Sample records for vapour-liquid-solid vls growth

  1. Naturally occurring vapor-liquid-solid (VLS) Whisker growth of germanium sulfide

    USGS Publications Warehouse

    Finkelman, R.B.; Larson, R.R.; Dwornik, E.J.

    1974-01-01

    The first naturally occurring terrestrial example of vapor-liquid-solid (VLS) growth has been observed in condensates from gases released by burning coal in culm banks. Scanning electron microscopy, X-ray diffraction, and energy dispersive analysis indicate that the crystals consist of elongated rods (??? 100 ??m) of germanium sulfide capped by bulbs depleted in germanium. ?? 1974.

  2. Towards engineered branch placement: Unreal™ match between vapour-liquid-solid glancing angle deposition nanowire growth and simulation

    NASA Astrophysics Data System (ADS)

    Taschuk, M. T.; Tucker, R. T.; LaForge, J. M.; Beaudry, A. L.; Kupsta, M. R.; Brett, M. J.

    2013-12-01

    The vapour-liquid-solid glancing angle deposition (VLS-GLAD) process is capable of producing complex nanotree structures with control over azimuthal branch orientation and height. We have developed a thin film growth simulation including ballistic deposition, simplified surface diffusion, and droplet-mediated cubic crystal growth for the VLS-GLAD process using the UnrealTM Development Kit. The use of a commercial game engine has provided an interactive environment while allowing a custom physics implementation. Our simulation's output is verified against experimental data, including a volumetric film reconstruction produced using focused ion beam and scanning-electron microscopy (SEM), crystallographic texture, and morphological characteristics such as branch orientation. We achieve excellent morphological and texture agreement with experimental data, as well as qualitative agreement with SEM imagery. The simplified physics in our model reproduces the experimental films, indicating that the dominant role flux geometry plays in the VLS-GLAD competitive growth process responsible for azimuthally oriented branches and biaxial crystal texture evolution. The simulation's successful reproduction of experimental data indicates that it should have predictive power in designing novel VLS-GLAD structures.

  3. Ultra-fast vapour-liquid-solid synthesis of Si nanowires using ion-beam implanted gallium as catalyst.

    PubMed

    Hetzel, Martin; Lugstein, Alois; Zeiner, Clemens; Wójcik, Tomasz; Pongratz, Peter; Bertagnolli, Emmerich

    2011-09-30

    The feasibility of gallium as a catalyst for vapour-liquid-solid (VLS) nanowire (NW) growth deriving from an implantation process in silicon by a focused ion beam (FIB) is investigated. Si(100) substrates are subjected to FIB implantation of gallium ions with various ion fluence rates. NW growth is performed in a hot wall chemical vapour deposition (CVD) reactor at temperatures between 400 and 500 °C with 2% SiH(4)/He as precursor gas. This process results in ultra-fast growth of (112)- and (110)-oriented Si-NWs with a length of several tens of micrometres. Further investigation by transmission electron microscopy indicates the presence of a NW core-shell structure: while the NW core yields crystalline structuring, the shell consists entirely of amorphous material.

  4. A surface curvature oscillation model for vapour-liquid-solid growth of periodic one-dimensional nanostructures

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Wang, Jian-Tao; Cao, Ze-Xian; Zhang, Wen-Jun; Lee, Chun-Sing; Lee, Shuit-Tong; Zhang, Xiao-Hong

    2015-03-01

    While the vapour-liquid-solid process has been widely used for growing one-dimensional nanostructures, quantitative understanding of the process is still far from adequate. For example, the origins for the growth of periodic one-dimensional nanostructures are not fully understood. Here we observe that morphologies in a wide range of periodic one-dimensional nanostructures can be described by two quantitative relationships: first, inverse of the periodic spacing along the length direction follows an arithmetic sequence; second, the periodic spacing in the growth direction varies linearly with the diameter of the nanostructure. We further find that these geometric relationships can be explained by considering the surface curvature oscillation of the liquid sphere at the tip of the growing nanostructure. The work reveals the requirements of vapour-liquid-solid growth. It can be applied for quantitative understanding of vapour-liquid-solid growth and to design experiments for controlled growth of nanostructures with custom-designed morphologies.

  5. Growth dynamics of SiGe nanowires by the vapour-liquid-solid method and its impact on SiGe/Si axial heterojunction abruptness.

    PubMed

    Pura, J L; Periwal, P; Baron, T; Jiménez, J

    2018-08-31

    The vapour-liquid-solid (VLS) method is by far the most extended procedure for bottom-up nanowire growth. This method also allows for the manufacture of nanowire axial heterojunctions in a straightforward way. To do this, during the growth process, precursor gases are switched on/off to obtain the desired change in the nanowire composition. Using this technique, axially heterostructured nanowires can be grown, which are crucial for the fabrication of electronic and optoelectronic devices. SiGe/Si nanowires are compatible with complementary metal oxide semiconductor (CMOS) technology, which improves their versatility and the possibility of integration with current electronic technologies. Abrupt heterointerfaces are fundamental for the development and correct operation of electronic and optoelectronic devices. Unfortunately, the VLS growth of SiGe/Si heterojunctions does not provide abrupt transitions because of the high solubility of group IV semiconductors in Au, with the corresponding reservoir effect that precludes the growth of sharp interfaces. In this work, we studied the growth dynamics of SiGe/Si heterojunctions based on already developed models for VLS growth. A composition map of the Si-Ge-Au liquid alloy is proposed to better understand the impact of the growing conditions on the nanowire growth process and the heterojunction formation. The solution of our model provides heterojunction profiles that are in good agreement with the experimental measurements. Finally, an in-depth study of the composition map provides a practical approach to the drastic reduction of heterojunction abruptness by reducing the Si and Ge concentrations in the catalyst droplet. This converges with previous approaches, which use catalysts aiming to reduce the solubility of the atomic species. This analysis opens new paths to the reduction of heterojunction abruptness using Au catalysts, but the model can be naturally extended to other catalysts and semiconductors.

  6. Solid-phase diffusion mechanism for GaAs nanowire growth.

    PubMed

    Persson, Ann I; Larsson, Magnus W; Stenström, Stig; Ohlsson, B Jonas; Samuelson, Lars; Wallenberg, L Reine

    2004-10-01

    Controllable production of nanometre-sized structures is an important field of research, and synthesis of one-dimensional objects, such as nanowires, is a rapidly expanding area with numerous applications, for example, in electronics, photonics, biology and medicine. Nanoscale electronic devices created inside nanowires, such as p-n junctions, were reported ten years ago. More recently, hetero-structure devices with clear quantum-mechanical behaviour have been reported, for example the double-barrier resonant tunnelling diode and the single-electron transistor. The generally accepted theory of semiconductor nanowire growth is the vapour-liquid-solid (VLS) growth mechanism, based on growth from a liquid metal seed particle. In this letter we suggest the existence of a growth regime quite different from VLS. We show that this new growth regime is based on a solid-phase diffusion mechanism of a single component through a gold seed particle, as shown by in situ heating experiments of GaAs nanowires in a transmission electron microscope, and supported by highly resolved chemical analysis and finite element calculations of the mass transport and composition profiles.

  7. Gold catalyzed nickel disilicide formation: a new solid-liquid-solid phase growth mechanism.

    PubMed

    Tang, Wei; Picraux, S Tom; Huang, Jian Yu; Liu, Xiaohua; Tu, K N; Dayeh, Shadi A

    2013-01-01

    The vapor-liquid-solid (VLS) mechanism is the predominate growth mechanism for semiconductor nanowires (NWs). We report here a new solid-liquid-solid (SLS) growth mechanism of a silicide phase in Si NWs using in situ transmission electron microcopy (TEM). The new SLS mechanism is analogous to the VLS one in relying on a liquid-mediating growth seed, but it is fundamentally different in terms of nucleation and mass transport. In SLS growth of Ni disilicide, the Ni atoms are supplied from remote Ni particles by interstitial diffusion through a Si NW to the pre-existing Au-Si liquid alloy drop at the tip of the NW. Upon supersaturation of both Ni and Si in Au, an octahedral nucleus of Ni disilicide (NiSi2) forms at the center of the Au liquid alloy, which thereafter sweeps through the Si NW and transforms Si into NiSi2. The dissolution of Si by the Au alloy liquid mediating layer proceeds with contact angle oscillation at the triple point where Si, oxide of Si, and the Au alloy meet, whereas NiSi2 is grown from the liquid mediating layer in an atomic stepwise manner. By using in situ quenching experiments, we are able to measure the solubility of Ni and Si in the Au-Ni-Si ternary alloy. The Au-catalyzed mechanism can lower the formation temperature of NiSi2 by 100 °C compared with an all solid state reaction.

  8. A three-dimensional phase field model for nanowire growth by the vapor-liquid-solid mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Yanming; Ryu, Seunghwa; McIntyre, Paul C.; Cai, Wei

    2014-07-01

    We present a three-dimensional multi-phase field model for catalyzed nanowire (NW) growth by the vapor-liquid-solid (VLS) mechanism. The equation of motion contains both a Ginzburg-Landau term for deposition and a diffusion (Cahn-Hilliard) term for interface relaxation without deposition. Direct deposition from vapor to solid, which competes with NW crystal growth through the molten catalyst droplet, is suppressed by assigning a very small kinetic coefficient at the solid-vapor interface. The thermodynamic self-consistency of the model is demonstrated by its ability to reproduce the equilibrium contact angles at the VLS junction. The incorporation of orientation dependent gradient energy leads to faceting of the solid-liquid and solid-vapor interfaces. The model successfully captures the curved shape of the NW base and the Gibbs-Thomson effect on growth velocity.

  9. Concurrent growth of InSe wires and In2O3 tulip-like structures in the Au-catalytic vapour-liquid-solid process

    NASA Astrophysics Data System (ADS)

    Taurino, A.; Signore, M. A.

    2015-06-01

    In this work, the concurrent growth of InSe and In2O3 nanostructures, obtained by thermal evaporation of InSe powders on Au-covered Si substrates, has been investigated by scanning and transmission electron microscopy techniques. The vapour-solid and Au catalytic vapour-liquid-solid growth mechanisms, responsible of the simultaneous development of the two different types of nanostructures, i.e. InSe wires and In2O3 tulip-like structures respectively, are discussed in detail. The thermodynamic processes giving rise to the obtained morphologies and materials are explained.

  10. Extended vapor-liquid-solid growth of silicon carbide nanowires.

    PubMed

    Rajesh, John Anthuvan; Pandurangan, Arumugam

    2014-04-01

    We developed an alloy catalytic method to explain extended vapor-liquid-solid (VLS) growth of silicon carbide nanowires (SiC NWs) by a simple thermal evaporation of silicon and activated carbon mixture using lanthanum nickel (LaNi5) alloy as catalyst in a chemical vapor deposition process. The LaNi5 alloy binary phase diagram and the phase relationships in the La-Ni-Si ternary system were play a key role to determine the growth parameters in this VLS mechanism. Different reaction temperatures (1300, 1350 and 1400 degrees C) were applied to prove the established growth process by experimentally. Scanning electron microscopy and transmission electron microscopy studies show that the crystalline quality of the SiC NWs increases with the temperature at which they have been synthesized. La-Ni alloyed catalyst particles observed on the top of the SiC NWs confirms that the growth process follows this extended VLS mechanism. The X-ray diffraction and confocal Raman spectroscopy analyses demonstrate that the crystalline structure of the SiC NWs was zinc blende 3C-SiC. Optical property of the SiC NWs was investigated by photoluminescence technique at room temperature. Such a new alloy catalytic method may be extended to synthesis other one-dimensional nanostructures.

  11. Phase-field model of vapor-liquid-solid nanowire growth

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Upmanyu, Moneesh; Karma, Alain

    2018-03-01

    We present a multiphase-field model to describe quantitatively nanowire growth by the vapor-liquid-solid (VLS) process. The free-energy functional of this model depends on three nonconserved order parameters that distinguish the vapor, liquid, and solid phases and describe the energetic properties of various interfaces, including arbitrary forms of anisotropic γ plots for the solid-vapor and solid-liquid interfaces. The evolution equations for those order parameters describe basic kinetic processes including the rapid (quasi-instantaneous) equilibration of the liquid catalyst to a droplet shape with constant mean curvature, the slow incorporation of growth atoms at the droplet surface, and crystallization within the droplet. The standard constraint that the sum of the phase fields equals unity and the conservation of the number of catalyst atoms, which relates the catalyst volume to the concentration of growth atoms inside the droplet, are handled via separate Lagrange multipliers. An analysis of the model is presented that rigorously maps the phase-field equations to a desired set of sharp-interface equations for the evolution of the phase boundaries under the constraint of force balance at three-phase junctions (triple points) given by the Young-Herring relation that includes torque term related to the anisotropy of the solid-liquid and solid-vapor interface excess free energies. Numerical examples of growth in two dimensions are presented for the simplest case of vanishing crystalline anisotropy and the more realistic case of a solid-liquid γ plot with cusped minima corresponding to two sets of (10 ) and (11 ) facets. The simulations reproduce many of the salient features of nanowire growth observed experimentally, including growth normal to the substrate with tapering of the side walls, transitions between different growth orientations, and crawling growth along the substrate. They also reproduce different observed relationships between the nanowire growth

  12. Vapour growth of argyrodite-type ionic conductors Cu 6PS 5Hal

    NASA Astrophysics Data System (ADS)

    Fiechter, S.; Eckstein, J.; Nitsche, R.

    1983-03-01

    Cu 6PS 5Hal compounds (with Hal = Cl, Br or I) have been crystallized around 950 K by CVT with P, S and Hal (and combinations thereof). Chemical insight into the transport processes was gained from dissociation pressure measurements and spectroscopic vapour analysis. Lacking thermochemical data of the compounds were obtained from Cp measurements. Models, derived for the CVT mechanisms, yield transport rates and directions which agree qualitatively with experiments. The main vapour species (for Hal = C1) are PSCI 3, S 2, PCI 3, P 4S 3 and (CuCl) 3. With a surplus of CuHal, VLS growth via liquid CuHal/Cu 2S phases was observed.

  13. Understanding the vapor-liquid-solid growth and composition of ternary III-V nanowires and nanowire heterostructures

    NASA Astrophysics Data System (ADS)

    Dubrovskii, V. G.

    2017-11-01

    Based on the recent achievements in vapor-liquid-solid (VLS) synthesis, characterization and modeling of ternary III-V nanowires and axial heterostructures within such nanowires, we try to understand the major trends in their compositional evolution from a general theoretical perspective. Clearly, the VLS growth of ternary materials is much more complex than in standard vapor-solid epitaxy techniques, and even maintaining the necessary control over the composition of steady-state ternary nanowires is far from straightforward. On the other hand, VLS nanowires offer otherwise unattainable material combinations without introducing structural defects and hence are very promising for next-generation optoelectronic devices, in particular those integrated with a silicon electronic platform. In this review, we consider two main problems. First, we show how and by means of which parameters the steady-state composition of Au-catalyzed or self-catalyzed ternary III-V nanowires can be tuned to a desired value and why it is generally different from the vapor composition. Second, we present some experimental data and modeling results for the interfacial abruptness across axial nanowire heterostructures, both in Au-catalyzed and self-catalyzed VLS growth methods. Refined modeling allows us to formulate some general growth recipes for suppressing the unwanted reservoir effect in the droplet and sharpening the nanowire heterojunctions. We consider and refine two approaches developed to date, namely the regular crystallization model for a liquid alloy with a critical size of only one III-V pair at high supersaturations or classical binary nucleation theory with a macroscopic critical nucleus at modest supersaturations.

  14. Analysis of the vapor-liquid-solid mechanism for nanowire growth and a model for this mechanism.

    PubMed

    Mohammad, S Noor

    2008-05-01

    The vapor-liquid-solid (VLS) mechanism is most widely employed to grow nanowires (NWs). The mechanism uses foreign element catalytic agent (FECA) to mediate the growth. Because of this, it is believed to be very stable with the FECA-mediated droplets not consumed even when reaction conditions change. Recent experiments however differ, which suggest that even under cleanest growth conditions, VLS mechanism may not produce long, thin, uniform, single-crystal nanowires of high purity. The present investigation has addressed various issues involving fundamentals of VLS growth. While addressing these issues, it has taken into consideration the influence of the electrical, hydrodynamic, thermodynamic, and surface tension effects on NW growth. It has found that parameters such as mesoscopic effects on nanoparticle seeds, charge distribution in FECA-induced droplets, electronegativity of the droplet with respect to those of reactive nanowire vapor species, growth temperature, and chamber pressure play important role in the VLS growth. On the basis of an in-depth analysis of various issues, a simple, novel, malleable (SNM) model has been presented for the VLS mechanism. The model appears to explain the formation and observed characteristics of a wide variety of nanowires, including elemental and compound semiconductor nanowires. Also it provides an understanding of the influence of the dynamic behavior of the droplets on the NW growth. This study finds that increase in diameter with time of the droplet of tapered nanowires results primarily from gradual incorporation of oversupplied nanowire species into the FECA-mediated droplet, which is supported by experiments. It finds also that optimum compositions of the droplet constituents are crucial for VLS nanowire growth. An approximate model presented to exemplify the parametric dependency of VLS growth provides good description of NW growth rate as a function of temperature.

  15. Spontaneous, Defect-Free Kinking via Capillary Instability during Vapor-Liquid-Solid Nanowire Growth.

    PubMed

    Li, Yanying; Wang, Yanming; Ryu, Seunghwa; Marshall, Ann F; Cai, Wei; McIntyre, Paul C

    2016-03-09

    Kinking, a common anomaly in nanowire (NW) vapor-liquid-solid (VLS) growth, represents a sudden change of the wire's axial growth orientation. This study focuses on defect-free kinking during germanium NW VLS growth, after nucleation on a Ge (111) single crystal substrate, using Au-Ge catalyst liquid droplets of defined size. Statistical analysis of the fraction of kinked NWs reveals the dependence of kinking probability on the wire diameter and the growth temperature. The morphologies of kinked Ge NWs studied by electron microscopy show two distinct, defect-free, kinking modes, whose underlying mechanisms are explained with the help of 3D multiphase field simulations. Type I kinking, in which the growth axis changes from vertical [111] to ⟨110⟩, was observed in Ge NWs with a nominal diameter of ∼ 20 nm. This size coincides with a critical diameter at which a spontaneous transition from ⟨111⟩ to ⟨110⟩ growth occurs in the phase field simulations. Larger diameter NWs only exhibit Type II kinking, in which the growth axis changes from vertical [111] directly to an inclined ⟨111⟩ axis during the initial stages of wire growth. This is caused by an error in sidewall facet development, which produces a shrinkage in the area of the (111) growth facet with increasing NW length, causing an instability of the Au-Ge liquid droplet at the tip of the NW.

  16. Using Peltier Cells to Study Solid-Liquid-Vapour Transitions and Supercooling

    ERIC Educational Resources Information Center

    Torzo, Giacomo; Soletta, Isabella; Branca, Mario

    2007-01-01

    We propose an apparatus for teaching experimental thermodynamics in undergraduate introductory courses, using thermoelectric modules and a real-time data acquisition system. The device may be made at low cost, still providing an easy approach to the investigation of liquid-solid and liquid-vapour phase transitions and of metastable states…

  17. III-Vs at Scale: A PV Manufacturing Cost Analysis of the Thin Film Vapor-Liquid-Solid Growth Mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Maxwell; Horowitz, Kelsey; Woodhouse, Michael

    The authors present a manufacturing cost analysis for producing thin-film indium phosphide modules by combining a novel thin-film vapor-liquid-solid (TF-VLS) growth process with a standard monolithic module platform. The example cell structure is ITO/n-TiO2/p-InP/Mo. For a benchmark scenario of 12% efficient modules, the module cost is estimated to be $0.66/W(DC) and the module cost is calculated to be around $0.36/W(DC) at a long-term potential efficiency of 24%. The manufacturing cost for the TF-VLS growth portion is estimated to be ~$23/m2, a significant reduction compared with traditional metalorganic chemical vapor deposition. The analysis here suggests the TF-VLS growth mode could enablemore » lower-cost, high-efficiency III-V photovoltaics compared with manufacturing methods used today and open up possibilities for other optoelectronic applications as well.« less

  18. Theoretical analysis of the axial growth of nanowires starting with a binary eutectic droplet via vapor-liquid-solid mechanism

    NASA Astrophysics Data System (ADS)

    Liu, Qing; Li, Hejun; Zhang, Yulei; Zhao, Zhigang

    2018-06-01

    A series of theoretical analysis is carried out for the axial vapor-liquid-solid (VLS) growth of nanowires starting with a binary eutectic droplet. The growth model considering the entire process of axial VLS growth is a development of the approaches already developed by previous studies. In this model, the steady and unsteady state growth are considered both. The amount of solute species in a variable liquid droplet, the nanowire length, radius, growth rate and all other parameters during the entire axial growth process are treated as functions of growth time. The model provides theoretical predictions for the formation of nanowire shape, the length-radius and growth rate-radius dependences. It is also suggested by the model that the initial growth of single nanowire is significantly affected by Gibbs-Thompson effect due to the shape change. The model was applied on predictions of available experimental data of Si and Ge nanowires grown from Au-Si and Au-Ge systems respectively reported by other works. The calculations with the proposed model are in satisfactory agreement with the experimental results of the previous works.

  19. Vertically aligned silicon microwire arrays of various lengths by repeated selective vapor-liquid-solid growth of n-type silicon/n-type silicon

    NASA Astrophysics Data System (ADS)

    Ikedo, Akihito; Kawashima, Takahiro; Kawano, Takeshi; Ishida, Makoto

    2009-07-01

    Repeated vapor-liquid-solid (VLS) growth with Au and PH3-Si2H6 mixture gas as the growth catalyst and silicon source, respectively, was used to construct n-type silicon/n-type silicon wire arrays of various lengths. Silicon wires of various lengths within an array could be grown by employing second growth over the first VLS grown wire. Additionally, the junction at the interface between the first and the second wires were examined. Current-voltage measurements of the wires exhibited linear behavior with a resistance of 850 Ω, confirming nonelectrical barriers at the junction, while bending tests indicated that the mechanical properties of the wire did not change.

  20. Predicting the growth of S i3N4 nanowires by phase-equilibrium-dominated vapor-liquid-solid mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, Yongliang; Cai, Jing; Yang, Lijun; Wu, Qiang; Wang, Xizhang; Hu, Zheng

    2017-09-01

    Nanomaterial synthesis is experiencing a profound evolution from empirical science ("cook-and-look") to prediction and design, which depends on the deep insight into the growth mechanism. Herein, we report a generalized prediction of the growth of S i3N4 nanowires by nitriding F e28S i72 alloy particles across different phase regions based on our finding of the phase-equilibrium-dominated vapor-liquid-solid (PED-VLS) mechanism. All the predictions about the growth of S i3N4 nanowires, and the associated evolutions of lattice parameters and geometries of the coexisting Fe -Si alloy phases, are experimentally confirmed quantitatively. This progress corroborates the general validity of the PED-VLS mechanism, which could be applied to the design and controllable synthesis of various one-dimensional nanomaterials.

  1. Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface.

    PubMed

    Williamson, M J; Tromp, R M; Vereecken, P M; Hull, R; Ross, F M

    2003-08-01

    Dynamic processes at the solid-liquid interface are of key importance across broad areas of science and technology. Electrochemical deposition of copper, for example, is used for metallization in integrated circuits, and a detailed understanding of nucleation, growth and coalescence is essential in optimizing the final microstructure. Our understanding of processes at the solid-vapour interface has advanced tremendously over the past decade due to the routine availability of real-time, high-resolution imaging techniques yielding data that can be compared quantitatively with theory. However, the difficulty of studying the solid-liquid interface leaves our understanding of processes there less complete. Here we analyse dynamic observations--recorded in situ using a novel transmission electron microscopy technique--of the nucleation and growth of nanoscale copper clusters during electrodeposition. We follow in real time the evolution of individual clusters, and compare their development with simulations incorporating the basic physics of electrodeposition during the early stages of growth. The experimental technique developed here is applicable to a broad range of dynamic phenomena at the solid-liquid interface.

  2. Vapor-liquid-solid growth of silicon and silicon germanium nanowires

    NASA Astrophysics Data System (ADS)

    Nimmatoori, Pramod

    2009-12-01

    Si and Si1-xGex nanowires are promising materials with potential applications in various disciplines of science and technology. Small diameter nanowires can act as model systems to study interesting phenomena such as tunneling that occur in the nanometer regime. Furthermore, technical challenges in fabricating nanoscale size devices from thin films have resulted in interest and research on nanowires. In this perspective, vertical integrated nanowire field effect transistors (VINFETs) fabricated from Si nanowires are promising devices that offer better control on device properties and push the transistor architecture into the third dimension potentially enabling ultra-high transistor density circuits. Transistors fabricated from Si/Si 1-xGex nanowires have also been proposed that can have high carrier mobility. In addition, the Si and Si1-xGe x nanowires have potential to be used in various applications such as sensing, thermoelectrics and solar cells. Despite having considerable potential, the understanding of the vapor-liquid-solid (VLS) mechanism utilized to fabricate these wires is still rudimentary. Hence, the objective of this thesis is to understand the effects of nanoscale size and the role of catalyst that mediates the wire growth on the growth rate of Si and Si1-xGe x nanowires and interfacial abruptness in Si/Si1-xGe x axial heterostructure nanowires. Initially, the growth and structural properties of Si nanowires with tight diameter distribution grown from 10, 20 and 50 nm Au particles dispersed on a polymer-modified substrate was studied. A nanoparticle application process was developed to disperse Au particles on the substrate surface with negligible agglomeration and sufficient density. The growth temperature and SiH4 partial pressure were varied to optimize the growth conditions amenable to VLS growth with smooth wire morphology and negligible Si thin film deposition on wire sidewalls. The Si nanowire growth rate was studied as a function of growth

  3. Synthesis and characterization of group IV semiconductor nanowires by vapor-liquid-solid growth

    NASA Astrophysics Data System (ADS)

    Lew, Kok-Keong

    There is currently intense interest in one-dimensional nanostructures, such as nanotubes and nanowires, due to their potential to test fundamental concepts of dimensionality and to serve as building blocks for nanoscale devices. Vapor-liquid-solid (VLS) growth, which is one of the most common fabrication methods, has been used to produce single crystal semiconductor nanowires such as silicon (Si), germanium (Ge), and gallium arsenide (GaAs). In the VLS growth of Group IV semiconductor nanowires, a metal, such as gold (Au) is used as a catalyst agent to nucleate whisker growth from a Si-containing (silane (SIH4)) or Ge-containing vapor (germane (GeH 4)). Au and Si/Ge form a liquid alloy that has a eutectic temperature of around 360°C, which, upon supersaturation, nucleates the growth of a Si or Ge wire. The goal of this work is to develop a more fundamental understanding of VLS growth kinetics and intentional doping of Group IV semiconductor nanowires in order to better control the properties of the nanowires. The fabrication of p-type and n-type Si nanowires will be studied via the addition of dopant gases such as diborane (B2H 6), trimethylboron (TMB), and phosphine (PH3) during growth. The use of gaseous dopant sources provides more flexibility in growth, particularly for the fabrication of p-n junctions and structures with axial dopant variations (e.g. p+-p- p+). The study is then extended to fabricate SiGe alloy nanowires by mixing SiH4 and GeH4. Bandgap engineering in Si/SiGe heterostructures can lead to novel devices with improved performance compared to those made entirely of Si. The scientific findings will lead to a better understanding of the fabrication of Si/SiGe axial and radial heterostructure nanowires for functional nanowire device structures, such as heterojunction bipolar transistors (HBTs) and high electron mobility transistors (HEMTs). Eventually, the central theme of this research is to provide a scientific knowledge base and foundation for

  4. Scenarios of stable Vapor→Liquid Droplet→Solid Nanowire growth

    NASA Astrophysics Data System (ADS)

    Nebol`sin, Valery A.; Dunaev, Alexander I.; Tatarenkov, Alexander F.; Shmakova, Svetlana S.

    2016-09-01

    In the process of Nanowire (NW) growth under the Vapor→Liquid Droplet→Solid (VLS) scheme, the stages that reach the boundary of the crystallization front (the triple phase line (TPL)) under the droplet of the catalyst are either absorbed by the TPL, or accumulate ahead of it. It has been shown that, in the first case, TPL can release stages, which leads to a decrease in supersaturation necessary for NW growth. An equation has been derived, which defines the change in free surface energy of the three-phase system in the absorption (release) of a stage, being a function of the contact angle of the droplet, and the ratio between the phase conjugation angles interface at equilibrium shift in the boundary line. A thermodynamic model has been developed and three possible scenarios for sustainable NW growth: Non-Wetting, Wetting and Fully Wetting have been considered in accordance with the processes occurring at the interface of three phases. The results obtained for each scenario were used to analyze the polytypism of GaAs and InAs NW, the radial periodic instability of Si NW and the formation of "negative" NW.

  5. Vapor-solid-solid grown Ge nanowires at integrated circuit compatible temperature by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zhu, Zhongyunshen; Song, Yuxin; Zhang, Zhenpu; Sun, Hao; Han, Yi; Li, Yaoyao; Zhang, Liyao; Xue, Zhongying; Di, Zengfeng; Wang, Shumin

    2017-09-01

    We demonstrate Au-assisted vapor-solid-solid (VSS) growth of Ge nanowires (NWs) by molecular beam epitaxy at the substrate temperature of ˜180 °C, which is compatible with the temperature window for Si-based integrated circuit. Low temperature grown Ge NWs hold a smaller size, similar uniformity, and better fit with Au tips in diameter, in contrast to Ge NWs grown at around or above the eutectic temperature of Au-Ge alloy in the vapor-liquid-solid (VLS) growth. Six ⟨110⟩ growth orientations were observed on Ge (110) by the VSS growth at ˜180 °C, differing from only one vertical growth direction of Ge NWs by the VLS growth at a high temperature. The evolution of NWs dimension and morphology from the VLS growth to the VSS growth is qualitatively explained by analyzing the mechanism of the two growth modes.

  6. Pure wurtzite GaP nanowires grown on zincblende GaP substrates by selective area vapor liquid solid epitaxy

    NASA Astrophysics Data System (ADS)

    Halder, Nripendra N.; Kelrich, Alexander; Cohen, Shimon; Ritter, Dan

    2017-11-01

    We report on the growth of single phase wurtzite (WZ) GaP nanowires (NWs) on GaP (111) B substrates by metal organic molecular beam epitaxy following the selective area vapor-liquid-solid (SA-VLS) approach. During the SA-VLS process, precursors are supplied directly to the NW sidewalls, and the short diffusion length of gallium (or its precursors) does not significantly limit axial growth. Transmission electron microscopy (TEM) images reveal that no stacking faults are present along a 600 nm long NW. The lattice constants of the pure WZ GaP obtained from the TEM images agree with values determined previously by x-ray diffraction from non-pure NW ensembles.

  7. Pure wurtzite GaP nanowires grown on zincblende GaP substrates by selective area vapor liquid solid epitaxy.

    PubMed

    Halder, Nripendra N; Kelrich, Alexander; Cohen, Shimon; Ritter, Dan

    2017-11-17

    We report on the growth of single phase wurtzite (WZ) GaP nanowires (NWs) on GaP (111) B substrates by metal organic molecular beam epitaxy following the selective area vapor-liquid-solid (SA-VLS) approach. During the SA-VLS process, precursors are supplied directly to the NW sidewalls, and the short diffusion length of gallium (or its precursors) does not significantly limit axial growth. Transmission electron microscopy (TEM) images reveal that no stacking faults are present along a 600 nm long NW. The lattice constants of the pure WZ GaP obtained from the TEM images agree with values determined previously by x-ray diffraction from non-pure NW ensembles.

  8. Synthesis of hollow silica spheres with hierarchical shell structure by the dual action of liquid indium microbeads in vapor-liquid-solid growth.

    PubMed

    Wang, Jian-Tao; Wang, Hui; Ou, Xue-Mei; Lee, Chun-Sing; Zhang, Xiao-Hong

    2011-07-05

    Geometry-based adhesion arising from hierarchical surface structure enables microspheres to adhere to cells strongly, which is essential for inorganic microcapsules that function as drug delivery or diagnostic imaging agents. However, constructing a hierarchical structure on the outer shell of the products via the current microcapsule synthesis method is difficult. This work presents a novel approach to fabricating hollow microspheres with a hierarchical shell structure through the vapor-liquid-solid (VLS) process in which liquid indium droplets act as both templates for the formation of silica capsules and catalysts for the growth of hierarchical shell structure. This hierarchical shell structure offers the hollow microsphere an enhanced geometry-based adhesion. The results provide a facile method for fabricating hollow spheres and enriching their function through tailoring the geometry of their outer shells. © 2011 American Chemical Society

  9. Vapor-Liquid-Solid Etch of Semiconductor Surface Channels by Running Gold Nanodroplets.

    PubMed

    Nikoobakht, Babak; Herzing, Andrew; Muramoto, Shin; Tersoff, Jerry

    2015-12-09

    We show that Au nanoparticles spontaneously move across the (001) surface of InP, InAs, and GaP when heated in the presence of water vapor. As they move, the particles etch crystallographically aligned grooves into the surface. We show that this process is a negative analogue of the vapor-liquid-solid (VLS) growth of semiconductor nanowires: the semiconductor dissolves into the catalyst and reacts with water vapor at the catalyst surface to create volatile oxides, depleting the dissolved cations and anions and thus sustaining the dissolution process. This VLS etching process provides a new tool for directed assembly of structures with sublithographic dimensions, as small as a few nanometers in diameter. Au particles above 100 nm in size do not exhibit this process but remain stationary, with oxide accumulating around the particles.

  10. Highly patterned growth of SnO2 nanowires using a sub-atmospheric vapor-liquid-solid deposition

    NASA Astrophysics Data System (ADS)

    Akbari, M.; Mohajerzadeh, S.

    2017-08-01

    We report the realization of tin-oxide nanowires on patterned structures using a vapor-liquid-solid (VLS) process. While gold acts as the catalyst for the growth of wires, a tin-oxide containing sol-gel solution is spin coated on silicon substrate to act as the source for SnO vapor. The growth of tin-oxide nano-structures occurs mostly at the vicinity of the pre-deposited solution. By patterning the gold as the catalyst material, one is able to observe the growth at desired places. The growth of nanowires is highly dense within 100 µm away from such in situ source and their length is of the order of 5 µm. By further distancing from the source, the growth becomes more limited and nanowires become shorter and more sparsely distributed. The growth of nanowires has been studied using scanning and transmission electron microscopy tools while their composition has been investigated using XRD and EDS analyses. As a novel application, we have employed the grown nanowires as electron detection elements to measure the emitted electrons from electron sources. This configuration can be further used as electron detectors for scanning electron microscopes.

  11. Prediction of vapour-liquid and vapour-liquid-liquid equilibria of nitrogen-hydrocarbon mixtures used in J-T refrigerators

    NASA Astrophysics Data System (ADS)

    Narayanan, Vineed; Venkatarathnam, G.

    2018-03-01

    Nitrogen-hydrocarbon mixtures are widely used as refrigerants in J-T refrigerators operating with mixtures, as well as in natural gas liquefiers. The Peng-Robinson equation of state has traditionally been used to simulate the above cryogenic process. Multi parameter Helmholtz energy equations are now preferred for determining the properties of natural gas. They have, however, been used only to predict vapour-liquid equilibria, and not vapour-liquid-liquid equilibria that can occur in mixtures used in cryogenic mixed refrigerant processes. In this paper the vapour-liquid equilibrium of binary mixtures of nitrogen-methane, nitrogen-ethane, nitrogen-propane, nitrogen-isobutane and three component mixtures of nitrogen-methane-ethane and nitrogen-methane-propane have been studied with the Peng-Robinson and the Helmholtz energy equations of state of NIST REFPROP and compared with experimental data available in the literature.

  12. Voc Degradation in TF-VLS Grown InP Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yubo; Sun, Xingshu; Johnston, Steve

    2016-11-21

    Here we consider two hypotheses to explain the open-circuit voltage (VOC) degradation observed in thin-film vapor-liquid-solid (TF-VLS) grown p-type InP photovoltaic cells: bandgap narrowing and local shunting. First, a bandgap (Eg) narrowing effect is hypothesized, based on the surface inhomogeneity of VLS InP captured by the photoluminescence (PL) image. The PL data was used to estimate a spatially-resolved active VOC across surface of the InP sample. Combining this data with the effective Jsc allowed an assessment of the I-V characteristics of individual unit cells. Next, an H-SPICE diode compact model was utilized to reproduce the I-V characteristics of the wholemore » sample. We find a good fit to the I-V performance of TF-VLS grown InP solar cell. Second, a local shunting effect was also considered as an alternative explanation of the VOC degradation effect. Again, PL image data was used, and small local shunt resistance was added in arbitrary elementary unit cells to represent certain dark spots seen in the PL image and dictate the VOC degradation occurred in the sample.« less

  13. Platinum assisted vapor-liquid-solid growth of er-si nanowires and their optical properties.

    PubMed

    Kim, Myoung-Ha; Kim, Il-Soo; Park, Yong-Hee; Park, Tae-Eon; Shin, Jung H; Choi, Heon-Jin

    2009-11-14

    We report the optical activation of erbium coated silicon nanowires (Er-SiNWs) grown with the assist of platinum (Pt) and gold (Au), respectively. The NWs were grown on Si substrates by using a chemical vapor transport process using SiCl4 and ErCl4 as precursors. Pt as well as Au worked successfully as vapor-liquid-solid (VLS) catalysts for growing SiNWs with diameters of ~100 nm and length of several micrometers, respectively. The SiNWs have core-shell structures where the Er-crystalline layer is sandwiched between silica layers. Photoluminescence spectra analyses showed the optical activity of SiNWs from both Pt and Au. A stronger Er3+ luminescence of 1,534 nm was observed from the SiNWs with Pt at room- and low-temperature (25 K) using the 488- and/or 477-nm line of an Ar laser that may be due to the uniform incorporation of more Er ions into NWs with the exclusion of the formation of catalyst-induced deep levels in the band-gap. Pt would be used as a VLS catalyst for high performance optically active Er-SiNWs.

  14. Platinum Assisted Vapor-Liquid-Solid Growth of Er-Si Nanowires and Their Optical Properties

    NASA Astrophysics Data System (ADS)

    Kim, Myoung-Ha; Kim, Il-Soo; Park, Yong-Hee; Park, Tae-Eon; Shin, Jung H.; Choi, Heon-Jin

    2010-02-01

    We report the optical activation of erbium coated silicon nanowires (Er-SiNWs) grown with the assist of platinum (Pt) and gold (Au), respectively. The NWs were grown on Si substrates by using a chemical vapor transport process using SiCl4 and ErCl4 as precursors. Pt as well as Au worked successfully as vapor-liquid-solid (VLS) catalysts for growing SiNWs with diameters of ~100 nm and length of several micrometers, respectively. The SiNWs have core-shell structures where the Er-crystalline layer is sandwiched between silica layers. Photoluminescence spectra analyses showed the optical activity of SiNWs from both Pt and Au. A stronger Er3+ luminescence of 1,534 nm was observed from the SiNWs with Pt at room- and low-temperature (25 K) using the 488- and/or 477-nm line of an Ar laser that may be due to the uniform incorporation of more Er ions into NWs with the exclusion of the formation of catalyst-induced deep levels in the band-gap. Pt would be used as a VLS catalyst for high performance optically active Er-SiNWs.

  15. Oscillatory vapour shielding of liquid metal walls in nuclear fusion devices.

    PubMed

    van Eden, G G; Kvon, V; van de Sanden, M C M; Morgan, T W

    2017-08-04

    Providing an efficacious plasma facing surface between the extreme plasma heat exhaust and the structural materials of nuclear fusion devices is a major challenge on the road to electricity production by fusion power plants. The performance of solid plasma facing surfaces may become critically reduced over time due to progressing damage accumulation. Liquid metals, however, are now gaining interest in solving the challenge of extreme heat flux hitting the reactor walls. A key advantage of liquid metals is the use of vapour shielding to reduce the plasma exhaust. Here we demonstrate that this phenomenon is oscillatory by nature. The dynamics of a Sn vapour cloud are investigated by exposing liquid Sn targets to H and He plasmas at heat fluxes greater than 5 MW m -2 . The observations indicate the presence of a dynamic equilibrium between the plasma and liquid target ruled by recombinatory processes in the plasma, leading to an approximately stable surface temperature.Vapour shielding is one of the interesting mechanisms for reducing the heat load to plasma facing components in fusion reactors. Here the authors report on the observation of a dynamic equilibrium between the plasma and the divertor liquid Sn surface leading to an overall stable surface temperature.

  16. An in-plane solid-liquid-solid growth mode for self-avoiding lateral silicon nanowires.

    PubMed

    Yu, Linwei; Alet, Pierre-Jean; Picardi, Gennaro; Roca i Cabarrocas, Pere

    2009-03-27

    We report an in-plane solid-liquid-solid (IPSLS) mode for obtaining self-avoiding lateral silicon nanowires (SiNW) in a reacting-gas-free annealing process, where the growth of SiNWs is guided by liquid indium drops that transform the surrounding a-SiratioH matrix into crystalline SiNWs. The SiNWs can be approximately mm long, with the smallest diameter down to approximately 22 nm. A high growth rate of >10(2) nm/s and rich evolution dynamics are revealed in a real-time in situ scanning electron microscopy observation. A qualitative growth model is proposed to account for the major features of this IPSLS SiNW growth mode.

  17. Temperature Dependence of Morphology and Growth Mechanism of Vapor-Grown Cd crystals as Affected by Bi Impurities

    NASA Astrophysics Data System (ADS)

    Yumoto, Hisami; Hasiguti, Ryukiti R.

    1984-07-01

    Hexagonal prismatic Cd crystals having {10\\bar{1}0} prismatic planes, or occasionally having {11\\bar{2}0} prismatic planes, were grown as high-temperature-type Cd crystals by the thin layer VLS mechanism at Ts (growth temperature) ≥ Tt (transition temperature range: 250-260°C). Pencil-shaped Cd crystals (low-temperature-type Cd crystals) were grown, having {10\\bar{1}0} and {11\\bar{2}0} prismatic planes and {10\\bar{1}1} pyramidal planes by the mixed-type VLS mechanism at Ts≤Tt. When the growth temperature was decreased below Tt, the shape of the solid-liquid interface changed from rounded to faceted. Three processes for the termination of the mixed-type VLS growth are proposed.

  18. Preferred orientations of laterally grown silicon films over amorphous substrates using the vapor-liquid-solid technique

    NASA Astrophysics Data System (ADS)

    LeBoeuf, J. L.; Brodusch, N.; Gauvin, R.; Quitoriano, N. J.

    2014-12-01

    A novel method has been optimized so that adhesion layers are no longer needed to reliably deposit patterned gold structures on amorphous substrates. Using this technique allows for the fabrication of amorphous oxide templates known as micro-crucibles, which confine a vapor-liquid-solid (VLS) catalyst of nominally pure gold to a specific geometry. Within these confined templates of amorphous materials, faceted silicon crystals have been grown laterally. The novel deposition technique, which enables the nominally pure gold catalyst, involves the undercutting of an initial chromium adhesion layer. Using electron backscatter diffraction it was found that silicon nucleated in these micro-crucibles were 30% single crystals, 45% potentially twinned crystals and 25% polycrystals for the experimental conditions used. Single, potentially twinned, and polycrystals all had an aversion to growth with the {1 0 0} surface parallel to the amorphous substrate. Closer analysis of grain boundaries of potentially twinned and polycrystalline samples revealed that the overwhelming majority of them were of the 60° Σ3 coherent twin boundary type. The large amount of coherent twin boundaries present in the grown, two-dimensional silicon crystals suggest that lateral VLS growth occurs very close to thermodynamic equilibrium. It is suggested that free energy fluctuations during growth or cooling, and impurities were the causes for this twinning.

  19. Vapour phase motion in cryogenic systems containing superheated and subcooled liquids

    NASA Astrophysics Data System (ADS)

    Kirichenko, Yu. A.; Chernyakov, P. S.; Seregin, V. E.

    The development of vent pipelines, and venting storage tanks for cryogenic liquids requires the knowledge of the law of motion as well as regularities of vapour content variation in the liquid and heat dissipation by the vapour phase. This is a theoretical study of the effect of superheating (subcooling) of the liquid, relative acceleration and reduced pressure upon the size and velocity of noninteracting vapour bubbles, moving in the liquid, and upon their resistance and heat transfer coefficients.

  20. Surface effects of vapour-liquid-solid driven Bi surface droplets formed during molecular-beam-epitaxy of GaAsBi

    PubMed Central

    Steele, J. A.; Lewis, R. A.; Horvat, J.; Nancarrow, M. J. B.; Henini, M.; Fan, D.; Mazur, Y. I.; Schmidbauer, M.; Ware, M. E.; Yu, S.-Q.; Salamo, G. J.

    2016-01-01

    Herein we investigate a (001)-oriented GaAs1−xBix/GaAs structure possessing Bi surface droplets capable of catalysing the formation of nanostructures during Bi-rich growth, through the vapour-liquid-solid mechanism. Specifically, self-aligned “nanotracks” are found to exist trailing the Bi droplets on the sample surface. Through cross-sectional high-resolution transmission electron microscopy the nanotracks are revealed to in fact be elevated above surface by the formation of a subsurface planar nanowire, a structure initiated mid-way through the molecular-beam-epitaxy growth and embedded into the epilayer, via epitaxial overgrowth. Electron microscopy studies also yield the morphological, structural, and chemical properties of the nanostructures. Through a combination of Bi determination methods the compositional profile of the film is shown to be graded and inhomogeneous. Furthermore, the coherent and pure zincblende phase property of the film is detailed. Optical characterisation of features on the sample surface is carried out using polarised micro-Raman and micro-photoluminescence spectroscopies. The important light producing properties of the surface nanostructures are investigated through pump intensity-dependent micro-PL measurements, whereby relatively large local inhomogeneities are revealed to exist on the epitaxial surface for important optical parameters. We conclude that such surface effects must be considered when designing and fabricating optical devices based on GaAsBi alloys. PMID:27377213

  1. Electrochemical liquid-liquid-solid (ec-LLS) crystal growth: a low-temperature strategy for covalent semiconductor crystal growth.

    PubMed

    Fahrenkrug, Eli; Maldonado, Stephen

    2015-07-21

    This Account describes a new electrochemical synthetic strategy for direct growth of crystalline covalent group IV and III-V semiconductor materials at or near ambient temperature conditions. This strategy, which we call "electrochemical liquid-liquid-solid" (ec-LLS) crystal growth, marries the semiconductor solvation properties of liquid metal melts with the utility and simplicity of conventional electrodeposition. A low-temperature liquid metal (i.e., Hg, Ga, or alloy thereof) acts simultaneously as the source of electrons for the heterogeneous reduction of oxidized semiconductor precursors dissolved in an electrolyte as well as the solvent for dissolution of the zero-valent semiconductor. Supersaturation of the semiconductor in the liquid metal triggers eventual crystal nucleation and growth. In this way, the liquid electrolyte-liquid metal-solid crystal phase boundary strongly influences crystal growth. As a synthetic strategy, ec-LLS has several intrinsic features that are attractive for preparing covalent semiconductor crystals. First, ec-LLS does not require high temperatures, toxic precursors, or high-energy-density semiconductor reagents. This largely simplifies equipment complexity and expense. In practice, ec-LLS can be performed with only a beaker filled with electrolyte and an electrical circuit capable of supplying a defined current (e.g., a battery in series with a resistor). By this same token, ec-LLS is compatible with thermally and chemically sensitive substrates (e.g., plastics) that cannot be used as deposition substrates in conventional syntheses of covalent semiconductors. Second, ec-LLS affords control over a host of crystal shapes and sizes through simple changes in common experimental parameters. As described in detail herein, large and small semiconductor crystals can be grown both homogeneously within a liquid metal electrode and heterogeneously at the interface of a liquid metal electrode and a seed substrate, depending on the particular

  2. Vapor-liquid-solid mechanisms: Challenges for nanosized quantum cluster/dot/wire materials

    NASA Astrophysics Data System (ADS)

    Cheyssac, P.; Sacilotti, M.; Patriarche, G.

    2006-08-01

    The growth mechanism model of a nanoscaled material is a critical step that has to be refined for a better understanding of a nanostructure's dot/wire fabrication. To do so, the growth mechanism will be discussed in this paper and the influence of the size of the metallic nanocluster starting point, referred to later as "size effect," will be studied. Among many of the so-called size effects, a tremendous decrease of the melting point of the metallic nanocluster changes the physical properties as well as the physical/mechanical interactions inside the growing structure composed of a metallic dot on top of a column. The thermodynamic size effect is related to the bending or curvature of chains of atoms, giving rise to the weakening of bonds between them; this size or curvature effect is described and approached to crystal nanodot/wire growth. We will describe this effect as that of a "cooking machine" when the number of atoms decreases from ˜1023at./cm3 for a bulk material to a few tens of them in a 1-2nm diameter sphere. The decrease of the number of atoms in a metallic cluster from such an enormous quantity is accompanied by a lowering of the melting temperature that extends from 200 up to 1000K, depending on the metallic material and its size under study. In this respect, the vapor-liquid-solid (VLS) model, which is the most utilized growth mechanism for quantum nanowires and nanodots, is critically exposed to size or curvature effects (CEs). More precisely, interactions in the vicinity of the growth regions should be reexamined. Some results illustrating the growth of micrometer-/nanometer-sized materials are presented in order to corroborate the CE/VLS models utilized by many research groups in today's nanosciences world. Examples of metallic clusters and semiconducting wires will be presented. The results and comments presented in this paper can be seen as a challenge to be overcome. From them, we expect that in a near future an improved model can be exposed

  3. Comparison of GaP nanowires grown from Au and Sn vapor-liquid-solid catalysts as photoelectrode materials

    NASA Astrophysics Data System (ADS)

    Lee, Sudarat; Wen, Wen; Cheek, Quintin; Maldonado, Stephen

    2018-01-01

    Gallium phosphide (GaP) nanowire film electrodes have been prepared via solid sublimation of GaP powder using both gold (Au) and tin (Sn) nanoparticles as the vapor-liquid-solid (VLS) catalysts on Si(1 1 1) and GaP(1 1 1)B substrates. The resultant GaP nanowires are compared and contrasted in terms of structures and photoactivity in photoelectrochemical half cells. Raman spectra implicated a difference in the surface condition of the two types of nanowires. Complete wet etching removal of metallic VLS catalysts from the as-prepared GaP nanowires was possible with Sn catalysts but not with Au catalysts. The photoresponses of both Sn- and Au-seeded GaP nanowire films were collected and examined under 100 mW cm-2 white light illumination. Au-seeded nanowire films exhibited strong n-type characteristics when measured in nonaqueous electrolyte with ferrocene/ferricenium as the redox species while Sn-seeded nanowires showed behavior consistent with degenerate n-type doping.

  4. Programmable growth of branched silicon nanowires using a focused ion beam.

    PubMed

    Jun, Kimin; Jacobson, Joseph M

    2010-08-11

    Although significant progress has been made in being able to spatially define the position of material layers in vapor-liquid-solid (VLS) grown nanowires, less work has been carried out in deterministically defining the positions of nanowire branching points to facilitate more complicated structures beyond simple 1D wires. Work to date has focused on the growth of randomly branched nanowire structures. Here we develop a means for programmably designating nanowire branching points by means of focused ion beam-defined VLS catalytic points. This technique is repeatable without losing fidelity allowing multiple rounds of branching point definition followed by branch growth resulting in complex structures. The single crystal nature of this approach allows us to describe resulting structures with linear combinations of base vectors in three-dimensional (3D) space. Finally, by etching the resulting 3D defined wire structures branched nanotubes were fabricated with interconnected nanochannels inside. We believe that the techniques developed here should comprise a useful tool for extending linear VLS nanowire growth to generalized 3D wire structures.

  5. Aerosol assisted chemical vapour deposition of gas sensitive SnO2 and Au-functionalised SnO2 nanorods via a non-catalysed vapour solid (VS) mechanism

    PubMed Central

    Vallejos, Stella; Selina, Soultana; Annanouch, Fatima Ezahra; Gràcia, Isabel; Llobet, Eduard; Blackman, Chris

    2016-01-01

    Tin oxide nanorods (NRs) are vapour synthesised at relatively lower temperatures than previously reported and without the need for substrate pre-treatment, via a vapour-solid mechanism enabled using an aerosol-assisted chemical vapour deposition method. Results demonstrate that the growth of SnO2 NRs is promoted by a compression of the nucleation rate parallel to the substrate and a decrease of the energy barrier for growth perpendicular to the substrate, which are controlled via the deposition conditions. This method provides both single-step formation of the SnO2 NRs and their integration with silicon micromachined platforms, but also allows for in-situ functionalization of the NRs with gold nanoparticles via co-deposition with a gold precursor. The functional properties are demonstrated for gas sensing, with microsensors using functionalised NRs demonstrating enhanced sensing properties towards H2 compared to those based on non-functionalised NRs. PMID:27334232

  6. The competition between the liquid-liquid dewetting and the liquid-solid dewetting.

    PubMed

    Xu, Lin; Shi, Tongfei; An, Lijia

    2009-05-14

    We investigate the dewetting behavior of the bilayer of air/PS/PMMA/silanized Si wafer and find the two competing dewetting pathways in the dewetting process. The upper layer dewets on the lower layer (dewetting pathway 1, the liquid-liquid dewetting) and the two layers rupture on the solid substrate (dewetting pathway 2, the liquid-solid dewetting). To the two competing dewetting pathways, the process of forming holes and the process of hole growth, influence their competing relation. In the process of forming holes, the time of forming holes is a main factor that influences their competing relation. During the process of hole growth, the dewetting velocity is a main factor that influences their competing relation. The liquid-liquid interfacial tension, the film thickness of the polymer, and the viscosity of the polymer are important factors that influence the time of forming holes and the dewetting velocity. When the liquid-liquid dewetting pathway and the liquid-solid dewetting pathway compete in the dewetting process, the competing relation can be controlled by changing the molecular weight of the polymer, the film thickness, and the annealing temperature. In addition, it is also found that the rim growth on the solid substrate is by a rolling mechanism in the process of hole growth.

  7. Corner wetting during the vapor-liquid-solid growth of faceted nanowires

    NASA Astrophysics Data System (ADS)

    Spencer, Brian; Davis, Stephen

    2016-11-01

    We consider the corner wetting of liquid drops in the context of vapor-liquid-solid growth of nanowires. Specifically, we construct numerical solutions for the equilibrium shape of a liquid drop on top of a faceted nanowire by solving the Laplace-Young equation with a free boundary determined by mixed boundary conditions. A key result for nanowire growth is that for a range of contact angles there is no equilibrium drop shape that completely wets the corner of the faceted nanowire. Based on our numerical solutions we determine the scaling behavior for the singular surface behavior near corners of the nanowire in terms of the Young contact angle and drop volume.

  8. Directed branch growth in aligned nanowire arrays.

    PubMed

    Beaudry, Allan L; LaForge, Joshua M; Tucker, Ryan T; Sorge, Jason B; Adamski, Nicholas L; Li, Peng; Taschuk, Michael T; Brett, Michael J

    2014-01-01

    Branch growth is directed along two, three, or four in-plane directions in vertically aligned nanowire arrays using vapor-liquid-solid glancing angle deposition (VLS-GLAD) flux engineering. In this work, a dynamically controlled collimated vapor flux guides branch placement during the self-catalyzed epitaxial growth of branched indium tin oxide nanowire arrays. The flux is positioned to grow branches on select nanowire facets, enabling fabrication of aligned nanotree arrays with L-, T-, or X-branching. In addition, a flux motion algorithm is designed to selectively elongate branches along one in-plane axis. Nanotrees are found to be aligned across large areas by X-ray diffraction pole figure analysis and through branch length and orientation measurements collected over 140 μm(2) from scanning electron microscopy images for each array. The pathway to guided assembly of nanowire architectures with controlled interconnectivity in three-dimensions using VLS-GLAD is discussed.

  9. Si nanowire growth on sapphire: Classical incubation, reverse reaction, and steady state supersaturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shakthivel, Dhayalan; Rathkanthiwar, Shashwat; Raghavan, Srinivasan, E-mail: sraghavan@cense.iisc.ernet.in

    2015-04-28

    Si nanowire growth on sapphire substrates by the vapor-liquid-solid (VLS) method using Au catalyst particles has been studied. Sapphire was chosen as the substrate to ensure that the vapor phase is the only source of Si. Three hitherto unreported observations are described. First, an incubation period of 120–480 s, which is shown to be the incubation period as defined in classical nucleation theory, is reported. This incubation period permits the determination of a desolvation energy of Si from Au-Si alloys of 15 kT. Two, transmission electron microscopy studies of incubation, point to Si loss by reverse reaction as an important partmore » of the mechanism of Si nanowire growth by VLS. Three, calculations using these physico-chemical parameters determined from incubation and measured steady state growth rates of Si nanowires show that wire growth happens from a supersaturated catalyst droplet.« less

  10. Vapor-liquid-solid growth of <110> silicon nanowire arrays

    NASA Astrophysics Data System (ADS)

    Eichfeld, Sarah M.; Hainey, Mel F.; Shen, Haoting; Kendrick, Chito E.; Fucinato, Emily A.; Yim, Joanne; Black, Marcie R.; Redwing, Joan M.

    2013-09-01

    The epitaxial growth of <110> silicon nanowires on (110) Si substrates by the vapor-liquid-solid growth process was investigated using SiCl4 as the source gas. A high percentage of <110> nanowires was obtained at high temperatures and reduced SiCl4 partial pressures. Transmission electron microscopy characterization of the <110> Si nanowires revealed symmetric V-shaped {111} facets at the tip and large {111} facets on the sidewalls of the nanowires. The symmetric {111} tip faceting was explained as arising from low catalyst supersaturation during growth which is expected to occur given the near-equilibrium nature of the SiCl4 process. The predominance of {111} facets obtained under these conditions promotes the growth of <110> SiNWs.

  11. Flat-field VLS spectrometers for laboratory applications

    NASA Astrophysics Data System (ADS)

    Ragozin, Evgeny N.; Belokopytov, Aleksei A.; Kolesnikov, Aleksei O.; Muslimov, Eduard R.; Shatokhin, Aleksei N.; Vishnyakov, Eugene A.

    2017-05-01

    Our intention is to develop high-resolution stigmatic spectral imaging in the XUV (2 - 40 nm). We have designed, aligned and tested a broadband stigmatic spectrometer for a range of 12-30 nm, which makes combined use of a normalincidence multilayer mirror (MM) (in particular, a broadband aperiodic MM) and a grazing-incidence plane varied linespace (VLS) reflection grating. The concave MM produces a slightly astigmatic image of the radiation source (for instance, the entrance slit), and the VLS grating produces a set of its dispersed stigmatic spectral images. The multilayer structure determines the spectral width of the operating range, which may amount to more than an octave in wavelength (e.g. 12.5-30 nm for an aperiodic Mo/Si MM), while the VLS grating controls the spectral focal curve. The stigmatism condition is satisfied simultaneously for two wavelengths, 14 and 27 nm. In this case, the condition of non-rigorous stigmatism is fulfilled for the entire wavelength range. A LiF laser plasma spectrum was recorded in one 0.5 J laser shot. A spatial resolution of 26 μm and a spectral resolution of 900 were demonstrated in the 12.5 - 25 nm range. We also report the design of a set of flat-field spectrometers of Harada type with VLS gratings. VLS gratings were made by ebeam and interference lithography. A technique (analytical + numerical) was developed for calculating optical schemes for writing plane and concave VLS gratings with predefined line density variation.

  12. The vapour of imidazolium-based ionic liquids: a mass spectrometry study.

    PubMed

    Deyko, A; Lovelock, K R J; Licence, P; Jones, R G

    2011-10-06

    Eight common dialkylimidazolium-based ionic liquids have been successfully evaporated in ultra-high vacuum and their vapours analysed by line of sight mass spectrometry using electron ionisation. The ionic liquids investigated were 1-alkyl-3-methylimidazolium bis[(trifluoromethane)sulfonyl]imide, [C(n)C(1)Im][Tf(2)N] (where n = 2, 4, 6, 8), 1-alkyl-3-methylimidazolium tetrafluoroborate, [C(n)C(1)Im][BF(4)] (where n = 4, 8), 1-butyl-3-methylimidazolium octylsulfate, [C(4)C(1)Im][C(8)OSO(3)] and 1-butyl-3-methylimidazolium tetrachloroferrate, [C(4)C(1)Im][FeCl(4)]. All ionic liquids studied here evaporated as neutral ion pairs; no evidence of decomposition products in the vapour phase were observed. Key fragment cations of the ionised vapour of the ionic liquids are identified. The appearance energies, E(app), of the parent cation were measured and used to estimate the ionisation energies, E(i), for the vapour phase neutral ion pairs. Measured ionisation energies ranged from 10.5 eV to 13.0 eV. Using both the identity and E(app) values, the fragmentation pathways for a number of fragment cations are postulated. It will be shown that the enthalpy of vaporisation, Δ(vap)H, can successfully be measured using more than one fragment cation, although caution is required as many fragment cations can also be formed by ionisation of decomposition products.

  13. Batchwise growth of silica cone patterns via self-assembly of aligned nanowires.

    PubMed

    Luo, Shudong; Zhou, Weiya; Chu, Weiguo; Shen, Jun; Zhang, Zengxing; Liu, Lifeng; Liu, Dongfang; Xiang, Yanjuan; Ma, Wenjun; Xie, Sishen

    2007-03-01

    Silica-cone patterns self-assembled from well-aligned nanowires are synthesized using gallium droplets as the catalyst and silicon wafers as the silicon source. The cones form a triangular pattern array radially on almost the whole surface of the molten Ga ball. Detailed field-emission scanning electron microscopy (SEM) analysis shows that the cone-pattern pieces frequently slide off and are detached from the molten Ga ball surface, which leads to the exposure of the catalyst surface and the growth of a new batch of silicon oxide nanowires as well as the cone patterns. The processes of growth and detachment alternate, giving rise to the formation of a volcano-like or a flower-like structure with bulk-quantity pieces of cone patterns piled up around the Ga ball. Consequently, the cone-patterned layer grows batch by batch until the reaction is terminated. Different to the conventional metal-catalyzed growth model, the batch-by-batch growth of the triangular cone patterns proceeds on the molten Ga balls via alternate growth on and detachment from the catalyst surface of the patterns; the Ga droplet can be used continuously and circularly as an effective catalyst for the growth of amorphous SiO(x) nanowires during the whole growth period. The intriguing batchwise growth phenomena may enrich our understanding of the vapour-liquid-solid (VLS) growth mechanism for the catalyst growth of nanowires or other nanostructures and may offer a different way of self-assembling novel silica nanostructures.

  14. Understanding the Vapor-Liquid-Solid and Vapor-Solid-Solid Mechanisms of Si Nanowire Growth to Synthetically Encode Precise Nanoscale Morphology

    NASA Astrophysics Data System (ADS)

    Pinion, Christopher William

    Precise patterning of semiconductor materials utilizing top-down lithographic techniques is integral to the advanced electronics we use on a daily basis. However, continuing development of these lithographic technologies often results in the trade-off of either high cost or low throughput, and three-dimensional (3D) patterning can be difficult to achieve. Bottom-up, chemical methods to control the 3D nanoscale morphology of semiconductor nanostructures have received significant attention as a complementary technique. Semiconductor nanowires, nanoscale filaments of semiconductor material 10-500 nm in diameter and 1-50 microns in length, are an especially promising platform because the wire composition can be modulated during growth and the high aspect ratio, one-dimensional structure enables integration in a range of devices. In this thesis, we first report a bottom-up method to break the conventional "wire" symmetry and synthetically encode a high-resolution array of arbitrary shapes along the nanowire growth axis. Rapid modulation of phosphorus doping combined with selective wet-chemical etching enables morphological features as small as 10 nm to be patterned over wires more than 50 ?m in length. Next, our focus shifts to more fundamental studies of the nanowire synthetic mechanisms. We presented comprehensive experimental measurements on the growth rate of Au catalyzed Si nanowires and developed a kinetic model of vapor-liquid-solid growth. Our analysis revealed an abrupt transition from a diameter-independent growth rate that is limited by incorporation to a diameter-dependent growth rate that is limited by crystallization. While investigating the vapor-liquid-solid mechanism, we noticed instances of unique catalyst behavior. Upon further study, we showed that it is possible to instantaneously and reversibly switch the phase of the catalyst between a liquid and superheated solid state under isothermal conditions above the eutectic temperature. The solid catalyst

  15. Transcriptional regulation of the Borrelia burgdorferi antigenically variable VlsE surface protein.

    PubMed

    Bykowski, Tomasz; Babb, Kelly; von Lackum, Kate; Riley, Sean P; Norris, Steven J; Stevenson, Brian

    2006-07-01

    The Lyme disease agent Borrelia burgdorferi can persistently infect humans and other animals despite host active immune responses. This is facilitated, in part, by the vls locus, a complex system consisting of the vlsE expression site and an adjacent set of 11 to 15 silent vls cassettes. Segments of nonexpressed cassettes recombine with the vlsE region during infection of mammalian hosts, resulting in combinatorial antigenic variation of the VlsE outer surface protein. We now demonstrate that synthesis of VlsE is regulated during the natural mammal-tick infectious cycle, being activated in mammals but repressed during tick colonization. Examination of cultured B. burgdorferi cells indicated that the spirochete controls vlsE transcription levels in response to environmental cues. Analysis of PvlsE::gfp fusions in B. burgdorferi indicated that VlsE production is controlled at the level of transcriptional initiation, and regions of 5' DNA involved in the regulation were identified. Electrophoretic mobility shift assays detected qualitative and quantitative changes in patterns of protein-DNA complexes formed between the vlsE promoter and cytoplasmic proteins, suggesting the involvement of DNA-binding proteins in the regulation of vlsE, with at least one protein acting as a transcriptional activator.

  16. Vapours of US and EU Market Leader Electronic Cigarette Brands and Liquids Are Cytotoxic for Human Vascular Endothelial Cells.

    PubMed

    Putzhammer, Raphaela; Doppler, Christian; Jakschitz, Thomas; Heinz, Katharina; Förste, Juliane; Danzl, Katarina; Messner, Barbara; Bernhard, David

    2016-01-01

    The present study was conducted to provide toxicological data on e-cigarette vapours of different e-cigarette brands and liquids from systems viewed as leaders in the e-cigarette market and to compare e-cigarette vapour toxicity to the toxicity of conventional strong high-nicotine cigarette smoke. Using an adapted version of a previously constructed cigarette smoke constituent sampling device, we collected the hydrophilic fraction of e-cigarette vapour and exposed human umbilical vein endothelial cells (HUVECs) to the mixture of compounds present in the vapour of 4 different single-use e-cigarettes, 6 different liquid vapours produced by the same refillable e-cigarette, and one e-cigarette with an exchangeable liquid cartridge. After incubation of cells with various concentrations and for various periods of time we analysed cell death induction, proliferation rates, the occurrence of intra-cellular reactive oxygen species, cell morphology, and we also measured e-cigarette heating coil temperatures. Overall, conventional cigarette smoke extract showed the most severe impact on endothelial cells. However, some e-cigarette vapour extracts showed high cytotoxicity, inhibition of cell proliferation, and alterations in cell morphology, which were comparable to conventional high-nicotine cigarettes. The vapours generated from different liquids using the same e-cigarette show substantial differences, pointing to the liquids as an important source for toxicity. E-cigarette vapour-mediated induction of oxidative stress was significant in one out of the 11 analysed vapours. There is a high variability in the acute cytotoxicity of e-cigarette vapours depending on the liquid and on the e-cigarettes used. Some products showed toxic effects close to a conventional high-nicotine cigarette. Liquid nicotine, menthol content, and the formation of acute intracellular reactive oxygen species do not seem to be the central elements in e-cigarette vapour toxicity.

  17. Vapours of US and EU Market Leader Electronic Cigarette Brands and Liquids Are Cytotoxic for Human Vascular Endothelial Cells

    PubMed Central

    Putzhammer, Raphaela; Doppler, Christian; Jakschitz, Thomas; Heinz, Katharina; Förste, Juliane; Danzl, Katarina; Messner, Barbara; Bernhard, David

    2016-01-01

    The present study was conducted to provide toxicological data on e-cigarette vapours of different e-cigarette brands and liquids from systems viewed as leaders in the e-cigarette market and to compare e-cigarette vapour toxicity to the toxicity of conventional strong high-nicotine cigarette smoke. Using an adapted version of a previously constructed cigarette smoke constituent sampling device, we collected the hydrophilic fraction of e-cigarette vapour and exposed human umbilical vein endothelial cells (HUVECs) to the mixture of compounds present in the vapour of 4 different single-use e-cigarettes, 6 different liquid vapours produced by the same refillable e-cigarette, and one e-cigarette with an exchangeable liquid cartridge. After incubation of cells with various concentrations and for various periods of time we analysed cell death induction, proliferation rates, the occurrence of intra-cellular reactive oxygen species, cell morphology, and we also measured e-cigarette heating coil temperatures. Overall, conventional cigarette smoke extract showed the most severe impact on endothelial cells. However, some e-cigarette vapour extracts showed high cytotoxicity, inhibition of cell proliferation, and alterations in cell morphology, which were comparable to conventional high-nicotine cigarettes. The vapours generated from different liquids using the same e-cigarette show substantial differences, pointing to the liquids as an important source for toxicity. E-cigarette vapour-mediated induction of oxidative stress was significant in one out of the 11 analysed vapours. There is a high variability in the acute cytotoxicity of e-cigarette vapours depending on the liquid and on the e-cigarettes used. Some products showed toxic effects close to a conventional high-nicotine cigarette. Liquid nicotine, menthol content, and the formation of acute intracellular reactive oxygen species do not seem to be the central elements in e-cigarette vapour toxicity. PMID:27351725

  18. Vapour loss (``boiling'') as a mechanism for fluid evolution in metamorphic rocks

    NASA Astrophysics Data System (ADS)

    Trommsdorff, Volkmar; Skippen, George

    1986-11-01

    The calculation of fluid evolution paths during reaction progress is considered for multicomponent systems and the results applied to the ternary system, CO2-H2O-NaCl. Fluid evolution paths are considered for systems in which a CO2-rich phase of lesser density (vapour) is preferentially removed from the system leaving behind a saline aqueous phase (liquid). Such “boiling” leads to enrichment of the residual aqueous phase in dissolved components and, for certain reaction stoichiometries, to eventual saturation of the fluids in salt components. Distinctive textures, particularly radiating growths of prismatic minerals such as tremolite or diopside, are associated with saline fluid inclusions and solid syngenetic salt inclusions at a number of field localities. The most thoroughly studied of these localities is Campolungo, Switzerland, where metasomatic rocks have developed in association with fractures and veins at 500° C and 2,000 bars of pressure. The petrography of these rocks suggests that fluid phase separation into liquid and vapour has been an important process during metasomatism. Fracture systems with fluids at pressure less than lithostatic may facilitate the loss of the less dense vapour phase to conditions of the amphibolite facies.

  19. An advanced expiratory circuit for the recovery of perfluorocarbon liquid from non-saturated perfluorocarbon vapour during partial liquid ventilation: an experimental model

    PubMed Central

    Dunster, Kimble R; Davies, Mark W; Fraser, John F

    2006-01-01

    Background The loss of perfluorocarbon (PFC) vapour in the expired gases during partial liquid ventilation should be minimized both to prevent perfluorocarbon vapour entering the atmosphere and to re-use the recovered PFC liquid. Using a substantially modified design of our previously described condenser, we aimed to determine how much perfluorocarbon liquid could be recovered from gases containing PFC and water vapour, at concentrations found during partial liquid ventilation, and to determine if the amount recovered differed with background flow rate (at flow rates suitable for use in neonates). Methods The expiratory line of a standard ventilator circuit set-up was mimicked, with the addition of two condensers. Perfluorocarbon (30 mL of FC-77) and water vapour, at concentrations found during partial liquid ventilation, were passed through the circuit at a number of flow rates and the percentage recovery of the liquids measured. Results From 14.2 mL (47%) to 27.3 mL (91%) of the infused 30 mL of FC-77 was recovered at the flow rates studied. Significantly higher FC-77 recovery was obtained at lower flow rates (ANOVA with Bonferroni's multiple comparison test, p < 0.0001). As a percentage of the theoretical maximum recovery, 64 to 95% of the FC-77 was recovered. Statistically significantly less FC-77 was recovered at 5 Lmin-1 (ANOVA with Bonferroni's multiple comparison test, p < 0.0001). Amounts of perfluorocarbon vapour recovered were 47%, 50%, 81% and 91% at flow rates of 10, 5, 2 and 1 Lmin-1, respectively. Conclusion Using two condensers in series 47% to 91% of perfluorocarbon liquid can be recovered, from gases containing perfluorocarbon and water vapour, at concentrations found during partial liquid ventilation. PMID:16457722

  20. Calculation of a solid/liquid surface tension: A methodological study

    NASA Astrophysics Data System (ADS)

    Dreher, T.; Lemarchand, C.; Soulard, L.; Bourasseau, E.; Malfreyt, P.; Pineau, N.

