Sample records for vapour saturation pressure

  1. Saturated Vapour Pressure and Refrigeration - Part I

    ERIC Educational Resources Information Center

    Bunker, C. A.

    1973-01-01

    The first part of a two-part article describes an experimental approach that can be used in teaching the concept of saturated vapour pressure. This leads to a discussion of refrigeration cycles in the second part of the article. (JR)

  2. Properties of meso-Erythritol; phase state, accommodation coefficient and saturation vapour pressure

    NASA Astrophysics Data System (ADS)

    Emanuelsson, Eva; Tschiskale, Morten; Bilde, Merete

    2016-04-01

    Introduction Saturation vapour pressure and the associated temperature dependence (enthalpy ΔH), are key parameters for improving predictive atmospheric models. Generally, the atmospheric aerosol community lack experimentally determined values of these properties for relevant organic aerosol compounds (Bilde et al., 2015). In this work we have studied the organic aerosol component meso-Erythritol. Methods Sub-micron airborne particles of meso-Erythritol were generated by nebulization from aqueous solution, dried, and a mono disperse fraction of the aerosol was selected using a differential mobility analyser. The particles were then allowed to evaporate in the ARAGORN (AaRhus Atmospheric Gas phase OR Nano particle) flow tube. It is a temperature controlled 3.5 m long stainless steel tube with an internal diameter of 0.026 m (Bilde et al., 2003, Zardini et al., 2010). Changes in particle size as function of evaporation time were determined using a scanning mobility particle sizer system. Physical properties like air flow, temperature, humidity and pressure were controlled and monitored on several places in the setup. The saturation vapour pressures were then inferred from the experimental results in the MATLAB® program AU_VaPCaP (Aarhus University_Vapour Pressure Calculation Program). Results Following evaporation, meso-Erythriol under some conditions showed a bimodal particle size distribution indicating the formation of particles of two different phase states. The issue of physical phase state, along with critical assumptions e.g. the accommodation coefficient in the calculations of saturation vapour pressures of atmospheric relevant compounds, will be discussed. Saturation vapour pressures from the organic compound meso-Erythritol will be presented at temperatures between 278 and 308 K, and results will be discussed in the context of atmospheric chemistry. References Bilde, M. et al., (2015), Chemical Reviews, 115 (10), 4115-4156. Bilde, M. et. al., (2003

  3. Clausius-Clapeyron Equation and Saturation Vapour Pressure: Simple Theory Reconciled with Practice

    ERIC Educational Resources Information Center

    Koutsoyiannis, Demetris

    2012-01-01

    While the Clausius-Clapeyron equation is very important as it determines the saturation vapour pressure, in practice it is replaced by empirical, typically Magnus-type, equations which are more accurate. It is shown that the reduced accuracy reflects an inconsistent assumption that the latent heat of vaporization is constant. Not only is this…

  4. Unsaturation of vapour pressure inside leaves of two conifer species

    DOE PAGES

    Cernusak, Lucas A.; Ubierna, Nerea; Jenkins, Michael W.; ...

    2018-05-16

    Stomatal conductance (g s) impacts both photosynthesis and transpiration, and is therefore fundamental to the global carbon and water cycles, food production, and ecosystem services. Mathematical models provide the primary means of analysing this important leaf gas exchange parameter. A nearly universal assumption in such models is that the vapour pressure inside leaves (e i) remains saturated under all conditions. The validity of this assumption has not been well tested, because so far e i cannot be measured directly. Here, we test this assumption using a novel technique, based on coupled measurements of leaf gas exchange and the stable isotopemore » compositions of CO 2 and water vapour passing over the leaf. We applied this technique to mature individuals of two semiarid conifer species. In both species, e i routinely dropped below saturation when leaves were exposed to moderate to high air vapour pressure deficits. Typical values of relative humidity in the intercellular air spaces were as low 0.9 in Juniperus monosperma and 0.8 in Pinus edulis. These departures of e i from saturation caused significant biases in calculations of g s and the intercellular CO 2 concentration. Thus, our results refute the longstanding assumption of saturated vapour pressure in plant leaves under all conditions.« less

  5. Unsaturation of vapour pressure inside leaves of two conifer species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cernusak, Lucas A.; Ubierna, Nerea; Jenkins, Michael W.

    Stomatal conductance (g s) impacts both photosynthesis and transpiration, and is therefore fundamental to the global carbon and water cycles, food production, and ecosystem services. Mathematical models provide the primary means of analysing this important leaf gas exchange parameter. A nearly universal assumption in such models is that the vapour pressure inside leaves (e i) remains saturated under all conditions. The validity of this assumption has not been well tested, because so far e i cannot be measured directly. Here, we test this assumption using a novel technique, based on coupled measurements of leaf gas exchange and the stable isotopemore » compositions of CO 2 and water vapour passing over the leaf. We applied this technique to mature individuals of two semiarid conifer species. In both species, e i routinely dropped below saturation when leaves were exposed to moderate to high air vapour pressure deficits. Typical values of relative humidity in the intercellular air spaces were as low 0.9 in Juniperus monosperma and 0.8 in Pinus edulis. These departures of e i from saturation caused significant biases in calculations of g s and the intercellular CO 2 concentration. Thus, our results refute the longstanding assumption of saturated vapour pressure in plant leaves under all conditions.« less

  6. Supercooled liquid vapour pressures and related thermodynamic properties of polycyclic aromatic hydrocarbons determined by gas chromatography.

    PubMed

    Haftka, Joris J H; Parsons, John R; Govers, Harrie A J

    2006-11-24

    A gas chromatographic method using Kováts retention indices has been applied to determine the liquid vapour pressure (P(i)), enthalpy of vaporization (DeltaH(i)) and difference in heat capacity between gas and liquid phase (DeltaC(i)) for a group of polycyclic aromatic hydrocarbons (PAHs). This group consists of 19 unsubstituted, methylated and sulphur containing PAHs. Differences in log P(i) of -0.04 to +0.99 log units at 298.15K were observed between experimental values and data from effusion and gas saturation studies. These differences in log P(i) have been fitted with multilinear regression resulting in a compound and temperature dependent correction. Over a temperature range from 273.15 to 423.15K, differences in corrected log P(i) of a training set (-0.07 to +0.03 log units) and a validation set (-0.17 to 0.19 log units) were within calculated error ranges. The corrected vapour pressures also showed a good agreement with other GC determined vapour pressures (average -0.09 log units).

  7. Dew-point measurements at high water vapour pressure

    NASA Astrophysics Data System (ADS)

    Lomperski, S.; Dreier, J.

    1996-05-01

    A dew-point meter capable of measuring humidity at high vapour pressure and high temperature has been constructed and tested. Humidity measurements in pure steam were made over the temperature range 100 - 1500957-0233/7/5/003/img1C and a vapour pressure range of 1 - 4 bar. The dew-point meter performance was assessed by comparing measurements with a pressure transmitter and agreement between the two was within 0957-0233/7/5/003/img2% relative humidity. Humidity measurements in steam - air mixtures were also made and the dew-point meter readings were compared to those of a zirconia oxygen sensor. For these tests the dew-point meter readings were generally within 0957-0233/7/5/003/img2% relative humidity of the oxygen sensor measurements.

  8. Combustion dynamics of low vapour pressure nanofuel droplets

    NASA Astrophysics Data System (ADS)

    Pandey, Khushboo; Chattopadhyay, Kamanio; Basu, Saptarshi

    2017-07-01

    Multiscale combustion dynamics, shape oscillations, secondary atomization, and precipitate formation have been elucidated for low vapour pressure nanofuel [n-dodecane seeded with alumina nanoparticles (NPs)] droplets. Dilute nanoparticle loading rates (0.1%-1%) have been considered. Contrary to our previous studies of ethanol-water blend (high vapour pressure fuel), pure dodecane droplets do not exhibit internal boiling after ignition. However, variation in surface tension due to temperature causes shape deformations for pure dodecane droplets. In the case of nanofuels, intense heat release from the enveloping flame leads to the formation of micron-size aggregates (of alumina NPS) which serve as nucleation sites promoting heterogeneous boiling. Three boiling regimes (A, B, and C) have been identified with varying bubble dynamics. We have deciphered key mechanisms responsible for the growth, transport, and rupture of the bubbles. Bubble rupture causes ejections of liquid droplets termed as secondary atomization. Ejection of small bubbles (mode 1) resembles the classical vapour bubble collapse mechanism near a flat free surface. However, large bubbles induce severe shape deformations as well as bulk oscillations. Rupture of large bubbles results in high speed liquid jet formation which undergoes Rayleigh-Plateau tip break-up. Both modes contribute towards direct fuel transfer from the droplet surface to flame envelope bypassing diffusion limitations. Combustion lifetime of nanofuel droplets consequently has two stages: stage I (where bubble dynamics are dominant) and stage II (formation of gelatinous mass due to continuous fuel depletion; NP agglomeration). In the present work, variation of flame dynamics and spatio-temporal heat release (HR) have been analysed using high speed OH* chemiluminescence imaging. Fluctuations in droplet shape and flame heat release are found to be well correlated. Droplet flame is bifurcated in two zones (I and II). Flame response is

  9. Vapour pressure and standard enthalpy of sublimation of KBF 4 by a TG based transpiration technique

    NASA Astrophysics Data System (ADS)

    Pankajavalli, R.; Ananthasivan, K.; Anthonysamy, S.; Vasudeva Rao, P. R.

    2005-10-01

    A horizontal thermobalance was adapted as a transpiration apparatus for the measurement of the vapour pressure of KBF4 (s). Attainment of equilibrium was ascertained by the invariance of the measured values of the vapour pressures over a range of flows under isothermal conditions. Measured values of the vapour pressures could be represented by the least-squares expressions: log (p/Pa) = 8.16(±0.01) - 4892(±248)/T(K)(538-560 K), log (p/Pa) = 6.85(±0.06) - 4158(±240)/T(K) (576-660 K), which correspond to the equilibria of orthorhombic and cubic KBF4 vapours, respectively. From these expressions the temperature of transformation of the orthorhombic to the cubic phase was identified to be 561 K. From the slopes of the above equations, the enthalpies of sublimation of the orthorhombic and cubic phases were found to be (93.7 ± 4.7) and (79.6 ± 4.6) kJ mol-1, respectively. These values differ by 14.1 kJ mol-1 which could be ascribed to the enthalpy of the orthorhombic to cubic phase transition of KBF4. Third-law analysis of the vapour pressure data yielded a value of (104.6 ± 1.0) kJ mol-1 for Δ Hsubo of KBF4 (s) at 298.15 K.

  10. Turkish Undergraduates' Misconceptions of Evaporation, Evaporation Rate, and Vapour Pressure

    ERIC Educational Resources Information Center

    Canpolat, Nurtac

    2006-01-01

    This study focused on students' misconceptions related to evaporation, evaporation rate, and vapour pressure. Open-ended diagnostic questions were used with 107 undergraduates in the Primary Science Teacher Training Department in a state university in Turkey. In addition, 14 students from that sample were interviewed to clarify their written…

  11. Estimating past leaf-to-air vapour pressure deficit from terrestrial plant 13C

    NASA Astrophysics Data System (ADS)

    Turney, Chris S. M.; Barringer, James; Hunt, John E.; McGlone, Matt S.

    1999-08-01

    13C was determined in lignin extracted from present-day cladodes of Phyllocladus alpinus (a small coniferous tree) from seven well-lit sites across New Zealand. The 13C values ranged from -30.9 to -23.6 and were compared with monthly means of temperature, precipitation, relative humidity and vapour pressure deficit from the nearest recording stations. Of these parameters, the leaf-to-air vapour pressure deficit of the first month of cladode growth and expansion proved to be the most significantly correlated with lignin 13C, over a range of 0.3 to 0.8 kPa, confirming the importance of atmospheric moisture content on stomatal conductance. The carbon isotopic signature of lignin from fossilised cladodes preserved under the Kawakawa Tephra (22.6 k 14C yr BP) on the North Island is identical to that of the whole tissue, suggesting that for this species at least, fossil material can be used to approximate the lignin 13C. The 13C of species- and organ-specific fossil terrestrial plant material therefore provides an excellent method to quantify past changes in leaf-to-air vapour pressure deficit.

  12. A novel method of measuring the concentration of anaesthetic vapours using a dew-point hygrometer.

    PubMed

    Wilkes, A R; Mapleson, W W; Mecklenburgh, J S

    1994-02-01

    The Antoine equation relates the saturated vapour pressure of a volatile substance, such as an anaesthetic agent, to the temperature. The measurement of the 'dew-point' of a dry gas mixture containing a volatile anaesthetic agent by a dew-point hygrometer permits the determination of the partial pressure of the anaesthetic agent. The accuracy of this technique is limited only by the accuracy of the Antoine coefficients and of the temperature measurement. Comparing measurements by the dew-point method with measurements by refractometry showed systematic discrepancies up to 0.2% and random discrepancies with SDS up to 0.07% concentration in the 1% to 5% range for three volatile anaesthetics. The systematic discrepancies may be due to errors in available data for the vapour pressures and/or the refractive indices of the anaesthetics.

  13. Improving and assessing vapour pressure estimation methods for organic compounds of atmospheric relevance using a Knudsen Effusion Mass Spectrometer (KEMS)

    NASA Astrophysics Data System (ADS)

    Booth, A. M.; Topping, D. O.; McFiggans, G. B.; Garforth, A.; Percival, C. J.

    2009-12-01

    Aerosol particles influence climate directly through the scattering and absorbing radiation and indirectly through their role as cloud condensation nuclei (CCN). Traditionally, models aiming to capture the behaviour of aerosols in the atmosphere have concentrated on the role of inorganic compounds. However, organic components, covering a huge range of chemical and physical properties (Jacobson et.al., 2000), may constitute a significant fraction depending on location (Houghton et.al., 2001). Knowledge of pure component vapour pressures is essential for calculations of gas/particle partitioning. There are many methods of estimating vapour pressures but most of the experimental data collected to date has been for intermediate or high pressure compounds (and often measured at temperatures considerably above ambient) and the proportion of experimental data for low (less than 100Pa) vapour pressure compounds has been very small. Hence the datasets used for developing the estimation methods have reflected this bias in addition to the fact that components studied tend to have one or two functional groups at the most. Thus it is unsurprising that some of the estimation methods can give errors in vapour pressure of several orders of magnitude for multifunctional compounds at ambient temperatures. Knudsen Effusion Mass Spectrometer (KEMS) has been used to measure solid state vapour pressures for multifunctional organic compounds based on dicarboxylic acids (Booth et al 2009). In the atmosphere these compounds are likely to exist in the sub-cooled state so Differential Scanning Calorimetry (DSC) was used to obtain thermochemical data to effect a correction between solid and sub-cooled vapour pressures. The group contribution method of Nanoolal and co-workers (Nanoolal et al., 2008) is one of the best predictive methods in terms of reproducing available low volatility vapour pressure data (barley et al., 2009). The Nanoolal method relies on the use of primary and secondary

  14. Heat transfer and pressure drop of condensation of hydrocarbons in tubes

    NASA Astrophysics Data System (ADS)

    Fries, Simon; Skusa, Severin; Luke, Andrea

    2018-03-01

    The heat transfer coefficient and pressure drop are investigated for propane. Two different mild steel plain tubes and saturation pressures are considered for varying mass flux and vapour quality. The pressure drop is compared to the Friedel-Correlation with two different approaches to determine the friction factor. The first is calculation as proposed by Friedel and the second is through single phase pressure drop investigations. For lower vapour qualities the experimental results are in better agreement with the approach of the calculated friction factor. For higher vapour qualities the experimental friction factor is more precise. The pressure drop increases for a decreasing tube diameter and saturation pressure. The circumferential temperature profile and heat transfer coefficients are shown for a constant vapour quality at varying mass fluxes. The subcooling is highest for the bottom of the tube and lowest for the top. The average subcooling as well as the circumferential deviation decreases for rising mass fluxes. The averaged heat transfer coefficients are compared to the model proposed by Thome and Cavallini. The experimental results are in good agreement with both correlations, however the trend is better described with the correlation from Thome. The experimental heat transfer coefficients are under predicted by Thome and over predicted by Cavallini.

  15. Measurements of spectral parameters of water-vapour transitions near 1388 and 1345 nm for accurate simulation of high-pressure absorption spectra

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Jeffries, Jay B.; Hanson, Ronald K.

    2007-05-01

    Quantitative near-infrared absorption spectroscopy of water-vapour overtone and combination bands at high pressures is complicated by pressure broadening and shifting of individual lines and the blending of neighbouring transitions. An experimental and computational methodology is developed to determine accurate high-pressure absorption spectra. This case study investigates two water-vapour transitions, one near 1388 nm (7203.9 cm-1) and the other near 1345 nm (7435.6 cm-1), for potential two-line absorption measurements of temperature in the range of 400-1050 K with a pressure varying from 5-25 atm. The required quantitative spectroscopy data (line strength, collisional broadening, and pressure-induced frequency shift) of the target transitions and their neighbours (a total of four H2O vapour transitions near 1388 nm and six transitions near 1345 nm) are measured in neat H2O vapour, H2O-air and H2O-CO2 mixtures as a function of temperature (296-1000 K) at low pressures (<800 Torr). Precise values of the line strength S(T), pressure-broadening coefficients γair(T) and \\gamma _{CO_2 } (T), and pressure-shift coefficients δair(T) and \\delta _{CO_2 } (T) for the ten transitions were inferred from the measured spectra and compared with data from HITRAN 2004. A hybrid spectroscopic database was constructed by modifying HITRAN 2004 to incorporate these values for simulation of water-vapour-absorption spectra at high pressures. Simulations using this hybrid database are in good agreement with high pressure experiments and demonstrate that data collected at modest pressures can be used to simulate high-pressure absorption spectra.

  16. Vapour pressure and adiabatic cooling from champagne: slow-motion visualization of gas thermodynamics

    NASA Astrophysics Data System (ADS)

    Vollmer, Michael; Möllmann, Klaus-Peter

    2012-09-01

    We present two simple demonstration experiments recorded with high-speed cameras in the fields of gas dynamics and thermal physics. The experiments feature vapour pressure effects as well as adiabatic cooling observed upon opening a bottle of champagne.

  17. Vapour loss (``boiling'') as a mechanism for fluid evolution in metamorphic rocks

    NASA Astrophysics Data System (ADS)

    Trommsdorff, Volkmar; Skippen, George

    1986-11-01

    The calculation of fluid evolution paths during reaction progress is considered for multicomponent systems and the results applied to the ternary system, CO2-H2O-NaCl. Fluid evolution paths are considered for systems in which a CO2-rich phase of lesser density (vapour) is preferentially removed from the system leaving behind a saline aqueous phase (liquid). Such “boiling” leads to enrichment of the residual aqueous phase in dissolved components and, for certain reaction stoichiometries, to eventual saturation of the fluids in salt components. Distinctive textures, particularly radiating growths of prismatic minerals such as tremolite or diopside, are associated with saline fluid inclusions and solid syngenetic salt inclusions at a number of field localities. The most thoroughly studied of these localities is Campolungo, Switzerland, where metasomatic rocks have developed in association with fractures and veins at 500° C and 2,000 bars of pressure. The petrography of these rocks suggests that fluid phase separation into liquid and vapour has been an important process during metasomatism. Fracture systems with fluids at pressure less than lithostatic may facilitate the loss of the less dense vapour phase to conditions of the amphibolite facies.

  18. An Investigation of Tertiary Students' Understanding of Evaporation, Condensation and Vapour Pressure

    ERIC Educational Resources Information Center

    Gopal, Hemant; Kleinsmidt, Jacques; Case, Jennifer; Musonge, Paul

    2004-01-01

    Based on a purposive sample of 15 second-year chemical engineering students, this study investigates students' conceptions of evaporation, condensation and vapour pressure. During individual interviews the students were questioned on three tasks that had been designed around these topics. Qualitative analysis of student responses showed a range of…

  19. High mean water vapour pressure promotes the transmission of bacillary dysentery.

    PubMed

    Li, Guo-Zheng; Shao, Feng-Feng; Zhang, Hao; Zou, Chun-Pu; Li, Hui-Hui; Jin, Jue

    2015-01-01

    Bacillary dysentery is an infectious disease caused by Shigella dysenteriae, which has a seasonal distribution. External environmental factors, including climate, play a significant role in its transmission. This paper identifies climate-related risk factors and their role in bacillary dysentery transmission. Harbin, in northeast China, with a temperate climate, and Quzhou, in southern China, with a subtropical climate, are chosen as the study locations. The least absolute shrinkage and selectionator operator is applied to select relevant climate factors involved in the transmission of bacillary dysentery. Based on the selected relevant climate factors and incidence rates, an AutoRegressive Integrated Moving Average (ARIMA) model is established successfully as a time series prediction model. The numerical results demonstrate that the mean water vapour pressure over the previous month results in a high relative risk for bacillary dysentery transmission in both cities, and the ARIMA model can successfully perform such a prediction. These results provide better explanations for the relationship between climate factors and bacillary dysentery transmission than those put forth in other studies that use only correlation coefficients or fitting models. The findings in this paper demonstrate that the mean water vapour pressure over the previous month is an important predictor for the transmission of bacillary dysentery.

  20. Vapour Pressure and Adiabatic Cooling from Champagne: Slow-Motion Visualization of Gas Thermodynamics

    ERIC Educational Resources Information Center

    Vollmer, Michael; Mollmann, Klaus-Peter

    2012-01-01

    The recent introduction of inexpensive high-speed cameras offers a new experimental approach to many simple but fast-occurring events in physics. In this paper, the authors present two simple demonstration experiments recorded with high-speed cameras in the fields of gas dynamics and thermal physics. The experiments feature vapour pressure effects…

  1. Controllable growth of shaped graphene domains by atmospheric pressure chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Fan, Lili; Li, Zhen; Li, Xiao; Wang, Kunlin; Zhong, Minlin; Wei, Jinquan; Wu, Dehai; Zhu, Hongwei

    2011-12-01

    Graphene domains in different shapes have been grown on copper substrates via atmospheric pressure chemical vapour deposition by controlling the growth process parameters. Under stabilized conditions, graphene domains tend to be six-fold symmetric hexagons under low flow rate methane with some domains in an irregular hexagonal shape. After further varying the growth duration, methane flow rate, and temperature, graphene domains have developed shapes from hexagon to shovel and dendrite. Two connecting modes, through overlap and merging of adjacent graphene domains, are proposed.Graphene domains in different shapes have been grown on copper substrates via atmospheric pressure chemical vapour deposition by controlling the growth process parameters. Under stabilized conditions, graphene domains tend to be six-fold symmetric hexagons under low flow rate methane with some domains in an irregular hexagonal shape. After further varying the growth duration, methane flow rate, and temperature, graphene domains have developed shapes from hexagon to shovel and dendrite. Two connecting modes, through overlap and merging of adjacent graphene domains, are proposed. Electronic supplementary information (ESI) available: Schematics of CVD setups for graphene growth, Raman spectra and SEM images. See DOI: 10.1039/c1nr11480h

  2. An Investigation of Tertiary Students' Understanding of Evaporation, Condensation and Vapour Pressure. Research Report

    ERIC Educational Resources Information Center

    Gopal, Hemant; Kleinsmidt, Jacques; Case, Jennifer; Musonge, Paul

    2004-01-01

    Based on a purposive sample of 15 second-year chemical engineering students, this study investigates students' conceptions of evaporation, condensation and vapour pressure. During individual interviews the students were questioned on three tasks that had been designed around these topics. Qualitative analysis of student responses showed a range of…

  3. Acoustic and mechanical response of reservoir rocks under variable saturation and effective pressure.

    PubMed

    Ravazzoli, C L; Santos, J E; Carcione, J M

    2003-04-01

    We investigate the acoustic and mechanical properties of a reservoir sandstone saturated by two immiscible hydrocarbon fluids, under different saturations and pressure conditions. The modeling of static and dynamic deformation processes in porous rocks saturated by immiscible fluids depends on many parameters such as, for instance, porosity, permeability, pore fluid, fluid saturation, fluid pressures, capillary pressure, and effective stress. We use a formulation based on an extension of Biot's theory, which allows us to compute the coefficients of the stress-strain relations and the equations of motion in terms of the properties of the single phases at the in situ conditions. The dry-rock moduli are obtained from laboratory measurements for variable confining pressures. We obtain the bulk compressibilities, the effective pressure, and the ultrasonic phase velocities and quality factors for different saturations and pore-fluid pressures ranging from normal to abnormally high values. The objective is to relate the seismic and ultrasonic velocity and attenuation to the microstructural properties and pressure conditions of the reservoir. The problem has an application in the field of seismic exploration for predicting pore-fluid pressures and saturation regimes.

  4. Raspberry Ketone Analogs: Vapour Pressure Measurements and Attractiveness to Queensland Fruit Fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae)

    PubMed Central

    Hanssen, Benjamin L.; Jamie, Joanne F.; Jamie, Ian M.; Siderhurst, Matthew S.; Taylor, Phillip W.

    2016-01-01

    The Queensland fruit fly, Bactrocera tryoni (Froggatt) (Q-fly), is a major horticultural pest in Eastern Australia. Effective monitoring, male annihilation technique (MAT) and mass trapping (MT) are all important for control and require strong lures to attract flies to traps or toxicants. Lure strength is thought to be related in part to volatility, but little vapour pressure data are available for most Q-fly lures. Raspberry ketone (4-(4-hydroxyphenyl)-2-butanone) and analogs that had esters (acetyl, difluoroacetyl, trifluoroacetyl, formyl, propionyl) and ethers (methyl ether, trimethylsilyl ether) in replacement of the phenolic group, and in one case also had modification of the 2-butanone side chain, were measured for their vapour pressures by differential scanning calorimetry (DSC), and their attractiveness to Q-fly was assessed in small cage environmentally controlled laboratory bioassays. Maximum response of one category of compounds, containing both 2-butanone side chain and ester group was found to be higher than that of the other group of compounds, of which either of 2-butanone or ester functionality was modified. However, linear relationship between vapour pressure and maximum response was not significant. The results of this study indicate that, while volatility may be a factor in lure effectiveness, molecular structure is the dominating factor for the series of molecules investigated. PMID:27196605

  5. Arterial blood oxygen saturation during blood pressure cuff-induced hypoperfusion

    NASA Astrophysics Data System (ADS)

    Kyriacou, P. A.; Shafqat, K.; Pal, S. K.

    2007-10-01

    Pulse oximetry has been one of the most significant technological advances in clinical monitoring in the last two decades. Pulse oximetry is a non-invasive photometric technique that provides information about the arterial blood oxygen saturation (SpO2) and heart rate, and has widespread clinical applications. When peripheral perfusion is poor, as in states of hypovolaemia, hypothermia and vasoconstriction, oxygenation readings become unreliable or cease. The problem arises because conventional pulse oximetry sensors must be attached to the most peripheral parts of the body, such as finger, ear or toe, where pulsatile flow is most easily compromised. Pulse oximeters estimate arterial oxygen saturation by shining light at two different wavelengths, red and infrared, through vascular tissue. In this method the ac pulsatile photoplethysmographic (PPG) signal associated with cardiac contraction is assumed to be attributable solely to the arterial blood component. The amplitudes of the red and infrared ac PPG signals are sensitive to changes in arterial oxygen saturation because of differences in the light absorption of oxygenated and deoxygenated haemoglobin at these two wavelengths. From the ratios of these amplitudes, and the corresponding dc photoplethysmographic components, arterial blood oxygen saturation (SpO2) is estimated. Hence, the technique of pulse oximetry relies on the presence of adequate peripheral arterial pulsations, which are detected as photoplethysmographic (PPG) signals. The aim of this study was to investigate the effect of pressure cuff-induced hypoperfusion on photoplethysmographic signals and arterial blood oxygen saturation using a custom made finger blood oxygen saturation PPG/SpO2 sensor and a commercial finger pulse oximeter. Blood oxygen saturation values from the custom oxygen saturation sensor and a commercial finger oxygen saturation sensor were recorded from 14 healthy volunteers at various induced brachial pressures. Both pulse

  6. Micromachining of silicon carbide on silicon fabricated by low-pressure chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Behrens, Ingo; Peiner, Erwin; Bakin, Andrey S.; Schlachetzki, Andreas

    2002-07-01

    We describe the fabrication of silicon carbide layers for micromechanical applications using low-pressure metal-organic chemical vapour deposition at temperatures below 1000 °C. The layers can be structured by lift-off using silicon dioxide as a sacrificial layer. A large selectivity with respect to silicon can be exploited for bulk micromachining. Thin membranes are fabricated which exhibit high mechanical quality, as necessary for applications in harsh environments.

  7. Study of Laser Created Metal Vapour Plasmas.

    DTIC Science & Technology

    1981-09-01

    ance saturation could lead to extensive ground Zcvei burnout of certain kinds of atoms or ions and that this could lead to the creation of a ground...level FORM DD I JAN ", 1473 UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PACE ’l hen Dota Fnt ’UNCLASSIFIFD SS ~eUItTY CLASSIFICATION OF THIS PAqE(W"Sef...vapours. Preliminary calculations have suggested that laser resonance saturation could lead to extensive ground level burnout of certain kinds of

  8. Effect of treatment with an overheated dry-saturated steam vapour disinfection system on multidrug and extensively drug-resistant nosocomial pathogens and comparison with sodium hypochlorite activity.

    PubMed

    Bagattini, Maria; Buonocore, Raffaella; Giannouli, Maria; Mattiacci, Dario; Bellopede, Rossella; Grimaldi, Nicola; Nardone, Antonio; Zarrilli, Raffaele; Triassi, Maria

    2015-10-09

    The development of portable steam generators has made disinfection of the environment more practical. This study assessed the "in vitro" ability of an overheated dry-saturated steam vapour system to kill multidrug and extensively-drug resistant nosocomial pathogens, defining the antimicrobial spectrum and the contact times compared with the activity of sodium hypochlorite. The antibacterial efficacy of the overheated dry-saturated steam vapour system and of sodium hypochlorite against nosocomial pathogen isolates: extensively drug-resistant Acinetobacter baumannii, Pseudomonas aeruginosa, carbapenemase-producing Klebsiella pneumoniae, methicillin-resistant Staphylococcus aureus, high-level aminoglycoside-resistant Enterococcus faecalis, Candida parapsilosis and Aspergillus fumigatus were assessed using a surface time-kill test carried out on glass surfaces, with or without bovine serum albumin (BSA). The bactericidal activity of the overheated dry-saturated steam vapour system was observed at 180 °C after 5 min contact with or without BSA, using an initial inoculum of 10(9) CFU/mL. To reduce C. parapsilosis and A. fumigatus counts (from 10(7) CFU/mL), a longer contact time was necessary (7 min). In vitro tests with sodium hypochlorite at 5 % in the absence of an organic substance also resulted in an overall reduction in bacterial counts (from 10(9) CFU/mL) after 5 min of treatment. For mycotic challenge (10(7) CFU/mL), a longer contact time was necessary (7 min). In the presence of an organic substance, after 5 min, the hypochlorite reduced the viable count from 10(9) to 10(5) CFU/mL for all bacterial strains except E. faecalis that showed a reduction of 2 log units (10(9) to 10(7) CFU/mL). For C. parapsilosis and A. fumigatus, a 2 log unit reduction was observed after 7 min. Steam disinfection of environmental surfaces using a portable steam generator is a practical and effective method that is not affected by the presence of organic matter.

  9. Capillary pressure curves for low permeability chalk obtained by NMR imaging of core saturation profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norgaard, J.V.; Olsen, D.; Springer, N.

    1995-12-31

    A new technique for obtaining water-oil capillary pressure curves, based on NMR imaging of the saturation distribution in flooded cores is presented. In this technique, a steady state fluid saturation profile is developed by flooding the core at a constant flow rate. At the steady state situation where the saturation distribution no longer changes, the local pressure difference between the wetting and non-wetting phases represents the capillary pressure. The saturation profile is measured using an NMR technique and for a drainage case, the pressure in the non-wetting phase is calculated numerically. The paper presents the NMR technique and the proceduremore » for calculating the pressure distribution in the sample. Inhomogeneous samples produce irregular saturation profiles, which may be interpreted in terms of variation in permeability, porosity, and capillary pressure. Capillary pressure curves for North Sea chalk obtained by the new technique show good agreement with capillary pressure curves obtained by traditional techniques.« less

  10. New method to assess the water vapour permeance of wound coverings.

    PubMed

    Jonkman, M F; Molenaar, I; Nieuwenhuis, P; Bruin, P; Pennings, A J

    1988-05-01

    A new method for assessing the permeability to water vapour of wound coverings is presented, using the evaporimeter developed by Nilsson. This new method combines the water vapour transmission rate (WVTR) and the vapour pressure difference across a wound covering in one absolute measure: the water vapour permeance (WVP). The WVP of a wound covering is the steady flow (g) of water vapour per unit (m2) area of surface in unit (h) time induced by unit (kPa) vapour pressure difference, g.m-2.h-1.kPa-1. Since the WVP of a wound covering is a more accurate measure for the permeability than the WVTR is, it facilitates the prediction of the water exchange of a wound covering in clinical situations.

  11. Compressed liquid densities, saturated liquid densities, and vapor pressures of 1,1-difluoroethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Defibaugh, D.R.; Morrison, G.

    1996-05-01

    The compressed liquid densities and vapor pressures of 1,1-difluoroethane (HFC-152a) have been measured, correlated, and compared with other data. The liquid densities were measured with a combined standard uncertainty of {+-}0.05% using a vibrating tube densimeter over a temperature range of 243 K to 371 K and at pressures from near the saturated vapor pressure to 6,500 kPa; thus the data extend nearly to the critical point ({Tc} = 386.41 K and P{sub c} = 4514.7 kPa). The vapor pressures were measured with a combined standard uncertainty of {+-}0.02% using a stainless steel ebulliometer in the temperature range from 280more » K to 335 K. Saturated liquid densities were calculated by extrapolating the compressed liquid isotherms to the saturation pressure.« less

  12. Height-related trends in stomatal sensitivity to leaf-to-air vapour pressure deficit in a tall conifer

    Treesearch

    D.R. Woodruff; F.C. Meinzer; K.A. McCulloh

    2010-01-01

    Stomatal responses to leaf-to-air vapour pressure deficit (LVPD), leaf water potential components, and cuticular properties were characterized for Douglas-fir (Pseudotsuga menziesii) foliage collected from treetops along a height gradient from 5 m to 58 m in order to explore height-related trends in stomatal sensitivity to LVPD and to investigate...

  13. The Observed Properties of Liquid Helium at the Saturated Vapor Pressure

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell J.; Barenghi, Carlo F.

    1998-11-01

    The equilibrium and transport properties of liquid 4He are deduced from experimental observations at the saturated vapor pressure. In each case, the bibliography lists all known measurements. Quantities reported here include density, thermal expansion coefficient, dielectric constant, superfluid and normal fluid densities, first, second, third, and fourth sound velocities, specific heat, enthalpy, entropy, surface tension, ion mobilities, mutual friction, viscosity and kinematic viscosity, dispersion curve, structure factor, thermal conductivity, latent heat, saturated vapor pressure, thermal diffusivity and Prandtl number of helium I, and displacement length and vortex core parameter in helium II.

  14. Tests of a low-pressure switch protected by a saturating inductor

    NASA Astrophysics Data System (ADS)

    Lauer, E. J.; Birx, D. L.

    Low pressure switches and magnetic switches were tested as possible replacements for the high pressure switches currently used on Experimental Test Accelerator and Advanced Test Accelerator. When the low pressure switch is used with a low impedance transmission line, runaway electrons form a pinched electron beam which damages the anode. The use of the low pressure switch as the first switch in the pulsed power chain was tested; i.e., the switch would be used to connect a charged capacitor across the primary winding of a step up transformer. An inductor with a saturating core is connected in series so that, initially, there is a large inductive voltage drop. As a result, there is small voltage across the switch. By the time the inductor core saturates, the switch has developed sufficient ionization so that the switch voltage remains small, even with peak current, and an electron beam is not produced.

  15. Experimental study and theoretical interpretation of saturation effect on ultrasonic velocity in tight sandstones under different pressure conditions

    NASA Astrophysics Data System (ADS)

    Li, Dongqing; Wei, Jianxin; Di, Bangrang; Ding, Pinbo; Huang, Shiqi; Shuai, Da

    2018-03-01

    Understanding the influence of lithology, porosity, permeability, pore structure, fluid content and fluid distribution on the elastic wave properties of porous rocks is of great significance for seismic exploration. However, unlike conventional sandstones, the petrophysical characteristics of tight sandstones are more complex and less understood. To address this problem, we measured ultrasonic velocity in partially saturated tight sandstones under different effective pressures. A new model is proposed, combining the Mavko-Jizba-Gurevich relations and the White model. The proposed model can satisfactorily simulate and explain the saturation dependence and pressure dependence of velocity in tight sandstones. Under low effective pressure, the relationship of P-wave velocity to saturation is pre-dominantly attributed to local (pore scale) fluid flow and inhomogeneous pore-fluid distribution (large scale). At higher effective pressure, local fluid flow gradually decreases, and P-wave velocity gradually shifts from uniform saturation towards patchy saturation. We also find that shear modulus is more sensitive to saturation at low effective pressures. The new model includes wetting ratio, an adjustable parameter that is closely related to the relationship between shear modulus and saturation.

  16. Saturated fluorescence measurements of the hydroxyl radical in laminar high-pressure flames

    NASA Technical Reports Server (NTRS)

    Carter, Campbell D.; King, Galen B.; Laurendeau, Normand M.

    1990-01-01

    The efficacy of laser saturated fluorescence (LSF) for OH concentration measurements in high pressure flames was studied theoretically and experimentally. Using a numerical model describing the interaction of hydroxyl with nonuniform laser excitation, the effect of pressure on the validity of the balanced cross-rate model was studied along with the sensitivity of the depopulation of the laser-coupled levels to the ratio of rate coefficients describing: (1) electronic quenching to (sup 2) Sigma (+) (v double prime greater than 0), and (2) vibrational relaxation from v double prime greater than 0 to v double prime = 0. At sufficiently high pressures and near-saturated conditions, the total population of the laser-coupled levels reaches an asymptotic value, which is insensitive to the degree of saturation. When the ratio of electronic quenching to vibrational relaxation is small and the rate of coefficients for rotational transfer in the ground and excited electronic states are nearly the same, the balanced cross-rate model remains a good approximation for all pressures. When the above ratio is large, depopulation of the laser-coupled levels becomes significant at high pressures, and thus the balanced cross-rate model no longer holds. Under these conditions, however, knowledge of the depletion of the laser-coupled levels can be used to correct the model. A combustion facility for operation up to 20 atm was developed to allow LSF measurements of OH in high pressure flames. Using this facility, partial saturation in laminar high pressure (less than or equal to 12.3 atm) C2H6/O2/N2 flames was achieved. To evaluate the limits of the balanced cross-rate model, absorption and calibrated LSF measurements at 3.1 and 6.1 atm were compared. The fluorescence voltages were calibrated with absorption measurements in an atmospheric flame and corrected for their finite sensitivity to quenching with: (1) estimated quenching rate coefficients, and (2) an in situ measurement from a

  17. Damping Effect of an Unsaturated-Saturated System on Tempospatial Variations of Pressure Head and Specific Flux

    NASA Astrophysics Data System (ADS)

    Yang, C.; Zhang, Y. K.; Liang, X.

    2014-12-01

    Damping effect of an unsaturated-saturated system on tempospatialvariations of pressurehead and specificflux was investigated. The variance and covariance of both pressure head and specific flux in such a system due to a white noise infiltration were obtained by solving the moment equations of water flow in the system and verified with Monte Carlo simulations. It was found that both the pressure head and specific flux in this case are temporally non-stationary. The variance is zero at early time due to a deterministic initial condition used, then increases with time, and approaches anasymptotic limit at late time.Both pressure head and specific flux arealso non-stationary in space since the variance decreases from source to sink. The unsaturated-saturated systembehavesasa noise filterand it damps both the pressure head and specific flux, i.e., reduces their variations and enhances their correlation. The effect is stronger in upper unsaturated zone than in lower unsaturated zone and saturated zone. As a noise filter, the unsaturated-saturated system is mainly a low pass filter, filtering out the high frequency components in the time series of hydrological variables. The damping effect is much stronger in the saturated zone than in the saturated zone.

  18. Capillary pressure-saturation relationships for porous granular materials: Pore morphology method vs. pore unit assembly method

    NASA Astrophysics Data System (ADS)

    Sweijen, Thomas; Aslannejad, Hamed; Hassanizadeh, S. Majid

    2017-09-01

    In studies of two-phase flow in complex porous media it is often desirable to have an estimation of the capillary pressure-saturation curve prior to measurements. Therefore, we compare in this research the capability of three pore-scale approaches in reproducing experimentally measured capillary pressure-saturation curves. To do so, we have generated 12 packings of spheres that are representative of four different glass-bead packings and eight different sand packings, for which we have found experimental data on the capillary pressure-saturation curve in the literature. In generating the packings, we matched the particle size distributions and porosity values of the granular materials. We have used three different pore-scale approaches for generating the capillary pressure-saturation curves of each packing: i) the Pore Unit Assembly (PUA) method in combination with the Mayer and Stowe-Princen (MS-P) approximation for estimating the entry pressures of pore throats, ii) the PUA method in combination with the hemisphere approximation, and iii) the Pore Morphology Method (PMM) in combination with the hemisphere approximation. The three approaches were also used to produce capillary pressure-saturation curves for the coating layer of paper, used in inkjet printing. Curves for such layers are extremely difficult to determine experimentally, due to their very small thickness and the presence of extremely small pores (less than one micrometer in size). Results indicate that the PMM and PUA-hemisphere method give similar capillary pressure-saturation curves, because both methods rely on a hemisphere to represent the air-water interface. The ability of the hemisphere approximation and the MS-P approximation to reproduce correct capillary pressure seems to depend on the type of particle size distribution, with the hemisphere approximation working well for narrowly distributed granular materials.

  19. Effect of Saturation Pressure Difference on Metal-Silicide Nanopowder Formation in Thermal Plasma Fabrication.

    PubMed

    Shigeta, Masaya; Watanabe, Takayuki

    2016-03-07

    A computational investigation using a unique model and a solution algorithm was conducted, changing only the saturation pressure of one material artificially during nanopowder formation in thermal plasma fabrication, to highlight the effects of the saturation pressure difference between a metal and silicon. The model can not only express any profile of particle size-composition distribution for a metal-silicide nanopowder even with widely ranging sizes from sub-nanometers to a few hundred nanometers, but it can also simulate the entire growth process involving binary homogeneous nucleation, binary heterogeneous co-condensation, and coagulation among nanoparticles with different compositions. Greater differences in saturation pressures cause a greater time lag for co-condensation of two material vapors during the collective growth of the metal-silicide nanopowder. The greater time lag for co-condensation results in a wider range of composition of the mature nanopowder.

  20. Diode laser-induced infrared fluorescence of water vapour

    NASA Astrophysics Data System (ADS)

    Li, Hejie; Hanson, Ronald K.; Jeffries, Jay B.

    2004-07-01

    Infrared laser-induced fluorescence (LIF) of water vapour was investigated for its potential as a spatially resolved gasdynamic diagnostic. A cw diode laser operating near 1392 nm was scanned across a single absorption transition in the ngr1 + ngr3 band of H2O in a static cell, and the resulting fluorescence signal was collected near 2.7 µm (both ngr1 and ngr3 bands). Experiments were conducted at low pressure in pure water vapour and mixtures of water vapour and N2 using a 20 mW laser in a double-pass arrangement. A simple analytical model was developed to relate LIF intensity to gas properties as a function of laser power. The spectrally resolved, single-line excitation spectrum was fitted with a Voigt profile, allowing inference of the water vapour temperature from the Doppler-broadened component of the measured fluorescence lineshape. A two-line excitation scheme was also investigated as a means of measuring temperature with reduced measurement time. From these initial measurements, we estimate that a practical sensor for atmospheric pressure applications would require a minimum of 1-2 W of laser power for two-line, fixed-wavelength temperature measurements and a minimum of about 70 W of power for scanned-wavelength measurements.

  1. Effect of Saturation Pressure Difference on Metal–Silicide Nanopowder Formation in Thermal Plasma Fabrication

    PubMed Central

    Shigeta, Masaya; Watanabe, Takayuki

    2016-01-01

    A computational investigation using a unique model and a solution algorithm was conducted, changing only the saturation pressure of one material artificially during nanopowder formation in thermal plasma fabrication, to highlight the effects of the saturation pressure difference between a metal and silicon. The model can not only express any profile of particle size–composition distribution for a metal–silicide nanopowder even with widely ranging sizes from sub-nanometers to a few hundred nanometers, but it can also simulate the entire growth process involving binary homogeneous nucleation, binary heterogeneous co-condensation, and coagulation among nanoparticles with different compositions. Greater differences in saturation pressures cause a greater time lag for co-condensation of two material vapors during the collective growth of the metal–silicide nanopowder. The greater time lag for co-condensation results in a wider range of composition of the mature nanopowder. PMID:28344300

  2. A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapour concentration at high temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Rieker, G. B.; Li, H.; Liu, X.; Jeffries, J. B.; Hanson, R. K.; Allen, M. G.; Wehe, S. D.; Mulhall, P. A.; Kindle, H. S.

    2007-05-01

    A near-infrared diode laser sensor is presented that is capable of measuring time-varying gas temperature and water vapour concentration at temperatures up to 1050 K and pressures up to 25 atm with a bandwidth of 7.5 kHz. Measurements with noise-equivalent-absorbances of the order of 10-3 (10-5 Hz-1/2) are made possible in dynamic environments through the use of wavelength modulation spectroscopy (WMS) with second harmonic detection (2f) on two water vapour spectral features near 7203.9 and 7435.6 cm-1. Laser performance characteristics that become important at the large modulation depths needed at high pressures are accounted for in the WMS-2f signal analysis, and the utility of normalization by the 1f signal to correct for variations in laser intensity, transmission and detector gain is presented. Laboratory measurements with the sensor system in a static cell with known temperature and pressure agree to 3% RMS in temperature and 4% RMS in H2O mole fraction for 500 < T < 900 K and 1 < P < 25 atm. The sensor time response is demonstrated in a high-pressure shock tube where shock wave transients are successfully captured, the average measured post-shock temperature agrees within 1% of the expected value, and H2O mole fraction agrees within 8%.

  3. Capillary pressuresaturation relationships for gas shales measured using a water activity meter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donnelly, B.; Perfect, E.; McKay, L. D.

    Hydraulic fracturing of gas shale formations involves pumping a large volume of fracking fluid into a hydrocarbon reservoir to fracture the rock and thus increase its permeability. The majority of the fracking fluid introduced is never recovered and the fate of this lost fluid, often called “leak off,” has become the source of much debate. Information on the capillary pressuresaturation relationship for each wetting phase is needed to simulate leak off using numerical reservoir models. The petroleum industry commonly employs air – water capillary pressuresaturation curves to predict these relationships for mixed wet reservoirs. Traditional methodsmore » of measuring this curve are unsuitable for gas shales due to high capillary pressures associated with the small pores present. Still, a possible alternative method is the water activity meter which is used widely in the soil sciences for such measurements. However, its application to lithified material has been limited. Here, this study utilized a water activity meter to measure air – water capillary pressures (ranging from 1.3 to 219.6 MPa) at several water saturation levels in both the wetting and drying directions. Water contents were measured gravimetrically. Seven types of gas producing shale with different porosities (2.5–13.6%) and total organic carbon contents (0.4–13.5%) were investigated. Nonlinear regression was used to fit the resulting capillary pressure – water saturation data pairs for each shale type to the Brooks and Corey equation. Data for six of the seven shale types investigated were successfully fitted (median R 2 = 0.93), indicating this may be a viable method for parameterizing capillary pressuresaturation relationships for inclusion in numerical reservoir models. As expected, the different shale types had statistically different Brooks and Corey parameters. However, there were no significant differences between the Brooks and Corey parameters for the wetting

  4. Capillary pressuresaturation relationships for gas shales measured using a water activity meter

    DOE PAGES

    Donnelly, B.; Perfect, E.; McKay, L. D.; ...

    2016-05-10

    Hydraulic fracturing of gas shale formations involves pumping a large volume of fracking fluid into a hydrocarbon reservoir to fracture the rock and thus increase its permeability. The majority of the fracking fluid introduced is never recovered and the fate of this lost fluid, often called “leak off,” has become the source of much debate. Information on the capillary pressuresaturation relationship for each wetting phase is needed to simulate leak off using numerical reservoir models. The petroleum industry commonly employs air – water capillary pressuresaturation curves to predict these relationships for mixed wet reservoirs. Traditional methodsmore » of measuring this curve are unsuitable for gas shales due to high capillary pressures associated with the small pores present. Still, a possible alternative method is the water activity meter which is used widely in the soil sciences for such measurements. However, its application to lithified material has been limited. Here, this study utilized a water activity meter to measure air – water capillary pressures (ranging from 1.3 to 219.6 MPa) at several water saturation levels in both the wetting and drying directions. Water contents were measured gravimetrically. Seven types of gas producing shale with different porosities (2.5–13.6%) and total organic carbon contents (0.4–13.5%) were investigated. Nonlinear regression was used to fit the resulting capillary pressure – water saturation data pairs for each shale type to the Brooks and Corey equation. Data for six of the seven shale types investigated were successfully fitted (median R 2 = 0.93), indicating this may be a viable method for parameterizing capillary pressuresaturation relationships for inclusion in numerical reservoir models. As expected, the different shale types had statistically different Brooks and Corey parameters. However, there were no significant differences between the Brooks and Corey parameters for the wetting

  5. Vapour phase motion in cryogenic systems containing superheated and subcooled liquids

    NASA Astrophysics Data System (ADS)

    Kirichenko, Yu. A.; Chernyakov, P. S.; Seregin, V. E.

    The development of vent pipelines, and venting storage tanks for cryogenic liquids requires the knowledge of the law of motion as well as regularities of vapour content variation in the liquid and heat dissipation by the vapour phase. This is a theoretical study of the effect of superheating (subcooling) of the liquid, relative acceleration and reduced pressure upon the size and velocity of noninteracting vapour bubbles, moving in the liquid, and upon their resistance and heat transfer coefficients.

  6. Vapor Cartesian diver

    NASA Astrophysics Data System (ADS)

    Grebenev, Igor V.; Lebedeva, Olga V.; Polushkina, Svetlana V.

    2018-07-01

    The article proposes a new research object for a general physics course—the vapour Cartesian diver, designed to study the properties of saturated water vapour. Physics education puts great importance on the study of the saturated vapour state, as it is related to many fundamental laws and theories. For example, the temperature dependence of the saturated water vapour pressure allows the teacher to demonstrate the Le Chatelier’s principle: increasing the temperature of a system in a dynamic equilibrium favours the endothermic change. That means that increasing the temperature increases the amount of vapour present, and so increases the saturated vapour pressure. The experimental setup proposed in this paper can be used as an example of an auto-oscillatory system, based on the properties of saturated vapour. The article describes a mathematical model of physical processes that occur in the experiment, and proposes a numerical solution method for the acquired system of equations. It shows that the results of numerical simulation coincide with the self-oscillation parameters from the real experiment. The proposed installation can also be considered as a model of a thermal engine.

  7. Saturation meter

    DOEpatents

    Gregurech, S.

    1984-08-01

    A saturation meter for use in a pressurized water reactor plant comprising a differential pressure transducer having a first and second pressure sensing means and an alarm. The alarm is connected to the transducer and is preset to activate at a level of saturation prior to the formation of a steam void in the reactor vessel.

  8. A water vapour monitor at Paranal Observatory

    NASA Astrophysics Data System (ADS)

    Kerber, Florian; Rose, Thomas; Chacón, Arlette; Cuevas, Omar; Czekala, Harald; Hanuschik, Reinhard; Momany, Yazan; Navarrete, Julio; Querel, Richard R.; Smette, Alain; van den Ancker, Mario E.; Cure, Michel; Naylor, David A.

    2012-09-01

    We present the performance characteristics of a water vapour monitor that has been permanently deployed at ESO's Paranal observatory as a part of the VISIR upgrade project. After a careful analysis of the requirements and an open call for tender, the Low Humidity and Temperature Profiling microwave radiometer (LHATPRO), manufactured by Radiometer Physics GmbH (RPG), has been selected. The unit measures several channels across the strong water vapour emission line at 183 GHz, necessary for resolving the low levels of precipitable water vapour (PWV) that are prevalent on Paranal (median ~2.5 mm). The unit comprises the above humidity profiler (183-191 GHz), a temperature profiler (51-58 GHz), and an infrared radiometer (~10 μm) for cloud detection. The instrument has been commissioned during a 2.5 week period in Oct/Nov 2011, by comparing its measurements of PWV and atmospheric profiles with the ones obtained by 22 radiosonde balloons. In parallel an IR radiometer (Univ. Lethbridge) has been operated, and various observations with ESO facility spectrographs have been taken. The RPG radiometer has been validated across the range 0.5 - 9 mm demonstrating an accuracy of better than 0.1 mm. The saturation limit of the radiometer is about 20 mm. Currently, the radiometer is being integrated into the Paranal infrastructure to serve as a high time-resolution monitor in support of VLT science operations. The water vapour radiometer's ability to provide high precision, high time resolution information on this important aspect of the atmosphere will be most useful for conducting IR observations with the VLT under optimal conditions.

  9. Atomic fluorescence emitted from a corona discharge in helium above and below saturated vapour pressure

    NASA Astrophysics Data System (ADS)

    Shiltagh, Nagham M.; Mendoza Luna, Luis G.; Watkins, Mark J.; Thornton, Stuart C.; von Haeften, Klaus

    2018-01-01

    A new apparatus was constructed to investigate the visible and near infrared fluorescence spectroscopy of electronically excited helium over a wide range of pressures and temperatures, covering both the gaseous and liquid phases. To achieve sufficient throughput, increased sensitivity was established by employing a micro-discharge cell and a high performance lens system that allows for a large collection solid angle. With this set-up, several thousand spectra were recorded. The atomic 3 s 1 S → 2 p 1 P and 3 s 3 S → 2 p 3 P atomic transitions showed line shifts, spectral broadening and intensity changes that were dependent in magnitude on pressure, temperature and thermodynamic phase. While in the gas phase the lines showed little dependency on the discharge cell temperature, the opposite was observed for the liquid phase, suggesting that a significant number of atoms were solvated. Triplet lines were up to a factor of 50 times stronger in intensity than the singlet lines, depending on pressure. When taking the particle density into account, this effect was stronger in the gas phase than in the liquid phase of helium. This was attributed to the recombination of He2 +, He3 + and He4 + with electrons, which is facilitated in the gas phase because of the significantly higher mobility.

  10. Dichlorvos vapour disinsection of aircraft

    PubMed Central

    Jensen, Jens A.; Flury, Vincent P.; Schoof, Herbert F.

    1965-01-01

    The authors describe the testing of an automatic aircraft disinsection system permanently installed on a commercial DC-6B passenger aircraft. An air-compressor forces ambient cabin air, partially saturated with dichlorvos vapour at a set concentration, through the cabin, cockpit and baggage compartments of the aircraft for 30 minutes. Insecticide concentrations and insect mortality were observed in post-overhaul check flights, and insect mortality and passenger reactions were observed on scheduled flights between Miami, Florida, and Nassau, Bahamas. The results showed satisfactory biological efficiency. The passengers were unaware of the disinsection process and showed no signs of discomfort. ImagesFIG. 1FIG. 2FIG. 3 PMID:14310904

  11. Studies of the kinetics and mechanism of the oxidation of uranium by dry and moist air A model for determining the oxidation rate over a wide range of temperatures and water vapour pressures

    NASA Astrophysics Data System (ADS)

    McGillivray, G. W.; Geeson, D. A.; Greenwood, R. C.

    1994-01-01

    The rate of oxidation of uranium metal by moist air has been measured at temperatures from 115 to 350°C and water vapour pressures from 0 to 47 kPa (350 Torr). From this and from previously reported data, a model has been developed which allows the rate of uranium oxidation to be calculated at any particular combination of temperature and water vapour pressure of interest, in the range 0-350°C and 0-101.3 kPa (760 Torr). The model is based on the assumption that the surface concentration of water determines the rate of reaction and that the adsorption of water onto the oxide follows a Langmuir type isotherm. Theoretical plots of rate as a function of water vapour pressure and Arrhenius plots derived from the model have been shown to be in good agreement with experimental data. The model assumes separate contributions to the overall observed rate from oxygen and water vapour. Surface studies have been carried out using SIMS (secondary ion mass spectrometry). Depth profiling of the oxide produced by isotopically labelled reagents ( 18O 2 and H 218O), has shown that oxygen from both reactants is incorporated into the oxide layer in the ratio predicted by the kinetic model. This supports a mechanism in which oxygen and water vapour produce separate diffusing species (possibly O 2- and OH -).

  12. Non-invasive Positive Pressure Ventilation during Sleep at 3800m: relationship to Acute Mountain Sickness and sleeping oxyhemoglobin saturation

    PubMed Central

    Johnson, PL; Popa, DA; Prisk, GK; Sullivan, CE; Edwards, N

    2014-01-01

    Background and objectives Ascent to high altitude results in hypobaric hypoxia and some individuals will develop Acute Mountain Sickness, which has been shown to be associated with low oxyhemoglobin saturation during sleep. Previous research has shown that positive end-expiratory pressure by use of expiratory valves in a face mask while awake, results in a reduction in AMS symptoms and higher oxyhemoglobin saturation. We aimed to test whether pressure ventilation during sleep would prevent AMS by keeping oxyhaemoglobin higher during sleep. Methods We compared sleeping oxyhemoglobin saturation and the incidence and severity of Acute Mountain Sickness in seven subjects sleeping for two consecutive nights at 3800m above sea level using either non-invasive positive pressure ventilation that delivered positive inspiratory and expiratory airway pressure via a face mask, or sleeping without assisted ventilation. The presence and severity of Acute Mountain Sickness was assessed by administration of the Lake Louise questionnaire. Results We found significant increases in the mean and minimum sleeping oxyhemoglobin saturation and decreases in AMS symptoms in subjects who used positive pressure ventilation during sleep. Mean and minimum sleeping SaO2 was lower in subjects who developed AMS after the night spent without positive pressure ventilation. Conclusion The use of positive pressure ventilation during sleep at 3800m significantly increased the sleeping oxygen saturation; we suggest that the marked reduction in symptoms of AMS is due to this higher sleeping SaO2. We agree with the findings from previous studies that the development of AMS is associated with a lower sleeping oxygen saturation. PMID:20051046

  13. Non-invasive positive pressure ventilation during sleep at 3800 m: Relationship to acute mountain sickness and sleeping oxyhaemoglobin saturation.

    PubMed

    Johnson, Pamela L; Popa, Daniel A; Prisk, G Kim; Edwards, Natalie; Sullivan, Colin E

    2010-02-01

    Overnight oxyhaemoglobin desaturation is related to AMS. AMS can be debilitating and may require descent. Positive pressure ventilation during sleep at high altitude may prevent AMS and therefore be useful in people travelling to high altitude, who are known to suffer from AMS. Ascent to high altitude results in hypobaric hypoxia and some individuals will develop acute mountain sickness (AMS), which has been shown to be associated with low oxyhaemoglobin saturation during sleep. Previous research has shown that positive end-expiratory pressure by use of expiratory valves in a face mask while awake results in a reduction in AMS symptoms and higher oxyhaemoglobin saturation. We aimed to determine whether positive pressure ventilation would prevent AMS by increasing oxygenation during sleep. We compared sleeping oxyhaemoglobin saturation and the incidence and severity of AMS in seven subjects sleeping for two consecutive nights at 3800 m above sea level using either non-invasive positive pressure ventilation that delivered positive inspiratory and expiratory airway pressure via a face mask, or sleeping without assisted ventilation. The presence and severity of AMS were assessed by administration of the Lake Louise questionnaire. We found significant increases in the mean and minimum sleeping oxyhaemoglobin saturation and decreases in AMS symptoms in subjects who used positive pressure ventilation during sleep. Mean and minimum sleeping SaO2 was lower in subjects who developed AMS after the night spent without positive pressure ventilation. The use of positive pressure ventilation during sleep at 3800 m significantly increased the sleeping oxygen saturation; we suggest that the marked reduction in symptoms of AMS is due to this higher sleeping SaO2. We agree with the findings from previous studies that the development of AMS is associated with a lower sleeping oxygen saturation.

  14. Relating oxygen partial pressure, saturation and content: the haemoglobin-oxygen dissociation curve.

    PubMed

    Collins, Julie-Ann; Rudenski, Aram; Gibson, John; Howard, Luke; O'Driscoll, Ronan

    2015-09-01

    The delivery of oxygen by arterial blood to the tissues of the body has a number of critical determinants including blood oxygen concentration (content), saturation (S O2 ) and partial pressure, haemoglobin concentration and cardiac output, including its distribution. The haemoglobin-oxygen dissociation curve, a graphical representation of the relationship between oxygen satur-ation and oxygen partial pressure helps us to understand some of the principles underpinning this process. Historically this curve was derived from very limited data based on blood samples from small numbers of healthy subjects which were manipulated in vitro and ultimately determined by equations such as those described by Severinghaus in 1979. In a study of 3524 clinical specimens, we found that this equation estimated the S O2 in blood from patients with normal pH and S O2 >70% with remarkable accuracy and, to our knowledge, this is the first large-scale validation of this equation using clinical samples. Oxygen saturation by pulse oximetry (S pO2 ) is nowadays the standard clinical method for assessing arterial oxygen saturation, providing a convenient, pain-free means of continuously assessing oxygenation, provided the interpreting clinician is aware of important limitations. The use of pulse oximetry reduces the need for arterial blood gas analysis (S aO2 ) as many patients who are not at risk of hypercapnic respiratory failure or metabolic acidosis and have acceptable S pO2 do not necessarily require blood gas analysis. While arterial sampling remains the gold-standard method of assessing ventilation and oxygenation, in those patients in whom blood gas analysis is indicated, arterialised capillary samples also have a valuable role in patient care. The clinical role of venous blood gases however remains less well defined.

  15. MODEL FOR HYSTERETIC CONSTITUTIVE RELATIONS GOVERNING MULTIPHASE FLOW. 1. SATURATION-PRESSURE RELATIONS

    EPA Science Inventory

    In these companion papers, a general theoretical model is presented for the description of functional relationships between relative permeability k, fluid saturation S, and pressure P in two- or three-phase (e.g., air-water or air-oil-water) porous media systems subject to arbitr...

  16. The solubility of gold in H 2 O-H 2 S vapour at elevated temperature and pressure

    NASA Astrophysics Data System (ADS)

    Zezin, Denis Yu.; Migdisov, Artashes A.; Williams-Jones, Anthony E.

    2011-09-01

    This experimental study sheds light on the complexation of gold in reduced sulphur-bearing vapour, specifically, in H 2O-H 2S gas mixtures. The solubility of gold was determined in experiments at temperatures of 300, 350 and 365 °C and reached 2.2, 6.6 and 6.3 μg/kg, respectively. The density of the vapour varied from 0.02 to 0.22 g/cm 3, the mole fraction of H 2S varied from 0.03 to 0.96, and the pressure in the cell reached 263 bar. Statistically significant correlations of the amount of gold dissolved in the fluid with the fugacity of H 2O and H 2S permit the experimental data to be fitted to a solvation/hydration model. According to this model, the solubility of gold in H 2O-H 2S gas mixtures is controlled by the formation of sulphide or bisulphide species solvated by H 2S or H 2O molecules. Formation of gold sulphide species is favoured statistically over gold bisulphide species and thus the gold is interpreted to dissolve according to reactions of the form: Au(s)+(n+1)HS(g)=AuS·(HS)n(g)+H(g) Au(s)+HS(g)+mHO(g)=AuS·(HO)m(g)+H(g) Equilibrium constants for Reaction (A1) and the corresponding solvation numbers ( K A1 and n) were evaluated from the study of Zezin et al. (2007). The equilibrium constants as well as the hydration numbers for Reaction (A2) ( K A2 and m) were adjusted simultaneously by a custom-designed optimization algorithm and were tested statistically. The resulting values of log K A2 and m are -15.3 and 2.3 at 300 and 350 °C and -15.1 and 2.2 at 365 °C, respectively. Using the calculated stoichiometry and stability of Reactions (A1) and (A2), it is now possible to quantitatively evaluate the contribution of reduced sulphur species to the transport of gold in aqueous vapour at temperatures up to 365 °C. This information will find application in modelling gold ore-forming processes in vapour-bearing magmatic hydrothermal systems, notably those of epithermal environments.

  17. Micrometeorological measurements and vapour pressure deficit relations under in-field rainwater harvesting

    NASA Astrophysics Data System (ADS)

    Tesfuhuney, Weldemichael A.; Walker, Sue; Van Rensburg, Leon D.; Steyn, A. Stephan

    2016-08-01

    In a cropped field, microclimate and thermal stability conditions depend on the canopy structures and the prevailing weather. The main aim of the study therefore was to characterize the vertical profiles of weather variables within and above a maize (Zea mays L.) canopy and to describe the water vapour pressure deficit (VPD) under different atmospheric and soil surface conditions for both wide and narrow runoff strips with the in-field rainwater harvesting (IRWH) system. Micrometeorological measurements of wind, temperature and relative humidity were performed at eight levels, within canopy (1.8 and 2.1 m), and just above the canopy (2.4, 2.7, 3.0, and 3.3 m) up to reference levels (3.9 and 4.5 m) when the maize reached a maximum height of 2.2 m. Under incomplete canopy cover of the IRWH system, two important factors complicated evapotranspiration estimation, namely the local advection and high temperatures of the bare soil between adjacent plant rows. Diurnal variations of water vapour related to turbulence at each locality and its position in the thermal internal boundary layers. Generally, advection was more pronounced in wide runoff strips than narrow strips. On wide runoff strips the wind was more effective in replacing the air between the rows and maintained a higher driving force for evaporation. The maximum VPD over the narrow strips was observed at reference level during a dry day, at about 2.2 kPa in the afternoon, while wet day VPD reached a maximum of 1.8 kPa. The VPD of the wide runoff strips correlated negatively with wind speed, but showed a fairly positive correlation with some scattered values on wet days after rain. Therefore, profile characteristics within and above plant canopies played a key role in determining the VPD and consequently, could help to explain transpiration rates of crops. Hence, VPD relations enhanced the understanding of the heat energy exchange processes under the heterogeneous nature of maize canopy of the IRWH tillage system.

  18. Influence of particle size distribution on the blast pressure profile from explosives buried in saturated soils

    NASA Astrophysics Data System (ADS)

    Rigby, S. E.; Fay, S. D.; Tyas, A.; Clarke, S. D.; Reay, J. J.; Warren, J. A.; Gant, M.; Elgy, I.

    2018-05-01

    The spatial and temporal distribution of pressure and impulse from explosives buried in saturated cohesive and cohesionless soils has been measured experimentally for the first time. Ten experiments have been conducted at quarter-scale, where localised pressure loading was measured using an array of 17 Hopkinson pressure bars. The blast pressure measurements are used in conjunction with high-speed video filmed at 140,000 fps to investigate in detail the physical processes occurring at the loaded face. Two coarse cohesionless soils and one fine cohesive soil were tested: a relatively uniform sand, a well-graded sandy gravel, and a fine-grained clay. The results show that there is a single fundamental loading mechanism when explosives are detonated in saturated soil, invariant of particle size and soil cohesion. It is also shown that variability in localised loading is intrinsically linked to the particle size distribution of the surrounding soil.

  19. Numerical Simulation of Pulsation Flow in the Vapour Channel of Short Low Temperature Heat Pipes at High Heat Loads

    NASA Astrophysics Data System (ADS)

    Seryakov, A. V.; Konkin, A. V.

    2017-11-01

    The results of the numerical simulation of pulsations in the Laval-liked vapour channel of short low-temperature range heat pipes (HPs) are presented. The numerical results confirmed the experimentally obtained increase of the frequency of pulsations in the vapour channel of short HPs with increasing overheat of the porous evaporator relative to the boiling point of the working fluid. The occurrence of pressure pulsations inside the vapour channel in a short HPs is a complex phenomenon associated with the boiling beginning in the capillary-porous evaporator at high heat loads, and appearance the excess amount of vapour above it, leading to the increase in pressure P to a value at which the boiling point TB of the working fluid becomes higher than the evaporator temperature Tev. Vapour clot spreads through the vapour channel and condense, and then a rarefaction wave return from condenser in the evaporator, the boiling in which is resumed and the next cycle of the pulsations is repeated. Numerical simulation was performed using finite element method implemented in the commercial program ANSYS Multiphisics 14.5 in the two-dimensional setting of axis symmetric moist vapour flow with third kind boundary conditions.

  20. Vapour-phase method in the synthesis of polymer-ibuprofen sodium-silica gel composites.

    PubMed

    Kierys, Agnieszka; Krasucka, Patrycja; Grochowicz, Marta

    2017-11-01

    The study discusses the synthesis of polymer-silica composites comprising water soluble drug (ibuprofen sodium, IBS). The polymers selected for this study were poly(TRIM) and poly(HEMA- co -TRIM) produced in the form of permanently porous beads via the suspension-emulsion polymerization method. The acid and base set ternary composites were prepared by the saturation of the solid dispersions of drug (poly(TRIM)-IBS and/or poly(HEMA- co -TRIM)-IBS) with TEOS, and followed by their exposition to the vapour mixture of water and ammonia, or water and hydrochloric acid, at autogenous pressure. The conducted analyses reveal that the internal structure and total porosity of the resulting composites strongly depend on the catalyst which was used for silica precursor gelation. The parameters characterizing the porosity of both of the acid set composites are much lower than the parameters of the base set composites. Moreover, the basic catalyst supplied in the vapour phase does not affect the ibuprofen sodium molecules, whereas the acid one causes transformation of the ibuprofen sodium into the sodium chloride and a derivative of propanoic acid, which is poorly water soluble. The release profiles of ibuprofen sodium from composites demonstrate that there are differences in the rate and efficiency of drug desorption from them. They are mainly affected by the chemical character of the polymeric carrier but are also associated with the restricted swelling of the composites in the buffer solution after precipitation of silica gel.

  1. Development of a low frost-point generator operating at sub-atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Cuccaro, R.; Rosso, L.; Smorgon, D.; Beltramino, G.; Tabandeh, S.; Fernicola, V.

    2018-05-01

    A low frost-point generator (INRIM 03) operating at sub-atmospheric pressure has been designed and constructed at the Istituto Nazionale di Ricerca Metrologica (INRIM) as part of a calibration facility for upper-air sounding instruments. This new humidity generator covers the frost-point temperature range between  ‑99 °C and  ‑20 °C and works at any controlled pressure between 200 hPa and 1100 hPa, achieving a complete saturation of the carrier gas (nitrogen) in a single passage through a stainless steel isothermal saturator. The generated humid gas contains a water vapour amount fraction between 14  ×  10‑9 mol mol‑1 and 5  ×  10‑3 mol mol‑1. In this work the design of the generator is reported together with characterisation and performance evaluation tests. A preliminary validation of the INRIM 03 against one of the INRIM humidity standards in the common region is also included. Based on experimental test results, an initial uncertainty evaluation of the generated frost-point temperature, T fp, and water vapour amount fraction, x w, in the limited range down to  ‑75 °C at atmospheric pressure is reported. For the frost-point temperature, the uncertainty budget yields a total expanded uncertainty (k  =  2) of less than 0.028 °C, while for the mole fraction the budget yields a total expanded uncertainty of less than 10‑6 mol mol‑1.

  2. Elasticity of water-saturated rocks as a function of temperature and pressure.

    NASA Technical Reports Server (NTRS)

    Takeuchi, S.; Simmons, G.

    1973-01-01

    Compressional and shear wave velocities of water-saturated rocks were measured as a function of both pressure and temperature near the melting point of ice to confining pressure of 2 kb. The pore pressure was kept at about 1 bar before the water froze. The presence of a liquid phase (rather than ice) in microcracks of about 0.3% porosity affected the compressional wave velocity by about 5% and the shear wave velocity by about 10%. The calculated effective bulk modulus of the rocks changes rapidly over a narrow range of temperature near the melting point of ice, but the effective shear modulus changes gradually over a wider range of temperature. This phenomenon, termed elastic anomaly, is attributed to the existence of liquid on the boundary between rock and ice due to local stresses and anomalous melting of ice under pressure.

  3. Tests of a low-pressure switch protected by a saturating inductor

    NASA Astrophysics Data System (ADS)

    Lauer, E. J.; Birx, D. L.

    1981-10-01

    A triggered low-pressure switch was tested switching a charged capacitor across a damping resistor simulating a transformer. A series saturating inductor protected the switch from electron beam anode damage. The capacitor was 15 micro F and charge voltages up to 50 kV were used. The time to current maximum was 5 to 8 micro S. The current terminated at about 50 micro S and voltage could be reapplied at about 100 micro S.

  4. An advanced expiratory circuit for the recovery of perfluorocarbon liquid from non-saturated perfluorocarbon vapour during partial liquid ventilation: an experimental model

    PubMed Central

    Dunster, Kimble R; Davies, Mark W; Fraser, John F

    2006-01-01

    Background The loss of perfluorocarbon (PFC) vapour in the expired gases during partial liquid ventilation should be minimized both to prevent perfluorocarbon vapour entering the atmosphere and to re-use the recovered PFC liquid. Using a substantially modified design of our previously described condenser, we aimed to determine how much perfluorocarbon liquid could be recovered from gases containing PFC and water vapour, at concentrations found during partial liquid ventilation, and to determine if the amount recovered differed with background flow rate (at flow rates suitable for use in neonates). Methods The expiratory line of a standard ventilator circuit set-up was mimicked, with the addition of two condensers. Perfluorocarbon (30 mL of FC-77) and water vapour, at concentrations found during partial liquid ventilation, were passed through the circuit at a number of flow rates and the percentage recovery of the liquids measured. Results From 14.2 mL (47%) to 27.3 mL (91%) of the infused 30 mL of FC-77 was recovered at the flow rates studied. Significantly higher FC-77 recovery was obtained at lower flow rates (ANOVA with Bonferroni's multiple comparison test, p < 0.0001). As a percentage of the theoretical maximum recovery, 64 to 95% of the FC-77 was recovered. Statistically significantly less FC-77 was recovered at 5 Lmin-1 (ANOVA with Bonferroni's multiple comparison test, p < 0.0001). Amounts of perfluorocarbon vapour recovered were 47%, 50%, 81% and 91% at flow rates of 10, 5, 2 and 1 Lmin-1, respectively. Conclusion Using two condensers in series 47% to 91% of perfluorocarbon liquid can be recovered, from gases containing perfluorocarbon and water vapour, at concentrations found during partial liquid ventilation. PMID:16457722

  5. Oxidation of volatile organic vapours in air by solid potassium permanganate.

    PubMed

    Mahmoodlu, Mojtaba Ghareh; Hartog, Niels; Majid Hassanizadeh, S; Raoof, Amir

    2013-06-01

    Volatile organic compounds (VOCs) may frequently contaminate groundwater and pose threat to human health when migrating into the unsaturated soil zone and upward to the indoor air. The kinetic of chemical oxidation has been investigated widely for dissolved VOCs in the saturated zone. But, so far there have been few studies on the use of in situ chemical oxidation (ISCO) of vapour phase contaminants. In this study, batch experiments were carried out to evaluate the oxidation of trichloroethylene (TCE), ethanol, and toluene vapours by solid potassium permanganate. Results revealed that solid potassium permanganate is able to transform the vapour of these compounds into harmless oxidation products. The degradation rates for TCE and ethanol were higher than for toluene. The degradation process was modelled using a kinetic model, linear in the gas concentration of VOC [ML(-3)] and relative surface area of potassium permanganate grains (surface area of potassium permanganate divided by gas volume) [L(-1)]. The second-order reaction rate constants for TCE, ethanol, and toluene were found to be equal to 2.0×10(-6) cm s(-1), 1.7×10(-7) cm s(-1), and 7.0×10(-8) cm s(-1), respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Measurements of Capillary Pressure-Saturation Relationships for Silica Sands Using Light Transmission Visualization and a Rapid Pseudo Static Methods

    EPA Science Inventory

    Measurement of water saturation in porous media is essential for many types of studies including subsurface water flow, subsurface colloids transport and contaminant remediation to name a few. Water saturation (S) in porous media is dependent on the capillary pressure (Pc) which,...

  7. Review of vortex tube expansion in vapour compression refrigeration system

    NASA Astrophysics Data System (ADS)

    Liu, Yefeng; Yu, Jun

    2018-05-01

    A vortex tube expansion device replacing the throttle valve is proposed to improve the efficiency of vapour compression refrigeration cycle by reducing the loss of irreversibility in expansion process. The vortex tube is well-suited for these applications because it is simple, compact, light, quiet. Thus, this paper presents an overview of the thermodynamic analysis of vapour compression refrigeration cycle with vortex tube expansion device using different refrigerants. The paper also reviews the experiments and the calculations presented in previous studies on temperature separation in the vortex tube. The temperature separation mechanism and the flow-field inside the vortex tubes is explored by measuring the pressure, velocity, and temperature fields.

  8. Saturated laser fluorescence in turbulent sooting flames at high pressure

    NASA Technical Reports Server (NTRS)

    King, G. B.; Carter, C. D.; Laurendeau, N. M.

    1984-01-01

    The primary objective was to develop a quantitative, single pulse, laser-saturated fluorescence (LSF) technique for measurement of radical species concentrations in practical flames. The species of immediate interest was the hydroxyl radical. Measurements were made in both turbulent premixed diffusion flames at pressures between 1 and 20 atm. Interferences from Mie scattering were assessed by doping with particles or by controlling soot loading through variation of equivalence ratio and fuel type. The efficacy of the LSF method at high pressure was addressed by comparing fluorescence and adsorption measurements in a premixed, laminar flat flame at 1-20 atm. Signal-averaging over many laser shots is sufficient to determine the local concentration of radical species in laminar flames. However, for turbulent flames, single pulse measurements are more appropriate since a statistically significant number of laser pulses is needed to determine the probability function (PDF). PDFs can be analyzed to give true average properties and true local kinetics in turbulent, chemically reactive flows.

  9. Growth of the microalgae Neochloris oleoabundans at high partial oxygen pressures and sub-saturating light intensity.

    PubMed

    Sousa, Cláudia; de Winter, Lenneke; Janssen, Marcel; Vermuë, Marian H; Wijffels, René H

    2012-01-01

    The effect of partial oxygen pressure on growth of Neochloris oleoabundans was studied at sub-saturating light intensity in a fully-controlled stirred tank photobioreactor. At the three partial oxygen pressures tested (P(O)₂= 0.24; 0.63; 0.84 bar), the specific growth rate was 1.38; 1.36 and 1.06 day(-1), respectively. An increase of the P(CO)₂from 0.007 to 0.02 bar at P(O₂) of 0.84 bar resulted in an increase in the growth rate from 1.06 to 1.36 day(-1). These results confirm that the reduction of algal growth at high oxygen concentrations at sub-saturating light conditions is mainly caused by competitive inhibition of Rubisco. This negative effect on growth can be overcome by restoring the O(2)/CO(2) ratio by an increase in the partial carbon dioxide pressure. In comparison to general practice (P(O(2)) = 0.42 bar), working at partial O(2) pressure of 0.84 bar could reduce the energy requirement for degassing by a factor of 3-4. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. The ESA DUE GlobVapour Project

    NASA Astrophysics Data System (ADS)

    Schröder, M.; ESA Due Globvapour Project Team

    2010-12-01

    The European Space Agency (ESA) Data User Element (DUE) project series aims at bridging the gap between research projects and the sustainable provision of Earth Observation (EO) climate data products at an information level that fully responds to the operational needs of user communities. The ultimate objective of GlobVapour is to provide long-term coherent water vapour data sets exploiting the synergistic capabilities of different EO missions aiming at improved accuracies and enhanced temporal and spatial sampling better than those provided by the single sources. The project seeks to utilize the increasing potential of the synergistic capabilities of past, existing and upcoming satellite missions (ERS-1 and -2, ENVISAT, METOP, MSG as well as relevant non-European missions and in-situ data) in order to meet the increasing needs for coherent long-term water vapour datasets required by the scientific community. GlobVapour develops, validates and applies novel water vapour climate data sets derived from various sensors. More specifically, the primary objectives of the GlobVapour project are: 1)The development of multi-annual global water vapour data sets inclusive of error estimates based on carefully calibrated and inter-calibrated radiances. 2)The validation of the water vapour products against ground based, airborne and other satellite based measurements. 3) The provision of an assessment of the quality of different IASI water vapour profile algorithms developed by the project partners and other groups. 4) The provision of a complete processing system that can further strengthen operational production of the developed products. 5) A demonstration of the use of the products in the field of climate modelling, including applying alternative ways of climate model validation using forward radiation operators. 6) The promotion of the strategy of data set construction and the data sets themselves to the global research and operational community. The ultimate goal of the

  11. Direct Numerical Simulations of Dynamic Drainage and Imbibition to Investigate Capillary Pressure-Saturation-Interfacial Area Relation

    NASA Astrophysics Data System (ADS)

    Konangi, S.; Palakurthi, N. K.; Karadimitriou, N.; Comer, K.; Ghia, U.

