Sample records for var gene expression

  1. Antigenic variation in malaria: in situ switching, relaxed and mutually exclusive transcription of var genes during intra-erythrocytic development in Plasmodium falciparum.

    PubMed Central

    Scherf, A; Hernandez-Rivas, R; Buffet, P; Bottius, E; Benatar, C; Pouvelle, B; Gysin, J; Lanzer, M

    1998-01-01

    Members of the Plasmodium falciparum var gene family encode clonally variant adhesins, which play an important role in the pathogenicity of tropical malaria. Here we employ a selective panning protocol to generate isogenic P.falciparum populations with defined adhesive phenotypes for CD36, ICAM-1 and CSA, expressing single and distinct var gene variants. This technique has established the framework for examining var gene expression, its regulation and switching. It was found that var gene switching occurs in situ. Ubiquitous transcription of all var gene variants appears to occur in early ring stages. However, var gene expression is tightly regulated in trophozoites and is exerted through a silencing mechanism. Transcriptional control is mutually exclusive in parasites that express defined adhesive phenotypes. In situ var gene switching is apparently mediated at the level of transcriptional initiation, as demonstrated by nuclear run-on analyses. Our results suggest that an epigenetic mechanism(s) is involved in var gene regulation. PMID:9736619

  2. CRISPR/Cas9 Genome Editing Reveals That the Intron Is Not Essential for var2csa Gene Activation or Silencing in Plasmodium falciparum.

    PubMed

    Bryant, Jessica M; Regnault, Clément; Scheidig-Benatar, Christine; Baumgarten, Sebastian; Guizetti, Julien; Scherf, Artur

    2017-07-11

    Plasmodium falciparum relies on monoallelic expression of 1 of 60 var virulence genes for antigenic variation and host immune evasion. Each var gene contains a conserved intron which has been implicated in previous studies in both activation and repression of transcription via several epigenetic mechanisms, including interaction with the var promoter, production of long noncoding RNAs (lncRNAs), and localization to repressive perinuclear sites. However, functional studies have relied primarily on artificial expression constructs. Using the recently developed P. falciparum clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, we directly deleted the var2csa P. falciparum 3D7_1200600 (Pf3D7_1200600) endogenous intron, resulting in an intronless var gene in a natural, marker-free chromosomal context. Deletion of the var2csa intron resulted in an upregulation of transcription of the var2csa gene in ring-stage parasites and subsequent expression of the PfEMP1 protein in late-stage parasites. Intron deletion did not affect the normal temporal regulation and subsequent transcriptional silencing of the var gene in trophozoites but did result in increased rates of var gene switching in some mutant clones. Transcriptional repression of the intronless var2csa gene could be achieved via long-term culture or panning with the CD36 receptor, after which reactivation was possible with chondroitin sulfate A (CSA) panning. These data suggest that the var2csa intron is not required for silencing or activation in ring-stage parasites but point to a subtle role in regulation of switching within the var gene family. IMPORTANCE Plasmodium falciparum is the most virulent species of malaria parasite, causing high rates of morbidity and mortality in those infected. Chronic infection depends on an immune evasion mechanism termed antigenic variation, which in turn relies on monoallelic expression of 1 of ~60 var genes. Understanding antigenic variation and the transcriptional regulation of monoallelic expression is important for developing drugs and/or vaccines. The var gene family encodes the antigenic surface proteins that decorate infected erythrocytes. Until recently, studying the underlying genetic elements that regulate monoallelic expression in P. falciparum was difficult, and most studies relied on artificial systems such as episomal reporter genes. Our study was the first to use CRISPR/Cas9 genome editing for the functional study of an important, conserved genetic element of var genes-the intron-in an endogenous, episome-free manner. Our findings shed light on the role of the var gene intron in transcriptional regulation of monoallelic expression. Copyright © 2017 Bryant et al.

  3. Efficient transformation and expression of gfp gene in Valsa mali var. mali.

    PubMed

    Chen, Liang; Sun, Gengwu; Wu, Shujing; Liu, Huixiang; Wang, Hongkai

    2015-01-01

    Valsa mali var. mali, the causal agent of valsa canker of apple, causes great loss of apple production in apple producing regions. The pathogenic mechanism of the pathogen has not been studied extensively, thus a suitable gene marker for pathogenic invasion analysis and a random insertion of T-DNA for mutants are desirable. In this paper, we reported the construction of a binary vector pKO1-HPH containing a positive selective gene hygromycin phosphotransferase (hph), a reporter gene gfp conferring green fluorescent protein, and an efficient protocol for V. mali var. mali transformation mediated by Agrobacterium tumefaciens. A transformation efficiency up to about 75 transformants per 10(5) conidia was achieved when co-cultivation of V. mali var. mali and A. tumefaciens for 48 h in A. tumefaciens inductive medium agar plates. The insertions of hph gene and gfp gene into V. mali var. mali genome verified by polymerase chain reaction and southern blot analysis showed that 10 randomly-selected transformants exhibited a single, unique hybridization pattern. This is the first report of A. tumefaciens-mediated transformation of V. mali var mali carrying a 'reporter' gfp gene that stably and efficiently expressed in the transformed V. mali var. mali species.

  4. Effect of wheat roots infected with the pathogenic fungus Gaeumannomyces graminis var. tritici on gene expression of the biocontrol bacterium Pseudomonas fluorescens Pf29Arp.

    PubMed

    Barret, Matthieu; Frey-Klett, Pascale; Guillerm-Erckelboudt, Anne-Yvonne; Boutin, Morgane; Guernec, Gregory; Sarniguet, Alain

    2009-12-01

    Traits contributing to the competence of biocontrol bacteria to colonize plant roots are often induced in the rhizosphere in response to plant components. These interactions have been studied using the two partners in gnotobiotic systems. However, in nature, beneficial or pathogenic fungi often colonize roots. Influence of these plant-fungus interactions on bacterial behavior remains to be investigated. Here, we have examined the influence of colonization of wheat roots by the take-all fungus Gaeumannomyces graminis var. tritici on gene expression of the biocontrol bacterium Pseudomonas fluorescens Pf29Arp. Bacteria were inoculated onto healthy, early G. graminis var. tritici-colonized and necrotic roots and transcriptomes were compared by shotgun DNA microarray. Pf29Arp decreased disease severity when inoculated before the onset of necrosis. Necrotic roots exerted a broader effect on gene expression compared with early G. graminis var. tritici-colonized and healthy roots. A gene encoding a putative type VI secretion system effector was only induced in necrotic conditions. A common pool of Pf29Arp genes differentially expressed on G. graminis var. tritici-colonized roots was related to carbon metabolism and oxidative stress, with a highest fold-change with necrosis. Overall, the data showed that the association of the pathogenic fungus with the roots strongly altered Pf29Arp adaptation with differences between early and late G. graminis var. tritici infection steps.

  5. Analysis of Single-cell Gene Transcription by RNA Fluorescent In Situ Hybridization (FISH)

    PubMed Central

    Ronander, Elena; Bengtsson, Dominique C.; Joergensen, Louise; Jensen, Anja T. R.; Arnot, David E.

    2012-01-01

    Adhesion of Plasmodium falciparum infected erythrocytes (IE) to human endothelial receptors during malaria infections is mediated by expression of PfEMP1 protein variants encoded by the var genes. The haploid P. falciparum genome harbors approximately 60 different var genes of which only one has been believed to be transcribed per cell at a time during the blood stage of the infection. How such mutually exclusive regulation of var gene transcription is achieved is unclear, as is the identification of individual var genes or sub-groups of var genes associated with different receptors and the consequence of differential binding on the clinical outcome of P. falciparum infections. Recently, the mutually exclusive transcription paradigm has been called into doubt by transcription assays based on individual P. falciparum transcript identification in single infected erythrocytic cells using RNA fluorescent in situ hybridization (FISH) analysis of var gene transcription by the parasite in individual nuclei of P. falciparum IE1. Here, we present a detailed protocol for carrying out the RNA-FISH methodology for analysis of var gene transcription in single-nuclei of P. falciparum infected human erythrocytes. The method is based on the use of digoxigenin- and biotin- labeled antisense RNA probes using the TSA Plus Fluorescence Palette System2 (Perkin Elmer), microscopic analyses and freshly selected P. falciparum IE. The in situ hybridization method can be used to monitor transcription and regulation of a variety of genes expressed during the different stages of the P. falciparum life cycle and is adaptable to other malaria parasite species and other organisms and cell types. PMID:23070076

  6. A var gene promoter implicated in severe malaria nucleates silencing and is regulated by 3’ untranslated region and intronic cis-elements

    PubMed Central

    Muhle, Rebecca A.; Adjalley, Sophie; Falkard, Brie; Nkrumah, Louis J.; Muhle, Michael E.; Fidock, David A.

    2009-01-01

    Questions surround the mechanism of mutually exclusive expression by which Plasmodium falciparum mediates activation and silencing of var genes. These encode PfEMP1 proteins, which function as cytoadherent and immunomodulatory molecules at the surface of parasitized erythrocytes. Current evidence suggests that promoter silencing by var introns might play a key role in var gene regulation. To evaluate the impact of cis-acting regulatory regions on var silencing, we generated P. falciparum lines in which luciferase was placed under the control of an UpsA var promoter. By utilizing the Bxb1 integrase system, these reporter cassettes were targeted to a genomic region that was not in apposition to var sub-telomeric domains. This eliminated possible effects from surrounding telomeric elements and removed the variability inherent in episomal systems. Studies with highly synchronized parasites revealed that the UpsA element possessed minimal activity in comparison with a heterologous (hrp3) promoter. This may well result from the integrated UpsA promoter being largely silenced by the neighboring cg6 promoter. Our analyses also revealed that the DownsA 3’ untranslated region further decreased the luciferase activity from both cassettes, whereas the var A intron repressed the UpsA promoter specifically. By applying multivariate analysis over the entire cell cycle, we confirmed the significance of these cis-elements and found the parasite stage to be the major factor regulating UpsA promoter activity. Additionally, we observed that the UpsA promoter was capable of nucleating reversible silencing that spread to a downstream promoter. We believe these studies are the first to analyze promoter activity of Group A var genes which have been implicated in severe malaria, and support the model that var introns can further suppress var expression. These data also suggest an important suppressive role for the DownsA terminator. Our findings imply the existence of multiple levels of var gene regulation in addition to intrinsic promoter-dependent silencing. PMID:19463825

  7. Identification and Characterization of the Spodoptera Su(var) 3-9 Histone H3K9 trimethyltransferase and Its Effect in AcMNPV Infection

    PubMed Central

    Li, Binbin; Li, Sisi; Yin, Juan; Zhong, Jiang

    2013-01-01

    Histone H3-lysine9 (H3K9) trimethyltransferase gene Su(var) 3-9 was cloned and identified in three Spodoptera insects, Spodoptera frugiperda ( S . frugiperda ), S . exigua and S . litura . Sequence analysis showed that Spodoptera Su(var) 3-9 is highly conserved evolutionarily. Su(var) 3-9 protein was found to be localized in the nucleus in Sf9 cells, and interact with histone H3, and the heterochromatin protein 1a (HP1a) and HP1b. A dose-dependent enzymatic activity was found at both 27 °C and 37 °C in vitro, with higher activity at 27 °C. Addition of specific inhibitor chaetocin resulted in decreased histone methylation level and host chromatin relaxation. In contrast, overexpression of Su(var) 3-9 caused increased histone methylation level and cellular genome compaction. In AcMNV-infected Sf9 cells, the transcription of Su(var) 3-9 increased at late time of infection, although the mRNA levels of most cellular genes decreased. Pre-treatment of Sf9 cells with chaetocin speeded up viral DNA replication, and increased the transcription level of a variety of virus genes, whereas in Sf9 cells pre-transformed with Su(var) 3-9 expression vector, viral DNA replication slow down slightly. These findings suggest that Su(var) 3-9 might participate in the viral genes expression an genome replication repression during AcMNPV infection. It provided a new insight for the understanding virus–host interaction mechanism. PMID:23894480

  8. Analysis of expressed sequence tags (ESTs) from avocado seed (Persea americana var. drymifolia) reveals abundant expression of the gene encoding the antimicrobial peptide snakin.

    PubMed

    Guzmán-Rodríguez, Jaquelina J; Ibarra-Laclette, Enrique; Herrera-Estrella, Luis; Ochoa-Zarzosa, Alejandra; Suárez-Rodríguez, Luis María; Rodríguez-Zapata, Luis C; Salgado-Garciglia, Rafael; Jimenez-Moraila, Beatriz; López-Meza, Joel E; López-Gómez, Rodolfo

    2013-09-01

    Avocado is one of the most important fruits in the world. Avocado "native mexicano" (Persea americana var. drymifolia) seeds are widely used in the propagation of this plant and are the primary source of rootstocks globally for a variety of avocado cultivars, such as the Hass avocado. Here, we report the isolation of 5005 ESTs from the 5' ends of P. americana var. drymifolia seed cDNA clones representing 1584 possible unigenes. These avocado seed ESTs were compared with the avocado flower EST library, and we detected several genes that are expressed either in both tissues or only in the seed. The snakin gene, which encodes an element of the innate immune response in plants, was one of those most frequently found among the seed ESTs, and this suggests that it is abundantly expressed in the avocado seed. We expressed the snakin gene in a heterologous system, namely the bovine endothelial cell line BVE-E6E7. Conditioned media from transfected BVE-E6E7 cells showed antimicrobial activity against strains of Escherichia coli and Staphylococcus aureus. This is the first study of the function of the snakin gene in plant seed tissue, and our observations suggest that this gene might play a protective role in the avocado seed. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  9. Targeted Disruption of a Ring-infected Erythrocyte Surface Antigen (RESA)-like Export Protein Gene in Plasmodium falciparum Confers Stable Chondroitin 4-Sulfate Cytoadherence Capacity*

    PubMed Central

    Goel, Suchi; Muthusamy, Arivalagan; Miao, Jun; Cui, Liwang; Salanti, Ali; Winzeler, Elizabeth A.; Gowda, D. Channe

    2014-01-01

    The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family proteins mediate the adherence of infected erythrocytes to microvascular endothelia of various organs, including the placenta, thereby contributing to cerebral, placental, and other severe malaria pathogenesis. Several parasite proteins, including KAHRP and PfEMP3, play important roles in the cytoadherence by mediating the clustering of PfEMP1 in rigid knoblike structures on the infected erythrocyte surface. The lack of a subtelomeric region of chromosome 2 that contains kahrp and pfemp3 causes reduced cytoadherence. In this study, microarray transcriptome analysis showed that the absence of a gene cluster, comprising kahrp, pfemp3, and four other genes, results in the loss of parasitized erythrocytes adhering to chondroitin 4-sulfate (C4S). The role of one of these genes, PF3D7_0201600/PFB0080c, which encodes PHISTb (Plasmodium helical interspersed subtelomeric b) domain-containing RESA-like protein 1 expressed on the infected erythrocyte surface, was investigated. Disruption of PFB0080c resulted in increased var2csa transcription and VAR2CSA surface expression, leading to higher C4S-binding capacity of infected erythrocytes. Further, PFB0080c-knock-out parasites stably maintained the C4S adherence through many generations of growth. Although the majority of PFB0080c-knock-out parasites bound to C4S even after culturing for 6 months, a minor population bound to both C4S and CD36. These results strongly suggest that the loss of PFB0080c markedly compromises the var gene switching process, leading to a marked reduction in the switching rate and additional PfEMP1 expression by a minor population of parasites. PFB0080c interacts with VAR2CSA and modulates knob-associated Hsp40 expression. Thus, PFB0080c may regulate VAR2CSA expression through these processes. Overall, we conclude that PFB0080c regulates PfEMP1 expression and the parasite's cytoadherence. PMID:25342752

  10. Recursive regularization for inferring gene networks from time-course gene expression profiles

    PubMed Central

    Shimamura, Teppei; Imoto, Seiya; Yamaguchi, Rui; Fujita, André; Nagasaki, Masao; Miyano, Satoru

    2009-01-01

    Background Inferring gene networks from time-course microarray experiments with vector autoregressive (VAR) model is the process of identifying functional associations between genes through multivariate time series. This problem can be cast as a variable selection problem in Statistics. One of the promising methods for variable selection is the elastic net proposed by Zou and Hastie (2005). However, VAR modeling with the elastic net succeeds in increasing the number of true positives while it also results in increasing the number of false positives. Results By incorporating relative importance of the VAR coefficients into the elastic net, we propose a new class of regularization, called recursive elastic net, to increase the capability of the elastic net and estimate gene networks based on the VAR model. The recursive elastic net can reduce the number of false positives gradually by updating the importance. Numerical simulations and comparisons demonstrate that the proposed method succeeds in reducing the number of false positives drastically while keeping the high number of true positives in the network inference and achieves two or more times higher true discovery rate (the proportion of true positives among the selected edges) than the competing methods even when the number of time points is small. We also compared our method with various reverse-engineering algorithms on experimental data of MCF-7 breast cancer cells stimulated with two ErbB ligands, EGF and HRG. Conclusion The recursive elastic net is a powerful tool for inferring gene networks from time-course gene expression profiles. PMID:19386091

  11. DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families

    PubMed Central

    Sander, Adam F.; Lavstsen, Thomas; Rask, Thomas S.; Lisby, Michael; Salanti, Ali; Fordyce, Sarah L.; Jespersen, Jakob S.; Carter, Richard; Deitsch, Kirk W.; Theander, Thor G.; Pedersen, Anders Gorm; Arnot, David E.

    2014-01-01

    Many bacterial, viral and parasitic pathogens undergo antigenic variation to counter host immune defense mechanisms. In Plasmodium falciparum, the most lethal of human malaria parasites, switching of var gene expression results in alternating expression of the adhesion proteins of the Plasmodium falciparum-erythrocyte membrane protein 1 class on the infected erythrocyte surface. Recombination clearly generates var diversity, but the nature and control of the genetic exchanges involved remain unclear. By experimental and bioinformatic identification of recombination events and genome-wide recombination hotspots in var genes, we show that during the parasite’s sexual stages, ectopic recombination between isogenous var paralogs occurs near low folding free energy DNA 50-mers and that these sequences are heavily concentrated at the boundaries of regions encoding individual Plasmodium falciparum-erythrocyte membrane protein 1 structural domains. The recombinogenic potential of these 50-mers is not parasite-specific because these sequences also induce recombination when transferred to the yeast Saccharomyces cerevisiae. Genetic cross data suggest that DNA secondary structures (DSS) act as inducers of recombination during DNA replication in P. falciparum sexual stages, and that these DSS-regulated genetic exchanges generate functional and diverse P. falciparum adhesion antigens. DSS-induced recombination may represent a common mechanism for optimizing the evolvability of virulence gene families in pathogens. PMID:24253306

  12. Transcriptome sequence analysis of an ornamental plant, Ananas comosus var. bracteatus, revealed the potential unigenes involved in terpenoid and phenylpropanoid biosynthesis.