    2018-01-01

    The surface tension of a model solid/liquid interface constituted of a graphene sheet surrounded by liquid methane has been computed using molecular dynamics in the Kirkwood-Buff formalism. We show that contrary to the fluid/fluid case, the solid/liquid case can lead to different structurations of the first fluid layer, leading to significantly different values of surface tension. Therefore we present a statistical approach that consists in running a series of molecular simulations of similar systems with different initial conditions, leading to a distribution of surface tensions from which an average value and uncertainty can be extracted. Our results suggest that these distributions converge as the system size increases. Besides we show that surface tension is not particularly sensitive to the choice of the potential energy cutoff and that long-range corrections can be neglected contrary to what we observed in the liquid/vapour interfaces. We have not observed the previously reported commensurability effect.

  1. Microstructure and growth model for rice-hull-derived SiC whiskers

    NASA Technical Reports Server (NTRS)

    Nutt, Steven R.

    1988-01-01

    The microstructure of silicon carbide whiskers grown from rice hulls has been studied using methods of high-resolution analytical electron microscopy. Small, partially crystalline inclusions (about 10 nm) containing calcium, manganese, and oxygen are concentrated in whisker core regions, while peripheral regions are generally inclusion free. The distinct microphase distribution is evidence of a two-stage growth process in which the core region grows first, followed by normal growth toward whisker sides. Partial dislocations extend radially from the core region to the surface and tend to be paired in V-shaped configurations. Whisker surfaces exhibit microroughness due to a tendency to develop small facets on close-packed planes. The microstructural data obtained from TEM observations are used as a basis for discussion of the mechanisms involved in whisker growth, and a model of the growth process is proposed. The model includes a two-dimensional growth mechanism involving vapor, liquid, and solid phases, although it is significantly different from the classical vapor-liquid-solid (VLS) process of whisker growth.

  2. Abnormal gas-liquid-solid phase transition behaviour of water observed with in situ environmental SEM.

    PubMed

    Chen, Xin; Shu, Jiapei; Chen, Qing

    2017-04-24

    Gas-liquid-solid phase transition behaviour of water is studied with environmental scanning electron microscopy for the first time. Abnormal phenomena are observed. At a fixed pressure of 450 Pa, with the temperature set to -7 °C, direct desublimation happens, and ice grows continuously along the substrate surface. At 550 Pa, although ice is the stable phase according to the phase diagram, metastable liquid droplets first nucleate and grow to ~100-200 μm sizes. Ice crystals nucleate within the large sized droplets, grow up and fill up the droplets. Later, the ice crystals grow continuously through desublimation. At 600 Pa, the metastable liquid grows quickly, with some ice nuclei floating in it, and the liquid-solid coexistence state exists for a long time. By lowering the vapour pressure and/or increasing the substrate temperature, ice sublimates into vapour phase, and especially, the remaining ice forms a porous structure due to preferential sublimation in the concave regions, which can be explained with surface tension effect. Interestingly, although it should be forbidden for ice to transform into liquid phase when the temperature is well below 0 °C, liquid like droplets form during the ice sublimation process, which is attributed to the surface tension effect and the quasiliquid layers.

  3. Oxide mediated liquid-solid growth of high aspect ratio aligned gold silicide nanowires on Si(110) substrates.

    PubMed

    Bhatta, Umananda M; Rath, Ashutosh; Dash, Jatis K; Ghatak, Jay; Yi-Feng, Lai; Liu, Chuan-Pu; Satyam, P V

    2009-11-18

    Silicon nanowires grown using the vapor-liquid-solid method are promising candidates for nanoelectronics applications. The nanowires grow from an Au-Si catalyst during silicon chemical vapor deposition. In this paper, the effect of temperature, oxide at the interface and substrate orientation on the nucleation and growth kinetics during formation of nanogold silicide structures is explained using an oxide mediated liquid-solid growth mechanism. Using real time in situ high temperature transmission electron microscopy (with 40 ms time resolution), we show the formation of high aspect ratio ( approximately 15.0) aligned gold silicide nanorods in the presence of native oxide at the interface during in situ annealing of gold thin films on Si(110) substrates. Steps observed in the growth rate and real time electron diffraction show the existence of liquid Au-Si nano-alloy structures on the surface besides the un-reacted gold nanostructures. These results might enable us to engineer the growth of nanowires and similar structures with an Au-Si alloy as a catalyst.

  4. Genetic variation of the Borrelia burgdorferi gene vlsE involves cassette-specific, segmental gene conversion.

    PubMed

    Zhang, J R; Norris, S J

    1998-08-01

    The Lyme disease spirochete Borrelia burgdorferi possesses 15 silent vls cassettes and a vls expression site (vlsE) encoding a surface-exposed lipoprotein. Segments of the silent vls cassettes have been shown to recombine with the vlsE cassette region in the mammalian host, resulting in combinatorial antigenic variation. Despite promiscuous recombination within the vlsE cassette region, the 5' and 3' coding sequences of vlsE that flank the cassette region are not subject to sequence variation during these recombination events. The segments of the silent vls cassettes recombine in the vlsE cassette region through a unidirectional process such that the sequence and organization of the silent vls loci are not affected. As a result of recombination, the previously expressed segments are replaced by incoming segments and apparently degraded. These results provide evidence for a gene conversion mechanism in VlsE antigenic variation.

  5. Liquid and vapour-phase antifungal activities of selected essential oils against candida albicans: microscopic observations and chemical characterization of cymbopogon citratus

    PubMed Central

    2010-01-01

    Background Use of essential oils for controlling Candida albicans growth has gained significance due to the resistance acquired by pathogens towards a number of widely-used drugs. The aim of this study was to test the antifungal activity of selected essential oils against Candida albicans in liquid and vapour phase and to determine the chemical composition and mechanism of action of most potent essential oil. Methods Minimum Inhibitory concentration (MIC) of different essential oils in liquid phase, assayed through agar plate dilution, broth dilution & 96-well micro plate dilution method and vapour phase activity evaluated through disc volatilization method. Reduction of C. albicans cells with vapour exposure was estimated by kill time assay. Morphological alteration in treated/untreated C. albicans cells was observed by the Scanning electron microscopy (SEM)/Atomic force microscopy (AFM) and chemical analysis of the strongest antifungal agent/essential oil has been done by GC, GC-MS. Results Lemon grass (Cymbopogon citratus) essential oil exhibited the strongest antifungal effect followed by mentha (Mentha piperita) and eucalyptus (Eucalyptus globulus) essential oil. The MIC of lemon grass essential oil in liquid phase (288 mg/l) was significantly higher than that in the vapour phase (32.7 mg/l) and a 4 h exposure was sufficient to cause 100% loss in viability of C. albicans cells. SEM/AFM of C. albicans cells treated with lemon grass essential oil at MIC level in liquid and vapour phase showed prominent shrinkage and partial degradation, respectively, confirming higher efficacy of vapour phase. GC-MS analysis revealed that lemon grass essential oil was dominated by oxygenated monoterpenes (78.2%); α-citral or geranial (36.2%) and β-citral or neral (26.5%), monoterpene hydrocarbons (7.9%) and sesquiterpene hydrocarbons (3.8%). Conclusion Lemon grass essential oil is highly effective in vapour phase against C. albicans, leading to deleterious morphological

  6. Growth Mechanism of Nanowires: Binary and Ternary Chalcogenides

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Coriell, S. R.; Su, Ching-Hua; Hopkins, R. H.; Arnold, B.; Choa, Fow-Sen; Cullum, Brian

    2016-01-01

    Semiconductor nanowires exhibit very exciting optical and electrical properties including high transparency and a several order of magnitude better photocurrent than thin film and bulk materials. We present here the mechanism of nanowire growth from the melt-liquid-vapor medium. We describe preliminary results of binary and ternary selenide materials in light of recent theories. Experiments were performed with lead selenide and thallium arsenic selenide systems which are multifunctional material and have been used for detectors, acousto-optical, nonlinear and radiation detection applications. We observed that small units of nanocubes and elongated nanoparticles arrange and rearrange at moderate melt undercooling to form the building block of a nanowire. Since we avoided the catalyst, we observed self-nucleation and uncontrolled growth of wires from different places. Growth of lead selenide nanowires was performed by physical vapor transport method and thallium arsenic selenide nanowire by vapor-liquid-solid (VLS) method. In some cases very long wires (>mm) are formed. To achieve this goal experiments were performed to create situation where nanowires grew on the surface of solid thallium arsenic selenide itself.

  7. Electrodeposition of Metal on GaAs Nanowires

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Einabad, Omid; Watkins, Simon; Kavanagh, Karen

    2010-10-01

    Copper (Cu) electrical contacts to freestanding gallium arsenide (GaAs) nanowires have been fabricated via electrodeposition. The nanowires are zincblende (111) oriented grown epitaxially on n-type Si-doped GaAs (111)B substrates by gold-catalyzed Vapor Liquid Solid (VLS) growth in a metal organic vapour phase epitaxy (MOVPE) reactor. The epitaxial electrodeposition process, based on previous work with bulk GaAs substrates, consists of a substrate oxide pre-etch in dilute ammonium-hydroxide carried out prior to galvanostatic electrodeposition in a pure Cu sulphate aqueous electrolyte at 20-60^oC. For GaAs nanowires, we find that Cu or Fe has a preference for growth on the gold catalyst avoiding the sidewalls. After removing gold, both metals still prefer to grow only on top of the nanowire, which has the largest potential field.

  8. Seeded Nanowire and Microwire Growth from Lithium Alloys.

    PubMed

    Han, Sang Yun; Boebinger, Matthew G; Kondekar, Neha P; Worthy, Trevor J; McDowell, Matthew T

    2018-06-06

    Although vapor-liquid-solid (VLS) growth of nanowires from alloy seed particles is common in various semiconductor systems, related wire growth in all-metal systems is rare. Here, we report the spontaneous growth of nano- and microwires from metal seed particles during the cooling of Li-rich bulk alloys containing Au, Ag, or In. The as-grown wires feature Au-, Ag-, or In-rich metal tips and LiOH shafts; the results indicate that the wires grow as Li metal and are converted to polycrystalline LiOH during and/or after growth due to exposure to H 2 O and O 2 . This new process is a simple way to create nanostructures, and the findings suggest that metal nanowire growth from alloy seeds is possible in a variety of systems.

  9. 3D imaging of vapour and liquid inclusions from the Mole Granite, Australia, using helical fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Cauzid, J.; Philippot, P.; Bleuet, P.; Simionovici, A.; Somogyi, A.; Golosio, B.

    2007-08-01

    World class Cu resources are concentrated in porphyry and epithermal ore deposits. Their formation remains partially understood, however, due to a lack of constraints on the partitioning properties of trace elements in general, and Cu in particular, between vapour and liquid phases evolved from boiling fluids at depth in the Earth's crust. Immiscible liquid and vapour fluid inclusions coexisting in a single quartz grain have been imaged in three dimensions by X-ray Fluorescence Computed Tomography (XFCT). Elemental spatial distributions confirm that Cu, and to a lesser extent As, partition into the vapour phase, whereas Mn, Fe, Zn, Br, Rb, Sr and Pb concentrate in the liquid inclusion. High resolution mapping of the vapour inclusions revealed that Cu is heterogeneously distributed at the scale of a single inclusion and is mostly concentrated as tiny daughter crystals.

  10. Aluminum-catalyzed silicon nanowires: Growth methods, properties, and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hainey, Mel F.; Redwing, Joan M.

    Metal-mediated vapor-liquid-solid (VLS) growth is a promising approach for the fabrication of silicon nanowires, although residual metal incorporation into the nanowires during growth can adversely impact electronic properties particularly when metals such as gold and copper are utilized. Aluminum, which acts as a shallow acceptor in silicon, is therefore of significant interest for the growth of p-type silicon nanowires but has presented challenges due to its propensity for oxidation. This paper summarizes the key aspects of aluminum-catalyzed nanowire growth along with wire properties and device results. In the first section, aluminum-catalyzed nanowire growth is discussed with a specific emphasis onmore » methods to mitigate aluminum oxide formation. Next, the influence of growth parameters such as growth temperature, precursor partial pressure, and hydrogen partial pressure on nanowire morphology is discussed, followed by a brief review of the growth of templated and patterned arrays of nanowires. Aluminum incorporation into the nanowires is then discussed in detail, including measurements of the aluminum concentration within wires using atom probe tomography and assessment of electrical properties by four point resistance measurements. Finally, the use of aluminum-catalyzed VLS growth for device fabrication is reviewed including results on single-wire radial p-n junction solar cells and planar solar cells fabricated with nanowire/nanopyramid texturing.« less

  11. Oxidation of volatile organic vapours in air by solid potassium permanganate.

    PubMed

    Mahmoodlu, Mojtaba Ghareh; Hartog, Niels; Majid Hassanizadeh, S; Raoof, Amir

    2013-06-01

    Volatile organic compounds (VOCs) may frequently contaminate groundwater and pose threat to human health when migrating into the unsaturated soil zone and upward to the indoor air. The kinetic of chemical oxidation has been investigated widely for dissolved VOCs in the saturated zone. But, so far there have been few studies on the use of in situ chemical oxidation (ISCO) of vapour phase contaminants. In this study, batch experiments were carried out to evaluate the oxidation of trichloroethylene (TCE), ethanol, and toluene vapours by solid potassium permanganate. Results revealed that solid potassium permanganate is able to transform the vapour of these compounds into harmless oxidation products. The degradation rates for TCE and ethanol were higher than for toluene. The degradation process was modelled using a kinetic model, linear in the gas concentration of VOC [ML(-3)] and relative surface area of potassium permanganate grains (surface area of potassium permanganate divided by gas volume) [L(-1)]. The second-order reaction rate constants for TCE, ethanol, and toluene were found to be equal to 2.0×10(-6) cm s(-1), 1.7×10(-7) cm s(-1), and 7.0×10(-8) cm s(-1), respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers.

    PubMed

    Willander, M; Nur, O; Zhao, Q X; Yang, L L; Lorenz, M; Cao, B Q; Zúñiga Pérez, J; Czekalla, C; Zimmermann, G; Grundmann, M; Bakin, A; Behrends, A; Al-Suleiman, M; El-Shaer, A; Che Mofor, A; Postels, B; Waag, A; Boukos, N; Travlos, A; Kwack, H S; Guinard, J; Le Si Dang, D

    2009-08-19

    Zinc oxide (ZnO), with its excellent luminescent properties and the ease of growth of its nanostructures, holds promise for the development of photonic devices. The recent advances in growth of ZnO nanorods are discussed. Results from both low temperature and high temperature growth approaches are presented. The techniques which are presented include metal-organic chemical vapour deposition (MOCVD), vapour phase epitaxy (VPE), pulse laser deposition (PLD), vapour-liquid-solid (VLS), aqueous chemical growth (ACG) and finally the electrodeposition technique as an example of a selective growth approach. Results from structural as well as optical properties of a variety of ZnO nanorods are shown and analysed using different techniques, including high resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), photoluminescence (PL) and cathodoluminescence (CL), for both room temperature and for low temperature performance. These results indicate that the grown ZnO nanorods possess reproducible and interesting optical properties. Results on obtaining p-type doping in ZnO micro- and nanorods are also demonstrated using PLD. Three independent indications were found for p-type conducting, phosphorus-doped ZnO nanorods: first, acceptor-related CL peaks, second, opposite transfer characteristics of back-gate field effect transistors using undoped and phosphorus doped wire channels, and finally, rectifying I-V characteristics of ZnO:P nanowire/ZnO:Ga p-n junctions. Then light emitting diodes (LEDs) based on n-ZnO nanorods combined with different technologies (hybrid technologies) are suggested and the recent electrical, as well as electro-optical, characteristics of these LEDs are shown and discussed. The hybrid LEDs reviewed and discussed here are mainly presented for two groups: those based on n-ZnO nanorods and p-type crystalline substrates, and those based on n-ZnO nanorods and p-type amorphous substrates. Promising electroluminescence

  13. Critical behaviour and vapour-liquid coexistence of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ionic liquids via Monte Carlo simulations.

    PubMed

    Rai, Neeraj; Maginn, Edward J

    2012-01-01

    Atomistic Monte Carlo simulations are used to compute vapour-liquid coexistence properties of a homologous series of [C(n)mim][NTf2] ionic liquids, with n = 1, 2, 4, 6. Estimates of the critical temperatures range from 1190 K to 1257 K, with longer cation alkyl chains serving to lower the critical temperature. Other quantities such as critical density, critical pressure, normal boiling point, and accentric factor are determined from the simulations. Vapour pressure curves and the temperature dependence of the enthalpy of vapourisation are computed and found to have a weak dependence on the length of the cation alkyl chain. The ions in the vapour phase are predominately in single ion pairs, although a significant number of ions are found in neutral clusters of larger sizes as temperature is increased. It is found that previous estimates of the critical point obtained from extrapolating experimental surface tension data agree reasonably well with the predictions obtained here, but group contribution methods and primitive models of ionic liquids do not capture many of the trends observed in the present study

  14. Microspheres for the growth of silicon nanowires via vapor-liquid-solid mechanism

    DOE PAGES

    Gomez-Martinez, Arancha; Marquez, Francisco; Elizalde, Eduardo; ...

    2014-01-01

    Silicon nanowires have been synthesized by a simple process using a suitable support containing silica and carbon microspheres. Nanowires were grown by thermal chemical vapor deposition via a vapor-liquid-solid mechanism with only the substrate as silicon source. The curved surface of the microsized spheres allows arranging the gold catalyst as nanoparticles with appropriate dimensions to catalyze the growth of nanowires. Here, the resulting material is composed of the microspheres with the silicon nanowires attached on their surface.

  15. Vapour-liquid interfacial properties of square-well chains from density functional theory and Monte Carlo simulation.

    PubMed

    Martínez-Ruiz, Francisco José; Blas, Felipe J; Moreno-Ventas Bravo, A Ignacio; Míguez, José Manuel; MacDowell, Luis G

    2017-05-17

    The statistical associating fluid theory for attractive potentials of variable range (SAFT-VR) density functional theory (DFT) developed by [Gloor et al., J. Chem. Phys., 2004, 121, 12740-12759] is used to predict the interfacial behaviour of molecules modelled as fully-flexible square-well chains formed from tangentially-bonded monomers of diameter σ and potential range λ = 1.5σ. Four different model systems, comprising 4, 8, 12, and 16 monomers per molecule, are considered. In addition to that, we also compute a number of interfacial properties of molecular chains from direct simulation of the vapour-liquid interface. The simulations are performed in the canonical ensemble, and the vapour-liquid interfacial tension is evaluated using the wandering interface (WIM) method, a technique based on the thermodynamic definition of surface tension. Apart from surface tension, we also obtain density profiles, coexistence densities, vapour pressures, and critical temperature and density, paying particular attention to the effect of the chain length on these properties. According to our results, the main effect of increasing the chain length (at fixed temperature) is to sharpen the vapour-liquid interface and to increase the width of the biphasic coexistence region. As a result, the interfacial thickness decreases and the surface tension increases as the molecular chains get longer. The interfacial thickness and surface tension appear to exhibit an asymptotic limiting behaviour for long chains. A similar behaviour is also observed for the coexistence densities and critical properties. Agreement between theory and simulation results indicates that SAFT-VR DFT is only able to predict qualitatively the interfacial properties of the model. Our results are also compared with simulation data taken from the literature, including the vapour-liquid coexistence densities, vapour pressures, and surface tension.

  16. Synthesis of nanostructures in nanowires using sequential catalyst reactions

    DOE PAGES

    Panciera, F.; Chou, Y. -C.; Reuter, M. C.; ...

    2015-07-13

    Nanowire growth by the vapour–liquid–solid (VLS) process enables a high level of control over nanowire composition, diameter, growth direction, branching and kinking, periodic twinning, and crystal structure. The tremendous impact of VLS-grown nanowires is due to this structural versatility, generating applications ranging from solid-state lighting and single-photon sources to thermoelectric devices. Here, we show that the morphology of these nanostructures can be further tailored by using the liquid droplets that catalyse nanowire growth as a ‘mixing bowl’, in which growth materials are sequentially supplied to nucleate new phases. Growing within the liquid, these phases adopt the shape of faceted nanocrystalsmore » that are then incorporated into the nanowires by further growth. Furthermore, we demonstrate this concept by epitaxially incorporating metal-silicide nanocrystals into Si nanowires with defect-free interfaces, and discuss how this process can be generalized to create complex nanowire-based heterostructures.« less

  17. The effect of perfluorocarbon vapour on the measurement of respiratory tidal volume during partial liquid ventilation.

    PubMed

    Davies, M W; Dunster, K R

    2000-08-01

    During partial liquid ventilation perfluorocarbon vapour is present in the exhaled gases. The volumes of these gases are measured by pneumotachometers. Error in measuring tidal volumes will give erroneous measurement of lung compliance during partial liquid ventilation. We aim to compare measured tidal volumes with and without perfluorocarbon vapour using tidal volumes suitable for use in neonates. Tidal volumes were produced with a 100 ml calibration syringe from 20 to 100 ml and with a calibrated Harvard rodent ventilator from 2.5 to 20 ml. Control tidal volumes were drawn from a humidifier chamber containing water vapour and the PFC tidal volumes were drawn from a humidifier chamber containing water and perfluorocarbon (FC-77) vapour. Tidal volumes were measured by a fixed orifice, target, differential pressure flowmeter (VenTrak) or a hot-wire anenometer (Bear Cub) placed between the calibration syringe or ventilator and the humidifier chamber. All tidal volumes measured with perfluorocarbon vapour were increased compared with control (ANOVA p < 0.001 and post t-test p < 0.0001). Measured tidal volume increased from 7 to 16% with the fixed orifice type flow-meter, and from 35 to 41% with the hot-wire type. In conclusion, perfluorocarbon vapour flowing through pneumotachometers gives falsely high tidal volume measurements. Calculation of lung compliance must take into account the effect of perfluorocarbon vapour on the measurement of tidal volume.

  18. The speed of sound in a gas–vapour bubbly liquid

    PubMed Central

    Prosperetti, Andrea

    2015-01-01

    In addition to the vapour of the liquid, bubbles in cavitating flows usually contain also a certain amount of permanent gas that diffuses out of the liquid as they grow. This paper presents a simplified linear model for the propagation of monochromatic pressure waves in a bubbly liquid with these characteristics. Phase change effects are included in detail, while the gas is assumed to follow a polytropic law. It is shown that even a small amount of permanent gas can have a major effect on the behaviour of the system. Particular attention is paid to the low-frequency range, which is of special concern in flow cavitation. Numerical results for water and liquid oxygen illustrate the implications of the model. PMID:26442146

  19. The speed of sound in a gas-vapour bubbly liquid.

    PubMed

    Prosperetti, Andrea

    2015-10-06

    In addition to the vapour of the liquid, bubbles in cavitating flows usually contain also a certain amount of permanent gas that diffuses out of the liquid as they grow. This paper presents a simplified linear model for the propagation of monochromatic pressure waves in a bubbly liquid with these characteristics. Phase change effects are included in detail, while the gas is assumed to follow a polytropic law. It is shown that even a small amount of permanent gas can have a major effect on the behaviour of the system. Particular attention is paid to the low-frequency range, which is of special concern in flow cavitation. Numerical results for water and liquid oxygen illustrate the implications of the model.

  20. Optical properties of Mg doped p-type GaN nanowires

    NASA Astrophysics Data System (ADS)

    Patsha, Avinash; Pandian, Ramanathaswamy; Dhara, S.; Tyagi, A. K.

    2015-06-01

    Mg doped p-type GaN nanowires are grown using chemical vapor deposition technique in vapor-liquid-solid (VLS) process. Morphological and structural studies confirm the VLS growth process of nanowires and wurtzite phase of GaN. We report the optical properties of Mg doped p-type GaN nanowires. Low temperature photoluminescence studies on as-grown and post-growth annealed samples reveal the successful incorporation of Mg dopants. The as-grwon and annealed samples show passivation and activation of Mg dopants, respectively, in GaN nanowires.

  1. Evaluation of the Importance of VlsE Antigenic Variation for the Enzootic Cycle of Borrelia burgdorferi.

    PubMed

    Rogovskyy, Artem S; Casselli, Timothy; Tourand, Yvonne; Jones, Cami R; Owen, Jeb P; Mason, Kathleen L; Scoles, Glen A; Bankhead, Troy

    2015-01-01

    Efficient acquisition and transmission of Borrelia burgdorferi by the tick vector, and the ability to persistently infect both vector and host, are important elements for the life cycle of the Lyme disease pathogen. Previous work has provided strong evidence implicating the significance of the vls locus for B. burgdorferi persistence. However, studies involving vls mutant clones have thus far only utilized in vitro-grown or host-adapted spirochetes and laboratory strains of mice. Additionally, the effects of vls mutation on tick acquisition and transmission has not yet been tested. Thus, the importance of VlsE antigenic variation for persistent infection of the natural reservoir host, and for the B. burgdorferi enzootic life cycle in general, has not been examined to date. In the current work, Ixodes scapularis and Peromyscus maniculatus were infected with different vls mutant clones to study the importance of the vls locus for the enzootic cycle of the Lyme disease pathogen. The findings highlight the significance of the vls system for long-term infection of the natural reservoir host, and show that VlsE antigenic variability is advantageous for efficient tick acquisition of B. burgdorferi from the mammalian reservoir. The data also indicate that the adaptation state of infecting spirochetes influences B. burgdorferi avoidance from host antibodies, which may be in part due to its respective VlsE expression levels. Overall, the current findings provide the most direct evidence on the importance of VlsE for the enzootic cycle of Lyme disease spirochetes, and underscore the significance of VlsE antigenic variation for maintaining B. burgdorferi in nature.

  2. Structure, growth kinetics, and ledge flow during vapor-solid-solid growth of copper-catalyzed silicon nanowires.

    PubMed

    Wen, C-Y; Reuter, M C; Tersoff, J; Stach, E A; Ross, F M

    2010-02-10

    We use real-time observations of the growth of copper-catalyzed silicon nanowires to determine the nanowire growth mechanism directly and to quantify the growth kinetics of individual wires. Nanowires were grown in a transmission electron microscope using chemical vapor deposition on a copper-coated Si substrate. We show that the initial reaction is the formation of a silicide, eta'-Cu(3)Si, and that this solid silicide remains on the wire tips during growth so that growth is by the vapor-solid-solid mechanism. Individual wire directions and growth rates are related to the details of orientation relation and catalyst shape, leading to a rich morphology compared to vapor-liquid-solid grown nanowires. Furthermore, growth occurs by ledge propagation at the silicide/silicon interface, and the ledge propagation kinetics suggest that the solubility of precursor atoms in the catalyst is small, which is relevant to the fabrication of abrupt heterojunctions in nanowires.

  3. Ultrasonic transmission at solid-liquid interfaces

    NASA Astrophysics Data System (ADS)

    Wadley, Haydn N. G.; Queheillalt, Douglas T.; Lu, Yichi

    1996-11-01

    New non-invasive solid-liquid interface sensing technologies are a key element in the development of improved Bridman growth techniques for synthesizing single crystal semiconductor materials. Laser generated and optically detect ultrasonic techniques have the potential to satisfy this need. Using an anisotropic 3D ray tracing methodology combined with elastic constant data measured near the melting point, ultrasonic propagation in cylindrical single crystal bodies containing either a convex, flat, or concave solid-liquid interface has been simulated. Ray paths, wavefronts and the time-of-flight (TOF) of rays that travel from a source to an arbitrarily positioned receiver have all been calculated. Experimentally measured TOF data have been collected using laser generated, optically detected ultrasound on model systems with independently known interface shapes. Both numerically simulated and experimental data have shown that the solidification region can be easily identified from transmission TOF measurements because the velocity of the liquid is much smaller than that of the solid. Since convex and concave solid-liquid interfaces result in distinctively different TOF data profiles, the interface shape can also be readily determined from the TOF data. When TOF data collected in the diametral plane is used in conjunction with a nonlinear least squares algorithm, the interface geometry has been successfully reconstructed and ultrasonic velocities of both the solid and liquid obtained with reconstruction errors less than 5 percent.

  4. Self catalytic growth of indium oxide (In2O3) nanowires by resistive thermal evaporation.

    PubMed

    Kumar, R Rakesh; Rao, K Narasimha; Rajanna, K; Phani, A R

    2014-07-01

    Self catalytic growth of Indium Oxide (In2O3) nanowires (NWs) have been grown by resistive thermal evaporation of Indium (In) in the presence of oxygen without use of any additional metal catalyst. Nanowires growth took place at low substrate temperature of 370-420 degrees C at an applied current of 180-200 A to the evaporation boat. Morphology, microstructures, and compositional studies of the grown nanowires were performed by employing field emission scanning electron microscopy (FESEM), X-Ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) respectively. Nanowires were uniformly grown over the entire Si substrate and each of the nanowire is capped with a catalyst particle at their end. X-ray diffraction study reveals the crystalline nature of the grown nanowires. Transmission electron microscopy study on the nanowires further confirmed the single crystalline nature of the nanowires. Energy dispersive X-ray analysis on the nanowires and capped nanoparticle confirmed that Indium act as catalyst for In2O3 nanowires growth. A self catalytic Vapor-Liquid-Solid (VLS) growth mechanism was responsible for the growth of In2O3 nanowires. Effect of oxygen partial pressure variation and variation of applied currents to the evaporation boat on the nanowires growth was systematically studied. These studies concluded that at oxygen partial pressure in the range of 4 x 10(-4), 6 x 10(-4) mbar at applied currents to the evaporation boat of 180-200 A were the best conditions for good nanowires growth. Finally, we observed another mode of VLS growth along with the standard VLS growth mode for In2O3 nanowires similar to the growth mechanism reported for GaAs nanowires.

  5. Engineering scale development of the vapor-liquid-solid (VLS) process for the production of silicon carbide fibrils. Phase 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohnsorg, R.W.; Hollar, W.E. Jr.; Lau, S.K.

    1995-04-01

    As reinforcements for composites, VLS SiC fibrils have attractive mechanical properties including high-strength, high modulus, and excellent creep resistance. To make use of their excellent mechanical properties in a composite, a significant volume fraction (>10%) of aligned, long fibrils (>2 mm) needs to be consolidated in the ceramic matrix. The fibrils must be processed into an assembly that will allow for composite fabrication while maintaining fibril alignment and length. With Advanced Product Development (APD) as the yam fabrication subcontractor, Carborundum investigated several approaches to achieve this goaL including traditional yam-forming processes such as carding and air-vortex spinning and nontraditional processesmore » such as tape forming and wet casting. Carborundum additionally performed an economic analysis for producing 500 and 10,000 pounds of SiC fibrils annually using both conservative and more aggressive processing parameters. With the aggressive approach, the projected costs for SiC fibril production for 500 and 10,000 pounds per year are $1,340/pound and $340/pound, respectively.« less

  6. The continuous and persistent periodical growth induced by substrate accommodation in In2O3 nanostructure chains and their photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Shariati, Mohsen

    2015-03-01

    The growth of pyramidal and triangular beaded In2O3 nanocrystal chains by using oxygen-assisted thermal evaporation, substrate accommodation and condensation method has been articulated. Self-assembled In2O3 nanocrystal chains have been synthesized by the vapor-solid (VS) and vapor-liquid-solid (VLS) growth mechanism and also through controlling the kinetics factors (saturation ratio). A periodical one-dimensional (1-D) and persistent (0-D) growth was proposed to explain the formation of lateral nanostructures, and this formation aspect was ascribed to the alternate 1-D and 0-D growth. Preparing the needed growth factor, the In2O3 nanocrystal chains extended to several micrometers. The growth mechanism analysis was useful to realize the relation between the kinetics factors and the complex nanostructure. The morphology and size of nanocrystals intensively were changed by oxygen concentration and led to interesting photoluminescence property.

  7. Surface and Thin Film Analysis during Metal Organic Vapour Phase Epitaxial Growth

    NASA Astrophysics Data System (ADS)

    Richter, Wolfgang

    2007-06-01

    In-situ analysis of epitaxial growth is the essential ingredient in order to understand the growth process, to optimize growth and last but not least to monitor or even control the epitaxial growth on a microscopic scale. In MBE (molecular beam epitaxy) in-situ analysis tools existed right from the beginning because this technique developed from Surface Science technology with all its electron based analysis tools (LEED, RHEED, PES etc). Vapour Phase Epitaxy, in contrast, remained for a long time in an empirical stage ("alchemy") because only post growth characterisations like photoluminescence, Hall effect and electrical conductivity were available. Within the last two decades, however, optical techniques were developed which provide similar capabilities as in MBE for Vapour Phase growth. I will discuss in this paper the potential of Reflectance Anisotropy Spectroscopy (RAS) and Spectroscopic Ellipsometry (SE) for the growth of thin epitaxial semiconductor layers with zincblende (GaAs etc) and wurtzite structure (GaN etc). Other techniques and materials will be also mentioned.

  8. Solvent vapour monitoring in work space by solid phase micro extraction.

    PubMed

    Li, K; Santilli, A; Goldthorp, M; Whiticar, S; Lambert, P; Fingas, M

    2001-05-07

    Solid phase micro extraction (SPME) is a fast, solvent-less alternative to conventional charcoal tube sampling/carbon disulfide extraction for volatile organic compounds (VOC). In this work, SPME was compared to the active sampling technique in a typical lab atmosphere. Two different types of fibre coatings were evaluated for solvent vapour at ambient concentration. A general purpose 100 microm film polydimethylsiloxane (PDMS) fibre was found to be unsuitable for VOC work, despite the thick coating. The mixed-phase carboxen/PDMS fibre was found to be suitable. Sensitivity of the SPME was far greater than charcoal sorbent tube method. Calibration studies using typical solvent such as dichloromethane (DCM), benzene (B) and toluene (T) showed an optimal exposure time of 5 min, with a repeatability of less than 20% for a broad spectrum of organic vapour. Minimum detectable amount for DCM is in the range of 0.01 microg/l (0.003 ppmv). Variation among different fibres was generally within 30% at a vapour concentration of 1 microg DCM/l, which was more than adequate for field monitoring purpose. Adsorption characteristics and calibration procedures were studied. An actual application of SPME was carried out to measure background level of solvent vapour at a bench where DCM was used extensively. Agreement between the SPME and the charcoal sampling method was generally within a factor of two. No DCM concentration was found to be above the regulatory limit of 50 ppmv.

  9. A review of solid-fluid selection options for optical-based measurements in single-phase liquid, two-phase liquid-liquid and multiphase solid-liquid flows

    NASA Astrophysics Data System (ADS)

    Wright, Stuart F.; Zadrazil, Ivan; Markides, Christos N.

    2017-09-01

    Experimental techniques based on optical measurement principles have experienced significant growth in recent decades. They are able to provide detailed information with high-spatiotemporal resolution on important scalar (e.g., temperature, concentration, and phase) and vector (e.g., velocity) fields in single-phase or multiphase flows, as well as interfacial characteristics in the latter, which has been instrumental to step-changes in our fundamental understanding of these flows, and the development and validation of advanced models with ever-improving predictive accuracy and reliability. Relevant techniques rely upon well-established optical methods such as direct photography, laser-induced fluorescence, laser Doppler velocimetry/phase Doppler anemometry, particle image/tracking velocimetry, and variants thereof. The accuracy of the resulting data depends on numerous factors including, importantly, the refractive indices of the solids and liquids used. The best results are obtained when the observational materials have closely matched refractive indices, including test-section walls, liquid phases, and any suspended particles. This paper reviews solid-liquid and solid-liquid-liquid refractive-index-matched systems employed in different fields, e.g., multiphase flows, turbomachinery, bio-fluid flows, with an emphasis on liquid-liquid systems. The refractive indices of various aqueous and organic phases found in the literature span the range 1.330-1.620 and 1.251-1.637, respectively, allowing the identification of appropriate combinations to match selected transparent or translucent plastics/polymers, glasses, or custom materials in single-phase liquid or multiphase liquid-liquid flow systems. In addition, the refractive indices of fluids can be further tuned with the use of additives, which also allows for the matching of important flow similarity parameters such as density and viscosity.

  10. Enhanced Plasmon Coupling in Crossed Dielectric/metal Nanowire Composite Geometries and Applications to Surface-enhanced Raman Spectroscopy

    DTIC Science & Technology

    2007-02-01

    January 2007; published online 27 February 2007" Surface-enhanced Raman spectroscopy !SERS" was performed on Ga2O3 /Ag and ZnO/Ag nanowires, which were... Ga2O3 nanowires was performed by the vapor-liquid-solid !VLS" growth mechanism,12,13 using Si!100" and Si!111" substrates14 and a 20 nm Au film. Ga...nm line of an Ar ion laser was used as the excitation source. The VLS growth resulted in Ga2O3 wires with a large number of crossings, as shown in Fig

  11. Phase diagram of nanoscale alloy particles used for vapor-liquid-solid growth of semiconductor nanowires.

    PubMed

    Sutter, Eli; Sutter, Peter

    2008-02-01

    We use transmission electron microscopy observations to establish the parts of the phase diagram of nanometer sized Au-Ge alloy drops at the tips of Ge nanowires (NWs) that determine their temperature-dependent equilibrium composition and, hence, their exchange of semiconductor material with the NWs. We find that the phase diagram of the nanoscale drop deviates significantly from that of the bulk alloy, which explains discrepancies between actual growth results and predictions on the basis of the bulk-phase equilibria. Our findings provide the basis for tailoring vapor-liquid-solid growth to achieve complex one-dimensional materials geometries.

  12. Convection-induced distortion of a solid-liquid interface

    NASA Technical Reports Server (NTRS)

    Schaefer, R. J.; Coriell, S. R.

    1984-01-01

    Measurements of convective flow fields and solid-liquid interface shapes during the solidification of a pure and a slightly alloyed transparent material reveal that the convective transport of solute can cause a macroscopic depression to develop in the solid-liquid interface. This effect occurs under conditions close to those which are predicted to produce morphological instability of a planar interface. A cellular or dendritic microstructure later develops within the interface depression. The convection is attributed to the effect of radial temperature gradients in the crystal growth apparatus.

  13. Supercooled liquid vapour pressures and related thermodynamic properties of polycyclic aromatic hydrocarbons determined by gas chromatography.

    PubMed

    Haftka, Joris J H; Parsons, John R; Govers, Harrie A J

    2006-11-24

    A gas chromatographic method using Kováts retention indices has been applied to determine the liquid vapour pressure (P(i)), enthalpy of vaporization (DeltaH(i)) and difference in heat capacity between gas and liquid phase (DeltaC(i)) for a group of polycyclic aromatic hydrocarbons (PAHs). This group consists of 19 unsubstituted, methylated and sulphur containing PAHs. Differences in log P(i) of -0.04 to +0.99 log units at 298.15K were observed between experimental values and data from effusion and gas saturation studies. These differences in log P(i) have been fitted with multilinear regression resulting in a compound and temperature dependent correction. Over a temperature range from 273.15 to 423.15K, differences in corrected log P(i) of a training set (-0.07 to +0.03 log units) and a validation set (-0.17 to 0.19 log units) were within calculated error ranges. The corrected vapour pressures also showed a good agreement with other GC determined vapour pressures (average -0.09 log units).

  14. Magnetically Enhanced Solid-Liquid Separation

    NASA Astrophysics Data System (ADS)

    Rey, C. M.; Keller, K.; Fuchs, B.

    2005-07-01

    DuPont is developing an entirely new method of solid-liquid filtration involving the use of magnetic fields and magnetic field gradients. The new hybrid process, entitled Magnetically Enhanced Solid-Liquid Separation (MESLS), is designed to improve the de-watering kinetics and reduce the residual moisture content of solid particulates mechanically separated from liquid slurries. Gravitation, pressure, temperature, centrifugation, and fluid dynamics have dictated traditional solid-liquid separation for the past 50 years. The introduction of an external field (i.e. the magnetic field) offers the promise to manipulate particle behavior in an entirely new manner, which leads to increased process efficiency. Traditional solid-liquid separation typically consists of two primary steps. The first is a mechanical step in which the solid particulate is separated from the liquid using e.g. gas pressure through a filter membrane, centrifugation, etc. The second step is a thermal drying process, which is required due to imperfect mechanical separation. The thermal drying process is over 100-200 times less energy efficient than the mechanical step. Since enormous volumes of materials are processed each year, more efficient mechanical solid-liquid separations can be leveraged into dramatic reductions in overall energy consumption by reducing downstream drying requirements have a tremendous impact on energy consumption. Using DuPont's MESLS process, initial test results showed four very important effects of the magnetic field on the solid-liquid filtration process: 1) reduction of the time to reach gas breakthrough, 2) less loss of solid into the filtrate, 3) reduction of the (solids) residual moisture content, and 4) acceleration of the de-watering kinetics. These test results and their potential impact on future commercial solid-liquid filtration is discussed. New applications can be found in mining, chemical and bioprocesses.

  15. Production of fungal antibiotics using polymeric solid supports in solid-state and liquid fermentation.

    PubMed

    Bigelis, Ramunas; He, Haiyin; Yang, Hui Y; Chang, Li-Ping; Greenstein, Michael

    2006-10-01

    The use of inert absorbent polymeric supports for cellular attachment in solid-state fungal fermentation influenced growth, morphology, and production of bioactive secondary metabolites. Two filamentous fungi exemplified the utility of this approach to facilitate the discovery of new antimicrobial compounds. Cylindrocarpon sp. LL-Cyan426 produced pyrrocidines A and B and Acremonium sp. LL-Cyan416 produced acremonidins A-E when grown on agar bearing moist polyester-cellulose paper and generated distinctly different metabolite profiles than the conventional shaken or stationary liquid fermentations. Differences were also apparent when tenfold concentrated methanol extracts from these fermentations were tested against antibiotic-susceptible and antibiotic-resistant Gram-positive bacteria, and zones of inhibition were compared. Shaken broth cultures of Acremonium sp. or Cylindrocarpon sp. showed complex HPLC patterns, lower levels of target compounds, and high levels of unwanted compounds and medium components, while agar/solid support cultures showed significantly increased yields of pyrrocidines A and B and acremonidins A-E, respectively. This method, mixed-phase fermentation (fermentation with an inert solid support bearing liquid medium), exploited the increase in surface area available for fungal growth on the supports and the tendency of some microorganisms to adhere to solid surfaces, possibly mimicking their natural growth habits. The production of dimeric anthraquinones by Penicillium sp. LL-WF159 was investigated in liquid fermentation using various inert polymeric immobilization supports composed of polypropylene, polypropylene cellulose, polyester-cellulose, or polyurethane. This culture produced rugulosin, skyrin, flavomannin, and a new bisanthracene, WF159-A, after fermentation in the presence and absence of polymeric supports for mycelial attachment. The physical nature of the different support systems influenced culture morphology and relative

  16. The vls antigenic variation systems of Lyme disease Borrelia: eluding host immunity through both random, segmental gene conversion and framework heterogeneity

    PubMed Central

    Norris, Steven J.

    2015-01-01

    Summary Spirochetes that cause Lyme borreliosis (also called Lyme disease) possess the vls locus, encoding an elaborate antigenic variation system. This locus contains the expression site vlsE as well as a contiguous array of vls silent cassettes, which contain variations of the central cassette region of vlsE. The locus is present on one of the many linear plasmids in the organism, e.g. plasmid lp28-1 in the strain B. burgdorferi B31. Changes in the sequence of vlsE occur continuously during mammalian infection and consist of random, segmental, unidirectional recombination events between the silent cassettes and the cassette region of vlsE. These gene conversion events do not occur during in vitro culture or the tick portion of the infection cycle of Borrelia burgdorferi or the other related Borrelia species that cause Lyme disease. The mechanism of recombination is largely unknown, but requires the RuvAB Holliday junction branch migrase. Other features of the vls locus also appear to be required, including cis locations of vlsE and the silent cassettes and high G+C content and GC skew. The vls system is required for long-term survival of Lyme Borrelia in infected mammals and represents an important mechanism of immune evasion. In addition to sequence variation, immune selection also results in significant heterogeneity in the sequence of the surface lipoprotein VlsE. Despite antigenic variation, VlsE generates a robust antibody response, and both full length VlsE and the C6 peptide (corresponding to invariant region 6) are widely used in immunodiagnostic tests for Lyme disease. PMID:26104445

  17. Enhanced water vapour flow in silica microchannels and interdiffusive water vapour flow through anodic aluminium oxide (AAO) membranes

    NASA Astrophysics Data System (ADS)

    Lei, Wenwen; McKenzie, David R.

    2015-12-01

    Enhanced liquid water flows through carbon nanotubes reinvigorated the study of moisture permeation through membranes and micro- and nano-channels. The study of water vapour through micro-and nano-channels has been neglected even though water vapour is as important as liquid water for industry, especially for encapsulation of electronic devices. Here we measure moisture flow rates in silica microchannels and interdiffusive water vapour flows in anodic aluminium oxide (AAO) membrane channels for the first time. We construct theory for the flow rates of the dominant modes of water transport through four previously defined standard configurations and benchmark it against our new measurements. The findings show that measurements of leak behaviour made using other molecules, such as helium, are not reliable. Single phase water vapour flow is overestimated by a helium measurement, while Washburn or capillary flow is underestimated or for all channels when boundary slip applies, to an extent that depends on the slip length for the liquid phase flows.

  18. Directed growth of horizontally aligned gallium nitride nanowires for nanoelectromechanical resonator arrays.

    PubMed

    Henry, Tania; Kim, Kyungkon; Ren, Zaiyuan; Yerino, Christopher; Han, Jung; Tang, Hong X

    2007-11-01

    We report the growth of horizontally aligned arrays and networks of GaN nanowires (NWs) as resonant components in nanoelectromechanical systems (NEMS). A combination of top-down selective area growth (SAG) and bottom-up vapor-liquid-solid (VLS) synthesis enables flexible fabrication of highly ordered nanowire arrays in situ with no postgrowth dispersion. Mechanical resonance of free-standing nanowires are measured, with quality factors (Q) ranging from 400 to 1000. We obtained a Young's modulus (E) of approximately 338 GPa from an array of NWs with varying diameters and lengths. The measurement allows detection of nanowire motion with a rotating frame and reveals dual fundamental resonant modes in two orthogonal planes. A universal ratio between the resonant frequencies of these two fundamental modes, irrespective of their dimensions, is observed and attributed to an isosceles cross section of GaN NWs.

  19. Growth of ZnO nanorods on stainless steel wire using chemical vapour deposition and their photocatalytic activity.

    PubMed

    Abd Aziz, Siti Nor Qurratu Aini; Pung, Swee-Yong; Ramli, Nurul Najiah; Lockman, Zainovia

    2014-01-01

    The photodegradation efficiency of ZnO nanoparticles in removal of organic pollutants deteriorates over time as a high percentage of the nanoparticles can be drained away by water during the wastewater treatment. This problem can be solved by growing the ZnO nanorods on stainless steel wire. In this work, ZnO nanorods were successfully grown on stainless steel wire by chemical vapour deposition. The SAED analysis indicates that ZnO nanorod is a single crystal and is preferentially grown in [0001] direction. The deconvoluted O 1s peak at 531.5 eV in XPS analysis is associated with oxygen deficient, revealing that the ZnO nanorods contain many oxygen vacancies. This observation is further supported by the finding of the small I(uv)/I(vis) ratio, that is, ~1 in the photoluminescence analysis. The growth of ZnO nanorods on stainless steel wire was governed by vapour-solid mechanism as there were no Fe particles observed at the tips of the nanorods. The photodegradation of Rhodamine B solution by ZnO nanorods followed the first-order kinetics.

  20. Growth of ZnO Nanorods on Stainless Steel Wire Using Chemical Vapour Deposition and Their Photocatalytic Activity

    PubMed Central

    Abd Aziz, Siti Nor Qurratu Aini; Pung, Swee-Yong; Ramli, Nurul Najiah; Lockman, Zainovia

    2014-01-01

    The photodegradation efficiency of ZnO nanoparticles in removal of organic pollutants deteriorates over time as a high percentage of the nanoparticles can be drained away by water during the wastewater treatment. This problem can be solved by growing the ZnO nanorods on stainless steel wire. In this work, ZnO nanorods were successfully grown on stainless steel wire by chemical vapour deposition. The SAED analysis indicates that ZnO nanorod is a single crystal and is preferentially grown in [0001] direction. The deconvoluted O 1s peak at 531.5 eV in XPS analysis is associated with oxygen deficient, revealing that the ZnO nanorods contain many oxygen vacancies. This observation is further supported by the finding of the small I uv/I vis ratio, that is, ~1 in the photoluminescence analysis. The growth of ZnO nanorods on stainless steel wire was governed by vapour-solid mechanism as there were no Fe particles observed at the tips of the nanorods. The photodegradation of Rhodamine B solution by ZnO nanorods followed the first-order kinetics. PMID:24587716

  1. Controllable growth of shaped graphene domains by atmospheric pressure chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Fan, Lili; Li, Zhen; Li, Xiao; Wang, Kunlin; Zhong, Minlin; Wei, Jinquan; Wu, Dehai; Zhu, Hongwei

    2011-12-01

    Graphene domains in different shapes have been grown on copper substrates via atmospheric pressure chemical vapour deposition by controlling the growth process parameters. Under stabilized conditions, graphene domains tend to be six-fold symmetric hexagons under low flow rate methane with some domains in an irregular hexagonal shape. After further varying the growth duration, methane flow rate, and temperature, graphene domains have developed shapes from hexagon to shovel and dendrite. Two connecting modes, through overlap and merging of adjacent graphene domains, are proposed.Graphene domains in different shapes have been grown on copper substrates via atmospheric pressure chemical vapour deposition by controlling the growth process parameters. Under stabilized conditions, graphene domains tend to be six-fold symmetric hexagons under low flow rate methane with some domains in an irregular hexagonal shape. After further varying the growth duration, methane flow rate, and temperature, graphene domains have developed shapes from hexagon to shovel and dendrite. Two connecting modes, through overlap and merging of adjacent graphene domains, are proposed. Electronic supplementary information (ESI) available: Schematics of CVD setups for graphene growth, Raman spectra and SEM images. See DOI: 10.1039/c1nr11480h

  2. Estimation of the curvature of the solid liquid interface during Bridgman crystal growth

    NASA Astrophysics Data System (ADS)

    Barat, Catherine; Duffar, Thierry; Garandet, Jean-Paul

    1998-11-01

    An approximate solution for the solid/liquid interface curvature due to the crucible effect in crystal growth is derived from simple heat flux considerations. The numerical modelling of the problem carried out with the help of the finite element code FIDAP supports the predictions of our analytical expression and allows to identify its range of validity. Experimental interface curvatures, measured in gallium antimonide samples grown by the vertical Bridgman method, are seen to compare satisfactorily to analytical and numerical results. Other literature data are also in fair agreement with the predictions of our models in the case where the amount of heat carried by the crucible is small compared to the overall heat flux.

  3. Growth of low temperature silicon nano-structures for electronic and electrical energy generation applications.

    PubMed

    Gabrielyan, Nare; Saranti, Konstantina; Manjunatha, Krishna Nama; Paul, Shashi

    2013-02-15

    This paper represents the lowest growth temperature for silicon nano-wires (SiNWs) via a vapour-liquid-solid method, which has ever been reported in the literature. The nano-wires were grown using plasma-enhanced chemical vapour deposition technique at temperatures as low as 150°C using gallium as the catalyst. This study investigates the structure and the size of the grown silicon nano-structure as functions of growth temperature and catalyst layer thickness. Moreover, the choice of the growth temperature determines the thickness of the catalyst layer to be used.The electrical and optical characteristics of the nano-wires were tested by incorporating them in photovoltaic solar cells, two terminal bistable memory devices and Schottky diode. With further optimisation of the growth parameters, SiNWs, grown by our method, have promising future for incorporation into high performance electronic and optical devices.

  4. Effect of indium droplets on growth of InGaN film by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zheng, Xiantong; Liang, Hongwei; Wang, Ping; Sun, Xiaoxiao; Chen, Zhaoying; Wang, Tao; Sheng, Bowen; Wang, Yixin; Chen, Ling; Wang, Ding; Rong, Xin; Li, Mo; Zhang, Jian; Wang, Xinqiang

    2018-01-01

    Effect of indium (In) droplets on InGaN thin films grown by molecular beam epitaxy (MBE) has been investigated. The surface of InGaN covered by In droplets shows a smoother topography than that without droplets, indicating that the presence of In droplets is beneficial to the two dimensional growth. Beneath the In droplets, many ring-like structures are observed. The arrangement of these "ring" shows the movement of the In droplets during the InGaN growth. A qualitative growth model is proposed to explain the evolution of the InGaN surface morphology in In-droplet-induced-epitaxy process, giving an explanation that a local vapor-liquid-solid (VLS) system is preferentially formed at the edge of the droplets, leading to a high growth rate. Furthermore, the energy dispersive X-ray spectroscopy results reveal that the relatively higher In/Ga flux ratio in the region covered by the In droplet results in a locally higher In content.

  5. Low temperature and self catalytic growth of ultrafine ITO nanowires by electron beam evaporation method and their optical and electrical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, R. Rakesh, E-mail: rakesh.rajaboina@gmail.com; Department of Physics, Indian Institute of Science Education and Research, Bhopal 462066; Rao, K. Narasimha

    2014-04-01

    Highlights: • ITO nanowires were grown by e-beam evaporation method. • ITO nanowires growth done at low substrate temperature of 350 °C. • Nanowires growth was carried out without use of catalyst and reactive oxygen gas. • Nanowires growth proceeds via self catalytic VLS growth. • Grown nanowires have diameter 10–20 nm and length 1–4 μm long. • ITO nanowire films have shown good antireflection property. - Abstract: We report the self catalytic growth of Sn-doped indium oxide (ITO) nanowires (NWs) over a large area glass and silicon substrates by electron beam evaporation method at low substrate temperatures of 250–400more » °C. The ITO NWs growth was carried out without using an additional reactive oxygen gas and a metal catalyst particle. Ultrafine diameter (∼10–15 nm) and micron long ITO NWs growth was observed in a temperature window of 300–400 °C. Transmission electron microscope studies confirmed single crystalline nature of the NWs and energy dispersive spectroscopy studies on the NWs confirmed that the NWs growth proceeds via self catalytic vapor-liquid-solid (VLS) growth mechanism. ITO nanowire films grown on glass substrates at a substrate temperature of 300–400 °C have shown ∼2–6% reflection and ∼70–85% transmission in the visible region. Effect of deposition parameters was systematically investigated. The large area growth of ITO nanowire films would find potential applications in the optoelectronic devices.« less

  6. Vapour-Phase Processes Control Liquid-Phase Isotope Profiles in Unsaturated Sphagnum Moss

    NASA Astrophysics Data System (ADS)

    Edwards, T. W.; Yi, Y.; Price, J. S.; Whittington, P. N.

    2009-05-01

    Seminal work in the early 1980s clearly established the basis for predicting patterns of heavy-isotope enrichment of pore waters in soils undergoing evaporation. A key feature of the process under steady-state conditions is the development of stable, convex-upward profiles whose shape is controlled by the balance between downward-diffusing heavy isotopologues concentrated by evaporative enrichment at the surface and the upward capillary flow of bulk water that maintains the evaporative flux. We conducted an analogous experiment to probe evaporation processes within 20-cm columns of unsaturated, living and dead (but undecomposed) Sphagnum moss evaporating under controlled conditions, while maintaining a constant water table. The experiment provided striking evidence of the importance of vapour-liquid mass and isotope exchange in the air-filled pores of the Sphagnum columns, as evidenced by the rapid development of hydrologic and isotopic steady-state within hours, rather than days, i.e., an order of magnitude faster than possible by liquid-phase processes alone. This is consistent with the notion that vapour-phase processes effectively "short-circuit" mass and isotope fluxes within the Sphagnum columns, as proposed also in recent characterizations of water dynamics in transpiring leaves. Additionally, advection-diffusion modelling of our results supports independent estimates of the effective liquid-phase diffusivities of the respective heavy water isotopologues, 2.380 x 10-5 cm2 s-1 for 1H1H18O and 2.415 x 10-5 cm2 s-1 for 1H2H16O, which are in notably good agreement with the "default" values that are typically assumed in soil and plant water studies.

  7. Investigation of temperature, catalyst thickness and substrate effects in In2O3 nanostructures

    NASA Astrophysics Data System (ADS)

    Tuzluca, Fatma Nur; Yesilbag, Yasar Ozkan; Ertugrul, Mehmet

    2017-12-01

    This study successfully synthesized In2O3 nanotowers (NTs), nanowires (NWs), nanochains (NChs) and nanocrystals (NCs) on n-type Si(100) and quartz substrates at temperature of 900-1000 °C by using Au catalysts via the Chemical Vapor Deposition (CVD) technique. The analyses of experimental results revealed that In2O3 nanostructures (NSs) grew in different morphologies due to variable parameters, such as temperature, thickness of catalyst and substrate type. This was because these In2O3 NSs were formed by both the Vapor-Liquid-Solid (VLS) and the Vapor-Solid (VS) growth mechanisms. For instance, In2O3 NTs and NChs were formed by the VLS growth mechanism; In2O3 NCs were formed by the VS growth mechanism and In2O3 NWs were formed by both the VLS and VS growth mechanisms. Morphology and crystal structures were identified through X-Ray Diffraction (XRD), High Resolution Transmission Electron Microscopy (HRTEM), Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive X-Ray Spectroscopy (EDS). Moreover, photoluminescence (PL) peaks of In2O3 NSs were measured to be 367 nm, 470 nm, and 630 nm at room temperature (RT). These measurement results indicated that structural, morphological, compositional and optical properties of synthesized In2O3 NSs correlated with growth parameters.

  8. Nanophase diagram of binary eutectic Au-Ge nanoalloys for vapor-liquid-solid semiconductor nanowires growth

    NASA Astrophysics Data System (ADS)

    Lu, Haiming; Meng, Xiangkang

    2015-06-01

    Although the vapor-liquid-solid growth of semiconductor nanowire is a non-equilibrium process, the equilibrium phase diagram of binary alloy provides important guidance on the growth conditions, such as the temperature and the equilibrium composition of the alloy. Given the small dimensions of the alloy seeds and the nanowires, the known phase diagram of bulk binary alloy cannot be expected to accurately predict the behavior of the nanowire growth. Here, we developed a unified model to describe the size- and dimensionality-dependent equilibrium phase diagram of Au-Ge binary eutectic nanoalloys based on the size-dependent cohesive energy model. It is found that the liquidus curves reduce and shift leftward with decreasing size and dimensionality. Moreover, the effects of size and dimensionality on the eutectic composition are small and negligible when both components in binary eutectic alloys have the same dimensionality. However, when two components have different dimensionality (e.g. Au nanoparticle-Ge nanowire usually used in the semiconductor nanowires growth), the eutectic composition reduces with decreasing size.

  9. Silicon nanowire synthesis by a vapor-liquid-solid approach.

    PubMed

    Mao, Aaron; Ng, H T; Nguyen, Pho; McNeil, Melanie; Meyyappan, M

    2005-05-01

    Synthesis of silicon nanowires is studied by using a vapor-liquid-solid growth technique. Silicon tetrachloride reduction with hydrogen in the gas phase is used with gold serving as catalyst to facilitate growth. Only a narrow set of conditions of SiCl4 concentration and temperature yield straight nanowires. High concentrations and temperatures generally result in particulates, catalyst coverage and deactivation, and coatinglike materials.

  10. Silicon nanowire synthesis by a vapor-liquid-solid approach

    NASA Technical Reports Server (NTRS)

    Mao, Aaron; Ng, H. T.; Nguyen, Pho; McNeil, Melanie; Meyyappan, M.

    2005-01-01

    Synthesis of silicon nanowires is studied by using a vapor-liquid-solid growth technique. Silicon tetrachloride reduction with hydrogen in the gas phase is used with gold serving as catalyst to facilitate growth. Only a narrow set of conditions of SiCl4 concentration and temperature yield straight nanowires. High concentrations and temperatures generally result in particulates, catalyst coverage and deactivation, and coatinglike materials.

  11. Transition Metal Dichalcogenide Growth via Close Proximity Precursor Supply

    NASA Astrophysics Data System (ADS)

    O'Brien, Maria; McEvoy, Niall; Hallam, Toby; Kim, Hye-Young; Berner, Nina C.; Hanlon, Damien; Lee, Kangho; Coleman, Jonathan N.; Duesberg, Georg S.

    2014-12-01

    Reliable chemical vapour deposition (CVD) of transition metal dichalcogenides (TMDs) is currently a highly pressing research field, as numerous potential applications rely on the production of high quality films on a macroscopic scale. Here, we show the use of liquid phase exfoliated nanosheets and patterned sputter deposited layers as solid precursors for chemical vapour deposition. TMD monolayers were realized using a close proximity precursor supply in a CVD microreactor setup. A model describing the growth mechanism, which is capable of producing TMD monolayers on arbitrary substrates, is presented. Raman spectroscopy, photoluminescence, X-ray photoelectron spectroscopy, atomic force microscopy, transmission electron microscopy, scanning electron microscopy and electrical transport measurements reveal the high quality of the TMD samples produced. Furthermore, through patterning of the precursor supply, we achieve patterned growth of monolayer TMDs in defined locations, which could be adapted for the facile production of electronic device components.

  12. Why droplet dimension can be larger than, equal to, or smaller than the nanowire dimension

    NASA Astrophysics Data System (ADS)

    Mohammad, S. Noor

    2009-11-01

    Droplets play central roles in the nanowire (NW) growth by vapor phase mechanisms. These mechanisms include vapor-liquid-solid (VLS), vapor-solid-solid or vapor-solid (VSS), vapor-quasisolid-solid or vapor-quasiliquid-solid (VQS), oxide-assisted growth (OAG), and self-catalytic growth (SCG) mechanisms. Fundamentals of the shape, size, characteristics, and dynamics of droplets and the impacts of them on the NW growth, have been studied. The influence of growth techniques, growth parameters (e.g., growth temperature, partial pressure, gas flow rates, etc.), thermodynamic conditions, surface and interface energy, molar volume, chemical potentials, etc. have been considered on the shapes and sizes of droplets. A model has been presented to explain why droplets can be larger than, equal to, or smaller than the associated NWs. Various growth techniques have been analyzed to understand defects created in NWs. Photoluminescence characteristics have been presented to quantify the roles of droplets in the creation of NW defects. The study highlights the importance of the purity of the droplet material. It attests to the superiority of the SCG mechanism, and clarifies the differences between the VSS, VQS, VLS, and SCG mechanisms. It explains why droplets produced by some mechanisms are visible but droplets produced by some other mechanisms are not visible. It elucidates the formation mechanisms of very large and very small droplets, and discusses the ground rules for droplets creating necked NWs. It puts forth reasons to demonstrate that very large droplets may not behave as droplets.

  13. Phase diagrams for understanding gold-seeded growth of GaAs and InAs nanowires

    NASA Astrophysics Data System (ADS)

    Ghasemi, Masoomeh; Johansson, Jonas

    2017-04-01

    Phase diagrams are useful tools to study the phase equilibria of nanowire materials systems because the growth of nanowires is accompanied by phase formation and phase transition. We have modeled the phase equilibria of the As-Au-Ga ternary system by means of the CALPHAD method. This method is a well-established semi-empirical technique for thermodynamic modeling in which Gibbs energy functions with free parameters are defined for all phases in a system followed by adjusting these parameters to the experimental data. Using the resulting As-Au-Ga thermodynamic database, four vertical cuts of this ternary system are calculated and all show good agreement with experiments. This ternary system is particularly useful for predicting the state of the Au seed alloys when growing GaAs nanowires and we discuss such predictions. Similar calculations are performed for Au-seeded InAs nanowires. We show that the vapor-liquid-solid (VLS) growth fails for InAs nanowires, while GaAs nanowires can grow from a liquid particle. Our calculations are in agreement with experimental data on the growth of Au-seeded GaAs and InAs nanowires.

  14. Levels of selected carcinogens and toxicants in vapour from electronic cigarettes.

    PubMed

    Goniewicz, Maciej Lukasz; Knysak, Jakub; Gawron, Michal; Kosmider, Leon; Sobczak, Andrzej; Kurek, Jolanta; Prokopowicz, Adam; Jablonska-Czapla, Magdalena; Rosik-Dulewska, Czeslawa; Havel, Christopher; Jacob, Peyton; Benowitz, Neal

    2014-03-01

    Electronic cigarettes, also known as e-cigarettes, are devices designed to imitate regular cigarettes and deliver nicotine via inhalation without combusting tobacco. They are purported to deliver nicotine without other toxicants and to be a safer alternative to regular cigarettes. However, little toxicity testing has been performed to evaluate the chemical nature of vapour generated from e-cigarettes. The aim of this study was to screen e-cigarette vapours for content of four groups of potentially toxic and carcinogenic compounds: carbonyls, volatile organic compounds, nitrosamines and heavy metals. Vapours were generated from 12 brands of e-cigarettes and the reference product, the medicinal nicotine inhaler, in controlled conditions using a modified smoking machine. The selected toxic compounds were extracted from vapours into a solid or liquid phase and analysed with chromatographic and spectroscopy methods. We found that the e-cigarette vapours contained some toxic substances. The levels of the toxicants were 9-450 times lower than in cigarette smoke and were, in many cases, comparable with trace amounts found in the reference product. Our findings are consistent with the idea that substituting tobacco cigarettes with e-cigarettes may substantially reduce exposure to selected tobacco-specific toxicants. E-cigarettes as a harm reduction strategy among smokers unwilling to quit, warrants further study. (To view this abstract in Polish and German, please see the supplementary files online.).

  15. A Novel Growth Method To Improve the Quality of GaAs Nanowires Grown by Ga-Assisted Chemical Beam Epitaxy.

    PubMed

    García Núñez, Carlos; Braña, Alejandro F; López, Nair; García, Basilio J

    2018-06-13

    The successful synthesis of high crystalline quality and high aspect ratio GaAs nanowires (NWs) with a uniform diameter is needed to develop advanced applications beyond the limits established by thin film and bulk material properties. Vertically aligned GaAs NWs have been extensively grown by Ga-assisted vapor-liquid-solid (VLS) mechanism on Si(111) substrates, and they have been used as building blocks in photovoltaics, optoelectronics, electronics, and so forth. However, the nucleation of parasitic species such as traces and nanocrystals on the Si substrate surface during the NW growth could affect significantly the controlled nucleation of those NWs, and therefore the resulting performance of NW-based devices. Preventing the nucleation of parasitic species on the Si substrate is a matter of interest, because they could act as traps for gaseous precursors and/or chemical elements during VLS growth, drastically reducing the maximum length of grown NWs, affecting their morphology and structure, and reducing the NW density along the Si substrate surface. This work presents a novel and easy to develop growth method (i.e., without using advanced nanolithography techniques) to prevent the nucleation of parasitic species, while preserving the quality of GaAs NWs even for long duration growths. GaAs NWs are grown by Ga-assisted chemical beam epitaxy on oxidized Si(111) substrates using triethylgallium and tertiarybutylarsine precursors by a two-step-based growth method presented here; this method includes a growth interruption for an oxidation on air between both steps of growth, reducing the nucleation of parasitic crystals on the thicker SiO x capping layer during the second and longer growth step. VLS conditions are preserved overtime, resulting in a stable NW growth rate of around 6 μm/h for growth times up to 1 h. Resulting GaAs NWs have a high aspect ratio of 85 and average radius of 35 nm. We also report on the existence of characteristic reflection high

  16. Growth and assembly of cobalt oxide nanoparticle rings at liquid nanodroplets with solid junction.

    PubMed

    Zhou, Yilong; Powers, Alexander S; Zhang, Xiaowei; Xu, Tao; Bustillo, Karen; Sun, Litao; Zheng, Haimei

    2017-09-28

    Using liquid cell TEM, we imaged the formation of CoO nanoparticle rings. Nanoparticles nucleated and grew tracing the perimeter of droplets sitting on the SiN x solid substrate, and finally formed necklace-like rings. By tracking single nanoparticle trajectories during the ring formation and an estimation of the forces between droplets and nanoparticles using a simplified model, we found the junction of liquid nanodroplets with a solid substrate is the attractive site for CoO nanoparticles. Coalescing droplets were capable of pushing nanoparticles to the perimeter of the new droplet and nanoparticles on top of the droplets rolled off toward the perimeter. We propose that the curved surface morphology of the droplets created a force gradient that contributed to the assembly of nanoparticles at the droplet perimeter. Revealing the dynamics of nanoparticle movements and the interactions of nanoparticles with the liquid nanodroplet provides insights on developing novel self-assembly strategies for building precisely defined nanostructures on solid substrates.

  17. Synthesis of nanostructures in nanowires using sequential catalyst reactions

    PubMed Central

    Panciera, F.; Chou, Y.-C.; Reuter, M.C.; Zakharov, D.; Stach, E.A.; Hofmann, S.; Ross, F.M.

    2016-01-01

    Nanowire growth by the vapor-liquid-solid process enables a high level of control over nanowire composition, diameter, growth direction, branching and kinking, periodic twinning, and crystal structure. The tremendous impact of VLS-grown nanowires is due to this structural versatility, generating applications ranging from solid state lighting and single photon sources to thermoelectric devices. Here we show that the morphology of these nanostructures can be further tailored by using the liquid droplets that catalyze nanowire growth as a “mixing bowl”, in which growth materials are sequentially supplied to nucleate new phases. Growing within the liquid, these phases adopt the shape of faceted nanocrystals that are then incorporated into the nanowires by further growth. We demonstrate this concept by epitaxially incorporating metal silicide nanocrystals into Si nanowires with defect-free interfaces, and discuss how this process can be generalized to create complex nanowire-based heterostructures. PMID:26168344

  18. Structural ordering at solid-liquid interfaces in Al-Sm system: A molecular-dynamics study

    DOE PAGES

    Sun, Yang; Zhang, Feng; Ye, Zhuo; ...

    2016-07-12

    The structural ordering at solid-liquid interfaces far from equilibrium is studied with molecular dynamics simulations for the Al-Sm system. Using the van-Hove self-correlation function as the criterion to identify attachment/detachment events that occur at the interface, we are able to determine the time-dependent interface position, and characterize the detailed interfacial structure ordering surrounding the attached atoms. For the interface between an undercooled Al90Sm10 liquid and a metastable cubic structure, the solid induces the crystalline order of the cubic phase in the liquid layers, promoting the continuous growth of the crystal phase. When the same liquid is put in contact withmore » f.c.c. Al, Sm from the liquid can still attach to the solid interface despite its insolubility in the Al lattice. Non-f.c.c. order is revealed surrounding the attached Sm atoms. Lastly, we show that the local structure ordering at interface is highly correlated to solid packing and liquid ordering.« less

  19. Nonequilibrium study of the intrinsic free-energy profile across a liquid-vapour interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braga, Carlos, E-mail: ccorreia@imperial.ac.uk; Muscatello, Jordan, E-mail: jordan.muscatello@imperial.ac.uk; Lau, Gabriel, E-mail: gabriel.lau07@imperial.ac.uk

    2016-01-28

    We calculate an atomistically detailed free-energy profile across a heterogeneous system using a nonequilibrium approach. The path-integral formulation of Crooks fluctuation theorem is used in conjunction with the intrinsic sampling method to calculate the free-energy profile for the liquid-vapour interface of the Lennard-Jones fluid. Free-energy barriers are found corresponding to the atomic layering in the liquid phase as well as a barrier associated with the presence of an adsorbed layer as revealed by the intrinsic density profile. Our findings are in agreement with profiles calculated using Widom’s potential distribution theorem applied to both the average and the intrinsic profiles asmore » well as the literature values for the excess chemical potential.« less

  20. Atomistics of vapour–liquid–solid nanowire growth

    PubMed Central

    Wang, Hailong; Zepeda-Ruiz, Luis A.; Gilmer, George H.; Upmanyu, Moneesh

    2013-01-01

    Vapour–liquid–solid route and its variants are routinely used for scalable synthesis of semiconducting nanowires, yet the fundamental growth processes remain unknown. Here we employ atomic-scale computations based on model potentials to study the stability and growth of gold-catalysed silicon nanowires. Equilibrium studies uncover segregation at the solid-like surface of the catalyst particle, a liquid AuSi droplet, and a silicon-rich droplet–nanowire interface enveloped by heterogeneous truncating facets. Supersaturation of the droplets leads to rapid one-dimensional growth on the truncating facets and much slower nucleation-controlled two-dimensional growth on the main facet. Surface diffusion is suppressed and the excess Si flux occurs through the droplet bulk which, together with the Si-rich interface and contact line, lowers the nucleation barrier on the main facet. The ensuing step flow is modified by Au diffusion away from the step edges. Our study highlights key interfacial characteristics for morphological and compositional control of semiconducting nanowire arrays. PMID:23752586

  1. Scattering of fast electrons by vapour-atoms and by solid-atoms - A comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshipura, K.N.; Mohanan, S.