    2017-12-01

    We present results of pore-scale direct numerical simulations (DNS) of drainage and imbibition in a quasi-two-dimensional (40µm thickness) porous medium with a randomly distributed packing of cylindrical obstructions. The Navier-Stokes (NS) equations are solved in the pore space on an Eulerian mesh using the open-source finite-volume computational fluid dynamics (CFD) code, OpenFOAM. The Volume-of-Fluid (VOF) method is employed to track the evolution of the fluid-fluid interface; a static contact angle is used to account for wall adhesion. From the DNS data, we focus on the macroscopic capillary pressure-saturation (Pc-Sw) relation, which is known to be hysteretic, i.e., this relation is flow process (such as drainage, imbibition and scanning curves) and history dependent. In order to overcome the problem of hysteresis, extended theories of multiphase flow hypothesized that the inclusion of specific interfacial area as a state variable will result in a unique relation between capillary pressure, saturation and interfacial area (Pc-Sw-awn). We study the role of specific interfacial area on hysteresis in the macroscopic Pc-Sw relation under non-equilibrium (dynamic) conditions. Under dynamic conditions, capillary pressure depends on the rate of change of the wetting phase saturation, and the dynamic Pc-Sw relation includes the changes caused by viscous effects. Simulations of drainage and imbibition are performed for two capillary numbers by controlling the flow rate of the non-wetting (polydimenthlysiloxane oil) and wetting (water) fluids. From these simulations, the Pc-Sw curves will be estimated; the Pc-S-awn surface will be constructed to determine whether the data points from drainage and imbibition processes fall on a unique surface under transient conditions. Different macroscopic capillary pressure definitions based on phase-averaged pressures and interfacial area will be evaluated. Understanding macroscopic capillary pressure definitions and the uniqueness

  12. Determination of vapor pressure of low-volatility compounds using a method to obtain saturated vapor with coated capillary columns.

    PubMed

    Rittfeldt, L

    2001-06-01

    The vapor pressures of O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX), O-isobutyl S-2-diethylaminoethyl methylphosphonothiolate (RVX), and 2,4-dinitrotoluene (2,4-DNT) were determined with the gas saturation method in temperatures ranging from -12 to 103 degrees C. The saturated vapor was generated using a fused-silica column coated with the compound. This column was placed in a gas chromatograph, and the vapor pressure was determined directly from the detector signal or by sampling on Tenax tubes that were subsequently analyzed. From the linear relationships obtained by plotting log P vs 1/T, the enthalpies of vaporization (deltaHvap) and the vapor pressures at selected temperatures were determined. The vapor pressure of VX at 25 degrees C was 0.110 Pa and the deltaHvap 77.9 kJ x mol(-1). The corresponding results for RVX were 0.082 Pa and 76.6 kJ x mol(-1). The vapor pressure of 2,4-DNT at 72 degrees C (melting point) was determined to 6.0 Pa, and the enthalpies of the solid and the liquid state were 94.2 and 75.3 kJ x mol(-1), respectively. Using capillary columns to generate saturated vapors has three major advantages: short equilibrium time, low consumption of sample, and safe handling of toxic compounds.

  13. The effect of coherent stirring on the advection–condensation of water vapour

    PubMed Central

    Vanneste, Jacques

    2017-01-01

    Atmospheric water vapour is an essential ingredient of weather and climate. The key features of its distribution can be represented by kinematic models which treat it as a passive scalar advected by a prescribed flow and reacting through condensation. Condensation acts as a sink that maintains specific humidity below a prescribed, space-dependent saturation value. To investigate how the interplay between large-scale advection, small-scale turbulence and condensation controls moisture distribution, we develop simple kinematic models which combine a single circulating flow with a Brownian-motion representation of turbulence. We first study the drying mechanism of a water-vapour anomaly released inside a vortex at an initial time. Next, we consider a cellular flow with a moisture source at a boundary. The statistically steady state attained shows features reminiscent of the Hadley cell such as boundary layers, a region of intense precipitation and a relative humidity minimum. Explicit results provide a detailed characterization of these features in the limit of strong flow. PMID:28690417

  14. The effect of coherent stirring on the advection-condensation of water vapour

    NASA Astrophysics Data System (ADS)

    Tsang, Yue-Kin; Vanneste, Jacques

    2017-06-01

    Atmospheric water vapour is an essential ingredient of weather and climate. The key features of its distribution can be represented by kinematic models which treat it as a passive scalar advected by a prescribed flow and reacting through condensation. Condensation acts as a sink that maintains specific humidity below a prescribed, space-dependent saturation value. To investigate how the interplay between large-scale advection, small-scale turbulence and condensation controls moisture distribution, we develop simple kinematic models which combine a single circulating flow with a Brownian-motion representation of turbulence. We first study the drying mechanism of a water-vapour anomaly released inside a vortex at an initial time. Next, we consider a cellular flow with a moisture source at a boundary. The statistically steady state attained shows features reminiscent of the Hadley cell such as boundary layers, a region of intense precipitation and a relative humidity minimum. Explicit results provide a detailed characterization of these features in the limit of strong flow.

  15. The effect of coherent stirring on the advection-condensation of water vapour.

    PubMed

    Tsang, Yue-Kin; Vanneste, Jacques

    2017-06-01

    Atmospheric water vapour is an essential ingredient of weather and climate. The key features of its distribution can be represented by kinematic models which treat it as a passive scalar advected by a prescribed flow and reacting through condensation. Condensation acts as a sink that maintains specific humidity below a prescribed, space-dependent saturation value. To investigate how the interplay between large-scale advection, small-scale turbulence and condensation controls moisture distribution, we develop simple kinematic models which combine a single circulating flow with a Brownian-motion representation of turbulence. We first study the drying mechanism of a water-vapour anomaly released inside a vortex at an initial time. Next, we consider a cellular flow with a moisture source at a boundary. The statistically steady state attained shows features reminiscent of the Hadley cell such as boundary layers, a region of intense precipitation and a relative humidity minimum. Explicit results provide a detailed characterization of these features in the limit of strong flow.

  16. Transversely diode-pumped alkali metal vapour laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkhomenko, A I; Shalagin, A M

    2015-09-30

    We have studied theoretically the operation of a transversely diode-pumped alkali metal vapour laser. For the case of high-intensity laser radiation, we have obtained an analytical solution to a complex system of differential equations describing the laser. This solution allows one to exhaustively determine all the energy characteristics of the laser and to find optimal parameters of the working medium and pump radiation (temperature, buffer gas pressure, and intensity and width of the pump spectrum). (lasers)

  17. Lipid order, saturation and surface property relationships: a study of human meibum saturation.

    PubMed

    Mudgil, Poonam; Borchman, Douglas; Yappert, Marta C; Duran, Diana; Cox, Gregory W; Smith, Ryan J; Bhola, Rahul; Dennis, Gary R; Whitehall, John S

    2013-11-01

    Tear film stability decreases with age however the cause(s) of the instability are speculative. Perhaps the more saturated meibum from infants may contribute to tear film stability. The meibum lipid phase transition temperature and lipid hydrocarbon chain order at physiological temperature (33 °C) decrease with increasing age. It is reasonable that stronger lipid-lipid interactions could stabilize the tear film since these interactions must be broken for tear break up to occur. In this study, meibum from a pool of adult donors was saturated catalytically. The influence of saturation on meibum hydrocarbon chain order was determined by infrared spectroscopy. Meibum is in an anhydrous state in the meibomian glands and on the surface of the eyelid. The influence of saturation on the surface properties of meibum was determined using Langmuir trough technology. Saturation of native human meibum did not change the minimum or maximum values of hydrocarbon chain order so at temperatures far above or below the phase transition of human meibum, saturation does not play a role in ordering or disordering the lipid hydrocarbon chains. Saturation did increase the phase transition temperature in human meibum by over 20 °C, a relatively high amount. Surface pressure-area studies showing the late take off and higher maximum surface pressure of saturated meibum compared to native meibum suggest that the saturated meibum film is quite molecularly ordered (stiff molecular arrangement) and elastic (molecules are able to rearrange during compression and expansion) compared with native meibum films which are more fluid agreeing with the infrared spectroscopic results of this study. In saturated meibum, the formation of compacted ordered islands of lipids above the surfactant layer would be expected to decrease the rate of evaporation compared to fluid and more loosely packed native meibum. Higher surface pressure observed with films of saturated meibum compared to native meibum

  18. The effect of vapour pressure deficit on stomatal conductance, sap pH and leaf-specific hydraulic conductance in Eucalyptus globulus clones grown under two watering regimes.

    PubMed

    Hernandez, Maria Jose; Montes, Fernando; Ruiz, Federico; Lopez, Gustavo; Pita, Pilar

    2016-05-01

    Stomatal conductance has long been considered of key interest in the study of plant adaptation to water stress. The expected increase in extreme meteorological events under a climate change scenario may compromise survival in Eucalyptus globulus plantations established in south-western Spain. We investigated to what extent changes in stomatal conductance in response to high vapour pressure deficits and water shortage are mediated by hydraulic and chemical signals in greenhouse-grown E. globulus clones. Rooted cuttings were grown in pots and submitted to two watering regimes. Stomatal conductance, shoot water potential, sap pH and hydraulic conductance were measured consecutively in each plant over 4 weeks under vapour pressure deficits ranging 0·42 to 2·25 kPa. Evapotranspiration, growth in leaf area and shoot biomass were also determined. There was a significant effect of both clone and watering regime in stomatal conductance and leaf-specific hydraulic conductance, but not in sap pH. Sap pH decreased as water potential and stomatal conductance decreased under increasing vapour pressure deficit. There was no significant relationship between stomatal conductance and leaf-specific hydraulic conductance. Stomata closure precluded shoot water potential from falling below -1·8 MPa. The percentage loss of hydraulic conductance ranged from 40 to 85 %. The highest and lowest leaf-specific hydraulic conductances were measured in clones from the same half-sib families. Water shortage reduced growth and evapotranspiration, decreases in evapotranspiration ranging from 14 to 32 % in the five clones tested. Changes in sap pH seemed to be a response to changes in atmospheric conditions rather than soil water in the species. Stomata closed after a considerable amount of hydraulic conductance was lost, although intraspecific differences in leaf-specific hydraulic conductance suggest the possibility of selection for improved productivity under water-limiting conditions

  19. The effect of vapour pressure deficit on stomatal conductance, sap pH and leaf-specific hydraulic conductance in Eucalyptus globulus clones grown under two watering regimes

    PubMed Central

    Hernandez, Maria Jose; Montes, Fernando; Ruiz, Federico; Lopez, Gustavo; Pita, Pilar

    2016-01-01

    Background and Aims Stomatal conductance has long been considered of key interest in the study of plant adaptation to water stress. The expected increase in extreme meteorological events under a climate change scenario may compromise survival in Eucalyptus globulus plantations established in south-western Spain. We investigated to what extent changes in stomatal conductance in response to high vapour pressure deficits and water shortage are mediated by hydraulic and chemical signals in greenhouse-grown E. globulus clones. Methods Rooted cuttings were grown in pots and submitted to two watering regimes. Stomatal conductance, shoot water potential, sap pH and hydraulic conductance were measured consecutively in each plant over 4 weeks under vapour pressure deficits ranging 0·42 to 2·25 kPa. Evapotranspiration, growth in leaf area and shoot biomass were also determined. Key Results There was a significant effect of both clone and watering regime in stomatal conductance and leaf-specific hydraulic conductance, but not in sap pH. Sap pH decreased as water potential and stomatal conductance decreased under increasing vapour pressure deficit. There was no significant relationship between stomatal conductance and leaf-specific hydraulic conductance. Stomata closure precluded shoot water potential from falling below −1·8 MPa. The percentage loss of hydraulic conductance ranged from 40 to 85 %. The highest and lowest leaf-specific hydraulic conductances were measured in clones from the same half-sib families. Water shortage reduced growth and evapotranspiration, decreases in evapotranspiration ranging from 14 to 32 % in the five clones tested. Conclusions Changes in sap pH seemed to be a response to changes in atmospheric conditions rather than soil water in the species. Stomata closed after a considerable amount of hydraulic conductance was lost, although intraspecific differences in leaf-specific hydraulic conductance suggest the possibility of selection for

  20. The Droplets Condensate Centering in the Vapour Channel of Short Low Temperature Heat Pipes at High Heat Loads

    NASA Astrophysics Data System (ADS)

    Seryakov, A. V.; Shakshin, S. L.; Alekseev, A. P.

    2017-11-01

    The results of experimental studies of the process of condensate microdroplets centering contained in the moving moist vapour in the vapour channel of short heat pipes (HPs) for large thermal loads are presented. A vapour channel formed by capillary-porous insert in the form of the inner Laval-liked nozzle along the entire length of the HP. In the upper cover forming a condensation surface in the HP, on the diametrical line are installed capacitive sensors, forming three capacitors located at different distances from the longitudinal axis of the vapour channel. With increasing heat load and the boil beginning in the evaporator a large amount of moist vapour in the vapour channel of HP occur the pressure pulsation with frequency of 400-500 Hz and amplitude up to 1·104Pa. These pulsations affect the moving of the inertial droplets subsystem of the vapour and due to the heterogeneity of the velocity profile around the particle flow in the vapour channel at the diameter of microdroplets occurs transverse force, called the Saffman force and shear microdroplets to the center of vapour channel. Using installed in the top cover capacitors we can record the radial displacement of the condensable microdroplets.

  1. Feasibility of hydroxyl concentration measurements by laser-saturated fluorescence in high-pressure flames

    NASA Technical Reports Server (NTRS)

    Carter, Campbell D.; King, Galen B.; Laurendeau, Normand M.; Salmon, J. Thaddeus

    1987-01-01

    The effect of pressure on the laser-saturated fluorescence method for measuring OH concentration in high-pressure flames is studied using calculations for the burned-gas region of a stoichiometric H2-O2 flame at 2000 K. A numerical model of the excitation dynamics of OH is developed to explore the validity of the balanced cross-rate model at higher pressures. It is shown that depopulation of the laser-coupled levels is sensitive to collisions which depopulate v-double-prime (VDP) = 0 and to rate coefficients for rotational transfer in the ground state which are smaller than those in the excited state. In particular, it is shown that the depopulation of VDP = 0, and hence the laser-coupled levels, depends on the probability of electronic quenching to vibrational levels for which VDP is greater than 0 and vibrational relaxation to VDP = 0.

  2. Influence of variations in systemic blood flow and pressure on cerebral and systemic oxygen saturation in cardiopulmonary bypass patients.

    PubMed

    Moerman, A; Denys, W; De Somer, F; Wouters, P F; De Hert, S G

    2013-10-01

    Although both pressure and flow are considered important determinants of regional organ perfusion, the relative importance of each is less established. The aim of the present study was to evaluate the impact of variations in flow, pressure, or both on cerebral and whole-body oxygen saturation. Thirty-four consenting patients undergoing elective cardiac surgery on cardiopulmonary bypass were included. Using a randomized cross-over design, four different haemodynamic states were simulated: (i) 20% flow decrease, (ii) 20% flow decrease with phenylephrine to restore baseline pressure, (iii) 20% pressure decrease with sodium nitroprusside (SNP) under baseline flow, and (iv) increased flow with baseline pressure. The effect of these changes was evaluated on cerebral (Sc(O₂)) and systemic (Sv(O₂)) oxygen saturation, and on systemic oxygen extraction ratio (OER). Data were assessed by within- and between-group comparisons. Decrease in flow was associated with a decrease in [from 63.5 (7.4) to 62.0 (8.5) %, P<0.001]. When arterial pressure was restored with phenylephrine during low flow, Sc(O₂) further decreased from 61.0 (9.7) to 59.2 (10.2) %, P<0.001. Increase in flow was associated with an increase in Sc(O₂) from 62.6 (7.7) to 63.6 (8.9) %, P=0.03, while decreases in pressure with the use of SNP did not affect Sc(O₂). Sv(O₂) was significantly lower (P<0.001) and OER was significantly higher (P<0.001) in the low flow arms. In the present elective cardiac surgery population, Sc(O₂) and Sv(O₂) were significantly lower with lower flow, regardless of systemic arterial pressure. Moreover, phenylephrine administration was associated with a reduced cerebral and systemic oxygen saturation.

  3. Determination of saturation pressure and enthalpy of vaporization of semi-volatile aerosols: the integrated volume mentod

    EPA Science Inventory

    This study presents the integrated volume method for estimating saturation pressure and enthalpy of vaporization of a whole aerosol distribution. We measure the change of total volume of an aerosol distribution between a reference state and several heated states, with the heating...

  4. Vapour-liquid interfacial properties of square-well chains from density functional theory and Monte Carlo simulation.

    PubMed

    Martínez-Ruiz, Francisco José; Blas, Felipe J; Moreno-Ventas Bravo, A Ignacio; Míguez, José Manuel; MacDowell, Luis G

    2017-05-17

    The statistical associating fluid theory for attractive potentials of variable range (SAFT-VR) density functional theory (DFT) developed by [Gloor et al., J. Chem. Phys., 2004, 121, 12740-12759] is used to predict the interfacial behaviour of molecules modelled as fully-flexible square-well chains formed from tangentially-bonded monomers of diameter σ and potential range λ = 1.5σ. Four different model systems, comprising 4, 8, 12, and 16 monomers per molecule, are considered. In addition to that, we also compute a number of interfacial properties of molecular chains from direct simulation of the vapour-liquid interface. The simulations are performed in the canonical ensemble, and the vapour-liquid interfacial tension is evaluated using the wandering interface (WIM) method, a technique based on the thermodynamic definition of surface tension. Apart from surface tension, we also obtain density profiles, coexistence densities, vapour pressures, and critical temperature and density, paying particular attention to the effect of the chain length on these properties. According to our results, the main effect of increasing the chain length (at fixed temperature) is to sharpen the vapour-liquid interface and to increase the width of the biphasic coexistence region. As a result, the interfacial thickness decreases and the surface tension increases as the molecular chains get longer. The interfacial thickness and surface tension appear to exhibit an asymptotic limiting behaviour for long chains. A similar behaviour is also observed for the coexistence densities and critical properties. Agreement between theory and simulation results indicates that SAFT-VR DFT is only able to predict qualitatively the interfacial properties of the model. Our results are also compared with simulation data taken from the literature, including the vapour-liquid coexistence densities, vapour pressures, and surface tension.

  5. Experimental, in-situ carbon solution mechanisms and isotope fractionation in and between (C-O-H)-saturated silicate melt and silicate-saturated (C-O-H) fluid to upper mantle temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Mysen, Bjorn

    2017-02-01

    Our understanding of materials transport processes in the Earth relies on characterizing the behavior of fluid and melt in silicate-(C-O-H) systems at high temperature and pressure. Here, Raman spectroscopy was employed to determine structure of and carbon isotope partitioning between melts and fluids in alkali aluminosilicate-C-O-H systems. The experimental data were recorded in-situ while the samples were at equilibrium in a hydrothermal diamond anvil cell at temperatures and pressures to 825 °C and >1300 MPa, respectively. The carbon solution equilibrium in both (C-O-H)-saturated melt and coexisting, silicate-saturated (C-O-H) fluid is 2CO3 + H2O + 2Qn + 1 = 2HCO3 + 2Qn. In the Qn-notation, the superscript, n, is the number of bridging oxygen in silicate structural units. At least one oxygen in CO3 and HCO3 groups likely is shared with silicate tetrahedra. The structural behavior of volatile components described with this equilibrium governs carbon isotope fractionation factors between melt and fluid. For example, the ΔH equals 3.2 ± 0.7 kJ/mol for the bulk 13C/12C exchange equilibrium between fluid and melt. From these experimental data, it is suggested that at deep crustal and upper mantle temperatures and pressures, the δ13C-differences between coexisting silicate-saturated (C-O-H) fluid and (C-O-H)-saturated silicate melts may change by more than 100‰ as a function of temperature in the range of magmatic processes. Absent information on temperature and pressure, the use of carbon isotopes of mantle-derived magma to derive isotopic composition of magma source regions in the Earth's interior, therefore, should be exercised with care.

  6. The effect of perfluorocarbon vapour on the measurement of respiratory tidal volume during partial liquid ventilation.

    PubMed

    Davies, M W; Dunster, K R

    2000-08-01

    During partial liquid ventilation perfluorocarbon vapour is present in the exhaled gases. The volumes of these gases are measured by pneumotachometers. Error in measuring tidal volumes will give erroneous measurement of lung compliance during partial liquid ventilation. We aim to compare measured tidal volumes with and without perfluorocarbon vapour using tidal volumes suitable for use in neonates. Tidal volumes were produced with a 100 ml calibration syringe from 20 to 100 ml and with a calibrated Harvard rodent ventilator from 2.5 to 20 ml. Control tidal volumes were drawn from a humidifier chamber containing water vapour and the PFC tidal volumes were drawn from a humidifier chamber containing water and perfluorocarbon (FC-77) vapour. Tidal volumes were measured by a fixed orifice, target, differential pressure flowmeter (VenTrak) or a hot-wire anenometer (Bear Cub) placed between the calibration syringe or ventilator and the humidifier chamber. All tidal volumes measured with perfluorocarbon vapour were increased compared with control (ANOVA p < 0.001 and post t-test p < 0.0001). Measured tidal volume increased from 7 to 16% with the fixed orifice type flow-meter, and from 35 to 41% with the hot-wire type. In conclusion, perfluorocarbon vapour flowing through pneumotachometers gives falsely high tidal volume measurements. Calculation of lung compliance must take into account the effect of perfluorocarbon vapour on the measurement of tidal volume.

  7. Vapour Intrusion into Buildings - A Literature Review

    EPA Science Inventory

    This chapter provides a review of recent research on vapour intrusion of volatile organic compounds (VOCs) into buildings. The chapter builds on a report from Tillman and Weaver (2005) which reviewed the literature on vapour intrusion through 2005. Firstly, the term ‘vapour intru...

  8. How do leaf hydraulics limit stomatal conductance at high water vapour pressure deficits?

    PubMed

    Bunce, James A

    2006-08-01

    A reduction in leaf stomatal conductance (g) with increasing leaf-to-air difference in water vapour pressure (D) is nearly ubiquitous. Ecological comparisons of sensitivity have led to the hypothesis that the reduction in g with increasing D serves to maintain leaf water potentials above those that would cause loss of hydraulic conductance. A reduction in leaf water potential is commonly hypothesized to cause stomatal closure at high D. The importance of these particular hydraulic factors was tested by exposing Abutilon theophrasti, Glycine max, Gossypium hirsutum and Xanthium strumarium to D high enough to reduce g and then decreasing ambient carbon dioxide concentration ([CO2]), and observing the resulting changes in g, transpiration rate and leaf water potential, and their reversibility. Reducing the [CO2] at high D increased g and transpiration rate and lowered leaf water potential. The abnormally high transpiration rates did not result in reductions in hydraulic conductance. Results indicate that low water potential effects on g at high D could be overcome by low [CO2], and that even lower leaf water potentials did not cause a reduction in hydraulic conductance in these well-watered plants. Reduced g at high D in these species resulted primarily from increased stomatal sensitivity to [CO2] at high D, and this increased sensitivity may mediate stomatal responses to leaf hydraulics at high D.

  9. Vapour growth of argyrodite-type ionic conductors Cu 6PS 5Hal

    NASA Astrophysics Data System (ADS)

    Fiechter, S.; Eckstein, J.; Nitsche, R.

    1983-03-01

    Cu 6PS 5Hal compounds (with Hal = Cl, Br or I) have been crystallized around 950 K by CVT with P, S and Hal (and combinations thereof). Chemical insight into the transport processes was gained from dissociation pressure measurements and spectroscopic vapour analysis. Lacking thermochemical data of the compounds were obtained from Cp measurements. Models, derived for the CVT mechanisms, yield transport rates and directions which agree qualitatively with experiments. The main vapour species (for Hal = C1) are PSCI 3, S 2, PCI 3, P 4S 3 and (CuCl) 3. With a surplus of CuHal, VLS growth via liquid CuHal/Cu 2S phases was observed.

  10. Heating of a fully saturated darcian half-space: Pressure generation, fluid expulsion, and phase change

    USGS Publications Warehouse

    Delaney, P.

    1984-01-01

    Analytical solutions are developed for the pressurization, expansion, and flow of one- and two-phase liquids during heating of fully saturated and hydraulically open Darcian half-spaces subjected to a step rise in temperature at its surface. For silicate materials, advective transfer is commonly unimportant in the liquid region; this is not always the case in the vapor region. Volume change is commonly more important than heat of vaporization in determining the position of the liquid-vapor interface, assuring that the temperatures cannot be determined independently of pressures. Pressure increases reach a maximum near the leading edge of the thermal front and penetrate well into the isothermal region of the body. Mass flux is insensitive to the hydraulic properties of the half-space. ?? 1984.

  11. Effect of CH4 on the CO2 breakthrough pressure and permeability of partially saturated low-permeability sandstone in the Ordos Basin, China

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Yu, Qingchun

    2018-01-01

    The behavior of CO2 that coexists with CH4 and the effect of CH4 on the CO2 stream need to be deeply analyzed and studied, especially in the presence of water. Our previous studies investigated the breakthrough pressure and permeability of pure CO2 in five partially saturated low-permeability sandstone core samples from the Ordos Basin, and we concluded that rocks with a small pore size and low permeability show considerable sealing capacity even under unsaturated conditions. In this paper, we selected three of these samples for CO2-CH4 gas-mixture breakthrough experiments under various degrees of water saturation. The breakthrough experiments were performed by increasing the gas pressure step by step until breakthrough occurred. Then, the effluent gas mixture was collected for chromatographic partitioning analysis. The results indicate that CH4 significantly affects the breakthrough pressure and permeability of CO2. The presence of CH4 in the gas mixture increases the interfacial tension and, thus, the breakthrough pressure. Therefore, the injected gas mixture that contains the highest (lowest) mole fraction of CH4 results in the largest (smallest) breakthrough pressure. The permeability of the gas mixture is greater than that for pure CO2 because of CH4, and the effective permeability decreases with increased breakthrough pressure. Chromatographic partitioning of the effluent mixture gases indicates that CH4 breaks through ahead of CO2 as a result of its weaker solubility in water. Correlations are established between (1) the breakthrough pressure and water saturation, (2) the effective permeability and water saturation, (3) the breakthrough pressure and effective permeability, and (4) the mole fraction of CO2/CH4 in the effluent mixture gases and water saturation. These results deepen our understanding of the multi-phase flow behavior in the porous media under unsaturated conditions, which have implications for formulating emergency response plans for gas

  12. Stomatal acclimation to vapour pressure deficit doubles transpiration of small tree seedlings with warming.

    PubMed

    Marchin, Renée M; Broadhead, Alice A; Bostic, Laura E; Dunn, Robert R; Hoffmann, William A

    2016-10-01

    Future climate change is expected to increase temperature (T) and atmospheric vapour pressure deficit (VPD) in many regions, but the effect of persistent warming on plant stomatal behaviour is highly uncertain. We investigated the effect of experimental warming of 1.9-5.1 °C and increased VPD of 0.5-1.3 kPa on transpiration and stomatal conductance (gs ) of tree seedlings in the temperate forest understory (Duke Forest, North Carolina, USA). We observed peaked responses of transpiration to VPD in all seedlings, and the optimum VPD for transpiration (Dopt ) shifted proportionally with increasing chamber VPD. Warming increased mean water use of Carya by 140% and Quercus by 150%, but had no significant effect on water use of Acer. Increased water use of ring-porous species was attributed to (1) higher air T and (2) stomatal acclimation to VPD resulting in higher gs and more sensitive stomata, and thereby less efficient water use. Stomatal acclimation maintained homeostasis of leaf T and carbon gain despite increased VPD, revealing that short-term stomatal responses to VPD may not be representative of long-term exposure. Acclimation responses differ from expectations of decreasing gs with increasing VPD and may necessitate revision of current models based on this assumption. © 2016 John Wiley & Sons Ltd.

  13. Studies of copper and gold vapour lasers

    NASA Astrophysics Data System (ADS)

    Clark, Graeme Lawrence

    The work described in this thesis covers various aspects of pulsed copper and gold vapour lasers. The work is divided into four main parts : a computer model of the kinetics of the copper vapour laser discharge; construction and characterization of a copper vapour laser and a gold vapour laser system (to be used for photodynamic cancer treatment); analysis of the thermal processes occurring in the various forms of thermal insulation used in these lasers; and studies of the use of metal walls to confine a discharge plasma. The results of this work were combined in the design of the first copper vapour laser to use metal rather than an electrically insulating ceramic material for confinement of the discharge plasma. Laser action in copper vapour has been achieved in a number of metal-walled designs, with continuous lengths of metal ranging from 30 mm, in a segmented design, to 400 mm, where the discharge plasma was confined by two molybdenum tubes of this length. A theoretical explanation of the behaviour of plasmas in metal-walled discharge vessels is described.

  14. Structure of nickel-copper alloys subjected to high-pressure torsion to saturation stage

    NASA Astrophysics Data System (ADS)

    Popov, V. V.; Stolbovsky, A. V.; Popova, E. N.

    2017-11-01

    Transmission electron microscopy and microhardness measurements were used to study the structure of Ni-Cu alloys subjected to high-pressure torsion (to saturation state) at room-temperature using five revolutions. It was shown that, when passing from copper to nickel, the submicrocrystalline structure becomes substantially refined, and the microhardness increases by more than 1.5 times. This is related to differences in the melting temperature and stacking fault energy. The simultaneous effect of these two factors leads to the nonlinearity of the composition dependences of the crystallite size and microhardness.

  15. A demonstration experiment for studying the properties of saturated vapor

    NASA Astrophysics Data System (ADS)

    Grebenev, Igor V.; Lebedeva, Olga V.; Polushkina, Svetlana V.

    2017-11-01

    The paper proposes an important demonstration experiment that can be used at secondary schools in physics. The described experiment helps students learn the main concepts of the topic ‘saturated vapor’, namely, evaporation, condensation, dynamic equilibrium, saturation vapor, partial pressure, and the dependence of saturated vapor pressure on temperature.

  16. Evaluation of balloon and satellite water vapour measurements in the Southern tropical and subtropical UTLS during the HIBISCUS campaign

    NASA Astrophysics Data System (ADS)

    Montoux, N.; Hauchecorne, A.; Pommereau, J.-P.; Lefèvre, F.; Durry, G.; Jones, R. L.; Rozanov, A.; Dhomse, S.; Burrows, J. P.; Morel, B.; Bencherif, H.

    2009-07-01

    Balloon water vapour in situ and remote measurements in the tropical upper troposphere and lower stratosphere (UTLS) obtained during the HIBISCUS campaign around 20° S in Brazil in February-March 2004 using a tunable diode laser (μSDLA), a surface acoustic wave (SAW) and a Vis-NIR solar occultation spectrometer (SAOZ) on a long duration balloon, have been used for evaluating the performances of satellite borne remote water vapour instruments available at the same latitude and measurement period. In the stratosphere, HALOE displays the best precision (2.5%), followed by SAGE II (7%), MIPAS (10%), SAOZ (20-25%) and SCIAMACHY (35%), all of which show approximately constant H2O mixing ratios between 20-25 km. Compared to HALOE of ±10% accuracy between 0.1-100 hPa, SAGE II and SAOZ show insignificant biases, MIPAS is wetter by 10% and SCIAMACHY dryer by 20%. The currently available GOMOS profiles of 25% precision show a positive vertical gradient in error for identified reasons. Compared to these, the water vapour of the Reprobus Chemistry Transport Model, forced at pressures higher than 95 hPa by the ECMWF analyses, is dryer by about 1 ppmv (20%). In the lower stratosphere between 16-20 km, most notable features are the steep degradation of MIPAS precision below 18 km, and the appearance of biases between instruments far larger than their quoted total uncertainty. HALOE and SAGE II (after spectral adjustment for reducing the bias with HALOE at northern mid-latitudes) both show decreases of water vapour with a minimum at the tropopause not seen by other instruments or the model, possibly attributable to an increasing error in the HALOE altitude registration. Between 16-18 km where the water vapour concentration shows little horizontal variability, and where the μSDLA balloon measurements are not perturbed by outgassing, the average mixing ratios reported by the remote sensing instruments are substantially lower than the 4-5 ppmv observed by the μSDLA. Differences

  17. Time-dependent calculations of molten pool formation and thermal plasma with metal vapour in gas tungsten arc welding

    NASA Astrophysics Data System (ADS)

    Tanaka, M.; Yamamoto, K.; Tashiro, S.; Nakata, K.; Yamamoto, E.; Yamazaki, K.; Suzuki, K.; Murphy, A. B.; Lowke, J. J.

    2010-11-01

    A gas tungsten arc (GTA) was modelled taking into account the contamination of the plasma by metal vapour from the molten anode. The whole region of GTA atmosphere including the tungsten cathode, the arc plasma and the anode was treated using a unified numerical model. A viscosity approximation was used to express the diffusion coefficient in terms of viscosity of the shielding gas and metal vapour. The transient two-dimensional distributions of temperature, velocity of plasma flow and iron vapour concentration were predicted, together with the molten pool as a function of time for a 150 A arc current at atmospheric pressure, both for helium and argon gases. It was shown that the thermal plasma in the GTA was influenced by iron vapour from the molten pool surface and that the concentration of iron vapour in the plasma was dependent on the temperature of the molten pool. GTA on high sulfur stainless steel was calculated to discuss the differences between a low sulfur and a high sulfur stainless steel anode. Helium was selected as the shielding gas because a helium GTA produces more metal vapour than an argon GTA. In the GTA on a high sulfur stainless steel anode, iron vapour and current path were constricted. Radiative emission density in the GTA on high sulfur stainless steel was also concentrated in the centre area of the arc plasma together with the iron vapour although the temperature distributions were almost the same as that in the case of a low sulfur stainless steel anode.

  18. The oxidative corrosion of carbide inclusions at the surface of uranium metal during exposure to water vapour.

    PubMed

    Scott, T B; Petherbridge, J R; Harker, N J; Ball, R J; Heard, P J; Glascott, J; Allen, G C

    2011-11-15

    The reaction between uranium and water vapour has been well investigated, however discrepancies exist between the described kinetic laws, pressure dependence of the reaction rate constant and activation energies. Here this problem is looked at by examining the influence of impurities in the form of carbide inclusions on the reaction. Samples of uranium containing 600 ppm carbon were analysed during and after exposure to water vapour at 19 mbar pressure, in an environmental scanning electron microscope (ESEM) system. After water exposure, samples were analysed using secondary ion mass spectrometry (SIMS), focused ion beam (FIB) imaging and sectioning and transmission electron microscopy (TEM) with X-ray diffraction (micro-XRD). The results of the current study indicate that carbide particles on the surface of uranium readily react with water vapour to form voluminous UO(3) · xH(2)O growths at rates significantly faster than that of the metal. The observation may also have implications for previous experimental studies of uranium-water interactions, where the presence of differing levels of undetected carbide may partly account for the discrepancies observed between datasets. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  19. A review of vapour lock issues during motor gasoline or automotive gasoline usage in piston engine aircraft

    NASA Astrophysics Data System (ADS)

    Thanikasalam, K.; Rahmat, M.; Fahmi, A. G. Mohammad; Zulkifli, A. M.; Shawal, N. Noor; Ilanchelvi, K.; Ananth, M.; Elayarasan, R.

    2018-05-01

    Since there is a developing practice of utilizing automotive fuels as flight fuel, there are higher chances of dangerous scenarios, particularly in the operation of piston aircraft engines. The use of motor vehicle gas (MOGAS) or aviation gas (AVGAS) in the operation of aviation piston engine increases the risk of vapour locking. A statistical examination of European aviation industry indicates that around 20,000 aircraft are affected either specifically or conceivably by the different negative impacts of gasoline blended with ethanol. Particularly, for most contemporary carburettor engines, there are risks associated with ethanol-admixed fuels that have potential to upset engine operation. The danger of vapour locking, which is the generation of gas bubbles inside the fuel system causing an impairment of fuel movement in the engine, is well documented particularly by studies on aircraft using MOGAS. Contrasted with AVGAS, MOGAS is inclined to demonstrate this phenomenon. Vapour lock is perhaps the leading serious problem that ought to be addressed if MOGAS is to be used as a substitute for AVGAS. Vapour lock problem is critical because it causes malfunctions to aircraft engines. Thus, an understanding of vapour handling ability of small aircraft is essential to establish safe operating confines at existing fuel temperature and pressures.

  20. A review of water recovery by vapour permeation through membranes.

    PubMed

    Bolto, Brian; Hoang, Manh; Xie, Zongli

    2012-02-01

    In vapour permeation the feed is a vapour, not a liquid as in pervaporation. The process employs a polymeric membrane as a semi-permeable barrier between the feed side under high pressure and the permeate side under low pressure. Separation is achieved by the different degrees to which components are dissolved in and diffuse through the membrane, the system working according to a solution-diffusion mechanism. The materials used in the membrane depend upon the types of compounds being separated, so water transport is favoured by hydrophilic material, whether organic or inorganic. The process is used for the dehydration of natural gas and various organic solvents, notably alcohol as biofuel, as well as the removal of water from air and its recovery from waste steam. Waste steam can be found in almost every plant/factory where steam is used. It is frequently contaminated and cannot be reused. Discharging the spent steam to the atmosphere is a serious energy loss and environmental issue. Recycling the steam can significantly improve the overall energy efficiency of an industry, which is responsible for massive CO(2) emissions. Steam separation at high fluxes and temperatures has been accomplished with a composite poly(vinyl alcohol) membrane containing silica nanoparticles, and also, less efficiently, with an inorganic zeolite membrane. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  1. Characterization of Gas-Hydrate Sediment: In Situ Evaluation of Hydrate Saturation in Pores of Pressured Sedimental Samples

    NASA Astrophysics Data System (ADS)

    Jin, Y.; Konno, Y.; Kida, M.; Nagao, J.

    2014-12-01

    Hydrate saturation of gas-hydrate bearing sediment is a key of gas production from natural gas-hydrate reservoir. Developable natural gas-hydrates by conventional gas/oil production apparatus almost exist in unconsolidated sedimental layer. Generally, hydrate saturations of sedimental samples are directly estimated by volume of gas generated from dissociation of gas hydrates in pore spaces, porosity data and volume of the sediments. Furthermore, hydrate saturation can be also assessed using velocity of P-wave through sedimental samples. Nevertheless, hydrate saturation would be changed by morphological variations (grain-coating, cementing and pore-filling model) of gas hydrates in pore spaces. Jin et al.[1,2] recently observed the O-H stretching bands of H2O molecules of methane hydrate in porous media using an attenuated total reflection IR (ATR-IR) spectra. They observed in situ hydrate formation/dissociation process in sandy samples (Tohoku Keisya number 8, grain size of ca. 110 μm). In this presentation, we present IR spectroscopy approach to in situ evaluation of hydrate saturation of pressured gas-hydrate sediments. This work was supported by funding from the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) planned by the Ministry of Economy, Trade and Industry (METI), Japan. [1] Jin, Y.; Konno, Y.; Nagao, J. Energy Fules, 2012, 26, 2242-2247. [2] Jin, Y.; Oyama, H.; Nagao, J. Jpn. J. Appl. Phys. 2009, 48, No. 108001.

  2. Critical behaviour and vapour-liquid coexistence of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ionic liquids via Monte Carlo simulations.

    PubMed

    Rai, Neeraj; Maginn, Edward J

    2012-01-01

    Atomistic Monte Carlo simulations are used to compute vapour-liquid coexistence properties of a homologous series of [C(n)mim][NTf2] ionic liquids, with n = 1, 2, 4, 6. Estimates of the critical temperatures range from 1190 K to 1257 K, with longer cation alkyl chains serving to lower the critical temperature. Other quantities such as critical density, critical pressure, normal boiling point, and accentric factor are determined from the simulations. Vapour pressure curves and the temperature dependence of the enthalpy of vapourisation are computed and found to have a weak dependence on the length of the cation alkyl chain. The ions in the vapour phase are predominately in single ion pairs, although a significant number of ions are found in neutral clusters of larger sizes as temperature is increased. It is found that previous estimates of the critical point obtained from extrapolating experimental surface tension data agree reasonably well with the predictions obtained here, but group contribution methods and primitive models of ionic liquids do not capture many of the trends observed in the present study

  3. Retrieval of total water vapour in the Arctic using microwave humidity sounders

    NASA Astrophysics Data System (ADS)

    Cristian Scarlat, Raul; Melsheimer, Christian; Heygster, Georg

    2018-04-01

    Quantitative retrievals of atmospheric water vapour in the Arctic present numerous challenges because of the particular climate characteristics of this area. Here, we attempt to build upon the work of Melsheimer and Heygster (2008) to retrieve total atmospheric water vapour (TWV) in the Arctic from satellite microwave radiometers. While the above-mentioned algorithm deals primarily with the ice-covered central Arctic, with this work we aim to extend the coverage to partially ice-covered and ice-free areas. By using modelled values for the microwave emissivity of the ice-free sea surface, we develop two sub-algorithms using different sets of channels that deal solely with open-ocean areas. The new algorithm extends the spatial coverage of the retrieval throughout the year but especially in the warmer months when higher TWV values are frequent. The high TWV measurements over both sea-ice and open-water surfaces are, however, connected to larger uncertainties as the retrieval values are close to the instrument saturation limits.This approach allows us to apply the algorithm to regions where previously no data were available and ensures a more consistent physical analysis of the satellite measurements by taking into account the contribution of the surface emissivity to the measured signal.

  4. Streaming Potential In Rocks Saturated With Water And Oil

    NASA Astrophysics Data System (ADS)

    Tarvin, J. A.; Caston, A.

    2011-12-01

    Fluids flowing through porous media generate electrical currents. These currents cause electric potentials, called "streaming potentials." Streaming potential amplitude depends on the applied pressure gradient, on rock and fluid properties, and on the interaction between rock and fluid. Streaming potential has been measured for rocks saturated with water (1) and with water-gas mixtures. (2) Few measurements (3) have been reported for rocks saturated with water-oil mixtures. We measured streaming potential for sandstone and limestone saturated with a mixture of brine and laboratory oil. Cylindrical samples were initially saturated with brine and submerged in oil. Saturation was changed by pumping oil from one end of a sample to the other and then through the sample in the opposite direction. Saturation was estimated from sample resistivity. The final saturation of each sample was determined by heating the sample in a closed container and measuring the pressure. Measurements were made by modulating the pressure difference (of oil) between the ends of a sample at multiple frequencies below 20 Hz. The observed streaming potential is a weak function of the saturation. Since sample conductivity decreases with increasing oil saturation, the electro-kinetic coupling coefficient (Pride's L (4)) decreases with increasing oil saturation. (1) David B. Pengra and Po-zen Wong, Colloids and Surfaces, vol., p. 159 283-292 (1999). (2) Eve S. Sprunt, Tony B. Mercer, and Nizar F. Djabbarah, Geophysics, vol. 59, p. 707-711 (1994). (3) Vinogradov, J., Jackson, M.D., Geophysical Res. L., Vol. 38, Article L01301 (2011). (4) Steve Pride, Phys. Rev. B, vol. 50, pp. 15678-15696 (1994).

  5. Enhanced water vapour flow in silica microchannels and interdiffusive water vapour flow through anodic aluminium oxide (AAO) membranes

    NASA Astrophysics Data System (ADS)

    Lei, Wenwen; McKenzie, David R.

    2015-12-01

    Enhanced liquid water flows through carbon nanotubes reinvigorated the study of moisture permeation through membranes and micro- and nano-channels. The study of water vapour through micro-and nano-channels has been neglected even though water vapour is as important as liquid water for industry, especially for encapsulation of electronic devices. Here we measure moisture flow rates in silica microchannels and interdiffusive water vapour flows in anodic aluminium oxide (AAO) membrane channels for the first time. We construct theory for the flow rates of the dominant modes of water transport through four previously defined standard configurations and benchmark it against our new measurements. The findings show that measurements of leak behaviour made using other molecules, such as helium, are not reliable. Single phase water vapour flow is overestimated by a helium measurement, while Washburn or capillary flow is underestimated or for all channels when boundary slip applies, to an extent that depends on the slip length for the liquid phase flows.

  6. Atomic origins of water-vapour-promoted alloy oxidation

    NASA Astrophysics Data System (ADS)

    Luo, Langli; Su, Mao; Yan, Pengfei; Zou, Lianfeng; Schreiber, Daniel K.; Baer, Donald R.; Zhu, Zihua; Zhou, Guangwen; Wang, Yanting; Bruemmer, Stephen M.; Xu, Zhijie; Wang, Chongmin

    2018-06-01

    The presence of water vapour, intentional or unavoidable, is crucial to many materials applications, such as in steam generators, turbine engines, fuel cells, catalysts and corrosion1-4. Phenomenologically, water vapour has been noted to accelerate oxidation of metals and alloys5,6. However, the atomistic mechanisms behind such oxidation remain elusive. Through direct in situ atomic-scale transmission electron microscopy observations and density functional theory calculations, we reveal that water-vapour-enhanced oxidation of a nickel-chromium alloy is associated with proton-dissolution-promoted formation, migration, and clustering of both cation and anion vacancies. Protons derived from water dissociation can occupy interstitial positions in the oxide lattice, consequently lowering vacancy formation energy and decreasing the diffusion barrier of both cations and anions, which leads to enhanced oxidation in moist environments at elevated temperatures. This work provides insights into water-vapour-enhanced alloy oxidation and has significant implications in other material and chemical processes involving water vapour, such as corrosion, heterogeneous catalysis and ionic conduction.

  7. Atomic origins of water-vapour-promoted alloy oxidation.

    PubMed

    Luo, Langli; Su, Mao; Yan, Pengfei; Zou, Lianfeng; Schreiber, Daniel K; Baer, Donald R; Zhu, Zihua; Zhou, Guangwen; Wang, Yanting; Bruemmer, Stephen M; Xu, Zhijie; Wang, Chongmin

    2018-06-01

    The presence of water vapour, intentional or unavoidable, is crucial to many materials applications, such as in steam generators, turbine engines, fuel cells, catalysts and corrosion 1-4 . Phenomenologically, water vapour has been noted to accelerate oxidation of metals and alloys 5,6 . However, the atomistic mechanisms behind such oxidation remain elusive. Through direct in situ atomic-scale transmission electron microscopy observations and density functional theory calculations, we reveal that water-vapour-enhanced oxidation of a nickel-chromium alloy is associated with proton-dissolution-promoted formation, migration, and clustering of both cation and anion vacancies. Protons derived from water dissociation can occupy interstitial positions in the oxide lattice, consequently lowering vacancy formation energy and decreasing the diffusion barrier of both cations and anions, which leads to enhanced oxidation in moist environments at elevated temperatures. This work provides insights into water-vapour-enhanced alloy oxidation and has significant implications in other material and chemical processes involving water vapour, such as corrosion, heterogeneous catalysis and ionic conduction.

  8. The ignitability of petrol vapours and potential for vapour phase explosion by use of TASER® law enforcement electronic control device.

    PubMed

    Clarke, C; Andrews, S P

    2014-12-01

    An experimental study was made of the potential of the TASER-X26™ law enforcement electronic control device to ignite petrol vapours if used by an officer to incapacitate a person soaked in petrol, or within a flammable atmosphere containing petrol vapour. Bench scale tests have shown that a wooden mannequin with pig skin covering the chest was a suitable representation of a human target. Full scale tests using the mannequin have shown that the arc from a TASER-X26™ is capable of igniting petrol/air vapours on a petrol-soaked person. Further tests in a 1/5 scale and a full scale compartment have shown that if a TASER is used within a compartment, a petrol vapour explosion (deflagration) may be achieved. It is evident from this research that if used in a flammable vapour rich environment, the device could prove fatal not only to the target but the TASER® operator as well. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Correction to the gas phase pressure term in the continuum model for partially saturated granular media presented by Pietruszczak and co-workers

    NASA Astrophysics Data System (ADS)

    Iveson, Simon M.

    2003-06-01

    Pietruszczak and coworkers (Internat. J. Numer. Anal. Methods Geomech. 1994; 18(2):93-105; Comput. Geotech. 1991; 12( ):55-71) have presented a continuum-based model for predicting the dynamic mechanical response of partially saturated granular media with viscous interstitial liquids. In their model they assume that the gas phase is distributed uniformly throughout the medium as discrete spherical air bubbles occupying the voids between the particles. However, their derivation of the air pressure inside these gas bubbles is inconsistent with their stated assumptions. In addition the resultant dependence of gas pressure on liquid saturation lies outside of the plausible range of possible values for discrete air bubbles. This results in an over-prediction of the average bulk modulus of the void phase. Corrected equations are presented.

  10. Detecting vapour bubbles in simulations of metastable water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    González, Miguel A.; Abascal, Jose L. F.; Valeriani, Chantal, E-mail: christoph.dellago@univie.ac.at, E-mail: cvaleriani@quim.ucm.es

    2014-11-14

    The investigation of cavitation in metastable liquids with molecular simulations requires an appropriate definition of the volume of the vapour bubble forming within the metastable liquid phase. Commonly used approaches for bubble detection exhibit two significant flaws: first, when applied to water they often identify the voids within the hydrogen bond network as bubbles thus masking the signature of emerging bubbles and, second, they lack thermodynamic consistency. Here, we present two grid-based methods, the M-method and the V-method, to detect bubbles in metastable water specifically designed to address these shortcomings. The M-method incorporates information about neighbouring grid cells to distinguishmore » between liquid- and vapour-like cells, which allows for a very sensitive detection of small bubbles and high spatial resolution of the detected bubbles. The V-method is calibrated such that its estimates for the bubble volume correspond to the average change in system volume and are thus thermodynamically consistent. Both methods are computationally inexpensive such that they can be used in molecular dynamics and Monte Carlo simulations of cavitation. We illustrate them by computing the free energy barrier and the size of the critical bubble for cavitation in water at negative pressure.« less

  11. Gain and saturation energy measurements in low pressure longitudinally excited N 2-lasers

    NASA Astrophysics Data System (ADS)

    Ghoreyshi, S.; Rahimian, K.; Hariri, Akbar

    2004-08-01

    A flat-plate Blumlein circuit has been used for operating a low pressure longitudinally excited oscillator-amplifier N 2-laser at 14 kV input voltage (LE-LE type). For investigating the effect of the excitation length on the laser performances, various amplifiers made of glass tubes of different lengths ranging from 15.5 to 35 cm with 4 mm inner bore diameters have been used. The measurements have been carried out for the laser parameters: small signal gain, and saturation energy density; and the laser beam divergence. Details of our measurements are presented. The results of our measurements have also been compared with the reported values of laser parameters in TE-TEA and LE N 2-laser configurations.

  12. Spectral properties of molecular iodine in absorption cells filled to specified saturation pressure.

    PubMed

    Hrabina, Jan; Šarbort, Martin; Acef, Ouali; Burck, Frédéric Du; Chiodo, Nicola; Holá, Miroslava; Číp, Ondřej; Lazar, Josef

    2014-11-01

    We present the results of measurement and evaluation of spectral properties of iodine absorption cells filled at certain saturation pressure. A set of cells made of borosilicate glass instead of common fused silica was tested for their spectral properties in greater detail with special care for the long-term development of the absorption media purity. The results were compared with standard fused silica cells and the high quality of iodine was verified. A measurement method based on an approach relying on measurement of linewidth of the hyperfine transitions is proposed as a novel technique for iodine cell absorption media purity evaluation. A potential application in laser metrology of length is also discussed.

  13. Modelling mass transfer during venting/soil vapour extraction: Non-aqueous phase liquid/gas mass transfer coefficient estimation

    NASA Astrophysics Data System (ADS)

    Esrael, D.; Kacem, M.; Benadda, B.

    2017-07-01

    We investigate how the simulation of the venting/soil vapour extraction (SVE) process is affected by the mass transfer coefficient, using a model comprising five partial differential equations describing gas flow and mass conservation of phases and including an expression accounting for soil saturation conditions. In doing so, we test five previously reported quations for estimating the non-aqueous phase liquid (NAPL)/gas initial mass transfer coefficient and evaluate an expression that uses a reference NAPL saturation. Four venting/SVE experiments utilizing a sand column are performed with dry and non-saturated sand at low and high flow rates, and the obtained experimental results are subsequently simulated, revealing that hydrodynamic dispersion cannot be neglected in the estimation of the mass transfer coefficient, particularly in the case of low velocities. Among the tested models, only the analytical solution of a convection-dispersion equation and the equation proposed herein are suitable for correctly modelling the experimental results, with the developed model representing the best choice for correctly simulating the experimental results and the tailing part of the extracted gas concentration curve.

  14. - and Frequency-Domain Signatures of Velocity Changing Collisions in Sub-Doppler Saturation Spectra and Pressure Broadening

    NASA Astrophysics Data System (ADS)

    Hall, Gregory; Xu, Hong; Forthomme, Damien; Dagdigian, Paul; Sears, Trevor

    2017-06-01

    We have combined experimental and theoretical approaches to the competition between elastic and inelastic collisions of CN radicals with Ar, and how this competition influences time-resolved saturation spectra. Experimentally, we have measured transient, two-color sub-Doppler saturation spectra of CN radicals with an amplitude chopped saturation laser tuned to selected Doppler offsets within rotational lines of the A-X (2-0) band, while scanning a frequency modulated probe laser across the hyperfine-resolved saturation features of corresponding rotational lines of the A-X (1-0) band. A steady-state depletion spectrum includes off-resonant contributions ascribed to velocity diffusion, and the saturation recovery rates depend on the sub-Doppler detuning. The experimental results are compared with Monte Carlo solutions to the Boltzmann equation for the collisional evolution of the velocity distributions of CN radicals, combined with a pressure-dependent and speed-dependent lifetime broadening. Velocity changing collisions are included by appropriately sampling the energy resolved differential cross sections for elastic scattering of selected rotational states of CN (X). The velocity space diffusion of Doppler tagged molecules proceeds through a series of small-angle scattering events, eventually terminating in an inelastic collision that removes the molecule from the coherently driven ensemble of interest. Collision energy-dependent total cross sections and differential cross sections for elastic scattering of selected CN rotational states with Ar were computed with Hibridon quantum scattering calculations, and used for sampling in the Monte Carlo modeling. Acknowledgments: Work at Brookhaven National Laboratory was carried out under Contract No. DE-SC0012704 with the U.S. Department of Energy, Office of Science, and supported by its Division of Chemical Sciences, Geosciences and Biosciences within the Office of Basic Energy Sciences.

  15. Characterization of sorption properties of selected soils from Lublin region by using water vapour adsorption method

    NASA Astrophysics Data System (ADS)

    Skic, Kamil; Boguta, Patrycja; Sokołowska, Zofia

    2016-04-01

    *The studies were carried out within the framework of a research project. The project was financed from funds of National Science Center on the base of decision number DEC-2013/11/D/NZ9/02545 Among many methods proposed to study sorption properties of soils an analysis of adsorption/ desorption isotherm is probably the easiest and most convenient one. It characterizes both quantity and quality of mineral and organic components and also their physical and physicochemical properties. The main aim of this study is comparison of sorption properties of selected Polish soils by using water vapour adsorption method. Samples were taken from the depth of 0-20 cm, from the Lublin region, eastern Poland. Soils were selected on the basis of their different physicochemical properties and were classified as: Haplic Fluvisol, Haplic Chernozem, Mollic Gleysol, Rendzic Phaeozem, Stagnic Luvisol, Haplic Cambisol (WG WRB 2006). Data taken from experimental adsorption isotherms were used to determine parameters of monolayer capacity, specific surface area and the total amount of vapour adsorbed at relative pressure of 0.974. Obtained adsorption and desorption isotherms reviled that adsorbate molecules interacted with the soil particles in different extent. Similar monolayer capacity was observed for Haplic Fluvisol, Haplic Chernozem and Stagnic Luvisol, while for Mollic Gleysol was more than 4 times higher. Mollic Gleysol was also characterized by highest values of specific surface area as well as quantity of adsorbed vapour at relative pressure of 0.974. Higher sorption was caused by presence of soil colloids which contains functional groups of a polar nature (mainly hydroxyls, phenolic and carboxyls). These groups similarly to silicates, oxides, hydratable cations as well as electric charge form adsorption centres for water vapour molecules.

  16. Southern Greenland water vapour isotopic composition at the crossroads of Atlantic and Arctic moisture

    NASA Astrophysics Data System (ADS)

    Bonne, J. L.; Steen-Larsen, H. C.; Risi, C. M.; Werner, M.; Sodemann, H.; Lacour, J. L.; Fettweis, X.; Cesana, G.; Delmotte, M.; Cattani, O.; Clerbaux, C.; Sveinbjörnsdottir, A. E.; Masson-Delmotte, V.

    2014-12-01

    Since September 2011, a continuous water vapour isotopic composition monitoring instrument has been remotely operated in Ivittuut (61.21°N, 48.17°W), southern Greenland. Meteorological parameters are monitored and precipitation has been sampled and analysed for isotopic composition, suggesting equilibrium between surface vapour and precipitation. The data depict small summer diurnal variations. δ18O and deuterium excess (d-excess) are generally anti-correlated and show important seasonal variations (with respective amplitudes of 10 and 20 ‰), and large synoptic variations associated to low-pressure systems (typically +5‰ on δ18O and -15‰ on d-excess). The moisture sources, estimated based on Lagrangian back-trajectories, are primarily influenced by the western North Atlantic, and north-eastern American continent. Notable are important seasonal and synoptic shifts of the moisture sources, and sporadic influences of the Arctic or the eastern North Atlantic. Moisture sources variations can be related to changes in water vapour isotopic composition, and the isotopic fingerprints can be attributed to the areas of moisture origins. Isotopic enabled AGCMs nudged to meteorology (LMDZiso, ECHAM5-wiso), despite biases, correctly capture the δ18O changes, but underestimate the d-excess changes. They allow to identify a high correlation between the southern Greenland d-excess and the simulated relative humidity and d-excess in the moisture source region south of Greenland. An extreme high temperature event in July 2012 affecting all Greenland, similar to ice sheet melt events during the medieval periods and one event in 1889 documented by Greenland ice core records, has been analysed regarding water vapour isotopic composition, using remote sensing (IASI) and in situ observations from Bermuda to northern Greenland (NEEM station). Our southern Greenland observations allow to track the water vapour evolution during this event along the moisture transport path

  17. Water Vapour Effects in Mass Measurement

    NASA Astrophysics Data System (ADS)

    Khélifa, N.

    2008-01-01

    Water vapour density inside the mass comparator enclosure is a critical parameter whose fluctuations during mass weighing can lead to errors in the determination of an unknown mass. To monitor them, a method using DFB laser diode in the near infrared has been proposed and tested. Preliminary results of our observation of water vapour sorption and de-sorption processes from the walls and the mass standard are reported.

  18. Response of Partially Saturated Non-cohesive Soils

    NASA Astrophysics Data System (ADS)

    Świdziński, Waldemar; Mierczyński, Jacek; Mikos, Agata

    2017-12-01

    This paper analyses and discusses experimental results of undrained triaxial tests. The tests were performed on non-cohesive partially saturated soil samples subjected to monotonic and cyclic loading. The tests were aimed at determining the influence of saturation degree on soil's undrained response (shear strength, excess pore pressure generation). The saturation of samples was monitored by checking Skempton's parameter B. Additionally, seismic P-wave velocity measurements were carried out on samples characterized by various degrees of saturation. The tests clearly showed that liquefaction may also take place in non-cohesive soils that are not fully saturated and that the liquefaction potential of such soils strongly depends on the B parameter.

  19. Influence of Pore-Fluid Pressure on Elastic Wave Velocity and Electrical Conductivity in Water-Saturated Rocks

    NASA Astrophysics Data System (ADS)

    Higuchi, A.; Watanabe, T.

    2013-12-01

    Pore-fluid pressure in seismogenic zones can play a key role in the occurrence of earthquakes (e.g., Sibson, 2009). Its evaluation via geophysical observations can lead to a good understanding of seismic activities. The evaluation requires a thorough understanding of the influence of the pore-fluid pressure on geophysical observables like seismic velocity and electrical conductivity. We have studied the influence of pore-fluid pressure on elastic wave velocity and electrical conductivity in water-saturated rocks. Fine grained (100-500μm) biotite granite (Aji, Kagawa pref., Japan) was used as rock samples. The density is 2.658-2.668 g/cm3, and the porosity 0.68-0.87%. The sample is composed of 52.8% plagioclase, 36.0% Quartz, 3.0% K-feldspar, 8.2% biotite. SEM images show that a lot of grain boundaries are open. Few intracrystalline cracks were observed. Following the method proposed by David and Zimmerman (2012), the distribution function of crack aspect ratio was evaluated from the pressure dependence of compressional and shear wave velocities in a dry sample. Cylindrical sample has dimensions of 25 mm in diameter and 30 mm in length, and saturated with 0.01 mol/l KCl aqueous solution. Compressional and shear wave velocities were measured with the pulse transmission technique (PZT transducers, f=2 MHz), and electrical conductivity the two-electrode method (Ag-AgCl electrodes, f=1 Hz-100 kHz). Simultaneous measurements of velocities and conductivity were made using a 200 MPa hydrostatic pressure vessel, in which confining and pore-fluid pressures can be separately controlled. The pore-fluid is electrically insulated from the metal work of the pressure vessel by using a newly designed plastic device (Watanabe and Higuchi, 2013). The confining pressure was progressively increased up to 25 MPa, while the pore-fluid pressure was kept at 0.1 MPa. It took five days or longer for the electrical conductivity to become stationary after increasing the confining pressure

  20. Measurement of the densities of Cu and Ag vapours in a low-voltage switch using the hook method

    NASA Astrophysics Data System (ADS)

    Lins, Günter

    2012-05-01

    In a research model of a low-voltage circuit breaker with fixed contacts and windows for optical access, arcs powered by either a high-current transformer or a capacitor bank were initiated by the explosion of tungsten wires. Air at atmospheric pressure was the switching medium. The number densities of neutral silver and copper vapours from contacts and arc runners were measured simultaneously by the hook method using a Mach-Zehnder interferometer combined with a 1 m spectrograph and a gated intensified CCD camera. When an arc current was flowing, a substantial fraction of the metal vapour was ionized, and thus not amenable to a density measurement with the technique chosen. To nevertheless obtain approximate density values, the arc current was forced to zero within 8 to 10 µs at a preset time and measurements were carried out 100 µs after extinction of the arc. At that time the metal vapour was expected to have recombined to a large extent but not yet diffused to the walls in significant amounts. Depending on the current amplitude reached within the arc duration the arc remained anchored to the silver contacts or commutated to the copper arc runners. At a maximum current amplitude of 650 A Ag vapour densities of the order of 1022 m-3 were observed near the anode outweighing the Cu vapour density by a factor of 20. When at 1600 A the arc commutated to the arc runners a Cu vapour density of 8 × 1021 m-3 was reached while the Ag density remained limited to 2 × 1021 m-3.

  1. Medical cannabis use in Canada: vapourization and modes of delivery.

    PubMed

    Shiplo, Samantha; Asbridge, Mark; Leatherdale, Scott T; Hammond, David

    2016-10-29

    The mode of medical cannabis delivery-whether cannabis is smoked, vapourized, or consumed orally-may have important implications for its therapeutic efficacy and health risks. However, there is very little evidence on current patterns of use among Canadian medical cannabis users, particularly with respect to modes of delivery. The current study examined modes of medical cannabis delivery following regulatory changes in 2014 governing how Canadians access medical cannabis. A total of 364 approved adult Canadian medical cannabis users completed an online cross-sectional survey between April and June 2015. The survey examined patterns of medical cannabis use, modes of delivery used, and reasons for use. Participants were recruited through a convenience sample from nine Health Canada licensed producers. Using a vapourizer was the most popular mode of delivery for medical cannabis (53 %), followed by smoking a joint (47 %). The main reason for using a vapourizer was to reduce negative health consequences associated with smoking. A majority of current vapourizer users reported using a portable vapourizer (67.2 %), followed by a stationary vapourizer (41.7 %), and an e-cigarette or vape pen (19.3 %). Current use of a vapourizer was associated with fewer respiratory symptoms (AOR = 1.28, 95 % CI 1.05-1.56, p = 0.01). The findings suggest an increase in the popularity of vapourizers as the primary mode of delivery among approved medical users. Using vapourizers has the potential to prevent some of the adverse respiratory health consequences associated with smoking and may serve as an effective harm reduction method. Monitoring implications of such current and future changes to medical cannabis regulations may be beneficial to policymakers.

  2. Features in the distribution of middle atmospheric water vapour as observed by groundbased microwave radiometeres in Switzerland and South Korea.

    NASA Astrophysics Data System (ADS)

    de Wachter, E.; Haefele, A.; Kaempfer, N.; Ka, S.; Oh, J.

    2009-04-01

    The University of Bern operates two ground based microwave radiometers to measure the water vapour content in the stratosphere and mesosphere. One instrument is located nearby Bern [47°N, 7°E], Switzerland, and has been providing data since 2002 to the "Network for the Detection of Atmospheric Composition Change", NDACC, as well as to the European project GEOmon. The second radiometer has been operational in Seoul [37°N, 126°E], S-Korea, starting November 2006. Both instruments provide water vapour profiles in the altitude range 25 to 70 km. Long-term measurements of middle atmospheric water vapour by ground-based microwave instruments are sparse. These instruments provide long-term stability and high time resolution, so are in this sense ideal for short time-scale variability studies, monitoring long-term trends and validation of satellites. An analysis between these 2-year overlapping datasets of the European and Asian continent can provide valuable input on the distribution of wave patterns. In this study, we present the measurement characteristics of the instruments, and validate our data with water vapour profiles from the Aura/MLS instrument. In addition, we investigate correlations between these two midlatitudinal stations, gathering information on the spatial distribution of water vapour, particularly for pressures from 1 to 0.03 hPa.

  3. Artificially decreased vapour pressure deficit in field conditions modifies foliar metabolite profiles in birch and aspen

    PubMed Central

    Lihavainen, Jenna; Keinänen, Markku; Keski-Saari, Sarita; Kontunen-Soppela, Sari; Sõber, Anu; Oksanen, Elina

    2016-01-01

    Relative air humidity (RH) is expected to increase in northern Europe due to climate change. Increasing RH reduces the difference of water vapour pressure deficit (VPD) between the leaf and the atmosphere, and affects the gas exchange of plants. Little is known about the effects of decreased VPD on plant metabolism, especially under field conditions. This study was conducted to determine the effects of artificially decreased VPD on silver birch (Betula pendula Roth.) and hybrid aspen (Populus tremula L.×P. tremuloides Michx.) foliar metabolite and nutrient profiles in a unique free air humidity manipulation (FAHM) field experiment during the fourth season of humidity manipulation, in 2011. Long-term exposure to decreased VPD modified nutrient homeostasis in tree leaves, as demonstrated by a lower N concentration and N:P ratio in aspen leaves, and higher Na concentration and lower K:Na ratio in the leaves of both species in decreased VPD than in ambient VPD. Decreased VPD caused a shift in foliar metabolite profiles of both species, affecting primary and secondary metabolites. Metabolic adjustment to decreased VPD included elevated levels of starch and heptulose sugars, sorbitol, hemiterpenoid and phenolic glycosides, and α-tocopherol. High levels of carbon reserves, phenolic compounds, and antioxidants under decreased VPD may modify plant resistance to environmental stresses emerging under changing climate. PMID:27255929

  4. Seasonal trends of light-saturated net photosynthesis and stomatal conductance of loblolly pine trees grown in contrasting environments of nutrition, water and carbon dioxide

    Treesearch

    Ramesh Murthy; Stanley J. Zarnoch; P.M. Dougherty

    1997-01-01

    Repeated measures analysis was used to evaluate the effect of long-term CO2 enhancement on seasonal trends of light-saturated rates of net photosynthesis (Asat) and stomatal conductance to water vapour (gsat) of 9-year-old loblolly pine (Pinus taeda L.; trees grown in a 2x2...

  5. Pore pressure diffusion and the hydrologic response of nearly saturated, thin landslide deposits of rainfall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haneberg, W.C.

    1991-11-01

    Previous workers have correlated slope failures during rainstorms with rainfall intensity, rainfall duration, and seasonal antecedent rainfall. This note shows how such relationships can be interpreted using a periodic steady-state solution to the well-known linear pressure diffusion equation. Normalization of the governing equation yields a characteristic response time that is a function of soil thickness, saturated hydraulic conductivity, and pre-storm effective porosity, and which is analogous to the travel time of a piston wetting front. The effects of storm frequency and magnitude are also successfully quantified using dimensionless attenuation factors and lag times.

  6. A Semi-Analytical Method for Rapid Estimation of Near-Well Saturation, Temperature, Pressure and Stress in Non-Isothermal CO2 Injection

    NASA Astrophysics Data System (ADS)

    LaForce, T.; Ennis-King, J.; Paterson, L.

    2015-12-01

    Reservoir cooling near the wellbore is expected when fluids are injected into a reservoir or aquifer in CO2 storage, enhanced oil or gas recovery, enhanced geothermal systems, and water injection for disposal. Ignoring thermal effects near the well can lead to under-prediction of changes in reservoir pressure and stress due to competition between increased pressure and contraction of the rock in the cooled near-well region. In this work a previously developed semi-analytical model for immiscible, nonisothermal fluid injection is generalised to include partitioning of components between two phases. Advection-dominated radial flow is assumed so that the coupled two-phase flow and thermal conservation laws can be solved analytically. The temperature and saturation profiles are used to find the increase in reservoir pressure, tangential, and radial stress near the wellbore in a semi-analytical, forward-coupled model. Saturation, temperature, pressure, and stress profiles are found for parameters representative of several CO2 storage demonstration projects around the world. General results on maximum injection rates vs depth for common reservoir parameters are also presented. Prior to drilling an injection well there is often little information about the properties that will determine the injection rate that can be achieved without exceeding fracture pressure, yet injection rate and pressure are key parameters in well design and placement decisions. Analytical solutions to simplified models such as these can quickly provide order of magnitude estimates for flow and stress near the well based on a range of likely parameters.

  7. No sodium in the vapour plumes of Enceladus.

    PubMed

    Schneider, Nicholas M; Burger, Matthew H; Schaller, Emily L; Brown, Michael E; Johnson, Robert E; Kargel, Jeffrey S; Dougherty, Michele K; Achilleos, Nicholas A

    2009-06-25

    The discovery of water vapour and ice particles erupting from Saturn's moon Enceladus fuelled speculation that an internal ocean was the source. Alternatively, the source might be ice warmed, melted or crushed by tectonic motions. Sodium chloride (that is, salt) is expected to be present in a long-lived ocean in contact with a rocky core. Here we report a ground-based spectroscopic search for atomic sodium near Enceladus that places an upper limit on the mixing ratio in the vapour plumes orders of magnitude below the expected ocean salinity. The low sodium content of escaping vapour, together with the small fraction of salt-bearing particles, argues against a situation in which a near-surface geyser is fuelled by a salty ocean through cracks in the crust. The lack of observable sodium in the vapour is consistent with a wide variety of alternative eruption sources, including a deep ocean, a freshwater reservoir, or ice. The existing data may be insufficient to distinguish between these hypotheses.

  8. Retinal vessel oxygen saturation in a healthy young Chinese population.

    PubMed

    Yang, Wei; Fu, Yue; Dong, Yanmin; Lin, Leilei; Huang, Xia; Li, Yujie; Lin, Xiaofeng; Gao, Qianying

    2016-06-01

    To measure retinal vessel oxygen saturation in a healthy young Chinese population and to determine the effects of multiple factors (gender, age, dioptre, vessel diameter and ocular perfusion pressure - OPP) on retinal oxygen saturation. A total of 126 healthy Chinese individuals aged from 19 to 30 were included in this study. A retinal oximeter (Oxymap T1) was used to measure retinal vessel oxygen saturation by retinal imaging at two different wavelengths. The mean retinal vessel oxygen saturation (Sat_O2 ) of arterioles, venules and arteriovenous (AV) difference overall and in four separate quadrants were measured. Intra-ocular pressure, blood pressure, finger pulse oximetry value, vessel diameter and dioptre were also measured. The correlations between OPP and dioptre, OPP and vessel diameter, and dioptre and vessel diameter were analysed. And the effects of multiple factors on the retinal oxygen saturation were analysed. The mean oxygen saturation was 93.2 ± 6.3% in the retinal arterioles, 60.4 ± 5.3% in venules and 32.9 ± 6.4% in AV difference. The temporal quadrants had lower measurements of arteriolar and venular oxygen saturation and AV difference compared with nasal quadrants (p < 0.001). The oxygen saturation of the arterioles, venules and AV difference were unaffected by any unique factor. Arteriolar and venular retinal oxygen saturation correlated negatively with the product of dioptre and OPP. Arteriolar retinal oxygen saturation correlated positively with the product of dioptre and vessel diameter. This study provided a normal reference of Sat_O2 in healthy young Chinese individuals. It was a reflection of the normal state of retinal oxygen metabolism affected by several factors. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  9. Saturation curve of SiO{sub 2} component in rutile-type GeO{sub 2}: A recoverable high-temperature pressure standard from 3 GPa to 10 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leinenweber, Kurt, E-mail: kurtl@asu.edu; Gullikson, Amber L.; Stoyanov, Emil

    2015-09-15

    The accuracy and precision of pressure measurements and the pursuit of reliable and readily available pressure scales at simultaneous high temperatures and pressures are still topics in development in high pressure research despite many years of work. In situ pressure scales based on x-ray diffraction are widely used but require x-ray access, which is lacking outside of x-ray beam lines. Other methods such as fixed points require several experiments to bracket a pressure calibration point. In this study, a recoverable high-temperature pressure gauge for pressures ranging from 3 GPa to 10 GPa is presented. The gauge is based on themore » pressure-dependent solubility of an SiO{sub 2} component in the rutile-structured phase of GeO{sub 2} (argutite), and is valid when the argutite solid solution coexists with coesite. The solid solution varies strongly in composition, mainly in pressure but also somewhat in temperature, and the compositional variations are easily detected by x-ray diffraction of the recovered products because of significant changes in the lattice parameters. The solid solution is measured here on two isotherms, one at 1200 °C and the other at 1500 °C, and is developed as a pressure gauge by calibrating it against three fixed points for each temperature and against the lattice parameter of MgO measured in situ at a total of three additional points. A somewhat detailed thermodynamic analysis is then presented that allows the pressure gauge to be used at other temperatures. This provides a way to accurately and reproducibly evaluate the pressure in high pressure experiments and applications in this pressure-temperature range, and could potentially be used as a benchmark to compare various other pressure scales under high temperature conditions. - Graphical abstract: The saturation curve of SiO{sub 2} in TiO{sub 2} shows a strong pressure dependence and a strong dependence of unit cell volume on composition. This provides an opportunity to use this

  10. Retinal oxygen saturation before and after glaucoma surgery.

    PubMed

    Nitta, Eri; Hirooka, Kazuyuki; Shimazaki, Takeru; Sato, Shino; Ukegawa, Kaori; Nakano, Yuki; Tsujikawa, Akitaka

    2017-08-01

    This study compared retinal vessel oxygen saturation before and after glaucoma surgery. Retinal oxygen saturation in glaucoma patients was measured using a non-invasive spectrophotometric retinal oximeter. Adequate image quality was found in 49 of the 108 consecutive glaucoma patients recruited, with 30 undergoing trabeculectomy, 11 EX-PRESS and eight trabeculotomy. Retinal oxygen saturation measurements in the retinal arterioles and venules were performed at 1 day prior to and at approximately 10 days after surgery. Statistical analysis was performed using a Student's t-test. After glaucoma surgery, intraocular pressure (IOP) decreased from 19.8 ± 7.7 mmHg to 9.0 ± 5.7 mmHg (p < 0.001). Although oxygen saturation in retinal arterioles remained unchanged before and after surgery (104.7 ± 10.6% before and 105.4 ± 9.3% after surgery, p = 0.58), the oxygen saturation in the venules increased from 54.9 ± 7.4% to 57.4 ± 5.7% (p = 0.01). Intraocular pressure (IOP) decreases caused by glaucoma surgery had an effect on the retinal venous oxygen saturation. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  11. Prediction of vapour-liquid and vapour-liquid-liquid equilibria of nitrogen-hydrocarbon mixtures used in J-T refrigerators

    NASA Astrophysics Data System (ADS)

    Narayanan, Vineed; Venkatarathnam, G.

    2018-03-01

    Nitrogen-hydrocarbon mixtures are widely used as refrigerants in J-T refrigerators operating with mixtures, as well as in natural gas liquefiers. The Peng-Robinson equation of state has traditionally been used to simulate the above cryogenic process. Multi parameter Helmholtz energy equations are now preferred for determining the properties of natural gas. They have, however, been used only to predict vapour-liquid equilibria, and not vapour-liquid-liquid equilibria that can occur in mixtures used in cryogenic mixed refrigerant processes. In this paper the vapour-liquid equilibrium of binary mixtures of nitrogen-methane, nitrogen-ethane, nitrogen-propane, nitrogen-isobutane and three component mixtures of nitrogen-methane-ethane and nitrogen-methane-propane have been studied with the Peng-Robinson and the Helmholtz energy equations of state of NIST REFPROP and compared with experimental data available in the literature.

  12. Peripheral oxygen saturation, heart rate, and blood pressure during dental treatment of children with cyanotic congenital heart disease

    PubMed Central

    Dutra, Rosane Menezes Faria; Neves, Itamara Lucia Itagiba; Neves, Ricardo Simões; Atik, Edmar; de Paula Santos, Ubiratan

    2014-01-01

    OBJECTIVES: In this observational study, we evaluated the peripheral oxygen saturation (SpO2), heart rate, and blood pressure of children with cyanotic congenital heart disease who were undergoing dental extraction. METHODS: Forty-four patients between the ages of 6 and 12 years who underwent upper primary tooth extraction were included in the study. Of these, 20 patients were in the cyanotic congenital heart disease group and 24 were in the control group. RESULTS: Peripheral oxygen saturation, heart rate, and systolic blood pressure in the cyanotic congenital heart disease group varied quite significantly during the treatment protocol (p<0.05), with values of 80.5% (±7.6) to 82.8% (±7.8), 95.3 beats per minute (bpm) (±11.3) to 101.3 bpm (±9.8), and 93.6 mm Hg (±13,3) to 103.8 mm Hg (±12.7), respectively. The variations in the control group during the procedure were also significant. CONCLUSIONS: The changes observed during the study protocol, although statistically significant, were mild and lacked clinical relevance. The results indicate that dental treatment of children with cyanotic heart disease using a standardized protocol in decentralized offices without the support of a surgical center is safe. PMID:24838895

  13. Effects of copper vapour on thermophysical properties of CO2-N2 plasma

    NASA Astrophysics Data System (ADS)

    Zhong, Linlin; Wang, Xiaohua; Rong, Mingzhe; Cressault, Yann

    2016-10-01

    CO2-N2 mixtures are often used as arc quenching medium (to replace SF6) in circuit breakers and shielding gas in arc welding. In such applications, copper vapour resulting from electrode surfaces can modify characteristics of plasmas. This paper therefore presents an investigation of the effects of copper on thermophysical properties of CO2-N2 plasma. The equilibrium compositions, thermodynamic properties (including mass density, specific enthalpy, and specific heat), transport coefficients (including electrical conductivity, viscosity, and thermal conductivity), and four kinds of combined diffusion coefficients due to composition gradients, applied electric fields, temperature gradients, and pressure gradients respectively, were calculated and discussed for CO2-N2 (mixing ratio 7:3) plasma contaminated by different proportions of copper vapour. The significant influences of copper were observed on all the properties of CO2-N2-Cu mixtures. The better ionization ability and larger molar mass of copper and larger collision integrals related to copper, should be responsible for such influences.

  14. Pressure adaptation is linked to thermal adaptation in salt-saturated marine habitats.

    PubMed

    Alcaide, María; Stogios, Peter J; Lafraya, Álvaro; Tchigvintsev, Anatoli; Flick, Robert; Bargiela, Rafael; Chernikova, Tatyana N; Reva, Oleg N; Hai, Tran; Leggewie, Christian C; Katzke, Nadine; La Cono, Violetta; Matesanz, Ruth; Jebbar, Mohamed; Jaeger, Karl-Erich; Yakimov, Michail M; Yakunin, Alexander F; Golyshin, Peter N; Golyshina, Olga V; Savchenko, Alexei; Ferrer, Manuel

    2015-02-01

    The present study provides a deeper view of protein functionality as a function of temperature, salt and pressure in deep-sea habitats. A set of eight different enzymes from five distinct deep-sea (3040-4908 m depth), moderately warm (14.0-16.5°C) biotopes, characterized by a wide range of salinities (39-348 practical salinity units), were investigated for this purpose. An enzyme from a 'superficial' marine hydrothermal habitat (65°C) was isolated and characterized for comparative purposes. We report here the first experimental evidence suggesting that in salt-saturated deep-sea habitats, the adaptation to high pressure is linked to high thermal resistance (P value = 0.0036). Salinity might therefore increase the temperature window for enzyme activity, and possibly microbial growth, in deep-sea habitats. As an example, Lake Medee, the largest hypersaline deep-sea anoxic lake of the Eastern Mediterranean Sea, where the water temperature is never higher than 16°C, was shown to contain halopiezophilic-like enzymes that are most active at 70°C and with denaturing temperatures of 71.4°C. The determination of the crystal structures of five proteins revealed unknown molecular mechanisms involved in protein adaptation to poly-extremes as well as distinct active site architectures and substrate preferences relative to other structurally characterized enzymes. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Nonlinear ballooning modes in tokamaks: stability and saturation

    NASA Astrophysics Data System (ADS)

    Ham, C. J.; Cowley, S. C.; Brochard, G.; Wilson, H. R.

