene oxide (GO) was coated on Pt wire by electrophoretic deposition method. Then, chemical reduction of coated GO to N-doped G was accomplished by hydrazine and NH3. The prepared fiber showed good mechanical and thermal stabilities. The obtained fiber was used in two different modes (conventional headspace solid-phase microextraction and cold-fiber headspace solid-phase microextraction (CF-HS-SPME)). Both modes were optimized and applied for the extraction of benzene and xylenes from different aqueous samples. All effective parameters including extraction time, salt content, stirring rate, and desorption time were optimized. The optimized CF-HS-SPME combined with GC-FID showed good limit of detections (LODs) (0.3-2.3 μg/L), limit of quantifications (LOQs) (1.0-7.0 μg/L) and linear ranges (1.0-5000 μg/L). The developed method was applied for the analysis of benzene and xylenes in rainwater and some wastewater samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Frequency doubling of a tunable ytterbium-doped fibre laser in KTP crystals phase-matched in the XY and YZ planes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akulov, V A; Kablukov, S I; Babin, Sergei A

    2012-02-28

    This paper presents an experimental study of frequency doubling of a tunable ytterbium-doped fibre laser in KTP crystals phase-matched in the XY and YZ planes. In the XY plane, we obtained continuous tuning in the range 528 - 540 nm through intracavity frequency doubling. The second-harmonic power reached 450 mW for 18 W of multimode diode pump power, which was five times higher in comparison with single-pass frequency doubling. In a single-pass configuration in the YZ plane, we obtained a wide tuning range (527 - 551 nm) in the green spectral region and a second-harmonic power of {approx}10 mW. Themore » tuning range was only limited by the mechanical performance of the fibre Bragg grating and can potentially be extended to the entire lasing range of the ytterbium-doped fibre laser.« less

  20. Solvothermal-induced phase transition and visible photocatalytic activity of nitrogen-doped titania.

    PubMed

    Liu, Jianjun; Qin, Wei; Zuo, Shengli; Yu, Yingchun; Hao, Zhengping

    2009-04-15

    Nitrogen-doped titania nanoparticles consisting of pure anatase, pure rutile and bicrystallites (anatase+rutile and anatase+brookite) have been prepared in TiCl(3)-HMT (hexamethylene tetramine)-alcohol solution under solvothermal process. The effect of the solvent type and amount of HMT as pH adjuster on the phase composition of titania and its visible photocatalytic activity for degradation to MO (methyl orange) was investigated. It is found that anatase gradually transferred to rutile with increase of carbon chain using methanol, ethanol, 1-propanol and 1-butanol as solvent. The pure anatase formed at the pH value of 1-2, while bicrystalline titania (anatase+rutile and anatase+brookite) at that of 7-10 in the presence of methanol. The bicrystalline (anatase+brookite) titania have the best visible photocatalytic activity among all the samples. The -(NO) and -(NH) dopants with an N (1s) binding energy of 400 eV may have positive effects on the visible light photocatalytic activity.

  1. Nonequilibrium study of the intrinsic free-energy profile across a liquid-vapour interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braga, Carlos, E-mail: ccorreia@imperial.ac.uk; Muscatello, Jordan, E-mail: jordan.muscatello@imperial.ac.uk; Lau, Gabriel, E-mail: gabriel.lau07@imperial.ac.uk

    2016-01-28

    We calculate an atomistically detailed free-energy profile across a heterogeneous system using a nonequilibrium approach. The path-integral formulation of Crooks fluctuation theorem is used in conjunction with the intrinsic sampling method to calculate the free-energy profile for the liquid-vapour interface of the Lennard-Jones fluid. Free-energy barriers are found corresponding to the atomic layering in the liquid phase as well as a barrier associated with the presence of an adsorbed layer as revealed by the intrinsic density profile. Our findings are in agreement with profiles calculated using Widom’s potential distribution theorem applied to both the average and the intrinsic profiles asmore » well as the literature values for the excess chemical potential.« less

  2. Observation of ferromagnetism in Mn doped KNbO3

    NASA Astrophysics Data System (ADS)

    Manikandan, M.; Venkateswaran, C.

    2015-06-01

    Pure and Mn doped KNbO3 have been prepared by ball milling assisted ceramic method. Mn ion had been doped at Nb site to induce ferromagnetism at room temperature. X-ray diffraction (XRD) patterns reveal the formation of orthorhombic phase. High resolution scanning electron micrograph (HR-SEM) of both pure and Mn doped samples show a mixture of spherical and plate like particles. Room temperature magnetic behavior of both the samples were analyzed using vibrating sample magnetometer (VSM). 5% Mn doped KNbO3 exhibits ferromagnetic behavior. Observed ferromagnetic feature has been explained by interactions between bound magnetic polarons which are created by Mn4+ ions.

  3. Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies

    PubMed Central

    Potyrailo, Radislav A.; Bonam, Ravi K.; Hartley, John G.; Starkey, Timothy A.; Vukusic, Peter; Vasudev, Milana; Bunning, Timothy; Naik, Rajesh R.; Tang, Zhexiong; Palacios, Manuel A.; Larsen, Michael; Le Tarte, Laurie A.; Grande, James C.; Zhong, Sheng; Deng, Tao

    2015-01-01

    Combining vapour sensors into arrays is an accepted compromise to mitigate poor selectivity of conventional sensors. Here we show individual nanofabricated sensors that not only selectively detect separate vapours in pristine conditions but also quantify these vapours in mixtures, and when blended with a variable moisture background. Our sensor design is inspired by the iridescent nanostructure and gradient surface chemistry of Morpho butterflies and involves physical and chemical design criteria. The physical design involves optical interference and diffraction on the fabricated periodic nanostructures and uses optical loss in the nanostructure to enhance the spectral diversity of reflectance. The chemical design uses spatially controlled nanostructure functionalization. Thus, while quantitation of analytes in the presence of variable backgrounds is challenging for most sensor arrays, we achieve this goal using individual multivariable sensors. These colorimetric sensors can be tuned for numerous vapour sensing scenarios in confined areas or as individual nodes for distributed monitoring. PMID:26324320

  4. Effects of an in vacancy on local distortion of fast phase transition in Bi-doped In3SbTe2

    NASA Astrophysics Data System (ADS)

    Choi, Minho; Choi, Heechae; Kim, Seungchul; Ahn, Jinho; Kim, Yong Tae

    2017-12-01

    Indium vacancies in Bi-doped In3SbTe2 (BIST) cause local distortion or and faster phase transition of BIST with good stability. The formation energy of the In vacancy in the BIST is relatively lower compared to that in IST due to triple negative charge state of the In vacancy ( V 3- In) and higher concentration of the V 3- In in BIST. The band gap of BIST is substantially reduced with increasing concentrations of the V 3- In and the hole carriers, which results in a higher electrical conductivity. The phase-change memory (PRAM) device fabricated with the BIST shows very fast, stable switching characteristics at lower voltages.

  5. Doping evolution of spin and charge excitations in the Hubbard model

    DOE PAGES

    Kung, Y. F.; Nowadnick, E. A.; Jia, C. J.; ...

    2015-11-05

    We shed light on how electronic correlations vary across the phase diagram of the cuprate superconductors, examining the doping evolution of spin and charge excitations in the single-band Hubbard model using determinant quantum Monte Carlo (DQMC). In the single-particle response, we observe that the effects of correlations weaken rapidly with doping, such that one may expect the random phase approximation (RPA) to provide an adequate description of the two-particle response. In contrast, when compared to RPA, we find that significant residual correlations in the two-particle excitations persist up to 40% hole and 15% electron doping (the range of dopings achievedmore » in the cuprates). Ultimately, these fundamental differences between the doping evolution of single- and multi-particle renormalizations show that conclusions drawn from single-particle processes cannot necessarily be applied to multi-particle excitations. Eventually, the system smoothly transitions via a momentum-dependent crossover into a weakly correlated metallic state where the spin and charge excitation spectra exhibit similar behavior and where RPA provides an adequate description.« less

  6. The preparation of in situ doped hydrogenated amorphous silicon by homogeneous chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Meyerson, B. S.; Scott, B. A.; Wolford, D. J.

    1983-03-01

    Raman scattering, infrared absorption, conductivity measurements, electron microprobe, and secondary ion mass spectrometry (SIMS) were used to characterize boron and phosphorus doped hydrogenated amorphous silicon (a-Si:H) films prepared by Homogeneous Chemical Vapor Deposition (HOMOCVD). HOMOCVD is a thermal process which relies upon the gas phase pyrolysis of a source (silane containing up to 1.0% diborane or phosphine) to generate activated species for deposition upon a cooled substrate. Doped films prepared at 275 °C by this process were found to contain ˜12-at. % hydrogen as determined by infrared absorption. We examined dopant incorporation from the gas phase, obtaining values for a distribution coefficient CD (film dopant content/gas phase dopant concentration, atomic basis) of 0.33≤CD ≤0.63 for boron, while 0.4≤CD ≤10.75 in the limits 3.3×10-5≤PH3/SiH4≤0.004. We interpret the data as indicative of the formation of an unstable phosphorus/silicon intermediate in the gas phase, leading to the observed enhancements in CD at high gas phase phosphine content. HOMOCVD films doped at least as efficiently as their prepared counterparts, but tended to achieve higher conductivities [σ≥0.1 (Ω cm)-1 for 4.0% incorporated phosphorus] in the limit of heavy doping. Raman spectra showed no evidence of crystallinity in the doped films. Film properties (conductivity, activation energy of of conduction) have not saturated at the doping levels investigated here, making the attainment of higher ``active'' dopant levels a possibility. We attribute the observation that HOMOCVD appears more amenable to high ``active'' dopant levels than plasma techniques to the low (˜0.1 eV) thermal energy at which HOMOCVD proceeds, versus ˜10-100 eV for plasma techniques. Low substrate temperature (75 °C) doped films were prepared with initial results showing these films to dope as readily as those prepared at high temperature (T˜275 °C).

  7. Ionic displacement induced ferroelectricity in multiferroic Cr doped ZnO

    NASA Astrophysics Data System (ADS)

    Tiwari, Jeetendra Kumar; Ali, Nasir; Ghosh, Subhasis

    2018-05-01

    Cr doped ZnO thin film was grown on quartz substrate using RF magnetron sputtering. Room temperature magnetic and ferroelectric properties of Cr doped ZnO were investigated. It is shown that ZnO becomes ferromagnetic upon Cr doping. It is considered that breaking of centrosymmetry due strain developed by doping of Cr should be responsible for the ferroelectricity. These films were characterized by X-ray diffraction (XRD), which shows that the films possess crystalline structure with preferred orientation along the (002) crystal plane and there is no extra peak due to Cr i.e. single phase.

  8. Distillation with Vapour Compression. An Undergraduate Experimental Facility.

    ERIC Educational Resources Information Center

    Pritchard, Colin

    1986-01-01

    Discusses the need to design distillation columns that are more energy efficient. Describes a "design and build" project completed by two college students aimed at demonstrating the principles of vapour compression distillation in a more energy efficient way. General design specifications are given, along with suggestions for teaching…

  9. Electron doping a kagome spin liquid

    DOE PAGES

    Kelly, Z. A.; Gallagher, M. J.; McQueen, T. M.

    2016-10-13

    Herbertsmithite, ZnCu 3(OH) 6Cl 2, is a two-dimensional kagome lattice realization of a spin liquid, with evidence for fractionalized excitations and a gapped ground state. Such a quantum spin liquid has been proposed to underlie high-temperature superconductivity and is predicted to produce a wealth of new states, including a Dirac metal at 1/3 electron doping. Here, we report the topochemical synthesis of electron-doped ZnLi xCu 3(OH) 6Cl 2 from x=0 to x=1.8 (3/5 per Cu 2+). Contrary to expectations, no metallicity or superconductivity is induced. Instead, we find a systematic suppression of magnetic behavior across the phase diagram. Lastly, ourmore » results demonstrate that significant theoretical work is needed to understand and predict the role of doping in magnetically frustrated narrow band insulators, particularly the interplay between local structural disorder and tendency toward electron localization, and pave the way for future studies of doped spin liquids.« less

  10. Liquid Phase Plasma Synthesis of Iron Oxide Nanoparticles on Nitrogen-Doped Activated Carbon Resulting in Nanocomposite for Supercapacitor Applications.

    PubMed

    Lee, Heon; Lee, Won-June; Park, Young-Kwon; Ki, Seo Jin; Kim, Byung-Joo; Jung, Sang-Chul

    2018-03-25

    Iron oxide nanoparticles supported on nitrogen-doped activated carbon powder were synthesized using an innovative plasma-in-liquid method, called the liquid phase plasma (LPP) method. Nitrogen-doped carbon (NC) was prepared by a primary LPP reaction using an ammonium chloride reactant solution, and an iron oxide/NC composite (IONCC) was prepared by a secondary LPP reaction using an iron chloride reactant solution. The nitrogen component at 3.77 at. % formed uniformly over the activated carbon (AC) surface after a 1 h LPP reaction. Iron oxide nanoparticles, 40~100 nm in size, were impregnated homogeneously over the NC surface after the LPP reaction, and were identified as Fe₃O₄ by X-ray photoelectron spectroscopy and X-ray diffraction. NC and IONCCs exhibited pseudo-capacitive characteristics, and their specific capacitance and cycling stability were superior to those of bare AC. The nitrogen content on the NC surface increased the compatibility and charge transfer rate, and the composites containing iron oxide exhibited a lower equivalent series resistance.

  11. Onset of two-dimensional superconductivity in space charge doped few-layer molybdenum disulfide

    NASA Astrophysics Data System (ADS)

    Biscaras, Johan; Chen, Zhesheng; Paradisi, Andrea; Shukla, Abhay

    2015-11-01

    Atomically thin films of layered materials such as molybdenum disulfide (MoS2) are of growing interest for the study of phase transitions in two-dimensions through electrostatic doping. Electrostatic doping techniques giving access to high carrier densities are needed to achieve such phase transitions. Here we develop a method of electrostatic doping which allows us to reach a maximum n-doping density of 4 × 1014 cm-2 in few-layer MoS2 on glass substrates. With increasing carrier density we first induce an insulator to metal transition and subsequently an incomplete metal to superconductor transition in MoS2 with critical temperature ~10 K. Contrary to earlier reports, after the onset of superconductivity, the superconducting transition temperature does not depend on the carrier density. Our doping method and the results we obtain in MoS2 for samples as thin as bilayers indicates the potential of this approach.

  12. High efficiency coherent optical memory with warm rubidium vapour

    PubMed Central

    Hosseini, M.; Sparkes, B.M.; Campbell, G.; Lam, P.K.; Buchler, B.C.

    2011-01-01

    By harnessing aspects of quantum mechanics, communication and information processing could be radically transformed. Promising forms of quantum information technology include optical quantum cryptographic systems and computing using photons for quantum logic operations. As with current information processing systems, some form of memory will be required. Quantum repeaters, which are required for long distance quantum key distribution, require quantum optical memory as do deterministic logic gates for optical quantum computing. Here, we present results from a coherent optical memory based on warm rubidium vapour and show 87% efficient recall of light pulses, the highest efficiency measured to date for any coherent optical memory suitable for quantum information applications. We also show storage and recall of up to 20 pulses from our system. These results show that simple warm atomic vapour systems have clear potential as a platform for quantum memory. PMID:21285952

  13. High efficiency coherent optical memory with warm rubidium vapour.

    PubMed

    Hosseini, M; Sparkes, B M; Campbell, G; Lam, P K; Buchler, B C

    2011-02-01

    By harnessing aspects of quantum mechanics, communication and information processing could be radically transformed. Promising forms of quantum information technology include optical quantum cryptographic systems and computing using photons for quantum logic operations. As with current information processing systems, some form of memory will be required. Quantum repeaters, which are required for long distance quantum key distribution, require quantum optical memory as do deterministic logic gates for optical quantum computing. Here, we present results from a coherent optical memory based on warm rubidium vapour and show 87% efficient recall of light pulses, the highest efficiency measured to date for any coherent optical memory suitable for quantum information applications. We also show storage and recall of up to 20 pulses from our system. These results show that simple warm atomic vapour systems have clear potential as a platform for quantum memory.

  14. Electron-doping by hydrogen in transition-metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Oh, Sehoon; Im, Seongil; Choi, Hyoung Joon

    Using first-principles calculations, we investigate the atomic and electronic structures of 2H-phase transition-metal dichalcogenides (TMDC), 2H-MX2, with and without defects, where M is Mo or W and X is S, Se or Te. We find that doping of atomic hydrogen on 2H-MX2 induces electron doping in the conduction band. To understand the mechanism of this electron doping, we analyze the electronic structures with and without impurities. We also calculate the diffusion energy barrier to discuss the spatial stability of the doping. Based on these results, we suggest a possible way to fabricate elaborately-patterned circuits by modulating the carrier type of 2H-MoTe2. We also discuss possible applications of this doping in designing nano-devices. This work was supported by NRF of Korea (Grant No. 2011-0018306) and KISTI supercomputing center (Project No. KSC-2016-C3-0052).

  15. Significant enhancement of compositional and superconducting homogeneity in Ti rather than Ta-doped Nb 3Sn

    DOE PAGES

    Tarantini, C.; Sung, Z. -H.; Lee, P. J.; ...

    2016-01-25

    Nb 3Sn wires are now very close to their final optimization but despite its classical nature, detailed understanding of the role of Ta and Ti doping in the A15 is not fully understood. Long thought to be essentially equivalent in their influence on H c2, they were interchangeably applied. Here we show that Ti produces significantly more homogeneous chemical and superconducting properties. Despite Ta-doped samples having a slightly higher T c onset in zero-field, they always have a wider Tc-distribution. In particular, whereas the Ta-doped A15 has a T c-distribution extending from 18 down to 5-6 K (the lowest expectedmore » Tc for the binary A15 phase), the Ti-doped samples have no A15 phase with T c below ~12 K. The much narrower T c distribution in the Ti-doped samples has a positive effect on their in-field T c-distribution too, leading to an extrapolated μ0H c2(0) 2 Tesla larger than the Ta-doped one. Ti-doping also appears to be very homogeneous even when the Sn content is reduced in order to inhibit breakdown of the diffusion barriers in very high Jc conductors. As a result, the enhanced homogeneity of the Ti-doped samples appears to result from its assistance of rapid diffusion of Sn into the filaments and by its incorporation into the A15 phase interchangeably with Sn on the Sn sites of the A15 phase.« less

  16. Ferromagnetism in spin-coated cobalt-doped TiO2 thin films and the role of crystalline phases

    NASA Astrophysics Data System (ADS)

    Salazar Cuaila, J. L.; Alayo, W.; Avellaneda, César O.