    1988-08-01

    A comparative theoretical study has been done on the scattering of fast electrons by free (vapour) atoms and bound (solid) atoms, in particular, the alkali atoms, Al and Cu. The Born differential cross-sections (DCS), calculated with the static plus polarization electron-atom potential, are found in general, to be larger for free atoms that for bound atoms, at least at small angles of scattering. For Rb and Cs the two DCS tend to merge at very large angles only. The sample incident energies chosen are 400 eV and above.

  2. Claims in vapour device (e-cigarette) regulation: A Narrative Policy Framework analysis.

    PubMed

    O'Leary, Renée; Borland, Ron; Stockwell, Tim; MacDonald, Marjorie

    2017-06-01

    The electronic cigarette or e-cigarette (vapour device) is a consumer product undergoing rapid growth, and governments have been adopting regulations on the sale of the devices and their nicotine liquids. Competing claims about vapour devices have ignited a contentious debate in the public health community. What claims have been taken up in the state arena, and how have they possibly influenced regulatory outcomes? This study utilized Narrative Policy Framework to analyze the claims made about vapour devices in legislation recommendation reports from Queensland Australia, Canada, and the European Union, and the 2016 deeming rule legislation from the United States, and examined the claims and the regulatory outcomes in these jurisdictions. The vast majority of claims in the policy documents represented vapour devices as a threat: an unsafe product harming the health of vapour device users, a gateway product promoting youth tobacco uptake, and a quasi-tobacco product impeding tobacco control. The opportunity for vapour devices to promote cessation or reduce exposure to toxins was very rarely presented, and these positive claims were not discussed at all in two of the four documents studied. The dominant claims of vapour devices as a public health threat have supported regulations that have limited their potential as a harm reduction strategy. Future policy debates should evaluate the opportunities for vapour devices to decrease the health and social burdens of the tobacco epidemic. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Controlled growth of well-aligned GaS nanohornlike structures and their field emission properties.

    PubMed

    Sinha, Godhuli; Panda, Subhendu K; Datta, Anuja; Chavan, Padmakar G; Shinde, Deodatta R; More, Mahendra A; Joag, D S; Patra, Amitava

    2011-06-01

    Here, we report the synthesis of vertically aligned gallium sulfide (GaS) nanohorn arrays using simple vapor-liquid-solid (VLS) method. The morphologies of GaS nano and microstructures are tuned by controlling the temperature and position of the substrate with respect to the source material. A plausible mechanism for the controlled growth has been proposed. It is important to note that the turn-on field value of GaS nanohorns array is found to be the low turn-on field 4.2 V/μm having current density of 0.1 μA/cm(2). The striking feature of the field emission behavior of the GaS nanohorn arrays is that the average emission current remains nearly constant over long time without any degradation. © 2011 American Chemical Society

  4. Cryopreservation of human sperm: efficacy and use of a new nitrogen-free controlled rate freezer versus liquid nitrogen vapour freezing.

    PubMed

    Creemers, E; Nijs, M; Vanheusden, E; Ombelet, W

    2011-12-01

    Preservation of spermatozoa is an important aspect of assisted reproductive medicine. The aim of this study was to investigate the efficacy and use of a recently developed liquid nitrogen and cryogen-free controlled rate freezer and this compared with the classical liquid nitrogen vapour freezing method for the cryopreservation of human spermatozoa. Ten patients entering the IVF programme donated semen samples for the study. Samples were analysed according to the World Health Organization guidelines. No significant difference in total sperm motility after freeze-thawing between the new technique and classical technique was demonstrated. The advantage of the new freezing technique is that it uses no liquid nitrogen during the freezing process, hence being safer to use and clean room compatible. Investment costs are higher for the apparatus but running costs are only 1% in comparison with classical liquid nitrogen freezing. In conclusion, post-thaw motility of samples frozen with the classical liquid nitrogen vapour technique was comparable with samples frozen with the new nitrogen-free freezing technique. This latter technique can thus be a very useful asset to the sperm cryopreservation laboratory. © 2011 Blackwell Verlag GmbH.

  5. Solid-liquid staged combustion space boosters

    NASA Technical Reports Server (NTRS)

    Culver, D. W.

    1990-01-01

    NASA has begun to evaluate solid-liquid hybrid propulsion for launch vehicle booster. A three-phase program was outlined to identify, acquire, and demonstrate technology needed to approximate solid and liquid propulsion state of the art. Aerojet has completed a Phase 1 study and recommends a solid-liquid staged combustion concept in which turbopump fed LO2 is burned with fuel-rich solid propellant effluent in aft-mounted thrust chambers.These reasonably sized thrust chambers are LO2 regeneratively cooled, supplemented with fuel-rich barrier cooling. Turbopumps are driven by the resulting GO2 coolant in an expander-bleed-burnoff cycle. Turbine exhaust pressurizes the LO2 tankage directly, and the excess is bled into supersonic nozzle splitlines, where it combusts with the fuel rich boundary layer. Thrust vector control is enhanced by supersonic nozzle movement on flexseal mounts. Every hybrid solid-liquid concept examined improves booster energy management and launch propellant safety compared to current solid boosters. Solid-liquid staged combustion improves hybrid performance by improving both combustion efficiency and combustion stability, especially important for large boosters. These improvements result from careful fluid management and use of smaller combustors. The study shows NASA safety, reliability, cost, and performance criteria are best met with this concept, wherein simple hardware relies on several separate emerging technologies, all of which have been demonstrated successfully.

  6. Surface thermodynamics of planar, cylindrical, and spherical vapour-liquid interfaces of water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Gabriel V.; Müller, Erich A.; Jackson, George

    2015-03-21

    The test-area (TA) perturbation approach has been gaining popularity as a methodology for the direct computation of the interfacial tension in molecular simulation. Though originally implemented for planar interfaces, the TA approach has also been used to analyze the interfacial properties of curved liquid interfaces. Here, we provide an interpretation of the TA method taking the view that it corresponds to the change in free energy under a transformation of the spatial metric for an affine distortion. By expressing the change in configurational energy of a molecular configuration as a Taylor expansion in the distortion parameter, compact relations are derivedmore » for the interfacial tension and its energetic and entropic components for three different geometries: planar, cylindrical, and spherical fluid interfaces. While the tensions of the planar and cylindrical geometries are characterized by first-order changes in the energy, that of the spherical interface depends on second-order contributions. We show that a greater statistical uncertainty is to be expected when calculating the thermodynamic properties of a spherical interface than for the planar and cylindrical cases, and the evaluation of the separate entropic and energetic contributions poses a greater computational challenge than the tension itself. The methodology is employed to determine the vapour-liquid interfacial tension of TIP4P/2005 water at 293 K by molecular dynamics simulation for planar, cylindrical, and spherical geometries. A weak peak in the curvature dependence of the tension is observed in the case of cylindrical threads of condensed liquid at a radius of about 8 Å, below which the tension is found to decrease again. In the case of spherical drops, a marked decrease in the tension from the planar limit is found for radii below ∼ 15 Å; there is no indication of a maximum in the tension with increasing curvature. The vapour-liquid interfacial tension tends towards the planar limit

  7. In2O3-ZnO heterostructure development in electrical and photoluminescence properties of In2O3 1-D nanostructures

    NASA Astrophysics Data System (ADS)

    Shariati, M.; Ghafouri, V.

    2014-05-01

    Indium Oxide quasi one-dimensional (1D) nanostructures known as nanowires and nanorods synthesis using the thermal evaporation method, has been articulated. To nucleate growth sites, substrate seeding promoted 1D nanostructures growth. The catalyst-mediated growth mechanism showed more favorable morphologies and physical properties in under vacuum conditions associated with bottom-up technique. Scanning electron microscopy (SEM) results showed that the Zn-doped 1D nanostructures had spherical caps. The X-ray diffraction (XRD) pattern and energy-dispersive X-ray (EDX) spectrum indicated that these caps intensively associated with ZnO. Therefore, it was reasonable that the vapor-liquid-solid mechanism (VLS) was responsible for the growth of the In2O3-ZnO heterostructure nanowires. This technique enhances optical and electrical properties in nanostructures. The photoluminescence (PL) analysis in Zn-doped In2O3 nanowires and nanorods shows that the intensity of the visible and UV-region emissions overwhelmingly increases and resistance measurement professes the improvement of linear conductance in VLS growth mechanism.

  8. The use of chilled condensers for the recovery of perfluorocarbon liquid in an experimental model of perfluorocarbon vapour loss during neonatal partial liquid ventilation

    PubMed Central

    Dunster, Kimble R; Davies, Mark W; Fraser, John F

    2007-01-01

    Background Perfluorocarbon (PFC) vapour in the expired gases during partial liquid ventilation should be prevented from entering the atmosphere and recovered for potential reuse. This study aimed to determine how much PFC liquid could be recovered using a conventional humidified neonatal ventilator with chilled condensers in place of the usual expiratory ventilator circuit and whether PFC liquid could be recovered when using the chilled condensers at the ventilator exhaust outlet. Methods Using a model lung, perfluorocarbon vapour loss during humidified partial liquid ventilation of a 3.5 kg infant was approximated. For each test 30 mL of FC-77 was infused into the model lung. Condensers were placed in the expiratory limb of the ventilator circuit and the amounts of PFC (FC-77) and water recovered were measured five times. This was repeated with the condensers placed at the ventilator exhaust outlet. Results When the condensers were used as the expiratory limb, the mean (± SD) volume of FC77 recovered was 16.4 mL (± 0.18 mL). When the condensers were connected to the ventilator exhaust outlet the mean (± SD) volume of FC-77 recovered was 7.6 mL (± 1.14 mL). The volume of FC-77 recovered was significantly higher when the condenser was used as an expiratory limb. Conclusion Using two series connected condensers in the ventilator expiratory line 55% of PFC liquid (FC-77) can be recovered during partial liquid ventilation without altering the function of the of the ventilator circuit. This volume of PFC recovered was just over twice that recovered with the condensers connected to the ventilator exhaust outlet. PMID:17537270

  9. Investigation of the growth and in situ heating transmission electron microscopy analysis of Ag2S-catalyzed ZnS nanowires

    NASA Astrophysics Data System (ADS)

    Kim, Jung Han; Kim, Jong Gu; Song, Junghyun; Bae, Tae-Sung; Kim, Kyou-Hyun; Lee, Young-Seak; Pang, Yoonsoo; Oh, Kyu Hwan; Chung, Hee-Suk

    2018-04-01

    We investigated the semiconductor-catalyzed formation of semiconductor nanowires (NWs) - silver sulfide (Ag2S)-catalyzed zinc sulfide (ZnS) NWs - based on a vapor-liquid-solid (VLS) growth mechanism through metal-organic chemical vapor deposition (MOCVD) with a Ag thin film. The Ag2S-catalyzed ZnS NWs were confirmed to have a wurtzite structure with a width and length in the range of ∼30 nm to ∼80 nm and ∼1 μm, respectively. Using extensive transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS) analyses from plane and cross-sectional viewpoints, the ZnS NWs were determined to have a c-axis, [0001] growth direction. In addition, the catalyst at the top of the ZnS NWs was determined to consist of a Ag2S phase. To support the Ag2S-catalyzed growth of the ZnS NWs by a VLS reaction, an in situ heating TEM experiment was conducted from room temperature to 840 °C. During the experiment, the melting of the Ag2S catalyst in the direction of the ZnS NWs was first observed at approximately 480 °C along with the formation of a carbon (C) shell. Subsequently, the Ag2S catalyst melted completely into the ZnS NWs at approximately 825 °C. As the temperature further increased, the Ag2S and ZnS NWs continuously melted and vaporized up to 840 °C, leaving only the C shell behind. Finally, a possible growth mechanism was proposed based on the structural and chemical investigations.

  10. Graphene growth from reduced graphene oxide by chemical vapour deposition: seeded growth accompanied by restoration

    NASA Astrophysics Data System (ADS)

    Chang, Sung-Jin; Hyun, Moon Seop; Myung, Sung; Kang, Min-A.; Yoo, Jung Ho; Lee, Kyoung G.; Choi, Bong Gill; Cho, Youngji; Lee, Gaehang; Park, Tae Jung

    2016-03-01

    Understanding the underlying mechanisms involved in graphene growth via chemical vapour deposition (CVD) is critical for precise control of the characteristics of graphene. Despite much effort, the actual processes behind graphene synthesis still remain to be elucidated in a large number of aspects. Herein, we report the evolution of graphene properties during in-plane growth of graphene from reduced graphene oxide (RGO) on copper (Cu) via methane CVD. While graphene is laterally grown from RGO flakes on Cu foils up to a few hundred nanometres during CVD process, it shows appreciable improvement in structural quality. The monotonous enhancement of the structural quality of the graphene with increasing length of the graphene growth from RGO suggests that seeded CVD growth of graphene from RGO on Cu surface is accompanied by the restoration of graphitic structure. The finding provides insight into graphene growth and defect reconstruction useful for the production of tailored carbon nanostructures with required properties.

  11. Graphene growth from reduced graphene oxide by chemical vapour deposition: seeded growth accompanied by restoration.

    PubMed

    Chang, Sung-Jin; Hyun, Moon Seop; Myung, Sung; Kang, Min-A; Yoo, Jung Ho; Lee, Kyoung G; Choi, Bong Gill; Cho, Youngji; Lee, Gaehang; Park, Tae Jung

    2016-03-10

    Understanding the underlying mechanisms involved in graphene growth via chemical vapour deposition (CVD) is critical for precise control of the characteristics of graphene. Despite much effort, the actual processes behind graphene synthesis still remain to be elucidated in a large number of aspects. Herein, we report the evolution of graphene properties during in-plane growth of graphene from reduced graphene oxide (RGO) on copper (Cu) via methane CVD. While graphene is laterally grown from RGO flakes on Cu foils up to a few hundred nanometres during CVD process, it shows appreciable improvement in structural quality. The monotonous enhancement of the structural quality of the graphene with increasing length of the graphene growth from RGO suggests that seeded CVD growth of graphene from RGO on Cu surface is accompanied by the restoration of graphitic structure. The finding provides insight into graphene growth and defect reconstruction useful for the production of tailored carbon nanostructures with required properties.

  12. Graphene growth from reduced graphene oxide by chemical vapour deposition: seeded growth accompanied by restoration

    PubMed Central

    Chang, Sung-Jin; Hyun, Moon Seop; Myung, Sung; Kang, Min-A; Yoo, Jung Ho; Lee, Kyoung G.; Choi, Bong Gill; Cho, Youngji; Lee, Gaehang; Park, Tae Jung

    2016-01-01

    Understanding the underlying mechanisms involved in graphene growth via chemical vapour deposition (CVD) is critical for precise control of the characteristics of graphene. Despite much effort, the actual processes behind graphene synthesis still remain to be elucidated in a large number of aspects. Herein, we report the evolution of graphene properties during in-plane growth of graphene from reduced graphene oxide (RGO) on copper (Cu) via methane CVD. While graphene is laterally grown from RGO flakes on Cu foils up to a few hundred nanometres during CVD process, it shows appreciable improvement in structural quality. The monotonous enhancement of the structural quality of the graphene with increasing length of the graphene growth from RGO suggests that seeded CVD growth of graphene from RGO on Cu surface is accompanied by the restoration of graphitic structure. The finding provides insight into graphene growth and defect reconstruction useful for the production of tailored carbon nanostructures with required properties. PMID:26961409

  13. Thermodynamically equilibrium roton states of nanoparticles in molten and vapour phases

    NASA Astrophysics Data System (ADS)

    Karasevskii, A. I.

    2015-05-01

    We show a possibility for a thermodynamically equilibrium nanocrystalline structure consisting of nanosized solid inclusions to appear in a melt just beyond the melting curve. Thermodynamic stability of the nanocrystalline structure in the melt results from the free energy lowering due to rotational motion of nanoparticles. The main contribution to the reduction of the free energy of the system is due to an increase in the rotational entropy and change in formation energy of nanocrystals, i.e. the nanocrystalline structure in the melt, like vacancies in a crystal, is an equilibrium defect structure of the melt. It is demonstrated that similar nanocrystalline structures can also appear in the vapour phase in the form of liquid nanodrops and in liquid solutions, e.g. in He II.

  14. 3D Unsteady Computations of Flapping Flight in Insects and Fish

    DTIC Science & Technology

    2007-01-01

    repeatable, and inexpensive to produce. Technical Approach: The growth of the Ga2O3 nanowires was performed by vapor-liquid-solid (VLS) growth in a...SERS sensitivity of the nanowire substrates has been determined using Rhodamine 6G/methanol and DNT/methanol dilutions. The Ga2O3 /Ag nanowire...sphere whose diameter is the length of the longest wire, which is a 2007 NRL REVIEW 179 MATERIALS SCIENCE AND TECHNOLOGY FIGURE 8 (a) Ga2O3 core/Ag

  15. Theoretical model of the Bergeron-Findeisen mechanism of ice crystal growth in clouds

    NASA Astrophysics Data System (ADS)

    Castellano, N. E.; Avila, E. E.; Saunders, C. P. R.

    A numerical study of growth rate of ice particles in an array of water droplets (Bergeron-Findeisen mechanism) has used the method of electrostatic image charges to determine the vapour field in which a particle grows. Analysis of growth rate in various conditions of relevance to clouds has shown that it is proportional to liquid water content and to ice particle size, while it is inversely proportional to cloud droplet size. The results show that growth rate is enhanced by several percent relative to the usual treatment in which vapour is assumed to diffuse from infinity towards a growing ice particle. The study was performed for ice particles between 25 and 150 μm radii, water droplet sizes between 6 and 20 μm diameter and a wide range of liquid water contents. A study was also made to determine the effect of reducing the vapour source at infinity so that the droplets alone provided the vapour for particle growth. A parameterisation of ice particle growth rate is given as a function of liquid water content and ice particle and droplet sizes. These studies are of importance to considerations in thunderstorm electrification processes, where the mechanism of charge transfer between ice particles and graupel could take place.

  16. Morphology control of layer-structured gallium selenide nanowires.

    PubMed

    Peng, Hailin; Meister, Stefan; Chan, Candace K; Zhang, Xiao Feng; Cui, Yi

    2007-01-01

    Layer-structured group III chalcogenides have highly anisotropic properties and are attractive materials for stable photocathodes and battery electrodes. We report the controlled synthesis and characterization of layer-structured GaSe nanowires via a catalyst-assisted vapor-liquid-solid (VLS) growth mechanism during GaSe powder evaporation. GaSe nanowires consist of Se-Ga-Ga-Se layers stacked together via van der Waals interactions to form belt-shaped nanowires with a growth direction along the [11-20], width along the [1-100], and height along the [0001] direction. Nanobelts exhibit a variety of morphologies including straight, zigzag, and saw-tooth shapes. These morphologies are realized by controlling the growth temperature and time so that the actual catalysts have a chemical composition of Au, Au-Ga alloy, or Ga. The participation of Ga in the VLS catalyst is important for achieving different morphologies of GaSe. In addition, GaSe nanotubes are also prepared by a slow growth process.

  17. Liquid-Solid Self-Lubricated Coatings

    NASA Astrophysics Data System (ADS)

    Armada, S.; Schmid, R.; Equey, S.; Fagoaga, I.; Espallargas, N.

    2013-02-01

    Self-lubricated coatings have been a major topic of interest in thermal spray in the last decades. Self-lubricated coatings obtained by thermal spray are exclusively based on solid lubricants (PTFE, h-BN, graphite, MoS2, etc.) embedded in the matrix. Production of thermal spray coatings containing liquid lubricants has not yet been achieved because of the complexity of keeping a liquid in a solid matrix during the spraying process. In the present article, the first liquid-solid self-lubricating thermal spray coatings are presented. The coatings are produced by inserting lubricant-filled capsules inside a polymeric matrix. The goal of the coating is to release lubricant to the system when needed. The first produced coatings consisted solely of capsules for confirming the feasibility of the process. For obtaining such a coating, the liquid-filled capsules were injected in the thermal spray flame without any other feedstock material. Once the concept and the idea were proven, a polymer was co-sprayed together with the capsules to obtain a coating containing the lubricant-filled capsules distributed in the solid polymeric matrix. The coatings and the self-lubricated properties have been investigated by means of optical microscopy, Scanning Electron Microscopy, and tribological tests.

  18. Solid and Liquid Waste Drying Bag

    NASA Technical Reports Server (NTRS)

    Litwiller, Eric (Inventor); Hogan, John A. (Inventor); Fisher, John W. (Inventor)

    2009-01-01

    Method and system for processing waste from human activities, including solids, liquids and vapors. A fluid-impermeable bag, lined with a liquid-impermeable but vapor-permeable membrane, defining an inner bag, is provided. A vacuum force is provided to extract vapors so that the waste is moved toward a selected region in the inner bag, extracted vapors, including the waste vapors and vaporized portions of the waste liquids are transported across the membrane, and most or all of the solids remain within the liner. Extracted vapors are filtered, and sanitized components thereof are isolated and optionally stored. The solids remaining within the liner are optionally dried and isolated for ultimate disposal.

  19. Solid-Liquid and Liquid-Liquid Mixing Laboratory for Chemical Engineering Undergraduates

    ERIC Educational Resources Information Center

    Pour, Sanaz Barar; Norca, Gregory Benoit; Fradette, Louis; Legros, Robert; Tanguy, Philippe A.

    2007-01-01

    Solid-liquid and liquid-liquid mixing experiments have been developed to provide students with a practical experience on suspension and emulsification processes. The laboratory focuses on the characterization of the process efficiency, specifically the influence of the main operating parameters and the effect of the impeller type. (Contains 2…

  20. Growth and applicability of radiation-responsive silica nanowires

    NASA Astrophysics Data System (ADS)

    Bettge, Martin

    Surface energetics play an important role in processes on the nanoscale. Nanowire growth via vapor-liquid-solid (VLS) mechanism is no exception in this regard. Interfacial and line energies are found to impose some fundamental limits during three-phase nanowire growth and lead to formation of stranded nanowires with fascinating characteristics such as high responsiveness towards ion irradiation. By using two materials with a relatively low surface energy (indium and silicon oxide) this is experimentally and theoretically demonstrated in this doctoral thesis. The augmentation of VLS nanowire growth with ion bombardment enables fabrication of vertically aligned silica nanowires over large areas. Synthesis of their arrays begins with a thin indium film deposited on a Si or SiO 2 surface. At temperatures below 200ºC, the indium film becomes a self-organized seed layer of molten droplets, receiving a flux of atomic silicon by DC magnetron sputtering. Simultaneous vigorous ion bombardment through substrate biasing aligns the growing nanowires vertically and expedites mixing of oxygen and silicon into the indium. The vertical growth rate can reach up to 1000 nm-min-1 in an environment containing only argon and traces of water vapor. Silicon oxide precipitates from each indium seed in the form of multiple thin strands having diameters less than 9 nm and practically independent of droplet size. The strands form a single loose bundle, eventually consolidating to form one vertically aligned nanowire. These observations are in stark contrast to conventional VLS growth in which one liquid droplet precipitates a single solid nanowire and in which the precipitated wire diameter is directly proportional to the droplet diameter. The origin of these differences is revealed through a detailed force balance analysis, analogous to Young's relation, at the three-phase line. The liquid-solid interfacial energy of indium/silica is found to be the largest energy contribution at the three

  1. Investigation of the Genes Involved in Antigenic Switching at the vlsE Locus in Borrelia burgdorferi: An Essential Role for the RuvAB Branch Migrase

    PubMed Central

    Dresser, Ashley R.; Hardy, Pierre-Olivier; Chaconas, George

    2009-01-01

    Persistent infection by pathogenic organisms requires effective strategies for the defense of these organisms against the host immune response. A common strategy employed by many pathogens to escape immune recognition and clearance is to continually vary surface epitopes through recombinational shuffling of genetic information. Borrelia burgdorferi, a causative agent of Lyme borreliosis, encodes a surface-bound lipoprotein, VlsE. This protein is encoded by the vlsE locus carried at the right end of the linear plasmid lp28-1. Adjacent to the expression locus are 15 silent cassettes carrying information that is moved into the vlsE locus through segmental gene conversion events. The protein players and molecular mechanism of recombinational switching at vlsE have not been characterized. In this study, we analyzed the effect of the independent disruption of 17 genes that encode factors involved in DNA recombination, repair or replication on recombinational switching at the vlsE locus during murine infection. In Neisseria gonorrhoeae, 10 such genes have been implicated in recombinational switching at the pilE locus. Eight of these genes, including recA, are either absent from B. burgdorferi, or do not show an obvious requirement for switching at vlsE. The only genes that are required in both organisms are ruvA and ruvB, which encode subunits of a Holliday junction branch migrase. Disruption of these genes results in a dramatic decrease in vlsE recombination with a phenotype similar to that observed for lp28-1 or vls-minus spirochetes: productive infection at week 1 with clearance by day 21. In SCID mice, the persistence defect observed with ruvA and ruvB mutants was fully rescued as previously observed for vlsE-deficient B. burgdorferi. We report the requirement of the RuvAB branch migrase in recombinational switching at vlsE, the first essential factor to be identified in this process. These findings are supported by the independent work of Lin et al. in the

  2. Crystallization in supercooled liquid Cu: Homogeneous nucleation and growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E, J. C.; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031; Wang, L.

    2015-02-14

    Homogeneous nucleation and growth during crystallization of supercooled liquid Cu are investigated with molecular dynamics simulations, and the microstructure is characterized with one- and two-dimensional x-ray diffraction. The resulting solids are single-crystal or nanocrystalline, containing various defects such as stacking faults, twins, fivefold twins, and grain boundaries; the microstructure is subject to thermal fluctuations and extent of supercooling. Fivefold twins form via sequential twinning from the solid-liquid interfaces. Critical nucleus size and nucleation rate at 31% supercooling are obtained from statistical runs with the mean first-passage time and survival probability methods, and are about 14 atoms and 10{sup 32} m{supmore » −3}s{sup −1}, respectively. The bulk growth dynamics are analyzed with the Johnson-Mehl-Avrami law and manifest three stages; the Avrami exponent varies in the range of 1–19, which also depends on thermal fluctuations and supercooling.« less

  3. The effect of temperature and gas flow on the physical vapour growth of mm-scale rubrene crystals for organic FETs

    NASA Astrophysics Data System (ADS)

    Ullah, A. R.; Micolich, A. P.; Cochrane, J. W.; Hamilton, A. R.

    2007-12-01

    There has recently been significant interest in rubrene single-crystals grown using physical vapour transport techniques due to their application in high-mobility organic field-effect transistor (OFET) devices. Despite numerous studies of the electrical properties of such crystals, there has only been one study to date focussing on characterising and optimising the crystal growth as a function of the relevant growth parameters. Here we present a study of the dependence of the yield of useful crystals (defined as crystals with at least one dimension of order 1 mm) on the temperature and volume flow of carrier gas used in the physical vapour growth process.

  4. Controlling Growth High Uniformity Indium Selenide (In2Se3) Nanowires via the Rapid Thermal Annealing Process at Low Temperature.

    PubMed

    Hsu, Ya-Chu; Hung, Yu-Chen; Wang, Chiu-Yen

    2017-09-15

    High uniformity Au-catalyzed indium selenide (In 2 Se 3) nanowires are grown with the rapid thermal annealing (RTA) treatment via the vapor-liquid-solid (VLS) mechanism. The diameters of Au-catalyzed In 2 Se 3 nanowires could be controlled with varied thicknesses of Au films, and the uniformity of nanowires is improved via a fast pre-annealing rate, 100 °C/s. Comparing with the slower heating rate, 0.1 °C/s, the average diameters and distributions (standard deviation, SD) of In 2 Se 3 nanowires with and without the RTA process are 97.14 ± 22.95 nm (23.63%) and 119.06 ± 48.75 nm (40.95%), respectively. The in situ annealing TEM is used to study the effect of heating rate on the formation of Au nanoparticles from the as-deposited Au film. The results demonstrate that the average diameters and distributions of Au nanoparticles with and without the RTA process are 19.84 ± 5.96 nm (30.00%) and about 22.06 ± 9.00 nm (40.80%), respectively. It proves that the diameter size, distribution, and uniformity of Au-catalyzed In 2 Se 3 nanowires are reduced and improved via the RTA pre-treated. The systemic study could help to control the size distribution of other nanomaterials through tuning the annealing rate, temperatures of precursor, and growth substrate to control the size distribution of other nanomaterials. Graphical Abstract Rapid thermal annealing (RTA) process proved that it can uniform the size distribution of Au nanoparticles, and then it can be used to grow the high uniformity Au-catalyzed In 2 Se 3 nanowires via the vapor-liquid-solid (VLS) mechanism. Comparing with the general growth condition, the heating rate is slow, 0.1 °C/s, and the growth temperature is a relatively high growth temperature, > 650 °C. RTA pre-treated growth substrate can form smaller and uniform Au nanoparticles to react with the In 2 Se 3 vapor and produce the high uniformity In 2 Se 3 nanowires. The in situ annealing TEM is used to realize the effect of heating

  5. Liquid?solid helium interface: some conceptual questions

    NASA Astrophysics Data System (ADS)

    Leggett, A. J.

    2003-12-01

    I raise, and discuss qualitatively, some conceptual issues concerning the interface between the crystalline solid and superfluid liquid phases of 4He emphasizing, in particular, the fact that the ground-state wave functions of the two phases are prima facie qualitatively quite different, in that the superfluid liquid phase possesses off-diagonal long-range order (ODLRO), while the crystalline solid does not. The fact that the statics and dynamics of the interface do not appear to be particularly sensitive to the presence of ODLRO in the liquid is tentatively explained by the fact that because of a subtlety associated with the Bose statistics obeyed by the atoms, the solid and liquid wave functions are not locally very different.

  6. Magnesium isotope evidence that accretional vapour loss shapes planetary compositions

    PubMed Central

    Hin, Remco C.; Coath, Christopher D.; Carter, Philip J.; Nimmo, Francis; Lai, Yi-Jen; Pogge von Strandmann, Philip A.E.; Willbold, Matthias; Leinhardt, Zoë M.; Walter, Michael J.; Elliott, Tim

    2017-01-01

    It has long been recognised that Earth and other differentiated planetary bodies are chemically fractionated compared to primitive, chondritic meteorites and by inference the primordial disk from which they formed. An important question has been whether the notable volatile depletions of planetary bodies are a consequence of accretion1, or inherited from prior nebular fractionation2. The isotopic compositions of the main constituents of planetary bodies can contribute to this debate3–6. Using a new analytical approach to address key issues of accuracy inherent in conventional methods, we show that all differentiated bodies have isotopically heavier magnesium compositions than chondritic meteorites. We argue that possible magnesium isotope fractionation during condensation of the solar nebula, core formation and silicate differentiation cannot explain these observations. However, isotopic fractionation between liquid and vapour followed by vapour escape during accretionary growth of planetesimals generates appropriate residual compositions. Our modelling implies that the isotopic compositions of Mg, Si and Fe and the relative abundances of the major elements of Earth, and other planetary bodies, are a natural consequence of substantial (~40% by mass) vapour loss from growing planetesimals by this mechanism. PMID:28959965

  7. Platinum Assisted Vapor–Liquid–Solid Growth of Er–Si Nanowires and Their Optical Properties

    PubMed Central

    2010-01-01

    We report the optical activation of erbium coated silicon nanowires (Er–SiNWs) grown with the assist of platinum (Pt) and gold (Au), respectively. The NWs were grown on Si substrates by using a chemical vapor transport process using SiCl4 and ErCl4 as precursors. Pt as well as Au worked successfully as vapor–liquid–solid (VLS) catalysts for growing SiNWs with diameters of ~100 nm and length of several micrometers, respectively. The SiNWs have core–shell structures where the Er-crystalline layer is sandwiched between silica layers. Photoluminescence spectra analyses showed the optical activity of SiNWs from both Pt and Au. A stronger Er3+ luminescence of 1,534 nm was observed from the SiNWs with Pt at room- and low-temperature (25 K) using the 488- and/or 477-nm line of an Ar laser that may be due to the uniform incorporation of more Er ions into NWs with the exclusion of the formation of catalyst-induced deep levels in the band-gap. Pt would be used as a VLS catalyst for high performance optically active Er–SiNWs. PMID:20672113

  8. Solid - solid and solid - liquid phase transitions of iron and iron alloys under laser shock compression

    NASA Astrophysics Data System (ADS)

    Harmand, M.; Krygier, A.; Appel, K.; Galtier, E.; Hartley, N.; Konopkova, Z.; Lee, H. J.; McBride, E. E.; Miyanishi, K.; Nagler, B.; Nemausat, R.; Vinci, T.; Zhu, D.; Ozaki, N.; Fiquet, G.

    2017-12-01

    An accurate knowledge of the properties of iron and iron alloys at high pressures and temperatures is crucial for understanding and modelling planetary interiors. While Earth-size and Super-Earth Exoplanets are being discovered in increasingly large numbers, access to detailed information on liquid properties, melting curves and even solid phases of iron and iron at the pressures and temperatures of their interiors is still strongly limited. In this context, XFEL sources coupled with high-energy lasers afford unique opportunities to measure microscopic structural properties at far extreme conditions. Also the achievable time resolution allows the shock history and phase transition mechanisms to be followed during laser compression, improving our understanding of the high pressure and high strain experiments. Here we present recent studies devoted to investigate the solid-solid and solid-liquid transition in laser-shocked iron and iron alloys (Fe-Si, Fe-C and Fe-O alloys) using X-ray diffraction and X-ray diffuse scattering. Experiment were performed at the MEC end-station of the LCLS facility at SLAC (USA). Detection of the diffuse scattering allowed the identification of the first liquid peak position along the Hugoniot, up to 4 Mbar. The time resolution shows ultrafast (between several tens and several hundreds of picoseconds) solid-solid and solid-liquid phase transitions. Future developments at XFEL facilities will enable detailed studies of the solid and liquid structures of iron and iron alloys as well as out-of-Hugoniot studies.

  9. Superior Conductive Solid-like Electrolytes: Nanoconfining Liquids within the Hollow Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jinshui; Bai, Ying; Sun, Xiao-Guang

    2015-01-01

    The growth and proliferation of lithium (Li) dendrites during cell recharge is unavoidable, which seriously hinders the development and application of rechargeable Li metal batteries. Solid electrolytes with robust mechanical modulus are regarded as a promising approach to overcome the dendrite problems. However, their room-temperature ionic conductivities are usually too low to reach the level required for normal battery operation. Here, a class of novel solid electrolytes with liquid-like room-temperature ionic conductivities (> 1 mS cm-1) has been successfully synthesized by taking advantage of the unique nanoarchitectures of hollow silica (HS) spheres to confine liquid electrolytes in hollow space tomore » afford high conductivities. In a symmetric lithium/lithium cell, such kind of solid-like electrolytes demonstrates a robust performance against Li dendrite problems, well stabilizing the cell system from short circuiting in a long-time operation at current densities ranging from 0.16 to 0.32 mA cm-2. Moreover, the high flexibility and compatibility of HS nanoarchitectures, in principle, enables broad tunability to choose desired liquids for the fabrication of other kinds of solid-like electrolytes, such as those containing Na+, Mg2+ or Al3+ as conductive media, providing a useful alternative strategy for the development of next generation rechargeable batteries.« less

  10. Chemical vapour deposition growth and Raman characterization of graphene layers and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lai, Y.-C.; Rafailov, P. M.; Vlaikova, E.; Marinova, V.; Lin, S. H.; Yu, P.; Yu, S.-C.; Chi, G. C.; Dimitrov, D.; Sveshtarov, P.; Mehandjiev, V.; Gospodinov, M. M.

    2016-02-01

    Single-layer graphene films were grown by chemical vapour deposition (CVD) on Cu foil. The CVD process was complemented by plasma enhancement to grow also vertically aligned multiwalled carbon nanotubes using Ni nanoparticles as catalyst. The obtained samples were characterized by Raman spectroscopy analysis. Nature of defects in the samples and optimal growth conditions leading to achieve high quality of graphene and carbon nanotubes are discussed.

  11. Growth of High-Density Zinc Oxide Nanorods on Porous Silicon by Thermal Evaporation

    PubMed Central

    Rusli, Nurul Izni; Tanikawa, Masahiro; Mahmood, Mohamad Rusop; Yasui, Kanji; Hashim, Abdul Manaf

    2012-01-01

    The formation of high-density zinc oxide (ZnO) nanorods on porous silicon (PS) substrates at growth temperatures of 600–1000 °C by a simple thermal evaporation of zinc (Zn) powder in the presence of oxygen (O2) gas was systematically investigated. The high-density growth of ZnO nanorods with (0002) orientation over a large area was attributed to the rough surface of PS, which provides appropriate planes to promote deposition of Zn or ZnOx seeds as nucleation sites for the subsequent growth of ZnO nanorods. The geometrical morphologies of ZnO nanorods are determined by the ZnOx seed structures, i.e., cluster or layer structures. The flower-like hexagonal-faceted ZnO nanorods grown at 600 °C seem to be generated from the sparsely distributed ZnOx nanoclusters. Vertically aligned hexagonal-faceted ZnO nanorods grown at 800 °C may be inferred from the formation of dense arrays of ZnOx clusters. The formation of disordered ZnO nanorods formed at 1000 °C may due to the formation of a ZnOx seed layer. The growth mechanism involved has been described by a combination of self-catalyzed vapor-liquid-solid (VLS) and vapor-solid (VS) mechanism. The results suggest that for a more precise study on the growth of ZnO nanostructures involving the introduction of seeds, the initial seed structures must be taken into account given their significant effects.

  12. Effect of solid-meal caloric content on gastric emptying kinetics of solids and liquids.

    PubMed

    Urbain, J L; Siegel, J A; Mortelmans, L; van Cutsem, E; van den Maegdenbergh, V; de Roo, M

    1989-08-01

    In this study, we have evaluated the effect of the caloric content of a physiological test meal on the gastric emptying kinetics of solids and liquids. 22 healthy male volunteers were studied in two groups matched for age. After an overnight fast, each volunteer underwent the same test procedure; in the first group (G I), 10 volunteers received a meal consisting of bread, 111In-DTPA water and 1 scrambled egg labeled with 99mTc-labelled sulphur colloid; in the second group (G II) 12 volunteers were given the same meal but with 2 labeled eggs in order to increase the caloric content of the solid phase meal. Simultaneous anterior and posterior images were recorded using a dual-headed gamma camera. Solid and liquid geometric mean data were analyzed to determine the lag phase, the emptying rate and the half-emptying time for both solids and liquids. Solid and liquid gastric half-emptying times were significantly prolonged in G II compared to G I volunteers. For the solid phased, the delay was accounted for by a longer lag phase and a decrease in the equilibrium emptying rate. The emptying rate of the liquid phase was significantly decreased in G II compared to G I. Within each group, no statistically significant difference was observed between solid and liquid emptying rates. We conclude that the caloric content of the solid portion of a meal not only alters the emptying of the solid phase but also affects the emptying of the liquid component of the meal.

  13. Characterization of simultaneous heat and mass transfer phenomena for water vapour condensation on a solid surface in an abiotic environment--application to bioprocesses.

    PubMed

    Tiwari, Akhilesh; Kondjoyan, Alain; Fontaine, Jean-Pierre

    2012-07-01

    The phenomenon of heat and mass transfer by condensation of water vapour from humid air involves several key concepts in aerobic bioreactors. The high performance of bioreactors results from optimised interactions between biological processes and multiphase heat and mass transfer. Indeed in various processes such as submerged fermenters and solid-state fermenters, gas/liquid transfer need to be well controlled, as it is involved at the microorganism interface and for the control of the global process. For the theoretical prediction of such phenomena, mathematical models require heat and mass transfer coefficients. To date, very few data have been validated concerning mass transfer coefficients from humid air inflows relevant to those bioprocesses. Our study focussed on the condensation process of water vapour and developed an experimental set-up and protocol to study the velocity profiles and the mass flux on a small size horizontal flat plate in controlled environmental conditions. A closed circuit wind tunnel facility was used to control the temperature, hygrometry and hydrodynamics of the flow. The temperature of the active surface was controlled and kept isothermal below the dew point to induce condensation, by the use of thermoelectricity. The experiments were performed at ambient temperature for a relative humidity between 35-65% and for a velocity of 1.0 ms⁻¹. The obtained data are analysed and compared to available theoretical calculations on condensation mass flux.

  14. Seasonally-Active Water on Mars: Vapour, Ice, Adsorbate, and the Possibility of Liquid

    NASA Astrophysics Data System (ADS)

    Richardson, M. I.

    2002-12-01

    southern caps. Similar climate-models of the water cycle also do not need much exchangeable adsorbed water in order to explain the observed vapour distributions. The possibility of liquid water is tantalizing, but difficult to definitively judge. On scales greater than a meter or so, Mars is most definitely well away from the water triple point--although the surface pressure can exceed 6.1 mbars, the partial pressure of water vapor (to which the triple point refers) is at best orders of magnitude lower. Several careful studies have shown, however, that locally transient (meta-stable) liquid is possible, if the net heating of ice deposits is high enough. This process is aided if the total surface pressure exceeds 6.1mbar (this prevents boiling, or the explosive loss of vapour into the atmosphere) or if the liquid is covered by a thin ice shell, and is only possible if surface temperatures exceed 273K (for pure water, or the appropriate eutectic for brines) and if ice is present. The former challenge is much easier to meet than the latter. The melt scenario requires that ice deposited in winter must be protected from sublimation as surface temperatures increase in spring, but then exposed to the peak of solar heating in summer. Available spacecraft observations of seasonal water will be discussed with the aid of GCM model simulations, and examined in the context of water distributions and phases.

  15. Evaluation of epirubicin in thermogelling and bioadhesive liquid and solid suppository formulations for rectal administration.

    PubMed

    Lo, Yu-Li; Lin, Yijun; Lin, Hong-Ru

    2013-12-31

    Temperature sensitive Pluronic (Plu) and pH-sensitive polyacrylic acid (PAA) were successfully mixed in different ratios to form in situ gelling formulations for colon cancer therapy. The major formulations were prepared as the liquid and solid suppository dosage forms. Epirubicin (Epi) was chosen as a model anticancer drug. In vitro characterization and in vivo pharmacokinetics and therapeutic efficacy of Epi in six Plu/PAA formulations were evaluated. Our in vitro data indicate that Epi in Plu 14%/PAA 0.75% of both solid and liquid suppositories possess significant cytotoxicity, strong bioadhesive force, long-term appropriate suppository base, sustained release, and high accumulation of Epi in rat rectums. These solid and liquid suppositories were retained in the upper rectum of Sprague-Dawley (SD) rats for at least 12 h. An in vivo pharmacokinetic study using SD rats showed that after rectal administration of solid and liquid suppositories, Epi had greater area under the curve and higher relative bioavailability than in a rectal solution. These solid and liquid suppositories exhibited remarkable inhibition on the tumor growth of CT26 bearing Balb/c mice in vivo. Our findings suggest that in situ thermogelling and mucoadhesive suppositories demonstrate a great potential as colon anticancer delivery systems for protracted release of chemotherapeutic agents.

  16. Evaluation of Epirubicin in Thermogelling and Bioadhesive Liquid and Solid Suppository Formulations for Rectal Administration

    PubMed Central

    Lo, Yu-Li; Lin, Yijun; Lin, Hong-Ru

    2014-01-01

    Temperature sensitive Pluronic (Plu) and pH-sensitive polyacrylic acid (PAA) were successfully mixed in different ratios to form in situ gelling formulations for colon cancer therapy. The major formulations were prepared as the liquid and solid suppository dosage forms. Epirubicin (Epi) was chosen as a model anticancer drug. In vitro characterization and in vivo pharmacokinetics and therapeutic efficacy of Epi in six Plu/PAA formulations were evaluated. Our in vitro data indicate that Epi in Plu 14%/PAA 0.75% of both solid and liquid suppositories possess significant cytotoxicity, strong bioadhesive force, long-term appropriate suppository base, sustained release, and high accumulation of Epi in rat rectums. These solid and liquid suppositories were retained in the upper rectum of Sprague-Dawley (SD) rats for at least 12 h. An in vivo pharmacokinetic study using SD rats showed that after rectal administration of solid and liquid suppositories, Epi had greater area under the curve and higher relative bioavailability than in a rectal solution. These solid and liquid suppositories exhibited remarkable inhibition on the tumor growth of CT26 bearing Balb/c mice in vivo. Our findings suggest that in situ thermogelling and mucoadhesive suppositories demonstrate a great potential as colon anticancer delivery systems for protracted release of chemotherapeutic agents. PMID:24384838

  17. Dependence of solid-liquid interface free energy on liquid structure

    NASA Astrophysics Data System (ADS)

    Wilson, S. R.; Mendelev, M. I.

    2014-09-01

    The Turnbull relation is widely believed to enable prediction of solid-liquid interface (SLI) free energies from measurements of the latent heat and the solid density. Ewing proposed an additional contribution to the SLI free energy to account for variations in liquid structure near the interface. In the present study, molecular dynamics (MD) simulations were performed to investigate whether SLI free energy depends on liquid structure. Analysis of the MD simulation data for 11 fcc metals demonstrated that the Turnbull relation is only a rough approximation for highly ordered liquids, whereas much better agreement is observed with Ewing's theory. A modification to Ewing's relation is proposed in this study that was found to provide excellent agreement with MD simulation data.

  18. Effect of Temperature on Nucleation of Nanocrystalline Indium Tin Oxide Synthesized by Electron-Beam Evaporation

    NASA Astrophysics Data System (ADS)

    Shen, Yan; Zhao, Yujun; Shen, Jianxing; Xu, Xiangang

    2017-07-01

    Indium tin oxide (ITO) has been widely applied as a transparent conductive layer and optical window in light-emitting diodes, solar cells, and touch screens. In this paper, crystalline nano-sized ITO dendrites are obtained using an electron-beam evaporation technique. The surface morphology of the obtained ITO was studied for substrate temperatures of 25°C, 130°C, 180°C, and 300°C. Nano-sized crystalline dendrites were synthesized only at a substrate temperature of 300°C. The dendrites had a cubic structure, confirmed by the results of x-ray diffraction and transmission electron microscopy. The growth mechanism of the nano-crystalline dendrites could be explained by a vapor-liquid-solid (VLS) growth model. The catalysts of the VLS process were indium and tin droplets, confirmed by varying the substrate temperature, which further influenced the nucleation of the ITO dendrites.

  19. Mechanisms of single-walled carbon nanotube nucleation, growth, and healing determined using QM/MD methods.

    PubMed

    Page, Alister J; Ohta, Yasuhito; Irle, Stephan; Morokuma, Keiji

    2010-10-19

    Since their discovery in the early 1990s, single-walled carbon nanotubes (SWNTs) have spawned previously unimaginable commercial and industrial technologies. Their versatility stems from their unique electronic, physical/chemical, and mechanical properties, which set them apart from traditional materials. Many researchers have investigated SWNT growth mechanisms in the years since their discovery. The most prevalent of these is the vapor-liquid-solid (VLS) mechanism, which is based on experimental observations. Within the VLS mechanism, researchers assume that the formation of a SWNT starts with co-condensation of carbon and metal atoms from vapor to form liquid metal carbide. Once the liquid reaches supersaturation, the solid phase nanotubes begin to grow. The growth process is partitioned into three distinct stages: nucleation of a carbon "cap-precursor," "cap-to-tube" transformation, and continued SWNT growth. In recent years, molecular dynamics (MD) simulations have come to the fore with respect to SWNT growth. MD simulations lead to spatial and temporal resolutions of these processes that are superior to those possible using current experimental techniques, and so provide valuable information regarding the growth process that researchers cannot obtain experimentally. In this Account, we review our own recent efforts to simulate SWNT nucleation, growth, and healing phenomena on transition-metal catalysts using quantum mechanical molecular dynamics (QM/MD) methods. In particular, we have validated each stage of the SWNT condensation mechanism using a self-consistent-charge density-functional tight-binding (SCC-DFTB) methodology. With respect to the nucleation of a SWNT cap-precursor (stage 1), we have shown that the presence of a transition-metal carbide particle is not a necessary prerequisite for SWNT nucleation, contrary to conventional experimental presumptions. The formation and coalescence of polyyne chains on the metal surface occur first, followed by the

  20. Self-assembly of a surfactin nanolayer at solid-liquid and air-liquid interfaces.

    PubMed

    Onaizi, Sagheer A; Nasser, M S; Al-Lagtah, Nasir M A

    2016-05-01

    Surfactin, a sustainable and environmentally friendly surface active agent, is used as a model to study the adsorption of biosurfactants at hydrophobic and hydrophilic solid-liquid interfaces as well as the air-liquid interface. Surfactin adsorption was monitored as a function of time and concentration using surface plasmon resonance (SPR) technique in the case of the solid-liquid interfaces or the drop shape analysis (DSA) technique in the case of the air-liquid interface. The results obtained in this study showed that surfactin adsorption at the "hard" hydrophobic (functionalized with octadecanethiol) solid-liquid and the "soft" air-liquid interface were 1.12 ± 0.01 mg m(-2) (area per molecule of 157 ± 2 Å(2)) and 1.11 ± 0.05 mg m(-2) (area per molecule of 159 ± 7 Å(2)), respectively, demonstrating the negligible effect of the interface "hardness" on surfactin adsorption. The adsorption of surfactin at the hydrophilic (functionalized with β-mercaptoethanol) solid-liquid interface was about threefold lower than its adsorption at the hydrophobic-liquid interfaces, revealing the importance of hydrophobic interaction in surfactin adsorption process. The affinity constant of surfactin for the investigated interfaces follows the following order: air > octadecanethiol > β-mercaptoethanol. Biosurfactants, such as surfactin, are expected to replace the conventional fossil-based surfactants in several applications, and therefore the current study is a contribution towards the fundamental understanding of biosurfactant behavior, on a molecular level, at hydrophobic and hydrophilic solid-liquid interfaces in addition to the air-liquid interface. Such understanding might aid further optimization of the utilization of surfactin in a number of industrial applications such as enhanced oil recovery, bioremediation, and detergency.

  1. Stimulation by potassium ions of the growth of Rhizopus oligosporus during liquid-and solid-substrate fermentations.

    PubMed

    Peñaloza, W; Davey, C L; Hedger, J N; Kell, D B

    1991-03-01

    Soya beans and several other beans and cereals have been used as substrates for tempe fermentation with the fungus Rhizopus oligosporus Saito. Except for the presence of alkaloids, the chemical composition of lupins (Lupinus mutabilis Sweet) is similar to that of soya beans. Therefore the potential of lupins for tempe production in regions with a long tradition of lupin consumption is promising. The preparation of the fermentation substrate when using bitter lupins (which contain significan quantities of alkaloids) as starting material includes a debittering stage to remove the alkaloids. However, we found that the debittering process yielded lupins that did not support the mycelial growth required in the tempe fermentation. We discovered that potassium is preferentially leached out during the debittering process. The effect of potassium on fungal biomass formation was monitored using a computerized system that determines biomass accretion by measurement of the electrical capacitance at radio frequencies. The importance of potassium for the growth of R. oligosporus was confirmed in liquid cultures. A linear relationship was found between biomass yield and K(+) concentration in the range of 1 to 10 mg/l. The present report represents one of the few demonstrations of a mineral deficiency during the growth of a fungus on a natural, solid substrate.

  2. Mechanism of two-step vapour-crystal nucleation in a pore

    NASA Astrophysics Data System (ADS)

    van Meel, J. A.; Liu, Y.; Frenkel, D.

    2015-09-01

    We present a numerical study of the effect of hemispherical pores on the nucleation of Lennard-Jones crystals from the vapour phase. As predicted by Page and Sear, there is a narrow range of pore radii, where vapour-liquid nucleation can become a two-step process. A similar observation was made for different pore geometries by Giacomello et al. We find that the maximum nucleation rate depends on both the size and the adsorption strength of the pore. Moreover, a poe can be more effective than a planar wall with the same strength of attraction. Pore-induced vapour-liquid nucleation turns out to be the rate-limiting step for crystal nucleation. This implies that crystal nucleation can be enhanced by a judicious choice of the wetting properties of a microporous nucleating agent.

  3. Time-dependent changes in the growth of ultrathin ionic liquid films on Ag(111).

    PubMed

    Lexow, Matthias; Talwar, Timo; Heller, Bettina S J; May, Benjamin; Bhuin, Radha G; Maier, Florian; Steinrück, Hans-Peter

    2018-05-09

    Various amounts of the ionic liquids (ILs) [C1C1Im][Tf2N] and [C8C1Im][Tf2N] were deposited in vacuo by physical vapour deposition (PVD) on single crystalline Ag(111) at room temperature and subsequently monitored by angle-resolved X-ray photoelectron spectroscopy (ARXPS) as a function of time. For very low coverages of up to one closed molecular layer, an initial wetting layer was rapidly formed for both ILs. Deposition of higher amounts of [C1C1Im][Tf2N] revealed an initial three-dimensional film morphology. On the time scale of hours, characteristic changes of the XPS signals were observed. These are interpreted as island spreading and a transformation towards a nearly two dimensional [C1C1Im][Tf2N] film as the final state. In contrast, a film morphology close to 2D was found from the very beginning for [C8C1Im][Tf2N] deposited on Ag(111) demonstrating the influence of the alkyl chain length on the growth kinetics. These studies also highlight the suitability of time-resolved ARXPS for the investigation of IL/solid interfaces, which play a crucial role in IL thin film applications such as in catalysis, sensor, lubrication, and coating technologies.

  4. Terraced spreading of simple liquids on solid surfaces

    NASA Technical Reports Server (NTRS)

    Yang, Ju-Xing; Koplik, Joel; Banavar, Jayanth R.

    1992-01-01

    We have studied the spreading of liquid drops on a solid surface by molecular-dynamics simulations of coexisting three-phase Lennard-Jones systems of liquid, vapor, and solid. We consider both spherically symmetric atoms and diatomic molecules, and a range of interaction strengths. As the attraction between liquid and solid increases we observe a smooth transition in spreading regimes, from partial to complete to terraced wetting. In the terraced case, where distinct monomolecular layers spread with different velocities, the layers are ordered but not solid, with substantial molecular diffusion both within and between layers. The quantitative behavior resembles recent experimental findings, but the detailed dynamics differ. In particular, the layers exhibit an unusual spreading law, where their radii vary in time as R-squared approximately equal to log10t, which disagrees with experiments on polymeric liquids as well as recent calculations.

  5. Morphology- and orientation-controlled gallium arsenide nanowires on silicon substrates.

    PubMed

    Ihn, Soo-Ghang; Song, Jong-In; Kim, Tae-Wook; Leem, Dong-Seok; Lee, Takhee; Lee, Sang-Geul; Koh, Eui Kwan; Song, Kyung

    2007-01-01

    GaAs nanowires were epitaxially grown on Si(001) and Si(111) substrates by using Au-catalyzed vapor-liquid-solid (VLS) growth in a solid source molecular beam epitaxy system. Scanning electron microscopy analysis revealed that almost all the GaAs nanowires were grown along <111> directions on both Si substrates for growth conditions investigated. The GaAs nanowires had a very uniform diameter along the growth direction. X-ray diffraction data and transmission electron microscopy analysis revealed that the GaAs<111> nanowires had a mixed crystal structure of the hexagonal wurtzite and the cubic zinc-blende. Current-voltage characteristics of junctions formed by the epitaxially grown GaAs nanowires and the Si substrate were investigated by using a current-sensing atomic force microscopy.

  6. Solid-liquid critical behavior of water in nanopores.

    PubMed

    Mochizuki, Kenji; Koga, Kenichiro

    2015-07-07

    Nanoconfined liquid water can transform into low-dimensional ices whose crystalline structures are dissimilar to any bulk ices and whose melting point may significantly rise with reducing the pore size, as revealed by computer simulation and confirmed by experiment. One of the intriguing, and as yet unresolved, questions concerns the observation that the liquid water may transform into a low-dimensional ice either via a first-order phase change or without any discontinuity in thermodynamic and dynamic properties, which suggests the existence of solid-liquid critical points in this class of nanoconfined systems. Here we explore the phase behavior of a model of water in carbon nanotubes in the temperature-pressure-diameter space by molecular dynamics simulation and provide unambiguous evidence to support solid-liquid critical phenomena of nanoconfined water. Solid-liquid first-order phase boundaries are determined by tracing spontaneous phase separation at various temperatures. All of the boundaries eventually cease to exist at the critical points and there appear loci of response function maxima, or the Widom lines, extending to the supercritical region. The finite-size scaling analysis of the density distribution supports the presence of both first-order and continuous phase changes between solid and liquid. At around the Widom line, there are microscopic domains of two phases, and continuous solid-liquid phase changes occur in such a way that the domains of one phase grow and those of the other evanesce as the thermodynamic state departs from the Widom line.

  7. The liquid biodiesel extracted from pranajiwa (Sterculia Foetida) seeds as fuel for direct biofuel-solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Rahmawati, Fitria; Syahputra, Rahmat J. E.; Yuniastuti, Endang; Prameswari, Arum P.; Nurcahyo, I. F.

    2017-03-01

    This research applied the liquid biodiesel extracted from Pranajiwa seeds (biodiesel-p) as fuel in Intermediate Temperature-Solid Oxide Fuel Cell, IT-SOFC, with an operational temperature of 400 - 600°C. FTIR analysis of the liquid biodiesel found that the liquid consist of some functional groups. By comparing the spectrum with the commercial biosolar as produced by Pertamina, Indonesia, it is found that there are differenet peaks at a wavenumber of 3472.98; 1872.00; and 724.30 cm-1. It indicates the presence of alcoholo molecules. Composite of Samarium doped-Ceria, SDC, with sodium carbonate, NaCO3, was used as the electrolyte, and it is named as NSDC. Meanwhile, the composite of NSDC with catalyst powder of LNC, producing NSDC-L was used as a cathode and as an anode. The liquid fuel vapourized at 150 °C before come into the fuel cell, and it was reformed inside the fuel cell tube which was set up at 400, 500, and 600 °C. The measurement found that the highest Open Circuite Voltage is 0.57 volt and the power density of 1.7 mW.cm-2 at 500 °C.

  8. A metastable liquid melted from a crystalline solid under decompression

    NASA Astrophysics Data System (ADS)

    Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kono, Yoshio; Park, Changyong; Kenney-Benson, Curtis; Shen, Guoyin

    2017-01-01

    A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid-solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. The decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure-temperature region similar to where the supercooled liquid Bi is observed. Akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought.

  9. New Density Functional Approach for Solid-Liquid-Vapor Transitions in Pure Materials

    NASA Astrophysics Data System (ADS)

    Kocher, Gabriel; Provatas, Nikolas

    2015-04-01

    A new phase field crystal (PFC) type theory is presented, which accounts for the full spectrum of solid-liquid-vapor phase transitions within the framework of a single density order parameter. Its equilibrium properties show the most quantitative features to date in PFC modeling of pure substances, and full consistency with thermodynamics in pressure-volume-temperature space is demonstrated. A method to control either the volume or the pressure of the system is also introduced. Nonequilibrium simulations show that 2- and 3-phase growth of solid, vapor, and liquid can be achieved, while our formalism also allows for a full range of pressure-induced transformations. This model opens up a new window for the study of pressure driven interactions of condensed phases with vapor, an experimentally relevant paradigm previously missing from phase field crystal theories.

  10. Utilization of municipal solid and liquid wastes for bioenergy and bioproducts production.

    PubMed

    Chen, Paul; Xie, Qinglong; Addy, Min; Zhou, Wenguang; Liu, Yuhuan; Wang, Yunpu; Cheng, Yanling; Li, Kun; Ruan, Roger

    2016-09-01

    Municipal wastes, be it solid or liquid, are rising due to the global population growth and rapid urbanization and industrialization. Conventional management practice involving recycling, combustion, and treatment/disposal is deemed unsustainable. Solutions must be sought to not only increase the capacity but also improve the sustainability of waste management. Research has demonstrated that the non-recyclable waste materials and bio-solids can be converted into useable heat, electricity, or fuel and chemical through a variety of processes, including gasification, pyrolysis, anaerobic digestion, and landfill gas in addition to combustion, and wastewater streams have the potential to support algae growth and provide other energy recovery options. The present review is intended to assess and analyze the current state of knowledge in the municipal solid wastes and wastewater treatment and utilization technologies and recommend practical solution options and future research and development needs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Growth mechanisms in chemical vapour deposited carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Vinciguerra, Vincenzo; Buonocore, Francesco; Panzera, Giuseppe; Occhipinti, Luigi

    2003-06-01

    We present a model for the process of the growth of carbon nanotubes (CNTs) obtained by chemical vapour deposition in the presence of transition metal nanoparticles (Me-NPs) which act as a catalyst. We have deduced that the growth of a CNT occurs in the presence of two forces: (i) a viscous force, due to the surrounding hot gas, which opposes and slows down the growth of the CNT, and (ii) an extrusive force that causes the growth and that in the steady-state stage of the growth is completely balanced by the viscous force. We believe that it is the great decrease in free energy in the assembling reaction that occurs at the interface of the Me-NP catalyst that causes the extrusive force for the growth of a CNT. Moreover, the process of chemisorption of a C2 fragment, through the interaction of the C2-pi system with the 3d metal orbitals, has been considered as well as the coordination action of the Fe, Ni and Co metal surfaces. The structural properties of the Fe, Co and Ni surfaces show that the (1, - 1, 0) planes of Fe and the (1, 1, 1) planes of Co and Ni exhibit the symmetry and distances required to overlap with the lattice of a graphene sheet. This gives us information about the coordination mechanism responsible for assembling the CNTs. In fact, we show that it is possible to cleave an Me-NP in such a way as to match the correct symmetry and dimension of the armchair structure of a single-walled nanotube. The mechanism of C2 addition at the edge of the growing CNT has also been considered in relation to the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) symmetry. We demonstrate that the action of d orbitals of the metal atoms forming the Me-NP makes possible the thermally forbidden reaction, which involves the C2-pi system.

  12. Systems and methods for monitoring a solid-liquid interface

    DOEpatents

    Stoddard, Nathan G; Lewis, Monte A.; Clark, Roger F

    2013-06-11

    Systems and methods are provided for monitoring a solid-liquid interface during a casting process. The systems and methods enable determination of the location of a solid-liquid interface during the casting process.

  13. Hydride VPE: the unexpected process for the fast growth of GaAs and GaN nanowires with record aspect ratio and polytypism-free crystalline structure

    NASA Astrophysics Data System (ADS)

    André, Yamina; Trassoudaine, Agnès.; Avit, Geoffrey; Lekhal, Kaddour; Ramdani, Mohammed R.; Leroux, Christine; Monier, Guillaume; Varenne, Christelle; Hoggan, Philip; Castelluci, Dominique; Bougerol, Catherine; Réveret, François; Leymarie, Joël.; Petit, Elodie; Dubrovskii, Vladimir G.; Gil, Evelyne

    2013-12-01

    Hydride Vapor Phase Epitaxy (HVPE) makes use of chloride III-Cl and hydride V-H3 gaseous growth precursors. It is known as a near-equilibrium process, providing the widest range of growth rates from 1 to more than 100 μm/h. When it comes to metal catalyst-assisted VLS (vapor-liquid-solid) growth, the physics of HVPE growth is maintained: high dechlorination frequency, high axial growth rate of nanowires (NWs) up to 170 μm/h. The remarkable features of NWs grown by HVPE are the untapered morphology with constant diameter and the stacking fault-free crystalline phase. Record pure zinc blende cubic phase for 20 μm long GaAs NWs with radii of 10 and 5 nm is shown. The absence of wurtzite phase in GaAs NWs grown by HVPE whatever the diameter is discussed with respect to surface energetic grounds and kinetics. Ni assisted, Ni-Au assisted and catalyst-free HVPE growth of wurtzite GaN NWs is also addressed. Micro-photoluminescence spectroscopy analysis revealed GaN nanowires of great optical quality, with a FWHM of 1 meV at 10 K for the neutral donor bound exciton transition.

  14. On the roles of solid wall in the thermal analysis of micro heat pipes

    NASA Astrophysics Data System (ADS)

    Hung, Yew Mun

    Micro heat pipe is a small-scale passive heat transfer device of very high thermal conductance that uses phase change and circulation of its working fluid to transfer thermal energy. Different from conventional heat pipe, a micro heat pipe does not contain any wick structure. In this thesis, a one-dimensional, steady-state mathematical model of a single triangular micro heat pipe is developed, with the main purpose of establishing a series of analytical studies on the roles of the solid wall of micro heat pipes in conjunction with the characterization of the thermal performance under the effects of various design and operational parameters. The energy equation of the solid wall is solved analytically to obtain the temperature distribution. The liquid phase is coupled with the solid wall through the continuity of heat flux at their interface, and the continuity, momentum and energy equations of the liquid and vapour phases, together with the Young-Laplace equation for capillary pressure, are solve numerically to yield the heat and fluid flow characteristics of the micro heat pipe. By coupling this mathematical model with the phase-change interfacial resistance model, the relationships for the axial temperature distributions of the liquid and vapour phases throughout the longitudinal direction of a micro heat pipe are also formulated. Four major aspects associated with the operational performance of micro heat pipes are discussed. Firstly, the investigation of the effects of axial conduction in the solid wall reveals that the presence of the solid wall induces change in the phase-change heat transport of the working fluid besides facilitating axial heat conduction in the solid wall. The analysis also highlights the effects of the thickness and thermal conductivity of the solid wall on the axial temperature distribution of solid wall, in the wake of the effects of the axial heat conduction induced on the phase-change heat transport of the working fluid. Secondly

  15. Synthesis and characterization of beta-Ga2O3 nanorod array clumps by chemical vapor deposition.

    PubMed

    Shi, Feng; Wei, Xiaofeng

    2012-11-01

    beta-Ga2O3 nanorod array clumps were successfully synthesized on Si (111) substrates by chemical vapor deposition. The composition, microstructure, morphology, and light-emitting property of these clumps were characterized by X-ray diffraction, Fourier transform infrared spectrophotometry, X-ray photoelectron spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy, Raman spectroscopy, and photoluminescence. The results demonstrate that the sample synthesized at 1050 degrees C for 15 min was composed of monoclinic beta-Ga2O3 nanorod array clumps, where each single nanorod was about 300 nm in diameter with some nano-droplets on its tip. These results reveal that the growth mechanism agrees with the vapor-liquid-solid (VLS) process. The photoluminescence spectrum shows that the Ga2O3 nanorods have a blue emission at 438 nm, which may be attributed to defects, such as oxygen vacancies and gallium-oxygen vacancy pairs. Defect-energy aggregation confinement growth theory was proposed to explain the growth mechanism of Ga2O3 nanorod array clumps collaborated with the VLS mechanism.

  16. High density group IV semiconductor nanowire arrays fabricated in nanoporous alumina templates

    NASA Astrophysics Data System (ADS)

    Redwing, Joan M.; Dilts, Sarah M.; Lew, Kok-Keong; Cranmer, Alexana E.; Mohney, Suzanne E.

    2005-11-01

    The fabrication of high density arrays of semiconductor nanowires is of interest for nanoscale electronics, chemical and biological sensing and energy conversion applications. We have investigated the synthesis, intentional doping and electrical characterization of Si and Ge nanowires grown by the vapor-liquid-solid (VLS) method in nanoporous alumina membranes. Nanoporous membranes provide a convenient platform for nanowire growth and processing, enabling control of wire diameter via pore size and the integration of contact metals for electrical testing. For VLS growth in nanoporous materials, reduced pressures and temperatures are required in order to promote the diffusion of reactants into the pore without premature decomposition on the membrane surface or pore walls. The effect of growth conditions on the growth rate of Si and Ge nanowires from SiH 4 and GeH 4 sources, respectively, was investigated and compared. In both cases, the measured activation energies for nanowire growth were substantially lower than activation energies typically reported for Si and Ge thin film deposition under similar growth conditions, suggesting that gold plays a catalytic role in the VLS growth process. Intentionally doped SiNW arrays were also prepared using trimethylboron (TMB) and phosphine (PH 3) as p-type and n-type dopant sources, respectively. Nanowire resistivities were calculated from plots of the array resistance as a function of nanowire length. A decrease in resistivity was observed for both n-type and p-type doped SiNW arrays compared to those grown without the addition of a dopant source.

  17. Dependence of Morphology of SiOx Nanowires on the Supersaturation of Au-Si Alloy Liquid Droplets Formed on the Au-Coated Si Substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Han; Li, Ji-Xue; Jin, Ai-Zi; Zhang, Ze

    2001-11-01

    A thermodynamic theory about the dependence of morphology of SiOx nanowires on the super-saturation of alloy liquid droplets has been proposed on the basis of the vapour-liquid-solid growth mechanism and has been supported experimentally. By changing the Si concentration in the Au-Si liquid droplets formed on the Au-coated Si substrate, firework-, tulip- and bud-shaped SiOx nanowires were synthesized by a thermal evaporation method and distributed concentrically around some void defects in the Si substrate. Voids were formed underneath the surface of the Si substrate during the thermal evaporation at 850°C and resulted in the Si-concentration deficient thus different saturation of Au-Si droplets. Electron microscopy analysis showed that the nanowires had an amorphous structure and were terminated by Au-Si particles.

  18. Cavitation induced by high speed impact of a solid surface on a liquid jet

    NASA Astrophysics Data System (ADS)

    Farhat, Mohamed; Tinguely, Marc; Rouvinez, Mathieu

    2009-11-01

    A solid surface may suffer from severe erosion if it impacts a liquid jet at high speed. The physics behind the erosion process remains unclear. In the present study, we have investigated the impact of a gun bullet on a laminar water jet with the help of a high speed camera. The bullet has a flat front and 11 mm diameter, which is half of jet diameter. The impact speed was varied between 200 and 500 ms-1. Immediately after the impact, a systematic shock wave and high speed jetting were observed. As the compression waves reflect on the jet boundary, a spectacular number of vapour cavities are generated within the jet. Depending on the bullet velocity, these cavities may grow and collapse violently on the bullet surface with a risk of cavitation erosion. We strongly believe that this transient cavitation is the main cause of erosion observed in many industrial applications such as Pelton turbines.

  19. Modelling and intepreting the isotopic composition of water vapour in convective updrafts

    NASA Astrophysics Data System (ADS)

    Bolot, M.; Legras, B.; Moyer, E. J.

    2012-08-01

    The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener-Bergeron-Findeisen process). As all of these processes are related to updraft strength, droplet size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  20. Modelling and interpreting the isotopic composition of water vapour in convective updrafts

    NASA Astrophysics Data System (ADS)

    Bolot, M.; Legras, B.; Moyer, E. J.