    PubMed

    Ma, Jun; Kanakala, S; He, Yehua; Zhang, Junli; Zhong, Xiaolan

    2015-01-01

    Ananas comosus var. bracteatus (Red Pineapple) is an important ornamental plant for its colorful leaves and decorative red fruits. Because of its complex genome, it is difficult to understand the molecular mechanisms involved in the growth and development. Thus high-throughput transcriptome sequencing of Ananas comosus var. bracteatus is necessary to generate large quantities of transcript sequences for the purpose of gene discovery and functional genomic studies. The Ananas comosus var. bracteatus transcriptome was sequenced by the Illumina paired-end sequencing technology. We obtained a total of 23.5 million high quality sequencing reads, 1,555,808 contigs and 41,052 unigenes. In total 41,052 unigenes of Ananas comosus var. bracteatus, 23,275 unigenes were annotated in the NCBI non-redundant protein database and 23,134 unigenes were annotated in the Swiss-Port database. Out of these, 17,748 and 8,505 unigenes were assigned to gene ontology categories and clusters of orthologous groups, respectively. Functional annotation against Kyoto Encyclopedia of Genes and Genomes Pathway database identified 5,825 unigenes which were mapped to 117 pathways. The assembly predicted many unigenes that were previously unknown. The annotated unigenes were compared against pineapple, rice, maize, Arabidopsis, and sorghum. Unigenes that did not match any of those five sequence datasets are considered to be Ananas comosus var. bracteatus unique. We predicted unigenes encoding enzymes involved in terpenoid and phenylpropanoid biosynthesis. The sequence data provide the most comprehensive transcriptomic resource currently available for Ananas comosus var. bracteatus. To our knowledge; this is the first report on the de novo transcriptome sequencing of the Ananas comosus var. bracteatus. Unigenes obtained in this study, may help improve future gene expression, genetic and genomics studies in Ananas comosus var. bracteatus.

  13. Transcriptome Sequence Analysis of an Ornamental Plant, Ananas comosus var. bracteatus, Revealed the Potential Unigenes Involved in Terpenoid and Phenylpropanoid Biosynthesis

    PubMed Central

    Ma, Jun; Kanakala, S.; He, Yehua; Zhang, Junli; Zhong, Xiaolan

    2015-01-01

    Background Ananas comosus var. bracteatus (Red Pineapple) is an important ornamental plant for its colorful leaves and decorative red fruits. Because of its complex genome, it is difficult to understand the molecular mechanisms involved in the growth and development. Thus high-throughput transcriptome sequencing of Ananas comosus var. bracteatus is necessary to generate large quantities of transcript sequences for the purpose of gene discovery and functional genomic studies. Results The Ananas comosus var. bracteatus transcriptome was sequenced by the Illumina paired-end sequencing technology. We obtained a total of 23.5 million high quality sequencing reads, 1,555,808 contigs and 41,052 unigenes. In total 41,052 unigenes of Ananas comosus var. bracteatus, 23,275 unigenes were annotated in the NCBI non-redundant protein database and 23,134 unigenes were annotated in the Swiss-Port database. Out of these, 17,748 and 8,505 unigenes were assigned to gene ontology categories and clusters of orthologous groups, respectively. Functional annotation against Kyoto Encyclopedia of Genes and Genomes Pathway database identified 5,825 unigenes which were mapped to 117 pathways. The assembly predicted many unigenes that were previously unknown. The annotated unigenes were compared against pineapple, rice, maize, Arabidopsis, and sorghum. Unigenes that did not match any of those five sequence datasets are considered to be Ananas comosus var. bracteatus unique. We predicted unigenes encoding enzymes involved in terpenoid and phenylpropanoid biosynthesis. Conclusion The sequence data provide the most comprehensive transcriptomic resource currently available for Ananas comosus var. bracteatus. To our knowledge; this is the first report on the de novo transcriptome sequencing of the Ananas comosus var. bracteatus. Unigenes obtained in this study, may help improve future gene expression, genetic and genomics studies in Ananas comosus var. bracteatus. PMID:25769053

  14. Analysis of the relationship between Chalcone Isomerase gene expression level and rutin production in Ficus deltoidea var. deltoidea and F. deltoidea var. angustifolia

    NASA Astrophysics Data System (ADS)

    Najid, Najihah Mohd; Zain, Che Radziah Che Mohd; Zainal, Zamri

    2016-11-01

    Ficus deltoidea (moraceae) is a herbal plant with medicinal values. Previous studies reported that the F. deltoidea contains a high level of bioactive compounds such as flavonoids. A cDNA encodes for chalcone isomerase was identified from F. deltoidea, designated as FdCHI, which involved in the isomerization of naringenin chalcone to naringenin. Naringenin is a key branch point for the synthesis of rutin, which is believed involved in defense mechanism in the plant. Therefore, we hypothesized that there might be a direct relationship between FdCHI expression level and rutin production in leaves of F. deltoidea var. deltoidea (FDD) and F. deltoidea var. angustifolia (FDA). Our result showed that expression level of FdCHI in leaves FDD was greater than FDA. Analysis of High Performance Liquid Chromatography (HPLC) revealed that rutin was only detected in FDA leaves. Based on the results between FdCHI expression and rutin production, this study concluded that there is no relationship between FdCHI expression and rutin production in leaves of FDA and FDD.

  15. In-depth analysis of internal control genes for quantitative real-time PCR in Brassica oleracea var. botrytis.

    PubMed

    Sheng, X G; Zhao, Z Q; Yu, H F; Wang, J S; Zheng, C F; Gu, H H

    2016-07-15

    Quantitative reverse-transcription PCR (qRT-PCR) is a versatile technique for the analysis of gene expression. The selection of stable reference genes is essential for the application of this technique. Cauliflower (Brassica oleracea L. var. botrytis) is a commonly consumed vegetable that is rich in vitamin, calcium, and iron. Thus far, to our knowledge, there have been no reports on the validation of suitable reference genes for the data normalization of qRT-PCR in cauliflower. In the present study, we analyzed 12 candidate housekeeping genes in cauliflower subjected to different abiotic stresses, hormone treatment conditions, and accessions. geNorm and NormFinder algorithms were used to assess the expression stability of these genes. ACT2 and TIP41 were selected as suitable reference genes across all experimental samples in this study. When different accessions were compared, ACT2 and UNK3 were found to be the most suitable reference genes. In the hormone and abiotic stress treatments, ACT2, TIP41, and UNK2 were the most stably expressed. Our study also provided guidelines for selecting the best reference genes under various experimental conditions.

  16. Population structuring of multi-copy, antigen-encoding genes in Plasmodium falciparum

    PubMed Central

    Artzy-Randrup, Yael; Rorick, Mary M; Day, Karen; Chen, Donald; Dobson, Andrew P; Pascual, Mercedes

    2012-01-01

    The coexistence of multiple independently circulating strains in pathogen populations that undergo sexual recombination is a central question of epidemiology with profound implications for control. An agent-based model is developed that extends earlier ‘strain theory’ by addressing the var gene family of Plasmodium falciparum. The model explicitly considers the extensive diversity of multi-copy genes that undergo antigenic variation via sequential, mutually exclusive expression. It tracks the dynamics of all unique var repertoires in a population of hosts, and shows that even under high levels of sexual recombination, strain competition mediated through cross-immunity structures the parasite population into a subset of coexisting dominant repertoires of var genes whose degree of antigenic overlap depends on transmission intensity. Empirical comparison of patterns of genetic variation at antigenic and neutral sites supports this role for immune selection in structuring parasite diversity. DOI: http://dx.doi.org/10.7554/eLife.00093.001 PMID:23251784

  17. Lack of gender-specific antibody recognition of products from domains of a var gene implicated in pregnancy-associated Plasmodium falciparum malaria.

    PubMed

    Jensen, Anja T R; Zornig, Hanne D; Buhmann, Caecilie; Salanti, Ali; Koram, Kwadwo A; Riley, Eleanor M; Theander, Thor G; Hviid, Lars; Staalsoe, Trine

    2003-07-01

    Gender-specific and parity-dependent acquired antibody recognition is characteristic of variant surface antigens (VSA) expressed by chondroitin sulfate A (CSA)-adherent Plasmodium falciparum involved in pregnancy-associated malaria (PAM). However, antibody recognition of recombinant products of a specific VSA gene (2O2var1) implicated in PAM and transcribed by a CSA-adhering parasite line did not have these characteristics. Furthermore, we could not demonstrate preferential transcription of 2O2var1 in the CSA-adhering line versus the unselected, parental isolate. Our data call for circumspection regarding the molecular identity of the parasite ligand mediating adhesion to CSA in PAM.

  18. Black rice (Oryza sativa L. var. japonica) hydrolyzed peptides induce expression of hyaluronan synthase 2 gene in HaCaT keratinocytes.

    PubMed

    Sim, Gwan Sub; Lee, Dong-Hwan; Kim, Jin-Hwa; An, Sung-Kwan; Choe, Tae-Boo; Kwon, Tae-Jong; Pyo, Hyeong-Bae; Lee, Bum-Chun

    2007-02-01

    Black rice (Oryza sativa L. var. japonica) has been used in folk medicine in Asia. To understand the effects of black rice hydrolyzed peptides (BRP) from germinated black rice, we assessed the expression levels of about 20,000 transcripts in BRP-treated HaCaT keratinocytes using human 1A oligo microarray analysis. As a result, the BRP treatment showed a differential expression ratio of more than 2-fold: 745 were activated and 1,011 were repressed. One of the most interesting findings was a 2-fold increase in hyaluronan synthase 2 (HAS2) gene expression by BRP. Semiquantitative RT-PCR showed that BRP increased HAS2 mRNA in dose-dependent manners. ELISA showed that BRP effectively increased hyaluronan (HA) production in HaCaT keratinocytes.

  19. Cloning and characterization of WRKY gene homologs in Chieh-qua (Benincasa hispida Cogn. var. Chieh-qua How) and their expression in response to fusaric acid treatment.

    PubMed

    Mao, Yizhou; Jiang, Biao; Peng, Qingwu; Liu, Wenrui; Lin, Yue; Xie, Dasen; He, Xiaoming; Li, Shaoshan

    2017-05-01

    The WRKY transcription factors play an important role in plant resistance for biotic and abiotic stresses. In the present study, we cloned 10 WRKY gene homologs (CqWRKY) in Chieh-qua (Benincasa hispida Cogn. var. Chieh-qua) using the rapid-amplification of cDNA ends (RACE) or homology-based cloning methods. We characterized the structure of these CqWRKY genes. Phylogenetic analysis of these sequences with cucumber homologs suggested possible structural conservation of these genes among cucurbit crops. We examined the expression levels of these genes in response to fusaric acid (FA) treatment between resistant and susceptible Chieh-qua lines with quantitative real-time PCR. All genes could be upregulated upon FA treatment, but four CqWRKY genes exhibited differential expression between resistant and susceptible lines before and after FA application. CqWRKY31 seemed to be a positive regulator while CqWRKY1, CqWRKY23 and CqWRKY53 were negative regulators of fusaric resistance. This is the first report of characterization of WRKY family genes in Chieh-qua. The results may also be useful in breeding Chieh-qua for Fusarium wilt resistance.

  20. In vitro antioxidant and anticancer effects of solvent fractions from Prunella vulgaris var. lilacina.

    PubMed

    Hwang, Yu-Jin; Lee, Eun-Ju; Kim, Haeng-Ran; Hwang, Kyung-A

    2013-11-09

    Recently, considerable attention has been focused on exploring the potential antioxidant properties of plant extracts or isolated products of plant origin. Prunella vulgaris var. lilacina is widely distributed in Korea, Japan, China, and Europe, and it continues to be used to treat inflammation, eye pain, headache, and dizziness. However, reports on the antioxidant activities of P. vulgaris var. lilacina are limited, particularly concerning the relationship between its phenolic content and antioxidant capacity. In this study, we investigated the antioxidant and anticancer activities of an ethanol extract from P. vulgaris var. lilacina and its fractions. Dried powder of P. vulgaris var. lilacina was extracted with ethanol, and the extract was fractionated to produce the hexane fraction, butanol fraction, chloroform fraction and residual water fraction. The phenolic content was assayed using the Folin-Ciocalteu colorimetric method. Subsequently, the antioxidant activities of the ethanol extract and its fractions were analyzed employing various antioxidant assay methods including DPPH, FRAP, ABTS, SOD activity and production of reactive oxygen species. Additionally, the extract and fractions were assayed for their ability to exert cytotoxic activities on various cancer cells using the MTT assay. We also investigated the expression of genes associated with apoptotic cell death by RT-PCR. The total phenolic contents of the ethanol extract and water fraction of P. vulgaris var. lilacina were 303.66 and 322.80 mg GAE/g dry weight (or fractions), respectively. The results showed that the ethanol extract and the water fraction of P. vulgaris var. lilacina had higher antioxidant content than other solvent fractions, similar to their total phenolic content. Anticancer activity was also tested using the HepG2, HT29, A549, MKN45 and HeLa cancer cell lines. The results clearly demonstrated that the P. vulgaris var. lilacina ethanol extract induced significant cytotoxic effects on the various cancer cell lines, and these effects were stronger than those induced by the P. vulgaris var. lilacina solvent fractions. We also investigated the expression of genes associated with apoptotic cell death. We confirmed that the P. vulgaris var. lilacina ethanol extract and water fraction significantly increased the expression of p53, Bax and Fas. These results suggest that the ethanol extract from P. vulgaris var. lilacina and its fractions could be applied as natural sources of antioxidants and anticancer activities in food and in the pharmaceutical industry.

  1. A Brassica oleracea gene expressed in a variety-specific manner may encode a novel plant transmembrane receptor.

    PubMed

    Palmer, J E; Dikeman, D A; Fujinuma, T; Kim, B; Jones, J I; Denda, M; Martínez-Zapater, J M; Cruz-Alvarez, M

    2001-04-01

    The species Brassica oleracea includes several agricultural varieties characterized by the proliferation of different types of meristems. Using a combination of subtractive hybridization and PCR (polymerase chain reaction) techniques we have identified several genes which are expressed in the reproductive meristems of the cauliflower curd (B. oleracea var. botrytis) but not in the vegetative meristems of Brussels sprouts (B. oleracea var. gemmifera) axillary buds. One of the cloned genes, termed CCE1 (CAULIFLOWER CURD EXPRESSION 1) shows specific expression in the botrytis variety. Preferential expression takes place in this variety in the meristems of the curd and in the stem throughout the vegetative and reproductive stages of plant growth. CCE1 transcripts are not detected in any of the organs of other B. oleracea varieties analyzed. Based on the nucleotide sequence of a cDNA encompassing the complete coding region, we predict that this gene encodes a transmembrane protein, with three transmembrane domains. The deduced amino acid sequence includes motifs conserved in G-protein-coupled receptors (GPCRs) from yeast and animal species. Our results suggest that the cloned gene encodes a protein belonging to a new, so far unidentified, family of transmembrane receptors in plants. The expression pattern of the gene suggests that the receptor may be involved in the control of meristem development/arrest that takes place in cauliflower.

  2. Developmental transcriptome analysis of floral transition in Rosa odorata var. gigantea.

    PubMed

    Guo, Xuelian; Yu, Chao; Luo, Le; Wan, Huihua; Zhen, Ni; Li, Yushu; Cheng, Tangren; Wang, Jia; Pan, Huitang; Zhang, Qixiang

    2018-05-07

    Expression analyses revealed that floral transition of Rosa odorata var. gigantea is mainly regulated by VRN1, COLs, DELLA and KSN, with contributions by the effects of phytohormone and starch metabolism. Seasonal plants utilize changing environmental and developmental cues to control the transition from vegetative growth to flowering at the correct time of year. This study investigated global gene expression profiles at different developmental stages of Rosa odorata var. gigantea by RNA-sequencing, combined with phenotypic characterization and physiological changes. Gene ontology enrichment analysis of the differentially expressed genes (DEGs) between four different developmental stages (vegetative meristem, pre-floral meristem, floral meristem and secondary axillary buds) indicated that DNA methylation and the light reaction played a large role in inducing the rose floral transition. The expression of SUF and FLC, which are known to play a role in delaying flowering until vernalization, was down-regulated from the vegetative to the pre-floral meristem stage. In contrast, the expression of VRN1, which promotes flowering by repressing FLC expression, increased. The expression of DELLA proteins, which function as central nodes in hormone signaling pathways, and probably involve interactions between GA, auxin, and ABA to promote the floral transition, was well correlated with the expression of floral integrators, such as AGL24, COL4. We also identified DEGs associated with starch metabolism correlated with SOC1, AGL15, SPL3, AGL24, respectively. Taken together, our results suggest that vernalization and photoperiod are prominent cues to induce the rose floral transition, and that DELLA proteins also act as key regulators. The results summarized in the study on the floral transition of the seasonal rose lay a foundation for further functional demonstration, and have profound economic and ornamental values.

  3. Genome-wide identification and comparative expression analysis reveal a rapid expansion and functional divergence of duplicated genes in the WRKY gene family of cabbage, Brassica oleracea var. capitata.

    PubMed

    Yao, Qiu-Yang; Xia, En-Hua; Liu, Fei-Hu; Gao, Li-Zhi

    2015-02-15

    WRKY transcription factors (TFs), one of the ten largest TF families in higher plants, play important roles in regulating plant development and resistance. To date, little is known about the WRKY TF family in Brassica oleracea. Recently, the completed genome sequence of cabbage (B. oleracea var. capitata) allows us to systematically analyze WRKY genes in this species. A total of 148 WRKY genes were characterized and classified into seven subgroups that belong to three major groups. Phylogenetic and synteny analyses revealed that the repertoire of cabbage WRKY genes was derived from a common ancestor shared with Arabidopsis thaliana. The B. oleracea WRKY genes were found to be preferentially retained after the whole-genome triplication (WGT) event in its recent ancestor, suggesting that the WGT event had largely contributed to a rapid expansion of the WRKY gene family in B. oleracea. The analysis of RNA-Seq data from various tissues (i.e., roots, stems, leaves, buds, flowers and siliques) revealed that most of the identified WRKY genes were positively expressed in cabbage, and a large portion of them exhibited patterns of differential and tissue-specific expression, demonstrating that these gene members might play essential roles in plant developmental processes. Comparative analysis of the expression level among duplicated genes showed that gene expression divergence was evidently presented among cabbage WRKY paralogs, indicating functional divergence of these duplicated WRKY genes. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. A network approach to analyzing highly recombinant malaria parasite genes.

    PubMed

    Larremore, Daniel B; Clauset, Aaron; Buckee, Caroline O

    2013-01-01

    The var genes of the human malaria parasite Plasmodium falciparum present a challenge to population geneticists due to their extreme diversity, which is generated by high rates of recombination. These genes encode a primary antigen protein called PfEMP1, which is expressed on the surface of infected red blood cells and elicits protective immune responses. Var gene sequences are characterized by pronounced mosaicism, precluding the use of traditional phylogenetic tools that require bifurcating tree-like evolutionary relationships. We present a new method that identifies highly variable regions (HVRs), and then maps each HVR to a complex network in which each sequence is a node and two nodes are linked if they share an exact match of significant length. Here, networks of var genes that recombine freely are expected to have a uniformly random structure, but constraints on recombination will produce network communities that we identify using a stochastic block model. We validate this method on synthetic data, showing that it correctly recovers populations of constrained recombination, before applying it to the Duffy Binding Like-α (DBLα) domain of var genes. We find nine HVRs whose network communities map in distinctive ways to known DBLα classifications and clinical phenotypes. We show that the recombinational constraints of some HVRs are correlated, while others are independent. These findings suggest that this micromodular structuring facilitates independent evolutionary trajectories of neighboring mosaic regions, allowing the parasite to retain protein function while generating enormous sequence diversity. Our approach therefore offers a rigorous method for analyzing evolutionary constraints in var genes, and is also flexible enough to be easily applied more generally to any highly recombinant sequences.