    2017-11-01

    Two sets of Cobalt-doped (1-10% at) TiO2 thin films, for different molar concentrations of the Ti precursor (0.3 and 0.5 mol/L), have been deposited onto Si substrates by combining the Sol Gel process and the Spin Coating technique. The structure of the samples was studied by X-ray reflectivity (XRR) and X-ray diffraction (XRD) and their magnetic properties were analyzed by magnetization measurements as a function of the applied magnetic field. The XRR results provided the thickness and interfacial roughness of the films, while XRD patterns revealed the crystalline phases and lattice parameters. Room temperature ferromagnetic behaviour was observed for some of the atomic Co concentrations by the magnetization measurements. This behaviour has been correlated to the crystalline phases, which were found to be modified by both the molar ratio of Ti precursor and the concentration of the Co dopant. A suppression of ferromagnetism is observed for some atomic Co fractions and it was attributed to the presence of secondary crystalline phases.

  17. Model of electron pairs in electron-doped cuprates

    NASA Astrophysics Data System (ADS)

    Singh, R. J.; Khan, Shakeel

    2016-07-01

    In the order parameter of hole-doped cuprate superconductors in the pseudogap phase, two holes enter the order parameter from opposite sides and pass through various CuO2 cells jumping from one O2- to the other under the influence of magnetic field offered by the Cu2+ ions in that CuO2 cell and thus forming hole pairs. In the pseudogap phase of electron-doped cuprates, two electrons enter the order parameter at Cu2+ sites from opposite ends and pass from one Cu2+ site to the diagonally opposite Cu2+ site. Following this type of path, they are subjected to high magnetic fields from various Cu2+ ions in that cell. They do not travel from one Cu2+ site to the other along straight path but by helical path. As they pass through the diagonal, they face high to low to very high magnetic field. Therefore, frequency of helical motion and pitch goes on changing with the magnetic field. Just before reaching the Cu2+ ions at the exit points of all the cells, the pitch of the helical motion is enormously decreased and thus charge density at these sites is increased. So the velocity of electrons along the diagonal path is decreased. Consequently, transition temperature of electron-doped cuprates becomes less than that of hole-doped cuprates. Symmetry of the order parameter of the electron-doped cuprates has been found to be of 3dx2-y2 + iS type. It has been inferred that internal magnetic field inside the order parameter reconstructs the Fermi surface, which is requisite for superconductivity to take place. Electron pairs formed in the pseudogap phase are the precursors of superconducting order parameter when cooled below Tc.

  18. The MM5 Numerical Model to Correct PSInSAR Atmospheric Phase Screen

    NASA Astrophysics Data System (ADS)

    Perissin, D.; Pichelli, E.; Ferretti, R.; Rocca, F.; Pierdicca, N.

    2010-03-01

    In this work we make an experimental analysis to research the capability of Numerical Weather Prediction (NWP) models as MM5 to produce high resolution (1km-500m) maps of Integrated Water Vapour (IWV) in the atmosphere to mitigate the well-known disturbances that affect the radar signal while travelling from the sensor to the ground and back. Experiments have been conducted over the area surrounding Rome using ERS data acquired during the three days phase in '94 and using Envisat data acquired in recent years. By means of the PS technique SAR data have been processed and the Atmospheric Phase Screen (APS) of Slave images with respect to a reference Master have been extracted. MM5 IWV maps have a much lower resolution than PSInSAR APS's: the turbulent term of the atmospheric vapour field cannot be well resolved by MM5, at least with the low resolution ECMWF inputs. However, the vapour distribution term that depends on the local topography has been found quite in accordance.

  19. A microwave satellite water vapour column retrieval for polar winter conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perro, Christopher; Lesins, Glen; Duck, Thomas J.

    A new microwave satellite water vapour retrieval for the polar winter atmosphere is presented. The retrieval builds on the work of Miao et al. (2001) and Melsheimer and Heygster (2008), employing auxiliary information for atmospheric conditions and numerical optimization. It was tested using simulated and actual measurements from the Microwave Humidity Sounder (MHS) satellite instruments. Ground truth was provided by the G-band vapour radiometer (GVR) at Barrow, Alaska. For water vapour columns less than 6 kg m -2, comparisons between the retrieval and GVR result in a root mean square (RMS) deviation of 0.39 kg m -2 and a systematic bias of 0.08 kg m -2. These results aremore » compared with RMS deviations and biases at Barrow for the retrieval of Melsheimer and Heygster (2008), the AIRS and MIRS satellite data products, and the ERA-Interim, NCEP, JRA-55, and ASR reanalyses. When applied to MHS measurements, the new retrieval produces a smaller RMS deviation and bias than for the earlier retrieval and satellite data products. The RMS deviations for the new retrieval were comparable to those for the ERA-Interim, JRA-55, and ASR reanalyses; however, the MHS retrievals have much finer horizontal resolution (15 km at nadir) and reveal more structure. The new retrieval can be used to obtain pan-Arctic maps of water vapour columns of unprecedented quality. It may also be applied to measurements from the Special Sensor Microwave/Temperature 2 (SSM/T2), Advanced Microwave Sounding Unit B (AMSU-B), Special Sensor Microwave Imager/Sounder (SSMIS), Advanced Technology Microwave Sounder (ATMS), and Chinese MicroWave Humidity Sounder (MWHS) instruments.« less

  20. Seasonally-Active Water on Mars: Vapour, Ice, Adsorbate, and the Possibility of Liquid

    NASA Astrophysics Data System (ADS)

    Richardson, M. I.

    2002-12-01

    Seasonally-active water can be defined to include any water reservoir that communicates with other reservoirs on time scales of a year or shorter. It is the interaction of these water reservoirs, under the influence of varying solar radiation and in conjunction with surface and atmospheric temperatures, that determines the phase-stability field for water at the surface, and the distribution of water in various forms below, on, and above the surface. The atmosphere is the critical, dynamical link in this cycling system, and also (fortunately) one of the easiest to observe. Viking and Mars Global Surveyor observations paint a strongly asymmetric picture of the global seasonal water cycle, tied proximately to planetary eccentricity, and the existence of residual ice caps of different composition at the two poles. The northern summer experiences the largest water vapour columns, and is associated with sublimation from the northern residual water ice cap. The southern summer residual carbon dioxide ice cap is cold trap for water. Asymmetry in the water cycle is an unsolved problem. Possible solutions may involve the current timing of perihelion (the water cap resides at the pole experiencing the longer but cooler summer), the trapping of water ice in the northern hemisphere by tropical water ice clouds, and the bias in the annual-average, zonal-mean atmospheric circulation resulting from the zonal-mean difference in the elevation of the northern and southern hemispheres. Adsorbed and frozen water have proven harder to constrain. Recent Odyssey Gamma Ray Spectrometer results suggest substantial ground ice in the mid- and high-latitudes, but this water is likely below the seasonal skin depth for two reasons: the GRS results are best fit with such a model, and GCM models of the water cycle produce dramatically unrealistic atmospheric vapour distributions when such a very near surface, GRS-like distribution is initialized - ultimately removing the water to the northern and

  1. Effect of annealing on structural and luminescence properties of Eu3+ doped NaYF4 phosphor

    NASA Astrophysics Data System (ADS)

    Pathak, Trilok K.; Kumar, Ashwini; Swart, H. C.; Kroon, R. E.

    2018-04-01

    Eu3+ doped NaYF4 phosphors have been synthesized by the combustion method. The effect of annealing on the structural, morphological and luminescence properties has been investigated. X-ray diffraction analysis revealed that the Eu3+ doped NaYF4 phosphors consisted of mixed phases: α-phase and β-phase which were affected by the annealing of the phosphor. The surface morphology showed a significant change with annealing in the Eu3+ doped NaYF4 phosphors. The elemental mapping and energy dispersive X-ray spectroscopy spectra proved the formation of the desired materials. The photoluminescence spectra illustrated the optical properties of Eu3+ in the as-prepared and annealed Eu3+ doped NaYF4 phosphors. The intensity of the peaks 5D0 → 7F2 and 5D0 → 7F1 varied in as-prepared and annealed samples. The lifetime of the Eu3+ luminescence at 615 nm was also weakly affected by the Eu3+ doping and annealing temperature.

  2. Leidenfrost vapour layer moderation of the drag crisis and trajectories of superhydrophobic and hydrophilic spheres falling in water.

    PubMed

    Vakarelski, Ivan U; Chan, Derek Y C; Thoroddsen, Sigurdur T

    2014-08-21

    We investigate the dynamic effects of a Leidenfrost vapour layer sustained on the surface of heated steel spheres during free fall in water. We find that a stable vapour layer sustained on the textured superhydrophobic surface of spheres falling through 95 °C water can reduce the hydrodynamic drag by up to 75% and stabilize the sphere trajectory for the Reynolds number between 10(4) and 10(6), spanning the drag crisis in the absence of the vapour layer. For hydrophilic spheres under the same conditions, the transition to drag reduction and trajectory stability occurs abruptly at a temperature different from the static Leidenfrost point. The observed drag reduction effects are attributed to the disruption of the viscous boundary layer by the vapour layer whose thickness depends on the water temperature. Both the drag reduction and the trajectory stabilization effects are expected to have significant implications for development of sustainable vapour layer based technologies.

  3. Perspective. Extremely fine tuning of doping enabled by combinatorial molecular-beam epitaxy

    DOE PAGES

    Wu, J.; Bozovic, I.

    2015-04-06

    Chemical doping provides an effective method to control the electric properties of complex oxides. However, the state-of-art accuracy in controlling doping is limited to about 1%. This hampers elucidation of the precise doping dependences of physical properties and phenomena of interest, such as quantum phase transitions. Using the combinatorial molecular beam epitaxy, we improve the accuracy in tuning the doping level by two orders of magnitude. We illustrate this novel method by two examples: a systematic investigation of the doping dependence of interface superconductivity, and a study of the competing ground states in the vicinity of the insulator-to-superconductor transition.

  4. Southern Greenland water vapour isotopic composition at the crossroads of Atlantic and Arctic moisture

    NASA Astrophysics Data System (ADS)

    Bonne, J. L.; Steen-Larsen, H. C.; Risi, C. M.; Werner, M.; Sodemann, H.; Lacour, J. L.; Fettweis, X.; Cesana, G.; Delmotte, M.; Cattani, O.; Clerbaux, C.; Sveinbjörnsdottir, A. E.; Masson-Delmotte, V.

    2014-12-01

    Since September 2011, a continuous water vapour isotopic composition monitoring instrument has been remotely operated in Ivittuut (61.21°N, 48.17°W), southern Greenland. Meteorological parameters are monitored and precipitation has been sampled and analysed for isotopic composition, suggesting equilibrium between surface vapour and precipitation. The data depict small summer diurnal variations. δ18O and deuterium excess (d-excess) are generally anti-correlated and show important seasonal variations (with respective amplitudes of 10 and 20 ‰), and large synoptic variations associated to low-pressure systems (typically +5‰ on δ18O and -15‰ on d-excess). The moisture sources, estimated based on Lagrangian back-trajectories, are primarily influenced by the western North Atlantic, and north-eastern American continent. Notable are important seasonal and synoptic shifts of the moisture sources, and sporadic influences of the Arctic or the eastern North Atlantic. Moisture sources variations can be related to changes in water vapour isotopic composition, and the isotopic fingerprints can be attributed to the areas of moisture origins. Isotopic enabled AGCMs nudged to meteorology (LMDZiso, ECHAM5-wiso), despite biases, correctly capture the δ18O changes, but underestimate the d-excess changes. They allow to identify a high correlation between the southern Greenland d-excess and the simulated relative humidity and d-excess in the moisture source region south of Greenland. An extreme high temperature event in July 2012 affecting all Greenland, similar to ice sheet melt events during the medieval periods and one event in 1889 documented by Greenland ice core records, has been analysed regarding water vapour isotopic composition, using remote sensing (IASI) and in situ observations from Bermuda to northern Greenland (NEEM station). Our southern Greenland observations allow to track the water vapour evolution during this event along the moisture transport path

  5. FAST TRACK COMMUNICATION: Metal vapour causes a central minimum in arc temperature in gas-metal arc welding through increased radiative emission

    NASA Astrophysics Data System (ADS)

    Schnick, M.; Füssel, U.; Hertel, M.; Spille-Kohoff, A.; Murphy, A. B.

    2010-01-01

    A computational model of the argon arc plasma in gas-metal arc welding (GMAW) that includes the influence of metal vapour from the electrode is presented. The occurrence of a central minimum in the radial distributions of temperature and current density is demonstrated. This is in agreement with some recent measurements of arc temperatures in GMAW, but contradicts other measurements and also the predictions of previous models, which do not take metal vapour into account. It is shown that the central minimum is a consequence of the strong radiative emission from the metal vapour. Other effects of the metal vapour, such as the flux of relatively cold vapour from the electrode and the increased electrical conductivity, are found to be less significant. The different effects of metal vapour in gas-tungsten arc welding and GMAW are explained.

  6. Real-time fluorescence quenching-based detection of nitro-containing explosive vapours: what are the key processes?

    PubMed

    Shaw, P E; Burn, P L

    2017-11-15

    The detection of explosives continues to be a pressing global challenge with many potential technologies being pursued by the scientific research community. Luminescence-based detection of explosive vapours with an organic semiconductor has attracted much interest because of its potential for detectors that have high sensitivity, compact form factor, simple operation and low-cost. Despite the abundance of literature on novel sensor materials systems there are relatively few mechanistic studies targeted towards vapour-based sensing. In this Perspective, we will review the progress that has been made in understanding the processes that control the real-time luminescence quenching of thin films by analyte vapours. These are the non-radiative quenching process by which the sensor exciton decays, the analyte-sensor intermolecular binding interaction, and the diffusion process for the analyte vapours in the film. We comment on the contributions of each of these processes towards the sensing response and, in particular, the relative roles of analyte diffusion and exciton diffusion. While the latter has been historically judged to be one of, if not the primary, causes for the high sensitivity of many conjugated polymers to nitrated vapours, recent evidence suggests that long exciton diffusion lengths are unnecessary. The implications of these results on the development of sensor materials for real-time detection are discussed.

  7. Onset of two-dimensional superconductivity in space charge doped few-layer molybdenum disulfide

    PubMed Central

    Biscaras, Johan; Chen, Zhesheng; Paradisi, Andrea; Shukla, Abhay

    2015-01-01

    Atomically thin films of layered materials such as molybdenum disulfide (MoS2) are of growing interest for the study of phase transitions in two-dimensions through electrostatic doping. Electrostatic doping techniques giving access to high carrier densities are needed to achieve such phase transitions. Here we develop a method of electrostatic doping which allows us to reach a maximum n-doping density of 4 × 1014 cm−2 in few-layer MoS2 on glass substrates. With increasing carrier density we first induce an insulator to metal transition and subsequently an incomplete metal to superconductor transition in MoS2 with critical temperature ≈10 K. Contrary to earlier reports, after the onset of superconductivity, the superconducting transition temperature does not depend on the carrier density. Our doping method and the results we obtain in MoS2 for samples as thin as bilayers indicates the potential of this approach. PMID:26525386

  8. Unusual strain glassy phase in Fe doped Ni2Mn1.5In0.5

    NASA Astrophysics Data System (ADS)

    Nevgi, R.; Priolkar, K. R.

    2018-01-01

    Fe doped Ni2Mn1.5In0.5, particularly, Ni2Mn1.4Fe0.1In0.5, despite having an incommensurate, modulated 7M martensitic structure at room temperature exhibits frequency dependent behavior of storage modulus and loss which obeys the Vogel-Fulcher law as well as shows ergodicity breaking between zero field cooled and field cooled strain measurements just above the transition temperature. Both frequency dependence and ergodicity breaking are characteristics of a strain glassy phase and occur due to the presence of strain domains which are large enough to present signatures of long range martensitic order in diffraction but are non-interacting with other strain domains due to the presence of Fe impurities.

  9. Effect of doping on the forward current-transport mechanisms in a metal-insulator-semiconductor contact to INP:ZN grown by metal organic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Cova, P.; Singh, A.; Medina, A.; Masut, R. A.

    1998-04-01

    A detailed study of the effect of doping density on current transport was undertaken in Au metal-insulator-semiconductor (MIS) contacts fabricated on Zn-doped InP layers grown by metal organic vapor phase epitaxy. A recently developed method was used for the simultaneous analysis of the current-voltage ( I- V) and capacitance-voltage ( C- V) characteristics in an epitaxial MIS diode which brings out the contributions of different current-transport mechanisms to the total current. I- V and high-frequency C- V measurements were performed on two MIS diodes at different temperatures in the range 220-395 K. The barrier height at zero bias of Au/InP:Zn MIS diodes, φ0 (1.06 V±10%), was independent both of the Zn-doping density and of the surface preparation. The interface state density distribution Nss as well as the thickness of the oxide layer (2.2±15% nm) unintentionally grown before Au deposition were independent of the Zn-doping concentration in the range 10 16< NA<10 17 cm -3; not so the effective potential barrier χ of the insulator layer and the density of the mid-gap traps. χ was much lower for the highly-doped sample. Our results indicate that at high temperatures, independent of the Zn-doping concentration, the interfacial layer-thermionic (ITE) and interfacial layer-diffusion (ID) mechanisms compete with each other to control the current transport. At intermediate temperatures, however, ITE and ID will no longer be the only dominant mechanisms in the MIS diode fabricated on the highly-doped sample. In this case, the assumption of a generation-recombination current permits a better fit to the experimental data. Analysis of the data suggests that the generation-recombination current, observed only in the highly-doped sample, is associated with an increase in the Zn-doping density. From the forward I- V data for this diode we obtained the energy level (0.60 eV from the conduction band) for the most effective recombination centers.

  10. Solid-state detector system for measuring concentrations of tritiated water vapour and other radioactive gases

    NASA Astrophysics Data System (ADS)

    Nunes, J. C.; Surette, R. A.; Wood, M. J.

    1999-08-01

    A detector system was built using a silicon photodiode plus preamplifier and a cesium iodide scintillator plus preamplifier that were commercially available. The potential of the system for measuring concentrations of tritiated water vapour in the presence of other radioactive sources was investigated. For purposes of radiation protection, the sensitivity of the detector system was considered too low for measuring tritiated water vapour concentrations in workplaces such as nuclear power plants. Nevertheless, the spectrometry capability of the system was used successfully to differentiate amongst some radioactive gases in laboratory tests. Although this relatively small system can measure radioactive noble gases as well as tritiated water vapour concentrations, its response to photons remains an issue.