    2013-08-01

    The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed-phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters, including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener-Bergeron-Findeisen process). As all of these processes are related to updraft strength, particle size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  1. Normal Forces at Solid-Liquid Interface

    NASA Astrophysics Data System (ADS)

    Das, Ratul

    Adhesion can be defined as the tendency of dissimilar particles or surfaces to cling on to one another. Fields that require knowledge about adhesion interactions at the solid-liquid interface span over a wide spectrum from biotechnological issues such as liquid adhesion to skin tissues, insect feet adhesion to solids, or contact lenses to tear fluid adhesion; filtration issues such as membrane fouling and membrane affinity to different liquids; oil and gas extraction where one needs knowledge of the adhesion of the oil and brine to the rock; fuel cells in which droplets are formed on the electrodes and need to be considered in the system's design; classic chemical engineering industry such as drop adhesion to the mist eliminators in flash drums, or to heat exchangers; and classic surface science such as nano-structured surfaces, self cleaning surfaces, and general wetting phenomena. We execute the Young-Dupre (Y-P) gedanken experiment to establish unique values of work of adhesion rather than a work of adhesion range that the contact angle hysteresis results in. We use the Centrifugal Adhesion Balance (CAB) which allows independent manipulation of normal and lateral forces to induce an increase in the normal force which pulls on a liquid drop while keeping zero lateral force. This method mimics a drop that is subjected to a gravitational force that is gradually increasing. The values obtained for the work of adhesion are independent of drop size and are in agreement with the Y-P estimate. Cyclically varying the normal force, just to prevent the drop flying away from the surface will also enable us to study the Contact Angle Hysteresis for a pendant drop. With this set up, the work of adhesion is not only calculated from experimental normal force measurements, but the found results are also used to provide a venue for calculating the Young equilibrium contact angle, theta0. According to Shanahan and de Gennes, a liquid drop with a non-zero contact angle is

  2. Solid/liquid interfacial free energies in binary systems

    NASA Technical Reports Server (NTRS)

    Nason, D.; Tiller, W. A.

    1973-01-01

    Description of a semiquantitative technique for predicting the segregation characteristics of smooth interfaces between binary solid and liquid solutions in terms of readily available thermodynamic parameters of the bulk solutions. A lattice-liquid interfacial model and a pair-bonded regular solution model are employed in the treatment with an accommodation for liquid interfacial entropy. The method is used to calculate the interfacial segregation and the free energy of segregation for solid-liquid interfaces between binary solutions for the (111) boundary of fcc crystals. The zone of compositional transition across the interface is shown to be on the order of a few atomic layers in width, being moderately narrower for ideal solutions. The free energy of the segregated interface depends primarily upon the solid composition and the heats of fusion of the component atoms, the composition difference of the solutions, and the difference of the heats of mixing of the solutions.

  3. Vapor-liquid nucleation: the solid touch.

    PubMed

    Yarom, Michal; Marmur, Abraham

    2015-08-01

    Vapor-liquid nucleation is a ubiquitous process that has been widely researched in many disciplines. Yet, case studies are quite scattered in the literature, and the implications of some of its basic concepts are not always clearly stated. This is especially noticeable for heterogeneous nucleation, which involves a solid surface in touch with the liquid and vapor. The current review attempts to offer a comprehensive, though concise, thermodynamic discussion of homogeneous and heterogeneous nucleation in vapor-liquid systems. The fundamental concepts of nucleation are detailed, with emphasis on the role of the chemical potential, and on intuitive explanations whenever possible. We review various types of nucleating systems and discuss the effect of the solid geometry on the characteristics of the new phase formation. In addition, we consider the effect of mixing on the vapor-liquid equilibrium. An interesting sub-case is that of a non-volatile solute that modifies the chemical potential of the liquid, but not of the vapor. Finally, we point out topics that need either further research or more exact, accurate presentation. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Self-healing liquid/solid state battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Paul J.; Chung, Brice H.V.; Phadke, Satyajit R.

    A battery system that exchanges energy with an external device is provided. The battery system includes a positive electrode having a first metal or alloy, a negative electrode having a second metal or alloy, and an electrolyte including a salt of the second metal or alloy. The positive electrode, the negative electrode, and the electrolyte are in a liquid phase at an operating temperature during at least one portion of operation. The positive electrode is entirely in a liquid phase in one charged state and includes a solid phase in another charged state. The solid phase of the positive electrodemore » includes a solid intermetallic formed by the first and the second metals or alloys. Methods of storing electrical energy from an external circuit using such a battery system are also provided.« less

  5. Highly Efficient SERS Nanowire/Ag Composites

    DTIC Science & Technology

    2007-01-01

    Ga2O3 nanowires was performed by the vapor- liquid-solid (VLS) growth in a tube furnace, using Si(100) and Si(111) substrates and a 20 nm Au film3. Ga...Rhodamine 6G/methanol and DNT/methanol dilutions. The Ga2O3 /Ag nanowire composite substrates are shown in Figure 1a. As can be seen, they consist of a...significant improvement over nanosphere-type SERS substrates. Conclusion: Randomly oriented Ga2O3 /Ag nanowire networks have been formed and we

  6. A metastable liquid melted from a crystalline solid under decompression

    PubMed Central

    Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kono, Yoshio; Park, Changyong; Kenney-Benson, Curtis; Shen, Guoyin

    2017-01-01

    A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid–solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. The decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure–temperature region similar to where the supercooled liquid Bi is observed. Akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought. PMID:28112152

  7. Low-Temperature Growth of Two-Dimensional Layered Chalcogenide Crystals on Liquid.

    PubMed

    Zhou, Yubing; Deng, Bing; Zhou, Yu; Ren, Xibiao; Yin, Jianbo; Jin, Chuanhong; Liu, Zhongfan; Peng, Hailin

    2016-03-09

    The growth of high-quality two-dimensional (2D) layered chalcogenide crystals is highly important for practical applications in future electronics, optoelectronics, and photonics. Current route for the synthesis of 2D chalcogenide crystals by vapor deposition method mainly involves an energy intensive high-temperature growth process on solid substrates, often suffering from inhomogeneous nucleation density and grain size distribution. Here, we first demonstrate a facile vapor-phase synthesis of large-area high-quality 2D layered chalcogenide crystals on liquid metal surface with relatively low surface energy at a growth temperature as low as ∼100 °C. Uniform and large-domain-sized 2D crystals of GaSe and GaxIn1-xSe were grown on liquid metal surface even supported on a polyimide film. As-grown 2D GaSe crystals have been fabricated to flexible photodetectors, showing high photoresponse and excellent flexibility. Our strategy of energy-sustainable low-temperature growth on liquid metal surface may open a route to the synthesis of high-quality 2D crystals of Ga-, In-, Bi-, Hg-, Pb-, or Sn-based chalcogenides and halides.

  8. Solids precipitation and polymerization of asphaltenes in coal-derived liquids

    DOEpatents

    Kydd, Paul H.

    1984-01-01

    The precipitation and removal of particulate solids from coal-derived liquids by adding a process-derived anti-solvent liquid fraction and continuing the precipitation process at a temperature above the melting point of the mixed liquids for sufficient time to allow the asphaltenes to polymerize and solids to settle at atmospheric pressure conditions. The resulting clarified light hydrocarbon overflow liquid contains less than about 0.02 W % ash and is suitable as turbine fuel or as boiler fuel for burning without particulate emission control equipment. An underflow liquid fraction containing less than about 0.1 W % solids along with low sulfur and nitrogen concentrations is suitable as a boiler fuel with emission control equipment.

  9. [Amylase production by Aureobasidium pullulans in liquid and solid media].

    PubMed

    Lodato, P B; Forchiassin, F; Segovia de Huergo, M B

    1997-01-01

    Amylase production by a strain of Aureobasidium pullulans isolated in the laboratory was evaluated in liquid media (complex and synthetic) and in solid medium (wheat bran). There was an inhibitory effect in amylase production or amylase secretion by glucose. Asparagine was the best nitrogen source for amylase production (4-6 g/l). Only chlamidospores and melanin but not, amylase activity, were obtained with ammonium sulfate. Amylase production in solid culture was higher than the production obtained in the liquid media assayed. Optimum initial moisture content in solid culture ranged between 57 and 74%. No difference was observed in amylase production between solid media inoculated with cells grown in liquid or solid media.

  10. Finite element analysis of the effect of a non-planar solid-liquid interface on the lateral solute segregation during unidirectional solidification

    NASA Technical Reports Server (NTRS)

    Carlson, F. M.; Chin, L.-Y.; Fripp, A. L.; Crouch, R. K.

    1982-01-01

    The effect of solid-liquid interface shape on lateral solute segregation during steady-state unidirectional solidification of a binary mixture is calculated under the assumption of no convection in the liquid. A finite element technique is employed to compute the concentration field in the liquid and the lateral segregation in the solid with a curved boundary between the liquid and solid phases. The computational model is constructed assuming knowledge of the solid-liquid interface shape; no attempt is made to relate this shape to the thermal field. The influence of interface curvature on the lateral compositional variation is investigated over a range of system parameters including diffusivity, growth speed, distribution coefficient, and geometric factors of the system. In the limiting case of a slightly nonplanar interface, numerical results from the finite element technique are in good agreement with the analytical solutions of Coriell and Sekerka obtained by using linear theory. For the general case of highly non-planar interface shapes, the linear theory fails and the concentration field in the liquid as well as the lateral solute segregation in the solid can be calculated by using the finite element method.

  11. Liquid-solid joining of bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Huang, Yongjiang; Xue, Peng; Guo, Shu; Wu, Yang; Cheng, Xiang; Fan, Hongbo; Ning, Zhiliang; Cao, Fuyang; Xing, Dawei; Sun, Jianfei; Liaw, Peter K.

    2016-07-01

    Here, we successfully welded two bulk metallic glass (BMG) materials, Zr51Ti5Ni10Cu25Al9 and Zr50.7Cu28Ni9Al12.3 (at. %), using a liquid-solid joining process. An atomic-scale metallurgical bonding between two BMGs can be achieved. The interface has a transition layer of ~50 μm thick. The liquid-solid joining of BMGs can shed more insights on overcoming their size limitation resulting from their limited glass-forming ability and then promoting their applications in structural components.

  12. Liquid-solid joining of bulk metallic glasses

    PubMed Central

    Huang, Yongjiang; Xue, Peng; Guo, Shu; Wu, Yang; Cheng, Xiang; Fan, Hongbo; Ning, Zhiliang; Cao, Fuyang; Xing, Dawei; Sun, Jianfei; Liaw, Peter K.

    2016-01-01

    Here, we successfully welded two bulk metallic glass (BMG) materials, Zr51Ti5Ni10Cu25Al9 and Zr50.7Cu28Ni9Al12.3 (at. %), using a liquid-solid joining process. An atomic-scale metallurgical bonding between two BMGs can be achieved. The interface has a transition layer of ~50 μm thick. The liquid-solid joining of BMGs can shed more insights on overcoming their size limitation resulting from their limited glass-forming ability and then promoting their applications in structural components. PMID:27471073

  13. Liquid-solid joining of bulk metallic glasses.

    PubMed

    Huang, Yongjiang; Xue, Peng; Guo, Shu; Wu, Yang; Cheng, Xiang; Fan, Hongbo; Ning, Zhiliang; Cao, Fuyang; Xing, Dawei; Sun, Jianfei; Liaw, Peter K

    2016-07-29

    Here, we successfully welded two bulk metallic glass (BMG) materials, Zr51Ti5Ni10Cu25Al9 and Zr50.7Cu28Ni9Al12.3 (at. %), using a liquid-solid joining process. An atomic-scale metallurgical bonding between two BMGs can be achieved. The interface has a transition layer of ~50 μm thick. The liquid-solid joining of BMGs can shed more insights on overcoming their size limitation resulting from their limited glass-forming ability and then promoting their applications in structural components.

  14. Liquid-solid joining of bulk metallic glasses

    DOE PAGES

    Huang, Yongjiang; Xue, Peng; Guo, Shu; ...

    2016-07-29

    Here, we successfully welded two bulk metallic glass (BMG) materials, Zr 51Ti 5Ni 10Cu 25Al 9 and Zr 50.7Cu 28Ni 9Al 12.3 (at. %), using a liquid-solid joining process. An atomic-scale metallurgical bonding between two BMGs can be achieved. The interface has a transition layer of ~50 μm thick. In conclusion, the liquid-solid joining of BMGs can shed more insights on overcoming their size limitation resulting from their limited glass-forming ability and then promoting their applications in structural components.

  15. A metastable liquid melted from a crystalline solid under decompression

    DOE PAGES

    Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; ...

    2017-01-23

    A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid–solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. Themore » decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure–temperature region similar to where the supercooled liquid Bi is observed. Finally, akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought.« less

  16. Nano Liquid Crystal Droplet Impact on Solid Surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; de Pablo, Juan; dePablo Team

    2015-03-01

    Liquid droplet impaction on solid surfaces is an important problem with a wide range of applications in everyday life. Liquid crystals (LCs) are anisotropic liquids whose internal structure gives rise to rich optical and morphological phenomena. In this work we study the liquid crystal droplet impaction on solid surfaces by molecular dynamics simulations. We employ a widely used Gay-Berne model to describe the elongated liquid crystal molecules and their interactions. Our work shows that, in contrast to isotropic liquids, drop deformation is symmetric unless an instability kicks in, in which case a nano scale liquid crystal droplet exhibits distinct anisotropic spreading modes that do not occur in simple liquids. The drop prefers spreading along the low viscosity direction, but inertia can in some cases overcome that bias. The effects of the director field of the droplet, preferred anchoring direction and the anchoring strength of the wall are investigated. Large scale (0.1 micron) simulations are performed to connect our nano scale results to the experiments. Our studies indicate that LCs could provide an interesting alternative for development of next-generation printing inks.

  17. Indirect measurement of the solid/liquid interface using the minimization technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, H.; Chun, M.

    1985-11-01

    The phenomenon of solidification of a flowing fluid in a vertical tube is closely related to the relocation dynamics of molten nuclear fuels in hypothetical core-disruptive accidents of a liquid-metal fast breeder reactor. The knowledge of the transient shape and the position of the liquid/solid interface is of practical importance in analysis of phase change processes. Sparrow and Broadbent directly measured the solid liquid interface via experiments, whereas Viskanta observed the solid/liquid interface motion via a photographic method. In this paper, a new method to predict the transient position of the solid/liquid interface is developed. This method is based onmore » the minimization technique. To use this method one needs the temperature of the wall on which the phase change is to take place. The new technique is useful, in particular, for the case of inward solidification of a flowing fluid in a tube where direct measurement of the solid/liquid interface is not possible, whereas the tube wall temperature measurement is relatively easy.« less

  18. Preferred orientations of laterally grown silicon films over amorphous substrates using the vapor–liquid–solid technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeBoeuf, J. L., E-mail: jerome.leboeuf@mail.mcgill.ca; Brodusch, N.; Gauvin, R.

    2014-12-28

    A novel method has been optimized so that adhesion layers are no longer needed to reliably deposit patterned gold structures on amorphous substrates. Using this technique allows for the fabrication of amorphous oxide templates known as micro-crucibles, which confine a vapor–liquid–solid (VLS) catalyst of nominally pure gold to a specific geometry. Within these confined templates of amorphous materials, faceted silicon crystals have been grown laterally. The novel deposition technique, which enables the nominally pure gold catalyst, involves the undercutting of an initial chromium adhesion layer. Using electron backscatter diffraction it was found that silicon nucleated in these micro-crucibles were 30%more » single crystals, 45% potentially twinned crystals and 25% polycrystals for the experimental conditions used. Single, potentially twinned, and polycrystals all had an aversion to growth with the (1 0 0) surface parallel to the amorphous substrate. Closer analysis of grain boundaries of potentially twinned and polycrystalline samples revealed that the overwhelming majority of them were of the 60° Σ3 coherent twin boundary type. The large amount of coherent twin boundaries present in the grown, two-dimensional silicon crystals suggest that lateral VLS growth occurs very close to thermodynamic equilibrium. It is suggested that free energy fluctuations during growth or cooling, and impurities were the causes for this twinning.« less

  19. Binary Solid-Liquid Phase Equilibria

    ERIC Educational Resources Information Center

    Ellison, Herbert R.

    1978-01-01

    Indicates some of the information that may be obtained from a binary solid-liquid phase equilibria experiment and a method to write a computer program that will plot an ideal phase diagram to which the experimental results may be compared. (Author/CP)

  20. The Persistence of "Solid" and "Liquid" Naive Conceptions: A Reaction Time Study

    ERIC Educational Resources Information Center

    Babai, Reuven; Amsterdamer, Anat

    2008-01-01

    The study explores whether the naive concepts of "solid" and "liquid" persist in adolescence. Accuracy of responses and reaction times where measured while 41 ninth graders classified different solids (rigid, non-rigid and powders) and different liquids (runny, dense) into solid or liquid. The results show that these naive conceptions affect…

  1. Microwave measurements of temperature profiles, integrated water vapour, and liquid water path at Thule Air Base, Greenland.

    NASA Astrophysics Data System (ADS)

    Pace, Giandomenico; Di Iorio, Tatiana; di Sarra, Alcide; Iaccarino, Antonio; Meloni, Daniela; Mevi, Gabriele; Muscari, Giovanni; Cacciani, Marco

    2017-04-01

    A RPG Humidity And Temperature PROfiler (HATPRO-G2 ) radiometer was installed at Thule Air Base (76.5° N, 68.8° W), Greenland, in June 2016 in the framework of the Study of the water VApour in the polar AtmosPhere (SVAAP) project. The Danish Meteorological Institute started measurements of atmospheric properties at Thule Air Base in early '90s. The Thule High Arctic Atmospheric Observatory (THAAO) has grown in size and observing capabilities during the last three decades through the international effort of United States (NCAR and University of Alaska Fairbanks) and Italian (ENEA, INGV, University of Roma and Firenze) institutions (http://www.thuleatmos-it.it). Within this context, the intensive field campaign of the SVAAP project was aimed at the investigation of the surface radiation budget and took place from 5 to 28 July, 2016. After the summer campaign the HATPRO has continued to operate in order to monitor the annual variability of the temperature profile and integrated water vapour as well as the presence and characteristics of liquid clouds in the Artic environment. The combined use of the HATPRO together with other automatic instruments, such as a new microwave spectrometer (the water Vapour Emission Spectrometer for Polar Atmosphere VESPA-22), upward- and downward-looking pyranometers and pyrgeometers, a zenith-looking pyrometer operating in the 9.6-11.5 µm spectral range, an all sky camera, and a meteorological station, allows to investigate the clouds' physical and optical properties, as well as their impact on the surface radiation budget. This study will present and discuss the first few months of HATPRO observations; the effectiveness of the statistical retrieval used to derive the physical parameters from the HATPRO brightness temperatures will also be investigated through the comparison of the temperature and humidity profiles, and integrated water vapour, with data from radiosondes launched during the summer campaign and in winter time.

  2. Liquid-solid surface phase transformation of fluorinated fullerene on monolayer tungsten diselenide

    NASA Astrophysics Data System (ADS)

    Song, Zhibo; Wang, Qixing; Li, Ming-Yang; Li, Lain-Jong; Zheng, Yu Jie; Wang, Zhuo; Lin, Tingting; Chi, Dongzhi; Ding, Zijing; Huang, Yu Li; Thye Shen Wee, Andrew

    2018-04-01

    Hybrid van der Waals heterostructures constructed by the integration of organic molecules and two-dimensional (2D) transition metal dichalcogenide (TMD) materials have useful tunable properties for flexible electronic devices. Due to the chemically inert and atomically smooth nature of the TMD surface, well-defined crystalline organic films form atomically sharp interfaces facilitating optimal device performance. Here, the surface phase transformation of the supramolecular packing structure of fluorinated fullerene (C60F48 ) on single-layer tungsten diselenide (WSe2) is revealed by low-temperature scanning tunneling microscopy, from thermally stable liquid to solid phases as the coverage increases. Statistical analysis of the intermolecular interaction potential reveals that the repulsive dipole-dipole interaction induced by interfacial charge transfer and substrate-mediated interactions play important roles in stabilizing the liquid C60F48 phases. Theoretical calculations further suggest that the dipole moment per C60F48 molecule varies with the surface molecule density, and the liquid-solid transformation could be understood from the perspective of the thermodynamic free energy for open systems. This study offers insights into the growth behavior at 2D organic/TMD hybrid heterointerfaces.

  3. Thermal Transport at Solid-Liquid Interfaces: High Pressure Facilitates Heat Flow through Nonlocal Liquid Structuring.

    PubMed

    Han, Haoxue; Mérabia, Samy; Müller-Plathe, Florian

    2017-05-04

    The integration of three-dimensional microelectronics is hampered by overheating issues inherent to state-of-the-art integrated circuits. Fundamental understanding of heat transfer across soft-solid interfaces is important for developing efficient heat dissipation capabilities. At the microscopic scale, the formation of a dense liquid layer at the solid-liquid interface decreases the interfacial heat resistance. We show through molecular dynamics simulations of n-perfluorohexane on a generic wettable surface that enhancement of the liquid structure beyond a single adsorbed layer drastically enhances interfacial heat conductance. Pressure is used to control the extent of the liquid layer structure. The interfacial thermal conductance increases with pressure values up to 16.2 MPa at room temperature. Furthermore, it is shown that liquid structuring enhances the heat-transfer rate of high-energy lattice waves by broadening the transmission peaks in the heat flux spectrum. Our results show that pressure is an important external parameter that may be used to control interfacial heat conductance at solid-soft interfaces.

  4. Acoustic Probe for Solid-Gas-Liquid Suspension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavlarides, L.L.; Sangani, Ashok

    The primary objective of the research project during the first funding period was to develop an acoustic probe to measure volume percent solids in solid-liquid slurries in the presence of small amounts of gas bubbles. This problem was addressed because of the great need for a non-invasive, accurate and reliable method for solids monitoring in liquid slurries in the presence of radiolytically generated gases throughout the DOE complex. These measurements are necessary during mobilization of salts and sediments in tanks, transport of these slurries in transfer lines to processing facilities across a site, and, in some instances, during high levelmore » waste processing. Although acoustic probes have been commonly used for monitoring flows in single-phase fluids (McLeod, 1967), their application to monitor two-phase mixtures has not yet fully realized its potential. A number of investigators in recent years have therefore been involved in developing probes for measuring the volume fractions in liquid solid suspensions (Atkinson and Kytomaa, 1993; Greenwood et al., 1993; Martin et al., 1995) and in liquid-liquid suspensions (Bonnet and Tavlarides, 1987; Tavlarides and Bonnet, 1988, Yi and Tavlarides, 1990; Tsouris and Tavlarides, 1993, Tsouris et al., 1995). In particular, Atkinson and Kytomaa (1993) showed that the acoustic technique can be used to determine both the velocity and the volume fraction of solids while Martin et al. (1995) and Spelt et al. (1999) showed that the acoustic probe can also be used to obtain information on the size distribution of the particles. In a recent testing of in-line slurry monitors with radioactive slurries suspended with Pulsair Mixers (Hylton & Bayne, 1999), an acoustic probe did not compare well with other instruments most probably due to presence of entrained gases and improper acoustic frequency range of interrogation. The work of the investigators cited has established the potential of the acoustic probe for characterizing

  5. Combustion dynamics of low vapour pressure nanofuel droplets

    NASA Astrophysics Data System (ADS)

    Pandey, Khushboo; Chattopadhyay, Kamanio; Basu, Saptarshi

    2017-07-01

    Multiscale combustion dynamics, shape oscillations, secondary atomization, and precipitate formation have been elucidated for low vapour pressure nanofuel [n-dodecane seeded with alumina nanoparticles (NPs)] droplets. Dilute nanoparticle loading rates (0.1%-1%) have been considered. Contrary to our previous studies of ethanol-water blend (high vapour pressure fuel), pure dodecane droplets do not exhibit internal boiling after ignition. However, variation in surface tension due to temperature causes shape deformations for pure dodecane droplets. In the case of nanofuels, intense heat release from the enveloping flame leads to the formation of micron-size aggregates (of alumina NPS) which serve as nucleation sites promoting heterogeneous boiling. Three boiling regimes (A, B, and C) have been identified with varying bubble dynamics. We have deciphered key mechanisms responsible for the growth, transport, and rupture of the bubbles. Bubble rupture causes ejections of liquid droplets termed as secondary atomization. Ejection of small bubbles (mode 1) resembles the classical vapour bubble collapse mechanism near a flat free surface. However, large bubbles induce severe shape deformations as well as bulk oscillations. Rupture of large bubbles results in high speed liquid jet formation which undergoes Rayleigh-Plateau tip break-up. Both modes contribute towards direct fuel transfer from the droplet surface to flame envelope bypassing diffusion limitations. Combustion lifetime of nanofuel droplets consequently has two stages: stage I (where bubble dynamics are dominant) and stage II (formation of gelatinous mass due to continuous fuel depletion; NP agglomeration). In the present work, variation of flame dynamics and spatio-temporal heat release (HR) have been analysed using high speed OH* chemiluminescence imaging. Fluctuations in droplet shape and flame heat release are found to be well correlated. Droplet flame is bifurcated in two zones (I and II). Flame response is

  6. Solution synthesis of lead seeded germanium nanowires and branched nanowire networks and their application as Li-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Flynn, Grace; Palaniappan, Kumaranand; Sheehan, Martin; Kennedy, Tadhg; Ryan, Kevin M.

    2017-06-01

    Herein, we report the high density growth of lead seeded germanium nanowires (NWs) and their development into branched nanowire networks suitable for application as lithium ion battery anodes. The synthesis of the NWs from lead seeds occurs simultaneously in both the liquid zone (solution-liquid-solid (SLS) growth) and solvent rich vapor zone (vapor-liquid-solid (VLS) growth) of a high boiling point solvent growth system. The reaction is sufficiently versatile to allow for the growth of NWs directly from either an evaporated catalyst layer or from pre-defined nanoparticle seeds and can be extended to allowing extensive branched nanowire formation in a secondary reaction where these seeds are coated onto existing wires. The NWs are characterized using TEM, SEM, XRD and DF-STEM. Electrochemical analysis was carried out on both the single crystal Pb-Ge NWs and the branched Pb-Ge NWs to assess their suitability for use as anodes in a Li-ion battery. Differential capacity plots show both the germanium wires and the lead seeds cycle lithium and contribute to the specific capacity that is approximately 900 mAh g-1 for the single crystal wires, rising to approximately 1100 mAh g-1 for the branched nanowire networks.

  7. Electrochemical Quartz Crystal Microbalance with Dissipation Real-Time Hydrodynamic Spectroscopy of Porous Solids in Contact with Liquids.

    PubMed

    Sigalov, Sergey; Shpigel, Netanel; Levi, Mikhael D; Feldberg, Moshe; Daikhin, Leonid; Aurbach, Doron

    2016-10-18

    Using multiharmonic electrochemical quartz crystal microbalance with dissipation (EQCM-D) monitoring, a new method of characterization of porous solids in contact with liquids has been developed. The dynamic gravimetric information on the growing, dissolving, or stationary stored solid deposits is supplemented by their precise in-operando porous structure characterization on a mesoscopic scale. We present a very powerful method of quartz-crystal admittance modeling of hydrodynamic solid-liquid interactions in order to extract the porous structure parameters of solids during their formation in real time, using different deposition modes. The unique hydrodynamic spectroscopic characterization of electrolytic and rf-sputtered solid Cu coatings that we use for our "proof of concept" provides a new strategy for probing various electrochemically active thin and thick solid deposits, thereby offering inexpensive, noninvasive, and highly efficient quantitative control over their properties. A broad spectrum of applications of our method is proposed, from various metal electroplating and finishing technologies to deeper insight into dynamic build-up and subsequent development of solid-electrolyte interfaces in the operation of Li-battery electrodes, as well as monitoring hydrodynamic consequences of metal corrosion, and growth of biomass coatings (biofouling) on different solid surfaces in seawater.

  8. Liquid-like thermal conduction in intercalated layered crystalline solids

    NASA Astrophysics Data System (ADS)

    Li, B.; Wang, H.; Kawakita, Y.; Zhang, Q.; Feygenson, M.; Yu, H. L.; Wu, D.; Ohara, K.; Kikuchi, T.; Shibata, K.; Yamada, T.; Ning, X. K.; Chen, Y.; He, J. Q.; Vaknin, D.; Wu, R. Q.; Nakajima, K.; Kanatzidis, M. G.

    2018-03-01

    As a generic property, all substances transfer heat through microscopic collisions of constituent particles1. A solid conducts heat through both transverse and longitudinal acoustic phonons, but a liquid employs only longitudinal vibrations2,3. As a result, a solid is usually thermally more conductive than a liquid. In canonical viewpoints, such a difference also serves as the dynamic signature distinguishing a solid from a liquid. Here, we report liquid-like thermal conduction observed in the crystalline AgCrSe2. The transverse acoustic phonons are completely suppressed by the ultrafast dynamic disorder while the longitudinal acoustic phonons are strongly scattered but survive, and are thus responsible for the intrinsically ultralow thermal conductivity. This scenario is applicable to a wide variety of layered compounds with heavy intercalants in the van der Waals gaps, manifesting a broad implication on suppressing thermal conduction. These microscopic insights might reshape the fundamental understanding on thermal transport properties of matter and open up a general opportunity to optimize performances of thermoelectrics.

  9. Dynamics of solid nanoparticles near a liquid-liquid interface

    NASA Astrophysics Data System (ADS)

    Daher, Ali; Ammar, Amine; Hijazi, Abbas

    2018-05-01

    The liquid - liquid interface can be used as a suitable medium for generating some nanostructured films of metals, or inorganic materials such as semi conducting metals. This process can be controlled well if we study the dynamics of nanoparticles (NPs) at the liquid-liquid interface which is a new field of study, and is not understood well yet. The dynamics of NPs at liquid-liquid interfaces is investigated by solving the fluid-particle and particle-particle interactions. Our work is based on the Molecular Dynamics (MD) simulation in addition to Phase Field (PF) method. We modeled the liquid-liquid interface using the diffuse interface model, where the interface is considered to have a characteristic thickness. We have shown that the concentration gradient of one fluid in the other gives rise to a hydrodynamic force that drives the NPs to agglomerate at the interface. These obtained results may introduce new applications where certain interfaces can be considered to be suitable mediums for the synthesis of nanostructured materials. In addition, some liquid interfaces can play the role of effective filters for different species of biological NPs and solid state waste NPs, which will be very important in many industrial and biomedical domains.

  10. 14 CFR 420.69 - Solid and liquid propellants located together.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Solid and liquid propellants located together. 420.69 Section 420.69 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Licensee § 420.69 Solid and liquid propellants located together. (a) A launch site operator proposing an...

  11. 14 CFR 420.69 - Solid and liquid propellants located together.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Solid and liquid propellants located together. 420.69 Section 420.69 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Licensee § 420.69 Solid and liquid propellants located together. (a) A launch site operator proposing an...

  12. 14 CFR 420.69 - Solid and liquid propellants located together.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Solid and liquid propellants located together. 420.69 Section 420.69 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Licensee § 420.69 Solid and liquid propellants located together. (a) A launch site operator proposing an...

  13. Dynamics of Vapour Bubbles in Nucleate Boiling. 2; Evolution of Thermally Controlled Bubbles

    NASA Technical Reports Server (NTRS)

    Buyevich, Yu A.; Webbon, Bruce W.; Callaway, Robert (Technical Monitor)

    1995-01-01

    The previously developed dynamic theory of growth and detachment of vapour bubbles under conditions of nucleate pool boiling is applied to study motion and deformation of a bubble evolving at a single nucleation site. The bubble growth is presumed to be thermally controlled, and two components of heat transfer to the bubble are accounted of: the one from the bulk of surrounding liquid and the one due to heat conduction across a liquid microlayer formed underneath the bubble. Bubble evolution is governed by the buoyancy and an effective surface tension force, both the forces making the bubble centre of mass move away from the wall and, thus, assisting its detachment. Buoyancy-controlled and surface-tension-controlled regimes are considered separately in a meticulous way. The duration of the whole process of bubble evolution till detachment, the rate of growth, and the bubble departure size are found as functions of time and physical and operating parameters. Some repeatedly observed phenomena, such as an influence of gravity on the growth rate, are explained. Inferences of the model agree qualitatively with available experimental evidence, and conclusions pertaining to the dependence on gravity of the bubble radius at detachment and the whole time of the bubble development when being attached to the wall are confirmed quantitatively.

  14. Evaluation of the importance of VlsE antigenic variation for the enzootic cycle of borrelia burgdorferi

    USDA-ARS?s Scientific Manuscript database

    Efficient acquisition and transmission of Borrelia burgdorferi by the tick vector, and the ability to persistently infect both vector and host, are important elements for the life cycle of the Lyme disease pathogen. Previous work has provided strong evidence implicating the significance of the vls l...

  15. Silicon deposition in nanopores using a liquid precursor.

    PubMed

    Masuda, Takashi; Tatsuda, Narihito; Yano, Kazuhisa; Shimoda, Tatsuya

    2016-11-22

    Techniques for depositing silicon into nanosized spaces are vital for the further scaling down of next-generation devices in the semiconductor industry. In this study, we filled silicon into 3.5-nm-diameter nanopores with an aspect ratio of 70 by exploiting thermodynamic behaviour based on the van der Waals energy of vaporized cyclopentasilane (CPS). We originally synthesized CPS as a liquid precursor for semiconducting silicon. Here we used CPS as a gas source in thermal chemical vapour deposition under atmospheric pressure because vaporized CPS can fill nanopores spontaneously. Our estimation of the free energy of CPS based on Lifshitz van der Waals theory clarified the filling mechanism, where CPS vapour in the nanopores readily undergoes capillary condensation because of its large molar volume compared to those of other vapours such as water, toluene, silane, and disilane. Consequently, a liquid-specific feature was observed during the deposition process; specifically, condensed CPS penetrated into the nanopores spontaneously via capillary force. The CPS that filled the nanopores was then transformed into solid silicon by thermal decomposition at 400 °C. The developed method is expected to be used as a nanoscale silicon filling technology, which is critical for the fabrication of future quantum scale silicon devices.

  16. Silicon deposition in nanopores using a liquid precursor

    NASA Astrophysics Data System (ADS)

    Masuda, Takashi; Tatsuda, Narihito; Yano, Kazuhisa; Shimoda, Tatsuya

    2016-11-01

    Techniques for depositing silicon into nanosized spaces are vital for the further scaling down of next-generation devices in the semiconductor industry. In this study, we filled silicon into 3.5-nm-diameter nanopores with an aspect ratio of 70 by exploiting thermodynamic behaviour based on the van der Waals energy of vaporized cyclopentasilane (CPS). We originally synthesized CPS as a liquid precursor for semiconducting silicon. Here we used CPS as a gas source in thermal chemical vapour deposition under atmospheric pressure because vaporized CPS can fill nanopores spontaneously. Our estimation of the free energy of CPS based on Lifshitz van der Waals theory clarified the filling mechanism, where CPS vapour in the nanopores readily undergoes capillary condensation because of its large molar volume compared to those of other vapours such as water, toluene, silane, and disilane. Consequently, a liquid-specific feature was observed during the deposition process; specifically, condensed CPS penetrated into the nanopores spontaneously via capillary force. The CPS that filled the nanopores was then transformed into solid silicon by thermal decomposition at 400 °C. The developed method is expected to be used as a nanoscale silicon filling technology, which is critical for the fabrication of future quantum scale silicon devices.

  17. Supercooled and glassy water: Metastable liquid(s), amorphous solid(s), and a no-man's land

    NASA Astrophysics Data System (ADS)

    Handle, Philip H.; Loerting, Thomas; Sciortino, Francesco

    2017-12-01

    We review the recent research on supercooled and glassy water, focusing on the possible origins of its complex behavior. We stress the central role played by the strong directionality of the water-water interaction and by the competition between local energy, local entropy, and local density. In this context we discuss the phenomenon of polyamorphism (i.e., the existence of more than one disordered solid state), emphasizing both the role of the preparation protocols and the transformation between the different disordered ices. Finally, we present the ongoing debate on the possibility of linking polyamorphism with a liquid-liquid transition that could take place in the no-man's land, the temperature-pressure window in which homogeneous nucleation prevents the investigation of water in its metastable liquid form.

  18. Dependence of solid-liquid interface free energy on liquid structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, S R; Mendelev, M I

    2014-09-01

    The Turnbull relation is widely believed to enable prediction of solid–liquid interface (SLI) free energies from measurements of the latent heat and the solid density. Ewing proposed an additional contribution to the SLI free energy to account for variations in liquid structure near the interface. In the present study, molecular dynamics (MD) simulations were performed to investigate whether SLI free energy depends on liquid structure. Analysis of the MD simulation data for 11 fcc metals demonstrated that the Turnbull relation is only a rough approximation for highly ordered liquids, whereas much better agreement is observed with Ewing’s theory. A modificationmore » to Ewing’s relation is proposed in this study that was found to provide excellent agreement with MD simulation data.« less

  19. Convective heat transfer measurements in a vapour-liquid-liquid three-phase direct contact heat exchanger

    NASA Astrophysics Data System (ADS)

    Mahood, Hameed B.; Campbell, A. N.; Baqir, Ali Sh.; Sharif, A. O.; Thorpe, R. B.

    2018-06-01

    Energy usage is increasing around the world due to the continued development of technology, and population growth. Solar energy is a promising low-grade energy resource that can be harvested and utilised in different applications, such solar heater systems, which are used in both domestic and industrial settings. However, the implementation of an efficient energy conversion system or heat exchanger would enhance such low-grade energy processes. The direct contact heat exchanger could be the right choice due to its ability to efficiently transfer significant amounts of heat, simple design, and low cost. In this work, the heat transfer associated with the direct contact condensation of pentane vapour bubbles in a three-phase direct contact condenser is investigated experimentally. Such a condenser could be used in a cycle with a solar water heater and heat recovery systems. The experiments on the steady state operation of the three-phase direct contact condenser were carried out using a short Perspex tube of 70 cm in total height and an internal diameter of 4 cm. Only a height of 48 cm was active as the direct contact condenser. Pentane vapour, (the dispersed phase) with three different initial temperatures (40° C, 43.5° C and 47.5° C) was directly contacted with water (the continuous phase) at 19° C. The experimental results showed that the total heat transfer rate per unit volume along the direct contact condenser gradually decreased upon moving higher up the condenser. Additionally, the heat transfer rate increases with increasing mass flow rate ratio, but no significant effect on the heat transfer rate of varying the initial temperature of the dispersed phase was seen. Furthermore, both the outlet temperature of the continuous phase and the void fraction were positively correlated with the total heat transfer rate per unit volume, with no considerable effect of the initial temperature difference between the dispersed and continuous phases.

  20. Convective heat transfer measurements in a vapour-liquid-liquid three-phase direct contact heat exchanger

    NASA Astrophysics Data System (ADS)

    Mahood, Hameed B.; Campbell, A. N.; Baqir, Ali Sh.; Sharif, A. O.; Thorpe, R. B.

    2017-12-01

    Energy usage is increasing around the world due to the continued development of technology, and population growth. Solar energy is a promising low-grade energy resource that can be harvested and utilised in different applications, such solar heater systems, which are used in both domestic and industrial settings. However, the implementation of an efficient energy conversion system or heat exchanger would enhance such low-grade energy processes. The direct contact heat exchanger could be the right choice due to its ability to efficiently transfer significant amounts of heat, simple design, and low cost. In this work, the heat transfer associated with the direct contact condensation of pentane vapour bubbles in a three-phase direct contact condenser is investigated experimentally. Such a condenser could be used in a cycle with a solar water heater and heat recovery systems. The experiments on the steady state operation of the three-phase direct contact condenser were carried out using a short Perspex tube of 70 cm in total height and an internal diameter of 4 cm. Only a height of 48 cm was active as the direct contact condenser. Pentane vapour, (the dispersed phase) with three different initial temperatures (40° C, 43.5° C and 47.5° C) was directly contacted with water (the continuous phase) at 19° C. The experimental results showed that the total heat transfer rate per unit volume along the direct contact condenser gradually decreased upon moving higher up the condenser. Additionally, the heat transfer rate increases with increasing mass flow rate ratio, but no significant effect on the heat transfer rate of varying the initial temperature of the dispersed phase was seen. Furthermore, both the outlet temperature of the continuous phase and the void fraction were positively correlated with the total heat transfer rate per unit volume, with no considerable effect of the initial temperature difference between the dispersed and continuous phases.

  1. Growth kinetics of Cu6Sn5 intermetallic compound at liquid-solid interfaces in Cu/Sn/Cu interconnects under temperature gradient

    PubMed Central

    Zhao, N.; Zhong, Y.; Huang, M.L.; Ma, H.T.; Dong, W.

    2015-01-01

    The growth behavior of intermetallic compounds (IMCs) at the liquid-solid interfaces in Cu/Sn/Cu interconnects during reflow at 250 °C and 280 °C on a hot plate was investigated. Being different from the symmetrical growth during isothermal aging, the interfacial IMCs showed clearly asymmetrical growth during reflow, i.e., the growth of Cu6Sn5 IMC at the cold end was significantly enhanced while that of Cu3Sn IMC was hindered especially at the hot end. It was found that the temperature gradient had caused the mass migration of Cu atoms from the hot end toward the cold end, resulting in sufficient Cu atomic flux for interfacial reaction at the cold end while inadequate Cu atomic flux at the hot end. The growth mechanism was considered as reaction/thermomigration-controlled at the cold end and grain boundary diffusion/thermomigration-controlled at the hot end. A growth model was established to explain the growth kinetics of the Cu6Sn5 IMC at both cold and hot ends. The molar heat of transport of Cu atoms in molten Sn was calculated as + 11.12 kJ/mol at 250 °C and + 14.65 kJ/mol at 280 °C. The corresponding driving force of thermomigration in molten Sn was estimated as 4.82 × 10−19 N and 6.80 × 10−19 N. PMID:26311323

  2. Coarsening in Solid-Liquid Mixtures Studied on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Caruso, John J.

    1999-01-01

    Ostwald ripening, or coarsening, is a process in which large particles in a two-phase mixture grow at the expense of small particles. It is a ubiquitous natural phenomena occurring in the late stages of virtually all phase separation processes. In addition, a large number of commercially important alloys undergo coarsening because they are composed of particles embedded in a matrix. Many of them, such as high-temperature superalloys used for turbine blade materials and low-temperature aluminum alloys, coarsen in the solid state. In addition, many alloys, such as the tungsten-heavy metal systems, coarsen in the solid-liquid state during liquid phase sintering. Numerous theories have been proposed that predict the rate at which the coarsening process occurs and the shape of the particle size distribution. Unfortunately, these theories have never been tested using a system that satisfies all the assumptions of the theory. In an effort to test these theories, NASA studied the coarsening process in a solid-liquid mixture composed of solid tin particles in a liquid lead-tin matrix. On Earth, the solid tin particles float to the surface of the sample, like ice in water. In contrast, in a microgravity environment this does not occur. The microstructures in the ground- and space-processed samples (see the photos) show clearly the effects of gravity on the coarsening process. The STS-83-processed sample (right image) shows nearly spherical uniformly dispersed solid tin particles. In contrast, the identically processed, ground-based sample (left image) shows significant density-driven, nonspherical particles, and because of the higher effective solid volume fraction, a larger particle size after the same coarsening time. The "Coarsening in Solid-Liquid Mixtures" (CSLM) experiment was conducted in the Middeck Glovebox facility (MGBX) flown aboard the shuttle in the Microgravity Science Laboratory (MSL-1/1R) on STS-83/94. The primary objective of CSLM is to measure the temporal

  3. High wettability of liquid caesium iodine with solid uranium dioxide.

    PubMed

    Kurosaki, Ken; Suzuki, Masanori; Uno, Masayoshi; Ishii, Hiroto; Kumagai, Masaya; Anada, Keito; Murakami, Yukihiro; Ohishi, Yuji; Muta, Hiroaki; Tanaka, Toshihiro; Yamanaka, Shinsuke

    2017-09-13

    In March 2011, the Fukushima Daiichi Nuclear Power Plant accident caused nuclear fuel to melt and the release of high-volatility fission products into the environment. Caesium and iodine caused environmental contamination and public exposure. Certain fission-product behaviours remain unclear. We found experimentally that liquid CsI disperses extremely favourably toward solid UO 2 , exhibiting a contact angle approaching zero. We further observed the presence of CsI several tens of micrometres below the surface of the solid UO 2 sample, which would be caused by the infiltration of pores network by liquid CsI. Thus, volatile fission products released from molten nuclear fuels with complex internal composition and external structure migrate or evaporate to varying extents, depending on the nature of the solid-liquid interface and the fuel material surface, which becomes the pathway for the released fission products. Introducing the concept of the wettability of liquid chemical species of fission products in contact with solid fuels enabled developing accurate behavioural assessments of volatile fission products released by nuclear fuel.

  4. Automated dispersive liquid-liquid microextraction coupled to high performance liquid chromatography - cold vapour atomic fluorescence spectroscopy for the determination of mercury species in natural water samples.

    PubMed

    Liu, Yao-Min; Zhang, Feng-Ping; Jiao, Bao-Yu; Rao, Jin-Yu; Leng, Geng

    2017-04-14

    An automated, home-constructed, and low cost dispersive liquid-liquid microextraction (DLLME) device that directly coupled to a high performance liquid chromatography (HPLC) - cold vapour atomic fluorescence spectroscopy (CVAFS) system was designed and developed for the determination of trace concentrations of methylmercury (MeHg + ), ethylmercury (EtHg + ) and inorganic mercury (Hg 2+ ) in natural waters. With a simple, miniaturized and efficient automated DLLME system, nanogram amounts of these mercury species were extracted from natural water samples and injected into a hyphenated HPLC-CVAFS for quantification. The complete analytical procedure, including chelation, extraction, phase separation, collection and injection of the extracts, as well as HPLC-CVAFS quantification, was automated. Key parameters, such as the type and volume of the chelation, extraction and dispersive solvent, aspiration speed, sample pH, salt effect and matrix effect, were thoroughly investigated. Under the optimum conditions, linear range was 10-1200ngL -1 for EtHg + and 5-450ngL -1 for MeHg + and Hg 2+ . Limits of detection were 3.0ngL -1 for EtHg + and 1.5ngL -1 for MeHg + and Hg 2+ . Reproducibility and recoveries were assessed by spiking three natural water samples with different Hg concentrations, giving recoveries from 88.4-96.1%, and relative standard deviations <5.1%. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. High performance solid and liquid lubricants: An industrial guide

    NASA Technical Reports Server (NTRS)

    Mcmurtrey, Ernest L.

    1987-01-01

    This handbook is intended to provide a ready reference for many of the solid and liquid lubricants used in the space industry. Lubricants and lubricant properties are arranged systematically so that designers, engineers, and maintenance personnel can conveniently locate data needed for their work. This handbook is divided into two major parts (A and B). Part A is a compilation of solid lubricant suppliers information on chemical and physical property of data of more than 250 solid lubricants, bonded solid lubricants, dispersions, and composites. Part B is a compilation of chemical and physical property data of more than 250 liquid lubricants, greases, oils, compounds, and fluids. The listed materials cover a broad spectrum from manufacturing and ground support to hardware applications of spacecraft.

  6. Optical constants of liquid and solid methane

    NASA Technical Reports Server (NTRS)

    Martonchik, John V.; Orton, Glenn S.

    1994-01-01

    The optical constants n(sub r) + in(sub i) of liquid methane and phase 1 solid methane were determined over the entire spectral range by the use of various data sources published in the literature. Kramers-Kronig analyses were performed on the absorption spectra of liquid methane at the boiling point (111 K) and the melting point (90 K) and on the absorption spectra of phase 1 solid methane at the melting point and at 30 K. Measurements of the static dielectric constant at these temperatures and refractive indices determined over limited spectral ranges were used as constraints in the analyses. Applications of methane optical properties to studies of outer solar system bodies are described.

  7. Effects of carbohydrates on satiety: differences between liquid and solid food.

    PubMed

    Pan, An; Hu, Frank B

    2011-07-01

    To examine the satiety effect of carbohydrates with a focus on the comparison of liquid and solid food and their implications for energy balance and weight management. A number of studies have examined the role of dietary fiber, whole grains, and glycemic index or glycemic load on satiety and subsequent energy intake, but results remain inconclusive. Intake of liquid carbohydrates, particularly sugar-sweetened beverages, has increased considerably across the globe in recent decades in both adolescents and adults. In general, liquid carbohydrates produce less satiety compared with solid carbohydrates. Some energy from liquids may be compensated for at subsequent meals but because the compensation is incomplete, it leads to an increase in total long-term energy intake. Recent studies also suggest some potential differential responses of satiety by characteristics of the patients (e.g., race, sex, and body weight status). These differences warrant further research. Satiety is a complex process influenced by a number of properties in food. The physical form (solid vs. liquid) of carbohydrates is an important component that may affect the satiety process and energy intake. Accumulating evidence suggests that liquid carbohydrates generally produce less satiety than solid forms.

  8. Non-equilibrium surface tension of the vapour-liquid interface of active Lennard-Jones particles

    NASA Astrophysics Data System (ADS)

    Paliwal, Siddharth; Prymidis, Vasileios; Filion, Laura; Dijkstra, Marjolein

    2017-08-01

    We study a three-dimensional system of self-propelled Brownian particles interacting via the Lennard-Jones potential. Using Brownian dynamics simulations in an elongated simulation box, we investigate the steady states of vapour-liquid phase coexistence of active Lennard-Jones particles with planar interfaces. We measure the normal and tangential components of the pressure tensor along the direction perpendicular to the interface and verify mechanical equilibrium of the two coexisting phases. In addition, we determine the non-equilibrium interfacial tension by integrating the difference of the normal and tangential components of the pressure tensor and show that the surface tension as a function of strength of particle attractions is well fitted by simple power laws. Finally, we measure the interfacial stiffness using capillary wave theory and the equipartition theorem and find a simple linear relation between surface tension and interfacial stiffness with a proportionality constant characterized by an effective temperature.

  9. Lithium-Sulfur Batteries: from Liquid to Solid Cells?

    DOE PAGES

    Lin, Zhan; Liang, Chengdu

    2014-11-11

    Lithium-sulfur (Li-S) batteries supply a theoretical specific energy 5 times higher than that of lithium-ion batteries (2,500 vs. ~500 Wh kg-1). However, the insulating properties and polysulfide shuttle effects of the sulfur cathode and the safety concerns of the lithium anode in liquid electrolytes are still key limitations to practical use of traditional Li-S batteries. In this review, we start with a brief discussion on fundamentals of Li-S batteries and key challenges associated with the conventional liquid cells. Then, we introduce the most recent progresses in the liquid systems, including the sulfur positive electrodes, the lithium negative electrodes, and themore » electrolytes and binders. We discuss the significance of investigating electrode reaction mechanisms in liquid cells using in-situ techniques to monitor the compositional and morphological changes. By moving from the traditional liquid cells to recent solid cells, we discuss the importance of this game-changing shift with positive advances in both solid electrolytes and electrode materials. Finally, the opportunities and perspectives for future research on Li-S batteries are presented.« less

  10. Liquid-like thermal conduction in intercalated layered crystalline solids

    DOE PAGES

    Li, B.; Wang, H.; Kawakita, Y.; ...

    2018-01-15

    As a generic property, all substances transfer heat through microscopic collisions of constituent particles. A solid conducts heat through both transverse and longitudinal acoustic phonons, but a liquid employs only longitudinal vibrations. As a result, a solid is usually thermally more conductive than a liquid. In canonical viewpoints, such a difference also serves as the dynamic signature distinguishing a solid from a liquid. Here in this work, we report liquid-like thermal conduction observed in the crystalline AgCrSe 2. The transverse acoustic phonons are completely suppressed by the ultrafast dynamic disorder while the longitudinal acoustic phonons are strongly scattered but survive,more » and are thus responsible for the intrinsically ultralow thermal conductivity. This scenario is applicable to a wide variety of layered compounds with heavy intercalants in the van der Waals gaps, manifesting a broad implication on suppressing thermal conduction. Finally, these microscopic insights might reshape the fundamental understanding on thermal transport properties of matter and open up a general opportunity to optimize performances of thermoelectrics.« less

  11. Liquid-like thermal conduction in intercalated layered crystalline solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, B.; Wang, H.; Kawakita, Y.

    As a generic property, all substances transfer heat through microscopic collisions of constituent particles. A solid conducts heat through both transverse and longitudinal acoustic phonons, but a liquid employs only longitudinal vibrations. As a result, a solid is usually thermally more conductive than a liquid. In canonical viewpoints, such a difference also serves as the dynamic signature distinguishing a solid from a liquid. Here in this work, we report liquid-like thermal conduction observed in the crystalline AgCrSe 2. The transverse acoustic phonons are completely suppressed by the ultrafast dynamic disorder while the longitudinal acoustic phonons are strongly scattered but survive,more » and are thus responsible for the intrinsically ultralow thermal conductivity. This scenario is applicable to a wide variety of layered compounds with heavy intercalants in the van der Waals gaps, manifesting a broad implication on suppressing thermal conduction. Finally, these microscopic insights might reshape the fundamental understanding on thermal transport properties of matter and open up a general opportunity to optimize performances of thermoelectrics.« less

  12. Temperature and melt solid interface control during crystal growth

    NASA Technical Reports Server (NTRS)

    Batur, Celal

    1990-01-01

    Findings on the adaptive control of a transparent Bridgman crystal growth furnace are summarized. The task of the process controller is to establish a user specified axial temperature profile by controlling the temperatures in eight heating zones. The furnace controller is built around a computer. Adaptive PID (Proportional Integral Derivative) and Pole Placement control algorithms are applied. The need for adaptive controller stems from the fact that the zone dynamics changes with respect to time. The controller was tested extensively on the Lead Bromide crystal growth. Several different temperature profiles and ampoule's translational rates are tried. The feasibility of solid liquid interface quantification by image processing was determined. The interface is observed by a color video camera and the image data file is processed to determine if the interface is flat, convex or concave.

  13. Gastric emptying of solids and liquids in obesity.

    PubMed

    Glasbrenner, B; Pieramico, O; Brecht-Krauss, D; Baur, M; Malfertheiner, P

    1993-07-01

    The purpose of this study was to determine whether obese patients have different rates of solid and liquid gastric emptying compared to healthy controls. Twenty-four obese patients (7 males, 17 females) were investigated prior to dietary restriction. The patients had a weight excess above ideal weight ranging from 25% to 216% (mean weight 118.1 +/- 6.5 kg). The control group consisted of 8 healthy subjects (4 males, 4 females), within 10% of the ideal weight. The solid phase of the test meal consisted of 40 g bread, 30 g ham, 10 g margarine, and two scrambled eggs labeled with 99mTc. For the liquid phase, 200 ml orange juice was labeled with 201Tl. Three-minute counts of both tracers were taken for 106 min using a large field-of-view gamma camera. In obese patients, a significantly shortened lag phase for the emptying of solids was observed (27.0 +/- 3.3 versus 38.4 +/- 4.1 min; P < 0.05). Half-emptying time (105.9 +/- 6.7 versus 100.7 +/- 5.7 min), emptying rate (0.60 +/- 0.04 versus 0.71 +/- 0.07%/min), and total emptying of solids (49.4 +/- 3.6 versus 50.5 +/- 5.0%) were not different from controls. Obese subjects had a trend to slowed liquid emptying (half-time 82.7 +/- 4.8 versus 69.9 +/- 6.9 min; emptying rate 0.59 +/- 0.03 versus 0.65 +/- 0.03%/min; total emptying 59.8 +/- 2.9 versus 66.0 +/- 3.3%), but this was not statistically significant. There was no correlation between weight or body surface area and rate of solid or liquid gastric emptying.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Antifungal activity of clove essential oil and its volatile vapour against dermatophytic fungi.

    PubMed

    Chee, Hee Youn; Lee, Min Hee

    2007-12-01

    Antifungal activities of clove essential oil and its volatile vapour against dermatophytic fungi including Candida albicans, Epidermophyton floccosum. Microsporum audouinii, Trichophyton mentagrophytes, and Trichophyton rubrum were investigated. Both clove essential oil and its volatile vapour strongly inhibit spore germination and mycelial growth of the dermatophytic fungi tested. The volatile vapour of clove essential oil showed fungistatic activity whereas direct application of clove essential oil showed fungicidal activity.

  15. Electronic functions of solid-to-liquid interfaces of organic semiconductor crystals and ionic liquid

    NASA Astrophysics Data System (ADS)

    Takeya, J.

    2008-10-01

    The environment of surface electrons at 'solid-to-liquid' interfaces is somewhat extreme, subjected to intense local electric fields or harsh chemical pressures that high-density ionic charge or polarization of mobile molecules create. In this proceedings, we argue functions of electronic carriers generated at the surface of organic semiconductor crystals in response to the local electric fields in the very vicinity of the interface to ionic liquid. The ionic liquids (ILs), or room temperature molten salts, are gaining considerable interest in the recent decade at the prospect of nonvolatile 'green solvents', with the development of chemically stable and nontoxic compounds. Moreover, such materials are also applied to electrolytes for lithium ion batteries and electric double-layer (EDL) capacitors. Our present solid-to-liquid interfaces of rubrene single crystals and ionic liquids work as fast-switching organic field-effect transistors (OFETs) with the highest transconductance, i.e. the most efficient response of the output current to the input voltage, among the OFETs ever built.

  16. Detecting vapour bubbles in simulations of metastable water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    González, Miguel A.; Abascal, Jose L. F.; Valeriani, Chantal, E-mail: christoph.dellago@univie.ac.at, E-mail: cvaleriani@quim.ucm.es

    2014-11-14

    The investigation of cavitation in metastable liquids with molecular simulations requires an appropriate definition of the volume of the vapour bubble forming within the metastable liquid phase. Commonly used approaches for bubble detection exhibit two significant flaws: first, when applied to water they often identify the voids within the hydrogen bond network as bubbles thus masking the signature of emerging bubbles and, second, they lack thermodynamic consistency. Here, we present two grid-based methods, the M-method and the V-method, to detect bubbles in metastable water specifically designed to address these shortcomings. The M-method incorporates information about neighbouring grid cells to distinguishmore » between liquid- and vapour-like cells, which allows for a very sensitive detection of small bubbles and high spatial resolution of the detected bubbles. The V-method is calibrated such that its estimates for the bubble volume correspond to the average change in system volume and are thus thermodynamically consistent. Both methods are computationally inexpensive such that they can be used in molecular dynamics and Monte Carlo simulations of cavitation. We illustrate them by computing the free energy barrier and the size of the critical bubble for cavitation in water at negative pressure.« less

  17. Understanding the true shape of Au-catalyzed GaAs nanowires.

    PubMed

    Jiang, Nian; Wong-Leung, Jennifer; Joyce, Hannah J; Gao, Qiang; Tan, Hark Hoe; Jagadish, Chennupati

    2014-10-08

    With increasing interest in nanowire-based devices, a thorough understanding of the nanowire shape is required to gain tight control of the quality of nanowire heterostructures and improve the performance of related devices. We present a systematic study of the sidewalls of Au-catalyzed GaAs nanowires by investigating the faceting process from the beginning with vapor-liquid-solid (VLS) nucleation, followed by the simultaneous radial growth on the sidewalls, and to the end with sidewall transformation during annealing. The VLS nucleation interface of our GaAs nanowires is revealed by examining cross sections of the nanowire, where the nanowire exhibits a Reuleaux triangular shape with three curved surfaces along {112}A. These curved surfaces are not thermodynamically stable and adopt {112}A facets during radial growth. We observe clear differences in radial growth rate between the ⟨112⟩A and ⟨112⟩B directions with {112}B facets forming due to the slower radial growth rate along ⟨112⟩B directions. These sidewalls transform to {110} facets after high temperature (>500 °C) annealing. A nucleation model is proposed to explain the origin of the Reuleaux triangular shape of the nanowires, and the sidewall evolution is explained by surface kinetic and thermodynamic limitations.

  18. Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors.

    PubMed

    Mourad, Eléonore; Coustan, Laura; Lannelongue, Pierre; Zigah, Dodzi; Mehdi, Ahmad; Vioux, André; Freunberger, Stefan A; Favier, Frédéric; Fontaine, Olivier

    2017-04-01

    Kinetics of electrochemical reactions are several orders of magnitude slower in solids than in liquids as a result of the much lower ion diffusivity. Yet, the solid state maximizes the density of redox species, which is at least two orders of magnitude lower in liquids because of solubility limitations. With regard to electrochemical energy storage devices, this leads to high-energy batteries with limited power and high-power supercapacitors with a well-known energy deficiency. For such devices the ideal system should endow the liquid state with a density of redox species close to the solid state. Here we report an approach based on biredox ionic liquids to achieve bulk-like redox density at liquid-like fast kinetics. The cation and anion of these biredox ionic liquids bear moieties that undergo very fast reversible redox reactions. As a first demonstration of their potential for high-capacity/high-rate charge storage, we used them in redox supercapacitors. These ionic liquids are able to decouple charge storage from an ion-accessible electrode surface, by storing significant charge in the pores of the electrodes, to minimize self-discharge and leakage current as a result of retaining the redox species in the pores, and to raise working voltage due to their wide electrochemical window.

  19. Microscopic calculations of liquid and solid neutron star matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakravarty, Sudip; Miller, Michael D.; Chia-Wei, Woo

    1974-02-01

    As the first step to a microscopic determination of the solidification density of neutron star matter, variational calculations are performed for both liquid and solid phases using a very simple model potential. The potential, containing only the repulsive part of the Reid /sup 1/S/sub o/ interaction, together with Boltzmann statistics defines a homework problem'' which several groups involved in solidification calculations have agreed to solve. The results were to be compared for the purpose of checking calculational techniques. For the solid energy good agreement with Canuto and Chitre was found. Both the liquid and solid energies are much lower thanmore » those of Pandharipande. It is shown that for this oversimplified model, neutron star matter will remain solid down to ordinary nuclear matter density.« less

  20. Plasma formation in water vapour layers in high conductivity liquids

    NASA Astrophysics Data System (ADS)

    Kelsey, C. P.; Schaper, L.; Stalder, K. R.; Graham, W. G.

    2011-10-01

    The vapour layer development stage of relatively low voltage plasmas in conducting solutions has already been well explored. The nature of the discharges formed within the vapour layer however is still largely unexplored. Here we examine the nature of such discharges through a combination of fast imaging and spatially, temporally resolved spectroscopy and electrical characterisation. The experimental setup used is a pin-to-plate discharge configuration with a -350V, 200 μs pulse applied at a repetition rate of 2Hz. A lens, followed by beam splitter allows beams to one Andor ICCD camera to capture images of the plasma emission with a second camera at the exit of a high resolution spectrometer. Through synchronization of the camera images at specified times after plasma ignition (as determined from current-voltage characteristics) they can be correlated with the spectra features. Initial measurements reveal two apparently different plasma formations. Stark broadening of the hydrogen Balmer beta line indicate electron densities of 3 to 5 ×1020 m-3 for plasmas produced early in the voltage pulse and an order of magnitude less for the later plasmas. The vapour layer development stage of relatively low voltage plasmas in conducting solutions has already been well explored. The nature of the discharges formed within the vapour layer however is still largely unexplored. Here we examine the nature of such discharges through a combination of fast imaging and spatially, temporally resolved spectroscopy and electrical characterisation. The experimental setup used is a pin-to-plate discharge configuration with a -350V, 200 μs pulse applied at a repetition rate of 2Hz. A lens, followed by beam splitter allows beams to one Andor ICCD camera to capture images of the plasma emission with a second camera at the exit of a high resolution spectrometer. Through synchronization of the camera images at specified times after plasma ignition (as determined from current

  1. Growth Mechanisms of Inductively-Coupled Plasma Torch Synthesized Silicon Nanowires and their associated photoluminescence properties

    PubMed Central

    Agati, M.; Amiard, G.; Le Borgne, V.; Castrucci, P.; Dolbec, R.; De Crescenzi, M.; El Khakani, M. A.; Boninelli, S.

    2016-01-01

    Ultra-thin Silicon Nanowires (SiNWs) were produced by means of an industrial inductively-coupled plasma (ICP) based process. Two families of SiNWs have been identified, namely long SiNWs (up to 2–3 micron in length) and shorter ones (~100 nm). SiNWs were found to consist of a Si core (with diameter as thin as 2 nm) and a silica shell, of which the thickness varies from 5 to 20 nm. By combining advanced transmission electron microscopy (TEM) techniques, we demonstrate that the growth of the long SiNWs occurred via the Oxide Assisted Growth (OAG) mechanism, while the Vapor Liquid Solid (VLS) mechanism is responsible for the growth of shorter ones. Energy filtered TEM analyses revealed, in some cases, the existence of chapelet-like Si nanocrystals embedded in an otherwise silica nanowire. Such nanostructures are believed to result from the exposure of some OAG SiNWs to high temperatures prevailing inside the reactor. Finally, the intense photoluminescence (PL) of these ICP-grown SiNWs in the 620–950 nm spectral range is a clear indication of the occurrence of quantum confinement. Such a PL emission is in accordance with the TEM results which revealed that the size of nanostructures are indeed below the exciton Bohr radius of silicon. PMID:27874057

  2. Growth Mechanisms of Inductively-Coupled Plasma Torch Synthesized Silicon Nanowires and their associated photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Agati, M.; Amiard, G.; Le Borgne, V.; Castrucci, P.; Dolbec, R.; de Crescenzi, M.; El Khakani, M. A.; Boninelli, S.

    2016-11-01

    Ultra-thin Silicon Nanowires (SiNWs) were produced by means of an industrial inductively-coupled plasma (ICP) based process. Two families of SiNWs have been identified, namely long SiNWs (up to 2-3 micron in length) and shorter ones (~100 nm). SiNWs were found to consist of a Si core (with diameter as thin as 2 nm) and a silica shell, of which the thickness varies from 5 to 20 nm. By combining advanced transmission electron microscopy (TEM) techniques, we demonstrate that the growth of the long SiNWs occurred via the Oxide Assisted Growth (OAG) mechanism, while the Vapor Liquid Solid (VLS) mechanism is responsible for the growth of shorter ones. Energy filtered TEM analyses revealed, in some cases, the existence of chapelet-like Si nanocrystals embedded in an otherwise silica nanowire. Such nanostructures are believed to result from the exposure of some OAG SiNWs to high temperatures prevailing inside the reactor. Finally, the intense photoluminescence (PL) of these ICP-grown SiNWs in the 620-950 nm spectral range is a clear indication of the occurrence of quantum confinement. Such a PL emission is in accordance with the TEM results which revealed that the size of nanostructures are indeed below the exciton Bohr radius of silicon.

  3. Novel cryogenic sources for liquid droplet and solid filament beams

    NASA Astrophysics Data System (ADS)

    Grams, Michael P.

    Two novel atomic and molecular beam sources have been created and tested consisting first of a superfluid helium liquid jet, and secondly a solid filament of argon. The superfluid helium apparatus is the second of its kind in the world and uses a modified liquid helium cryostat to inject a cylindrical stream of superfluid helium into vacuum through glass capillary nozzles with diameters on the order of one micron created on-site at Arizona State University. The superfluid beam is an entirely new way to study superfluid behavior, and has many new applications such as superfluid beam-surface scattering, beam-beam scattering, and boundary-free study of superfluidity. The solid beam of argon is another novel beam source created by flowing argon gas through a capillary 50 microns in diameter which is clamped by a small copper plate to a copper block kept at liquid nitrogen temperature. The gas subsequently cools and solidifies plugging the capillary. Upon heating, the solid plug melts and liquid argon exits the capillary and immediately freezes by evaporative cooling. The solid filaments may find application as wall-less cryogenic matrices, or targets for laser plasma sources of extreme UV and soft x-ray sources.

  4. Ionic liquids in solid-phase microextraction: a review.

    PubMed

    Ho, Tien D; Canestraro, Anthony J; Anderson, Jared L

    2011-06-10

    Solid-phase microextraction (SPME) has undergone a surge in popularity within the field of analytical chemistry in the past two decades since its introduction. Owing to its nature of extraction, SPME has become widely known as a quick and cost-effective sample preparation technique. Although SPME has demonstrated extraordinary versatility in sampling capabilities, the technique continues to experience a tremendous growth in innovation. Presently, increasing efforts have been directed towards the engineering of novel sorbent material in order to expand the applicability of SPME for a wider range of analytes and matrices. This review highlights the application of ionic liquids (ILs) and polymeric ionic liquids (PILs) as innovative sorbent materials for SPME. Characterized by their unique physico-chemical properties, these compounds can be structurally-designed to selectively extract target analytes based on unique molecular interactions. To examine the advantages of IL and PIL-based sorbent coatings in SPME, the field is reviewed by gathering available experimental data and exploring the sensitivity, linear calibration range, as well as detection limits for a variety of target analytes in the methods that have been developed. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Solid-state detector system for measuring concentrations of tritiated water vapour and other radioactive gases

    NASA Astrophysics Data System (ADS)

    Nunes, J. C.; Surette, R. A.; Wood, M. J.

    1999-08-01

    A detector system was built using a silicon photodiode plus preamplifier and a cesium iodide scintillator plus preamplifier that were commercially available. The potential of the system for measuring concentrations of tritiated water vapour in the presence of other radioactive sources was investigated. For purposes of radiation protection, the sensitivity of the detector system was considered too low for measuring tritiated water vapour concentrations in workplaces such as nuclear power plants. Nevertheless, the spectrometry capability of the system was used successfully to differentiate amongst some radioactive gases in laboratory tests. Although this relatively small system can measure radioactive noble gases as well as tritiated water vapour concentrations, its response to photons remains an issue.

  6. Crosslinked Polymer Ionic Liquid/Ionic Liquid Blends Prepared by Photopolymerization as Solid-State Electrolytes in Supercapacitors.

    PubMed

    Wang, Po-Hsin; Wang, Tzong-Liu; Lin, Wen-Churng; Lin, Hung-Yin; Lee, Mei-Hwa; Yang, Chien-Hsin

    2018-04-07

    A photopolymerization method is used to prepare a mixture of polymer ionic liquid (PIL) and ionic liquid (IL). This mixture is used as a solid-state electrolyte in carbon nanoparticle (CNP)-based symmetric supercapacitors. The solid electrolyte is a binary mixture of a PIL and its corresponding IL. The PIL matrix is a cross-linked polyelectrolyte with an imidazole salt cation coupled with two anions of Br - in PIL-M-(Br) and TFSI - in PIL-M-(TFSI), respectively. The corresponding ionic liquids have imidazolium salt cation coupled with two anions of Br - and TFSI - , respectively. This study investigates the electrochemical characteristics of PILs and their corresponding IL mixtures used as a solid electrolyte in supercapacitors. Results show that a specific capacitance, maximum power density and energy density of 87 and 58 F·g - ¹, 40 and 48 kW·kg - ¹, and 107 and 59.9 Wh·kg - ¹ were achieved in supercapacitors based on (PIL-M-(Br)) and (PIL-M-(TFSI)) solid electrolytes, respectively.

  7. A Simple Approach to Characterize Gas-Aqueous Liquid Two-phase Flow Configuration Based on Discrete Solid-Liquid Contact Electrification.

    PubMed

    Choi, Dongwhi; Lee, Donghyeon; Kim, Dong Sung

    2015-10-14

    In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two-phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid-liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability.

  8. Direct growth of aligned graphitic nanoribbons from a DNA template by chemical vapour deposition.

    PubMed

    Sokolov, Anatoliy N; Yap, Fung Ling; Liu, Nan; Kim, Kwanpyo; Ci, Lijie; Johnson, Olasupo B; Wang, Huiliang; Vosgueritchian, Michael; Koh, Ai Leen; Chen, Jihua; Park, Jinseong; Bao, Zhenan

    2013-01-01

    Graphene, laterally confined within narrow ribbons, exhibits a bandgap and is envisioned as a next-generation material for high-performance electronics. To take advantage of this phenomenon, there is a critical need to develop methodologies that result in graphene ribbons <10 nm in width. Here we report the use of metal salts infused within stretched DNA as catalysts to grow nanoscopic graphitic nanoribbons. The nanoribbons are termed graphitic as they have been determined to consist of regions of sp(2) and sp(3) character. The nanoscopic graphitic nanoribbons are micrometres in length, <10 nm in width, and take on the shape of the DNA template. The DNA strand is converted to a graphitic nanoribbon by utilizing chemical vapour deposition conditions. Depending on the growth conditions, metallic or semiconducting graphitic nanoribbons are formed. Improvements in the growth method have potential to lead to bottom-up synthesis of pristine single-layer graphene nanoribbons.

  9. Demonstration of single crystal growth via solid-solid transformation of a glass

    DOE PAGES

    Savytskii, Dmytro; Knorr, Brian; Dierolf, Volkmar; ...