    2018-07-01

    The nonlinear dynamics of magneto-hydrodynamic ballooning mode perturbations is conjectured to be characterised by the motion of isolated elliptical flux tubes. The theory of stability, dynamics and saturation of such tubes in tokamaks is developed using a generalised Archimedes’ principle. The equation of motion for a tube moving against a drag force in a general axisymmetric equilibrium is derived and then applied to a simplified ‘s–α’ equilibrium. The perturbed nonlinear tube equilibrium (saturated) states are investigated in an ‘s–α’ equilibrium with specific pressure and magnetic shear profiles. The energy of these nonlinear (ballooning) saturated states is calculated. In some cases, particularly at low magnetic shear, these finitely displaced states can have a lower energy than the equilibrium state even if the profile is linearly stable to ballooning modes (infinitesimal tube displacements) at all radii. Thus nonlinear ballooning modes can be metastable. The amplitude of the saturated tube displacement in such cases can be as large as the pressure gradient scale length. We conjecture that triggering a transition into these filamentary states can lead to hard instability limits. A short survey of different pressure profiles is presented to illustrate the variety of behaviour of perturbed elliptical flux tubes.

  16. In vivo integrated photoacoustic and confocal microscopy of hemoglobin oxygen saturation and oxygen partial pressure.

    PubMed

    Wang, Yu; Hu, Song; Maslov, Konstantin; Zhang, Yu; Xia, Younan; Wang, Lihong V

    2011-04-01

    We developed dual-modality microscope integrating photoacoustic microscopy (PAM) and fluorescence confocal microscopy (FCM) to noninvasively image hemoglobin oxygen saturation (sO₂) and oxygen partial pressure (pO₂) in vivo in single blood vessels with high spatial resolution. While PAM measures sO₂ by imaging hemoglobin optical absorption at two wavelengths, FCM quantifies pO₂ using phosphorescence quenching. The variations of sO₂ and pO₂ values in multiple orders of vessel branches under hyperoxic (100% oxygen) and normoxic (21% oxygen) conditions correlate well with the oxygen-hemoglobin dissociation curve. In addition, the total concentration of hemoglobin is imaged by PAM at an isosbestic wavelength.

  17. Density measurement in air with a saturable absorbing seed gas

    NASA Technical Reports Server (NTRS)

    Baganoff, D.

    1981-01-01

    Resonantly enhanced scattering from the iodine molecule is studied experimentally for the purpose of developing a scheme for the measurement of density in a gas dynamic flow. A study of the spectrum of iodine, the collection of saturation data in iodine, and the development of a mathematical model for correlating saturation effects were pursued for a mixture of 0.3 torr iodine in nitrogen and for mixture pressures up to one atmosphere. For the desired pressure range, saturation effects in iodine were found to be too small to be useful in allowing density measurements to be made. The effects of quenching can be reduced by detuning the exciting laser wavelength from the absorption line center of the iodine line used (resonant Raman scattering). The signal was found to be nearly independent of pressure, for pressures up to one atmosphere, when the excitation beam was detuned 6 GHz from line center for an isolated line in iodine. The signal amplitude was found to be nearly equal to the amplitude for fluorescence at atmospheric pressure, which indicates a density measurement scheme is possible.

  18. Differential equations governing slip-induced pore-pressure fluctuations in a water-saturated granular medium

    USGS Publications Warehouse

    Iverson, R.M.

    1993-01-01

    Macroscopic frictional slip in water-saturated granular media occurs commonly during landsliding, surface faulting, and intense bedload transport. A mathematical model of dynamic pore-pressure fluctuations that accompany and influence such sliding is derived here by both inductive and deductive methods. The inductive derivation shows how the governing differential equations represent the physics of the steadily sliding array of cylindrical fiberglass rods investigated experimentally by Iverson and LaHusen (1989). The deductive derivation shows how the same equations result from a novel application of Biot's (1956) dynamic mixture theory to macroscopic deformation. The model consists of two linear differential equations and five initial and boundary conditions that govern solid displacements and pore-water pressures. Solid displacements and water pressures are strongly coupled, in part through a boundary condition that ensures mass conservation during irreversible pore deformation that occurs along the bumpy slip surface. Feedback between this deformation and the pore-pressure field may yield complex system responses. The dual derivations of the model help explicate key assumptions. For example, the model requires that the dimensionless parameter B, defined here through normalization of Biot's equations, is much larger than one. This indicates that solid-fluid coupling forces are dominated by viscous rather than inertial effects. A tabulation of physical and kinematic variables for the rod-array experiments of Iverson and LaHusen and for various geologic phenomena shows that the model assumptions commonly are satisfied. A subsequent paper will describe model tests against experimental data. ?? 1993 International Association for Mathematical Geology.

  19. Intercomparison of TCCON and MUSICA Water Vapour Products

    NASA Astrophysics Data System (ADS)

    Weaver, D.; Strong, K.; Deutscher, N. M.; Schneider, M.; Blumenstock, T.; Robinson, J.; Notholt, J.; Sherlock, V.; Griffith, D. W. T.; Barthlott, S.; García, O. E.; Smale, D.; Palm, M.; Jones, N. B.; Hase, F.; Kivi, R.; Ramos, Y. G.; Yoshimura, K.; Sepúlveda, E.; Gómez-Peláez, Á. J.; Gisi, M.; Kohlhepp, R.; Warneke, T.; Dohe, S.; Wiegele, A.; Christner, E.; Lejeune, B.; Demoulin, P.

    2014-12-01

    We present an intercomparison between the water vapour products from the Total Carbon Column Observing Network (TCCON) and the MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA), two datasets from ground-based Fourier Transform InfraRed (FTIR) spectrometers with good global representation. Where possible, comparisons to radiosondes are also included. The near-infrared TCCON measurements are optimized to provide precise monitoring of greenhouse gases for carbon cycle studies; however, TCCON's retrievals also produce water vapour products. The mid-infrared MUSICA products result from retrievals optimized to give precise and accurate information about H2O, HDO, and δD. The MUSICA water vapour products have been validated by extensive intercomparisons with H2O and δD in-situ measurements made from ground, radiosonde, and aircraft (Schneider et al. 2012, 2014), as well as by intercomparisons with satellite-based H2O and δD remote sensing measurements (Wiegele et al., 2014). This dataset provides a valuable reference point for other measurements of water vapour. This study is motivated by the limited intercomparisons performed for TCCON water vapour products and limited characterisation of their uncertainties. We compare MUSICA and TCCON products to assess the potential for TCCON measurements to contribute to studies of the water cycle, water vapour's role in climate and use as a tracer for atmospheric dynamics, and to evaluate the performance of climate models. The TCCON and MUSICA products result from measurements taken using the same FTIR instruments, enabling a comparison with constant instrumentation. The retrieval techniques differ, however, in their method and a priori information. We assess the impact of these differences and characterize the comparability of the TCCON and MUSICA datasets.

  20. Study of Vapour Cloud Explosion Impact from Pressure Changes in the Liquefied Petroleum Gas Sphere Tank Storage Leakage

    NASA Astrophysics Data System (ADS)

    Rashid, Z. A.; Suhaimi Yeong, A. F. Mohd; Alias, A. B.; Ahmad, M. A.; AbdulBari Ali, S.

    2018-05-01

    This research was carried out to determine the risk impact of Liquefied Petroleum Gas (LPG) storage facilities, especially in the event of LPG tank explosion. In order to prevent the LPG tank explosion from occurring, it is important to decide the most suitable operating condition for the LPG tank itself, as the explosion of LPG tank could affect and cause extensive damage to the surrounding. The explosion of LPG tank usually occurs due to the rise of pressure in the tank. Thus, in this research, a method called Planas-Cuchi was applied to determine the Peak Side-On Overpressure (Po) of the LPG tank during the occurrence of explosion. Thermodynamic properties of saturated propane, (C3H8) have been chosen as a reference and basis of calculation to determine the parameters such as Explosion Energy (E), Equivalent Mass of TNT (WTNT), and Scaled Overpressure (PS ). A cylindrical LPG tank in Feyzin Refinery, France was selected as a case study in this research and at the end of this research, the most suitable operating pressure of the LPG tank was determined.

  1. Landsliding in partially saturated materials

    USGS Publications Warehouse

    Godt, J.W.; Baum, R.L.; Lu, N.

    2009-01-01

    [1] Rainfall-induced landslides are pervasive in hillslope environments around the world and among the most costly and deadly natural hazards. However, capturing their occurrence with scientific instrumentation in a natural setting is extremely rare. The prevailing thinking on landslide initiation, particularly for those landslides that occur under intense precipitation, is that the failure surface is saturated and has positive pore-water pressures acting on it. Most analytic methods used for landslide hazard assessment are based on the above perception and assume that the failure surface is located beneath a water table. By monitoring the pore water and soil suction response to rainfall, we observed shallow landslide occurrence under partially saturated conditions for the first time in a natural setting. We show that the partially saturated shallow landslide at this site is predictable using measured soil suction and water content and a novel unified effective stress concept for partially saturated earth materials. Copyright 2009 by the American Geophysical Union.

  2. Vapour pressure deficit control in relation to water transport and water productivity in greenhouse tomato production during summer

    PubMed Central

    Zhang, Dalong; Du, Qingjie; Zhang, Zhi; Jiao, Xiaocong; Song, Xiaoming; Li, Jianming

    2017-01-01

    Although atmospheric vapour pressure deficit (VPD) has been widely recognized as the evaporative driving force for water transport, the potential to reduce plant water consumption and improve water productivity by regulating VPD is highly uncertain. To bridge this gap, water transport in combination with plant productivity was examined in tomato (Solanum lycopersicum L.) plants grown under contrasting VPD gradients. The driving force for water transport was substantially reduced in low-VPD treatment, which consequently decreased water loss rate and moderated plant water stress: leaf desiccation, hydraulic limitation and excessive negative water potential were prevented by maintaining water balance. Alleviation in water stress by reducing VPD sustained stomatal function and photosynthesis, with concomitant improvements in biomass and fruit production. From physiological perspectives, suppression of the driving force and water flow rate substantially reduced cumulative transpiration by 19.9%. In accordance with physiological principles, irrigation water use efficiency as criterions of biomass and fruit yield in low-VPD treatment was significantly increased by 36.8% and 39.1%, respectively. The reduction in irrigation was counterbalanced by input of fogging water to some extent. Net water saving can be increased by enabling greater planting densities and improving the evaporative efficiency of the mechanical system. PMID:28266524

  3. Stomatal sensitivity to vapour pressure deficit relates to climate of origin in Eucalyptus species.

    PubMed

    Bourne, Aimee E; Haigh, Anthony M; Ellsworth, David S

    2015-03-01

    Selecting plantation species to balance water use and production requires accurate models for predicting how species will tolerate and respond to environmental conditions. Although interspecific variation in water use occurs, species-specific parameters are rarely incorporated into physiologically based models because often the appropriate species parameters are lacking. To determine the physiological control over water use in Eucalyptus, five stands of Eucalyptus species growing in a common garden were measured for sap flux rates and their stomatal response to vapour pressure deficit (D) was assessed. Maximal canopy conductance and whole-canopy stomatal sensitivity to D and reduced water availability were lower in species originating from more arid climates of origin than those from humid climates. Species from humid climates showed a larger decline in maximal sap flux density (JSmax) with reduced water availability, and a lower D at which stomatal closure occurred than species from more arid climates, implying larger sensitivity to water availability and D in these species. We observed significant (P < 0.05) correlations of species climate of origin with mean vessel diameter (R(2) = 0.90), stomatal sensitivity to D (R(2) = 0.83) and the size of the decline in JSmax to restricted water availability (R(2) = 0.94). Thus aridity of climate of origin appears to have a selective role in constraining water-use response among the five Eucalyptus plantation species. These relationships emphasize that within this congeneric group of species, climate aridity constrains water use. These relationships have implications for species choices for tree plantation success against drought-induced losses and the ability to manage Eucalyptus plantations against projected changes in water availability and evaporation in the future. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Dietary saturated and unsaturated fats as determinants of blood pressure and vascular function.

    PubMed

    Hall, Wendy L

    2009-06-01

    The amount and type of dietary fat have long been associated with the risk of CVD. Arterial stiffness and endothelial dysfunction are important risk factors in the aetiology of CHD. A range of methods exists to assess vascular function that may be used in nutritional science, including clinic and ambulatory blood pressure monitoring, pulse wave analysis, pulse wave velocity, flow-mediated dilatation and venous occlusion plethysmography. The present review focuses on the quantity and type of dietary fat and effects on blood pressure, arterial compliance and endothelial function. Concerning fat quantity, the amount of dietary fat consumed habitually appears to have little influence on vascular function independent of fatty acid composition, although single high-fat meals postprandially impair endothelial function compared with low-fat meals. The mechanism is related to increased circulating lipoproteins and NEFA which may induce pro-inflammatory pathways and increase oxidative stress. Regarding the type of fat, cross-sectional data suggest that saturated fat adversely affects vascular function whereas polyunsaturated fat (mainly linoleic acid (18 : 2n-6) and n-3 PUFA) are beneficial. EPA (20 : 5n-3) and DHA (22 : 6n-3) can reduce blood pressure, improve arterial compliance in type 2 diabetics and dyslipidaemics, and augment endothelium-dependent vasodilation. The mechanisms for this vascular protection, and the nature of the separate physiological effects induced by EPA and DHA, are priorities for future research. Since good-quality observational or interventional data on dietary fatty acid composition and vascular function are scarce, no further recommendations can be suggested in addition to current guidelines at the present time.

  5. The millennium water vapour drop in chemistry-climate model simulations

    NASA Astrophysics Data System (ADS)

    Brinkop, Sabine; Dameris, Martin; Jöckel, Patrick; Garny, Hella; Lossow, Stefan; Stiller, Gabriele

    2016-07-01

    This study investigates the abrupt and severe water vapour decline in the stratosphere beginning in the year 2000 (the "millennium water vapour drop") and other similarly strong stratospheric water vapour reductions by means of various simulations with the state-of-the-art Chemistry-Climate Model (CCM) EMAC (ECHAM/MESSy Atmospheric Chemistry Model). The model simulations differ with respect to the prescribed sea surface temperatures (SSTs) and whether nudging is applied or not. The CCM EMAC is able to most closely reproduce the signature and pattern of the water vapour drop in agreement with those derived from satellite observations if the model is nudged. Model results confirm that this extraordinary water vapour decline is particularly obvious in the tropical lower stratosphere and is related to a large decrease in cold point temperature. The drop signal propagates under dilution to the higher stratosphere and to the poles via the Brewer-Dobson circulation (BDC). We found that the driving forces for this significant decline in water vapour mixing ratios are tropical sea surface temperature (SST) changes due to a coincidence with a preceding strong El Niño-Southern Oscillation event (1997/1998) followed by a strong La Niña event (1999/2000) and supported by the change of the westerly to the easterly phase of the equatorial stratospheric quasi-biennial oscillation (QBO) in 2000. Correct (observed) SSTs are important for triggering the strong decline in water vapour. There are indications that, at least partly, SSTs contribute to the long period of low water vapour values from 2001 to 2006. For this period, the specific dynamical state of the atmosphere (overall atmospheric large-scale wind and temperature distribution) is important as well, as it causes the observed persistent low cold point temperatures. These are induced by a period of increased upwelling, which, however, has no corresponding pronounced signature in SSTs anomalies in the tropics. Our free

  6. Diurnal changes in photosynthetic parameters of Poulus tremuloides, modulated by elevated concentrations of CO2 and/or O3 and daily climatic variation

    Treesearch

    Katre Kets; Joseph N.T. Darbah; Anu Sober; Johanna Riikonen; Jaak Sober; David F. Karnosky

    2010-01-01

    The diurnal changes in light-saturated photosynthesis (Pn) under elevated CO2 and/or O3 in relation to stomatal conductance (gs), water potential, intercellular [CO2], leaf temperature and vapour-pressure difference between leaf and air (VPDL) were studied...

  7. Remediation of sandy soils contaminated with hydrocarbons and halogenated hydrocarbons by soil vapour extraction.

    PubMed

    Albergaria, José Tomás; Alvim-Ferraz, Maria da Conceição M; Delerue-Matos, Cristina

    2012-08-15

    This paper presents the study of the remediation of sandy soils containing six of the most common contaminants (benzene, toluene, ethylbenzene, xylene, trichloroethylene and perchloroethylene) using soil vapour extraction (SVE). The influence of soil water content on the process efficiency was evaluated considering the soil type and the contaminant. For artificially contaminated soils with negligible clay contents and natural organic matter it was concluded that: (i) all the remediation processes presented efficiencies above 92%; (ii) an increase of the soil water content led to a more time-consuming remediation; (iii) longer remediation periods were observed for contaminants with lower vapour pressures and lower water solubilities due to mass transfer limitations. Based on these results an easy and relatively fast procedure was developed for the prediction of the remediation times of real soils; 83% of the remediation times were predicted with relative deviations below 14%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Temperature dependences of saturated vapor pressure and the enthalpy of vaporization of n-pentyl esters of dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Portnova, S. V.; Krasnykh, E. L.; Levanova, S. V.

    2016-05-01

    The saturated vapor pressures and enthalpies of vaporization of n-pentyl esters of linear C2-C6 dicarboxylic acids are determined by the transpiration method in the temperature range of 309.2-361.2 K. The dependences of enthalpies of vaporization on the number of carbon atoms in the molecule and on the retention indices have been determined. The predictive capabilities of the existing calculation schemes for estimation of enthalpy of vaporization of the studied compounds have been analyzed.

  9. Control of optical transport parameters of 'porous medium – supercritical fluid' systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimnyakov, D A; Ushakova, O V; Yuvchenko, S A

    2015-11-30

    The possibility of controlling optical transport parameters (in particular, transport scattering coefficient) of porous systems based on polymer fibres, saturated with carbon dioxide in different phase states (gaseous, liquid and supercritical) has been experimentally studied. An increase in the pressure of the saturating medium leads to a rise of its refractive index and, correspondingly, the diffuse-transmission coefficient of the system due to the decrease in the transport scattering coefficient. It is shown that, in the case of subcritical saturating carbon dioxide, the small-angle diffuse transmission of probed porous layers at pressures close to the saturated vapour pressure is determined bymore » the effect of capillary condensation in pores. The immersion effect in 'porous medium – supercritical fluid' systems, where the fluid pressure is used as a control parameter, is considered. The results of reconstructing the values of transport scattering coefficient of probed layers for different refractive indices of a saturating fluid are presented. (radiation scattering)« less

  10. Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: a review

    NASA Astrophysics Data System (ADS)

    Shamshiri, Redmond Ramin; Jones, James W.; Thorp, Kelly R.; Ahmad, Desa; Man, Hasfalina Che; Taheri, Sima

    2018-04-01

    Greenhouse technology is a flexible solution for sustainable year-round cultivation of Tomato (Lycopersicon esculentum Mill), particularly in regions with adverse climate conditions or limited land and resources. Accurate knowledge about plant requirements at different growth stages, and under various light conditions, can contribute to the design of adaptive control strategies for a more cost-effective and competitive production. In this context, different scientific publications have recommended different values of microclimate parameters at different tomato growth stages. This paper provides a detailed summary of optimal, marginal and failure air and root-zone temperatures, relative humidity and vapour pressure deficit for successful greenhouse cultivation of tomato. Graphical representations of the membership function model to define the optimality degrees of these three parameters are included with a view to determining how close the greenhouse microclimate is to the optimal condition. Several production constraints have also been discussed to highlight the short and long-term effects of adverse microclimate conditions on the quality and yield of tomato, which are associated with interactions between suboptimal parameters, greenhouse environment and growth responses.

  11. Claims in vapour device (e-cigarette) regulation: A Narrative Policy Framework analysis.

    PubMed

    O'Leary, Renée; Borland, Ron; Stockwell, Tim; MacDonald, Marjorie

    2017-06-01

    The electronic cigarette or e-cigarette (vapour device) is a consumer product undergoing rapid growth, and governments have been adopting regulations on the sale of the devices and their nicotine liquids. Competing claims about vapour devices have ignited a contentious debate in the public health community. What claims have been taken up in the state arena, and how have they possibly influenced regulatory outcomes? This study utilized Narrative Policy Framework to analyze the claims made about vapour devices in legislation recommendation reports from Queensland Australia, Canada, and the European Union, and the 2016 deeming rule legislation from the United States, and examined the claims and the regulatory outcomes in these jurisdictions. The vast majority of claims in the policy documents represented vapour devices as a threat: an unsafe product harming the health of vapour device users, a gateway product promoting youth tobacco uptake, and a quasi-tobacco product impeding tobacco control. The opportunity for vapour devices to promote cessation or reduce exposure to toxins was very rarely presented, and these positive claims were not discussed at all in two of the four documents studied. The dominant claims of vapour devices as a public health threat have supported regulations that have limited their potential as a harm reduction strategy. Future policy debates should evaluate the opportunities for vapour devices to decrease the health and social burdens of the tobacco epidemic. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Saturated fats: a perspective from lactation and milk composition.

    PubMed

    German, J Bruce; Dillard, Cora J

    2010-10-01

    For recommendations of specific targets for the absolute amount of saturated fat intake, we need to know what dietary intake is most appropriate? Changing agricultural production and processing to lower the relative quantities of macronutrients requires years to accomplish. Changes can have unintended consequences on diets and the health of subsets of the population. Hence, what are the appropriate absolute amounts of saturated fat in our diets? Is the scientific evidence consistent with an optimal intake of zero? If not, is it also possible that a finite intake of saturated fats is beneficial to overall health, at least to a subset of the population? Conclusive evidence from prospective human trials is not available, hence other sources of information must be considered. One approach is to examine the evolution of lactation, and the composition of milks that developed through millennia of natural selective pressure and natural selection processes. Mammalian milks, including human milk, contain 50% of their total fatty acids as saturated fatty acids. The biochemical formation of a single double bond converting a saturated to a monounsaturated fatty acid is a pathway that exists in all eukaryotic organisms and is active within the mammary gland. In the face of selective pressure, mammary lipid synthesis in all mammals continues to release a significant content of saturated fatty acids into milk. Is it possible that evolution of the mammary gland reveals benefits to saturated fatty acids that current recommendations do not consider?

  13. Atrial and ventricular septal changes in ethanol vapour exposed chick embryos.

    PubMed

    Kamran, Kiran; Khan, Muhammad Yunus; Minhas, Liaqat Ali

    2015-03-01

    To study the effects of ethanol vapour exposure on development of atrial and ventricular septa of chick embryo. The experimental study was conducted at the College of Physicians and Surgeons, Islamabad, from 2006 to 2007. The experimental and control groups were further divided into three subgroups based on the day of sacrifice. The experimental group was exposed to ethanol vapours produced in a specially-designed vapour chamber and then compared with age-matched controls. There were 90 eggs in each of the two groups. The development of inter-ventricular septum completed at day 7 of development in chick embryo. Ethanol vapour exposure produced a small discontinuity at day 10 of development in a chick embryo which may be labelled as ventricular septal defect since ventricular development is completed by day 7. Interatrial septum formed till day 7 with small perforations which persisted till hatching. Ethanol vapour exposure may lead to ventricular septal defect.

  14. Sensing response of copper phthalocyanine salt dispersed glass with organic vapours

    NASA Astrophysics Data System (ADS)

    Ridhi, R.; Sachdeva, Sheenam; Saini, G. S. S.; Tripathi, S. K.

    2016-05-01

    Copper Phthalocyanine and other Metal Phthalocyanines are very flexible and tuned easily to modify their structural, spectroscopic, optical and electrical properties by either functionalizing them with various substituent groups or by replacing or adding a ligand to the central metal atom in the phthalocyanine ring and accordingly can be made sensitive and selective to various organic species or gaseous vapours. In the present work, we have dispersed Copper Phthalocyanine Salt (CuPcS) in sol-gel glass form using chemical route sol-gel method and studied its sensing mechanism with organic vapours like methanol and benzene and found that current increases onto their exposure with vapours. A variation in the activation energies was also observed with exposure of vapours.

  15. Stable isotope ratios in rainfall and water vapour at Bangalore, Southern India during the monsoon period of 2013

    NASA Astrophysics Data System (ADS)

    Peethambaran, Rahul; Ghosh, Prosenjit

    2015-04-01

    Rainwater and water vapour were collected during monsoon rainfall from Bangalore station to identifying the signature of moisture sources. Moisture responsible for the rainfall originates from Arabian Sea and Bay of Bengal and advected to the station together with vapour generated from the local . Total no of samples includes 72 for water vapour and 81 for rainwater respectively. The mean difference between water vapour and rainwater was found to be -13.27±2.5 ‰ for δ18O, -100±9 ‰ for δD, which was calculated from monthly mean values of water vapour and rainwater. The most enriched samples of rainwater and water vapour were found during the pre monsoon months which correspond to temperature maximum at the study location. Lighter isotopic ratios were recorded in samples collected during the starting of monsoon showers which goes to further depletion in δ18O during the period of post monsoon. This was mainly due to the change in the prevailing wind direction from southwest to northeast. Local Meteoric Water Line (LMWL) generated for rainwater (d = 7.49 δ 18O + 5.2555, R² = 0.93) equation suggesting enrichment due to evaporation. Local Vapour Line (LVL) (d = 7.5248 δ 18O + 6.6534,R² = 0.8957) indicates the dominance of vapor from local source. The time series of d-xcess of rainwater and water vapor reveals large variability, coinciding with the presence of transported and local sources. It was observed that rainwater and water vapor exhibits higher values indicating re-evaporation from the region. Repetition of this feature demonstrated pattern of moisture recycling in the atmosphere and the contribution of continental evaporation and transpiration. The sensitivity of isotopes to the sudden change in wind direction was documented by an abrupt variations in the isotope values. Such changes in wind patterns were mostly associated with the prevalence of low pressure depression systems during the monsoon periods. Detailed analysis on role of wind patterns and

  16. Effect of an oxygen pressure injection (OPI) device on the oxygen saturation of patients during dermatological methyl aminolevulinate photodynamic therapy.

    PubMed

    Blake, E; Allen, J; Thorn, C; Shore, A; Curnow, A

    2013-05-01

    Methyl aminolevulinate photodynamic therapy (MAL-PDT) (a topical treatment used for a number of precancerous skin conditions) utilizes the combined interaction of a photosensitizer (protoporphyrin IX (PpIX)), light of the appropriate wavelength, and molecular oxygen to produce singlet oxygen and other reactive oxygen species which induce cell death. During treatment, localized oxygen depletion occurs and is thought to contribute to decreased efficacy. The aim of this study was to investigate whether an oxygen pressure injection (OPI) device had an effect on localized oxygen saturation levels and/or PpIX fluorescence of skin lesions during MAL-PDT. This study employed an OPI device to apply oxygen under pressure to the skin lesions of patients undergoing standard MAL-PDT. Optical reflectance spectrometry and fluorescence imaging were used to noninvasively monitor the localized oxygen saturation and PpIX fluorescence of the treatment area, respectively. No significant changes in oxygen saturation were observed when these data were combined for the group with OPI and compared to the group that received standard MAL-PDT without OPI. Additionally, no significant difference in PpIX photobleaching or clinical outcome at 3 months between the groups of patients was observed, although the group that received standard MAL-PDT demonstrated a significant increase (p<0.05) in PpIX fluorescence initially and both groups produced a significant decrease (p<0.05) after light irradiation. In conclusion, with this sample size, this OPI device was not found to be an effective method with which to improve tissue oxygenation during MAL-PDT. Further investigation is therefore required to find a more effective method of MAL-PDT enhancement.

  17. CO 2-fluxing collapses metal mobility in magmatic vapour

    DOE PAGES

    van Hinsberg, V. J.; Berlo, K.; Migdisov, A. A.; ...

    2016-05-18

    Magmatic systems host many types of ore deposits, including world-class deposits of copper and gold. Magmas are commonly an important source of metals and ore-forming fluids in these systems. In many magmatic-hydrothermal systems, low-density aqueous fluids, or vapours, are significant metal carriers. Such vapours are water-dominated shallowly, but fluxing of CO 2-rich vapour exsolved from deeper magma is now recognised as ubiquitous during open-system magma degassing. Furthermore, we show that such CO 2-fluxing leads to a sharp drop in element solubility, up to a factor of 10,000 for Cu, and thereby provides a highly efficient, but as yet unrecognised mechanismmore » for metal deposition.« less

  18. Transport of metals and sulphur in magmas by flotation of sulphide melt on vapour bubbles

    NASA Astrophysics Data System (ADS)

    Mungall, J. E.; Brenan, J. M.; Godel, B.; Barnes, S. J.; Gaillard, F.

    2015-03-01

    Emissions of sulphur and metals from magmas in Earth’s shallow crust can have global impacts on human society. Sulphur-bearing gases emitted into the atmosphere during volcanic eruptions affect climate, and metals and sulphur can accumulate in the crust above a magma reservoir to form giant copper and gold ore deposits, as well as massive sulphur anomalies. The volumes of sulphur and metals that accumulate in the crust over time exceed the amounts that could have been derived from an isolated magma reservoir. They are instead thought to come from injections of multiple new batches of vapour- and sulphide-saturated magmas into the existing reservoirs. However, the mechanism for the selective upward transfer of sulphur and metals is poorly understood because their main carrier phase, sulphide melt, is dense and is assumed to settle to the bottoms of magma reservoirs. Here we use laboratory experiments as well as gas-speciation and mass-balance models to show that droplets of sulphide melt can attach to vapour bubbles to form compound drops that float. We demonstrate the feasibility of this mechanism for the upward mobility of sulphide liquids to the shallow crust. Our work provides a mechanism for the atmospheric release of large amounts of sulphur, and contradicts the widely held assumption that dense sulphide liquids rich in sulphur, copper and gold will remain sequestered in the deep crust.

  19. Controls on Highly Siderophile Element Concentrations in Martian Basalt: Sulfide Saturation and Under-Saturation

    NASA Technical Reports Server (NTRS)

    Righter, Kevin

    2009-01-01

    Highly siderophile elements (HSE; Re, Au and the platinum group elements) in shergottites exhibit a wide range from very high, similar to the terrestrial mantle, to very low, similar to sulfide saturated mid ocean ridge basalt (e.g., [1]). This large range has been difficult to explain without good constraints on sulfide saturation or under-saturation [2]. A new model for prediction of sulfide saturation places new constraints on this problem [3]. Shergottite data: For primitive shergottites, pressure and temperature estimates are between 1.2-1.5 GPa, and 1350-1470 C [4]. The range of oxygen fugacities is from FMQ-2 to IW, where the amount of Fe2O3 is low and thus does not have a significant effect on the S saturation values. Finally, the bulk compositions of shergottites have been reported in many recent studies (e.g., [5]). All of this information will be used to test whether shergottites are sulfide saturated [3]. Modeling values and results: The database for HSE partition coefficients has been growing with many new data for silicates and oxides [6-8] to complement a large sulfide database [9- 11]. Combining these data with simple batch melting models allows HSE contents of mantle melts to be estimated for sulfide-bearing vs. sulfide-free mantle. Combining such models with fractional crystallization modeling (e.g., [12]) allows HSE contents of more evolved liquids to be modeled. Most primitive shergottites have high HSE contents (and low S contents) that can be explained by sulfide under-saturated melting of the mantle. An exception is Dhofar 019 which has high S contents and very low HSE contents suggesting sulfide saturation. Most evolved basaltic shergottites have lower S contents than saturation, and intermediate HSE contents that can be explained by olivine, pyroxene, and chromite fractionation. An exception is EET A79001 lithology B, which has very low HSE contents and S contents higher than sulfide saturation values . evidence for sulfide saturation

  20. Sensing response of copper phthalocyanine salt dispersed glass with organic vapours

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridhi, R.; Sachdeva, Sheenam; Saini, G. S. S.

    2016-05-06

    Copper Phthalocyanine and other Metal Phthalocyanines are very flexible and tuned easily to modify their structural, spectroscopic, optical and electrical properties by either functionalizing them with various substituent groups or by replacing or adding a ligand to the central metal atom in the phthalocyanine ring and accordingly can be made sensitive and selective to various organic species or gaseous vapours. In the present work, we have dispersed Copper Phthalocyanine Salt (CuPcS) in sol-gel glass form using chemical route sol-gel method and studied its sensing mechanism with organic vapours like methanol and benzene and found that current increases onto their exposuremore » with vapours. A variation in the activation energies was also observed with exposure of vapours.« less

  1. [Regional cerebral oxygen saturation as a marker of hemodynamic state following cardiac surgery].

    PubMed

    García-Hernández, J A; Aldemira-Liz, A; Martínez-López, A I; Cayuela, A; Charlo-Molina, M T; Cano-Franco, J; Loscertales-Abril, M

    2013-10-01

    Regional cerebral oxygen saturation (rSO₂) is a measure of the general state of perfusion and oxygenation. We aim to analyze the relationship between this and various hemodynamic and respiratory parameters. Forty-three patients, operated on between October 2011 and July 2012, were included in this prospective observational descriptive study. The following parameters were measured: mean arterial pressure, both arterial and central venous oxygen saturation and partial pressures of oxygen and carbon dioxide, and lactate levels. From these parameters, the oxygenation index and the oxygen extraction ratio were calculated. These measurements were studied to evaluate whether rSO₂ correlated significantly with the other parameters. The average age and weight of the patients were 27.3 months and 9.2 kg, respectively. The rSO₂ correlated positively with both central venous oxygen saturation (r=0.73, P<.01) and mean arterial pressure (r=0.59, P<.01), and negatively with the oxygen extraction ratio (r=-0.7, P<.01). No correlation was found with the respiratory parameters. Concordance analysis established an acceptable Kappa index (> 0.4) between the rSO₂ and central venous oxygen saturation, and between the rSO₂ and oxygen extraction ratio. Regional cerebral oxygen saturation correlates well with hemodynamic parameters - mean arterial pressure, venous saturation, and the tissue oxygen extraction. However, it does not correlate with respiratory parameters. Copyright © 2012 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  2. Effect of commercial airline travel on oxygen saturation in athletes.

    PubMed

    Geertsema, C; Williams, A B; Dzendrowskyj, P; Hanna, C

    2008-11-01

    Aircraft cabins are pressurised to maximum effective altitudes of 2440 metres, resulting in significant decline in oxygen saturation in crew and passengers. This effect has not been studied in athletes. To investigate the degree of decline in oxygen saturation in athletes during long-haul flights. A prospective cross-sectional study. National-level athletes were recruited. Oxygen saturation and heart rate were measured with a pulse oximeter at sea level before departure, at 3 and 7 hours into the flight, and again after arrival at sea level. Aircraft cabin pressure and altitude, cabin fraction of inspired oxygen and true altitude were also recorded. 45 athletes and 18 healthy staff aged between 17 and 70 years were studied on 10 long-haul flights. Oxygen saturation levels declined significantly after 3 hours and 7 hours (3-4%), compared with sea level values. There was an associated drop in cabin pressure and fraction of inspired oxygen, and an increase in cabin altitude. Oxygen saturation declines significantly in athletes during long-haul commercial flights, in response to reduced cabin pressure. This may be relevant for altitude acclimatization planning by athletes, as the time spent on the plane should be considered time already spent at altitude, with associated physiological changes. For flights of 10-13 hours in duration, it will be difficult to arrive on the day of competition to avoid the influence of these changes, as is often suggested by coaches.

  3. Stratospheric water vapour in the vicinity of the Arctic polar vortex

    NASA Astrophysics Data System (ADS)

    Maturilli, M.; Fierli, F.; Yushkov, V.; Lukyanov, A.; Khaykin, S.; Hauchecorne, A.

    2006-07-01

    The stratospheric water vapour mixing ratio inside, outside, and at the edge of the polar vortex has been accurately measured by the FLASH-B Lyman-Alpha hygrometer during the LAUTLOS campaign in Sodankylä, Finland, in January and February 2004. The retrieved H2O profiles reveal a detailed view on the Arctic lower stratospheric water vapour distribution, and provide a valuable dataset for the validation of model and satellite data. Analysing the measurements with the semi-lagrangian advection model MIMOSA, water vapour profiles typical for the polar vortex' interior and exterior have been identified, and laminae in the observed profiles have been correlated to filamentary structures in the potential vorticity field. Applying the validated MIMOSA transport scheme to specific humidity fields from operational ECMWF analyses, large discrepancies from the observed profiles arise. Although MIMOSA is able to reproduce weak water vapour filaments and improves the shape of the profiles compared to operational ECMWF analyses, both models reveal a dry bias of about 1 ppmv in the lower stratosphere above 400 K, accounting for a relative difference from the measurements in the order of 20%. The large dry bias in the analysis representation of stratospheric water vapour in the Arctic implies the need for future regular measurements of water vapour in the polar stratosphere to allow the validation and improvement of climate models.

  4. The impact of organic vapours on warm cloud formation; characterisation of chamber setup and first experimental results

    NASA Astrophysics Data System (ADS)

    Frey, Wiebke; Connolly, Paul; Dorsey, James; Hu, Dawei; Alfarra, Rami; McFiggans, Gordon

    2016-04-01

    The Manchester Ice Cloud Chamber (MICC), consisting of a 10m high stainless steel tube and 1m in diameter, can be used to study cloud processes. MICC is housed in three separate cold rooms stacked on top of each other and warm pseudo-adiabatic expansion from controlled initial temperature and pressure is possible through chamber evacuation. Further details about the facility can be found at http://www.cas.manchester.ac.uk/restools/cloudchamber/index.html. MICC can be connected to the Manchester Aerosol Chamber (MAC, http://www.cas.manchester.ac.uk/restools/aerosolchamber/), which allows to inject specified aerosol particles into the cloud chamber for nucleation studies. The combination of MAC and MICC will be used in the CCN-Vol project, which seeks to bring the experimental evidence for co-condensation of organic and water vapour in cloud formation which leads to an increase in cloud particle numbers (see Topping et al., 2013, Nature Geoscience Letters, for details). Here, we will show a characterisation of the cloud and aerosol chamber coupling in regard to background aerosol particles and nucleation. Furthermore, we will show preliminary results from the warm CCN-Vol experiment, investigating the impact of co-condensation of organic vapours and water vapour on warm cloud droplet formation.

  5. New concept to describe three-phase capillary pressure-degree of saturation relationship in porous media.

    PubMed

    Nakamura, Keita; Kikumoto, Mamoru

    2018-07-01

    The Leverett concept is used conventionally to model the relationship between the capillary pressures and the degrees of saturation in the water-nonaqueous phase liquid (NAPL)-air three-phase system in porous media. In this paper, the limitation of the Leverett concept that the concept is not applicable in the case of nonspreading NAPLs is discussed through microscopic consideration. A new concept that can be applied in the case of nonspreading NAPLs as well as spreading NAPLs is then proposed. The validity of the proposed concept is confirmed by comparing with past experimental data and simulation results obtained using the conventional model based on the Leverett concept. It is confirmed that the proposed concept can correctly predict the observed distributions of NAPLs, including those of nonspreading ones. Copyright © 2018. Published by Elsevier B.V.

  6. Measurement of gas diffusion coefficient in liquid-saturated porous media using magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Song, Yongchen; Hao, Min; Zhao, Yuechao; Zhang, Liang

    2014-12-01

    In this study, the dual-chamber pressure decay method and magnetic resonance imaging (MRI) were used to dynamically visualize the gas diffusion process in liquid-saturated porous media, and the relationship of concentration-distance for gas diffusing into liquid-saturated porous media at different times were obtained by MR images quantitative analysis. A non-iterative finite volume method was successfully applied to calculate the local gas diffusion coefficient in liquid-saturated porous media. The results agreed very well with the conventional pressure decay method, thus it demonstrates that the method was feasible of determining the local diffusion coefficient of gas in liquid-saturated porous media at different times during diffusion process.

  7. CO(2) partial pressure and calcite saturation in springs - useful data for identifying infiltration areas in mountainous environments.

    PubMed

    Hilberg, Sylke; Brandstätter, Jennifer; Glück, Daniel

    2013-04-01

    Mountainous regions such as the Central European Alps host considerable karstified or fractured groundwater bodies, which meet many of the demands concerning drinking water supply, hydropower or agriculture. Alpine hydrogeologists are required to describe the dynamics in fractured aquifers in order to assess potential impacts of human activities on water budget and quality. Delineation of catchment areas by means of stable isotopes and hydrochemical data is a well established method in alpine hydrogeology. To achieve reliable results, time series of (at least) one year and spatial and temporal close-meshed data are necessary. In reality, test sites in mountainous regions are often inaccessible due to the danger of avalanches in winter. The aim of our work was to assess a method based on the processes within the carbonic acid system to delineate infiltration areas by means of single datasets consisting of the main hydrochemical parameters of each spring. In three geologically different mountainous environments we managed to classify the investigated springs into four groups. (1) High PCO2 combined with slight super-saturation in calcite, indicating relatively low infiltration areas. (2) Low PCO2 near atmospheric conditions in combination with calcite saturation, which is indicative of relatively high infiltration areas and a fractured aquifer which is not covered by topsoil layers. (3) High PCO2 in combination with sub-saturation in calcite, representing a shallow aquifer with a significant influence of the topsoil layer. (4) The fourth group of waters is characterized by low PCO2 and sub-saturation in calcite, which is interpreted as evidence for a shallow aquifer without significant influence of any hard rock aquifer or topsoil layer. This study shows that CO2-partial pressure can be an ideal natural tracer to estimate the elevation of infiltration areas, especially in non-karstified fractured groundwater bodies.

  8. The use of hemoglobin saturation ratio as a means of measuring tissue perfusion in the development of heel pressure sores.

    PubMed

    Aliano, Kristen A; Stavrides, Steve; Davenport, Thomas

    2013-09-01

    The heel is a common site of pressure ulcers. The amount of pressure and time needed to develop these wounds is dependent on various factors including pressure surface, the patient's anatomy, and co-morbidities. We studied the use of the hemoglobin saturation ratio as a means of assessing heel perfusion in various pressure settings. The mixed perfusion ratio in the heels of 5 volunteers was assessed on 3 pressure surfaces and at the time of off-load. The surfaces studied included: stretcher pad, plastic backboard without padding, and pressure reduction gel. Each surface was measured for 5 minutes with a real-time reading. On the stretcher, the average StO2% decrease for each pressure surface was 26.2 ± 10 (range 18-43). The average StO2% decrease on the backboard was 22.8 ± 12.3 (range 8-37), and 24.0 ± 4.8 (range 19-30) on the gel pad. The StO2% drop plateaued with the stretcher and gel pad, but with the backboard there was a continued slow drop at 5 minutes. This study demonstrates that hemoglobin oxygenation ratio may be effective in assessing a tissue's direct perfusion in the setting of tissue pressure and may also be beneficial to better assess the effects of pressure-reduction surfaces. Further studies will be needed to determine time to skin breakdown as it pertains to pressure and tissue oxygenation.

  9. The speed of sound in a gas–vapour bubbly liquid

    PubMed Central

    Prosperetti, Andrea

    2015-01-01

    In addition to the vapour of the liquid, bubbles in cavitating flows usually contain also a certain amount of permanent gas that diffuses out of the liquid as they grow. This paper presents a simplified linear model for the propagation of monochromatic pressure waves in a bubbly liquid with these characteristics. Phase change effects are included in detail, while the gas is assumed to follow a polytropic law. It is shown that even a small amount of permanent gas can have a major effect on the behaviour of the system. Particular attention is paid to the low-frequency range, which is of special concern in flow cavitation. Numerical results for water and liquid oxygen illustrate the implications of the model. PMID:26442146

  10. The speed of sound in a gas-vapour bubbly liquid.

    PubMed

    Prosperetti, Andrea

    2015-10-06

    In addition to the vapour of the liquid, bubbles in cavitating flows usually contain also a certain amount of permanent gas that diffuses out of the liquid as they grow. This paper presents a simplified linear model for the propagation of monochromatic pressure waves in a bubbly liquid with these characteristics. Phase change effects are included in detail, while the gas is assumed to follow a polytropic law. It is shown that even a small amount of permanent gas can have a major effect on the behaviour of the system. Particular attention is paid to the low-frequency range, which is of special concern in flow cavitation. Numerical results for water and liquid oxygen illustrate the implications of the model.

  11. The dynamic effects of metal vapour in gas metal arc welding

    NASA Astrophysics Data System (ADS)

    Haidar, Jawad

    2010-04-01

    Numerical simulations for the dynamic effects of metal vapour in gas metal arc welding (GMAW) suggest that vapour from the welding droplet at the tip of the welding wire has a significant influence on the plasma properties. It is found that for the evaporation rates calculated for arcs in pure argon, the dynamic effects of metal vapour markedly cool down the plasma in the central region of the arc, leading to the formation of a low temperature zone centred on the arc axis, in agreement with experimental measurements in the literature. Radiation effects, omitted in this paper, may produce further cooling of the plasma gas. The results highlight major deficiencies in the common approach to modelling the GMAW process and suggest that accurate description of GMAW must include the influence of metal vapour on the plasma.

  12. The use of inverse gas chromatography and gravimetric vapour sorption to study transitions in amorphous lactose.

    PubMed

    Ambarkhane, Ameet V; Pincott, Kim; Buckton, Graham

    2005-04-27

    The aim of this study was to measure the glass transition of amorphous lactose under well-controlled temperature and humidity, using inverse gas chromatography (IGC) and to relate these data to gravimetric vapour sorption experiments. Amorphous lactose (spray-dried) was exposed to a stepwise increment in the relative humidity (%RH) under isothermal conditions in an IGC. At the end of each conditioning step a decane injection was made, and the retention volumes were calculated using the maximum peak height (V(max)) method. The pressure drop across the column was recorded using the pressure transducers. These measurements were performed at various temperatures from 25 to 40 degrees C. The extent of water sorption at identical humidity (%RH) and temperature conditions was determined gravimetrically using dynamic vapour sorption (DVS). At each T, it was possible to determine: (1) a transition at low RH relating to the onset of mobility; (2) changes in retention volume relating to the point, where T(g) = T; (3) changes in pressure drop, which were related to the sample collapse. The rate and extent of water sorption was seen to alter at T(g) and also at a collapse point. Combinations of temperature and critical %RH (%cRH required to lower the dry glass transition temperature to the experimental temperature) obtained from IGC were comparable to those obtained from DVS. It was shown that at each T, the sample spontaneously crystallised, when T(g) was 32 degrees C below T. Inverse gas chromatograph can be used in this novel way to reveal the series of transitions that occur in amorphous materials.

  13. GPS tomographic experiment on water vapour dynamics in the troposphere over Lisbon

    NASA Astrophysics Data System (ADS)

    Benevides, Pedro; Catalao, Joao; Miranda, Pedro

    2015-04-01

    Quantification of the water vapour variability on the atmosphere remains a difficult task, affecting the weather prediction. Coarse water vapour resolution measurements in space and time affect the numerical weather prediction solution models causing artifacts in the prediction of severe weather phenomena. The GNSS atmospheric processing has been developed in the past years providing integrated water vapour estimates comparable with the meteorological sensor measurements, with studies registering 1 to 2 kg/m2 bias, but lack a vertical determination of the atmospheric processes. The GNSS tomography in the troposphere is one of the most promising techniques for sensing the three-dimensional water vapour state of the atmosphere. The determination of the integrated water vapour profile by means of the widely accepted GNSS meteorology techniques, allows the reconstruction of several slant path delay rays in the satellite line of view, providing an opportunity to sense the troposphere at tree-dimensions plus time. The tomographic system can estimate an image solution of the water vapour but impositions have to be introduced to the system of equations inversion because of the non-optimal GNSS observation geometry. Application of this technique on atmospheric processes like large convective precipitation or mesoscale water vapour circulation have been able to describe its local dynamic vertical variation. A 3D tomographic experiment was developed over an area of 60x60 km2 around Lisbon (Portugal). The GNSS network available composed by 9 receivers was used for an experiment of densification of the permanent network using 8 temporarily installed GPS receivers (totalling 17 stations). This study was performed during several weeks in July 2013, where a radiosonde campaign was also held in order to validate the tomographic inversion solution. 2D integrated water vapour maps directly obtained from the GNSS processing were also evaluated and local coastal breeze circulation

  14. Measurements of the levels of organic solvent vapours by personal air samplers and the levels of urinary metabolites of workers. Part 2. Toluene vapour in a shipbuilding yard (author's transl).

    PubMed

    Kira, S

    1977-05-01

    Personal air samplers were applied to shipyard's painters putting on gas masks during the spraying work, and the levels of toluene vapour surrounding the workers were measured. On the other hand, levels of urinary hippuric acid (metabolites of toluene) of the workers were measured, and the levels of toluene vapour inhaled were calculated from the levels of urinary hippuric acid. Then the actual removing-efficiencies of toluene vapours by the use of gas masks were estimated from these two levels (i.e., toluene vapours exposed and inhaled). The values of removing-efficiencies were found to be 65.9-98.1%. The concentrations of hippuric and methylhippuric acids in the urine of workers exposed to toluene and xylene for 3 hours, collected just after the exposure, are valuable indices of these organic solvent vapours inhaled. A minute amount of urinary methylhippuric acid can be determined by means of gas chromatography.

  15. Evaluation of Direct Vapour Equilibration for Stable Isotope Analysis of Plant Water.

    NASA Astrophysics Data System (ADS)

    Millar, C. B.; McDonnell, J.; Pratt, D.

    2017-12-01

    The stable isotopes of water (2H and 18O), extracted from plants, have been utilized in a variety of ecohydrological, biogeochemical and climatological studies. The array of methods used to extract water from plants are as varied as the studies themselves. Here we perform a comprehensive inter-method comparison of six plant water extraction techniques: direct vapour equilibration, microwave extraction, two unique versions of cryogenic extraction, centrifugation, and high pressure mechanical squeezing. We applied these methods to four isotopically unique plant portions (heads, stems, leaves and root crown) of spring wheat (Triticum aestivum L.). The spring wheat was grown under controlled conditions with irrigation inputs of a known isotopic composition. Our results show that the methods of extraction return significantly different plant water isotopic signals. Centrifugation, microwave extraction, direct vapour equilibration, and squeezing returned more enriched results. Both cryogenic systems and squeezing returned more depleted results, depending upon the plant portion extracted. While cryogenic extraction is currently the most widely used method in the literature, our results suggest that direct vapor equilibration method outperforms it in terms of accuracy, sample throughput and replicability. More research is now needed with other plant species (especially woody plants) to see how far the findings from this study could be extended.

  16. Vapour sensitivity of an ALD hierarchical photonic structure inspired by Morpho.

    PubMed

    Poncelet, Olivier; Tallier, Guillaume; Mouchet, Sébastien R; Crahay, André; Rasson, Jonathan; Kotipalli, Ratan; Deparis, Olivier; Francis, Laurent A

    2016-05-09

    The unique architecture of iridescent Morpho butterfly scales is known to exhibit different optical responses to various vapours. However, the mechanism behind this phenomenon is not fully quantitatively understood. This work reports on process developments in the micro-fabrication of a Morpho-inspired photonic structure in atomic layer deposited (ALD) materials in order to investigate the vapour optical sensitivity of such artificial nanostructures. By developing recipes for dry and wet etching of ALD oxides, we micro-fabricated two structures: one combining Al2O3 and TiO2, and the other combining Al2O3 and HfO2. For the first time, we report the optical response of such ALD Morpho-like structures measured under a controlled flow of either ethanol or isopropyl alcohol (IPA) vapour. In spite of the small magnitude of the effect, the results show a selective vapour response (depending on the materials used).

  17. Changes in the composition and properties of Ashalchinskoye bitumen-saturated sandstones when exposed to water vapor

    NASA Astrophysics Data System (ADS)

    Korolev, E.; Eskin, A.; Kolchugin, A.; Morozov, V.; Khramchenkov, M.; Gabdelvalieva, R.

    2018-05-01

    Ashalchinskoye bitumen deposit is an experimental platform for testing technology of high-viscosity oil extraction from reservoir rocks. Last time for enhanced of oil recovery in reservoir used pressurization a water vapor with a temperature of ∼ 180 ° C (SAGD technology). However, what happens in sandstone reservoir is little known. We did a study of the effects of water vapor on the structural components of bitumen saturated sandstone. In paper were studied the rock samples at base condition and after one week exposure by water vapour. The thermal analysis showed that steaming helps to removes light and middle oil fractions with a boiling point up to 360 ° C from oil saturated sandstones. Content of heavy oil fractions virtually unchanged. Studying the composition of water extractions of samples showed that the process of aquathermolysis of oil is accompanied by a lowering of the pH of the pore solution from 7.4 to 6.5 and rise content in several times of mobile cations Ca2+, Mg2+ and HCO3 -, SO4 2- anions. Follows from this that the thermal steam effect by bitumen saturated sandstones leads to partial oxidation of hydrocarbons with to form a carbon dioxide. The source of sulfate ions were oxidized pyrite aggregates. Due to the increasing acidity of condensed water, which fills the pore space of samples, pore fluid becomes aggressive to calcite and dolomite cement of bitumen saturated sandstones. As a result of the dissolution of carbonate cement the pore fluid enriched by calcium and magnesium cations. Clearly, that the process is accompanied by reduction of contact strength between fragments of minerals and rocks. Resulting part of compounds is separated from the outer side of samples and falls to bottom of water vapor container. Decreasing the amount of calcite and dolomite anions in samples in a steam-treated influence is confirmed by X-Ray analysis. X-Ray analysis data of study adscititious component of rocks showed that when influenced of water vapor to

  18. Vertical structure of stratospheric water vapour trends derived from merged satellite data

    PubMed Central

    Hegglin, M. I.; Plummer, D. A.; Shepherd, T. G.; Scinocca, J. F.; Anderson, J.; Froidevaux, L.; Funke, B.; Hurst, D.; Rozanov, A.; Urban, J.; von Clarmann, T.; Walker, K. A.; Wang, H. J.; Tegtmeier, S.; Weigel, K.

    2017-01-01

    Stratospheric water vapour is a powerful greenhouse gas. The longest available record from balloon observations over Boulder, Colorado, USA shows increases in stratospheric water vapour concentrations that cannot be fully explained by observed changes in the main drivers, tropical tropopause temperatures and methane. Satellite observations could help resolve the issue, but constructing a reliable long-term data record from individual short satellite records is challenging. Here we present an approach to merge satellite data sets with the help of a chemistry-climate model nudged to observed meteorology. We use the models' water vapour as a transfer function between data sets that overcomes issues arising from instrument drift and short overlap periods. In the lower stratosphere, our water vapour record extends back to 1988 and water vapour concentrations largely follow tropical tropopause temperatures. Lower and mid-stratospheric long-term trends are negative, and the trends from Boulder are shown not to be globally representative. In the upper stratosphere, our record extends back to 1986 and shows positive long-term trends. The altitudinal differences in the trends are explained by methane oxidation together with a strengthened lower-stratospheric and a weakened upper-stratospheric circulation inferred by this analysis. Our results call into question previous estimates of surface radiative forcing based on presumed global long-term increases in water vapour concentrations in the lower stratosphere. PMID:29263751

  19. Vertical structure of stratospheric water vapour trends derived from merged satellite data.

    PubMed

    Hegglin, M I; Plummer, D A; Shepherd, T G; Scinocca, J F; Anderson, J; Froidevaux, L; Funke, B; Hurst, D; Rozanov, A; Urban, J; von Clarmann, T; Walker, K A; Wang, H J; Tegtmeier, S; Weigel, K

    2014-01-01

    Stratospheric water vapour is a powerful greenhouse gas. The longest available record from balloon observations over Boulder, Colorado, USA shows increases in stratospheric water vapour concentrations that cannot be fully explained by observed changes in the main drivers, tropical tropopause temperatures and methane. Satellite observations could help resolve the issue, but constructing a reliable long-term data record from individual short satellite records is challenging. Here we present an approach to merge satellite data sets with the help of a chemistry-climate model nudged to observed meteorology. We use the models' water vapour as a transfer function between data sets that overcomes issues arising from instrument drift and short overlap periods. In the lower stratosphere, our water vapour record extends back to 1988 and water vapour concentrations largely follow tropical tropopause temperatures. Lower and mid-stratospheric long-term trends are negative, and the trends from Boulder are shown not to be globally representative. In the upper stratosphere, our record extends back to 1986 and shows positive long-term trends. The altitudinal differences in the trends are explained by methane oxidation together with a strengthened lower-stratospheric and a weakened upper-stratospheric circulation inferred by this analysis. Our results call into question previous estimates of surface radiative forcing based on presumed global long-term increases in water vapour concentrations in the lower stratosphere.

  20. Water vapour correction of the daily 1 km AVHRR global land dataset: Part I validation and use of the Water Vapour input field

    USGS Publications Warehouse

    DeFelice, Thomas P.; Lloyd, D.; Meyer, D.J.; Baltzer, T. T.; Piraina, P.

    2003-01-01

    An atmospheric correction algorithm developed for the 1 km Advanced Very High Resolution Radiometer (AVHRR) global land dataset was modified to include a near real-time total column water vapour data input field to account for the natural variability of atmospheric water vapour. The real-time data input field used for this study is the Television and Infrared Observational Satellite (TIROS) Operational Vertical Sounder (TOVS) Pathfinder A global total column water vapour dataset. It was validated prior to its use in the AVHRR atmospheric correction process using two North American AVHRR scenes, namely 13 June and 28 November 1996. The validation results are consistent with those reported by others and entail a comparison between TOVS, radiosonde, experimental sounding, microwave radiometer, and data from a hand-held sunphotometer. The use of this data layer as input to the AVHRR atmospheric correction process is discussed.

  1. Spectroscopic interaction studies of substituted and unsubstituted copper phthalocyanine with adsorbed organic vapours

    NASA Astrophysics Data System (ADS)

    Ridhi, R.; Kang, Jasmeen; Saini, G. S. S.; Tripathi, S. K.

    2018-05-01

    The present study deals with comparing the interaction mechanism of adsorbed organic vapours with Copper Phthalocyanine thin films in its substituted and unsubstituted forms. For this purpose, the variations in vibrational levels of substituted CuPc (CuPcS) functionalized with tetrasulfonic acid tetrasodium salt and unsubstituted CuPc after exposure with methanol and benzene vapours is analyzed. Fourier transform infrared (FTIR) is used to study the interaction behaviour. The bulkier group tetrasulfonic acid tetrasodium salt added to CuPc leads to occupation of more space in the molecular arrangement as compared to unsubstituted CuPc and hence alteration of its properties. FTIR spectra of CuPc and CuPcS before and after vapours exposures highlighted the effect of these vapours on the various bonds and the role of functional group in altering the molecular structure of CuPcS during interaction with adsorbed vapours.

  2. Influence of atmospheric vapour pressure deficit on ozone responses of snap bean (Phaseolus vulgaris L.) genotypes

    PubMed Central

    Fiscus, Edwin L.; Booker, Fitzgerald L.; Sadok, Walid; Burkey, Kent O.

    2012-01-01

    Environmental conditions influence plant responses to ozone (O3), but few studies have evaluated individual factors directly. In this study, the effect of O3 at high and low atmospheric vapour pressure deficit (VPD) was evaluated in two genotypes of snap bean (Phaseolus vulgaris L.) (R123 and S156) used as O3 bioindicator plants. Plants were grown in outdoor controlled-environment chambers in charcoal-filtered air containing 0 or 60 nl l−1 O3 (12 h average) at two VPDs (1.26 and 1.96 kPa) and sampled for biomass, leaf area, daily water loss, and seed yield. VPD clearly influenced O3 effects. At low VPD, O3 reduced biomass, leaf area, and seed yield substantially in both genotypes, while at high VPD, O3 had no significant effect on these components. In clean air, high VPD reduced biomass and yield by similar fractions in both genotypes compared with low VPD. Data suggest that a stomatal response to VPD per se may be lacking in both genotypes and it is hypothesized that the high VPD resulted in unsustainable transpiration and water deficits that resulted in reduced growth and yield. High VPD- and water-stress-induced stomatal responses may have reduced the O3 flux into the leaves, which contributed to a higher yield compared to the low VPD treatment in both genotypes. At low VPD, transpiration increased in the O3 treatment relative to the clean air treatment, suggesting that whole-plant conductance was increased by O3 exposure. Ozone-related biomass reductions at low VPD were proportionally higher in S156 than in R123, indicating that differential O3 sensitivity of these bioindicator plants remained evident when environmental conditions were conducive for O3 effects. Assessments of potential O3 impacts on vegetation should incorporate interacting factors such as VPD. PMID:22268148

  3. Antifungal activity of clove essential oil and its volatile vapour against dermatophytic fungi.

    PubMed

    Chee, Hee Youn; Lee, Min Hee

    2007-12-01

    Antifungal activities of clove essential oil and its volatile vapour against dermatophytic fungi including Candida albicans, Epidermophyton floccosum. Microsporum audouinii, Trichophyton mentagrophytes, and Trichophyton rubrum were investigated. Both clove essential oil and its volatile vapour strongly inhibit spore germination and mycelial growth of the dermatophytic fungi tested. The volatile vapour of clove essential oil showed fungistatic activity whereas direct application of clove essential oil showed fungicidal activity.

  4. Post-Contamination Vapour Hazards from Military Vehicles Contaminated with Thickened and Unthickened GD

    DTIC Science & Technology

    1979-02-01

    The residual vapour hazards from four types of military vehicles previously contaminated with either thickened or unthickened GD have been measured...magnitude of these hazards have been investigated and an assessment made of their relevance to contamination control. It was found that on permeable... contamination had been applied were ineffective in reducing the subsequent vapour hazard; the vapour hazard arising from thickened GD contamination was less

  5. Measurement and evaluation of the relationships between capillary pressure, relative permeability, and saturation for surrogate fluids for laboratory study of geological carbon sequestration

    NASA Astrophysics Data System (ADS)

    Mori, H.; Trevisan, L.; Sakaki, T.; Cihan, A.; Smits, K. M.; Illangasekare, T. H.

    2013-12-01

    Multiphase flow models can be used to improve our understanding of the complex behavior of supercritical CO2 (scCO2) in deep saline aquifers to make predictions for the stable storage strategies. These models rely on constitutive relationships such as capillary pressure (Pc) - saturation (Sw) and relative permeability (kr) - saturation (Sw) as input parameters. However, for practical application of these models, such relationships for scCO2 and brine system are not readily available for geological formations. This is due to the complicated and expensive traditional methods often used to obtain these relationships in the laboratory through high pressure and/or high-temperature controls. A method that has the potential to overcome the difficulty in conducting such experiments is to replicate scCO2 and brine with surrogate fluids that capture the density and viscosity effects to obtain the constitutive relationships under ambient conditions. This study presents an investigation conducted to evaluate this method. An assessment of the method allows us to evaluate the prediction accuracy of multiphase models using the constitutive relationships developed from this approach. With this as a goal, the study reports multiple laboratory column experiments conducted to measure these relationships. The obtained relationships were then used in the multiphase flow simulator TOUGH2 T2VOC to explore capillary trapping mechanisms of scCO2. A comparison of the model simulation to experimental observation was used to assess the accuracy of the measured constitutive relationships. Experimental data confirmed, as expected, that the scaling method cannot be used to obtain the residual and irreducible saturations. The results also showed that the van Genuchten - Mualem model was not able to match the independently measured kr data obtained from column experiments. Simulated results of fluid saturations were compared with saturation measurements obtained using x-ray attenuations. This

  6. The Seasonal Cycle of Water Vapour on Mars from Assimilation of Thermal Emission Spectrometer Data

    NASA Technical Reports Server (NTRS)

    Steele, Liam J.; Lewis, Stephen R.; Patel, Manish R.; Montmessin, Franck; Forget, Francois; Smith, Michael D.

    2014-01-01

    We present for the first time an assimilation of Thermal Emission Spectrometer (TES) water vapour column data into a Mars global climate model (MGCM). We discuss the seasonal cycle of water vapour, the processes responsible for the observed water vapour distribution, and the cross-hemispheric water transport. The assimilation scheme is shown to be robust in producing consistent reanalyses, and the global water vapour column error is reduced to around 2-4 pr micron depending on season. Wave activity is shown to play an important role in the water vapour distribution, with topographically steered flows around the Hellas and Argyre basins acting to increase transport in these regions in all seasons. At high northern latitudes, zonal wavenumber 1 and 2 stationary waves during northern summer are responsible for spreading the sublimed water vapour away from the pole. Transport by the zonal wavenumber 2 waves occurs primarily to the west of Tharsis and Arabia Terra and, combined with the effects of western boundary currents, this leads to peak water vapour column abundances here as observed by numerous spacecraft. A net transport of water to the northern hemisphere over the course of one Mars year is calculated, primarily because of the large northwards flux of water vapour which occurs during the local dust storm around L(sub S) = 240-260deg. Finally, outlying frost deposits that surround the north polar cap are shown to be important in creating the peak water vapour column abundances observed during northern summer.

  7. Comparison of Atmospheric Pressure Chemical Ionization and Field Ionization Mass Spectrometry for the Analysis of Large Saturated Hydrocarbons.

    PubMed

    Jin, Chunfen; Viidanoja, Jyrki; Li, Mingzhe; Zhang, Yuyang; Ikonen, Elias; Root, Andrew; Romanczyk, Mark; Manheim, Jeremy; Dziekonski, Eric; Kenttämaa, Hilkka I

    2016-11-01

    Direct infusion atmospheric pressure chemical ionization mass spectrometry (APCI-MS) was compared to field ionization mass spectrometry (FI-MS) for the determination of hydrocarbon class distributions in lubricant base oils. When positive ion mode APCI with oxygen as the ion source gas was employed to ionize saturated hydrocarbon model compounds (M) in hexane, only stable [M - H] + ions were produced. Ion-molecule reaction studies performed in a linear quadrupole ion trap suggested that fragment ions of ionized hexane can ionize saturated hydrocarbons via hydride abstraction with minimal fragmentation. Hence, APCI-MS shows potential as an alternative of FI-MS in lubricant base oil analysis. Indeed, the APCI-MS method gave similar average molecular weights and hydrocarbon class distributions as FI-MS for three lubricant base oils. However, the reproducibility of APCI-MS method was found to be substantially better than for FI-MS. The paraffinic content determined using the APCI-MS and FI-MS methods for the base oils was similar. The average number of carbons in paraffinic chains followed the same increasing trend from low viscosity to high viscosity base oils for the two methods.

  8. Comparison of interaction mechanisms of copper phthalocyanine and nickel phthalocyanine thin films with chemical vapours

    NASA Astrophysics Data System (ADS)

    Ridhi, R.; Singh, Sukhdeep; Saini, G. S. S.; Tripathi, S. K.

    2018-04-01

    The present study deals with comparing interaction mechanisms of copper phthalocyanine and nickel phthalocyanine with versatile chemical vapours: reducing, stable aromatic and oxidizing vapours namely; diethylamine, benzene and bromine. The variation in electrical current of phthalocyanines with exposure of chemical vapours is used as the detection parameter for studying interaction behaviour. Nickel phthalocyanine is found to exhibit anomalous behaviour after exposure of reducing vapour diethylamine due to alteration in its spectroscopic transitions and magnetic states. The observed sensitivities of copper phthalocyanine and nickel phthalcyanine films are different in spite of their similar bond numbers, indicating significant role of central metal atom in interaction mechanism. The variations in electronic transition levels after vapours exposure, studied using UV-Visible spectroscopy confirmed our electrical sensing results. Bromine exposure leads to significant changes in vibrational bands of metal phthalocyanines as compared to other vapours.

  9. Impact of major volcanic eruptions on stratospheric water vapour

    NASA Astrophysics Data System (ADS)

    Löffler, Michael; Brinkop, Sabine; Jöckel, Patrick

    2016-05-01

    Volcanic eruptions can have a significant impact on the Earth's weather and climate system. Besides the subsequent tropospheric changes, the stratosphere is also influenced by large eruptions. Here changes in stratospheric water vapour after the two major volcanic eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo on the Philippines in 1991 are investigated with chemistry-climate model simulations. This study is based on two simulations with specified dynamics of the European Centre for Medium-Range Weather Forecasts Hamburg - Modular Earth Submodel System (ECHAM/MESSy) Atmospheric Chemistry (EMAC) model, performed within the Earth System Chemistry integrated Modelling (ESCiMo) project, of which only one includes the long-wave volcanic forcing through prescribed aerosol optical properties. The results show a significant increase in stratospheric water vapour induced by the eruptions, resulting from increased heating rates and the subsequent changes in stratospheric and tropopause temperatures in the tropics. The tropical vertical advection and the South Asian summer monsoon are identified as sources for the additional water vapour in the stratosphere. Additionally, volcanic influences on tropospheric water vapour and El Niño-Southern Oscillation (ENSO) are evident, if the long-wave forcing is strong enough. Our results are corroborated by additional sensitivity simulations of the Mount Pinatubo period with reduced nudging and reduced volcanic aerosol extinction.

  10. Experimental Verification of Boyle's Law and the Ideal Gas Law

    ERIC Educational Resources Information Center

    Ivanov, Dragia Trifonov

    2007-01-01

    Two new experiments are offered concerning the experimental verification of Boyle's law and the ideal gas law. To carry out the experiments, glass tubes, water, a syringe and a metal manometer are used. The pressure of the saturated water vapour is taken into consideration. For educational purposes, the experiments are characterized by their…

  11. Levels of selected carcinogens and toxicants in vapour from electronic cigarettes.

    PubMed

    Goniewicz, Maciej Lukasz; Knysak, Jakub; Gawron, Michal; Kosmider, Leon; Sobczak, Andrzej; Kurek, Jolanta; Prokopowicz, Adam; Jablonska-Czapla, Magdalena; Rosik-Dulewska, Czeslawa; Havel, Christopher; Jacob, Peyton; Benowitz, Neal

    2014-03-01

    Electronic cigarettes, also known as e-cigarettes, are devices designed to imitate regular cigarettes and deliver nicotine via inhalation without combusting tobacco. They are purported to deliver nicotine without other toxicants and to be a safer alternative to regular cigarettes. However, little toxicity testing has been performed to evaluate the chemical nature of vapour generated from e-cigarettes. The aim of this study was to screen e-cigarette vapours for content of four groups of potentially toxic and carcinogenic compounds: carbonyls, volatile organic compounds, nitrosamines and heavy metals. Vapours were generated from 12 brands of e-cigarettes and the reference product, the medicinal nicotine inhaler, in controlled conditions using a modified smoking machine. The selected toxic compounds were extracted from vapours into a solid or liquid phase and analysed with chromatographic and spectroscopy methods. We found that the e-cigarette vapours contained some toxic substances. The levels of the toxicants were 9-450 times lower than in cigarette smoke and were, in many cases, comparable with trace amounts found in the reference product. Our findings are consistent with the idea that substituting tobacco cigarettes with e-cigarettes may substantially reduce exposure to selected tobacco-specific toxicants. E-cigarettes as a harm reduction strategy among smokers unwilling to quit, warrants further study. (To view this abstract in Polish and German, please see the supplementary files online.).

  12. Mixing of multiple metal vapours into an arc plasma in gas tungsten arc welding of stainless steel

    NASA Astrophysics Data System (ADS)

    Park, Hunkwan; Trautmann, Marcus; Tanaka, Keigo; Tanaka, Manabu; Murphy, Anthony B.

    2017-11-01

    A computational model of the mixing of multiple metal vapours, formed by vaporization of the surface of an alloy workpiece, into the thermal arc plasma in gas tungsten arc welding (GTAW) is presented. The model incorporates the combined diffusion coefficient method extended to allow treatment of three gases, and is applied to treat the transport of both chromium and iron vapour in the helium arc plasma. In contrast to previous models of GTAW, which predict that metal vapours are swept away to the edge of the arc by the plasma flow, it is found that the metal vapours penetrate strongly into the arc plasma, reaching the cathode region. The predicted results are consistent with published measurements of the intensity of atomic line radiation from the metal vapours. The concentration of chromium vapour is predicted to be higher than that of iron vapour due to its larger vaporization rate. An accumulation of chromium vapour is predicted to occur on the cathode at about 1.5 mm from the cathode tip, in agreement with published measurements. The arc temperature is predicted to be strongly reduced due to the strong radiative emission from the metal vapours. The driving forces causing the diffusion of metal vapours into the helium arc are examined, and it is found that diffusion due to the applied electric field (cataphoresis) is dominant. This is explained in terms of large ionization energies and the small mass of helium compared to those of the metal vapours.

  13. Numerical simulation of cryogenic cavitating flow by an extended transport-based cavitation model with thermal effects

    NASA Astrophysics Data System (ADS)

    Zhang, Shaofeng; Li, Xiaojun; Zhu, Zuchao

    2018-06-01

    Thermodynamic effects on cryogenic cavitating flow is important to the accuracy of numerical simulations mainly because cryogenic fluids are thermo-sensitive, and the vapour saturation pressure is strongly dependent on the local temperature. The present study analyses the thermal cavitating flows in liquid nitrogen around a 2D hydrofoil. Thermal effects were considered using the RNG k-ε turbulence model with a modified turbulent eddy viscosity and the mass transfer homogenous cavitation model coupled with energy equation. In the cavitation model process, the saturated vapour pressure is modified based on the Clausius-Clapron equation. The convection heat transfer approach is also considered to extend the Zwart-Gerber-Belamri model. The predicted pressure and temperature inside the cavity under cryogenic conditions show that the modified Zwart-Gerber-Belamri model is in agreement with the experimental data of Hord et al. in NASA, especially in the thermal field. The thermal effect significantly affects the cavitation dynamics during phase-change process, which could delay or suppress the occurrence and development of cavitation behaviour. Based on the modified Zwart-Gerber-Belamri model proposed in this paper, better prediction of the cryogenic cavitation is attainable.

  14. Kinetic model of water vapour adsorption by gluten-free starch

    NASA Astrophysics Data System (ADS)

    Ocieczek, Aneta; Kostek, Robert; Ruszkowska, Millena

    2015-01-01

    This study evaluated the kinetics of water vapour adsorption on the surface of starch molecules derived from wheat. The aim of the study was to determine an equation that would allow estimation of water content in tested material in any timepoint of the adsorption process aimed at settling a balance with the environment. An adsorption isotherm of water vapour on starch granules was drawn. The parameters of the Guggenheim, Anderson, and De Boer equation were determined by characterizing the tested product and adsorption process. The equation of kinetics of water vapour adsorption on the surface of starch was determined based on the Guggenheim, Anderson, and De Boer model describing the state of equilibrium and on the model of a first-order linear inert element describing the changes in water content over time.

  15. Mechanism of two-step vapour-crystal nucleation in a pore

    NASA Astrophysics Data System (ADS)

    van Meel, J. A.; Liu, Y.; Frenkel, D.

    2015-09-01

    We present a numerical study of the effect of hemispherical pores on the nucleation of Lennard-Jones crystals from the vapour phase. As predicted by Page and Sear, there is a narrow range of pore radii, where vapour-liquid nucleation can become a two-step process. A similar observation was made for different pore geometries by Giacomello et al. We find that the maximum nucleation rate depends on both the size and the adsorption strength of the pore. Moreover, a poe can be more effective than a planar wall with the same strength of attraction. Pore-induced vapour-liquid nucleation turns out to be the rate-limiting step for crystal nucleation. This implies that crystal nucleation can be enhanced by a judicious choice of the wetting properties of a microporous nucleating agent.

  16. Validation of the Nonin 8600V Pulse Oximeter for heart rate and oxygen saturation measurements in rats.

    PubMed

    Bernard, Susan L; An, Dowon; Glenny, Robb W

    2004-05-01

    This report validates the use and limitations of the Nonin Pulse Oximeter for measuring heart rate and oxygen saturation in rats. Eight anesthetized Sprague-Dawley rats were intubated and catheterized. Oxygen saturation was directly measured from arterial blood by using a Radiometer OSM3 Hemoximeter adjusted for rat blood as well as indirectly by using the Nonin Pulse Oximeter. Oxygen saturation was changed by varying the level of inhaled oxygen. Heart rate was measured in two ways: 1) by using the signal from the Nonin Pulse Oximeter and 2) by counting the pressure pulses from the transduced blood pressure. There was excellent agreement between heart rate values measured by the Nonin Pulse Oximeter and that measured by counting the pulses from the arterial blood pressure recording. The Nonin Pulse Oximeter underestimated oxygen saturations by about 3% to 5% compared to the Hemoximeter. Overall, the pulse oximeter reflected important trends in oxygen saturations, making it a useful tool for laboratory animal medicine.

  17. Seasonally-Active Water on Mars: Vapour, Ice, Adsorbate, and the Possibility of Liquid

    NASA Astrophysics Data System (ADS)

    Richardson, M. I.

    2002-12-01

    southern caps. Similar climate-models of the water cycle also do not need much exchangeable adsorbed water in order to explain the observed vapour distributions. The possibility of liquid water is tantalizing, but difficult to definitively judge. On scales greater than a meter or so, Mars is most definitely well away from the water triple point--although the surface pressure can exceed 6.1 mbars, the partial pressure of water vapor (to which the triple point refers) is at best orders of magnitude lower. Several careful studies have shown, however, that locally transient (meta-stable) liquid is possible, if the net heating of ice deposits is high enough. This process is aided if the total surface pressure exceeds 6.1mbar (this prevents boiling, or the explosive loss of vapour into the atmosphere) or if the liquid is covered by a thin ice shell, and is only possible if surface temperatures exceed 273K (for pure water, or the appropriate eutectic for brines) and if ice is present. The former challenge is much easier to meet than the latter. The melt scenario requires that ice deposited in winter must be protected from sublimation as surface temperatures increase in spring, but then exposed to the peak of solar heating in summer. Available spacecraft observations of seasonal water will be discussed with the aid of GCM model simulations, and examined in the context of water distributions and phases.

  18. Towards improved estimation of the unsaturated soil hydraulic conductivity in the near saturated range by a fully automated, pressure controlled unit gradient experiment.

    NASA Astrophysics Data System (ADS)

    Werisch, Stefan; Müller, Marius

    2017-04-01

    Determination of soil hydraulic properties has always been an important part of soil physical research and model applications. While several experiments are available to measure the water retention of soil samples, the determination of the unsaturated hydraulic conductivity is often more complicated, bound to strong assumption and time consuming. Although, the application of unit gradient experiments is recommended since the middle of the last century, as one method towards a (assumption free) direct measurement of the unsaturated hydraulic conductivity, data from unit gradient experiments is seldom to never reported in literature. We developed and build a fully automated, pressure controlled, unit gradient experiment, which allows a precise determination of the unsaturated soil hydraulic conductivity K(h) and water retention VWC(h), especially in the highly dynamic near saturated range. The measurement apparatus applies the concept of hanging water columns and imposes the required soil water pressure by dual porous plates. This concepts allows the simultaneous and direct measurement of water retention and hydraulic conductivity. Moreover, this approach results in a technically less demanding experiment than related flux controlled experiments, and virtually any flux can be measured. Thus, both soil properties can be measured in mm resolution, for wetting and drying processes, between saturation and field capacity for all soil types. Our results show, that it is important to establish separate measurements of the unsaturated hydraulic conductivity in the near saturated range, as the shape of the retention function and hydraulic conductivity curve do not necessarily match. Consequently, the prediction of the hydraulic conductivity curve from measurements of the water retention behavior in combination with a value for the saturated hydraulic conductivity can be misleading. Thus, separate parameterizations of the individual functions might be necessary and are

  19. Local thermal pressurization triggered by flash heating causes dramatic weakening in water-saturated gouges at subseismic slip rates

    NASA Astrophysics Data System (ADS)

    Yao, Lu; Ma, Shengli; Shimamoto, Toshihiko; Togo, Tetsuhiro; Chen, Jianye; Kitajima, Hiroko; Wang, Yu; He, Honglin

    2017-04-01

    High-velocity friction studies on water-saturated gouges in recent years have demonstrated that the wet gouges subjected to high-velocity shear tend to have smaller peak and steady-state friction, much shorter slip-weakening distance and lower fracture energy, as compared to the air-dry gouges. Thermal pressurization, compaction-induced pressurization, and flash heating were previously recognized to be the important weakening mechanisms in causing these behaviors. However, in spite of theoretical expectation, there is few evidence to support the occurrence of flash heating in wet gouges, mainly due to the superimposition of multiple weakening mechanisms especially for thermal pressurization. We devised friction experiments to study the role of flash heating in dynamic weakening of water-saturated gouges. In each experiment, we used a pressure vessel to impose a pore pressure of 2.0 MPa on the gouge layer sandwiched between porous ceramics blocks, and applied a long preslide of 1.0 m in displacement before starting the experiment at the target slip rate. By doing so we could (1) suppress rapid thermal pressurization in the bulk gouge layer by means of the designed drained condition and elevated temperature of phase transition of pore water; (2) suppress or even eliminate the pressurization effects due to compaction especially at the very beginning of the experiment. The experiments were performed on a granular gouge (mainly quartz, plagioclase, calcite and illite) and a clay-rich gouge (illite and chlorite ˜58 wt%), which were both collected from the Qingchuan fault of the Longmenshan fault system. For the granular gouge, the steady-state friction coefficients (μss) are 0.39-0.42 at slip rates (V ) of 100 μm/s-10 mm/s; however, at V ≥40 mm/s, the friction coefficients (μ) decrease suddenly at the onset of the slip. For instance, μ reduces by 0.29 within displacement of 0.05-0.08m at V =100 mm/s. For the clay-rich gouge, μss increases from 0.24 to 0.34 as V

  20. Oxygen Saturation in Closed-Globe Blunt Ocular Trauma

    PubMed Central

    Long, Chongde; Wen, Xin; Gao, Qianying

    2016-01-01

    Purpose. To evaluate the oxygen saturation in retinal blood vessels in patients after closed-globe blunt ocular trauma. Design. Retrospective observational case series. Methods. Retinal oximetry was performed in both eyes of 29 patients with unilateral closed-globe blunt ocular trauma. Arterial oxygen saturation (SaO2), venous oxygen saturation (SvO2), arteriovenous difference in oxygen saturation (SO2), arteriolar diameter, venular diameter, and arteriovenous difference in diameter were measured. Association parameters including age, finger pulse oximetry, systolic pressure, diastolic pressure, and heart rate were analyzed. Results. The mean SaO2 in traumatic eyes (98.1% ± 6.8%) was not significantly different from SaO2 in unaffected ones (95.3% ± 7.2%) (p = 0.136). Mean SvO2 in traumatic eyes (57.1% ± 10.6%) was significantly lower than in unaffected ones (62.3% ± 8.4%) (p = 0.044). The arteriovenous difference in SO2 in traumatic eyes (41.0% ± 11.2%) was significantly larger than in unaffected ones (33.0% ± 6.9%) (p = 0.002). No significant difference was observed between traumatic eyes and unaffected ones in arteriolar (p = 0.249) and venular diameter (p = 0.972) as well as arteriovenous difference in diameter (p = 0.275). Conclusions. Oxygen consumption is increased in eyes after cgBOT, associated with lower SvO2 and enlarged arteriovenous difference in SO2 but not with changes in diameter of retinal vessels. PMID:27699174

  1. WALES: water vapour lidar experiment in space

    NASA Astrophysics Data System (ADS)

    Guerin, F.; Pain, Th.; Palmade, J.-L.; Pailharey, E.; Giraud, D.; Jubineau, F.