  5. A Network Approach to Analyzing Highly Recombinant Malaria Parasite Genes

    PubMed Central

    Larremore, Daniel B.; Clauset, Aaron; Buckee, Caroline O.

    2013-01-01

    The var genes of the human malaria parasite Plasmodium falciparum present a challenge to population geneticists due to their extreme diversity, which is generated by high rates of recombination. These genes encode a primary antigen protein called PfEMP1, which is expressed on the surface of infected red blood cells and elicits protective immune responses. Var gene sequences are characterized by pronounced mosaicism, precluding the use of traditional phylogenetic tools that require bifurcating tree-like evolutionary relationships. We present a new method that identifies highly variable regions (HVRs), and then maps each HVR to a complex network in which each sequence is a node and two nodes are linked if they share an exact match of significant length. Here, networks of var genes that recombine freely are expected to have a uniformly random structure, but constraints on recombination will produce network communities that we identify using a stochastic block model. We validate this method on synthetic data, showing that it correctly recovers populations of constrained recombination, before applying it to the Duffy Binding Like-α (DBLα) domain of var genes. We find nine HVRs whose network communities map in distinctive ways to known DBLα classifications and clinical phenotypes. We show that the recombinational constraints of some HVRs are correlated, while others are independent. These findings suggest that this micromodular structuring facilitates independent evolutionary trajectories of neighboring mosaic regions, allowing the parasite to retain protein function while generating enormous sequence diversity. Our approach therefore offers a rigorous method for analyzing evolutionary constraints in var genes, and is also flexible enough to be easily applied more generally to any highly recombinant sequences. PMID:24130474

  6. Influence of Light and Temperature on Gene Expression Leading to Accumulation of Specific Flavonol Glycosides and Hydroxycinnamic Acid Derivatives in Kale (Brassica oleracea var. sabellica).

    PubMed

    Neugart, Susanne; Krumbein, Angelika; Zrenner, Rita

    2016-01-01

    Light intensity and temperature are very important signals for the regulation of plant growth and development. Plants subjected to less favorable light or temperature conditions often respond with accumulation of secondary metabolites. Some of these metabolites have been identified as bioactive compounds, considered to exert positive effects on human health when consumed regularly. In order to test a typical range of growth parameters for the winter crop Brassica oleracea var. sabellica, plants were grown either at 400 μmol m(-2) s(-1) or 100 μmol m(-2) s(-1) at 10°C, or at 400 μmol m(-2) s(-1) with 5 or 15°C. The higher light intensity overall increased flavonol content of leaves, favoring the main quercetin glycosides, a caffeic acid monoacylated kaempferol triglycoside, and disinapoyl-gentiobiose. The higher temperature mainly increased the hydroxycinnamic acid derivative disinapoyl-gentiobiose, while at lower temperature synthesis is in favor of very complex sinapic acid acylated flavonol tetraglycosides such as kaempferol-3-O-sinapoyl-sophoroside-7-O-diglucoside. A global analysis of light and temperature dependent alterations of gene expression in B. oleracea var. sabellica leaves was performed with the most comprehensive Brassica microarray. When compared to the light experiment much less genes were differentially expressed in kale leaves grown at 5 or 15°C. A structured evaluation of differentially expressed genes revealed the expected enrichment in the functional categories of e.g. protein degradation at different light intensities or phytohormone metabolism at different temperature. Genes of the secondary metabolism namely phenylpropanoids are significantly enriched with both treatments. Thus, the genome of B. oleracea was screened for predicted genes putatively involved in the biosynthesis of flavonoids and hydroxycinnamic acid derivatives. All identified B. oleracea genes were analyzed for their most specific 60-mer oligonucleotides present on the 2 × 105 K format Brassica microarray. Expression differences were correlated to the structure-dependent response of flavonoid glycosides and hydroxycinnamic acid derivatives to alterations in either light or temperature. The altered metabolite accumulation was mainly reflected on gene expression level of core biosynthetic pathway genes and gave further hints to an isoform specific functional specialization.

  7. Influence of Light and Temperature on Gene Expression Leading to Accumulation of Specific Flavonol Glycosides and Hydroxycinnamic Acid Derivatives in Kale (Brassica oleracea var. sabellica)

    PubMed Central

    Neugart, Susanne; Krumbein, Angelika; Zrenner, Rita

    2016-01-01

    Light intensity and temperature are very important signals for the regulation of plant growth and development. Plants subjected to less favorable light or temperature conditions often respond with accumulation of secondary metabolites. Some of these metabolites have been identified as bioactive compounds, considered to exert positive effects on human health when consumed regularly. In order to test a typical range of growth parameters for the winter crop Brassica oleracea var. sabellica, plants were grown either at 400 μmol m−2 s−1 or 100 μmol m−2 s−1 at 10°C, or at 400 μmol m−2 s−1 with 5 or 15°C. The higher light intensity overall increased flavonol content of leaves, favoring the main quercetin glycosides, a caffeic acid monoacylated kaempferol triglycoside, and disinapoyl-gentiobiose. The higher temperature mainly increased the hydroxycinnamic acid derivative disinapoyl-gentiobiose, while at lower temperature synthesis is in favor of very complex sinapic acid acylated flavonol tetraglycosides such as kaempferol-3-O-sinapoyl-sophoroside-7-O-diglucoside. A global analysis of light and temperature dependent alterations of gene expression in B. oleracea var. sabellica leaves was performed with the most comprehensive Brassica microarray. When compared to the light experiment much less genes were differentially expressed in kale leaves grown at 5 or 15°C. A structured evaluation of differentially expressed genes revealed the expected enrichment in the functional categories of e.g. protein degradation at different light intensities or phytohormone metabolism at different temperature. Genes of the secondary metabolism namely phenylpropanoids are significantly enriched with both treatments. Thus, the genome of B. oleracea was screened for predicted genes putatively involved in the biosynthesis of flavonoids and hydroxycinnamic acid derivatives. All identified B. oleracea genes were analyzed for their most specific 60-mer oligonucleotides present on the 2 × 105 K format Brassica microarray. Expression differences were correlated to the structure-dependent response of flavonoid glycosides and hydroxycinnamic acid derivatives to alterations in either light or temperature. The altered metabolite accumulation was mainly reflected on gene expression level of core biosynthetic pathway genes and gave further hints to an isoform specific functional specialization. PMID:27066016

  8. A single regulatory gene is sufficient to alter Vibrio aestuarianus pathogenicity in oysters.

    PubMed

    Goudenège, David; Travers, Marie Agnès; Lemire, Astrid; Petton, Bruno; Haffner, Philippe; Labreuche, Yannick; Tourbiez, Delphine; Mangenot, Sophie; Calteau, Alexandra; Mazel, Didier; Nicolas, Jean Louis; Jacq, Annick; Le roux, Frédérique

    2015-11-01

    Oyster diseases caused by pathogenic vibrios pose a major challenge to the sustainability of oyster farming. In France, since 2012 a disease affecting specifically adult oysters has been associated with the presence of Vibrio aestuarianus. Here, by combining genome comparison, phylogenetic analyses and high-throughput infections of strains isolated before or during the recent outbreaks, we show that virulent strains cluster into two V. aestuarianus lineages independently of the sampling dates. The bacterial lethal dose was not different between strains isolated before or after 2012. Hence, the emergence of a new highly virulent clonal strain is unlikely. Each lineage comprises nearly identical strains, the majority of them being virulent, suggesting that within these phylogenetically coherent virulent lineages a few strains have lost their pathogenicity. Comparative genomics allowed the identification of a single frameshift in a non-virulent strain. This mutation affects the varS gene that codes for a signal transduction histidine-protein kinase. Genetic analyses confirmed that varS is necessary for infection of oysters and for a secreted metalloprotease expression. For the first time in a Vibrio species, we show here that VarS is a key factor of pathogenicity. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Improvement of foreign-protein production in Aspergillus niger var. awamori by constitutive induction of the unfolded-protein response.

    PubMed

    Valkonen, Mari; Ward, Michael; Wang, Huaming; Penttilä, Merja; Saloheimo, Markku

    2003-12-01

    Unfolded-protein response (UPR) denotes the upregulation of endoplasmic reticulum (ER)-resident chaperone and foldase genes and numerous other genes involved in secretory functions during the accumulation of unfolded proteins into the ER. Overexpression of individual foldases and chaperones has been used in attempts to improve protein production in different production systems. We describe here a novel strategy to improve foreign-protein production. We show that the constitutive induction of the UPR pathway in Aspergillus niger var. awamori can be achieved by expressing the activated form of the transcription factor hacA. This induction enhances the production of Trametes versicolor laccase by up to sevenfold and of bovine preprochymosin by up to 2.8-fold in this biotechnically important fungus. The regulatory range of UPR was studied by analyzing the mRNA levels of novel A. niger var. awamori genes involved in different secretory functions. This revealed both similarities and differences to corresponding studies in Saccharomyces cerevisiae.

  10. Genome-wide profiling of chromosome interactions in Plasmodium falciparum characterizes nuclear architecture and reconfigurations associated with antigenic variation

    PubMed Central

    Lemieux, Jacob E; Kyes, Sue A; Otto, Thomas D; Feller, Avi I; Eastman, Richard T; Pinches, Robert A; Berriman, Matthew; Su, Xin-zhuan; Newbold, Chris I

    2013-01-01

    Spatial relationships within the eukaryotic nucleus are essential for proper nuclear function. In Plasmodium falciparum, the repositioning of chromosomes has been implicated in the regulation of the expression of genes responsible for antigenic variation, and the formation of a single, peri-nuclear nucleolus results in the clustering of rDNA. Nevertheless, the precise spatial relationships between chromosomes remain poorly understood, because, until recently, techniques with sufficient resolution have been lacking. Here we have used chromosome conformation capture and second-generation sequencing to study changes in chromosome folding and spatial positioning that occur during switches in var gene expression. We have generated maps of chromosomal spatial affinities within the P. falciparum nucleus at 25 Kb resolution, revealing a structured nucleolus, an absence of chromosome territories, and confirming previously identified clustering of heterochromatin foci. We show that switches in var gene expression do not appear to involve interaction with a distant enhancer, but do result in local changes at the active locus. These maps reveal the folding properties of malaria chromosomes, validate known physical associations, and characterize the global landscape of spatial interactions. Collectively, our data provide critical information for a better understanding of gene expression regulation and antigenic variation in malaria parasites. PMID:23980881

  11. Analysis of genomic DNA of DcACS1, a 1-aminocyclopropane-1-carboxylate synthase gene, expressed in senescing petals of carnation (Dianthus caryophyllus) and its orthologous genes in D. superbus var. longicalycinus.

    PubMed

    Harada, Taro; Murakoshi, Yuino; Torii, Yuka; Tanase, Koji; Onozaki, Takashi; Morita, Shigeto; Masumura, Takehiro; Satoh, Shigeru

    2011-04-01

    Carnation (Dianthus caryophyllus) flowers exhibit climacteric ethylene production followed by petal wilting, a senescence symptom. DcACS1, which encodes 1-aminocyclopropane-1-carboxylate synthase (ACS), is a gene involved in this phenomenon. We determined the genomic DNA structure of DcACS1 by genomic PCR. In the genome of 'Light Pink Barbara', we found two distinct nucleotide sequences: one corresponding to the gene previously shown as DcACS1, designated here as DcACS1a, and the other novel one designated as DcACS1b. It was revealed that both DcACS1a and DcACS1b have five exons and four introns. These two genes had almost identical nucleotide sequences in exons, but not in some introns and 3'-UTR. Analysis of transcript accumulation revealed that DcACS1b is expressed in senescing petals as well as DcACS1a. Genomic PCR analysis of 32 carnation cultivars showed that most cultivars have only DcACS1a and some have both DcACS1a and DcACS1b. Moreover, we found two DcACS1 orthologous genes with different nucleotide sequences from D. superbus var. longicalycinus, and designated them as DsuACS1a and DsuACS1b. Petals of D. superbus var. longicalycinus produced ethylene in response to exogenous ethylene, accompanying accumulation of DsuACS1 transcripts. These data suggest that climacteric ethylene production in flowers was genetically established before the cultivation of carnation.

  12. Antibodies among men and children to placental-binding Plasmodium falciparum-infected erythrocytes that express var2csa.

    PubMed

    Beeson, James G; Ndungu, Francis; Persson, Kristina E M; Chesson, Joanne M; Kelly, Greg L; Uyoga, Sophie; Hallamore, Sandra L; Williams, Thomas N; Reeder, John C; Brown, Graham V; Marsh, Kevin

    2007-07-01

    During pregnancy, specific variants of Plasmodium falciparum-infected erythrocytes (IEs) can accumulate in the placenta through adhesion to chondroitin sulfate A (CSA) mediated by expression of PfEMP1 encoded by var2csa-type genes. Antibodies against these variants are associated with protection from maternal malaria. We evaluated antibodies among Kenyan, Papua New Guinean, and Malawian men and Kenyan children against two different CSA-binding P. falciparum isolates expressing var2csa variants. Specific IgG was present at significant levels among some men and children from each population, suggesting exposure to these variants is not exclusive to pregnancy. However, the level and prevalence of antibodies was substantially lower overall than exposed multigravidas. IgG-binding was specific and did not represent antibodies to subpopulations of non-CSA-binding IEs, and some sera inhibited IE adhesion to CSA. These findings have significant implications for understanding malaria pathogenesis and immunity and may be significant for understanding the acquisition of immunity to maternal malaria.

  13. Positive Selection of Plasmodium falciparum Parasites With Multiple var2csa-Type PfEMP1 Genes During the Course of Infection in Pregnant Women

    PubMed Central

    Salanti, Ali; Lavstsen, Thomas; Nielsen, Morten A.; Theander, Thor G.; Leke, Rose G. F.; Lo, Yeung Y.; Bobbili, Naveen; Arnot, David E.; Taylor, Diane W.

    2011-01-01

    Placental malaria infections are caused by Plasmodium falciparum–infected red blood cells sequestering in the placenta by binding to chondroitin sulfate A, mediated by VAR2CSA, a variant of the PfEMP1 family of adhesion antigens. Recent studies have shown that many P. falciparum genomes have multiple genes coding for different VAR2CSA proteins, and parasites with >1 var2csa gene appear to be more common in pregnant women with placental malaria than in nonpregnant individuals. We present evidence that, in pregnant women, parasites containing multiple var2csa-type genes possess a selective advantage over parasites with a single var2csa gene. Accumulation of parasites with multiple copies of the var2csa gene during the course of pregnancy was also correlated with the development of antibodies involved in blocking VAR2CSA adhesion. The data suggest that multiplicity of var2csa-type genes enables P. falciparum parasites to persist for a longer period of time during placental infections, probably because of their greater capacity for antigenic variation and evasion of variant-specific immune responses. PMID:21592998

  14. Dehydration induced transcriptomic responses in two Tibetan hulless barley (Hordeum vulgare var. nudum) accessions distinguished by drought tolerance.

    PubMed

    Liang, Junjun; Chen, Xin; Deng, Guangbing; Pan, Zhifen; Zhang, Haili; Li, Qiao; Yang, Kaijun; Long, Hai; Yu, Maoqun

    2017-10-11

    The harsh environment on the Qinghai-Tibetan Plateau gives Tibetan hulless barley (Hordeum vulgare var. nudum) great ability to resist adversities such as drought, salinity, and low temperature, and makes it a good subject for the analysis of drought tolerance mechanism. To elucidate the specific gene networks and pathways that contribute to its drought tolerance, and for identifying new candidate genes for breeding purposes, we performed a transcriptomic analysis using two accessions of Tibetan hulless barley, namely Z772 (drought-tolerant) and Z013 (drought-sensitive). There were more up-regulated genes of Z772 than Z013 under both mild (5439-VS-2604) and severe (7203-VS-3359) dehydration treatments. Under mild dehydration stress, the pathways exclusively enriched in drought-tolerance genotype Z772 included Protein processing in endoplasmic reticulum, tricarboxylic acid (TCA) cycle, Wax biosynthesis, and Spliceosome. Under severe dehydration stress, the pathways that were mainly enriched in Z772 included Carbon fixation in photosynthetic organisms, Pyruvate metabolism, Porphyrin and chlorophyll metabolism. The main differentially expressed genes (DEGs) in response to dehydration stress and genes whose expression was different between tolerant and sensitive genotypes were presented in this study, respectively. The candidate genes for drought tolerance were selected based on their expression patterns. The RNA-Seq data obtained in this study provided an initial overview on global gene expression patterns and networks that related to dehydration shock in Tibetan hulless barley. Furthermore, these data provided pathways and a targeted set of candidate genes that might be essential for deep analyzing the molecular mechanisms of plant tolerance to drought stress.

  15. The distinct proteome of placental malaria parasites.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fried, Michal; Hixson, Kim K.; Anderson, Lori

    Malaria proteins expressed on the surface of Plasmodium falciparum infected erythrocytes (IE) mediate adhesion and are targeted by protective immune responses. During pregnancy, IE sequester in the placenta. Placental IE bind to the molecule chondroitin sulfate A (CSA) and preferentially transcribe the gene that encodes VAR2CSA, a member of the PfEMP1 variant surface antigen family. Over successive pregnancies women develop specific immunity to CSA-binding IE and antibodies to VAR2CSA. We used tandem mass spectrometry together with accurate mass and time tag technology to study IE membrane fractions of placental parasites. VAR2CSA peptides were detected in placental IE and in IEmore » from children, but the MC variant of VAR2CSA was specifically associated with placental IE. We identified six conserved hypothetical proteins with putative TM or signal peptides that were exclusively expressed by the placental IE, and 11 such proteins that were significantly more abundant in placental IE. One of these hypothetical proteins, PFI1785w, is a 42kDa molecule detected by Western blot in parasites infecting pregnant women but not those infecting children.« less

  16. Effects of alien and intraspecies cytoplasms on manifestation of nuclear genes for wheat resistance to brown rust: II. Specificity of cytoplasm influence on different Lr genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voluevich, E.A.; Buloichik, A.A.; Palilova, A.N.