  11. Transport of metals and sulphur in magmas by flotation of sulphide melt on vapour bubbles

    NASA Astrophysics Data System (ADS)

    Mungall, J. E.; Brenan, J. M.; Godel, B.; Barnes, S. J.; Gaillard, F.

    2015-03-01

    Emissions of sulphur and metals from magmas in Earth’s shallow crust can have global impacts on human society. Sulphur-bearing gases emitted into the atmosphere during volcanic eruptions affect climate, and metals and sulphur can accumulate in the crust above a magma reservoir to form giant copper and gold ore deposits, as well as massive sulphur anomalies. The volumes of sulphur and metals that accumulate in the crust over time exceed the amounts that could have been derived from an isolated magma reservoir. They are instead thought to come from injections of multiple new batches of vapour- and sulphide-saturated magmas into the existing reservoirs. However, the mechanism for the selective upward transfer of sulphur and metals is poorly understood because their main carrier phase, sulphide melt, is dense and is assumed to settle to the bottoms of magma reservoirs. Here we use laboratory experiments as well as gas-speciation and mass-balance models to show that droplets of sulphide melt can attach to vapour bubbles to form compound drops that float. We demonstrate the feasibility of this mechanism for the upward mobility of sulphide liquids to the shallow crust. Our work provides a mechanism for the atmospheric release of large amounts of sulphur, and contradicts the widely held assumption that dense sulphide liquids rich in sulphur, copper and gold will remain sequestered in the deep crust.

  12. Polymer nanocomposite nanomechanical cantilever sensors: material characterization, device development and application in explosive vapour detection.

    PubMed

    Seena, V; Fernandes, Avil; Pant, Prita; Mukherji, Soumyo; Rao, V Ramgopal

    2011-07-22

    This paper reports an optimized and highly sensitive piezoresistive SU-8 nanocomposite microcantilever sensor and its application for detection of explosives in vapour phase. The optimization has been in improving its electrical, mechanical and transduction characteristics. We have achieved a better dispersion of carbon black (CB) in the SU-8/CB nanocomposite piezoresistor and arrived at an optimal range of 8-9 vol% CB concentration by performing a systematic mechanical and electrical characterization of polymer nanocomposites. Mechanical characterization of SU-8/CB nanocomposite thin films was performed using the nanoindentation technique with an appropriate substrate effect analysis. Piezoresistive microcantilevers having an optimum carbon black concentration were fabricated using a design aimed at surface stress measurements with reduced fabrication process complexity. The optimal range of 8-9 vol% CB concentration has resulted in an improved sensitivity, low device variability and low noise level. The resonant frequency and spring constant of the microcantilever were found to be 22 kHz and 0.4 N m(-1) respectively. The devices exhibited a surface stress sensitivity of 7.6 ppm (mN m(-1))(-1) and the noise characterization results support their suitability for biochemical sensing applications. This paper also reports the ability of the sensor in detecting TNT vapour concentration down to less than six parts per billion with a sensitivity of 1 mV/ppb.

  13. Electrical properties of tin-doped zinc oxide nanostructures doped at different dopant concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasir, M. F., E-mail: babaibaik2002@yahoo.com; Zainol, M. N., E-mail: nizarzainol@yahoo.com; Hannas, M., E-mail: mhannas@gmail.com

    This project has been focused on the electrical and optical properties respectively on the effect of Tin doped zinc oxide (ZnO) thin films at different dopant concentrations. These thin films were doped with different Sn dopant concentrations at 1 at%, 2 at%, 3 at%, 4 at% and 5 at% was selected as the parameter to optimize the thin films quality while the annealing temperature is fixed 500 °C. Sn doped ZnO solutions were deposited onto the glass substrates using sol-gel spin coating method. This project was involved with three phases, which are thin films preparation, deposition and characterization. The thinmore » films were characterized using Current Voltage (I-V) measurement and ultraviolet-visible-near-infrared (UV-vis-NIR) spectrophotometer (Perkin Elmer Lambda 750) for electrical properties and optical properties. The electrical properties show that the resistivity is the lowest at 4 at% Sn doping concentration with the value 3.08 × 10{sup 3} Ωcm{sup −1}. The absorption coefficient spectrum obtained shows all films exhibit very low absorption in the visible (400-800 nm) and near infrared (NIR) (>800 nm) range but exhibit high absorption in the UV range.« less

  14. A DISCUSSION ON UTILIZATION OF HEAT PIPE AND VAPOUR CHAMBER TECHNOLOGY AS A PRIMARY DEVICE FOR HEAT EXTRACTION FROM PHOTON ABSORBER SURFACES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suthar, K. J.; Lurie, Alexander M.; Den Hartog, P.

    Heat pipes and vapour chambers work on heat exchange phenomena of two-phase flow and are widely used for in-dustrial and commercial applications. These devices offer very high effective thermal conductivities (5,000-200,000 W/m/K) and are adaptable to various sizes, shapes, and ori-entations. Although they have been found to be an excel-lent thermal management solution for laptops, satellites, and many things in-between, heat pipes and vapour cham-bers have yet to be adopted for use at particle accelerator facilities where they offer the possibility of more compact and more efficient means to remove heat from unwanted synchrotron radiation. As with all technologies, theremore » are inherent limitations. Foremost, they are limited by practi-cality to serve as local heat transfer devices; heat transfer over long distances is likely best provided by other means. Heat pipes also introduce unique failure modes which must be considered.« less

  15. Formation of formic acid and organic peroxides in the ozonolysis of ethene with added water vapour

    NASA Astrophysics Data System (ADS)

    Horie, Osamu; Neeb, Peter; Limbach, Stefan; Moortgat, Geert K.

    1994-07-01

    Ozonolysis of C2H4 was carried out in a 580 l glass reaction vessel at 1-5 ppm reactant concentrations, with added water vapour. Under dry conditions ([H2O]0 = 0.5 ppm), HCHO, CO, CO2, (CHO)2O (formic acid anhydride), H2O2, and CH3OOH were identified as the reaction products. Under wet conditions ([H2O]0 = 2 × 104 ppm), HCOOH yields approaching ca. 20% of the converted C2H4, were observed, while no (CHO)2O was formed. Hydroxymethyl hydroperoxide, HOCH2OOH, was observed as the major peroxide, and found to be formed only in the presence of water vapour. Direct reactions of H2O vapour with the excited CH2OO* radicals and with stabilized CH2OO radicals are postulated to explain the formation of HCOOH and HOCH2OOH in the presence of water vapour, respectively.

  16. Water-vapour variability within a convective boundary-layer assessed by large-eddy simulations and IHOP_2002 observations

    NASA Astrophysics Data System (ADS)

    Couvreux, F.; Guichard, F.; Redelsperger, J. L.; Kiemle, C.; Masson, V.; Lafore, J. P.; Flamant, C.

    2005-10-01

    This study presents a comprehensive analysis of the variability of water vapour in a growing convective boundary-layer (CBL) over land, highlighting the complex links between advection, convective activity and moisture heterogeneity in the boundary layer. A Large-eddy Simulation (LES) is designed, based on observations, and validated, using an independent data-set collected during the International H2O Project (IHOP 2002) fieldexperiment. Ample information about the moisture distribution in space and time, as well as other important CBL parameters are acquired by mesonet stations, balloon soundings, instruments on-board two aircraft and the DLR airborne water-vapour differential-absorption lidar. Because it can deliver two-dimensional cross-sections at high spatial resolution (140 m horizontal, 200 m vertical), the airborne lidar offers valuable insights of small-scale moisture-variability throughout the CBL. The LES is able to reproduce the development of the CBL in the morning and early afternoon, as assessed by comparisons of simulated mean profiles of key meteorological variables with sounding data. Simulated profiles of the variance of water-vapour mixing-ratio were found to be in good agreement with the lidar-derived counterparts. Finally, probability-density functions of potential temperature, vertical velocity and water-vapour mixing-ratio calculated from the LES show great consistency with those derived from aircraft in situ measurements in the middle of the CBL. Downdraughts entrained from above the CBL are governing the scale of moisture variability. Characteristic length-scales are found to be larger for water-vapour mixing-ratio than for temperature.The observed water-vapour variability exhibits contributions from different scales. The influence of the mesoscale (larger than LES domain size, i.e. 10 km) on the smaller-scale variability is assessed using LES and observations. The small-scale variability of water vapour is found to be important and to be

  17. Three superconducting phases with different categories of pairing in hole- and electron-doped LaFeAs1 -xPxO

    NASA Astrophysics Data System (ADS)

    Miyasaka, S.; Uekubo, M.; Tsuji, H.; Nakajima, M.; Tajima, S.; Shiota, T.; Mukuda, H.; Sagayama, H.; Nakao, H.; Kumai, R.; Murakami, Y.

    2017-06-01

    The phase diagram of the LaFeAs1 -xPxO system has been extensively studied through hole and electron doping as well as As/P substitution. It has been revealed that there are three different superconducting phases with different Fermi surface (FS) topologies and thus with possibly different pairing glues. One of them is well understood as spin fluctuation-mediated superconductivity within a FS nesting scenario. Another one with the FSs in a bad nesting condition must be explained in a different context such as orbital or spin fluctuation in a strongly correlated electronic system. In both phases, T -linear resistivity was commonly observed when the superconducting transition temperature Tc becomes the highest value, indicating that the strength of bosonic fluctuation determines Tc. In the last superconducting phase, the nesting condition of FSs and the related bosonic fluctuation are moderate. Variety of phase diagram characterizes the multiple orbital nature of the iron-based superconductors which are just near the boundary between weak and strong correlation regimes.

  18. Effect of Zn-doping on structural and magnetic properties of copper ferrite nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gautam, Nisha; Thirupathi, Gadipelly; Singh, Rajender

    2016-05-23

    The nanoparticles of CuFe{sub 2}O{sub 4} (CF) and Cu{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4} (CZF) were synthesized using co-precipitation method to study the effect of Zn doping in Cu-ferrite. The X-ray diffraction (XRD) patterns were well fitted with two-phase structure using Rietveld analysis as Fd-3 m space group (spinel system) and C12/c1 space group (monoclinic system CuO-phase). The average crystallite size of the CF and CZF nanoparticles for spinel structure are 6 and 7 nm respectively. The spinel phase fraction is increased from 56% to 71% with Zn-doping of 20% in CF. The transmission electron micrograph analysis showed the narrow size distribution formore » CZF nanoparticles. The magnetization plots as a function of magnetic field (M (H)) of CF and CZF nanoparticles indicate superparamagnetic behavior. The magnetization is increased with Zn-doping in CF. The stable spinel Cu-ferrite can be obtained with Zn-doping in CF.« less

  19. Diffuse Phase Transitions and Giant Electrostrictive Coefficients in Lead-Free Fe3+-Doped 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 Ferroelectric Ceramics.

    PubMed

    Jin, Li; Huo, Renjie; Guo, Runping; Li, Fei; Wang, Dawei; Tian, Ye; Hu, Qingyuan; Wei, Xiaoyong; He, Zhanbing; Yan, Yan; Liu, Gang

    2016-11-16

    The electrostrictive effect has some advantages over the piezoelectric effect, including temperature stability and hysteresis-free character. In the present work, we report the diffuse phase transitions and electrostrictive properties in lead-free Fe 3+ -doped 0.5Ba(Zr 0.2 Ti 0.8 )O 3 -0.5(Ba 0.7 Ca 0.3 )TiO 3 (BZT-0.5BCT) ferroelectric ceramics. The doping concentration was set from 0.25 to 2 mol %. It is found that by introducing Fe 3+ ion into BZT-0.5BCT, the temperature corresponding to permittivity maximum T m was shifted toward lower temperature monotonically by 37 °C per mol % Fe 3+ ion. Simultaneously, the phase transitions gradually changed from classical ferroelectric-to-paraelectric phase transitions into diffuse phase transitions with a weak relaxor characteristic. Purely electrostrictive responses with giant electrostrictive coefficient Q 33 between 0.04 and 0.05 m 4 /C 2 are observed from 25 to 100 °C for the compositions doped with 1-2 mol % Fe 3+ ion. The Q 33 of Fe 3+ -doped BZT-0.5BCT ceramics is almost twice the Q 33 of other ferroelectric ceramics. These observations suggest that the present system can be considered as a potential lead-free material for the applications in electrostrictive area and that BT-based ferroelectric ceramics would have giant electrostrictive coefficient over other ferroelectric systems.

  20. Effect of silicon, tantalum, and tungsten doping and polarization on bioactivity of hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Dhal, Jharana

    Hydroxyapatite (HAp) ceramics has important applications as bone graft because of the structural and compositional similarities with bone tissue. However, inferior osteogenic capacity to bone and poor mechanical properties have been identified to be major disadvantages of synthetic HAp compared to the living bone tissue. The objective of the current study is to evaluate the effect of doping with higher valent cations (Tungsten, tantalum, and silicon) and polarization or combination of both on change in property of doped HAp and subsequent impact its bioactivity. In vitro study with human osteoblast cells was used to investigate the influences of doping and polarization on bone cell-materials interactions. The bioactivity of doped HAp was compared with pure HAp. Effect of doping and polarization on the change in HAp was investigated by monitoring change in mineral phases, stored charge, and activation energy of HAp. Activation energy of depolarization was used to explain the possible mechanism of polarization in doped samples. Bioactivity of HAp increased when doped with tantalum and tungsten. Polarization further increased the bioactivity of tungsten- and tantalum-doped samples. Increase in bioactivity on polarized and doped samples was attributed to increase in surface energy and increase in surface wettability. Whereas, an increase in bioactivity on doped unpolarized surface was attributed to change in microstructure. Polarized charge calculated from TSDC indicates that polarized charge decreases on tantalum- and tungsten-doped HAp. The decrease in polarized charge was attributed to the presence of significant amount of different phases that may hinder the ionic motion in doped samples. However, for silicon-doped HAp, TSDC study showed no difference in the mechanism of polarization between doped and undoped samples. Increase in silicon doping decreased the grain size though mechanism is not affected by grain size. Total stored charge decreased with increase in

  1. MesoDyn simulation study on the phase morphologies of Miktoarm PEO-b-PMMA copolymer doped by nanoparticles

    NASA Astrophysics Data System (ADS)

    Mu, Dan; Li, Jian-Quan; Feng, Sheng-Yu

    2013-03-01

    The compatibility of six groups of 12 miktoarm poly(ethylene oxide)-block-poly(methyl methacrylate) (PEO-b-PMMA) copolymers is studied at 270, 298 and 400 K via mesoscopic modeling. The values of the order parameters depend on both the architectures of the block copolymers and the simulation temperature, while the tendency to change of the order parameters at low temperature, such as 270 and 298 K, is nearly the same. However, the values of order parameters of the copolymer in the same group are the same at high temperature, i.e. 400 K. Obviously, temperature has a more obvious effect on long and PEO-rich chains. A study of plain copolymers doped with nanoparticles shows that the microscopic phase is influenced by not only the properties of the nanoparticles, such as the size, number and density, but also the composition and architecture of copolymers. Increasing the size and the number of the nanoparticles used as a dopant plays the most significant role on determining the phase morphologies of the copolymers at lower and higher temperature, respectively. In paricular, the 23141 and 23241-type copolymers, which are both of PEO-rich composition, presents microscopic phase separation as perforated lamallae phase morphologies at 400 K, alternated with PEO and PMMA components.

  2. Room temperature ferromagnetism in transition metal-doped black phosphorous

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaohong; Zhang, Xinwei; Xiong, Fang; Hua, Zhenghe; Wang, Zhihe; Yang, Shaoguang

    2018-05-01

    High pressure high temperature synthesis of transition metal (TM = V, Cr, Mn, Fe, Co, Ni, and Cu) doped black phosphorus (BP) was performed. Room temperature ferromagnetism was observed in Cr and Mn doped BP samples. X-ray diffraction and Raman measurements revealed pure phase BP without any impurity. Transport measurements showed us semiconducting character in 5 at. % doped BP samples Cr5%P95% and Mn5%P95%. The magnetoresistance (MR) studies presented positive MR in the relatively high temperature range and negative MR in the low temperature range. Compared to that of pure BP, the maximum MR was enhanced in Cr5%P95%. However, paramagnetism was observed in V, Fe, Co, Ni, and Cu doped BP samples.

  3. Fabrication and analysis of Cr-doped ZnO nanoparticles from the gas phase.

    PubMed

    Schneider, L; Zaitsev, S V; Jin, W; Kompch, A; Winterer, M; Acet, M; Bacher, G

    2009-04-01

    High quality Cr-doped ZnO nanoparticles from the gas phase were prepared and investigated with respect to their structural, optical and magnetic properties. The extended x-ray absorption fine structure and the x-ray absorption near edge structure of the particles verify that after nanoparticle preparation Cr is incorporated as Cr3+ ) at least partially on sites with a 4-fold oxygen configuration, most likely on a Zn site, into the wurtzite lattice. Despite the fact that Cr is known to act as an efficient non-radiative loss centre for near band gap emission (NBE), a pronounced NBE is obtained up to room temperature even for a nominal Cr concentration of 10 at.%. Annealing at 1000 degrees C results in a significant improvement of the photoluminescence efficiency and a reduced PL linewidth down to 2.9 meV at low temperatures while the structural and magnetic data indicate the formation of ZnCr2O4 clusters.

  4. Rhombohedral R3c to orthorhombic Pnma phase transition induced by Y-doping in BiFeO3.

    PubMed

    Graf, Monica Elisabet; Di Napoli, Solange; Barral, Maria Andrea Andrea; Saleh Medina, Leila; Negri, R Martín; Sepliarsky, Marcelo; Llois, Ana María

    2018-05-23

    In this work we study, by means of <i>ab initio</i> calculations, the structural, electronic and magnetic properties of Y-doped BiFeO<sub>3</sub> compounds. We determine that there is a morphotropic phase boundary at an yttrium concentration of (18 ± 2)%, where the structure changes from <i>R3c</i> to <i>Pnma</i>. This structural transition is driven by the chemical pressure induced by the dopant. By analyzing the evolution of the oxygen octahedral tilts we find an enhanced antiferrodistortive distortion when increasing the Y-doping, together with a reduction of the ferroelectric distorsion, that gives rise to a smaller value of the electric polarization. These cooperative effects should lead to a larger canting of the Fe magnetic moments and to a larger ferromagnetic response in the <i>R3c</i> phase, as it is observed in the experiments. . © 2018 IOP Publishing Ltd.