    2016-03-18

    Many advanced technologies have relied on the availability of single crystals of appropriate material such as silicon for microelectronics or superalloys for turbine blades. Similarly, many promising materials could unleash their full potential if they were available in a single crystal form. However, the current methods are unsuitable for growing single crystals of these oftentimes incongruently melting, unstable or metastable materials. Here we demonstrate a strategy to overcome this hurdle by avoiding the gaseous or liquid phase, and directly converting glass into a single crystal. Specifically, Sb 2S 3 single crystals are grown in Sb-S-I glasses as an example ofmore » this approach. In this first unambiguous demonstration of an all-solid-state glass → crystal transformation, extraneous nucleation is avoided relative to crystal growth via spatially localized laser heating and inclusion of a suitable glass former in the composition. Lastly, the ability to fabricate patterned single-crystal architecture on a glass surface is demonstrated, providing a new class of micro-structured substrate for low cost epitaxial growth, active planar devices, etc.« less

  10. Highlighting non-uniform temperatures close to liquid/solid surfaces

    NASA Astrophysics Data System (ADS)

    Noirez, L.; Baroni, P.; Bardeau, J. F.

    2017-05-01

    The present experimental measurements reveal that similar to external fields such as electric, magnetic, or flow fields, the vicinity of a solid surface can preclude the liquid molecules from relaxing to equilibrium, generating located non-uniform temperatures. The non-uniform temperature zone extends up to several millimeters within the liquid with a lower temperature near the solid wall (reaching ΔT = -0.15 °C ± 0.02 °C in the case of liquid water) counterbalanced at larger distances by a temperature rise. These effects highlighted by two independent methods (thermistor measurement and infra-red emissivity) are particularly pronounced for highly wetting surfaces. The scale over which non-uniform temperatures are extended indicates that the effect is assisted by intermolecular interactions, in agreement with recent developments showing that liquids possess finite shear elasticity and theoretical approaches integrating long range correlations.

  11. Shell morphology and Raman spectra of epitaxial Ge-SixGe1-x and Si-SixGe1-x core-shell nanowires

    NASA Astrophysics Data System (ADS)

    Wen, Feng; Dillen, David C.; Kim, Kyounghwan; Tutuc, Emanuel

    2017-06-01

    We investigate the shell morphology and Raman spectra of epitaxial Ge-SixGe1-x and Si-SixGe1-x core-shell nanowire heterostructures grown using a combination of a vapor-liquid-solid (VLS) growth mechanism for the core, followed by in-situ epitaxial shell growth using ultra-high vacuum chemical vapor deposition. Cross-sectional transmission electron microscopy reveals that the VLS growth yields cylindrical Ge, and Si nanowire cores grown along the ⟨111⟩, and ⟨110⟩ or ⟨112⟩ directions, respectively. A hexagonal cross-sectional morphology is observed for Ge-SixGe1-x core-shell nanowires terminated by six {112} facets. Two distinct morphologies are observed for Si-SixGe1-x core-shell nanowires that are either terminated by four {111} and two {100} planes associated with the ⟨110⟩ growth direction or four {113} and two {111} planes associated with the ⟨112⟩ growth direction. We show that the Raman spectra of Si- SixGe1-x are correlated with the shell morphology thanks to epitaxial growth-induced strain, with the core Si-Si mode showing a larger red shift in ⟨112⟩ core-shell nanowires compared to their ⟨110⟩ counterparts. We compare the Si-Si Raman mode value with calculations based on a continuum elasticity model coupled with the lattice dynamic theory.

  12. Process for minimizing solids contamination of liquids from coal pyrolysis

    DOEpatents

    Wickstrom, Gary H.; Knell, Everett W.; Shaw, Benjamin W.; Wang, Yue G.

    1981-04-21

    In a continuous process for recovery of liquid hydrocarbons from a solid carbonaceous material by pyrolysis of the carbonaceous material in the presence of a particulate source of heat, particulate contamination of the liquid hydrocarbons is minimized. This is accomplished by removing fines from the solid carbonaceous material feed stream before pyrolysis, removing fines from the particulate source of heat before combining it with the carbonaceous material to effect pyrolysis of the carbonaceous material, and providing a coarse fraction of reduced fines content of the carbon containing solid residue resulting from the pyrolysis of the carbonaceous material before oxidizing carbon in the carbon containing solid residue to form the particulate source of heat.

  13. [Influence of liquid or solid culture conditions on the volatile components of mycelia of Isariacateinannulata].

    PubMed

    Zhang, Delong; Wang, Xiaodong; Lu, Ruili; Li, Kangle; Hu, Fenglin

    2011-12-01

    To determine the volatile components of mycelia of Isaria cateinannulata cultured under different culture conditions, and to analyze the relationships between the culture conditions and volatile metabolites. Mycelia were cultured in solid plates with SDAY medium and liquid shake flasks with SDY medium. The culture conditions were at 25 degrees C and 8 days. Volatile components in the mycelia of I. cateinannulata were extracted with simultaneous distillation extraction and analyzed by gas chromatography-mass spectrometry. Alkenes, alkanes, heterocyclic and polycyclic aromatic hydrocarbons (PAH) were existed abundantly both in the mycelia of liquid and solid cultures, but the kinds and relative concentrations of the volatile components in mycelia of liquid and solid cultures were very different. Forty-one compounds were identified from the mycelia of solid culture and 32 compounds were identified from the mycelia of liquid culture. Esters, quinones and oximes were only found in solid cultured mycelia whereas carboxylic acids were only discovered in the mycelia of liquid culture. At the same time, mycelia of liquid culture contained much more phenols. The most abundant compounds in mycelia of liquid and solid cultures were hydrocarbons. The volatile extracts of solid cultured mycelia contained 57.6% alkenes and 9.19% alkanes. The volatile extracts of liquid cultured mycelia contained 7.85% alkenes and 22.4% alkanes. Liquid or solid culture conditions influenced the volatile components of mycelia of I. cateinannulata.

  14. Ionogels, ionic liquid based hybrid materials.

    PubMed

    Le Bideau, Jean; Viau, Lydie; Vioux, André

    2011-02-01

    The current interest in ionic liquids (ILs) is motivated by some unique properties, such as negligible vapour pressure, thermal stability and non-flammability, combined with high ionic conductivity and wide electrochemical stability window. However, for material applications, there is a challenging need for immobilizing ILs in solid devices, while keeping their specific properties. In this critical review, ionogels are presented as a new class of hybrid materials, in which the properties of the IL are hybridized with those of another component, which may be organic (low molecular weight gelator, (bio)polymer), inorganic (e.g. carbon nanotubes, silica etc.) or hybrid organic-inorganic (e.g. polymer and inorganic fillers). Actually, ILs act as structuring media during the formation of inorganic ionogels, their intrinsic organization and physicochemical properties influencing the building of the solid host network. Conversely, some effects of confinement can modify some properties of the guest IL, even though liquid-like dynamics and ion mobility are preserved. Ionogels, which keep the main properties of ILs except outflow, while allowing easy shaping, considerably enlarge the array of applications of ILs. Thus, they form a promising family of solid electrolyte membranes, which gives access to all-solid devices, a topical industrial challenge in domains such as lithium batteries, fuel cells and dye-sensitized solar cells. Replacing conventional media, organic solvents in lithium batteries or water in proton-exchange-membrane fuel cells (PEMFC), by low-vapour-pressure and non flammable ILs presents major advantages such as improved safety and a higher operating temperature range. Implementation of ILs in separation techniques, where they benefit from huge advantages as well, relies again on the development of supported IL membranes such as ionogels. Moreover, functionalization of ionogels can be achieved both by incorporation of organic functions in the solid matrix

  15. Transfer of Materials from Water to Solid Surfaces Using Liquid Marbles.

    PubMed

    Kawashima, Hisato; Paven, Maxime; Mayama, Hiroyuki; Butt, Hans-Jürgen; Nakamura, Yoshinobu; Fujii, Syuji

    2017-09-27

    Remotely controlling the movement of small objects is desirable, especially for the transportation and selection of materials. Transfer of objects between liquid and solid surfaces and triggering their release would allow for development of novel material transportation technology. Here, we describe the remote transport of a material from a water film surface to a solid surface using quasispherical liquid marbles (LMs). A light-induced Marangoni flow or an air stream is used to propel the LMs on water. As the LMs approach the rim of the water film, gravity forces them to slide down the water rim and roll onto the solid surface. Through this method, LMs can be efficiently moved on water and placed on a solid surface. The materials encapsulated within LMs can be released at a specific time by an external stimulus. We analyzed the velocity, acceleration, and force of the LMs on the liquid and solid surfaces. On water, the sliding friction due to the drag force resists the movement of the LMs. On a solid surface, the rolling distance is affected by the surface roughness of the LMs.

  16. Stirring-controlled solidified floating solid-liquid drop microextraction as a new solid phase-enhanced liquid-phase microextraction method by exploiting magnetic carbon nanotube-nickel hybrid.

    PubMed

    Ghazaghi, Mehri; Mousavi, Hassan Zavvar; Shirkhanloo, Hamid; Rashidi, Alimorad

    2017-01-25

    A specific technique is introduced to overcome limitations of classical solidification of floating organic drop microextraction, such as tedious and time-consuming centrifuge step and using disperser solvent, by facile and efficient participation of solid and liquid phases. In this proposed method of stirring-controlled solidified floating solid-liquid drop microextraction (SC-SF-SLDME), magnetic carbon nanotube-nickel hybrid (MNi-CNT) as a solid part of the extractors are dispersed ultrasonically in sample solution, and the procedure followed by dispersion of liquid phase (1-undecanol) through high-rate stirring and easily recollection of MNi-CNT in organic solvent droplets through hydrophobic force. With the reduction in speed of stirring, one solid-liquid drop is formed on top of the solution. MNi-CNT acts as both extractor and the coalescence helper between organic droplets for a facile recollection. MNi-CNT was prepared by spray pyrolysis of nickel oleate/toluene mixture at 1000 °C. Four tyrosine kinase inhibitors were selected as model analytes and the effecting parameters were investigated. The results confirmed that magnetic nanoadsorbent has an important role in the procedure and complete collection of dispersed solvent is not achieved in the absence of the solid phase. Also, short extraction time exhibited success of the proposed method and effect of dispersed solid/liquid phases. The limits of quantification (LOQs) for imatinib, sunitinib, erlotinib, and nilotinib were determined to be as low as 0.7, 1.7, 0.6, and 1.0 μg L -1 , respectively. The intra-day precisions (RSDs) were lower than 4.5%. Method performance was investigated by determination of mentioned tyrosine kinase inhibitors (TKIs) in human serum and cerebrospinal fluid samples with good recoveries in the range of 93-98%. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Epitope-Specific Evolution of Human B Cell Responses to Borrelia burgdorferi VlsE Protein from Early to Late Stages of Lyme Disease.

    PubMed

    Jacek, Elzbieta; Tang, Kevin S; Komorowski, Lars; Ajamian, Mary; Probst, Christian; Stevenson, Brian; Wormser, Gary P; Marques, Adriana R; Alaedini, Armin

    2016-02-01

    Most immunogenic proteins of Borrelia burgdorferi, the causative agent of Lyme disease, are known or expected to contain multiple B cell epitopes. However, the kinetics of the development of human B cell responses toward the various epitopes of individual proteins during the course of Lyme disease has not been examined. Using the highly immunogenic VlsE as a model Ag, we investigated the evolution of humoral immune responses toward its immunodominant sequences in 90 patients with a range of early to late manifestations of Lyme disease. The results demonstrate the existence of asynchronous, independently developing, Ab responses against the two major immunogenic regions of the VlsE molecule in the human host. Despite their strong immunogenicity, the target epitopes were inaccessible to Abs on intact spirochetes, suggesting a lack of direct immunoprotective effect. These observations document the association of immune reactivity toward specific VlsE sequences with different phases of Lyme disease, demonstrating the potential use of detailed epitope mapping of Ags for staging of the infection, and offer insights regarding the pathogen's possible immune evasion mechanisms. Copyright © 2016 by The American Association of Immunologists, Inc.

  18. A reliable method to grow vertically-aligned silicon nanowires by a novel ramp-cooling process

    NASA Astrophysics Data System (ADS)

    Ho, Tzuen-Wei; Hong, Franklin Chau-Nan

    2012-08-01

    We have grown silicon nanowires (SiNWs) on Si (1 1 1) substrates by gold-catalyzed vapor-liquid-solid (VLS) process using tetrachlorosilane (SiCl4) in a hot-wall chemical vapor deposition reactor. Even under the optimized conditions including H2 annealing to reduce the surface native oxide, epitaxial SiNWs of 150-200 nm in diameter often grew along all four <1 1 1> family directions with one direction vertical and three others inclined to the surface. Therefore, the growth of high degree ordered SiNW arrays along [1 1 1] only was attempted on Au-coated Si (1 1 1) by a ramp-cooling process utilizing the liquid phase epitaxy (LPE) mechanism. The Au-coated Si substrate was first annealed in H2 at 650 °C to form Au-Si alloy nanoparticles, and then ramp-cooled at a controlled rate to precipitate epitaxial Si seeds on the substrate based on LPE mechanism. The substrate was further heated in SiCl4/H2 to 850 °C for the VLS growths of SiNWs on the Si seeds. Thus, almost 100% vertically-aligned SiNWs along [1 1 1] only could be reproducibly grown on Si (1 1 1), without using a template or patterning the metal catalyst. The high-density vertically-aligned SiNWs have good potentials for solar cells and nano-devices.

  19. Solid liquid interfacial free energies of benzene

    NASA Astrophysics Data System (ADS)

    Azreg-Aı¨nou, M.

    2007-02-01

    In this work we determine for the range of melting temperatures 284.6⩽T⩽306.7 K, corresponding to equilibrium pressures 20.6⩽P⩽102.9 MPa, the benzene solid-liquid interfacial free energy by a cognitive approach including theoretical and experimental physics, mathematics, computer algebra (MATLAB), and some results from molecular dynamics computer simulations. From a theoretical and mathematical points of view, we deal with the elaboration of an analytical expression for the internal energy derived from a unified solid-liquid-vapor equation of state and with the elaboration of an existing statistical model for the entropy drop of the melt near the solid-liquid interface. From an experimental point of view, we will use our results obtained in collaboration with colleagues concerning the supercooled liquid benzene. Of particular interest for this work is the existing center-of-mass radial distribution function of benzene at 298 K obtained by computer simulation. Crystal-orientation-independent and minimum interfacial free energies are calculated and shown to increase slightly with the above temperatures. Both crystal-orientation-independent and minimum free energies agree with existing calculations and with rare existing experimental data. Taking into account the fact that the extent of supercooling is generally admitted as a constant, we determine the limits of supercooling by which we explore the behavior of the critical nucleus radius which is shown to decrease in terms of the above temperatures. The radius of the, and the number of molecules per, critical nucleus are shown to assume the average values of 20.2 A˚ and 175 with standard deviations of 0.16 Å and 4.5, respectively.

  20. n-Type Doping of Vapor-Liquid-Solid Grown GaAs Nanowires.

    PubMed

    Gutsche, Christoph; Lysov, Andrey; Regolin, Ingo; Blekker, Kai; Prost, Werner; Tegude, Franz-Josef

    2011-12-01

    In this letter, n-type doping of GaAs nanowires grown by metal-organic vapor phase epitaxy in the vapor-liquid-solid growth mode on (111)B GaAs substrates is reported. A low growth temperature of 400°C is adjusted in order to exclude shell growth. The impact of doping precursors on the morphology of GaAs nanowires was investigated. Tetraethyl tin as doping precursor enables heavily n-type doped GaAs nanowires in a relatively small process window while no doping effect could be found for ditertiarybutylsilane. Electrical measurements carried out on single nanowires reveal an axially non-uniform doping profile. Within a number of wires from the same run, the donor concentrations ND of GaAs nanowires are found to vary from 7 × 10(17) cm(-3) to 2 × 10(18) cm(-3). The n-type conductivity is proven by the transfer characteristics of fabricated nanowire metal-insulator-semiconductor field-effect transistor devices.

  1. "Immortal" liquid film formed by colliding bubble at oscillating solid substrates

    NASA Astrophysics Data System (ADS)

    Zawala, Jan

    2016-05-01

    This paper presents an experimental study of the behavior of an ascending air bubble (equivalent radius 0.74 mm) colliding with a solid substrate. The substrate is either motionless or oscillating with a precisely adjusted acceleration, slightly higher than gravity. It is shown that the stability of the liquid film formed between the striking bubble and the solid surface depends not only on the hydrophobic/hydrophilic properties of the solid but also on the energetic interrelations in the system. The results indicate that the rupture of the bubble and its attachment at a smooth hydrophobic solid surface are related to the viscous dissipation of energy, leading to a gradual decrease in the bubble deformation, and in consequence in the radius of the formed separating liquid film. When the film radius is small enough, the bubble ruptures and attaches to the hydrophobic solid surface. Moreover, it is shown that when the bubble deformations are forced to be constant, by applying properly adjusted oscillations of the solid substrate (energy supply conditions), bubble rupture can be prevented and a constant bubble bouncing is observed, irrespective of the hydrophobic/hydrophilic properties of the solid substrate. Under such energy supply conditions, the liquid film can be considered "immortal." The numerical calculations performed for the respective system, in which constant kinetic energy is induced, confirm that the liquid film can persist indefinitely owing to its constant radius, which is too large to reach the critical thickness for rupture during the collision time.

  2. Coarsening in Solid-liquid Mixtures: Overview of Experiments on Shuttle and ISS

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.; Hawersaat, Robert W.; Lorik, T.; Thompson, J.; Gulsoy, B.; Voorhees, P. W.

    2013-01-01

    The microgravity environment on the Shuttle and the International Space Station (ISS) provides the ideal condition to perform experiments on Coarsening in Solid-Liquid Mixtures (CSLM) as deleterious effects such as particle sedimentation and buoyancy-induced convection are suppressed. For an ideal system such as Lead-Tin in which all the thermophysical properties are known, the initial condition in microgravity of randomly dispersed particles with local clustering of solid Tin in eutectic liquid Lead-Tin matrix, permitted kinetic studies of competitive particle growth for a range of volume fractions. Verification that the quenching phase of the experiment had negligible effect of the spatial distribution of particles is shown through the computational solution of the dynamical equations of motion, thus insuring quench-free effects from the coarsened microstructure measurements. The low volume fraction experiments conducted on the Shuttle showed agreement with transient Ostwald ripening theory, and the steady-state requirement of LSW theory was not achieved. More recent experiments conducted on ISS with higher volume fractions have achieved steady-state condition and show that the kinetics follows the classical diffusion limited particle coarsening prediction and the measured 3D particle size distribution becomes broader as predicted from theory.

  3. Evaluation of the Effect of Exhausts from Liquid and Solid Rockets on Ozone Layer

    NASA Astrophysics Data System (ADS)

    Yamagiwa, Yoshiki; Ishimaki, Tetsuya

    This paper reports the analytical results of the influences of solid rocket and liquid rocket exhausts on ozone layer. It is worried about that the exhausts from solid propellant rockets cause the ozone depletion in the ozone layer. Some researchers try to develop the analytical model of ozone depletion by rocket exhausts to understand its physical phenomena and to find the effective design of rocket to minimize its effect. However, these models do not include the exhausts from liquid rocket although there are many cases to use solid rocket boosters with a liquid rocket at the same time in practical situations. We constructed combined analytical model include the solid rocket exhausts and liquid rocket exhausts to analyze their effects. From the analytical results, we find that the exhausts from liquid rocket suppress the ozone depletion by solid rocket exhausts.

  4. Instability in a system of two interacting liquid films: Formation of liquid bridges between solid surfaces

    NASA Astrophysics Data System (ADS)

    Forcada, Mikel L.

    1993-01-01

    A theoretical study of systems composed of two solid-supported liquid films that are subject to a mutual attractive interaction reveals the existence of a mechanical instability: for distances closer than a certain threshold value, the system composed by two separate liquid films has no stable equilibrium configurations, and the system collapses to form a single liquid body. The sudden condensation of a connecting liquid bridge when two solid surfaces are brought to close proximity inside an undersaturated medium has been observed experimentally using the surface-force apparatus [see, e.g., Christenson et al., Phys. Rev. B 39, 11750 (1989)]. In this paper, these results are explained as follows: first, liquid films condense on the surfaces; then, if the distance is short enough, the films jump to contact, because of a mechanical instability due to attractive interactions.

  5. Front tracking based modeling of the solid grain growth on the adaptive control volume grid

    NASA Astrophysics Data System (ADS)

    Seredyński, Mirosław; Łapka, Piotr

    2017-07-01

    The paper presents the micro-scale model of unconstrained solidification of the grain immersed in under-cooled liquid, based on the front tracking approach. For this length scale, the interface tracked through the domain is meant as the solid-liquid boundary. To prevent generation of huge meshes the energy transport equation is discretized on the adaptive control volume (c.v.) mesh. The coupling of dynamically changing mesh and moving front position is addressed. Preliminary results of simulation of a test case, the growth of single grain, are presented and discussed.

  6. Fabrication of zinc-dicarboxylate- and zinc-pyrazolate-carboxylate-framework thin films through vapour-solid deposition.

    PubMed

    Medishetty, Raghavender; Zhang, Zongji; Sadlo, Alexander; Cwik, Stefan; Peeters, Daniel; Henke, Sebastian; Mangayarkarasi, Nagarathinam; Devi, Anjana

    2018-05-17

    Fabrication of three-dimensional metal-organic framework (MOF) thin films has been investigated for the first time through the conversion of a ZnO layer via a pure vapour-solid deposition reaction at ambient pressure. The fabrication of MOF thin films with a dicarboxylate linker, (DMA)2[Zn3(bdc)4] (1) (bdc = 1,4-benzenedicarboxylate), and a carboxy-pyrazolate linker, [Zn4O(dmcapz)6] (2) (dmcapz = 3,5-dimethyl-4-carboxypyrazole), involves the deposition of the linker and/or the preparation of a composite film preliminarily and its subsequent conversion into a MOF film using closed cell thermal treatment. Furthermore, it was possible to isolate thin films with a MOF-5 isotype structure grown along the [110] direction, using a carboxy-pyrazolate linker. This was achieved just by the direct reaction of the ZnO film and the organic linker vapors, employing a simple route that demonstrates the feasibility of MOF thin film fabrication using inexpensive routes at ambient pressure.

  7. Dramatically different kinetics and mechanism at solid/liquid and solid/gas interfaces for catalytic isopropanol oxidation over size-controlled platinum nanoparticles.

    PubMed

    Wang, Hailiang; Sapi, Andras; Thompson, Christopher M; Liu, Fudong; Zherebetskyy, Danylo; Krier, James M; Carl, Lindsay M; Cai, Xiaojun; Wang, Lin-Wang; Somorjai, Gabor A

    2014-07-23

    We synthesize platinum nanoparticles with controlled average sizes of 2, 4, 6, and 8 nm and use them as model catalysts to study isopropanol oxidation to acetone in both the liquid and gas phases at 60 °C. The reaction at the solid/liquid interface is 2 orders of magnitude slower than that at the solid/gas interface, while catalytic activity increases with the size of platinum nanoparticles for both the liquid-phase and gas-phase reactions. The activation energy of the gas-phase reaction decreases with the platinum nanoparticle size and is in general much higher than that of the liquid-phase reaction which is largely insensitive to the size of catalyst nanoparticles. Water substantially promotes isopropanol oxidation in the liquid phase. However, it inhibits the reaction in the gas phase. The kinetic results suggest different mechanisms between the liquid-phase and gas-phase reactions, correlating well with different orientations of IPA species at the solid/liquid interface vs the solid/gas interface as probed by sum frequency generation vibrational spectroscopy under reaction conditions and simulated by computational calculations.

  8. Crosslinked Polymer Ionic Liquid/Ionic Liquid Blends Prepared by Photopolymerization as Solid-State Electrolytes in Supercapacitors

    PubMed Central

    Wang, Po-Hsin; Wang, Tzong-Liu; Lin, Wen-Churng; Lin, Hung-Yin; Lee, Mei-Hwa; Yang, Chien-Hsin

    2018-01-01

    A photopolymerization method is used to prepare a mixture of polymer ionic liquid (PIL) and ionic liquid (IL). This mixture is used as a solid-state electrolyte in carbon nanoparticle (CNP)-based symmetric supercapacitors. The solid electrolyte is a binary mixture of a PIL and its corresponding IL. The PIL matrix is a cross-linked polyelectrolyte with an imidazole salt cation coupled with two anions of Br− in PIL-M-(Br) and TFSI− in PIL-M-(TFSI), respectively. The corresponding ionic liquids have imidazolium salt cation coupled with two anions of Br− and TFSI−, respectively. This study investigates the electrochemical characteristics of PILs and their corresponding IL mixtures used as a solid electrolyte in supercapacitors. Results show that a specific capacitance, maximum power density and energy density of 87 and 58 F·g−1, 40 and 48 kW·kg−1, and 107 and 59.9 Wh·kg−1 were achieved in supercapacitors based on (PIL-M-(Br)) and (PIL-M-(TFSI)) solid electrolytes, respectively. PMID:29642456

  9. Manufacturing Solid Dosage Forms from Bulk Liquids Using the Fluid-bed Drying Technology.

    PubMed

    Qi, Jianping; Lu, Y I; Wu, Wei

    2015-01-01

    Solid dosage forms are better than liquid dosage forms in many ways, such as improved physical and chemical stability, ease of storage and transportation, improved handling properties, and patient compliance. Therefore, it is required to transform dosage forms of liquid origins into solid dosage forms. The functional approaches are to absorb the liquids by solid excipients or through drying. The conventional drying technologies for this purpose include drying by heating, vacuum-, freeze- and spray-drying, etc. Among these drying technologies, fluidbed drying emerges as a new technology that possesses unique advantages. Fluid-bed drying or coating is highly efficient in solvent removal, can be performed at relatively low temperatures, and is a one-step process to manufacture formulations in pellet forms. In this article, the status of the art of manufacturing solid dosage forms from bulk liquids by fluid-bed drying technology was reviewed emphasizing on its application in solid dispersion, inclusion complexes, self-microemulsifying systems, and various nanoscale drug delivery systems.

  10. Experimental and simulation studies on grain growth in TiC and WC-based cermets during liquid phase sintering

    NASA Astrophysics Data System (ADS)

    Shin, Soon-Gi

    2000-06-01

    The grain growth behaviors of TiC and WC particles in TiC-Ni, TiC-Mo2C-Ni, WC-Co and WC-VC-Co alloys during liquid phase sintering were investigated for different Ni or Co contents and compared with the results of Monte Carlo simulations. In the experimental study, TiC-Ni and WC-Co alloys had a maximum grain size at a certain liquid volume fraction, while the grain size in TiC-Mo2C-Ni and WC-VC-Co alloys increased monotonically with an increasing liquid volume fraction. These results mean that the grain growth of these alloys cannot be explained by the conventional mechanisms for Ostwald ripening, namely diffusion or reaction controlled processes. Monte Carlo simulations with different energy relationships between solidliquid interfaces predicted the effect of the liquid volume fraction on grain size similar to the experimental results. The contiguous boundaries between solid (carbide) particles appear to influence the grain growth behavior in TiC- and WC-based alloys during liquid phase sintering.

  11. Biogas production from the mechanically pretreated, liquid fraction of sorted organic municipal solid wastes.

    PubMed

    Alvarado-Lassman, A; Méndez-Contreras, J M; Martínez-Sibaja, A; Rosas-Mendoza, E S; Vallejo-Cantú, N A

    2017-06-01

    The high liquid content in fruit and vegetable wastes makes it convenient to mechanically separate these wastes into mostly liquid and solid fractions by means of pretreatment. Then, the liquid fraction can be treated using a high-rate anaerobic biofilm reactor to produce biogas, simultaneously reducing the amount of solids that must be landfilled. In this work, the specific composition of municipal solid waste (MSW) in a public market was determined; then, the sorted organic fraction of municipal solid waste was treated mechanically to separate and characterize the mostly liquid and solid fractions. Then, the mesophilic anaerobic digestion for biogas production of the first fraction was evaluated. The anaerobic digestion resulted in a reduced hydraulic retention time of two days with high removal of chemical oxygen demand, that is, 88% on average, with the additional benefit of reducing the mass of the solids that had to be landfilled by about 80%.

  12. The 3-5 semiconductor solid solution single crystal growth. [low gravity float zone growth experiments using gallium indium antimonides and cadmium tellurides

    NASA Technical Reports Server (NTRS)

    Gertner, E. R.

    1980-01-01

    Techniques used for liquid and vapor phase epitaxy of gallium indium arsenide are described and the difficulties encountered are examined. Results show that the growth of bulk III-V solid solution single crystals in a low gravity environment will not have a major technological impact. The float zone technique in a low gravity environment is demonstrated using cadmium telluride. It is shown that this approach can result in the synthesis of a class of semiconductors that can not be grown in normal gravity because of growth problems rooted in the nature of their phase diagrams.

  13. A new approach of the synthesis of SiO 2 nanowires by using bulk copper foils as catalyst

    DOE PAGES

    Gomez-Martinez, A.; Márquez, F.; Morant, C.

    2016-06-22

    In this paper, a novel procedure for the growth of SiO 2 nanowires (SiO 2NWs) directly from polycrystalline copper foils is reported. The single-step synthesis procedure consists of a thermal treatment at 900°C without the need for additional catalysts. As a result, nanowires with an average diameter of 100 nm are synthesized. A systematic study undertaken at different stages of the SiO 2NWs growth confirmed the generation of nucleation centers on the Cu surface, as well as revealed the existence of an intermediate gaseous SiO species at the synthesis temperature. Lastly, on the basis of these evidences, the vapor-liquid-solid (VLS)more » route has been proposed as the mechanism responsible for the growth.« less

  14. Improvement of the Processes of Liquid-Phase Epitaxial Growth of Nanoheteroepitaxial Structures

    NASA Astrophysics Data System (ADS)

    Maronchuk, I. I.; Sanikovich, D. D.; Potapkov, P. V.; Vel‧chenko, A. A.

    2018-05-01

    We have revealed the shortcomings of equipment and technological approaches in growing nanoheteroepitaxial structures with quantum dots by liquid-phase epitaxy. We have developed and fabricated a new vertical barreltype cassette for growing quantum dots and epitaxial layers of various thicknesses in one technological process. A physico-mathematical simulation has been carried out of the processes of liquid-phase epitaxial growth of quantumdimensional structures with the use of the program product SolidWorks (FlowSimulation program). Analysis has revealed the presence of negative factors influencing the growth process of the above structures. The mathematical model has been optimized, and the equipment has been modernized without additional experiments and measurements. The flow dynamics of the process gas in the reactor at various flow rates has been investigated. A method for tuning the thermal equipment has been developed. The calculated and experimental temperature distributions in the process of growing structures with high reproducibility are in good agreement, which confirms the validity of the modernization made.

  15. Solids precipitation in crude oils, gas-to-liquids and their blends

    NASA Astrophysics Data System (ADS)

    Ramanathan, Karthik

    Gas-to-liquids (GTL) liquids are obtained from syngas by the Fischer-Tropsch synthesis. The blending of GTL liquids produced from natural gas/coal reserves and crude oils is a possibility in the near future for multiple reasons. Solids precipitation is a major problem in pipelines and refineries leading to significant additional operating costs. The effect of the addition of a paraffinic GTL liquid to crude oils on solids precipitation was investigated in this study. A Fourier transform infrared (FT-IR) spectroscopic technique was used to obtain solid-liquid equilibria (SLE) data for the various samples. The SLE of multiple systems of model oils composed of n-alkanes was investigated preliminarily. Blends of a model oil simulating a GTL liquid composition and a crude oil showed that the wax precipitation temperature (WPT) decreased upon blending. Three crude oils from different geographic regions (Alaskan North Slope, Colorado and Venezuela) and a laboratory-produced GTL liquid were used in the preparation of blends with five different concentrations of the GTL liquid. The wax precipitation temperatures of the blends were found to decrease with the increasing addition of the GTL liquid for all the oils. This effect was attributed to the solvent effect of the low molecular weight-paraffinic GTL liquid on the crude oils. The weight percent solid precipitated that was estimated as a function of temperature did not show a uniform trend for the set of crude oils. The asphaltene onset studies done on the blends with near-infrared spectroscopy indicated that the addition of GTL liquid could have a stabilizing effect on the asphaltenes in some oils. Analytical techniques such as distillation, solvent separation, HPLC, GC, and GPC were used to obtain detailed composition data on the samples. Two sets of compositional data with 49 and 86 pseudo-components were used to describe the three crude oils used in the blending work. The wax precipitation was calculated using a

  16. Dislocation-induced nanoparticle decoration on a GaN nanowire.

    PubMed

    Yang, Bing; Yuan, Fang; Liu, Qingyun; Huang, Nan; Qiu, Jianhang; Staedler, Thorsten; Liu, Baodan; Jiang, Xin

    2015-02-04

    GaN nanowires with homoepitaxial decorated GaN nanoparticles on their surface along the radial direction have been synthesized by means of a chemical vapor deposition method. The growth of GaN nanowires is catalyzed by Au particles via the vapor-liquid-solid (VLS) mechanism. Screw dislocations are generated along the radial direction of the nanowires under slight Zn doping. In contrast to the metal-catalyst-assisted VLS growth, GaN nanoparticles are found to prefer to nucleate and grow at these dislocation sites. High-resolution transmission electron microscopy (HRTEM) analysis demonstrates that the GaN nanoparticles possess two types of epitaxial orientation with respect to the corresponding GaN nanowire: (I) [1̅21̅0]np//[1̅21̅0]nw, (0001)np//(0001)nw; (II) [1̅21̅3]np//[12̅10]nw, (101̅0)np//(101̅0)nw. An increased Ga signal in the energy-dispersive spectroscopy (EDS) profile lines of the nanowires suggests GaN nanoparticle growth at the edge surface of the wires. All the crystallographic results confirm the importance of the dislocations with respect to the homoepitaxial growth of the GaN nanoparticles. Here, screw dislocations situated on the (0001) plane provide the self-step source to enable nucleation of the GaN nanoparticles.

  17. Method for removing solid particulate material from within liquid fuel injector assemblies

    DOEpatents

    Simandl, Ronald F.; Brown, John D.; Andriulli, John B.; Strain, Paul D.

    1998-01-01

    A method for removing residual solid particulate material from the interior of liquid fuel injectors and other fluid flow control mechanisms having or being operatively associated with a flow-regulating fixed or variable orifice. The method comprises the sequential and alternate introduction of columns of a non-compressible liquid phase and columns of a compressed gas phase into the body of a fuel injector whereby the expansion of each column of the gas phase across the orifice accelerates the liquid phase in each trailing column of the liquid phase and thereby generates turbulence in each liquid phase for lifting and entraining the solid particulates for the subsequent removal thereof from the body of the fuel injector.

  18. Growth in liquid or solid media.

    PubMed

    Elbing, K L; Brent, R

    2001-05-01

    This appendix presents basic procedures for growing overnight (and larger) cultures, monitoring growth, and titering and isolating bacterial cultures by serial dilution. In addition, protocols are provided for isolating single colonies by streaking and spreading a plate. Replica plating and strain storage/retrieval is also detailed.

  19. Molecular dynamics study of solid-liquid heat transfer and passive liquid flow

    NASA Astrophysics Data System (ADS)

    Yesudasan Daisy, Sumith

    High heat flux removal is a challenging problem in boilers, electronics cooling, concentrated photovoltaic and other power conversion devices. Heat transfer by phase change is one of the most efficient mechanisms for removing heat from a solid surface. Futuristic electronic devices are expected to generate more than 1000 W/cm2 of heat. Despite the advancements in microscale and nanoscale manufacturing, the maximum passive heat flux removal has been 300 W/cm2 in pool boiling. Such limitations can be overcome by developing nanoscale thin-film evaporation based devices, which however require a better understanding of surface interactions and liquid vapor phase change process. Evaporation based passive flow is an inspiration from the transpiration process that happens in trees. If we can mimic this process and develop heat removal devices, then we can develop efficient cooling devices. The existing passive flow based cooling devices still needs improvement to meet the future demands. To improve the efficiency and capacity of these devices, we need to explore and quantify the passive flow happening at nanoscales. Experimental techniques have not advanced enough to study these fundamental phenomena at the nanoscale, an alternative method is to perform theoretical study at nanoscales. Molecular dynamics (MD) simulation is a widely accepted powerful tool for studying a range of fundamental and engineering problems. MD simulations can be utilized to study the passive flow mechanism and heat transfer due to it. To study passive flow using MD, apart from the conventional methods available in MD, we need to have methods to simulate the heat transfer between solid and liquid, local pressure, surface tension, density, temperature calculation methods, realistic boundary conditions, etc. Heat transfer between solid and fluids has been a challenging area in MD simulations, and has only been minimally explored (especially for a practical fluid like water). Conventionally, an

  20. Growth of Solid Solution Crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, S. L.; Szofran, F. R.; Holland, L. R.

    1985-01-01

    The major objective of this program is to determine the conditions under which single crystals of solid solutions can be grown from the melt in a Bridgman configuration with a high degree of chemical homogeneity. The central aim is to assess the role of gravity in the growth process and to explore the possible advantages for growth in the absence of gravity. The alloy system being investigated is the solid solution semiconductor with x-values appropriate for infrared detector applications in Hg sub (1-x) Cd sub x Te the 8 to 14 micro m wavelength region. Both melt and Te-solvent growth are being considered. The study consists of an extensive ground-based experimental and theoretical research effort followed by flight experimentation where appropriate. Experimental facilities have been established for the purification, casting, and crystal growth of the alloy system. Facilities have been also established for the metallurgical, compositional, electric and optical characterization of the alloys. Crystals are being grown by the Bridgman-Stockbarger method and are analyzed by various experimental techniques to evaluate the effects of growth conditions on the longitudinal and radial compositional variations and defect densities in the crystals.

  1. Methods and systems for monitoring a solid-liquid interface

    DOEpatents

    Stoddard, Nathan G.; Clark, Roger F.; Kary, Tim

    2010-07-20

    Methods and systems are provided for monitoring a solid-liquid interface, including providing a vessel configured to contain an at least partially melted material; detecting radiation reflected from a surface of a liquid portion of the at least partially melted material that is parallel with the liquid surface; measuring a disturbance on the surface; calculating at least one frequency associated with the disturbance; and determining a thickness of the liquid portion based on the at least one frequency, wherein the thickness is calculated based on.times. ##EQU00001## where g is the gravitational constant, w is the horizontal width of the liquid, and f is the at least one frequency.

  2. Pyridinium ionic liquid-based liquid-solid extraction of inorganic and organic iodine from Laminaria.

    PubMed

    Peng, Li-Qing; Yu, Wen-Yan; Xu, Jing-Jing; Cao, Jun

    2018-01-15

    A simple, green and effective extraction method, namely, pyridinium ionic liquid- (IL) based liquid-solid extraction (LSE), was first designed to extract the main inorganic and organic iodine compounds (I - , monoiodo-tyrosine (MIT) and diiodo-tyrosine (DIT)). The optimal extraction conditions were as follows: ultrasonic intensity 100W, IL ([EPy]Br) concentration 200mM, extraction time 30min, liquid/solid ratio 10mL/g, and pH value 6.5. The morphologies of Laminaria were studied by scanning electron microscopy and transmission electron microscopy. The recovery values of I - , MIT and DIT from Laminaria were in the range of 88% to 94%, and limits of detection were in the range of 59.40 to 283.6ng/g. The proposed method was applied to the extraction and determination of iodine compounds in three Laminaria. The results showed that IL-based LSE could be a promising method for rapid extraction of bioactive iodine from complex food matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Ultra-low temperature (≤300 °C) growth of Ge-rich SiGe by solid-liquid-coexisting annealing of a-GeSn/c-Si structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadoh, Taizoh, E-mail: sadoh@ed.kyushu-u.ac.jp; Chikita, Hironori; Miyao, Masanobu

    2015-09-07

    Ultra-low temperature (≤300 °C) growth of Ge-rich SiGe on Si substrates is strongly desired to realize advanced electronic and optical devices, which can be merged onto Si large-scale integrated circuits (LSI). To achieve this, annealing characteristics of a-GeSn/c-Si structures are investigated under wide ranges of the initial Sn concentrations (0%–26%) and annealing conditions (300–1000 °C, 1 s–48 h). Epitaxial growth triggered by SiGe mixing is observed after annealing, where the annealing temperatures necessary for epitaxial growth significantly decrease with increasing initial Sn concentration and/or annealing time. As a result, Ge-rich (∼80%) SiGe layers with Sn concentrations of ∼2% are realized by ultra-low temperature annealingmore » (300 °C, 48 h) for a sample with the initial Sn concentration of 26%. The annealing temperature (300 °C) is in the solid-liquid coexisting temperature region of the phase diagram for Ge-Sn system. From detailed analysis of crystallization characteristics and composition profiles in grown layers, it is suggested that SiGe mixing is generated by a liquid-phase reaction even at ultra-low temperatures far below the melting temperature of a-GeSn. This ultra-low-temperature growth technique of Ge-rich SiGe on Si substrates is expected to be useful to realize next-generation LSI, where various multi-functional devices are integrated on Si substrates.« less

  4. Porous Molecular Solids and Liquids

    PubMed Central

    2017-01-01

    Until recently, porous molecular solids were isolated curiosities with properties that were eclipsed by porous frameworks, such as metal–organic frameworks. Now molecules have emerged as a functional materials platform that can have high levels of porosity, good chemical stability, and, uniquely, solution processability. The lack of intermolecular bonding in these materials has also led to new, counterintuitive states of matter, such as porous liquids. Our ability to design these materials has improved significantly due to advances in computational prediction methods. PMID:28691065

  5. Fermi energy dependence of the optical emission in core/shell InAs nanowire homostructures

    NASA Astrophysics Data System (ADS)

    Möller, M.; Oliveira, D. S.; Sahoo, P. K.; Cotta, M. A.; Iikawa, F.; Motisuke, P.; Molina-Sánchez, A.; de Lima, M. M., Jr.; García-Cristóbal, A.; Cantarero, A.

    2017-07-01

    InAs nanowires grown by vapor-liquid-solid (VLS) method are investigated by photoluminescence. We observe that the Fermi energy of all samples is reduced by ˜20 meV when the size of the Au nanoparticle used for catalysis is increased from 5 to 20 nm. Additional capping with a thin InP shell enhances the optical emission and does not affect the Fermi energy. The unexpected behavior of the Fermi energy is attributed to the differences in the residual donor (likely carbon) incorporation in the axial (low) and lateral (high incorporation) growth in the VLS and vapor-solid (VS) methods, respectively. The different impurity incorporation rate in these two regions leads to a core/shell InAs homostructure. In this case, the minority carriers (holes) diffuse to the core due to the built-in electric field created by the radial impurity distribution. As a result, the optical emission is dominated by the core region rather than by the more heavily doped InAs shell. Thus, the photoluminescence spectra and the Fermi energy become sensitive to the core diameter. These results are corroborated by a theoretical model using a self-consistent method to calculate the radial carrier distribution and Fermi energy for distinct diameters of Au nanoparticles.

  6. Glass fabrics self-cracking catalytic growth of boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Jilin; Peng, Daijang; Long, Fei; Wang, Weimin; Gu, Yunle; Mo, Shuyi; Zou, Zhengguang; Fu, Zhengyi

    2017-02-01

    Glass fabrics were used to fabricate boron nitride nanotubes (BNNTs) with a broad diameter range through a combined chemical vapor deposition and self-propagation high-temperature synthesis (CVD-SHS) method at different holding times (0min, 30min, 90min, 180min and 360min). SEM characterization has been employed to investigate the macro and micro structure/morphology changes of the glass fabrics and BNNTs in detail. SEM image analysis has provided direct experimental evidences for the rationality of the optimized self-cracking catalyst VLS growth mechanism, including the transformation situations of the glass fabrics and the BNNTs growth processes respectively. This paper was the further research and compensation for the theory and experiment deficiencies in the new preparation method of BNNTs reported in our previous work. In addition, it is likely that the distinctive self-cracking catalyst VLS growth mechanism could provide a new idea to preparation of other inorganic functional nano-materials using similar one-dimensional raw materials as growth templates and catalysts.

  7. Modelling the Effect of Fruit Growth on Surface Conductance to Water Vapour Diffusion

    PubMed Central

    GIBERT, CAROLINE; LESCOURRET, FRANÇOISE; GÉNARD, MICHEL; VERCAMBRE, GILLES; PÉREZ PASTOR, ALEJANDRO

    2005-01-01

    • Background and Aims A model of fruit surface conductance to water vapour diffusion driven by fruit growth is proposed. It computes the total fruit conductance by integrating each of its components: stomata, cuticle and cracks. • Methods The stomatal conductance is computed from the stomatal density per fruit and the specific stomatal conductance. The cuticular component is equal to the proportion of cuticle per fruit multiplied by its specific conductance. Cracks are assumed to be generated when pulp expansion rate exceeds cuticle expansion rate. A constant percentage of cracks is assumed to heal each day. The proportion of cracks to total fruit surface area multiplied by the specific crack conductance accounts for the crack component. The model was applied to peach fruit (Prunus persica) and its parameters were estimated from field experiments with various crop load and irrigation regimes. • Key Results The predictions were in good agreement with the experimental measurements and for the different conditions (irrigation and crop load). Total fruit surface conductance decreased during early growth as stomatal density, and hence the contribution of the stomatal conductance, decreased from 80 to 20 % with fruit expansion. Cracks were generated for fruits exhibiting high growth rates during late growth and the crack component could account for up to 60 % of the total conductance during the rapid fruit growth. The cuticular contribution was slightly variable (around 20 %). Sensitivity analysis revealed that simulated conductance was highly affected by stomatal parameters during the early period of growth and by both crack and stomatal parameters during the late period. Large fruit growth rate leads to earlier and greater increase of conductance due to higher crack occurrence. Conversely, low fruit growth rate accounts for a delayed and lower increase of conductance. • Conclusions By predicting crack occurrence during fruit growth, this model could be helpful

  8. Method for removing solid particulate material from within liquid fuel injector assemblies

    DOEpatents

    Simandl, R.F.; Brown, J.D.; Andriulli, J.B.; Strain, P.D.

    1998-09-08

    A method is described for removing residual solid particulate material from the interior of liquid fuel injectors and other fluid flow control mechanisms having or being operatively associated with a flow-regulating fixed or variable orifice. The method comprises the sequential and alternate introduction of columns of a non-compressible liquid phase and columns of a compressed gas phase into the body of a fuel injector whereby the expansion of each column of the gas phase across the orifice accelerates the liquid phase in each trailing column of the liquid phase and thereby generates turbulence in each liquid phase for lifting and entraining the solid particulates for the subsequent removal thereof from the body of the fuel injector. 1 fig.

  9. Liquid-vapour surface sensors for liquid nitrogen and hydrogen

    NASA Technical Reports Server (NTRS)

    Siegwarth, J. D.; Voth, R. O.; Snyder, S. M.

    1992-01-01

    The present paper identifies devices to serve as liquid-vapor detectors in zero gravity. The testing in LH2 was done in a sealed glass Dewar system to eliminate any chance of mixing H2 and air. Most of the tests were performed with the leads to the sensor horizontal. Some results of rapid cycle testing of LVDG in LH2 are presented. Findings of rapid-cycle testing of LVDG in LH2 are discussed. The sensor crossed the liquid surface when the position sensor registered 1.9 V, which occurred at about 0.4075 s. The delay time was about 1.5 ms. From the estimated slope of the position sensor curve at 1.9 V, the velocity of the sensor through the liquid surface is over 3 m/s. Results of tests of optical sensors are presented as well.

  10. Analysing the mechanisms of soil water and vapour transport in the desert vadose zone of the extremely arid region of northern China

    NASA Astrophysics Data System (ADS)

    Du, Chaoyang; Yu, Jingjie; Wang, Ping; Zhang, Yichi

    2018-03-01

    The transport of water and vapour in the desert vadose zone plays a critical role in the overall water and energy balances of near-surface environments in arid regions. However, field measurements in extremely dry environments face many difficulties and challenges, so few studies have examined water and vapour transport processes in the desert vadose zone. The main objective of this study is to analyse the mechanisms of soil water and vapour transport in the desert vadose zone (depth of ∼350 cm) by using measured and modelled data in an extremely arid environment. The field experiments are implemented in an area of the Gobi desert in northwestern China to measure the soil properties, daily soil moisture and temperature, daily water-table depth and temperature, and daily meteorological records from DOYs (Days of Year) 114-212 in 2014 (growing season). The Hydrus-1D model, which simulates the coupled transport of water, vapour and heat in the vadose zone, is employed to simulate the layered soil moisture and temperature regimes and analyse the transport processes of soil water and vapour. The measured results show that the soil water and temperatures near the land surface have visible daily fluctuations across the entire soil profile. Thermal vapour movement is the most important component of the total water flux and the soil temperature gradient is the major driving factor that affects vapour transport in the desert vadose zone. The most active water and heat exchange occurs in the upper soil layer (depths of 0-25 cm). The matric potential change from the precipitation mainly re-draws the spatio-temporal distribution of the isothermal liquid water in the soil near the land surface. The matric potential has little effect on the isothermal vapour and thermal liquid water flux. These findings offer new insights into the liquid water and vapour movement processes in the extremely arid environment.

  11. A Simple Approach to Characterize Gas-Aqueous Liquid Two-phase Flow Configuration Based on Discrete Solid-Liquid Contact Electrification

    PubMed Central

    Choi, Dongwhi; Lee, Donghyeon; Sung Kim, Dong

    2015-01-01

    In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two–phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid–liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability. PMID:26462437

  12. Liquid membrane coated ion-exchange column solids

    DOEpatents

    Barkey, Dale P.

    1988-01-01

    This invention relates to a method for improving the performance of liquid membrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selective for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.

  13. Liquid membrane coated ion-exchange column solids

    DOEpatents

    Barkey, Dale P.

    1989-01-01

    This invention relates to a method for improving the performance of liquid embrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selected for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.

  14. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.

    PubMed

    Liu, Mingjie; Zheng, Yongmei; Zhai, Jin; Jiang, Lei

    2010-03-16

    Super-antiwetting interfaces, such as superhydrophobic and superamphiphobic surfaces in air and superoleophobic interfaces in water, with special liquid-solid adhesion have recently attracted worldwide attention. Through tuning surface microstructures and compositions to achieve certain solid/liquid contact modes, we can effectively control the liquid-solid adhesion in a super-antiwetting state. In this Account, we review our recent progress in the design and fabrication of these bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Low-adhesion superhydrophobic surfaces are biologically inspired, typically by the lotus leaf. Wettability investigated at micro- and nanoscale reveals that the low adhesion of the lotus surface originates from the composite contact mode, a microdroplet bridging several contacts, within the hierarchical structures. Recently high-adhesion superhydrophobic surfaces have also attracted research attention. These surfaces are inspired by the surfaces of gecko feet and rose petals. Accordingly, we propose two biomimetic approaches for the fabrication of high-adhesion superhydrophobic surfaces. First, to mimic a sticky gecko's foot, we designed structures with nanoscale pores that could trap air isolated from the atmosphere. In this case, the negative pressure induced by the volume change of sealed air as the droplet is pulled away from surface can produce a normal adhesive force. Second, we constructed microstructures with size and topography similar to that of a rose petal. The resulting materials hold air gaps in their nanoscale folds, controlling the superhydrophobicity in a Wenzel state on the microscale. Furthermore, we can tune the liquid-solid adhesion on the same superhydrophobic surface by dynamically controlling the orientations of microstructures without altering the surface composition. The superhydrophobic wings of the butterfly (Morpho aega) show directional adhesion: a droplet easily rolls off the surface

  15. The Science of Detached Bridgman Growth and Solutocapillary Convection in Solid Solution Crystals

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Volz, M. P.; Cobb, S. D.; Motakef, S.; Croell, A.; Dold, P.

    2001-01-01

    Bridgman and Float-zone crystal growth experiments are planned for NASA's First Materials Science Research Rack using the European Space Agency's Materials Science Laboratory with the Low Gradient Furnace (LGF) and Float Zone Furnace with Rotating Magnetic Field (FMF) inserts, respectively. Samples will include germanium and germanium-silicon alloys with up to 10 atomic percent silicon. The Bridgman part of the investigation includes detached growth samples and so there will be a solid-liquid-gas tri-junction in those experiments just as there will be in all float-zone experiments. There are other similarities as well as significant differences between the types of growth that will be discussed. The presentation will call attention to the reasons that experiments in microgravity will provide information unattainable from Earth-based experiments.

  16. Investigation of surface charge density on solid-liquid interfaces by modulating the electrical double layer.

    PubMed

    Moon, Jong Kyun; Song, Myung Won; Pak, Hyuk Kyu

    2015-05-20

    A solid surface in contact with water or aqueous solution usually carries specific electric charges. These surface charges attract counter ions from the liquid side. Since the geometry of opposite charge distribution parallel to the solid-liquid interface is similar to that of a capacitor, it is called an electrical double layer capacitor (EDLC). Therefore, there is an electrical potential difference across an EDLC in equilibrium. When a liquid bridge is formed between two conducting plates, the system behaves as two serially connected EDLCs. In this work, we propose a new method for investigating the surface charge density on solid-liquid interfaces. By mechanically modulating the electrical double layers and simultaneously applying a dc bias voltage across the plates, an ac electric current can be generated. By measuring the voltage drop across a load resistor as a function of bias voltage, we can study the surface charge density on solid-liquid interfaces. Our experimental results agree very well with the simple equivalent electrical circuit model proposed here. Furthermore, using this method, one can determine the polarity of the adsorbed state on the solid surface depending on the material used. We expect this method to aid in the study of electrical phenomena on solid-liquid interfaces.

  17. Microvolume trace environmental analysis using peak-focusing online solid-phase extraction-nano-liquid chromatography-high-resolution mass spectrometry.

    PubMed

    Stravs, Michael A; Mechelke, Jonas; Ferguson, P Lee; Singer, Heinz; Hollender, Juliane

    2016-03-01

    Online solid-phase extraction was combined with nano-liquid chromatography coupled to high-resolution mass spectrometry (HRMS) for the analysis of micropollutants in environmental samples from small volumes. The method was validated in surface water, Microcystis aeruginosa cell lysate, and spent Microcystis growth medium. For 41 analytes, quantification limits of 0.1-28 ng/L (surface water) and 0.1-32 ng/L (growth medium) were obtained from only 88 μL of sample. In cell lysate, quantification limits ranged from 0.1-143 ng/L or 0.33-476 ng/g dry weight from a sample of 88 μL, or 26 μg dry weight, respectively. The method matches the sensitivity of established online and offline solid-phase extraction-liquid chromatography-mass spectrometry methods but requires only a fraction of the sample used by those techniques, and is among the first applications of nano-LC-MS for environmental analysis. The method was applied to the determination of bioconcentration in Microcystis aeruginosa in a laboratory experiment, and the benefit of coupling to HRMS was demonstrated in a transformation product screening.

  18. Characterization of rhamnolipids by liquid chromatography/mass spectrometry after solid-phase extraction.

    PubMed

    Behrens, Beate; Engelen, Jeannine; Tiso, Till; Blank, Lars Mathias; Hayen, Heiko

    2016-04-01

    Rhamnolipids are surface-active agents with a broad application potential that are produced in complex mixtures by bacteria of the genus Pseudomonas. Analysis from fermentation broth is often characterized by laborious sample preparation and requires hyphenated analytical techniques like liquid chromatography coupled to mass spectrometry (LC-MS) to obtain detailed information about sample composition. In this study, an analytical procedure based on chromatographic method development and characterization of rhamnolipid sample material by LC-MS as well as a comparison of two sample preparation methods, i.e., liquid-liquid extraction and solid-phase extraction, is presented. Efficient separation was achieved under reversed-phase conditions using a mixed propylphenyl and octadecylsilyl-modified silica gel stationary phase. LC-MS/MS analysis of a supernatant from Pseudomonas putida strain KT2440 pVLT33_rhlABC grown on glucose as sole carbon source and purified by solid-phase extraction revealed a total of 20 congeners of di-rhamnolipids, mono-rhamnolipids, and their biosynthetic precursors 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) with different carbon chain lengths from C8 to C14, including three rhamnolipids with uncommon C9 and C11 fatty acid residues. LC-MS and the orcinol assay were used to evaluate the developed solid-phase extraction method in comparison with the established liquid-liquid extraction. Solid-phase extraction exhibited higher yields and reproducibility as well as lower experimental effort.

  19. Solid-Liquid Lithium Electrolyte Nanocomposites Derived from Porous Molecular Cages.

    PubMed

    Petronico, Aaron; Moneypenny, Timothy P; Nicolau, Bruno G; Moore, Jeffrey S; Nuzzo, Ralph G; Gewirth, Andrew A

    2018-06-20

    We demonstrate that solid-liquid nanocomposites derived from porous organic cages are effective lithium ion electrolytes at room temperature. A solid-liquid electrolyte nanocomposite (SLEN) fabricated from a LiTFSI/DME electrolyte system and a porous organic cage exhibits ionic conductivity on the order of 1 × 10 -3 S cm -1 . With an experimentally measured activation barrier of 0.16 eV, this composite is characterized as a superionic conductor. Furthermore, the SLEN displays excellent oxidative stability up to 4.7 V vs Li/Li + . This simple three-component system enables the rational design of electrolytes from tunable discrete molecular architectures.

  20. Supercooled and glassy water: Metastable liquid(s), amorphous solid(s), and a no-man’s land

    PubMed Central

    Handle, Philip H.; Sciortino, Francesco

    2017-01-01

    We review the recent research on supercooled and glassy water, focusing on the possible origins of its complex behavior. We stress the central role played by the strong directionality of the water–water interaction and by the competition between local energy, local entropy, and local density. In this context we discuss the phenomenon of polyamorphism (i.e., the existence of more than one disordered solid state), emphasizing both the role of the preparation protocols and the transformation between the different disordered ices. Finally, we present the ongoing debate on the possibility of linking polyamorphism with a liquid–liquid transition that could take place in the no-man’s land, the temperature–pressure window in which homogeneous nucleation prevents the investigation of water in its metastable liquid form. PMID:29133419

  1. Solid surface vs. liquid surface: nanoarchitectonics, molecular machines, and DNA origami.

    PubMed

    Ariga, Katsuhiko; Mori, Taizo; Nakanishi, Waka; Hill, Jonathan P

    2017-09-13

    The investigation of molecules and materials at interfaces is critical for the accumulation of new scientific insights and technological advances in the chemical and physical sciences. Immobilization on solid surfaces permits the investigation of different properties of functional molecules or materials with high sensitivity and high spatial resolution. Liquid surfaces also present important media for physicochemical innovation and insight based on their great flexibility and dynamicity, rapid diffusion of molecular components for mixing and rearrangements, as well as drastic spatial variation in the prevailing dielectric environment. Therefore, a comparative discussion of the relative merits of the properties of materials when positioned at solid or liquid surfaces would be informative regarding present-to-future developments of surface-based technologies. In this perspective article, recent research examples of nanoarchitectonics, molecular machines, DNA nanotechnology, and DNA origami are compared with respect to the type of surface used, i.e. solid surfaces vs. liquid surfaces, for future perspectives of interfacial physics and chemistry.

  2. Micropyrolyzer for chemical analysis of liquid and solid samples

    DOEpatents

    Mowry, Curtis D.; Morgan, Catherine H.; Manginell, Ronald P.; Frye-Mason, Gregory C.

    2006-07-18

    A micropyrolyzer has applications to pyrolysis, heated chemistry, and thermal desorption from liquid or solid samples. The micropyrolyzer can be fabricated from semiconductor materials and metals using standard integrated circuit technologies. The micropyrolyzer enables very small volume samples of less than 3 microliters and high sample heating rates of greater than 20.degree. C. per millisecond. A portable analyzer for the field analysis of liquid and solid samples can be realized when the micropyrolyzer is combined with a chemical preconcentrator, chemical separator, and chemical detector. Such a portable analyzer can be used in a variety of government and industrial applications, such as non-proliferation monitoring, chemical and biological warfare detection, industrial process control, water and air quality monitoring, and industrial hygiene.

  3. Adsorbed water and thin liquid films on Mars

    NASA Astrophysics Data System (ADS)

    Boxe, C. S.; Hand, K. P.; Nealson, K. H.; Yung, Y. L.; Yen, A. S.; Saiz-Lopez, A.

    2012-07-01

    At present, bulk liquid water on the surface and near-subsurface of Mars does not exist due to the scarcity of condensed- and gas-phase water, pressure and temperature constraints. Given that the nuclei of soil and ice, that is, the soil solid and ice lattice, respectively, are coated with adsorbed and/or thin liquid films of water well below 273 K and the availability of water limits biological activity, we quantify lower and upper limits for the thickness of such adsorbed/water films on the surface of the Martian regolith and for subsurface ice. These limits were calculated based on experimental and theoretical data for pure water ice and water ice containing impurities, where water ice containing impurities exhibit thin liquid film enhancements, ranging from 3 to 90. Close to the cold limit of water stability (i.e. 273 K), thin liquid film thicknesses at the surface of the Martian regolith is 0.06 nm (pure water ice) and ranges from 0.2 to 5 nm (water ice with impurities). An adsorbed water layer of 0.06 nm implies a dessicated surface as the thickness of one monolayer of water is 0.3 nm but represents 0.001-0.02% of the Martian atmospheric water vapour inventory. Taking into account the specific surface area (SSA) of surface-soil (i.e. top 1 mm of regolith and 0.06 nm adsorbed water layer), shows Martian surface-soil may contain interfacial water that represents 6-66% of the upper- and lower-limit atmospheric water vapour inventory and almost four times and 33%, the lower- and upper-limit Martian atmospheric water vapour inventory. Similarly, taking the SSA of Martian soil, the top 1 mm or regolith at 5 nm thin liquid water thickness, yields 1.10×1013 and 6.50×1013 litres of waters, respectively, 55-325 times larger than Mars' atmospheric water vapour inventory. Film thicknesses of 0.2 and 5 nm represent 2.3×104-1.5×106 litres of water, which is 6.0×10-7-4.0×10-4%, respectively, of a 10 pr μm water vapour column, and 3.0×10-6-4.0×10-4% and 6.0×10

  4. Theoretical Foundation of Zisman's Empirical Equation for Wetting of Liquids on Solid Surfaces

    ERIC Educational Resources Information Center

    Zhu, Ruzeng; Cui, Shuwen; Wang, Xiaosong

    2010-01-01

    Theories of wetting of liquids on solid surfaces under the condition that van der Waals force is dominant are briefly reviewed. We show theoretically that Zisman's empirical equation for wetting of liquids on solid surfaces is a linear approximation of the Young-van der Waals equation in the wetting region, and we express the two parameters in…

  5. Ionic liquids as electrolytes for Li-ion batteries-An overview of electrochemical studies

    NASA Astrophysics Data System (ADS)

    Lewandowski, Andrzej; Świderska-Mocek, Agnieszka

    The paper reviews properties of room temperature ionic liquids (RTILs) as electrolytes for lithium and lithium-ion batteries. It has been shown that the formation of the solid electrolyte interface (SEI) on the anode surface is critical to the correct operation of secondary lithium-ion batteries, including those working with ionic liquids as electrolytes. The SEI layer may be formed by electrochemical transformation of (i) a molecular additive, (ii) RTIL cations or (iii) RTIL anions. Such properties of RTIL electrolytes as viscosity, conductivity, vapour pressure and lithium-ion transport numbers are also discussed from the point of view of their influence on battery performance.

  6. Stomatal dynamics are limited by leaf hydraulics in ferns and conifers: results from simultaneous measurements of liquid and vapour fluxes in leaves.

    PubMed

    Martins, Samuel C V; McAdam, Scott A M; Deans, Ross M; DaMatta, Fábio M; Brodribb, Tim J

    2016-03-01

    Stomatal responsiveness to vapour pressure deficit (VPD) results in continuous regulation of daytime gas-exchange directly influencing leaf water status and carbon gain. Current models can reasonably predict steady-state stomatal conductance (gs ) to changes in VPD but the gs dynamics between steady-states are poorly known. Here, we used a diverse sample of conifers and ferns to show that leaf hydraulic architecture, in particular leaf capacitance, has a major role in determining the gs response time to perturbations in VPD. By using simultaneous measurements of liquid and vapour fluxes into and out of leaves, the in situ fluctuations in leaf water balance were calculated and appeared to be closely tracked by changes in gs thus supporting a passive model of stomatal control. Indeed, good agreement was found between observed and predicted gs when using a hydropassive model based on hydraulic traits. We contend that a simple passive hydraulic control of stomata in response to changes in leaf water status provides for efficient stomatal responses to VPD in ferns and conifers, leading to closure rates as fast or faster than those seen in most angiosperms. © 2015 John Wiley & Sons Ltd.

  7. Evaluation of target efficiencies for solid-liquid separation steps in biofuels production.

    PubMed

    Kochergin, Vadim; Miller, Keith

    2011-01-01

    Development of liquid biofuels has entered a new phase of large scale pilot demonstration. A number of plants that are in operation or under construction face the task of addressing the engineering challenges of creating a viable plant design, scaling up and optimizing various unit operations. It is well-known that separation technologies account for 50-70% of both capital and operating cost. Additionally, reduction of environmental impact creates technological challenges that increase project cost without adding to the bottom line. Different technologies vary in terms of selection of unit operations; however, solid-liquid separations are likely to be a major contributor to the overall project cost. Despite the differences in pretreatment approaches, similar challenges arise for solid-liquid separation unit operations. A typical process for ethanol production from biomass includes several solid-liquid separation steps, depending on which particular stream is targeted for downstream processing. The nature of biomass-derived materials makes it either difficult or uneconomical to accomplish complete separation in a single step. Therefore, setting realistic efficiency targets for solid-liquid separations is an important task that influences overall process recovery and economics. Experimental data will be presented showing typical characteristics for pretreated cane bagasse at various stages of processing into cellulosic ethanol. Results of generic material balance calculations will be presented to illustrate the influence of separation target efficiencies on overall process recoveries and characteristics of waste streams.

  8. Performance evaluation of laser induced breakdown spectroscopy in the measurement of liquid and solid samples

    NASA Astrophysics Data System (ADS)

    Bilge, Gonca; Sezer, Banu; Boyaci, Ismail Hakki; Eseller, Kemal Efe; Berberoglu, Halil

    2018-07-01

    Liquid analysis by using LIBS is a complicated process due to difficulties encountered during the collection of light and formation of plasma in liquid. To avoid these, some applications are performed such as aerosol formation and transforming liquid into solid state. However, performance of LIBS in liquid samples still remains a challenging issue. In this study, performance evaluation of LIBS and parameter optimizations in liquid and solid phase samples were performed. For this purpose, milk was chosen as model sample; milk powder was used as solid sample, and milk was used as liquid sample in the experiments. Different experimental setups have been constructed for each sampling technique, and optimizations were performed to determine suitable parameters such as delay time, laser energy, repetition rate and speed of rotary table for solid sampling technique, and flow rate of carrier gas for liquid sampling technique. Target element was determined as Ca, which is a critically important element in milk for determining its nutritional value and Ca addition. In optimum parameters, limit of detection (LOD), limit of quantification (LOQ) and relative standard deviation (RSD) values were calculated as 0.11%, 0.36% and 8.29% respectively for milk powders samples; while LOD, LOQ and RSD values were calculated as 0.24%, 0.81%, and 10.93% respectively for milk samples. It can be said that LIBS is an applicable method in both liquid and solid samples with suitable systems and parameters. However, liquid analysis requires much more developed systems for more accurate results.

  9. Direct numerical simulation of gas-solid-liquid flows with capillary effects: An application to liquid bridge forces between spherical particles.

    PubMed

    Sun, Xiaosong; Sakai, Mikio

    2016-12-01

    In this study, a numerical method is developed to perform the direct numerical simulation (DNS) of gas-solid-liquid flows involving capillary effects. The volume-of-fluid method employed to track the free surface and the immersed boundary method is adopted for the fluid-particle coupling in three-phase flows. This numerical method is able to fully resolve the hydrodynamic force and capillary force as well as the particle motions arising from complicated gas-solid-liquid interactions. We present its application to liquid bridges among spherical particles in this paper. By using the DNS method, we obtain the static bridge force as a function of the liquid volume, contact angle, and separation distance. The results from the DNS are compared with theoretical equations and other solutions to examine its validity and suitability for modeling capillary bridges. Particularly, the nontrivial liquid bridges formed in triangular and tetrahedral particle clusters are calculated and some preliminary results are reported. We also perform dynamic simulations of liquid bridge ruptures subject to axial stretching and particle motions driven by liquid bridge action, for which accurate predictions are obtained with respect to the critical rupture distance and the equilibrium particle position, respectively. As shown through the simulations, the strength of the present method is the ability to predict the liquid bridge problem under general conditions, from which models of liquid bridge actions may be constructed without limitations. Therefore, it is believed that this DNS method can be a useful tool to improve the understanding and modeling of liquid bridges formed in complex gas-solid-liquid flows.

  10. Solid-liquid surface tensions of critical nuclei and nucleation barriers from a phase-field-crystal study of a model binary alloy using finite system sizes.

    PubMed

    Choudhary, Muhammad Ajmal; Kundin, Julia; Emmerich, Heike; Oettel, Martin

    2014-08-01

    Phase-field-crystal (PFC) modeling has emerged as a computationally efficient tool to address crystal growth phenomena on atomistic length and diffusive time scales. We use a two-dimensional phase-field-crystal model for a binary system based on Elder et al. [Phys. Rev. B 75, 064107 (2007)] to study critical nuclei and their liquid-solid phase boundaries, in particular the nucleus size dependence of the liquid-solid interface tension as well as of the nucleation barrier. Critical nuclei are stabilized in finite systems of various sizes, however, the extracted interface tension as function of the nucleus radius r is independent of system size. We suggest a phenomenological expression to describe the dependence of the extracted interface tension on the nucleus radius r for the liquid-solid system. Moreover, the numerical PFC results show that this dependency can not be fully described by the nonclassical Tolman formula.

  11. Spin Crossover in Solid and Liquid (Mg,Fe)O at Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Stixrude, L. P.; Holmstrom, E.

    2016-12-01

    Ferropericlase, (Mg,Fe)O, is a major constituent of the Earth's lowermantle (24-136 GPa). Understanding the properties of this component is importantnot only in the solid state, but also in the molten state, as theplanet almost certainly hosted an extensive magma ocean initiallyWith increasing pressure, the Fe ions in the material begin to collapse from a magnetic to a nonmagnetic spin state. This crossover affects thermodynamic, transport, and electrical properties.Using first-principles molecular dynamics simulations,thermodynamic integration, and adiabatic switching, we present a phasediagram of the spin crossover In both solid and liquid, we find a broad pressure range of coexisting magnetic and non-magnetic ions due to the favorable enthalpy of mixing of the two. In the solid increasingtemperature favors the high spin state, while in the liquid the oppositeoccurs, due to the higher electronic entropy of the low spin state. Becausethe physics of the crossover differ in solid and liquid, melting produces a large change in spin state that may affect the buoyancy of crystals freezing from the magma ocean in the earliest Earth.

  12. Reliable determination of oxygen and hydrogen isotope ratios in atmospheric water vapour adsorbed on 3A molecular sieve.

    PubMed

    Han, Liang-Feng; Gröning, Manfred; Aggarwal, Pradeep; Helliker, Brent R

    2006-01-01

    The isotope ratio of atmospheric water vapour is determined by wide-ranging feedback effects from the isotope ratio of water in biological water pools, soil surface horizons, open water bodies and precipitation. Accurate determination of atmospheric water vapour isotope ratios is important for a broad range of research areas from leaf-scale to global-scale isotope studies. In spite of the importance of stable isotopic measurements of atmospheric water vapour, there is a paucity of published data available, largely because of the requirement for liquid nitrogen or dry ice for quantitative trapping of water vapour. We report results from a non-cryogenic method for quantitatively trapping atmospheric water vapour using 3A molecular sieve, although water is removed from the column using standard cryogenic methods. The molecular sieve column was conditioned with water of a known isotope ratio to 'set' the background signature of the molecular sieve. Two separate prototypes were developed, one for large collection volumes (3 mL) and one for small collection volumes (90 microL). Atmospheric water vapour was adsorbed to the column by pulling air through the column for several days to reach the desired final volume. Water was recovered from the column by baking at 250 degrees C in a dry helium or nitrogen air stream and cryogenically trapped. For the large-volume apparatus, the recovered water differed from water that was simultaneously trapped by liquid nitrogen (the experimental control) by 2.6 per thousand with a standard deviation (SD) of 1.5 per thousand for delta(2)H and by 0.3 per thousand with a SD of 0.2 per thousand for delta(18)O. Water-vapour recovery was not satisfactory for the small volume apparatus. Copyright (c) 2006 John Wiley & Sons, Ltd.