    Specificity of expression of the major nuclear genes Lr to two brown rust clones in hybrids with the same maternal cytoplasm was analyzed. It was evaluated by a resistant: susceptible ratio in the F{sub 2}. Reciprocal hybrids were obtained from the cross between the progeny of homozygous susceptible plants of the cultivar Penjamo 62 and its alloplasmatic lines carrying cytoplasms of Triticum dicoccoides var. fulvovillosum, Aegilops squarrosa var. typical, Agropyron trichophorum, and isogenic lines of the cultivar Thatcher (Th) with the Lr1, Lr9, Lr15, and Lr19 genes. It was shown that the effect of the Lr1 gene in the cytoplasmmore » of cultivar Thatcher and in eu-, and alloplasmatic forms of Penjamo 62 was less expressed than that of other Lr genes. Cytoplasm of the alloplasmatic line (dicoccoides)-Penjamo 62 was the only exception: in the F{sub 2}, hybrids with Th (Lr1) had a higher yield of resistant forms than those with Th (Lr15). In the hybrid combinations studied, expression and/or transmission of the Lr19 gene was more significant than that of other genes. This gene had no advantages over Lr15 and Lr19 only in cytoplasm of the alloplasmatic line (squarrosa)-Penjamo 62. In certain hybrid cytoplasms, the display of the Lr1, Lr15, and Lr19 genes, in contrast to Lr9, varied with the virulence of the pathogen clones. 15 refs., 5 tabs.« less

  17. Comparative analysis of the response and gene regulation in cold resistant and susceptible tea plants

    PubMed Central

    Pan, Cheng; Wang, Yiwei; Kong, Lei; Jiang, Huiguang; Xu, Yiqun; Wang, Wenzhi; Pan, Yuting; Li, Yeyun; Jiang, Changjun

    2017-01-01

    Cold environment is the main constraint for tea plants (Camellia sinensis) distribution and tea farming. We identified two tea cultivars, called var. sinensis cv. Shuchazao (SCZ) with a high cold-tolerance and var. assamica cv. Yinghong9 (YH9) with low cold-tolerance. To better understand the response mechanism of tea plants under cold stress for improving breeding, we compared physiological and biochemical responses, and associated genes expression in response to 7-day and 14-day cold acclimation, followed by 7-day de-acclimation in these two tea cultivars. We found that the low EL50, low Fv/Fm, and high sucrose and raffinose accumulation are responsible for higher cold tolerance in SCZ comparing with YH9. We then measured the expression of 14 key homologous genes, known as involved in these responses in other plants, for each stages of treatment in both cultivars using RT-qPCR. Our results suggested that the increased expression of CsCBF1 and CsDHNs coupling with the accumulation of sucrose play key roles in conferring higher cold resistance in SCZ. Our findings have revealed key genes regulation responsible for cold resistance, which help to understand the cold-resistant mechanisms and guide breeding in tea plants. PMID:29211766

  18. Comparative analysis of the response and gene regulation in cold resistant and susceptible tea plants.

    PubMed

    Ban, Qiuyan; Wang, Xuewen; Pan, Cheng; Wang, Yiwei; Kong, Lei; Jiang, Huiguang; Xu, Yiqun; Wang, Wenzhi; Pan, Yuting; Li, Yeyun; Jiang, Changjun

    2017-01-01

    Cold environment is the main constraint for tea plants (Camellia sinensis) distribution and tea farming. We identified two tea cultivars, called var. sinensis cv. Shuchazao (SCZ) with a high cold-tolerance and var. assamica cv. Yinghong9 (YH9) with low cold-tolerance. To better understand the response mechanism of tea plants under cold stress for improving breeding, we compared physiological and biochemical responses, and associated genes expression in response to 7-day and 14-day cold acclimation, followed by 7-day de-acclimation in these two tea cultivars. We found that the low EL50, low Fv/Fm, and high sucrose and raffinose accumulation are responsible for higher cold tolerance in SCZ comparing with YH9. We then measured the expression of 14 key homologous genes, known as involved in these responses in other plants, for each stages of treatment in both cultivars using RT-qPCR. Our results suggested that the increased expression of CsCBF1 and CsDHNs coupling with the accumulation of sucrose play key roles in conferring higher cold resistance in SCZ. Our findings have revealed key genes regulation responsible for cold resistance, which help to understand the cold-resistant mechanisms and guide breeding in tea plants.

  19. Inhibition of hepatitis B virus gene expression & replication by crude destruxins from Metarhizium anisopliae var. dcjhyium

    PubMed Central

    Dong, Cong; Yu, Jiuru; Zhu, Ying; Dong, Changjin

    2013-01-01

    Background & objectives: Destruxin A, destruxin B and destruxin E isolated from entomopathogenic fungus Metarhizium anisopliae showed a strong suppressive effect on the replication of hepatitis B virus (HBV) in human hepatoma cells. In this study, the anti-HBV effects of the crude destruxins extracted from M. anisopliae var. dcjhyium were detected both in vitro and in vivo. Methods: HepG2.2.15 cells were cultured to observe the inhibitory effects of the crude destruxins on the gene expression and replication of HBV by radioimmunoassay detection and real-time quantitative PCR. In vivo, duck HBV (DHBV)-infected ducks were treated with the crude destruxins at 2.0, 4.0, 6.0 μg/kg once a day for 15 days, DHBV DNA was examined by real-time quantitative PCR. Results: The crude destruxins suppressed the replication of HBV-DNA and the production of HBsAg and HBeAg with IC50 of about 1.2 and 1.4 μg/ml. Transcript of viral mRNA was significantly suppressed by the crude destruxins in HepG2.2.15 cells. In vivo, the duck serum DHBV-DNA levels were markedly reduced in the group of the crude destruxins. Interpretation & conclusions: The crude destruxins inhibited the gene expression and replication of HBV both in vitro and in vivo, and their anti-HBV effect was stronger than that with destruxin B. Our results indicate that the crude destruxins from M.anisopliae var. dcjhyium may be potential antivirus agents. Further studies need to be done to confirm these findings. PMID:24521644

  20. Comparative Proteomic Analysis of Differential Responses of Pinus massoniana and Taxus wallichiana var. mairei to Simulated Acid Rain

    PubMed Central

    Hu, Wen-Jun; Chen, Juan; Liu, Ting-Wu; Simon, Martin; Wang, Wen-Hua; Chen, Juan; Wu, Fei-Hua; Liu, Xiang; Shen, Zhi-Jun; Zheng, Hai-Lei

    2014-01-01

    Acid rain (AR), a serious environmental issue, severely affects plant growth and development. As the gymnosperms of conifer woody plants, Pinus massoniana (AR-sensitive) and Taxus wallichiana var. mairei (AR-resistant) are widely distributed in southern China. Under AR stress, significant necrosis and collapsed lesions were found in P. massoniana needles with remarkable yellowing and wilting tips, whereas T. wallichiana var. mairei did not exhibit chlorosis and visible damage. Due to the activation of a large number of stress-related genes and the synthesis of various functional proteins to counteract AR stress, it is important to study the differences in AR-tolerance mechanisms by comparative proteomic analysis of tolerant and sensitive species. This study revealed a total of 65 and 26 differentially expressed proteins that were identified in P. massoniana and T. wallichiana var. mairei, respectively. Among them, proteins involved in metabolism, photosynthesis, signal transduction and transcription were drastically down-regulated in P. massoniana, whereas most of the proteins participating in metabolism, cell structure, photosynthesis and transcription were increased in T. wallichiana var. mairei. These results suggest the distinct patterns of protein expression in the two woody species in response to AR, allowing a deeper understanding of diversity on AR tolerance in forest tree species. PMID:24625662

  1. Microscopic and Molecular Characterization of the Prehaustorial Resistance against Wheat Leaf Rust (Puccinia triticina) in Einkorn (Triticum monococcum)

    PubMed Central

    Serfling, Albrecht; Templer, Sven E.; Winter, Peter; Ordon, Frank

    2016-01-01

    Puccinia triticina f. sp. tritici (Eriks.), the causal agent of leaf rust, causes substantial yield losses in wheat production. In wheat many major leaf rust resistance genes have been overcome by virulent races. In contrast, the prehaustorial resistance (phr) against wheat leaf rust detected in the diploid wheat Einkorn (Triticum monoccocum var. monococcum) accession PI272560 confers race-independent resistance against isolates virulent on accessions harboring resistance genes located on the A-genome of Triticum aestivum. Phr in PI272560 leads to abortion of fungal development during the formation of haustorial mother cells and to increased hydrogen peroxide concentration in comparison to the susceptible accession 36554 (Triticum boeoticum ssp. thaoudar var. reuteri). Increased peroxidase and endochitinase activity was detected in PI272560 within 6 h after inoculation (hai). Comparative transcriptome profiling using Massive Analysis of cDNA Ends (MACE) in infected and non-infected leaves detected 14220 differentially expressed tags in PI272560 and 15472 in accession 36554. Of these 2908 and 3004, respectively, could be assigned to Gene Ontology (GO) categories of which 463 were detected in both accessions and 311 were differentially expressed between the accessions. In accordance with the concept of non-host resistance in PI272560, genes with similarity to peroxidases, chitinases, β-1,3-glucanases and other pathogenesis-related genes were up-regulated within the first 8 hai, whereas up-regulation of such genes was delayed in 36554. Moreover, a Phosphoribulokinase gene contributing to non-host resistance in rice against stripe rust was exclusively expressed in the resistant accession PI272560. Gene expression underpinned physiological and phenotypic observations at the site of infection and are in accordance with the concept of non-host resistance. PMID:27881987

  2. Molecular Cloning, Expression Pattern and Genotypic Effects on Glucoraphanin Biosynthetic Related Genes in Chinese Kale (Brassica oleracea var. alboglabra Bailey).

    PubMed

    Yin, Ling; Chen, Changming; Chen, Guoju; Cao, Bihao; Lei, Jianjun

    2015-11-11

    Glucoraphanin is a plant secondary metabolite that is involved in plant defense and imparts health-promoting properties to cruciferous vegetables. In this study, three genes involved in glucoraphanin metabolism, branched-chain aminotransferase 4 (BCAT4), methylthioalkylmalate synthase 1 (MAM1) and dihomomethionine N-hydroxylase (CYP79F1), were cloned from Chinese kale (Brassica oleracea var. alboglabra Bailey). Sequence homology and phylogenetic analysis identified these genes and confirmed the evolutionary status of Chinese kale. The transcript levels of BCAT4, MAM1 and CYP79F1 were higher in cotyledon, leaf and stem compared with flower and silique. BCAT4, MAM1 and CYP79F1 were expressed throughout leaf development with lower transcript levels during the younger stages. Glucoraphanin content varied extensively among different varieties, which ranged from 0.25 to 2.73 µmol·g(-1) DW (dry weight). Expression levels of BCAT4 and MAM1 were high at vegetative-reproductive transition phase, while CYP79F1 was expressed high at reproductive phase. BCAT4, MAM1 and CYP79F1 were expressed significantly high in genotypes with high glucoraphanin content. All the results provided a better understanding of the roles of BCAT4, MAM1 and CYP79F1 in the glucoraphanin biosynthesis of Chinese kale.

  3. Phylogenetics and evolution of Su(var)3-9 SET genes in land plants: rapid diversification in structure and function.

    PubMed

    Zhu, Xinyu; Ma, Hong; Chen, Zhiduan

    2011-03-09

    Plants contain numerous Su(var)3-9 homologues (SUVH) and related (SUVR) genes, some of which await functional characterization. Although there have been studies on the evolution of plant Su(var)3-9 SET genes, a systematic evolutionary study including major land plant groups has not been reported. Large-scale phylogenetic and evolutionary analyses can help to elucidate the underlying molecular mechanisms and contribute to improve genome annotation. Putative orthologs of plant Su(var)3-9 SET protein sequences were retrieved from major representatives of land plants. A novel clustering that included most members analyzed, henceforth referred to as core Su(var)3-9 homologues and related (cSUVHR) gene clade, was identified as well as all orthologous groups previously identified. Our analysis showed that plant Su(var)3-9 SET proteins possessed a variety of domain organizations, and can be classified into five types and ten subtypes. Plant Su(var)3-9 SET genes also exhibit a wide range of gene structures among different paralogs within a family, even in the regions encoding conserved PreSET and SET domains. We also found that the majority of SUVH members were intronless and formed three subclades within the SUVH clade. A detailed phylogenetic analysis of the plant Su(var)3-9 SET genes was performed. A novel deep phylogenetic relationship including most plant Su(var)3-9 SET genes was identified. Additional domains such as SAR, ZnF_C2H2 and WIYLD were early integrated into primordial PreSET/SET/PostSET domain organization. At least three classes of gene structures had been formed before the divergence of Physcomitrella patens (moss) from other land plants. One or multiple retroposition events might have occurred among SUVH genes with the donor genes leading to the V-2 orthologous group. The structural differences among evolutionary groups of plant Su(var)3-9 SET genes with different functions were described, contributing to the design of further experimental studies.

  4. Ethanol Extract of Cirsium japonicum var. ussuriense Kitamura Exhibits the Activation of Nuclear Factor Erythroid 2-Related Factor 2-dependent Antioxidant Response Element and Protects Human Keratinocyte HaCaT Cells Against Oxidative DNA Damage.

    PubMed

    Yoo, Ok-Kyung; Choi, Bu Young; Park, Jin-Oh; Lee, Ji-Won; Park, Byoung-Kwon; Joo, Chul Gue; Heo, Hyo-Jung; Keum, Young-Sam

    2016-03-01

    Keratinocytes are constantly exposed to extracellular insults, such as ultraviolet B, toxic chemicals and mechanical stress, all of which can facilitate the aging of keratinocytes via the generation of intracellular reactive oxygen species (ROS). Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that plays a critical role in protecting keratinocytes against oxidants and xenobiotics by binding to the antioxidant response element (ARE), a cis-acting element existing in the promoter of most phase II cytoprotective genes. In the present study, we have attempted to find novel ethanol extract(s) of indigenous plants of Jeju island, Korea that can activate the Nrf2/ARE-dependent gene expression in human keratinocyte HaCaT cells. As a result, we identified that ethanol extract of Cirsium japonicum var. ussuriense Kitamura (ECJUK) elicited strong stimulatory effect on the ARE-dependent gene expression. Supporting this observation, we found that ECJUK induced the expression of Nrf2, hemoxygenase-1, and quinone oxidoreductase-1 and this event was correlated with Akt1 phosphorylation. We also found that ECJUK increased the intracellular reduced glutathione level and suppressed 12-O-tetradecanoylphorbol acetate-induced 8-hydroxyguanosine formation without affecting the overall viability. Collectively, our results provide evidence that ECJUK can protect against oxidative stress-mediated damages through the activation of Nrf2/ARE-dependent phase II cytoprotective gene expression.

  5. Curd development associated gene (CDAG1) in cauliflower (Brassica oleracea L. var. botrytis) could result in enlarged organ size and increased biomass.

    PubMed

    Li, Hui; Liu, Qian; Zhang, Qingli; Qin, Erjun; Jin, Chuan; Wang, Yu; Wu, Mei; Shen, Guangshuang; Chen, Chengbin; Song, Wenqin; Wang, Chunguo

    2017-01-01

    The curd is a specialized organ and the most important product organ of cauliflower (Brassica oleracea L. var. botrytis). However, the mechanism underlying the regulation of curd formation and development remains largely unknown. In the present study, a novel homologous gene containing the Organ Size Related (OSR) domain, namely, CDAG1 (Curd Development Associated Gene 1) was identified in cauliflower. Quantitative analysis indicated that CDAG1 showed significantly higher transcript levels in young tissues. Functional analysis demonstrated that the ectopic overexpression of CDAG1 in Arabidopsis and cauliflower could significantly promote organ growth and result in larger organ size and increased biomass. Organ enlargement was predominantly due to increased cell number. In addition, 228 genes involved in the CDAG1-mediated regulatory network were discovered by transcriptome analysis. Among these genes, CDAG1 was confirmed to inhibit the transcriptional expression of the endogenous OSR genes, ARGOS and ARL, while a series of ethylene-responsive transcription factors (ERFs) were found to increased expression in 35S:CDAG1 transgenic Arabidopsis plants. This implies that CDAG1 may function in the ethylene-mediated signal pathway. These findings provide new insight into the function of OSR genes, and suggest potential applications of CDAG1 in breeding high-yielding crops. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Agrobacterium tumefaciens-mediated transformation of Narcissus tazzeta var. chinensis.

    PubMed

    Lu, Gang; Zou, Qingcheng; Guo, Deping; Zhuang, Xiaoying; Yu, Xiaolin; Xiang, Xun; Cao, Jiashu

    2007-09-01

    Phytoene synthase (PSY), as a key regulatory enzyme for carotene biosynthesis, plays an important role in regulating color formation in many species. In the present study, a protocol was developed for the transformation of Narcissus tazzeta var chinensis using Agrobacterium tumefaciens strain LBA4404 harboring a binary vector pCAMBIA1301 plasmid which contained an antisense phytoene synthase gene, a reporter beta-glucuronidase gene and a selectable marker hygromycin phosphotransferase gene. Effects of some factors on efficiency of transformation and regeneration were examined. Preculture of the explants for 6 days before inoculation enhanced the transient GUS expression. The addition of acetosyringone (AS) at 100 micromol l(-1) for inoculation and a period of 3 days co-cultivation yielded efficient transient GUS expression. Transformants were obtained through selection on MS medium containing 5 mg l(-1) 6-benzylaminopurine (BA), 0.1 mg l(-1)alpha-naphthalene acetic acid (NAA) and 40 mg l(-1) hygromycin. The transformation frequency was 1.24% based on PCR analysis of gus gene. One or two copies of transgene were demonstrated in different transformations by Southern blotting analyses. Northern blotting results confirmed that the transcription of the endogenous psy gene in transgenic plants was inhibited or silenced. The method reported here provides new opportunities for improvement of quality traits of Narcissus tazzeta via genetic transformation.

  7. Effect of dietary glutamine on growth performance, non-specific immunity, expression of cytokine genes, phosphorylation of target of rapamycin (TOR), and anti-oxidative system in spleen and head kidney of Jian carp (Cyprinus carpio var. Jian).

    PubMed

    Hu, Kai; Zhang, Jing-Xiu; Feng, Lin; Jiang, Wei-Dan; Wu, Pei; Liu, Yang; Jiang, Jun; Zhou, Xiao-Qiu

    2015-06-01

    This study was designed to investigate the effects of dietary glutamine on the growth performance, cytokines, target of rapamycin (TOR), and antioxidant-related parameters in the spleen and head kidney of juvenile Jian carp (Cyprinus carpio var. Jian). Fish were fed the basal (control) and glutamine-supplemented (12.0 g glutamine kg(-1) diet) diets for 6 weeks. Results indicated that the dietary glutamine supplementation improved the growth performance, spleen protein content, serum complement 3 content, and lysozyme activity in fish. In the spleen, glutamine down-regulated the expression of the interleukin 1 and interleukin 10 genes, and increased the level of phosphorylation of TOR protein. In the head kidney, glutamine down-regulated the tumor necrosis factor α and interleukin 10 gene expressions, phosphorylated and total TOR protein levels, while up-regulated the transforming growth factor β2 gene expression. Furthermore, the protein carbonyl content was decreased in the spleen of fish fed glutamine-supplemented diet; conversely, the anti-hydroxyl radical capacity and glutathione content in the spleen were increased by glutamine. However, diet supplemented with glutamine did not affect the lipid peroxidation, anti-superoxide anion capacity, and antioxidant enzyme activities in the spleen. Moreover, all of these antioxidant parameters in the head kidney were not affected by glutamine. Results from the present experiment showed the importance of dietary supplementation of glutamine in benefaction of the growth performance and several components of the innate immune system, and the deferential role in cytokine gene expression, TOR kinase activity, and antioxidant status between the spleen and head kidney of juvenile Jian carp.