  5. Ion channeling studies on mixed phases formed in metalorganic chemical vapor deposition grown Mg-doped GaN on Al2O3(0001)

    NASA Astrophysics Data System (ADS)

    Sundaravel, B.; Luo, E. Z.; Xu, J. B.; Wilson, I. H.; Fong, W. K.; Wang, L. S.; Surya, C.

    2000-01-01

    Rutherford backscattering spectrometry and ion channeling were used to determine the relative quantities of wurtzite and zinc-blende phases in metalorganic chemical vapor deposition grown Mg-doped GaN(0001) on an Al2O3(0001) substrate with a GaN buffer layer. Offnormal axial channeling scans were used. High-resolution x-ray diffraction measurements also confirmed the presence of mixed phases. The in-plane orientation was found to be GaN[11¯0]‖GaN[112¯0]‖Al2O3[112¯0]. The effects of rapid thermal annealing on the relative phase content, thickness and crystalline quality of the GaN epilayer were also studied.

  6. Phase stabilisation of hexagonal barium titanate doped with transition metals: A computational study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, J.A., E-mail: mtp09jd@sheffield.ac.uk; Freeman, C.L.; Harding, J.H.

    Interatomic potentials recently developed for the modelling of BaTiO{sub 3} have been used to explore the stabilisation of the hexagonal polymorph of BaTiO{sub 3} by doping with transition metals (namely Mn, Co, Fe and Ni) at the Ti-site. Classical simulations have been completed on both the cubic and hexagonal polymorphs to investigate the energetic consequences of transition metal doping on each polymorph. Ti-site charge compensation mechanisms have been used for the multi-valent transition metal ions and cluster binding energies have been considered. Simulations show a significant energetic gain when doping occurs at Ti sites in the face sharing dimers (Ti{submore » 2} sites) of the hexagonal polymorph compared with the doping of the cubic polymorph. This energetic difference between the two polymorphs is true for all transition metals tested and all charge states and in the case of tri- and tetra-valent dopants negative solution energies are found for the hexagonal polymorph suggesting actual polymorph stabilisation occurs with the incorporation of these ions as observed experimentally. Oxidation during incorporation of Ni{sup 2+} and Fe{sup 3+} ions has also been considered. - Graphical abstract: The representation of the strongest binding energy clusters for tri-valent dopants—(a) Ti{sub 2}/O{sub 1} cluster and (b) Ti{sub 2}/O{sub 2} cluster. Highlights: ► Classical simulations show a significant energetic gain when doping occurs at Ti sites in the face sharing dimers (Ti2 sites) of the hexagonal polymorph compared with the doping of the cubic polymorph. ► This energetic difference between the two polymorphs is true for all transition metals tested and all charge states. ► In the case of tri- and tetra- valent dopants negative solution energies are found for the hexagonal polymorph suggesting actual polymorph stabilisation occurs with the incorporation of these ions.« less

  7. Dichlorvos vapour disinsection of aircraft

    PubMed Central

    Jensen, Jens A.; Flury, Vincent P.; Schoof, Herbert F.

    1965-01-01

    The authors describe the testing of an automatic aircraft disinsection system permanently installed on a commercial DC-6B passenger aircraft. An air-compressor forces ambient cabin air, partially saturated with dichlorvos vapour at a set concentration, through the cabin, cockpit and baggage compartments of the aircraft for 30 minutes. Insecticide concentrations and insect mortality were observed in post-overhaul check flights, and insect mortality and passenger reactions were observed on scheduled flights between Miami, Florida, and Nassau, Bahamas. The results showed satisfactory biological efficiency. The passengers were unaware of the disinsection process and showed no signs of discomfort. ImagesFIG. 1FIG. 2FIG. 3 PMID:14310904

  8. Harmonically mode-locked erbium-doped waveguide laser

    NASA Astrophysics Data System (ADS)

    Fanto, Michael L.; Malowicki, John E.; Bussjager, Rebecca J.; Johns, Steven T.; Vettese, Elizabeth K.; Hayduk, Michael J.

    2004-08-01

    The generation of ultrastable picosecond pulses in the 1550 nm range is required for numerous applications that include photonic analog-to-digital converter systems and high-bit rate optical communication systems. Mode-locked erbium-doped fiber ring lasers (EDFLs) are typically used to generate pulses at this wavelength. In addition to timing stability and output power, the physical size of the laser cavity is of primary importance to the Air Force. The length of the erbium (Er)-doped fiber used as the gain medium may be on the order of meters or even tens of meters which adds complexity to packaging. However, with the recent advancements in the production of multi-component glasses, higher doping concentrations can be achieved as compared to silicate glasses. Even more recent is the introduction of Er-doped multi-component glass waveguides, thus allowing the overall footprint of the gain medium to be reduced. We have constructed a novel harmonically mode-locked fiber ring laser using the Er-doped multi-component glass waveguide as the gain medium. The performance characteristics of this Er-doped waveguide laser (EDWL) including pulse width, spectral width, harmonic suppression, optical output power, laser stability and single sideband residual phase noise will be discussed in this paper.

  9. Highly resistive C-doped hydride vapor phase epitaxy-GaN grown on ammonothermally crystallized GaN seeds

    NASA Astrophysics Data System (ADS)

    Iwinska, Malgorzata; Piotrzkowski, Ryszard; Litwin-Staszewska, Elzbieta; Sochacki, Tomasz; Amilusik, Mikolaj; Fijalkowski, Michal; Lucznik, Boleslaw; Bockowski, Michal

    2017-01-01

    GaN crystals were grown by hydride vapor phase epitaxy (HVPE) and doped with C. The seeds were high-structural-quality ammonothermally crystallized GaN. The grown crystals were highly resistive at 296 K and of high structural quality. High-temperature Hall effect measurements revealed p-type conductivity and a deep acceptor level in the material with an activation energy of 1 eV. This is in good agreement with density functional theory calculations based on hybrid functionals as presented by the Van de Walle group. They obtained an ionization energy of 0.9 eV when C was substituted for N in GaN and acted as a deep acceptor.

  10. Oscillatory vapour shielding of liquid metal walls in nuclear fusion devices.

    PubMed

    van Eden, G G; Kvon, V; van de Sanden, M C M; Morgan, T W

    2017-08-04

    Providing an efficacious plasma facing surface between the extreme plasma heat exhaust and the structural materials of nuclear fusion devices is a major challenge on the road to electricity production by fusion power plants. The performance of solid plasma facing surfaces may become critically reduced over time due to progressing damage accumulation. Liquid metals, however, are now gaining interest in solving the challenge of extreme heat flux hitting the reactor walls. A key advantage of liquid metals is the use of vapour shielding to reduce the plasma exhaust. Here we demonstrate that this phenomenon is oscillatory by nature. The dynamics of a Sn vapour cloud are investigated by exposing liquid Sn targets to H and He plasmas at heat fluxes greater than 5 MW m -2 . The observations indicate the presence of a dynamic equilibrium between the plasma and liquid target ruled by recombinatory processes in the plasma, leading to an approximately stable surface temperature.Vapour shielding is one of the interesting mechanisms for reducing the heat load to plasma facing components in fusion reactors. Here the authors report on the observation of a dynamic equilibrium between the plasma and the divertor liquid Sn surface leading to an overall stable surface temperature.

  11. Nonequilibrium-Plasma-Synthesized ZnO Nanocrystals with Plasmon Resonance Tunable via Al Doping and Quantum Confinement.

    PubMed

    Greenberg, Benjamin L; Ganguly, Shreyashi; Held, Jacob T; Kramer, Nicolaas J; Mkhoyan, K Andre; Aydil, Eray S; Kortshagen, Uwe R

    2015-12-09

    Metal oxide semiconductor nanocrystals (NCs) exhibit localized surface plasmon resonances (LSPRs) tunable within the infrared (IR) region of the electromagnetic spectrum by vacancy or impurity doping. Although a variety of these NCs have been produced using colloidal synthesis methods, incorporation and activation of dopants in the liquid phase has often been challenging. Herein, using Al-doped ZnO (AZO) NCs as an example, we demonstrate the potential of nonthermal plasma synthesis as an alternative strategy for the production of doped metal oxide NCs. Exploiting unique, thoroughly nonequilibrium synthesis conditions, we obtain NCs in which dopants are not segregated to the NC surfaces and local doping levels are high near the NC centers. Thus, we achieve overall doping levels as high as 2 × 10(20) cm(-3) in NCs with diameters ranging from 12.6 to 3.6 nm, and for the first time experimentally demonstrate a clear quantum confinement blue shift of the LSPR energy in vacancy- and impurity-doped semiconductor NCs. We propose that doping of central cores and heavy doping of small NCs are achievable via nonthermal plasma synthesis, because chemical potential differences between dopant and host atoms-which hinder dopant incorporation in colloidal synthesis-are irrelevant when NC nucleation and growth proceed via irreversible interactions among highly reactive gas-phase ions and radicals and ligand-free NC surfaces. We explore how the distinctive nucleation and growth kinetics occurring in the plasma influences dopant distribution and activation, defect structure, and impurity phase formation.

  12. Improvement of high-frequency characteristics of Z-type hexaferrite by dysprosium doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu Chunhong; Liu Yingli; Song Yuanqiang

    2011-06-15

    Z-type hexaferrite has great potential applications as anti-EMI material for magnetic devices in the GHz region. In this work, Dy-doped Z-type hexaferrites with nominal stoichiometry of Ba{sub 3}Co{sub 2}Dy{sub x}Fe{sub 24-x}O{sub 41} (x 0.0, 0.05, 0.5, 1.0) were prepared by an improved solid-state reaction method. The effects of rare earth oxide (Dy{sub 2}O{sub 3}) addition on the phase composition, microstructure and electromagnetic properties of the ceramics were investigated. Structure and micromorphology characterizations indicate that certain content of Dy doping will cause the emergence of the second phase Dy{sub 3}Fe{sub 5}O{sub 12} at the grain boundaries of the majority phase Z-typemore » hexaferrite, due to which the straightforward result is the grain refinement during the successive sintering process. Permeability spectra measurements show that the initial permeability reaches its maximum of 17 at 300 MHz with x = 0.5, while the cutoff frequency keeps above 800 MHz. The apparent specific anisotropy field H{sub K} of Dy-doped Z-type hexaferrites decreases with x increasing. The relationships among phase composition, grain size, permeability spectra, and anisotropy are theoretically investigated, and according to the analysis, Dy doping effects on its magnetic properties can be well explained and understood.« less

  13. Systematic investigation of structural and morphological studies on doped TiO2 nanoparticles for solar cell applications

    NASA Astrophysics Data System (ADS)

    Murugadoss, G.; Jayavel, R.; Rajesh Kumar, M.

    2014-12-01

    Optical, structural and thermal properties of the doped with different ions (transition metals, other metals or post transition metals, non-metals, alkali metals and lanthanides) in TiO2 nanocrystals were investigated. The doped nanoparticles were synthesized by modified chemical method. Ethanol-deionised water mixer (20:1) was used as solvent for synthesize of the undoped and doped TiO2 nanoparticles. Systematic studies on structural and morphological changes by thermal treatment on TiO2 were examined. It has been observed that with Eu and Al doping TiO2, the phase transition temperature for anatase to rutile phase increased. Blue and red shifting absorptions were observed for doped TiO2 in visible region. Among the dopant, significant blue shift was obtained for Cu, Cd, Ag, Y, Ce and In doped TiO2 and red shift was obtained for Zr, Sm, Al, Na, S, Fe, Ni, Eu and Gd doped TiO2 nanoparticles.

  14. Highly efficient solar vapour generation via hierarchically nanostructured gels.

    PubMed

    Zhao, Fei; Zhou, Xingyi; Shi, Ye; Qian, Xin; Alexander, Megan; Zhao, Xinpeng; Mendez, Samantha; Yang, Ronggui; Qu, Liangti; Yu, Guihua

    2018-04-02

    Solar vapour generation is an efficient way of harvesting solar energy for the purification of polluted or saline water. However, water evaporation suffers from either inefficient utilization of solar energy or relies on complex and expensive light-concentration accessories. Here, we demonstrate a hierarchically nanostructured gel (HNG) based on polyvinyl alcohol (PVA) and polypyrrole (PPy) that serves as an independent solar vapour generator. The converted energy can be utilized in situ to power the vaporization of water contained in the molecular meshes of the PVA network, where water evaporation is facilitated by the skeleton of the hydrogel. A floating HNG sample evaporated water with a record high rate of 3.2 kg m -2  h -1 via 94% solar energy from 1 sun irradiation, and 18-23 litres of water per square metre of HNG was delivered daily when purifying brine water. These values were achievable due to the reduced latent heat of water evaporation in the molecular mesh under natural sunlight.

  15. Highly efficient solar vapour generation via hierarchically nanostructured gels

    NASA Astrophysics Data System (ADS)

    Zhao, Fei; Zhou, Xingyi; Shi, Ye; Qian, Xin; Alexander, Megan; Zhao, Xinpeng; Mendez, Samantha; Yang, Ronggui; Qu, Liangti; Yu, Guihua

    2018-06-01

    Solar vapour generation is an efficient way of harvesting solar energy for the purification of polluted or saline water. However, water evaporation suffers from either inefficient utilization of solar energy or relies on complex and expensive light-concentration accessories. Here, we demonstrate a hierarchically nanostructured gel (HNG) based on polyvinyl alcohol (PVA) and polypyrrole (PPy) that serves as an independent solar vapour generator. The converted energy can be utilized in situ to power the vaporization of water contained in the molecular meshes of the PVA network, where water evaporation is facilitated by the skeleton of the hydrogel. A floating HNG sample evaporated water with a record high rate of 3.2 kg m-2 h-1 via 94% solar energy from 1 sun irradiation, and 18-23 litres of water per square metre of HNG was delivered daily when purifying brine water. These values were achievable due to the reduced latent heat of water evaporation in the molecular mesh under natural sunlight.

  16. Enhancement of tetragonal anisotropy and stabilisation of the tetragonal phase by Bi/Mn-double-doping in BaTiO3 ferroelectric ceramics

    PubMed Central

    Yabuta, Hisato; Tanaka, Hidenori; Furuta, Tatsuo; Watanabe, Takayuki; Kubota, Makoto; Matsuda, Takanori; Ifuku, Toshihiro; Yoneda, Yasuhiro

    2017-01-01

    To stabilise ferroelectric-tetragonal phase of BaTiO3, the double-doping of Bi and Mn up to 0.5 mol% was studied. Upon increasing the Bi content in BaTiO3:Mn:Bi, the tetragonal crystal-lattice-constants a and c shrank and elongated, respectively, resulting in an enhancement of tetragonal anisotropy, and the temperature-range of the ferroelectric tetragonal phase expanded. X-ray absorption fine structure measurements confirmed that Bi and Mn were located at the A(Ba)-site and B(Ti)-site, respectively, and Bi was markedly displaced from the centrosymmetric position in the BiO12 cluster. This A-site substitution of Bi also caused fluctuations of B-site atoms. Magnetic susceptibility measurements revealed a change in the Mn valence from +4 to +3 upon addition of the same molar amount of Bi as Mn, probably resulting from a compensating behaviour of the Mn at Ti4+ sites for donor doping of Bi3+ into the Ba2+ site. Because addition of La3+ instead of Bi3+ showed neither the enhancement of the tetragonal anisotropy nor the stabilisation of the tetragonal phase, these phenomena in BaTiO3:Mn:Bi were not caused by the Jahn-Teller effect of Mn3+ in the MnO6 octahedron, but caused by the Bi-displacement, probably resulting from the effect of the 6 s lone-pair electrons in Bi3+. PMID:28367973

  17. Electrospark doping of steel with tungsten

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denisova, Yulia, E-mail: yukolubaeva@mail.ru; Shugurov, Vladimir, E-mail: shugurov@opee.hcei.tsc.ru; Petrikova, Elizaveta, E-mail: elizmarkova@yahoo.com

    2016-01-15

    The paper is devoted to the numerical modeling of thermal processes and the analysis of the structure and properties of the surface layer of carbon steel subjected to electrospark doping with tungsten. The problem of finding the temperature field in the system film (tungsten) / substrate (iron) is reduced to the solution of the heat conductivity equation. A one-dimensional case of heating and cooling of a plate with the thickness d has been considered. Calculations of temperature fields formed in the system film / substrate synthesized using methods of electrospark doping have been carried out as a part of one-dimensionalmore » approximation. Calculations have been performed to select the mode of the subsequent treatment of the system film / substrate with a high-intensity pulsed electron beam. Authors revealed the conditions of irradiation allowing implementing processes of steel doping with tungsten. A thermodynamic analysis of phase transformations taking place during doping of iron with tungsten in equilibrium conditions has been performed. The studies have been carried out on the surface layer of the substrate modified using the method of electrospark doping. The results showed the formation in the surface layer of a structure with a highly developed relief and increased strength properties.« less

  18. Synthesis and magnetic properties of Zr doped ZnO Nanoparticles.

    PubMed

    Zhang, Jing; Gao, Daqiang; Yang, Guijin; Zhang, Jinlin; Shi, Zhenhua; Zhang, Zhaohui; Zhu, Zhonghua; Xue, Desheng

    2011-11-10

    Zr doped ZnO nanoparticles are prepared by the sol-gel method with post-annealing. X-ray diffraction results show that all samples are the typical hexagonal wurtzite structure without any other new phase, as well as the Zr atoms have successfully entered into the ZnO lattices instead of forming other lattices. Magnetic measurements indicate that all the doping samples show room temperature ferromagnetism and the pure ZnO is paramagneism. The results of Raman and X-ray photoelectron spectroscopy indicate that there are a lot of oxygen vacancies in the samples by doping element of Zr. It is considered that the observed ferromagnetism is related to the doping induced oxygen vacancies.

  19. Blue upconversion in Yb3+/Tm3+ co-doped silica fiber based on glass phase-separation technology

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Chu, Yingbo; Chen, Zhangru; Xing, Yingbin; Hu, Xionwei; Li, Haiqing; Peng, Jinggang; Dai, Nengli; Li, Jinyan; Yang, Luyun

    2018-02-01

    Yb3+/Tm3+ co-doped silica fiber was prepared successfully by glass phase-separation technology. The measured refractive index profile indicated that the active fiber core had an excellent uniformity. The highest emission intensity was obtained in a sample with a Yb3+ concentration of 0.3 mol/L and a Tm3+ concentration of 0.1 mol/L. Under the excitation at 976 nm, intense blue upconversion emission of Tm3+ at 474 nm was observed due to energy transfer from Yb3+ to Tm3+. A three-photon process was responsible for the blue emission. Due to re-absorption resulted from the Tm3+:3H6→1G4 transition, the blue emission peak was red-shifted. It is suggested that the fiber preparation technology based on glass phase-separation technology can be a potential candidate for preparing active fibers with large core or complex fiber structure.