    2017-11-01

    The WAter vapour Lidar Experiment in Space (WALES) mission aims at providing water vapour profiles with high accuracy and vertical resolution through the troposphere and the lower stratosphere on a global scale using an instrument based on Differential Absorption Lidar (DIAL) observation technique, and mounted on an Earth orbiting satellite. This active DIAL technique will also provide data on the cloud coverage by means of the signal reflection on the cloud layers. In DIAL operation, backscatter lidar signals at two wavelengths - at least - are detected. One wavelength (λ ON) is highly absorbed by the species of interest, while the other (λ OFF) is backscattered with minimal absorption. This difference in absorption at the two transmitted wavelengths leads to the determination of the concentration of the species of interest. The DIAL is therefore a dual-wavelength lidar in which the signals detected at the two wavelengths are processed to extract the absolute density of water vapour. The Phase A study performed by ALCATEL Space and their partners under contract of the European Space Agency has led to a credible and innovative concept of instrument, based on a mission performance modelling. The challenge is to foster the scientific return while minimising the development risks and costs of instrument development, in particular the laser transmitter. The paper describes the payload design and the implementation on a low Earth orbiting (LEO) satellite.

  2. WALES: WAter vapour Lidar Experiment in Space

    NASA Astrophysics Data System (ADS)

    Guerin, F.; Pain, Th.; Palmade, J. L.; Pailharey, E.; Giraud, D.; Jubineau, F.

    2004-06-01

    The WAter vapour Lidar Experiment in Space (WALES) mission aims at providing water vapour profiles with high accuracy and vertical resolution through the troposphere and the lower stratosphere on a global scale using an instrument based on Differential Absorption Lidar (DIAL) observation technique, and mounted on an Earth orbiting satellite. This active DIAL technique will also provide data on the cloud coverage by means of the signal reflection on the cloud layers. In DIAL operation, backscatter lidar signals at two wavelengths - at least - are detected. One wavelength (λ ON) is highly absorbed by the species of interest, while the other (λ OFF) is backscattered with minimal absorption. This difference in absorption at the two transmitted wavelengths leads to the determination of the concentration of the species of interest. The DIAL is therefore a dual-wavelength lidar in which the signals detected at the two wavelengths are processed to extract the absolute density of water vapour. The Phase A study performed by ALCATEL Space and their partners under contract of the European Space Agency has led to a credible and innovative concept of instrument, based on a mission performance modelling. The challenge is to foster the scientific return while minimising the development risks and costs of instrument development, in particular the laser transmitter. The paper describes the payload design and the implementation on a low Earth orbiting (LEO) satellite.

  3. Comparisons of xylem sap flow and water vapour flux at the stand level and derivation of canopy conductance for Scots pine

    NASA Astrophysics Data System (ADS)

    Granier, A.; Biron, P.; Köstner, B.; Gay, L. W.; Najjar, G.

    1996-03-01

    Simultaneous measurements of xylem sap flow and water vapour flux over a Scots pine ( Pinus sylvestris) forest (Hartheim, Germany), were carried out during the Hartheim Experiment (HartX), an intensive observation campaign of the international programme REKLIP. Sap flow was measured every 30 min using both radial constant heating (Granier, 1985) and two types of Cermak sap flowmeters installed on 24 trees selected to cover a wide range of the diameter classes of the stand (min 8 cm; max 17.5 cm). Available energy was high during the observation period (5.5 to 6.9 mm.day-1), and daily cumulated sap flow on a ground area basis varied between 2.0 and 2.7 mm day-1 depending on climate conditions. Maximum hourly values of sap flow reached 0.33 mm h-1, i.e., 230 W m-2. Comparisons of sap flow with water vapour flux as measured with two OPEC (One Propeller Eddy Correlation, University of Arizona) systems showed a time lag between the two methods, sap flow lagging about 90 min behind vapour flux. After taking into account this time lag in the sap flow data set, a good agreement was found between both methods: sap flow = 0.745* vapour flux, r 2 = 0.86. The difference between the two estimates was due to understory transpiration. Canopy conductance ( g c ) was calculated from sap flow measurements using the reverse form of Penman-Monteith equation and climatic data measured 4 m above the canopy. Variations of g c were well correlated ( r 2 = 0.85) with global radiation ( R) and vapour pressure deficit ( vpd). The quantitative expression for g c = f ( R, vpd) was very similar to that previously found with maritime pine ( Pinus pinaster) in the forest of Les Landes, South Western France.

  4. Code Saturation Versus Meaning Saturation: How Many Interviews Are Enough?

    PubMed

    Hennink, Monique M; Kaiser, Bonnie N; Marconi, Vincent C

    2017-03-01

    Saturation is a core guiding principle to determine sample sizes in qualitative research, yet little methodological research exists on parameters that influence saturation. Our study compared two approaches to assessing saturation: code saturation and meaning saturation. We examined sample sizes needed to reach saturation in each approach, what saturation meant, and how to assess saturation. Examining 25 in-depth interviews, we found that code saturation was reached at nine interviews, whereby the range of thematic issues was identified. However, 16 to 24 interviews were needed to reach meaning saturation where we developed a richly textured understanding of issues. Thus, code saturation may indicate when researchers have "heard it all," but meaning saturation is needed to "understand it all." We used our results to develop parameters that influence saturation, which may be used to estimate sample sizes for qualitative research proposals or to document in publications the grounds on which saturation was achieved.

  5. Investigation of Primary Dew-Point Saturator Efficiency in Two Different Thermal Environments

    NASA Astrophysics Data System (ADS)

    Zvizdic, D.; Heinonen, M.; Sestan, D.

    2015-08-01

    The aim of this paper is to describe the evaluation process of the performance of the low-range saturator (LRS), when exposed to two different thermal environments. The examined saturator was designed, built, and tested at MIKES (Centre for Metrology and Accreditation, Finland), and then transported to the Laboratory for Process Measurement (LPM) in Croatia, where it was implemented in a new dew-point calibration system. The saturator works on a single-pressure-single-pass generation principle in the dew/frost-point temperature range between and . The purpose of the various tests performed at MIKES was to examine the efficiency and non-ideality of the saturator. As a test bath facility in Croatia differs from the one used in Finland, the same tests were repeated at LPM, and the effects of different thermal conditions on saturator performance were examined. Thermometers, pressure gauges, an air preparation system, and water for filling the saturator at LPM were also different than those used at MIKES. Results obtained by both laboratories indicate that the efficiency of the examined saturator was not affected either by the thermal conditions under which it was tested or by equipment used for the tests. Both laboratories concluded that LRS is efficient enough for a primary realization of the dew/frost-point temperature scale in the range from to , with flow rates between and . It is also shown that a considerable difference of the pre-saturator efficiency, indicated by two laboratories, did not have influence to the overall performance of the saturator. The results of the research are presented in graphical and tabular forms. This paper also gives a brief description of the design and operation principle of the investigated low-range saturator.

  6. Oxygen saturation in optic nerve head structures by hyperspectral image analysis.

    PubMed

    Beach, James; Ning, Jinfeng; Khoobehi, Bahram

    2007-02-01

    A method is presented for the calculation and visualization of percent blood oxygen saturation from specific tissue structures in hyperspectral images of the optic nerve head (ONH). Trans-pupillary images of the primate optic nerve head and overlying retinal blood vessels were obtained with a hyperspectral imaging (HSI) system attached to a fundus camera. Images were recorded during normal blood flow and after partially interrupting flow to the ONH and retinal circulation by elevation of the intraocular pressure (IOP) from 10 mmHg to 55 mmHg in steps. Percent oxygen saturation was calculated from groups of pixels associated with separate tissue structures, using a linear least-squares curve fit of the recorded hemoglobin spectrum to reference spectra obtained from fully oxygenated and deoxygenated red cell suspensions. Color maps of saturation were obtained from a new algorithm that enables comparison of oxygen saturation from large vessels and tissue areas in hyperspectral images. Percent saturation in retinal vessels and from the average over ONH structures (IOP = 10 mmHg) was (mean +/- SE): artery 81.8 +/- 0.4%, vein 42.6 +/- 0.9%, average ONH 68.3 +/- 0.4%. Raising IOP from 10 mmHg to 55 mmHg for 5 min caused blood oxygen saturation to decrease (mean +/- SE): artery 46.1 +/- 6.2%, vein 36.1 +/- 1.6%, average ONH 41.9 +/- 1.6%. The temporal cup showed the highest saturation at low and high IOP (77.3 +/- 1.0% and 60.1 +/- 4.0%) and the least reduction in saturation at high IOP (22.3%) compared with that of the average ONH (38.6%). A linear relationship was found between saturation indices obtained from the algorithm and percent saturation values obtained by spectral curve fits to calibrated red cell samples. Percent oxygen saturation was determined from hyperspectral images of the ONH tissue and retinal vessels overlying the ONH at normal and elevated IOP. Pressure elevation was shown to reduce blood oxygen saturation in vessels and ONH structures, with the

  7. Water vapour and methane coupling in the stratosphere observed using SCIAMACHY solar occultation measurements

    NASA Astrophysics Data System (ADS)

    Noël, Stefan; Weigel, Katja; Bramstedt, Klaus; Rozanov, Alexei; Weber, Mark; Bovensmann, Heinrich; Burrows, John P.

    2018-04-01

    An improved stratospheric water vapour data set has been retrieved from SCIAMACHY/ENVISAT solar occultation measurements. It is similar to that successfully applied to methane and carbon dioxide. There is now a consistent set of data products for the three constituents covering the altitudes 17-45 km, the latitude range between about 50 and 70° N, and the period August 2002 to April 2012. The new water vapour concentration profiles agree with collocated results from ACE-FTS and MLS/Aura to within ˜ 5 %. A significant positive linear change in water vapour for the time 2003-2011 is observed at lower stratospheric altitudes with a value of about 0.015 ± 0.008 ppmv year-1 around 17 km. Between 30 and 37 km the changes become significantly negative (about -0.01 ± 0.008 ppmv year-1); all errors are 2σ values. The combined analysis of the SCIAMACHY methane and water vapour time series shows the expected anti-correlation between stratospheric methane and water vapour and a clear temporal variation related to the Quasi-Biennial Oscillation (QBO). Above about 20 km most of the additional water vapour is attributed to the oxidation of methane. In addition short-term fluctuations and longer-term variations on a timescale of 5-6 years are observed. The SCIAMACHY data confirm that at lower altitudes the amount of water vapour and methane are transported from the tropics to higher latitudes via the shallow branch of the Brewer-Dobson circulation.

  8. A sensor of alcohol vapours based on thin polyaniline base film and quartz crystal microbalance.

    PubMed

    Ayad, Mohamad M; El-Hefnawey, Gad; Torad, Nagy L

    2009-08-30

    Thin films of polyaniline base, emeraldine base (EB), coating on the quartz crystal microbalance (QCM) electrode were used as a sensitive layer for the detection of a number of primary aliphatic alcohols such as ethanol, methanol, 2-propanol and 1-propanol vapours. The frequency shifts (Deltaf) of the QCM were increased due to the vapour adsorption into the EB film. Deltaf were found to be linearly correlated with the concentrations of alcohols vapour in part per million (ppm). The sensitivity of the sensor was found to be governed by the chemical structure of the alcohol. The sensor shows a good reproducibility and reversibility. The diffusions of different alcohols vapour were studied and the diffusion coefficients (D) were calculated. It is concluded that the diffusion of the vapours into the EB film follows Fickian kinetics.

  9. SI-traceable and dynamic reference gas mixtures for water vapour at polar and high troposphere atmospheric levels

    NASA Astrophysics Data System (ADS)

    Guillevic, Myriam; Pascale, Céline; Mutter, Daniel; Wettstein, Sascha; Niederhauser, Bernhard

    2017-04-01

    In the framework of METAS' AtmoChem-ECV project, new facilities are currently being developed to generate reference gas mixtures for water vapour at concentrations measured in the high troposphere and polar regions, in the range 1-20 µmol/mol (ppm). The generation method is dynamic (the mixture is produced continuously over time) and SI-traceable (i.e. the amount of substance fraction in mole per mole is traceable to the definition of SI-units). The generation process is composed of three successive steps. The first step is to purify the matrix gas, nitrogen or synthetic air. Second, this matrix gas is spiked with the pure substance using a permeation technique: a permeation device contains a few grams of pure water in liquid form and loses it linearly over time by permeation through a membrane. In a third step, to reach the desired concentration, the first, high concentration mixture exiting the permeation chamber is then diluted with a chosen flow of matrix gas with one or two subsequent dilution steps. All flows are piloted by mass flow controllers. All parts in contact with the gas mixture are passivated using coated surfaces, to reduce adsorption/desorption processes as much as possible. The mixture can eventually be directly used to calibrate an analyser. The standard mixture produced by METAS' dynamic setup was injected into a chilled mirror from MBW Calibration AG, the designated institute for absolute humidity calibration in Switzerland. The used chilled mirror, model 373LX, is able to measure frost point and sample pressure and therefore calculate the water vapour concentration. This intercomparison of the two systems was performed in the range 4-18 ppm water vapour in synthetic air, at two different pressure levels, 1013.25 hPa and 2000 hPa. We present here METAS' dynamic setup, its uncertainty budget and the first results of the intercomparison with MBW's chilled mirror.

  10. The criterion of subscale sufficiency and its application to the relationship between static capillary pressure, saturation and interfacial areas.

    PubMed

    Kurzeja, Patrick

    2016-05-01

    Modern imaging techniques, increased simulation capabilities and extended theoretical frameworks, naturally drive the development of multiscale modelling by the question: which new information should be considered? Given the need for concise constitutive relationships and efficient data evaluation; however, one important question is often neglected: which information is sufficient? For this reason, this work introduces the formalized criterion of subscale sufficiency. This criterion states whether a chosen constitutive relationship transfers all necessary information from micro to macroscale within a multiscale framework. It further provides a scheme to improve constitutive relationships. Direct application to static capillary pressure demonstrates usefulness and conditions for subscale sufficiency of saturation and interfacial areas.

  11. The criterion of subscale sufficiency and its application to the relationship between static capillary pressure, saturation and interfacial areas

    PubMed Central

    2016-01-01

    Modern imaging techniques, increased simulation capabilities and extended theoretical frameworks, naturally drive the development of multiscale modelling by the question: which new information should be considered? Given the need for concise constitutive relationships and efficient data evaluation; however, one important question is often neglected: which information is sufficient? For this reason, this work introduces the formalized criterion of subscale sufficiency. This criterion states whether a chosen constitutive relationship transfers all necessary information from micro to macroscale within a multiscale framework. It further provides a scheme to improve constitutive relationships. Direct application to static capillary pressure demonstrates usefulness and conditions for subscale sufficiency of saturation and interfacial areas. PMID:27279769

  12. The viscosity of the refrigerant 1,1-difluoroethane along the saturation line

    NASA Astrophysics Data System (ADS)

    van der Gulik, P. S.

    1993-07-01

    The viscosity coefficient of the refrigerant R152a (1,1-difluoroethane) has been measured along the saturation line both in the saturated liquid and in the saturated vapor. The data have been obtained every 10 K from 243 up to 393 K by means of a vibrating-wire viscometer using the free damped oscillation method. The density along the saturation line was calculated from the equation of state given by Tamatsu et al. with application of the saturated vapor-pressure correlation given by Higashi et al. An interesting result is that in the neighborhood of the critical point, the kinematic viscosity of the saturated liquid seems to coincide with that of the saturated vapor. The results for the saturated liquid are in satisfying agreement with those of Kumagai and Takahashi and of Phillips and Murphy. A comparison of the saturatedvaport data with the unsaturated-vapor data of Takahashi et al. shows some discrepancies.

  13. Airborne hygrometer calibration inter-comparison against a metrological water vapour standard

    NASA Astrophysics Data System (ADS)

    Smorgon, Denis; Boese, Norbert; Ebert, Volker

    2014-05-01

    of PTB and a validated, two-pressure generator acting as a highly stable and reproducible source of water vapour. The aim of AV2-B was to perform an absolute, metrological comparison of the field instruments/calibration infrastructures to the metrological humidity scale, and to collect essential information about methods and procedures used by the atmospheric community for instrument calibration and validation, in order to investigate e.g. the necessity and possible comparability advantage by a standardized calibration procedure. The work will give an overview over the concept of the AV2-B inter-comparison, the various general measurement and calibration principles, and discuss the outcome and consequences of the comparison effort. The AQUAVIT effort is linked to the EMRP project METEOMET (ENV07) and partially supported by the EMRP and ENV07. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. [1] H. Saathoff, C. Schiller, V. Ebert, D. W. Fahey, R.-S. Gao, O. Möhler, and the aquavit team, The AQUAVIT formal intercomparison of atmospheric water measurement methods, 5th General Assembly of the European Geosciences Union, 13-18 April 2008, Vienna, Austria Keywords: humidity, water vapour, inter-comparison, airborne instruments.

  14. Vapor Cartesian Diver

    ERIC Educational Resources Information Center

    Grebenev, Igor V.; Lebedeva, Olga V.; Polushkina, Svetlana V.

    2018-01-01

    The article proposes a new research object for a general physics course--the vapour Cartesian diver, designed to study the properties of saturated water vapour. Physics education puts great importance on the study of the saturated vapour state, as it is related to many fundamental laws and theories. For example, the temperature dependence of the…

  15. Bubble number saturation curve and asymptotics of hypobaric and hyperbaric exposures.

    PubMed

    Wienke, B R

    1991-12-01

    Within bubble number limits of the varying permeability and reduced gradient bubble models, it is shown that a linear form of the saturation curve for hyperbaric exposures and a nearly constant decompression ratio for hypobaric exposures are simultaneously recovered from the phase volume constraint. Both limits are maintained within a single bubble number saturation curve. A bubble term, varying exponentially with inverse pressure, provides closure. Two constants describe the saturation curve, both linked to seed numbers. Limits of other decompression models are also discussed and contrasted for completeness. It is suggested that the bubble number saturation curve thus provides a consistent link between hypobaric and hyperbaric data, a link not established by earlier decompression models.

  16. Air temperature optimisation for humidity-controlled cold storage of the predatory mites Neoseiulus californicus and Phytoseiulus persimilis (Acari: Phytoseiidae).

    PubMed

    Ghazy, Noureldin Abuelfadl; Suzuki, Takeshi; Amano, Hiroshi; Ohyama, Katsumi

    2014-03-01

    Humidity-controlled cold storage, in which the water vapour pressure is saturated, can prolong the survival of the predatory mites Neoseiulus californicus (McGregor) and Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae). However, information on the optimum air temperature for long-term storage by this method is limited. The authors evaluated the survival of mated adult females of N. californicus and P. persimilis at 5.0, 7.5, 10.0 and 12.5 °C under saturated water vapour condition (vapour pressure deficit 0.0 kPa). N. californicus showed a longer survival time than P. persimilis at all the air temperatures. The longest mean survival time of N. californicus was 11 weeks at 7.5 °C, whereas that of P. persimilis was 8 weeks at 5.0 °C. After storage at 7.5 °C for 8 weeks, no negative effect on post-storage oviposition was observed in N. californicus, whereas the oviposition of P. persimilis stored at 5.0 °C for 8 weeks was significantly reduced. The interspecific variation in the response of these predators to low air temperature might be attributed to their natural habitat and energy requirements. These results may be useful for the long-term storage of these predators, which is required for cost-effective biological control. © 2013 Society of Chemical Industry.

  17. Calibration of Relative Humidity Devices in Low-pressure, Low-temperature CO2 Environment

    NASA Astrophysics Data System (ADS)

    Genzer, Maria; Polkko, Jouni; Nikkanen, Timo; Hieta, Maria; Harri, Ari-Matti

    2017-04-01

    Calibration of relative humidity devices requires in minimum two humidity points - dry (0%RH) and (near)saturation (95-100%RH) - over the expected operational temperature and pressure range of the device. In terrestrial applications these are relatively easy to achieve using for example N2 gas as dry medium, and water vapor saturation chambers for producing saturation and intermediate humidity points. But for example in applications intended for meteorological measurements on Mars there is a need to achieve at least dry and saturation points in low-temperature, low-pressure CO2 environment. We have developed a custom-made, small, relatively low-cost calibration chamber able to produce both dry points and saturation points in Martian range pressure CO2, in temperatures down to -70°C. The system utilizes a commercially available temperature chamber for temperature control, vacuum vessels and pumps. The main pressure vessel with the devices under test inside is placed inside the temperature chamber, and the pressure inside is controlled by pumps and manual valves and monitored with a commercial pressure reference with calibration traceable to national standards. Air, CO2, or if needed another gas like N2, is used for filling the vessel until the desired pressure is achieved. Another pressure vessel with a dedicated pressure pump is used as the saturation chamber. This vessel is placed in the room outside the temperature chamber, partly filled with water and used for achieving saturated water vapor in room-temperature low-pressure environment. The saturation chamber is connected to the main pressure vessel via valves. In this system dry point, low-pressure CO2 environment is achieved by filling the main pressure vessel with dry CO2 gas until the desired pressure is achieved. A constant flow of gas is maintained with the pump and valves and monitored with the pressure reference. The saturation point is then achieved by adding some water vapor from the saturation

  18. Non-equilibrium surface tension of the vapour-liquid interface of active Lennard-Jones particles

    NASA Astrophysics Data System (ADS)

    Paliwal, Siddharth; Prymidis, Vasileios; Filion, Laura; Dijkstra, Marjolein

    2017-08-01

    We study a three-dimensional system of self-propelled Brownian particles interacting via the Lennard-Jones potential. Using Brownian dynamics simulations in an elongated simulation box, we investigate the steady states of vapour-liquid phase coexistence of active Lennard-Jones particles with planar interfaces. We measure the normal and tangential components of the pressure tensor along the direction perpendicular to the interface and verify mechanical equilibrium of the two coexisting phases. In addition, we determine the non-equilibrium interfacial tension by integrating the difference of the normal and tangential components of the pressure tensor and show that the surface tension as a function of strength of particle attractions is well fitted by simple power laws. Finally, we measure the interfacial stiffness using capillary wave theory and the equipartition theorem and find a simple linear relation between surface tension and interfacial stiffness with a proportionality constant characterized by an effective temperature.

  19. Experimental and Theoretical Studies of Condensation on a Horizontal Tube Row with Vapour Shear

    NASA Astrophysics Data System (ADS)

    Aoune, Azzeddine

    Available from UMI in association with The British Library. This thesis presents an experimental and theoretical investigation into the effect of vapour shear on the condensation of steam flowing vertically downwards over a single horizontal tube and a horizontal tube in a row. Honda and Fujii's conjugate heat transfer analysis has been adapted and modified to take account of property variation with temperature and release of sensible heat to the condensing film. In industrial condensers, even in the first row, the vapour velocity profile around a tube is affected by the presence of its neighbours. This work extends Honda and Fujii's analysis to investigate the effect of tube spacing on the heat transfer. The finite element method was used to obtain the velocity field around the tube in a row and subsequently the boundary layer equations for the condensate and vapour film along with the heat flow in the tube wall were solved simultaneously. Data have been obtained at absolute pressures of 0.8 and 0.9 bar and for steam superheat up to 40 degC. Approach steam velocities up to 25 m/s were covered. Cooling water velocities and temperatures were in the range 0.68-1.16 m/s and 18-43^circ C, respectively. Honda et al (67), Roshko's flow, theory was found to fit the data for the steam flowing over the isolated tube. The theoretical data for the latter agreed well with the Shekriladze and Gomelauri (2) and Rose (40) correlations and Honda et al (67), potential flow, theory. On | Nu| Re^{-1/2} versus F basis, an average enhancement of 50% in condensate film heat transfer was observed in the case of steam flowing over the tube in a row compared to the isolated tube. This compared with the predicted value of 23% enhancement.

  20. The distribution of saturated clusters in wetted granular materials

    NASA Astrophysics Data System (ADS)

    Li, Shuoqi; Hanaor, Dorian; Gan, Yixiang

    2017-06-01

    The hydro-mechanical behaviour of partially saturated granular materials is greatly influenced by the spatial and temporal distribution of liquid within the media. The aim of this paper is to characterise the distribution of saturated clusters in granular materials using an optical imaging method under different water drainage conditions. A saturated cluster is formed when a liquid phase fully occupies the pore space between solid grains in a localized region. The samples considered here were prepared by vibrating mono-sized glass beads to form closely packed assemblies in a rectangular container. A range of drainage conditions were applied to the specimen by tilting the container and employing different flow rates, and the liquid pressure was recorded at different positions in the experimental cell. The formation of saturated clusters during the liquid withdrawal processes is governed by three competing mechanisms arising from viscous, capillary, and gravitational forces. When the flow rate is sufficiently large and the gravity component is sufficiently small, the viscous force tends to destabilize the liquid front leading to the formation of narrow fingers of saturated material. As the water channels along these liquid fingers break, saturated clusters are formed inside the specimen. Subsequently, a spatial and temporal distribution of saturated clusters can be observed. We investigated the resulting saturated cluster distribution as a function of flow rate and gravity to achieve a fundamental understanding of the formation and evolution of such clusters in partially saturated granular materials. This study serves as a bridge between pore-scale behavior and the overall hydro-mechanical characteristics in partially saturated soils.

  1. Monitoring mixed venous oxygen saturation in patients with obstructive shock after massive pulmonary embolism.

    PubMed

    Krivec, Bojan; Voga, Gorazd; Podbregar, Matej

    2004-05-31

    Patients with massive pulmonary embolism and obstructive shock usually require hemodynamic stabilization and thrombolysis. Little is known about the optimal and proper use of volume infusion and vasoactive drugs, or about the titration of thrombolytic agents in patients with relative contraindication for such treatment. The aim of the study was to find the most rapidly changing hemodynamic variable to monitor and optimize the treatment of patients with obstructive shock following massive pulmonary embolism. Ten consecutive patients hospitalized in the medical intensive care unit in the community General Hospital with obstructive shock following massive pulmonary embolism were included in the prospective observational study. Heart rate, systolic arterial pressure, central venous pressure, mean pulmonary-artery pressure, cardiac index, total pulmonary vascular-resistance index, mixed venous oxygen saturation, and urine output were measured on admission and at 1, 2, 3, 4, 8, 12, and 16 hours. Patients were treated with urokinase through the distal port of a pulmonary-artery catheter. At 1 hour, mixed venous oxygen saturation, systolic arterial pressure and cardiac index were higher than their admission values (31+/-10 vs. 49+/-12%, p<0.0001; 86+/-12 vs. 105+/-17 mmHg, p<0.01; 1.5+/-0.4 vs. 1.9+/-0.7 L/min/m2, p<0.05; respectively), whereas heart rate, central venous pressure, mean pulmonary-artery pressure and urine output remained unchanged. Total pulmonary vascular-resistance index was lower than at admission (29+/-10 vs. 21+/-12 mmHg/L/min/m2, p<0.05). The relative change of mixed venous oxygen saturation at hour 1 was higher than the relative changes of all other studied variables (p<0.05). Serum lactate on admission and at 12 hours correlated to mixed venous oxygen saturation (r=-0.855, p<0.001). In obstructive shock after massive pulmonary embolism, mixed venous oxygen saturation changes more rapidly than other standard hemodynamic variables.

  2. The Extended Oxygen Window Concept for Programming Saturation Decompressions Using Air and Nitrox

    PubMed Central

    Kot, Jacek; Sicko, Zdzislaw

    2015-01-01

    Saturation decompression is a physiological process of transition from one steady state, full saturation with inert gas at pressure, to another one: standard conditions at surface. It is defined by the borderline condition for time spent at a particular depth (pressure) and inert gas in the breathing mixture (nitrogen, helium). It is a delicate and long lasting process during which single milliliters of inert gas are eliminated every minute, and any disturbance can lead to the creation of gas bubbles leading to decompression sickness (DCS). Most operational procedures rely on experimentally found parameters describing a continuous slow decompression rate. In Poland, the system for programming of continuous decompression after saturation with compressed air and nitrox has been developed as based on the concept of the Extended Oxygen Window (EOW). EOW mainly depends on the physiology of the metabolic oxygen window—also called inherent unsaturation or partial pressure vacancy—but also on metabolism of carbon dioxide, the existence of water vapor, as well as tissue tension. Initially, ambient pressure can be reduced at a higher rate allowing the elimination of inert gas from faster compartments using the EOW concept, and maximum outflow of nitrogen. Then, keeping a driving force for long decompression not exceeding the EOW allows optimal elimination of nitrogen from the limiting compartment with half-time of 360 min. The model has been theoretically verified through its application for estimation of risk of decompression sickness in published systems of air and nitrox saturation decompressions, where DCS cases were observed. Clear dose-reaction relation exists, and this confirms that any supersaturation over the EOW creates a risk for DCS. Using the concept of the EOW, 76 man-decompressions were conducted after air and nitrox saturations in depth range between 18 and 45 meters with no single case of DCS. In summary, the EOW concept describes physiology of

  3. Wave Velocities in Hydrocarbons and Hydrocarbon Saturated - Applications to Eor Monitoring.

    NASA Astrophysics Data System (ADS)

    Wang, Zhijing

    In order to effectively utilize many new seismic technologies and interpret the results, acoustic properties of both reservoir fluids and rocks must be well understood. It is the main purpose of this dissertation to investigate acoustic wave velocities in different hydrocarbons and hydrocarbon saturated rocks under various reservoir conditions. The investigation consists of six laboratory experiments, followed by a series of theoretical and application analyses. All the experiments involve acoustic velocity measurements in hydrocarbons and rocks with different hydrocarbons, using the ultrasonic pulse-transmission methods, at elevated temperatures and pressures. In the experiments, wave velocities are measured versus both temperature and pressure in 50 hydrocarbons. The relations among the acoustic velocity, temperature, pressure, API gravity, and the molecular weight of the hydrocarbons are studied, and empirical equations are established which allow one to calculate the acoustic velocities in hydrocarbons with known API gravities. Wave velocities in hydrocarbon mixtures are related to the composition and the velocities in the components. The experimental results are also analyzed in terms of various existing theories and models of the liquid state. Wave velocities are also measured in various rocks saturated with different hydrocarbons. The compressional wave velocities in rocks saturated with pure hydrocarbons increase with increasing the carbon number of the hydrocarbons. They decrease markedly in all the heavy hydrocarbon saturated rocks as temperature increases. Such velocity decreases set the petrophysical basis for in-situ seismic monitoring thermal enhanced oil recovery processes. The effects of carbon dioxide flooding and different pore fluids on wave velocities in rocks are also investigated. It is highly possible that there exist reflections of seismic waves at the light-heavy oil saturation interfaces in-situ. It is also possible to use seismic methods

  4. Intercomparison of atmospheric water vapour measurements at a Canadian High Arctic site

    NASA Astrophysics Data System (ADS)

    Weaver, Dan; Strong, Kimberly; Schneider, Matthias; Rowe, Penny M.; Sioris, Chris; Walker, Kaley A.; Mariani, Zen; Uttal, Taneil; McElroy, C. Thomas; Vömel, Holger; Spassiani, Alessio; Drummond, James R.

    2017-08-01

    Water vapour is a critical component of the Earth system. Techniques to acquire and improve measurements of atmospheric water vapour and its isotopes are under active development. This work presents a detailed intercomparison of water vapour total column measurements taken between 2006 and 2014 at a Canadian High Arctic research site (Eureka, Nunavut). Instruments include radiosondes, sun photometers, a microwave radiometer, and emission and solar absorption Fourier transform infrared (FTIR) spectrometers. Close agreement is observed between all combination of datasets, with mean differences ≤ 1.0 kg m-2 and correlation coefficients ≥ 0.98. The one exception in the observed high correlation is the comparison between the microwave radiometer and a radiosonde product, which had a correlation coefficient of 0.92.A variety of biases affecting Eureka instruments are revealed and discussed. A subset of Eureka radiosonde measurements was processed by the Global Climate Observing System (GCOS) Reference Upper Air Network (GRUAN) for this study. Comparisons reveal a small dry bias in the standard radiosonde measurement water vapour total columns of approximately 4 %. A recently produced solar absorption FTIR spectrometer dataset resulting from the MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) retrieval technique is shown to offer accurate measurements of water vapour total columns (e.g. average agreement within -5.2 % of GRUAN and -6.5 % of a co-located emission FTIR spectrometer). However, comparisons show a small wet bias of approximately 6 % at the high-latitude Eureka site. In addition, a new dataset derived from Atmospheric Emitted Radiance Interferometer (AERI) measurements is shown to provide accurate water vapour measurements (e.g. average agreement was within 4 % of GRUAN), which usefully enables measurements to be taken during day and night (especially valuable during polar night).

  5. Density measurement in air with saturable absorbing seed gas

    NASA Technical Reports Server (NTRS)

    Baganoff, D.

    1982-01-01

    Approaches which have the potential to make density measurements in a compressible flow, where one or more laser beams are used as probes, were investigated. Saturation in sulfur hexafluoride iodine and a crossed beam technique where one beam acts as a saturating beam and the other is at low intensity and acts as a probe beam are considered. It is shown that a balance between an increase in fluorescence intensity with increasing pressure from line broadening and the normal decrease in intensity with increasing pressure from quenching can be used to develop a linear relation between fluorescence intensity and number density and lead to a new density measurement scheme. The method is used to obtain a density image of the cross section of an iodine seeded underexpanded supersonic jet of nitrogen, by illuminating the cross section by a sheet of laser light.

  6. Alcohol vapours sensor based on thin polyaniline salt film and quartz crystal microbalance.

    PubMed

    Ayad, Mohamad M; Torad, Nagy L

    2009-06-15

    A sensor based on the quartz crystal microbalance (QCM) technique was developed for detection of a number of primary aliphatic alcohols such as ethanol, methanol, 1-propanol, and 2-propanol vapours. Detection was based on a sensitive and a thin film of polyaniline, emeraldine salt (ES), coated the QCM electrode. The frequency shifts (Delta f) of the QCM were increased due to the vapour absorption into the ES film. The values of Delta f were found to be linearly correlated with the concentrations of alcohols vapour in mg L(-1). The changes in frequency are due to the hydrophilic character of the ES and the electrostatic interaction as well as the type of the alcohol. The sensor shows a good reproducibility and reversibility. The diffusion and diffusion coefficient (D) of different alcohols vapour were determined. It was found that the sensor follows Fickian kinetics.

  7. Upscaling soil saturated hydraulic conductivity from pore throat characteristics

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Behzad; Hunt, Allen G.; Skaggs, Todd H.; Jarvis, Nicholas

    2017-06-01

    Upscaling and/or estimating saturated hydraulic conductivity Ksat at the core scale from microscopic/macroscopic soil characteristics has been actively under investigation in the hydrology and soil physics communities for several decades. Numerous models have been developed based on different approaches, such as the bundle of capillary tubes model, pedotransfer functions, etc. In this study, we apply concepts from critical path analysis, an upscaling technique first developed in the physics literature, to estimate saturated hydraulic conductivity at the core scale from microscopic pore throat characteristics reflected in capillary pressure data. With this new model, we find Ksat estimations to be within a factor of 3 of the average measured saturated hydraulic conductivities reported by Rawls et al. (1982) for the eleven USDA soil texture classes.

  8. Pressure (Or No Royal Road)

    ERIC Educational Resources Information Center

    Bradley, J.

    1973-01-01

    Discusses how difficult the various problems of pressure, partial pressure, gas laws, and vapor pressure are for students. Outlines the evolution of the concept of pressure, the gas equation for a perfect gas, partial pressures, saturated vapor pressure, Avogadro's hypothesis, Raoult's law, and the vapor pressure of ideal solutions. (JR)

  9. Effect of Atmospheric Press on Wet Bulb Depression

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.; Stasiak, Michael A.; Lawson, Jamie; Wehkamp, Cara Ann P.; Dixon, Michael A.

    2008-01-01

    Our measurements of wet bulb depression at different pressures matched the modeled adiabatic saturation temps reasonably well. At a dry bulb temp of 25 C, the normal wet bulb temp for 30% RH and 100 kPa is approx.15 C, but this dropped to approx.8 C at 10 kPa. The results suggest that psychrometers need direct calibration at the target pressures or that pressure corrected charts are required. For a given vapour pressure deficit, any moist surfaces, including transpiring plant leaves, will be cooler at lower pressures due to the increased evaporation rates.

  10. Kinetic studies of BTEX vapour adsorption onto surfaces of calix-4-resorcinarene films

    NASA Astrophysics Data System (ADS)

    Hassan, A. K.; Ray, A. K.; Nabok, A. V.; Wilkop, T.

    2001-10-01

    The exposure of spun films of an amphiphilic calix-4-resorcinarene (C-4-RA) derivative to vapours of benzene, toluene, ethylbenzene, and m-xylene (BTEX) has produced a graded response, promising for the development of multisensor arrays. Fast and reversible adsorption of ethylbenzene was associated with changing the refractive index of the sensing layer and is believed to be due to the host-guest interaction between the cavitand C-4-RA molecules and the vapour molecules. Prolonged irradiation of the films with a focused laser beam has resulted in an initial increase of film sensitivity to the different organic vapours.

  11. Nonlinear Stability and Saturation of Ballooning Modes in Tokamaks*

    NASA Astrophysics Data System (ADS)

    Ham, C. J.; Cowley, S. C.; Brochard, G.; Wilson, H. R.

    2016-06-01

    The theory of tokamak stability to nonlinear "ballooning" displacements of elliptical magnetic flux tubes is presented. Above a critical pressure profile the energy stored in the plasma may be lowered by finite (but not infinitesimal) displacements of such tubes (metastability). Above a higher pressure profile, the linear stability boundary, such tubes are linearly and nonlinearly unstable. The predicted saturated flux tube displacement can be of the order of the pressure gradient scale length. Plasma transport from these displaced flux tubes may explain the rapid loss of confinement in some experiments.

  12. Elastic anisotropy of Opalinus Clay under variable saturation and triaxial stress

    NASA Astrophysics Data System (ADS)

    Sarout, Joel; Esteban, Lionel; Delle Piane, Claudio; Maney, Bruce; Dewhurst, David N.

    2014-09-01

    A novel experimental method is introduced to estimate the Thomsen's elastic anisotropy parameters ɛ and δ of a transversely isotropic shale under variable stress and saturation conditions. The method consists in recording P-wave velocities along numerous paths on a cylindrical specimen using miniature ultrasonic transducers. Such an overdetermined set of measurements is specifically designed to reduce the uncertainty associated with the determination of Thomsen's δ parameter compared to the classical method for which a single off-axis measurement is used (usually at 45° to the specimen's axis). This method is applied to a specimen of Opalinus Clay recovered from the Mont-Terri Underground Research Laboratory in Switzerland. The specimen is first saturated with brine at low effective pressure and then subjected to an effective pressure cycle up to 40 MPa, followed by a triaxial loading up to failure. During saturation and deformation, the evolution of P-wave velocities along a maximum of 240 ray paths is monitored and Thomsen's parameters α, ɛ and δ are computed by fitting Thomsen's weak anisotropy model to the data. The values of ɛ and δ obtained at the highest confining pressures reached during the experiment are comparable with those predicted from X-ray diffraction texture analysis and modelling for Opalinus Clay reported in the literature. These models neglect the effect of soft-porosity on elastic properties, but become relevant when soft porosity is closed at high effective pressure.

  13. Aerosol assisted chemical vapour deposition of gas sensitive SnO2 and Au-functionalised SnO2 nanorods via a non-catalysed vapour solid (VS) mechanism

    PubMed Central

    Vallejos, Stella; Selina, Soultana; Annanouch, Fatima Ezahra; Gràcia, Isabel; Llobet, Eduard; Blackman, Chris

    2016-01-01

    Tin oxide nanorods (NRs) are vapour synthesised at relatively lower temperatures than previously reported and without the need for substrate pre-treatment, via a vapour-solid mechanism enabled using an aerosol-assisted chemical vapour deposition method. Results demonstrate that the growth of SnO2 NRs is promoted by a compression of the nucleation rate parallel to the substrate and a decrease of the energy barrier for growth perpendicular to the substrate, which are controlled via the deposition conditions. This method provides both single-step formation of the SnO2 NRs and their integration with silicon micromachined platforms, but also allows for in-situ functionalization of the NRs with gold nanoparticles via co-deposition with a gold precursor. The functional properties are demonstrated for gas sensing, with microsensors using functionalised NRs demonstrating enhanced sensing properties towards H2 compared to those based on non-functionalised NRs. PMID:27334232

  14. Effects of positive end-expiratory pressure on brain tissue oxygen pressure of severe traumatic brain injury patients with acute respiratory distress syndrome: A pilot study.

    PubMed

    Nemer, Sérgio Nogueira; Caldeira, Jefferson B; Santos, Ricardo G; Guimarães, Bruno L; Garcia, João Márcio; Prado, Darwin; Silva, Ricardo T; Azeredo, Leandro M; Faria, Eduardo R; Souza, Paulo Cesar P

    2015-12-01

    To verify whether high positive end-expiratory pressure levels can increase brain tissue oxygen pressure, and also their effects on pulse oxygen saturation, intracranial pressure, and cerebral perfusion pressure. Twenty traumatic brain injury patients with acute respiratory distress syndrome were submitted to positive end-expiratory pressure levels of 5, 10, and 15 cm H2O progressively. The 3 positive end-expiratory pressure levels were used during 20 minutes for each one, whereas brain tissue oxygen pressure, oxygen saturation, intracranial pressure, and cerebral perfusion pressure were recorded. Brain tissue oxygen pressure and oxygen saturation increased significantly with increasing positive end-expiratory pressure from 5 to 10 and from 10 to 15 cm H2O (P=.0001 and P=.0001 respectively). Intracranial pressure and cerebral perfusion pressure did not differ significantly with increasing positive end-expiratory pressure from 5 to 10 and from 10 to 15 cm H2O (P=.16 and P=.79 respectively). High positive end-expiratory pressure levels increased brain tissue oxygen pressure and oxygen saturation, without increase in intracranial pressure or decrease in cerebral perfusion pressure. High positive end-expiratory pressure levels can be used in severe traumatic brain injury patients with acute respiratory distress syndrome as a safe alternative to improve brain oxygenation. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Tissue oxygen saturation and finger perfusion index in central hypovolemia: influence of pain.

    PubMed

    Høiseth, Lars Ø; Hisdal, Jonny; Hoff, Ingrid E; Hagen, Ove A; Landsverk, Svein A; Kirkebøen, Knut A

    2015-04-01

    Tissue oxygen saturation and peripheral perfusion index are proposed as early indirect markers of hypovolemia in trauma patients. Hypovolemia is associated with increased sympathetic nervous activity. However, many other stimuli, such as pain, also increase sympathetic activity. Since pain is often present in trauma patients, its effect on the indirect measures of hypovolemia needs to be clarified. The aim of this study was, therefore, to explore the effects of hypovolemia and pain on tissue oxygen saturation (measurement sites: cerebral, deltoid, forearm, and thenar) and finger photoplethysmographic perfusion index. Experimental study. University hospital clinical circulation and research laboratory. Twenty healthy volunteers. Central hypovolemia was induced with lower body negative pressure (-60 mm Hg) and pain by the cold pressor test (ice water exposure). Interventions were performed in a 2×2 fashion with the combination of lower body negative pressure or not (normovolemia), and ice water or not (sham). Each subject was thus exposed to four experimental sequences, each lasting for 8 minutes. Measurements were averaged over 30 seconds. For each person and sequence, the minimal value was analyzed. Tissue oxygenation in all measurement sites and finger perfusion index were reduced during hypovolemia/sham compared with normovolemia/sham. Tissue oxygen saturation (except cerebral) and perfusion index were reduced by pain during normovolemia. There was a larger reduction in tissue oxygenation (all measurement sites) and perfusion index during hypovolemia and pain than during normovolemia and pain. Pain (cold pressor test) reduces tissue oxygen saturation in all measurement sites (except cerebral) and perfusion index. In the presence of pain, tissue oxygen saturation and perfusion index are further reduced by hypovolemia (lower body negative pressure, -60 mm Hg). Thus, pain must be considered when evaluating tissue oxygen saturation and perfusion index as markers of

  16. Exposure to oil mist and oil vapour during offshore drilling in norway, 1979-2004.

    PubMed

    Steinsvåg, Kjersti; Bråtveit, Magne; Moen, Bente E

    2006-03-01

    To describe personal exposure to airborne hydrocarbon contaminants (oil mist and oil vapour) from 1979 to 2004 in the mud-handling areas of offshore drilling facilities operating on the Norwegian continental shelf when drilling with oil-based muds. Qualitative and quantitative information was gathered during visits to companies involved in offshore oil and gas production in Norway. Monitoring reports on oil mist and oil vapour exposure covered 37 drilling facilities. Exposure data were analysed using descriptive statistics and by constructing linear mixed-effects models. Samples had been taken during the use of three generations of hydrocarbon base oils, namely diesel oils (1979-1984), low-aromatic mineral oils (1985-1997) and non-aromatic mineral oils (1998-2004). Sampling done before 1984 showed high exposure to diesel vapour (arithmetic mean, AM = 1217 mg m(-3)). When low-aromatic mineral oils were used, the exposure to oil mist and oil vapour was 4.3 and 36 mg m(-3), and the respective AMs for non-aromatic mineral oils were reduced to 0.54 and 16 mg m(-3). Downward time trends were indicated for both oil mist (6% per year) and oil vapour (8% per year) when the year of monitoring was introduced as a fixed effect in a linear mixed-effects model analysis. Rig type, technical control measures and mud temperature significantly determined exposure to oil mist. Rig type, type of base oil, viscosity of the base oil, work area, mud temperature and season significantly determined exposure to oil vapour. Major decreases in variability were found for the between-rig components. Exposure to oil mist and oil vapour declined over time in the mud-handling areas of offshore drilling facilities. Exposure levels were associated with rig type, mud temperature, technical control measures, base oil, viscosity of the base oil, work area and season.

  17. In-vitro and in-vivo anti-Trichophyton activity of essential oils by vapour contact.

    PubMed

    Inouye, S; Uchida, K; Yamaguchi, H

    2001-05-01

    The minimum inhibitory doses (MIDs) of essential oils by vapour contact to inhibit the growth of Trichophyton mentagrophytes and Trichophyton rubrum on agar medium were determined using airtight boxes. Among seven essential oils examined, cinnamon bark oil showed the least MID, followed by lemongrass, thyme and perilla oils. Lavender and tea tree oils showed moderate MID, and citron oil showed the highest MID, being 320 times higher than that of cinnamon bark oil. The MID values were less than the minimum inhibitory concentration (MIC) values determined by agar dilution assay. Furthermore, the minimum agar concentration (MAC) of essential oils absorbed from vapour was determined at the time of MID determination as the second antifungal measure. The MAC value by vapour contact was 1.4 to 4.7 times less than the MAC remaining in the agar at the time of MIC determination by agar dilution assay. Using selected essential oils, the anti-Trichophyton activity by vapour contact was examined in more detail. Lemongrass, thyme and perilla oils killed the conidia, inhibited germination and hyphal elongation at 1-4 micrograms ml-1 air, whereas lavender oil was effective at 40-160 micrograms ml-1 air. The in-vivo efficacy of thyme and perilla oils by vapour contact was shown against an experimental tinea pedis in guinea pigs infected with T. mentagrophytes. These results indicated potent anti-Trichophyton action of essential oils by vapour contact.

  18. GPS water vapour tomography: preliminary results from the ESCOMPTE field experiment

    NASA Astrophysics Data System (ADS)

    Champollion, C.; Masson, F.; Bouin, M.-N.; Walpersdorf, A.; Doerflinger, E.; Bock, O.; Van Baelen, J.

    2005-03-01

    Water vapour plays a major role in atmospheric processes but remains difficult to quantify due to its high variability in time and space and the sparse set of available measurements. The GPS has proved its capacity to measure the integrated water vapour at zenith with the same accuracy as other methods. Recent studies show that it is possible to quantify the integrated water vapour in the line of sight of the GPS satellite. These observations can be used to study the 3D heterogeneity of the troposphere using tomographic techniques. We develop three-dimensional tomographic software to model the three-dimensional distribution of the tropospheric water vapour from GPS data. First, the tomographic software is validated by simulations based on the realistic ESCOMPTE GPS network configuration. Without a priori information, the absolute value of water vapour is less resolved as opposed to relative horizontal variations. During the ESCOMPTE field experiment, a dense network of 17 dual frequency GPS receivers was operated for 2 weeks within a 20×20-km area around Marseille (southern France). The network extends from sea level to the top of the Etoile chain (˜700 m high). Optimal results have been obtained with time windows of 30-min intervals and input data evaluation every 15 min. The optimal grid for the ESCOMTE geometrical configuration has a horizontal step size of 0.05°×0.05° and 500 m vertical step size. Second, we have compared the results of real data inversions with independent observations. Three inversions have been compared to three successive radiosonde launches and shown to be consistent. A good resolution compared to the a priori information is obtained up to heights of 3000 m. A humidity spike at 4000-m altitude remains unresolved. The reason is probably that the signal is spread homogeneously over the whole network and that such a feature is not resolvable by tomographic techniques. The results of our pure GPS inversion show a correlation with

  19. Sedimentological Control on Hydrate Saturation Distribution in Arctic Gas-Hydrate-Bearing Deposits

    NASA Astrophysics Data System (ADS)

    Behseresht, J.; Peng, Y.; Bryant, S. L.

    2010-12-01

    Grain size variations along with the relative rates of fluid phases migrating into the zone of hydrate stability, plays an important role in gas-hydrate distribution and its morphologic characteristics. In the Arctic, strata several meters thick containing large saturations of gas hydrate are often separated by layers containing small but nonzero hydrate saturations. Examples are Mt. Elbert, Alaska and Mallik, NW Territories. We argue that this sandwich type hydrate saturation distribution is consistent with having a gas phase saturation within the sediment when the base of gas hydrate stability zone (BGHSZ) was located above the sediment package. The volume change during hydrate formation process derives movement of fluid phases into the GHSZ. We show that this fluid movement -which is mainly governed by characteristic relative permeability curves of the host sediment-, plays a crucial role in the amount of hydrate saturation in the zone of major hydrate saturation. We develop a mechanistic model that enables estimating the final hydrate saturation from an initial gas/water saturation in sediment with known relative permeability curves. The initial gas/water saturation is predicted using variation of capillary entry pressure with depth, which in turn depends on the variation in grain-size distribution. This model provides a mechanistic approach for explaining large hydrate saturations (60%-75%) observed in zones of major hydrate saturation considering the governing characteristic relative permeability curves of the host sediments. We applied the model on data from Mount Elbert well on the Alaskan North Slope. It is shown that, assuming a cocurrent flow of gas and water into the GHSZ, such large hydrate saturations (up to 75%) cannot result from large initial gas saturations (close to 1-Sw,irr) due to limitations on water flux imposed by typical relative permeability curves. They could however result from modest initial gas saturations (ca. 40%) at which we have

  20. Oil mist and vapour concentrations from drilling fluids: inter- and intra-laboratory comparison of chemical analyses.

    PubMed

    Galea, Karen S; Searl, Alison; Sánchez-Jiménez, Araceli; Woldbæk, Torill; Halgard, Kristin; Thorud, Syvert; Steinsvåg, Kjersti; Krüger, Kirsti; Maccalman, Laura; Cherrie, John W; van Tongeren, Martie

    2012-01-01

    There are no recognized analytical methods for measuring oil mist and vapours arising from drilling fluids used in offshore petroleum drilling industry. To inform the future development of improved methods of analysis for oil mist and vapours this study assessed the inter- and intra-laboratory variability in oil mist and vapour analysis. In addition, sample losses during transportation and storage were assessed. Replicate samples for oil mist and vapour were collected using the 37-mm Millipore closed cassette and charcoal tube assembly. Sampling was conducted in a simulated shale shaker room, similar to that found offshore for processing drilling fluids. Samples were analysed at two different laboratories, one in Norway and one in the UK. Oil mist samples were analysed using Fourier transform infrared spectroscopy (FTIR), while oil vapour samples were analysed by gas chromatography (GC). The comparison of replicate samples showed substantial within- and between-laboratory variability in reported oil mist concentrations. The variability in oil vapour results was considerably reduced compared to oil mist, provided that a common method of calibration and quantification was adopted. The study also showed that losses can occur during transportation and storage of samples. There is a need to develop a harmonized method for the quantification of oil mist on filter and oil vapour on charcoal supported by a suitable proficiency testing scheme for laboratories involved in the analysis of occupational hygiene samples for the petroleum industry. The uncertainties in oil mist and vapour measurement have substantial implications in relation to compliance with occupational exposure limits and also in the reliability of any exposure-response information reported in epidemiological studies.

  1. Alpha-Particle Gas-Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Buehler, M. C.; Bell, L. D.; Hecht, M. H.

    1996-01-01

    An approximate model was developed to establish design curves for the saturation region and a more complete model developed to characterize the current-voltage curves for an alpha-particle pressure sensor. A simple two-parameter current-voltage expression was developed to describe the dependence of the ion current on pressure. The parameters are the saturation-current pressure coefficient and mu/D, the ion mobility/diffusion coefficient. The sensor is useful in the pressure range between 0.1 and 1000 mb using a 1 - mu Ci(241) Am source. Experimental results, taken between 1 and up to 200 mb, show the sensor operates with an anode voltage of 5 V and a sensitivity of 20 fA/mb in nitrogen.

  2. The vapour of imidazolium-based ionic liquids: a mass spectrometry study.

    PubMed

    Deyko, A; Lovelock, K R J; Licence, P; Jones, R G

    2011-10-06

    Eight common dialkylimidazolium-based ionic liquids have been successfully evaporated in ultra-high vacuum and their vapours analysed by line of sight mass spectrometry using electron ionisation. The ionic liquids investigated were 1-alkyl-3-methylimidazolium bis[(trifluoromethane)sulfonyl]imide, [C(n)C(1)Im][Tf(2)N] (where n = 2, 4, 6, 8), 1-alkyl-3-methylimidazolium tetrafluoroborate, [C(n)C(1)Im][BF(4)] (where n = 4, 8), 1-butyl-3-methylimidazolium octylsulfate, [C(4)C(1)Im][C(8)OSO(3)] and 1-butyl-3-methylimidazolium tetrachloroferrate, [C(4)C(1)Im][FeCl(4)]. All ionic liquids studied here evaporated as neutral ion pairs; no evidence of decomposition products in the vapour phase were observed. Key fragment cations of the ionised vapour of the ionic liquids are identified. The appearance energies, E(app), of the parent cation were measured and used to estimate the ionisation energies, E(i), for the vapour phase neutral ion pairs. Measured ionisation energies ranged from 10.5 eV to 13.0 eV. Using both the identity and E(app) values, the fragmentation pathways for a number of fragment cations are postulated. It will be shown that the enthalpy of vaporisation, Δ(vap)H, can successfully be measured using more than one fragment cation, although caution is required as many fragment cations can also be formed by ionisation of decomposition products.

  3. High strain rate behavior of saturated and non-saturated sandstone: implications for earthquake mechanisms.

    NASA Astrophysics Data System (ADS)

    Aben, F. M.; Doan, M. L.; Gratier, J. P.; Renard, F.

    2015-12-01

    Damage zones of active faults control their resistance to rupture and transport properties. Hence, knowing the damage's origin is crucial to shed light on the (paleo)seismic behavior of the fault. Coseismic damage in the damage zone occurs by stress-wave loading of a passing earthquake rupture tip, resulting in dynamic (high strain rate) loading and subsequent dynamic fracturing or pulverization. Recently, interest in this type of damage has increased and several experimental studies were performed on dry rock specimens to search for pulverization-controlling parameters. However, the influence of fluids in during dynamic loading needs to be constrained. Hence, we have performed compressional dynamic loading experiments on water saturated and oven dried Vosges sandstone samples using a Split Hopkinson Pressure Bar apparatus. Due to the high porosity in these rocks, close to 20%, the effect of fluids should be clear. Afterwards, microstructural analyses have been applied on thin sections. Water saturated samples reveal dynamic mechanical behavior that follows linear poro-elasticity for undrained conditions: the peak strength of the sample decreases by 30-50% and the accumulated strain increases relative to the dry samples that were tested under similar conditions. The mechanical behavior of partially saturated samples falls in between. Microstructural studies on thin section show that fractures are restricted to some quartz grains while other quartz grains remain intact, similar to co-seismically damaged sandstones observed in the field. Most deformation is accommodated by inter-granular processes, thereby appointing an important role to the cement matrix in between grains. Intra-granular fracture damage is highest for the saturated samples. The presence of pore fluids in the rocks lower the dynamic peak strength, especially since fast dynamic loading does not allow for time-dependent fluid dissipation. Thus, fluid-saturated rocks would show undrained mechanical

  4. Shear dilatancy and acoustic emission in dry and saturated granular materials

    NASA Astrophysics Data System (ADS)

    Brodsky, E. E.; Siman-Tov, S.

    2017-12-01

    Shearing of granular materials plays a strong role in naturally sheared systems as landslides and faults. Many works on granular flows have concentrated on dry materials, but relatively little work has been done on water saturated sands. Here we experimentally investigate dry versus saturated quartz-rich sand to understand the effect of the fluid medium on the rheology and acoustic waves emission of the sheared sand. The sand was sheared in a rotary shear rheometer under applied constant normal stress boundary at low (100 µm/s) to high (1 m/s) velocities. Mechanical, acoustic data and deformation were continuously recorded and imaged. For dry and water saturated experiments the granular volume remains constant for low shear velocities ( 10-3 m/s) and increases during shearing at higher velocities ( 1 m/s). Continuous imaging of the sheared sand show that the steady state shear band thickness is thicker during the high velocity steps. No significant change observed in the shear band thickness between dry and water saturated experiments. In contrast, the amount of dilation during water saturated experiments is about half the value measured for dry material. The measured decrease cannot be explained by shear band thickness change as such is not exist. However, the reduced dilation is supported by our acoustic measurements. In general, the event rate and acoustic event amplitudes increase with shear velocity. While isolated events are clearly detected during low velocities at higher the events overlap, resulting in a noisy signal. Although detection is better for saturated experiments, during the high velocity steps the acoustic energy measured from the signal is lower compared to that recorded for dry experiments. We suggest that the presence of fluid suppresses grain motion and particles impacts leading to mild increase in the internal pressure and therefore for the reduced dilation. In addition, the viscosity of fluids may influence the internal pressure via

  5. A dilute Cu(Ni) alloy for synthesis of large-area Bernal stacked bilayer graphene using atmospheric pressure chemical vapour deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madito, M. J.; Bello, A.; Dangbegnon, J. K.

    2016-01-07

    A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupledmore » plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer.« less

  6. A dilute Cu(Ni) alloy for synthesis of large-area Bernal stacked bilayer graphene using atmospheric pressure chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Madito, M. J.; Bello, A.; Dangbegnon, J. K.; Oliphant, C. J.; Jordaan, W. A.; Momodu, D. Y.; Masikhwa, T. M.; Barzegar, F.; Fabiane, M.; Manyala, N.

    2016-01-01

    A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupled plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer.

  7. Different physiological and behavioural effects of e-cigarette vapour and cigarette smoke in mice.

    PubMed

    Ponzoni, L; Moretti, M; Sala, M; Fasoli, F; Mucchietto, V; Lucini, V; Cannazza, G; Gallesi, G; Castellana, C N; Clementi, F; Zoli, M; Gotti, C; Braida, D

    2015-10-01

    Nicotine is the primary addictive substance in tobacco smoke and electronic cigarette (e-cig) vapour. Methodological limitations have made it difficult to compare the role of the nicotine and non-nicotine constituents of tobacco smoke. The aim of this study was to compare the effects of traditional cigarette smoke and e-cig vapour containing the same amount of nicotine in male BALB/c mice exposed to the smoke of 21 cigarettes or e-cig vapour containing 16.8 mg of nicotine delivered by means of a mechanical ventilator for three 30-min sessions/day for seven weeks. One hour after the last session, half of the animals were sacrificed for neurochemical analysis, and the others underwent mecamylamine-precipitated or spontaneous withdrawal for the purposes of behavioural analysis. Chronic intermittent non-contingent, second-hand exposure to cigarette smoke or e-cig vapour led to similar brain cotinine and nicotine levels, similar urine cotinine levels and the similar up-regulation of α4β2 nicotinic acetylcholine receptors in different brain areas, but had different effects on body weight, food intake, and the signs of mecamylamine-precipitated and spontaneous withdrawal episodic memory and emotional responses. The findings of this study demonstrate for the first time that e-cig vapour induces addiction-related neurochemical, physiological and behavioural alterations. The fact that inhaled cigarette smoke and e-cig vapour have partially different dependence-related effects indicates that compounds other than nicotine contribute to tobacco dependence. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  8. Explosion characteristics of synthesised biogas at various temperatures.

    PubMed

    Dupont, L; Accorsi, A

    2006-08-25

    Biogas is considered as a valuable source of renewable energy. Indeed, it can be turned into useful energy (heat, electricity, fuel) and can contribute to reduce greenhouse gas emissions. Knowledge of its safety characteristics is a very important practical issue. Experimental investigation of synthesised biogas explosion characteristics was conducted in a 20-L sphere at various temperatures (30-70 degrees C) and at atmospheric pressure. The studied biogas was made of 50% methane (CH(4)) and 50% carbon dioxide (CO(2)). It was also saturated with humidity: this composition is frequently met in digesters during waste methanisation. There are two inert gases in biogas: water vapour and carbon dioxide. Its vapour water content rises along with temperature. The presence of these inert gases modifies considerably biogas characteristics compared to the ones of pure methane: explosion limits are lowered and beyond 70 degrees C, water vapour content is sufficient to inert the mixture. Furthermore, explosion violence (estimated with the maximum rate of pressure rise values, (dp/dt)(max)) is three times lower for biogas than for pure methane at ambient temperature.

  9. Atomic-scale Studies of Uranium Oxidation and Corrosion by Water Vapour.

    PubMed

    Martin, T L; Coe, C; Bagot, P A J; Morrall, P; Smith, G D W; Scott, T; Moody, M P

    2016-07-12

    Understanding the corrosion of uranium is important for its safe, long-term storage. Uranium metal corrodes rapidly in air, but the exact mechanism remains subject to debate. Atom Probe Tomography was used to investigate the surface microstructure of metallic depleted uranium specimens following polishing and exposure to moist air. A complex, corrugated metal-oxide interface was observed, with approximately 60 at.% oxygen content within the oxide. Interestingly, a very thin (~5 nm) interfacial layer of uranium hydride was observed at the oxide-metal interface. Exposure to deuterated water vapour produced an equivalent deuteride signal at the metal-oxide interface, confirming the hydride as originating via the water vapour oxidation mechanism. Hydroxide ions were detected uniformly throughout the oxide, yet showed reduced prominence at the metal interface. These results support a proposed mechanism for the oxidation of uranium in water vapour environments where the transport of hydroxyl species and the formation of hydride are key to understanding the observed behaviour.

  10. Atomic-scale Studies of Uranium Oxidation and Corrosion by Water Vapour

    NASA Astrophysics Data System (ADS)

    Martin, T. L.; Coe, C.; Bagot, P. A. J.; Morrall, P.; Smith, G. D. W.; Scott, T.; Moody, M. P.

    2016-07-01

    Understanding the corrosion of uranium is important for its safe, long-term storage. Uranium metal corrodes rapidly in air, but the exact mechanism remains subject to debate. Atom Probe Tomography was used to investigate the surface microstructure of metallic depleted uranium specimens following polishing and exposure to moist air. A complex, corrugated metal-oxide interface was observed, with approximately 60 at.% oxygen content within the oxide. Interestingly, a very thin (~5 nm) interfacial layer of uranium hydride was observed at the oxide-metal interface. Exposure to deuterated water vapour produced an equivalent deuteride signal at the metal-oxide interface, confirming the hydride as originating via the water vapour oxidation mechanism. Hydroxide ions were detected uniformly throughout the oxide, yet showed reduced prominence at the metal interface. These results support a proposed mechanism for the oxidation of uranium in water vapour environments where the transport of hydroxyl species and the formation of hydride are key to understanding the observed behaviour.

  11. Preliminary Martian Atmospheric Water Vapour Column Abundances with Mars Climate Sounder

    NASA Astrophysics Data System (ADS)

    Lolachi, Ramin; Irwin, P. G. J.; Teanby, N.; Calcutt, S.; Howett, C. J. A.; Bowles, N. E.; Taylor, F. W.; Schofield, J. T.; Kleinboehl, A.; McCleese, D. J.

    2007-12-01

    Mars Climate Sounder (MCS) is an infra-red radiometer on board NASA's Mars Reconnaissance Orbiter (MRO) launched in August 2005 and now orbiting Mars in a near circular polar orbit. MCS has nine spectral channels in the range 0.3-50 µm. Goals of MCS include global characterization of atmospheric temperature, dust and water profiles observing temporal and spatial variation. Using Oxford University's multivariate retrieval algorithm, NEMESIS, we present preliminary determinations of the water vapour column abundance in the Martian atmosphere during the period September-October 2006 (Ls range 111-129°, i.e. northern hemisphere summer). A combination of spectral channels inside and outside the water vapour rotation band (at 50 µm) are used to retrieve the column abundances mainly using nadir observations (as aerosol opacity is less important relative to water vapour opacity in nadir viewing geometry). We then compare these column abundances to earlier results from the Viking Orbiter Mars Atmospheric Water Detectors (MAWD) and the Thermal Emission Spectrometer (TES) on Mars Global Surveyor.

  12. Atomic-scale Studies of Uranium Oxidation and Corrosion by Water Vapour

    PubMed Central

    Martin, T. L.; Coe, C.; Bagot, P. A. J.; Morrall, P.; Smith, G. D. W; Scott, T.; Moody, M. P.

    2016-01-01

    Understanding the corrosion of uranium is important for its safe, long-term storage. Uranium metal corrodes rapidly in air, but the exact mechanism remains subject to debate. Atom Probe Tomography was used to investigate the surface microstructure of metallic depleted uranium specimens following polishing and exposure to moist air. A complex, corrugated metal-oxide interface was observed, with approximately 60 at.% oxygen content within the oxide. Interestingly, a very thin (~5 nm) interfacial layer of uranium hydride was observed at the oxide-metal interface. Exposure to deuterated water vapour produced an equivalent deuteride signal at the metal-oxide interface, confirming the hydride as originating via the water vapour oxidation mechanism. Hydroxide ions were detected uniformly throughout the oxide, yet showed reduced prominence at the metal interface. These results support a proposed mechanism for the oxidation of uranium in water vapour environments where the transport of hydroxyl species and the formation of hydride are key to understanding the observed behaviour. PMID:27403638

  13. MEDUSA: The ExoMars experiment for in-situ monitoring of dust and water vapour

    NASA Astrophysics Data System (ADS)

    Colangeli, L.; Lopez-Moreno, J. J.; Nørnberg, P.; Della Corte, V.; Esposito, F.; Mazzotta Epifani, E.; Merrison, J.; Molfese, C.; Palumbo, P.; Rodriguez-Gomez, J. F.; Rotundi, A.; Visconti, G.; Zarnecki, J. C.; The International Medusa Team

    2009-07-01

    Dust and water vapour are fundamental components of the Martian atmosphere. In view of tracing the past environmental conditions on Mars, that possibly favoured the appearing of life forms, it is important to study the present climate and its evolution. Here dust and water vapour have (and have had) strong influence. Of major scientific interest is the quantity and physical, chemical and electrical properties of dust and the abundance of water vapour dispersed in the atmosphere and their exchange with the surface. Moreover, in view of the exploration of the planet with automated systems and in the future by manned missions, it is of primary importance to analyse the hazards linked to these environmental factors. The Martian Environmental Dust Systematic Analyser (MEDUSA) experiment, included in the scientific payload of the ESA ExoMars mission, accommodates a complement of sensors, based on optical detection and cumulative mass deposition, that aims to study dust and water vapour in the lower Martian atmosphere. The goals are to study, for the first time, in-situ and quantitatively, physical properties of the airborne dust, including the cumulative dust mass flux, the dust deposition rate, the physical and electrification properties, the size distribution of sampled particles and the atmospheric water vapour abundance versus time.

  14. Vapours of US and EU Market Leader Electronic Cigarette Brands and Liquids Are Cytotoxic for Human Vascular Endothelial Cells.

    PubMed

    Putzhammer, Raphaela; Doppler, Christian; Jakschitz, Thomas; Heinz, Katharina; Förste, Juliane; Danzl, Katarina; Messner, Barbara; Bernhard, David

    2016-01-01

    The present study was conducted to provide toxicological data on e-cigarette vapours of different e-cigarette brands and liquids from systems viewed as leaders in the e-cigarette market and to compare e-cigarette vapour toxicity to the toxicity of conventional strong high-nicotine cigarette smoke. Using an adapted version of a previously constructed cigarette smoke constituent sampling device, we collected the hydrophilic fraction of e-cigarette vapour and exposed human umbilical vein endothelial cells (HUVECs) to the mixture of compounds present in the vapour of 4 different single-use e-cigarettes, 6 different liquid vapours produced by the same refillable e-cigarette, and one e-cigarette with an exchangeable liquid cartridge. After incubation of cells with various concentrations and for various periods of time we analysed cell death induction, proliferation rates, the occurrence of intra-cellular reactive oxygen species, cell morphology, and we also measured e-cigarette heating coil temperatures. Overall, conventional cigarette smoke extract showed the most severe impact on endothelial cells. However, some e-cigarette vapour extracts showed high cytotoxicity, inhibition of cell proliferation, and alterations in cell morphology, which were comparable to conventional high-nicotine cigarettes. The vapours generated from different liquids using the same e-cigarette show substantial differences, pointing to the liquids as an important source for toxicity. E-cigarette vapour-mediated induction of oxidative stress was significant in one out of the 11 analysed vapours. There is a high variability in the acute cytotoxicity of e-cigarette vapours depending on the liquid and on the e-cigarettes used. Some products showed toxic effects close to a conventional high-nicotine cigarette. Liquid nicotine, menthol content, and the formation of acute intracellular reactive oxygen species do not seem to be the central elements in e-cigarette vapour toxicity.

  15. Vapours of US and EU Market Leader Electronic Cigarette Brands and Liquids Are Cytotoxic for Human Vascular Endothelial Cells

    PubMed Central

    Putzhammer, Raphaela; Doppler, Christian; Jakschitz, Thomas; Heinz, Katharina; Förste, Juliane; Danzl, Katarina; Messner, Barbara; Bernhard, David

    2016-01-01

    The present study was conducted to provide toxicological data on e-cigarette vapours of different e-cigarette brands and liquids from systems viewed as leaders in the e-cigarette market and to compare e-cigarette vapour toxicity to the toxicity of conventional strong high-nicotine cigarette smoke. Using an adapted version of a previously constructed cigarette smoke constituent sampling device, we collected the hydrophilic fraction of e-cigarette vapour and exposed human umbilical vein endothelial cells (HUVECs) to the mixture of compounds present in the vapour of 4 different single-use e-cigarettes, 6 different liquid vapours produced by the same refillable e-cigarette, and one e-cigarette with an exchangeable liquid cartridge. After incubation of cells with various concentrations and for various periods of time we analysed cell death induction, proliferation rates, the occurrence of intra-cellular reactive oxygen species, cell morphology, and we also measured e-cigarette heating coil temperatures. Overall, conventional cigarette smoke extract showed the most severe impact on endothelial cells. However, some e-cigarette vapour extracts showed high cytotoxicity, inhibition of cell proliferation, and alterations in cell morphology, which were comparable to conventional high-nicotine cigarettes. The vapours generated from different liquids using the same e-cigarette show substantial differences, pointing to the liquids as an important source for toxicity. E-cigarette vapour-mediated induction of oxidative stress was significant in one out of the 11 analysed vapours. There is a high variability in the acute cytotoxicity of e-cigarette vapours depending on the liquid and on the e-cigarettes used. Some products showed toxic effects close to a conventional high-nicotine cigarette. Liquid nicotine, menthol content, and the formation of acute intracellular reactive oxygen species do not seem to be the central elements in e-cigarette vapour toxicity. PMID:27351725

  16. Saturated fat (image)

    MedlinePlus

    ... saturated fats. Vegetable sources of saturated fat include coconut and palm oils. When looking at a food ... saturated fats. Vegetable sources of saturated fat include coconut and palm oils. When looking at a food ...

  17. Analysis of Water Vapour Flux Between Alpine Wetlands Underlying the Surface and Atmosphere in the Source Region of the Yellow River

    NASA Astrophysics Data System (ADS)

    Xie, Y.; Wen, J.; Liu, R.; Wang, X.; JIA, D.

    2017-12-01

    Wetland underlying surface is sensitive to climate change. Analysis of the degree of coupling between wetlands and the atmosphere and a quantitative assessment of how environmental factors influence latent heat flux have considerable scientific significance. Previous studies, which focused on the forest, grassland and farmland ecosystems, lack research on the alpine wetlands. In addition, research on the environmental control mechanism of latent heat flux is still qualitative and lacks quantitative evaluations and calculations. Using data from the observational tests of the Maduo Observatory of Climate and Environment of the Northwest Institute of Eco-Environment and Resource, CAS, from June 1 to August 31, 2014, this study analysed the time-varying characteristics and causes of the degree of coupling between alpine wetlands underlying surface and the atmosphere and quantitatively calculated the influences of different environmental factors (solar radiation and vapour pressure deficit) on latent heat flux. The results were as follows: Due to the diurnal variations of solar radiation and wind speed, the diurnal variations of the Ω factor present a trend in which the Ω factor are small in the morning and large in the evening. Due to the vegetation growing cycle, the seasonal variations of the Ω factor present a reverse "U" trend . These trends are similar to the diurnal and seasonal variations of the absolute control exercised by solar radiation over the latent heat flux. This conforms to omega theory. The values for average absolute atmospheric factor (surface factor or total ) control exercised by solar radiation and water vapour pressure are 0.20 (0.02 or 0.22 ) and 0.005 (-0.07 or -0.06) W·m-2·Pa-1, respectively.. Generally speaking, solar radiation and water vapour pressure deficit exert opposite forces on the latent heat flux. The average Ω factor is high during the vegetation growing season, with a value of 0.38, and the degree of coupling between the

  18. Effects of nitrogen and vapour pressure deficit on phytomer growth and development in a C4 grass.

    PubMed

    Yang, Fang; Gong, Xiao Ying; Liu, Hai Tao; Schäufele, Rudi; Schnyder, Hans

    2016-01-01

    Phytomers are basic morphological units of plants. Knowledge of phytomer development is essential for understanding morphological plasticity, functional-structural modelling of plant growth and the usage of leaf characteristics to indicate growth conditions at the time of production (e.g. stable isotope signals). Yet, systematic analysis on the process of phytomer development is unavailable for wild or perennial C 4 grasses. Also, effects of environmental factors, such as nitrogen nutrition or vapour pressure deficit (VPD), on coordination events of developmental processes of C 4 grasses have not been studied. This study investigates phytomer growth and development in Cleistogenes squarrosa, a predominant C 4 grass in the Eurasian steppe, grown at low (0.63 kPa) or high (1.58 kPa) VPD with low or high nitrogen supply in controlled environments. Elongation of phytomers on marked tillers was measured daily for 13 days. Then lengths of immature and mature phytomer components (blade, sheath and internode) of all phytomers were measured following dissection. Nitrogen nutrition and VPD had no effects on coordination of growth within and between phytomers: phytomer tips emerged when phytomers reached 26 % of their final length, coincident with the acceleration phase of its elongation; blade elongation stopped when phytomers reached ∼75 % of their final length and elongation of the preceding phytomer was confined to the internode. The relationship between fraction of final phytomer length and days after tip emergence for all treatments was well described by a sigmoidal function: y = 1/{1 + exp[(1.82 - x)/1.81]}. C. squarrosa exhibited little morphological plasticity at phytomer-level in response to nitrogen supply and VPD, but a clear increase in tillering under high N supply. Also, the invariant coordination of elongation within and between phytomers was a stable developmental feature, thus the quantitative coordination rules are applicable for

  19. Preparation of fungal conidia impacts their susceptibility to inactivation by ethanol vapours.

    PubMed

    Dao, Thien; Dantigny, Philippe

    2009-11-15

    A common protocol employed for the preparation of conidia employs flooding a fungal colony grown on semi-solid media under optimum conditions with an aqueous solution. In contrast, conidia produced in a natural environment are usually not hydrated when disseminated in air and can be produced under water stress. In order to simulate the latter conditions, cultures were grown at different water activities and conidia were dry-harvested on the lid by turning the dishes upside-down then gently tapping the bottom of the box. This study aimed at assessing the effect of the preparation of fungal conidia on their inactivation by ethanol vapours. Firstly ethanol vapours (either 0.30 or 0.45 kPa) were applied to conidia obtained from the standardised protocol and to dry-harvested conidia for some species of Penicillium. While all dry-harvested conidia remained viable after 24 h of treatment, about 1.0, 3.5 and 2.5 log(10) reductions were observed for hydrated conidia of Penicillium chrysogenum, Penicillium digitatum and Penicillium italicum respectively. Secondly ethanol vapours (0.67 kPa) were applied to dry-harvested conidia obtained from cultures grown at 0.99 a(w) and at reduced water activities. For all species, the susceptibility to ethanol vapours of conidia obtained at 0.99 a(w) was significantly greater than that of conidia obtained at reduced water activities. Conidia produced in a natural environment under non-optimal conditions would be much more resistant to ethanol vapours than those produced in the laboratory. This phenomenon may be due to a reduced intracellular water activity of dry-harvested conidia.

  20. Fabrication of zinc-dicarboxylate- and zinc-pyrazolate-carboxylate-framework thin films through vapour-solid deposition.

    PubMed

    Medishetty, Raghavender; Zhang, Zongji; Sadlo, Alexander; Cwik, Stefan; Peeters, Daniel; Henke, Sebastian; Mangayarkarasi, Nagarathinam; Devi, Anjana

    2018-05-17

    Fabrication of three-dimensional metal-organic framework (MOF) thin films has been investigated for the first time through the conversion of a ZnO layer via a pure vapour-solid deposition reaction at ambient pressure. The fabrication of MOF thin films with a dicarboxylate linker, (DMA)2[Zn3(bdc)4] (1) (bdc = 1,4-benzenedicarboxylate), and a carboxy-pyrazolate linker, [Zn4O(dmcapz)6] (2) (dmcapz = 3,5-dimethyl-4-carboxypyrazole), involves the deposition of the linker and/or the preparation of a composite film preliminarily and its subsequent conversion into a MOF film using closed cell thermal treatment. Furthermore, it was possible to isolate thin films with a MOF-5 isotype structure grown along the [110] direction, using a carboxy-pyrazolate linker. This was achieved just by the direct reaction of the ZnO film and the organic linker vapors, employing a simple route that demonstrates the feasibility of MOF thin film fabrication using inexpensive routes at ambient pressure.