  8. Threonine Affects Intestinal Function, Protein Synthesis and Gene Expression of TOR in Jian Carp (Cyprinus carpio var. Jian)

    PubMed Central

    Feng, Lin; Peng, Yan; Wu, Pei; Hu, Kai; Jiang, Wei-Dan; Liu, Yang; Jiang, Jun; Li, Shu-Hong; Zhou, Xiao-Qiu

    2013-01-01

    This study aimed to investigate the effects of threonine (Thr) on the digestive and absorptive ability, proliferation and differentiation of enterocytes, and gene expression of juvenile Jian carp (Cyprinus carpio var. Jian). First, seven isonitrogenous diets containing graded levels of Thr (7.4–25.2 g/kg diet) were fed to the fishes for 60 days. Second, enterocyte proliferation and differentiation were assayed by culturing enterocytes with graded levels of Thr (0–275 mg/l) in vitro. Finally, enterocytes were cultured with 0 and 205 mg/l Thr to determine protein synthesis. The percent weight gain (PWG), specific growth rate, feed intake, feed efficiency, protein retention value, activities of trypsin, lipase and amylase, weights and protein contents of hepatopancreas and intestine, folds heights, activities of alkaline phosphatase (AKP), γ- glutamyl transpeptidase and Na+/K+-ATPase in all intestinal segments, glutamate-oxaloacetate transaminase (GOT) and glutamate-pyruvate transaminase (GPT) activities in hepatopancreas, and 4E-BP2 gene expression in muscle, hepatopancreas and intestinal segments were significantly enhanced by Thr (p<0.05). However, the plasma ammonia concentration and TOR gene expression decreased (p<0.05). In vitro, Thr supplement significantly increased cell numbers, protein content, the activities of GOT, GPT, AKP and Na+/K+-ATPase, and protein synthesis rate of enterocytes, and decreased LDH activity and ammonia content in cell medium (p<0.05). In conclusion, Thr improved growth, digestive and absorptive capacity, enterocyte proliferation and differentiation, and protein synthesis and regulated TOR and 4E-BP2 gene expression in juvenile Jian carp. The dietary Thr requirement of juvenile Jian carp was 16.25 g/kg diet (51.3 g/kg protein) based on quadratic regression analysis of PWG. PMID:23922879

  9. Transcriptome analysis of stem development in the tumourous stem mustard Brassica juncea var. tumida Tsen et Lee by RNA sequencing.

    PubMed

    Sun, Quan; Zhou, Guanfan; Cai, Yingfan; Fan, Yonghong; Zhu, Xiaoyan; Liu, Yihua; He, Xiaohong; Shen, Jinjuan; Jiang, Huaizhong; Hu, Daiwen; Pan, Zheng; Xiang, Liuxin; He, Guanghua; Dong, Daiwen; Yang, Jianping

    2012-04-21

    Tumourous stem mustard (Brassica juncea var. tumida Tsen et Lee) is an economically and nutritionally important vegetable crop of the Cruciferae family that also provides the raw material for Fuling mustard. The genetics breeding, physiology, biochemistry and classification of mustards have been extensively studied, but little information is available on tumourous stem mustard at the molecular level. To gain greater insight into the molecular mechanisms underlying stem swelling in this vegetable and to provide additional information for molecular research and breeding, we sequenced the transcriptome of tumourous stem mustard at various stem developmental stages and compared it with that of a mutant variety lacking swollen stems. Using Illumina short-read technology with a tag-based digital gene expression (DGE) system, we performed de novo transcriptome assembly and gene expression analysis. In our analysis, we assembled genetic information for tumourous stem mustard at various stem developmental stages. In addition, we constructed five DGE libraries, which covered the strains Yong'an and Dayejie at various development stages. Illumina sequencing identified 146,265 unigenes, including 11,245 clusters and 135,020 singletons. The unigenes were subjected to a BLAST search and annotated using the GO and KO databases. We also compared the gene expression profiles of three swollen stem samples with those of two non-swollen stem samples. A total of 1,042 genes with significantly different expression levels occurring simultaneously in the six comparison groups were screened out. Finally, the altered expression levels of a number of randomly selected genes were confirmed by quantitative real-time PCR. Our data provide comprehensive gene expression information at the transcriptional level and the first insight into the understanding of the molecular mechanisms and regulatory pathways of stem swelling and development in this plant, and will help define new mechanisms of stem development in non-model plant organisms.

  10. Expressed var gene repertoire and variant surface antigen diversity in a shrinking Plasmodium falciparum population.

    PubMed

    Carlos, Bianca C; Fotoran, Wesley L; Menezes, Maria J; Cabral, Fernanda J; Bastos, Marcele F; Costa, Fabio T M; Sousa-Neto, Jayme A; Ribolla, Paulo E M; Wunderlich, Gerhard; Ferreira, Marcelo U

    2016-11-01

    The var gene-encoded erythrocyte membrane protein-1 of Plasmodium falciparum (PfEMP-1) is the main variant surface antigen (VSA) expressed on infected erythrocytes. The rate at which antibody responses to VSA expressed by circulating parasites are acquired depends on the size of the local VSA repertoire and the frequency of exposure to new VSA. Because parasites from areas with declining malaria endemicity, such as the Amazon, typically express a restricted PfEMP-1 repertoire, we hypothesized that Amazonians would rapidly acquire antibodies to most locally circulating VSA. Consistent with our expectations, the analysis of 5878 sequence tags expressed by 10 local P. falciparum samples revealed little PfEMP-1 DBL1α domain diversity. Among the most commonly expressed DBL1α types, 45% were shared by two or more independent parasite lines. Nevertheless, Amazonians displayed major gaps in their repertoire of anti-VSA antibodies, although the breadth of anti-VSA antibody responses correlated positively with their cumulative exposure to malaria. We found little antibody cross-reactivity even when testing VSA from related parasites expressing the same dominant DBL1α types. We conclude that variant-specific immunity to P. falciparum VSAs develops slowly despite the relatively restricted PfEMP-1 repertoire found in low-endemicity settings. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Oil biosynthesis and transcriptome profiles in developing endosperm and oil characteristic analyses in Paeonia ostii var. lishizhenii.

    PubMed

    Xiu, Yu; Wu, Guodong; Tang, Wensi; Peng, Zhengfeng; Bu, Xiangpan; Chao, Longjun; Yin, Xue; Xiong, Jiannan; Zhang, Haiwu; Zhao, Xiaoqing; Ding, Jing; Ma, Lvyi; Wang, Huafang; van Staden, Johannes

    2018-06-04

    Paeonia ostii var. lishizhenii, a well-known medicinal and horticultural plant, is indigenous to China. Recent studies have shown that its seed has a high oil content, and it was approved as a novel resource of edible oil with a high level of α-linolenic acid by the Chinese Government. This study measured the seed oil contents and fatty acid components of P. ostii var. lishizhenii and six other peonies, P. suffruticosa, P. ludlowii, P. decomposita, P. rockii, and P. lactiflora Pall. 'Heze' and 'Gansu'. The results show that P. ostii var. lishizhenii exhibits the average oil characteristics of tested peonies, with an oil content of 21.3%, α-linolenic acid 43.8%, and unsaturated fatty acids around 92.1%. Hygiene indicators for the seven peony seed oils met the Chinese national food standards. P. ostii var. lishizhenii seeds were used to analyze transcriptome gene regulation networks on endosperm development and oil biosynthesis. In total, 124,117 transcripts were obtained from six endosperm developing stages (S0-S5). The significant changes in differential expression genes (DEGs) clarify three peony endosperm developmental phases: the endosperm cell mitotic phase (S0-S1), the TAG biosynthesis phase (S1-S4), and the mature phase (S5). The DEGs in plant hormone signal transduction, DNA replication, cell division, differentiation, transcription factors, and seed dormancy pathways regulate the endosperm development process. Another 199 functional DEGs participate in glycolysis, pentose phosphate pathway, citrate cycle, FA biosynthesis, TAG assembly, and other pathways. A key transcription factor (WRI1) and some important target genes (ACCase, FATA, LPCAT, FADs, and DGAT etc.) were found in the comprehensive genetic networks of oil biosynthesis. Copyright © 2018 Elsevier GmbH. All rights reserved.

  12. New Rimocidin/CE-108 Derivatives Obtained by a Crotonyl-CoA Carboxylase/Reductase Gene Disruption in Streptomyces diastaticus var. 108: Substrates for the Polyene Carboxamide Synthase PcsA

    PubMed Central

    Escudero, Leticia; Al-Refai, Mahmoud; Nieto, Cristina; Laatsch, Hartmut; Malpartida, Francisco; Seco, Elena M.

    2015-01-01

    The rimJ gene, which codes for a crotonyl-CoA carboxylase/reductase, lies within the biosynthetic gene cluster for two polyketides belonging to the polyene macrolide group (CE-108 and rimocidin) produced by Streptomyces diastaticus var. 108. Disruption of rimJ by insertional inactivation gave rise to a recombinant strain overproducing new polyene derivatives besides the parental CE-108 (2a) and rimocidin (4a). The structure elucidation of one of them, CE-108D (3a), confirmed the incorporation of an alternative extender unit for elongation step 13. Other compounds were also overproduced in the fermentation broth of rimJ disruptant. The new compounds are in vivo substrates for the previously described polyene carboxamide synthase PcsA. The rimJ disruptant strain, constitutively expressing the pcsA gene, allowed the overproduction of CE-108E (3b), the corresponding carboxamide derivative of CE-108D (3a), with improved pharmacological properties. PMID:26284936

  13. Two Δ6-desaturase-like genes in common carp (Cyprinus carpio var. Jian): structure characterization, mRNA expression, temperature and nutritional regulation.

    PubMed

    Ren, Hong-tao; Zhang, Guang-qin; Li, Jian-lin; Tang, Yong-kai; Li, Hong-xia; Yu, Ju-hua; Xu, Pao

    2013-08-01

    Δ6-Desaturase is the rate-limiting enzyme involved in highly unsaturated fatty acid (HUFA) biosynthesis. There is very little information on the evolution and functional characterization of Δ6Fad-a and Δ6Fad-b in common carp (Cyprinus carpio var. Jian). In the present study, the genomic sequences and structures of two putative Δ6-desaturase-like genes in common carp genome were obtained. We investigated the mRNA expression patterns of Δ6Fad-a and Δ6Fad-b in tissue, hatching carp embryos, larvae by temperature shock and juveniles under nutritional regulation. Our results showed that the two Δ6Fad genes had identical coding exon structures, being comprised of 12 coding exons, and with introns of distinct size and sequence composition. They were not allelic variants of a single gene. Both Δ6Fad genes were highly expressed in liver, intestine (pyloric caeca) and brain. The Δ6Fad-a and Δ6Fad-b mRNAs showed an increase in expression from newly hatched to 25 days after hatching. The expression levels of Δ6Fad-a were obviously regulated by temperature, whereas Δ6Fad-b was not affected by temperature. The regulation of Δ6Fad-a and Δ6Fad-b in response to dietary fatty acid composition was determined in liver, brain and intestine (pyloric caeca) of common carp fed with diets: diet1with fish oil (FO) rich in n-3 HUFA, diet2 with corn oil (CO, 18:2n-6) and diet3 with linseed oil (LO, 18:3n-3). The differential expression of Δ6Fad-a and Δ6Fad-b genes in liver, brain and intestine in common carps was fed with different oil sources, respectively. Further work is in progress to determine the mechanism of differential expression of the Δ6Fad-a and Δ6Fad-b genes in different tissues and the roles of transcription factors in regulating HUFA synthesis. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Transcriptome analysis of ectopic chloroplast development in green curd cauliflower (Brassica oleracea L. var. botrytis)

    USDA-ARS?s Scientific Manuscript database

    Chloroplasts are the green plastids where photosynthesis takes place. The biogenesis of chloroplasts requires the coordinate expression of both nuclear and chloroplast genes and is regulated by developmental and environmental signals. Despite extensive studies of this process, the genetic basis and ...

  15. New family of pectinase genes PGU1b-PGU3b of the pectinolytic yeast Saccharomyces bayanus var. uvarum.

    PubMed

    Naumov, G I; Shalamitskiy, M Yu; Naumova, E S

    2016-03-01

    Using yeast genome databases and literature data, we have conducted a phylogenetic analysis of pectinase PGU genes from Saccharomyces strains assigned to the biological species S. arboricola, S. bayanus (var. uvarum), S. cariocanus, S. cerevisiae, S. kudriavzevii, S. mikatae, S. paradoxus, and hybrid taxon S. pastorianus (syn. S. carlsbergensis). Single PGU genes were observed in all Saccharomyces species, except S. bayanus. The superfamily of divergent PGU genes has been documented in S. bayanus var. uvarum for the first time. Chromosomal localization of new PGU1b, PGU2b, and PGU3b genes in the yeast S. bayanus var. uvarum has been determined by molecular karyotyping and Southern hybridization.

  16. Loss of function mutations in VARS encoding cytoplasmic valyl-tRNA synthetase cause microcephaly, seizures, and progressive cerebral atrophy.

    PubMed

    Stephen, Joshi; Nampoothiri, Sheela; Banerjee, Aditi; Tolman, Nathanial J; Penninger, Josef Martin; Elling, Ullrich; Agu, Chukwuma A; Burke, John D; Devadathan, Kalpana; Kannan, Rajesh; Huang, Yan; Steinbach, Peter J; Martinis, Susan A; Gahl, William A; Malicdan, May Christine V

    2018-04-01

    Progressive microcephaly and neurodegeneration are genetically heterogenous conditions, largely associated with genes that are essential for the survival of neurons. In this study, we interrogate the genetic etiology of two siblings from a non-consanguineous family with severe early onset of neurological manifestations. Whole exome sequencing identified novel compound heterozygous mutations in VARS that segregated with the proband: a missense (c.3192G>A; p.Met1064Ile) and a splice site mutation (c.1577-2A>G). The VARS gene encodes cytoplasmic valyl-tRNA synthetase (ValRS), an enzyme that is essential during eukaryotic translation. cDNA analysis on patient derived fibroblasts revealed that the splice site acceptor variant allele led to nonsense mediated decay, thus resulting in a null allele. Three-dimensional modeling of ValRS predicts that the missense mutation lies in a highly conserved region and could alter side chain packing, thus affecting tRNA binding or destabilizing the interface between the catalytic and tRNA binding domains. Further quantitation of the expression of VARS showed remarkably reduced levels of mRNA and protein in skin derived fibroblasts. Aminoacylation experiments on patient derived cells showed markedly reduced enzyme activity of ValRS suggesting the mutations to be loss of function. Bi-allelic mutations in cytoplasmic amino acyl tRNA synthetases are well-known for their role in neurodegenerative disorders, yet human disorders associated with VARS mutations have not yet been clinically well characterized. Our study describes the phenotype associated with recessive VARS mutations and further functional delineation of the pathogenicity of novel variants identified, which widens the clinical and genetic spectrum of patients with progressive microcephaly.

  17. Expression of a potato antimicrobial peptide SN1 increases resistance to take-all pathogen Gaeumannomyces graminis var. tritici in transgenic wheat.

    PubMed

    Rong, Wei; Qi, Lin; Wang, Jingfen; Du, Lipu; Xu, Huijun; Wang, Aiyun; Zhang, Zengyan

    2013-08-01

    Take-all, caused by soil-borne fungus Gaeumannomyces graminis var. tritici (Ggt), is a devastating root disease of wheat (Triticum aestivum) worldwide. Breeding resistant wheat cultivars is the most promising and reliable approach to protect wheat from take-all. Currently, no resistant wheat germplasm is available to breed cultivars using traditional methods. In this study, gene transformation was carried out using Snakin-1 (SN1) gene isolated from potato (Solanum tuberosum) because the peptide shows broad-spectrum antimicrobial activity in vitro. Purified SN1 peptide also inhibits in vitro the growth of Ggt mycelia. By bombardment-mediated method, the gene SN1 was transformed into Chinese wheat cultivar Yangmai 18 to generate SN1 transgenic wheat lines, which were used to assess the effectiveness of the SN1 peptide in protecting wheat from Ggt. Genomic PCR and Southern blot analyses indicated that the alien gene SN1 was integrated into the genomes of five transgenic wheat lines and heritable from T₀ to T₄ progeny. Reverse transcription-PCR and Western blot analyses showed that the introduced SN1 gene was transcribed and highly expressed in the five transgenic wheat lines. Following challenging with Ggt, disease test results showed that compared to segregants lacking the transgene and untransformed wheat plants, these five transgenic wheat lines expressing SN1 displayed significantly enhanced resistance to take-all. These results suggest that SN1 may be a potentially transgenic tool for improving the take-all resistance of wheat.

  18. Expression of nattokinase in Escherichia coli and renaturation of its inclusion body.

    PubMed

    Ni, He; Guo, Peng-Cheng; Jiang, Wei-Ling; Fan, Xiao-Min; Luo, Xiang-Yu; Li, Hai-Hang

    2016-08-10

    Nattokinase is an important fibrinolytic enzyme with therapeutic applications for cardiovascular diseases. The full-length and mature nattokinase genes were cloned from Bacillus subtilis var. natto and expressed in pQE30 vector in Escherichia coli. The full-length gene expressed low nattokinase activity in the intracellular soluble and the medium fractions. The mature gene expressed low soluble nattokinase activity and large amount insoluble protein in inclusion bodies without enzyme activity. Large amount of refolding solutions (RSs) at different pH values were screening and RS-10 and RS-11 at pH 9 were selected to refold nattokinase inclusion bodies. The recombinant cells were lysed with 0.1mg/mL lysozyme and ultrasonic treatment. After centrifugation, the pellete was washed twice with 20mM Tris-HCl buffer (pH 7.5) containing 1% Triton X-100 to purify the inclusion bodies. The inclusion bodies were dissolved in water at pH 12.0 and refolded with RS-10. The refolded proteins showed 42.8IU/mg and 79.3IU/mg fibrinolytic activity by the traditional dilution method (20-fold dilution into RS-10) and the directly mixing the protein solution with equal volume RS-10, respectively, compared to the 52.0IU/mg of total water-soluble proteins from B. subtilis var. natto. This work demonstrated that the inclusion body of recombinant nattokinase expressed in E. coli could be simply refolded to the natural enzyme activity level by directly mixing the protein solution with equal volume refolding solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Parentage determination of Vanda Miss Joaquim (Orchidaceae) through two chloroplast genes rbcL and matK

    PubMed Central

    Khew, Gillian Su-Wen; Chia, Tet Fatt

    2011-01-01

    Background and aims The popular hybrid orchid Vanda Miss Joaquim was made Singapore's national flower in 1981. It was originally described in the Gardeners’ Chronicle in 1893, as a cross between Vanda hookeriana and Vanda teres. However, no record had been kept as to which parent contributed the pollen. This study was conducted using DNA barcoding techniques to determine the pod parent of V. Miss Joaquim, thereby inferring the pollen parent of the hybrid by exclusion. Methodology Two chloroplast genes, matK and rbcL, from five related taxa, V. hookeriana, V. teres var. alba, V. teres var. andersonii, V. teres var. aurorea and V. Miss Joaquim ‘Agnes’, were sequenced. The matK gene from herbarium specimens of V. teres and V. Miss Joaquim, both collected in 1893, was also sequenced. Principal results No sequence variation was found in the 600-bp region of rbcL sequenced. Sequence variation was found in the matK gene of V. hookeriana, V. teres var. alba, V. teres var. aurorea and V. Miss Joaquim ‘Agnes’. Complete sequence identity was established between V. teres var. andersonii and V. Miss Joaquim ‘Agnes’. The matK sequences obtained from the herbarium specimens of V. teres and V. Miss Joaquim were completely identical to the sequences obtained from the fresh samples of V. teres var. andersonii and V. Miss Joaquim ‘Agnes’. Conclusions The pod parent of V. Miss Joaquim ‘Agnes’ is V. teres var. andersonii and, by exclusion, the pollen parent is V. hookeriana. The herbarium and fresh samples of V. teres var. andersonii and V. Miss Joaquim share the same inferred maternity. The matK gene was more informative than rbcL and facilitated differentiation of varieties of V. teres. PMID:22476488

  20. Effect of choline on antioxidant defenses and gene expressions of Nrf2 signaling molecule in the spleen and head kidney of juvenile Jian carp (Cyprinus carpio var. Jian).