  20. Fluctuation-exchange study of antiferromagnetism in disordered electron-doped cuprate superconductors.

    PubMed

    Yan, Xin-Zhong; Ting, C S

    2006-08-11

    On the basis of the Hubbard model, we extend the fluctuation-exchange (FLEX) approach to investigating the properties of the antiferromagnetic (AF) phase in electron-doped cuprate superconductors. Furthermore, by incorporating the effect of scatterings due to the disordered dopant atoms into the FLEX formalism, our numerical results show that the antiferromagnetic transition temperature, the onset temperature of pseudogap due to spin fluctuations, the spectral density of the single particle near the Fermi surface, and the staggered magnetization in the AF phase as a function of electron doping can consistently account for the experimental measurements.

  1. Electrochemical corrosion behavior, microstructure and magnetic properties of sintered Nd-Fe-B permanent magnet doped by CuZn5 powders

    NASA Astrophysics Data System (ADS)

    Liu, W. Q.; Wang, Z.; Sun, C.; Yue, M.; Liu, Y. Q.; Zhang, D. T.; Zhang, J. X.

    2014-05-01

    Nd-Fe-B permanent magnets with a small amount of CuZn5 powders doping were prepared by conventional sintered method. The effects of CuZn5 contents on magnetic properties and microstructure, electrochemical corrosion resistance of sintered Nd-Fe-B magnets were systematically studied. The results show that the magnetic properties of magnets do not have a significant variation by CuZn5 powders doping; the coercivity of magnets rises gradually, while the remanence of the magnets decreases a little with increasing of the CuZn5 amount. The CuZn5 doped magnets have more positive corrosion potential, Ecorr, and much lower corrosion current density, icorr, than the magnets without CuZn5 doping, indicating CuZn5 doping could improve the corrosion resistance. Both Zn and Cu enrich mainly into the Nd-rich phase, fully improve the wettability between the Nd-rich phase and the Nd2Fe14B phase, and repair the defects of the main phase, so the coercivity of magnets doped with CuZn5 powders rises. Such microstructure modification effectively restrains the aggressive inter-granular corrosion. As a result, the CuZn5 doped magnet possesses excellent corrosion resistance in NaCl electrolyte.

  2. Dielectric and domain studies on Fe doped KNbO3 single crystal

    NASA Astrophysics Data System (ADS)

    Shamkuwar, Sanjaykumar H.; Patil, Naresh M.; Korde, Vivek B.; Pradnyakar, Namrata V.

    2018-05-01

    Synthesis of Fe doped KNbO3 single crystals by flux method is reported here. The effect of Fe-doping on phase transition temperatures of KNbO3 single crystals was investigated using dielectric studies. The phase transition temperatures were found to be 225°C and 425°C which almost same as reported by others. The domain studies were carried out using metallurgical microscope and it shows the presence of 60° and 90° domains in the grown crystals.

  3. Research on a novel composite structure Er³⁺-doped DBR fiber laser with a π-phase shifted FBG.

    PubMed

    Zhao, Yanjie; Chang, Jun; Wang, Qingpu; Ni, Jiasheng; Song, Zhiqiang; Qi, Haifeng; Wang, Chang; Wang, Pengpeng; Gao, Liang; Sun, Zhihui; Lv, Guangping; Liu, Tongyu; Peng, Gangding

    2013-09-23

    A simple composite cavity structure Er³⁺-doped fiber laser was proposed and demonstrated experimentally. The resonant cavity consists of a pair of uniform fiber Bragg gratings (FBGs) and a π-phase shifted FBG. By introducing the π-phase shifted FBG into the cavity as the selective wavelength component, it can increase the effective length of the laser cavity and suppress the multi-longitudinal modes simultaneously. The narrow linewidth of 900 Hz and low RIN of -95 dB/Hz were obtained. And the lasing wavelength was rather stable with the pump power changing. The SMRS was more than 67 dB. The results show that the proposed fiber laser has a good performance and considerable potential application for fiber sensor and optical communication.

  4. Biocompatibility of nanostructured boron doped diamond for the attachment and proliferation of human neural stem cells.

    PubMed

    Taylor, Alice C; Vagaska, Barbora; Edgington, Robert; Hébert, Clément; Ferretti, Patrizia; Bergonzo, Philippe; Jackman, Richard B

    2015-12-01

    We quantitatively investigate the biocompatibility of chemical vapour deposited (CVD) nanocrystalline diamond (NCD) after the inclusion of boron, with and without nanostructuring. The nanostructuring method involves a novel approach of growing NCD over carbon nanotubes (CNTs) that act as a 3D scaffold. This nanostructuring of BNCD leads to a material with increased capacitance, and this along with wide electrochemical window makes BNCD an ideal material for neural interface applications, and thus it is essential that their biocompatibility is investigated. Biocompatibility was assessed by observing the interaction of human neural stem cells (hNSCs) with a variety of NCD substrates including un-doped ones, and NCD doped with boron, which are both planar, and nanostructured. hNSCs were chosen due to their sensitivity, and various methods including cell population and confluency were used to quantify biocompatibility. Boron inclusion into NCD film was shown to have no observable effect on hNSC attachment, proliferation and viability. Furthermore, the biocompatibility of nanostructured boron-doped NCD is increased upon nanostructuring, potentially due to the increased surface area. Diamond is an attractive material for supporting the attachment and development of cells as it can show exceptional biocompatibility. When boron is used as a dopant within diamond it becomes a p-type semiconductor, and at high concentrations the diamond becomes quasi-metallic, offering the prospect of a direct electrical device-cell interfacing system.

  5. A review of vapour lock issues during motor gasoline or automotive gasoline usage in piston engine aircraft

    NASA Astrophysics Data System (ADS)

    Thanikasalam, K.; Rahmat, M.; Fahmi, A. G. Mohammad; Zulkifli, A. M.; Shawal, N. Noor; Ilanchelvi, K.; Ananth, M.; Elayarasan, R.

    2018-05-01

    Since there is a developing practice of utilizing automotive fuels as flight fuel, there are higher chances of dangerous scenarios, particularly in the operation of piston aircraft engines. The use of motor vehicle gas (MOGAS) or aviation gas (AVGAS) in the operation of aviation piston engine increases the risk of vapour locking. A statistical examination of European aviation industry indicates that around 20,000 aircraft are affected either specifically or conceivably by the different negative impacts of gasoline blended with ethanol. Particularly, for most contemporary carburettor engines, there are risks associated with ethanol-admixed fuels that have potential to upset engine operation. The danger of vapour locking, which is the generation of gas bubbles inside the fuel system causing an impairment of fuel movement in the engine, is well documented particularly by studies on aircraft using MOGAS. Contrasted with AVGAS, MOGAS is inclined to demonstrate this phenomenon. Vapour lock is perhaps the leading serious problem that ought to be addressed if MOGAS is to be used as a substitute for AVGAS. Vapour lock problem is critical because it causes malfunctions to aircraft engines. Thus, an understanding of vapour handling ability of small aircraft is essential to establish safe operating confines at existing fuel temperature and pressures.

  6. Vapour-liquid interfacial properties of square-well chains from density functional theory and Monte Carlo simulation.

    PubMed

    Martínez-Ruiz, Francisco José; Blas, Felipe J; Moreno-Ventas Bravo, A Ignacio; Míguez, José Manuel; MacDowell, Luis G

    2017-05-17

    The statistical associating fluid theory for attractive potentials of variable range (SAFT-VR) density functional theory (DFT) developed by [Gloor et al., J. Chem. Phys., 2004, 121, 12740-12759] is used to predict the interfacial behaviour of molecules modelled as fully-flexible square-well chains formed from tangentially-bonded monomers of diameter σ and potential range λ = 1.5σ. Four different model systems, comprising 4, 8, 12, and 16 monomers per molecule, are considered. In addition to that, we also compute a number of interfacial properties of molecular chains from direct simulation of the vapour-liquid interface. The simulations are performed in the canonical ensemble, and the vapour-liquid interfacial tension is evaluated using the wandering interface (WIM) method, a technique based on the thermodynamic definition of surface tension. Apart from surface tension, we also obtain density profiles, coexistence densities, vapour pressures, and critical temperature and density, paying particular attention to the effect of the chain length on these properties. According to our results, the main effect of increasing the chain length (at fixed temperature) is to sharpen the vapour-liquid interface and to increase the width of the biphasic coexistence region. As a result, the interfacial thickness decreases and the surface tension increases as the molecular chains get longer. The interfacial thickness and surface tension appear to exhibit an asymptotic limiting behaviour for long chains. A similar behaviour is also observed for the coexistence densities and critical properties. Agreement between theory and simulation results indicates that SAFT-VR DFT is only able to predict qualitatively the interfacial properties of the model. Our results are also compared with simulation data taken from the literature, including the vapour-liquid coexistence densities, vapour pressures, and surface tension.

  7. UTLS water vapour from SCIAMACHY limb measurementsV3.01 (2002-2012).

    PubMed

    Weigel, K; Rozanov, A; Azam, F; Bramstedt, K; Damadeo, R; Eichmann, K-U; Gebhardt, C; Hurst, D; Kraemer, M; Lossow, S; Read, W; Spelten, N; Stiller, G P; Walker, K A; Weber, M; Bovensmann, H; Burrows, J P

    2016-01-01

    The SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) aboard the Envisat satellite provided measurements from August 2002 until April 2012. SCIAMACHY measured the scattered or direct sunlight using different observation geometries. The limb viewing geometry allows the retrieval of water vapour at about 10-25 km height from the near-infrared spectral range (1353-1410 nm). These data cover the upper troposphere and lower stratosphere (UTLS), a region in the atmosphere which is of special interest for a variety of dynamical and chemical processes as well as for the radiative forcing. Here, the latest data version of water vapour (V3.01) from SCIAMACHY limb measurements is presented and validated by comparisons with data sets from other satellite and in situ measurements. Considering retrieval tests and the results of these comparisons, the V3.01 data are reliable from about 11 to 23 km and the best results are found in the middle of the profiles between about 14 and 20 km. Above 20 km in the extra tropics V3.01 is drier than all other data sets. Additionally, for altitudes above about 19 km, the vertical resolution of the retrieved profile is not sufficient to resolve signals with a short vertical structure like the tape recorder. Below 14 km, SCIAMACHY water vapour V3.01 is wetter than most collocated data sets, but the high variability of water vapour in the troposphere complicates the comparison. For 14-20 km height, the expected errors from the retrieval and simulations and the mean differences to collocated data sets are usually smaller than 10 % when the resolution of the SCIAMACHY data is taken into account. In general, the temporal changes agree well with collocated data sets except for the Northern Hemisphere extratropical stratosphere, where larger differences are observed. This indicates a possible drift in V3.01 most probably caused by the incomplete treatment of volcanic aerosols in the retrieval. In all other regions a

  8. Effect of Si-doping on InAs nanowire transport and morphology

    NASA Astrophysics Data System (ADS)

    Wirths, S.; Weis, K.; Winden, A.; Sladek, K.; Volk, C.; Alagha, S.; Weirich, T. E.; von der Ahe, M.; Hardtdegen, H.; Lüth, H.; Demarina, N.; Grützmacher, D.; Schäpers, Th.

    2011-09-01

    The effect of Si-doping on the morphology, structure, and transport properties of nanowires was investigated. The nanowires were deposited by selective-area metal organic vapor phase epitaxy in an N2 ambient. It is observed that doping systematically affects the nanowire morphology but not the structure of the nanowires. However, the transport properties of the wires are greatly affected. Room-temperature four-terminal measurements show that with an increasing dopant supply the conductivity monotonously increases. For the highest doping level the conductivity is higher by a factor of 25 compared to only intrinsically doped reference nanowires. By means of back-gate field-effect transistor measurements it was confirmed that the doping results in an increased carrier concentration. Temperature dependent resistance measurements reveal, for lower doping concentrations, a thermally activated semiconductor-type increase of the conductivity. In contrast, the nanowires with the highest doping concentration show a metal-type decrease of the resistivity with decreasing temperature.

  9. Superconductivity Induced by Oxygen Doping in Y2 O2 Bi.

    PubMed

    Cheng, Xiyue; Gordon, Elijah E; Whangbo, Myung-Hwan; Deng, Shuiquan

    2017-08-14

    When doped with oxygen, the layered Y 2 O 2 Bi phase becomes a superconductor. This finding raises questions about the sites for doped oxygen, the mechanism of superconductivity, and practical guidelines for discovering new superconductors. We probed these questions in terms of first-principles calculations for undoped and O-doped Y 2 O 2 Bi. The preferred sites for doped O atoms are the centers of Bi 4 squares in the Bi square net. Several Bi 6p x/y bands of Y 2 O 2 Bi are raised in energy by oxygen doping because the 2p x/y orbitals of the doped oxygen make antibonding possible with the 6p x/y orbitals of surrounding Bi atoms. Consequently, the condition necessary for the "flat/steep" band model for superconductivity is satisfied in O-doped Y 2 O 2 Bi. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Different threshold and bipolar resistive switching mechanisms in reactively sputtered amorphous undoped and Cr-doped vanadium oxide thin films

    NASA Astrophysics Data System (ADS)

    Rupp, Jonathan A. J.; Querré, Madec; Kindsmüller, Andreas; Besland, Marie-Paule; Janod, Etienne; Dittmann, Regina; Waser, Rainer; Wouters, Dirk J.

    2018-01-01

    This study investigates resistive switching in amorphous undoped and Cr-doped vanadium oxide thin films synthesized by sputtering deposition at low oxygen partial pressure. Two different volatile threshold switching characteristics can occur as well as a non-volatile bipolar switching mechanism, depending on device stack symmetry and Cr-doping. The two threshold switching types are associated with different crystalline phases in the conduction filament created during an initial forming step. The first kind of threshold switching, observed for undoped vanadium oxide films, was, by its temperature dependence, proven to be associated with a thermally triggered insulator-to-metal transition in a crystalline VO2 phase, whereas the threshold switch observed in chromium doped films is stable up to 90 °C and shows characteristics of an electronically induced Mott transition. This different behaviour for undoped versus doped films has been attributed to an increased stability of V3+ due to the Cr3+ doping (as evidenced by X-ray photoelectron spectroscopy analysis), probably favouring the creation of a crystalline Cr-doped V2O3 phase (rather than a Cr-doped VO2 phase) during the energetic forming step. The symmetric Pt/a-(VCr)Ox/Pt device showing high temperature stable threshold switching may find interesting applications as a possible new selector device for resistive switching memory (ReRAM) crossbar arrays.

  11. Thermal stability of γ-Fe2O3 nanoparticles and their employment for sensing of acetone vapours

    NASA Astrophysics Data System (ADS)

    Luby, Š.; Ivančo, J.; Jergel, M.; Švec, P., Jr.; Kotlár, M.; Kostiuk, D.; Halahovets, J.; Kollár, J.; Mosnáček, J.; Majková, E.

    2017-12-01

    Stability of γ-Fe2O3 nanoparticles-based films upon an isochronal annealing in air was investigated by x-ray diffraction, differential scanning calorimetry, and thermogravimetry. The γ-α transformation temperature increased owing to the nanoscaling of Fe2O3; the higher stability of the γ phase was explained on the ground of the surface free energy of nanoparticles (with the size of about 6.4 nm). Further, chemiresistors based on the Fe2O3 nanoparticle bilayer prepared by the Langmuir-Schaefer method were fabricated and examined in terms of their sensitivity to acetone vapours down to 500 ppb concentration in air.

  12. Effects of Mo-doping on microstructure and near-infrared shielding performance of hydrothermally prepared tungsten bronzes

    NASA Astrophysics Data System (ADS)

    Wang, Qingjuan; Li, Can; Xu, Wenai; Zhao, Xiaolin; Zhu, Jingxin; Jiang, Haiwei; Kang, Litao; Zhao, Zhe

    2017-03-01

    Both Mo and W belong to VIB-sub-group, and possess similar ionic radii, electronegativity and oxide lattice configuration. Herein, Mo-doped (0-80 at.%) tungsten bronzes, MxWO3, were hydrothermally prepared to systematically explore the influence of Mo-doping on their micro-structure and optical performance. The products adopted a hexagonal structure within 6 at.% Mo-doping, and transformed into a monoclinic phase with higher Mo-doping content. Further tests suggested that 1.5 at.% Mo-doping is beneficial for the formation of pure hexagonal phase and uniform nano-rod morphology. Optical measures showed that all samples exhibited high and comparable visible transmittance (70-80%), but a very different near infrared (NIR) shielding ability. The sample doped with 1.5 at.% Mo demonstrated the best NIR shielding ability with a transmittance minimum of 20% at 1300 nm. Further increase of Mo-doping dosage remarkably deteriorated NIR shielding ability by depressing the absorption of localized surface plasmon resonance (LSPR). However, the optical absorption from small-polaron was less influenced by the introduction of Mo. As a result, Mo-doping caused an evident blue shift of the infrared absorption peaks from 1350 to 750 nm.

  13. Switchable vanadium dioxide (VO2) metamaterials fabricated from tungsten doped vanadia-based colloidal nanocrystals

    NASA Astrophysics Data System (ADS)

    Paik, Taejong; Hong, Sung-Hoon; Gordon, Thomas; Gaulding, Ashley; Kagan, Cherie; Murray, Christopher

    2013-03-01

    We report the fabrication of thermochromic VO2-based metamaterials using solution-processable colloidal nanocrystals. Vanadium-based nanoparticles are prepared through a non-hydrolytic reaction, resulting in stable colloidal dispersions in solution. Thermochromic nanocrystalline VO2 thin-films are prepared via rapid thermal annealing of colloidal nanoparticles coated on a variety of substrates. Nanostructured VO2 can be patterned over large areas by nanoimprint lithography. Precise control of tungsten (W) doping concentration in colloidal nanoparticles enables tuning of the phase transition temperature of the nanocrystalline VO2 thin-films. W-doped VO2 films display a sharp temperature dependent phase transition, similar to the undoped VO2 film, but at lower temperatures tunable with the doping level. By sequential coating of doped VO2 with different doping concentrations, we fabricate ?smart? multi-layered VO2 films displaying multiple phase transition temperatures within a single structure, allowing for dynamic modulation of the metal-dielectric layered structure. The optical properties programmed into the layered structure are switchable with temperature, which provides additional degrees of freedom to design tunable optical metamaterials. This work is supported by the US Office of Naval Research Multidisciplinary University Research Initiative (MURI) program grant number ONR-N00014-10-1-0942.