  1. Effect of drilling fluid systems and temperature on oil mist and vapour levels generated from shale shaker.

    PubMed

    Steinsvåg, Kjersti; Galea, Karen S; Krüger, Kirsti; Peikli, Vegard; Sánchez-Jiménez, Araceli; Sætvedt, Esther; Searl, Alison; Cherrie, John W; van Tongeren, Martie

    2011-05-01

    Workers in the drilling section of the offshore petroleum industry are exposed to air pollutants generated by drilling fluids. Oil mist and oil vapour concentrations have been measured in the drilling fluid processing areas for decades; however, little work has been carried out to investigate exposure determinants such as drilling fluid viscosity and temperature. A study was undertaken to investigate the effect of two different oil-based drilling fluid systems and their temperature on oil mist, oil vapour, and total volatile organic compounds (TVOC) levels in a simulated shale shaker room at a purpose-built test centre. Oil mist and oil vapour concentrations were sampled simultaneously using a sampling arrangement consisting of a Millipore closed cassette loaded with glass fibre and cellulose acetate filters attached to a backup charcoal tube. TVOCs were measured by a PhoCheck photo-ionization detector direct reading instrument. Concentrations of oil mist, oil vapour, and TVOC in the atmosphere surrounding the shale shaker were assessed during three separate test periods. Two oil-based drilling fluids, denoted 'System 2.0' and 'System 3.5', containing base oils with a viscosity of 2.0 and 3.3-3.7 mm(2) s(-1) at 40°C, respectively, were used at temperatures ranging from 40 to 75°C. In general, the System 2.0 yielded low oil mist levels, but high oil vapour concentrations, while the opposite was found for the System 3.5. Statistical significant differences between the drilling fluid systems were found for oil mist (P = 0.025),vapour (P < 0.001), and TVOC (P = 0.011). Increasing temperature increased the oil mist, oil vapour, and TVOC levels. Oil vapour levels at the test facility exceeded the Norwegian oil vapour occupational exposure limit (OEL) of 30 mg m(-3) when the drilling fluid temperature was ≥50°C. The practice of testing compliance of oil vapour exposure from drilling fluids systems containing base oils with viscosity of ≤2.0 mm(2) s(-1) at 40

  2. Solvent vapour monitoring in work space by solid phase micro extraction.

    PubMed

    Li, K; Santilli, A; Goldthorp, M; Whiticar, S; Lambert, P; Fingas, M

    2001-05-07

    Solid phase micro extraction (SPME) is a fast, solvent-less alternative to conventional charcoal tube sampling/carbon disulfide extraction for volatile organic compounds (VOC). In this work, SPME was compared to the active sampling technique in a typical lab atmosphere. Two different types of fibre coatings were evaluated for solvent vapour at ambient concentration. A general purpose 100 microm film polydimethylsiloxane (PDMS) fibre was found to be unsuitable for VOC work, despite the thick coating. The mixed-phase carboxen/PDMS fibre was found to be suitable. Sensitivity of the SPME was far greater than charcoal sorbent tube method. Calibration studies using typical solvent such as dichloromethane (DCM), benzene (B) and toluene (T) showed an optimal exposure time of 5 min, with a repeatability of less than 20% for a broad spectrum of organic vapour. Minimum detectable amount for DCM is in the range of 0.01 microg/l (0.003 ppmv). Variation among different fibres was generally within 30% at a vapour concentration of 1 microg DCM/l, which was more than adequate for field monitoring purpose. Adsorption characteristics and calibration procedures were studied. An actual application of SPME was carried out to measure background level of solvent vapour at a bench where DCM was used extensively. Agreement between the SPME and the charcoal sampling method was generally within a factor of two. No DCM concentration was found to be above the regulatory limit of 50 ppmv.

  3. Magnesium isotope evidence that accretional vapour loss shapes planetary compositions

    PubMed Central

    Hin, Remco C.; Coath, Christopher D.; Carter, Philip J.; Nimmo, Francis; Lai, Yi-Jen; Pogge von Strandmann, Philip A.E.; Willbold, Matthias; Leinhardt, Zoë M.; Walter, Michael J.; Elliott, Tim

    2017-01-01

    It has long been recognised that Earth and other differentiated planetary bodies are chemically fractionated compared to primitive, chondritic meteorites and by inference the primordial disk from which they formed. An important question has been whether the notable volatile depletions of planetary bodies are a consequence of accretion1, or inherited from prior nebular fractionation2. The isotopic compositions of the main constituents of planetary bodies can contribute to this debate3–6. Using a new analytical approach to address key issues of accuracy inherent in conventional methods, we show that all differentiated bodies have isotopically heavier magnesium compositions than chondritic meteorites. We argue that possible magnesium isotope fractionation during condensation of the solar nebula, core formation and silicate differentiation cannot explain these observations. However, isotopic fractionation between liquid and vapour followed by vapour escape during accretionary growth of planetesimals generates appropriate residual compositions. Our modelling implies that the isotopic compositions of Mg, Si and Fe and the relative abundances of the major elements of Earth, and other planetary bodies, are a natural consequence of substantial (~40% by mass) vapour loss from growing planetesimals by this mechanism. PMID:28959965

  4. Land cover change and water vapour flows: learning from Australia.

    PubMed Central

    Gordon, Line; Dunlop, Michael; Foran, Barney

    2003-01-01

    Australia is faced with large-scale dryland salinization problems, largely as a consequence of the clearing of native vegetation for cropland and grassland. We estimate the change in continental water vapour flow (evapotranspiration) of Australia during the past 200 years. During this period there has been a substantial decrease in woody vegetation and a corresponding increase in croplands and grasslands. The shift in land use has caused a ca. 10% decrease in water vapour flows from the continent. This reduction corresponds to an annual freshwater flow of almost 340 km(3). The society-induced alteration of freshwater flows is estimated at more than 15 times the volume of run-off freshwater that is diverted and actively managed in the Australian society. These substantial water vapour flow alterations were previously not addressed in water management but are now causing serious impacts on the Australian society and local economies. Global and continental freshwater assessments and policy often neglects the interplay between freshwater flows and landscape dynamics. Freshwater issues on both regional and global levels must be rethought and the interplay between terrestrial ecosystems and freshwater better incorporated in freshwater and ecosystem management. PMID:14728792

  5. Initial evaluation of airborne water vapour measurements by the IAGOS-GHG CRDS system

    NASA Astrophysics Data System (ADS)

    Filges, Annette; Gerbig, Christoph; Smit, Herman G. J.; Krämer, Martina; Spelten, Nicole

    2013-04-01

    Accurate and reliable airborne measurements of water vapour are still a challenge. Presently, no airborne humidity sensor exists that covers the entire range of water vapour content between the surface and the upper troposphere/lower stratosphere (UT/LS) region with sufficient accuracy and time resolution. Nevertheless , these data are a pre-requisite to study the underlying processes in the chemistry and physics of the atmosphere. The DENCHAR project (Development and Evaluation of Novel Compact Hygrometer for Airborne Research) addresses this deficit by developing and characterizing novel or improved compact airborne hygrometers for different airborne applications within EUFAR (European Facility for Airborne Research). As part of the DENCHAR inter-comparison campaign in Hohn (Germany), 23 May - 1 June 2011, a commercial gas analyzer (G2401-m, Picarro Inc.,US), based on cavity ring-down spectroscopy (CRDS), was installed on a Learjet to measure water vapour, CO2, CH4 and CO. The CRDS components are identical to those chosen for integration aboard commercial airliner within IAGOS (In-service Aircraft for a Global Observing System). Thus the campaign allowed for the initial assessment validation of the long-term IAGOS H2O measurements by CRDS against reference instruments with a long performance record (FISH, the Fast In-situ Stratospheric Hygrometer, and CR2 frostpoint hygrometer, both research centre Juelich). The inlet system, a one meter long 1/8" FEP-tube connected to a Rosemount TAT housing (model 102BX, deiced) installed on a window plate of the aircraft, was designed to eliminate sampling of larger aerosols, ice particles, and water droplets, and provides about 90% of ram-pressure. In combination with a lowered sample flow of 0.1 slpm (corresponding to a 4 second response time), this ensured a fully controlled sample pressure in the cavity of 140 torr throughout an aircraft altitude operating range up to 12.5 km without the need of an upstream sampling pump

  6. Environmental effects on water vapour and carbon dioxide exchange above two alpine grassland ecosystems on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wang, L.; Liu, H.

    2017-12-01

    Alpine grasslands (alpine steppe and alpine meadow) are the main grassland types in China. Based on eddy covariance flux data from July 15, 2014, to December 31, 2015, environmental effects on water vapour and carbon dioxide exchange were analyzed over a semiarid alpine steppe (Bange, Tibet) and a humid alpine meadow (Lijiang, Yunnan) on the Tibetan Plateau. During the wet season, the evaporative fraction (EF) at Bange was strongly and linearly correlated with the soil water content (SWC) because of its sparse green grass cover. In contrast, the correlation between the EF and the SWC at Lijiang was very low because the atmosphere was close to saturation and the EF was relatively constant. Evapotranspiration (ET) at Lijiang could be predicted well by net radiation and air temperature. In the dry season, the EF at both sites decreased with the SWC. The net ecosystem exchange (NEE) at Bange was largely depressed at noon, while this phenomenon did not occur at Lijiang due to good soil water conditions. The saturated NEE at Bange was 24% of that at Lijiang. The temperature sensitivity coefficient of ecosystem respiration at Bange (1.7) was also much lower than that at Lijiang (3.4). Moreover, the annual total NEE at Lijiang from 2012 to 2015 generally decreased with the mean annual air temperature (MAT). An exception occurred in 2014, which had the highest MAT, because the GPP increased with the MAT, but became saturated due to the limit in photosynthetic capacity. The annual total GPP at Lijiang were substantially affected by the seasonal pattern of air temperature, especially in spring and autumn. This is consistent with results obtained using the homogeneity-of-slopes model.

  7. Measurement of electrical impedance of a Berea sandstone core during the displacement of saturated brine by oil and CO2 injections

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Xue, Ziqiu; Park, Hyuck; Kiyama, Tamotsu; Zhang, Yi; Nishizawa, Osamu; Chae, Kwang-seok

    2015-12-01

    Complex electrical impedance measurements were performed on a brine-saturated Berea sandstone core while oil and CO2 were injected at different pressures and temperatures. The saturations of brine, oil, and CO2 in the core were simultaneously estimated using an X-ray computed tomography scanner. The formation factor of this Berea core and the resistivity indexes versus the brine saturations were calculated using Archie's law. The experimental results found different flow patterns of oil under different pressures and temperatures. Fingers were observed for the first experiment at 10 MPa and 40 °C. The fingers were restrained as the viscosity ratio of oil and water changed in the second (10 MPa and 25 °C) and third (5 MPa and 25 °C) experiments. The resistivity index showed an exponential increase with a decrease in brine saturation. The saturation exponent varied from 1.4 to 4.0 at different pressure and temperature conditions. During the oil injection procedure, the electrical impedance increased with oil saturation and was significantly affected by different oil distributions; therefore, the impedance varied whether the finger was remarkable or not, even if the oil saturation remained constant. During the CO2 injection steps, the impedance showed almost no change with CO2 saturation because the brine in the pores became immobile after the oil injection.

  8. A sulfide-saturated lunar mantle?

    NASA Astrophysics Data System (ADS)

    Brenan, James M.; Mungall, James E.

    2017-04-01

    Although much work has been done to understand the controls on the sulfur content at sulfide saturation (SCSS) for terrestrial melt compositions, little information exists to evaluate the SCSS for the high FeO compositions typical of lunar magmas, and at the reduced conditions of the Moon's interior. Experiments were done to measure the SCSS for a model low Ti mare basalt with 20 wt% FeO at 1400oC as a function of fO2 and pressure. Synthetic lunar basalt was encapsulated along with stoichiometric FeS in capsules made from Fe-Ir alloy. The fO2 of the experiment can be estimated by the heterogeneous equilibrium: Femetal + 1 /2 O2 = FeOsilicate Variation in the metal composition, by addition of Ir, serves to change the fO2 of the experiment. Capsule compositions spanning the range Fe25Ir75 to Fe96Ir4 (at%) were synthesized by sintering of pressed powders under reducing conditions. Fe100 capsules were fabricated from pure Fe rod. For a melt with 20 wt% FeO, this range in capsule composition spans the fO2 interval of ˜IW-1 (Fe100, Fe96Ir4) to IW+2.2 (Fe25Ir75). Experiments were done over the pressure interval of 0.1 MPa to 2 GPa. Results for experiments involving Fe100capsules indicate that the SCSS decreases from ˜2000 ppm (0.1 MPa) to 700 ppm (2 GPa). Experiments done thus far at 1 GPa, involving the range of capsule compositions indicated, show a marked decrease in SCSS as the Fe content of the capsule increases (fO2 decreases). Complementary to the decrease in SCSS is a drop in the sulfur content of the coexisting sulfide melt, from ˜50 at% at ΔIW = +2.2 to ˜20 at% at ΔIW-1. In fact, both the composition of the sulfide melt and the SCSS are essentially indistinguishable for Fe96Ir4 and Fe100 compositions. Results thus far indicate that at reduced conditions and high pressure, the SCSS for high FeO lunar compositions is low, and overlaps with Apollo 11 melt inclusion data. Importantly, such low SCSS does not require Fe metal saturation, and suggests that some

  9. Diving under a microscope--a new simple and versatile in vitro diving device for fluorescence and confocal microscopy allowing the controls of hydrostatic pressure, gas pressures, and kinetics of gas saturation.

    PubMed

    Wang, Qiong; Belhomme, Marc; Guerrero, François; Mazur, Aleksandra; Lambrechts, Kate; Theron, Michaël

    2013-06-01

    How underwater diving effects the function of the arterial wall and the activities of endothelial cells is the focus of recent studies on decompression sickness. Here we describe an in vitro diving system constructed to achieve real-time monitoring of cell activity during simulated dives under fluorescent microscopy and confocal microscopy. A 1-mL chamber with sapphire windows on both sides and located on the stage of an inverted microscope was built to allow in vitro diving simulation of isolated cells or arteries in which activities during diving are monitored in real-time via fluorescent microscopy and confocal microscopy. Speed of compression and decompression can range from 20 to 2000 kPa/min, allowing systemic pressure to range up to 6500 kPa. Diving temperature is controlled at 37°C. During air dive simulation oxygen partial pressure is optically monitored. Perfusion speed can range from 0.05 to 10 mL/min. The system can support physiological viability of in vitro samples for real-time monitoring of cellular activity during diving. It allows regulations of pressure, speeds of compression and decompression, temperature, gas saturation, and perfusion speed. It will be a valuable tool for hyperbaric research.

  10. On the relationship between atmospheric water vapour transport and extra-tropical cyclones development

    NASA Astrophysics Data System (ADS)

    Ferreira, Juan A.; Liberato, Margarida L. R.; Ramos, Alexandre M.

    2016-08-01

    In this study we seek to investigate the role of atmospheric water vapour on the intensification of extra-tropical cyclones over the North Atlantic Ocean and more specifically to investigate the linkage between atmospheric rivers' conditions leading to the explosive development of extra-tropical cyclones. Several WRF-ARW simulations for three recent extra-tropical storms that had major negative socio-economic impacts in the Iberian Peninsula and south-western Europe (Klaus, 2009; Gong, 2013 and Stephanie, 2014) are performed in which the water vapour content of the initial and boundary conditions are tuned. Analyses of the vertically integrated vapour transport show the dependence of the storms' development on atmospheric water vapour. In addition, results also show changes in the shape of the jet stream resulting in a reduction of the upper wind divergence, which in turn affects the intensification of the extra-tropical cyclones studied. This study suggests that atmospheric rivers tend to favour the conditions for explosive extra-tropical storms' development in the three case studies, as simulations performed without the existence of atmospheric rivers produce shallow mid-latitude cyclones, that is, cyclones that are not so intense as those on the reference simulations.

  11. Gravimetric phenotyping of whole plant transpiration responses to atmospheric vapour pressure deficit identifies genotypic variation in water use efficiency.

    PubMed

    Ryan, Annette C; Dodd, Ian C; Rothwell, Shane A; Jones, Ros; Tardieu, Francois; Draye, Xavier; Davies, William J

    2016-10-01

    There is increasing interest in rapidly identifying genotypes with improved water use efficiency, exemplified by the development of whole plant phenotyping platforms that automatically measure plant growth and water use. Transpirational responses to atmospheric vapour pressure deficit (VPD) and whole plant water use efficiency (WUE, defined as the accumulation of above ground biomass per unit of water used) were measured in 100 maize (Zea mays L.) genotypes. Using a glasshouse based phenotyping platform with naturally varying VPD (1.5-3.8kPa), a 2-fold variation in WUE was identified in well-watered plants. Regression analysis of transpiration versus VPD under these conditions, and subsequent whole plant gas exchange at imposed VPDs (0.8-3.4kPa) showed identical responses in specific genotypes. Genotype response of transpiration versus VPD fell into two categories: 1) a linear increase in transpiration rate with VPD with low (high WUE) or high (low WUE) transpiration rate at all VPDs, 2) a non-linear response with a pronounced change point at low VPD (high WUE) or high VPD (low WUE). In the latter group, high WUE genotypes required a significantly lower VPD before transpiration was restricted, and had a significantly lower rate of transpiration in response to VPD after this point, when compared to low WUE genotypes. Change point values were significantly positively correlated with stomatal sensitivity to VPD. A change point in stomatal response to VPD may explain why some genotypes show contradictory WUE rankings according to whether they are measured under glasshouse or field conditions. Furthermore, this novel use of a high throughput phenotyping platform successfully reproduced the gas exchange responses of individuals measured in whole plant chambers, accelerating the identification of plants with high WUE. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Effects of Hypothermic Cardiopulmonary Bypass on Internal Jugular Bulb Venous Oxygen Saturation, Cerebral Oxygen Saturation, and Bispectral Index in Pediatric Patients Undergoing Cardiac Surgery: A Prospective Study.

    PubMed

    Hu, Zhiyong; Xu, Lili; Zhu, Zhirui; Seal, Robert; McQuillan, Patrick M

    2016-01-01

    The objective of this study was to evaluate the effect of hypothermic cardiopulmonary bypass (CPB) on cerebral oxygen saturation (rSO2), internal jugular bulb venous oxygen saturation (SjvO2), mixed venous oxygen saturation (SvO2), and bispectral index (BIS) used to monitor cerebral oxygen balance in pediatric patients.Sixty American Society of Anesthesiologists Class II-III patients aged 1 to 4 years old with congenital heart disease scheduled for elective cardiac surgery were included in this study. Temperature, BIS, rSO2, mean arterial pressure, central venous pressure, cerebral perfusion pressure (CPP), and hematocrit were recorded. Internal jugular bulb venous oxygen saturation and SvO2 were obtained from blood gas analysis at the time points: after induction of anesthesia (T0), beginning of CPB (T1), ascending aortic occlusion (T2), 20 minutes after initiating CPB (T3), coronary reperfusion (T4), separation from CPB (T5), and at the end of operation (T6). The effect of hypothermia or changes in CPP on rSO2, SjvO2, SvO2, and BIS were analyzed.Compared with postinduction baseline values, rSO2 significantly decreased at all-time points: onset of extracorporeal circulation, ascending aortic occlusion, 20 minutes after CPB initiation, coronary reperfusion, and separation from CPB (P < 0.05). Compared with measurements made following induction of anesthesia, SjvO2 significantly increased with initiation of CPB, ascending aortic occlusion, 20 minutes after initiating CPB, coronary reperfusion, and separation from CPB (P < 0.05). Compared with induction of anesthesia, BIS significantly decreased with the onset of CPB, aortic cross clamping, 20 minutes after initiating CPB, and coronary reperfusion (P < 0.05). Bispectral index increased following separation from CPB. There was no significant change in SvO2 during cardiopulmonary bypass (P > 0.05). Correlation analysis demonstrated that rSO2 was positively related to CPP (r = 0.687, P = 0

  13. The New LMK Primary Standard for Dew-Point Sensor Calibration: Evaluation of the High-Range Saturator Efficiency

    NASA Astrophysics Data System (ADS)

    Hudoklin, Domen; Drnovšek, Janko

    2008-10-01

    In the field of hygrometry, a primary dew-point standard can be realized according to several proven principles, such as single-pressure (1-P), two-pressure (2-P), or divided flow. Different realizations have been introduced by various national laboratories, each resulting in a stand-alone complex generation system. Recent trends in generator design favor the single-pressure principle without recirculation because it promises theoretically lower uncertainty and because it avoids problems regarding the leak tightness of the recirculation. Instead of recirculation, the efficiency of saturation, the key factor, is increased by preconditioning the inlet gas entering the saturator. For preconditioning, a presaturator or purifier is used to bring the dew point of the inlet stream close to the saturator temperature. The purpose of the paper is to identify the minimum requirements for the preconditioning system and the main saturator to assure efficient saturation for the LMK generator. Moreover, the aim is also to find out if the preconditioning system can be avoided despite the rather simple construction of the main saturator. If this proves to be the case, the generator design can be simplified while maintaining an accurate value of the generated dew point. Experiments were carried out within the scope of improving our existing primary generator in the above-ambient dew-point range up to +70°C. These results show the generated dew point is within the measurement uncertainty for any dew-point value of the inlet gas. Thus, the preconditioning subsystem can be avoided, which leads to a simplified generator design.

  14. Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies

    PubMed Central

    Potyrailo, Radislav A.; Bonam, Ravi K.; Hartley, John G.; Starkey, Timothy A.; Vukusic, Peter; Vasudev, Milana; Bunning, Timothy; Naik, Rajesh R.; Tang, Zhexiong; Palacios, Manuel A.; Larsen, Michael; Le Tarte, Laurie A.; Grande, James C.; Zhong, Sheng; Deng, Tao

    2015-01-01

    Combining vapour sensors into arrays is an accepted compromise to mitigate poor selectivity of conventional sensors. Here we show individual nanofabricated sensors that not only selectively detect separate vapours in pristine conditions but also quantify these vapours in mixtures, and when blended with a variable moisture background. Our sensor design is inspired by the iridescent nanostructure and gradient surface chemistry of Morpho butterflies and involves physical and chemical design criteria. The physical design involves optical interference and diffraction on the fabricated periodic nanostructures and uses optical loss in the nanostructure to enhance the spectral diversity of reflectance. The chemical design uses spatially controlled nanostructure functionalization. Thus, while quantitation of analytes in the presence of variable backgrounds is challenging for most sensor arrays, we achieve this goal using individual multivariable sensors. These colorimetric sensors can be tuned for numerous vapour sensing scenarios in confined areas or as individual nodes for distributed monitoring. PMID:26324320

  15. PFS/Mars Express first results: water vapour and carbon monoxide global distribution

    NASA Astrophysics Data System (ADS)

    Ignatiev, N. I.; Titov, D. V.; Formisano, V.; Moroz, V. I.; Lellouch, E.; Encrenaz, Th.; Fouchet, T.; Grassi, D.; Giuranna, M.; Atreya, S.; Pfs Team

    Planetary Fourier Spectrometer onboard Mars Express, with its wide spectral range (1.2--45 um) and high spectral resolution (1.4 cm-1), makes it possible to study in a self-consistent manner the Martian atmosphere by means of simultaneous analysis of spectral features in several spectral regions. As concerned small species, we observe 30--50, 6.3, 2.56, 1.87 and 1.38 μ m H2O bands, and 4.7 and 2.35 μ m CO bands. The most favourable, with respect to the instrument performance, 2.56 μ m H2O and 4.7 μ m CO bands, are used to study the variations of column abundance of water vapour and carbon monoxide on a global scale from pole to pole. All necessary atmospheric parameters, namely temperature profiles, surface pressure, and dust density are obtained from the same spectra, whenever possible.

  16. Distillation with Vapour Compression. An Undergraduate Experimental Facility.

    ERIC Educational Resources Information Center

    Pritchard, Colin

    1986-01-01

    Discusses the need to design distillation columns that are more energy efficient. Describes a "design and build" project completed by two college students aimed at demonstrating the principles of vapour compression distillation in a more energy efficient way. General design specifications are given, along with suggestions for teaching…

  17. High efficiency coherent optical memory with warm rubidium vapour

    PubMed Central

    Hosseini, M.; Sparkes, B.M.; Campbell, G.; Lam, P.K.; Buchler, B.C.

    2011-01-01

    By harnessing aspects of quantum mechanics, communication and information processing could be radically transformed. Promising forms of quantum information technology include optical quantum cryptographic systems and computing using photons for quantum logic operations. As with current information processing systems, some form of memory will be required. Quantum repeaters, which are required for long distance quantum key distribution, require quantum optical memory as do deterministic logic gates for optical quantum computing. Here, we present results from a coherent optical memory based on warm rubidium vapour and show 87% efficient recall of light pulses, the highest efficiency measured to date for any coherent optical memory suitable for quantum information applications. We also show storage and recall of up to 20 pulses from our system. These results show that simple warm atomic vapour systems have clear potential as a platform for quantum memory. PMID:21285952

  18. High efficiency coherent optical memory with warm rubidium vapour.

    PubMed

    Hosseini, M; Sparkes, B M; Campbell, G; Lam, P K; Buchler, B C

    2011-02-01

    By harnessing aspects of quantum mechanics, communication and information processing could be radically transformed. Promising forms of quantum information technology include optical quantum cryptographic systems and computing using photons for quantum logic operations. As with current information processing systems, some form of memory will be required. Quantum repeaters, which are required for long distance quantum key distribution, require quantum optical memory as do deterministic logic gates for optical quantum computing. Here, we present results from a coherent optical memory based on warm rubidium vapour and show 87% efficient recall of light pulses, the highest efficiency measured to date for any coherent optical memory suitable for quantum information applications. We also show storage and recall of up to 20 pulses from our system. These results show that simple warm atomic vapour systems have clear potential as a platform for quantum memory.

  19. Modelling and intepreting the isotopic composition of water vapour in convective updrafts

    NASA Astrophysics Data System (ADS)

    Bolot, M.; Legras, B.; Moyer, E. J.

    2012-08-01

    The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener-Bergeron-Findeisen process). As all of these processes are related to updraft strength, droplet size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  20. Modelling and interpreting the isotopic composition of water vapour in convective updrafts

    NASA Astrophysics Data System (ADS)

    Bolot, M.; Legras, B.; Moyer, E. J.

    2013-08-01

    The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed-phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters, including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener-Bergeron-Findeisen process). As all of these processes are related to updraft strength, particle size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  1. A microwave satellite water vapour column retrieval for polar winter conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perro, Christopher; Lesins, Glen; Duck, Thomas J.

    A new microwave satellite water vapour retrieval for the polar winter atmosphere is presented. The retrieval builds on the work of Miao et al. (2001) and Melsheimer and Heygster (2008), employing auxiliary information for atmospheric conditions and numerical optimization. It was tested using simulated and actual measurements from the Microwave Humidity Sounder (MHS) satellite instruments. Ground truth was provided by the G-band vapour radiometer (GVR) at Barrow, Alaska. For water vapour columns less than 6 kg m -2, comparisons between the retrieval and GVR result in a root mean square (RMS) deviation of 0.39 kg m -2 and a systematic bias of 0.08 kg m -2. These results aremore » compared with RMS deviations and biases at Barrow for the retrieval of Melsheimer and Heygster (2008), the AIRS and MIRS satellite data products, and the ERA-Interim, NCEP, JRA-55, and ASR reanalyses. When applied to MHS measurements, the new retrieval produces a smaller RMS deviation and bias than for the earlier retrieval and satellite data products. The RMS deviations for the new retrieval were comparable to those for the ERA-Interim, JRA-55, and ASR reanalyses; however, the MHS retrievals have much finer horizontal resolution (15 km at nadir) and reveal more structure. The new retrieval can be used to obtain pan-Arctic maps of water vapour columns of unprecedented quality. It may also be applied to measurements from the Special Sensor Microwave/Temperature 2 (SSM/T2), Advanced Microwave Sounding Unit B (AMSU-B), Special Sensor Microwave Imager/Sounder (SSMIS), Advanced Technology Microwave Sounder (ATMS), and Chinese MicroWave Humidity Sounder (MWHS) instruments.« less

  2. Leidenfrost vapour layer moderation of the drag crisis and trajectories of superhydrophobic and hydrophilic spheres falling in water.

    PubMed

    Vakarelski, Ivan U; Chan, Derek Y C; Thoroddsen, Sigurdur T

    2014-08-21

    We investigate the dynamic effects of a Leidenfrost vapour layer sustained on the surface of heated steel spheres during free fall in water. We find that a stable vapour layer sustained on the textured superhydrophobic surface of spheres falling through 95 °C water can reduce the hydrodynamic drag by up to 75% and stabilize the sphere trajectory for the Reynolds number between 10(4) and 10(6), spanning the drag crisis in the absence of the vapour layer. For hydrophilic spheres under the same conditions, the transition to drag reduction and trajectory stability occurs abruptly at a temperature different from the static Leidenfrost point. The observed drag reduction effects are attributed to the disruption of the viscous boundary layer by the vapour layer whose thickness depends on the water temperature. Both the drag reduction and the trajectory stabilization effects are expected to have significant implications for development of sustainable vapour layer based technologies.

  3. Scale-dependent coupling of hysteretic capillary pressure, trapping, and fluid mobilities

    NASA Astrophysics Data System (ADS)

    Doster, F.; Celia, M. A.; Nordbotten, J. M.

    2012-12-01

    Many applications of multiphase flow in porous media, including CO2-storage and enhanced oil recovery, require mathematical models that span a large range of length scales. In the context of numerical simulations, practical grid sizes are often on the order of tens of meters, thereby de facto defining a coarse model scale. Under particular conditions, it is possible to approximate the sub-grid-scale distribution of the fluid saturation within a grid cell; that reconstructed saturation can then be used to compute effective properties at the coarse scale. If both the density difference between the fluids and the vertical extend of the grid cell are large, and buoyant segregation within the cell on a sufficiently shorte time scale, then the phase pressure distributions are essentially hydrostatic and the saturation profile can be reconstructed from the inferred capillary pressures. However, the saturation reconstruction may not be unique because the parameters and parameter functions of classical formulations of two-phase flow in porous media - the relative permeability functions, the capillary pressure -saturation relationship, and the residual saturations - show path dependence, i.e. their values depend not only on the state variables but also on their drainage and imbibition histories. In this study we focus on capillary pressure hysteresis and trapping and show that the contribution of hysteresis to effective quantities is dependent on the vertical length scale. By studying the transition from the two extreme cases - the homogeneous saturation distribution for small vertical extents and the completely segregated distribution for large extents - we identify how hysteretic capillary pressure at the local scale induces hysteresis in all coarse-scale quantities for medium vertical extents and finally vanishes for large vertical extents. Our results allow for more accurate vertically integrated modeling while improving our understanding of the coupling of capillary

  4. Viscosity of saturated R152a measured with a vibrating wire viscometer

    NASA Astrophysics Data System (ADS)

    van der Gulik, P. S.

    1995-07-01

    Earlier reported values of the viscosity coefficient of the refrigerant R152a (1,1-difluoroethane) have been recalculated with an improved value for the mechanical damping of the vibrating wire viscometer. The measurements were taken along the saturation line both in the saturated liquid and in the saturated vapor every 10 K from 243 up to 393 K by means of a vibrating wire viscometer The damping of the vibration of the wire is a measure for the viscosity provided that the mechanical damping is subtracted. The latter is usually measured in vacuum. It turns out that the damping value measured in this way depends on the vacuum pressure and on the way the wire has been handled before. It appeared that the damping applied previously, measured after 6 days of pumping, is too small, resulting in values of the viscosity coefficient which are too large. The effect on the data for the saturated-liquid viscosity is small, but the new saturated-vapor viscosity data agree much better with the unsaturated-vapor data reported by Takahashi et al.

  5. Characterization of aqueous interactions of copper-doped phosphate-based glasses by vapour sorption.

    PubMed

    Stähli, Christoph; Shah Mohammadi, Maziar; Waters, Kristian E; Nazhat, Showan N

    2014-07-01

    Owing to their adjustable dissolution properties, phosphate-based glasses (PGs) are promising materials for the controlled release of bioinorganics, such as copper ions. This study describes a vapour sorption method that allowed for the investigation of the kinetics and mechanisms of aqueous interactions of PGs of the formulation 50P2O5-30CaO-(20-x)Na2O-xCuO (x=0, 1, 5 and 10mol.%). Initial characterization was performed using (31)P magic angle spinning nuclear magnetic resonance and attenuated total reflectance-Fourier transform infrared spectroscopy. Increasing CuO content resulted in chemical shifts of the predominant Q(2) NMR peak and of the (POP)as and (PO(-)) Fourier transform infrared absorptions, owing to the higher strength of the POCu bond compared to PONa. Vapour sorption and desorption were gravimetrically measured in PG powders exposed to variable relative humidity (RH). Sorption was negligible below 70% RH and increased exponentially with RH from 70 to 90%, where it exhibited a negative correlation with CuO content. Vapour sorption in 0% and 1% CuO glasses resulted in phosphate chain hydration and hydrolysis, as evidenced by protonated Q(0)(1H) and Q(1)(1H) species. Dissolution rates in deionized water showed a linear correlation (R(2)>0.99) with vapour sorption. Furthermore, cation release rates could be predicted based on dissolution rates and PG composition. The release of orthophosphate and short polyphosphate species corroborates the action of hydrolysis and was correlated with pH changes. In conclusion, the agreement between vapour sorption and routine characterization techniques in water demonstrates the potential of this method for the study of PG aqueous reactions. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. FAST TRACK COMMUNICATION: Metal vapour causes a central minimum in arc temperature in gas-metal arc welding through increased radiative emission

    NASA Astrophysics Data System (ADS)

    Schnick, M.; Füssel, U.; Hertel, M.; Spille-Kohoff, A.; Murphy, A. B.

    2010-01-01

    A computational model of the argon arc plasma in gas-metal arc welding (GMAW) that includes the influence of metal vapour from the electrode is presented. The occurrence of a central minimum in the radial distributions of temperature and current density is demonstrated. This is in agreement with some recent measurements of arc temperatures in GMAW, but contradicts other measurements and also the predictions of previous models, which do not take metal vapour into account. It is shown that the central minimum is a consequence of the strong radiative emission from the metal vapour. Other effects of the metal vapour, such as the flux of relatively cold vapour from the electrode and the increased electrical conductivity, are found to be less significant. The different effects of metal vapour in gas-tungsten arc welding and GMAW are explained.

  7. Real-time fluorescence quenching-based detection of nitro-containing explosive vapours: what are the key processes?

    PubMed

    Shaw, P E; Burn, P L

    2017-11-15

    The detection of explosives continues to be a pressing global challenge with many potential technologies being pursued by the scientific research community. Luminescence-based detection of explosive vapours with an organic semiconductor has attracted much interest because of its potential for detectors that have high sensitivity, compact form factor, simple operation and low-cost. Despite the abundance of literature on novel sensor materials systems there are relatively few mechanistic studies targeted towards vapour-based sensing. In this Perspective, we will review the progress that has been made in understanding the processes that control the real-time luminescence quenching of thin films by analyte vapours. These are the non-radiative quenching process by which the sensor exciton decays, the analyte-sensor intermolecular binding interaction, and the diffusion process for the analyte vapours in the film. We comment on the contributions of each of these processes towards the sensing response and, in particular, the relative roles of analyte diffusion and exciton diffusion. While the latter has been historically judged to be one of, if not the primary, causes for the high sensitivity of many conjugated polymers to nitrated vapours, recent evidence suggests that long exciton diffusion lengths are unnecessary. The implications of these results on the development of sensor materials for real-time detection are discussed.

  8. Solid-state detector system for measuring concentrations of tritiated water vapour and other radioactive gases

    NASA Astrophysics Data System (ADS)

    Nunes, J. C.; Surette, R. A.; Wood, M. J.

    1999-08-01

    A detector system was built using a silicon photodiode plus preamplifier and a cesium iodide scintillator plus preamplifier that were commercially available. The potential of the system for measuring concentrations of tritiated water vapour in the presence of other radioactive sources was investigated. For purposes of radiation protection, the sensitivity of the detector system was considered too low for measuring tritiated water vapour concentrations in workplaces such as nuclear power plants. Nevertheless, the spectrometry capability of the system was used successfully to differentiate amongst some radioactive gases in laboratory tests. Although this relatively small system can measure radioactive noble gases as well as tritiated water vapour concentrations, its response to photons remains an issue.

  9. Effects of Hypothermic Cardiopulmonary Bypass on Internal Jugular Bulb Venous Oxygen Saturation, Cerebral Oxygen Saturation, and Bispectral Index in Pediatric Patients Undergoing Cardiac Surgery: A Prospective Study

    PubMed Central

    Hu, Zhiyong; Xu, Lili; Zhu, Zhirui; Seal, Robert; McQuillan, Patrick M.

    2016-01-01

    Abstract The objective of this study was to evaluate the effect of hypothermic cardiopulmonary bypass (CPB) on cerebral oxygen saturation (rSO2), internal jugular bulb venous oxygen saturation (SjvO2), mixed venous oxygen saturation (SvO2), and bispectral index (BIS) used to monitor cerebral oxygen balance in pediatric patients. Sixty American Society of Anesthesiologists Class II-III patients aged 1 to 4 years old with congenital heart disease scheduled for elective cardiac surgery were included in this study. Temperature, BIS, rSO2, mean arterial pressure, central venous pressure, cerebral perfusion pressure (CPP), and hematocrit were recorded. Internal jugular bulb venous oxygen saturation and SvO2 were obtained from blood gas analysis at the time points: after induction of anesthesia (T0), beginning of CPB (T1), ascending aortic occlusion (T2), 20 minutes after initiating CPB (T3), coronary reperfusion (T4), separation from CPB (T5), and at the end of operation (T6). The effect of hypothermia or changes in CPP on rSO2, SjvO2, SvO2, and BIS were analyzed. Compared with postinduction baseline values, rSO2 significantly decreased at all-time points: onset of extracorporeal circulation, ascending aortic occlusion, 20 minutes after CPB initiation, coronary reperfusion, and separation from CPB (P < 0.05). Compared with measurements made following induction of anesthesia, SjvO2 significantly increased with initiation of CPB, ascending aortic occlusion, 20 minutes after initiating CPB, coronary reperfusion, and separation from CPB (P < 0.05). Compared with induction of anesthesia, BIS significantly decreased with the onset of CPB, aortic cross clamping, 20 minutes after initiating CPB, and coronary reperfusion (P < 0.05). Bispectral index increased following separation from CPB. There was no significant change in SvO2 during cardiopulmonary bypass (P > 0.05). Correlation analysis demonstrated that rSO2 was positively related to CPP (r = 0.687, P

  10. Influence of phase connectivity on the relationship among capillary pressure, fluid saturation, and interfacial area in two-fluid-phase porous medium systems

    DOE PAGES

    McClure, James E.; Berrill, Mark A.; Gray, William G.; ...

    2016-09-02

    Here, multiphase flow in porous medium systems is typically modeled using continuum mechanical representations at the macroscale in terms of averaged quantities. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating fluid pressures, fluid saturations, and, in some cases, the interfacial area between the fluid phases, and the Euler characteristic. An unresolved question is whether the inclusion of these additional morphological and topological measures can lead to a non-hysteretic closure relation compared to the hysteretic forms that are used in traditional models, which typically do not include interfacial areas, ormore » the Euler characteristic. We develop a lattice-Boltzmann (LB) simulation approach to investigate the equilibrium states of a two-fluid-phase porous medium system, which include disconnected now- wetting phase features. The proposed approach is applied to a synthetic medium consisting of 1,964 spheres arranged in a random, non-overlapping, close-packed manner, yielding a total of 42,908 different equilibrium points. This information is evaluated using a generalized additive modeling approach to determine if a unique function from this family exists, which can explain the data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and non-hysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. This work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parameterizations investigated, and the broad set of functions examined. The conclusion of essentially non-hysteretic behavior provides support for an evolving class of two-fluid-phase flow in porous medium systems models.« less

  11. Influence of phase connectivity on the relationship among capillary pressure, fluid saturation, and interfacial area in two-fluid-phase porous medium systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClure, James E.; Berrill, Mark A.; Gray, William G.

    Here, multiphase flow in porous medium systems is typically modeled using continuum mechanical representations at the macroscale in terms of averaged quantities. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating fluid pressures, fluid saturations, and, in some cases, the interfacial area between the fluid phases, and the Euler characteristic. An unresolved question is whether the inclusion of these additional morphological and topological measures can lead to a non-hysteretic closure relation compared to the hysteretic forms that are used in traditional models, which typically do not include interfacial areas, ormore » the Euler characteristic. We develop a lattice-Boltzmann (LB) simulation approach to investigate the equilibrium states of a two-fluid-phase porous medium system, which include disconnected now- wetting phase features. The proposed approach is applied to a synthetic medium consisting of 1,964 spheres arranged in a random, non-overlapping, close-packed manner, yielding a total of 42,908 different equilibrium points. This information is evaluated using a generalized additive modeling approach to determine if a unique function from this family exists, which can explain the data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and non-hysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. This work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parameterizations investigated, and the broad set of functions examined. The conclusion of essentially non-hysteretic behavior provides support for an evolving class of two-fluid-phase flow in porous medium systems models.« less

  12. Formation of formic acid and organic peroxides in the ozonolysis of ethene with added water vapour

    NASA Astrophysics Data System (ADS)

    Horie, Osamu; Neeb, Peter; Limbach, Stefan; Moortgat, Geert K.

    1994-07-01

    Ozonolysis of C2H4 was carried out in a 580 l glass reaction vessel at 1-5 ppm reactant concentrations, with added water vapour. Under dry conditions ([H2O]0 = 0.5 ppm), HCHO, CO, CO2, (CHO)2O (formic acid anhydride), H2O2, and CH3OOH were identified as the reaction products. Under wet conditions ([H2O]0 = 2 × 104 ppm), HCOOH yields approaching ca. 20% of the converted C2H4, were observed, while no (CHO)2O was formed. Hydroxymethyl hydroperoxide, HOCH2OOH, was observed as the major peroxide, and found to be formed only in the presence of water vapour. Direct reactions of H2O vapour with the excited CH2OO* radicals and with stabilized CH2OO radicals are postulated to explain the formation of HCOOH and HOCH2OOH in the presence of water vapour, respectively.

  13. Sorbent Film-Coated Passive Samplers for Explosives Vapour Detection Part A: Materials Optimisation and Integration with Analytical Technologies.

    PubMed

    McEneff, Gillian L; Murphy, Bronagh; Webb, Tony; Wood, Dan; Irlam, Rachel; Mills, Jim; Green, David; Barron, Leon P

    2018-04-11

    A new thin-film passive sampler is presented as a low resource dependent and discrete continuous monitoring solution for explosives-related vapours. Using 15 mid-high vapour pressure explosives-related compounds as probes, combinations of four thermally stable substrates and six film-based sorbents were evaluated. Meta-aramid and phenylene oxide-based materials showed the best recoveries from small voids (~70%). Analysis was performed using liquid chromatography-high resolution accurate mass spectrometry which also enabled tentative identification of new targets from the acquired data. Preliminary uptake kinetics experiments revealed plateau concentrations on the device were reached between 3-5 days. Compounds used in improvised explosive devices, such as triacetone triperoxide, were detected within 1 hour and were stably retained by the sampler for up to 7 days. Sampler performance was consistent for 22 months after manufacture. Lastly, its direct integration with currently in-service explosives screening equipment including ion mobility spectrometry and thermal desorption mass spectrometry is presented. Following exposure to several open environments and targeted interferences, sampler performance was subsequently assessed and potential interferences identified. High-security building and area monitoring for concealed explosives using such cost-effective and discrete passive samplers can add extra assurance to search routines while minimising any additional burden on personnel or everyday site operation.

  14. Water-vapour variability within a convective boundary-layer assessed by large-eddy simulations and IHOP_2002 observations

    NASA Astrophysics Data System (ADS)

    Couvreux, F.; Guichard, F.; Redelsperger, J. L.; Kiemle, C.; Masson, V.; Lafore, J. P.; Flamant, C.

    2005-10-01

    This study presents a comprehensive analysis of the variability of water vapour in a growing convective boundary-layer (CBL) over land, highlighting the complex links between advection, convective activity and moisture heterogeneity in the boundary layer. A Large-eddy Simulation (LES) is designed, based on observations, and validated, using an independent data-set collected during the International H2O Project (IHOP 2002) fieldexperiment. Ample information about the moisture distribution in space and time, as well as other important CBL parameters are acquired by mesonet stations, balloon soundings, instruments on-board two aircraft and the DLR airborne water-vapour differential-absorption lidar. Because it can deliver two-dimensional cross-sections at high spatial resolution (140 m horizontal, 200 m vertical), the airborne lidar offers valuable insights of small-scale moisture-variability throughout the CBL. The LES is able to reproduce the development of the CBL in the morning and early afternoon, as assessed by comparisons of simulated mean profiles of key meteorological variables with sounding data. Simulated profiles of the variance of water-vapour mixing-ratio were found to be in good agreement with the lidar-derived counterparts. Finally, probability-density functions of potential temperature, vertical velocity and water-vapour mixing-ratio calculated from the LES show great consistency with those derived from aircraft in situ measurements in the middle of the CBL. Downdraughts entrained from above the CBL are governing the scale of moisture variability. Characteristic length-scales are found to be larger for water-vapour mixing-ratio than for temperature.The observed water-vapour variability exhibits contributions from different scales. The influence of the mesoscale (larger than LES domain size, i.e. 10 km) on the smaller-scale variability is assessed using LES and observations. The small-scale variability of water vapour is found to be important and to be

  15. 3D imaging of vapour and liquid inclusions from the Mole Granite, Australia, using helical fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Cauzid, J.; Philippot, P.; Bleuet, P.; Simionovici, A.; Somogyi, A.; Golosio, B.

    2007-08-01

    World class Cu resources are concentrated in porphyry and epithermal ore deposits. Their formation remains partially understood, however, due to a lack of constraints on the partitioning properties of trace elements in general, and Cu in particular, between vapour and liquid phases evolved from boiling fluids at depth in the Earth's crust. Immiscible liquid and vapour fluid inclusions coexisting in a single quartz grain have been imaged in three dimensions by X-ray Fluorescence Computed Tomography (XFCT). Elemental spatial distributions confirm that Cu, and to a lesser extent As, partition into the vapour phase, whereas Mn, Fe, Zn, Br, Rb, Sr and Pb concentrate in the liquid inclusion. High resolution mapping of the vapour inclusions revealed that Cu is heterogeneously distributed at the scale of a single inclusion and is mostly concentrated as tiny daughter crystals.

  16. Vapour pressure deficit during growth has little impact on genotypic differences of transpiration efficiency at leaf and whole-plant level: an example from Populus nigra L.

    PubMed

    Rasheed, Fahad; Dreyer, Erwin; Richard, Béatrice; Brignolas, Franck; Brendel, Oliver; Le Thiec, Didier

    2015-04-01

    Poplar genotypes differ in transpiration efficiency (TE) at leaf and whole-plant level under similar conditions. We tested whether atmospheric vapour pressure deficit (VPD) affected TE to the same extent across genotypes. Six Populus nigra genotypes were grown under two VPD. We recorded (1) (13)C content in soluble sugars; (2) (18)O enrichment in leaf water; (3) leaf-level gas exchange; and (4) whole-plant biomass accumulation and water use. Whole-plant and intrinsic leaf TE and (13)C content in soluble sugars differed significantly among genotypes. Stomatal conductance contributed more to these differences than net CO2 assimilation rate. VPD increased water use and reduced whole-plant TE. It increased intrinsic leaf-level TE due to a decline in stomatal conductance. It also promoted higher (18)O enrichment in leaf water. VPD had no genotype-specific effect. We detected a deviation in the relationship between (13)C in leaf sugars and (13)C predicted from gas exchange and the standard discrimination model. This may be partly due to genotypic differences in mesophyll conductance, and to its lack of sensitivity to VPD. Leaf-level (13)C discrimination was a powerful predictor of the genetic variability of whole-plant TE irrespective of VPD during growth. © 2014 John Wiley & Sons Ltd.

  17. Transport properties of nonelectrolyte liquid mixtures—V. Viscosity coefficients for binary mixtures of benzene plus alkanes at saturation pressure from 283 to 393 K

    NASA Astrophysics Data System (ADS)

    Dymond, J. H.; Young, K. J.

    1981-09-01

    Viscosity coefficient measurements at saturation pressure are reported for benzene + n-hexane, benzene + n-octane, benzene + n-decane, benzene + n-dodecane, benzene + n-hexadecane, and benzene + cyclohexane at temperatures from 283 to 393 K. The characteristic parameter G in the Grunberg and Nissan equation 10765_2004_Article_BF00504187_TeX2GIFE1.gif ell nη = x_1 ell nη _1 + x_2 ell nη _2 + x_1 x_2 G is found to be both composition and temperature dependent for benzene + n-alkane mixtures, but it is independent of composition for the system benzene + cyclohexane.

  18. Oscillatory vapour shielding of liquid metal walls in nuclear fusion devices.

    PubMed

    van Eden, G G; Kvon, V; van de Sanden, M C M; Morgan, T W

    2017-08-04

    Providing an efficacious plasma facing surface between the extreme plasma heat exhaust and the structural materials of nuclear fusion devices is a major challenge on the road to electricity production by fusion power plants. The performance of solid plasma facing surfaces may become critically reduced over time due to progressing damage accumulation. Liquid metals, however, are now gaining interest in solving the challenge of extreme heat flux hitting the reactor walls. A key advantage of liquid metals is the use of vapour shielding to reduce the plasma exhaust. Here we demonstrate that this phenomenon is oscillatory by nature. The dynamics of a Sn vapour cloud are investigated by exposing liquid Sn targets to H and He plasmas at heat fluxes greater than 5 MW m -2 . The observations indicate the presence of a dynamic equilibrium between the plasma and liquid target ruled by recombinatory processes in the plasma, leading to an approximately stable surface temperature.Vapour shielding is one of the interesting mechanisms for reducing the heat load to plasma facing components in fusion reactors. Here the authors report on the observation of a dynamic equilibrium between the plasma and the divertor liquid Sn surface leading to an overall stable surface temperature.

  19. Effects of various assumptions on the calculated liquid fraction in isentropic saturated equilibrium expansions

    NASA Technical Reports Server (NTRS)

    Bursik, J. W.; Hall, R. M.

    1980-01-01

    The saturated equilibrium expansion approximation for two phase flow often involves ideal-gas and latent-heat assumptions to simplify the solution procedure. This approach is well documented by Wegener and Mack and works best at low pressures where deviations from ideal-gas behavior are small. A thermodynamic expression for liquid mass fraction that is decoupled from the equations of fluid mechanics is used to compare the effects of the various assumptions on nitrogen-gas saturated equilibrium expansion flow starting at 8.81 atm, 2.99 atm, and 0.45 atm, which are conditions representative of transonic cryogenic wind tunnels. For the highest pressure case, the entire set of ideal-gas and latent-heat assumptions are shown to be in error by 62 percent for the values of heat capacity and latent heat. An approximation of the exact, real-gas expression is also developed using a constant, two phase isentropic expansion coefficient which results in an error of only 2 percent for the high pressure case.

  20. Hydrogeologic controls on saturation profiles in heat-pipe-like hydrothermal systems: numerical study

    NASA Astrophysics Data System (ADS)

    Pervin, Mollika; Ghergut, Iulia; Graf, Thomas; Peche, Aaron

    2016-04-01

    Most geothermal reservoirs are of the liquid-dominated type, and their unexploited-state pressure profile approximately follows the hydrostatic gradient. In very hot liquid-dominated systems, temperature typically follows a boiling-point-for-depth (BPD) relationship. By contrast, vapor-dominated systems exhibit (in their unexploited state) surprisingly small vertical gradients of temperature and pressure, such that a constantly high temperature is encountered over a large vertical thickness, while their pressure approximately follows vapour pressure, pvap(T°). This implies that (Pruess 1985, Truesdell and White 1973): (i) for a vapor-dominated reservoir to exist, it must be sealed laterally - otherwise it would be flooded by neighboring groundwaters with hydrostatic p profile, and (ii) liquid water should somehow be present in the whole system - otherwise p values would not be constrained by the pvap(T°) relationship for water. Historically, one of the most puzzling aspects of vapor-dominated systems was the large amount of heat flowing upwards, while vertical T° gradients remained negligible. This mechanism was deemed as 'heat pipe'(HP) (Eastman 1968): In the central zone of a vapor-dominated system, both vapor and liquid are mobile; vapor flows upwards, condenses at shallower depth, and the liquid condensate flows downwards. Due to the large amount of latent enthalpy released in vapor condensation, the vapor-liquid counter-flow can generate large rates of heat flow with negligible net mass transport (Pruess 1985). In order to be able to exploit two-phase (including vapor-dominated) reservoirs in a sustainable manner, one first needs to understand the conditions under which a two-phase (or a vapor-dominated) system has evolved naturally, and which have led to its present (quasi-) steady undisturbed state. Past studies have found that HP can exist in two distinct states, corresponding to liquid-dominated and vapor-dominated p profiles, respectively. Within this

  1. Highly efficient solar vapour generation via hierarchically nanostructured gels.

    PubMed

    Zhao, Fei; Zhou, Xingyi; Shi, Ye; Qian, Xin; Alexander, Megan; Zhao, Xinpeng; Mendez, Samantha; Yang, Ronggui; Qu, Liangti; Yu, Guihua

    2018-04-02

    Solar vapour generation is an efficient way of harvesting solar energy for the purification of polluted or saline water. However, water evaporation suffers from either inefficient utilization of solar energy or relies on complex and expensive light-concentration accessories. Here, we demonstrate a hierarchically nanostructured gel (HNG) based on polyvinyl alcohol (PVA) and polypyrrole (PPy) that serves as an independent solar vapour generator. The converted energy can be utilized in situ to power the vaporization of water contained in the molecular meshes of the PVA network, where water evaporation is facilitated by the skeleton of the hydrogel. A floating HNG sample evaporated water with a record high rate of 3.2 kg m -2  h -1 via 94% solar energy from 1 sun irradiation, and 18-23 litres of water per square metre of HNG was delivered daily when purifying brine water. These values were achievable due to the reduced latent heat of water evaporation in the molecular mesh under natural sunlight.

  2. Highly efficient solar vapour generation via hierarchically nanostructured gels

    NASA Astrophysics Data System (ADS)

    Zhao, Fei; Zhou, Xingyi; Shi, Ye; Qian, Xin; Alexander, Megan; Zhao, Xinpeng; Mendez, Samantha; Yang, Ronggui; Qu, Liangti; Yu, Guihua

    2018-06-01

    Solar vapour generation is an efficient way of harvesting solar energy for the purification of polluted or saline water. However, water evaporation suffers from either inefficient utilization of solar energy or relies on complex and expensive light-concentration accessories. Here, we demonstrate a hierarchically nanostructured gel (HNG) based on polyvinyl alcohol (PVA) and polypyrrole (PPy) that serves as an independent solar vapour generator. The converted energy can be utilized in situ to power the vaporization of water contained in the molecular meshes of the PVA network, where water evaporation is facilitated by the skeleton of the hydrogel. A floating HNG sample evaporated water with a record high rate of 3.2 kg m-2 h-1 via 94% solar energy from 1 sun irradiation, and 18-23 litres of water per square metre of HNG was delivered daily when purifying brine water. These values were achievable due to the reduced latent heat of water evaporation in the molecular mesh under natural sunlight.

  3. Design concept for pressure switch calibrator

    NASA Technical Reports Server (NTRS)

    Slingerland, M. G.

    1966-01-01

    Calibrator and switch design enables pressure switches to operate under 150 g shock loads. The design employs a saturated liquid-to-vapor phase transition at constant pressure to produce a known force independent of displacement over a usable range.

  4. R245fa Flow Boiling inside a 4.2 mm ID Microfin Tube

    NASA Astrophysics Data System (ADS)

    Longo, G. A.; Mancin, S.; Righetti, G.; Zilio, C.

    2017-11-01

    This paper presents the R245fa flow boiling heat transfer and pressure drop measurements inside a mini microfin tube with internal diameter at the fin tip of 4.2 mm, having 40 fins, 0.15 mm high with a helix angle of 18°. The tube was brazed inside a copper plate and electrically heated from the bottom. Sixteen T-type thermocouples are located in the copper plate to monitor the wall temperature. The experimental measurements were carried out at constant mean saturation temperature of 30 °C, by varying the refrigerant mass velocity between 100 kg m-2 s-1 and 300 kg m-2 s-1, the vapour quality from 0.15 to 0.95, at two different heat fluxes: 30 and 60 kW m-2. The experimental results are presented in terms of two-phase heat transfer coefficient, onset dryout vapour quality, and frictional pressure drop. Moreover, the experimental measurements are compared against the most updated models for boiling heat transfer coefficient and frictional pressure drop estimations available in the open literature for microfin tubes.

  5. The effects of wettability and trapping on relationships between interfacial area, capillary pressure and saturation in porous media: A pore-scale network modeling approach

    NASA Astrophysics Data System (ADS)

    Raeesi, Behrooz; Piri, Mohammad

    2009-10-01

    SummaryWe use a three-dimensional mixed-wet random pore-scale network model to investigate the impact of wettability and trapping on the relationship between interfacial area, capillary pressure and saturation in two-phase drainage and imbibition processes. The model is a three-dimensional network of interconnected pores and throats of various geometrical shapes. It allows multiple phases to be present in each capillary element in wetting and spreading layers, as well as occupying the center of the pore space. Two different random networks that represent the pore space in Berea and a Saudi Arabia reservoir sandstone are used in this study. We allow the wettability of the rock surfaces contacted by oil to alter after primary drainage. The model takes into account both contact angle and trapping hystereses. We model primary oil drainage and water flooding for mixed-wet conditions, and secondary oil injection for a water-wet system. The total interfacial area for pores and throats are calculated when the system is at capillary equilibrium. They include contributions from the arc menisci (AMs) between the bulk and corner fluids, and from the main terminal menisci (MTMs) between different bulk fluids. We investigate hysteresis in these relationships by performing water injection into systems of varying wettability and initial water saturation. We show that trapping and contact angle hystereses significantly affect the interfacial area. In a strongly water-wet system, a sharp increase is observed at the beginning of water flood, which shifts the area to a higher level than primary drainage. As we change the wettability of the system from strongly water-wet to strongly oil-wet, the trapped oil saturation decreases significantly. Starting water flood from intermediate water saturations, greater than the irreducible water saturation, can also affect the non-wetting phase entrapment, resulting in different interfacial area behaviors. This can increase the interfacial area

  6. ESEM results and changes in wettability patterns within soil: three years irrigation with slightly-salted water

    NASA Astrophysics Data System (ADS)

    Valdes-Abellan, Javier; Candela, Lucila; Medero, Gabriela; Buckman, Jim; Hasnayn, Mohammad M.

    2015-04-01

    which complete saturation is achieved was detected, being lower in the 3-years irrigated samples compared with the initial ones. Besides, velocity in which saturation took place was different: initial samples saturation process were developed very quickly, as triggered by a critical shift in the water vapour pressure value and much gradual process were develop in the 3-years irrigated sample when saturation started earlier.

  7. UTLS water vapour from SCIAMACHY limb measurementsV3.01 (2002-2012).

    PubMed

    Weigel, K; Rozanov, A; Azam, F; Bramstedt, K; Damadeo, R; Eichmann, K-U; Gebhardt, C; Hurst, D; Kraemer, M; Lossow, S; Read, W; Spelten, N; Stiller, G P; Walker, K A; Weber, M; Bovensmann, H; Burrows, J P

    2016-01-01

    The SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) aboard the Envisat satellite provided measurements from August 2002 until April 2012. SCIAMACHY measured the scattered or direct sunlight using different observation geometries. The limb viewing geometry allows the retrieval of water vapour at about 10-25 km height from the near-infrared spectral range (1353-1410 nm). These data cover the upper troposphere and lower stratosphere (UTLS), a region in the atmosphere which is of special interest for a variety of dynamical and chemical processes as well as for the radiative forcing. Here, the latest data version of water vapour (V3.01) from SCIAMACHY limb measurements is presented and validated by comparisons with data sets from other satellite and in situ measurements. Considering retrieval tests and the results of these comparisons, the V3.01 data are reliable from about 11 to 23 km and the best results are found in the middle of the profiles between about 14 and 20 km. Above 20 km in the extra tropics V3.01 is drier than all other data sets. Additionally, for altitudes above about 19 km, the vertical resolution of the retrieved profile is not sufficient to resolve signals with a short vertical structure like the tape recorder. Below 14 km, SCIAMACHY water vapour V3.01 is wetter than most collocated data sets, but the high variability of water vapour in the troposphere complicates the comparison. For 14-20 km height, the expected errors from the retrieval and simulations and the mean differences to collocated data sets are usually smaller than 10 % when the resolution of the SCIAMACHY data is taken into account. In general, the temporal changes agree well with collocated data sets except for the Northern Hemisphere extratropical stratosphere, where larger differences are observed. This indicates a possible drift in V3.01 most probably caused by the incomplete treatment of volcanic aerosols in the retrieval. In all other regions a

  8. Reliable determination of oxygen and hydrogen isotope ratios in atmospheric water vapour adsorbed on 3A molecular sieve.

    PubMed

    Han, Liang-Feng; Gröning, Manfred; Aggarwal, Pradeep; Helliker, Brent R

    2006-01-01

    The isotope ratio of atmospheric water vapour is determined by wide-ranging feedback effects from the isotope ratio of water in biological water pools, soil surface horizons, open water bodies and precipitation. Accurate determination of atmospheric water vapour isotope ratios is important for a broad range of research areas from leaf-scale to global-scale isotope studies. In spite of the importance of stable isotopic measurements of atmospheric water vapour, there is a paucity of published data available, largely because of the requirement for liquid nitrogen or dry ice for quantitative trapping of water vapour. We report results from a non-cryogenic method for quantitatively trapping atmospheric water vapour using 3A molecular sieve, although water is removed from the column using standard cryogenic methods. The molecular sieve column was conditioned with water of a known isotope ratio to 'set' the background signature of the molecular sieve. Two separate prototypes were developed, one for large collection volumes (3 mL) and one for small collection volumes (90 microL). Atmospheric water vapour was adsorbed to the column by pulling air through the column for several days to reach the desired final volume. Water was recovered from the column by baking at 250 degrees C in a dry helium or nitrogen air stream and cryogenically trapped. For the large-volume apparatus, the recovered water differed from water that was simultaneously trapped by liquid nitrogen (the experimental control) by 2.6 per thousand with a standard deviation (SD) of 1.5 per thousand for delta(2)H and by 0.3 per thousand with a SD of 0.2 per thousand for delta(18)O. Water-vapour recovery was not satisfactory for the small volume apparatus. Copyright (c) 2006 John Wiley & Sons, Ltd.

  9. Drivers of radial growth and carbon isotope discrimination of bur oak (Quercus macrocarpa Michx.) across continental gradients in precipitation, vapour pressure deficit and irradiance.

    PubMed

    Voelker, Steven L; Meinzer, Frederick C; Lachenbruch, Barbara; Brooks, J Renée; Guyette, Richard P

    2014-03-01

    Tree-ring characteristics are commonly used to reconstruct climate variables, but divergence from the assumption of a single biophysical control may reduce the accuracy of these reconstructions. Here, we present data from bur oaks (Quercus macrocarpa Michx.) sampled within and beyond the current species bioclimatic envelope to identify the primary environmental controls on ring-width indices (RWIs) and carbon stable isotope discrimination (Δ(13) C) in tree-ring cellulose. Variation in Δ(13) C and RWI was more strongly related to leaf-to-air vapour pressure deficit (VPD) at the centre and western edge of the range compared with the northern and wettest regions. Among regions, Δ(13) C of tree-ring cellulose was closely predicted by VPD and light responses of canopy-level Δ(13) C estimated using a model driven by eddy flux and meteorological measurements (R(2)  = 0.96, P = 0.003). RWI and Δ(13) C were positively correlated in the drier regions, while they were negatively correlated in the wettest region. The strength and direction of the correlations scaled with regional VPD or the ratio of precipitation to evapotranspiration. Therefore, the correlation strength between RWI and Δ(13) C may be used to infer past wetness or aridity from paleo wood by determining the degree to which carbon gain and growth have been more limited by moisture or light. © 2013 John Wiley & Sons Ltd.

  10. Performance Characteristics of Jet-type Generator of Singlet Oxygen for Supersonic Chemical Oxygen-Iodine Laser*1

    NASA Astrophysics Data System (ADS)

    Kodymová, Jarmila; Špalek, Otomar

    1998-01-01

    A jet-type singlet oxygen generator based on a gas-liquid chemical reaction yielding singlet oxygen, O2(1Δ g), for pumping the supersonic chemical oxygen-iodine laser was investigated. In addition to O2(1Δ g) and residual chlorine concentrations, a content of water formed during O2(1Δ g) generation was estimated (because of its detrimental effect on lasing) in gas flowing from the generator to the laser active region. The experimental conditions were determined under which an effect of liquid droplets escaping from the generator was negligible, and accordingly, a content of water vapour was suppressed to a value corresponding to the saturated water vapour pressure. It was also proved that a reduction in the relative water content, and a consequent increase in the laser output power, could be achieved by increasing peroxide and hydroxide concentration in the generator liquid, and by decreasing a liquid temperature and a total pressure in the generator.

  11. Theoretical investigation of flash vaporisation in a screw expander

    NASA Astrophysics Data System (ADS)

    Vasuthevan, Hanushan; Brümmer, Andreas

    2017-08-01

    In the present study flash vaporisation of liquid injection in a twin screw expander for a Trilateral Flash Cycle (TFC) is examined theoretically. The TFC process comprises a pressure increase in the working fluid, followed by heating the liquid close to boiling point. The hot liquid is injected into the working chamber of a screw expander. During this process the pressure of the liquid drops below the saturation pressure, while the temperature of the liquid remains virtually constant. Hence the liquid is superheated and in a metastable state. The liquid jet seeks to achieve a stable state in thermodynamic equilibrium and is therefore partially vaporised. This effect is referred to as flash vaporisation. Accordingly, a two-phase mixture, consisting of vapour and liquid, exists in the working chamber. Thermodynamic simulations were carried out using water as the working fluid for representative screw expander geometry. The simulations presented are performed from two different aspects during the filling process of a screw expander. The first case is the vaporisation of the injected liquid in a state of thermodynamic equilibrium, whereby the two-phase mixture is treated entirely as a compressible and homogeneous gas. The second case considers flashing efficiency. It describes the quantity of flashed vapour and consists of a liquid and vapour domain. Both models are compared and analysed with respect to the operational behaviour of a screw expander.

  12. PARAMETER ESTIMATION OF TWO-FLUID CAPILLARY PRESSURE-SATURATION AND PERMEABILITY FUNCTIONS

    EPA Science Inventory

    Capillary pressure and permeability functions are crucial to the quantitative description of subsurface flow and transport. Earlier work has demonstrated the feasibility of using the inverse parameter estimation approach in determining these functions if both capillary pressure ...

  13. THE INTERACTION OF VAPOUR PHASE ORGANIC COMPOUNDS WITH INDOOR SINKS

    EPA Science Inventory

    The interaction of indoor air pollutants with interior surfaces (i.e., sinks) is a well known, but poorly understood, phenomenon. Studies have shown that re-emissions of adsorbed organic vapours can contribute to elevated concentrations of organics in indoor environments. Researc...

  14. The dissolution of calcite in CO2-saturated solutions at 25°C and 1 atmosphere total pressure

    USGS Publications Warehouse

    Plummer, Niel; Wigley, T.M.L.

    1976-01-01

    The dissolution of Iceland spar in CO2-saturated solutions at 25°C and 1 atm total pressure has been followed by measurement of pH as a function of time. Surface concentrations of reactant and product species have been calculated from bulk fluid data using mass transport theory and a model that accounts for homogeneous reactions in the bulk fluid. The surface concentrations are found to be close to bulk solution values. This indicates that calcite dissolution under the experimental conditions is controlled by the kinetics of surface reaction. The rate of calcite dissolution follows an empirical second order relation with respect to calcium and hydrogen ion from near the initial condition (pH 3.91) to approximately pH 5.9. Beyond pH 5.9 the rate of surface reaction is greatly reduced and higher reaction orders are observed. Calculations show that the rate of calcite dissolution in natural environments may be influenced by both transport and surface-reaction processes. In the absence of inhibition, relatively short times should be sufficient to establish equilibrium.

  15. Pressure distribution in a converging-diverging nozzle during two-phase choked flow of subcooled nitrogen

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.

    1975-01-01

    Choked flow rates and axial pressure distributions were measured for subcooled nitrogen in a converging-diverging nozzle with a constant area section in the throat region. Stagnation pressures ranged from slightly above saturation to twice the thermodynamic critical pressure. Stagnation temperatures ranged from 0.75 to 1.03 times the thermodynamic critical temperature. The choking plane is at the divergence end of the constant area throat section. At high stagnation pressures the fluid stays liquid well into the constant area throat region; at near saturation stagnation pressures it appears that vaporization occurs at or before the entrance to the constant area throat region. The throat-to-stagnation pressure ratio data exhibits an anomalous flat region, and this anomaly is related to the two-phase process. The fluid is metastably all liquid below the saturation pressure.

  16. The unsaturated flow in porous media with dynamic capillary pressure

    NASA Astrophysics Data System (ADS)

    Milišić, Josipa-Pina

    2018-05-01

    In this paper we consider a degenerate pseudoparabolic equation for the wetting saturation of an unsaturated two-phase flow in porous media with dynamic capillary pressure-saturation relationship where the relaxation parameter depends on the saturation. Following the approach given in [13] the existence of a weak solution is proved using Galerkin approximation and regularization techniques. A priori estimates needed for passing to the limit when the regularization parameter goes to zero are obtained by using appropriate test-functions, motivated by the fact that considered PDE allows a natural generalization of the classical Kullback entropy. Finally, a special care was given in obtaining an estimate of the mixed-derivative term by combining the information from the capillary pressure with the obtained a priori estimates on the saturation.

  17. Terminal drought-tolerant pearl millet [Pennisetum glaucum (L.) R. Br.] have high leaf ABA and limit transpiration at high vapour pressure deficit.

    PubMed

    Kholová, Jana; Hash, C T; Kumar, P Lava; Yadav, Rattan S; Kocová, Marie; Vadez, Vincent

    2010-03-01

    It was previously shown that pearl millet genotypes carrying a terminal drought tolerance quantitative trait locus (QTL) had a lower transpiration rate (Tr; g cm(-2) d(-1)) under well-watered conditions than sensitive lines. Here experiments were carried out to test whether this relates to leaf abscisic acid (ABA) and Tr concentration at high vapour pressure deficit (VPD), and whether that leads to transpiration efficiency (TE) differences. These traits were measured in tolerant/sensitive pearl millet genotypes, including near-isogenic lines introgressed with a terminal drought tolerance QTL (NIL-QTLs). Most genotypic differences were found under well-watered conditions. ABA levels under well-watered conditions were higher in tolerant genotypes, including NIL-QTLs, than in sensitive genotypes, and ABA did not increase under water stress. Well-watered Tr was lower in tolerant than in sensitive genotypes at all VPD levels. Except for one line, Tr slowed down in tolerant lines above a breakpoint at 1.40-1.90 kPa, with the slope decreasing >50%, whereas sensitive lines showed no change in that Tr response across the whole VPD range. It is concluded that two water-saving (avoidance) mechanisms may operate under well-watered conditions in tolerant pearl millet: (i) a low Tr even at low VPD conditions, which may relate to leaf ABA; and (ii) a sensitivity to higher VPD that further restricts Tr, which suggests the involvement of hydraulic signals. Both traits, which did not lead to TE differences, could contribute to absolute water saving seen in part due to dry weight increase differences. This water saved would become critical for grain filling and deserves consideration in the breeding of terminal drought-tolerant lines.

  18. Formation of nanodiamonds at near-ambient conditions via microplasma dissociation of ethanol vapour.

    PubMed

    Kumar, Ajay; Ann Lin, Pin; Xue, Albert; Hao, Boyi; Khin Yap, Yoke; Sankaran, R Mohan

    2013-01-01

    Clusters of diamond-phase carbon, known as nanodiamonds, exhibit novel mechanical, optical and biological properties that have elicited interest for a wide range of technological applications. Although diamond is predicted to be more stable than graphite at the nanoscale, extreme environments are typically used to produce nanodiamonds. Here we show that nanodiamonds can be stably formed in the gas phase at atmospheric pressure and neutral gas temperatures <100 °C by dissociation of ethanol vapour in a novel microplasma process. Addition of hydrogen gas to the process allows in flight purification by selective etching of the non-diamond carbon and stabilization of the nanodiamonds. The nanodiamond particles are predominantly between 2 and 5 nm in diameter, and exhibit cubic diamond, n-diamond and lonsdaleite crystal structures, similar to nanodiamonds recovered from meteoritic residues. These results may help explain the origin of nanodiamonds in the cosmos, and offer a simple and inexpensive route for the production of high-purity nanodiamonds.

  19. Microscopic analysis of saturable absorbers: Semiconductor saturable absorber mirrors versus graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hader, J.; Moloney, J. V.; College of Optical Sciences, University of Arizona, Tucson, Arizona 85721

    2016-02-07

    Fully microscopic many-body calculations are used to study the influence of strong sub-picosecond pulses on the carrier distributions and corresponding optical response in saturable absorbers used for mode-locking—semiconductor (quantum well) saturable absorber mirrors (SESAMs) and single layer graphene based saturable absorber mirrors (GSAMs). Unlike in GSAMs, the saturation fluence and recovery time in SESAMs show a strong spectral dependence. While the saturation fluence in the SESAM is minimal at the excitonic bandgap, the optimal recovery time and least pulse distortion due to group delay dispersion are found for excitation higher in the first subband. For excitation near the SESAM bandgap,more » the saturation fluence is about one tenth of that in the GSAM. At energies above the bandgap, the fluences in both systems become similar. A strong dependence of the saturation fluence on the pulse width in both systems is caused by carrier relaxation during the pulse. The recovery time in graphene is found to be about two to four times faster than that in the SESAMs. The occurrence of negative differential transmission in graphene is shown to be caused by dopant related carriers. In SESAMs, a negative differential transmission is found when exciting below the excitonic resonance where excitation induced dephasing leads to an enhancement of the absorption. Comparisons of the simulation data to the experiment show a very good quantitative agreement.« less

  20. Diurnal patterns in Scots pine stem oleoresin pressure in a boreal forest.

    PubMed

    Rissanen, K; Hölttä, T; Vanhatalo, A; Aalto, J; Nikinmaa, E; Rita, H; Bäck, J

    2016-03-01

    Coniferous tree stems contain large amounts of oleoresin under positive pressure in the resin ducts. Studies in North-American pines indicated that the stem oleoresin exudation pressure (OEP) correlates negatively with transpiration rate and soil water content. However, it is not known how the OEP changes affect the emissions of volatile vapours from the trees. We measured the OEP, xylem diameter changes indicating changes in xylem water potential and monoterpene emissions under field conditions in mature Scots pine (Pinus sylvestris L.) trees in southern Finland. Contrary to earlier reports, the diurnal OEP changes were positively correlated with temperature and transpiration rate. OEP was lowest at the top part of the stem, where water potentials were also more negative, and often closely linked to ambient temperature and stem monoterpene emissions. However, occasionally OEP was affected by sudden changes in vapour pressure deficit (VPD), indicating the importance of xylem water potential on OEP as well. We conclude that the oleoresin storage pools in tree stems are in a dynamic relationship with ambient temperature and xylem water potential, and that the canopy monoterpene emission rates may therefore be also regulated by whole tree processes and not only by the conditions prevailing in the upper canopy. © 2015 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  1. Infrared Laser Optoacoustic Detection Of Gases And Vapours

    NASA Astrophysics Data System (ADS)

    Johnson, S. A.; Cummins, P. G.; Bone, S. A.; Davies, P. B.

    1988-10-01

    Mid-infrared laser optoacoustic spectroscopy has been used to detect a variety of gases and vapours. Performance was calibrated using the signal from a known concentration of ethene, and then the method applied to the perfume alcohol geraniol. Detection limits were found to be 1 ppb for ethene and 70 ppb for geraniol on their strongest absorption lines for a few seconds measurement time.

  2. Influence of water vapour and permanent gases on the atmospheric optical depths and transmittance

    NASA Astrophysics Data System (ADS)

    Badescu, V.

    1991-05-01

    The influence of the atmospheric state on the extinction of direct solar radiation has been studied by using a four layer atmospheric model. Simple analytical formulae are established for the spectral optical depths of permanent gases and water vapour. These formulae use the ground level values of air pressure, temperature and relative huniidity. An additional parameter, related to the vertical distribution of the hunmidity content, is used for a better estimation of the water vapour optical depth. Good agreement between theory and measurements is found. The paper shows the dependence of the atmospheric spectral transmittance on the above mentioned parameters. L'influence de l'état atmosphérique sur l'extinction de la radiation solaire directe a été étudiée à l'aide d'un modèle atmosphérique développé antérieurement par l'auteur. Des formules simples ont été établies pour l'épaisseur optique spectrale des gaz et de la vapeur d'eau. Ces formules utilisent les valeurs de la pression atmosphérique, de la température et de l'humidité relative, mesurées au niveau du sol. Un paramètre supplémentaire, lié à la distribution verticale du contenu d'humidité, est utilisé pour calculer l'épaisseur optique due à la vapeur d'eau. La théorie est en bon accord avec les résultats des mesures. Le travail montre la dépendance de la transmittance atmosphérique spectrale en fonction des paramètres spécifiés ci-dessus.

  3. The effect of ethanol vapour exposure on atrial and ventricular walls of chick embryos.

    PubMed

    Kamran, Kiran; Khan, Muhammad Yunus; Minhas, Liaqat Ali

    2016-10-01

    To study the effects of ethanol vapour exposure on atrial and ventricular walls of heart in chick embryo. The study design was experimental, conducted at Islamabad Centre of College of Physicians and Surgeons, Pakistan. One hundred and eighty chicken eggs were divided into two groups, experimental and control, of 90 eggs each. Each group was subdivided into three subgroups of 30 eggs each based on the day of sacrifice. Experimental group was exposed to ethanol vapours and then compared with age matched controls. The thickness of atrial and ventricular walls along with lengths of valvular cusps increased in hearts of day 7 and day 10 chick embryos in experimental group. There was thinning of walls and decreased length of valvular cusps in hearts of experimental chicks on hatching as compared to age matched controls. Ethanol vapour exposure during development causes cardiac and septal wall thickening during initial days of development followed by cardiac and septal wall thinning which is a classical picture of alcohol induced cardiomyopathies.

  4. Saturated absorption in a rotational molecular transition at 2.5 THz using a quantum cascade laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Consolino, L., E-mail: luigi.consolino@ino.it; Campa, A.; Ravaro, M.

    2015-01-12

    We report on the evidence of saturation effects in a rotational transition of CH{sub 3}OH around 2.5 THz, induced by a free-running continuous-wave quantum cascade laser (QCL). The QCL emission is used for direct-absorption spectroscopy experiments, allowing to study the dependence of the absorption coefficient on gas pressure and laser intensity. A saturation intensity of 25 μW/mm{sup 2}, for a gas pressure of 17 μbar, is measured. This result represents the initial step towards the implementation of a QCL-based high-resolution sub-Doppler THz spectroscopy, which is expected to improve by orders of magnitude the precision of THz spectrometers.

  5. Thermally decarboxylated sodium bicarbonate: Interactions with water vapour, calorimetric study

    PubMed Central

    Volkova, Natalia; Hansson, Henri; Ljunggren, Lennart

    2012-01-01

    Isothermal titration calorimetry (ITC) was used to study interactions between water vapour and the surface of thermally converted sodium bicarbonate (NaHCO3). The decarboxylation degree of the samples was varied from 3% to 35% and the humidity range was 54–100%. The obtained enthalpy values were all exothermic and showed a positive linear correlation with decarboxylation degrees for each humidity studied. The critical humidity, 75% (RHo), was determined as the inflection point on a plot of the mean−ΔH kJ/mole Na2CO3 against RH. Humidities above the critical humidity lead to complete surface dissolution. The water uptake (m) was determined after each calorimetric experiment, complementing the enthalpy data. A mechanism of water vapour interaction with decarboxylated samples, including the formation of trona and Wegscheider’s salt on the bicarbonate surface is proposed for humidities below RHo. PMID:29403816

  6. Cerebral oxygen saturation and cardiac output during anaesthesia in sitting position for neurosurgical procedures: a prospective observational study.