    PubMed

    Wu, Pei; Jiang, Wei-Dan; Liu, Yang; Chen, Gang-Fu; Jiang, Jun; Li, Shu-Hong; Feng, Lin; Zhou, Xiao-Qiu

    2014-06-01

    The present work evaluates the effects of various levels of dietary choline on antioxidant defenses and gene expressions of Nrf2 signaling molecule in spleen and head kidney of juvenile Jian carp (Cyprinus carpio var. Jian). Fish were fed with six different experimental diets containing graded levels of choline at 165 (choline-deficient control), 310, 607, 896, 1167 and 1820 mg kg(-1) diet for 65 days. At the end of the feeding trail, fish were challenged with Aeromonas hydrophila and mortalities were recorded over 17 days. Dietary choline significantly decreased malondialdehyde and protein carbonyl contents in spleen and head kidney. However, anti-superoxide anion and anti-hydroxyl radical activities in spleen and head kidney also decreased. Interestingly, activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR) in spleen, GPx activity in head kidney, and glutathione contents in spleen and head kidney were decreased with increase of dietary choline levels up to a certain point, whereas, activities of SOD, GST and GR in head kidney showed no significantly differences among groups. Similarly, expression levels of CuZnSOD, MnSOD, CAT, GPx1a, GPx1b and GR gene in spleen and head kidney were significantly lower in group with choline level of 607 mg kg(-1) diet than those in the choline-deficient group. The relative gene expressions of Nrf2 in head kidney and Keap1a in spleen and head kidney were decreased with increasing of dietary choline up to a certain point. However, the relative gene expression of Nrf2 in spleen were not significantly affected by dietary choline. In conclusion, dietary choline decreased the oxidant damage and regulated the antioxidant system in immune organs of juvenile Jian carp. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Modification of oil and glucosinolate content in canola seeds with altered expression of Brassica napus LEAFY COTYLEDON1.

    PubMed

    Elahi, Nosheen; Duncan, Robert W; Stasolla, Claudio

    2016-03-01

    Over the last few decades, research focusing on canola (Brassica napus L.) seed oil content and composition has expanded. Oil production and accumulation are influenced by genes participating in embryo and seed development. The Arabidopsis LEAFY COTYLEDON1 (LEC1) is a well characterized regulator of embryo development that also enhances the expression of genes involved in fatty acid (FA) synthesis. B. napus lines over-expressing or down-regulating BnLEC1 were successfully generated by Agrobacterium-mediated transformation. The constitutive expression of BnLEC1 in B. napus var. Polo, increased seed oil content by 7-16%, while the down-regulation of BnLEC1 in B. napus var. Topas reduced oil content by 9-12%. Experimental manipulation of BnLEC1 caused transcriptional changes in enzymes participating in sucrose metabolism, glycolysis, and FA biosynthesis, suggesting an enhanced carbon flux towards FA biosynthesis in tissues over-expressing BnLEC1. The increase in oil content induced by BnLEC1 was not accompanied by alterations in FA composition, oil nutritional value or glucosinolate (GLS) levels. Suppression of BnLEC1 reduced seed oil accumulation and elevated the level of GLS possibly through the transcriptional regulation of BnST5a (Sulphotransferase5a), the last GLS biosynthetic enzyme. Collectively, these findings demonstrate that experimental alterations of BnLEC1 expression can be used to influence oil production and quality in B. napus. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Database resources of the National Center for Biotechnology Information

    PubMed Central

    Acland, Abigail; Agarwala, Richa; Barrett, Tanya; Beck, Jeff; Benson, Dennis A.; Bollin, Colleen; Bolton, Evan; Bryant, Stephen H.; Canese, Kathi; Church, Deanna M.; Clark, Karen; DiCuccio, Michael; Dondoshansky, Ilya; Federhen, Scott; Feolo, Michael; Geer, Lewis Y.; Gorelenkov, Viatcheslav; Hoeppner, Marilu; Johnson, Mark; Kelly, Christopher; Khotomlianski, Viatcheslav; Kimchi, Avi; Kimelman, Michael; Kitts, Paul; Krasnov, Sergey; Kuznetsov, Anatoliy; Landsman, David; Lipman, David J.; Lu, Zhiyong; Madden, Thomas L.; Madej, Tom; Maglott, Donna R.; Marchler-Bauer, Aron; Karsch-Mizrachi, Ilene; Murphy, Terence; Ostell, James; O'Sullivan, Christopher; Panchenko, Anna; Phan, Lon; Pruitt, Don Preussm Kim D.; Rubinstein, Wendy; Sayers, Eric W.; Schneider, Valerie; Schuler, Gregory D.; Sequeira, Edwin; Sherry, Stephen T.; Shumway, Martin; Sirotkin, Karl; Siyan, Karanjit; Slotta, Douglas; Soboleva, Alexandra; Soussov, Vladimir; Starchenko, Grigory; Tatusova, Tatiana A.; Trawick, Bart W.; Vakatov, Denis; Wang, Yanli; Ward, Minghong; John Wilbur, W.; Yaschenko, Eugene; Zbicz, Kerry

    2014-01-01

    In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI Web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central, PubReader, Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link, Primer-BLAST, COBALT, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, dbVar, Epigenomics, the Genetic Testing Registry, Genome and related tools, the Map Viewer, Trace Archive, Sequence Read Archive, BioProject, BioSample, ClinVar, MedGen, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus, Probe, Online Mendelian Inheritance in Animals, the Molecular Modeling Database, the Conserved Domain Database, the Conserved Domain Architecture Retrieval Tool, Biosystems, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All these resources can be accessed through the NCBI home page. PMID:24259429

  3. The complete chloroplast genome sequence of Dianthus superbus var. longicalycinus.

    PubMed

    Gurusamy, Raman; Lee, Do-Hyung; Park, SeonJoo

    2016-05-01

    The complete chloroplast genome (cpDNA) sequence of Dianthus superbus var. longicalycinus is an economically important traditional Chinese medicine was reported and characterized. The cpDNA of Dianthus superbus var. longicalycinus is 149,539 bp, with 36.3% GC content. A pair of inverted repeats (IRs) of 24,803 bp is separated by a large single-copy region (LSC, 82,805 bp) and a small single-copy region (SSC, 17,128 bp). It encodes 85 protein-coding genes, 36 tRNA genes and 8 rRNA genes. Of 129 individual genes, 13 genes encoded one intron and three genes have two introns.

  4. Molecular Characterization of MYB28 Involved in Aliphatic Glucosinolate Biosynthesis in Chinese Kale (Brassica oleracea var. alboglabra Bailey).

    PubMed

    Yin, Ling; Chen, Hancai; Cao, Bihao; Lei, Jianjun; Chen, Guoju

    2017-01-01

    Glucosinolates are Brassicaceae-specific secondary metabolites that act as crop protectants, flavor precursors, and cancer-prevention agents, which shows strong evidences of anticarcinogentic, antioxidant, and antimicrobial activities. MYB28 , the R2R3-MYB28 transcription factor, directly activates genes involved in aliphatic glucosinolate biosynthesis. In this study, the MYB28 homology ( BoaMYB28 ) was identified in Chinese kale ( Brassica oleracea var. alboglabra Bailey). Analysis of the nucleotide sequence indicated that the cDNA of BoaMYB28 was 1257 bp with an ORF of 1020 bp. The deduced BoaMYB28 protein was a polypeptide of 339 amino acid with a putative molecular mass of 38 kDa and a pI of 6.87. Sequence homology and phylogenetic analysis showed that BoaMYB28 was most closely related to MYB28 homologs from the Brassicaceae family. The expression levels of BoaMYB28 varies across the tissues and developmental stages. BoaMYB28 transcript levels were higher in leaves and stems compared with those in cotyledons, flowers, and siliques. BoaMYB28 was expressed across all developmental leaf stages, with higher transcript accumulation in mature and inflorescence leaves. Over-expression and RNAi studies showed that BoaMYB28 retains the basic MYB28 gene function as a major transcriptional regulator of aliphatic glucosinolate pathway. The results indicated that over-expression and RNAi lines showed no visible difference on plant morphology. The contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate biosynthesis genes increased in over-expression lines and decreased in RNAi lines. In over-expression lines, aliphatic glucosinolate contents were 1.5- to 3-fold higher than those in the wild-type, while expression levels of aliphatic glucosinolate biosynthesis genes were 1.5- to 4-fold higher than those in the wild-type. In contrast, the contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate biosynthesis genes in RNAi lines were considerably lower than those in the wild-type. The results suggest that BoaMYB28 has the potential to alter the aliphatic glucosinolates contents in Chinese kale at the genetic level.

  5. Molecular Characterization of MYB28 Involved in Aliphatic Glucosinolate Biosynthesis in Chinese Kale (Brassica oleracea var. alboglabra Bailey)

    PubMed Central

    Yin, Ling; Chen, Hancai; Cao, Bihao; Lei, Jianjun; Chen, Guoju

    2017-01-01

    Glucosinolates are Brassicaceae-specific secondary metabolites that act as crop protectants, flavor precursors, and cancer-prevention agents, which shows strong evidences of anticarcinogentic, antioxidant, and antimicrobial activities. MYB28, the R2R3-MYB28 transcription factor, directly activates genes involved in aliphatic glucosinolate biosynthesis. In this study, the MYB28 homology (BoaMYB28) was identified in Chinese kale (Brassica oleracea var. alboglabra Bailey). Analysis of the nucleotide sequence indicated that the cDNA of BoaMYB28 was 1257 bp with an ORF of 1020 bp. The deduced BoaMYB28 protein was a polypeptide of 339 amino acid with a putative molecular mass of 38 kDa and a pI of 6.87. Sequence homology and phylogenetic analysis showed that BoaMYB28 was most closely related to MYB28 homologs from the Brassicaceae family. The expression levels of BoaMYB28 varies across the tissues and developmental stages. BoaMYB28 transcript levels were higher in leaves and stems compared with those in cotyledons, flowers, and siliques. BoaMYB28 was expressed across all developmental leaf stages, with higher transcript accumulation in mature and inflorescence leaves. Over-expression and RNAi studies showed that BoaMYB28 retains the basic MYB28 gene function as a major transcriptional regulator of aliphatic glucosinolate pathway. The results indicated that over-expression and RNAi lines showed no visible difference on plant morphology. The contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate biosynthesis genes increased in over-expression lines and decreased in RNAi lines. In over-expression lines, aliphatic glucosinolate contents were 1.5- to 3-fold higher than those in the wild-type, while expression levels of aliphatic glucosinolate biosynthesis genes were 1.5- to 4-fold higher than those in the wild-type. In contrast, the contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate biosynthesis genes in RNAi lines were considerably lower than those in the wild-type. The results suggest that BoaMYB28 has the potential to alter the aliphatic glucosinolates contents in Chinese kale at the genetic level. PMID:28680435

  6. JIL-1 and Su(var)3-7 Interact Genetically and Counteract Each Other's Effect on Position-Effect Variegation in Drosophila

    PubMed Central

    Deng, Huai; Cai, Weili; Wang, Chao; Lerach, Stephanie; Delattre, Marion; Girton, Jack; Johansen, Jørgen; Johansen, Kristen M.

    2010-01-01

    The essential JIL-1 histone H3S10 kinase is a key regulator of chromatin structure that functions to maintain euchromatic domains while counteracting heterochromatization and gene silencing. In the absence of the JIL-1 kinase, two of the major heterochromatin markers H3K9me2 and HP1a spread in tandem to ectopic locations on the chromosome arms. Here we address the role of the third major heterochromatin component, the zinc-finger protein Su(var)3-7. We show that the lethality but not the chromosome morphology defects associated with the null JIL-1 phenotype to a large degree can be rescued by reducing the dose of the Su(var)3-7 gene and that Su(var)3-7 and JIL-1 loss-of-function mutations have an antagonistic and counterbalancing effect on position-effect variegation (PEV). Furthermore, we show that in the absence of JIL-1 kinase activity, Su(var)3-7 gets redistributed and upregulated on the chromosome arms. Reducing the dose of the Su(var)3-7 gene dramatically decreases this redistribution; however, the spreading of H3K9me2 to the chromosome arms was unaffected, strongly indicating that ectopic Su(var)3-9 activity is not a direct cause of lethality. These observations suggest a model where Su(var)3-7 functions as an effector downstream of Su(var)3-9 and H3K9 dimethylation in heterochromatic spreading and gene silencing that is normally counteracted by JIL-1 kinase activity. PMID:20457875

  7. VarWalker: Personalized Mutation Network Analysis of Putative Cancer Genes from Next-Generation Sequencing Data

    PubMed Central

    Jia, Peilin; Zhao, Zhongming

    2014-01-01

    A major challenge in interpreting the large volume of mutation data identified by next-generation sequencing (NGS) is to distinguish driver mutations from neutral passenger mutations to facilitate the identification of targetable genes and new drugs. Current approaches are primarily based on mutation frequencies of single-genes, which lack the power to detect infrequently mutated driver genes and ignore functional interconnection and regulation among cancer genes. We propose a novel mutation network method, VarWalker, to prioritize driver genes in large scale cancer mutation data. VarWalker fits generalized additive models for each sample based on sample-specific mutation profiles and builds on the joint frequency of both mutation genes and their close interactors. These interactors are selected and optimized using the Random Walk with Restart algorithm in a protein-protein interaction network. We applied the method in >300 tumor genomes in two large-scale NGS benchmark datasets: 183 lung adenocarcinoma samples and 121 melanoma samples. In each cancer, we derived a consensus mutation subnetwork containing significantly enriched consensus cancer genes and cancer-related functional pathways. These cancer-specific mutation networks were then validated using independent datasets for each cancer. Importantly, VarWalker prioritizes well-known, infrequently mutated genes, which are shown to interact with highly recurrently mutated genes yet have been ignored by conventional single-gene-based approaches. Utilizing VarWalker, we demonstrated that network-assisted approaches can be effectively adapted to facilitate the detection of cancer driver genes in NGS data. PMID:24516372

  8. VarWalker: personalized mutation network analysis of putative cancer genes from next-generation sequencing data.

    PubMed

    Jia, Peilin; Zhao, Zhongming

    2014-02-01

    A major challenge in interpreting the large volume of mutation data identified by next-generation sequencing (NGS) is to distinguish driver mutations from neutral passenger mutations to facilitate the identification of targetable genes and new drugs. Current approaches are primarily based on mutation frequencies of single-genes, which lack the power to detect infrequently mutated driver genes and ignore functional interconnection and regulation among cancer genes. We propose a novel mutation network method, VarWalker, to prioritize driver genes in large scale cancer mutation data. VarWalker fits generalized additive models for each sample based on sample-specific mutation profiles and builds on the joint frequency of both mutation genes and their close interactors. These interactors are selected and optimized using the Random Walk with Restart algorithm in a protein-protein interaction network. We applied the method in >300 tumor genomes in two large-scale NGS benchmark datasets: 183 lung adenocarcinoma samples and 121 melanoma samples. In each cancer, we derived a consensus mutation subnetwork containing significantly enriched consensus cancer genes and cancer-related functional pathways. These cancer-specific mutation networks were then validated using independent datasets for each cancer. Importantly, VarWalker prioritizes well-known, infrequently mutated genes, which are shown to interact with highly recurrently mutated genes yet have been ignored by conventional single-gene-based approaches. Utilizing VarWalker, we demonstrated that network-assisted approaches can be effectively adapted to facilitate the detection of cancer driver genes in NGS data.

  9. Structure of Pigment Metabolic Pathways and Their Contributions to White Tepal Color Formation of Chinese Narcissus tazetta var. chinensis cv Jinzhanyintai

    PubMed Central

    Yang, Jingwen; Lu, Bingguo; Jiang, Yaping; Chen, Haiyang; Hong, Yuwei; Wu, Binghua; Miao, Ying

    2017-01-01

    Chinese narcissus (Narcissus tazetta var. chinensis) is one of the ten traditional flowers in China and a famous bulb flower in the world flower market. However, only white color tepals are formed in mature flowers of the cultivated varieties, which constrains their applicable occasions. Unfortunately, for lack of genome information of narcissus species, the explanation of tepal color formation of Chinese narcissus is still not clear. Concerning no genome information, the application of transcriptome profile to dissect biological phenomena in plants was reported to be effective. As known, pigments are metabolites of related metabolic pathways, which dominantly decide flower color. In this study, transcriptome profile and pigment metabolite analysis methods were used in the most widely cultivated Chinese narcissus “Jinzhanyintai” to discover the structure of pigment metabolic pathways and their contributions to white tepal color formation during flower development and pigmentation processes. By using comparative KEGG pathway enrichment analysis, three pathways related to flavonoid, carotenoid and chlorophyll pigment metabolism showed significant variations. The structure of flavonoids metabolic pathway was depicted, but, due to the lack of F3ʹ5ʹH gene; the decreased expression of C4H, CHS and ANS genes; and the high expression of FLS gene, the effect of this pathway to synthesize functional anthocyanins in tepals was weak. Similarly, the expression of DXS, MCT and PSY genes in carotenoids synthesis sub-pathway was decreased, while CCD1/CCD4 genes in carotenoids degradation sub-pathway was increased; therefore, the effect of carotenoids metabolic pathway to synthesize adequate color pigments in tepals is restricted. Interestingly, genes in chlorophyll synthesis sub-pathway displayed uniform down-regulated expression, while genes in heme formation and chlorophyll breakdown sub-pathways displayed up-regulated expression, which also indicates negative regulation of chlorophyll formation. Further, content change trends of various color metabolites detected by HPLC in tepals are consistent with the additive gene expression patterns in each pathway. Therefore, all three pathways exhibit negative control of color pigments synthesis in tepals, finally resulting in the formation of white tepals. Interestingly, the content of chlorophyll was more than 10-fold higher than flavonoids and carotenoids metabolites, which indicates that chlorophyll metabolic pathway may play the major role in deciding tepal color formation of Chinese narcissus. PMID:28885552

  10. Structure of Pigment Metabolic Pathways and Their Contributions to White Tepal Color Formation of Chinese Narcissus tazetta var. chinensis cv Jinzhanyintai.

    PubMed

    Ren, Yujun; Yang, Jingwen; Lu, Bingguo; Jiang, Yaping; Chen, Haiyang; Hong, Yuwei; Wu, Binghua; Miao, Ying

    2017-09-08

    Chinese narcissus ( Narcissus tazetta var. chinensis ) is one of the ten traditional flowers in China and a famous bulb flower in the world flower market. However, only white color tepals are formed in mature flowers of the cultivated varieties, which constrains their applicable occasions. Unfortunately, for lack of genome information of narcissus species, the explanation of tepal color formation of Chinese narcissus is still not clear. Concerning no genome information, the application of transcriptome profile to dissect biological phenomena in plants was reported to be effective. As known, pigments are metabolites of related metabolic pathways, which dominantly decide flower color. In this study, transcriptome profile and pigment metabolite analysis methods were used in the most widely cultivated Chinese narcissus "Jinzhanyintai" to discover the structure of pigment metabolic pathways and their contributions to white tepal color formation during flower development and pigmentation processes. By using comparative KEGG pathway enrichment analysis, three pathways related to flavonoid, carotenoid and chlorophyll pigment metabolism showed significant variations. The structure of flavonoids metabolic pathway was depicted, but, due to the lack of F3'5'H gene; the decreased expression of C4H , CHS and ANS genes; and the high expression of FLS gene, the effect of this pathway to synthesize functional anthocyanins in tepals was weak. Similarly, the expression of DXS , MCT and PSY genes in carotenoids synthesis sub-pathway was decreased, while CCD1 / CCD4 genes in carotenoids degradation sub-pathway was increased; therefore, the effect of carotenoids metabolic pathway to synthesize adequate color pigments in tepals is restricted. Interestingly, genes in chlorophyll synthesis sub-pathway displayed uniform down-regulated expression, while genes in heme formation and chlorophyll breakdown sub-pathways displayed up-regulated expression, which also indicates negative regulation of chlorophyll formation. Further, content change trends of various color metabolites detected by HPLC in tepals are consistent with the additive gene expression patterns in each pathway. Therefore, all three pathways exhibit negative control of color pigments synthesis in tepals, finally resulting in the formation of white tepals. Interestingly, the content of chlorophyll was more than 10-fold higher than flavonoids and carotenoids metabolites, which indicates that chlorophyll metabolic pathway may play the major role in deciding tepal color formation of Chinese narcissus.