  14. Reliable determination of oxygen and hydrogen isotope ratios in atmospheric water vapour adsorbed on 3A molecular sieve.

    PubMed

    Han, Liang-Feng; Gröning, Manfred; Aggarwal, Pradeep; Helliker, Brent R

    2006-01-01

    The isotope ratio of atmospheric water vapour is determined by wide-ranging feedback effects from the isotope ratio of water in biological water pools, soil surface horizons, open water bodies and precipitation. Accurate determination of atmospheric water vapour isotope ratios is important for a broad range of research areas from leaf-scale to global-scale isotope studies. In spite of the importance of stable isotopic measurements of atmospheric water vapour, there is a paucity of published data available, largely because of the requirement for liquid nitrogen or dry ice for quantitative trapping of water vapour. We report results from a non-cryogenic method for quantitatively trapping atmospheric water vapour using 3A molecular sieve, although water is removed from the column using standard cryogenic methods. The molecular sieve column was conditioned with water of a known isotope ratio to 'set' the background signature of the molecular sieve. Two separate prototypes were developed, one for large collection volumes (3 mL) and one for small collection volumes (90 microL). Atmospheric water vapour was adsorbed to the column by pulling air through the column for several days to reach the desired final volume. Water was recovered from the column by baking at 250 degrees C in a dry helium or nitrogen air stream and cryogenically trapped. For the large-volume apparatus, the recovered water differed from water that was simultaneously trapped by liquid nitrogen (the experimental control) by 2.6 per thousand with a standard deviation (SD) of 1.5 per thousand for delta(2)H and by 0.3 per thousand with a SD of 0.2 per thousand for delta(18)O. Water-vapour recovery was not satisfactory for the small volume apparatus. Copyright (c) 2006 John Wiley & Sons, Ltd.

  15. Fluorescence and Raman Spectroscopy of Doped Nanodiamonds

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, O. S.; Khomich, A. A.; Sedov, V. S.; Ekimov, E. A.; Vlasov, I. I.

    2018-05-01

    Raman and fluorescence spectroscopic techniques were used to study doped nanodiamonds synthesized at high pressure and high temperature (HPHT technique) and by chemical vapor deposition from the gas phase (CVD technique). For the CVD diamonds, a hundred-fold increase in fluorescence intensity of the silicon-vacancy centers normalized to the volume of the probe material was observed with an increase in synthesized diamond particle diameter from 150 to 300 nm. Graphitization temperature upon heating in the air significantly lower than for detonation nanodiamonds was found for the boron-doped HPHT nanodiamonds.

  16. Al-, Y-, and La-doping effects favoring intrinsic and field induced ferroelectricity in HfO2: A first principles study

    NASA Astrophysics Data System (ADS)

    Materlik, Robin; Künneth, Christopher; Falkowski, Max; Mikolajick, Thomas; Kersch, Alfred

    2018-04-01

    III-valent dopants have shown to be most effective in stabilizing the ferroelectric, crystalline phase in atomic layer deposited, polycrystalline HfO2 thin films. On the other hand, such dopants are commonly used for tetragonal and cubic phase stabilization in ceramic HfO2. This difference in the impact has not been elucidated so far. The prospect is a suitable doping to produce ferroelectric HfO2 ceramics with a technological impact. In this paper, we investigate the impact of Al, Y, and La doping, which have experimentally proven to stabilize the ferroelectric Pca21 phase in HfO2, in a comprehensive first-principles study. Density functional theory calculations reveal the structure, formation energy, and total energy of various defects in HfO2. Most relevant are substitutional electronically compensated defects without oxygen vacancy, substitutional mixed compensated defects paired with a vacancy, and ionically compensated defect complexes containing two substitutional dopants paired with a vacancy. The ferroelectric phase is strongly favored with La and Y in the substitutional defect. The mixed compensated defect favors the ferroelectric phase as well, but the strongly favored cubic phase limits the concentration range for ferroelectricity. We conclude that a reduction of oxygen vacancies should significantly enhance this range in Y doped HfO2 thin films. With Al, the substitutional defect hardly favors the ferroelectric phase before the tetragonal phase becomes strongly favored with the increasing concentration. This could explain the observed field induced ferroelectricity in Al-doped HfO2. Further Al defects are investigated, but do not favor the f-phase such that the current explanation remains incomplete for Al doping. According to the simulation, doping alone shows clear trends, but is insufficient to replace the monoclinic phase as the ground state. To explain this fact, some other mechanism is needed.

  17. ZnO/Cu(InGa)Se.sub.2 solar cells prepared by vapor phase Zn doping

    DOEpatents

    Ramanathan, Kannan; Hasoon, Falah S.; Asher, Sarah E.; Dolan, James; Keane, James C.

    2007-02-20

    A process for making a thin film ZnO/Cu(InGa)Se.sub.2 solar cell without depositing a buffer layer and by Zn doping from a vapor phase, comprising: depositing Cu(InGa)Se.sub.2 layer on a metal back contact deposited on a glass substrate; heating the Cu(InGa)Se.sub.2 layer on the metal back contact on the glass substrate to a temperature range between about 100.degree. C. to about 250.degree. C.; subjecting the heated layer of Cu(InGa)Se.sub.2 to an evaporant species from a Zn compound; and sputter depositing ZnO on the Zn compound evaporant species treated layer of Cu(InGa)Se.sub.2.

  18. Study of Laser Created Metal Vapour Plasmas.

    DTIC Science & Technology

    1981-09-01

    ance saturation could lead to extensive ground Zcvei burnout of certain kinds of atoms or ions and that this could lead to the creation of a ground...level FORM DD I JAN ", 1473 UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PACE ’l hen Dota Fnt ’UNCLASSIFIFD SS ~eUItTY CLASSIFICATION OF THIS PAqE(W"Sef...vapours. Preliminary calculations have suggested that laser resonance saturation could lead to extensive ground level burnout of certain kinds of

  19. Transversely diode-pumped alkali metal vapour laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkhomenko, A I; Shalagin, A M

    2015-09-30

    We have studied theoretically the operation of a transversely diode-pumped alkali metal vapour laser. For the case of high-intensity laser radiation, we have obtained an analytical solution to a complex system of differential equations describing the laser. This solution allows one to exhaustively determine all the energy characteristics of the laser and to find optimal parameters of the working medium and pump radiation (temperature, buffer gas pressure, and intensity and width of the pump spectrum). (lasers)

  20. Structural analysis of emerging ferrite: Doped nickel zinc ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rajinder; Kumar, Hitanshu; Singh, Ragini Raj

    2015-08-28

    Ni{sub 0.6-x}Zn{sub 0.4}Co{sub x}Fe{sub 2}O{sub 4} (x = 0, 0.033, 0.264) nanoparticles were synthesized by sol-gel method and annealed at 900°C. Structural properties of all prepared samples were examined with X-ray diffraction (XRD). The partial formation of hematite (α-Fe{sub 2}O{sub 3}) secondary phase with spinel phase cubic structure of undoped and cobalt doped nickel zinc ferrite was found by XRD peaks. The variation in crystallite size and other structural parameters with cobalt doping has been calculated for most prominent peak (113) of XRD and has been explained on the basis of cations ionic radii difference.

  1. Ferromagnetic and photocatalytic behaviors observed in Ca-doped BiFeO3 nanofibres

    NASA Astrophysics Data System (ADS)

    Feng, Yan-Nan; Wang, Huan-Chun; Luo, Yi-Dong; Shen, Yang; Lin, Yuan-Hua

    2013-04-01

    Ca-doped BiFeO3 nanofibres have been fabricated by electrospinning method. Our results indicate that phase transition from space group R3c to C222 can be observed by the Ca doping. These BiFeO3 nanofibres show obvious room temperature ferromagnetic behaviors, and saturation magnetization can be enhanced with the Ca-doping concentration increasing, which could be correlated with the variation of the ratio of Fe2+/Fe3+ valence state. The BiFeO3 nanofibres show obvious photocatalytic performance and can be improved by the Ca-doping.

  2. Crystal growth of HVPE-GaN doped with germanium

    NASA Astrophysics Data System (ADS)

    Iwinska, M.; Takekawa, N.; Ivanov, V. Yu.; Amilusik, M.; Kruszewski, P.; Piotrzkowski, R.; Litwin-Staszewska, E.; Lucznik, B.; Fijalkowski, M.; Sochacki, T.; Teisseyre, H.; Murakami, H.; Bockowski, M.

    2017-12-01

    Crystallization by hydride vapor phase epitaxy method of gallium nitride single crystals doped with germanium and properties of the obtained material are described in this paper. Growth was performed in hydrogen and nitrogen carrier gas. The results were studied and compared. Influence of different flows of germanium tetrachloride, precursor of germanium, on the grown crystals was investigated. Ammonothermal GaN substrates were used as seeds for crystallization. Structural, electrical, and optical properties of HVPE-GaN doped with germanium are presented and discussed in detail. They were compared to properties of HVPE-GaN doped with silicon and also grown on native seeds of high quality.

  3. Field-Theoretical Studies of a doped Mott Insulator

    NASA Astrophysics Data System (ADS)

    Juricic, Vladimir

    2006-06-01

    In this thesis, the magnetic and the transport properties of La(2-x)Sr(x)CuO(4) in the undoped and lightly doped regime are investigated. In Chapter 2, we consider the role of the Dzyaloshinskii-Moriya (DM) and the pseudodipolar (XY) interactions in determining the magnetic properties of the undoped material, La(2)CuO(4), motivated by recent experiments, which show a complete anisotropy in the magnetic susceptibility response. We start with the microscopic spin model, which, besides the Heisenberg superexchange interaction, contains the anisotropic DM and the XY interactions. We map this microscopic model into a corresponding field theory, which turns out to be a generalized nonlinear sigma model. The effect of the anisotropies is to introduce gaps for the spin excitations, which are responsible for the ground-state properties of the material. When a magnetic field is applied, the DM anisotropy leads to an unexpected linear coupling of the staggered magnetization to the magnetic field, which is responsible for a completely anisotropic magnetic susceptibility, in agreement with experiments. In Chapter 3, we investigate the effect of the DM and the XY anisotropies on the magnetism when Sr doping is introduced in La(2)CuO(4). Our starting point is the nonlinear sigma model, which includes these anisotropies, and also the dopant holes, represented via an effective dipole field which couples to the background magnetization current. In the antiferromagnetic phase, x<2%, the dipole-magnetization current coupling leads to a decrease of the spin gaps, in good agreement with recent experiments. The DM gap gives rise to the stability of the antiferromagnetic state up to the doping level x=2%, at which the dipole field acquires a nonzero expectation value, causing a change in the magnetic ground state of the system. Beyond this doping concentration, the spins rearrange to form an incommensurate helicoidal state, which gives rise to two incommensurate peaks in the spin

  4. Investigations on structural, vibrational and dielectric properties of nanosized Cu doped Mg-Zn ferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Anand; Department of Physics, MEDICAPS Institute of Science and Technology, Pithampur 453331; Rajpoot, Rambabu

    2016-05-23

    Transition metal Cu{sup 2+} doped Mg-Zn ferrite [Mg{sub 0.5}Zn{sub 0.5-x}Cu{sub x}Fe{sub 2}O{sub 4} (0.0 ≤ x ≤ 0.5)] were prepared by sol gel auto combustion (SGAC) method to probe the structural, vibrational and electrical properties. X-ray diffraction (XRD) pattern reveals a single-phase cubic spinel structure without the presence of any secondary phase corresponding to other structure. The average particle size of the parent Mg{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} is found to be ~29.8 nm and is found to increase with Cu{sup 2+} doping. Progressive reduction in lattice parameter of Mg{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} has been observed due to difference inmore » ionic radii of cations with improved Cu doping. Spinel cubic structure is further confirmed by Raman spectroscopy. Small shift in Raman modes towards higher wave number has been observed in doped Mg-Zn ferrites. The permittivity and dielectric loss decreases at lower doping and increases at higher order doping of Cu{sup 2+}.« less

  5. Li-Doped Ionic Liquid Electrolytes: From Bulk Phase to Interfacial Behavior

    NASA Technical Reports Server (NTRS)

    Haskins, Justin B.; Lawson, John W.

    2016-01-01

    Ionic liquids have been proposed as candidate electrolytes for high-energy density, rechargeable batteries. We present an extensive computational analysis supported by experimental comparisons of the bulk and interfacial properties of a representative set of these electrolytes as a function of Li-salt doping. We begin by investigating the bulk electrolyte using quantum chemistry and ab initio molecular dynamics to elucidate the solvation structure of Li(+). MD simulations using the polarizable force field of Borodin and coworkers were then performed, from which we obtain an array of thermodynamic and transport properties. Excellent agreement is found with experiments for diffusion, ionic conductivity, and viscosity. Combining MD simulations with electronic structure computations, we computed the electrochemical window of the electrolytes across a range of Li(+)-doping levels and comment on the role of the liquid environment. Finally, we performed a suite of simulations of these Li-doped electrolytes at ideal electrified interfaces to evaluate the differential capacitance and the equilibrium Li(+) distribution in the double layer. The magnitude of differential capacitance is in good agreement with our experiments and exhibits the characteristic camel-shaped profile. In addition, the simulations reveal Li(+) to be highly localized to the second molecular layer of the double layer, which is supported by additional computations that find this layer to be a free energy minimum with respect to Li(+) translation.

  6. A dilute Cu(Ni) alloy for synthesis of large-area Bernal stacked bilayer graphene using atmospheric pressure chemical vapour deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madito, M. J.; Bello, A.; Dangbegnon, J. K.

    2016-01-07

    A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupledmore » plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer.« less

  7. A dilute Cu(Ni) alloy for synthesis of large-area Bernal stacked bilayer graphene using atmospheric pressure chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Madito, M. J.; Bello, A.; Dangbegnon, J. K.; Oliphant, C. J.; Jordaan, W. A.; Momodu, D. Y.; Masikhwa, T. M.; Barzegar, F.; Fabiane, M.; Manyala, N.

    2016-01-01

    A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupled plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer.

  8. Infrared Laser Optoacoustic Detection Of Gases And Vapours

    NASA Astrophysics Data System (ADS)

    Johnson, S. A.; Cummins, P. G.; Bone, S. A.; Davies, P. B.

    1988-10-01

    Mid-infrared laser optoacoustic spectroscopy has been used to detect a variety of gases and vapours. Performance was calibrated using the signal from a known concentration of ethene, and then the method applied to the perfume alcohol geraniol. Detection limits were found to be 1 ppb for ethene and 70 ppb for geraniol on their strongest absorption lines for a few seconds measurement time.

  9. The effect of ethanol vapour exposure on atrial and ventricular walls of chick embryos.

    PubMed

    Kamran, Kiran; Khan, Muhammad Yunus; Minhas, Liaqat Ali

    2016-10-01

    To study the effects of ethanol vapour exposure on atrial and ventricular walls of heart in chick embryo. The study design was experimental, conducted at Islamabad Centre of College of Physicians and Surgeons, Pakistan. One hundred and eighty chicken eggs were divided into two groups, experimental and control, of 90 eggs each. Each group was subdivided into three subgroups of 30 eggs each based on the day of sacrifice. Experimental group was exposed to ethanol vapours and then compared with age matched controls. The thickness of atrial and ventricular walls along with lengths of valvular cusps increased in hearts of day 7 and day 10 chick embryos in experimental group. There was thinning of walls and decreased length of valvular cusps in hearts of experimental chicks on hatching as compared to age matched controls. Ethanol vapour exposure during development causes cardiac and septal wall thickening during initial days of development followed by cardiac and septal wall thinning which is a classical picture of alcohol induced cardiomyopathies.

  10. Thermally decarboxylated sodium bicarbonate: Interactions with water vapour, calorimetric study

    PubMed Central

    Volkova, Natalia; Hansson, Henri; Ljunggren, Lennart

    2012-01-01

    Isothermal titration calorimetry (ITC) was used to study interactions between water vapour and the surface of thermally converted sodium bicarbonate (NaHCO3). The decarboxylation degree of the samples was varied from 3% to 35% and the humidity range was 54–100%. The obtained enthalpy values were all exothermic and showed a positive linear correlation with decarboxylation degrees for each humidity studied. The critical humidity, 75% (RHo), was determined as the inflection point on a plot of the mean−ΔH kJ/mole Na2CO3 against RH. Humidities above the critical humidity lead to complete surface dissolution. The water uptake (m) was determined after each calorimetric experiment, complementing the enthalpy data. A mechanism of water vapour interaction with decarboxylated samples, including the formation of trona and Wegscheider’s salt on the bicarbonate surface is proposed for humidities below RHo. PMID:29403816

  11. GaAs High Breakdown Voltage Front and Back Side Processed Schottky Detectors for X-Ray Detection

    DTIC Science & Technology

    2007-11-01

    front and back side processed, unintentionally doped bulk gallium -arsenic (GaAs) Schottky detectors and determined that GaAs detectors with a large...a few materials that fulfill these requirements are gallium -arsenic (GaAs) and cadmium-zinc-tellurium (CdZnTe or CZT). They are viable alternative...Whitehill, C.; Pospíšil, S.; Wilhem, I.; Doležal, Z.; Juergensen, H.; Heuken, M. Development of low-pressure vapour -phase epitaxial GaAs for medical imaging

  12. Primary Phase Field of the Pb-Doped 2223 High-Tc Superconductor in the (Bi, Pb)-Sr-Ca-Cu-O System

    PubMed Central

    Wong-Ng, W.; Cook, L. P.; Kearsley, A.; Greenwood, W.

    1999-01-01

    Both liquidus and subsolidus phase equilibrium data are of central importance for applications of high temperature superconductors in the (Bi, Pb)-Sr-Ca-Cu-O system, including material synthesis, melt processing and single crystal growth. The subsolidus equilibria of the 110 K high-Tc Pb-doped 2223 ([Bi, Pb], Sr, Ca, Cu) phase and the location of the primary phase field (crystallization field) have been determined in this study. For the quantitative determination of liquidus data, a wicking technique was developed to capture the melt for quantitative microchemical analysis. A total of 29 five-phase volumes that include the 2223 phase as a component was obtained. The initial melt compositions of these volumes range from a mole fraction of 7.3 % to 28.0 % for Bi, 11.3 % to 27.8 % for Sr, 1.2 % to 19.4 % for Pb, 9.8 % to 30.8 % for Ca, and 17.1 % to 47.0 % for Cu. Based on these data, the crystallization field for the 2223 phase was constructed using the convex hull technique. A section of this “volume” was obtained by holding two components of the composition at the median value, allowing projection on the other three axes to show the extent of the field.