  13. Surface waves on floating liquids induced by ultrasound field

    NASA Astrophysics Data System (ADS)

    Geng, D. L.; Xie, W. J.; Yan, N.; Wei, B.

    2013-01-01

    We demonstrate a kind of wave pattern on the surface of floating liquids in a modulated ultrasound field. The waves are related to the liquid/solid phase transformation process. The nucleation sites of the eutectics locate at the center of these waves, and the eutectic growth direction is parallel to the propagation direction of the waves. It is revealed that such wave phenomenon can be ascribed to the interaction between ultrasound and eutectic growth at the liquid/solid interface. This result may provide a potential method for fabricating wave patterned surfaces on eutectic alloys.

  14. Growth of low temperature silicon nano-structures for electronic and electrical energy generation applications

    PubMed Central

    2013-01-01

    This paper represents the lowest growth temperature for silicon nano-wires (SiNWs) via a vapour-liquid–solid method, which has ever been reported in the literature. The nano-wires were grown using plasma-enhanced chemical vapour deposition technique at temperatures as low as 150°C using gallium as the catalyst. This study investigates the structure and the size of the grown silicon nano-structure as functions of growth temperature and catalyst layer thickness. Moreover, the choice of the growth temperature determines the thickness of the catalyst layer to be used. The electrical and optical characteristics of the nano-wires were tested by incorporating them in photovoltaic solar cells, two terminal bistable memory devices and Schottky diode. With further optimisation of the growth parameters, SiNWs, grown by our method, have promising future for incorporation into high performance electronic and optical devices. PMID:23413969

  15. Vapor-liquid-solid epitaxial growth of Si 1-xGe x alloy nanowires. Composition dependence on precursor reactivity and morphology control for vertical forests

    DOE PAGES

    Choi, S. G.; Manandhar, P.; Picraux, S. T.

    2015-07-07

    The growth of high-density group IV alloy nanowire forests is critical for exploiting their unique functionalities in many applications. Here, the compositional dependence on precursor reactivity and optimized conditions for vertical growth are studied for Si 1- x Ge x alloy nanowires grown by the vapor-liquid-solid method. The nanowire composition versus gas partial-pressure ratio for germane-silane and germane-disilane precursor combinations is obtained at 350°C over a wide composition range (0.05 ≤ x ≤ 0.98) and a generalized model to predict composition for alloy nanowires is developed based on the relative precursor partial pressures and reactivity ratio. In combination with germane,more » silane provides more precise compositional control at high Ge concentrations (x > 0.7), whereas disilane greatly increases the Si concentration for a given gas ratio and enables more precise alloy compositional control at small Ge concentrations (x < 0.3). Vertically oriented, non-kinking nanowire forest growth on Si (111) substrates is then discussed for silane/germane over a wide range of compositions, with temperature and precursor partial pressure optimized by monitoring the nanowire growth front using in-situ optical reflectance. For high Ge compositions (x ≈ 0.9), a “two-step” growth approach with nucleation at higher temperatures results in nanowires with high-density and uniform vertical orientation. Furthermore, increasing Si content (x ≈ 0.8), the optimal growth window is shifted to higher temperatures, which minimizes nanowire kinking morphologies. For Si-rich Si 1- x Ge x alloys (x ≈ 0.25), vertical nanowire growth is enhanced by single-step, higher-temperature growth at reduced pressures.« less

  16. EFFECT OF Mg AND TEMPERATURE ON Fe-Al ALLOY LAYER IN Fe/(Zn-6%Al-x%Mg) SOLID-LIQUID DIFFUSION COUPLES

    NASA Astrophysics Data System (ADS)

    Liang, Liu; Liu, Ya-Ling; Liu, Ya; Peng, Hao-Ping; Wang, Jian-Hua; Su, Xu-Ping

    Fe/(Zn-6%Al-x%Mg) solid-liquid diffusion couples were kept at various temperatures for different periods of time to investigate the formation and growth of the Fe-Al alloy layer. Scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffraction (XRD) were used to study the constituents and morphology of the Fe-Al alloy layer. It was found that the Fe2Al5Znx phase layer forms close to the iron sheet and the FeAl3Znx phase layer forms near the side of the melted Zn-6%Al-3%Mg in diffusion couples. When the Fe/(Zn-6%Al-3%Mg) diffusion couple is kept at 510∘C for more than 15min, a continuous Fe-Al alloy layer is formed on the interface of the diffusion couple. Among all Fe/(Zn-6%Al-x%Mg) solid-liquid diffusion couples, the Fe-Al alloy layer on the interface of the Fe/(Zn-6% Al-3% Mg) diffusion couple is the thinnest. The Fe-Al alloy layer forms only when the diffusion temperature is above 475∘. These results show that the Fe-Al alloy layer in Fe/(Zn-6%Al-x%Mg) solid-liquid diffusion couples is composed of Fe2Al5Znx and FeAl3Znx phase layers. Increasing the diffusing temperature and time period would promote the formation and growth of the Fe-Al alloy layer. When the Mg content in the Fe/(Zn-6%Al-x%Mg) diffusion couples is 3%, the growth of the Fe-Al alloy layer is inhibited. These results may explain why there is no obvious Fe-Al alloy layer formed on the interface of steel with a Zn-6%Al-3%Mg coating.

  17. Liquid Lubricants for Spacecraft Applications

    NASA Astrophysics Data System (ADS)

    Gill, S.; Rowntree, A.

    Liquid lubricants used for spacecraft have advantages over solid lubricants but there are also disadvantages to consider. The challenge is to ensure that the liquid lubricant does not disappear from the mechanism by evaporation or creep. Lubricants can be used as fluids or formulated as greases. The liquids can be highly refined hydrocarbons, PAOs, silicones, polyol esters (POEs), multiply alkylated cycloparaffins, (MACs) or various perfluoropolyethers (PFPEs). Greases are made from these liquids using thickeners such as lithium, calcium or sodium soaps, PTFE, graphite or lead. Operational temperatures range from - 45°C to over 100°C. Low vapour pressures are crucial, below 10-8 mbar at 20°C and total weight loss must be <1% for general applications, <0.1% for optical applications. 'Surface creep rates' must be low, temperature gradients and surface Ra are important factors. The wear rates for standard tests using different lubricants vary over several orders of magnitude for different lubricants, surface coatings and rpm. Unexpected effects, such as PTFE 'plating out' at low rpm, occur. The main issues are to prevent the lubricant escaping from working areas and to protect it from degradation by chemical reactions or radiation.

  18. Dynamics of Solid-Liquid Composite Beams

    NASA Astrophysics Data System (ADS)

    Matia, Yoav; Gat, Amir

    2017-11-01

    Solid-liquid composite structures received considerable attention in recent years in various fields such as smart materials, sensors, actuators and soft-robotics. We examine a beam-like appendage embedded with a set of a fluid-filled bladders, interconnected via elastic slender channels; a common arrangement in the abovementioned fields. Viscous flow within such structures is coupled with the elastic deformation of the solid. Beam deformation both creates, and is induced by, a fluidic pressure gradient and viscous flow which deforms the bladders and thus the surrounding solid. Applying concepts from poroelastic analysis, we obtain a set of three interdependent equations relating the fluidic pressure within the channel to the transverse and longitudinal displacements of the beam. Exact and approximate solutions are presented for various configurations. The results are validated and supplemented by a transient three-dimensional numerical study of the fluid-structure-interaction. The two-way coupled fluid-structure-interaction model allows the analysis and design of soft smart-metamaterials with unique mechanical properties, to applications such as touch-sensing surfaces, energy harvesting and protective gear.

  19. Numerical Simulation of Polysilicon Solid-liquid Interface Transmogrification in Heat Transfer Process

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Ma, Wenhui; Lv, Guoqiang; Zhang, Mingyu

    2018-01-01

    The shape of solid-liquid interface during the directional solidification process, which is difficult to be observed and measured in actual processes, controls the grain orientation and grain size of polysilicon ingot. We carried out numerical calculations of the directional solidification progress of polycrystalline silicon and invested the means to deal with the latent heat of solidification in numerical simulation. The distributions of the temperature field of the melt for the crystallization progress as well as the transformation of the solid-liquid interface were obtained. The simulation results are consistent with the experimental outcomes. The results show that the curvature of solid-liquid interface is small and stability, larger grain sized columnar crystal can be grown in the laboratory-scale furnace at a solidification rate of 10 μm•s-1. It shall provide important theoretical basis for metallurgical process and polysilicon production technology.

  20. Direct Synthesis of Silicon Nanowires, Silica Nanospheres, Wire-Like Nanosphere Agglomerates, and Silica-Based Nanotubes and Nanofiber Arrays

    DTIC Science & Technology

    2001-01-01

    decades, the vapor-liquid-solid (VLS) process, ’ 2 where gold particles act as a mediating solvent on a silicon substrate, forming a molten alloy, has...34Nanocatalysis: Selective Conversion of Ethanol to Acetaldehyde Using Monoatomically Dispersed Copper on Silica Nanospheres", Journal of Catalysis, submitted. 7.Sales literature, Cabot Corporation. C5.9.8 Nanoparticles in Biology

  1. Human Apolipoprotein A1 at Solid/Liquid and Liquid/Gas Interfaces.

    PubMed

    Dogan, Susanne; Paulus, Michael; Forov, Yury; Weis, Christopher; Kampmann, Matthias; Cewe, Christopher; Kiesel, Irena; Degen, Patrick; Salmen, Paul; Rehage, Heinz; Tolan, Metin

    2018-04-12

    An X-ray reflectivity study on the adsorption behavior of human apolipoprotein A1 (apoA1) at hydrophilic and hydrophobic interfaces is presented. It is shown that the protein interacts via electrostatic and hydrophobic interactions with the interfaces, resulting in the absorption of the protein. pH dependent measurements at the solid/liquid interface between silicon dioxide and aqueous protein solution show that in a small pH range between pH 4 and 6, adsorption is increased due to electrostatic attraction. Here, the native shape of the protein seems to be conserved. In contrast, the adsorption at the liquid/gas interface is mainly driven by hydrophobic effects, presumably by extending the hydrophobic regions of the amphipathic helices, and results in a conformational change of the protein during adsorption. However, the addition of differently charged membrane-forming lipids at the liquid/gas interface illustrates the ability of apoA1 to include lipids, resulting in a depletion of the lipids from the interface.

  2. Mucous solids and liquid secretion by airways: studies with normal pig, cystic fibrosis human, and non-cystic fibrosis human bronchi

    PubMed Central

    Martens, Chelsea J.; Inglis, Sarah K.; Valentine, Vincent G.; Garrison, Jennifer; Conner, Gregory E.

    2011-01-01

    To better understand how airways produce thick airway mucus, nonvolatile solids were measured in liquid secreted by bronchi from normal pig, cystic fibrosis (CF) human, and non-CF human lungs. Bronchi were exposed to various secretagogues and anion secretion inhibitors to induce a range of liquid volume secretion rates. In all three groups, the relationship of solids concentration (percent nonvolatile solids) to liquid volume secretion rate was curvilinear, with higher solids concentration associated with lower rates of liquid volume secretion. In contrast, the secretion rates of solids mass and water mass as functions of liquid volume secretion rates exhibited positive linear correlations. The y-intercepts of the solids mass-liquid volume secretion relationships for all three groups were positive, thus accounting for the higher solids concentrations in airway liquid at low rates of secretion. Predictive models derived from the solids mass and water mass linear equations fit the experimental percent solids data for the three groups. The ratio of solids mass secretion to liquid volume secretion was 5.2 and 2.4 times higher for CF bronchi than for pig and non-CF bronchi, respectively. These results indicate that normal pig, non-CF human, and CF human bronchi produce a high-percent-solids mucus (>8%) at low rates of liquid volume secretion (≤1.0 μl·cm−2·h−1). However, CF bronchi produce mucus with twice the percent solids (∼8%) of pig or non-CF human bronchi at liquid volume secretion rates ≥4.0 μl·cm−2·h−1. PMID:21622844

  3. 30 CFR 250.217 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What solid and liquid wastes and discharges... of Exploration Plans (ep) § 250.217 What solid and liquid wastes and discharges information and cooling water intake information must accompany the EP? The following solid and liquid wastes and...

  4. Polymer-encapsulated carbon capture liquids that tolerate precipitation of solids for increased capacity

    DOEpatents

    Aines, Roger D; Bourcier, William L; Spadaccini, Christopher M; Stolaroff, Joshuah K

    2015-02-03

    A system for carbon dioxide capture from flue gas and other industrial gas sources utilizes microcapsules with very thin polymer shells. The contents of the microcapsules can be liquids or mixtures of liquids and solids. The microcapsules are exposed to the flue gas and other industrial gas and take up carbon dioxide from the flue gas and other industrial gas and eventual precipitate solids in the capsule.

  5. Solid tumors are poroelastic solids with a chemo-mechanical feedback on growth.

    PubMed

    Ambrosi, D; Pezzuto, S; Riccobelli, D; Stylianopoulos, T; Ciarletta, P

    2017-12-01

    The experimental evidence that a feedback exists between growth and stress in tumors poses challenging questions. First, the rheological properties (the "constitutive equations") of aggregates of malignant cells are still a matter of debate. Secondly, the feedback law (the "growth law") that relates stress and mitotic-apoptotic rate is far to be identified. We address these questions on the basis of a theoretical analysis of in vitro and in vivo experiments that involve the growth of tumor spheroids. We show that solid tumors exhibit several mechanical features of a poroelastic material, where the cellular component behaves like an elastic solid. When the solid component of the spheroid is loaded at the boundary, the cellular aggregate grows up to an asymptotic volume that depends on the exerted compression. Residual stress shows up when solid tumors are radially cut, highlighting a peculiar tensional pattern. By a novel numerical approach we correlate the measured opening angle and the underlying residual stress in a sphere. The features of the mechanobiological system can be explained in terms of a feedback of mechanics on the cell proliferation rate as modulated by the availability of nutrient, that is radially damped by the balance between diffusion and consumption. The volumetric growth profiles and the pattern of residual stress can be theoretically reproduced assuming a dependence of the target stress on the concentration of nutrient which is specific of the malignant tissue.

  6. Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid.

    PubMed

    Yang, Chunpeng; Fu, Kun; Zhang, Ying; Hitz, Emily; Hu, Liangbing

    2017-09-01

    High-energy lithium-metal batteries are among the most promising candidates for next-generation energy storage systems. With a high specific capacity and a low reduction potential, the Li-metal anode has attracted extensive interest for decades. Dendritic Li formation, uncontrolled interfacial reactions, and huge volume effect are major hurdles to the commercial application of Li-metal anodes. Recent studies have shown that the performance and safety of Li-metal anodes can be significantly improved via organic electrolyte modification, Li-metal interface protection, Li-electrode framework design, separator coating, and so on. Superior to the liquid electrolytes, solid-state electrolytes are considered able to inhibit problematic Li dendrites and build safe solid Li-metal batteries. Inspired by the bright prospects of solid Li-metal batteries, increasing efforts have been devoted to overcoming the obstacles of solid Li-metal batteries, such as low ionic conductivity of the electrolyte and Li-electrolyte interfacial problems. Here, the approaches to protect Li-metal anodes from liquid batteries to solid-state batteries are outlined and analyzed in detail. Perspectives regarding the strategies for developing Li-metal anodes are discussed to facilitate the practical application of Li-metal batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Solid coatings deposited from liquid methyl methacrylate via Plasma Polymerization

    NASA Astrophysics Data System (ADS)

    Wurlitzer, Lisa; Maus-Friedrichs, Wolfgang; Dahle, Sebastian

    2016-09-01

    The polymerization of methyl methacrylate via plasma discharges is well known today. Usually, plasma-enhanced chemical vapor deposition (PECVD) is used to deposit polymer coatings. Solid coatings are formed out of the liquid phase from methyl methacrylate via dielectric barrier discharge. The formation of the coating proceeds in the gas and the liquid phase. To learn more about the reactions in the two phases, the coatings from MMA monomer will be compared to those from MMA resin. Finally, attenuated total reflection infrared spectroscopy, confocal laser scanning microscopy and X-ray photoelectron spectroscopy are employed to characterize the solid coatings. In conclusion, the plasma enhanced chemical solution deposition is compared to the classical thermal polymerization of MMA.

  8. Fabrication and electrical characterization of silicon nanowires based resistors

    NASA Astrophysics Data System (ADS)

    Ni, L.; Demami, F.; Rogel, R.; Salaün, A. C.; Pichon, L.

    2009-11-01

    Silicon nanowires (SiNWs) are synthesized via the Vapor-Liquid-Solid (VLS) mechanism using gold (Au) as metal catalyst and silane (SiH4) as precursor gas. Au nanoparticles are employed as liquid droplets catalysis during the SiNWs growth performed in a hot wall LPCVD reactor at 480°C and 40 Pa. SiNWs local synthesis at micron scale is demonstrated using classical optical photolithography process. SiNWs grow with high density anchored at the dedicated catalyst islands. This resulting network is used to interconnect two heavily doped polysilicon interdigitated electrodes leading to the formation of electrical resistors in a coplanar structure. Current-voltage (I-V) characteristics highlight a symmetric shape. The temperature dependence of the electrical resistance is activated, with activation energy of 0.47 eV at temperatures greater than 300K.

  9. Dry-Surface Simulation Method for the Determination of the Work of Adhesion of Solid-Liquid Interfaces.

    PubMed

    Leroy, Frédéric; Müller-Plathe, Florian

    2015-08-04

    We introduce a methodology, referred to as the dry-surface method, to calculate the work of adhesion of heterogeneous solid-liquid interfaces by molecular simulation. This method employs a straightforward thermodynamic integration approach to calculate the work of adhesion as the reversible work to turn off the attractive part of the actual solid-liquid interaction potential. It is formulated in such a way that it may be used either to evaluate the ability of force fields to reproduce reference values of the work of adhesion or to optimize force-field parameters with reference values of the work of adhesion as target quantities. The methodology is tested in the case of water on a generic model of nonpolar substrates with the structure of gold. It is validated through a quantitative comparison to phantom-wall calculations and against a previous characterization of the thermodynamics of the gold-water interface. It is found that the work of adhesion of water on nonpolar substrates is a nonlinear function of the microscopic solid-liquid interaction energy parameter. We also comment on the ability of mean-field approaches to predict the work of adhesion of water on nonpolar substrates. In addition, we discuss in detail the information on the solid-liquid interfacial thermodynamics delivered by the phantom-wall approach. We show that phantom-wall calculations yield the solid-liquid interfacial tension relative to the solid surface tension rather than the absolute solid-liquid interfacial tension as previously believed.

  10. A Study on Optimal Sizing of Pipeline Transporting Equi-sized Particulate Solid-Liquid Mixture

    NASA Astrophysics Data System (ADS)

    Asim, Taimoor; Mishra, Rakesh; Pradhan, Suman; Ubbi, Kuldip

    2012-05-01

    Pipelines transporting solid-liquid mixtures are of practical interest to the oil and pipe industry throughout the world. Such pipelines are known as slurry pipelines where the solid medium of the flow is commonly known as slurry. The optimal designing of such pipelines is of commercial interests for their widespread acceptance. A methodology has been evolved for the optimal sizing of a pipeline transporting solid-liquid mixture. Least cost principle has been used in sizing such pipelines, which involves the determination of pipe diameter corresponding to the minimum cost for given solid throughput. The detailed analysis with regard to transportation of slurry having solids of uniformly graded particles size has been included. The proposed methodology can be used for designing a pipeline for transporting any solid material for different solid throughput.

  11. Ginzburg-Landau theory for the solid-liquid interface of bcc elements

    NASA Technical Reports Server (NTRS)

    Shih, W. H.; Wang, Z. Q.; Zeng, X. C.; Stroud, D.

    1987-01-01

    Consideration is given to a simple order-parameter theory for the interfacial tension of body-centered-cubic solids in which the principal order parameter is the amplitude of the density wave at the smallest nonzero reciprocal-lattice vector of the solid. The parameters included in the theory are fitted to the measured heat of fusion, melting temperature, and solid-liquid density difference, and to the liquid structure factor and its temperature derivative at freezing. Good agreement is found with experiment for Na and Fe and the calculated anisotropy of the surface tension among different crystal faces is of the order of 2 percent. On the basis of various assumptions about the universal behavior of bcc crystals at melting, the formalism predicts that the surface tension is proportional to the heat of fusion per surface atom.

  12. 30 CFR 250.248 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What solid and liquid wastes and discharges...) § 250.248 What solid and liquid wastes and discharges information and cooling water intake information must accompany the DPP or DOCD? The following solid and liquid wastes and discharges information and...

  13. Liquid and Solid Meal Replacement Products Differentially Affect Postprandial Appetite and Food Intake in Older Adults

    PubMed Central

    Stull, April J.; Apolzan, John W.; Thalacker-Mercer, Anna E.; Iglay, Heidi B.; Campbell, Wayne W.

    2008-01-01

    Liquid and solid foods are documented to elicit differential appetitive and food intake responses. This study was designed to assess the influences of liquid vs solid meal replacement products on postprandial appetite ratings and subsequent food intake in healthy older adults. This study used a randomized and crossover design with two 1-day trials (1 week between trials), and 24 adults (12 men and 12 women) aged 50 to 80 years with body mass index (calculated as kg/m2) between 22 and 30 participated. After an overnight fast, the subjects consumed meal replacement products as either a beverage (liquid) or a bar (solid). The meal replacement products provided 25% of each subject's daily estimated energy needs with comparable macro-nutrient compositions. Subjects rated their appetite on a 100 mm quasilogarithmic visual analog scale before and 15, 30, 45, 60, 90, 120, and 150 minutes after consuming the meal replacement product. At minute 120, each subject consumed cooked oatmeal ad libitum to a “comfortable level of fullness.” Postprandial composite (area under the curve from minute 15 to minute 120) hunger was higher (P=0.04) for the liquid vs solid meal replacement products and desire to eat (P=0.15), preoccupation with thoughts of food (P=0.07), and fullness (P=0.25) did not differ for the liquid vs solid meal replacement products. On average, the subjects consumed 13.4% more oatmeal after the liquid vs solid (P=0.006) meal replacement product. These results indicate that meal replacement products in liquid and solid form do not elicit comparable appetitive and ingestive behavior responses and that meal replacement products in liquid form blunt the postprandial decline in hunger and increase subsequent food intake in older adults. PMID:18589034

  14. Liquid-phase and solid-phase microwave irradiations for reduction of graphite oxide

    NASA Astrophysics Data System (ADS)

    Zhao, Na; Wen, Chen-Yu; Zhang, David Wei; Wu, Dong-Ping; Zhang, Zhi-Bin; Zhang, Shi-Li

    2014-12-01

    In this paper, two microwave irradiation methods: (i) liquid-phase microwave irradiation (MWI) reduction of graphite oxide suspension dissolved in de-ionized water and N, N-dimethylformamide, respectively, and (ii) solid-phase MWI reduction of graphite oxide powder have been successfully carried out to reduce graphite oxide. The reduced graphene oxide products are thoroughly characterized by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectral analysis, Raman spectroscopy, UV-Vis absorption spectral analysis, and four-point probe conductivity measurements. The results show that both methods can efficiently remove the oxygen-containing functional groups attached to the graphite layers, though the solid-phase MWI reduction method can obtain far more efficiently a higher quality-reduced graphene oxide with fewer defects. The I(D)/I(G) ratio of the solid-phase MWI sample is as low as 0.46, which is only half of that of the liquid-phase MWI samples. The electrical conductivity of the reduced graphene oxide by the solid method reaches 747.9 S/m, which is about 25 times higher than that made by the liquid-phase method.

  15. The ESA DUE GlobVapour Project

    NASA Astrophysics Data System (ADS)

    Schröder, M.; ESA Due Globvapour Project Team

    2010-12-01

    The European Space Agency (ESA) Data User Element (DUE) project series aims at bridging the gap between research projects and the sustainable provision of Earth Observation (EO) climate data products at an information level that fully responds to the operational needs of user communities. The ultimate objective of GlobVapour is to provide long-term coherent water vapour data sets exploiting the synergistic capabilities of different EO missions aiming at improved accuracies and enhanced temporal and spatial sampling better than those provided by the single sources. The project seeks to utilize the increasing potential of the synergistic capabilities of past, existing and upcoming satellite missions (ERS-1 and -2, ENVISAT, METOP, MSG as well as relevant non-European missions and in-situ data) in order to meet the increasing needs for coherent long-term water vapour datasets required by the scientific community. GlobVapour develops, validates and applies novel water vapour climate data sets derived from various sensors. More specifically, the primary objectives of the GlobVapour project are: 1)The development of multi-annual global water vapour data sets inclusive of error estimates based on carefully calibrated and inter-calibrated radiances. 2)The validation of the water vapour products against ground based, airborne and other satellite based measurements. 3) The provision of an assessment of the quality of different IASI water vapour profile algorithms developed by the project partners and other groups. 4) The provision of a complete processing system that can further strengthen operational production of the developed products. 5) A demonstration of the use of the products in the field of climate modelling, including applying alternative ways of climate model validation using forward radiation operators. 6) The promotion of the strategy of data set construction and the data sets themselves to the global research and operational community. The ultimate goal of the

  16. Molecular dynamics study of the growth of a metal nanoparticle array by solid dewetting

    NASA Astrophysics Data System (ADS)

    Luan, Yanhua; Li, Yanru; Nie, Tiaoping; Yu, Jun; Meng, Lijun

    2018-03-01

    We investigated the effect of the substrate and the ambient temperature on the growth of a metal nanoparticle array (nanoarray) on a solid-patterned substrate by dewetting a Au liquid film using an atomic simulation technique. The patterned substrate was constructed by introducing different interaction potentials for two atom groups ( C 1 and C 2) in the graphene-like substrate. The C 1 group had a stronger interaction between the Au film and the substrate and was composed of regularly distributed circular disks with radius R and distance D between the centers of neighboring disks. Our simulation results demonstrate that R and D have a strikingly different influence on the growth of the nanoparticle arrays. The degree of order of the nanoarray increases first before it reaches a peak and then decreases for increasing R at fixed D. However, the degree of order increases monotonously when D is increased and reaches a saturated value beyond a critical value of D for a fixed R. Interestingly, a labyrinth-like structure appeared during the dewetting process of the metal film. The simulation results also indicated that the temperature was an important factor in controlling the properties of the nanoarray. An appropriate temperature leads to an optimized nanoarray with a uniform grain size and well-ordered particle distribution. These results are important for understanding the dewetting behaviors of metal films on solid substrates and understanding the growth of highly ordered metal nanoarrays using a solid-patterned substrate method.

  17. Catalyst-substrate interaction and growth delay in vapor-liquid-solid nanowire growth.

    PubMed

    Kolíbal, Miroslav; Pejchal, Tomáš; Musálek, Tomáš; Šikola, Tomáš

    2018-05-18

    Understanding of the initial stage of nanowire growth on a bulk substrate is crucial for the rational design of nanowire building blocks in future electronic and optoelectronic devices. Here, we provide in situ scanning electron microscopy and Auger microscopy analysis of the initial stage of Au-catalyzed Ge nanowire growth on different substrates. Real-time microscopy imaging and elementally resolved spectroscopy clearly show that the catalyst dissolves the underlying substrate if held above a certain temperature. If the substrate dissolution is blocked (or in the case of heteroepitaxy) the catalyst needs to be filled with nanowire material from the external supply, which significantly increases the initial growth delay. The experiments presented here reveal the important role of the substrate in metal-catalyzed nanowire growth and pave the way for different growth delay mitigation strategies.

  18. Multilayer graphene growth on polar dielectric substrates using chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Karamat, S.; Çelik, K.; Shah Zaman, S.; Oral, A.

    2018-06-01

    High quality of graphene is necessary for its applications at industrial scale production. The most convenient way is its direct growth on dielectrics which avoid the transfer route of graphene from metal to dielectric substrate usually followed by graphene community. The choice of a suitable dielectric for the gate material which can replace silicon dioxide (SiO2) is in high demand. Various properties like permittivity, thermodynamic stability, film morphology, interface quality, bandgap and band alignment of other dielectrics with graphene needs more exploration. A potential dielectric material is required which could be used to grow graphene with all these qualities. Direct growth of graphene on magnesium oxide (MgO) substrates is an interesting idea and will be a new addition in the library of 2D materials. The present work is about the direct growth of graphene on MgO substrates by an ambient pressure chemical vapour deposition (CVD) method. We address the surface instability issue of the polar oxides which is the most challenging factor in MgO. Atomic force microscopy (AFM) measurements showed the topographical features of the graphene coated on MgO. X-ray photoelectron spectroscopy (XPS) study is carried out to extract information regarding the presence of necessary elements, their bonding with substrates and to confirm the sp-2 hybridization of carbon, which is a characteristic feature of graphene film. The chemical shift is due to the surface reconstruction of MgO in the prepared samples. For graphene-MgO interface, valence band offset (VBO) and conduction band offset (CBO) extracted from valence band spectra reported. Further, we predicted the energy band diagram for single layer and thin film of graphene. By using the room-temperature energy band gap values of MgO and graphene, the CBO is calculated to be 6.85 eV for single layer and 5.66 eV for few layer (1-3) of graphene layers.

  19. Liquid gallium ball/crystalline silicon polyhedrons/aligned silicon oxide nanowires sandwich structure: An interesting nanowire growth route

    NASA Astrophysics Data System (ADS)

    Pan, Zheng Wei; Dai, Sheng; Beach, David B.; Lowndes, Douglas H.

    2003-10-01

    We demonstrate the growth of silicon oxide nanowires through a sandwich-like configuration, i.e., Ga ball/Si polyhedrons/silicon oxide nanowires, by using Ga as the catalyst and SiO powder as the source material. The sandwich-like structures have a carrot-like morphology, consisting of three materials with different morphologies, states, and crystallographic structures. The "carrot" top is a liquid Ga ball with diameter of ˜10-30 μm; the middle part is a Si ring usually composed of about 10 μm-sized, clearly faceted, and crystalline Si polyhedrons that are arranged sequentially in a band around the lower hemisphere surface of the Ga ball; the bottom part is a carrot-shaped bunch of highly aligned silicon oxide nanowires that grow out from the downward facing facets of the Si polyhedrons. This study reveals several interesting nanowire growth phenomena that enrich the conventional vapor-liquid-solid nanowire growth mechanism.

  20. Thermodynamic Investigation of the Effect of Interface Curvature on the Solid-Liquid Equilibrium and Eutectic Point of Binary Mixtures.

    PubMed

    Liu, Fanghui; Zargarzadeh, Leila; Chung, Hyun-Joong; Elliott, Janet A W

    2017-10-12

    Thermodynamic phase behavior is affected by curved interfaces in micro- and nanoscale systems. For example, capillary freezing point depression is associated with the pressure difference between the solid and liquid phases caused by interface curvature. In this study, the thermal, mechanical, and chemical equilibrium conditions are derived for binary solid-liquid equilibrium with a curved solid-liquid interface due to confinement in a capillary. This derivation shows the equivalence of the most general forms of the Gibbs-Thomson and Ostwald-Freundlich equations. As an example, the effect of curvature on solid-liquid equilibrium is explained quantitatively for the water/glycerol system. Considering the effect of a curved solid-liquid interface, a complete solid-liquid phase diagram is developed over a range of concentrations for the water/glycerol system (including the freezing of pure water or precipitation of pure glycerol depending on the concentration of the solution). This phase diagram is compared with the traditional phase diagram in which the assumption of a flat solid-liquid interface is made. We show the extent to which nanoscale interface curvature can affect the composition-dependent freezing and precipitating processes, as well as the change in the eutectic point temperature and concentration with interface curvature. Understanding the effect of curvature on solid-liquid equilibrium in nanoscale capillaries has applications in the food industry, soil science, cryobiology, nanoporous materials, and various nanoscience fields.

  1. Science 101: What Is the Difference between Solids and Liquids?

    ERIC Educational Resources Information Center

    Robertson, Bill

    2013-01-01

    Figuring out the difference between liquids and solids seems like a silly question at first. After all, don't we know that liquids do not have a definite shape and therefore assume the shape of their container? Place a drop of water in a short glass. Does this water take the shape of the glass? Nope. It just sits there on the bottom of the…

  2. 40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... solid phases of a material. 227.32 Section 227.32 Protection of Environment ENVIRONMENTAL PROTECTION... MATERIALS Definitions § 227.32 Liquid, suspended particulate, and solid phases of a material. (a) For the... obtained above prior to centrifugation and filtration. The solid phase includes all material settling to...

  3. 40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... solid phases of a material. 227.32 Section 227.32 Protection of Environment ENVIRONMENTAL PROTECTION... MATERIALS Definitions § 227.32 Liquid, suspended particulate, and solid phases of a material. (a) For the... obtained above prior to centrifugation and filtration. The solid phase includes all material settling to...

  4. Numerical and experimental study of liquid breakup process in solid rocket motor nozzle

    NASA Astrophysics Data System (ADS)

    Yen, Yi-Hsin

    Rocket propulsion is an important travel method for space exploration and national defense, rockets needs to be able to withstand wide range of operation environment and also stable and precise enough to carry sophisticated payload into orbit, those engineering requirement makes rocket becomes one of the state of the art industry. The rocket family have been classified into two major group of liquid and solid rocket based on the fuel phase of liquid or solid state. The solid rocket has the advantages of simple working mechanism, less maintenance and preparing procedure and higher storage safety, those characters of solid rocket make it becomes popular in aerospace industry. Aluminum based propellant is widely used in solid rocket motor (SRM) industry due to its avalibility, combusion performance and economical fuel option, however after aluminum react with oxidant of amonimum perchrate (AP), it will generate liquid phase alumina (Al2O3) as product in high temperature (2,700˜3,000 K) combustion chamber enviornment. The liquid phase alumina particles aggromorate inside combustion chamber into larger particle which becomes major erosion calprit on inner nozzle wall while alumina aggromorates impinge on the nozzle wall surface. The erosion mechanism result nozzle throat material removal, increase the performance optimized throat diameter and reduce nozzle exit to throat area ratio which leads to the reduction of exhaust gas velocity, Mach number and lower the propulsion thrust force. The approach to avoid particle erosion phenomenon taking place in SRM's nozzle is to reduce the alumina particle size inside combustion chamber which could be done by further breakup of the alumina droplet size in SRM's combustion chamber. The study of liquid breakup mechanism is an important means to smaller combustion chamber alumina droplet size and mitigate the erosion tack place on rocket nozzle region. In this study, a straight two phase air-water flow channel experiment is set up

  5. Laser ultrasonic investigations of vertical Bridgman crystal growth

    NASA Astrophysics Data System (ADS)

    Queheillalt, Douglas Ted

    The many difficulties associated with the growth of premium quality CdTe and (Cd,Zn)Te alloys has stimulated an interest in the development of a non-invasive ultrasonic approach to monitor critical growth parameters such as the solid-liquid interface position and shape during vertical Bridgman growth. This sensor methodology is based upon the recognition that in most materials, the ultrasonic velocity (and the elastic stiffness constants that control it) of the solid and liquid phases are temperature dependent and an abrupt increase of the longitudinal wave velocity occurs upon solidification. The laser ultrasonic approach has also been used to measure the ultrasonic velocity of solid and liquid Cd0.96Zn0.04Te as a function of temperature up to 1140°C. Using longitudinal and shear wave velocity values together with data for the temperature dependent density allowed a complete evaluation of the temperature dependent single crystal elastic stiffness constants for solid and the adiabatic bulk modulus for liquid Cd0.96Zn0.04 Te. It was found that the ultrasonic velocities exhibited a strong monotonically decreasing function of temperature in the solid and liquid phases and the longitudinal wave indicated an abrupt almost 50% decrease upon melting. Because ray propagation in partially solidified bodies is complex and defines the sensing methodology, a ray tracing algorithm has been developed to analyze two-dimensional wave propagation in the diametral plane of cylindrical solid-liquid interfaces. Ray path, wavefront and time-of-flight (TOF) projections for rays that travel from a source to an arbitrarily positioned receiver on the diametral plane have been calculated and compared to experimentally measured data on a model liquid-solid interface. The simulations and the experimental results reveal that the interfacial region can be identified from transmission TOF data and when used in conjunction with a nonlinear least squares reconstruction algorithm, the interface

  6. Bottom-up and top-down fabrication of nanowire-based electronic devices: In situ doping of vapor liquid solid grown silicon nanowires and etch-dependent leakage current in InGaAs tunnel junctions

    NASA Astrophysics Data System (ADS)

    Kuo, Meng-Wei

    Semiconductor nanowires are important components in future nanoelectronic and optoelectronic device applications. These nanowires can be fabricated using either bottom-up or top-down methods. While bottom-up techniques can achieve higher aspect ratio at reduced dimension without having surface and sub-surface damage, uniform doping distributions with abrupt junction profiles are less challenging for top-down methods. In this dissertation, nanowires fabricated by both methods were systematically investigated to understand: (1) the in situ incorporation of boron (B) dopants in Si nanowires grown by the bottom-up vapor-liquid-solid (VLS) technique, and (2) the impact of plasma-induced etch damage on InGaAs p +-i-n+ nanowire junctions for tunnel field-effect transistors (TFETs) applications. In Chapter 2 and 3, the in situ incorporation of B in Si nanowires grown using silane (SiH4) or silicon tetrachloride (SiCl4) as the Si precursor and trimethylboron (TMB) as the p-type dopant source is investigated by I-V measurements of individual nanowires. The results from measurements using a global-back-gated test structure reveal nonuniform B doping profiles on nanowires grown from SiH4, which is due to simultaneous incorporation of B from nanowire surface and the catalyst during VLS growth. In contrast, a uniform B doping profile in both the axial and radial directions is achieved for TMBdoped Si nanowires grown using SiCl4 at high substrate temperatures. In Chapter 4, the I-V characteristics of wet- and dry-etched InGaAs p+-i-n+ junctions with different mesa geometries, orientations, and perimeter-to-area ratios are compared to evaluate the impact of the dry etch process on the junction leakage current properties. Different post-dry etch treatments, including wet etching and thermal annealing, are performed and the effectiveness of each is assessed by temperaturedependent I-V measurements. As compared to wet-etched control devices, dry-etched junctions have a significantly

  7. Comparison of rumen bacteria distribution in original rumen digesta, rumen liquid and solid fractions in lactating Holstein cows.

    PubMed

    Ji, Shoukun; Zhang, Hongtao; Yan, Hui; Azarfar, Arash; Shi, Haitao; Alugongo, Gibson; Li, Shengli; Cao, Zhijun; Wang, Yajing

    2017-01-01

    Original rumen digesta, rumen liquid and solid fractions have been frequently used to assess the rumen bacterial community. However, bacterial profiles in rumen original digesta, liquid and solid fractions vary from each other and need to be better established. To compare bacterial profiles in each fraction, samples of rumen digesta from six cows fed either a high fiber diet (HFD) or a high energy diet (HED) were collected via rumen fistulas. Rumen digesta was then squeezed through four layers of cheesecloth to separate liquid and solid fractions. The bacterial profiles of rumen original digesta, liquid and solid fractions were analyzed with High-throughput sequencing technique. Rumen bacterial diversity was mainly affected by diet and individual cow ( P  > 0.05) rather than rumen fraction. Bias distributed bacteria were observed in solid and liquid fractions of rumen content using Venn diagram and LEfSe analysis. Fifteen out of 16 detected biomarkers (using LEfSe analysis) were found in liquid fraction, and these 15 biomarkers contributed the most to the bacterial differences among rumen content fractions. Similar results were found when using samples of original rumen digesta, rumen liquid or solid fractions to assess diversity of rumen bacteria; however, more attention should be draw onto bias distributed bacteria in different ruminal fractions, especially when liquid fraction has been used as a representative sample for rumen bacterial study.

  8. Nano scale dynamics of bubble nucleation in confined liquid subjected to rapid cooling: Effect of solid-liquid interfacial wettability

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammad Nasim; Rabbi, Kazi Fazle; Mukut, K. M.; Tamim, Saiful Islam; Faisal, A. H. M.

    2017-06-01

    This study focuses on the occurrence of bubble nucleation in a liquid confined in a nano scale confinement and subjected to rapid cooling at one of its wall. Due to the very small size scale of the present problem, we adopt the molecular dynamics (MD) approach. The liquid (Argon) is confined within two solid (Platinum) walls. The temperature of the upper wall of the confinement is maintained at 90 K while the lower wall is being cooled rapidly to 50 K from initial equilibrium temperature of 90 K within 0.1 ns. This results in the nucleation and formation of nanobubbles in the liquid. The pattern of bubble nucleation has been studied for three different conditions of solid-liquid interfacial wettability such as hydrophilic, hydrophobic and neutral. Behavior of bubble nucleation is significantly different in the three case of solid-liquid interfacial wettability. In case of the hydrophobic confinement (weakly adsorbing), the liquid cannot achieve deeper metastability; vapor layers appear immediately on the walls. In case of the neutral confinement (moderately adsorbing), bubble nucleation is promoted by the walls where the nucleation is heterogeneous. In case of the hydrophilic walls (strongly adsorbing) bubbles are developed inside the liquid; that is the nucleation process is homogeneous. The variation in bubble nucleation under different conditions of surface wettability has been studied by the analysis of number density distribution, spatial temperature distribution, spatial number density distribution and heat flux through the upper and lower walls of the confinement. The present study indicates that the variation of heat transfer efficiency due to different surface wettability has significant effect on the size, shape and location of bubble nucleation in case rapid cooling of liquid in nano confinement.

  9. Nonepitaxial Thin-Film InP for Scalable and Efficient Photocathodes.

    PubMed

    Hettick, Mark; Zheng, Maxwell; Lin, Yongjing; Sutter-Fella, Carolin M; Ager, Joel W; Javey, Ali

    2015-06-18

    To date, some of the highest performance photocathodes of a photoelectrochemical (PEC) cell have been shown with single-crystalline p-type InP wafers, exhibiting half-cell solar-to-hydrogen conversion efficiencies of over 14%. However, the high cost of single-crystalline InP wafers may present a challenge for future large-scale industrial deployment. Analogous to solar cells, a thin-film approach could address the cost challenges by utilizing the benefits of the InP material while decreasing the use of expensive materials and processes. Here, we demonstrate this approach, using the newly developed thin-film vapor-liquid-solid (TF-VLS) nonepitaxial growth method combined with an atomic-layer deposition protection process to create thin-film InP photocathodes with large grain size and high performance, in the first reported solar device configuration generated by materials grown with this technique. Current-voltage measurements show a photocurrent (29.4 mA/cm(2)) and onset potential (630 mV) approaching single-crystalline wafers and an overall power conversion efficiency of 11.6%, making TF-VLS InP a promising photocathode for scalable and efficient solar hydrogen generation.

  10. Associations between added sugar (solid vs. liquid) intakes, diet quality, and adiposity indicators in Canadian children.

    PubMed

    Wang, JiaWei; Shang, Lei; Light, Kelly; O'Loughlin, Jennifer; Paradis, Gilles; Gray-Donald, Katherine

    2015-08-01

    Little is known about the influence of different forms of added sugar intake on diet quality or their association with obesity among youth. Dietary intake was assessed by three 24-h recalls in 613 Canadian children (aged 8-10 years). Added sugars (mean of 3-day intakes) were categorized according to source (solid or liquid). Dietary intake and the Canadian Healthy Eating Index (« HEI-C ») were compared across tertiles of solid and liquid added sugars separately as were adiposity indicators (body mass index (BMI), fat mass (dual-energy X-ray absorptiometry), and waist circumference). Cross-sectional associations were examined in linear regression models adjusting for age, sex, energy intake, and physical activity (7-day accelerometer). Added sugar contributed 12% of total energy intake (204 kcal) on average, of which 78% was from solid sources. Higher consumption of added sugars from either solid or liquid source was associated with higher total energy, lower intake of micronutrients, vegetables and fruit, and lower HEI-C score. Additionally liquid sources were associated with lower intake of dairy products. A 10-g higher consumption of added sugars from liquid sources was associated with 0.4 serving/day lower of vegetables and fruit, 0.4-kg/m(2) higher BMI, a 0.5-kg higher fat mass, and a 0.9-cm higher waist circumference whereas the associations of added sugars from solid sources and adiposity indicators tended to be negative. In conclusion, higher consumption of added sugar from either solid or liquid sources was associated with lower overall diet quality. Adiposity indicators were only positively associated with added sugars from liquid sources.

  11. Growth of microorganisms in Martian-like shallow subsurface conditions: laboratory modelling

    NASA Astrophysics Data System (ADS)

    Pavlov, A. K.; Shelegedin, V. N.; Vdovina, M. A.; Pavlov, A. A.

    2010-01-01

    Low atmospheric pressures on Mars and the lack of substantial amounts of liquid water were suggested to be among the major limiting factors for the potential Martian biosphere. However, large amounts of ice were detected in the relatively shallow subsurface layers of Mars by the Odyssey Mission and when ice sublimates the water vapour can diffuse through the porous surface layer of the soil. Here we studied the possibility for the active growth of microorganisms in such a vapour diffusion layer. Our results showed the possibility of metabolism and the reproduction of non-extremophile terrestrial microorganisms (Vibrio sp.) under very low (0.01-0.1 mbar) atmospheric pressures in a Martian-like shallow subsurface regolith.

  12. Comparing the catalytic oxidation of ethanol at the solid-gas and solid-liquid interfaces over size-controlled Pt nanoparticles: striking differences in kinetics and mechanism.

    PubMed

    Sapi, Andras; Liu, Fudong; Cai, Xiaojun; Thompson, Christopher M; Wang, Hailiang; An, Kwangjin; Krier, James M; Somorjai, Gabor A

    2014-11-12

    Pt nanoparticles with controlled size (2, 4, and 6 nm) are synthesized and tested in ethanol oxidation by molecular oxygen at 60 °C to acetaldehyde and carbon dioxide both in the gas and liquid phases. The turnover frequency of the reaction is ∼80 times faster, and the activation energy is ∼5 times higher at the gas-solid interface compared to the liquid-solid interface. The catalytic activity is highly dependent on the size of the Pt nanoparticles; however, the selectivity is not size sensitive. Acetaldehyde is the main product in both media, while twice as much carbon dioxide was observed in the gas phase compared to the liquid phase. Added water boosts the reaction in the liquid phase; however, it acts as an inhibitor in the gas phase. The more water vapor was added, the more carbon dioxide was formed in the gas phase, while the selectivity was not affected by the concentration of the water in the liquid phase. The differences in the reaction kinetics of the solid-gas and solid-liquid interfaces can be attributed to the molecular orientation deviation of the ethanol molecules on the Pt surface in the gas and liquid phases as evidenced by sum frequency generation vibrational spectroscopy.

  13. Spontaneous formation of GaN/AlN core-shell nanowires on sapphire by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Trassoudaine, Agnès; Roche, Elissa; Bougerol, Catherine; André, Yamina; Avit, Geoffrey; Monier, Guillaume; Ramdani, Mohammed Réda; Gil, Evelyne; Castelluci, Dominique; Dubrovskii, Vladimir G.

    2016-11-01

    Spontaneous GaN/AlN core-shell nanowires with high crystal quality were synthesized on sapphire substrates by vapor-liquid-solid hydride vapor phase epitaxy (VLS-HVPE) without any voluntary aluminum source. Deposition of aluminum is difficult to achieve in this growth technique which uses metal-chloride gaseous precursors: the strong interaction between the AlCl gaseous molecules and the quartz reactor yields a huge parasitic nucleation on the walls of the reactor upstream the substrate. We open up an innovative method to produce GaN/AlN structures by HVPE, thanks to aluminum etching from the sapphire substrate followed by redeposition onto the sidewalls of the GaN core. The paper presents the structural characterization of GaN/AlN core-shell nanowires, speculates on the growth mechanism and discusses a model which describes this unexpected behavior.

  14. Study on the mechanism of liquid phase sintering (M-12)

    NASA Technical Reports Server (NTRS)

    Kohara, S.

    1993-01-01

    The objectives were to (1) obtain the data representing the growth rate of solid particles in a liquid matrix without the effect of gravity; and (2) reveal the growth behavior of solid particles during liquid phase sintering using the data obtained. Nickel and tungsten are used as the constituent materials in liquid phase sintering. The properties of the constituent metals are given. When a compact of the mixture of tungsten and nickel powders is heated and kept at 1550 C, nickel melts down but tungsten stays solid. As the density of tungsten is much greater than that of nickel, the sedimentation of tungsten particles occurs in the experiment on Earth. The difference between the experiments on Earth and in space is illustrated. The tungsten particles sink to the bottom and are brought into contact with each other. The resulting pressure at the contact point causes the accelerated dissolution of tungsten. Consequently, flat surfaces are formed at the contact sites. As a result of dissolution and reprecipitation of tungsten, the shape of particles changes to a polygon. This phenomenon is called 'flattening.' An example of flattening of tungsten particles is shown. Thus, the data obtained by the experiment on Earth may not represent the exact growth behavior of the solid particles in a liquid matrix. If the experiments were done in a microgravity environment, the data corresponding to the theoretical growth behavior of solid particles could be achieved.

  15. Spin crossover in solid and liquid (Mg,Fe)O at extreme conditions

    NASA Astrophysics Data System (ADS)

    Stixrude, Lars; Holmstrom, Eero

    Ferropericlase, (Mg,Fe)O, is a major constituent of the Earth's lower mantle (24-136 GPa). Understanding the properties of this component is important not only in the solid state, but also in the molten state, as the planet almost certainly hosted an extensive magma ocean initially. With increasing pressure, the Fe ions in the material begin to collapse from a magnetic to a nonmagnetic spin state. This crossover affects thermodynamic, transport, and electrical properties. Using first-principles molecular dynamics simulations, thermodynamic integration, and adiabatic switching, we present a phase diagram of the spin crossover. In both solid and liquid, we find a broad pressure range of coexisting magnetic and non-magnetic ions due to the favorable enthalpy of mixing of the two. In the solid increasing temperature favors the high spin state, while in the liquid the opposite occurs, due to the higher electronic entropy of the low spin state. Because the physics of the crossover differ in solid and liquid, melting produces a large change in spin state that may affect the buoyancy of crystals freezing from the magma ocean in the earliest Earth. This research was supported by the European Research Council under Advanced Grant No. 291432 ``MoltenEarth'' (FP7/2007-2013).

  16. Chemical vapour deposition growth of carbon nanotube forests: kinetics, morphology, composition, and their mechanisms

    NASA Astrophysics Data System (ADS)

    Vinten, Phillip

    This thesis analyzes the chemical vapour deposition (CVD) growth of vertically aligned carbon nanotube (CNT) forests in order to understand how CNT forests grow, why they stop growing, and how to control the properties of the synthesized CNTs. in situ kinetics data of the growth of CNT forests are gathered by in situ optical microscopy. The overall morphology of the forests and the characteristics of the individual CNTs in the forests are investigated using scanning electron microscopy and Raman spectroscopy. The in situ data show that forest growth and termination are activated processes (with activation energies on the order of 1 eV), suggesting a possible chemical origin. The activation energy changes at a critical temperature for ethanol CVD (approximately 870°C). These activation energies and critical temperature are also seen in the temperature dependence of several important characteristics of the CNTs, including the defect density as determined by Raman spectroscopy. This observation is seen across several CVD processes and suggests a mechanism of defect healing. The CNT diameter also depends on the growth temperature. In this thesis, a thermodynamic model is proposed. This model predicts a temperature and pressure dependence of the CNT diameter from the thermodynamics of the synthesis reaction and the effect of strain on the enthalpy of formation of CNTs. The forest morphology suggests significant interaction between the constituent CNTs. These interactions may play a role in termination. The morphology, in particular a microscale rippling feature that is capable of diffracting light, suggest a non-uniform growth rate across the forest. A gas phase diffusion model predicts a non-uniform distribution of the source gas. This gas phase diffusion is suggested as a possible explanation for the non-uniform growth rate. The gas phase diffusion is important because growth by acetylene CVD is found to be very efficient (approximately 30% of the acetylene is

  17. A feasibility study of hydrothermal treatment of rice straw for multi-production of solid fuel and liquid fertilizer

    NASA Astrophysics Data System (ADS)

    Samnang, S.; Prawisudha, P.; Pasek, A. D.

    2017-05-01

    Energy use has increased steadily over the last century due to population and industry increase. With the growing of GHG, biomass becomes an essential contributor to the world energy need. Indonesia is the third rice producer in the world. Rice straw has been converted to solid fuel by Hydrothermal Treatment (HT) for electricity generation. HT is a boiling solid organic or inorganic substance in water at high pressure and temperature within a holding time. HT converts high moisture content biomass into dried, uniform, pulverized, and higher energy density solid fuels. HT can effectively transport nutrient components in biomass into a liquid product known as fertilizer. This paper deals with an evaluation of hydrothermal treatment of rice straw for solid fuel and liquid fertilizer. An investigation of rice straw characteristics were completed for Bandung rice straw with various condition of temperature, biomass-water ratio, and holding time in the purpose to find the changes of calorific value for solid product and (N, P, K, and pH) for liquid product. The results showed that solid product at 225 °C and 90 min consists in a heating value 13.8 MJ/kg equal to lignite B. Liquid product at 225 °C and 90 min had the NPK content similar to that of micronutrients compound liquid fertilizer. The dried solid product should be useful for Coal Fire Power Plant, and the liquid product is suitable for plants. This research proves that hydrothermal process can be applied to rice straw to produce solid fuel and liquid fertilizer with adequate quality.

  18. Greenhouse Gas Emissions from Solid and Liquid Organic Fertilizers Applied to Lettuce.

    PubMed

    Toonsiri, Phasita; Del Grosso, Stephen J; Sukor, Arina; Davis, Jessica G

    2016-11-01

    Improper application of nitrogen (N) fertilizer and environmental factors can cause the loss of nitrous oxide (NO) to the environment. Different types of fertilizers with different C/N ratios may have different effects on the environment. The focus of this study was to evaluate the effects of environmental factors and four organic fertilizers (feather meal, blood meal, fish emulsion, and cyano-fertilizer) applied at different rates (0, 28, 56, and 112 kg N ha) on NO emissions and to track CO emissions from a lettuce field ( L.). The study was conducted in 2013 and 2014 and compared preplant-applied solid fertilizers (feather meal and blood meal) and multiple applications of liquid fertilizers (fish emulsion and cyano-fertilizer). Three days a week, NO and CO emissions were measured twice per day in 2013 and once per day in 2014 using a closed-static chamber, and gas samples were analyzed by gas chromatography. Preplant-applied solid fertilizers significantly increased cumulative NO emissions as compared with control, but multiple applications of liquid fertilizers did not. Emission factors for NO ranged from 0 to 0.1% for multiple applications of liquid fertilizers and 0.6 to 11% for preplant-applied solid fertilizers, which could be overestimated due to chamber placement over fertilizer bands. In 2014, solid fertilizers with higher C/N ratios (3.3-3.5) resulted in higher CO emissions than liquid fertilizers (C/N ratio, 0.9-1.5). Therefore, organic farmers should consider the use of multiple applications of liquid fertilizers as a means to reduce soil greenhouse gas emissions while maintaining high yields. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Nicotine content of electronic cigarettes, its release in vapour and its consistency across batches: regulatory implications.

    PubMed

    Goniewicz, Maciej L; Hajek, Peter; McRobbie, Hayden

    2014-03-01

    Electronic cigarettes (EC) may have a potential for public health benefit as a safer alternative to smoking, but questions have been raised about whether EC should be licensed as a medicine, with accurate labelling of nicotine content. This study determined the nicotine content of the cartridges of the most popular EC brands in the United Kingdom and the nicotine levels they deliver in the vapour, and estimated the safety and consistency of nicotine delivery across batches of the same product as a proxy for quality control for individual brands and within the industry. We studied five UK brands (six products) with high internet popularity. Two samples of each brand were purchased 4 weeks apart, and analysed for nicotine content in the cartridges and nicotine delivery in vapour. The nicotine content of cartridges within the same batch varied by up to 12% relative standard deviation (RSD) and the mean difference between different batches of the same brand ranged from 1% [95% confidence interval (CI) = -5 to 7%] to 20% (95% CI=14-25%) for five brands and 31% (95% CI=21-39%) for the sixth. The puffing schedule used in this study vaporized 10-81% of the nicotine present in the cartridges. The nicotine delivery from 300 puffs ranged from ∼2 mg to ∼15 mg and was not related significantly to the variation of nicotine content in e-liquid (r=0.06, P=0.92). None of the tested products allowed access to e-liquid or produced vapour nicotine concentrations as high as conventional cigarettes. There is very little risk of nicotine toxicity from major electronic cigarette (EC) brands in the United Kingdom. Variation in nicotine concentration in the vapour from a given brand is low. Nicotine concentration in e-liquid is not well related to nicotine in vapour. Other EC brands may be of lower quality and consumer protection regulation needs to be implemented, but in terms of accuracy of labelling of nicotine content and risks of nicotine overdose, regulation over and above

  20. Binary Solid-Liquid Phase Diagram of Phenol and t-Butanol: An Undergraduate Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Xu, Xinhua; Wang, Xiaogang; Wu, Meifen

    2014-01-01

    The determination of the solid-liquid phase diagram of a binary system is always used as an experiment in the undergraduate physical chemistry laboratory courses. However, most phase diagrams investigated in the lab are simple eutectic ones, despite the fact that complex binary solid-liquid phase diagrams are more common. In this article, the…

  1. One step growth of GaN/SiO2 core/shell nanowire in vapor-liquid-solid route by chemical vapor deposition technique

    NASA Astrophysics Data System (ADS)

    Barick, B. K.; Yadav, Shivesh; Dhar, S.

    2017-11-01

    GaN/SiO2 core/shell nanowires are grown by cobalt phthalocyanine catalyst assisted vapor-liquid-solid route, in which Si wafer coated with a mixture of gallium and indium is used as the source for Ga and Si and ammonia is used as the precursor for nitrogen and hydrogen. Gallium in the presence of indium and hydrogen, which results from the dissociation of ammonia, forms Si-Ga-In alloy at the growth temperature ∼910 °C. This alloy acts as the source of Si, Ga and In. A detailed study using a variety of characterization tools reveals that these wires, which are several tens of micron long, has a diameter distribution of the core ranging from 20 to 50 nm, while the thickness of the amorphous SiO2 shell layer is about 10 nm. These wires grow along [ 1 0 1 bar 0 ] direction. It has also been observed that the average diameter of these wires decreases, while their density increases as the gallium proportion in the Ga-In mixture is increased.

  2. 2-tiered antibody testing for early and late Lyme disease using only an immunoglobulin G blot with the addition of a VlsE band as the second-tier test.

    PubMed

    Branda, John A; Aguero-Rosenfeld, Maria E; Ferraro, Mary Jane; Johnson, Barbara J B; Wormser, Gary P; Steere, Allen C

    2010-01-01

    Standard 2-tiered immunoglobulin G (IgG) testing has performed well in late Lyme disease (LD), but IgM testing early in the illness has been problematic. IgG VlsE antibody testing, by itself, improves early sensitivity, but may lower specificity. We studied whether elements of the 2 approaches could be combined to produce a second-tier IgG blot that performs well throughout the infection. Separate serum sets from LD patients and control subjects were tested independently at 2 medical centers using whole-cell enzyme immunoassays and IgM and IgG immunoblots, with recombinant VlsE added to the IgG blots. The results from both centers were combined, and a new second-tier IgG algorithm was developed. With standard 2-tiered IgM and IgG testing, 31% of patients with active erythema migrans (stage 1), 63% of those with acute neuroborreliosis or carditis (stage 2), and 100% of those with arthritis or late neurologic involvement (stage 3) had positive results. Using new IgG criteria, in which only the VlsE band was scored as a second-tier test among patients with early LD (stage 1 or 2) and 5 of 11 IgG bands were required in those with stage 3 LD, 34% of patients with stage 1, 96% of those with stage 2, and 100% of those with stage 3 infection had positive responses. Both new and standard testing achieved 100% specificity. Compared with standard IgM and IgG testing, the new IgG algorithm (with VlsE band) eliminates the need for IgM testing; it provides comparable or better sensitivity, and it maintains high specificity.

  3. Hybrid rockets - Combining the best of liquids and solids

    NASA Technical Reports Server (NTRS)

    Cook, Jerry R.; Goldberg, Ben E.; Estey, Paul N.; Wiley, Dan R.

    1992-01-01

    Hybrid rockets employing liquid oxidizer and solid fuel grain answers to cost, safety, reliability, and environmental impact concerns that have become as prominent as performance in recent years. The oxidizer-free grain has limited sensitivity to grain anomalies, such as bond-line separations, which can cause catastrophic failures in solid rocket motors. An account is presently given of the development effort associated with the AMROC commercial hybrid booster and component testing efforts at NASA-Marshall. These hybrid rockets can be fired, terminated, inspected, evaluated, and restarted for additional testing.

  4. Investigating the Retention Mechanisms of Liquid Chromatography Using Solid-Phase Extraction Cartridges

    ERIC Educational Resources Information Center

    O'Donnell, Mary E.; Musial, Beata A.; Bretz, Stacey Lowery; Danielson, Neil D.; Ca, Diep

    2009-01-01

    Liquid chromatography (LC) experiments for the undergraduate analytical laboratory course often illustrate the application of reversed-phase LC to solve a separation problem, but rarely compare LC retention mechanisms. In addition, a high-performance liquid chromatography instrument may be beyond what some small colleges can purchase. Solid-phase…

  5. Mechanism of Formation of Li 7 P 3 S 11 Solid Electrolytes through Liquid Phase Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuxing; Lu, Dongping; Bowden, Mark

    Crystalline Li7P3S11 is a promising solid electrolyte for all solid state lithium/lithium ion batteries. A controllable liquid phase synthesis of Li7P3S11 is more desirable compared to conventional mechanochemical synthesis, but recent attempts suffer from reduced ionic conductivities. Here we elucidate the formation mechanism of crystalline Li7P3S11 synthesized in the liquid phase (acetonitrile, or ACN). We conclude that the crystalline Li7P3S11 forms through a two-step reaction: 1) formation of solid Li3PS4∙ACN and amorphous Li2S∙P2S5 phases in the liquid phase; 2) solid-state conversion of the two phases. The implication of this two-step reaction mechanism to the morphology control and the transport propertiesmore » of liquid phase synthesized Li7P3S11 is identified and discussed.« less

  6. ENVIRONMENTAL TECHNOLOGY VERIFICATION: JOINT (NSF-EPA) VERIFICATION STATEMENT AND REPORT: UV DISINFECTION FOR REUSE APPLICATIONS, ONDEO DEGREMONT, INC., AQUARAY® 40 HO VLS DISINFECTION SYSTEM

    EPA Science Inventory

    Verification testing of the Ondeo Degremont, Inc. Aquaray® 40 HO VLS Disinfection System to develop the UV delivered dose flow relationship was conducted at the Parsippany-Troy Hills wastewater treatment plant test site in Parsippany, New Jersey. Three reactor modules were m...

  7. Pressure cell for investigations of solid-liquid interfaces by neutron reflectivity.

    PubMed

    Kreuzer, Martin; Kaltofen, Thomas; Steitz, Roland; Zehnder, Beat H; Dahint, Reiner

    2011-02-01

    We describe an apparatus for measuring scattering length density and structure of molecular layers at planar solid-liquid interfaces under high hydrostatic pressure conditions. The device is designed for in situ characterizations utilizing neutron reflectometry in the pressure range 0.1-100 MPa at temperatures between 5 and 60 °C. The pressure cell is constructed such that stratified molecular layers on crystalline substrates of silicon, quartz, or sapphire with a surface area of 28 cm(2) can be investigated against noncorrosive liquid phases. The large substrate surface area enables reflectivity to be measured down to 10(-5) (without background correction) and thus facilitates determination of the scattering length density profile across the interface as a function of applied load. Our current interest is on the stability of oligolamellar lipid coatings on silicon surfaces against aqueous phases as a function of applied hydrostatic pressure and temperature but the device can also be employed to probe the structure of any other solid-liquid interface.

  8. Modelling mass transfer during venting/soil vapour extraction: Non-aqueous phase liquid/gas mass transfer coefficient estimation

    NASA Astrophysics Data System (ADS)

    Esrael, D.; Kacem, M.; Benadda, B.

    2017-07-01

    We investigate how the simulation of the venting/soil vapour extraction (SVE) process is affected by the mass transfer coefficient, using a model comprising five partial differential equations describing gas flow and mass conservation of phases and including an expression accounting for soil saturation conditions. In doing so, we test five previously reported quations for estimating the non-aqueous phase liquid (NAPL)/gas initial mass transfer coefficient and evaluate an expression that uses a reference NAPL saturation. Four venting/SVE experiments utilizing a sand column are performed with dry and non-saturated sand at low and high flow rates, and the obtained experimental results are subsequently simulated, revealing that hydrodynamic dispersion cannot be neglected in the estimation of the mass transfer coefficient, particularly in the case of low velocities. Among the tested models, only the analytical solution of a convection-dispersion equation and the equation proposed herein are suitable for correctly modelling the experimental results, with the developed model representing the best choice for correctly simulating the experimental results and the tailing part of the extracted gas concentration curve.

  9. Methods and systems for monitoring a solid-liquid interface

    DOEpatents

    Stoddard, Nathan G [Gettysburg, PA; Clark, Roger F [Frederick, MD

    2011-10-04

    Methods and systems are provided for monitoring a solid-liquid interface, including providing a vessel configured to contain an at least partially melted material; detecting radiation reflected from a surface of a liquid portion of the at least partially melted material; providing sound energy to the surface; measuring a disturbance on the surface; calculating at least one frequency associated with the disturbance; and determining a thickness of the liquid portion based on the at least one frequency, wherein the thickness is calculated based on L=(2m-1)v.sub.s/4f, where f is the frequency where the disturbance has an amplitude maximum, v.sub.s is the speed of sound in the material, and m is a positive integer (1, 2, 3, . . . ).

  10. Solid, liquid, and interfacial properties of TiAl alloys: parameterization of a new modified embedded atom method model

    NASA Astrophysics Data System (ADS)

    Sun, Shoutian; Ramu Ramachandran, Bala; Wick, Collin D.

    2018-02-01

    New interatomic potentials for pure Ti and Al, and binary TiAl were developed utilizing the second nearest neighbour modified embedded-atom method (MEAM) formalism. The potentials were parameterized to reproduce multiple properties spanning bulk solids, solid surfaces, solid/liquid phase changes, and liquid interfacial properties. This was carried out using a newly developed optimization procedure that combined the simple minimization of a fitness function with a genetic algorithm to efficiently span the parameter space. The resulting MEAM potentials gave good agreement with experimental and DFT solid and liquid properties, and reproduced the melting points for Ti, Al, and TiAl. However, the surface tensions from the model consistently underestimated experimental values. Liquid TiAl’s surface was found to be mostly covered with Al atoms, showing that Al has a significant propensity for the liquid/air interface.

  11. Solid, liquid, and interfacial properties of TiAl alloys: parameterization of a new modified embedded atom method model.

    PubMed

    Sun, Shoutian; Ramachandran, Bala Ramu; Wick, Collin D

    2018-02-21

    New interatomic potentials for pure Ti and Al, and binary TiAl were developed utilizing the second nearest neighbour modified embedded-atom method (MEAM) formalism. The potentials were parameterized to reproduce multiple properties spanning bulk solids, solid surfaces, solid/liquid phase changes, and liquid interfacial properties. This was carried out using a newly developed optimization procedure that combined the simple minimization of a fitness function with a genetic algorithm to efficiently span the parameter space. The resulting MEAM potentials gave good agreement with experimental and DFT solid and liquid properties, and reproduced the melting points for Ti, Al, and TiAl. However, the surface tensions from the model consistently underestimated experimental values. Liquid TiAl's surface was found to be mostly covered with Al atoms, showing that Al has a significant propensity for the liquid/air interface.

  12. "Liquid-liquid-solid"-type superoleophobic surfaces to pattern polymeric semiconductors towards high-quality organic field-effect transistors.

    PubMed

    Wu, Yuchen; Su, Bin; Jiang, Lei; Heeger, Alan J

    2013-12-03

    Precisely aligned organic-liquid-soluble semiconductor microwire arrays have been fabricated by "liquid-liquid-solid" type superoleophobic surfaces directed fluid drying. Aligned organic 1D micro-architectures can be built as high-quality organic field-effect transistors with high mobilities of >10 cm(2) ·V(-1) ·s(-1) and current on/off ratio of more than 10(6) . All these studies will boost the development of 1D microstructures of organic semiconductor materials for potential application in organic electronics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Manipulation and control of instabilities for surfactant-laden liquid film flowing down an inclined plane using a deformable solid layer

    NASA Astrophysics Data System (ADS)

    Tomar, Dharmendra S.; Sharma, Gaurav

    2018-01-01

    We analyzed the linear stability of surfactant-laden liquid film with a free surface flowing down an inclined plane under the action of gravity when the inclined plane is coated with a deformable solid layer. For a flow past a rigid incline and in the presence of inertia, the gas-liquid (GL) interface is prone to the free surface instability and the presence of surfactant is known to stabilize the free surface mode when the Marangoni number increases above a critical value. The rigid surface configuration also admits a surfactant induced Marangoni mode which remains stable for film flows with a free surface. This Marangoni mode was observed to become unstable for a surfactant covered film flow past a flexible inclined plane in a creeping flow limit when the wall is made sufficiently deformable. In view of these observations, we investigate the following two aspects. First, what is the effect of inertia on Marangoni mode instability induced by wall deformability? Second, and more importantly, whether it is possible to use a deformable solid coating to obtain stable flow for the surfactant covered film for cases when the Marangoni number is below the critical value required for stabilization of free surface instability. In order to explore the first question, we continued the growth rates for the Marangoni mode from the creeping flow limit to finite Reynolds numbers (Re) and observed that while the increase in Reynolds number has a small stabilizing effect on growth rates, the Marangoni mode still remains unstable for finite Reynolds numbers as long as the wall is sufficiently deformable. The Marangoni mode remains the dominant mode for zero and small Reynolds numbers until the GL mode also becomes unstable with the increase in Re. Thus, for a given set of parameters and beyond a critical Re, there is an exchange of dominant mode of instability from the Marangoni to free surface GL mode. With respect to the second important aspect, our results clearly demonstrate

  14. Effect of fermentation time of mixture of solid and liquid wastes from tapioca industry to percentage reduction of TSS (Total Suspended Solids)

    NASA Astrophysics Data System (ADS)

    Pandia, S.; Tanata, S.; Rachel, M.; Octiva, C.; Sialagan, N.

    2018-02-01

    The waste from tapioca industry is as an organic waste that contains many important compounds such as carbohydrate, protein, and glucose. This research as aimed to know the effect of fermentation time from solid waste combined with waste-water from the tapioca industry to percentage reduction of TSS. The study was started by mixing the solid and liquid wastes from tapioca industry at a ratio of 70:30, 60:40, 50:50, 40:60, and 30:70 (w/w) with a starter from solid waste of cattle in a batch anaerobic digester. The percentage reduction of TSS was 72.2289 at a ratio by weight of the composition of solid and liquid wastes from tapioca industry was 70:30 after 30 days of fermentation time.

  15. Continuum approaches for describing solid-gas and solid-liquid flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diamond, P.; Harvey, J.; Levine, H.