  11. Database resources of the National Center for Biotechnology Information

    PubMed Central

    2015-01-01

    The National Center for Biotechnology Information (NCBI) provides a large suite of online resources for biological information and data, including the GenBank® nucleic acid sequence database and the PubMed database of citations and abstracts for published life science journals. Additional NCBI resources focus on literature (Bookshelf, PubMed Central (PMC) and PubReader); medical genetics (ClinVar, dbMHC, the Genetic Testing Registry, HIV-1/Human Protein Interaction Database and MedGen); genes and genomics (BioProject, BioSample, dbSNP, dbVar, Epigenomics, Gene, Gene Expression Omnibus (GEO), Genome, HomoloGene, the Map Viewer, Nucleotide, PopSet, Probe, RefSeq, Sequence Read Archive, the Taxonomy Browser, Trace Archive and UniGene); and proteins and chemicals (Biosystems, COBALT, the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART), the Molecular Modeling Database (MMDB), Protein Clusters, Protein and the PubChem suite of small molecule databases). The Entrez system provides search and retrieval operations for many of these databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page at http://www.ncbi.nlm.nih.gov. PMID:25398906

  12. Database resources of the National Center for Biotechnology Information

    PubMed Central

    2016-01-01

    The National Center for Biotechnology Information (NCBI) provides a large suite of online resources for biological information and data, including the GenBank® nucleic acid sequence database and the PubMed database of citations and abstracts for published life science journals. Additional NCBI resources focus on literature (PubMed Central (PMC), Bookshelf and PubReader), health (ClinVar, dbGaP, dbMHC, the Genetic Testing Registry, HIV-1/Human Protein Interaction Database and MedGen), genomes (BioProject, Assembly, Genome, BioSample, dbSNP, dbVar, Epigenomics, the Map Viewer, Nucleotide, Probe, RefSeq, Sequence Read Archive, the Taxonomy Browser and the Trace Archive), genes (Gene, Gene Expression Omnibus (GEO), HomoloGene, PopSet and UniGene), proteins (Protein, the Conserved Domain Database (CDD), COBALT, Conserved Domain Architecture Retrieval Tool (CDART), the Molecular Modeling Database (MMDB) and Protein Clusters) and chemicals (Biosystems and the PubChem suite of small molecule databases). The Entrez system provides search and retrieval operations for most of these databases. Augmenting many of the web applications are custom implementations of the BLAST program optimized to search specialized datasets. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov. PMID:26615191

  13. Ultraviolet irradiation induces accumulation of isoflavonoids and transcription of genes of enzymes involved in the calycosin-7-O-β-d-glucoside pathway in Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao.

    PubMed

    Xu, Rong-Yan; Nan, Peng; Yang, Yixin; Pan, Haiyun; Zhou, Tongshui; Chen, Jiakuan

    2011-07-01

    Isoflavonoids are a group of phenolic secondary metabolites found almost exclusively in leguminous plants. Formononetin, calycosin and calycosin-7-O-β-d-glucoside (CG) are isoflavonoid products in the CG pathway. Accumulation of the three isoflavonoids plus daidzein and expression of six genes of enzymes involved in the CG pathway were studied in Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao with ultraviolet (UV) irradiation. Our results showed that (1) main isoflavonoids in roots, stems and leaves were CG, daidzein and calycosin, respectively; they accumulated significantly under the induction of UV irradiation during 8 days but their content declined later; (2) expression of six genes of enzymes involved in the CG pathway was inhibited slightly at early stage but the expression was increased greatly afterward; (3) chalcone synthase, chalcone reductase and chalcone isomerase were expressed to their individual maximum level within shorter hours than were cinnamate 4-hydroxylase, isoflavone synthase (IFS) and isoflavone 3'-hydroxylase and (4) more calycosin but less daidzein accumulated in leaves. IFS was highly expressed in leaves, which might lead to high accumulation of the common precursor of daidzein and 2,7-dihydroxy-4'-O-methoxy-isoflavanone, the latter of which would be converted to formononetin, calycosin and CG via a series of reactions. Little daidzein accumulated in leaves, which suggested that rather than be converted to daidzein, the 2,7,4'-trihydroxyisoflavanone was probably more easily caught by 2-hydroxyisoflavanone 4'-O-methyltransferase and hence provided more precursors for formononetin. The findings were discussed in terms of the influence of UV irradiation in the accumulation of isoflavonoids. Copyright © Physiologia Plantarum 2011.

  14. Molecular Basis for Strain Variation in the Saccharomyces cerevisiae Adhesin Flo11p

    PubMed Central

    Li, Li; Lipke, Peter N.; Dranginis, Anne M.

    2016-01-01

    ABSTRACT FLO11 encodes a yeast cell wall flocculin that mediates a variety of adhesive phenotypes in Saccharomyces cerevisiae. Flo11p is implicated in many developmental processes, including flocculation, formation of pseudohyphae, agar invasion, and formation of microbial mats and biofilms. However, Flo11p mediates different processes in different yeast strains. To investigate the mechanisms by which FLO11 determines these differences in colony morphology, flocculation, and invasion, we studied gene structure, function, and expression levels. Nonflocculent Saccharomyces cerevisiae Σ1278b cells exhibited significantly higher FLO11 mRNA expression, especially in the stationary phase, than highly flocculent S. cerevisiae var. diastaticus. The two strains varied in cell surface hydrophobicity, and Flo11p contributed significantly to surface hydrophobicity in S. cerevisiae var. diastaticus but not in strain Σ1278b. Sequencing of the FLO11 gene in S. cerevisiae var. diastaticus revealed strain-specific differences, including a 15-amino-acid insertion in the adhesion domain. Flo11p adhesion domains from strain Σ1278b and S. cerevisiae var. diastaticus were expressed and used to coat magnetic beads. The adhesion domain from each strain bound preferentially to homologous cells, and the preferences were independent of the cells in which the adhesion domains were produced. These results are consistent with the idea that strain-specific variations in the amino acid sequences in the adhesion domains cause different Flo11p flocculation activities. The results also imply that strain-specific differences in expression levels, posttranslational modifications, and allelic differences outside the adhesion domains have little effect on flocculation. IMPORTANCE As a nonmotile organism, Saccharomyces cerevisiae employs the cell surface flocculin Flo11/Muc1 as an important means of adapting to environmental change. However, there is a great deal of strain variation in the expression of Flo11-dependent phenotypes, including flocculation. In this study, we investigated the molecular basis of this strain-specific phenotypic variability. Our data indicate that strain-specific differences in the level of flocculation result from significant sequence differences in the FLO11 alleles and do not depend on quantitative differences in FLO11 expression or on surface hydrophobicity. We further have shown that beads coated with amino-terminal domain peptide bind preferentially to homologous cells. These data show that variability in the structure of the Flo11 adhesion domain may thus be an important determinant of membership in microbial communities and hence may drive selection and evolution. PMID:27547826

  15. Expression profiles of genes for mitochondrial respiratory energy-dissipating systems and antioxidant enzymes in wheat leaves during de-etiolation.

    PubMed

    Garmash, Elena V; Velegzhaninov, Ilya O; Grabelnych, Olga I; Borovik, Olga A; Silina, Ekaterina V; Voinikov, Victor K; Golovko, Tamara K

    2017-08-01

    Mitochondrial respiratory components participate in the maintenance of chloroplast functional activity. This study investigates the effects 48h de-etiolation of spring wheat seedlings (Triticum aestivum L., var. Irgina) on the expression of genes that encode energy-dissipating respiratory components and antioxidant enzymes under continuous light conditions. The expression of AOX1a following the prolonged darkness exhibited a pattern indicating a prominent dependence on light. The expression of other respiratory genes, including NDA2, NDB2, and UCP1b, increased during de-etiolation and dark-to-light transition; however, changes in the expression of these genes occurred later than those in AOX1a expression. A high expression of NDA1 was detected after 12h of de-etiolation. The suppression of AOX1a, NDA2, NDB2, and UCP1b was observed 24h after de-etiolation when the photosynthetic apparatus and its defence systems against excess light were completely developed. The expression patterns of the respiratory genes and several genes encoding antioxidant enzymes (MnSOD, Cu-ZnSOD, t-APX, GR, and GRX) were quite similar. Our data indicate that the induction of nuclear genes encoding respiratory and antioxidant enzymes allow the plants to control reactive oxygen species (ROS) production and avoid oxidative stress during de-etiolation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Transcriptome analysis of carbohydrate metabolism during bulblet formation and development in Lilium davidii var. unicolor.

    PubMed

    Li, XueYan; Wang, ChunXia; Cheng, JinYun; Zhang, Jing; da Silva, Jaime A Teixeira; Liu, XiaoYu; Duan, Xin; Li, TianLai; Sun, HongMei

    2014-12-19

    The formation and development of bulblets are crucial to the Lilium genus since these processes are closely related to carbohydrate metabolism, especially to starch and sucrose metabolism. However, little is known about the transcriptional regulation of both processes. To gain insight into carbohydrate-related genes involved in bulblet formation and development, we conducted comparative transcriptome profiling of Lilium davidii var. unicolor bulblets at 0 d, 15 d (bulblets emerged) and 35 d (bulblets formed a basic shape with three or four scales) after scale propagation. Analysis of the transcriptome revealed that a total of 52,901 unigenes with an average sequence size of 630 bp were generated. Based on Clusters of Orthologous Groups (COG) analysis, 8% of the sequences were attributed to carbohydrate transport and metabolism. The results of KEGG pathway enrichment analysis showed that starch and sucrose metabolism constituted the predominant pathway among the three library pairs. The starch content in mother scales and bulblets decreased and increased, respectively, with almost the same trend as sucrose content. Gene expression analysis of the key enzymes in starch and sucrose metabolism suggested that sucrose synthase (SuSy) and invertase (INV), mainly hydrolyzing sucrose, presented higher gene expression in mother scales and bulblets at stages of bulblet appearance and enlargement, while sucrose phosphate synthase (SPS) showed higher expression in bulblets at morphogenesis. The enzymes involved in the starch synthetic direction such as ADPG pyrophosphorylase (AGPase), soluble starch synthase (SSS), starch branching enzyme (SBE) and granule-bound starch synthase (GBSS) showed a decreasing trend in mother scales and higher gene expression in bulblets at bulblet appearance and enlargement stages while the enzyme in the cleavage direction, starch de-branching enzyme (SDBE), showed higher gene expression in mother scales than in bulblets. An extensive transcriptome analysis of three bulblet development stages contributes considerable novel information to our understanding of carbohydrate metabolism-related genes in Lilium at the transcriptional level, and demonstrates the fundamentality of carbohydrate metabolism in bulblet emergence and development at the molecular level. This could facilitate further investigation into the molecular mechanisms underlying these processes in lily and other related species.

  17. Molecular and Functional Characterization of Broccoli EMBRYONIC FLOWER 2 Genes

    PubMed Central

    Chen, Long-Fang O.; Lin, Chun-Hung; Lai, Ying-Mi; Huang, Jia-Yuan; Sung, Zinmay Renee

    2012-01-01

    Polycomb group (PcG) proteins regulate major developmental processes in Arabidopsis. EMBRYONIC FLOWER 2 (EMF2), the VEFS domain-containing PcG gene, regulates diverse genetic pathways and is required for vegetative development and plant survival. Despite widespread EMF2-like sequences in plants, little is known about their function other than in Arabidopsis and rice. To study the role of EMF2 in broccoli (Brassica oleracea var. italica cv. Elegance) development, we identified two broccoli EMF2 (BoEMF2) genes with sequence homology to and a similar gene expression pattern to that in Arabidopsis (AtEMF2). Reducing their expression in broccoli resulted in aberrant phenotypes and gene expression patterns. BoEMF2 regulates genes involved in diverse developmental and stress programs similar to AtEMF2 in Arabidopsis. However, BoEMF2 differs from AtEMF2 in the regulation of flower organ identity, cell proliferation and elongation, and death-related genes, which may explain the distinct phenotypes. The expression of BoEMF2.1 in the Arabidopsis emf2 mutant (Rescued emf2) partially rescued the mutant phenotype and restored the gene expression pattern to that of the wild type. Many EMF2-mediated molecular and developmental functions are conserved in broccoli and Arabidopsis. Furthermore, the restored gene expression pattern in Rescued emf2 provides insights into the molecular basis of PcG-mediated growth and development. PMID:22537758

  18. Expression and characterization of aiiA gene from Bacillus subtilis BS-1.

    PubMed

    Pan, Jieru; Huang, Tianpei; Yao, Fan; Huang, Zhipeng; Powell, Charles A; Qiu, Sixin; Guan, Xiong

    2008-01-01

    AHL-lactonase (AiiA), a metallo-beta-lactamase produced by Bacillus thuringiensis, Bacillus cereus and Bacillus anthracis, specifically hydrolyzes N-acyl-homoserine lactones (AHLs) secreted by Gram-negative bacteria and thereby attenuates the symptoms caused by plant pathogens. In this study, an aiiA gene was cloned from Bacillus subtilis BS-1 by PCR with a pair of degenerate primers. The deduced 250 amino acid sequence contained two small conserved regions, 103SHLHFDH109 and 166TPGHTPGH173, which are characteristic of the metallo-beta-lactamase family. Homology comparison revealed that the deduced amino acid sequence had a high degree of similarity with those of the known AiiA proteins in the B. cereus group. Additionally, the aiiA gene was expressed in Escherichia coli BL21 (DE3) pLysS and the expressed AiiA protein could attenuate the soft rot symptoms caused by Erwinia carotovora var. carotovora.

  19. The cauliflower Orange gene enhances petiole elongation by suppressing expression of eukaryotic release factor 1.

    PubMed

    Zhou, Xiangjun; Sun, Tian-Hu; Wang, Ning; Ling, Hong-Qing; Lu, Shan; Li, Li

    2011-04-01

    The cauliflower (Brassica oleracea var. botrytis) Orange (Or) gene affects plant growth and development in addition to conferring β-carotene accumulation. This study was undertaken to investigate the molecular basis for the effects of the Or gene mutation in on plant growth. The OR protein was found to interact with cauliflower and Arabidopsis eukaryotic release factor 1-2 (eRF1-2), a member of the eRF1 family, by yeast two-hybrid analysis and by bimolecular fluorescence complementation (BiFC) assay. Concomitantly, the Or mutant showed reduced expression of the BoeRF1 family genes. Transgenic cauliflower plants with suppressed expression of BoeRF1-2 and BoeRF1-3 were generated by RNA interference. Like the Or mutant, the BoeRF1 RNAi lines showed increased elongation of the leaf petiole. This long-petiole phenotype was largely caused by enhanced cell elongation, which resulted from increased cell length and elevated expression of genes involved in cell-wall loosening. These findings demonstrate that the cauliflower Or gene controls petiole elongation by suppressing the expression of eRF1 genes, and provide new insights into the molecular mechanism of leaf petiole regulation. © 2010 The Authors. New Phytologist © 2010 New Phytologist Trust.

  20. Xyloglucan endotransglycosylase/hydrolase genes from a susceptible and resistant jute species show opposite expression pattern following Macrophomina phaseolina infection

    PubMed Central

    Sharmin, Sazia; Azam, Muhammad Shafiul; Islam, Md. Shahidul; Sajib, Abu Ashfaqur; Mahmood, Niaz; Hasan, A. M. Mahedi; Ahmed, Razib; Sultana, Kishwar; Khan, Haseena

    2012-01-01

    Two of the most widely and intensively cultivated jute species, Corchorus capsularis and Corchorus olitorius, suffer severely from a stem rot disease caused by the fungus Macrophomina phaseolina. Wild jute species, C. trilocularis, shows resistance to this pathogenic fungus. In this study, the technique of differential display was applied to identify genes which are differentially expressed, under both infected and un-infected conditions, between C. trilocularis and C. olitorius var O-72. Two xyloglucan endotransglycosylase/hydrolase (XTH) genes designated CoXTH1 (from Corchorus olitorius) and CtXTH1 (from C.trilocularis) were identified from each of the two species which show different expression patterns upon fungal infection. A steady rise in the expression of CtXTH1 in response to infection was observed by quantitative real time PCR whereas the expression of CoXTH1 was found to be downregulated. Full length sequences of these two genes were determined using primer based gene walking and RACE PCR. This study confirms the involvement of XTH in molecular interactions between M. phaseolina and jute. However, it remains to be explored whether XTH is an essential component of the signaling pathway involved in plant-fungal interaction. PMID:23336031

  1. Xyloglucan endotransglycosylase/hydrolase genes from a susceptible and resistant jute species show opposite expression pattern following Macrophomina phaseolina infection.

    PubMed

    Sharmin, Sazia; Azam, Muhammad Shafiul; Islam, Md Shahidul; Sajib, Abu Ashfaqur; Mahmood, Niaz; Hasan, A M Mahedi; Ahmed, Razib; Sultana, Kishwar; Khan, Haseena

    2012-11-01

    Two of the most widely and intensively cultivated jute species, Corchorus capsularis and Corchorus olitorius, suffer severely from a stem rot disease caused by the fungus Macrophomina phaseolina. Wild jute species, C. trilocularis, shows resistance to this pathogenic fungus. In this study, the technique of differential display was applied to identify genes which are differentially expressed, under both infected and un-infected conditions, between C. trilocularis and C. olitorius var O-72. Two xyloglucan endotransglycosylase/hydrolase (XTH) genes designated CoXTH1 (from Corchorus olitorius) and CtXTH1 (from C.trilocularis) were identified from each of the two species which show different expression patterns upon fungal infection. A steady rise in the expression of CtXTH1 in response to infection was observed by quantitative real time PCR whereas the expression of CoXTH1 was found to be downregulated. Full length sequences of these two genes were determined using primer based gene walking and RACE PCR. This study confirms the involvement of XTH in molecular interactions between M. phaseolina and jute. However, it remains to be explored whether XTH is an essential component of the signaling pathway involved in plant-fungal interaction.

  2. CLAVATA3-like genes are differentially expressed in grape vine (Vitis vinifera) tissues.

    PubMed

    Tominaga-Wada, Rumi; Nukumizu, Yuka; Wada, Takuji; Sawa, Shinichiro; Tetsumura, Takuya

    2013-10-15

    The CLAVATA3 (CLV3)/endosperm surrounding region [(ESR) CLE] peptides function as intercellular signaling molecules that regulate various physiological and developmental processes in diverse plant species. We identified five CLV3-like genes from grape vine (Vitis vinifera var. Pinot Noir): VvCLE 6, VvCLE 25-1, VvCLE 25-2, VvCLE 43 and VvCLE TDIF. These CLV3-like genes encode short proteins containing 43-128 amino acids. Except VvCLE TDIF, grape vine CLV3-like proteins possess a consensus amino acid sequence known as the CLE domain. Phylogenic analysis suggests that the VvCLE 6, VvCLE25-1, VvCLE25-2 and VvCLE43 genes have evolved from a single common ancestor to the Arabidopsis CLV3 gene. Expression analyses showed that the five grape CLV3-like genes are expressed in leaves, stems, roots and axillary buds with significant differences in their levels of expression. For example, while all of them were strongly expressed in axillary buds, VvCLE6 and VvCLE43 expression prevailed in roots, and VvCLE25-1, VvCLE25-2 and VvCLE TDIF expression in stems. The differential expression of the five grape CLV3-like peptides suggests that they play different roles in different organs and developmental stages. Copyright © 2013 Elsevier GmbH. All rights reserved.