  13. Measurement of the densities of Cu and Ag vapours in a low-voltage switch using the hook method

    NASA Astrophysics Data System (ADS)

    Lins, Günter

    2012-05-01

    In a research model of a low-voltage circuit breaker with fixed contacts and windows for optical access, arcs powered by either a high-current transformer or a capacitor bank were initiated by the explosion of tungsten wires. Air at atmospheric pressure was the switching medium. The number densities of neutral silver and copper vapours from contacts and arc runners were measured simultaneously by the hook method using a Mach-Zehnder interferometer combined with a 1 m spectrograph and a gated intensified CCD camera. When an arc current was flowing, a substantial fraction of the metal vapour was ionized, and thus not amenable to a density measurement with the technique chosen. To nevertheless obtain approximate density values, the arc current was forced to zero within 8 to 10 µs at a preset time and measurements were carried out 100 µs after extinction of the arc. At that time the metal vapour was expected to have recombined to a large extent but not yet diffused to the walls in significant amounts. Depending on the current amplitude reached within the arc duration the arc remained anchored to the silver contacts or commutated to the copper arc runners. At a maximum current amplitude of 650 A Ag vapour densities of the order of 1022 m-3 were observed near the anode outweighing the Cu vapour density by a factor of 20. When at 1600 A the arc commutated to the arc runners a Cu vapour density of 8 × 1021 m-3 was reached while the Ag density remained limited to 2 × 1021 m-3.

  14. Mn-Site Doped CaMnO 3: Creation of the CMR Effect

    NASA Astrophysics Data System (ADS)

    Raveau, B.; Zhao, Y. M.; Martin, C.; Hervieu, M.; Maignan, A.

    2000-01-01

    The doping of CaMnO3-δ at Mn sites with pentavalent and hexavalent d0 elements - Nb, Ta, W, Mo - modifies the resistivity behavior of this phase, extending the insulating domain and increasing significantly the resistivity at low temperature as the doping element content increases. The higher valency of the doping element introduces electrons; i.e., Mn3+ species are formed in the Mn4+ matrix. Double exchange phenomena then allow ferromagnetic interactions, by application of external magnetic fields which are similar to those observed for electron-doped manganites Ca1-xLnxMnO3 (x≤0.15), but with smaller magnetic moments. Consequently, this Mn site doping induces CMR properties with resistivity ratios considerably larger than those for CaMnO3-δ.

  15. Capillary microextraction: A new method for sampling methamphetamine vapour.

    PubMed

    Nair, M V; Miskelly, G M

    2016-11-01

    Clandestine laboratories pose a serious health risk to first responders, investigators, decontamination companies, and the public who may be inadvertently exposed to methamphetamine and other chemicals used in its manufacture. Therefore there is an urgent need for reliable methods to detect and measure methamphetamine at such sites. The most common method for determining methamphetamine contamination at former clandestine laboratory sites is selected surface wipe sampling, followed by analysis with gas chromatography-mass spectrometry (GC-MS). We are investigating the use of sampling for methamphetamine vapour to complement such wipe sampling. In this study, we report the use of capillary microextraction (CME) devices for sampling airborne methamphetamine, and compare their sampling efficiency with a previously reported dynamic SPME method. The CME devices consisted of PDMS-coated glass filter strips inside a glass tube. The devices were used to dynamically sample methamphetamine vapour in the range of 0.42-4.2μgm -3 , generated by a custom-built vapour dosing system, for 1-15min, and methamphetamine was analysed using a GC-MS fitted with a ChromatoProbe thermal desorption unit. The devices showed good reproducibility (RSD<15%), and a curvilinear pre-equilibrium relationship between sampling times and peak area, which can be utilised for calibration. Under identical sampling conditions, the CME devices were approximately 30 times more sensitive than the dynamic SPME method. The CME devices could be stored for up to 3days after sampling prior to analysis. Consecutive sampling of methamphetamine and its isotopic substitute, d-9 methamphetamine showed no competitive displacement. This suggests that CME devices, pre-loaded with an internal standard, could be a feasible method for sampling airborne methamphetamine at former clandestine laboratories. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Controllable synthesis of Ln3+ (Ln = Tb, Eu) doped zinc phosphate nano-/micro-structured materials: phase, morphology and luminescence properties

    NASA Astrophysics Data System (ADS)

    Yue, Dan; Lu, Wei; Li, Chunyang; Zhang, Xinlei; Liu, Chunxia; Wang, Zhenling

    2014-01-01

    Ln3+ (Ln = Tb, Eu) doped zinc phosphate tetrahydrate (ZPT:Ln3+) and ammonium zinc phosphate (AZP:Ln3+) nano-/micro-structured materials were synthesized in aqueous solution without the addition of any structure-directing agent. The phase structures, morphologies and luminescence properties of the as-synthesized samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy and lifetime. These investigations indicate that different phosphate sources MnH(3-n)PO4 (M = NH4+ or Na+, n = 1, 2, 3) can lead to the altering of morphology from nanosheet to microflower, but have no significant effect on the phase structure of the samples. The microlump, nanosheet, and microflower (constructed by the primary microlumps or nanosheets) of orthorhombic ZPT:Ln3+ could be selectively prepared by adjusting the pH value from 3.5 to 7.0. A mixture of orthorhombic ZPT:Ln3+ and monoclinic AZP:Ln3+ with a microflower morphology was obtained when the pH value was adjusted to 8.0. Monoclinic AZP:Ln3+ microplate, microcube and nanoparticle morphologies were obtained at pH values of 8.5, 9.0 and 11.0 respectively. The phase transformation and growth mechanism of the diverse morphologies were proposed, and ZPT:Ln3+ (Ln3+ = Eu or Tb) samples exhibit red or green emission under the excitation of UV light.Ln3+ (Ln = Tb, Eu) doped zinc phosphate tetrahydrate (ZPT:Ln3+) and ammonium zinc phosphate (AZP:Ln3+) nano-/micro-structured materials were synthesized in aqueous solution without the addition of any structure-directing agent. The phase structures, morphologies and luminescence properties of the as-synthesized samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy and lifetime. These

  17. High-performance perovskite CH3NH3PbI3 thin films for solar cells prepared by single-source physical vapour deposition

    PubMed Central

    Fan, Ping; Gu, Di; Liang, Guang-Xing; Luo, Jing-Ting; Chen, Ju-Long; Zheng, Zhuang-Hao; Zhang, Dong-Ping

    2016-01-01

    In this work, an alternative route to fabricating high-quality CH3NH3PbI3 thin films is proposed. Single-source physical vapour deposition (SSPVD) without a post-heat-treating process was used to prepare CH3NH3PbI3 thin films at room temperature. This new process enabled complete surface coverage and moisture stability in a non-vacuum solution. Moreover, the challenges of simultaneously controlling evaporation processes of the organic and inorganic sources via dual-source vapour evaporation and the heating process required to obtain high crystallization were avoided. Excellent composition with stoichiometry transferred from the powder material, a high level of tetragonal phase-purity, full surface coverage, well-defined grain structure, high crystallization and reproducibility were obtained. A PCE of approximately 10.90% was obtained with a device based on SSPVD CH3NH3PbI3. These initial results suggest that SSPVD is a promising method to significantly optimize perovskite CH3NH3PbI3 solar cell efficiency. PMID:27426686

  18. Dopant-Site Determination in Y- and Sc-Doped (Ba0.5Sr0.5)(Co0.8Fe0.2)O3-δ by Atom Location by Channeling Enhanced Microanalysis and the Role of Dopant Site on Secondary Phase Formation.

    PubMed

    Meffert, Matthias; Störmer, Heike; Gerthsen, Dagmar

    2016-02-01

    (Ba0.5Sr0.5)(Co0.8Fe0.2)O3-δ (BSCF) is a promising material with mixed ionic and electronic conductivity which is considered for oxygen separation membranes. Selective improvement of material properties, e.g. oxygen diffusivity or suppression of secondary phase formation, can be achieved by B-site doping. This study is concerned with the formation of Co-oxide precipitates in undoped BSCF at typical homogenization temperatures of 1,000°C, which act as undesirable nucleation sites for other secondary phases in the application-relevant temperature range. Y-doping successfully suppresses Co-oxide formation, whereas only minor improvements are achieved by Sc-doping. To understand the reason for the different behavior of Y and Sc, the lattice sites of dopant cations in BSCF were experimentally determined in this work. Energy-dispersive X-ray spectroscopy in a transmission electron microscope was applied to locate dopant sites exploiting the atom location by channeling enhanced microanalysis technique. It is shown that Sc exclusively occupies B-cation sites, whereas Y is detected on A- and B-cation sites in Y-doped BSCF, although solely B-site doping was intended. A model is presented for the suppression of Co-oxide formation in Y-doped BSCF based on Y double-site occupancy.

  19. Highly Al-doped TiO{sub 2} nanoparticles produced by Ball Mill Method: structural and electronic characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, Desireé M. de los, E-mail: desire.delossantos@uca.es; Navas, Javier, E-mail: javier.navas@uca.es; Sánchez-Coronilla, Antonio

    2015-10-15

    Highlights: • Highly Al-doped TiO{sub 2} nanoparticles were synthesized using a Ball Mill Method. • Al doping delayed anatase to rutile phase transformation. • Al doping allow controlling the structural and electronic properties of nanoparticles. - Abstract: This study presents an easy method for synthesizing highly doped TiO{sub 2} nanoparticles. The Ball Mill method was used to synthesize pure and Al-doped titanium dioxide, with an atomic percentage up to 15.7 at.% Al/(Al + Ti). The samples were annealed at 773 K, 973 K and 1173 K, and characterized using ICP-AES, XRD, Raman spectroscopy, FT-IR, TG, STEM, XPS, and UV–vis spectroscopy.more » The effect of doping and the calcination temperature on the structure and properties of the nanoparticles were studied. The results show high levels of internal doping due to the substitution of Ti{sup 4+} ions by Al{sup 3+} in the TiO{sub 2} lattice. Furthermore, anatase to rutile transformation occurs at higher temperatures when the percentage of doping increases. Therefore, Al doping allows us to control the structural and electronic properties of the nanoparticle synthesized. So, it is possible to obtain nanoparticles with anatase as predominant phase in a higher range of temperature.« less

  20. n-Type Doping of Vapor-Liquid-Solid Grown GaAs Nanowires.

    PubMed

    Gutsche, Christoph; Lysov, Andrey; Regolin, Ingo; Blekker, Kai; Prost, Werner; Tegude, Franz-Josef

    2011-12-01

    In this letter, n-type doping of GaAs nanowires grown by metal-organic vapor phase epitaxy in the vapor-liquid-solid growth mode on (111)B GaAs substrates is reported. A low growth temperature of 400°C is adjusted in order to exclude shell growth. The impact of doping precursors on the morphology of GaAs nanowires was investigated. Tetraethyl tin as doping precursor enables heavily n-type doped GaAs nanowires in a relatively small process window while no doping effect could be found for ditertiarybutylsilane. Electrical measurements carried out on single nanowires reveal an axially non-uniform doping profile. Within a number of wires from the same run, the donor concentrations ND of GaAs nanowires are found to vary from 7 × 10(17) cm(-3) to 2 × 10(18) cm(-3). The n-type conductivity is proven by the transfer characteristics of fabricated nanowire metal-insulator-semiconductor field-effect transistor devices.

  1. Oxygen vacancy induced phase formation and room temperature ferromagnetism in undoped and Co-doped TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Mohanty, P.; Mishra, N. C.; Choudhary, R. J.; Banerjee, A.; Shripathi, T.; Lalla, N. P.; Annapoorni, S.; Rath, Chandana

    2012-08-01

    TiO2 and Co-doped TiO2 (CTO) thin films deposited at various oxygen partial pressures by pulsed laser deposition exhibit room temperature ferromagnetism (RTFM) independent of their phase. Films deposited at 0.1 mTorr oxygen partial pressure show a complete rutile phase confirmed from glancing angle x-ray diffraction and Raman spectroscopy. At the highest oxygen partial pressure, i.e. 300 mTorr, although the TiO2 film shows a complete anatase phase, a small peak corresponding to the rutile phase along with the anatase phase is identified in the case of CTO film. An increase in O to Ti/(Ti+Co) ratio with increase in oxygen partial pressure is observed from Rutherford backscattering spectroscopy. It is revealed from x-ray photoelectron spectroscopy (XPS) that oxygen vacancies are found to be higher in the CTO film than TiO2, while the valency of cobalt remains in the +2 state. Therefore, the CTO film deposited at 300 mTorr does not show a complete anatase phase unlike the TiO2 film deposited at the same partial pressure. We conclude that RTFM in both films is not due to impurities/contaminants, as confirmed from XPS depth profiling and cross-sectional transmission electron microscopy (TEM), but due to oxygen vacancies. The magnitude of moment, however, depends not only on the phase of TiO2 but also on the crystallinity of the films.

  2. Structure Evolution of BaTiO3 on Co Doping: X-ray diffraction and Raman study

    NASA Astrophysics Data System (ADS)

    Mansuri, Amantulla; Mishra, Ashutosh

    2016-10-01

    In the present study, we have synthesize polycrystalline samples of BaTi1-xCoxO3 (x = 0, 0.05 and 0.1) with standard solid state reaction technique. The obtained samples are characterized by X-ray diffraction (XRD) and Raman spectroscopy. The detail structural analysis has been performed by Rietveld refinement using Fullprof program. The structural analysis reveal the samples are chemical pure and crystallize in tetragonal phase with space group Pm3m. We observe an increase in lattice parameters which results due to substitution of Co2+ with large ionic radii (0.9) for smaller ionic radii (0.6) Ti4+. Moreover peak at 45.5° shift to 45° on Co doping, which is due to structure phase transition from tetragonal to cubic. Raman study infers that the intensity of characteristic peaks decreases and linewidth increases with Co doping. The bands linked with the tetragonal structure (307 cm1) decreased due to the tetragonal-towards-cubic phase transition with Co doping. Our structural study reveals the expansion of BTO unit cell and tetragonal-to-cubic phase transformation takes place, results from different characterization techniques are conclusive and show structural evolution with Co doping.

  3. Hydrothermal synthesis and magnetic properties of Mn doped ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Rashad, M. M.; Rayan, D. A.; El-Barawy, K.

    2010-01-01

    Nanocrystallite Mn doped Zn1-XS (X = 0 to 0.4) powders have been synthesized through a hydrothermal route. The effect of the hydrothermal temperature and Mn2+ ions substitution on the crystal structure, crystallite size, microstructure and magnetic properties were investigated using (XRD), (SEM) and (VSM). The results revealed that wurtzite zinc sulfide phase was formed using thiourea as a sulfur source at temperature 150- 200oC for 24 h. The crystallite size was (7.9-15.1 nm) was obtained at the same conditions. The doping of Mn2+ ions decreased the crystallite size of the formed ZnS wurtzite phase was in the range between 7.9 and 3.8 nm. SEM micrographs showed that the produced ZnS and Mn doped ZnS particles were appeared as spherical shape. The magnetic properties were improved by substitution of Mn2+ ions up to 0.2.

  4. Elasticity and hydrodynamic properties of ``doped solvent dilute'' lamellar phases

    NASA Astrophysics Data System (ADS)

    Nallet, Frédéric; Roux, Didier; Quilliet, Catherine; Fabre, Pascale; Milner, Scott T.

    1994-09-01

    The equilibrium fluctuations and weakly out-of-equilibrium relaxation properties of “doped solvent" dilute lamellar phases are investigated, both theoretically and experimentally, in the low-frequency, long-wavelength limit. The physical system of interest is a three-component smectic A lyotropic liquid crystal where surfactant bilayers infinite in extent are periodically stacked along one direction in space and separated by a colloidal solution. Two experimentally relevant modes are found in the lowest frequency part of the fluctuation spectrum of such multicomponent systems. Both are associated to the relaxation of coupled layer displacement and colloid concentration waves. In the limit of small coupling, one mode is close to the well-known undulation/baroclinic mode of two-component lamellar phases, while the other corresponds to the Brownian diffusive motion of the colloid in an anisotropic medium. Elastic constants of the smectic liquid crystal and diffusion parameters of the colloidal solution may be deduced from a measurement of the anisotropic dispersion relation of these two modes, as illustrated by dynamic light scattering experiments on the ferrosmectic system. Les fluctuations à l'équilibre ainsi que la relaxation des états légèrement en dehors de l'équilibre des phases lamellaires à “solvant dopé” sont étudiées, aussi bien d'un point de vue théorique qu'expérimental, dans la limite de basses fréquences et de grandes longueurs d'onde. Les systèmes décrits sont des cristaux-liquides smectiques A lyotropes formés de trois constituants : un tensioactif en solution dans une suspension colloïdale forme des bicouches de grande extension latérale qui s'empilent de façon périodique le long d'une direction dans l'espace. Avec de tels systèmes anisotropes et à plusieurs constituants deux modes présents dans la partie à basse fréquence du spectre des fluctuations (associés à la relaxation d'ondes, couplées, de concentration collo

  5. Synthesis and electrochemical properties of Ti-doped DLC films by a hybrid PVD/PECVD process

    NASA Astrophysics Data System (ADS)

    Jo, Yeong Ju; Zhang, Teng Fei; Son, Myoung Jun; Kim, Kwang Ho

    2018-03-01

    Low electrical conductivity and poor adhesion to metallic substrates are the main drawbacks of diamond-like carbon (DLC) films when used in electrode applications. In this study, Ti-doped DLC films with various Ti contents were synthesized on metal Ti substrates by a hybrid PVD/PECVD process, where PECVD was used for deposition of DLC films and PVD was used for Ti doping. The effects of the Ti doping ratio on the microstructure, adhesion strength, and electrical and electrochemical properties of the DLC films were systematically investigated. An increase in the Ti content led to increased surface roughness and a higher sp2/sp3 ratio of the Ti-DLC films. Ti atoms existed as amorphous-phase Ti carbide when the Ti doping ratio was less than 2.8 at.%, while the nanocrystalline TiC phase was formed in DLC films when the Ti doping ratio was exceeded 4.0 at.%. The adhesion strength, electrical resistivity, electrochemical activity and reversibility of the DLC films were greatly improved by Ti doping. The influence of Ti doping ratio on the electrical and electrochemical properties of the DLC films were also investigated and the best performance was obtained at a Ti content of 2.8 at.%.