    PubMed

    Schramm, P; Tzanova, I; Hagen, F; Berres, M; Closhen, D; Pestel, G; Engelhard, K

    2016-10-01

    Neurosurgical operations in the dorsal cranium often require the patient to be positioned in a sitting position. This can be associated with decreased cardiac output and cerebral hypoperfusion, and possibly, inadequate cerebral oxygenation. In the present study, cerebral oxygen saturation was measured during neurosurgery in the sitting position and correlated with cardiac output. Perioperative cerebral oxygen saturation was measured continuously with two different monitors, INVOS ® and FORE-SIGHT ® . Cardiac output was measured at eight predefined time points using transoesophageal echocardiography. Forty patients were enrolled, but only 35 (20 female) were eventually operated on in the sitting position. At the first time point, the regional cerebral oxygen saturation measured with INVOS ® was 70 (sd 9)%; thereafter, it increased by 0.0187% min -1 (P<0.01). The cerebral tissue oxygen saturation measured with FORE-SIGHT ® started at 68 (sd 13)% and increased by 0.0142% min -1 (P<0.01). The mean arterial blood pressure did not change. Cardiac output was between 6.3 (sd 1.3) and 7.2 (1.8) litre min -1 at the predefined time points. Cardiac output, but not mean arterial blood pressure, showed a positive and significant correlation with cerebral oxygen saturation. During neurosurgery in the sitting position, the cerebral oxygen saturation slowly increases and, therefore, this position seems to be safe with regard to cerebral oxygen saturation. Cerebral oxygen saturation is stable because of constant CO and MAP, while the influence of CO on cerebral oxygen saturation seems to be more relevant. NCT01275898. © The Author 2016. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Capillary microextraction: A new method for sampling methamphetamine vapour.

    PubMed

    Nair, M V; Miskelly, G M

    2016-11-01

    Clandestine laboratories pose a serious health risk to first responders, investigators, decontamination companies, and the public who may be inadvertently exposed to methamphetamine and other chemicals used in its manufacture. Therefore there is an urgent need for reliable methods to detect and measure methamphetamine at such sites. The most common method for determining methamphetamine contamination at former clandestine laboratory sites is selected surface wipe sampling, followed by analysis with gas chromatography-mass spectrometry (GC-MS). We are investigating the use of sampling for methamphetamine vapour to complement such wipe sampling. In this study, we report the use of capillary microextraction (CME) devices for sampling airborne methamphetamine, and compare their sampling efficiency with a previously reported dynamic SPME method. The CME devices consisted of PDMS-coated glass filter strips inside a glass tube. The devices were used to dynamically sample methamphetamine vapour in the range of 0.42-4.2μgm -3 , generated by a custom-built vapour dosing system, for 1-15min, and methamphetamine was analysed using a GC-MS fitted with a ChromatoProbe thermal desorption unit. The devices showed good reproducibility (RSD<15%), and a curvilinear pre-equilibrium relationship between sampling times and peak area, which can be utilised for calibration. Under identical sampling conditions, the CME devices were approximately 30 times more sensitive than the dynamic SPME method. The CME devices could be stored for up to 3days after sampling prior to analysis. Consecutive sampling of methamphetamine and its isotopic substitute, d-9 methamphetamine showed no competitive displacement. This suggests that CME devices, pre-loaded with an internal standard, could be a feasible method for sampling airborne methamphetamine at former clandestine laboratories. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Intraoperative colon mucosal oxygen saturation during aortic surgery.

    PubMed

    Lee, Eugene S; Bass, Arie; Arko, Frank R; Heikkinen, Maarit; Harris, E John; Zarins, Christopher K; van der Starre, Pieter; Olcott, Cornelius

    2006-11-01

    Colonic ischemia after aortic reconstruction is a devastating complication with high mortality rates. This study evaluates whether Colon Mucosal Oxygen Saturation (CMOS) correlates with colon ischemia during aortic surgery. Aortic reconstruction was performed in 25 patients, using a spectrophotometer probe that was inserted in each patient's rectum before the surgical procedure. Continuous CMOS, buccal mucosal oxygen saturation, systemic mean arterial pressure, heart rate, pulse oximetry, and pivotal intra-operative events were collected. Endovascular aneurysm repair (EVAR) was performed in 20 and open repair in 5 patients with a mean age of 75 +/- 10 (+/-SE) years. CMOS reliably decreased in EVAR from a baseline of 56% +/- 8% to 26 +/- 17% (P < 0.0001) during infrarenal aortic balloon occlusion and femoral arterial sheath placement. CMOS similarly decreased during open repair from 56% +/- 9% to 15 +/- 19% (P < 0.0001) when the infrarenal aorta and iliac arteries were clamped. When aortic circulation was restored in both EVAR and open surgery, CMOS returned to baseline values 56.5 +/- 10% (P = 0.81). Mean recovery time in CMOS after an aortic intervention was 6.4 +/- 3.3 min. Simultaneous buccal mucosal oxygen saturation was stable (82% +/- 6%) during aortic manipulation but would fall significantly during active bleeding. There were no device related CMOS measurement complications. Intra-operative CMOS is a sensitive measure of colon ischemia where intraoperative events correlated well with changes in mucosal oxygen saturation. Transient changes demonstrate no problem. However, persistently low CMOS suggests colon ischemia, thus providing an opportunity to revascularize the inferior mesenteric artery or hypogastric arteries to prevent colon infarction.

  9. Stomatal dynamics are limited by leaf hydraulics in ferns and conifers: results from simultaneous measurements of liquid and vapour fluxes in leaves.

    PubMed

    Martins, Samuel C V; McAdam, Scott A M; Deans, Ross M; DaMatta, Fábio M; Brodribb, Tim J

    2016-03-01

    Stomatal responsiveness to vapour pressure deficit (VPD) results in continuous regulation of daytime gas-exchange directly influencing leaf water status and carbon gain. Current models can reasonably predict steady-state stomatal conductance (gs ) to changes in VPD but the gs dynamics between steady-states are poorly known. Here, we used a diverse sample of conifers and ferns to show that leaf hydraulic architecture, in particular leaf capacitance, has a major role in determining the gs response time to perturbations in VPD. By using simultaneous measurements of liquid and vapour fluxes into and out of leaves, the in situ fluctuations in leaf water balance were calculated and appeared to be closely tracked by changes in gs thus supporting a passive model of stomatal control. Indeed, good agreement was found between observed and predicted gs when using a hydropassive model based on hydraulic traits. We contend that a simple passive hydraulic control of stomata in response to changes in leaf water status provides for efficient stomatal responses to VPD in ferns and conifers, leading to closure rates as fast or faster than those seen in most angiosperms. © 2015 John Wiley & Sons Ltd.

  10. High-fat feeding reduces endothelium-dependent vasodilation in rats: differential mechanisms for saturated and unsaturated fatty acids?

    PubMed

    Song, Guang-Yao; Gao, Yu; Di, Yu-Wei; Pan, Li-Li; Zhou, Yu; Ye, Ji-Ming

    2006-08-01

    1. Chronic feeding with a high-fat diet can cause metabolic syndrome in rodents similar to humans, but the role of saturated versus unsaturated fats in vascular tension remains unclear. 2. The present study shows that rats on a diet rich in either saturated or unsaturated fat had higher blood pressure compared with chow-fed rats (approximately 130 vs 100 mmHg, respectively), along with hyperlipidaemia and insulin resistance. Compared with responses of phenylephrine-preconstricted artery segments from chow-fed rats, vasorelaxation of isolated renal arteries from high-fat fed rats was reduced substantially (> 50%) in response to acetylcholine (0.01-10 micromol/L) and moderately to nitroprusside (>or=1 micromol/L) at low concentrations. Acetylcholine-induced vasorelaxation of arteries from high-fat fed rats was also more sensitive to inhibition by the nitric oxide (NO) synthase inhibitors NG-nitro-L-arginine and methylene blue. 3. In human umbilical vein endothelial cells, the production of NO and endothelin-1 was significantly inhibited by unsaturated fatty acids. In comparison, saturated fatty acids stimulated endothelin-1 production without altering NO production. 4. The data indicate that both saturated and unsaturated high-fat feeding may result in an increase in blood pressure owing to reduced endothelium-dependent vasorelaxation in the arterial system. The impaired endothelium-dependent vasorelaxation induced by saturated and unsaturated fatty acids may involve different mechanisms.

  11. Impact of fluid injection velocity on CO2 saturation and pore pressure in porous sandstone

    NASA Astrophysics Data System (ADS)

    Kitamura, Keigo; Honda, Hiroyuki; Takaki, Shinnosuke; Imasato, Mitsunori; Mitani, Yasuhiro

    2017-04-01

    The elucidation of CO2 behavior in sandstone is an essential issue to understand the fate of injecting CO2 in reservoirs. Injected CO2 invades pore spaces and replaces with resident brine and forms complex two-phase flow with brine. It is considered that this complex CO2 flow arises CO2 saturation (SCO_2)and pore fluid pressure(Pp) and makes various types of CO2 distribution pattern in pore space. The estimation of SCO_2 in the reservoir is one of important task in CCS projects. Fluid pressure (Pp) is also important to estimate the integrity of CO2 reservoir and overlying cap rocks. Generally, elastic waves are used to monitor the changes of SCO_2. Previous experimental and theoretical studies indicated that SCO_2 and Pp are controlled by the fluid velocity (flow rate) of invaded phase. In this study, we conducted the CO2 injection test for Berea sandstone (φ=18.1{%}) under deep CO2 reservoir conditions (confining pressure: 20MPa; temperature: 40 rC). We try to estimate the changes of SCO_2 and Pp with changing CO2 injection rate (FR) from 10 to 5000 μ l/min for Berea sandstone. P-wave velocities (Vp) are also measured during CO2 injection test and used to investigate the relationships between SCO2 and these geophysical parameters. We set three Vp-measurement channels (ch.1, ch2 and ch.3 from the bottom) monitor the CO2 behavior. The result shows step-wise SCO_2 changes with increasing FR from 9 to 25 {%} in low-FR condition (10-500 μ l/min). Vp also shows step wise change from ch1 to ch.3. The lowermost channel (ch.1) indicates that Vp-reduction stops around 4{%} at 10μ m/min condition. However, ch.3 changes slightly from 4{%} at 10 μ l/min to 5{%} at 100 μ l/min. On the other hand, differential Pp (Δ P) dose not shows obvious changes from 10kPa to 30kPa. Over 1000 μ l/min, SCO_2 increases from 35 to 47 {%}. Vp of all channels show slight reductions and Vp-reductions reach constant values as 8{%}, 6{%} and 8{%}, respectively at 5000{}μ l/min. On the other

  12. Influence of spatial and temporal variability of subsurface soil moisture and temperature on vapour intrusion

    NASA Astrophysics Data System (ADS)

    Bekele, Dawit N.; Naidu, Ravi; Chadalavada, Sreenivasulu

    2014-05-01

    A comprehensive field study was conducted at a site contaminated with chlorinated solvents, mainly trichloroethylene (TCE), to investigate the influence of subsurface soil moisture and temperature on vapour intrusion (VI) into built structures. Existing approaches to predict the risk of VI intrusion into buildings assume homogeneous or discrete layers in the vadose zone through which TCE migrates from an underlying source zone. In reality, the subsurface of the majority of contaminated sites will be subject to significant variations in moisture and temperature. Detailed site-specific data were measured contemporaneously to evaluate the impact of spatial and temporal variability of subsurface soil properties on VI exposure assessment. The results revealed that indoor air vapour concentrations would be affected by spatial and temporal variability of subsurface soil moisture and temperature. The monthly monitoring of soil-gas concentrations over a period of one year at a depth of 3 m across the study site demonstrated significant variation in TCE vapour concentrations, which ranged from 480 to 629,308 μg/m3. Soil-gas wells at 1 m depth exhibited high seasonal variability in TCE vapour concentrations with a coefficient of variation 1.02 in comparison with values of 0.88 and 0.74 in 2 m and 3 m wells, respectively. Contour plots of the soil-gas TCE plume during wet and dry seasons showed that the plume moved across the site, hence locations of soil-gas monitoring wells for human risk assessment is a site specific decision. Subsurface soil-gas vapour plume characterisation at the study site demonstrates that assessment for VI is greatly influenced by subsurface soil properties such as temperature and moisture that fluctuate with the seasons of the year.

  13. Geophysical and Geochemical Aspects of Pressure and CO2 Saturation Modeling due to Migration of Fluids into the Above Zone Monitoring Interval of a Geologic Carbon Storage Site

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Namhata, A.; Dilmore, R. M.; Bromhal, G. S.

    2016-12-01

    An increasing emphasis on the industrial scale implementation of CO2 storage into geological formations has led to the development of whole-system models to evaluate performance of candidate geologic storage sites, and the environmental risk associated with them. The components of that engineered geologic system include the storage reservoir, primary and secondary seals, and the overlying formations above primary and secondary seals (above-zone monitoring interval, AZMI). Leakage of CO2 and brine through the seal to the AZMI may occur due to the presence of natural or induced fractures in the seal. In this work, an AZMI model that simulates pressure and CO2 saturation responses through time to migration of fluids (here, CO2 and brine) from the primary seal to the AZMI is developed. A hypothetical case is examined wherein CO2 is injected into a storage reservoir for 30 years and a heterogeneous primary seal exists above the reservoir with some permeable zones. The total simulation period is 200 years (30 years of CO2 injection period and 170 years of post CO2 injection period). Key geophysical parameters such as permeability of the AZMI, thickness of the AZMI and porosity of the AZMI have significant impact on pressure evolution in the AZMI. arbitrary Polynomial Chaos (aPC) Expansion analysis shows that permeability of the AZMI has the most significant impact on pressure build up in the AZMI above the injection well at t=200 years, followed by thickness of the AZMI and porosity of the AZMI. Geochemical reactions have no impact on pressure and CO2 saturation evolution in the AZMI during the CO2 injection period. After the CO2 injection stops, precipitation of secondary minerals (e.g., amorphous silica and kaolinite) at the CO2 plume/brine interface in the AZMI formation may cause permeability reduction of the AZMI, which restrains horizontal migration of CO2 in the AZMI.

  14. CORE SATURATION BLOCKING OSCILLATOR

    DOEpatents

    Spinrad, R.J.

    1961-10-17

    A blocking oscillator which relies on core saturation regulation to control the output pulse width is described. In this arrangement an external magnetic loop is provided in which a saturable portion forms the core of a feedback transformer used with the thermionic or semi-conductor active element. A first stationary magnetic loop establishes a level of flux through the saturation portion of the loop. A second adjustable magnet moves the flux level to select a saturation point giving the desired output pulse width. (AEC)

  15. UTLS water vapour from SCIAMACHY limb measurementsV3.01 (2002–2012)

    PubMed Central

    Weigel, K.; Rozanov, A.; Azam, F.; Bramstedt, K.; Damadeo, R.; Eichmann, K.-U.; Gebhardt, C.; Hurst, D.; Kraemer, M.; Lossow, S.; Read, W.; Spelten, N.; Stiller, G. P.; Walker, K. A.; Weber, M.; Bovensmann, H.; Burrows, J. P.

    2017-01-01

    The SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) aboard the Envisat satellite provided measurements from August 2002 until April 2012. SCIAMACHY measured the scattered or direct sunlight using different observation geometries. The limb viewing geometry allows the retrieval of water vapour at about 10–25 km height from the near-infrared spectral range (1353–1410 nm). These data cover the upper troposphere and lower stratosphere (UTLS), a region in the atmosphere which is of special interest for a variety of dynamical and chemical processes as well as for the radiative forcing. Here, the latest data version of water vapour (V3.01) from SCIAMACHY limb measurements is presented and validated by comparisons with data sets from other satellite and in situ measurements. Considering retrieval tests and the results of these comparisons, the V3.01 data are reliable from about 11 to 23 km and the best results are found in the middle of the profiles between about 14 and 20 km. Above 20 km in the extra tropics V3.01 is drier than all other data sets. Additionally, for altitudes above about 19 km, the vertical resolution of the retrieved profile is not sufficient to resolve signals with a short vertical structure like the tape recorder. Below 14 km, SCIAMACHY water vapour V3.01 is wetter than most collocated data sets, but the high variability of water vapour in the troposphere complicates the comparison. For 14–20 km height, the expected errors from the retrieval and simulations and the mean differences to collocated data sets are usually smaller than 10 % when the resolution of the SCIAMACHY data is taken into account. In general, the temporal changes agree well with collocated data sets except for the Northern Hemisphere extratropical stratosphere, where larger differences are observed. This indicates a possible drift in V3.01 most probably caused by the incomplete treatment of volcanic aerosols in the retrieval. In all other regions

  16. CO2 breakthrough pressure and permeability for unsaturated low-permeability sandstone of the Ordos Basin

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Yu, Qingchun

    2017-07-01

    With rising threats from greenhouse gases, capture and injection of CO2 into suitable underground formations is being considered as a method to reduce anthropogenic emissions of CO2 to the atmosphere. As the injected CO2 will remain in storage for hundreds of years, the safety of CO2 geologic sequestration is a major concern. The low-permeability sandstone of the Ordos Basin in China is regarded as both caprock and reservoir rock, so understanding the breakthrough pressure and permeability of the rock is necessary. Because part of the pore volume experiences a non-wetting phase during the CO2 injection and migration process, the rock may be in an unsaturated condition. And if accidental leakage occurs, CO2 will migrate up into the unsaturated zone. In this study, breakthrough experiments were performed at various degrees of water saturation with five core samples of low-permeability sandstone obtained from the Ordos Basin. The experiments were conducted at 40 °C and pressures of >8 MPa to simulate the geological conditions for CO2 sequestration. The results indicate that the degree of water saturation and the pore structure are the main factors affecting the rock breakthrough pressure and permeability, since the influence of calcite dissolution and clay mineral swelling during the saturation process is excluded. Increasing the average pore radius or most probable pore radius leads to a reduction in the breakthrough pressure and an increase by several orders of magnitude in scCO2 effective permeability. In addition, the breakthrough pressure rises and the scCO2 effective permeability decreases when the water saturation increases. However, when the average pore radius is greater than 0.151 μm, the degree of water saturation will has a little effect on the breakthrough pressure. On this foundation, if the most probable pore radius of the core sample reaches 1.760 μm, the breakthrough pressure will not be impacted by the increasing water saturation. We establish

  17. Thermal conductivity of water-saturated rocks from the KTB pilot hole at temperatures of 25 to 300°C

    USGS Publications Warehouse

    Pribnow, D.; Williams, C.F.; Sass, J.H.; Keating, R.

    1996-01-01

    The conductivitites of selected gneiss (two) and amphibolite (one) core samples have been measured under conditions of elevated temperature and pressure with a needle-probe. Water-saturated thermal conductivity measurements spanning temperatures from 25 to 300??C and hydrostatic pressures of 0.1 and 34 MPa confirm the general decrease in conductivity with increasing temperature but deviate significantly from results reported from measurements on dry samples over the same temperature range. The thermal conductivity of water-saturated amphibolite decreases with temperature at a rate approximately 40% less than the rate for dry amphibolite, and the conductivity of water-saturated gneiss decreases at a rate approximately 20% less than the rate for dry gneiss. The available evidence points to thermal cracking as the primary cause of the more rapid decrease in dry thermal conductivity with temperature. The effects of thermal cracking were also observed in the water-saturated samples but resulted in a net decrease in room-temperature conductivity of less than 3%. These results highlight the importance of duplicating in-situ conditions when determining thermal conductivity for the deep crust.

  18. Synthesis and characterization of a mixed phase of anatase TiO2 and TiO2(B) by low pressure chemical vapour deposition (LPCVD) for high photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Chimupala, Y.; Hyett, G.; Simpson, R.; Brydson, R.

    2014-06-01

    This project is concerned with enhancing photocatalytic activity by preparing a mixed phase of nano-sized TiO2. TiO2 thin films were synthesized by using Low Pressure Chemical Vapour Deposition (LPCVD). Titanium isopropoxide and N2 gas were used as the precursor and carrier gas respectively. The effects of reaction temperature, carrier gas flow rate and deposited area were studied. TiO2 thin films with nano-sized TiO2 particles were obtained under suitable conditions and SEM, TEM, powder XRD and Raman spectroscopy were employed to characterize the phase and physical appearance of synthesized materials. Preliminary results show that a dual phase (TiO2(B) and anatase) thin film nanopowder was successfully prepared by LPCVD with needle- and polygonal plate-shape crystallites respectively. This thin film deposit produced a preferred orientation of TiO2(B) needles in the [001] direction of average crystallite size 50-80 nm in length and 5-10 nm in width, whilst the crystallite size of anatase polygonal-plates was around 200 nm. The optimal LPCVD condition for preparing this mixed phase of TiO2 was 600°C with a 1 mL/s N2 flow rate.

  19. Density profile of nitrogen in cylindrical pores of MCM-41

    NASA Astrophysics Data System (ADS)

    Soper, Alan K.; Bowron, Daniel T.

    2017-09-01

    A straightforward approach using radiation scattering (X-ray or neutron) combined with atomistic modelling is used to accurately assess the pore dimensions in the porous silica, MCM-41. The method is used to calculate the density profile of nitrogen absorbed in this material at a variety of fractional pressures, p/p0, where p0 is the saturated vapour pressure, up to p/p0 = 0.36 at T = 87 K in the present instance. At this pressure two distinct layers of liquid nitrogen occur on the silica surface, with a relatively sharp gas-liquid interface. It is suggested surface tension effects at this interface strongly influence the growth of further layers.

  20. Sidewall crystallization and saturation front formation in silicic magma chambers

    NASA Astrophysics Data System (ADS)

    Lake, E. T.

    2012-12-01

    The cooling and crystallization style of silicic magma bodies in the upper crust falls on a continuum between whole-chamber processes of convection, crystal settling, and cumulate formation and interface driven processes of conduction and crystallization front migration. In the former case, volatile saturation occurs uniformly chamber wide, in the latter volatile saturation occurs along an inward propagating front. Ambient thermal gradient primarily controls the propagation rate; warm (> 30 °C / km) geothermal gradients promote 1000m+ thick crystal mush zones but slow crystallization front propagation. Cold geothermal gradients support the opposite. Magma chamber geometry plays a second order role in controlling propagation rates; bodies with high surface to magma ratio and large Earth's surface parallel faces exhibit more rapid propagation and smaller mush zones. Crystallization front propagation occurs at speeds of up to 6 cm/year (rhyolitic magma, thin sill geometry, 10 °C / km geotherm), far faster than diffusion of volatiles in magma and faster than bubbles can nucleate and ascend under certain conditions. Saturation front propagation is fixed by pressure and magma crystal content; above certain modest initial water contents (4.4 wt% in a dacite) mobile magma above 10 km depth always contains a saturation front. Saturation fronts propagate down from the magma chamber roof at lower water contents (3.3 wt% in a dacite at 5 km depth), creating an upper saturated interface for most common (4 - 6 wt%) magma water contents. This upper interface promotes the production of a fluid pocket underneath the apex of the magma chamber. Magma de-densification by bubble nucleation promotes convection and homogenization in dacitic systems. If the fluid pocket grew rapidly without draining, hydro-fracturing and eruption would result. The combination of fluid escape pathways and metal scavenging would generate economic vein or porphyry deposits.

  1. Terminal drought-tolerant pearl millet [Pennisetum glaucum (L.) R. Br.] have high leaf ABA and limit transpiration at high vapour pressure deficit

    PubMed Central

    Kholová, Jana; Hash, C. T.; Kumar, P. Lava; Yadav, Rattan S.; Kočová, Marie; Vadez, Vincent

    2010-01-01

    It was previously shown that pearl millet genotypes carrying a terminal drought tolerance quantitative trait locus (QTL) had a lower transpiration rate (Tr; g cm−2 d−1) under well-watered conditions than sensitive lines. Here experiments were carried out to test whether this relates to leaf abscisic acid (ABA) and Tr concentration at high vapour pressure deficit (VPD), and whether that leads to transpiration efficiency (TE) differences. These traits were measured in tolerant/sensitive pearl millet genotypes, including near-isogenic lines introgressed with a terminal drought tolerance QTL (NIL-QTLs). Most genotypic differences were found under well-watered conditions. ABA levels under well-watered conditions were higher in tolerant genotypes, including NIL-QTLs, than in sensitive genotypes, and ABA did not increase under water stress. Well-watered Tr was lower in tolerant than in sensitive genotypes at all VPD levels. Except for one line, Tr slowed down in tolerant lines above a breakpoint at 1.40–1.90 kPa, with the slope decreasing >50%, whereas sensitive lines showed no change in that Tr response across the whole VPD range. It is concluded that two water-saving (avoidance) mechanisms may operate under well-watered conditions in tolerant pearl millet: (i) a low Tr even at low VPD conditions, which may relate to leaf ABA; and (ii) a sensitivity to higher VPD that further restricts Tr, which suggests the involvement of hydraulic signals. Both traits, which did not lead to TE differences, could contribute to absolute water saving seen in part due to dry weight increase differences. This water saved would become critical for grain filling and deserves consideration in the breeding of terminal drought-tolerant lines. PMID:20142425

  2. Application of lemongrass oil in vapour phase for the effective control of anthracnose of 'Sekaki' papaya.

    PubMed

    Ali, A; Wee Pheng, T; Mustafa, M A

    2015-06-01

    To evaluate the potential use of lemongrass essential oil vapour as an alternative for synthetic fungicides in controlling anthracnose of papaya. Lemongrass oil used in the study was characterized using gas chromatography-flame ionization detection (GC-FID) before it was tested against anthracnose of papaya in vitro and in vivo. The GC-FID analysis showed that geranial (45·6%) and neral (34·3%) were the major components in lemongrass oil. In vitro study revealed that lemongrass oil vapour at all concentrations tested (33, 66, 132, 264 and 528 μl l(-1) ) suppressed the mycelial growth and conidial germination of Colletotrichum gloeosporioides. For the in vivo study, 'Sekaki' papaya were exposed to lemongrass oil fumigation (0, 7, 14, 28 μl l(-1) ) for 18 h and at room temperature for 9 days. Lemongrass oil vapour at the concentration of 28 μl l(-1) was most effective against anthracnose of artificially inoculated papaya fruit while quality parameters of papaya were not significantly altered. This suggests that lemongrass oil vapour can control anthracnose disease development on papaya without affecting its natural ripening process. The potential practical application of this technology can reduce reliance on synthetic fungicides for the control of postharvest diseases in papaya. © 2015 The Society for Applied Microbiology.

  3. Retrievability of atmospheric water vapour, temperature and vertical windspeed profiles from proposed sub-millimetre instrument ORTIS.

    NASA Astrophysics Data System (ADS)

    Hurley, Jane; Irwin, Patrick; Teanby, Nicholas; de Kok, Remco; Calcutt, Simon; Irshad, Ranah; Ellison, Brian

    2010-05-01

    The sub-millimetre range of the spectrum has been exploited in the field of Earth observation by many instruments over the years and has provided a plethora of information on atmospheric chemistry and dynamics - however, this spectral range has not been fully explored in planetary science. To this end, a sub-millimetre instrument, the Orbiter Terahertz Infrared Spectrometer (ORTIS), is jointly proposed by the University of Oxford and the Rutherford Appleton Laboratory, to meet the requirements of the European Space Agency's Cosmic Visions Europa Jupiter System Mission (EJSM). ORTIS will consist of an infrared and a sub-millimetre component; however in this study only the sub-millimetre component will be explored. The sub-millimetre component of ORTIS is projected to measure a narrow band of frequencies centred at approximately 2.2 THz, with a spectral resolution varying between approximately 1 kHz and 1 MHz, and having an expected noise magnitude of 2 nW/cm2 sr cm-1. In this spectral region, there are strong water and methane emission lines at most altitudes on Jupiter. The sub-millimetre component of ORTIS is designed to measure the abundance of atmospheric water vapour and atmospheric temperature, as well as vertical windspeed profiles from Doppler-shifted emission lines, measured at high spectral resolution. This study will test to see if, in practice, these science objectives may be met from the planned design, as applied to Jupiter. In order to test the retrievability of atmospheric water vapour, temperature and windspeed with the proposed ORTIS design, it is necessary to have a set of "measurements' for which the input parameters (such as species' concentrations, atmospheric temperature, pressure - and windspeed) are known. This is accomplished by generating a set of radiative transfer simulations using radiative transfer model RadTrans in the spectral range sampled by ORTIS, whereby the atmospheric data pertaining to Jupiter have provided by Cassini

  4. A surface curvature oscillation model for vapour-liquid-solid growth of periodic one-dimensional nanostructures

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Wang, Jian-Tao; Cao, Ze-Xian; Zhang, Wen-Jun; Lee, Chun-Sing; Lee, Shuit-Tong; Zhang, Xiao-Hong

    2015-03-01

    While the vapour-liquid-solid process has been widely used for growing one-dimensional nanostructures, quantitative understanding of the process is still far from adequate. For example, the origins for the growth of periodic one-dimensional nanostructures are not fully understood. Here we observe that morphologies in a wide range of periodic one-dimensional nanostructures can be described by two quantitative relationships: first, inverse of the periodic spacing along the length direction follows an arithmetic sequence; second, the periodic spacing in the growth direction varies linearly with the diameter of the nanostructure. We further find that these geometric relationships can be explained by considering the surface curvature oscillation of the liquid sphere at the tip of the growing nanostructure. The work reveals the requirements of vapour-liquid-solid growth. It can be applied for quantitative understanding of vapour-liquid-solid growth and to design experiments for controlled growth of nanostructures with custom-designed morphologies.

  5. Thermodynamic properties of saturated liquid parahydrogen charted for important temperature range

    NASA Technical Reports Server (NTRS)

    Mc Carty, R. D.; Roder, H. M.

    1967-01-01

    Six entropy diagrams for parahydrogen in or near the saturated liquid state cover the temperature range from 29.16 degrees to 42.48 degrees R with pressures to 100 psia and mixtures of the liquid and vapor phases to 0.003 quality. The diagrams are printed in color, are 19 by 30 inches in size, and are suitable for wall mounting.

  6. Intra-gastric pressures in neonates receiving bubble CPAP.

    PubMed

    Tyagi, Prashant; Gupta, Neeraj; Jain, Akanksha; Upadhyay, Pramod; Puliyel, Jacob

    2015-02-01

    To study intra-gastric pressures in neonates receiving bubble continuous positive airway pressure (BCPAP) by nasopharyngeal prong. Twenty seven neonates were recruited for the study. BCPAP pressure of 6 cm water was used in all the neonates. A pressure sensor attached to orogastric tube, measured the intra-gastric pressure prior to starting BCPAP and again between 30 and 90 min of BCPAP. The clinical variables like Downe's score, oxygen saturation, venous blood gas pH, pCO(2) and abdominal girth were recorded alongside with pressure readings. BCPAP resulted in improvement (p < 0.05) in parameters of respiratory distress such as Downe's score (DS), oxygen saturation (SpO(2)) and venous blood gas parameters (pH, pCO(2)). There was no statistical significant increase in intra-gastric pressures (p = 0.834). There were no gastrointestinal complications; abdominal distention, necrotising enterocolitis or gastric perforation during the study. Nasopharyngeal BCPAP at 6 cm of water pressure is an effective modality of treating babies with respiratory distress and the present study shows that it is not associated with a significant rise in intra-gastric pressures.

  7. Prediction of clothing thermal insulation and moisture vapour resistance of the clothed body walking in wind.

    PubMed

    Qian, Xiaoming; Fan, Jintu

    2006-11-01

    Clothing thermal insulation and moisture vapour resistance are the two most important parameters in thermal environmental engineering, functional clothing design and end use of clothing ensembles. In this study, clothing thermal insulation and moisture vapour resistance of various types of clothing ensembles were measured using the walking-able sweating manikin, Walter, under various environmental conditions and walking speeds. Based on an extensive experimental investigation and an improved understanding of the effects of body activities and environmental conditions, a simple but effective direct regression model has been established, for predicting the clothing thermal insulation and moisture vapour resistance under wind and walking motion, from those when the manikin was standing in still air. The model has been validated by using experimental data reported in the previous literature. It has shown that the new models have advantages and provide very accurate prediction.

  8. Plasma formation in water vapour layers in high conductivity liquids

    NASA Astrophysics Data System (ADS)

    Kelsey, C. P.; Schaper, L.; Stalder, K. R.; Graham, W. G.

    2011-10-01

    The vapour layer development stage of relatively low voltage plasmas in conducting solutions has already been well explored. The nature of the discharges formed within the vapour layer however is still largely unexplored. Here we examine the nature of such discharges through a combination of fast imaging and spatially, temporally resolved spectroscopy and electrical characterisation. The experimental setup used is a pin-to-plate discharge configuration with a -350V, 200 μs pulse applied at a repetition rate of 2Hz. A lens, followed by beam splitter allows beams to one Andor ICCD camera to capture images of the plasma emission with a second camera at the exit of a high resolution spectrometer. Through synchronization of the camera images at specified times after plasma ignition (as determined from current-voltage characteristics) they can be correlated with the spectra features. Initial measurements reveal two apparently different plasma formations. Stark broadening of the hydrogen Balmer beta line indicate electron densities of 3 to 5 ×1020 m-3 for plasmas produced early in the voltage pulse and an order of magnitude less for the later plasmas. The vapour layer development stage of relatively low voltage plasmas in conducting solutions has already been well explored. The nature of the discharges formed within the vapour layer however is still largely unexplored. Here we examine the nature of such discharges through a combination of fast imaging and spatially, temporally resolved spectroscopy and electrical characterisation. The experimental setup used is a pin-to-plate discharge configuration with a -350V, 200 μs pulse applied at a repetition rate of 2Hz. A lens, followed by beam splitter allows beams to one Andor ICCD camera to capture images of the plasma emission with a second camera at the exit of a high resolution spectrometer. Through synchronization of the camera images at specified times after plasma ignition (as determined from current

  9. Quantitative degassing of gas hydrate-bearing pressure cores from Green Canyon 955, Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Phillips, S. C.; Holland, M. E.; Flemings, P. B.; Schultheiss, P. J.; Waite, W. F.; Petrou, E. G.; Jang, J.; Polito, P. J.; O'Connell, J.; Dong, T.; Meazell, K.

    2017-12-01

    We present results from 20 quantitative degassing experiments of pressure-core sections collected during Expedition UT-GOM2-1 from Green Canyon 955 in the northern Gulf of Mexico. These experiments highlight an average pore-space methane hydrate saturation, Sh, of 59% (min: 12%; max 87%) in sediments between 413 and 440 mbsf in 2032 m water depth. There is a strong lithofacies control of hydrate saturation within the reservoir, with a high saturation sandy silt facies (Sh of 65 to 87%) interbedded with a low saturation clayey silt facies (Sh of 12 to 30%). Bedding occurs on the scale of tens of centimeters. Outside of the main hydrate reservoir, methane hydrate occurs in low saturations (Sh of 0.8 to 3%). Hydrate saturations exhibit a strong correlation (R2=0.89) with the average P-wave velocity measured through the degassed sections. These preliminary hydrate saturations were calculated assuming a porosity of 40% with core filling the full internal diameter of the core liner. Gas recovered during these experiments is composed of almost entirely methane, with an average of 94 ppm ethane and detectable, but not quantifiable, propane. Degassed pressure cores were depressurized through a manifold by the stepwise release of fluid, and the volumes of produced gas and water were monitored. The core's hydrostatic pressure was measured and recorded continuously at the manifold. Pressure and temperature were also measured by data storage tags within the sample chambers. Two slow, multi-day degassing experiments were performed to estimate the in situ salinity within core sections. Based on temperature and pressure observations at the point of the initial pressure rebound due to hydrate dissociation, we estimate the salinity within these samples to be between 33 and 42 g kg-1.

  10. Cerebral arterial oxygen saturation measurements using a fiber-optic pulse oximeter.

    PubMed

    Phillips, J P; Langford, R M; Chang, S H; Maney, K; Kyriacou, P A; Jones, D P

    2010-10-01

    A pilot investigation was undertaken to assess the performance of a novel fiber-optic cerebral pulse oximetry system. A fiber-optic probe designed to pass through the lumen of a cranial bolt of the type used to make intracranial pressure measurements was used to obtain optical reflectance signals directly from brain tissue. Short-duration measurements were made in six patients undergoing neurosurgery. These were followed by a longer duration measurement in a patient recovering from an intracerebral hematoma. Estimations of cerebral arterial oxygen saturation derived from a frequency domain-based algorithm are compared with simultaneous pulse oximetry (SpO2) and hemoximeter (SaO2) blood samples. The short-duration measurements showed that reliable photoplethysmographic signals could be obtained from the brain tissue. In the long-duration study, the mean (±SD) difference between cerebral oxygen saturation (ScaO2) and finger SpO2 (in saturation units) was -7.47(±3.4)%. The mean (±SD) difference between ScaO2 and blood SaO2 was -7.37(±2.8)%. This pilot study demonstrated that arterial oxygen saturation may be estimated from brain tissue via a fiber-optic pulse oximeter used in conjunction with a cranial bolt. Further studies are needed to confirm the clinical utility of the technique.

  11. Electric conductivity for laboratory and field monitoring of induced partial saturation (IPS) in sands

    NASA Astrophysics Data System (ADS)

    Kazemiroodsari, Hadi

    Liquefaction is loss of shear strength in fully saturated loose sands caused by build-up of excess pore water pressure, during moderate to large earthquakes, leading to catastrophic failures of structures. Currently used liquefaction mitigation measures are often costly and cannot be applied at sites with existing structures. An innovative, practical, and cost effective liquefaction mitigation technique titled "Induced Partial Saturation" (IPS) was developed by researchers at Northeastern University. The IPS technique is based on injection of sodium percarbonate solution into fully saturated liquefaction susceptible sand. Sodium percarbonate dissolves in water and breaks down into sodium and carbonate ions and hydrogen peroxide which generates oxygen gas bubbles. Oxygen gas bubbles become trapped in sand pores and therefore decrease the degree of saturation of the sand, increase the compressibility of the soil, thus reduce its potential for liquefaction. The implementation of IPS required the development and validation of a monitoring and evaluation technique that would help ensure that the sands are indeed partially saturated. This dissertation focuses on this aspect of the IPS research. The monitoring system developed was based on using electric conductivity fundamentals and probes to detect the transport of chemical solution, calculate degree of saturation of sand, and determine the final zone of partial saturation created by IPS. To understand the fundamentals of electric conductivity, laboratory bench-top tests were conducted using electric conductivity probes and small specimens of Ottawa sand. Bench-top tests were used to study rate of generation of gas bubbles due to reaction of sodium percarbonate solution in sand, and to confirm a theory based on which degree of saturation were calculated. In addition to bench-top tests, electric conductivity probes were used in a relatively large sand specimen prepared in a specially manufactured glass tank. IPS was

  12. Effect of nonlinearity saturation on hot-image formation in cascaded saturable nonlinear medium slabs

    NASA Astrophysics Data System (ADS)

    Wang, Youwen; Dai, Zhiping; Ling, Xiaohui; Chen, Liezun; Lu, Shizhuan; You, Kaiming

    2016-11-01

    In high-power laser system such as Petawatt lasers, the laser beam can be intense enough to result in saturation of nonlinear refraction index of medium. Based on the standard linearization method of small-scale self-focusing and the split-step Fourier numerical calculation method, we present analytical and simulative investigations on the hot-image formation in cascaded saturable nonlinear medium slabs, to disclose the effect of nonlinearity saturation on the distribution and intensity of hot images. The analytical and simulative results are found in good agreement. It is shown that, saturable nonlinearity does not change the distribution of hot images, while may greatly affect the intensity of hot images, i.e., for a given saturation light intensity, with the intensity of the incident laser beam, the intensity of hot images firstly increases monotonously and eventually reaches a saturation; for the incident laser beam of a given intensity, with the saturation light intensity lowering, the intensity of hot images decreases rapidly, even resulting in a few hot images too weak to be visible.

  13. Analysing the mechanisms of soil water and vapour transport in the desert vadose zone of the extremely arid region of northern China

    NASA Astrophysics Data System (ADS)

    Du, Chaoyang; Yu, Jingjie; Wang, Ping; Zhang, Yichi

    2018-03-01

    The transport of water and vapour in the desert vadose zone plays a critical role in the overall water and energy balances of near-surface environments in arid regions. However, field measurements in extremely dry environments face many difficulties and challenges, so few studies have examined water and vapour transport processes in the desert vadose zone. The main objective of this study is to analyse the mechanisms of soil water and vapour transport in the desert vadose zone (depth of ∼350 cm) by using measured and modelled data in an extremely arid environment. The field experiments are implemented in an area of the Gobi desert in northwestern China to measure the soil properties, daily soil moisture and temperature, daily water-table depth and temperature, and daily meteorological records from DOYs (Days of Year) 114-212 in 2014 (growing season). The Hydrus-1D model, which simulates the coupled transport of water, vapour and heat in the vadose zone, is employed to simulate the layered soil moisture and temperature regimes and analyse the transport processes of soil water and vapour. The measured results show that the soil water and temperatures near the land surface have visible daily fluctuations across the entire soil profile. Thermal vapour movement is the most important component of the total water flux and the soil temperature gradient is the major driving factor that affects vapour transport in the desert vadose zone. The most active water and heat exchange occurs in the upper soil layer (depths of 0-25 cm). The matric potential change from the precipitation mainly re-draws the spatio-temporal distribution of the isothermal liquid water in the soil near the land surface. The matric potential has little effect on the isothermal vapour and thermal liquid water flux. These findings offer new insights into the liquid water and vapour movement processes in the extremely arid environment.

  14. Muscle tissue saturation in humans studied with two non-invasive optical techniques: a comparative study

    NASA Astrophysics Data System (ADS)

    Shaharin, Alfi; Krite Svanberg, Emilie; Ellerström, Ida; Subash, Arman Ahamed; Khoptyar, Dmitry; Andersson-Engels, Stefan; Åkeson, Jonas

    2013-11-01

    Muscle tissue saturation (StO2) has been measured with two non-invasive optical techniques and the results were compared. One of the techniques is widely used in the hospitals - the CW-NIRS technique. The other is the photon timeof- flight spectrometer (pTOFS) developed in the Group of Biophotonics, Lund University, Sweden. The wavelengths used in both the techniques are 730 nm and 810 nm. A campaign was arranged to perform measurements on 21 (17 were taken for comparison) healthy adult volunteers (8 women and 13 men). Oxygen saturations were measured at the right lower arm of each volunteer. To observe the effects of different provocations on the oxygen saturation a blood pressure cuff was attached in the upper right arm. For CW-NIRS, the tissue saturation values were in the range from 70-90%, while for pTOFS the values were in the range from 55-60%.

  15. Synthesis, structure, vapour pressure and deposition of ZnO thin film by plasma assisted MOCVD technique using a novel precursor bis[(pentylnitrilomethylidine) (pentylnitrilomethylidine-μ-phenalato)]dizinc(II)

    NASA Astrophysics Data System (ADS)

    Chandrakala, C.; Sravanthi, P.; Raj Bharath, S.; Arockiasamy, S.; George Johnson, M.; Nagaraja, K. S.; Jeyaraj, B.

    2017-02-01

    A novel binuclear zinc schiff's base complex bis[(pentylnitrilomethylidine)(pentylnitrilomethylidine-μ-phenalato)]dizinc(II) (hereafter referred as ZSP) was prepared and used as a precursor for the deposition of ZnO thin film by MOCVD. The dynamic TG run of ZSP showed sufficient volatility and good thermal stability. The temperature dependence of vapour pressure measured by transpiration technique yielded a value of 55.8 ± 2.3 kJ mol-1 for the enthalpy of sublimation (ΔH°sub) in the temperature range of 423-503 K. The crystal structure of ZSP was solved by single crystal XRD which exhibits triclinic crystal system with the space group of Pī. The molecular mass of ZSP was determined by mass spectrometry which yielded the m/z value of 891 and 445 Da corresponding to its dimeric as well as monomeric form. The complex ZSP was further characterized by FT-IR and NMR. The demonstration of ZnO thin film deposition was carried out by using plasma assisted MOCVD. The thin film XRD confirmed the highly oriented (002) ZnO thin films on Si(100) substrate. The uniformity and composition of the thin film were analyzed by SEM/EDX. The band gap of ZnO thin film measurement indicated the blue shift with the value of 3.79 eV.

  16. CFD simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindrical condensers.

    PubMed

    Li, Jun-De

    2013-02-01

    This paper presents the simulation of the condensation of water vapour in the presence of non-condensable gas using computational fluid dynamics (CFD) for turbulent flows in a vertical cylindrical condenser tube. The simulation accounts for the turbulent flow of the gas mixture, the condenser wall and the turbulent flow of the coolant in the annular channel with no assumptions of constant wall temperature or heat flux. The condensate film is assumed to occupy a negligible volume and its effect on the condensation of the water vapour has been taken into account by imposing a set of boundary conditions. A new strategy is used to overcome the limitation of the currently available commercial CFD package to solve the simultaneous simulation of flows involving multispecies and fluids of gas and liquid in separate channels. The results from the CFD simulations are compared with the experimental results from the literature for the condensation of water vapour with air as the non-condensable gas and for inlet mass fraction of the water vapour from 0.66 to 0.98. The CFD simulation results in general agree well with the directly measured quantities and it is found that the variation of heat flux in the condenser tube is more complex than a simple polynomial curve fit. The CFD results also show that, at least for flows involving high water vapour content, the axial velocity of the gas mixture at the interface between the gas mixture and the condensate film is in general not small and cannot be neglected.

  17. CFD simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindrical condensers

    PubMed Central

    Li, Jun-De

    2013-01-01

    This paper presents the simulation of the condensation of water vapour in the presence of non-condensable gas using computational fluid dynamics (CFD) for turbulent flows in a vertical cylindrical condenser tube. The simulation accounts for the turbulent flow of the gas mixture, the condenser wall and the turbulent flow of the coolant in the annular channel with no assumptions of constant wall temperature or heat flux. The condensate film is assumed to occupy a negligible volume and its effect on the condensation of the water vapour has been taken into account by imposing a set of boundary conditions. A new strategy is used to overcome the limitation of the currently available commercial CFD package to solve the simultaneous simulation of flows involving multispecies and fluids of gas and liquid in separate channels. The results from the CFD simulations are compared with the experimental results from the literature for the condensation of water vapour with air as the non-condensable gas and for inlet mass fraction of the water vapour from 0.66 to 0.98. The CFD simulation results in general agree well with the directly measured quantities and it is found that the variation of heat flux in the condenser tube is more complex than a simple polynomial curve fit. The CFD results also show that, at least for flows involving high water vapour content, the axial velocity of the gas mixture at the interface between the gas mixture and the condensate film is in general not small and cannot be neglected. PMID:24850953

  18. Behaviour of the ASDEX pressure gauge at high neutral gas pressure and applications for ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarabosio, A.; Haas, G.

    2008-03-12

    The ASDEX Pressure Gauge is, at present, the main candidate for in-vessel neutral pressure measurement in ITER. Although the APG output is found to saturate at around 15 Pa, below the ITER requirement of 20 Pa. We show, here, that with small modifications of the gauge geometry and potentials settings we can achieve satisfactory behaviour up to 30 Pa at 6 T.

  19. Fayalite Dissolution and Siderite Formation in Water-Saturated Supercritical CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qafoku, Odeta; Kovarik, Libor; Kukkadapu, Ravi K.

    2012-11-25

    Olivines, a significant constituent of basaltic rocks, have the potential to immobilize permanently CO2 after it is injected in the deep subsurface, due to carbonation reactions occurring between CO2 and the host rock. To investigate the reactions of fayalitic olivine with supercritical CO2 (scCO2) and formation of mineral carbonates, experiments were conducted at temperatures of 35 °C to 80 °C, 90 atm pressure and anoxic conditions. For every temperature, the dissolution of fayalite was examined both in the presence of liquid water and H2O-saturated scCO2. The experiments were conducted in a high pressure batch reactor at reaction time extending upmore » to 85 days. The newly formed products were characterized using a comprehensive suite of bulk and surface characterization techniques X-ray diffraction, Transmission/Emission Mössbauer Spectroscopy, Scanning Electron Microscopy coupled with Focused Ion Beam, and High Resolution Transmission Electron Microscopy. Siderite with rhombohedral morphology was formed at 35 °C, 50 °C, and 80 °C in the presence of liquid water and scCO2. In H2O-saturated scCO2, the formation of siderite was confirmed only at high temperature (80 °C). Characterization of reacted samples in H2O-saturated scCO2 with high resolution TEM indicated that siderite formation initiated inside voids created during the initial steps of fayalite dissolution. Later stages of fayalite dissolution result in the formation of siderite in layered vertical structures, columns or pyramids with a rhombus base morphology.« less

  20. Capillary pressure - saturation relations for supercritical CO2 and brine: Implications for capillary/residual trapping in carbonate reservoirs during geologic carbon sequestration

    NASA Astrophysics Data System (ADS)

    Wang, S.; Tokunaga, T. K.

    2014-12-01

    In geologic carbon sequestration (GCS), data on capillary pressure (Pc) - saturation (Sw) relations are routinely needed to appraise reservoir processes. Capillarity and its hysteresis have been often experimentally studied in oil-water, gas-water and three phase gas-oil-water systems, but fewer works have been reported on scCO2-water under in-situ reservoir conditions. Here, Pc-Sw relations of supercritical (sc) CO2 displacing brine, and brine rewetting the porous medium to trap scCO2 were studied to understand CO2 transport and trapping behavior in carbonate reservoirs under representative reservoir conditions. High-quality drainage and imbibition (and associated capillary pressure hysteresis) curves were measured under elevated temperature and pressure (45 ºC, 8.5 and 12 MPa) for scCO2-brine as well as at room temperature and pressure (23 ºC, 0.1 MPa) for air-brine in unconsolidated limestone and dolomite sand columns using newly developed semi-automated multistep outflow-inflow porous plate apparatus. Drainage and imbibition curves for scCO2-brine deviated from the universal scaling curves for hydrophilic interactions (with greater deviation under higher pressure) and shifted to lower Pc than predicted based on interfacial tension (IFT) changes. Augmented scaling incorporating differences in IFT and contact angle improved the scaling results but the scaled curves still did not converge onto the universal curves. Equilibrium residual trapping of the nonwetting phase was determined at Pc =0 during imbibition. The capillary-trapped amounts of scCO2 were significantly larger than for air. It is concluded that the deviations from the universal capillary scaling curves are caused by scCO2-induced wettability alteration, given the fact that pore geometry remained constant and IFT is well constrained. In-situ wettability alteration by reactive scCO2 is of critical importance and must be accounted for to achieve reliable predictions of CO2 behavior in GCS reservoirs.

  1. Measurements and calculations of H2-broadening and shift parameters of water vapour transitions of the ν1 + ν2 + ν3 band

    NASA Astrophysics Data System (ADS)

    Petrova, T. M.; Solodov, A. M.; Solodov, A. A.; Deichuli, V. M.; Starikov, V. I.

    2018-05-01

    The water vapour line broadening and shifting for 97 lines in the ν1 + ν2 + ν3 band induced by hydrogen pressure are measured with Bruker IFS 125 HR FTIR spectrometer. The measurements were performed at room temperature, at the spectral resolution of 0.01 cm-1 and in a wide pressure range of H2. The calculations of the broadening γ and shift δ coefficients were performed in the semi-classical method framework with use of an effective vibrationally depended interaction potential. Two potential parameters were optimised to improve the quality of calculations. Good agreements with measured broadening coefficients were achieved. The comparison of calculated broadening coefficients γ with the previous measurements is discussed. The analytical expressions that reproduce these coefficients for rotational, ν2, ν1, and ν3 vibrational bands are presented.

  2. The early summertime Saharan heat low: sensitivity of the radiation budget and atmospheric heating to water vapour and dust aerosol

    NASA Astrophysics Data System (ADS)

    Alamirew, Netsanet K.; Todd, Martin C.; Ryder, Claire L.; Marsham, John H.; Wang, Yi

    2018-01-01

    The Saharan heat low (SHL) is a key component of the west African climate system and an important driver of the west African monsoon across a range of timescales of variability. The physical mechanisms driving the variability in the SHL remain uncertain, although water vapour has been implicated as of primary importance. Here, we quantify the independent effects of variability in dust and water vapour on the radiation budget and atmospheric heating of the region using a radiative transfer model configured with observational input data from the Fennec field campaign at the location of Bordj Badji Mokhtar (BBM) in southern Algeria (21.4° N, 0.9° E), close to the SHL core for June 2011. Overall, we find dust aerosol and water vapour to be of similar importance in driving variability in the top-of-atmosphere (TOA) radiation budget and therefore the column-integrated heating over the SHL (˜ 7 W m-2 per standard deviation of dust aerosol optical depth - AOD). As such, we infer that SHL intensity is likely to be similarly enhanced by the effects of dust and water vapour surge events. However, the details of the processes differ. Dust generates substantial radiative cooling at the surface (˜ 11 W m-2 per standard deviation of dust AOD), presumably leading to reduced sensible heat flux in the boundary layer, which is more than compensated by direct radiative heating from shortwave (SW) absorption by dust in the dusty boundary layer. In contrast, water vapour invokes a radiative warming at the surface of ˜ 6 W m-2 per standard deviation of column-integrated water vapour in kg m-2. Net effects involve a pronounced net atmospheric radiative convergence with heating rates on average of 0.5 K day-1 and up to 6 K day-1 during synoptic/mesoscale dust events from monsoon surges and convective cold-pool outflows (haboobs). On this basis, we make inferences on the processes driving variability in the SHL associated with radiative and advective heating/cooling. Depending

  3. A vapourized Δ(9)-tetrahydrocannabinol (Δ(9)-THC) delivery system part II: comparison of behavioural effects of pulmonary versus parenteral cannabinoid exposure in rodents.

    PubMed

    Manwell, Laurie A; Ford, Brittany; Matthews, Brittany A; Heipel, Heather; Mallet, Paul E

    2014-01-01

    Studies of the rewarding and addictive properties of cannabinoids using rodents as animal models of human behaviour often fail to replicate findings from human studies. Animal studies typically employ parenteral routes of administration, whereas humans typically smoke cannabis, thus discrepancies may be related to different pharmacokinetics of parenteral and pulmonary routes of administration. Accordingly, a novel delivery system of vapourized Δ(9)-tetrahydrocannabinol (Δ(9)-THC) was developed and assessed for its pharmacokinetic, pharmacodynamic, and behavioural effects in rodents. A commercially available vapourizer was used to assess the effects of pulmonary (vapourized) administration of Δ(9)-THC and directly compared to parenteral (intraperitoneal, IP) administration of Δ(9)-THC. Sprague-Dawley rats were exposed to pure Δ(9)-THC vapour (1, 2, 5, 10, and 20mg/pad), using a Volcano® vapourizing device (Storz and Bickel, Germany) or IP-administered Δ(9)-THC (0.1, 0.3, 0.5, 1.0mg/kg), and drug effects on locomotor activity, food and water consumption, and cross-sensitization to morphine (5mg/kg) were measured. Vapourized Δ(9)-THC significantly increased feeding during the first hour following exposure, whereas IP-administered Δ(9)-THC failed to produce a reliable increase in feeding at all doses tested. Acute administration of 10mg of vapourized Δ(9)-THC induced a short-lasting stimulation in locomotor activity compared to control in the first of four hours of testing over 7days of repeated exposure; this chronic exposure to 10mg of vapourized Δ(9)-THC did not induce behavioural sensitization to morphine. These results suggest vapourized Δ(9)-THC administration produces behavioural effects qualitatively different from those induced by IP administration in rodents. Furthermore, vapourized Δ(9)-THC delivery in rodents may produce behavioural effects more comparable to those observed in humans. We conclude that some of the conflicting findings in animal

  4. Frost heave susceptibility of saturated soil under constant rate of freezing

    NASA Astrophysics Data System (ADS)

    Ryokai, K.; Iguro, M.; Yoneyama, K.

    Introduced are the results of experiments carried out to quantitatively obtain the frost heave pressure and displacement of soil subjected to artificial freezing or freezing around in-ground liquefied natural gas storage tanks. This experiment is conducted to evaluate the frost heave susceptibility of saturated soil under overconsolidation. In other words, this experiment was carried out to obtain the relation of the over-burden pressure and freezing rate to the frost heave ratio by observing the frost heave displacement and freezing time of specimens by freezing the specimens at a constant freezing rate under a constant overburden pressure, while letting water freely flow in and out of the system. Introduced are the procedures for frost heave test required to quantitatively obtain the frost heave displacement and pressure of soil. Furthermore, the relation between the frost heave susceptibility and physical properties of soil obtained by this test is reported.

  5. Some Boussinesq Equations with Saturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christou, M. A.

    2010-11-25

    We investigate numerically some Boussinesq type equations with square or cubic and saturated nonlinearity. We examine the propagation, interaction and overtake interaction of soliton solutions. Moreover, we examine the effect of the saturation term on the solution and compare it with the classical case of the square or cubic nonlinearity without saturation. We calculate numerically the phase shift experienced by the solitons upon collision and conclude the impact of saturation.

  6. Methane Hydrate Fformation in a Coarse-Grained, Brine-Saturated Sample Through the Induction of a Propagating Gas Front

    NASA Astrophysics Data System (ADS)

    Meyer, D.

    2016-12-01

    We generate methane hydrate in a coarse-grained, brine-saturated, vertically-oriented sample through gas injection. From 0 - 80 hours, we estimate a hydrate saturation of 0.56 behind the formation front, using mass balance, indicating that hydrate formation is limited by locally-elevated salinity creating three-phase equilibrium conditions. After 80 hours, the hydrate phase saturation drops to 0.50 and the magnitude of the pressure drop-rebound cycles increases, suggesting temporary reductions in permeability and the development of heterogeneous distributions of free gas in the sample. The sample consists of an industrial, fine sand mixed with a 0.5 wt% fraction of natural, smectitic clay from the Eugene Island region in the Gulf of Mexico (5.08cm diameter, 11.79cm length). The sample is initially saturated with a 7 wt% sodium chloride brine, pressurized to 12.24 MPa, and cooled to 1 degree Celsius, to bring the sample into the hydrate stability zone. Syringe pumps filled with methane gas and brine are connected to the top and bottom of the sample, respectively, to control fluid flow. We withdraw from the base of the sample at a rate of 0.0005 mL/min and inject methane to maintain a constant pressure, initiating hydrate formation. We analyze this experiment, as well as a gas flood experiment executed under the same conditions, using computed-tomography scans and an analytical solution to investigate the formation behavior and thermodynamic state of hydrate in gas-rich, coarse-grained reservoirs.

  7. Volatile times for the very first ionic liquid: understanding the vapor pressures and enthalpies of vaporization of ethylammonium nitrate.

    PubMed

    Emel'yanenko, Vladimir N; Boeck, Gisela; Verevkin, Sergey P; Ludwig, Ralf

    2014-09-08

    A hundred years ago, Paul Walden studied ethyl ammonium nitrate (EAN), which became the first widely known ionic liquid. Although EAN has been investigated extensively, some important issues still have not been addressed; they are now tackled in this communication. By combining experimental thermogravimetric analysis with time of flight mass spectrometry (TGA-ToF-MS) and transpiration method with theoretical methods, we clarify the volatilisation of EAN from ambient to elevated temperatures. It was observed that up to 419 K, EAN evaporates as contact-ion pairs leading to very low vapour pressures of a few Pascal. Starting from 419 K, the decomposition to nitric acid and ethylamine becomes more thermodynamically favourable than proton transfer. This finding was supported by DFT calculations, which provide the free energies of all possible gas-phase species, and show that neutral molecules dominate over ion pairs above 500 K, an observation that is in nearly prefect agreement with the experimental boiling point of 513 K. This result is crucial for the ongoing practical applications of protic ionic liquids such as electrolytes for batteries and fuel cells because, in contrast to high-boiling conventional solvents, EAN exhibits no significant vapour pressure below 419 K and this property fulfils the requirements for the thermal behaviour of safe electrolytes. Overall, EAN shows the same barely measurable vapour pressures as typical aprotic ionic liquids at temperatures only 70 K lower. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Densities, Viscosities and Derived Thermophysical Properties of Water-Saturated Imidazolium-Based Ionic Liquids.

    PubMed

    Martins, Mónia A R; Neves, Catarina M S S; Kurnia, Kiki A; Carvalho, Pedro J; Rocha, Marisa A A; Santos, Luís M N B F; Pinho, Simão P; Freire, Mara G

    2016-01-15

    In order to evaluate the impact of the alkyl side chain length and symmetry of the cation on the thermophysical properties of water-saturated ionic liquids (ILs), densities and viscosities as a function of temperature were measured at atmospheric pressure and in the (298.15 to 363.15) K temperature range, for systems containing two series of bis(trifluoromethylsulfonyl)imide-based compounds: the symmetric [C n C n im][NTf 2 ] (with n = 1-8 and 10) and asymmetric [C n C 1 im][NTf 2 ] (with n = 2-5, 7, 9 and 11) ILs. For water-saturated ILs, the density decreases with the increase of the alkyl side chain length while the viscosity increases with the size of the aliphatic tails. The saturation water solubility in each IL was further estimated with a reasonable agreement based on the densities of water-saturated ILs, further confirming that for the ILs investigated the volumetric mixing properties of ILs and water follow a near ideal behaviour. The water-saturated symmetric ILs generally present lower densities and viscosities than their asymmetric counterparts. From the experimental data, the isobaric thermal expansion coefficient and energy barrier were also estimated. A close correlation between the difference in the energy barrier values between the water-saturated and pure ILs and the water content in each IL was found, supporting that the decrease in the viscosity of ILs in presence of water is directly related with the decrease of the energy barrier.

  9. Partially to fully saturated flow through smooth, clean, open fractures: qualitative experimental studies

    NASA Astrophysics Data System (ADS)

    Jones, Brendon R.; Brouwers, Luke B.; Dippenaar, Matthys A.

    2018-05-01

    Fractures are both rough and irregular but can be expressed by a simple model concept of two smooth parallel plates and the associated cubic law governing discharge through saturated fractures. However, in natural conditions and in the intermediate vadose zone, these assumptions are likely violated. This paper presents a qualitative experimental study investigating the cubic law under variable saturation in initially dry free-draining discrete fractures. The study comprised flow visualisation experiments conducted on transparent replicas of smooth parallel plates with inlet conditions of constant pressure and differing flow rates over both vertical and horizontal inclination. Flow conditions were altered to investigate the influence of intermittent and continuous influx scenarios. Findings from this research proved, for instance, that saturated laminar flow is not likely achieved, especially in nonhorizontal fractures. In vertical fractures, preferential flow occupies the minority of cross-sectional area despite the water supply. Movement of water through the fractured vadose zone therefore becomes a matter of the continuity principle, whereby water should theoretically be transported downward at significantly higher flow rates given the very low degree of water saturation. Current techniques that aim to quantify discrete fracture flow, notably at partial saturation, are questionable. Inspired by the results of this study, it is therefore hypothetically improbable to achieve saturation in vertical fractures under free-draining wetting conditions. It does become possible under extremely excessive water inflows or when not free-draining; however, the converse is not true, as a wet vertical fracture can be drained.

  10. Microseismicity Induced by Fluid Pressure Drop (Laboratory Study)

    NASA Astrophysics Data System (ADS)

    Turuntaev, Sergey; Zenchenko, Evgeny; Melchaeva, Olga

    2013-04-01

    Pore pressure change in saturated porous rocks may result in its fracturing (Maury et Fourmaintraux, 1993) and corresponding microseismic event occurrences. Microseismicity due to fluid injection is considered in numerous papers (Maxwell, 2010, Shapiro et al., 2005). Another type of the porous medium fracturing is related with rapid pore pressure drop at some boundary. The mechanism of such fracturing was considered by (Khristianovich, 1985) as a model of sudden coal blowing and by (Alidibirov, Panov, 1998) as a model of volcano eruptions. If the porous saturated medium has a boundary where it directly contacted with fluid under the high pressure (in a hydraulic fracture or in a borehole), and the pressure at that boundary is dropped, the conditions for tensile cracks can be achieved at some distance from the boundary. In the paper, the results of experimental study of saturated porous sample fracturing due to pore pressure rapid drop are discussed. The samples (82 mm high, ∅60 mm) were made of quartz sand, which was cemented by "liquid glass" glue with mass fraction 1%. The sample (porosity 35%, uniaxial unconfined compression strength 2.5 MPa) was placed in a mould and saturated by oil. The upper end of the sample contacted with the mould upper lid, the lower end contacted with fluid. The fluid pressure was increased to 10 MPa and then discharged through the bottom nipple. The pressure increases/drops were repeated 30-50 times. Pore pressure and acoustic emission (AE) were registered by transducers mounted into upper and bottom lids of the mould. It was found, that AE sources (corresponded to microfracturing) were spreading from the open end to the closed end of the sample, and that maximal number of AE events was registered at some distance from the opened end. The number of AE pulses increased with every next pressure drop, meanwhile the number of pulses with high amplitudes diminished. It was found that AE maximal rate corresponded to the fluid pressure

  11. Transport properties of nonelectrolyte liquid mixtures—I. Viscosity coefficients for n-alkane mixtures at saturation pressure from 283 to 378 K

    NASA Astrophysics Data System (ADS)

    Dymond, J. H.; Young, K. J.

    1980-12-01

    Viscosity coefficient measurements at saturation pressure are reported for n-hexane + n-hexadecane, n-hexane + n-octane + n-hexadecane, and n-hexane + n-octane + n-dodecane + n-hexadecane at temperatures from 283 to 378 K. The results show that the Congruence Principle applies to the molar excess Gibbs free energy of activation for flow, δ* G E, at temperatures other than 298 K. However, curves of δ* G E versus index number of the mixture are temperature dependent, and this must be taken into account for accurate prediction of mixture viscosity coefficients by this approach. The purely empirical equation of Grunberg and Nissan; 1 10765_2004_Article_BF00516562_TeX2GIFE1.gif ln η = x_1 ln η _1 + x_2 ln η _2 + x_1 x_2 G which has the advantage of not involving molar volumes, satisfactorily reproduces the experimental results for the binary mixture, but G is definitely composition dependent.

  12. An Assessment of Helium Evolution from Helium-Saturated Propellant Depressurization in Space

    NASA Technical Reports Server (NTRS)

    Nguyen, Bich N.; Best, Frederick; Wong, Tony; Kurwitz, Cable; McConnaughey, H. (Technical Monitor)

    2001-01-01

    Helium evolution from the transfer of helium-saturated propellant in space is quantified to assess its impacts from creating two-phase gas/liquid flow from the supply tank, gas injection into the receiving tank, and liquid discharge from the receiving tank. Propellant transfer takes place between two similar tanks whose maximum storage capacity is approximately 2.55 cubic meters each. The maximum on-orbit propellants transfer capability is 9000 lbm (fuel and oxidizer). The transfer line is approximately 1.27 cm in diameter and 6096 cm in length and comprised of the fluid interconnect system (FICS), the orbiter propellant transfer system (OPTS), and the International Space Station (ISS) propulsion module (ISSPM). The propellant transfer rate begins at approximately 11 liter per minute (lpm) and subsequently drops to approximately 0.5 lpm. The tank nominal operating pressure is approximately 1827 kPa (absolute). The line pressure drops for Monomethy1hydrazine (MMH) and Nitrogen tetroxide (NTO) at 11.3 lpm are approximately 202 kPa and 302 kPa, respectively. The pressure-drop results are based on a single-phase flow. The receiving tank is required to vent from approximately 1827 kPa to a lower pressure to affect propellant transfer. These pressure-drop scenarios cause the helium-saturated propellants to release excess helium. For tank ullage venting, the maximum volumes of helium evolved at tank pressure are approximately 0.5 ft3 for MMH and 2 ft3 for NTO. In microgravity environment, due to lack of body force, the helium evolution from a liquid body acts to propel it, which influences its fluid dynamics. For propellant transfer, the volume fractions of helium evolved at line pressure are 0.1% by volume for MMH and 0.6 % by volume for NTO at 11.3 lpm. The void fraction of helium evolved varies as an approximate second order power function of flow rate.

  13. Microwave measurements of the absolute values of absorption by water vapour in the atmosphere.

    PubMed

    Hogg, D C; Guiraud, F O

    1979-05-31

    MEASUREMENT of the absolute value of absorption by water vapour at microwave frequencies is difficult because the effect is so small. Far in the wings of the absorption lines, in the so-called 'windows' of the spectrum, it is especially difficult to achieve high accuracy in the free atmosphere. But it is in these windows that the behaviour of the absorption is important from both applied and scientific points of view. Satellite communications, remote sensing of the atmosphere, and radioastronomy, are all influenced by this behaviour. Measurements on an Earth-space path are reported here; the results indicate a nonlinear relationship between absorption and water-vapour content.

  14. Substrate patterning with NiOx nanoparticles and hot-wire chemical vapour deposition of WO3x and carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Houweling, Z. S.

    2011-10-01

    The first part of the thesis treats the formation of nickel catalyst nanoparticles. First, a patterning technique using colloids is employed to create ordered distributions of monodisperse nanoparticles. Second, nickel films are thermally dewetted, which produces mobile species that self-arrange in non-ordered distributions of polydisperse particles. Third, the mobility of the nickel species is successfully reduced by the addition of air during the dewetting and the use of a special anchoring layer. Thus, non-ordered distributions of self-arranged monodisperse nickel oxide nanoparticles (82±10 nm x 16±2 nm) are made. Studies on nickel thickness, dewetting time and dewetting temperature are conducted. With these particle templates, graphitic carbon nanotubes are synthesised using catalytic hot-wire chemical vapour deposition (HWCVD), demonstrating the high-temperature processability of the nanoparticles. The second part of this thesis treats the non-catalytic HWCVD of tungsten oxides (WO3-x). Resistively heated tungsten filaments exposed to an air flow at subatmospheric pressures, produce tungsten oxide vapour species, which are collected on substrates and are subsequently characterised. First, a complete study on the process conditions is conducted, whereby the effects of filament radiation, filament temperature, process gas pressure and substrate temperature, are investigated. The thus controlled growth of nanogranular smooth amorphous and crystalline WO3-x thin films is presented for the first time. Partially crystalline smooth hydrous WO3-x thin films consisting of 20 nm grains can be deposited at very high rates. The synthesis of ultrafine powders with particle sizes of about 7 nm and very high specific surface areas of 121.7±0.4 m2·g-1 at ultrahigh deposition rates of 36 µm·min-1, is presented. Using substrate heating to 600°C or more, while using air pressures of 3·10-5 mbar to 0.1 mbar, leads to pronounced crystal structures, from nanowires, to

  15. Development of a test method for distillation of diesel-biodiesel-alcohols mixtures at reduced pressure

    NASA Astrophysics Data System (ADS)

    Niculescu, R.; Iosub, I.; Clenci, A.; Zaharia, C.; Iorga-Simăn, V.

    2017-10-01

    Increased environmental awareness and depletion of fossil petroleum resources are driving the automotive industry to seek out and use alternative fuels. For instance, the biofuel is a major renewable energy source to supplement declining fossil fuel resources. The addition of alcohols like methanol and ethanol is practical in biodiesel blends due to its miscibility with the pure biodiesel. Alcohols also improve physico-chemical properties of biodiesel blends, which lead to improved combustion efficiency. Proper volatility of fuels is critical to the operation of internal combustion engines with respect to both performance and emissions. Volatility may be characterised by various measurements, the most common of which are vapour pressure, distillation and the vapour/liquid ratio. The presence of ethanol or other oxygenates may affect these properties and, as a result, performance and emissions, as well. However, in the case of diesel-biodiesel-alcohols mixtures, the variance of component volatility makes difficult the analysis of the overall volatility. Thus, the paper presents an experimental method of distilling diesel-biodiesel-alcohols mixtures by adjusting the boiler pressure of an i-Fischer Dist equipment.

  16. Giant spin Hall effect in graphene grown by chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Jayakumar; Koon, Gavin Kok Wai; Avsar, Ahmet; Ho, Yuda; Lee, Jong Hak; Jaiswal, Manu; Baeck, Seung-Jae; Ahn, Jong-Hyun; Ferreira, Aires; Cazalilla, Miguel A.; Neto, Antonio H. Castro; Özyilmaz, Barbaros

    2014-09-01

    Advances in large-area graphene synthesis via chemical vapour deposition on metals like copper were instrumental in the demonstration of graphene-based novel, wafer-scale electronic circuits and proof-of-concept applications such as flexible touch panels. Here, we show that graphene grown by chemical vapour deposition on copper is equally promising for spintronics applications. In contrast to natural graphene, our experiments demonstrate that chemically synthesized graphene has a strong spin-orbit coupling as high as 20 meV giving rise to a giant spin Hall effect. The exceptionally large spin Hall angle ~0.2 provides an important step towards graphene-based spintronics devices within existing complementary metal-oxide-semiconductor technology. Our microscopic model shows that unavoidable residual copper adatom clusters act as local spin-orbit scatterers and, in the resonant scattering limit, induce transverse spin currents with enhanced skew-scattering contribution. Our findings are confirmed independently by introducing metallic adatoms-copper, silver and gold on exfoliated graphene samples.

  17. Reduction in saturated fat intake for cardiovascular disease.

    PubMed

    Hooper, Lee; Martin, Nicole; Abdelhamid, Asmaa; Davey Smith, George

    2015-06-10

    evidence), but effects on all-cause mortality (RR 0.97; 95% CI 0.90 to 1.05; 12 trials, 55,858 participants) and cardiovascular mortality (RR 0.95; 95% CI 0.80 to 1.12, 12 trials, 53,421 participants) were less clear (both GRADE moderate quality of evidence). There was some evidence that reducing saturated fats reduced the risk of myocardial infarction (fatal and non-fatal, RR 0.90; 95% CI 0.80 to 1.01; 11 trials, 53,167 participants), but evidence for non-fatal myocardial infarction (RR 0.95; 95% CI 0.80 to 1.13; 9 trials, 52,834 participants) was unclear and there were no clear effects on stroke (any stroke, RR 1.00; 95% CI 0.89 to 1.12; 8 trials, 50,952 participants). These relationships did not alter with sensitivity analysis. Subgrouping suggested that the reduction in cardiovascular events was seen in studies that primarily replaced saturated fat calories with polyunsaturated fat, and no effects were seen in studies replacing saturated fat with carbohydrate or protein, but effects in studies replacing with monounsaturated fats were unclear (as we located only one small trial). Subgrouping and meta-regression suggested that the degree of reduction in cardiovascular events was related to the degree of reduction of serum total cholesterol, and there were suggestions of greater protection with greater saturated fat reduction or greater increase in polyunsaturated and monounsaturated fats. There was no evidence of harmful effects of reducing saturated fat intakes on cancer mortality, cancer diagnoses or blood pressure, while there was some evidence of improvements in weight and BMI. The findings of this updated review are suggestive of a small but potentially important reduction in cardiovascular risk on reduction of saturated fat intake. Replacing the energy from saturated fat with polyunsaturated fat appears to be a useful strategy, and replacement with carbohydrate appears less useful, but effects of replacement with monounsaturated fat were unclear due to inclusion of

  18. The influence of systemic hemodynamics and oxygen transport on cerebral oxygen saturation in neonates after the Norwood procedure.

    PubMed

    Li, Jia; Zhang, Gencheng; Holtby, Helen; Guerguerian, Anne-Marie; Cai, Sally; Humpl, Tilman; Caldarone, Christopher A; Redington, Andrew N; Van Arsdell, Glen S

    2008-01-01

    Ischemic brain injury is an important morbidity in neonates after the Norwood procedure. Its relationship to systemic hemodynamic oxygen transport is poorly understood. Sixteen neonates undergoing the Norwood procedure were studied. Continuous cerebral oxygen saturation was measured by near-infrared spectroscopy. Continuous oxygen consumption was measured by respiratory mass spectrometry. Pulmonary and systemic blood flow, systemic vascular resistance, oxygen delivery, and oxygen extraction ratio were derived with measurements of arterial, and superior vena cava and pulmonary venous gases and pressures at 2- to 4-hour intervals during the first 72 hours in the intensive care unit. Mean cerebral oxygen saturation was 66% +/- 12% before the operation, reduced to 51% +/- 13% on arrival in the intensive care unit, and remained low during the first 8 hours; it increased to 56% +/- 9% at 72 hours, still significantly lower than the preoperative level (P < .05). Postoperatively, cerebral oxygen saturation was closely and positively correlated with systemic arterial pressure, arterial oxygen saturation, and arterial oxygen tension and negatively with oxygen extraction ratio (P < .0001 for all). Cerebral oxygen saturation was moderately and positively correlated with systemic blood flow and oxygen delivery (P < .0001 for both). It was weakly and positively correlated with pulmonary blood flow (P = .001) and hemoglobin (P = .02) and negatively correlated with systemic vascular resistance (P = .003). It was not correlated with oxygen consumption (P > .05). Cerebral oxygen saturation decreased significantly in neonates during the early postoperative period after the Norwood procedure and was significantly influenced by systemic hemodynamic and metabolic events. As such, hemodynamic interventions to modify systemic oxygen transport may provide further opportunities to reduce the risk of cerebral ischemia and improve neurodevelopmental outcomes.

  19. Pore Structure Model for Predicting Elastic Wavespeeds in Fluid-Saturated Sandstones

    NASA Astrophysics Data System (ADS)

    Zimmerman, R. W.; David, E. C.

    2011-12-01

    During hydrostatic compression, in the elastic regime, ultrasonic P and S wave velocities measured on rock cores generally increase with pressure, and reach asymptotic values at high pressures. The pressure dependence of seismic velocities is generally thought to be due to the closure of compliant cracks, in which case the high-pressure velocities must reflect only the influence of the non-closable, equant "pores". Assuming that pores can be represented by spheroids, we can relate the elastic properties to the pore structure using an effective medium theory. Moreover, the closure pressure of a thin crack-like pore is directly proportional to its aspect ratio. Hence, our first aim is to use the pressure dependence of seismic velocities to invert the aspect ratio distribution. We use a simple analytical algorithm developed by Zimmerman (Compressibility of Sandstones, 1991), which can be used for any effective medium theory. Previous works have used overly restrictive assumptions, such as assuming that the stiff pores are spherical, or that the interactions between pores can be neglected. Here, we assume that the rock contains an exponential distribution of crack aspect ratios, and one family of stiff pores having an aspect ratio lying somewhere between 0.01 and 1. We develop our model in two versions, using the Differential Scheme, and the Mori-Tanaka scheme. The inversion is done using data obtained in dry experiments, since pore fluids have a strong effect on velocities and tend to mask the effect of the pore geometry. This avoids complicated joint inversion of dry and wet data, such as done by Cheng and Toksoz (JGR, 1979). Our results show that for many sets of data on sandstones, we can fit very well the dry velocities. Our second aim is to predict the saturated velocities from our pore structure model, noting that at a given differential stress, the pore structure should be the same as for a dry test. Our results show that the Biot-Gassmann predictions always

  20. A Theoretical Study of Vapour Phase Nucleation of the Rocket Propellant N2O4

    NASA Astrophysics Data System (ADS)

    Pal, P.

    2003-05-01

    The residual vapour of a rocket fuel at the venting stage develops a potential aerodynamic problem which is linked with the vapour phase nucleation phenomena of the propellant. This study, based entirely on molecular treatment, addresses the problem by focusing specifically on the N2O4 propellant which is used in the ARIANE flight. The phenomenon is examined by considering the thermodynamic free energies of N2O4 clusters, leading to the evaluation of nucleation flux rates of critical nuclei at incipient nucleation. Preliminary examinations of the kinetics of flux pulses provide basic explanation from a molecular perspective.

  1. Direct laboratory observation of fluid distribution and its influence on acoustic properties of patchy saturated rocks

    NASA Astrophysics Data System (ADS)

    Lebedev, M.; Clennell, B.; Pervukhina, M.; Shulakova, V.; Mueller, T.; Gurevich, B.