    Two-phase continuum models have been used to describe the multiphase flow properties of solid-gas and solid-liquid mixtures. The approach is limited in that it requires many fitting functions and parameters to be determined empirically, and it does not provide natural explanations for some of the qualitative behavior of solid-fluid flow. In this report, we explore a more recent single-phase continuum model proposed by Jenkins and Savage to describe granular flow. Jenkins and McTigue have proposed a modified model to describe the flow of dense suspensions, and hence, many of our results can be straight-forwardly extended to this flow regime asmore » well. The solid-fluid mixture is treated as a homogeneous, compressible fluid in which the particle fluctuations about the mean flow are described in terms of an effective temperature. The particle collisions are treated as inelastic. After an introduction in which we briefly comment on the present status of the field, we describe the details of the single-phase continuum model and analyze the microscopic and macroscopic flow conditions required for the approach to be valid. We then derive numerous qualitative predictions which can be empirically verified in small-scale experiments: The flow profiles are computed for simple boundary conditions, plane Couette flow and channel flow. Segregaion effects when there are two (or more) particle size are considered. The acoustic dispersion relation is derived and shown to predict that granular flow is supersonic. We point out that the analysis of flow instabilities is complicated by the finite compressibility of the solid-fluid mixture. For example, the large compressibility leads to interchange (Rayleigh-Taylor instabilities) in addition to the usual angular momentum interchange in standard (cylindrical) Couette flow. We conclude by describing some of the advantages and limitations of experimental techniques that might be used to test predictions for solid-fluid flow. 19 refs.« less

  16. Solid-Liquid Electrolyte as a Nanoion Modulator for Dendrite-Free Lithium Anodes.

    PubMed

    Wen, Kaihua; Wang, Yanlei; Chen, Shimou; Wang, Xi; Zhang, Suojiang; Archer, Lynden A

    2018-06-20

    Rechargeable lithium (Li) metal batteries are considered the most promising of Li-based energy storage technologies. However, tree-like dendrite produced by irregular Li + electrodeposition restricts it wide applications. Herein, based on a cation-microphase-regulation strategy, we create solid-liquid electrolytes (SLEs) by absorbing commercial liquid electrolytes into polyethylene glycol (PEG) engineered nanoporous Al 2 O 3 ceramic membranes. By means of molecular dynamics simulations and comprehensive experiments, we show that Li ions are regulated and promoted in the two microphases, the channel phase and nonchannel phase, respectively. The channel phase can achieve homogeneous Li + flux distribution by multiple mechanisms, including its uniform array of nanochannels and ability to suppress lateral dendrite growth by its high modulus. In the nonchannel phase, PEG chains swollen by electrolyte facilitate desolvation and fast conduction of Li + . As a result, the studied SLEs exhibit high ionic conductivity, low interfacial resistance, and the unique ability to stabilize deposition at the Li anode. By means of galvanostatic cycling studies in symmetric Li cells and Li/Li 4 Ti 5 O 12 cells, we further show that the materials open a path to Li metal batteries with excellent cycling performance.

  17. Lubrication handbook for the space industry. Part A: Solid lubricants. Part B: Liquid lubricants

    NASA Technical Reports Server (NTRS)

    Mcmurtrey, E. L.

    1985-01-01

    This handbook is intended to provide a ready reference for many of the solid and liquid lubricants used in the space industry. Lubricants and lubricant properties are arranged systematically so that designers, engineers, and maintenance personnel can conveniently locate data needed for their work. This handbook is divided into two major parts (A and B). Part A is a compilation of solid lubricant suppliers information on chemical and physical property of data of more than 250 solid lubricants, bonded solid lubricants, dispersions, and composites. Part B is a compilation of chemical and physical porperty data of more then 250 liquid lubricants, greases, oils, compounds, and fluids. The listed materials cover a broad spectrum from manufacturing and ground support to hardware applications of spacecraft.

  18. Ultrasonic characterization of solid liquid suspensions

    DOEpatents

    Panetta, Paul D.

    2010-06-22

    Using an ultrasonic field, properties of a solid liquid suspension such as through-transmission attenuation, backscattering, and diffuse field are measured. These properties are converted to quantities indicating the strength of different loss mechanisms (such as absorption, single scattering and multiple scattering) among particles in the suspension. Such separation of the loss mechanisms can allow for direct comparison of the attenuating effects of the mechanisms. These comparisons can also indicate a model most likely to accurately characterize the suspension and can aid in determination of properties such as particle size, concentration, and density of the suspension.

  19. Metal organic vapour-phase epitaxy growth of GaN wires on Si (111) for light-emitting diode applications

    PubMed Central

    2013-01-01

    GaN wires are grown on a Si (111) substrate by metal organic vapour-phase epitaxy on a thin deposited AlN blanket and through a thin SiNx layer formed spontaneously at the AlN/Si interface. N-doped wires are used as templates for the growth of core-shell InGaN/GaN multiple quantum wells coated by a p-doped shell. Standing single-wire heterostructures are connected using a metallic tip and a Si substrate backside contact, and the electroluminescence at room temperature and forward bias is demonstrated at 420 nm. This result points out the feasibility of lower cost nitride-based wires for light-emitting diode applications. PMID:23391377

  20. Method and apparatus for acoustic plate mode liquid-solid phase transition detection

    DOEpatents

    Blair, Dianna S.; Freye, Gregory C.; Hughes, Robert C.; Martin, Stephen J.; Ricco, Antonio J.

    1993-01-01

    A method and apparatus for sensing a liquid-solid phase transition event is provided which comprises an acoustic plate mode detecting element placed in contact with a liquid or solid material which generates a high-frequency acoustic wave that is attenuated to an extent based on the physical state of the material is contact with the detecting element. The attenuation caused by the material in contact with the acoustic plate mode detecting element is used to determine the physical state of the material being detected. The method and device are particularly suited for detecting conditions such as the icing and deicing of wings of an aircraft. In another aspect of the present invention, a method is provided wherein the adhesion of a solid material to the detecting element can be measured using the apparatus of the invention.

  1. Extraction of effective solid-liquid interfacial free energies for full 3D solid crystallites from equilibrium MD simulations

    DOE PAGES

    Zepeda-Ruiz, L. A.; Sadigh, B.; Chernov, A. A.; ...

    2017-11-21

    Molecular dynamics simulations of an embedded atom copper system in the NPH ensemble are used to study the e ective solid-liquid interfacial free energy of quasispherical solid crystals within a liquid. This is within the larger context of MD simulations of this system undergoing solidi cation, where single individually-prepared crystallites of di erent sizes grow until they reach a thermodynamically stable nal state. The resulting equilibrium shapes possess the full structural details expected for solids with weakly anisotropic surface free energies (in these cases, ~5 % radial attening and rounded [111] octahedral faces). The simplifying assumption of sphericity and perfectmore » isotropy leads to an e ective interfacial free energy as appearing in the Gibbs-Thomson equation, which we determine to be ~179 erg/cm 2, roughly independent of crystal size for radii in the 50 - 250 A range. This quantity may be used in atomistically-informed models of solidi cation kinetics for this system.« less

  2. Extraction of effective solid-liquid interfacial free energies for full 3D solid crystallites from equilibrium MD simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zepeda-Ruiz, L. A.; Sadigh, B.; Chernov, A. A.

    Molecular dynamics simulations of an embedded atom copper system in the NPH ensemble are used to study the e ective solid-liquid interfacial free energy of quasispherical solid crystals within a liquid. This is within the larger context of MD simulations of this system undergoing solidi cation, where single individually-prepared crystallites of di erent sizes grow until they reach a thermodynamically stable nal state. The resulting equilibrium shapes possess the full structural details expected for solids with weakly anisotropic surface free energies (in these cases, ~5 % radial attening and rounded [111] octahedral faces). The simplifying assumption of sphericity and perfectmore » isotropy leads to an e ective interfacial free energy as appearing in the Gibbs-Thomson equation, which we determine to be ~179 erg/cm 2, roughly independent of crystal size for radii in the 50 - 250 A range. This quantity may be used in atomistically-informed models of solidi cation kinetics for this system.« less

  3. Synthesis and humidity sensing analysis of ZnS nanowires

    NASA Astrophysics Data System (ADS)

    Okur, Salih; Üzar, Neslihan; Tekgüzel, Nesli; Erol, Ayşe; Çetin Arıkan, M.

    2012-03-01

    ZnS nanowires synthesized by the vapor-liquid-solid (VLS) method and humidity sensing properties of obtained ZnS nanowires were investigated by quartz crystal microbalance (QCM) method and electrical measurements. The synthesized nanowires were exposed to relative humidity (RH) between 22% and 97% under controlled environment. Our experimental results show that ZnS nanowires have a great potential for humidity sensing applications in room temperature operations.

  4. Liquid-solid phase transition of hydrogen and deuterium in silica aerogel

    NASA Astrophysics Data System (ADS)

    Van Cleve, E.; Worsley, M. A.; Kucheyev, S. O.

    2014-10-01

    Behavior of hydrogen isotopes confined in disordered low-density nanoporous solids remains essentially unknown. Here, we use relaxation calorimetry to study freezing and melting of H2 and D2 in an ˜85%-porous base-catalyzed silica aerogel. We find that liquid-solid transition temperatures of both isotopes inside the aerogel are depressed. The phase transition takes place over a wide temperature range of ˜4 K and non-trivially depends on the liquid filling fraction, reflecting the broad pore size distribution in the aerogel. Undercooling is observed for both H2 and D2 confined inside the aerogel monolith. Results for H2 and D2 are extrapolated to tritium-containing hydrogens with the quantum law of corresponding states.

  5. Preparation of fungal conidia impacts their susceptibility to inactivation by ethanol vapours.

    PubMed

    Dao, Thien; Dantigny, Philippe

    2009-11-15

    A common protocol employed for the preparation of conidia employs flooding a fungal colony grown on semi-solid media under optimum conditions with an aqueous solution. In contrast, conidia produced in a natural environment are usually not hydrated when disseminated in air and can be produced under water stress. In order to simulate the latter conditions, cultures were grown at different water activities and conidia were dry-harvested on the lid by turning the dishes upside-down then gently tapping the bottom of the box. This study aimed at assessing the effect of the preparation of fungal conidia on their inactivation by ethanol vapours. Firstly ethanol vapours (either 0.30 or 0.45 kPa) were applied to conidia obtained from the standardised protocol and to dry-harvested conidia for some species of Penicillium. While all dry-harvested conidia remained viable after 24 h of treatment, about 1.0, 3.5 and 2.5 log(10) reductions were observed for hydrated conidia of Penicillium chrysogenum, Penicillium digitatum and Penicillium italicum respectively. Secondly ethanol vapours (0.67 kPa) were applied to dry-harvested conidia obtained from cultures grown at 0.99 a(w) and at reduced water activities. For all species, the susceptibility to ethanol vapours of conidia obtained at 0.99 a(w) was significantly greater than that of conidia obtained at reduced water activities. Conidia produced in a natural environment under non-optimal conditions would be much more resistant to ethanol vapours than those produced in the laboratory. This phenomenon may be due to a reduced intracellular water activity of dry-harvested conidia.

  6. Numerical simulation analysis of four-stage mutation of solid-liquid two-phase grinding

    NASA Astrophysics Data System (ADS)

    Li, Junye; Liu, Yang; Hou, Jikun; Hu, Jinglei; Zhang, Hengfu; Wu, Guiling

    2018-03-01

    In order to explore the numerical simulation of solid-liquid two-phase abrasive grain polishing and abrupt change tube, in this paper, the fourth order abrupt change tube was selected as the research object, using the fluid mechanics software to simulate,based on the theory of solid-liquid two-phase flow dynamics, study on the mechanism of AFM micromachining a workpiece during polishing.Analysis at different inlet pressures, the dynamic pressure distribution pipe mutant fourth order abrasive flow field, turbulence intensity, discuss the influence of the inlet pressure of different abrasive flow polishing effect.

  7. A Solid Case for Microgravity Processing

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.

    2000-01-01

    Solidification of metals, particularly alloys, is a complicated process. At some sufficiently high temperature, the components comprising an alloy fully mix, producing a single homogeneous liquid. Unfortunately, after this liquid is cast into a mold and allowed to freeze, the resulting solid is usually very inhomogeneous. In most cases the first solid to "freeze out" of the liquid has a composition very close to one of the pure metals. This initially solidifying metal usually comprises microscopic, pine-tree shaped components, collectively referred to as a dendritic array, whose distribution, alignment, and scale directly influence a materials strength and docility. During dendrite growth the adjacent liquid becomes enriched, and consequently, solidifies a much lower temperature and considerably later time. Thus, in the course of solidification, both the solid and the enriched liquid can have compositions (and local temperatures) significantly different from those of the bulk liquid. Different compositions and temperatures imply different densities that, in Earth's gravity, induce motion in the liquid. Such motion promotes formation of a casting that is denser at the bottom and lighter at the top. This condition known as macrosegregation, precludes optimized, uniform material properties.

  8. Unsteady numerical analysis of solid-liquid two-phase flow in stirred tank with double helical ribbon impeller

    NASA Astrophysics Data System (ADS)

    Bai, He; Chen, Xiangshan; Zhao, Guangyu; Xiao, Chenglei; Li, Chen; Zhong, Cheng; Chen, Yu

    2017-08-01

    In order to enhance the mixing process of soil contaminated by oil and water, one kind of double helical ribbon (DHR) impeller was developed. In this study, the unsteady simulation analysis of solid-liquid two-phase flow in stirring tank with DHR impeller was conducted by the the computational fluid dynamics and the multi-reference frame (MRF) method. It was found that at 0-3.0 s stage, the rate of liquid was greater than the rate of solid particles, while the power consumption was 5-6 times more than the smooth operation. The rates of the liquid and the solid particles were almost the same, and the required power was 32 KW at t > 3.0 s. The flow of the solid particles in the tank was a typical axial circle flow, and the dispersed sequence of the solid that was accumulated at the bottom of the tank was: the bottom loop region, the annular region near the wall of the groove and finally the area near axial center. The results show that the DHR impeller was suitable for the mixing of liquid-solid two-phase.

  9. Wire-Active Microrheology to Differentiate Viscoelastic Liquids from Soft Solids.

    PubMed

    Loosli, Frédéric; Najm, Matthieu; Chan, Raymond; Oikonomou, Evdokia; Grados, Arnaud; Receveur, Mathieu; Berret, Jean-François

    2016-12-15

    Viscoelastic liquids are characterized by a finite static viscosity and a yield stress of zero, whereas soft solids have an infinite viscosity and a non-zero yield stress. The rheological nature of viscoelastic materials has long been a challenge and is still a matter of debate. Here, we provide for the first time the constitutive equations of linear viscoelasticity for magnetic wires in yield-stress materials, together with experimental measurements by using magnetic rotational spectroscopy (MRS). In MRS, the wires were subjected to a rotational magnetic field as a function of frequency and the motion of the wire was monitored by using time-lapse microscopy. The studied soft solids were aqueous dispersions of gel-forming polysaccharide (gellan gum) at concentrations above the gelification point. It was found that soft solids exhibited a clear and distinctive signature compared with viscous and viscoelastic liquids. In particular, the average wire rotation velocity equaled zero over a broad frequency range. We also showed that the MRS technique is quantitative. The equilibrium elastic modulus was retrieved from the wire oscillation amplitudes, and agrees with polymer-dynamics theory. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Matrix solid-phase dispersion coupled with homogeneous ionic liquid microextraction for the determination of sulfonamides in animal tissues using high-performance liquid chromatography.

    PubMed

    Wang, Zhibing; He, Mengyu; Jiang, Chunzhu; Zhang, Fengqing; Du, Shanshan; Feng, Wennan; Zhang, Hanqi

    2015-12-01

    Matrix solid-phase dispersion coupled with homogeneous ionic liquid microextraction was developed and applied to the extraction of some sulfonamides, including sulfamerazine, sulfamethazine, sulfathiazole, sulfachloropyridazine, sulfadoxine, sulfisoxazole, and sulfaphenazole, in animal tissues. High-performance liquid chromatography was applied to the separation and determination of the target analytes. The solid sample was directly treated by matrix solid-phase dispersion and the eluate obtained was treated by homogeneous ionic liquid microextraction. The ionic liquid was used as the extraction solvent in this method, which may result in the improvement of the recoveries of the target analytes. To avoid using organic solvent and reduce environmental pollution, water was used as the elution solvent of matrix solid-phase dispersion. The effects of the experimental parameters on recoveries, including the type and volume of ionic liquid, type of dispersant, ratio of sample to dispersant, pH value of elution solvent, volume of elution solvent, amount of salt in eluate, amount of ion-pairing agent (NH4 PF6 ), and centrifuging time, were evaluated. When the present method was applied to the analysis of animal tissues, the recoveries of the analytes ranged from 85.4 to 118.0%, and the relative standard deviations were lower than 9.30%. The detection limits for the analytes were 4.3-13.4 μg/kg. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Magnetic coupling between liquid 3He and a solid state substrate: a new approach

    NASA Astrophysics Data System (ADS)

    Klochkov, Alexander V.; Naletov, Vladimir V.; Tayurskii, Dmitrii A.; Tagirov, Murat S.; Suzuki, Haruhiko

    2000-07-01

    We suggest a new approach for solving the long-standing problem of a magnetic coupling between liquid 3He and a solid state substrate at temperatures above the Fermi temperature. The approach is based on our previous careful investigations of the physical state of a solid substrate by means of several experimental methods (EPR, NMR, conductometry, and magnetization measurements). The developed approach allows, first, to get more detailed information about the magnetic coupling phenomenon by varying the repetition time in pulse NMR investigations of liquid 3He in contact with the solid state substrate and, second, to compare the obtained dependences and the data of NMR-cryoporometry and AFM-microscopy.

  12. Bimetallic-catalyst-mediated syntheses of nanomaterials (nanowires, nanotubes, nanofibers, nanodots, etc) by the VQS (vapor-quasiliquid-solid, vapor- quasisolid-solid) growth mechanism

    NASA Astrophysics Data System (ADS)

    Mohammad, S. N.

    2016-12-01

    The enhanced synergistic, catalytic effect of bimetallic nanoparticles (BNPs), as compared to monometallic nanoparticles (NPs), on the nanomaterials (nanowires, nanotubes, nanodots, nanofibers, etc) synthesed by chemical vapor deposition has been investigated. A theoretical model for this catalytic effect and hence for nanomaterial growth, has been developed. The key element of the model is the diffusion of the nanomaterial source species through the nanopores of quasiliquid (quasisolid) BNP, rather than through the liquid or solid BNP, for nanomaterial growth. The role of growth parameters such as temperature, pressure and of the BNP material characteristics such as element mole fraction of BNP, has been studied. The cause of enhanced catalytic activity of BNPs as compared to NPs as a function of temperature has been explored. The dependence of growth rate on the nanomaterial diameter has also been examined. The calculated results have been extensively compared with available experiments. Experimental supports for the growth mechanism have been presented as well. Close correspondence between the calculated and experimental results attests to the validity of the proposed model. The wide applicability of the proposed model to nanowires, nanotubes, nanofibers, nanodots, etc suggests that it is general and has broad appeal.

  13. Direct anisotropic growth of CdS nanocrystals in thermotropic liquid crystal templates for heterojunction optoelectronics.

    PubMed

    Yuan, Kai; Chen, Lie; Chen, Yiwang

    2014-09-01

    The direct growth of CdS nanocrystals in functional solid-state thermotropic liquid crystal (LC) small molecules and a conjugated LC polymer by in situ thermal decomposition of a single-source cadmium xanthate precursor to fabricate LC/CdS hybrid nanocomposites is described. The influence of thermal annealing temperature of the LC/CdS precursors upon the nanomorphology, photophysics, and optoelectronic properties of the LC/CdS nanocomposites is systematically studied. Steady-state PL and ultrafast emission dynamics studies show that the charge-transfer rates are strongly dependent on the thermal annealing temperature. Notably, annealing at liquid-crystal state temperature promotes a more organized nanomorphology of the LC/CdS nanocomposites with improved photophysics and optoelectronic properties. The results confirm that thermotropic LCs can be ideal candidates as organization templates for the control of organic/inorganic hybrid nanocomposites at the nanoscale level. The results also demonstrate that in situ growth of semiconducting nanocrystals in thermotropic LCs is a versatile route to hybrid organic/inorganic nanocomposites and optoelectronic devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. In-drop capillary spooling of spider capture thread inspires hybrid fibers with mixed solid-liquid mechanical properties.

    PubMed

    Elettro, Hervé; Neukirch, Sébastien; Vollrath, Fritz; Antkowiak, Arnaud

    2016-05-31

    An essential element in the web-trap architecture, the capture silk spun by ecribellate orb spiders consists of glue droplets sitting astride a silk filament. Mechanically this thread presents a mixed solid-liquid behavior unknown to date. Under extension, capture silk behaves as a particularly stretchy solid, owing to its molecular nanosprings, but it totally switches behavior in compression to now become liquid-like: It shrinks with no apparent limit while exerting a constant tension. Here, we unravel the physics underpinning the unique behavior of this "liquid wire" and demonstrate that its mechanical response originates in the shape-switching of the silk filament induced by buckling within the droplets. Learning from this natural example of geometry and mechanics, we manufactured programmable liquid wires that present previously unidentified pathways for the design of new hybrid solid-liquid materials.

  15. In-drop capillary spooling of spider capture thread inspires hybrid fibers with mixed solid-liquid mechanical properties

    NASA Astrophysics Data System (ADS)

    Elettro, Hervé; Neukirch, Sébastien; Vollrath, Fritz; Antkowiak, Arnaud

    2016-05-01

    An essential element in the web-trap architecture, the capture silk spun by ecribellate orb spiders consists of glue droplets sitting astride a silk filament. Mechanically this thread presents a mixed solid-liquid behavior unknown to date. Under extension, capture silk behaves as a particularly stretchy solid, owing to its molecular nanosprings, but it totally switches behavior in compression to now become liquid-like: It shrinks with no apparent limit while exerting a constant tension. Here, we unravel the physics underpinning the unique behavior of this ”liquid wire” and demonstrate that its mechanical response originates in the shape-switching of the silk filament induced by buckling within the droplets. Learning from this natural example of geometry and mechanics, we manufactured programmable liquid wires that present previously unidentified pathways for the design of new hybrid solid-liquid materials.

  16. Effect of liquid-to-solid ratio on semi-solid Fenton process in hazardous solid waste detoxication.

    PubMed

    Hu, Li-Fang; Feng, Hua-Jun; Long, Yu-Yang; Zheng, Yuan-Ge; Fang, Cheng-Ran; Shen, Dong-Sheng

    2011-01-01

    The liquid-to-solid ratio (L/S) of semi-solid Fenton process (SSFP) designated for hazardous solid waste detoxication was investigated. The removal and minimization effects of o-nitroaniline (ONA) in simulate solid waste residue (SSWR) from organic arsenic industry was evaluated by total organic carbon (TOC) and ONA removal efficiency, respectively. Initially, Box-Behnken design (BBD) and response surface methodology (RSM) were used to optimize the key factors of SSFP. Results showed that the removal rates of TOC and ONA decreased as L/S increased. Subsequently, four target initial ONA concentrations including 100 mg kg(-1), 1 g kg(-1), 10 g kg(-1), and 100 gk g(-1) on a dry basis were evaluated for the effect of L/S. A significant cubic empirical model between the initial ONA concentration and L/S was successfully developed to predict the optimal L/S for given initial ONA concentration for SSFP. Moreover, an optimized operation strategy of multi-SSFP for different cases was determined based on the residual target pollutant concentration and the corresponding environmental conditions. It showed that the total L/S of multi-SSFP in all tested scenarios was no greater than 3.8, which is lower than the conventional slurry systems (L/S ≥ 5). The multi-SSFP is environment-friendly when it used for detoxication of hazardous solid waste contaminated by ONA and provides a potential method for the detoxication of hazardous solid waste contaminated by organics. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Non-Epitaxial Thin-Film Indium Phosphide Photovoltaics: Growth, Devices, and Cost Analysis

    NASA Astrophysics Data System (ADS)

    Zheng, Maxwell S.

    In recent years, the photovoltaic market has grown significantly as module prices have continued to come down. Continued growth of the field requires higher efficiency modules at lower manufacturing costs. In particular, higher efficiencies reduce the area needed for a given power output, thus reducing the downstream balance of systems costs that scale with area such as mounting frames, installation, and soft costs. Cells and modules made from III-V materials have the highest demonstrated efficiencies to date but are not yet at the cost level of other thin film technologies, which has limited their large-scale deployment. There is a need for new materials growth, processing and fabrication techniques to address this major shortcoming of III-V semiconductors. Chapters 2 and 3 explore growth of InP on non-epitaxial Mo substrates by MOCVD and CSS, respectively. The results from these studies demonstrate that InP optoelectronic quality is maintained even by growth on non-epitaxial metal substrates. Structural characterization by SEM and XRD show stoichiometric InP can be grown in complete thin films on Mo. Photoluminescence measurements show peak energies and widths to be similar to those of reference wafers of similar doping concentrations. In chapter 4 the TF-VLS growth technique is introduced and cells fabricated from InP produced by this technique are characterized. The TF-VLS method results in lateral grain sizes of >500 mum and exhibits superior optoelectronic quality. First generation devices using a n-TiO2 window layer along with p-type TF-VLS grown InP have reached ˜12.1% power conversion efficiency under 1 sun illumination with VOC of 692 mV, JSC of 26.9 mA/cm2, and FF of 65%. The cells are fabricated using all non-epitaxial processing. Optical measurements show the InP in these cells have the potential to support a higher VOC of ˜795 mV, which can be achieved by improved device design. Chapter 5 describes a cost analysis of a manufacturing process using an

  18. Instrumental Analysis in Environmental Chemistry - Liquid and Solid Phase Detection Systems

    ERIC Educational Resources Information Center

    Stedman, Donald H.; Meyers, Philip A.

    1974-01-01

    This is the second of two reviews dealing with analytical methods applicable to environmental chemistry. Methods are discussed under gas, liquid, or solid depending upon the state of the analyte during detection. (RH)

  19. A thin-layer liquid culture technique for the growth of Helicobacter pylori.

    PubMed

    Joo, Jung-Soo; Park, Kyung-Chul; Song, Jae-Young; Kim, Dong-Hyun; Lee, Kyung-Ja; Kwon, Young-Cheol; Kim, Jung-Min; Kim, Kyung-Mi; Youn, Hee-Shang; Kang, Hyung-Lyun; Baik, Seung-Chul; Lee, Woo-Kon; Cho, Myung-Je; Rhee, Kwang-Ho

    2010-08-01

    Several attempts have been successful in liquid cultivation of Helicobaccter pylori. However, there is a need to improve the growth of H. pylori in liquid media in order to get affluent growth and a simple approach for examining bacterial properties. We introduce here a thin-layer liquid culture technique for the growth of H. pylori. A thin-layer liquid culture system was established by adding liquid media to a 90-mm diameter Petri dish. Optimal conditions for bacterial growth were investigated and then viability, growth curve, and released proteins were examined. Maximal growth of H. pylori was obtained by adding 3 mL of brucella broth supplemented with 10% horse to a Petri dish. H. pylori grew in both DMEM and RPMI-1640 supplemented with 10% fetal bovine serum and 0.5% yeast extract. Serum-free RPMI-1640 supported the growth of H. pylori when supplemented with dimethyl-beta-cyclodextrin (200 microg/mL) and 1% yeast extract. Under optimal growth, H. pylori grew exponentially for 28 hours, reaching a density of 3.4 OD(600) with a generation time of 3.3 hours. After 24 hours, cultures at a cell density of 1.0 OD(600) contained 1.3 +/- 0.1 x 10(9 )CFU/mL. gamma-Glutamyl transpeptidase, nuclease, superoxide dismutase, and urease were not detected in culture supernatants at 24 hours in thin-layer liquid culture, but were present at 48 hours, whereas alcohol dehydrogenase, alkylhydroperoxide reductase, catalase, and vacuolating cytotoxin were detected at 24 hours. Thin-layer liquid culture technique is feasible, and can serve as a versatile liquid culture technique for investigating bacterial properties of H. pylori.

  20. Extending atomistic simulation timescale in solid/liquid systems: crystal growth from solution by a parallel-replica dynamics and continuum hybrid method.

    PubMed

    Lu, Chun-Yaung; Voter, Arthur F; Perez, Danny

    2014-01-28

    Deposition of solid material from solution is ubiquitous in nature. However, due to the inherent complexity of such systems, this process is comparatively much less understood than deposition from a gas or vacuum. Further, the accurate atomistic modeling of such systems is computationally expensive, therefore leaving many intriguing long-timescale phenomena out of reach. We present an atomistic/continuum hybrid method for extending the simulation timescales of dynamics at solid/liquid interfaces. We demonstrate the method by simulating the deposition of Ag on Ag (001) from solution with a significant speedup over standard MD. The results reveal specific features of diffusive deposition dynamics, such as a dramatic increase in the roughness of the film.

  1. Vapour Intrusion into Buildings - A Literature Review

    EPA Science Inventory

    This chapter provides a review of recent research on vapour intrusion of volatile organic compounds (VOCs) into buildings. The chapter builds on a report from Tillman and Weaver (2005) which reviewed the literature on vapour intrusion through 2005. Firstly, the term ‘vapour intru...

  2. Kinetics of Isothermal Reactive Diffusion Between Solid Cu and Liquid Sn

    NASA Astrophysics Data System (ADS)

    O, M.; Suzuki, T.; Kajihara, M.

    2018-01-01

    The Cu/Sn system is one of the most fundamental and important metallic systems for solder joints in electric devices. To realize reliable solder joints, information on reactive diffusion at the solder joint is very important. In the present study, we experimentally investigated the kinetics of the reactive diffusion between solid Cu and liquid Sn using semi-infinite Cu/Sn diffusion couples prepared by an isothermal bonding technique. Isothermal annealing of the diffusion couple was conducted in the temperature range of 533-603 K for various times up to 172.8 ks (48 h). Using annealing, an intermetallic layer composed of Cu6Sn5 with scallop morphology and Cu3Sn with rather uniform thickness is formed at the original Cu/Sn interface in the diffusion couple. The growth of the Cu6Sn5 scallop occurs much more quickly than that of the Cu3Sn layer and thus predominates in the overall growth of the intermetallic layer. This tendency becomes more remarkable at lower annealing temperatures. The total thickness of the intermetallic layer is proportional to a power function of the annealing time, and the exponent of the power function is close to unity at all the annealing temperatures. This means that volume diffusion controls the intermetallic growth and the morphology of the Cu6Sn5/Sn interface influences the rate-controlling process. Adopting a mean value of 0.99 for the exponent, we obtain a value of 26 kJ/mol for the activation enthalpy of the intermetallic growth.

  3. Increased Optoelectronic Quality and Uniformity of Hydrogenated p-InP Thin Films

    DOE PAGES

    Wang, Hsin -Ping; Sutter-Fella, Carolin M.; Lobaccaro, Peter; ...

    2016-06-08

    The thin-film vapor–liquid–solid (TF-VLS) growth technique presents a promising route for high quality, scalable, and cost-effective InP thin films for optoelectronic devices. Toward this goal, careful optimization of material properties and device performance is of utmost interest. Here, we show that exposure of polycrystalline Zn-doped TF-VLS InP to a hydrogen plasma (in the following referred to as hydrogenation) results in improved optoelectronic quality as well as lateral optoelectronic uniformity. A combination of low temperature photoluminescence and transient photocurrent spectroscopy was used to analyze the energy position and relative density of defect states before and after hydrogenation. Notably, hydrogenation reduces themore » relative intragap defect density by 1 order of magnitude. As a metric to monitor lateral optoelectronic uniformity of polycrystalline TF-VLS InP, photoluminescence and electron beam induced current mapping reveal homogenization of the grain versus grain boundary upon hydrogenation. At the device level, we measured more than 260 TF-VLS InP solar cells before and after hydrogenation to verify the improved optoelectronic properties. Hydrogenation increased the average open-circuit voltage (V OC) of individual TF-VLS InP solar cells by up to 130 mV and reduced the variance in V OC for the analyzed devices.« less

  4. Relationship between pH and Medium Dissolved Solids in Terms of Growth and Metabolism of Lactobacilli and Saccharomyces cerevisiae during Ethanol Production

    PubMed Central

    Narendranath, Neelakantam V.; Power, Ronan

    2005-01-01

    The specific growth rates of four species of lactobacilli decreased linearly with increases in the concentration of dissolved solids (sugars) in liquid growth medium. This was most likely due to the osmotic stress exerted by the sugars on the bacteria. The reduction in growth rates corresponded to decreased lactic acid production. Medium pH was another factor studied. As the medium pH decreased from 5.5 to 4.0, there was a reduction in the specific growth rate of lactobacilli and a corresponding decrease in the lactic acid produced. In contrast, medium pH did not have any significant effect on the specific growth rate of yeast at any particular concentration of dissolved solids in the medium. However, medium pH had a significant (P < 0.001) effect on ethanol production. A medium pH of 5.5 resulted in maximal ethanol production in all media with different concentrations of dissolved solids. When the data were analyzed as a 4 (pH levels) by 4 (concentrations of dissolved solids) factorial experiment, there was no synergistic effect (P > 0.2923) observed between pH of the medium and concentration of dissolved solids of the medium in reducing bacterial growth and metabolism. The data suggest that reduction of initial medium pH to 4.0 for the control of lactobacilli during ethanol production is not a good practice as there is a reduction (P < 0.001) in the ethanol produced by the yeast at pH 4.0. Setting the mash (medium) with ≥30% (wt/vol) dissolved solids at a pH of 5.0 to 5.5 will minimize the effects of bacterial contamination and maximize ethanol production by yeast. PMID:15870306

  5. PREFACE: Liquid-solid interfaces: structure and dynamics from spectroscopy and simulations Liquid-solid interfaces: structure and dynamics from spectroscopy and simulations

    NASA Astrophysics Data System (ADS)

    Gaigeot, Marie-Pierre; Sulpizi, Marialore

    2012-03-01

    Liquid-solid interfaces play an important role in a number of phenomena encountered in biological, chemical and physical processes. Surface-induced changes of the material properties are not only important for the solid support but also for the liquid itself. In particular, it is now well established that water at the interface is substantially different from bulk water, even in the proximity of apparently inert surfaces such as a simple metal. The complex chemistry at liquid-solid interfaces is typically fundamental to heterogeneous catalysis and electrochemistry, and has become especially topical in connection with the search for new materials for energy production. A quite remarkable example is the development of cheap yet efficient solar cells, whose basic components are dye molecules grafted to the surface of an oxide material and in contact with an electrolytic solution. In life science, the most important liquid-solid interfaces are the water-cell-membrane interfaces. Phenomena occurring at the surface of phospholipid bilayers control the docking of proteins, the transmission of signals as well as transport of molecules in and out of the cell. Recently the development of bio-compatible materials has lead to research on the interface between bio-compatible material and lipid/proteins in aqueous solution. Gaining a microscopic insight into the processes occurring at liquid-solid interfaces is therefore fundamental to a wide range of disciplines. This special section collects some contributions to the CECAM Workshop 'Liquid/Solid interfaces: Structure and Dynamics from Spectroscopy and Simulations' which took place in Lausanne, Switzerland in June 2011. Our main aim was to bring together knowledge and expertise from different communities in order to advance our microscopic understanding of the structure and dynamics of liquids at interfaces. In particular, one of our ambitions was to foster discussion between the experimental and theoretical

  6. Ionic-liquid-based dispersive liquid-liquid microextraction combined with magnetic solid-phase extraction for the determination of aflatoxins B1 , B2 , G1 , and G2 in animal feeds by high-performance liquid chromatography with fluorescence detection.

    PubMed

    Zhao, Jiao; Zhu, Yan; Jiao, Yang; Ning, Jinyan; Yang, Yaling

    2016-10-01

    A novel two-step extraction technique combining ionic-liquid-based dispersive liquid-liquid microextraction with magnetic solid-phase extraction was developed for the preconcentration and separation of aflatoxins in animal feedstuffs before high-performance liquid chromatography coupled with fluorescence detection. In this work, ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate was used as the extractant in dispersive liquid-liquid microextraction, and hydrophobic pelargonic acid modified Fe 3 O 4 magnetic nanoparticles as an efficient adsorbent were applied to retrieve the aflatoxins-containing ionic liquid. Notably, the target of magnetic nanoparticles was the ionic liquid rather than the aflatoxins. Because of the rapid mass transfer associated with the dispersive liquid-liquid microextraction and magnetic solid phase steps, fast extraction could be achieved. The main parameters affecting the extraction recoveries of aflatoxins were investigated and optimized. Under the optimum conditions, vortexing at 2500 rpm for 1 min in the dispersive liquid-liquid microextraction and magnetic solid-phase extraction and then desorption by sonication for 2 min with acetonitrile as eluent. The recoveries were 90.3-103.7% with relative standard deviations of 3.2-6.4%. Good linearity was observed with correlation coefficients ranged from 0.9986 to 0.9995. The detection limits were 0.632, 0.087, 0.422 and 0.146 ng/mL for aflatoxins B 1 , B2, G1, and G2, respectively. The results were also compared with the pretreatment method carried out by conventional immunoaffinity columns. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Selective Solid-liquid Extraction and Liquid-liquid Extraction of Lithium Chloride using Strapped Calix[4]pyrroles

    DOE PAGES

    He, Qing; Williams, Neil J.; Oh, Ju; ...

    2018-05-25

    LiCl is a classic "hard" ion salt that is present in lithium-rich brines and a key component in end-of-life materials (i.e., used lithium-ion batteries). Its isolation and purification from like salts is a recognized challenge with potential strategic and economic implications. Here in this paper, we describe two ditopic calix[4]pyrrole-based ion pair receptors (2 and 3), that are capable of selectively capturing LiCl. Under solid-liquid extraction conditions, using 2 as the extractant, LiCl could be separated from a NaCl-KCl salt mixture containing as little as 1% LiCl with ~100% selectivity, while receptor 3 achieved similar separations when the LiCl levelmore » was as low as 200 ppm. Under liquid-liquid extraction conditions using nitrobenzene as the non-aqueous phase, the extraction preference displayed by 2 is KCl > NaCl > LiCl. Lastly, in contrast, 3 exhibits high selectivity towards LiCl over NaCl and KCl, with no appreciable extraction being observed for the latter two salts.« less

  8. Selective Solid-liquid Extraction and Liquid-liquid Extraction of Lithium Chloride using Strapped Calix[4]pyrroles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Qing; Williams, Neil J.; Oh, Ju

    LiCl is a classic "hard" ion salt that is present in lithium-rich brines and a key component in end-of-life materials (i.e., used lithium-ion batteries). Its isolation and purification from like salts is a recognized challenge with potential strategic and economic implications. Here in this paper, we describe two ditopic calix[4]pyrrole-based ion pair receptors (2 and 3), that are capable of selectively capturing LiCl. Under solid-liquid extraction conditions, using 2 as the extractant, LiCl could be separated from a NaCl-KCl salt mixture containing as little as 1% LiCl with ~100% selectivity, while receptor 3 achieved similar separations when the LiCl levelmore » was as low as 200 ppm. Under liquid-liquid extraction conditions using nitrobenzene as the non-aqueous phase, the extraction preference displayed by 2 is KCl > NaCl > LiCl. Lastly, in contrast, 3 exhibits high selectivity towards LiCl over NaCl and KCl, with no appreciable extraction being observed for the latter two salts.« less

  9. ZnO nanoneedle/H2O solid-liquid heterojunction-based self-powered ultraviolet detector

    PubMed Central

    2013-01-01

    ZnO nanoneedle arrays were grown vertically on a fluorine-doped tin oxide-coated glass by hydrothermal method at a relatively low temperature. A self-powered photoelectrochemical cell-type UV detector was fabricated using the ZnO nanoneedles as the active photoanode and H2O as the electrolyte. This solid-liquid heterojunction offers an enlarged ZnO/water contact area and a direct pathway for electron transport simultaneously. By connecting this UV photodetector to an ammeter, the intensity of UV light can be quantified using the output short-circuit photocurrent without a power source. High photosensitivity, excellent spectral selectivity, and fast photoresponse at zero bias are observed in this UV detector. The self-powered behavior can be well explained by the formation of a space charge layer near the interface of the solid-liquid heterojunction, which results in a built-in potential and makes the solid-liquid heterojunction work in photovoltaic mode. PMID:24103153

  10. Fertilizer potential of liquid and solid effluent from thermophilic anaerobic digestion of poultry waste.

    PubMed

    Liedl, B E; Bombardiere, J; Chaffield, J M

    2006-01-01

    Thermophilic anaerobic treatment of poultry litter produces an effluent stream of digested materials that can be separated into solid and liquid fractions for use as a crop fertilizer. The majority of the phosphorus is partitioned into the solid fraction while the majority of the nitrogen is present in the liquid fraction in the form of ammonium. These materials were tested over six years as an alternative fertilizer for the production of vegetable, fruit, and grassland crops. Application of the solids as a field crop fertilizer for vegetables and blueberries resulted in lower yields than the other fertilizer treatments, but an increase in soil phosphorus over a four-year period. Application of the digested liquids on grass and vegetable plots resulted in similar or superior yields to plots treated with commercially available nitrogen fertilizers. Hydroponic production of lettuce using liquid effluent was comparable to a commercial hydroponic fertilizer regime; however, the effluent treatment for hydroponic tomato production required supplementation and conversion of ammonium to nitrate. While not a total fertilizer solution, our research shows the effectiveness of digested effluent as part of a nutrient management program which could turn a livestock residuals problem into a crop nutrient resource.

  11. Tritium labeling of amino acids and peptides with liquid and solid tritium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souers, P.C.; Coronado, P.R.; Peng, C.T.

    Amino acids and peptides were labeled with liquid and solid tritium at 21/degree/K and 9/degree/K. At these low temperatures radiation degradation is minimal, and tritium incorporation increases with tritium concentration and exposure time. Ring saturation in L-phenylalanine does not occur. Peptide linkage in oligopeptides is stable toward tritium. Deiodination in 3-iodotyrosine and 3,5-diiodotyrosine occurs readily and proceeds in steps by losing one iodine atom at a time. Nickel and noble metal supported catalysts when used as supports for dispersion of the substrate promote tritium labeling at 21 K. Our study shows that both liquid and solid tritiums are potentially usefulmore » agents for labeling peptides and proteins.« less

  12. Effect of Ga incorporation on morphology and defect structures evolution in VLS grown 1D In2O3 nanostructures

    NASA Astrophysics Data System (ADS)

    Ramos-Ramón, Jesús Alberto; Pal, Umapada; Cremades, Ana; Maestre, David

    2018-05-01

    Fabrication of 1D metal oxide nanostructures of controlled morphology and defect structure is of immense importance for their application in optoelectronics. While the morphology of these nanostructures depends primarily on growth parameters utilized in physical deposition processes, incorporation of foreign elements or dopants not only affects their morphology, but also affects their crystallinity and defect structure, which are the most important parameters for their device applications. Herein we report on the growth of highly crystalline 1D In2O3 nanostructures through vapor-liquid-solid process at relatively low temperature, and the effect of Ga incorporation on their morphology and defect structures. Through electron microscopy, Raman spectroscopy and cathodoluminescence spectroscopy techniques, we demonstrate that incorporation of Ga in In2O3 nanostructures not only strongly affects their morphology, but also generates new defect levels in the band gap of In2O3, shifting the overall emission of the nanostructures towards visible spectral range.

  13. The validation and preference among different EAM potentials to describe the solid-liquid transition of aluminum

    NASA Astrophysics Data System (ADS)

    Jiang, Yewei; Luo, Jie; Wu, Yongquan

    2017-06-01

    Empirical potential is vital to the classic atomic simulation, especially for the study of phase transitions, as well as the solid-interface. In this paper, we attempt to set up a uniform procedure for the validation among different potentials before the formal simulation study of phase transitions of metals. Two main steps are involved: (1) the prediction of the structures of both solid and liquid phases and their mutual transitions, i.e. melting and crystallization; (2) the prediction of vital thermodynamic (the equilibrium melting point at ambient pressure) and dynamic properties (the degrees of superheating and undercooling). We applied this procedure to the testing of seven published embedded-atom potentials (MKBA (Mendelev et al 2008 Philos. Mag. 88 1723), MFMP (Mishin et al 1999 Phys. Rev. B 59 3393), MDSL (Sturgeon and Laird 2000 Phys. Rev. B 62 14720), ZM (Zope and Mishin 2003 Phys. Rev. B 68 024102), LEA (Liu et al 2004 Model. Simul. Mater. Sci. Eng. 12 665), WKG (Winey et al 2009 Model. Simul. Mater. Sci. Eng. 17 055004) and ZJW (Zhou et al 2004 Phys. Rev. B 69 144113)) for the description of the solid-liquid transition of Al. All the predictions of structure, melting point and superheating/undercooling degrees were compared with the experiments or theoretical calculations. Then, two of them, MKBA and MDSL, were proven suitable for the study of the solid-liquid transition of Al while the residuals were unqualified. However, potential MKBA is more accurate to predict the structures of solid and liquid, while MDSL works a little better in the thermodynamic and dynamic predictions of solid-liquid transitions.

  14. Evolution of short range order in Ar: Liquid to glass and solid transitions-A computational study

    NASA Astrophysics Data System (ADS)

    Shor, Stanislav; Yahel, Eyal; Makov, Guy

    2018-04-01

    The evolution of the short range order (SRO) as a function of temperature in a Lennard-Jones model liquid with Ar parameters was determined and juxtaposed with thermodynamic and kinetic properties obtained as the liquid was cooled (heated) and transformed between crystalline solid or glassy states and an undercooled liquid. The Lennard-Jones system was studied by non-equilibrium molecular dynamics simulations of large supercells (approximately 20000 atoms) rapidly cooled or heated at selected quenching rates and at constant pressure. The liquid to solid transition was identified by discontinuities in the atomic volume and molar enthalpy; the glass transition temperature range was identified from the temperature dependence of the self-diffusion. The SRO was studied within the quasi-crystalline model (QCM) framework and compared with the Steinhardt bond order parameters. Within the QCM it was found that the SRO evolves from a bcc-like order in the liquid through a bct-like short range order (c/a=1.2) in the supercooled liquid which persists into the glass and finally to a fcc-like ordering in the crystalline solid. The variation of the SRO that results from the QCM compares well with that obtained with Steinhardt's bond order parameters. The hypothesis of icosahedral order in liquids and glasses is not supported by our results.

  15. Air Entrapment for Liquid Drops Impacting a Solid Substrate

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Tan, Peng; Xu, Lei

    2012-11-01

    Using high-speed photography coupled with optical interference, we experimentally study the air entrapment during a liquid drop impacting a solid substrate. We observe the formation of a compressed air film before the liquid touches the substrate, with internal pressure considerably higher than the atmospheric value. The degree of compression highly depends on the impact velocity, as explained by balancing the liquid deceleration with the large pressure of compressed air. After contact, the air film expands vertically at the edge, reducing its pressure within a few tens of microseconds and producing a thick rim on the perimeter. This thick-rimmed air film subsequently contracts into an air bubble, governed by the complex interaction between surface tension, inertia and viscous drag. Such a process is universally observed for impacts above a few centimeters high. Hong Kong GRF grant CUHK404211 and direct grant 2060418.

  16. Solid-liquid like phase transition in a confined granular suspension

    NASA Astrophysics Data System (ADS)

    Sakai, Nariaki; Lechenault, Frederic; Adda Bedia, Mokhtar

    We present an experimental study of a liquid-solid like phase transition in a two-dimensional granular media. Particles are placed in a vertical Hele-Show cell filled with a denser solution of cesium-chloride. Thus, when the cell is rotated around its axis, hydrostatic pressure exerts a centripetal force on the particles which confines them towards the center. This force is in competition with gravity, thus by modifying the rotation rate, it is possible to transform continuously and reversibly the sample from a disordered loose state to an ordered packed state. The system presents many similarities with thermal systems at equilibrium like density and interface fluctuations, and the transition between the two phases goes through a coexistence state, where there is nucleation and growth of locally ordered domains which are captured by the correlation function of the hexatic order parameter. We discuss the possibility to extend the grand-canonical formalism to out-of equilibrium systems, in order to uncover a state equation between the density and the pressure in the medium.

  17. Flexible thin-film battery based on solid-like ionic liquid-polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Li, Qin; Ardebili, Haleh

    2016-01-01

    The development of high-performance flexible batteries is imperative for several contemporary applications including flexible electronics, wearable sensors and implantable medical devices. However, traditional organic liquid-based electrolytes are not ideal for flexible batteries due to their inherent safety and stability issues. In this study, a non-volatile, non-flammable and safe ionic liquid (IL)-based polymer electrolyte film with solid-like feature is fabricated and incorporated in a flexible lithium ion battery. The ionic liquid is 1-Ethyl-3-methylimidazolium dicyanamide (EMIMDCA) and the polymer is composed of poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP). The electrolyte exhibits good thermal stability (i.e. no weight loss up to 300 °C) and relatively high ionic conductivity (6 × 10-4 S cm-1). The flexible thin-film lithium ion battery based on solid-like electrolyte film is encapsulated using a thermal-lamination process and demonstrates excellent electrochemical performance, in both flat and bent configurations.

  18. Combustion engine for solid and liquid fuels

    NASA Technical Reports Server (NTRS)

    Pabst, W.

    1986-01-01

    A combustion engine having no piston, a single cylinder, and a dual-action, that is applicable for solid and liquid fuels and propellants, and that functions according to the principle of annealing point ignition is presented. The invention uses environmentally benign amounts of fuel and propellants to produce gas and steam pressure, and to use a simple assembly with the lowest possible consumption and constant readiness for mixing and burning. The advantage over conventional combustion engines lies in lower consumption of high quality igniting fluid in the most cost effective manner.

  19. In-vitro and in-vivo anti-Trichophyton activity of essential oils by vapour contact.

    PubMed

    Inouye, S; Uchida, K; Yamaguchi, H

    2001-05-01

    The minimum inhibitory doses (MIDs) of essential oils by vapour contact to inhibit the growth of Trichophyton mentagrophytes and Trichophyton rubrum on agar medium were determined using airtight boxes. Among seven essential oils examined, cinnamon bark oil showed the least MID, followed by lemongrass, thyme and perilla oils. Lavender and tea tree oils showed moderate MID, and citron oil showed the highest MID, being 320 times higher than that of cinnamon bark oil. The MID values were less than the minimum inhibitory concentration (MIC) values determined by agar dilution assay. Furthermore, the minimum agar concentration (MAC) of essential oils absorbed from vapour was determined at the time of MID determination as the second antifungal measure. The MAC value by vapour contact was 1.4 to 4.7 times less than the MAC remaining in the agar at the time of MIC determination by agar dilution assay. Using selected essential oils, the anti-Trichophyton activity by vapour contact was examined in more detail. Lemongrass, thyme and perilla oils killed the conidia, inhibited germination and hyphal elongation at 1-4 micrograms ml-1 air, whereas lavender oil was effective at 40-160 micrograms ml-1 air. The in-vivo efficacy of thyme and perilla oils by vapour contact was shown against an experimental tinea pedis in guinea pigs infected with T. mentagrophytes. These results indicated potent anti-Trichophyton action of essential oils by vapour contact.

  20. Vapour-mediated sensing and motility in two-component droplets

    NASA Astrophysics Data System (ADS)

    Cira, N. J.; Benusiglio, A.; Prakash, M.

    2015-03-01

    Controlling the wetting behaviour of liquids on surfaces is important for a variety of industrial applications such as water-repellent coatings and lubrication. Liquid behaviour on a surface can range from complete spreading, as in the `tears of wine' effect, to minimal wetting as observed on a superhydrophobic lotus leaf. Controlling droplet movement is important in microfluidic liquid handling, on self-cleaning surfaces and in heat transfer. Droplet motion can be achieved by gradients of surface energy. However, existing techniques require either a large gradient or a carefully prepared surface to overcome the effects of contact line pinning, which usually limit droplet motion. Here we show that two-component droplets of well-chosen miscible liquids such as propylene glycol and water deposited on clean glass are not subject to pinning and cause the motion of neighbouring droplets over a distance. Unlike the canonical predictions for these liquids on a high-energy surface, these droplets do not spread completely but exhibit an apparent contact angle. We demonstrate experimentally and analytically that these droplets are stabilized by evaporation-induced surface tension gradients and that they move in response to the vapour emitted by neighbouring droplets. Our fundamental understanding of this robust system enabled us to construct a wide variety of autonomous fluidic machines out of everyday materials.

  1. Studies of copper and gold vapour lasers

    NASA Astrophysics Data System (ADS)

    Clark, Graeme Lawrence

    The work described in this thesis covers various aspects of pulsed copper and gold vapour lasers. The work is divided into four main parts : a computer model of the kinetics of the copper vapour laser discharge; construction and characterization of a copper vapour laser and a gold vapour laser system (to be used for photodynamic cancer treatment); analysis of the thermal processes occurring in the various forms of thermal insulation used in these lasers; and studies of the use of metal walls to confine a discharge plasma. The results of this work were combined in the design of the first copper vapour laser to use metal rather than an electrically insulating ceramic material for confinement of the discharge plasma. Laser action in copper vapour has been achieved in a number of metal-walled designs, with continuous lengths of metal ranging from 30 mm, in a segmented design, to 400 mm, where the discharge plasma was confined by two molybdenum tubes of this length. A theoretical explanation of the behaviour of plasmas in metal-walled discharge vessels is described.

  2. Coordination polymer flexibility leads to polymorphism and enables a crystalline solid-vapour reaction: a multi-technique mechanistic study.

    PubMed

    Vitórica-Yrezábal, Iñigo J; Libri, Stefano; Loader, Jason R; Mínguez Espallargas, Guillermo; Hippler, Michael; Fletcher, Ashleigh J; Thompson, Stephen P; Warren, John E; Musumeci, Daniele; Ward, Michael D; Brammer, Lee

    2015-06-08

    Despite an absence of conventional porosity, the 1D coordination polymer [Ag4 (O2 C(CF2 )2 CF3 )4 (TMP)3 ] (1; TMP=tetramethylpyrazine) can absorb small alcohols from the vapour phase, which insert into AgO bonds to yield coordination polymers [Ag4 (O2 C(CF2 )2 CF3 )4 (TMP)3 (ROH)2 ] (1-ROH; R=Me, Et, iPr). The reactions are reversible single-crystal-to-single-crystal transformations. Vapour-solid equilibria have been examined by gas-phase IR spectroscopy (K=5.68(9)×10(-5) (MeOH), 9.5(3)×10(-6) (EtOH), 6.14(5)×10(-5) (iPrOH) at 295 K, 1 bar). Thermal analyses (TGA, DSC) have enabled quantitative comparison of two-step reactions 1-ROH→1→2, in which 2 is the 2D coordination polymer [Ag4 (O2 C(CF2 )2 CF3 )4 (TMP)2 ] formed by loss of TMP ligands exclusively from singly-bridging sites. Four polymorphic forms of 1 (1-A(LT) , 1-A(HT) , 1-B(LT) and 1-B(HT) ; HT=high temperature, LT=low temperature) have been identified crystallographically. In situ powder X-ray diffraction (PXRD) studies of the 1-ROH→1→2 transformations indicate the role of the HT polymorphs in these reactions. The structural relationship between polymorphs, involving changes in conformation of perfluoroalkyl chains and a change in orientation of entire polymers (A versus B forms), suggests a mechanism for the observed reactions and a pathway for guest transport within the fluorous layers. Consistent with this pathway, optical microscopy and AFM studies on single crystals of 1-MeOH/1-A(HT) show that cracks parallel to the layers of interdigitated perfluoroalkyl chains develop during the MeOH release/uptake process. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Growth and Interaction of Colloid Nuclei

    NASA Astrophysics Data System (ADS)

    Lam, Michael-Angelo; Khusid, Boris; Meyer, William; Kondic, Lou

    2017-11-01

    We study evolution of colloid systems under zero-gravity conditions. In particular, we focus on the regime where there is a coexistence between a liquid and a solid state. Under zero gravity, the dominating process in the bulk of the fluid phase and the solid phase is diffusion. At the moving solid/liquid interface, osmotic pressure is balanced by surface tension, as well as balancing fluxes (conservation of mass) with the kinematics of nuclei growth (Wilson-Frenkel law). Due to the highly nonlinear boundary condition at the moving boundary, care has to be taken when performing numerical simulations. In this work, we present a nonlinear model for colloid nuclei growth. Numerical simulations using a finite volume method are compared with asymptotic analysis of the governing equation and experimental results for nuclei growth. Novel component in our numerical simulations is the inclusion of nonlinear (collective) diffusion terms that depend on the chemical potentials of the colloid in the solid and fluid phase. The results include growth and dissolution of a single colloidal nucleus, as well as evolution of multiple interacting nuclei. Supported by NASA Grant No. NNX16AQ79G.

  4. A comparative study of quasi-solid nanoclay gel electrolyte and liquid electrolyte dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Main, Laura

    Dye sensitized solar cells (DSSCs) are currently being explored as a cheaper alternative to the more common silicon (Si) solar cell technology. In addition to the cost advantages, DSSCs show good performance in low light conditions and are not sensitive to varying angles of incident light like traditional Si cells. One of the major challenges facing DSSCs is loss of the liquid electrolyte, through evaporation or leakage, which lowers stability and leads to increased degradation. Current research with solid-state and quasi-solid DSSCs has shown success regarding a reduction of electrolyte loss, but at a cost of lower conversion efficiency output. The research work presented in this paper focuses on the effects of using nanoclay material as a gelator in the electrolyte of the DSSC. The data showed that the quasi-solid cells are more stable than their liquid electrolyte counterparts, and achieved equal or better I-V characteristics. The quasi-solid cells were fabricated with a gel electrolyte that was prepared by adding 7 wt% of Nanoclay, Nanomer® (1.31PS, montmorillonite clay surface modified with 15-35% octadecylamine and 0.5-5 wt% aminopropyltriethoxysilane, Aldrich) to the iodide/triiodide liquid electrolyte, (Iodolyte AN-50, Solaronix). Various gel concentrations were tested in order to find the optimal ratio of nanoclay to liquid. The gel electrolyte made with 7 wt% nanoclay was more viscous, but still thin enough to allow injection with a standard syringe. Batches of cells were fabricated with both liquid and gel electrolyte and were evaluated at STC conditions (25°C, 100 mW/cm2) over time. The gel cells achieved efficiencies as high as 9.18% compared to the 9.65% achieved by the liquid cells. After 10 days, the liquid cell decreased to 1.75%, less than 20% of its maximum efficiency. By contrast, the gel cell's efficiency increased for two weeks, and did not decrease to 20% of maximum efficiency until 45 days. After several measurements, the liquid cells

  5. Kerr-AdS analogue of triple point and solid/liquid/gas phase transition

    NASA Astrophysics Data System (ADS)

    Altamirano, Natacha; Kubizňák, David; Mann, Robert B.; Sherkatghanad, Zeinab

    2014-02-01

    We study the thermodynamic behavior of multi-spinning d = 6 Kerr-anti de Sitter black holes in the canonical ensemble of fixed angular momenta J1 and J2. We find, dependent on the ratio q = J2/J1, qualitatively different interesting phenomena known from the ‘every day thermodynamics’ of simple substances. For q = 0 the system exhibits recently observed reentrant large/small/large black hole phase transitions, but for 0 < q ≪ 1 we find an analogue of a ‘solid/liquid’ phase transition. Furthermore, for q ∈ (0.00905, 0.0985) the system displays the presence of a large/intermediate/small black hole phase transition with two critical and one triple (or tricritical) points. This behavior is reminiscent of the solid/liquid/gas phase transition except that the coexistence line of small and intermediate black holes does not continue for an arbitrary value of pressure (similar to the solid/liquid coexistence line) but rather terminates at one of the critical points. Finally, for q > 0.0985 we observe the ‘standard liquid/gas behavior’ of the Van der Waals fluid.

  6. Growth of II-VI Solid Solutions in the Presence of a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Gillies, D. C; Motakef, S.; Dudley, M.; Matyi, R.; Volz, H.

    1999-01-01

    The application of a rotating magnetic field (RMF)in the frequency range 60-400 Hz and field strength of the order of 2-8 mT to crystal growth has received increasing attention in recent years. To take full advantage of the control of fluid flow by the forces applied by the field, the liquid column must be electrically conducting. Also, the application of RMF to the directional solidification of a column of liquid can result in complete mixing in the resultant solid. Thus, the technique of RMF is suited to solvent zones and float zones where the composition of the liquid is more readily controlled. In the work we report on, numerical modeling has been applied to II-VI systems, particularly tellurium based traveling heater techniques (THM). Results for a spectrum of field strengths and acceleration levels will be presented. These show clearly the effects of competing buoyancy forces and electromagnetic stirring. Crystals of cadmium zinc telluride and mercury cadmium telluride have been grown terrestrially from a tellurium solvent zone. The effects of the RMF during these experiments will be demonstrated with micrographs showing etch pits, white beam x-ray synchrotron topographs and triple axis x-ray diffraction.

  7. Case Study Applications in Chemistry Lesson: Gases, Liquids, and Solids

    ERIC Educational Resources Information Center

    Ayyildiz, Yildizay; Tarhan, Leman

    2013-01-01

    This study aims at investigating the effects of case studies developed by the researchers on Science Teaching students' understanding of "gases, liquids and solids," and their attitudes towards chemistry lessons. The study was conducted on 52 freshmen from the Department of Science Teaching at a university in Turkey. Pre-test and…

  8. Solid versus Liquid Particle Sampling Efficiency of Three Personal Aerosol Samplers when Facing the Wind

    PubMed Central

    Koehler, Kirsten A.; Anthony, T. Renee; Van Dyke, Michael

    2016-01-01

    The objective of this study was to examine the facing-the-wind sampling efficiency of three personal aerosol samplers as a function of particle phase (solid versus liquid). Samplers examined were the IOM, Button, and a prototype personal high-flow inhalable sampler head (PHISH). The prototype PHISH was designed to interface with the 37-mm closed-face cassette and provide an inhalable sample at 10 l min−1 of flow. Increased flow rate increases the amount of mass collected during a typical work shift and helps to ensure that limits of detection are met, particularly for well-controlled but highly toxic species. Two PHISH prototypes were tested: one with a screened inlet and one with a single-pore open-face inlet. Personal aerosol samplers were tested on a bluff-body disc that was rotated along the facing-the-wind axis to reduce spatiotemporal variability associated with sampling supermicron aerosol in low-velocity wind tunnels. When compared to published data for facing-wind aspiration efficiency for a mouth-breathing mannequin, the IOM oversampled relative to mannequin facing-the-wind aspiration efficiency for all sizes and particle types (solid and liquid). The sampling efficiency of the Button sampler was closer to the mannequin facing-the-wind aspiration efficiency than the IOM for solid particles, but the screened inlet removed most liquid particles, resulting in a large underestimation compared to the mannequin facing-the-wind aspiration efficiency. The open-face PHISH results showed overestimation for solid particles and underestimation for liquid particles when compared to the mannequin facing-the-wind aspiration efficiency. Substantial (and statistically significant) differences in sampling efficiency were observed between liquid and solid particles, particularly for the Button and screened-PHISH, with a majority of aerosol mass depositing on the screened inlets of these samplers. Our results suggest that large droplets have low penetration efficiencies

  9. Separating liquid and solid products of liquefaction of coal or like carbonaceous materials

    DOEpatents

    Malek, John M.

    1979-06-26

    Slurryform products of coal liquefaction are treated with caustic soda in presence of H.sub.2 O in an inline static mixer and then the treated product is separated into a solids fraction and liquid fractions, including liquid hydrocarbons, by gravity settling preferably effected in a multiplate settling separator with a plurality of settling spacings.

  10. Diffusive and martensitic nucleation kinetics in solid-solid transitions of colloidal crystals

    NASA Astrophysics Data System (ADS)

    Peng, Yi; Li, Wei; Wang, Feng; Still, Tim; Yodh, Arjun G.; Han, Yilong

    2017-05-01

    Solid-solid transitions between crystals follow diffusive nucleation, or various diffusionless transitions, but these kinetics are difficult to predict and observe. Here we observed the rich kinetics of transitions from square lattices to triangular lattices in tunable colloidal thin films with single-particle dynamics by video microscopy. Applying a small pressure gradient in defect-free regions or near dislocations markedly transform the diffusive nucleation with an intermediate-stage liquid into a martensitic generation and oscillation of dislocation pairs followed by a diffusive nucleus growth. This transformation is neither purely diffusive nor purely martensitic as conventionally assumed but a combination thereof, and thus presents new challenges to both theory and the empirical criterion of martensitic transformations. We studied how pressure, density, grain boundary, triple junction and interface coherency affect the nucleus growth, shape and kinetic pathways. These novel microscopic kinetics cast new light on control solid-solid transitions and microstructural evolutions in polycrystals.

  11. EFFECT OF LIQUID TO SOLID RATIO ON LEACHING OF METALS FROM MINERAL PROCESSING WASTE

    EPA Science Inventory

    Various anthropogenic activities generate hazardous solid wastes that are affluent in heavy metals, which can cause significant damage to the environment an human health. A mineral processing waste was used to study the effect of liquid to solid ratio (L/S) on the leaching behav...

  12. Tailoring uniform gold nanoparticle arrays and nanoporous films for next-generation optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Farid, Sidra; Kuljic, Rade; Poduri, Shripriya; Dutta, Mitra; Darling, Seth B.

    2018-06-01

    High-density arrays of gold nanodots and nanoholes on indium tin oxide (ITO)-coated glass surfaces are fabricated using a nanoporous template fabricated by the self-assembly of diblock copolymers of poly (styrene-block-methyl methacrylate) (PS-b-PMMA) structures. By balancing the interfacial interactions between the polymer blocks and the substrate using random copolymer, cylindrical block copolymer microdomains oriented perpendicular to the plane of the substrate have been obtained. Nanoporous PS films are created by selectively etching PMMA cylinders, a straightforward route to form highly ordered nanoscale porous films. Deposition of gold on the template followed by lift off and sonication leaves a highly dense array of gold nanodots. These materials can serve as templates for the vapor-liquid-solid (VLS) growth of semiconductor nanorod arrays for next generation hybrid optoelectronic applications.

  13. Suppression of vacancy cluster growth in concentrated solid solution alloys

    DOE PAGES

    Zhao, Shijun; Velisa, Gihan; Xue, Haizhou; ...

    2016-12-13

    Large vacancy clusters, such as stacking-fault tetrahedra, are detrimental vacancy-type defects in ion-irradiated structural alloys. Suppression of vacancy cluster formation and growth is highly desirable to improve the irradiation tolerance of these materials. In this paper, we demonstrate that vacancy cluster growth can be inhibited in concentrated solid solution alloys by modifying cluster migration pathways and diffusion kinetics. The alloying effects of Fe and Cr on the migration of vacancy clusters in Ni concentrated alloys are investigated by molecular dynamics simulations and ion irradiation experiment. While the diffusion coefficients of small vacancy clusters in Ni-based binary and ternary solid solutionmore » alloys are higher than in pure Ni, they become lower for large clusters. This observation suggests that large clusters can easily migrate and grow to very large sizes in pure Ni. In contrast, cluster growth is suppressed in solid solution alloys owing to the limited mobility of large vacancy clusters. Finally, the differences in cluster sizes and mobilities in Ni and in solid solution alloys are consistent with the results from ion irradiation experiments.« less

  14. Cross-calibration of liquid and solid QCT calibration standards: corrections to the UCSF normative data

    NASA Technical Reports Server (NTRS)

    Faulkner, K. G.; Gluer, C. C.; Grampp, S.; Genant, H. K.

    1993-01-01

    Quantitative computed tomography (QCT) has been shown to be a precise and sensitive method for evaluating spinal bone mineral density (BMD) and skeletal response to aging and therapy. Precise and accurate determination of BMD using QCT requires a calibration standard to compensate for and reduce the effects of beam-hardening artifacts and scanner drift. The first standards were based on dipotassium hydrogen phosphate (K2HPO4) solutions. Recently, several manufacturers have developed stable solid calibration standards based on calcium hydroxyapatite (CHA) in water-equivalent plastic. Due to differences in attenuating properties of the liquid and solid standards, the calibrated BMD values obtained with each system do not agree. In order to compare and interpret the results obtained on both systems, cross-calibration measurements were performed in phantoms and patients using the University of California San Francisco (UCSF) liquid standard and the Image Analysis (IA) solid standard on the UCSF GE 9800 CT scanner. From the phantom measurements, a highly linear relationship was found between the liquid- and solid-calibrated BMD values. No influence on the cross-calibration due to simulated variations in body size or vertebral fat content was seen, though a significant difference in the cross-calibration was observed between scans acquired at 80 and 140 kVp. From the patient measurements, a linear relationship between the liquid (UCSF) and solid (IA) calibrated values was derived for GE 9800 CT scanners at 80 kVp (IA = [1.15 x UCSF] - 7.32).(ABSTRACT TRUNCATED AT 250 WORDS).

  15. Powder metallurgy: Solid and liquid phase sintering of copper

    NASA Technical Reports Server (NTRS)

    Sheldon, Rex; Weiser, Martin W.

    1993-01-01

    Basic powder metallurgy (P/M) principles and techniques are presented in this laboratory experiment. A copper based system is used since it is relatively easy to work with and is commercially important. In addition to standard solid state sintering, small quantities of low melting metals such as tin, zinc, lead, and aluminum can be added to demonstrate liquid phase sintering and alloy formation. The Taguchi Method of experimental design was used to study the effect of particle size, pressing force, sintering temperature, and sintering time. These parameters can be easily changed to incorporate liquid phase sintering effects and some guidelines for such substitutions are presented. The experiment is typically carried out over a period of three weeks.

  16. Simplified conditions holding at the gas-liquid interface during evaporation

    NASA Astrophysics Data System (ADS)

    Morris, S. J. S.

    2017-11-01

    We show that on the gas side of the interface between a pure liquid and a binary mixture of its vapour with an insoluble gas, the normal derivative of vapour partial pressure pv satisfies ∂pv/∂n +αc/2 πpD (P -pv) (p -pv) = 0 . Constants α, c, D denote the dimensionless accommodation coefficient, a molecular speed and the diffusivity. Provided the continuum approximation holds within the gas, and α = O(1) , this boundary condition implies that evaporation can take one of two forms. (a) If the coexistence pressure P evaluated at the interface is less than the constant total gas pressure p, liquid at the interface is in local thermodynamic equilibrium with its vapour, and the evaporation rate is determined by diffusion through the gas. (b) Conversely, if P > p , gas at the interface consists of pure vapour, and the evaporation rate is determined by processes within the liquid. In the Wayner theory of the heated evaporating meniscus, such as that in a heat pipe, case (b) is assumed. As an application of our result, we show that some of the published experiments intended to test the Wayner theory instead operate under conditions in which case (a) holds. As a result, they do not perform the test intended.

  17. Dispersed bubble reactor for enhanced gas-liquid-solids contact and mass transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vimalchand, Pannalal; Liu, Guohai; Peng, WanWang

    An apparatus to promote gas-liquid contact and facilitate enhanced mass transfer. The dispersed bubble reactor (DBR) operates in the dispersed bubble flow regime to selectively absorb gas phase constituents into the liquid phase. The dispersion is achieved by shearing the large inlet gas bubbles into fine bubbles with circulating liquid and additional pumped liquid solvent when necessary. The DBR is capable of handling precipitates that may form during absorption or fine catalysts that may be necessary to promote liquid phase reactions. The DBR can be configured with multistage counter current flow sections by inserting concentric cylindrical sections into the risermore » to facilitate annular flow. While the DBR can absorb CO.sub.2 in liquid solvents that may lead to precipitates at high loadings, it is equally capable of handling many different types of chemical processes involving solids (precipitates/catalysts) along with gas and liquid phases.« less

  18. Studies of Silicon Nanowires with Different Parameters — By PECVD

    NASA Astrophysics Data System (ADS)

    Leela, S.; Abirami, T.; Bhattacharya, Sekhar; Ahmed, Nafis; Monika, S.; Priya, R. Nivedha

    2016-10-01

    One-dimensional nanostructures such as nanowires have a wide range of applications. Silicon is the best competitive material for the carbon nanotubes (CNTs). Carbon and silicon have some similar and peculiar properties. Silicon nanowires (SiNWs) were synthesized using plasma enhanced chemical vapor deposition (PECVD) on p-Si (111) wafer. Gold is used as a catalyst for the growth of the SiNWs. Based on our fundamental understanding of vapor-liquid-solid (VLS) nanowire growth mechanism, different levels of growth controls have been achieved. Gold catalyst deposited and annealed at different temperatures with different thicknesses (450∘C, 500∘C and 550∘C, 600∘C, 650∘C for 4min and 8min and 3nm, 5nm, 30nm Au thickness). SiNW grown by PECVD with different carrier gases varies with flow rate. We observed the different dimensions of Si nanowires by FESEM and optimized the growth parameters to get the vertical aligned and singular Si nanowires. Optical phonon of the Si nanowires and crystallinity nature were identified by Raman spectral studies.