  6. Photoconductivity in nanostructured sulfur-doped V2O5 thin films

    NASA Astrophysics Data System (ADS)

    Mousavi, M.; Yazdi, Sh. Tabatabai

    2016-03-01

    In this paper, S-doped vanadium oxide thin films with doping levels up to 40 at.% are prepared via spray pyrolysis method on glass substrates, and the effect of S-doping on the structural and photoconductivity related properties of β-V2O5 thin films is studied. The results show that most of the films have been grown in the tetragonal β-V2O5 phase structure with the preferred orientation along [200]. With increasing the doping level, the samples tend to be amorphous. The structure of the samples reveals to be nanobelt-shaped whose width decreases from nearly 100 nm to 40 nm with S concentration. The photoconductivity measurements show that by increasing the S-doping level, the photosensitivity increases, which is due to the prolonged electron’s lifetime as a result of enhanced defect states acting as trap levels.

  7. Observation of magnetic phase segregation in an antiferromagnet

    NASA Astrophysics Data System (ADS)

    Neumeier, J. J.; Cohn, J. L.

    2000-03-01

    Magnetic phase segregation in an antiferromagnet is investigated through electron doping of CaMnO3 and magnetization measurements which reveal G-type antiferromagnetism, local ferrimagnetism, local ferromagnetism, and C-type antiferromagnetism; up to three of these phases coexist at any one doped-electron concentration. The magnetic properties are strongly correlated with the electron mobility. These results confirm that the addition of electrons to an antiferromagnet can promote phase segregation. Work at the University of Miami was supported by NSF Grant No. DMR-9631236.

  8. Nematic topological superconducting phase in Nb-doped Bi2Se3

    NASA Astrophysics Data System (ADS)

    Shen, Junying; He, Wen-Yu; Yuan, Noah Fan Qi; Huang, Zengle; Cho, Chang-woo; Lee, Seng Huat; Hor, Yew San; Law, Kam Tuen; Lortz, Rolf

    2017-10-01

    A nematic topological superconductor has an order parameter symmetry, which spontaneously breaks the crystalline symmetry in its superconducting state. This state can be observed, for example, by thermodynamic or upper critical field experiments in which a magnetic field is rotated with respect to the crystalline axes. The corresponding physical quantity then directly reflects the symmetry of the order parameter. We present a study on the superconducting upper critical field of the Nb-doped topological insulator NbxBi2Se3 for various magnetic field orientations parallel and perpendicular to the basal plane of the Bi2Se3 layers. The data were obtained by two complementary experimental techniques, magnetoresistance and DC magnetization, on three different single crystalline samples of the same batch. Both methods and all samples show with perfect agreement that the in-plane upper critical fields clearly demonstrate a two-fold symmetry that breaks the three-fold crystal symmetry. The two-fold symmetry is also found in the absolute value of the magnetization of the initial zero-field-cooled branch of the hysteresis loop and in the value of the thermodynamic contribution above the irreversibility field, but also in the irreversible properties such as the value of the characteristic irreversibility field and in the width of the hysteresis loop. This provides strong experimental evidence that Nb-doped Bi2Se3 is a nematic topological superconductor similar to the Cu- and Sr-doped Bi2Se3.

  9. Synthesis, characterization and photocatalytic activity of porous manganese oxide doped titania for toluene decomposition.

    PubMed

    Jothiramalingam, R; Wang, M K

    2007-08-17

    The present study describes the photocatalytic degradation of toluene in gas phase on different porous manganese oxide doped titanium dioxide. As synthesized birnessite and cryptomelane type porous manganese oxide were doped with titania and tested for photocatalytic decomposition of toluene in gas phase. The effects of the inlet concentration of toluene, flow rate (retention time) were examined and the relative humidity was maintained constantly. Thermal and textural characterization of manganese oxide doped titania materials were characterized by X-ray diffraction (XRD), thermogravemetry (TG), BET and TEM-EDAX studies. The aim of the present study is to synthesize the porous manganese oxide doped titania and to study its photocatalytic activity for toluene degradation in gas phase. Cryptomelane doped titania catalyst prepared in water medium [K-OMS-2 (W)] is shown the good toluene degradation with lower catalysts loading compared to commercial bulk titania in annular type photo reactor. The higher photocatalytic activity due to various factors such as catalyst preparation method, experimental conditions, catalyst loading, surface area, etc. In the present study manganese oxide OMS doped titania materials prepared by both aqueous and non-aqueous medium, aqueous medium prepared catalyst shows the good efficiency due to the presence of OH bonded groups on the surface of catalyst. The linear forms of different kinetic equations were applied to the adsorption data and their goodness of fit was evaluated based on the R2 and standard error. The goodness to the linear fit was observed for Elovich model with high R2 (>or=0.9477) value.

  10. Method of fabricating optical waveguides by ion implantation doping

    DOEpatents

    Appleton, Bill R.; Ashley, Paul R.; Buchal, Christopher J.

    1989-01-01

    A method for fabricating high-quality optical waveguides in optical quality oxide crystals by ion implantation doping and controlled epitaxial recrystallization is provided. Masked LiNbO.sub.3 crystals are implanted with high concentrations of Ti dopant at ion energies of about 350 keV while maintaining the crystal near liquid nitrogen temperature. Ion implantation doping produces an amorphous, Ti-rich nonequilibrium phase in the implanted region. Subsequent thermal annealing in a water-saturated oxygen atmosphere at up to 1000.degree. C. produces solid-phase epitaxial regrowth onto the crystalline substrate. A high-quality single crystalline layer results which incorporates the Ti into the crystal structure at much higher concentrations than is possible by standard diffusion techniques, and this implanted region has excellent optical waveguides properties.

  11. Method of fabricating optical waveguides by ion implantation doping

    DOEpatents

    Appleton, B.R.; Ashley, P.R.; Buchal, C.J.

    1987-03-24

    A method for fabricating high-quality optical waveguides in optical quality oxide crystals by ion implantation doping and controlled epitaxial recrystallization is provided. Masked LiNbO/sub 3/ crystals are implanted with high concentrations of Ti dopant at ion energies of about 360 keV while maintaining the crystal near liquid nitrogen temperature. Ion implantation doping produces an amorphous, Ti-rich nonequilibrium phase in the implanted region. Subsequent thermal annealing in a water-saturated oxygen atmosphere at up to 1000/degree/C produces solid-phase epitaxial regrowth onto the crystalline substrate. A high-quality crystalline layer results which incorporates the Ti into the crystal structure at much higher concentrations than is possible by standard diffusion techniques, and this implanted region has excellent optical waveguiding properties.

  12. Mixed garnet laser for a water vapour DIAL

    NASA Astrophysics Data System (ADS)

    Treichel, Rainer; Strohmaier, Stephan; Nikolov, Susanne; Eichler, Hans-Joachim; Murphy, Eamonn

    2017-11-01

    For the water vapour DIAL "WALES" the wavelength regions around 935 nm, 942 nm and 944 nm have been identified as the most suitable wavelength ranges. These wavelengths can be obtained using opticalparametric-oscillators (OPOs), stimulated Raman shifters and the Ti-Sapphire laser but none of these systems could deliver all the needed parameters like beam quality, efficiency, pulse length and energy yet. Also these systems are comparably big and heavy making them less suitable for a satellite based application. A fourth possibility to achieve these wavelength ranges is to shift the quasi-3-level laser lines (938 nm and 946 nm) of the Nd:YAG laser by replacing aluminium and yttrium by other rare earth elements. Changes of the host lattice characteristics lead to a shift of the upper and lower laser levels. These modified crystals are summarized under the name of "Mixed Garnet" crystals. Only the Mixed Garnet lasers can be pumped directly with diode laser and use a direct approach to generate the required laser pulses without frequency conversion. Therefore no additional non-linear crystals or special pump lasers are needed and a higher electric to optical efficiency is expected as well as single frequency operation using spectral tuning elements like etalons. In a first phase such mixed garnet crystals had been grown and characterised. The outcome was the selection of the gadolinium-scandium garnet for the most suitable laser crystal. During a second phase the complete laser system with output energy about 18 mJ in single 20 ns pulses and up to 8 mJ in free running mode with a combined pulse width of 250 μs at 942 nm have been demonstrated. The results of the first laser operation and the achieved performance parameter are reported.

  13. Influence of spatial and temporal variability of subsurface soil moisture and temperature on vapour intrusion

    NASA Astrophysics Data System (ADS)

    Bekele, Dawit N.; Naidu, Ravi; Chadalavada, Sreenivasulu

    2014-05-01

    A comprehensive field study was conducted at a site contaminated with chlorinated solvents, mainly trichloroethylene (TCE), to investigate the influence of subsurface soil moisture and temperature on vapour intrusion (VI) into built structures. Existing approaches to predict the risk of VI intrusion into buildings assume homogeneous or discrete layers in the vadose zone through which TCE migrates from an underlying source zone. In reality, the subsurface of the majority of contaminated sites will be subject to significant variations in moisture and temperature. Detailed site-specific data were measured contemporaneously to evaluate the impact of spatial and temporal variability of subsurface soil properties on VI exposure assessment. The results revealed that indoor air vapour concentrations would be affected by spatial and temporal variability of subsurface soil moisture and temperature. The monthly monitoring of soil-gas concentrations over a period of one year at a depth of 3 m across the study site demonstrated significant variation in TCE vapour concentrations, which ranged from 480 to 629,308 μg/m3. Soil-gas wells at 1 m depth exhibited high seasonal variability in TCE vapour concentrations with a coefficient of variation 1.02 in comparison with values of 0.88 and 0.74 in 2 m and 3 m wells, respectively. Contour plots of the soil-gas TCE plume during wet and dry seasons showed that the plume moved across the site, hence locations of soil-gas monitoring wells for human risk assessment is a site specific decision. Subsurface soil-gas vapour plume characterisation at the study site demonstrates that assessment for VI is greatly influenced by subsurface soil properties such as temperature and moisture that fluctuate with the seasons of the year.

  14. UTLS water vapour from SCIAMACHY limb measurementsV3.01 (2002–2012)

    PubMed Central

    Weigel, K.; Rozanov, A.; Azam, F.; Bramstedt, K.; Damadeo, R.; Eichmann, K.-U.; Gebhardt, C.; Hurst, D.; Kraemer, M.; Lossow, S.; Read, W.; Spelten, N.; Stiller, G. P.; Walker, K. A.; Weber, M.; Bovensmann, H.; Burrows, J. P.

    2017-01-01

    The SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) aboard the Envisat satellite provided measurements from August 2002 until April 2012. SCIAMACHY measured the scattered or direct sunlight using different observation geometries. The limb viewing geometry allows the retrieval of water vapour at about 10–25 km height from the near-infrared spectral range (1353–1410 nm). These data cover the upper troposphere and lower stratosphere (UTLS), a region in the atmosphere which is of special interest for a variety of dynamical and chemical processes as well as for the radiative forcing. Here, the latest data version of water vapour (V3.01) from SCIAMACHY limb measurements is presented and validated by comparisons with data sets from other satellite and in situ measurements. Considering retrieval tests and the results of these comparisons, the V3.01 data are reliable from about 11 to 23 km and the best results are found in the middle of the profiles between about 14 and 20 km. Above 20 km in the extra tropics V3.01 is drier than all other data sets. Additionally, for altitudes above about 19 km, the vertical resolution of the retrieved profile is not sufficient to resolve signals with a short vertical structure like the tape recorder. Below 14 km, SCIAMACHY water vapour V3.01 is wetter than most collocated data sets, but the high variability of water vapour in the troposphere complicates the comparison. For 14–20 km height, the expected errors from the retrieval and simulations and the mean differences to collocated data sets are usually smaller than 10 % when the resolution of the SCIAMACHY data is taken into account. In general, the temporal changes agree well with collocated data sets except for the Northern Hemisphere extratropical stratosphere, where larger differences are observed. This indicates a possible drift in V3.01 most probably caused by the incomplete treatment of volcanic aerosols in the retrieval. In all other regions

  15. Effect of Batch-to-Batch Variability on the Phase Transition of Precipitated Erbium-Doped Alumina Particles

    DTIC Science & Technology

    2017-11-01

    Furthermore, Er-doped lasers emit in the spectral range of “ eye -safe” laser radiation, as they do not penetrate the eye and cause permanent retina damage.7...challenge. Previous studies on doped alumina ceramics used a dry mechanical method for doping ions,4,14 which led to the formation of dopant-rich...synthesis. Finally, the particles were dispersed in isopropanol to aid in drying , and filtered before being placed in an oven at 70 °C. Once dried, the

  16. Simple fabrication of solid phase microextraction fiber employing nitrogen-doped ordered mesoporous polymer by in situ polymerization.

    PubMed

    Zheng, Juan; Liang, Yeru; Liu, Shuqin; Jiang, Ruifen; Zhu, Fang; Wu, Dingcai; Ouyang, Gangfeng

    2016-01-04

    A combination of nitrogen-doped ordered mesoporous polymer (NOMP) and stainless steel wires led to highly sensitive, selective, and stable solid phase microextraction (SPME) fibers by in situ polymerization for the first time. The ordered structure of synthesized NOMP coating was illustrated by transmission electron microscopy (TEM) and X-ray diffraction (XRD), and microscopy analysis by scanning electron microscopy (SEM) confirmed a homogenous morphology of the NOMP-coated fiber. The NOMP-coated fiber was further applied for the extraction of organochlorine pesticides (OCPs) with direct-immersion solid-phase microextraction (DI-SPME) method followed by gas chromatography-mass spectrometry (GC-MS) quantification. Under the optimized conditions, low detection limits (0.023-0.77 ng L(-1)), a wide linear range (9-1500 ng L(-1)), good repeatability (3.5-8.1%, n=6) and excellent reproducibility (1.5-8.3%, n=3) were achieved. Moreover, the practical feasibility of the proposed method was evaluated by determining OCPs in environmental water samples with satisfactory recoveries. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Effects of doping and interchain interactions on the metal-insulator transition in trans-polyacetylene

    NASA Astrophysics Data System (ADS)

    Paulsson, Magnus; Stafström, Sven

    1999-09-01

    Using a tight-binding Hamiltonian the metal-insulator phase diagram for trans-polyacetylene was calculated as a function of doping concentration and interchain interaction strength. The phase boundary for the periodic system coincides with the gap closing, which occurs for certain combinations of critical values for the doping concentration and the interchain interaction strength. The values found are in good agreement with the experimentally observed increase in the Pauli susceptibility. To simulate disorder in the polymer, the effect of finite chain lengths was studied. This type of disorder pushes the metal/insulator phase boundary towards the metallic side of the phase diagram. An increase in the doping concentration and/or interchain interaction is shown to reduce the localizing effects of disorder effectively. For realistic values of the interchain interaction strength the number of chain breaks needed to localize the states at the Fermi energy is quite small, of the order of a few percent. The localization length is found to be substantially longer than the conjugation length of the polymer.

  18. Estimating past leaf-to-air vapour pressure deficit from terrestrial plant 13C

    NASA Astrophysics Data System (ADS)

    Turney, Chris S. M.; Barringer, James; Hunt, John E.; McGlone, Matt S.

    1999-08-01

    13C was determined in lignin extracted from present-day cladodes of Phyllocladus alpinus (a small coniferous tree) from seven well-lit sites across New Zealand. The 13C values ranged from -30.9 to -23.6 and were compared with monthly means of temperature, precipitation, relative humidity and vapour pressure deficit from the nearest recording stations. Of these parameters, the leaf-to-air vapour pressure deficit of the first month of cladode growth and expansion proved to be the most significantly correlated with lignin 13C, over a range of 0.3 to 0.8 kPa, confirming the importance of atmospheric moisture content on stomatal conductance. The carbon isotopic signature of lignin from fossilised cladodes preserved under the Kawakawa Tephra (22.6 k 14C yr BP) on the North Island is identical to that of the whole tissue, suggesting that for this species at least, fossil material can be used to approximate the lignin 13C. The 13C of species- and organ-specific fossil terrestrial plant material therefore provides an excellent method to quantify past changes in leaf-to-air vapour pressure deficit.

  19. AB INITIO Investigations of the Magnetism in Diluted Magnetic Semiconductor Fe-DOPED GaN

    NASA Astrophysics Data System (ADS)

    Cheng, Jie; Zhou, Jing; Xu, Wei; Dong, Peng

    2014-01-01

    In this paper, we present a first principle investigation on Fe-doped GaN with wurtzite and zinc-blend structure using full potential density functional calculations. Data point out that the magnetic behavior of Fe-doped GaN system is strongly dependent on Fe doping configurations. In agreement with the experimental reports, and independently by doping, antiferromagnetism occurs in the zinc-blend structure, while in the wurtzite structure ferromagnetism depends on the Fe doping configurations. Detailed analyses combined with density of state calculations support the assignment that the ferromagnetism is closely related to the impurity band at the origin of the hybridization of Fe 3d and N 2p states in the Fe-doped GaN of wurtzite phase.

  20. Contact resistance change memory using N-doped Cr2Ge2Te6 phase-change material showing non-bulk resistance change

    NASA Astrophysics Data System (ADS)

    Shuang, Y.; Sutou, Y.; Hatayama, S.; Shindo, S.; Song, Y. H.; Ando, D.; Koike, J.

    2018-04-01

    Phase-change random access memory (PCRAM) is enabled by a large resistance contrast between amorphous and crystalline phases upon reversible switching between the two states. Thus, great efforts have been devoted to identifying potential phase-change materials (PCMs) with large electrical contrast to realize a more accurate reading operation. In contrast, although the truly dominant resistance in a scaled PCRAM cell is contact resistance, less attention has been paid toward the investigation of the contact property between PCMs and electrode metals. This study aims to propose a non-bulk-resistance-dominant PCRAM whose resistance is modulated only by contact. The contact-resistance-dominated PCM exploited here is N-doped Cr2Ge2Te6 (NCrGT), which exhibits almost no electrical resistivity difference between the two phases but exhibits a typical switching behavior involving a three-order-of-magnitude SET/RESET resistance ratio owing to its large contact resistance contrast. The conduction mechanism was discussed on the basis of current-voltage characteristics of the interface between the NCrGT and the W electrode.