    2009-04-01

    Porous rocks in hydrocarbon reservoirs are often saturated with a mixture of two or more fluids. Interpretation of exploration seismograms requires understanding of the relationship between distribution of the fluids patches and acoustic properties of rocks. The sizes of patches as well as their distribution affect significantly the seismic response. If the size of the fluid patch is smaller than the diffusion wavelength then pressure equilibration is achieved and the bulk modulus of the rock saturated with a mixture is defined by the Gassmann equations (Gassmann, 1951) with the saturation-weighted average of the fluid bulk modulus given by Wood's law (Wood, 1955, Mavko et al., 1998). If the fluid patch size is much larger than the diffusion wavelength then there is no pressure communication between different patches. In this case, fluid-flow effects can be neglected and the overall rock may be considered equivalent to an elastic composite material consisting of homogeneous parts whose properties are given by Gassmann theory with Hill's equation for the bulk modulus (Hill, 1963, Mavko et al., 1998). At intermediate values of fluid saturation the velocity-saturation relationship is significantly affected by the fluid patch distribution. In order to get an improved understanding of factors influencing the patch distribution and the resulting seismic wave response we performed simultaneous measurements of P-wave velocities and rock sample CT imaging. The CT imaging allows us to map the fluid distribution inside rock sample during saturation (water imbibition). We compare the experimental results with theoretical predictions. In this paper we will present results of simultaneous measurements of longitudinal wave velocities and imaging mapping of fluid distribution inside rock sample during sample saturation. We will report results of two kinds of experiments: "dynamic" and "quasi static" saturation. In both experiments Casino Cores Otway Basin sandstone, Australia core

  2. Magnetically Delayed Low-Pressure Gas Discharge Switching

    DTIC Science & Technology

    1993-06-01

    the gap, minimizes this effect. It is this version of the low- pressure switch that we are presently studying. Our magnetically delayed low... pressure switch (MDLPS) test-stand was built primarily to support the long-pulse, relativistic klystron (RK) and free electron laser (FEL) work at... pressure switch and compared the performance with and without the saturable inductor. A comparison of typi- cal closure properties is shown in Fig

  3. Alcohol vapour detection at the three phase interface using enzyme-conducting polymer composites.

    PubMed

    Winther-Jensen, Orawan; Kerr, Robert; Winther-Jensen, Bjorn

    2014-02-15

    Immobilisation of enzymes on a breathable electrode can be useful for various applications where the three-phase interface between gas or chemical vapour, electrolyte and electrode is crucial for the reaction. In this paper, we report the further development of the breathable electrode concept by immobilisation of alcohol dehydrogenase into vapour-phase polymerised poly(3,4-ethylene dioxythiophene) that has been coated onto a breathable membrane. Typical alcohol sensing, whereby the coenzyme β-Nicotinamide adenine dinucleotide (NADH) is employed as a redox-mediator, was successfully used as a model reaction for the oxidation of ethanol. This indicates that the ethanol vapour from the backside of the membrane has access to the active enzyme embedded in the electrode. The detecting range of the sensor is suitable for the detection of ethanol in fruit juices and for the baseline breath ethanol concentration of drunken driving. After continuous operation for 4.5h the system only showed a 20% decrease in the current output. The electrodes maintained 62% in current output after being refrigerated for 76 days. This work is continuing the progress of the immobilisation of specific enzymes for certain electrochemical reactions whereby the three-phase interface has to be maintained and/or the simultaneous separation of gas from liquid is required. © 2013 Elsevier B.V. All rights reserved.

  4. Detecting Pore Fluid Pressure Changes by Using the Vp/Vs Ratio

    NASA Astrophysics Data System (ADS)

    Vanorio, T.; Mavko, G.

    2006-12-01

    A central problem in studies aimed at predicting the dynamic behavior of faults is monitoring and quantifying fluid changes in areas prone to overpressure. Experimental and modeling studies show the Vp/Vs ratio to be a good determinant of the saturation state of a rock formation as well as of its inner pore pressure condition. Dectecting pore pressure changes depends, among other causes, on the reliability of laboratory data to calibrate the in-situ measured velocities. Ideally, laboratory experiments performed under controlled conditions would identify the fundamental mechanisms responsible for changes in the measured acoustic properties. However, technical limitations in the laboratory together with the assumptions driving the experimental and modeling approaches rise spouriuos mechanisms which hinder our present understanding of the actual role of high pore pressure on the elastic and poroelastic parameters. Critical issues unclude: a) the frequencies used in the laboratory are responsible for high-frequency fluid effects which induce velocity dispersion. As a result, both the effective stress parameter and velocities (and their pressure-dependence) estimated from high- frequency ultrasonic data are different from those applicable to crustal low frequency wave propagation; b) laboratory measurements made at dry, drained conditions are assumed to mimic those in gas pressured rocks. However, in dry, drained conditions, no pore pressure is exerted in the pore space, and the pore gas is infinitely compressible; c) when using room-dry, drained measurements as the baseline to model pressured rock formations, the unloading path (i.e. decreasing confining pressure) is supposed to mimic the inflationary path due to pore pressure increase. Doing so, it is assumed that the amount of crack opening due to pore pressure is equal to that of crack closure caused by the overburden stress and thus, the effective stress coefficient is implicitely assumed equal to 1. To minimize

  5. Using Peltier Cells to Study Solid-Liquid-Vapour Transitions and Supercooling

    ERIC Educational Resources Information Center

    Torzo, Giacomo; Soletta, Isabella; Branca, Mario

    2007-01-01

    We propose an apparatus for teaching experimental thermodynamics in undergraduate introductory courses, using thermoelectric modules and a real-time data acquisition system. The device may be made at low cost, still providing an easy approach to the investigation of liquid-solid and liquid-vapour phase transitions and of metastable states…

  6. Automated calibration of laser spectrometer measurements of δ18 O and δ2 H values in water vapour using a Dew Point Generator.

    PubMed

    Munksgaard, Niels C; Cheesman, Alexander W; Gray-Spence, Andrew; Cernusak, Lucas A; Bird, Michael I

    2018-06-30

    Continuous measurement of stable O and H isotope compositions in water vapour requires automated calibration for remote field deployments. We developed a new low-cost device for calibration of both water vapour mole fraction and isotope composition. We coupled a commercially available dew point generator (DPG) to a laser spectrometer and developed hardware for water and air handling along with software for automated operation and data processing. We characterised isotopic fractionation in the DPG, conducted a field test and assessed the influence of critical parameters on the performance of the device. An analysis time of 1 hour was sufficient to achieve memory-free analysis of two water vapour standards and the δ 18 O and δ 2 H values were found to be independent of water vapour concentration over a range of ≈20,000-33,000 ppm. The reproducibility of the standard vapours over a 10-day period was better than 0.14 ‰ and 0.75 ‰ for δ 18 O and δ 2 H values, respectively (1 σ, n = 11) prior to drift correction and calibration. The analytical accuracy was confirmed by the analysis of a third independent vapour standard. The DPG distillation process requires that isotope calibration takes account of DPG temperature, analysis time, injected water volume and air flow rate. The automated calibration system provides high accuracy and precision and is a robust, cost-effective option for long-term field measurements of water vapour isotopes. The necessary modifications to the DPG are minor and easily reversible. Copyright © 2018 John Wiley & Sons, Ltd.

  7. Lattice Boltzmann simulations of supercritical CO2-water drainage displacement in porous media: CO2 saturation and displacement mechanism.

    PubMed

    Yamabe, Hirotatsu; Tsuji, Takeshi; Liang, Yunfeng; Matsuoka, Toshifumi

    2015-01-06

    CO2 geosequestration in deep aquifers requires the displacement of water (wetting phase) from the porous media by supercritical CO2 (nonwetting phase). However, the interfacial instabilities, such as viscous and capillary fingerings, develop during the drainage displacement. Moreover, the burstlike Haines jump often occurs under conditions of low capillary number. To study these interfacial instabilities, we performed lattice Boltzmann simulations of CO2-water drainage displacement in a 3D synthetic granular rock model at a fixed viscosity ratio and at various capillary numbers. The capillary numbers are varied by changing injection pressure, which induces changes in flow velocity. It was observed that the viscous fingering was dominant at high injection pressures, whereas the crossover of viscous and capillary fingerings was observed, accompanied by Haines jumps, at low injection pressures. The Haines jumps flowing forward caused a significant drop of CO2 saturation, whereas Haines jumps flowing backward caused an increase of CO2 saturation (per injection depth). We demonstrated that the pore-scale Haines jumps remarkably influenced the flow path and therefore equilibrium CO2 saturation in crossover domain, which is in turn related to the storage efficiency in the field-scale geosequestration. The results can improve our understandings of the storage efficiency by the effects of pore-scale displacement phenomena.

  8. Chronic psychological effects of exposure to mercury vapour among chlorine-alkali plant workers.

    PubMed

    Pranjić, N; Sinanović, O; Jakubović, R

    2003-01-01

    Quantitative assessment of nervous system function is essential in characterising the nature and extent of impairment in individuals experiencing symptoms following work-place mercury vapour exposure. The purpose of this study was the application of standardised tests of behavioural, psychomotor and memory function to understand the neuropsychological effects of mercury in occupationally exposed chlorine-alkali plant workers. The study comprised 45 workers at a chlorine-alkali plant with the mean age of 39.36 +/- 5.94 years, who had been exposed to daily inhalation of mercury vapour over long-term employment of 16.06 +/- 4.29 years. The cumulative mercury index was 155.32 +/- 95.02 micrograms/g creatinine, the mean of urinary mercury concentrations on the first day of the study was 119.50 +/- 157.24 micrograms/g creatinine, and the mean of urinary mercury concentrations 120 days after cessation of exposure was 21.70 +/- 26.07 micrograms/g creatinine. The analysis included tests of behavioural, psychomotor and memory function. The behavioural test battery consisted of: Environmental Worry Scale (EWS), Minnesota Modified Personal Inventory (MMPI-2), Purdue standard 25 minute test, and adapted, 10 minutes test, Bender's Visual-Motor Gestalt test (BGT), and Eysenck Personality Inventory (EPQ). The data were compared to a control group of 32 not directly exposed workers. In the mercury vapour exposed workers with relatively high level exposure to inorganic mercury vapour (TWA/TLV = 0.12 mg/m3/0.025 mg/m3) we identified somatic depression-hypochondria symptoms with higher scores for scales: hysteria (P < 0.001), schizoid and psycho-asthenia (MMPI-2). The mercury-exposed workers had introvert behaviour (EPQ, MMPI-2). The cognitive disturbances in mercury-exposed workers were identified as: concentration difficulty, psychomotor, perceptual and motor coordination disturbances, and brain effects. We identified fine tremor of the hands in 34 out of 45 mercury-exposed workers

  9. Persistent negative temperature response of mesophyll conductance in red raspberry (Rubus idaeus L.) leaves under both high and low vapour pressure deficits: a role for abscisic acid?

    PubMed

    Qiu, Changpeng; Ethier, Gilbert; Pepin, Steeve; Dubé, Pascal; Desjardins, Yves; Gosselin, André

    2017-09-01

    The temperature dependence of mesophyll conductance (g m ) was measured in well-watered red raspberry (Rubus idaeus L.) plants acclimated to leaf-to-air vapour pressure deficit (VPDL) daytime differentials of contrasting amplitude, keeping a fixed diurnal leaf temperature (T leaf ) rise from 20 to 35 °C. Contrary to the great majority of g m temperature responses published to date, we found a pronounced reduction of g m with increasing T leaf irrespective of leaf chamber O 2 level and diurnal VPDL regime. Leaf hydraulic conductance was greatly enhanced during the warmer afternoon periods under both low (0.75 to 1.5 kPa) and high (0.75 to 3.5 kPa) diurnal VPDL regimes, unlike stomatal conductance (g s ), which decreased in the afternoon. Consequently, the leaf water status remained largely isohydric throughout the day, and therefore cannot be evoked to explain the diurnal decrease of g m . However, the concerted diurnal reductions of g m and g s were well correlated with increases in leaf abscisic acid (ABA) content, thus suggesting that ABA can induce a significant depression of g m under favourable leaf water status. Our results challenge the view that the temperature dependence of g m can be explained solely from dynamic leaf anatomical adjustments and/or from the known thermodynamic properties of aqueous solutions and lipid membranes.​. © 2017 John Wiley & Sons Ltd.

  10. Behaviour of the iron vapour core in the arc of a controlled short-arc GMAW process with different shielding gases

    NASA Astrophysics Data System (ADS)

    Wilhelm, G.; Kozakov, R.; Gött, G.; Schöpp, H.; Uhrlandt, D.

    2012-02-01

    The controlled metal transfer process (CMT) is a variation of the gas metal arc welding (GMAW) process which periodically varies wire feeding speed. Using a short-arc burning phase to melt the wire tip before the short circuit, heat input to the workpiece is reduced. Using a steel wire and a steel workpiece, iron vapour is produced in the arc, its maximum concentration lying centrally. The interaction of metal vapour and welding gas considerably impacts the arc profile and, consequently, the heat transfer to the weldpool. Optical emission spectroscopy has been applied to determine the radial profiles of the plasma temperature and iron vapour concentration, as well as their temporal behaviour in the arc period for different mixtures of Ar, O2 and CO2 as shielding gases. Both the absolute iron vapour density and the temporal expansion of the iron core differ considerably for the gases Ar + 8%O2, Ar + 18% CO2 and 100% CO2 respectively. Pronounced minimum in the radial temperature profile is found in the arc centre in gas mixtures with high Ar content under the presence of metal vapour. This minimum disappears in pure CO2 gas. Consequently, the temperature and electrical and thermal conductivity in the arc when CO2 is used as a shielding gas are considerably lower.

  11. Delaying microbial proliferation in freshly peeled shallots by active packaging incorporating ethanol vapour-controlled release sachets and low storage temperature.

    PubMed

    Utto, Weerawate; Preutikul, Rittirong; Malila, Patcharee; Noomhorm, Athapol; Bronlund, John E

    2018-03-01

    This research was conducted to investigate effects of ethanol vapour released in active packaging and storage temperatures on the quality of freshly peeled shallots. The package tested was a solid polypropylene tray incorporating an ethanol vapour-controlled release sachet. The sachet was made of an aluminium foil film on one side and either low-density polyethylene or nylon/polyethylene on the other. Individual sachets contained silica gel adsorbent as the carrier pre-loaded with ethanol. One sachet was placed in each tray containing the peeled shallots and the tray was heat sealed with the low-density polyethylene film lid. Packages were stored at either 10 or 25 ℃ for 10 d. Trays containing only peeled shallots were designated as controls. High storage temperature stimulated quality changes in the shallots. Although ethanol vapour accumulated in the active package headspace, the extent to which ethanol concentrations increased within the shallots was not significantly different from that in the control packages. Microbial proliferation in terms of yeast and mould counts could be delayed through a combination of 10 ℃ and ethanol vapour released from the low-density polyethylene sachet. The ethanol vapour accumulated in the packages did not have a significant effect on mass loss, firmness, and colour changes in the peeled shallots, or on the concentrations of oxygen and carbon dioxide in the packages.

  12. A reference data set for validating vapor pressure measurement techniques: homologous series of polyethylene glycols

    NASA Astrophysics Data System (ADS)

    Krieger, Ulrich K.; Siegrist, Franziska; Marcolli, Claudia; Emanuelsson, Eva U.; Gøbel, Freya M.; Bilde, Merete; Marsh, Aleksandra; Reid, Jonathan P.; Huisman, Andrew J.; Riipinen, Ilona; Hyttinen, Noora; Myllys, Nanna; Kurtén, Theo; Bannan, Thomas; Percival, Carl J.; Topping, David

    2018-01-01

    To predict atmospheric partitioning of organic compounds between gas and aerosol particle phase based on explicit models for gas phase chemistry, saturation vapor pressures of the compounds need to be estimated. Estimation methods based on functional group contributions require training sets of compounds with well-established saturation vapor pressures. However, vapor pressures of semivolatile and low-volatility organic molecules at atmospheric temperatures reported in the literature often differ by several orders of magnitude between measurement techniques. These discrepancies exceed the stated uncertainty of each technique which is generally reported to be smaller than a factor of 2. At present, there is no general reference technique for measuring saturation vapor pressures of atmospherically relevant compounds with low vapor pressures at atmospheric temperatures. To address this problem, we measured vapor pressures with different techniques over a wide temperature range for intercomparison and to establish a reliable training set. We determined saturation vapor pressures for the homologous series of polyethylene glycols (H - (O - CH2 - CH2)n - OH) for n = 3 to n = 8 ranging in vapor pressure at 298 K from 10-7 to 5×10-2 Pa and compare them with quantum chemistry calculations. Such a homologous series provides a reference set that covers several orders of magnitude in saturation vapor pressure, allowing a critical assessment of the lower limits of detection of vapor pressures for the different techniques as well as permitting the identification of potential sources of systematic error. Also, internal consistency within the series allows outlying data to be rejected more easily. Most of the measured vapor pressures agreed within the stated uncertainty range. Deviations mostly occurred for vapor pressure values approaching the lower detection limit of a technique. The good agreement between the measurement techniques (some of which are sensitive to the mass

  13. Landslide stability: Role of rainfall-induced, laterally propagating, pore-pressure waves

    USGS Publications Warehouse

    Priest, G.R.; Schulz, W.H.; Ellis, W.L.; Allan, J.A.; Niem, A.R.; Niem, W.A.

    2011-01-01

    The Johnson Creek Landslide is a translational slide in seaward-dipping Miocene siltstone and sandstone (Astoria Formation) and an overlying Quaternary marine terrace deposit. The basal slide plane slopes sub-parallel to the dip of the Miocene rocks, except beneath the back-tilted toe block, where it slopes inland. Rainfall events raise pore-water pressure in the basal shear zone in the form of pulses of water pressure traveling laterally from the headwall graben down the axis of the slide at rates of 1-6 m/hr. Infiltration of meteoric water and vertical pressure transmission through the unsaturated zone has been measured at ~50 mm/hr. Infiltration and vertical pressure transmission were too slow to directly raise head at the basal shear zone prior to landslide movement. Only at the headwall graben was the saturated zone shallow enough for rainfall events to trigger lateral pulses of water pressure through the saturated zone. When pressure levels in the basal shear zone exceeded thresholds defined in this paper, the slide began slow, creeping movement as an intact block. As pressures exceeded thresholds for movement in more of the slide mass, movement accelerated, and differential displacement between internal slide blocks became more pronounced. Rainfall-induced pore-pressure waves are probably a common landslide trigger wherever effective hydraulic conductivity is high and the saturated zone is located near the surface in some part of a slide. An ancillary finding is apparently greater accuracy of grouted piezometers relative to those in sand packs for measurement of pore pressures at the installed depth.

  14. Development of graphene nanoplatelet embedded polymer microcantilever for vapour phase explosive detection applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, Prasenjit; Pandey, Swapnil; Ramgopal Rao, V.

    2014-09-28

    In this work, a graphene based strain sensor has been reported for explosive vapour detection applications by exploiting the piezoresistive property of graphene. Instead of silicon based cantilevers, a low cost polymeric micro-cantilever platform has been used to fabricate this strain sensor by embedding the graphene nanoplatelet layer inside the beam. The fabricated devices were characterized for their mechanical and electromechanical behaviour. This device shows a very high gauge factor which is around ~144. Also the resonant frequency of these cantilevers is high enough such that the measurements are not affected by environmental noise. These devices have been used inmore » this work for reliable detection of explosive vapours such as 2,4,6-Trinitrotoluene down to parts-per-billion concentrations in ambient conditions.« less

  15. Adsorption of water vapour and the specific surface area of arctic zone soils (Spitsbergen)

    NASA Astrophysics Data System (ADS)

    Cieśla, Jolanta; Sokołowska, Zofia; Witkowska-Walczak, Barbara; Skic, Kamil

    2018-01-01

    Water vapour/nitrogen adsorption were investigated and calculated the specific surface areas of arctic-zone soil samples (Turbic Cryosols) originating from different micro-relief forms (mud boils, cell forms and sorted circles) and from different depths. For the characterisation of the isotherms obtained for arctic soils, the Brunauer-Emmet-Teller model was then compared with the two other models (Aranovich-Donohue and Guggenheim-Anderson-de Boer) which were developed from Brunauer-Emmet-Teller. Specific surface area was calculated using the Brunauer-Emmet-Teller model at p p0-1 range of 0.05-0.35 for the water vapour desorption and nitrogen adsorption isotherms. The values of total specific surface area were the highest in Cryosols on mud boils, lower on cell forms, and the lowest on sorted circles. Such tendency was observed for the results obtained by both the water vapour and nitrogen adsorption. The differences in the values of specific surface area at two investigated layers were small. High determination coefficients were obtained for relationships between the specific surface areas and contents of clay and silt fraction in Cryosols. No statistically significant correlation between the total carbon amount and the values of specific surface area in Cryosols has been found.

  16. Mobility Effect on Poroelastic Seismic Signatures in Partially Saturated Rocks With Applications in Time-Lapse Monitoring of a Heavy Oil Reservoir

    NASA Astrophysics Data System (ADS)

    Zhao, Luanxiao; Yuan, Hemin; Yang, Jingkang; Han, De-hua; Geng, Jianhua; Zhou, Rui; Li, Hui; Yao, Qiuliang

    2017-11-01

    Conventional seismic analysis in partially saturated rocks normally lays emphasis on estimating pore fluid content and saturation, typically ignoring the effect of mobility, which decides the ability of fluids moving in the porous rocks. Deformation resulting from a seismic wave in heterogeneous partially saturated media can cause pore fluid pressure relaxation at mesoscopic scale, thereby making the fluid mobility inherently associated with poroelastic reflectivity. For two typical gas-brine reservoir models, with the given rock and fluid properties, the numerical analysis suggests that variations of patchy fluid saturation, fluid compressibility contrast, and acoustic stiffness of rock frame collectively affect the seismic reflection dependence on mobility. In particular, the realistic compressibility contrast of fluid patches in shallow and deep reservoir environments plays an important role in determining the reflection sensitivity to mobility. We also use a time-lapse seismic data set from a Steam-Assisted Gravity Drainage producing heavy oil reservoir to demonstrate that mobility change coupled with patchy saturation possibly leads to seismic spectral energy shifting from the baseline to monitor line. Our workflow starts from performing seismic spectral analysis on the targeted reflectivity interface. Then, on the basis of mesoscopic fluid pressure diffusion between patches of steam and heavy oil, poroelastic reflectivity modeling is conducted to understand the shift of the central frequency toward low frequencies after the steam injection. The presented results open the possibility of monitoring mobility change of a partially saturated geological formation from dissipation-related seismic attributes.

  17. Sulfur Concentration of High-FeO* Basalts at Sulfide Saturation at High Pressures and Temperatures - Implications for Deep Sulfur Cycle on Mars (Invited)

    NASA Astrophysics Data System (ADS)

    Dasgupta, R.; Ding, S.

    2013-12-01

    One of the chief influences of magma in the mantles terrestrial planets is its role in outgassing and ingassing of key volatiles and thus affecting planetary dynamics and climate over long timescales. For Mars, magmatic release of greenhouse gases has been argued to be a major factor in creating warm ancient climate. However, the responsible magmatic gas has not been unequivocally identified. SO2 or H2S could have been the main greenhouse gases, yet the magmatic outflux of S from the martian mantle is poorly constrained. Righter et al. [1] showed that the use of sulfur content at sulfide saturation (SCSS) models based on low-FeO*, high-alumina terrestrial basalts to martian basalts leads to significant error. However, experiments on high-FeO* basalts remain limited to ≤0.8 GPa [1], although the onset of melting in the martian mantle may take place at 250-400 km depth (3-5 GPa) [2]. To constrain SCSS of martian magmas at mantle conditions, we simulated basalt-sulfide melt equilibria using two synthesized meteorite compositions, i.e., Yamato980459 (FeO* ˜17 wt.%; Al2O3 ˜6 wt.%) and NWA2990 (FeO* ˜16 wt.%; Al2O3 ˜9 wt.%) in both anhydrous and hydrous conditions at 1-3 GPa and 1500-1700 °C. Experiments were conducted in graphite capsules, using an end-loaded piston cylinder device. Sulfur contents of sulfide melt-saturated experimental quenched basalts were determined using electron microprobe. Our experimental results show that SCSS decreases with increasing pressure and increases with increasing temperature and melt hydration. Based on our experimental SCSS and those from previous low-pressure experiments on high-FeO* martian basalts [2], we developed a new parameterization to predict martian basalt SCSS as a function of depth, temperature, and melt composition. Our model suggests that at the conditions of last equilibration with the sulfide-saturated mantle [2], martian basalts may contain as high as 3500-4700 ppm S and thus S-rich gases might have caused the

  18. Discussion of pore pressure transmission under rain infiltration in a soil layer

    NASA Astrophysics Data System (ADS)

    Yang, S. Y.; Jan, C. D.

    2017-12-01

    The vadose zone (or unsaturated zone) denotes the geologic media between ground surface and the water table in situ where the openings, or pores, in the soil (rock) layers are partially filled with water and air. In this landscape, rainwater infiltrates into soils advancing through this vadose zone and could generates a shallow saturation zone at soil bedrock boundary due to permeability contrast. This saturation zone leads to downslope shallow subsurface storm runoff that contributes to a part of saturation overland flow, dominating water reaching river channels. Hence, unsaturated processes (e.g., rain infiltration) is an important issue that can determine the timing and magnitude of positive pore pressure and discharge peaks, and the characteristics of runoff, water chemistry, hillslope stability is also tie to the processes. In this study, we investigated the transmission of pore pressure evolution in the vadose zone for diverse soil materials based on poroelasticity theory. Commonly, a traditional way is to utilize the Richard's equation to predict pore pressure evolution under unsaturated rain infiltration, ignoring the inertial effect on the process. Here we relax this limitation and propose two reference time tk and tep that can represent the arriving time at a certain depth of wave propagation and dissipation, respectively. Form ground surface to a depth of 1 m, tk has significant differences under nearly unsaturated conditions for diverse soil properties; however, no evident variations in tk can be observed under nearly saturated conditions. Values of tep for loose, cohesionless soils are much greater but decreases to the smallest one (within 1 day) than those for other soil properties under a nearly saturated condition. Results indicate that transient pore pressure transmission is mainly dominated by dynamic wave propagation but the effect of dissipation could become more important with increase in water saturation.

  19. Pan-derived isotopic composition of atmospheric vapour in a Mediterranean wetland (Rhône River Delta, France).

    PubMed

    Vallet-Coulomb, Christine; Cartapanis, Olivier; Radakovitch, Olivier; Sonzogni, Corinne; Pichaud, Marc

    2010-03-01

    A continuous record of atmospheric vapour isotopic composition (delta(A)) can be derived from the isotope mass balance of a water body submitted to natural evaporation. In this paper, we present preliminary results of the application of this method to a drying evaporation pan, located in a Mediterranean wetland, during a two-month summer period. Results seem consistent with few atmospheric vapour data based on the assumption of isotopic equilibrium with precipitation, but we observed a shift between pan-derived delta(A) and the composition of vapour samples collected by cold trapping. These results suggest that further investigations are necessary to evaluate the effect of diurnal variations of atmospheric conditions on the applicability of the pan-evaporation method, and on the representative of grab atmospheric samples. We also propose a sensitivity analysis for evaluating the impact of the different measured components on delta(A) calculation, and show an improvement in the method efficiency as the pan is drying.

  20. Liquid and vapour-phase antifungal activities of selected essential oils against candida albicans: microscopic observations and chemical characterization of cymbopogon citratus

    PubMed Central

    2010-01-01

    Background Use of essential oils for controlling Candida albicans growth has gained significance due to the resistance acquired by pathogens towards a number of widely-used drugs. The aim of this study was to test the antifungal activity of selected essential oils against Candida albicans in liquid and vapour phase and to determine the chemical composition and mechanism of action of most potent essential oil. Methods Minimum Inhibitory concentration (MIC) of different essential oils in liquid phase, assayed through agar plate dilution, broth dilution & 96-well micro plate dilution method and vapour phase activity evaluated through disc volatilization method. Reduction of C. albicans cells with vapour exposure was estimated by kill time assay. Morphological alteration in treated/untreated C. albicans cells was observed by the Scanning electron microscopy (SEM)/Atomic force microscopy (AFM) and chemical analysis of the strongest antifungal agent/essential oil has been done by GC, GC-MS. Results Lemon grass (Cymbopogon citratus) essential oil exhibited the strongest antifungal effect followed by mentha (Mentha piperita) and eucalyptus (Eucalyptus globulus) essential oil. The MIC of lemon grass essential oil in liquid phase (288 mg/l) was significantly higher than that in the vapour phase (32.7 mg/l) and a 4 h exposure was sufficient to cause 100% loss in viability of C. albicans cells. SEM/AFM of C. albicans cells treated with lemon grass essential oil at MIC level in liquid and vapour phase showed prominent shrinkage and partial degradation, respectively, confirming higher efficacy of vapour phase. GC-MS analysis revealed that lemon grass essential oil was dominated by oxygenated monoterpenes (78.2%); α-citral or geranial (36.2%) and β-citral or neral (26.5%), monoterpene hydrocarbons (7.9%) and sesquiterpene hydrocarbons (3.8%). Conclusion Lemon grass essential oil is highly effective in vapour phase against C. albicans, leading to deleterious morphological

  1. Novel method for water vapour monitoring using wireless communication networks measurements

    NASA Astrophysics Data System (ADS)

    David, N.; Alpert, P.; Messer, H.

    2009-04-01

    We propose a new technique for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks. Water vapour plays a crucial part in a variety of atmospheric processes. As the most influential of greenhouse gases, it absorbs long-wave terrestrial radiation. The water vapour cycle of evaporation and recondensation is a major energy redistributing mechanism transferring heat energy from the Earth's surface to the atmosphere. Additionally, humidity has an important role in weather forecasting as a key variable required for initialization of atmospheric models and hazard warning techniques. However, current methods of monitoring humidity suffer from low spatial resolution, high cost or a lack of precision when measuring near ground levels. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, the proposed method can provide moisture observations at high temporal and spatial resolution. Further, the implementation cost is minimal, since the data used is already collected and saved by the cellular operators. In addition - many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which include absence of rain, fog or clouds along the propagation path. We present results from real-data measurements taken from microwave links used in a backhaul cellular network that show very good agreement with surface

  2. Investigation of the vapour-plasma plume in the welding of titanium by high-power ytterbium fibre laser radiation

    NASA Astrophysics Data System (ADS)

    Bykovskiy, D. P.; Petrovskii, V. N.; Uspenskiy, S. A.

    2015-03-01

    The vapour-plasma plume produced in the welding of 6-mm thick VT-23 titanium alloy plates by ytterbium fibre laser radiation of up to 10 kW power is studied in the protective Ar gas medium. High-speed video filming of the vapour-plasma plume is used to visualise the processes occurring during laser welding. The coefficient of inverse bremsstrahlung by the welding plasma plume is calculated from the data of the spectrometric study.

  3. Mechanism of gas saturated oil viscosity anomaly near to phase transition point

    NASA Astrophysics Data System (ADS)

    Suleimanov, Baghir A.; Abbasov, Elkhan M.; Sisenbayeva, Marziya R.

    2017-01-01

    The article presents experimental studies of the phase behavior by the flash liberation test and of the viscosity of the live oil at different pressures. Unlike the typical studies at the pressure near the saturation pressure, the measurements were conducted at a relatively small pressure increment of 0.08-0.25 MPa. The viscosity anomaly was discovered experimentally near to the phase transition point in the range of the pressure levels P/Pb = 1-1.14 (Pb—bubble point pressure) and shows that it decreases about 70 times in comparison to the viscosity at the reservoir pressure. It was found that the bubble point pressure decreases significantly (up to 36%) with surfactant addition. Furthermore, the viscosity of the live oil at the surfactant concentration of 5 wt. % decreases almost 37 times in comparison to the viscosity at the reservoir pressure. The mechanism of observed effects was suggested based on the formation of the stable subcritical gas nuclei and associated slippage effect. The mechanism for the stabilization of the subcritical nuclei by the combined action of the surface and electrical forces, as well as the morphology of the formed nanobubbles, was considered. The model for determining the oil viscosity taking into account the slippage effect was suggested.

  4. [Thermodynamics of drug polymorphism: domains and stability hierarchy by pressure temperature diagram. Application to the tetramorphism of fananserine].

    PubMed

    Toscani, S

    2002-05-01

    In this communication, an application of classical thermodynamics to crystalline solid state polymorphism is shown to allow stability p, T domains and stability hierarchy among crystalline phases of a polymorph to be defined by constructing the unary p, T phase diagram. The three topological rules upon which this construction is founded are presented; the first one is a straight consequence of the least vapour pressure criterion by Ostwald. Calculation of triple point co-ordinates and of two-phase equilibrium curves is based upon using both thermodynamic and crystallographic data obtained at ordinary pressure. Clapeyron equation allows the slopes of the straight lines representing equilibria between condensed phases to be calculated and, hence, triple points situated at high or negative pressure to be determined. On the other hand, the hierarchy among the thermodynamic stability degrees of the crystalline varieties may be inferred from the location of the sublimation curves, by merely acknowledging inequalities among vapour pressures at each temperature on the whole T-range. These building-up processes are pointed out by outlining the achievement of a phase diagram related to the tetramorphism of fananserine, an anxiolytic drug. Three out four crystalline forms, namely phases II, III and IV, possess their own stability domain, although those belonging to phases II and III are limited at high pressure by that of phase IV. Conversely, phase I is overall metastable and exhibits a whole monotropic behaviour.

  5. Saturation-state sensitivity of marine bivalve larvae to ocean acidification

    NASA Astrophysics Data System (ADS)

    Waldbusser, George G.; Hales, Burke; Langdon, Chris J.; Haley, Brian A.; Schrader, Paul; Brunner, Elizabeth L.; Gray, Matthew W.; Miller, Cale A.; Gimenez, Iria

    2015-03-01

    Ocean acidification results in co-varying inorganic carbon system variables. Of these, an explicit focus on pH and organismal acid-base regulation has failed to distinguish the mechanism of failure in highly sensitive bivalve larvae. With unique chemical manipulations of seawater we show definitively that larval shell development and growth are dependent on seawater saturation state, and not on carbon dioxide partial pressure or pH. Although other physiological processes are affected by pH, mineral saturation state thresholds will be crossed decades to centuries ahead of pH thresholds owing to nonlinear changes in the carbonate system variables as carbon dioxide is added. Our findings were repeatable for two species of bivalve larvae could resolve discrepancies in experimental results, are consistent with a previous model of ocean acidification impacts due to rapid calcification in bivalve larvae, and suggest a fundamental ocean acidification bottleneck at early life-history for some marine keystone species.

  6. Brain oxygen saturation assessment in neonates using T2-prepared blood imaging of oxygen saturation and near-infrared spectroscopy.

    PubMed

    Alderliesten, Thomas; De Vis, Jill B; Lemmers, Petra Ma; Hendrikse, Jeroen; Groenendaal, Floris; van Bel, Frank; Benders, Manon Jnl; Petersen, Esben T

    2017-03-01

    Although near-infrared spectroscopy is increasingly being used to monitor cerebral oxygenation in neonates, it has a limited penetration depth. The T 2 -prepared Blood Imaging of Oxygen Saturation (T 2 -BIOS) magnetic resonance sequence provides an oxygen saturation estimate on a voxel-by-voxel basis, without needing a respiratory calibration experiment. In 15 neonates, oxygen saturation measured by T 2 -prepared blood imaging of oxygen saturation and near-infrared spectroscopy were compared. In addition, these measures were compared to cerebral blood flow and venous oxygen saturation in the sagittal sinus. A strong linear relation was found between the oxygen saturation measured by magnetic resonance imaging and the oxygen saturation measured by near-infrared spectroscopy ( R 2  = 0.64, p < 0.001). Strong linear correlations were found between near-infrared spectroscopy oxygen saturation, and magnetic resonance imaging measures of frontal cerebral blood flow, whole brain cerebral blood flow and venous oxygen saturation in the sagittal sinus ( R 2  = 0.71, 0.50, 0.65; p < 0.01). The oxygen saturation obtained by T 2 -prepared blood imaging of oxygen saturation correlated with venous oxygen saturation in the sagittal sinus ( R 2  = 0.49, p = 0.023), but no significant correlations could be demonstrated with frontal and whole brain cerebral blood flow. These results suggest that measuring oxygen saturation by T 2 -prepared blood imaging of oxygen saturation is feasible, even in neonates. Strong correlations between the various methods work as a cross validation for near-infrared spectroscopy and T 2 -prepared blood imaging of oxygen saturation, confirming the validity of using of these techniques for determining cerebral oxygenation.

  7. Altered host resistance to Listeria monocytogenes in mice exposed to 1-chloroacetophenone (CN) vapours

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, P.; Kumar, P.; Zachariah, K.

    1992-06-01

    Short term repeated exposure of 1-chloroacetophenone (CN) vapours at a concentration of 0.153 mg per litre for 15 minutes daily on 10 consecutive days in Swiss albino male mice resulted in increased mortality to Listeria monocytogenes. Significantly elevated bacterial growth was observed in the spleen and liver of the CN exposed animals. The increased bacterial count in these organs was evident within 4-6 days post challenge as compared to vehicle exposed infected and unexposed infected animals. Increased susceptibility to infection has been considered to be the function of immune alteration due to cumulative short term effects of CN vapour inhalation.more » This may be attributed to immunotoxic effects of CN on T-cells mediated macrophage functions.« less

  8. Unambiguous detection of nitrated explosive vapours by fluorescence quenching of dendrimer films

    NASA Astrophysics Data System (ADS)

    Geng, Yan; Ali, Mohammad A.; Clulow, Andrew J.; Fan, Shengqiang; Burn, Paul L.; Gentle, Ian R.; Meredith, Paul; Shaw, Paul E.

    2015-09-01

    Unambiguous and selective standoff (non-contact) infield detection of nitro-containing explosives and taggants is an important goal but difficult to achieve with standard analytical techniques. Oxidative fluorescence quenching is emerging as a high sensitivity method for detecting such materials but is prone to false positives--everyday items such as perfumes elicit similar responses. Here we report thin films of light-emitting dendrimers that detect vapours of explosives and taggants selectively--fluorescence quenching is not observed for a range of common interferents. Using a combination of neutron reflectometry, quartz crystal microbalance and photophysical measurements we show that the origin of the selectivity is primarily electronic and not the diffusion kinetics of the analyte or its distribution in the film. The results are a major advance in the development of sensing materials for the standoff detection of nitro-based explosive vapours, and deliver significant insights into the physical processes that govern the sensing efficacy.

  9. Surface and Thin Film Analysis during Metal Organic Vapour Phase Epitaxial Growth

    NASA Astrophysics Data System (ADS)

    Richter, Wolfgang

    2007-06-01

    In-situ analysis of epitaxial growth is the essential ingredient in order to understand the growth process, to optimize growth and last but not least to monitor or even control the epitaxial growth on a microscopic scale. In MBE (molecular beam epitaxy) in-situ analysis tools existed right from the beginning because this technique developed from Surface Science technology with all its electron based analysis tools (LEED, RHEED, PES etc). Vapour Phase Epitaxy, in contrast, remained for a long time in an empirical stage ("alchemy") because only post growth characterisations like photoluminescence, Hall effect and electrical conductivity were available. Within the last two decades, however, optical techniques were developed which provide similar capabilities as in MBE for Vapour Phase growth. I will discuss in this paper the potential of Reflectance Anisotropy Spectroscopy (RAS) and Spectroscopic Ellipsometry (SE) for the growth of thin epitaxial semiconductor layers with zincblende (GaAs etc) and wurtzite structure (GaN etc). Other techniques and materials will be also mentioned.

  10. Unambiguous detection of nitrated explosive vapours by fluorescence quenching of dendrimer films.

    PubMed

    Geng, Yan; Ali, Mohammad A; Clulow, Andrew J; Fan, Shengqiang; Burn, Paul L; Gentle, Ian R; Meredith, Paul; Shaw, Paul E

    2015-09-15

    Unambiguous and selective standoff (non-contact) infield detection of nitro-containing explosives and taggants is an important goal but difficult to achieve with standard analytical techniques. Oxidative fluorescence quenching is emerging as a high sensitivity method for detecting such materials but is prone to false positives—everyday items such as perfumes elicit similar responses. Here we report thin films of light-emitting dendrimers that detect vapours of explosives and taggants selectively—fluorescence quenching is not observed for a range of common interferents. Using a combination of neutron reflectometry, quartz crystal microbalance and photophysical measurements we show that the origin of the selectivity is primarily electronic and not the diffusion kinetics of the analyte or its distribution in the film. The results are a major advance in the development of sensing materials for the standoff detection of nitro-based explosive vapours, and deliver significant insights into the physical processes that govern the sensing efficacy.

  11. Unambiguous detection of nitrated explosive vapours by fluorescence quenching of dendrimer films

    PubMed Central

    Geng, Yan; Ali, Mohammad A.; Clulow, Andrew J.; Fan, Shengqiang; Burn, Paul L.; Gentle, Ian R.; Meredith, Paul; Shaw, Paul E.

    2015-01-01

    Unambiguous and selective standoff (non-contact) infield detection of nitro-containing explosives and taggants is an important goal but difficult to achieve with standard analytical techniques. Oxidative fluorescence quenching is emerging as a high sensitivity method for detecting such materials but is prone to false positives—everyday items such as perfumes elicit similar responses. Here we report thin films of light-emitting dendrimers that detect vapours of explosives and taggants selectively—fluorescence quenching is not observed for a range of common interferents. Using a combination of neutron reflectometry, quartz crystal microbalance and photophysical measurements we show that the origin of the selectivity is primarily electronic and not the diffusion kinetics of the analyte or its distribution in the film. The results are a major advance in the development of sensing materials for the standoff detection of nitro-based explosive vapours, and deliver significant insights into the physical processes that govern the sensing efficacy. PMID:26370931

  12. We didn't start this fireless vapour: e-cigarette legislation in Australia.

    PubMed

    Krawitz, Marilyn

    2014-12-01

    Electronic cigarettes (or e-cigarettes) are devices that heat a cartridge containing a solution that becomes a vapour for the user to inhale. The vapour may or may not contain nicotine. E-cigarettes do not contain tar and other toxins, which traditional cigarettes do, so they may be less damaging to people's health than smoking traditional cigarettes. However, no studies exist about the long-term effects of using e-cigarettes yet. It is illegal to sell e-cigarettes with nicotine in Australia, though Australians may import a three-month supply from overseas. It is legal to sell e-cigarettes with nicotine in some other jurisdictions, such as the United Kingdom and the European Union. This article argues that the Australian government should consider legalising the sale of e-cigarettes with nicotine in Australia for health, safety and economic reasons and to protect youth. If the sale of e-cigarettes with nicotine becomes legal, the Australian government must strictly regulate it.

  13. Influence of Water Content on Mechanical Properties of Rock in Both Saturation and Drying Processes

    NASA Astrophysics Data System (ADS)

    Zhou, Zilong; Cai, Xin; Cao, Wenzhuo; Li, Xibing; Xiong, Cheng

    2016-08-01

    Water content has a pronounced influence on the properties of rock materials, which is responsible for many rock engineering hazards, such as landslides and karst collapse. Meanwhile, water injection is also used for the prevention of some engineering disasters like rock-bursts. To comprehensively investigate the effect of water content on mechanical properties of rocks, laboratory tests were carried out on sandstone specimens with different water contents in both saturation and drying processes. The Nuclear Magnetic Resonance technique was applied to study the water distribution in specimens with variation of water contents. The servo-controlled rock mechanics testing machine and Split Hopkinson Pressure Bar technique were used to conduct both compressive and tensile tests on sandstone specimens with different water contents. From the laboratory tests, reductions of the compressive and tensile strength of sandstone under static and dynamic states in different saturation processes were observed. In the drying process, all of the saturated specimens could basically regain their mechanical properties and recover its strength as in the dry state. However, for partially saturated specimens in the saturation and drying processes, the tensile strength of specimens with the same water content was different, which could be related to different water distributions in specimens.

  14. Computational Modeling of Seismic Wave Propagation Velocity-Saturation Effects in Porous Rocks

    NASA Astrophysics Data System (ADS)

    Deeks, J.; Lumley, D. E.

    2011-12-01

    Compressional and shear velocities of seismic waves propagating in porous rocks vary as a function of the fluid mixture and its distribution in pore space. Although it has been possible to place theoretical upper and lower bounds on the velocity variation with fluid saturation, predicting the actual velocity response of a given rock with fluid type and saturation remains an unsolved problem. In particular, we are interested in predicting the velocity-saturation response to various mixtures of fluids with pressure and temperature, as a function of the spatial distribution of the fluid mixture and the seismic wavelength. This effect is often termed "patchy saturation' in the rock physics community. The ability to accurately predict seismic velocities for various fluid mixtures and spatial distributions in the pore space of a rock is useful for fluid detection, hydrocarbon exploration and recovery, CO2 sequestration and monitoring of many subsurface fluid-flow processes. We create digital rock models with various fluid mixtures, saturations and spatial distributions. We use finite difference modeling to propagate elastic waves of varying frequency content through these digital rock and fluid models to simulate a given lab or field experiment. The resulting waveforms can be analyzed to determine seismic traveltimes, velocities, amplitudes, attenuation and other wave phenomena for variable rock models of fluid saturation and spatial fluid distribution, and variable wavefield spectral content. We show that we can reproduce most of the published effects of velocity-saturation variation, including validating the Voigt and Reuss theoretical bounds, as well as the Hill "patchy saturation" curve. We also reproduce what has been previously identified as Biot dispersion, but in fact in our models is often seen to be wave multi-pathing and broadband spectral effects. Furthermore, we find that in addition to the dominant seismic wavelength and average fluid patch size, the

  15. A novel hybrid tobacco product that delivers a tobacco flavour note with vapour aerosol (Part 1): Product operation and preliminary aerosol chemistry assessment.

    PubMed

    Poynton, Simon; Sutton, Joseph; Goodall, Sharon; Margham, Jennifer; Forster, Mark; Scott, Ken; Liu, Chuan; McAdam, Kevin; Murphy, James; Proctor, Christopher

    2017-08-01

    Vapour products have demonstrated potential to be a lower-risk alternative to cigarettes. The present study describes a novel hybrid tobacco product that combines a warm aerosol stream generated by an electronic vaporisation mechanism with tobacco top flavour from cut tobacco. During operation, the aerosol stream released from the vapour cartomiser is passed through a bed of blended cut tobacco by the puffing flow, elevating the tobacco temperature and eluting volatile tobacco flavour components. A preliminary but comprehensive analysis of the aerosol composition of the hybrid tobacco product found that emissions were dominated by the control vapour formulation. In non-targeted chemical screening, no detectable difference in GC scans was observed between the hybrid tobacco product and the control vapour product. However, a sensorially elevated tobacco flavour was confirmed by a consumer sensory panel (P < 0.05). In a targeted analysis of 113 compounds, either identified by regulatory bodies as potential toxicants in cigarette smoke or formed from electronic vapour products, only 26 were quantified. The novel action of tobacco heating and liquid aerosolisation produced classes and levels of toxicants that were similar to those of the control vapour product, but much lower than those of a Kentucky 3R4F reference cigarette. For nine toxicants mandated by the WHO Study Group on Tobacco Product Regulation for reduction in cigarette emissions, the levels were 91%-99% lower per puff in the hybrid tobacco product aerosol than in 3R4F smoke. Overall, the novel hybrid tobacco product provides a sensorially enhanced tobacco flavour, but maintains a toxicant profile similar to its parent vapour product with relatively low levels of known cigarette smoke toxicants. Copyright © 2017 British American Tobacco. Published by Elsevier Ltd.. All rights reserved.

  16. Interpreting HSE Contents of Planetary Basalts: The Importance of Sulfide Saturation and Under-Saturation

    NASA Technical Reports Server (NTRS)

    Righter, K.

    2000-01-01

    Highly siderophile elements provide important constraints on planetary differentiation due to their siderophile behavior. Their interpretation in terms of planetary differentiation models has so far overlooked the importance of sulfide saturation and under-saturation.

  17. Oxygenation Saturation Index Predicts Clinical Outcomes in ARDS.

    PubMed

    DesPrez, Katherine; McNeil, J Brennan; Wang, Chunxue; Bastarache, Julie A; Shaver, Ciara M; Ware, Lorraine B

    2017-12-01

    Traditional measures of ARDS severity such as Pao 2 /Fio 2 may not reliably predict clinical outcomes. The oxygenation index (OI [Fio 2  × mean airway pressure × 100)/Pao 2 ]) may more accurately reflect ARDS severity but requires arterial blood gas measurement. We hypothesized that the oxygenation saturation index (OSI [Fio 2  × mean airway pressure × 100)/oxygen saturation by pulse oximetry (Spo 2 )]) is a reliable noninvasive surrogate for the OI that is associated with hospital mortality and ventilator-free days (VFDs) in patients with ARDS. Critically ill patients enrolled in a prospective cohort study were eligible if they developed ARDS (Berlin criteria) during the first 4 ICU days and had mean airway pressure, Spo 2 /Fio 2 , and Pao 2 /Fio 2 values recorded on the first day of ARDS (N = 329). The highest mean airway pressure and lowest Spo 2 /Fio 2 and Pao 2 /Fio 2 values were used to calculate OI and OSI. The association between OI or OSI and hospital mortality or VFD was analyzed by using logistic regression and linear regression, respectively. The area under the receiver-operating characteristic curve (AUC) for mortality was compared among OI, OSI, Spo 2 /Fio 2 , Pao 2 /Fio 2 , and Acute Physiology and Chronic Health Evaluation II scores. OI and OSI were strongly correlated (rho = 0.862; P < .001). OSI was independently associated with hospital mortality (OR per 5-point increase in OSI, 1.228 [95% CI, 1.056-1.429]; P = .008). OI and OSI were each associated with a reduction in VFD (OI, P = .023; OSI, P = .005). The AUC for mortality prediction was greatest for Acute Physiology and Chronic Health Evaluation II scores (AUC, 0.695; P < .005) and OSI (AUC, 0.602; P = .007). The AUC for OSI was substantially better in patients aged < 40 years (AUC, 0.779; P < .001). In patients with ARDS, the OSI was correlated with the OI. The OSI on the day of ARDS diagnosis was significantly associated with increased mortality and fewer VFDs. The

  18. Long-wave equivalent viscoelastic solids for porous rocks saturated by two-phase fluids

    NASA Astrophysics Data System (ADS)

    Santos, J. E.; Savioli, G. B.

    2018-07-01

    Seismic waves travelling across fluid-saturated poroelastic materials with mesoscopic-scale heterogeneities induce fluid flow and Biot's slow waves generating energy loss and velocity dispersion. Using Biot's equations of motion to model these type of heterogeneities would require extremely fine meshes. We propose a numerical upscaling procedure to determine the complex and frequency-dependent Pwave and shear moduli of an effective viscoelastic medium long-wave equivalent to a poroelastic solid saturated by a two-phase fluid. The two-phase fluid is defined in terms of capillary pressure and relative permeability flow functions. The Pwave and shear effective moduli are determined using harmonic compressibility and shear experiments applied on representative samples of the bulk material. Each experiment is associated with a boundary value problem that is solved using the finite element method. Since a poroelastic solid saturated by a two-phase fluid supports the existence of two slow waves, this upscaling procedure allows to analyse their effect on the mesoscopic loss mechanism in hydrocarbon reservoir formations. Numerical results show that a two-phase Biot medium model predicts higher attenuation than classic Biot models.

  19. A vapour phase assay for evaluating the antimicrobial activities of essential oils against bovine respiratory bacterial pathogens.

    PubMed

    Amat, S; Baines, D; Alexander, T W

    2017-12-01

    The objectives of this study were to develop a new assay for the evaluation of the antimicrobial activities of essential oils (EOs) in vapour phase and to demonstrate the antimicrobial activities of commercial EOs against BRPs. To achieve the first objective, a microtube cap containing 100 μl of EO was embedded in an agar plate. An agar plug (diameter 13 mm) inoculated with a bacterial suspension containing10 8  CFU per ml was then placed over the cap and incubated at 37°C for 24 h. Subsequently, bacteria were recovered from the agar plug by immersion in 5 ml of broth for 10 min, followed by vortexing for 30 s, and the broths were then plated for enumeration. To demonstrate the usefulness of the assay, nine commercial EOs derived from the following specific plants: ajowan, carrot seed, cinnamon leaf, citronella, fennel, ginger grass, lavender, rosemary and thyme were first evaluated for their vapour phase antimicrobial activities against Mannheimia haemolytica serotype 1. Selected EOs were further tested against Pasteurella multocida and Histophilus somni. The EOs of ajowan, thyme and cinnamon leaf completely or partially inhibited BRPs growth. This new assay provided reproducible results on the vapour phase antimicrobial activities of EOs against BRPs. These results support further study of EOs as a potential mitigation strategy against BRPs. In this study, we present a new vapour phase assay for evaluating the antimicrobial activities of essential oils (EO) against bovine respiratory pathogens (BRPs). Using this assay, we identified EOs, such as ajowan, thyme and cinnamon leaf, that can effectively inhibit growth of the BRPs Mannheimia haemolytica serotype 1, Pasteurella multocida and Histophilus somni. This is the first study to demonstrate the vapour phase antimicrobial activity of EOs against BRPs. © 2017 Her Majesty the Queen in Right of Canada. © 2017 The Society for Applied Microbiology Reproduced with the permission of the Minister of the

  20. Lidar observations of low-level wind reversals over the Gulf of Lion and characterization of their impact on the water vapour variability

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Paolo; Flamant, Cyrille; Cacciani, Marco; Summa, Donato; Stelitano, Dario; Richard, Evelyne; Ducrocq, Véronique; Fourrie, Nadia; Said, Frédérique

    2017-02-01

    Water vapour measurements from a ground-based Raman lidar and an airborne differential absorption lidar, complemented by high resolution numerical simulations from two mesoscale models (Arome-WMED and MESO-NH), are considered to investigate transition events from Mistral/Tramontane to southerly marine flow taking place over the Gulf of Lion in Southern France in the time frame September-October 2012, during the Hydrological Cycle in the Mediterranean Experiment (HyMeX) Special Observation Period 1 (SOP1). Low-level wind reversals associated with these transitions are found to have a strong impact on water vapour transport, leading to a large variability of the water vapour vertical and horizontal distribution. The high spatial and temporal resolution of the lidar data allow to monitor the time evolution of the three-dimensional water vapour field during these transitions from predominantly northerly Mistral/Tramontane flow to a predominantly southerly flow, allowing to identify the quite sharp separation between these flows, which is also quite well captured by the mesoscale models.

  1. The water vapour radiometer of Paranal: homogeneity of precipitable water vapour from two years of operations

    NASA Astrophysics Data System (ADS)

    Kerber, Florian; Querel, Richard R.; Neureiter, Bianca

    2015-04-01

    A Low Humidity and Temperature Profiling (LHATPRO) microwave radiometer, manufactured by Radiometer Physics GmbH (RPG), is used to monitor sky conditions over ESO's Paranal observatory in support of VLT science operations. The unit measures several channels across the strong water vapour emission line at 183 GHz, necessary for resolving the low levels of precipitable water vapour (PWV) that are prevalent on Paranal (median ∼2.4 mm). The instrument consists of a humidity profiler (183-191 GHz), a temperature profiler (51-58 GHz), and an infrared camera (∼10 μm) for cloud detection. We present a statistical analysis of the homogeneity of all-sky PWV using 24 months of PWV observations. The question we tried to address was whether PWV is homogeneous enough across the sky such that service mode observations with the VLT can routinely be conducted with a user-provided constraint for PWV measured at zenith. We find the PWV over Paranal to be remarkably homogeneous across the sky down to 27.5° elevation with a median variation of 0.07 mm (rms). The homogeneity is a function of the absolute PWV but the relative variation is fairly constant at 2 to 3% (rms). Such variations will not be a significant issue for analysis of astronomical data. Users at ESO can specify PWV - measured at zenith - as an ambient constraint in service mode to enable, for instance, very demanding observations in the infrared. We conclude that in general it will not be necessary to add another observing constraint for PWV homogeneity to ensure integrity of observations. For demanding observations requiring very low PWV, where the relative variation is higher, the optimum support could be provided by observing with the LHATPRO in the same line-of-sight simultaneously. Such a mode of operations has already been tested but will have to be justified in terms of scientific gain before implementation can be considered. We plan to extend our analysis of PWV variations covering a larger parameters space

  2. Investigation of the vapour-plasma plume in the welding of titanium by high-power ytterbium fibre laser radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bykovskiy, D P; Petrovskii, V N; Uspenskiy, S A

    2015-03-31

    The vapour-plasma plume produced in the welding of 6-mm thick VT-23 titanium alloy plates by ytterbium fibre laser radiation of up to 10 kW power is studied in the protective Ar gas medium. High-speed video filming of the vapour-plasma plume is used to visualise the processes occurring during laser welding. The coefficient of inverse bremsstrahlung by the welding plasma plume is calculated from the data of the spectrometric study. (interaction of laser radiation with matter)

  3. Changes in entrapped gas content and hydraulic conductivity with pressure.

    PubMed

    Marinas, Maricris; Roy, James W; Smith, James E

    2013-01-01

    Water table fluctuations continuously introduce entrapped air bubbles into the otherwise saturated capillary fringe and groundwater zone, which reduces the effective (quasi-saturated) hydraulic conductivity, K(quasi), thus impacting groundwater flow, aquifer recharge and solute and contaminant transport. These entrapped gases will be susceptible to compression or expansion with changes in water pressure, as would be expected with water table (and barometric pressure) fluctuations. Here we undertake laboratory experiments using sand-packed columns to quantify the effect of water table changes of up to 250 cm on the entrapped gas content and the quasi-saturated hydraulic conductivity, and discuss our ability to account for these mechanisms in ground water models. Initial entrapped air contents ranged between 0.080 and 0.158, with a corresponding K(quasi) ranging between 2 and 6 times lower compared to the K(s) value. The application of 250 cm of water pressure caused an 18% to 26% reduction in the entrapped air content, resulting in an increase in K(quasi) by 1.16 to 1.57 times compared to its initial (0 cm water pressure) value. The change in entrapped air content measured at pressure step intervals of 50 cm, was essentially linear, and could be modeled according to the ideal gas law. Meanwhile, the changes in K(quasi) with compression-expansion of the bubbles because of pressure changes could be adequately captured with several current hydraulic conductivity models. © Ground Water 2012 and © Her Majesty the Queen in Right of Canada 2012. Ground Water © 2012, National Ground Water Association.

  4. Rapid, optical measurement of the atmospheric pressure on a fast research aircraft using open-path TDLAS

    NASA Astrophysics Data System (ADS)

    Buchholz, B.; Afchine, A.; Ebert, V.

    2014-05-01

    Because of the high travel speed, the complex flow dynamics around an aircraft and the complex dependency of the fluid dynamics on numerous airborne parameters, it is quite difficult to obtain accurate pressure values at a specific instrument location of an aircraft's fuselage. Complex simulations using computational fluid dynamics (CFD) models can in theory computationally "transfer" pressure values from one location to another. However, for long flight patterns, this process is inconvenient and cumbersome. Furthermore these CFD transfer models require a local experimental validation, which is rarely available. In this paper, we describe an integrated approach for a spectroscopic, calibration-free, in-flight pressure determination in an open-path White cell on an aircraft fuselage using ambient, atmospheric water vapour as the "sensor species". The presented measurements are realized with the HAI (Hygrometer for Atmospheric Investigations) instrument, built for multiphase water detection via calibration-free TDLAS (tunable diode laser absorption spectroscopy). The pressure determination is based on raw data used for H2O concentration measurement, but with a different post-flight evaluation method, and can therefore be conducted at deferred time intervals on any desired flight track. The spectroscopic pressure is compared in-flight with the static ambient pressure of the aircraft avionic system and a micro-mechanical pressure sensor, located next to the open-path cell, over a pressure range from 150 hPa to 800 hPa, and a water vapour concentration range of more than three orders of magnitude. The correlation between the micro-mechanical pressure sensor measurements and the spectroscopic pressure measurements show an average deviation from linearity of only 0.14% and a small offset of 9.5 hPa. For the spectroscopic pressure evaluation we derive measurement uncertainties under laboratory conditions of 3.2% and 5.1% during in flight operation on the HALO airplane

  5. Rapid, optical measurement of the atmospheric pressure on a fast research aircraft using open-path TDLAS

    NASA Astrophysics Data System (ADS)

    Buchholz, B.; Afchine, A.; Ebert, V.

    2014-11-01

    Because of the high travel speed, the complex flow dynamics around an aircraft, and the complex dependency of the fluid dynamics on numerous airborne parameters, it is quite difficult to obtain accurate pressure values at a specific instrument location of an aircraft's fuselage. Complex simulations using computational fluid dynamics (CFD) models can in theory computationally "transfer" pressure values from one location to another. However, for long flight patterns, this process is inconvenient and cumbersome. Furthermore, these CFD transfer models require a local experimental validation, which is rarely available. In this paper, we describe an integrated approach for a spectroscopic, calibration-free, in-flight pressure determination in an open-path White cell on an aircraft fuselage using ambient, atmospheric water vapour as the "sensor species". The presented measurements are realised with the HAI (Hygrometer for Atmospheric Investigations) instrument, built for multiphase water detection via calibration-free TDLAS (tunable diode laser absorption spectroscopy). The pressure determination is based on raw data used for H2O concentration measurement, but with a different post-flight evaluation method, and can therefore be conducted at deferred time intervals on any desired flight track. The spectroscopic pressure is compared in-flight with the static ambient pressure of the aircraft avionic system and a micro-mechanical pressure sensor, located next to the open-path cell, over a pressure range from 150 to 800 hPa, and a water vapour concentration range of more than 3 orders of magnitude. The correlation between the micro-mechanical pressure sensor measurements and the spectroscopic pressure measurements shows an average deviation from linearity of only 0.14% and a small offset of 9.5 hPa. For the spectroscopic pressure evaluation we derive measurement uncertainties under laboratory conditions of 3.2 and 5.1% during in-flight operation on the HALO airplane. Under

  6. Development of a wavelength stabilized seed laser system for an airborne water vapour lidar experiment

    NASA Astrophysics Data System (ADS)

    Schwarzer, H.; Börner, A.; Fix, A.; Günther, B.; Hübers, H.-W.; Raugust, M.; Schrandt, F.; Wirth, M.

    2007-09-01

    At the German Aerospace Center an airborne multi-wavelength differential absorption LIDAR for the measurement of atmospheric water vapour is currently under development. This instrument will enable the retrieval of the complete humidity profile from the surface up to the lowermost stratosphere with high vertical and horizontal resolution at a systematic error below 5%. The LIDAR will work in the wavelength region around 935 nm at three different water vapour absorption lines and one reference wavelength. A major sub-system of this instrument is a highly frequency stabilized seed laser system for the optical parametrical oscillators which generate the narrowband high energy light pulses. The development of the seed laser system includes the control software, the electronic control unit and the opto-mechanical layout. The seed lasers are Peltier-cooled distributed feedback laser diodes with bandwidths of about 30 MHz, each one operating for 200 μs before switching to the next one. The required frequency stability is +/- 30 MHz ≅ +/- 10 -4 nm under the rough environmental conditions aboard an aircraft. It is achieved by locking the laser wavelength to a water vapour absorption line. The paper describes the opto-mechanical layout of the seed laser system, the stabilization procedure and the results obtained with this equipment.

  7. Effective Porosity Measurements by Wet- and Dry-type Vacuum Saturations using Process-Programmable Vacuum Saturation System

    NASA Astrophysics Data System (ADS)

    Lee, T. J.; Lee, K. S., , Dr; Lee, S. K.

    2017-12-01

    One of the most important factors in measuring effective porosity by vacuum saturation method is that the air in the pore space can be fully substituted by water during the vacuum saturation process. International Society of Rock Mechanics (ISRM) suggests vacuuming a rock sample submerged in the water, while American Society of Test and Materials (ASTM) vacuuming the sample and water separately and then pour the water to the sample. In this study, we call the former wet-type vacuum saturation (WVS) method and the latter dry-type vacuum saturation (DVS) method, and compare the effective porosity measured by the two different vacuum saturation processes. For that purpose, a vacuum saturation system has been developed, which can support both WVS and DVS by only changing the process by programming. Comparison of effective porosity has been made for a cement mortar and rock samples. As a result, DVS can substitute more void volume to water than WVS, which in turn insists that DVS can provide more exact value of effective porosity than WVS.

  8. Nicotine content of electronic cigarettes, its release in vapour and its consistency across batches: regulatory implications.

    PubMed

    Goniewicz, Maciej L; Hajek, Peter; McRobbie, Hayden

    2014-03-01

    Electronic cigarettes (EC) may have a potential for public health benefit as a safer alternative to smoking, but questions have been raised about whether EC should be licensed as a medicine, with accurate labelling of nicotine content. This study determined the nicotine content of the cartridges of the most popular EC brands in the United Kingdom and the nicotine levels they deliver in the vapour, and estimated the safety and consistency of nicotine delivery across batches of the same product as a proxy for quality control for individual brands and within the industry. We studied five UK brands (six products) with high internet popularity. Two samples of each brand were purchased 4 weeks apart, and analysed for nicotine content in the cartridges and nicotine delivery in vapour. The nicotine content of cartridges within the same batch varied by up to 12% relative standard deviation (RSD) and the mean difference between different batches of the same brand ranged from 1% [95% confidence interval (CI) = -5 to 7%] to 20% (95% CI=14-25%) for five brands and 31% (95% CI=21-39%) for the sixth. The puffing schedule used in this study vaporized 10-81% of the nicotine present in the cartridges. The nicotine delivery from 300 puffs ranged from ∼2 mg to ∼15 mg and was not related significantly to the variation of nicotine content in e-liquid (r=0.06, P=0.92). None of the tested products allowed access to e-liquid or produced vapour nicotine concentrations as high as conventional cigarettes. There is very little risk of nicotine toxicity from major electronic cigarette (EC) brands in the United Kingdom. Variation in nicotine concentration in the vapour from a given brand is low. Nicotine concentration in e-liquid is not well related to nicotine in vapour. Other EC brands may be of lower quality and consumer protection regulation needs to be implemented, but in terms of accuracy of labelling of nicotine content and risks of nicotine overdose, regulation over and above

  9. Ethanol, vinegar and Origanum vulgare oil vapour suppress the development of anthracnose rot in tomato fruit.

    PubMed

    Tzortzakis, Nikos G

    2010-08-15

    Anthracnose rot (Colletotrichum coccodes) development in vitro or in tomato (Lycopersicon esculentum L.) fruit was evaluated after treatment with absolute ethyl alcohol (AEA), vinegar (VIN), chlorine (CHL) or origanum oil (ORI) and storage at 12 degrees C and 95% relative humidity during or following exposure to the volatiles. Fruit treated with vapours reduced fungal spore germination/production, but in the case of AEA- and VIN-treated fruits, fungal mycelium development was accelerated. Fruit lesion development was suppressed after fruit exposure to pure (100% v/v) AEA or ORI vapours which were accompanied by increased fruit cracking. Exposure to pure VIN-, CHL- and ORI vapours reduced (up to 92%) spore germination in vitro, but no differences were observed in the AEA treatment. The benefits associated with volatiles-enrichment were maintained in fruit pre-exposed to vapours, resulting in suppression in spore germination and spore production. However, studies performed on fungi grown on Potato Dextrose Agar revealed fewer direct effects of volatiles on fungal colony development and spore germination per se, implying that suppression of pathogen development was due in a large part to the impact of volatiles on fruit-pathogen interactions and/or 'memory' effects on fruit tissue. Work is currently focussing on the mechanisms underlying the impacts of volatiles on fruit quality related attributes. The results of this study indicate that volatiles may be considered as an alternative to the traditional postharvest sanitizing techniques. Each commodity needs to be individually assessed, and the volatile concentration and sanitising technique optimised, before the volatile treatment is used commercially. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Temperature dependence of the vapour tension of methyl-substituted phenol derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.G. Gagarin

    2007-05-15

    Notable among the coking products of coal are phenol and its derivatives, derived for the coal tar and water layer above ht tar. Given that phenol an its derivatives are mainly extracted from coal tar fractions by rectification, information on how the vapor tension of the individual components depends on the temperature is of great importance. For phenol and various substituted alkylphenols there are tabular data. In the pre-computer era these data were sufficient for the separation of phenol mixtures. However, the development and introduction of information technology in the coal industry and in the design process demands the mathematicalmore » description of the physicochemical processes of coking products. The temperature dependence of the saturated vapor pressure for organic compounds is commonly described by the Antoine equation.« less

  11. Clearing the air: protocol for a systematic meta-narrative review on the harms and benefits of e-cigarettes and vapour devices.

    PubMed

    MacDonald, Marjorie; O'Leary, Renee; Stockwell, Tim; Reist, Dan

    2016-05-21

    Under the shadow of the tobacco epidemic, the sale and use of e-cigarettes and other vapour devices is increasing dramatically. A contentious debate has risen within public health over the harms and benefits of these devices. Clearing the Air seeks to clarify the issues with a systematic review that informs the pressing regulatory and public health decisions to be made regarding these new products. Using an integrated knowledge translation approach, public health researchers and knowledge users will work collaboratively throughout the project. Our research questions are the following: (1) What are the health risks and benefits of vapour devices, and how do these compare to cigarettes? (2) What is the harm reduction potential of vapour devices for individuals, the environment, and society? (3) Does youth vapour device experimentation lead to cigarette use? (4) Can vapour devices be effective aids for tobacco cessation? and (5) What is the potential toxicity of second-hand vapour? We are using meta-narrative review to synthesize studies from diverse research traditions because of its capacity to address contestations around a topic. The project has six phases. In the planning phase, we finalized the research questions. In the search phase, we are locating academic publications and grey literature aided by a research librarian. The mapping phase involves categorizing these papers into research traditions to understand different perspectives on the evidence for each research question. In the appraisal phase, we will select and evaluate the relevant papers. Finally, in the synthesis phase, using analytic techniques unique to meta-narrative methodology, we will compare and contrast the evidence from different research traditions to answer our research questions, identifying overarching meta-narratives. In the final stage, the full team will draft recommendations to be disseminated through a variety of knowledge translation strategies. Meta-narrative synthesis has the

  12. Female reproductive health in two lamp factories: effects of exposure to inorganic mercury vapour and stress factors.

    PubMed

    De Rosis, F; Anastasio, S P; Selvaggi, L; Beltrame, A; Moriani, G

    1985-07-01

    To evaluate the possible influence of mercury vapour on female reproduction, 153 women working in a mercury vapour lamp factory have been compared with 193 women employed in another factory of the same company, where mercury was not used. Both groups of subjects were exposed to stress factors (noise, rhythms of production, and shift work). The production process has been analysed by inspection of the plants and by collective discussions with "homogeneous groups" of workers; a retrospective inquiry into work history and reproductive health events has been subsequently performed by an individual interview. Women exposed to mercury vapour currently not exceeding the time weighted average air concentration of 0.01 mg/m3 declared higher prevalence and incidence rates of menstrual disorders, primary subfecundity, and adverse pregnancy outcome; however, the progression of these problems with the level of exposure to mercury inside the same factory was not always clear. The results of this study neither prove nor exclude the possibility that occupational exposure to this concentration of mercury has a negative effect on female reproduction.

  13. Heuristic approach to capillary pressures averaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coca, B.P.

    1980-10-01

    Several methods are available to average capillary pressure curves. Among these are the J-curve and regression equations of the wetting-fluid saturation in porosity and permeability (capillary pressure held constant). While the regression equation seem completely empiric, the J-curve method seems to be theoretically sound due to its expression based on a relation between the average capillary radius and the permeability-porosity ratio. An analysis is given of each of these methods.

  14. Structural and environmental dependence of superlow friction in ion vapour-deposited a-C : H : Si films for solid lubrication application

    NASA Astrophysics Data System (ADS)

    Chen, Xinchun; Kato, Takahisa; Kawaguchi, Masahiro; Nosaka, Masataka; Choi, Junho

    2013-06-01

    Understanding the tribochemical interaction of water molecules in humid environment with carbonaceous film surfaces, especially hydrophilic surface, is fundamental for applications in tribology and solid lubrication. This paper highlights some experimental evidence to elucidate the structural and environmental dependence of ultralow or even superlow friction in ion vapour-deposited a-C : H : Si films. The results indicate that both surface density of silicon hydroxyl group (Si-OH) and humidity level (RH) determine the frictional performance of a-C : H : Si films. Ultralow friction coefficient μ (˜0.01-0.055) is feasible in a wide range of RH. The dissociative formation of hydrophilic Si-OH surface and the following nanostructure of interfacial water molecules under contact pressure are the origin of ultralow friction for a-C : H : Si films in humid environment. The correlation between contact pressure and friction coefficient derived from Hertzian contact model is not valid in the present case. Under this nanoscale boundary lubrication, the friction coefficient tends to increase as the contact pressure increases. There even exists a contact pressure threshold for the transition from ultralow to superlow friction (μ ˜ 0.007). In comparison, when tribotested in dry N2, the observed superlow friction (μ ˜ 0.004) in the absence of water is correlated with the formation of a low shear strength tribolayer by wear-induced phase transformation.

  15. Sulfur Saturation Limits in Silicate Melts and their Implications for Core Formation Scenarios for Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    Holzheid, Astrid; Grove, Timothy L.

    2002-01-01

    This study explores the controls of temperature, pressure, and silicate melt composition on S solubility in silicate liquids. The solubility of S in FeO-containing silicate melts in equilibrium with metal sulfide increases significantly with increasing temperature but decreases with increasing pressure. The silicate melt structure also exercises a control on S solubility. Increasing the degree of polymerization of the silicate melt structure lowers the S solubility in the silicate liquid. The new set of experimental data is used to expand the model of Mavrogenes and O'Neill(1999) for S solubility in silicate liquids by incorporating the influence of the silicate melt structure. The expected S solubility in the ascending magma is calculated using the expanded model. Because the negative pressure dependence of S solubility is more influential than the positive temperature dependence, decompression and adiabatic ascent of a formerly S-saturated silicate magma will lead to S undersaturation. A primitive magma that is S-saturated in its source region will, therefore, become S-undersaturated as it ascends to shallower depth. In order to precipitate magmatic sulfides, the magma must first cool and undergo fractional crystallization to reach S saturation. The S content in a metallic liquid that is in equilibrium with a magma ocean that contains approx. 200 ppm S (i.e., Earth's bulk mantle S content) ranges from 5.5 to 12 wt% S. This range of S values encompasses the amount of S (9 to 12 wt%) that would be present in the outer core if S is the light element. Thus, the Earth's proto-mantle could be in equilibrium (in terms of the preserved S abundance) with a core-forming metallic phase.

  16. Heat transfer, pressure drop and flow patterns during flow boiling of R407C in a horizontal microfin tube

    NASA Astrophysics Data System (ADS)

    Rollmann, P.; Spindler, K.; Müller-Steinhagen, H.

    2011-08-01

    The heat transfer, pressure drop and flow patterns during flow boiling of R407C in a horizontal microfin tube have been investigated. The microfin tube is made of copper with a total fin number of 55 and a helix angle of 15°. The fin height is 0.24 mm and the inner tube diameter at fin root is 8.95 mm. The test tube is 1 m long. It is heated electrically. The experiments have been performed at saturation temperatures between -30°C and +10°C. The mass flux was varied between 25 and 300 kg/m2/s, the heat flux from 20,000 W/m2 down to 1,000 W/m2. The vapour quality was kept constant at 0.1, 0.3, 0.5, 0.7 at the inlet and 0.8, 1.0 at the outlet, respectively. The measured heat transfer coefficient is compared with the correlations of Cavallini et al., Shah as well as Zhang et al. Cavallini's correlation contains seven experimental constants. After fitting these constants to our measured values, the correlation achieves good agreement. The measured pressure drop is compared to the correlations of Pierre, Kuo and Wang as well as Müller-Steinhagen and Heck. The best agreement is achieved with the correlation of Kuo and Wang. Almost all values are calculated within an accuracy of ±30%. The flow regimes were observed. It is shown, that changes in the flow regime affect the heat transfer coefficient significantly.

  17. Influence of gas law on ultrasonic behaviour of porous media under pressure.

    PubMed

    Griffiths, S; Ayrault, C

    2010-06-01

    This paper deals with the influence of gas law on ultrasonic behaviour of porous media when the saturating fluid is high pressured. Previous works have demonstrated that ultrasonic transmission through a porous sample with variations of the static pressure (up to 18 bars) of the saturating fluid allows the characterization of high damping materials. In these studies, the perfect gas law was used to link static pressure and density, which is disputable for high pressures. This paper compares the effects of real and perfect gas laws on modeled transmission coefficient for porous foams at these pressures. Direct simulations and a mechanical parameters estimation from minimization show that results are very similar in both cases. The real gas law is thus not necessary to describe the acoustic behaviour of porous media at low ultrasonic frequencies (100 kHz) up to 20 bars. 2010 Elsevier B.V. All rights reserved.

  18. Saturated fat, carbohydrate, and cardiovascular disease.

    PubMed

    Siri-Tarino, Patty W; Sun, Qi; Hu, Frank B; Krauss, Ronald M

    2010-03-01

    A focus of dietary recommendations for cardiovascular disease (CVD) prevention and treatment has been a reduction in saturated fat intake, primarily as a means of lowering LDL-cholesterol concentrations. However, the evidence that supports a reduction in saturated fat intake must be evaluated in the context of replacement by other macronutrients. Clinical trials that replaced saturated fat with polyunsaturated fat have generally shown a reduction in CVD events, although several studies showed no effects. An independent association of saturated fat intake with CVD risk has not been consistently shown in prospective epidemiologic studies, although some have provided evidence of an increased risk in young individuals and in women. Replacement of saturated fat by polyunsaturated or monounsaturated fat lowers both LDL and HDL cholesterol. However, replacement with a higher carbohydrate intake, particularly refined carbohydrate, can exacerbate the atherogenic dyslipidemia associated with insulin resistance and obesity that includes increased triglycerides, small LDL particles, and reduced HDL cholesterol. In summary, although substitution of dietary polyunsaturated fat for saturated fat has been shown to lower CVD risk, there are few epidemiologic or clinical trial data to support a benefit of replacing saturated fat with carbohydrate. Furthermore, particularly given the differential effects of dietary saturated fats and carbohydrates on concentrations of larger and smaller LDL particles, respectively, dietary efforts to improve the increasing burden of CVD risk associated with atherogenic dyslipidemia should primarily emphasize the limitation of refined carbohydrate intakes and a reduction in excess adiposity.

  19. Capillary pressure-saturation relations in quartz and carbonate sands: Limitations for correlating capillary and wettability influences on air, oil, and supercritical CO2 trapping

    NASA Astrophysics Data System (ADS)

    Wang, Shibo; Tokunaga, Tetsu K.; Wan, Jiamin; Dong, Wenming; Kim, Yongman

    2016-08-01

    Capillary pressure (Pc)-saturation (Sw) relations are essential for predicting equilibrium and flow of immiscible fluid pairs in soils and deeper geologic formations. In systems that are difficult to measure, behavior is often estimated based on capillary scaling of easily measured Pc-Sw relations (e.g., air-water, and oil-water), yet the reliability of such approximations needs to be examined. In this study, 17 sets of brine drainage and imbibition curves were measured with air-brine, decane-brine, and supercritical (sc) CO2-brine in homogeneous quartz and carbonate sands, using porous plate systems under ambient (0.1 MPa, 23°C) and reservoir (12.0 MPa, 45°C) conditions. Comparisons between these measurements showed significant differences in residual nonwetting phase saturation, Snw,r. Through applying capillary scaling, changes in interfacial properties were indicated, particularly wettability. With respect to the residual trapping of the nonwetting phases, Snwr, CO2 > Snwr, decane > Snwr, air. Decane-brine and scCO2-brine Pc-Sw curves deviated significantly from predictions assuming hydrophilic interactions. Moreover, neither the scaled capillary behavior nor Snw,r for scCO2-brine were well represented by decane-brine, apparently because of differences in wettability and viscosities, indicating limitations for using decane (and other organic liquids) as a surrogate fluid in studies intended to apply to geological carbon sequestration. Thus, challenges remain in applying scaling for predicting capillary trapping and multiphase displacement processes across such diverse fields as vadose zone hydrology, enhanced oil recovery, and geologic carbon sequestration.

  20. Capillary pressure - saturation relations in quartz and carbonate sands: Limitations for correlating capillary and wettability influences on air, oil, and supercritical CO2 trapping

    NASA Astrophysics Data System (ADS)

    Tokunaga, T. K.; Wang, S.; Wan, J.; Dong, W.; Kim, Y.

    2016-12-01

    Capillary pressure (Pc) - saturation (Sw) relations are essential for predicting equilibrium and flow of immiscible fluid pairs in soils and deeper geologic formations. In systems that are difficult to measure, behavior is often estimated based on capillary scaling of easily measured Pc-Sw relations (e.g., air-water, and oil-water), yet the reliability of such approximations needs to be examined. In this study, seventeen sets of brine drainage and imbibition curves were measured with air-brine, decane-brine, and supercritical (sc) CO2-brine in homogeneous quartz and carbonate sands, using porous plate systems under ambient (0.1 MPa, 23 °C) and reservoir (12.0 MPa, 45 °C) conditions. Comparisons between these measurements showed significant differences in residual nonwetting phase saturation, Snw,r. Through applying capillary scaling, changes in interfacial properties were indicated, particularly wettability. With respect to the residual trapping of the nonwetting phases, Snwr, CO2 > Snwr, decane > Snwr, air. Decane-brine and scCO2-brine Pc-Sw curves deviated significantly from predictions assuming hydrophilic interactions. Moreover, neither the scaled capillary behavior nor Snw,r for scCO2-brine were well represented by decane-brine, apparently because of differences in wettability and viscosities, indicating limitations for using decane (and other organic liquids) as a surrogate fluid in studies intended to apply to geological carbon sequestration. Thus, challenges remain in applying scaling for predicting capillary trapping and multiphase displacement processes across such diverse fields as vadose zone hydrology, enhanced oil recovery, and geologic carbon sequestration.

  1. Benefits of Oxygen Saturation Targeting Trials: Oximeter Calibration Software Revision and Infant Saturations.

    PubMed

    Whyte, Robin K; Nelson, Harvey; Roberts, Robin S; Schmidt, Barbara

    2017-03-01

    It has been reported in the 3 Benefits of Oxygen Saturation Targeting (BOOST-II) trials that changes in oximeter calibration software resulted in clearer separation between the oxygen saturations in the two trial target groups. A revised analysis of the published BOOST-II data does not support this conclusion. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Explicit use of the Biot coefficient in predicting shear-wave velocity of water-saturated sediments

    USGS Publications Warehouse

    Lee, M.W.