  19. A direct thin-film path towards low-cost large-area III-V photovoltaics

    PubMed Central

    Kapadia, Rehan; Yu, Zhibin; Wang, Hsin-Hua H.; Zheng, Maxwell; Battaglia, Corsin; Hettick, Mark; Kiriya, Daisuke; Takei, Kuniharu; Lobaccaro, Peter; Beeman, Jeffrey W.; Ager, Joel W.; Maboudian, Roya; Chrzan, Daryl C.; Javey, Ali

    2013-01-01

    III-V photovoltaics (PVs) have demonstrated the highest power conversion efficiencies for both single- and multi-junction cells. However, expensive epitaxial growth substrates, low precursor utilization rates, long growth times, and large equipment investments restrict applications to concentrated and space photovoltaics (PVs). Here, we demonstrate the first vapor-liquid-solid (VLS) growth of high-quality III-V thin-films on metal foils as a promising platform for large-area terrestrial PVs overcoming the above obstacles. We demonstrate 1–3 μm thick InP thin-films on Mo foils with ultra-large grain size up to 100 μm, which is ~100 times larger than those obtained by conventional growth processes. The films exhibit electron mobilities as high as 500 cm2/V-s and minority carrier lifetimes as long as 2.5 ns. Furthermore, under 1-sun equivalent illumination, photoluminescence efficiency measurements indicate that an open circuit voltage of up to 930 mV can be achieved, only 40 mV lower than measured on a single crystal reference wafer. PMID:23881474

  20. Ionic-liquid-impregnated resin for the microwave-assisted solid-liquid extraction of triazine herbicides in honey.

    PubMed

    Wu, Lijie; Song, Ying; Hu, Mingzhu; Yu, Cui; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming

    2015-09-01

    Microwave-assisted ionic-liquid-impregnated resin solid-liquid extraction was developed for the extraction of triazine herbicides, including cyanazine, metribuzin, desmetryn, secbumeton, terbumeton, terbuthylazine, dimethametryn, and dipropetryn in honey samples. The ionic-liquid-impregnated resin was prepared by immobilizing 1-hexyl-3-methylimidazolium hexafluorophosphate in the microspores of resin. The resin was used as the extraction adsorbent. The extraction and enrichment of analytes were performed in a single step. The extraction time can be shortened greatly with the help of microwave. The effects of experimental parameters including type of resin, type of ionic liquid, mass ratio of resin to ionic liquid, extraction time, amount of the impregnated resin, extraction temperature, salt concentration, and desorption conditions on the extraction efficiency, were investigated. A Box-Behnken design was applied to the selection of the experimental parameters. The recoveries were in the range of 80.1 to 103.4% and the relative standard deviations were lower than 6.8%. The present method was applied to the analysis of honey samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Experimental determination and numerical modelling of solid liquid interface shapes for vertical Bridgman grown GaSb crystals

    NASA Astrophysics Data System (ADS)

    Boiton, P.; Giacometti, N.; Santailler, J. L.; Duffar, T.; Nabot, J. P.

    1998-11-01

    A facility, based on a profiled resistive heater, has been designed for the growth of antimonide crystals (GaSb, InSb) by the vertical Bridgman method. Solid-liquid interface shapes during the growth of 2-in diameter crystals are marked by means of variations of the pulling rate and are revealed by chemical etching. The comparison with the calculated interface shapes, obtained using a finite element method, gives a satisfactory agreement. It is shown that the heat transfer and consequently the interface shapes are greatly influenced by the crucible assembly. For example, small spacings around the crucible or slots in the crucible holder can change the interface curvature from convex to concave. From numerical simulations it is also shown that convection in the melt flattens the interface but that an increase of the pulling rate has the reverse effect.

  2. Synthesis of new solid polymer electrolyte and actuator based on PEDOT/NBR/ionic liquid

    NASA Astrophysics Data System (ADS)

    Cho, M. S.; Seo, H. J.; Nam, J. D.; Choi, H. R.; Koo, J. C.; Lee, Y.

    2006-03-01

    The conducting polymer actuator was presented. The solid polymer electrolyte based on nitrile rubber (NBR) activated with different ionic liquids was prepared. The three different grades of NBR films were synthesized by emulsion polymerization with different amount of acrylonitrile, 23, 35, and 40 mol. %, respectively. The effect of acrylonitrile content on the ionic conductivity and dielectric constant of solid polymer electrolytes was characterized. A conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), was synthesized on the surface of the NBR layer by using a chemical oxidation polymerization technique, and room temperature ionic liquids (RTIL) based on imidazolium salts, e.g. 1-butyl-3-methyl imidazolium X [where X= BF 4 -, PF 6 -, (CF 3SO II) IIN -], were absorbed into the composite film. The effects of the anion size of the ionic liquids on the displacement of the actuator were examined. The displacement increased with increasing the anion-size of the ionic liquids.

  3. Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions.

    PubMed

    Zhou, Hongwei; Xue, Changguo; Weis, Philipp; Suzuki, Yasuhito; Huang, Shilin; Koynov, Kaloian; Auernhammer, Günter K; Berger, Rüdiger; Butt, Hans-Jürgen; Wu, Si

    2017-02-01

    The development of polymers with switchable glass transition temperatures (T g ) can address scientific challenges such as the healing of cracks in high-T g polymers and the processing of hard polymers at room temperature without using plasticizing solvents. Here, we demonstrate that light can switch the T g of azobenzene-containing polymers (azopolymers) and induce reversible solid-to-liquid transitions of the polymers. The azobenzene groups in the polymers exhibit reversible cis-trans photoisomerization abilities. Trans azopolymers are solids with T g above room temperature, whereas cis azopolymers are liquids with T g below room temperature. Because of the photoinduced solid-to-liquid transitions of these polymers, light can reduce the surface roughness of azopolymer films by almost 600%, repeatedly heal cracks in azopolymers, and control the adhesion of azopolymers for transfer printing. The photoswitching of T g provides a new strategy for designing healable polymers with high T g and allows for control over the mechanical properties of polymers with high spatiotemporal resolution.

  4. Mobile Robot for Exploring Cold Liquid/Solid Environments

    NASA Technical Reports Server (NTRS)

    Bergh, Charles; Zimmerman, Wayne

    2006-01-01

    The Planetary Autonomous Amphibious Robotic Vehicle (PAARV), now at the prototype stage of development, was originally intended for use in acquiring and analyzing samples of solid, liquid, and gaseous materials in cold environments on the shores and surfaces, and at shallow depths below the surfaces, of lakes and oceans on remote planets. The PAARV also could be adapted for use on Earth in similar exploration of cold environments in and near Arctic and Antarctic oceans and glacial and sub-glacial lakes.

  5. Nano-sponge ionic liquid-polymer composite electrolytes for solid-state lithium power sources

    NASA Astrophysics Data System (ADS)

    Liao, Kang-Shyang; Sutto, Thomas E.; Andreoli, Enrico; Ajayan, Pulickel; McGrady, Karen A.; Curran, Seamus A.

    Solid polymer gel electrolytes composed of 75 wt.% of the ionic liquid, 1- n-butyl-2,3-dimethylimidazolium bis-trifluoromethanesulfonylimide with 1.0 M lithium bis-trifluoromethanesulfonylimide and 25 wt.% poly(vinylidenedifluoro-hexafluoropropene) are characterized as the electrolyte/separator in solid-state lithium batteries. The ionic conductivity of these gels ranges from 1.5 to 2.0 mS cm -1, which is several orders of magnitude more conductive than any of the more commonly used solid polymers, and comparable to the best solid gel electrolytes currently used in industry. TGA indicates that these polymer gel electrolytes are thermally stable to over 280 °C, and do not begin to thermally decompose until over 300 °C; exhibiting a significant advancement in the safety of lithium batteries. Atomic force microscopy images of these solid thin films indicate that these polymer gel electrolytes have the structure of nano-sponges, with a sub-micron pore size. For these thin film batteries, 150 charge-discharge cycles are run for Li xCoO 2 where x is cycled between 0.95 down to 0.55. Minimal internal resistance effects are observed over the charging cycles, indicating the high ionic conductivity of the ionic liquid solid polymer gel electrolyte. The overall cell efficiency is approximately 98%, and no significant loss in battery efficiency is observed over the 150 cycles.

  6. Determination of solid- and liquid-phase gastric emptying half times in cats by use of nuclear scintigraphy.

    PubMed

    Costello, M; Papasouliotis, K; Barr, F J; Gruffydd-Jones, T J; Caney, S M

    1999-10-01

    To use nuclear scintigraphy to establish a range of gastric emptying half times (t1/2) following a liquid or solid meal in nonsedated cats. 12 clinically normal 3-year-old domestic shorthair cats. A test meal of 75 g of scrambled eggs labeled with technetium Tc 99m tin colloid was fed to 10 of the cats, and solid-phase gastric emptying t1/2 were determined by use of nuclear scintigraphy. In a separate experiment, 8 of these cats plus an additional 2 cats were fed 18 ml (n = 5) or 36 ml (n = 5) of a nutrient liquid meal labeled with technetium Tc 99m pentetate. Liquid-phase gastric emptying t1/2 then were determined by use of scintigraphy. Solid-phase gastric emptying t1/2 were between 210 and 769 minutes (median, 330 minutes). Median liquid-phase gastric emptying t1/2 after ingestion of 18 or 36 ml of the test meal were 67 minutes (range, 60 to 96 minutes) and 117 minutes (range, 101 to 170 minutes), respectively. The median t1/2 determined for cats receiving 18 ml of the radiolabeled liquid was significantly less than that determined for cats receiving 36 ml of the test meal. The protocol was tolerated by nonsedated cats. Solid-phase gastric emptying t1/2 were prolonged, compared with liquid-phase t1/2, and a major factor governing the emptying rate of liquids was the volume consumed. Nuclear scintigraphy may prove useful in assessing gastric motility disorders in cats.

  7. Selective growth of Ge nanowires by low-temperature thermal evaporation.

    PubMed

    Sutter, Eli; Ozturk, Birol; Sutter, Peter

    2008-10-29

    High-quality single-crystalline Ge nanowires with electrical properties comparable to those of bulk Ge have been synthesized by vapor-liquid-solid growth using Au growth seeds on SiO(2)/Si(100) substrates and evaporation from solid Ge powder in a low-temperature process at crucible temperatures down to 700 °C. High nanowire growth rates at these low source temperatures have been identified as being due to sublimation of GeO from substantial amounts of GeO(2) on the powder. The Ge nanowire synthesis from GeO is highly selective at our substrate temperatures (420-500 °C), i.e., occurs only on Au vapor-liquid-solid growth seeds. For growth of nanowires of 10-20 µm length on Au particles, an upper bound of 0.5 nm Ge deposition was determined in areas of bare SiO(2)/Si substrate without Au nanoparticles.

  8. High pressure in situ x-ray absorption spectroscopy cell for studying simultaneously the liquid phase and the solid-liquid interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grunwaldt, Jan-Dierk; Ramin, Michael; Rohr, Markus

    2005-05-15

    A high pressure in situ x-ray absorption spectroscopy cell with two different path lengths and path positions is presented for studying element-specifically both the liquid phase and the solid-liquid interface at pressures up to 250 bar and temperatures up to 220 deg. C. For this purpose, one x-ray path probes the bottom, while the other x-ray path penetrates through the middle of the in situ cell. The basic design of the cell resembles a 10 ml volume batch reactor, which is equipped with in- and outlet lines to dose compressed gases and liquids as well as a stirrer for goodmore » mixing. Due to the use of a polyetheretherketone inset it is also suitable for measurements under corrosive conditions. The characteristic features of the cell are illustrated using case studies from catalysis and solid state chemistry: (a) the ruthenium-catalyzed formylation of an amine in 'supercritical' carbon dioxide in the presence of hydrogen; (b) the cycloaddition of carbon dioxide to propylene oxide in the presence of a solid Zn-based catalyst, and (c) the solvothermal synthesis of MoO{sub 3} nanorods from MoO{sub 3}-2H{sub 2}O.« less

  9. Analysis and Thermodynamic Prediction of Hydrogen Solution in Solid and Liquid Multicomponent Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Anyalebechi, P. N.

    Reported experimentally determined values of hydrogen solubility in liquid and solid Al-H and Al-H-X (where X = Cu, Si, Zn, Mg, Li, Fe or Ti) systems have been critically reviewed and analyzed in terms of Wagner's interaction parameter. An attempt has been made to use Wagner's interaction parameter and statistic linear regression models derived from reported hydrogen solubility limits for binary aluminum alloys to predict the hydrogen solubility limits in liquid and solid (commercial) multicomponent aluminum alloys. Reasons for the observed poor agreement between the predicted and experimentally determined hydrogen solubility limits are discussed.

  10. Bacillus coagulans tolerance to 1-ethyl-3-methylimidazolium-based ionic liquids in aqueous and solid-state thermophilic culture.

    PubMed

    Simmons, Christopher W; Reddy, Amitha P; Vandergheynst, Jean S; Simmons, Blake A; Singer, Steven W

    2014-01-01

    The use of ionic liquids (ILs) to disrupt the recalcitrant structure of lignocellulose and make polysaccharides accessible to hydrolytic enzymes is an emerging technology for biomass pretreatment in lignocellulosic biofuel production. Despite efforts to reclaim and recycle IL from pretreated biomass, residual IL can be inhibitory to microorganisms used for downstream fermentation. As a result, pathways for IL tolerance are needed to improve the activity of fermentative organisms in the presence of IL. In this study, microbial communities from compost were cultured under high-solids and thermophilic conditions in the presence of 1-ethyl-3-methylimidazolium-based ILs to enrich for IL-tolerant microorganisms. A strain of Bacillus coagulans isolated from an IL-tolerant community was grown in liquid and solid-state culture in the presence of the ILs 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) or 1-ethyl-3-methylimidazolium chloride ([C2mim][Cl]) to gauge IL tolerance. Viability and respiration varied with the concentration of IL applied and the type of IL used. B. coagulans maintained growth and respiration in the presence of 4 wt% IL, a concentration similar to that present on IL-pretreated biomass. In the presence of both [C2mim][OAc] and [C2mim][Cl] in liquid culture, B. coagulans grew at a rate approximately half that observed in the absence of IL. However, in solid-state culture, the bacteria were significantly more tolerant to [C2mim][Cl] compared with [C2mim][OAc]. B. coagulans tolerance to IL under industrially relevant conditions makes it a promising bacterium for understanding mechanisms of IL tolerance and discovering IL tolerance pathways for use in other microorganisms, particularly those used in bioconversion of IL-pretreated plant biomass. © 2013 American Institute of Chemical Engineers.

  11. First-principles quantum-mechanical investigations of biomass conversion at the liquid-solid interfaces

    NASA Astrophysics Data System (ADS)

    Dang, Hongli; Xue, Wenhua; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu

    2014-03-01

    We report first-principles density-functional calculations and ab initio molecular dynamics (MD) simulations for the reactions involving furfural, which is an important intermediate in biomass conversion, at the catalytic liquid-solid interfaces. The different dynamic processes of furfural at the water-Cu(111) and water-Pd(111) interfaces suggest different catalytic reaction mechanisms for the conversion of furfural. Simulations for the dynamic processes with and without hydrogen demonstrate the importance of the liquid-solid interface as well as the presence of hydrogen in possible catalytic reactions including hydrogenation and decarbonylation of furfural. Supported by DOE (DE-SC0004600). This research used the supercomputer resources of the XSEDE, the NERSC Center, and the Tandy Supercomputing Center.

  12. Simultaneous probing of bulk liquid phase and catalytic gas-liquid-solid interface under working conditions using attenuated total reflection infrared spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meemken, Fabian; Müller, Philipp; Hungerbühler, Konrad

    Design and performance of a reactor set-up for attenuated total reflection infrared (ATR-IR) spectroscopy suitable for simultaneous reaction monitoring of bulk liquid and catalytic solid-liquid-gas interfaces under working conditions are presented. As advancement of in situ spectroscopy an operando methodology for gas-liquid-solid reaction monitoring was developed that simultaneously combines catalytic activity and molecular level detection at the catalytically active site of the same sample. Semi-batch reactor conditions are achieved with the analytical set-up by implementing the ATR-IR flow-through cell in a recycle reactor system and integrating a specifically designed gas feeding system coupled with a bubble trap. By the usemore » of only one spectrometer the design of the new ATR-IR reactor cell allows for simultaneous detection of the bulk liquid and the catalytic interface during the working reaction. Holding two internal reflection elements (IRE) the sample compartments of the horizontally movable cell are consecutively flushed with reaction solution and pneumatically actuated, rapid switching of the cell (<1 s) enables to quasi simultaneously follow the heterogeneously catalysed reaction at the catalytic interface on a catalyst-coated IRE and in the bulk liquid on a blank IRE. For a complex heterogeneous reaction, the asymmetric hydrogenation of 2,2,2-trifluoroacetophenone on chirally modified Pt catalyst the elucidation of catalytic activity/enantioselectivity coupled with simultaneous monitoring of the catalytic solid-liquid-gas interface is shown. Both catalytic activity and enantioselectivity are strongly dependent on the experimental conditions. The opportunity to gain improved understanding by coupling measurements of catalytic performance and spectroscopic detection is presented. In addition, the applicability of modulation excitation spectroscopy and phase-sensitive detection are demonstrated.« less

  13. Formation of the racemic compound of ephedrine base from a physical mixture of its enantiomers in the solid, liquid, solution, or vapor state.

    PubMed

    Duddu, S P; Grant, D J

    1992-08-01

    Physical mixtures (conglomerates) of the two enantiomers of ephedrine base, each containing 0.5% (w/w) of water, were observed to be converted to the 1:1 racemic compound in the solid, liquid, solution, or vapor state. From a geometrically mixed racemic conglomerate of particle size 250-300 microns (50-60 mesh), the formation of the racemic compound follows second-order kinetics (first order with respect to each enantiomer), with a rate constant of 392 mol-1 hr-1 at 22 degrees C. The reaction appears to proceed via the vapor phase as indicated by the growth of the crystals of the racemic compound between diametrically separated crystals of the two enantiomers in a glass petri dish. The observed kinetics of conversion in the solid state are explained by a homogeneous reaction model via the vapor and/or liquid states. Formation of the racemic compound from the crystals of ephedrine enantiomers in the solution state may explain why Schmidt et al. (Pharm. Res. 5:391-395, 1988) observed a consistently lower aqueous solubility of the mixture than of the pure enantiomers. The solid phase in equilibrium with the solution at the end of the experiment was found to be the racemic compound, whose melting point and heat of fusion are higher than those of the enantiomers. An association reaction, of measurable rate, between the opposite enantiomers in a binary mixture in the solid, liquid, solution, or vapor state to form the racemic compound may be more common than is generally realized.

  14. Energy-Conversion Properties of Vapor-Liquid-Solid-Grown Silicon Wire-Array Photocathodes

    NASA Astrophysics Data System (ADS)

    Boettcher, Shannon W.; Spurgeon, Joshua M.; Putnam, Morgan C.; Warren, Emily L.; Turner-Evans, Daniel B.; Kelzenberg, Michael D.; Maiolo, James R.; Atwater, Harry A.; Lewis, Nathan S.

    2010-01-01

    Silicon wire arrays, though attractive materials for use in photovoltaics and as photocathodes for hydrogen generation, have to date exhibited poor performance. Using a copper-catalyzed, vapor-liquid-solid-growth process, SiCl4 and BCl3 were used to grow ordered arrays of crystalline p-type silicon (p-Si) microwires on p+-Si(111) substrates. When these wire arrays were used as photocathodes in contact with an aqueous methyl viologen2+/+ electrolyte, energy-conversion efficiencies of up to 3% were observed for monochromatic 808-nanometer light at fluxes comparable to solar illumination, despite an external quantum yield at short circuit of only 0.2. Internal quantum yields were at least 0.7, demonstrating that the measured photocurrents were limited by light absorption in the wire arrays, which filled only 4% of the incident optical plane in our test devices. The inherent performance of these wires thus conceptually allows the development of efficient photovoltaic and photoelectrochemical energy-conversion devices based on a radial junction platform.

  15. Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes.

    PubMed

    Boettcher, Shannon W; Spurgeon, Joshua M; Putnam, Morgan C; Warren, Emily L; Turner-Evans, Daniel B; Kelzenberg, Michael D; Maiolo, James R; Atwater, Harry A; Lewis, Nathan S

    2010-01-08

    Silicon wire arrays, though attractive materials for use in photovoltaics and as photocathodes for hydrogen generation, have to date exhibited poor performance. Using a copper-catalyzed, vapor-liquid-solid-growth process, SiCl4 and BCl3 were used to grow ordered arrays of crystalline p-type silicon (p-Si) microwires on p+-Si(111) substrates. When these wire arrays were used as photocathodes in contact with an aqueous methyl viologen(2+/+) electrolyte, energy-conversion efficiencies of up to 3% were observed for monochromatic 808-nanometer light at fluxes comparable to solar illumination, despite an external quantum yield at short circuit of only 0.2. Internal quantum yields were at least 0.7, demonstrating that the measured photocurrents were limited by light absorption in the wire arrays, which filled only 4% of the incident optical plane in our test devices. The inherent performance of these wires thus conceptually allows the development of efficient photovoltaic and photoelectrochemical energy-conversion devices based on a radial junction platform.

  16. Improving and assessing vapour pressure estimation methods for organic compounds of atmospheric relevance using a Knudsen Effusion Mass Spectrometer (KEMS)

    NASA Astrophysics Data System (ADS)

    Booth, A. M.; Topping, D. O.; McFiggans, G. B.; Garforth, A.; Percival, C. J.

    2009-12-01

    Aerosol particles influence climate directly through the scattering and absorbing radiation and indirectly through their role as cloud condensation nuclei (CCN). Traditionally, models aiming to capture the behaviour of aerosols in the atmosphere have concentrated on the role of inorganic compounds. However, organic components, covering a huge range of chemical and physical properties (Jacobson et.al., 2000), may constitute a significant fraction depending on location (Houghton et.al., 2001). Knowledge of pure component vapour pressures is essential for calculations of gas/particle partitioning. There are many methods of estimating vapour pressures but most of the experimental data collected to date has been for intermediate or high pressure compounds (and often measured at temperatures considerably above ambient) and the proportion of experimental data for low (less than 100Pa) vapour pressure compounds has been very small. Hence the datasets used for developing the estimation methods have reflected this bias in addition to the fact that components studied tend to have one or two functional groups at the most. Thus it is unsurprising that some of the estimation methods can give errors in vapour pressure of several orders of magnitude for multifunctional compounds at ambient temperatures. Knudsen Effusion Mass Spectrometer (KEMS) has been used to measure solid state vapour pressures for multifunctional organic compounds based on dicarboxylic acids (Booth et al 2009). In the atmosphere these compounds are likely to exist in the sub-cooled state so Differential Scanning Calorimetry (DSC) was used to obtain thermochemical data to effect a correction between solid and sub-cooled vapour pressures. The group contribution method of Nanoolal and co-workers (Nanoolal et al., 2008) is one of the best predictive methods in terms of reproducing available low volatility vapour pressure data (barley et al., 2009). The Nanoolal method relies on the use of primary and secondary

  17. Effects of Exopolysaccharide Production on Liquid Vegetative Growth, Stress Survival and Stationary Phase Recovery in Myxococcus xanthus

    PubMed Central

    Hu, Wei; Wang, Jing; McHardy, Ian; Lux, Renate; Yang, Zhe; Li, Yuezhong; Shi, Wenyuan

    2013-01-01

    Exopolysaccharide (EPS) of Myxococcus xanthus is a well-regulated cell surface component. In addition to its known functions for social motility and fruiting body formation on solid surfaces, EPS has also been proposed to play a role in multi-cellular clumping in liquid medium, though this phenomenon has not been well studied. In this report, we confirmed that M. xanthus clumps formed in liquid were correlated with EPS levels and demonstrated that the EPS encased cell clumps exhibited biofilm-like structures. The clumps protected the cells at physiologically relevant EPS concentrations, while cells lacking EPS exhibited significant reduction in long-term viability and resistance to stressful conditions. However, excess EPS production was counterproductive to vegetative growth and viable cell recovery declined in extended late stationary phase as cells became trapped in the matrix of clumps. Therefore, optimal EPS production by M. xanthus is important for normal physiological functions in liquid. PMID:22538652

  18. A new approach to determine the density of liquids and solids without measuring mass and volume: introducing the solidensimeter

    NASA Astrophysics Data System (ADS)

    Kiriktaş, Halit; Şahin, Mehmet; Eslek, Sinan; Kiriktaş, İrem

    2018-05-01

    This study aims to design a mechanism with which the density of any solid or liquid can be determined without measuring its mass and volume in order to help students comprehend the concept of density more easily. The solidensimeter comprises of two scaled and nested glass containers (graduated cylinder or beaker) and sufficient water. In this method, the density measurement was made using the Archimedes’ principle stating that an object fully submerged in a liquid displaces the same amount of liquid as its volume, while an object partially submerged or floating displaces the same amount of liquid as its mass. Using this method, the density of any solids or liquids can be determined using a simple mathematical ratio. At the end of the process a mechanism that helps students to comprehend the density topic more easily was designed. The system is easy-to-design, uses low-cost equipment and enables one to determine the density of any solid or liquid without measuring its mass and volume.

  19. Ambient-Pressure X-ray Photoelectron Spectroscopy to Characterize the Solid/Liquid Interface: Probing the Electrochemical Double Layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favaro, Marco; Liu, Zhi; Crumlin, Ethan J.

    Ambient-pressure X-ray photoelectron spectroscopy (APXPS) has contributed greatly to a wide range of research fields, including environmental science, catalysis, and electrochemistry, to name a few. The use of this technique at synchrotron facilities primarily focused on probing the solid/gas interface; however, it quickly advanced to the probing of liquid/vapor interfaces and solid/liquid interfaces through an X-ray-transparent window. Most recently, combining APXPS with “Tender” X-rays (~2.5 keV to 8 keV) on beamline 9.3.1 at the Advanced Light Source in Lawrence Berkeley National Laboratory (which can generate photoelectrons with much longer inelastic mean free paths) has enabled us to probe the solid/liquidmore » interface without needing a window. This innovation allows us to probe interfacial chemistries of electrochemically controlled solid/liquid interfaces undergoing charge transfer reactions. Lastly, these advancements have transitioned APXPS from a traditional surface science tool to an essential interface science technique.« less

  20. Ambient-Pressure X-ray Photoelectron Spectroscopy to Characterize the Solid/Liquid Interface: Probing the Electrochemical Double Layer

    DOE PAGES

    Favaro, Marco; Liu, Zhi; Crumlin, Ethan J.

    2017-03-31

    Ambient-pressure X-ray photoelectron spectroscopy (APXPS) has contributed greatly to a wide range of research fields, including environmental science, catalysis, and electrochemistry, to name a few. The use of this technique at synchrotron facilities primarily focused on probing the solid/gas interface; however, it quickly advanced to the probing of liquid/vapor interfaces and solid/liquid interfaces through an X-ray-transparent window. Most recently, combining APXPS with “Tender” X-rays (~2.5 keV to 8 keV) on beamline 9.3.1 at the Advanced Light Source in Lawrence Berkeley National Laboratory (which can generate photoelectrons with much longer inelastic mean free paths) has enabled us to probe the solid/liquidmore » interface without needing a window. This innovation allows us to probe interfacial chemistries of electrochemically controlled solid/liquid interfaces undergoing charge transfer reactions. Lastly, these advancements have transitioned APXPS from a traditional surface science tool to an essential interface science technique.« less

  1. Ionic liquid-modified materials for solid-phase extraction and separation: a review.

    PubMed

    Vidal, Lorena; Riekkola, Marja-Liisa; Canals, Antonio

    2012-02-17

    In recent years, materials science has propelled to the research forefront. Ionic liquids with unique and fascinating properties have also left their footprints to the developments of materials science during the last years. In this review we highlight some of their recent advances and provide an overview at the current status of ionic liquid-modified materials applied in solid-phase extraction, liquid and gas chromatography and capillary electrochromatography with reference to recent applications. In addition, the potential of ionic liquids in the modification of capillary inner wall in capillary electrophoresis is demonstrated. The main target material modified with ionic liquids is silica, but polymers and monoliths have recently joined the studies. Although imidazolium is still clearly the most commonly used ionic liquid for the covalently modification of materials, the exploitation of pyridinium and phosphonium will most probably increase in the future. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Interaction of Porosity with a Planar Solid/Liquid Interface

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Stefanescu, Doru M.; Sen, Subhayu; Kaukler, William F.

    2004-01-01

    In this article, an investigation of the interaction between gas porosity and a planar solid/liquid (SL) interface is reported. A two-dimensional numerical model able to accurately track sharp SL interfaces during solidification of pure metals and alloys is proposed. The finite-difference method and a rectangular undeformed grid are used for computation. The SL interface is described through the points of intersection with the grid lines. Its motion is determined by the thermal and solute gradients at each particular point. Changes of the interface temperature because of capillarity or solute redistribution as well as any perturbation of the thermal and solute field produced by the presence of non-metallic inclusions can be computed. To validate the model, the dynamics of the interaction between a gas pore and a solidification front in metal alloys was observed using a state of the art X-ray transmission microscope (XTM). The experiments included observation of the distortion of the SL interface near a pore, real-time measurements of the growth rate, and the change in shape of the porosity during interaction with the SL interface in pure Al and Al-0.25 wt pct Au alloy. In addition, porosity-induced solute segregation patterns surrounding a pore were also quantified.

  3. Aligned silica nanowires on the inner wall of bubble-like silica film: the growth mechanism and photoluminescence.

    PubMed

    Chen, Yiqing; Zhou, Qingtao; Jiang, Haifeng; Su, Yong; Xiao, Haihua; Zhu, Li-Ang; Xu, Liang

    2006-02-28

    Large area, aligned amorphous silica nanowires grow on the inner wall of bubble-like silica film, which is prepared by thermal evaporation of a molten gallium-silicon alloy in a flow of ammonia. These nanowires are 10-20 nm in diameter and 0.5-1.5 µm in length. The bubble-like silica film functions as a substrate, guiding the growth of silica nanowires by a vapour-solid process. This work helps us to clearly elucidate the growth mechanism of aligned amorphous silica nanowires, ruling out the possibility of liquid gallium acting as a nucleation substrate for the growth of the aligned silica nanowires. A broad emission band from 290 to 600 nm is observed in the photoluminescence (PL) spectrum of these nanowires. There are seven PL peaks: two blue emission peaks at 430 nm (2.88 eV) and 475 nm (2.61 eV); and five ultraviolet emission peaks at 325 nm (3.82 eV), 350 nm (3.54 eV), 365 nm (3.40 eV), 385 nm (3.22 eV) and 390 nm (3.18 eV), which may be related to various oxygen defects.

  4. Production of sterigmatocystin by Aspergillus versicolor and Bipolaris sorokiniana on semisynthetic liquid and solid media.

    PubMed Central

    Rabie, C J; Lubben, A; Steyn, M

    1976-01-01

    Higher yields of sterigmatocystin were obtained with Aspergillus versicolor than with Bipolaris sorokiniana both in liquid and on solid media. The optimum temperature for sterigmatocystin production by A. versicolor was 27 to 29 degrees C and 23 degrees C for B. sorokiniana. In liquid shake cultures, production of sterigmatocystin by B. sorokiniana was negligible, whereas maximal production by A. versicolor was 210 mg/liter. On solid substrates, the highest yields (8 g/kg) were obtained with A. versicolor on still cultures of whole corn supplemented with Soytone. PMID:970940

  5. Modeling of ultrasound transmission through a solid-liquid interface comprising a network of gas pockets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paumel, K.; Baque, F.; Moysan, J.

    Ultrasonic inspection of sodium-cooled fast reactor requires a good acoustic coupling between the transducer and the liquid sodium. Ultrasonic transmission through a solid surface in contact with liquid sodium can be complex due to the presence of microscopic gas pockets entrapped by the surface roughness. Experiments are run using substrates with controlled roughness consisting of a network of holes and a modeling approach is then developed. In this model, a gas pocket stiffness at a partially solid-liquid interface is defined. This stiffness is then used to calculate the transmission coefficient of ultrasound at the entire interface. The gas pocket stiffnessmore » has a static, as well as an inertial component, which depends on the ultrasonic frequency and the radiative mass.« less

  6. Effectiveness of Liquid-Liquid Extraction, Solid Phase Extraction, and Headspace Technique for Determination of Some Volatile Water-Soluble Compounds of Rose Aromatic Water

    PubMed Central

    2017-01-01

    Steam distillation is used to isolate scent of rose flowers. Rose aromatic water is commonly used in European cuisine and aromatherapy besides its use in cosmetic industry for its lovely scent. In this study, three different sampling techniques, liquid-liquid extraction (LLE), headspace technique (HS), and solid phase extraction (SPE), were compared for the analysis of volatile water-soluble compounds in commercial rose aromatic water. Some volatile water-soluble compounds of rose aromatic water were also analyzed by gas chromatography mass spectrometry (GCMS). In any case, it was concluded that one of the solid phase extraction methods led to higher recoveries for 2-phenylethyl alcohol (PEA) in the rose aromatic water than the liquid-liquid extraction and headspace technique. Liquid-liquid extraction method provided higher recovery ratios for citronellol, nerol, and geraniol than others. Ideal linear correlation coefficient values were observed by GCMS for quantitative analysis of volatile compounds (r2 ≥ 0.999). Optimized methods showed acceptable repeatability (RSDs < 5%) and excellent recovery (>95%). For compounds such as α-pinene, linalool, β-caryophyllene, α-humulene, methyl eugenol, and eugenol, the best recovery values were obtained with LLE and SPE. PMID:28791049

  7. Measurement of interactions between solid particles, liquid droplets, and/or gas bubbles in a liquid using an integrated thin film drainage apparatus.

    PubMed

    Wang, Louxiang; Sharp, David; Masliyah, Jacob; Xu, Zhenghe

    2013-03-19

    A novel device was designed to measure drainage dynamics of thin liquid films confined between a solid particle, an immiscible liquid droplet, and/or gas bubble. Equipped with a bimorph force sensor, a computer-interfaced video capture, and a data acquisition system, the newly designed integrated thin film drainage apparatus (ITFDA) allows for the direct and simultaneous measurements of force barrier, true film drainage time, and bubble/droplet deformation under a well-controlled external force, receding and advancing contact angles, capillary force, and adhesion (detachment) force between an air bubble or oil droplet and a solid, a liquid, or an air bubble in an immiscible liquid. Using the diaphragm of a high-frequency speaker as the drive mechanism for the air bubble or oil droplet attached to a capillary tube, this newly designed device is capable of measuring forces over a wide range of hydrodynamic conditions, including bubble approach and retract velocities up to 50 mm/s and displacement range up to 1 mm. The results showed that the ITFDA was capable of measuring hydrodynamic resistance, film drainage time, and other important physical parameters between air bubbles and solid particles in aqueous solutions. As an example of illustrating the versatility, the ITFDA was also applied to other important systems such as interactions between air bubble and oil droplet, two air bubbles, and two oil droplets in an aqueous solution.

  8. Effect of Solid to Liquid Ratio on Heavy Metal Removal by Geopolymer-Based Adsorbent

    NASA Astrophysics Data System (ADS)

    Ariffin, N.; Abdullah, M. M. A. B.; Arif Zainol, M. R. R. Mohd; Baltatu, M. S.; Jamaludin, L.

    2018-06-01

    Microstructure of three-dimensional aluminosilicate which similar to zeolite cause geopolymer based adsorbent accepted in the treatment of wastewater. This paper presents an investigation on the copper removal from the wastewater by varying the solid to liquid ratio in the fly ash, kaolin and sludge-based geopolymer adsorbent. The adsorption test was conducted to study the efficiency of the adsorbent and the copper concentration was examined by using Atomic Adsorption Spectrometry (AAS). The optimum solid to liquid ratio with the highest percentage removal were 1.0, 0.5 and 0.8 for fly ash-based geopolymer, kaolin-based geopolymer and sludge-based geopolymer adsorbent.

  9. Modeling solid-state transformations occurring in dissolution testing.

    PubMed

    Laaksonen, Timo; Aaltonen, Jaakko

    2013-04-15

    Changes in the solid-state form can occur during dissolution testing of drugs. This can often complicate interpretation of results. Additionally, there can be several mechanisms through which such a change proceeds, e.g. solvent-mediated transformation or crystal growth within the drug material itself. Here, a mathematical model was constructed to study the dissolution testing of a material, which undergoes such changes. The model consisted of two processes: the recrystallization of the drug from a supersaturated liquid state caused by the dissolution of the more soluble solid form and the crystal growth of the stable solid form at the surface of the drug formulation. Comparison to experimental data on theophylline dissolution showed that the results obtained with the model matched real solid-state changes and that it was able to distinguish between cases where the transformation was controlled either by solvent-mediated crystallization or solid-state crystal growth. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. In situ monitoring of liquid phase electroepitaxial growth

    NASA Technical Reports Server (NTRS)

    Okamoto, A.; Isozumi, S.; Lagowski, J.; Gatos, H. C.

    1982-01-01

    In situ monitoring of the layer thickness during liquid phase electroepitaxy (LPEE) was achieved with a submicron resolution through precise resistance measurements. The new approach to the study and control of LPEE was applied to growth of undoped and Ge-doped GaAs layers. The in situ determined growth kinetics was found to be in excellent agreement with theory.

  11. Phase relations in the system NaCl-KCl-H2O: V. Thermodynamic-PTX analysis of solid-liquid equilibria at high temperatures and pressures

    USGS Publications Warehouse

    Sterner, S.M.; Chou, I.-Ming; Downs, R.T.; Pitzer, Kenneth S.

    1992-01-01

    The Gibbs energies of mixing for NaCl-KCl binary solids and liquids and solid-saturated NaCl-KCl-H2O ternary liquids were modeled using asymmetric Margules treatments. The coefficients of the expressions were calibrated using an extensive array of binary solvus and solidus data, and both binary and ternary liquidus data. Over the PTX range considered, the system exhibits complete liquid miscibility among all three components and extensive solid solution along the anhydrous binary. Solid-liquid and solid-solid phase equilibria were calculated by using the resulting equations and invoking the equality of chemical potentials of NaCl and KCl between appropriate phases at equilibrium. The equations reproduce the ternary liquidus and predict activity coefficients for NaCl and KCl components in the aqueous liquid under solid-saturation conditions between 673 and 1200 K from vapor saturation up to 5 kbar. In the NaCl-KCl anhydrous binary system, the equations describe phase equilibria and predict activity coefficients of the salt components for all stable compositions of solid and liquid phases between room temperature and 1200 K and from 1 bar to 5 kbar. ?? 1992.

  12. Growth and development in inert non-aqueous liquids. [of higher plants

    NASA Technical Reports Server (NTRS)

    Siegel, S. M.

    1974-01-01

    A preview is presented of the survival and growth capabilities of higher plants in non-aqueous, inert liquids. The two media which were used are mineral (white) oil and fluorochemical inert liquid FC-75. Both liquids dissolve oxygen and carbon dioxide readily, but are insoluble in water. Consequently, plants submerged in these liquids are capable of gas exchange with the atmosphere, but possess a water impermeable coating the dimensions of which are determined by the size of the liquid holding container. In a sense, growing plants in a tank of mineral oil imparts on them a cuticle. Plants plus prescribed volumes of water were innoculated into mineral oil. Organisms with minimal water supplied could then be observed. Also, submersed plants covered with an oil slick were shown to be capable of growth in dessicating atmospheres.

  13. Thermophysical Properties of Solid and Liquid Ti-6Al-4V (TA6V) Alloy

    NASA Astrophysics Data System (ADS)

    Boivineau, M.; Cagran, C.; Doytier, D.; Eyraud, V.; Nadal, M.-H.; Wilthan, B.; Pottlacher, G.

    2006-03-01

    Ti-6Al-4V (TA6V) titanium alloy is widely used in industrial applications such as aeronautic and aerospace due to its good mechanical properties at high temperatures. Experiments on two different resistive pulse heating devices (CEA Valduc and TU-Graz) have been carried out in order to study thermophysical properties (such as electrical resistivity, volume expansion, heat of fusion, heat capacity, normal spectral emissivity, thermal diffusivity, and thermal conductivity) of both solid and liquid Ti-6Al-4V. Fast time-resolved measurements of current, voltage, and surface radiation and shadowgraphs of the volume have been undertaken. At TU-Graz, a fast laser polarimeter has been used for determining the emissivity of liquid Ti-6Al-4V at 684.5 nm and a differential scanning calorimeter (DSC) for measuring the heat capacity of solid Ti-6Al-4V. This study deals with the specific behavior of the different solid phase transitions (effect of heating rate) and the melting region, and emphasizes the liquid state ( T > 2000 K).

  14. Si substrates texturing and vapor-solid-solid Si nanowhiskers growth using pure hydrogen as source gas

    NASA Astrophysics Data System (ADS)

    Nordmark, H.; Nagayoshi, H.; Matsumoto, N.; Nishimura, S.; Terashima, K.; Marioara, C. D.; Walmsley, J. C.; Holmestad, R.; Ulyashin, A.

    2009-02-01

    Scanning and transmission electron microscopies have been used to study silicon substrate texturing and whisker growth on Si substrates using pure hydrogen source gas in a tungsten hot filament reactor. Substrate texturing, in the nanometer to micrometer range of mono- and as-cut multicrystalline silicon, was observed after deposition of WSi2 particles that acted as a mask for subsequent hydrogen radical etching. Simultaneous Si whisker growth was observed for long residence time of the source gas and low H2 flow rate with high pressure. The whiskers formed via vapor-solid-solid growth, in which the deposited WSi2 particles acted as catalysts for a subsequent metal-induced layer exchange process well below the eutectic temperature. In this process, SiHx species, formed by substrate etching by the H radicals, diffuse through the metal particles. This leads to growth of crystalline Si whiskers via metal-induced solid-phase crystallization. Transmission electron microscopy, electron diffraction, and x-ray energy dispersive spectroscopy were used to study the WSi2 particles and the structure of the Si substrates in detail. It has been established that the whiskers are partly crystalline and partly amorphous, consisting of pure Si with WSi2 particles on their tips as well as sometimes being incorporated into their structure.

  15. All about Solids, Liquids & Gases. Physical Science for Children[TM]. Schlessinger Science Library. [Videotape].

    ERIC Educational Resources Information Center

    2000

    In All About Solids, Liquids and Gases, young students will be introduced to the three common forms of matter. They'll learn that all things are made up of tiny particles called atoms and that the movement of these particles determines the form that matter takes. In solids, the particles are packed tightly together and move very little. The…

  16. Lubrication handbook for use in the space industry. Part A: Solid lubricants. Part B: Liquid lubricants

    NASA Technical Reports Server (NTRS)

    Campbell, M. E.; Thompson, M. B.

    1972-01-01

    This handbook provides a ready reference for many of the solid and liquid lubricants used in the space industry. Lubricants and lubricant properties are arranged systematically so that designers, engineers, and maintenance personnel in the space industry can conveniently locate data needed for their work. The handbook is divided into two major parts. Part A is a compilation of chemical and physical property data of more than 250 solid lubricants, bonded solid lubricants, dispersions and composites. Part B is a compilation of chemical and physical property data of more than 250 liquid lubricants, greases, oils, compounds and fluids. The listed materials cover a broad spectrum, from manufacturing and ground support to hardware applications for missiles and spacecraft.

  17. Simultaneous estimation of liquid and solid gastric emptying using radiolabelled egg and water in supine normal subjects.

    PubMed

    Kris, M G; Yeh, S D; Gralla, R J; Young, C W

    1986-01-01

    To develop an additional method for the measurement of gastric emptying in supine subjects, 10 normal subjects were given a test meal containing 99Tc-labelled scrambled egg as the "solid" phase marker and 111In in tapwater as the marker for the "liquid" phase. The mean time for emptying 50% of the "solid" phase (t1/2) was 85 min and 29 min for the "liquid" phase. Three individuals were restudied with a mean difference between the two determinations of 10.8% for the "solid" phase and 6.5% for the "liquid" phase. Twenty-six additional studies attempted have been successfully completed in symptomatic patients with advanced cancer. This method provides a simple and reproducible procedure for the determination of gastric emptying that yields results similar to those reported for other test meals and can be used in debilitated patients.

  18. Growth Kinetics of Intracellular RNA/Protein Droplets: Signature of a Liquid-Liquid Phase Transition?

    NASA Astrophysics Data System (ADS)

    Berry, Joel; Weber, Stephanie C.; Vaidya, Nilesh; Zhu, Lian; Haataja, Mikko; Brangwynne, Clifford P.

    2015-03-01

    Nonmembrane-bound organelles are functional, dynamic assemblies of RNA and/or protein that can self-assemble and disassemble within the cytoplasm or nucleoplasm. The possibility that underlying intracellular phase transitions may drive and mediate the morphological evolution of some membrane-less organelles has been supported by several recent studies. In this talk, results from a collaborative experimental-theoretical study of the growth and dissolution kinetics of nucleoli and extranucleolar droplets (ENDs) in C. elegans embryos will be presented. We have employed Flory-Huggins solution theory, reaction-diffusion kinetics, and quantitative statistical dynamic scaling analysis to characterize the specific growth mechanisms at work. Our findings indicate that both in vivo and in vitro droplet scaling and growth kinetics are consistent with those resulting from an equilibrium liquid-liquid phase transition mediated by passive nonequilibrium growth mechanisms - simultaneous Brownian coalescence and Ostwald ripening. This supports a view in which cells can employ phase transitions to drive structural organization, while utilizing active processes, such as local transcriptional activity, to fine tune the kinetics of these phase transitions in response to given conditions.

  19. Characteristics of a non-volatile liquid propellant in liquid-fed ablative pulsed plasma thrusters

    NASA Astrophysics Data System (ADS)

    Ling, William Yeong Liang; Schönherr, Tony; Koizumi, Hiroyuki

    2017-02-01

    In the past several decades, the use of electric propulsion in spacecraft has experienced tremendous growth. With the increasing adoption of small satellites in the kilogram range, suitable propulsion systems will be necessary in the near future. Pulsed plasma thrusters (PPTs) were the first form of electric propulsion to be deployed in orbit, and are highly suitable for small satellites due to their inherent simplicity. However, their lifetime is limited by disadvantages such as carbon deposition leading to thruster failure, and complicated feeding systems required due to the conventional use of solid propellants (usually polytetrafluoroethylene (PTFE)). A promising alternative to solid propellants has recently emerged in the form of non-volatile liquids that are stable in vacuum. This study presents a broad comparison of the non-volatile liquid perfluoropolyether (PFPE) and solid PTFE as propellants on a PPT with a common design base. We show that liquid PFPE can be successfully used as a propellant, and exhibits similar plasma discharge properties to conventional solid PTFE, but with a mass bit that is an order of magnitude higher for an identical ablation area. We also demonstrate that the liquid PFPE propellant has exceptional resistance to carbon deposition, completely negating one of the major causes of thruster failure, while solid PTFE exhibited considerable carbon build-up. Energy dispersive X-ray spectroscopy was used to examine the elemental compositions of the surface deposition on the electrodes and the ablation area of the propellant (or PFPE encapsulator). The results show that based on its physical characteristics and behavior, non-volatile liquid PFPE is an extremely promising propellant for use in PPTs, with an extensive scope available for future research and development.

  20. Numerical simulation of polishing U-tube based on solid-liquid two-phase

    NASA Astrophysics Data System (ADS)

    Li, Jun-ye; Meng, Wen-qing; Wu, Gui-ling; Hu, Jing-lei; Wang, Bao-zuo

    2018-03-01

    As the advanced technology to solve the ultra-precision machining of small hole structure parts and complex cavity parts, the abrasive grain flow processing technology has the characteristics of high efficiency, high quality and low cost. So this technology in many areas of precision machining has an important role. Based on the theory of solid-liquid two-phase flow coupling, a solid-liquid two-phase MIXTURE model is used to simulate the abrasive flow polishing process on the inner surface of U-tube, and the temperature, turbulent viscosity and turbulent dissipation rate in the process of abrasive flow machining of U-tube were compared and analyzed under different inlet pressure. In this paper, the influence of different inlet pressure on the surface quality of the workpiece during abrasive flow machining is studied and discussed, which provides a theoretical basis for the research of abrasive flow machining process.

  1. Alumina nanowire growth by water decomposition and the peritectic reaction of decagonal Al{sub 65}Cu{sub 15}Co{sub 20} quasicrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Téllez-Vázquez, J.O., E-mail: oswald.tellez@gmail.com; Patiño-Carachure, C., E-mail: cpatino@pampano.unacar.mx; Rosas, G., E-mail: grtrejo@yahoo07.com.mx

    2016-02-15

    In this paper, the results of the Al{sub 2}O{sub 3} nanowires' growth through a chemical reaction between Al and water vapor at 1050 °C are presented. Our approach is based on two primary considerations. First, at room temperature, the Al{sub 65}Cu{sub 15}Co{sub 20} alloy is affected by the following mechanism: 2Al (s) + 3H{sub 2}O (g) → Al{sub 2}O{sub 3} (s) + H{sub 2} (g). In this reaction, the released hydrogen induces cleavage fracture of the material to form small particles. Second, the Al{sub 65}Cu{sub 15}Co{sub 20} quasicrystalline phase is transformed on heating to liquid + Al (Cu, Co) cubicmore » phase through a peritectic reaction at 1050 °C. The Al-rich liquid then reacts with water vapor, forming Al{sub 2}O{sub 3} nanowires. X-ray diffraction (XRD) analysis shows that the formed nanowires have a hexagonal structure, and infrared analysis further confirms the presence of α-Al{sub 2}O{sub 3} phase in the final products. Transmission electron microscopy observations show that nanoparticles are present at the end of nanowires, suggesting the VLS growth mechanism. Elemental analysis by energy dispersive spectroscopy (EDS) indicates that the particles at the tip of the nanowires are mainly formed by Co and Cu alloying elements and small amounts of Al. Electron microscopy observations showed nanowires with diameters ranging from 20 to 70 nm; the average diameter was 37 nm and the nanowire lengths were up to several micrometers. - Highlights: • Hexagonal alumina nanowires are grown at 1050 °C through the VLS process. • Alumina nanowires are obtained by the decomposition of decagonal quasicrystalline phase. • The decagonal phase decomposition follows a peritectic reaction at 1030 °C. • Nanoparticles are obtained by hydrogen embrittlement mechanism. • The nanoparticles catalyze the water decomposition to form wires.« less

  2. Predictive thermodynamics for ionic solids and liquids.

    PubMed

    Glasser, Leslie; Jenkins, H Donald Brooke

    2016-08-21

    The application of thermodynamics is simple, even if the theory may appear intimidating. We describe tools, developed over recent years, which make it easy to estimate often elusive thermodynamic parameter values, generally (but not exclusively) for ionic materials, both solid and liquid, as well as for their solid hydrates and solvates. The tools are termed volume-based thermodynamics (VBT) and thermodynamic difference rules (TDR), supplemented by the simple salt approximation (SSA) and single-ion values for volume, Vm, heat capacity, , entropy, , formation enthalpy, ΔfH°, and Gibbs formation energy, ΔfG°. These tools can be applied to provide values of thermodynamic and thermomechanical properties such as standard enthalpy of formation, ΔfH°, standard entropy, , heat capacity, Cp, Gibbs function of formation, ΔfG°, lattice potential energy, UPOT, isothermal expansion coefficient, α, and isothermal compressibility, β, and used to suggest the thermodynamic feasibility of reactions among condensed ionic phases. Because many of these methods yield results largely independent of crystal structure, they have been successfully extended to the important and developing class of ionic liquids as well as to new and hypothesised materials. Finally, these predictive methods are illustrated by application to K2SnCl6, for which known experimental results are available for comparison. A selection of applications of VBT and TDR is presented which have enabled input, usually in the form of thermodynamics, to be brought to bear on a range of topical problems. Perhaps the most significant advantage of VBT and TDR methods is their inherent simplicity in that they do not require a high level of computational expertise nor expensive high-performance computation tools - a spreadsheet will usually suffice - yet the techniques are extremely powerful and accessible to non-experts. The connection between formula unit volume, Vm, and standard thermodynamic parameters represents a

  3. Exploring the heterogeneous interfaces in organic or ruthenium dye-sensitized liquid- and solid-state solar cells.

    PubMed

    Kwon, Young Soo; Song, Inwoo; Lim, Jong Chul; Song, In Young; Siva, Ayyanar; Park, Taiho

    2012-06-27

    The interfacial properties were systematically investigated using an organic sensitizer (3-(5'-{4-[(4-tert-butyl-phenyl)-p-tolyl-amino]-phenyl}-[2,2']bithiophenyl-5-yl)-2-cyano-acrylic acid (D)) and inorganic sensitizer (bis(tetrabutylammonium) cis-bis(thiocyanato)bis(2,2'-bipyridine-4,4'-dicarboxylato) ruthenium(II) (N719)) in a liquid-state and a solid-state dye-sensitized solar cell (DSC). For liquid-DSCs, the faster charge recombination for the surface of D-sensitized TiO2 resulted in shorter diffusion length (LD) of ∼3.9 μm than that of N719 (∼7.5 μm), limiting the solar cell performance at thicker films used in liquid-DSCs. On the other hand, for solid-DSCs using thin TiO2 films (∼ 2 μm), D-sensitized device outperforms the N719-sensitized device in an identical fabrication condition, mainly due to less perfect wetting ability of solid hole conductor into the porous TiO2 network, inducing the dye monolayer act as an insulation layer, while liquid electrolyte is able to fully wet the surface of TiO2. Such insulation effect was attributed to the fact that the significant increase in recombination resistance (from 865 to 4,400 Ω/cm(2)) but shorter electron lifetime (from 10.8 to 0.8 ms) when compared to liquid-DSCs. Higher recombination resistance for solid-DSCs induced the electron transport-limited situation, showing poor performance of N719-sensitized device which has shorter electron transport time and similar LD (2.9 μm) with D-sensitized device (3.0 μm).

  4. Ga- and N-polar GaN Growths on SiC Substrate

    DTIC Science & Technology

    2018-03-15

    a transition process of a two-section NR are formulated and numerically studied to show the consistent results with experimental data. The relative...contributions of the VLS and VS growths in such a transition process are also numerically illustrated. Besides, the experimentally observed decrease... experimental data, a few important kinetic parameters can be determined. The anti-reflection functions of a surface nanostructure, including

  5. Investigations on dendrimer space reveal solid and liquid tumor growth-inhibition by original phosphorus-based dendrimers and the corresponding monomers and dendrons with ethacrynic acid motifs.

    PubMed

    El Brahmi, Nabil; Mignani, Serge M; Caron, Joachim; El Kazzouli, Saïd; Bousmina, Mosto M; Caminade, Anne-Marie; Cresteil, Thierry; Majoral, Jean-Pierre

    2015-03-07

    The well-known reactive diuretic ethacrynic acid (EA, Edecrin), with low antiproliferative activities, was chemically modified and grafted onto phosphorus dendrimers and the corresponding simple branched phosphorus dendron-like derivatives affording novel nanodevices showing moderate to strong antiproliferative activities against liquid and solid tumor cell lines, respectively.

  6. A new method for solid surface topographical studies using nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Baber, N.; Strugalski, Z.

    1984-03-01

    A new simple method has been developed to investigate the topography of a wide range of solid surfaces using nematic liquid crystals. Polarizing microscopy is employed. The usefulness of the method for detecting weak mechanical effects has been demonstrated. An application in criminology is foreseen.

  7. Atomic origins of water-vapour-promoted alloy oxidation

    NASA Astrophysics Data System (ADS)

    Luo, Langli; Su, Mao; Yan, Pengfei; Zou, Lianfeng; Schreiber, Daniel K.; Baer, Donald R.; Zhu, Zihua; Zhou, Guangwen; Wang, Yanting; Bruemmer, Stephen M.; Xu, Zhijie; Wang, Chongmin

    2018-06-01

    The presence of water vapour, intentional or unavoidable, is crucial to many materials applications, such as in steam generators, turbine engines, fuel cells, catalysts and corrosion1-4. Phenomenologically, water vapour has been noted to accelerate oxidation of metals and alloys5,6. However, the atomistic mechanisms behind such oxidation remain elusive. Through direct in situ atomic-scale transmission electron microscopy observations and density functional theory calculations, we reveal that water-vapour-enhanced oxidation of a nickel-chromium alloy is associated with proton-dissolution-promoted formation, migration, and clustering of both cation and anion vacancies. Protons derived from water dissociation can occupy interstitial positions in the oxide lattice, consequently lowering vacancy formation energy and decreasing the diffusion barrier of both cations and anions, which leads to enhanced oxidation in moist environments at elevated temperatures. This work provides insights into water-vapour-enhanced alloy oxidation and has significant implications in other material and chemical processes involving water vapour, such as corrosion, heterogeneous catalysis and ionic conduction.

  8. Atomic origins of water-vapour-promoted alloy oxidation.

    PubMed

    Luo, Langli; Su, Mao; Yan, Pengfei; Zou, Lianfeng; Schreiber, Daniel K; Baer, Donald R; Zhu, Zihua; Zhou, Guangwen; Wang, Yanting; Bruemmer, Stephen M; Xu, Zhijie; Wang, Chongmin

    2018-06-01

    The presence of water vapour, intentional or unavoidable, is crucial to many materials applications, such as in steam generators, turbine engines, fuel cells, catalysts and corrosion 1-4 . Phenomenologically, water vapour has been noted to accelerate oxidation of metals and alloys 5,6 . However, the atomistic mechanisms behind such oxidation remain elusive. Through direct in situ atomic-scale transmission electron microscopy observations and density functional theory calculations, we reveal that water-vapour-enhanced oxidation of a nickel-chromium alloy is associated with proton-dissolution-promoted formation, migration, and clustering of both cation and anion vacancies. Protons derived from water dissociation can occupy interstitial positions in the oxide lattice, consequently lowering vacancy formation energy and decreasing the diffusion barrier of both cations and anions, which leads to enhanced oxidation in moist environments at elevated temperatures. This work provides insights into water-vapour-enhanced alloy oxidation and has significant implications in other material and chemical processes involving water vapour, such as corrosion, heterogeneous catalysis and ionic conduction.

  9. CRYOCHEM, Thermodynamic Model for Cryogenic Chemical Systems: Solid-Vapor and Solid-Liquid-Vapor Phase Equilibria Toward Applications on Titan and Pluto

    NASA Astrophysics Data System (ADS)

    Tan, S. P.; Kargel, J. S.; Adidharma, H.; Marion, G. M.

    2014-12-01

    Until in-situ measurements can be made regularly on extraterrestrial bodies, thermodynamic models are the only tools to investigate the properties and behavior of chemical systems on those bodies. The resulting findings are often critical in describing physicochemical processes in the atmosphere, surface, and subsurface in planetary geochemistry and climate studies. The extremely cold conditions on Triton, Pluto and other Kuiper Belt Objects, and Titan introduce huge non-ideality that prevents conventional models from performing adequately. At such conditions, atmospheres as a whole—not components individually—are subject to phase equilibria with their equilibrium solid phases or liquid phases or both. A molecular-based thermodynamic model for cryogenic chemical systems, referred to as CRYOCHEM, the development of which is still in progress, was shown to reproduce the vertical composition profile of Titan's atmospheric methane measured by the Huygens probe (Tan et al., Icarus 2013, 222, 53). Recently, the model was also used to describe Titan's global circulation where the calculated composition of liquid in Ligeia Mare is consistent with the bathymetry and microwave absorption analysis of T91 Cassini fly-by data (Tan et al., 2014, submitted). Its capability to deal with equilibria involving solid phases has also been demonstrated (Tan et al., Fluid Phase Equilib. 2013, 360, 320). With all those previous works done, our attention is now shifting to the lower temperatures in Titan's tropopause and on Pluto's surface, where much technical development remains for CRYOCHEM to assure adequate performance at low temperatures. In these conditions, solid-vapor equilibrium (SVE) is the dominant phase behavior that determines the composition of the atmosphere and the existing ices. Another potential application is for the subsurface phase equilibrium, which also involves liquid, thus three-phase equilibrium: solid-liquid-vapor (SLV). This presentation will discuss the

  10. The ignitability of petrol vapours and potential for vapour phase explosion by use of TASER® law enforcement electronic control device.

    PubMed

    Clarke, C; Andrews, S P

    2014-12-01

    An experimental study was made of the potential of the TASER-X26™ law enforcement electronic control device to ignite petrol vapours if used by an officer to incapacitate a person soaked in petrol, or within a flammable atmosphere containing petrol vapour. Bench scale tests have shown that a wooden mannequin with pig skin covering the chest was a suitable representation of a human target. Full scale tests using the mannequin have shown that the arc from a TASER-X26™ is capable of igniting petrol/air vapours on a petrol-soaked person. Further tests in a 1/5 scale and a full scale compartment have shown that if a TASER is used within a compartment, a petrol vapour explosion (deflagration) may be achieved. It is evident from this research that if used in a flammable vapour rich environment, the device could prove fatal not only to the target but the TASER® operator as well. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  11. CFD simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindrical condensers.

    PubMed

    Li, Jun-De

    2013-02-01

    This paper presents the simulation of the condensation of water vapour in the presence of non-condensable gas using computational fluid dynamics (CFD) for turbulent flows in a vertical cylindrical condenser tube. The simulation accounts for the turbulent flow of the gas mixture, the condenser wall and the turbulent flow of the coolant in the annular channel with no assumptions of constant wall temperature or heat flux. The condensate film is assumed to occupy a negligible volume and its effect on the condensation of the water vapour has been taken into account by imposing a set of boundary conditions. A new strategy is used to overcome the limitation of the currently available commercial CFD package to solve the simultaneous simulation of flows involving multispecies and fluids of gas and liquid in separate channels. The results from the CFD simulations are compared with the experimental results from the literature for the condensation of water vapour with air as the non-condensable gas and for inlet mass fraction of the water vapour from 0.66 to 0.98. The CFD simulation results in general agree well with the directly measured quantities and it is found that the variation of heat flux in the condenser tube is more complex than a simple polynomial curve fit. The CFD results also show that, at least for flows involving high water vapour content, the axial velocity of the gas mixture at the interface between the gas mixture and the condensate film is in general not small and cannot be neglected.

  12. CFD simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindrical condensers

    PubMed Central

    Li, Jun-De

    2013-01-01

    This paper presents the simulation of the condensation of water vapour in the presence of non-condensable gas using computational fluid dynamics (CFD) for turbulent flows in a vertical cylindrical condenser tube. The simulation accounts for the turbulent flow of the gas mixture, the condenser wall and the turbulent flow of the coolant in the annular channel with no assumptions of constant wall temperature or heat flux. The condensate film is assumed to occupy a negligible volume and its effect on the condensation of the water vapour has been taken into account by imposing a set of boundary conditions. A new strategy is used to overcome the limitation of the currently available commercial CFD package to solve the simultaneous simulation of flows involving multispecies and fluids of gas and liquid in separate channels. The results from the CFD simulations are compared with the experimental results from the literature for the condensation of water vapour with air as the non-condensable gas and for inlet mass fraction of the water vapour from 0.66 to 0.98. The CFD simulation results in general agree well with the directly measured quantities and it is found that the variation of heat flux in the condenser tube is more complex than a simple polynomial curve fit. The CFD results also show that, at least for flows involving high water vapour content, the axial velocity of the gas mixture at the interface between the gas mixture and the condensate film is in general not small and cannot be neglected. PMID:24850953

  13. Molecular simulation of fluid mixtures in bulk and at solid-liquid interfaces

    NASA Astrophysics Data System (ADS)

    Kern, Jesse L.

    The properties of a diverse range of mixture systems at interfaces are investigated using a variety of computational techniques. Molecular simulation is used to examine the thermodynamic, structural, and transport properties of heterogeneous systems of theoretical and practical importance. The study of binary hard-sphere mixtures at a hard wall demonstrates the high accuracy of recently developed classical-density functionals. The study of aluminum--gallium solid--liquid heterogeneous interfaces predicts a significant amount of prefreezing of the liquid by adopting the structure of the solid surface. The study of ethylene-expanded methanol within model silica mesopores shows the effect of confinement and surface functionalzation on the mixture composition and transport inside of the pores. From our molecular-dynamics study of binary hard-sphere fluid mixtures at a hard wall, we obtained high-precision calculations of the wall-fluid interfacial free energies, gamma. We have considered mixtures of varying diameter ratio, alpha = 0.7,0.8,0.9; mole fraction, x 1 = 0.25,0.50,0.75; and packing fraction, eta < 0.50. Using Gibbs-Cahn Integration, gamma is calculated from the system pressure, chemical potentials, and density profiles. Recent classical density-functional theory predictions agree very well with our results. Structural, thermodynamic, and transport properties of the aluminum--gallium solid--liquid interface at 368 K are obtained for the (100), (110), and (111) orientations using molecular dynamics. Density, potential energy, stress, and diffusion profiles perpendicular to the interface are calculated. The layers of Ga that form on the Al surface are strongly adsorbed and take the in-plane structure of the underlying crystal layers for all orientations, which results in significant compressive stress on the Ga atoms. Bulk methanol--ethylene mixtures under vapor-liquid equilibrium conditions have been characterized using Monte Carlo and molecular dynamics. The

  14. Encapsulated Solid-Liquid Phase Change Nanoparticles as Thermal Barcodes for Highly Sensitive Detections of Multiple Lung Cancer Biomarkers

    DTIC Science & Technology

    2012-10-01

    5e. TASK NUMBER LC90061 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT...transduction mechanism based on solid- liquid phase change nanoparticles works for the detection of multiple proteins. A series of metal and alloy...early stage. With the support from DOD-LCRP, we have proved the new signal transduction mechanism based on solid-liquid phase change nanoparticles works

  15. Alcohol vapour detection at the three phase interface using enzyme-conducting polymer composites.

    PubMed

    Winther-Jensen, Orawan; Kerr, Robert; Winther-Jensen, Bjorn

    2014-02-15

    Immobilisation of enzymes on a breathable electrode can be useful for various applications where the three-phase interface between gas or chemical vapour, electrolyte and electrode is crucial for the reaction. In this paper, we report the further development of the breathable electrode concept by immobilisation of alcohol dehydrogenase into vapour-phase polymerised poly(3,4-ethylene dioxythiophene) that has been coated onto a breathable membrane. Typical alcohol sensing, whereby the coenzyme β-Nicotinamide adenine dinucleotide (NADH) is employed as a redox-mediator, was successfully used as a model reaction for the oxidation of ethanol. This indicates that the ethanol vapour from the backside of the membrane has access to the active enzyme embedded in the electrode. The detecting range of the sensor is suitable for the detection of ethanol in fruit juices and for the baseline breath ethanol concentration of drunken driving. After continuous operation for 4.5h the system only showed a 20% decrease in the current output. The electrodes maintained 62% in current output after being refrigerated for 76 days. This work is continuing the progress of the immobilisation of specific enzymes for certain electrochemical reactions whereby the three-phase interface has to be maintained and/or the simultaneous separation of gas from liquid is required. © 2013 Elsevier B.V. All rights reserved.

  16. Habitable Planets with Dynamic System of Global Air-Liquid-Solid Planet and Life

    NASA Astrophysics Data System (ADS)

    Miura, Y.; Kato, T.

    2017-11-01

    Habitable zone is dynamic three phase states (air-liquid-solid), which will be obtained in water-planet with volatile exchanges. Water and carbon-bearing grains at older extraterrestrial stones suggest that there are no global ocean water system.

  17. Behavior of ceramic particles at the solid-liquid metal interface in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Stefanescu, D. M.; Dhindaw, B. K.; Kacar, S. A.; Moitra, A.

    1988-01-01

    Directional solidification results were obtained in order to investigate particle behavior at the solid-liquid interface in Al-2 pct Mg (cellular interface) and Al-6.1 pct Ni (eutectic interface) alloys. It is found that particles can be entrapped in the solid if adequate solidification rates and temperature gradients are used. Model results showed critical velocity values slightly higher than those obtained experimentally.

  18. Growth and melting of droplets in cold vapors.

    PubMed

    L'Hermite, Jean-Marc

    2009-11-01

    A model has been developed to investigate the growth of droplets in a supersaturated cold vapor taking into account their possible solid-liquid phase transition. It is shown that the solid-liquid phase transition is nontrivially coupled, through the energy released in attachment, to the nucleation process. The model is based on the one developed by J. Feder, K. C. Russell, J. Lothe, and G. M. Pound [Adv. Phys. 15, 111 (1966)], where the nucleation process is described as a thermal diffusion motion in a two-dimensional field of force given by the derivatives of a free-energy surface. The additional dimension accounts for droplets internal energy. The solid-liquid phase transition is introduced through a bimodal internal energy distribution in a Gaussian approximation derived from small clusters physics. The coupling between nucleation and melting results in specific nonequilibrium thermodynamical properties, exemplified in the case of water droplets. Analyzing the free-energy landscapes gives an insight into the nucleation dynamics. This landscape can be complex but generally exhibits two paths: the first one can generally be ascribed to the solid state, while the other to the liquid state. Especially at high supersaturation, the growth in the liquid state is often favored, which is not unexpected since in a supersaturated vapor the droplets can stand higher internal energy than at equilibrium. From a given critical temperature that is noticeably lower than the bulk melting temperature, nucleation may end in very large liquid droplets. These features can be qualitatively generalized to systems other than water.

  19. Enthalpy-based multiple-relaxation-time lattice Boltzmann method for solid-liquid phase-change heat transfer in metal foams.

    PubMed

    Liu, Qing; He, Ya-Ling; Li, Qing

    2017-08-01

    In this paper, an enthalpy-based multiple-relaxation-time (MRT) lattice Boltzmann (LB) method is developed for solid-liquid phase-change heat transfer in metal foams under the local thermal nonequilibrium (LTNE) condition. The enthalpy-based MRT-LB method consists of three different MRT-LB models: one for flow field based on the generalized non-Darcy model, and the other two for phase-change material (PCM) and metal-foam temperature fields described by the LTNE model. The moving solid-liquid phase interface is implicitly tracked through the liquid fraction, which is simultaneously obtained when the energy equations of PCM and metal foam are solved. The present method has several distinctive features. First, as compared with previous studies, the present method avoids the iteration procedure; thus it retains the inherent merits of the standard LB method and is superior to the iteration method in terms of accuracy and computational efficiency. Second, a volumetric LB scheme instead of the bounce-back scheme is employed to realize the no-slip velocity condition in the interface and solid phase regions, which is consistent with the actual situation. Last but not least, the MRT collision model is employed, and with additional degrees of freedom, it has the ability to reduce the numerical diffusion across the phase interface induced by solid-liquid phase change. Numerical tests demonstrate that the present method can serve as an accurate and efficient numerical tool for studying metal-foam enhanced solid-liquid phase-change heat transfer in latent heat storage. Finally, comparisons and discussions are made to offer useful information for practical applications of the present method.

  20. Enthalpy-based multiple-relaxation-time lattice Boltzmann method for solid-liquid phase-change heat transfer in metal foams

    NASA Astrophysics Data System (ADS)

    Liu, Qing; He, Ya-Ling; Li, Qing

    2017-08-01

    In this paper, an enthalpy-based multiple-relaxation-time (MRT) lattice Boltzmann (LB) method is developed for solid-liquid phase-change heat transfer in metal foams under the local thermal nonequilibrium (LTNE) condition. The enthalpy-based MRT-LB method consists of three different MRT-LB models: one for flow field based on the generalized non-Darcy model, and the other two for phase-change material (PCM) and metal-foam temperature fields described by the LTNE model. The moving solid-liquid phase interface is implicitly tracked through the liquid fraction, which is simultaneously obtained when the energy equations of PCM and metal foam are solved. The present method has several distinctive features. First, as compared with previous studies, the present method avoids the iteration procedure; thus it retains the inherent merits of the standard LB method and is superior to the iteration method in terms of accuracy and computational efficiency. Second, a volumetric LB scheme instead of the bounce-back scheme is employed to realize the no-slip velocity condition in the interface and solid phase regions, which is consistent with the actual situation. Last but not least, the MRT collision model is employed, and with additional degrees of freedom, it has the ability to reduce the numerical diffusion across the phase interface induced by solid-liquid phase change. Numerical tests demonstrate that the present method can serve as an accurate and efficient numerical tool for studying metal-foam enhanced solid-liquid phase-change heat transfer in latent heat storage. Finally, comparisons and discussions are made to offer useful information for practical applications of the present method.