    2006-01-01

    Predicting the shear-wave (S-wave) velocity is important in seismic modelling, amplitude analysis with offset, and other exploration and engineering applications. Under the low-frequency approximation, the classical Biot-Gassmann theory relates the Biot coefficient to the bulk modulus of water-saturated sediments. If the Biot coefficient under in situ conditions can be estimated, the shear modulus or the S-wave velocity can be calculated. The Biot coefficient derived from the compressional-wave (P-wave) velocity of water-saturated sediments often differs from and is less than that estimated from the S-wave velocity, owing to the interactions between the pore fluid and the grain contacts. By correcting the Biot coefficients derived from P-wave velocities of water-saturated sediments measured at various differential pressures, an accurate method of predicting S-wave velocities is proposed. Numerical results indicate that the predicted S-wave velocities for consolidated and unconsolidated sediments agreewell with measured velocities. ?? 2006 European Association of Geoscientists & Engineers.

  3. The Effect of Electrokinetic Controlled Wettability on Externally Measured Pressures for a Micro-Fluidic Channel

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Nolte, D. D.; Pyrak-Nolte, L. J.

    2017-12-01

    The hysteretic relationship between capillary pressure (Pc) on saturation (S) has been shown to be a projection of a higher-dimensional surface that depends on interfacial area per volume (IAV) as the additional state variable. Most studies that validate the capillary-pressure-saturation-IAV relationship are performed on 2D micro-models or cores where scanning is performed in pressure and not in saturation. We have developed an EWOD technique (electro-wetting on dielectric) to internally manipulate fluid saturation to determine the effect on externally measured pressures. Applying electric fields to electrolytic fluids changes the contact angle among the fluids and the solid. For a parallel-plate electro-wetting set-up, the pressure difference is given by gsl (cosq'EW - cosqEW )/d', where d' is the aperture, qEQ and q'EW are the contact angles before and after the application of voltage, V, and gsl is the interfacial tension between the solid and liquid phases. This pressure difference enables direct control over internal fluid distributions. The contact angle reverts to the original value when V = 0. A sealed micro-model with Electro-Wetting on Dielectric (EWOD) electrodes was fabricated using a PDMS wedge-shaped channel with an entrance width of 1 mm and an exit width of 2 mm. The channel length was 2 mm, and had a depth of 0.9 mm. The PDMS channel was attached to an aluminum plate that served as the ground electrode. An ITO slide coated with PDMS formed the high voltage electrode and was used to seal the micro-model. X-ray Micro-CT scans showed that the contact angle between electrodes changes from from 110˚ (non-wetting) to 70˚ (wetting) for an applied voltage of 318 V AC. By applying voltage to the wedge-shaped micromodel, with the inlet and the outlet opened to the atmosphere, the externally measured capillary pressure remained constant even though the fluid-air interface moved and the saturation increased. For a closed system, the externally measured

  4. Gas hydrate saturations estimated from fractured reservoir at Site NGHP-01-10, Krishna-Godavari Basin, India

    USGS Publications Warehouse

    Lee, M.W.; Collett, T.S.

    2009-01-01

    During the Indian National Gas Hydrate Program Expedition 01 (NGHP-Ol), one of the richest marine gas hydrate accumulations was discovered at Site NGHP-01-10 in the Krishna-Godavari Basin. The occurrence of concentrated gas hydrate at this site is primarily controlled by the presence of fractures. Assuming the resistivity of gas hydratebearing sediments is isotropic, th?? conventional Archie analysis using the logging while drilling resistivity log yields gas hydrate saturations greater than 50% (as high as ???80%) of the pore space for the depth interval between ???25 and ???160 m below seafloor. On the other hand, gas hydrate saturations estimated from pressure cores from nearby wells were less than ???26% of the pore space. Although intrasite variability may contribute to the difference, the primary cause of the saturation difference is attributed to the anisotropic nature of the reservoir due to gas hydrate in high-angle fractures. Archie's law can be used to estimate gas hydrate saturations in anisotropic reservoir, with additional information such as elastic velocities to constrain Archie cementation parameters m and the saturation exponent n. Theory indicates that m and n depend on the direction of the measurement relative to fracture orientation, as well as depending on gas hydrate saturation. By using higher values of m and n in the resistivity analysis for fractured reservoirs, the difference between saturation estimates is significantly reduced, although a sizable difference remains. To better understand the nature of fractured reservoirs, wireline P and S wave velocities were also incorporated into the analysis.

  5. Multifractal comparison of the extremes of rain rates and integrated vapour content

    NASA Astrophysics Data System (ADS)

    Gires, Auguste; Ni, Vincent; Bosser, Pierre; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2015-04-01

    Rainfall extremes are studied through the analyse of three related fields measured with the help of co-located devices installed in the roof of the Ecole des Ponts ParisTech building: (i) Integrated Water Vapour (IWV); it corresponds the amount of water vapour present in the vertical columns between a GPS ground receiver and corresponding satellites. It is estimated from the time shift between the expected duration the signal needs to reach the receiver (the two positions are known) and the actual one (ii) Rain rate measured by three optical disdrometers of two different types (Campbell Scientific PWS100 and OTT Parsivel2) (iii) Relative humidity measured by a dedicated sensor First the correlations between these quantities during significant events is analysed. It appears that although IWV tends to decrease (vapour condense to form drops that fall) and relative humidity to increase during a rainfall event, it turns out difficult to quantitatively characterize this link. It is possibly due to the fact that the scale gap between a punctual measure for the rain rate and an average over a few km height column for the IWV is too large. Finally the scaling features of these three fields are investigated with the help of the Universal Multifractal framework which has been extensively used to analyse and simulate geophysical fields extremely variable over wide ranges of scales. Only three parameters are used to characterize variability across scales: C1 the mean intermittency, alpha the multifractality index and H the non-conservative exponent. Retrieved features are compared and the notion of maximum observable singularity is used to quantify the extremes of the various fields. Authors acknowledge the financial support of the Interreg IV NEW RainGain project (www.raingain.eu) and the chair "hydrology for resilient cities" sponsored by Véolia, and the Climate-KIC Blue Green Dream project (bgd.org.uk/).

  6. Evaluating the virucidal efficacy of hydrogen peroxide vapour.

    PubMed

    Goyal, S M; Chander, Y; Yezli, S; Otter, J A

    2014-04-01

    Surface contamination has been implicated in the transmission of certain viruses, and surface disinfection can be an effective measure to interrupt the spread of these agents. To evaluate the in-vitro efficacy of hydrogen peroxide vapour (HPV), a vapour-phase disinfection method, for the inactivation of a number of structurally distinct viruses of importance in the healthcare, veterinary and public sectors. The viruses studied were: feline calicivirus (FCV, a norovirus surrogate); human adenovirus type 1; transmissible gastroenteritis coronavirus of pigs (TGEV, a severe acute respiratory syndrome coronavirus [SARS-CoV] surrogate); avian influenza virus (AIV); and swine influenza virus (SwIV). The viruses were dried on stainless steel discs in 20- or 40-μL aliquots and exposed to HPV produced by a Clarus L generator (Bioquell, Horsham, PA, USA) in a 0.2-m(3) environmental chamber. Three vaporized volumes of hydrogen peroxide were tested in triplicate for each virus: 25, 27 and 33 mL. No viable viruses were identified after HPV exposure at any of the vaporized volumes tested. HPV was virucidal (>4-log reduction) against FCV, adenovirus, TGEV and AIV at the lowest vaporized volume tested (25 mL). For SwIV, due to low virus titre on the control discs, >3.8-log reduction was shown for the 25-mL vaporized volume and >4-log reduction was shown for the 27-mL and 33-mL vaporized volumes. HPV was virucidal for structurally distinct viruses dried on surfaces, suggesting that HPV can be considered for the disinfection of virus-contaminated surfaces. Copyright © 2014 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  7. The Breathing Snowpack: Pressure-induced Vapor Flux of Temperate Snow

    NASA Astrophysics Data System (ADS)

    Drake, S. A.; Selker, J. S.; Higgins, C. W.

    2017-12-01

    As surface air pressure increases, hydrostatic compression of the air column forces atmospheric air into snowpack pore space. Likewise, as surface air pressure decreases, the atmospheric air column decompresses and saturated air exits the snow. Alternating influx and efflux of air can be thought of as a "breathing" process that produces an upward vapor flux when air above the snow is not saturated. The impact of pressure-induced vapor exchange is assumed to be small and is thus ignored in model parameterizations of surface processes over snow. Rationale for disregarding this process is that large amplitude pressure changes as caused by synoptic weather patterns are too infrequent to credibly impact vapor flux. The amplitude of high frequency pressure changes is assumed to be too small to affect vapor flux, however, the basis for this hypothesis relies on pressure measurements collected over an agricultural field (rather than snow). Resolution of the impact of pressure changes on vapor flux over seasonal cycles depends on an accurate representation of the magnitude of pressure changes caused by changes in wind as a function of the frequency of pressure changes. High precision in situ pressure measurements in a temperature snowpack allowed us to compute the spectra of pressure changes vs. wind forcing. Using a simplified model for vapor exchange we then computed the frequency of pressure changes that maximize vapor exchange. We examine and evaluate the seasonal impact of pressure-induced vapor exchange relative to other snow ablation processes.

  8. A dynamic pressure view cell for acoustic stimulation of fluids--Micro-bubble generation and fluid movement in porous media.

    PubMed

    Stewart, Robert A; Shaw, J M

    2015-09-01

    The development and baseline operation of an acoustic view cell for observing fluids, and fluid-fluid and fluid-solid interfaces in porous media over the frequency range of 10-5000 Hz is described. This range includes the industrially relevant frequency range 500-5000 Hz that is not covered by existing devices. Pressure waveforms of arbitrary shape are generated in a 17.46 mm ID by 200 mm and 690.5 mm long glass tubes at flow rates up to 200 ml/min using a syringe pump. Peak-to-peak amplitudes exceeding 80 kPa are readily realized at frequencies from 10 to 5000 Hz in bubble free fluids when actuated with 20 Vpp as exemplified using castor oil. At resonant frequencies, peak-to-peak pressure amplitudes exceeding 500 kPa were obtained (castor oil at 2100 Hz when actuated with 20 Vpp). Impacts of vibration on macroscopic liquid-liquid and liquid-vapour interfaces and interface movement are illustrated. Pressure wave transmission and attenuation in a fluid saturated porous medium, randomly packed 250-330 μm spherical silica beads, is also demonstrated. Attenuation differences and frequency shifts in resonant peaks are used to detect the presence and generation of dispersed micro-bubbles (<180 μm diameter), and bubbles within porous media that are not readily visualized. Envisioned applications include assessment of the impacts of vibration on reaction, mass transfer, and flow/flow pattern outcomes. This knowledge will inform laboratory and pilot scale process studies, where nuisance vibrations may affect the interpretation of process outcomes, and large scale or in situ processes in aquifers or hydrocarbon reservoirs where imposed vibration may be deployed to improve aspects of process performance. Future work will include miscible interface observation and quantitative measurements in the bulk and in porous media where the roles of micro-bubbles comprise subjects of special interest.

  9. Emission characteristics and vapour/particulate phase distributions of PCDD/F in a hazardous waste incinerator under transient conditions

    PubMed Central

    Wang, Chao; Cen, Kefa; Ni, Mingjiang; Li, Xiaodong

    2018-01-01

    Polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/F) emission characteristics and vapour/particulate phase partitions under three continued operation conditions, i.e. shut-down, start-up and after start-up, were investigated by sampling stack gas. The results indicated that the PCDD/F emission levels were 0.40–18.03 ng I-TEQ Nm−3, much higher than the annual monitoring level (0.016 ng I-TEQ Nm−3). Additionally, the PCDD/F emission levels in start-up were higher than the other two conditions. Furthermore, the PCDD/F congener profiles differed markedly between shut-down and start-up, and the chlorination degree of PCDD/F increased in shut-down and decreased evidently in start-up. Moreover, PCDD/F vapour/particulate phase distributions varied significantly under three transient conditions. The PCDD/F vapour phase proportion decreased as the shut-down process continued, then increased as the start-up process proceeded, finally more than 98% of the PCDD/F congeners were distributed in the vapour phase after start-up. The correlations between log(Cv/Cs) versus log pL0 of each PCDD/F congener in stack gas were disorganized in shut-down, and trend to a linear distribution after start-up. Besides, polychlorinated biphenyl emissions show behaviour similar to that of PCDD/F, and the lower chlorinated congeners have a stronger relationship with 2,3,7,8-PCDD/Fs, such as M1CB and D2CB. PMID:29410821

  10. Monitoring CO2 penetration and storage in the brine-saturated low permeable sandstone by the geophysical exploration technologies

    NASA Astrophysics Data System (ADS)

    Honda, H.; Mitani, Y.; Kitamura, K.; Ikemi, H.; Imasato, M.

    2017-12-01

    Carbon dioxide (CO2) capture and storage (CCS) plays a vital role in reducing greenhouse gas emissions. In the northern part of Kyushu region of Japan, complex geological structure (Coalfield) is existed near the CO2 emission source and has 1.06 Gt of CO2 storage capacity. The geological survey shows that these layers are formed by low permeable sandstone. It is necessary to monitor the CO2 behavior and clear the mechanisms of CO2 penetration and storage in the low permeable sandstone. In this study, measurements of complex electrical impedance (Z) and elastic wave velocity (P-wave velocity: Vp) were conducted during the supercritical CO2 injection experiment into the brine-saturated low permeable sandstone. The experiment conditions were as follows; Confining pressure: 20 MPa, Initial pore pressure: 10 MPa, 40 °, CO2 injection rate: 0.01 to 0.5 mL/min. Z was measured in the center of the specimen and Vp were measured at three different heights of the specimen at constant intervals. In addition, we measured the longitudinal and lateral strain at the center of the specimen, the pore pressure and CO2 injection volume (CO2 saturation). During the CO2 injection, the change of Z and Vp were confirmed. In the drainage terms, Vp decreased drastically once CO2 reached the measurement cross section.Vp showed the little change even if the flow rate increased (CO2 saturation increased). On the other hand, before the CO2 front reached, Z decreased with CO2-dissolved brine. After that, Z showed continuously increased as the CO2 saturation increased. From the multi-parameter (Hydraulic and Rock-physics parameters), we revealed the detail CO2 behavior in the specimen. In the brine-saturated low permeable sandstone, the slow penetration of CO2 was observed. However, once CO2 has passed, the penetration of CO2 became easy in even for brine-remainded low permeable sandstone. We conclude low permeable sandstone has not only structural storage capacity but also residual tapping

  11. The diffraction of Rayleigh waves by a fluid-saturated alluvial valley in a poroelastic half-space modeled by MFS

    NASA Astrophysics Data System (ADS)

    Liu, Zhongxian; Liang, Jianwen; Wu, Chengqing

    2016-06-01

    Two dimensional diffraction of Rayleigh waves by a fluid-saturated poroelastic alluvial valley of arbitrary shape in a poroelastic half-space is investigated using the method of fundamental solutions (MFS). To satisfy the free surface boundary conditions exactly, Green's functions of compressional (PI and PII) and shear (SV) wave sources buried in a fluid-saturated poroelastic half-space are adopted. Next, the procedure for solving the scattering wave field is presented. It is verified that the MFS is of excellent accuracy and numerical stability. Numerical results illustrate that the dynamic response strongly depends on such factors as the incident frequency, the porosity of alluvium, the boundary drainage condition, and the valley shape. There is a significant difference between the diffraction of Rayleigh waves for the saturated soil case and for the corresponding dry soil case. The wave focusing effect both on the displacement and pore pressure can be observed inside the alluvial valley and the amplification effect seems most obvious in the case of higher porosity and lower frequency. Additionally, special attention should also be paid to the concentration of pore pressure, which is closely related to the site liquefaction in earthquakes.

  12. Saturated liquid density of 1,1-difluoroethane(R 152a) and thermodynamic properties along the vapor-liquid coexistence curve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, H.; Okada, M.; Uematsu, M.

    1987-01-01

    Saturated liquid densities of 1,1-difluoroethane (CH/sub 3/CHF/sub 2/) are measured at temperatures from 223 K to 363 K with the estimated uncertainty of +-0.2% by a magnetic densimetry. The experimental results are compared with the available experimental data and some correlations and equations of state. A simple correlation for the saturated liquid density is developed as a function of temperature. This correlation covers the temperature range up to the critical point which reproduces the present experimental results with the percent means deviation of 0.11%. Adding the available experimental data with respect to the vapor pressure, critical parameters, saturated vapor density,more » and the second virial coefficient to the present saturated liquid density data, the parameters of the Redlich-Kwong-Soave equation of state are determined and the thermodynamic properties along the vapor-liquid coexistence curve are derived.« less

  13. Swelling behaviour of Early Jurassic shales when exposed to water vapour

    NASA Astrophysics Data System (ADS)

    Houben, Maartje; Barnhoorn, Auke; Peach, Colin; Drury, Martyn

    2017-04-01

    The presence of water in mudrocks has a largely negative impact on production of gas, due to the fact that water causes swelling of the rock. Removing the water from the mudrock on the other hand could potentially shrink the rock and increase the matrix permeability. Investigation of the swelling/shrinkage behaviour of the rock during exposure to water vapour is of key importance in designing and optimizing unconventional production strategies. We have used outcrop samples of the Whitby Mudstone and the Posidonia shale [1], potential unconventional sources for gas in North-western Europe, to measure the swelling and shrinkage behaviour. Subsamples, 1 mm cubes, were prepared by the Glass Workshop at Utrecht University using a high precision digitally controlled diamond wafering saw cooled by air. The mm cubes were then exposed to atmospheres with different relative humidities either in an Environmental Scanning Electron Microscope (ESEM) or in a 3D dilatometer. So that the sample responses to exposure of water vapour could be measured. Parallel to the bedding we found a swelling strain between 0.5 and 1.5 %, perpendicular to the bedding though swelling strain varied between 1 and 3.5%. Volumetric swelling strain varied between 1 and 2% at a maximum relative humidity of 95%. Volumetric swelling strains measured in the Early Toarcian Shales are similar to the ones found in coal [2], where the results suggest that it might be possible to increase permeability in the reservoir by decreasing the in-situ water activity due to shrinkage of the matrix. [1] M.E. Houben, A. Barnhoorn, L. Wasch, J. Trabucho-Alexandre, C. J. Peach, M.R. Drury (2016). Microstructures of Early Jurassic (Toarcian) shales of Northern Europe, International Journal of Coal Geology, 165, 76-89. [2] Jinfeng Liu, Colin J. Peach, Christopher J. Spiers (2016). Anisotropic swelling behaviour of coal matrix cubes exposed to water vapour: Effects of relative humidity and sample size, International Journal of

  14. Transport mechanisms through PE-CVD coatings: influence of temperature, coating properties and defects on permeation of water vapour

    NASA Astrophysics Data System (ADS)

    Kirchheim, Dennis; Jaritz, Montgomery; Mitschker, Felix; Gebhard, Maximilian; Brochhagen, Markus; Hopmann, Christian; Böke, Marc; Devi, Anjana; Awakowicz, Peter; Dahlmann, Rainer

    2017-03-01

    Gas transport mechanisms through plastics are usually described by the temperature-dependent Arrhenius-model and compositions of several plastic layers are represented by the CLT. When it comes to thin films such as plasma-enhanced chemical vapour deposition (PE-CVD) or plasma-enhanced atomic layer deposition (PE-ALD) coatings on substrates of polymeric material, a universal model is lacking. While existing models describe diffusion through defects, these models presume that permeation does not occur by other means of transport mechanisms. This paper correlates the existing transport models with data from water vapour transmission experiments.

  15. Helium Evolution from the Transfer of Helium Saturated Propellant in Space

    NASA Technical Reports Server (NTRS)

    Nguyen, Bich N.

    2000-01-01

    Helium evolution from the transfer of helium saturated propellant in space is quantified to determine its impact from creating a two-phase mixture in the transfer line. The transfer line is approximately 1/2 inch in diameter and 2400 inches in length comprised of the Fluid Interconnect System (FICS), the Orbiter Propellant Transfer System (OPTS) and the International Space Station (ISS) Propulsion Module (ISSPM). The propellant transfer rate is approximately two to three gallons per minute, and the supply tank pressure is maintained at approximately 250 psig.

  16. Self isolating high frequency saturable reactor

    DOEpatents

    Moore, James A.

    1998-06-23

    The present invention discloses a saturable reactor and a method for decoupling the interwinding capacitance from the frequency limitations of the reactor so that the equivalent electrical circuit of the saturable reactor comprises a variable inductor. The saturable reactor comprises a plurality of physically symmetrical magnetic cores with closed loop magnetic paths and a novel method of wiring a control winding and a RF winding. The present invention additionally discloses a matching network and method for matching the impedances of a RF generator to a load. The matching network comprises a matching transformer and a saturable reactor.

  17. HyspIRI High-Temperature Saturation Study

    NASA Technical Reports Server (NTRS)

    Realmuto, V.; Hook, S.; Foote, M.; Csiszar, I.; Dennison, P.; Giglio, L.; Ramsey, M.; Vaughan, R.G.; Wooster, M.; Wright, R.

    2011-01-01

    As part of the precursor activities for the HyspIRI mission, a small team was assembled to determine the optimum saturation level for the mid-infrared (4-?m) channel, which is dedicated to the measurement of hot targets. Examples of hot targets include wildland fires and active lava flows. This determination took into account both the temperature expected for the natural phenomena and the expected performance of the mid-infrared channel as well as its overlap with the other channels in the thermal infrared (7.5-12 ?m) designed to measure the temperature of lower temperature targets. Based on this work, the hot target saturation group recommends a saturation temperature of 1200 K for the mid-infrared channel. The saturation temperature of 1200 K represents a good compromise between the prevention of saturation and sensitivity to ambient temperature.

  18. Water-use efficiency of willow: Variation with season, humidity and biomass allocation

    NASA Astrophysics Data System (ADS)

    Lindroth, Anders; Verwijst, Theo; Halldin, Sven

    1994-04-01

    Information on the water-use efficiency (WUE) of a vegetation cover improves understanding of the interrelationship between the water and carbon cycles, and enables hydrological practices to be related to agricultural and silvicultural planning and management. This study determined seasonal and climatic variations of the WUE of a fertilized and irrigated short-rotation stand of Salix viminalis L. on a clay soil. The WUE was determined as the ratio of above-ground production to transpiration or, alternatively, to transpiration divided by the saturation vapour pressure deficit. Growth was estimated from a combination of destructive and non-destructive measurements for 10 day periods during the growing seasons of 1986 and 1988. Daily transpiration was estimated using a physically based evaporation model, tuned against energy-balance/Bowen-ratio measurements of total stand evaporation. Nutrients were adequate and climate conditions were similar in both years. In spite of irrigation soil-water deficits developed during midsummer and affected growth rates in different ways: in 1986, both stem and leaf growth decreased, while in 1988 only stem growth decreased. Exceptionally high stem growth rates, twice the total potential growth rates, were recorded after the drought of 1988. They were probably caused by root-allocated assimilates that were sent above-ground after the drought. In both years, stem growth ceased 2-3 weeks after the leaf area had reached its maximum. Since light and temperature were still sufficient to maintain assimilation, all growth presumably took place below ground towards the end of the season. Changes in root-shoot allocation caused large variations in the WUE in 1988. The WUE, weighted by the saturation vapour pressure deficit, was fairly constant in 1986. In both years, the WUE was correlated with the vapour pressure deficit. Towards the end of both growing seasons, when all assimilates were sent below ground, the WUE decreased rapidly to zero

  19. On the micromechanics of slip events in sheared, fluid-saturated fault gouge

    NASA Astrophysics Data System (ADS)

    Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.; Marone, Chris; Carmeliet, Jan

    2017-06-01

    We used a three-dimensional discrete element method coupled with computational fluid dynamics to study the poromechanical properties of dry and fluid-saturated granular fault gouge. The granular layer was sheared under dry conditions to establish a steady state condition of stick-slip dynamic failure, and then fluid was introduced to study its effect on subsequent failure events. The fluid-saturated case showed increased stick-slip recurrence time and larger slip events compared to the dry case. Particle motion induces fluid flow with local pressure variation, which in turn leads to high particle kinetic energy during slip due to increased drag forces from fluid on particles. The presence of fluid during the stick phase of loading promotes a more stable configuration evidenced by higher particle coordination number. Our coupled fluid-particle simulations provide grain-scale information that improves understanding of slip instabilities and illuminates details of phenomenological, macroscale observations.

  20. Kinetics of the reaction between nitrogen dioxide and water vapour

    NASA Astrophysics Data System (ADS)

    Svensson, R.; Ljungström, E.; Lindqvist, O.

    The rate of disappearance of nitrogen dioxide (NO 2) with water vapour and formation of nitrous acid (HONO) in the dark has been investigated in batch experiments. IR spectroscopy was used to determine the concentrations of NO 2, HONO and NO. The reaction is first order both with respect to NO 2 and water vapour and proceeds heterogenously on most unpoisoned surfaces. Initially, the amount of HONO formed is close to half the NO 2 which has disappeared. When the surface in the present reactor (surface to volume ratio = 14 m -1) has reached its limiting state of poisoning, the reaction is still active and the NO 2 disappearance follows the expression: -d[NO 2] /dt = 2k 1[NO 2] [H 2O] where k1 = 4.1 (± 0.8) 10 -8 ppm -1 min -1 (22°C). The S/V ratio dependence of the rate shows that a heterogenous reaction proceeds but the existing evidence is not conclusive about a possible homogenous contribution to the remaining activity. A rate expression which describes the overall reaction at temperatures around 25°C, when the surface present is made passive, is: -d[NO 2] /dt = ( S/V5.6(±0.9)10 -9 + 2.3(±6.5)10 -9)[NO 2][H 2O] .

  1. Long-term series of tropospheric water vapour amounts and HDO/H2O ratio profiles above Jungfraujoch.

    NASA Astrophysics Data System (ADS)

    Lejeune, B.; Mahieu, E.; Schneider, M.; Hase, F.; Servais, C.; Demoulin, P.

    2012-04-01

    Water vapour is a crucial climate variable involved in many processes which widely determine the energy budget of our planet. In particular, water vapour is the dominant greenhouse gas in the Earth's atmosphere and its radiative forcing is maximum in the middle and upper troposphere. Because of the extremely high variability of water vapour concentration in time and space, it is challenging for the available relevant measurement techniques to provide a consistent data set useful for trend analyses and climate studies. Schneider et al. (2006a) showed that ground-based Fourier Transform Infrared (FTIR) spectroscopy, performed from mountain observatories, allows for the detection of H2O variabilities up to the tropopause. Furthermore, the FTIR measurements allow the retrieval of HDO amounts and therefore the monitoring of HDO/H2O ratio profiles whose variations act as markers for the source and history of the atmospheric water vapour. In the framework of the MUSICA European project (Multi-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water, http://www.imk-asf.kit.edu/english/musica.php), a new approach has been developed and optimized by M. Schneider and F. Hase, using the PROFFIT algorithm, to consistently retrieve tropospheric water vapour profiles from high-resolution ground-based infrared solar spectra and so taking benefit from available long-term data sets of ground-based observations. The retrieval of the water isotopologues is performed on a logarithmic scale from 14 micro-windows located in the 2600-3100 cm-1 region. Other important features of this new retrieval strategy are: a speed dependant Voigt line shape model, a joint temperature profile retrieval and an interspecies constraint for the HDO/H2O profiles. In this contribution, we will combine the quality of the MUSICA strategy and of our observations, which are recorded on a regular basis with FTIR spectrometers, under clear-sky conditions, at the NDACC site

  2. Evaluation of the new capture vapourizer for aerosol mass spectrometers (AMS) through laboratory studies of inorganic species

    NASA Astrophysics Data System (ADS)

    Hu, Weiwei; Campuzano-Jost, Pedro; Day, Douglas A.; Croteau, Philip; Canagaratna, Manjula R.; Jayne, John T.; Worsnop, Douglas R.; Jimenez, Jose L.

    2017-08-01

    Aerosol mass spectrometers (AMSs) and Aerosol Chemical Speciation Monitors (ACSMs) commercialized by Aerodyne are widely used to measure the non-refractory species in submicron particles. With the standard vapourizer (SV) that is installed in all commercial instruments to date, the quantification of ambient aerosol mass concentration requires the use of the collection efficiency (CE) to correct for the loss of particles due to bounce. A new capture vapourizer (CV) has been designed to reduce the need for a bounce-related CE correction. Two high-resolution AMS instruments, one with a SV and one with a CV, were operated side by side in the laboratory. Four standard species, NH4NO3, NaNO3, (NH4)2SO4 and NH4Cl, which typically constitute the majority of the mass of ambient submicron inorganic species, are studied. The effect of vapourizer temperature (Tv ˜ 200-800 °C) on the detected fragments, CE and size distributions are investigated. A Tv of 500-550 °C for the CV is recommended. In the CV, CE was identical (around unity) for more volatile species (e.g. NH4NO3) and comparable to or higher than the SV for less-volatile species (e.g. (NH4)2SO4), demonstrating an improvement in CE for laboratory inorganic species in the CV. The detected relative intensities of fragments of NO3 and SO4 species observed with the CV are different from those observed with the SV, and are consistent with additional thermal decomposition arising from the increased residence time and multiple collisions. Increased residence times with the CV also lead to broader particle size distribution measurements than with the SV. A method for estimating whether pure species will be detected in AMS sizing mode is proposed. Production of CO2(g) from sampled nitrate on the vapourizer surface, which has been reported for the SV, is negligible for the CV for NH4NO3 and comparable to the SV for NaNO3. . We observe an extremely consistent fragmentation for ammonium compared to very large changes for the

  3. LTP saturation and spatial learning disruption: effects of task variables and saturation levels.

    PubMed

    Barnes, C A; Jung, M W; McNaughton, B L; Korol, D L; Andreasson, K; Worley, P F

    1994-10-01

    The prediction that "saturation" of LTP/LTE at hippocampal synapses should impair spatial learning was reinvestigated in the light of a more specific consideration of the theory of Hebbian associative networks, which predicts a nonlinear relationship between LTP "saturation" and memory impairment. This nonlinearity may explain the variable results of studies that have addressed the effects of LTP "saturation" on behavior. The extent of LTP "saturation" in fascia dentata produced by the standard chronic LTP stimulation protocol was assessed both electrophysiologically and through the use of an anatomical marker (activation of the immediate-early gene zif268). Both methods point to the conclusion that the standard protocols used to induce LTP do not "saturate" the process at any dorsoventral level, and leave the ventral half of the hippocampus virtually unaffected. LTP-inducing, bilateral perforant path stimulation led to a significant deficit in the reversal of a well-learned spatial response on the Barnes circular platform task as reported previously, yet in the same animals produced no deficit in learning the Morris water task (for which previous results have been conflicting). The behavioral deficit was not a consequence of any after-discharge in the hippocampal EEG. In contrast, administration of maximal electroconvulsive shock led to robust zif268 activation throughout the hippocampus, enhancement of synaptic responses, occlusion of LTP produced by discrete high-frequency stimulation, and spatial learning deficits in the water task. These data provide further support for the involvement of LTP-like synaptic enhancement in spatial learning.

  4. Long-wave equivalent viscoelastic solids for porous rocks saturated by two-phase fluids

    NASA Astrophysics Data System (ADS)

    Santos, J. E.; Savioli, G. B.

    2018-04-01

    Seismic waves traveling across fluid-saturated poroelastic materials with mesoscopic-scale heterogeneities induce fluid flow and Biot's slow waves generating energy loss and velocity dispersion. Using Biot's equations of motion to model these type of heterogeneities would require extremely fine meshes. We propose a numerical upscaling procedure to determine the complex and frequency dependent P-wave and shear moduli of an effective viscoelastic medium long-wave equivalent to a poroelastic solid saturated by a two-phase fluid. The two-phase fluid is defined in terms of capillary pressure and relative permeability flow functions. The P-wave and shear effective moduli are determined using harmonic compressibility and shear experiments applied on representative samples of the bulk material. Each experiment is associated with a boundary value problem that is solved using the finite element method. Since a poroelastic solid saturated by a two-phase fluid supports the existence of two slow waves, this upscaling procedure allows to analyze their effect on the mesoscopic-loss mechanism in hydrocarbon reservoir formations. Numerical results show that a two-phase Biot medium model predicts higher attenuation than classic Biot models.

  5. Survival of bacteria of laboratory animal origin on cage bedding and inactivation by hydrogen peroxide vapour.

    PubMed

    Benga, Laurentiu; Benten, W Peter M; Engelhardt, Eva; Gougoula, Christina; Schulze-Röbbecke, Roland; Sager, Martin

    2017-08-01

    This study aims to determine the ability of laboratory animal bacteria to resist desiccation and inactivation by hydrogen peroxide vapour (HPV) on paper bedding pieces. Bedding pieces were saturated with bacterial suspensions in water or 2% (w/v) bovine serum albumin (BSA) in water, and held in a mouse facility. Viable counts showed variable survival rates over time for the bacterial species used ([ Pasteurella] pneumotropica, Muribacter muris, Pseudomonas aeruginosa, Acinetobacter redioresistens, Escherichia coli, Klebsiella oxytoca, Bordetella bronchiseptica, Bordetella hinzii, Enterococcus faecalis, β-haemolytic Streptococcus spp., Staphylococcus aureus and Staphylococcus xylosus). Overall, BSA increased bacterial survival in the bedding pieces. The survival rates of Bacillus safensis were not influenced by BSA but depended on sporulation. When bedding pieces and Petri dishes inoculated with E. coli, P. aeruginosa and S. aureus were subjected to HPV disinfection, all bacterial species on the bedding pieces inoculated with bacterial suspensions in water were readily inactivated. By contrast, S. aureus and P. aeruginosa, but not E. coli cells survived HPV treatment in high numbers when inoculated on bedding pieces as a BSA suspension. Notably, all three bacterial species were readily inactivated by HPV even in the presence of BSA when smeared on smooth surfaces. In conclusion, the suspension medium and the carrier can influence the environmental survival and susceptibility of bacterial species to HPV. Our results may help to develop standard protocols that can be used to ensure the microbiological quality of experimental rodent housing.

  6. Platinum-bearing chromite layers are caused by pressure reduction during magma ascent.

    PubMed

    Latypov, Rais; Costin, Gelu; Chistyakova, Sofya; Hunt, Emma J; Mukherjee, Ria; Naldrett, Tony

    2018-01-31

    Platinum-bearing chromitites in mafic-ultramafic intrusions such as the Bushveld Complex are key repositories of strategically important metals for human society. Basaltic melts saturated in chromite alone are crucial to their generation, but the origin of such melts is controversial. One concept holds that they are produced by processes operating within the magma chamber, whereas another argues that melts entering the chamber were already saturated in chromite. Here we address the problem by examining the pressure-related changes in the topology of a Mg 2 SiO 4 -CaAl 2 Si 2 O 8 -SiO 2 -MgCr 2 O 4 quaternary system and by thermodynamic modelling of crystallisation sequences of basaltic melts at 1-10 kbar pressures. We show that basaltic melts located adjacent to a so-called chromite topological trough in deep-seated reservoirs become saturated in chromite alone upon their ascent towards the Earth's surface and subsequent cooling in shallow-level chambers. Large volumes of these chromite-only-saturated melts replenishing these chambers are responsible for monomineralic layers of massive chromitites with associated platinum-group elements.

  7. The effect of saturated steam vapor temperature on heat consumption in the process of color modification of acacia wood

    NASA Astrophysics Data System (ADS)

    Dzurenda, Ladislav

    2017-09-01

    This paper presents the heat consumption on the process of colour modification of acacia timber with measures 30 x 55 x 500 mm in pressure autoclaves AZ 240 using saturated water steam with temperatures from t = 110 to 140 °C following the regimes of colour homogenisation of I., II. and III. degree. The dependance of the heat consumption normative QTFS on the temparature of saturated water steam in the process of colour homogenisation of acacia timber following these regimes describes the equation: QTFS = 1.1122.t -13.903 kWh.m-3.

  8. Experimental determination of magnesia and silica solubilities in graphite-saturated and redox-buffered high-pressure COH fluids in equilibrium with forsterite + enstatite and magnesite + enstatite

    NASA Astrophysics Data System (ADS)

    Tiraboschi, Carla; Tumiati, Simone; Sverjensky, Dimitri; Pettke, Thomas; Ulmer, Peter; Poli, Stefano

    2018-01-01

    We experimentally investigated the dissolution of forsterite, enstatite and magnesite in graphite-saturated COH fluids, synthesized using a rocking piston cylinder apparatus at pressures from 1.0 to 2.1 GPa and temperatures from 700 to 1200 °C. Synthetic forsterite, enstatite, and nearly pure natural magnesite were used as starting materials. Redox conditions were buffered by Ni-NiO-H2O (ΔFMQ = - 0.21 to - 1.01), employing a double-capsule setting. Fluids, binary H2O-CO2 mixtures at the P, T, and fO2 conditions investigated, were generated from graphite, oxalic acid anhydrous (H2C2O4) and water. Their dissolved solute loads were analyzed through an improved version of the cryogenic technique, which takes into account the complexities associated with the presence of CO2-bearing fluids. The experimental data show that forsterite + enstatite solubility in H2O-CO2 fluids is higher compared to pure water, both in terms of dissolved silica ( mSiO2 = 1.24 mol/kgH2O versus mSiO2 = 0.22 mol/kgH2O at P = 1 GPa, T = 800 °C) and magnesia ( mMgO = 1.08 mol/kgH2O versus mMgO = 0.28 mol/kgH2O) probably due to the formation of organic C-Mg-Si complexes. Our experimental results show that at low temperature conditions, a graphite-saturated H2O-CO2 fluid interacting with a simplified model mantle composition, characterized by low MgO/SiO2 ratios, would lead to the formation of significant amounts of enstatite if solute concentrations are equal, while at higher temperatures these fluid, characterized by MgO/SiO2 ratios comparable with that of olivine, would be less effective in metasomatizing the surrounding rocks. However, the molality of COH fluids increases with pressure and temperature, and quintuplicates with respect to the carbon-free aqueous fluids. Therefore, the amount of fluid required to metasomatize the mantle decreases in the presence of carbon at high P- T conditions. COH fluids are thus effective carriers of C, Mg and Si in the mantle wedge up to the shallowest

  9. Physicochemical application of capillary chromatography

    NASA Astrophysics Data System (ADS)

    Vasil'ev, A. V.; Aleksandrov, E. N.

    1992-04-01

    The application of capillary gas chromatography in the determination of the free energy, enthalpy, and entropy of sorption, the saturated vapour pressure and activity coefficients, the assessment of the lipophilicity of volatile compounds, and the study of the properties of polymers and liquid crystals is described. The use of reaction cappillary chromatography in kinetic studies of conformational conversions, thermal degradation, and photochemical reactions is examined. Studies on the use of capillary columns for determination of the second virial coefficients and viscosity of gases and the diffusion coefficients in gases, liquids, supercritical fluids, and polymers are analysed. The bibliography includes 114 references.

  10. Assessing species saturation: conceptual and methodological challenges.

    PubMed

    Olivares, Ingrid; Karger, Dirk N; Kessler, Michael

    2018-05-07

    Is there a maximum number of species that can coexist? Intuitively, we assume an upper limit to the number of species in a given assemblage, or that a lineage can produce, but defining and testing this limit has proven problematic. Herein, we first outline seven general challenges of studies on species saturation, most of which are independent of the actual method used to assess saturation. Among these are the challenge of defining saturation conceptually and operationally, the importance of setting an appropriate referential system, and the need to discriminate among patterns, processes and mechanisms. Second, we list and discuss the methodological approaches that have been used to study species saturation. These approaches vary in time and spatial scales, and in the variables and assumptions needed to assess saturation. We argue that assessing species saturation is possible, but that many studies conducted to date have conceptual and methodological flaws that prevent us from currently attaining a good idea of the occurrence of species saturation. © 2018 Cambridge Philosophical Society.

  11. Water vapour retrieval using the Precision Solar Spectroradiometer

    NASA Astrophysics Data System (ADS)

    Raptis, Panagiotis-Ioannis; Kazadzis, Stelios; Gröbner, Julian; Kouremeti, Natalia; Doppler, Lionel; Becker, Ralf; Helmis, Constantinos

    2018-02-01

    The Precision Solar Spectroradiometer (PSR) is a new spectroradiometer developed at Physikalisch-Meteorologisches Observatorium Davos - World Radiation Center (PMOD-WRC), Davos, measuring direct solar irradiance at the surface, in the 300-1020 nm spectral range and at high temporal resolution. The purpose of this work is to investigate the instrument's potential to retrieve integrated water vapour (IWV) using its spectral measurements. Two different approaches were developed in order to retrieve IWV: the first one uses single-channel and wavelength measurements, following a theoretical water vapour high absorption wavelength, and the second one uses direct sun irradiance integrated at a certain spectral region. IWV results have been validated using a 2-year data set, consisting of an AERONET sun-photometer Cimel CE318, a Global Positioning System (GPS), a microwave radiometer profiler (MWP) and radiosonde retrievals recorded at Meteorological Observatorium Lindenberg, Germany. For the monochromatic approach, better agreement with retrievals from other methods and instruments was achieved using the 946 nm channel, while for the spectral approach the 934-948 nm window was used. Compared to other instruments' retrievals, the monochromatic approach leads to mean relative differences up to 3.3 % with the coefficient of determination (R2) being in the region of 0.87-0.95, while for the spectral approach mean relative differences up to 0.7 % were recorded with R2 in the region of 0.96-0.98. Uncertainties related to IWV retrieval methods were investigated and found to be less than 0.28 cm for both methods. Absolute IWV deviations of differences between PSR and other instruments were determined the range of 0.08-0.30 cm and only in extreme cases would reach up to 15 %.

  12. Influence of metallic vapours on thermodynamic and transport properties of two-temperature air plasma

    NASA Astrophysics Data System (ADS)

    Zhong, Linlin; Wang, Xiaohua; Cressault, Yann; Teulet, Philippe; Rong, Mingzhe

    2016-09-01

    The metallic vapours (i.e., copper, iron, and silver in this paper) resulting from walls and/or electrode surfaces can significantly affect the characteristics of air plasma. Different from the previous works assuming local thermodynamic equilibrium, this paper investigates the influence of metallic vapours on two-temperature (2 T) air plasma. The 2 T compositions of air contaminated by Cu, Fe, and Ag are first determined based on Saha's and Guldberg-Waage's laws. The thermodynamic properties (including mass density, specific enthalpy, and specific heat) are then calculated according to their definitions. After determining the collision integrals for each pair of species in air-metal mixtures using the newly published methods and source data, the transport coefficients (including electrical conductivity, viscosity, and thermal conductivity) are calculated for air-Cu, air-Fe, and air-Ag plasmas with different non-equilibrium degree θ (Te/Th). The influences of metallic contamination as well as non-equilibrium degree are discussed. It is found that copper, iron, and silver exist mainly in the form of Cu2, FeO, and AgO at low temperatures. Generally, the metallic vapours increase mass density at most temperatures, reduce the specific enthalpy and specific heat in the whole temperature range, and affect the transport properties remarkably from 5000 K to 20 000 K. The effect arising from the type of metals is little except for silver at certain temperatures. Besides, the departure from thermal equilibrium results in the delay of dissociation and ionization reactions, leading to the shift of thermodynamic and transport properties towards a higher temperature.

  13. Synthesis of Ordered Mesoporous Phenanthrenequinone-Carbon via π-π Interaction-Dependent Vapor Pressure for Rechargeable Batteries

    PubMed Central

    Kwon, Mi-Sook; Choi, Aram; Park, Yuwon; Cheon, Jae Yeong; Kang, Hyojin; Jo, Yong Nam; Kim, Young-Jun; Hong, Sung You; Joo, Sang Hoon; Yang, Changduk; Lee, Kyu Tae

    2014-01-01

    The π-π interaction-dependent vapour pressure of phenanthrenequinone can be used to synthesize a phenanthrenequinone-confined ordered mesoporous carbon. Intimate contact between the insulating phenanthrenequinone and the conductive carbon framework improves the electrical conductivity. This enables a more complete redox reaction take place. The confinement of the phenanthrenequinone in the mesoporous carbon mitigates the diffusion of the dissolved phenanthrenequinone out of the mesoporous carbon, and improves cycling performance. PMID:25490893

  14. Validation of the CORB75 (confusion, oxygen saturation, respiratory rate, blood pressure, and age ≥ 75 years) as a simpler pneumonia severity rule.

    PubMed

    Ochoa-Gondar, O; Vila-Corcoles, A; Rodriguez-Blanco, T; Hospital, I; Salsench, E; Ansa, X; Saun, N

    2014-04-01

    This study compares the ability of two simpler severity rules (classical CRB65 vs. proposed CORB75) in predicting short-term mortality in elderly patients with community-acquired pneumonia (CAP). A population-based study was undertaken involving 610 patients ≥ 65 years old with radiographically confirmed CAP diagnosed between 2008 and 2011 in Tarragona, Spain (350 cases in the derivation cohort, 260 cases in the validation cohort). Severity rules were calculated at the time of diagnosis, and 30-day mortality was considered as the dependent variable. The area under the receiver operating characteristic curves (AUC) was used to compare the discriminative power of the severity rules. Eighty deaths (46 in the derivation and 34 in the validation cohorts) were observed, which gives a mortality rate of 13.1 % (15.6 % for hospitalized and 3.3 % for outpatient cases). After multivariable analyses, besides CRB (confusion, respiration rate ≥ 30/min, systolic blood pressure <90 mmHg or diastolic ≤ 60 mmHg), peripheral oxygen saturation (≤ 90 %) and age ≥ 75 years appeared to be associated with increasing 30-day mortality in the derivation cohort. The model showed adequate calibration for the derivation and validation cohorts. A modified CORB75 scoring system (similar to the classical CRB65, but adding oxygen saturation and increasing the age to 75 years) was constructed. The AUC statistics for predicting mortality in the derivation and validation cohorts were 0.79 and 0.82, respectively. In the derivation cohort, a CORB75 score ≥ 2 showed 78.3 % sensitivity and 65.5 % specificity for mortality (in the validation cohort, these were 82.4 and 71.7 %, respectively). The proposed CORB75 scoring system has good discriminative power in predicting short-term mortality among elderly people with CAP, which supports its use for severity assessment of these patients in primary care.

  15. Power flow control using distributed saturable reactors

    DOEpatents

    Dimitrovski, Aleksandar D.

    2016-02-13

    A magnetic amplifier includes a saturable core having a plurality of legs. Control windings wound around separate legs are spaced apart from each other and connected in series in an anti-symmetric relation. The control windings are configured in such a way that a biasing magnetic flux arising from a control current flowing through one of the plurality of control windings is substantially equal to the biasing magnetic flux flowing into a second of the plurality of control windings. The flow of the control current through each of the plurality of control windings changes the reactance of the saturable core reactor by driving those portions of the saturable core that convey the biasing magnetic flux in the saturable core into saturation. The phasing of the control winding limits a voltage induced in the plurality of control windings caused by a magnetic flux passing around a portion of the saturable core.

  16. Speciation of High-Pressure Carbon-Saturated COH Fluids at Buffered fO2 Conditions: An Experimental Approach

    NASA Astrophysics Data System (ADS)

    Tumiati, S.; Tiraboschi, C.; Recchia, S.; Poli, S.

    2014-12-01

    The quantitative assessment of species in COH fluids is crucial in modelling mantle processes. For instance, H2O/CO2 ratio in the fluid phase influences the location of the solidus and of carbonation/decarbonation reactions in peridotitic systems . In the scientific literature, the speciation of COH fluids has been generally assumed on the basis of thermodynamic calculations using equations of state of simple H2O-non-polar gas systems (e.g., H2O-CO2-CH4). Only few authors dealt with the experimental determination of high-pressure COH fluid species at different conditions, using diverse experimental and analytical approaches (e.g., piston cylinder+capsule-piercing+gas-chromatography/mass-spectrometry; cold-seal+silica glass capsules+Raman). We performed experiments on COH fluids using a capsule-piercing device coupled with a quadrupole mass spectrometry. This type of analyzer ensures superior performances in terms of selectivity of molecules to be detected, high acquisition rates and extended linear response range. Experiments were carried out in a rocking piston cylinder apparatus at pressure of 1 GPa and temperatures from 800 to 900°C. Carbon-saturated fluids were generated through the addition of oxalic acid dihydrate and graphite. Single/double capsules and different packing materials (BN and MgO) were used to evaluate the divergence from the thermodynamic speciation model. Moreover, to assess the effect of solutes on COH fluid speciation we also performed a set of experiments adding synthetic forsterite to the charge. To determine the speciation we assembled a capsule-piercing device that allows to puncture the capsule in a gas-tight vessel at 80°C. The extraction Teflon vessel is composed of a base part, where the capsule is allocated on a steel support, and a top part where a steel drill is mounted. To release the quenched fluids from the capsule, the base part of vessel is hand-tighten to the top part, allowing the steel pointer to pierce the capsule. The

  17. Continuous measurements of stable isotopes of carbon dioxide and water vapour in an urban atmosphere: isotopic variations associated with meteorological conditions.

    PubMed

    Wada, Ryuichi; Matsumi, Yutaka; Nakayama, Tomoki; Hiyama, Tetsuya; Fujiyoshi, Yasushi; Kurita, Naoyuki; Muramoto, Kenichiro; Takanashi, Satoru; Kodama, Naomi; Takahashi, Yoshiyuki

    2017-12-01

    Isotope ratios of carbon dioxide and water vapour in the near-surface air were continuously measured for one month in an urban area of the city of Nagoya in central Japan in September 2010 using laser spectroscopic techniques. During the passages of a typhoon and a stationary front in the observation period, remarkable changes in the isotope ratios of CO 2 and water vapour were observed. The isotope ratios of both CO 2 and water vapour decreased during the typhoon passage. The decreases can be attributed to the air coming from an industrial area and the rainout effects of the typhoon, respectively. During the passage of the stationary front, δ 13 C-CO 2 and δ 18 O-CO 2 increased, while δ 2 H-H 2 Ov and δ 18 O-H 2 Ov decreased. These changes can be attributed to the air coming from rural areas and the air surrounding the observational site changing from a subtropical air mass to a subpolar air mass during the passage of the stationary front. A clear relationship was observed between the isotopic CO 2 and water vapour and the meteorological phenomena. Therefore, isotopic information of CO 2 and H 2 Ov could be used as a tracer of meteorological information.

  18. Airborne and satellite remote sensing of the mid-infrared water vapour continuum.

    PubMed

    Newman, Stuart M; Green, Paul D; Ptashnik, Igor V; Gardiner, Tom D; Coleman, Marc D; McPheat, Robert A; Smith, Kevin M

    2012-06-13

    Remote sensing of the atmosphere from space plays an increasingly important role in weather forecasting. Exploiting observations from the latest generation of weather satellites relies on an accurate knowledge of fundamental spectroscopy, including the water vapour continuum absorption. Field campaigns involving the Facility for Airborne Atmospheric Measurements research aircraft have collected a comprehensive dataset, comprising remotely sensed infrared radiance observations collocated with accurate measurements of the temperature and humidity structure of the atmosphere. These field measurements have been used to validate the strength of the infrared water vapour continuum in comparison with the latest laboratory measurements. The recent substantial changes to self-continuum coefficients in the widely used MT_CKD (Mlawer-Tobin-Clough-Kneizys-Davies) model between 2400 and 3200 cm(-1) are shown to be appropriate and in agreement with field measurements. Results for the foreign continuum in the 1300-2000 cm(-1) band suggest a weak temperature dependence that is not currently included in atmospheric models. A one-dimensional variational retrieval experiment is performed that shows a small positive benefit from using new laboratory-derived continuum coefficients for humidity retrievals.

  19. Localized sources of water vapour on the dwarf planet (1) Ceres.

    PubMed

    Küppers, Michael; O'Rourke, Laurence; Bockelée-Morvan, Dominique; Zakharov, Vladimir; Lee, Seungwon; von Allmen, Paul; Carry, Benoît; Teyssier, David; Marston, Anthony; Müller, Thomas; Crovisier, Jacques; Barucci, M Antonietta; Moreno, Raphael

    2014-01-23

    The 'snowline' conventionally divides Solar System objects into dry bodies, ranging out to the main asteroid belt, and icy bodies beyond the belt. Models suggest that some of the icy bodies may have migrated into the asteroid belt. Recent observations indicate the presence of water ice on the surface of some asteroids, with sublimation a potential reason for the dust activity observed on others. Hydrated minerals have been found on the surface of the largest object in the asteroid belt, the dwarf planet (1) Ceres, which is thought to be differentiated into a silicate core with an icy mantle. The presence of water vapour around Ceres was suggested by a marginal detection of the photodissociation product of water, hydroxyl (ref. 12), but could not be confirmed by later, more sensitive observations. Here we report the detection of water vapour around Ceres, with at least 10(26) molecules being produced per second, originating from localized sources that seem to be linked to mid-latitude regions on the surface. The water evaporation could be due to comet-like sublimation or to cryo-volcanism, in which volcanoes erupt volatiles such as water instead of molten rocks.

  20. Warm water vapour in the sooty outflow from a luminous carbon star.

    PubMed

    Decin, L; Agúndez, M; Barlow, M J; Daniel, F; Cernicharo, J; Lombaert, R; De Beck, E; Royer, P; Vandenbussche, B; Wesson, R; Polehampton, E T; Blommaert, J A D L; De Meester, W; Exter, K; Feuchtgruber, H; Gear, W K; Gomez, H L; Groenewegen, M A T; Guélin, M; Hargrave, P C; Huygen, R; Imhof, P; Ivison, R J; Jean, C; Kahane, C; Kerschbaum, F; Leeks, S J; Lim, T; Matsuura, M; Olofsson, G; Posch, T; Regibo, S; Savini, G; Sibthorpe, B; Swinyard, B M; Yates, J A; Waelkens, C

    2010-09-02

    The detection of circumstellar water vapour around the ageing carbon star IRC +10216 challenged the current understanding of chemistry in old stars, because water was predicted to be almost absent in carbon-rich stars. Several explanations for the water were postulated, including the vaporization of icy bodies (comets or dwarf planets) in orbit around the star, grain surface reactions, and photochemistry in the outer circumstellar envelope. With a single water line detected so far from this one carbon-rich evolved star, it is difficult to discriminate between the different mechanisms proposed. Here we report the detection of dozens of water vapour lines in the far-infrared and sub-millimetre spectrum of IRC +10216 using the Herschel satellite. This includes some high-excitation lines with energies corresponding to approximately 1,000 K, which can be explained only if water is present in the warm inner sooty region of the envelope. A plausible explanation for the warm water appears to be the penetration of ultraviolet photons deep into a clumpy circumstellar envelope. This mechanism also triggers the formation of other molecules, such as ammonia, whose observed abundances are much higher than hitherto predicted.

  1. In Situ Observation of Gypsum-Anhydrite Transition at High Pressure and High Temperature

    NASA Astrophysics Data System (ADS)

    Liu, Chuan-Jiang; Zheng, Hai-Fei

    2012-04-01

    An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC). The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 MPa. With increasing temperature, the anhydrite (CaSO4) phase precipitates at 250-320°C in the pressure range of 1.0-1.5GPa, indicating that under a saturated water condition, both stable conditions of pressure and temperature and high levels of Ca and SO4 ion concentrations in aqueous solution are essential for the formation of anhydrite. A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(GPa) = 0.0068T-0.7126 (250°C<=T<=320°C). Anhydrite remained stable during rapid cooling of the sample chamber, showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is irreversible at high pressure and high temperature.

  2. Hair analysis as a useful procedure for detection of vapour exposure to chemical warfare agents: simulation of sulphur mustard with methyl salicylate.

    PubMed

    Spiandore, Marie; Piram, Anne; Lacoste, Alexandre; Josse, Denis; Doumenq, Pierre

    2014-06-01

    Chemical warfare agents (CWA) are highly toxic compounds which have been produced to kill or hurt people during conflicts or terrorist attacks. Despite the fact that their use is strictly prohibited according to international convention, populations' exposure still recently occurred. Development of markers of exposure to CWA is necessary to distinguish exposed victims from unexposed ones. We present the first study of hair usage as passive sampler to assess contamination by chemicals in vapour form. This work presents more particularly the hair adsorption capacity for methyl salicylate used as a surrogate of the vesicant sulphur mustard. Chemical vapours toxicity through the respiratory route has historically been defined through Haber's law's concentration-time (Ct) product, and vapour exposure of hair to methyl salicylate was conducted with various times or doses of exposure in the range of incapacitating and lethal Ct products corresponding to sulphur mustard. Following exposure, extraction of methyl salicylate from hair was conducted by simple soaking in dichloromethane. Methyl salicylate could be detected on hair for vapour concentration corresponding to about one fifth of the sulphur mustard concentration that would kill 50% of exposed individuals (LCt50). The amount of methyl salicylate recovered from hair increased with time or dose of exposure. It showed a good correlation with the concentration-time product, suggesting that hair could be used like a passive sampler to assess vapour exposure to chemical compounds. It introduces great perspectives concerning the use of hair as a marker of exposure to CWA. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Investigation of broadening and shift of vapour absorption lines of H{sub 2}{sup 16}O in the frequency range 7184 – 7186 cm{sup -1}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadezhdinskii, A I; Pereslavtseva, A A; Ponurovskii, Ya Ya

    2014-10-31

    We present the results of investigation of water vapour absorption spectra in the 7184 – 7186 cm{sup -1} range that is of particular interest from the viewpoint of possible application of the data obtained for monitoring water vapour in the Earth's stratosphere. The doublet of H{sub 2}{sup 16}O near ν = 7185.596 cm{sup -1} is analysed. The coefficients of broadening and shift of water vapour lines are found in the selected range in mixtures with buffer gases and compared to those obtained by other authors. (laser spectroscopy)

  4. Localisation of an Unknown Number of Land Mines Using a Network of Vapour Detectors

    PubMed Central

    Chhadé, Hiba Haj; Abdallah, Fahed; Mougharbel, Imad; Gning, Amadou; Julier, Simon; Mihaylova, Lyudmila

    2014-01-01

    We consider the problem of localising an unknown number of land mines using concentration information provided by a wireless sensor network. A number of vapour sensors/detectors, deployed in the region of interest, are able to detect the concentration of the explosive vapours, emanating from buried land mines. The collected data is communicated to a fusion centre. Using a model for the transport of the explosive chemicals in the air, we determine the unknown number of sources using a Principal Component Analysis (PCA)-based technique. We also formulate the inverse problem of determining the positions and emission rates of the land mines using concentration measurements provided by the wireless sensor network. We present a solution for this problem based on a probabilistic Bayesian technique using a Markov chain Monte Carlo sampling scheme, and we compare it to the least squares optimisation approach. Experiments conducted on simulated data show the effectiveness of the proposed approach. PMID:25384008

  5. Vapour-Deposited Cesium Lead Iodide Perovskites: Microsecond Charge Carrier Lifetimes and Enhanced Photovoltaic Performance

    PubMed Central

    2017-01-01

    Metal halide perovskites such as methylammonium lead iodide (MAPbI3) are highly promising materials for photovoltaics. However, the relationship between the organic nature of the cation and the optoelectronic quality remains debated. In this work, we investigate the optoelectronic properties of fully inorganic vapour-deposited and spin-coated black-phase CsPbI3 thin films. Using the time-resolved microwave conductivity technique, we measure charge carrier mobilities up to 25 cm2/(V s) and impressively long charge carrier lifetimes exceeding 10 μs for vapour-deposited CsPbI3, while the carrier lifetime reaches less than 0.2 μs in the spin-coated samples. Finally, we show that these improved lifetimes result in enhanced device performance with power conversion efficiencies close to 9%. Altogether, these results suggest that the charge carrier mobility and recombination lifetime are mainly dictated by the inorganic framework rather than the organic nature of the cation. PMID:28852710

  6. Saturated Widths of Magnetic Islands in Tokamak Discharges

    NASA Astrophysics Data System (ADS)

    Halpern, F.; Pankin, A. Y.

    2005-10-01

    The new ISLAND module described in reference [1] implements a quasi-linear model to compute the widths of multiple magnetic islands driven by saturated tearing modes in toroidal plasmas of arbitrary aspect ratio and cross sectional shape. The distortion of the island shape caused by the radial variation in the perturbation is computed in the new module. In transport simulations, the enhanced transport caused by the magnetic islands has the effect of flattening the pressure and current density profiles. This self consistent treatment of the magnetic islands alters the development of the plasma profiles. In addition, it is found that islands closer to the magnetic axis influence the evolution of islands further out in the plasma. In order to investigate such phenomena, the ISLAND module is used within the BALDUR predictive modeling code to compute the widths of multiple magnetic islands in tokamak discharges. The interaction between the islands and sawtooth crashes is examined in simulations of DIII-D and JET discharges. The module is used to compute saturated neoclassical tearing mode island widths for multiple modes in ITER. Preliminary results for island widths in ITER are consistent with those presented [2] by Hegna. [1] F.D. Halpern, G. Bateman, A.H. Kritz and A.Y. Pankin, ``The ISLAND Module for Computing Magnetic Island Widths in Tokamaks,'' submitted to J. Plasma Physics (2005). [2] C.C. Hegna, 2002 Fusion Snowmass Meeting.

  7. Atmospheric pressure atomic layer deposition of Al₂O₃ using trimethyl aluminum and ozone.

    PubMed

    Mousa, Moataz Bellah M; Oldham, Christopher J; Parsons, Gregory N

    2014-04-08

    High throughput spatial atomic layer deposition (ALD) often uses higher reactor pressure than typical batch processes, but the specific effects of pressure on species transport and reaction rates are not fully understood. For aluminum oxide (Al2O3) ALD, water or ozone can be used as oxygen sources, but how reaction pressure influences deposition using ozone has not previously been reported. This work describes the effect of deposition pressure, between ∼2 and 760 Torr, on ALD Al2O3 using TMA and ozone. Similar to reports for pressure dependence during TMA/water ALD, surface reaction saturation studies show self-limiting growth at low and high pressure across a reasonable temperature range. Higher pressure tends to increase the growth per cycle, especially at lower gas velocities and temperatures. However, growth saturation at high pressure requires longer O3 dose times per cycle. Results are consistent with a model of ozone decomposition kinetics versus pressure and temperature. Quartz crystal microbalance (QCM) results confirm the trends in growth rate and indicate that the surface reaction mechanisms for Al2O3 growth using ozone are similar under low and high total pressure, including expected trends in the reaction mechanism at different temperatures.

  8. Effects of stochastic field lines on the pressure driven MHD instabilities in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Ohdachi, Satoshi; Watanabe, Kiyomasa; Sakakibara, Satoru; Suzuki, Yasuhiro; Tsuchiya, Hayato; Ming, Tingfeng; Du, Xiaodi; LHD Expriment Group Team

    2014-10-01

    In the Large Helical Device (LHD), the plasma is surrounded by the so-called magnetic stochastic region, where the Kolmogorov length of the magnetic field lines is very short, from several tens of meters and to thousands meters. Finite pressure gradient are formed in this region and MHD instabilities localized in this region is observed since the edge region of the LHD is always unstable against the pressure driven mode. Therefore, the saturation level of the instabilities is the key issue in order to evaluate the risk of this kind of MHD instabilities. The saturation level depends on the pressure gradient and on the magnetic Reynolds number; there results are similar to the MHD mode in the closed magnetic surface region. The saturation level in the stochastic region is affected also by the stocasticity itself. Parameter dependence of the saturation level of the MHD activities in the region is discussed in detail. It is supported by NIFS budget code ULPP021, 028 and is also partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research 26249144, by the JSPS-NRF-NSFC A3 Foresight Program NSFC: No. 11261140328.

  9. Neuroprotection of hyperbaric oxygen therapy in sub-acute traumatic brain injury: not by immediately improving cerebral oxygen saturation and oxygen partial pressure.

    PubMed

    Zhou, Bao-Chun; Liu, Li-Jun; Liu, Bing

    2016-09-01

    Although hyperbaric oxygen (HBO) therapy can promote the recovery of neural function in patients who have suffered traumatic brain injury (TBI), the underlying mechanism is unclear. We hypothesized that hyperbaric oxygen treatment plays a neuroprotective role in TBI by increasing regional transcranial oxygen saturation (rSO 2 ) and oxygen partial pressure (PaO 2 ). To test this idea, we compared two groups: a control group with 20 healthy people and a treatment group with 40 TBI patients. The 40 patients were given 100% oxygen of HBO for 90 minutes. Changes in rSO 2 were measured. The controls were also examined for rSO 2 and PaO 2 , but received no treatment. rSO 2 levels in the patients did not differ significantly after treatment, but levels before and after treatment were significantly lower than those in the control group. PaO 2 levels were significantly decreased after the 30-minute HBO treatment. Our findings suggest that there is a disorder of oxygen metabolism in patients with sub-acute TBI. HBO does not immediately affect cerebral oxygen metabolism, and the underlying mechanism still needs to be studied in depth.

  10. First-order Probabilistic Analysis of the Effects of Heterogeneity on Pore-water Pressure in a Hillslope

    NASA Astrophysics Data System (ADS)

    Cai, J.; Yan, E.; Yeh, T. C. J.

    2015-12-01

    Pore-water pressure in a hillslope is a critical control of its stability. The main objective of this paper is to introduce a first-order moment analysis to investigate the pressure head variability within a hypothetical hillslope, induced by steady rainfall infiltration. This approach accounts for the uncertainties and spatial variation of the hydraulic conductivity, and is based on a first-order Taylor approximation of pressure perturbations calculated by a variably saturated, finite element flow model. Using this approach, the effects of variance (σ2lnKs) and spatial structure anisotropy (λh/λv) of natural logarithm of saturated hydraulic conductivity, and normalized vertical infiltration flux (q/ks) on the hillslope pore-water pressure are evaluated. We found that the responses of pressure head variability (σ2p) are quite different between unsaturated region and saturated region divided by the phreatic surface. Above the phreatic surface, a higher variability in pressure head is obtained from a higher σ2lnKs, a higher λh/λv and a smaller q/ks; while below the phreatic surface, a higher σ2lnKs, a lower λh/λv or a larger q/ks would lead to a higher variability in pressure head, and greater range of fluctuation of the phreatic surface within the hillslope. σ2lnKs has greatest impact on σ2p within the slope and λh/λv has smallest impact. All three variables have greater influence on maximum σ2p within the saturated region below the phreatic surface than that within the unsaturated region above the phreatic surface. The results obtained from this study are useful to understand the influence of hydraulic conductivity variations on slope seepage and stability under different slope conditions and material spatial distributions.

  11. A Model to Couple Flow, Thermal and Reactive Chemical Transport, and Geo-mechanics in Variably Saturated Media

    NASA Astrophysics Data System (ADS)

    Yeh, G. T.; Tsai, C. H.

    2015-12-01

    This paper presents the development of a THMC (thermal-hydrology-mechanics-chemistry) process model in variably saturated media. The governing equations for variably saturated flow and reactive chemical transport are obtained based on the mass conservation principle of species transport supplemented with Darcy's law, constraint of species concentration, equation of states, and constitutive law of K-S-P (Conductivity-Degree of Saturation-Capillary Pressure). The thermal transport equation is obtained based on the conservation of energy. The geo-mechanic displacement is obtained based on the assumption of equilibrium. Conventionally, these equations have been implicitly coupled via the calculations of secondary variables based on primary variables. The mechanisms of coupling have not been obvious. In this paper, governing equations are explicitly coupled for all primary variables. The coupling is accomplished via the storage coefficients, transporting velocities, and conduction-dispersion-diffusion coefficient tensor; one set each for every primary variable. With this new system of equations, the coupling mechanisms become clear. Physical interpretations of every term in the coupled equations will be discussed. Examples will be employed to demonstrate the intuition and superiority of these explicit coupling approaches. Keywords: Variably Saturated Flow, Thermal Transport, Geo-mechanics, Reactive Transport.

  12. Evaluation of the new capture vapourizer for aerosol mass spectrometers (AMS) through laboratory studies of inorganic species

    DOE PAGES

    Hu, Weiwei; Campuzano-Jost, Pedro; Day, Douglas A.; ...

    2017-08-15

    Aerosol mass spectrometers (AMSs) and Aerosol Chemical Speciation Monitors (ACSMs) commercialized by Aerodyne are widely used to measure the non-refractory species in submicron particles. With the standard vapourizer (SV) that is installed in all commercial instruments to date, the quantification of ambient aerosol mass concentration requires the use of the collection efficiency (CE) to correct for the loss of particles due to bounce. A new capture vapourizer (CV) has been designed to reduce the need for a bounce-related CE correction. Two high-resolution AMS instruments, one with a SV and one with a CV, were operated side by side in themore » laboratory. Four standard species, NH 4NO 3, NaNO 3, (NH 4) 2SO 4 and NH 4Cl, which typically constitute the majority of the mass of ambient submicron inorganic species, are studied. The effect of vapourizer temperature ( T v ∼ 200–800 °C) on the detected fragments, CE and size distributions are investigated. A T v of 500–550 °C for the CV is recommended. In the CV, CE was identical (around unity) for more volatile species (e.g. NH 4NO 3) and comparable to or higher than the SV for less-volatile species (e.g. (NH 4) 2SO 4), demonstrating an improvement in CE for laboratory inorganic species in the CV. The detected relative intensities of fragments of NO 3 and SO 4 species observed with the CV are different from those observed with the SV, and are consistent with additional thermal decomposition arising from the increased residence time and multiple collisions. Increased residence times with the CV also lead to broader particle size distribution measurements than with the SV. A method for estimating whether pure species will be detected in AMS sizing mode is proposed. Production of CO 2(g) from sampled nitrate on the vapourizer surface, which has been reported for the SV, is negligible for the CV for NH 4NO 3 and comparable to the SV for NaNO 3. . We observe an extremely consistent fragmentation for

  13. Evaluation of the new capture vapourizer for aerosol mass spectrometers (AMS) through laboratory studies of inorganic species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Weiwei; Campuzano-Jost, Pedro; Day, Douglas A.

    Aerosol mass spectrometers (AMSs) and Aerosol Chemical Speciation Monitors (ACSMs) commercialized by Aerodyne are widely used to measure the non-refractory species in submicron particles. With the standard vapourizer (SV) that is installed in all commercial instruments to date, the quantification of ambient aerosol mass concentration requires the use of the collection efficiency (CE) to correct for the loss of particles due to bounce. A new capture vapourizer (CV) has been designed to reduce the need for a bounce-related CE correction. Two high-resolution AMS instruments, one with a SV and one with a CV, were operated side by side in themore » laboratory. Four standard species, NH 4NO 3, NaNO 3, (NH 4) 2SO 4 and NH 4Cl, which typically constitute the majority of the mass of ambient submicron inorganic species, are studied. The effect of vapourizer temperature ( T v ∼ 200–800 °C) on the detected fragments, CE and size distributions are investigated. A T v of 500–550 °C for the CV is recommended. In the CV, CE was identical (around unity) for more volatile species (e.g. NH 4NO 3) and comparable to or higher than the SV for less-volatile species (e.g. (NH 4) 2SO 4), demonstrating an improvement in CE for laboratory inorganic species in the CV. The detected relative intensities of fragments of NO 3 and SO 4 species observed with the CV are different from those observed with the SV, and are consistent with additional thermal decomposition arising from the increased residence time and multiple collisions. Increased residence times with the CV also lead to broader particle size distribution measurements than with the SV. A method for estimating whether pure species will be detected in AMS sizing mode is proposed. Production of CO 2(g) from sampled nitrate on the vapourizer surface, which has been reported for the SV, is negligible for the CV for NH 4NO 3 and comparable to the SV for NaNO 3. . We observe an extremely consistent fragmentation for

  14. Polar cap potential saturation during the Bastille Day storm event using global MHD simulation

    NASA Astrophysics Data System (ADS)

    Kubota, Y.; Nagatsuma, T.; Den, M.; Tanaka, T.; Fujita, S.

    2017-04-01

    We investigated the temporal variations and saturation of the cross polar cap potential (CPCP) in the Bastille Day storm event (15 July 2000) by global magnetohydrodynamics (MHD) simulation. The CPCP is considered to depend on the electric field and dynamic pressure of the solar wind as well as on the ionospheric conductivity. Previous studies considered only the ionospheric conductivity due to solar extreme ultraviolet (EUV) variations. In this paper, we dealt with the changes in the CPCP attributable to auroral conductivity variations caused by pressure enhancement in the inner magnetosphere owing to energy injection from the magnetosphere because the energy injection is considerably enhanced in a severe magnetic storm event. Our simulation reveals that the auroral conductivity enhancement is significant for the CPCP variation in a severe magnetic storm event. The numerical results concerning the Bastille Day event show that the ionospheric conductivity averaged over the auroral oval is enhanced up to 18 mho in the case of Bz of less than -59 nT. On the other hand, the average conductivity without the auroral effect is almost 6 mho throughout the entire period. Resultantly, the saturated CPCP is about 240 kV in the former and 704 kV in the latter when Bz is -59 nT. This result indicates that the CPCP variations could be correctly reproduced when the time variation of auroral conductivity caused by pressure enhancement due to the energy injection from the magnetosphere is correctly considered in a severe magnetic storm event.

  15. Assessing occupational mercury exposures and behaviours of artisanal and small-scale gold miners in Burkina Faso using passive mercury vapour badges.

    PubMed

    Black, Paleah; Richard, Myrianne; Rossin, Ricardo; Telmer, Kevin

    2017-01-01

    Artisanal and small-scale gold mining (ASGM) is a crucial economic activity in Burkina Faso, however it is associated with significant mercury exposure and health concerns. The aim of the present study was to assess the level of mercury (Hg) vapour exposures and occupational behaviours at a representative site using Hg vapour monitor badges and questionnaires. To our knowledge this is the first time that personal exposure to Hg vapour during ASGM activities has been reported. The study population were ASGM workers who completed a questionnaire (n=100) or participated with an occupational exposure assessment using commercially available passive Hg vapour samplers (n=44). Occupational exposure to Hg was high during open-air burn events with a time weighted average (TWA) exposure of 7026±6857µg/m 3 for burners, and 1412±2870µg/m 3 for bystanders. Most (82%) of the people present at the burn exceeded the Permissible Exposure Limit (PEL) of 100µg/m 3 , and 11% exceeded the level considered to be Immediately Dangerous to Life and Health (IDLH) of 10,000µg/m 3 . Even control workers who were not present at the burn exceeded the PEL (24%), likely due to legacy Hg contamination producing latent Hg releases to the atmosphere. Similarly, 86% of the miners at the burn and 59% of control workers had an 8-h TWA that exceeded the Recommended Exposures Limit (REL). Several occupational behaviours that may contribute to Hg exposures were documented. This study corroborates previous studies suggesting that Hg exposure during amalgam burning is very high, and demonstrates the plausibility of using passive vapour monitoring badges rather than costly and logistically difficult biomonitoring methods. Mercury reduction and elimination interventions are strongly needed to reduce Hg exposure in ASGM communities, particularly as countries come into compliance with the Minamata Convention. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Lamb dip CRDS of highly saturated transitions of water near 1.4 μm

    NASA Astrophysics Data System (ADS)

    Kassi, S.; Stoltmann, T.; Casado, M.; Daëron, M.; Campargue, A.

    2018-02-01

    Doppler-free saturated-absorption Lamb dips were measured at sub-Pa pressures on rovibrational lines of H216O near 7180 cm-1, using optical feedback frequency stabilized cavity ring-down spectroscopy. The saturation of the considered lines is so high that at the early stage of the ring down, the cavity loss rate remains unaffected by the absorption. By referencing the laser source to an optical frequency comb, transition frequencies are determined down to 100 Hz precision and kHz accuracy. The developed setup allows resolving highly K-type blended doublets separated by about 10 MHz (to be compared to a HWHM Doppler width on the order of 300 MHz). A comparison with the most recent spectroscopic databases is discussed. The determined K-type splittings are found to be very well predicted by the most recent variational calculations.

  17. Ultra-fast vapour-liquid-solid synthesis of Si nanowires using ion-beam implanted gallium as catalyst.

    PubMed

    Hetzel, Martin; Lugstein, Alois; Zeiner, Clemens; Wójcik, Tomasz; Pongratz, Peter; Bertagnolli, Emmerich

    2011-09-30

    The feasibility of gallium as a catalyst for vapour-liquid-solid (VLS) nanowire (NW) growth deriving from an implantation process in silicon by a focused ion beam (FIB) is investigated. Si(100) substrates are subjected to FIB implantation of gallium ions with various ion fluence rates. NW growth is performed in a hot wall chemical vapour deposition (CVD) reactor at temperatures between 400 and 500 °C with 2% SiH(4)/He as precursor gas. This process results in ultra-fast growth of (112)- and (110)-oriented Si-NWs with a length of several tens of micrometres. Further investigation by transmission electron microscopy indicates the presence of a NW core-shell structure: while the NW core yields crystalline structuring, the shell consists entirely of amorphous material.

  18. Swash saturation: an assessment of available models

    NASA Astrophysics Data System (ADS)

    Hughes, Michael G.; Baldock, Tom E.; Aagaard, Troels

    2018-06-01

    An extensive previously published (Hughes et al. Mar Geol 355, 88-97, 2014) field data set representing the full range of micro-tidal beach states (reflective, intermediate and dissipative) is used to investigate swash saturation. Two models that predict the behavior of saturated swash are tested: one driven by standing waves and the other driven by bores. Despite being based on entirely different premises, they predict similar trends in the limiting (saturated) swash height with respect to dependency on frequency and beach gradient. For a given frequency and beach gradient, however, the bore-driven model predicts a larger saturated swash height by a factor 2.5. Both models broadly predict the general behavior of swash saturation evident in the data, but neither model is accurate in detail. While swash saturation in the short-wave frequency band is common on some beach types, it does not always occur across all beach types. Further work is required on wave reflection/breaking and the role of wave-wave and wave-swash interactions to determine limiting swash heights on natural beaches.

  19. Modeling variably saturated multispecies reactive groundwater solute transport with MODFLOW-UZF and RT3D

    USGS Publications Warehouse

    Bailey, Ryan T.; Morway, Eric D.; Niswonger, Richard G.; Gates, Timothy K.

    2013-01-01

    A numerical model was developed that is capable of simulating multispecies reactive solute transport in variably saturated porous media. This model consists of a modified version of the reactive transport model RT3D (Reactive Transport in 3 Dimensions) that is linked to the Unsaturated-Zone Flow (UZF1) package and MODFLOW. Referred to as UZF-RT3D, the model is tested against published analytical benchmarks as well as other published contaminant transport models, including HYDRUS-1D, VS2DT, and SUTRA, and the coupled flow and transport modeling system of CATHY and TRAN3D. Comparisons in one-dimensional, two-dimensional, and three-dimensional variably saturated systems are explored. While several test cases are included to verify the correct implementation of variably saturated transport in UZF-RT3D, other cases are included to demonstrate the usefulness of the code in terms of model run-time and handling the reaction kinetics of multiple interacting species in variably saturated subsurface systems. As UZF1 relies on a kinematic-wave approximation for unsaturated flow that neglects the diffusive terms in Richards equation, UZF-RT3D can be used for large-scale aquifer systems for which the UZF1 formulation is reasonable, that is, capillary-pressure gradients can be neglected and soil parameters can be treated as homogeneous. Decreased model run-time and the ability to include site-specific chemical species and chemical reactions make UZF-RT3D an attractive model for efficient simulation of multispecies reactive transport in variably saturated large-scale subsurface systems.

  20. Elastic Dispersion and Attenuation in Fully Saturated Sandstones: Role of Mineral Content, Porosity, and Pressures

    NASA Astrophysics Data System (ADS)

    Pimienta, Lucas; Borgomano, Jan V. M.; Fortin, Jérôme; Guéguen, Yves

    2017-12-01

    Because measuring the frequency dependence of elastic properties in the laboratory is a technical challenge, not enough experimental data exist to test the existing theories. We report measurements of three fluid-saturated sandstones over a broad frequency band: Wilkenson, Berea, and Bentheim sandstones. Those sandstones samples, chosen for their variable porosities and mineral content, are saturated by fluids of varying viscosities. The samples elastic response (Young's modulus and Poisson's ratio) and hydraulic response (fluid flow out of the sample) are measured as a function of frequency. Large dispersion and attenuation phenomena are observed over the investigated frequency range. For all samples, the variation at lowest frequency relates to a large fluid flow directly measured out of the rock samples. These are the cause (i.e., fluid flow) and consequence (i.e., dispersion/attenuation) of the transition between drained and undrained regimes. Consistently, the characteristic frequency correlates with permeability for each sandstone. Beyond this frequency, a second variation is observed for all samples, but the rocks behave differently. For Berea sandstone, an onset of dispersion/attenuation is expected from both Young's modulus and Poisson's ratio at highest frequency. For Bentheim and Wilkenson sandstones, however, only Young's modulus shows dispersion/attenuation phenomena. For Wilkenson sandstone, the viscoelastic-like dispersion/attenuation response is interpreted as squirt flow. For Bentheim sandstone, the second effect does not fully follow such response, which could be due to a lower accuracy in the measured attenuation or to the occurence of another physical effect in this rock sample.