  3. A putative functional MYB transcription factor induced by low temperature regulates anthocyanin biosynthesis in purple kale (Brassica Oleracea var. acephala f. tricolor).

    PubMed

    Zhang, Bin; Hu, Zongli; Zhang, Yanjie; Li, Yali; Zhou, Shuang; Chen, Guoping

    2012-02-01

    The purple kale (Brassica Oleracea var. acephala f. tricolor) is a mutation in kales, giving the mutant phenotype of brilliant purple color in the interior. Total anthocyanin analysis showed that the amount of anthocyanins in the purple kale was up to 1.73 mg g(-1) while no anthocyanin was detected in the white kale. To elucidate the molecular mechanism of the anthocyanin biosynthesis in the purple kale, we analyzed the expression of structural genes and some transcription factors associated with anthocyanin biosynthesis in the purple cultivar "Red Dove" and the white cultivar "White Dove". The result showed that nearly all the anthocyanin biosynthetic genes showed higher expression levels in the purple cultivar than in the white cultivar, especially for DFR and ANS, they were barely detected in the white cultivar. Interestingly, the fact that a R2R3 MYB transcription factor named BoPAP1 was extremely up-regulated in the purple kale and induced by low temperature attracted our attention. Further sequence analysis showed that BoPAP1 shared high similarity with AtPAP1 and BoMYB1. In addition, the anthocyanin accumulation in the purple kale is strongly induced by the low temperature stress. The total anthocyanin contents in the purple kale under low temperature were about 50-fold higher than the plants grown in the greenhouse. The expression of anthocyanin biosynthetic genes C4H, F3H, DFR, ANS and UFGT were all enhanced under the low temperature. These evidences strongly suggest that BoPAP1 may play an important role in activating the anthocyanin structural genes for the abundant anthocyanin accumulation in the purple kale.

  4. Characterization of the two intra-individual sequence variants in the 18S rRNA gene in the plant parasitic nematode, Rotylenchulus reniformis.

    PubMed

    Nyaku, Seloame T; Sripathi, Venkateswara R; Kantety, Ramesh V; Gu, Yong Q; Lawrence, Kathy; Sharma, Govind C

    2013-01-01

    The 18S rRNA gene is fundamental to cellular and organismal protein synthesis and because of its stable persistence through generations it is also used in phylogenetic analysis among taxa. Sequence variation in this gene within a single species is rare, but it has been observed in few metazoan organisms. More frequently it has mostly been reported in the non-transcribed spacer region. Here, we have identified two sequence variants within the near full coding region of 18S rRNA gene from a single reniform nematode (RN) Rotylenchulus reniformis labeled as reniform nematode variant 1 (RN_VAR1) and variant 2 (RN_VAR2). All sequences from three of the four isolates had both RN variants in their sequences; however, isolate 13B had only RN variant 2 sequence. Specific variable base sites (96 or 5.5%) were found within the 18S rRNA gene that can clearly distinguish the two 18S rDNA variants of RN, in 11 (25.0%) and 33 (75.0%) of the 44 RN clones, for RN_VAR1 and RN_VAR2, respectively. Neighbor-joining trees show that the RN_VAR1 is very similar to the previously existing R. reniformis sequence in GenBank, while the RN_VAR2 sequence is more divergent. This is the first report of the identification of two major variants of the 18S rRNA gene in the same single RN, and documents the specific base variation between the two variants, and hypothesizes on simultaneous co-existence of these two variants for this gene.

  5. Characterization of the Two Intra-Individual Sequence Variants in the 18S rRNA Gene in the Plant Parasitic Nematode, Rotylenchulus reniformis

    PubMed Central

    Nyaku, Seloame T.; Sripathi, Venkateswara R.; Kantety, Ramesh V.; Gu, Yong Q.; Lawrence, Kathy; Sharma, Govind C.

    2013-01-01

    The 18S rRNA gene is fundamental to cellular and organismal protein synthesis and because of its stable persistence through generations it is also used in phylogenetic analysis among taxa. Sequence variation in this gene within a single species is rare, but it has been observed in few metazoan organisms. More frequently it has mostly been reported in the non-transcribed spacer region. Here, we have identified two sequence variants within the near full coding region of 18S rRNA gene from a single reniform nematode (RN) Rotylenchulus reniformis labeled as reniform nematode variant 1 (RN_VAR1) and variant 2 (RN_VAR2). All sequences from three of the four isolates had both RN variants in their sequences; however, isolate 13B had only RN variant 2 sequence. Specific variable base sites (96 or 5.5%) were found within the 18S rRNA gene that can clearly distinguish the two 18S rDNA variants of RN, in 11 (25.0%) and 33 (75.0%) of the 44 RN clones, for RN_VAR1 and RN_VAR2, respectively. Neighbor-joining trees show that the RN_VAR1 is very similar to the previously existing R. reniformis sequence in GenBank, while the RN_VAR2 sequence is more divergent. This is the first report of the identification of two major variants of the 18S rRNA gene in the same single RN, and documents the specific base variation between the two variants, and hypothesizes on simultaneous co-existence of these two variants for this gene. PMID:23593343

  6. Genetic diversity of the DBLalpha region in Plasmodium falciparum var genes among Asia-Pacific isolates.

    PubMed

    Fowler, Elizabeth V; Peters, Jennifer M; Gatton, Michelle L; Chen, Nanhua; Cheng, Qin

    2002-03-01

    In Plasmodium falciparum a highly polymorphic multi-copy gene family, var, encodes the variant surface antigen P. falciparum erythrocyte membrane protein 1 (PfEMP1), which has an important role in cytoadherence and immune evasion. Using previously described universal PCR primers for the first Duffy binding-like domain (DBLalpha) of var we analysed the DBLalpha repertoires of Dd2 (originally from Thailand) and eight isolates from the Solomon Islands (n=4), Philippines (n=2), Papua New Guinea (n=1) and Africa (n=1). We found 15-32 unique DBLalpha sequence types among these isolates and estimated detectable DBLalpha repertoire sizes ranging from 33-38 to 52-57 copies per genome. Our data suggest that var gene repertoires generally consist of 40-50 copies per genome. Eighteen DBLalpha sequences appeared in more than one Asia-Pacific isolate with the number of sequences shared between any two isolates ranging from 0 to 6 (mean=2.0 +/-1.6). At the amino acid level DBLalpha sequence similarity within isolates ranged from 45.2 +/- 7.1 to 50.2 +/- 6.9%, and was not significantly different from the DBLalpha amino acid sequence similarity among isolates (P>0.1). Comparisons with published sequences also revealed little overlap among DBLalpha sequences from different regions. High DBLalpha sequence diversity and minimal overlap among these isolates suggest that the global var gene repertoire is immense, and may potentially be selected for by the host's protective immune response to the var gene products, PfEMP1.

  7. Transcriptomic study of 39 ostreid herpesvirus 1 genes during an experimental infection.

    PubMed

    Segarra, Amélie; Faury, Nicole; Pépin, Jean-François; Renault, Tristan

    2014-06-01

    Massive mortality outbreaks have been reported in France since 2008 among Pacific oysters, Crassostrea gigas, with the detection of a particular OsHV-1 variant called μVar. Virus infection can be induced in healthy spat in experimental conditions allowing to better understand the disease process, including viral gene expression. Although gene expression of other herpesviruses has been widely studied, we provide the first study following viral gene expression of OsHV-1 over time. In this context, an in vivo transcriptomic study targeting 39 OsHV-1 genes was carried out during an experimental infection of Pacific oyster spat. For the first time, several OsHV-1 mRNAs were detected by real-time PCR at 0 h, 2 h, 4 h, 18 h, 26 h and 42 h post-injection. Several transcripts were detected at 2h post-infection and at 18 h post-infection for all selected ORFs. Quantification of virus gene expression at different times of infection was also carried out using an oyster housekeeping gene, Elongation factor. Developing an OsHV-1-specific reverse transcriptase real time PCR targeting 39 viral gene appears a new tool in terms of diagnosis and can be used to complement viral DNA detection in order to monitor viral replication. Copyright © 2014. Published by Elsevier Inc.

  8. VAR2CSA domains expressed in Escherichia coli induce cross-reactive antibodies to native protein.

    PubMed

    Oleinikov, Andrew V; Francis, Susan E; Dorfman, Jeffrey R; Rossnagle, Eddie; Balcaitis, Stephanie; Getz, Tony; Avril, Marion; Gose, Severin; Smith, Joseph D; Fried, Michal; Duffy, Patrick E

    2008-04-15

    The variant surface antigen VAR2CSA is a pregnancy malaria vaccine candidate, but its size and polymorphism are obstacles to development. We expressed 3D7-type VAR2CSA domains in Escherichia coli as insoluble His-tagged proteins (Duffy binding-like [DBL] domains DBL1, DBL3, DBL4, and DBL5) that were denatured and refolded or as soluble glutathione S-transferase-tagged protein (DBL6). Anti-DBL5 antiserum cross-reacted with surface proteins of chondroitin sulfate A (CSA)-binding laboratory strains (3D7-CSA and FCR3-CSA) and a clinical pregnancy malaria isolate, whereas anti-DBL6 antiserum reacted only to 3D7 surface protein. This is the first report that E. coli-expressed VAR2CSA domains induce antibody to native VAR2CSA.

  9. In vitro culture conditions and OeARF and OeH3 expressions modulate adventitious root formation from oleaster (Olea europaea L. subsp. europaea var. sylvestris) cuttings.

    PubMed

    Chiappetta, Adriana; Gagliardi, Cinzia; Bruno, Leonardo; Bitonti, Maria Beatrice

    2014-01-01

    Olea europaea L. subsp. europaea var. sylvestris, also named oleaster, is the wild form of olive and it is used as rootstock and pollen donor for many cultivated varieties. An efficient procedure for in vitro propagation of oleaster was established in this study. A zeatin concentration of 2.5 mg/L was effective to induce an appreciable vegetative growth. Also high rooting efficiency was obtained by using a short IBA pulse, followed by two different IBA concentrations in the culture medium. With the aim to enlarge knowledge on the molecular aspects of adventitious rooting, we also evaluated the transcriptional modulation of an ARFs member and HISTONE H3 genes, involved in auxin signaling and cell replication, respectively, during the root induction phase of cuttings. The obtained results suggest that the selected genes, as markers of the induction phase, could be very useful for setting up efficient culture conditions along the rooting process, thus increasing micropropagation efficiency.

  10. β-Galactomannan and Saccharomyces cerevisiae var. boulardii modulate the immune response against Salmonella enterica serovar Typhimurium in porcine intestinal epithelial and dendritic cells.

    PubMed

    Badia, Roger; Brufau, M Teresa; Guerrero-Zamora, Ana Maria; Lizardo, Rosil; Dobrescu, Irina; Martin-Venegas, Raquel; Ferrer, Ruth; Salmon, Henri; Martínez, Paz; Brufau, Joaquim

    2012-03-01

    Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that causes inflammation, necrosis, and diarrhea in pigs, as well as being an important source of food-borne diseases in humans. Probiotics and prebiotics are promising alternatives to antibiotics to control and prevent intestinal infections. The present work investigated a recently developed β-galactomannan (βGM) prebiotic compared to the proven probiotic Saccharomyces cerevisiae var. boulardii on porcine ileum intestinal epithelial cells (IECs) of the IPI-2I line and monocyte-derived dendritic cells (DCs) cocultured in vitro with Salmonella. We observed that both S. cerevisiae var. boulardii and βGM inhibited the association of Salmonella with IECs in vitro. Our data indicated that βGM has a higher ability than S. cerevisiae var. boulardii to inhibit Salmonella-induced proinflammatory mRNA (cytokines tumor necrosis factor alpha [TNF-α], interleukin-1α [IL-1α], IL-6, and granulocyte-macrophage colony-stimulating factor [GM-CSF] and chemokines CCL2, CCL20, and CXCL8) and at protein levels (IL-6 and CXCL8). Additionally, βGM and S. cerevisiae var. boulardii induced some effects on DCs that were not observed on IECs: βGM and S. cerevisiae var. boulardii showed slight upregulation of mRNA for TNF-α, GM-CSF, and CCR7 receptor on porcine monocyte-derived dendritic cells (DCs). Indeed, the addition of βGM or S. cerevisiae var. boulardii on DCs cocultured with Salmonella showed higher gene expression (mRNA) for TNF-α, GM-CSF, and CXCL8 compared to that of the control with Salmonella. In conclusion, the addition of βGM inhibits Salmonella-induced proinflammatory profiles in IECs but may promote DC activation, although associated molecular mechanisms remain to be elucidated.

  11. β-Galactomannan and Saccharomyces cerevisiae var. boulardii Modulate the Immune Response against Salmonella enterica Serovar Typhimurium in Porcine Intestinal Epithelial and Dendritic Cells

    PubMed Central

    Brufau, M. Teresa; Guerrero-Zamora, Ana Maria; Lizardo, Rosil; Dobrescu, Irina; Martin-Venegas, Raquel; Ferrer, Ruth; Salmon, Henri; Martínez, Paz

    2012-01-01

    Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that causes inflammation, necrosis, and diarrhea in pigs, as well as being an important source of food-borne diseases in humans. Probiotics and prebiotics are promising alternatives to antibiotics to control and prevent intestinal infections. The present work investigated a recently developed β-galactomannan (βGM) prebiotic compared to the proven probiotic Saccharomyces cerevisiae var. boulardii on porcine ileum intestinal epithelial cells (IECs) of the IPI-2I line and monocyte-derived dendritic cells (DCs) cocultured in vitro with Salmonella. We observed that both S. cerevisiae var. boulardii and βGM inhibited the association of Salmonella with IECs in vitro. Our data indicated that βGM has a higher ability than S. cerevisiae var. boulardii to inhibit Salmonella-induced proinflammatory mRNA (cytokines tumor necrosis factor alpha [TNF-α], interleukin-1α [IL-1α], IL-6, and granulocyte-macrophage colony-stimulating factor [GM-CSF] and chemokines CCL2, CCL20, and CXCL8) and at protein levels (IL-6 and CXCL8). Additionally, βGM and S. cerevisiae var. boulardii induced some effects on DCs that were not observed on IECs: βGM and S. cerevisiae var. boulardii showed slight upregulation of mRNA for TNF-α, GM-CSF, and CCR7 receptor on porcine monocyte-derived dendritic cells (DCs). Indeed, the addition of βGM or S. cerevisiae var. boulardii on DCs cocultured with Salmonella showed higher gene expression (mRNA) for TNF-α, GM-CSF, and CXCL8 compared to that of the control with Salmonella. In conclusion, the addition of βGM inhibits Salmonella-induced proinflammatory profiles in IECs but may promote DC activation, although associated molecular mechanisms remain to be elucidated. PMID:22301691

  12. Red Anthocyanins and Yellow Carotenoids Form the Color of Orange-Flower Gentian (Gentiana lutea L. var. aurantiaca).

    PubMed

    Berman, Judit; Sheng, Yanmin; Gómez Gómez, Lourdes; Veiga, Tania; Ni, Xiuzhen; Farré, Gemma; Capell, Teresa; Guitián, Javier; Guitián, Pablo; Sandmann, Gerhard; Christou, Paul; Zhu, Changfu

    2016-01-01

    Flower color is an important characteristic that determines the commercial value of ornamental plants. Gentian flowers occur in a limited range of colors because this species is not widely cultivated as a cut flower. Gentiana lutea L. var. aurantiaca (abbr, aurantiaca) is characterized by its orange flowers, but the specific pigments responsible for this coloration are unknown. We therefore investigated the carotenoid and flavonoid composition of petals during flower development in the orange-flowered gentian variety of aurantiaca and the yellow-flowered variety of G. lutea L. var. lutea (abbr, lutea). We observed minor varietal differences in the concentration of carotenoids at the early and final stages, but only aurantiaca petals accumulated pelargonidin glycosides, whereas these compounds were not found in lutea petals. We cloned and sequenced the anthocyanin biosynthetic gene fragments from petals, and analyzed the expression of these genes in the petals of both varieties to determine the molecular mechanisms responsible for the differences in petal color. Comparisons of deduced amino acid sequences encoded by the isolated anthocyanin cDNA fragments indicated that chalcone synthase (CHS), chalcone isomerase (CHI), anthocyanidin synthase 1 (ANS1) and ANS2 are identical in both aurantiaca and lutea varieties whereas minor amino acid differences of the deduced flavonone 3-hydroxylase (F3H) and dihydroflavonol 4-reductase (DFR) between both varieties were observed. The aurantiaca petals expressed substantially higher levels of transcripts representing CHS, F3H, DFR, ANS and UDP-glucose:flavonoid-3-O-glucosyltransferase genes, compared to lutea petals. Pelargonidin glycoside synthesis in aurantiaca petals therefore appears to reflect the higher steady-state levels of pelargonidin synthesis transcripts. Moreover, possible changes in the substrate specificity of DFR enzymes may represent additional mechanisms for producing red pelargonidin glycosides in petals of aurantiaca. Our report describing the exclusive accumulation of pelargonidin glycosides in aurantiaca petals may facilitate the modification of gentian flower color by the production of red anthocyanins.

  13. Red Anthocyanins and Yellow Carotenoids Form the Color of Orange-Flower Gentian (Gentiana lutea L. var. aurantiaca)

    PubMed Central

    Gómez Gómez, Lourdes; Veiga, Tania; Ni, Xiuzhen; Farré, Gemma; Capell, Teresa; Guitián, Javier; Guitián, Pablo; Sandmann, Gerhard; Christou, Paul

    2016-01-01

    Flower color is an important characteristic that determines the commercial value of ornamental plants. Gentian flowers occur in a limited range of colors because this species is not widely cultivated as a cut flower. Gentiana lutea L. var. aurantiaca (abbr, aurantiaca) is characterized by its orange flowers, but the specific pigments responsible for this coloration are unknown. We therefore investigated the carotenoid and flavonoid composition of petals during flower development in the orange-flowered gentian variety of aurantiaca and the yellow-flowered variety of G. lutea L. var. lutea (abbr, lutea). We observed minor varietal differences in the concentration of carotenoids at the early and final stages, but only aurantiaca petals accumulated pelargonidin glycosides, whereas these compounds were not found in lutea petals. We cloned and sequenced the anthocyanin biosynthetic gene fragments from petals, and analyzed the expression of these genes in the petals of both varieties to determine the molecular mechanisms responsible for the differences in petal color. Comparisons of deduced amino acid sequences encoded by the isolated anthocyanin cDNA fragments indicated that chalcone synthase (CHS), chalcone isomerase (CHI), anthocyanidin synthase 1 (ANS1) and ANS2 are identical in both aurantiaca and lutea varieties whereas minor amino acid differences of the deduced flavonone 3-hydroxylase (F3H) and dihydroflavonol 4-reductase (DFR) between both varieties were observed. The aurantiaca petals expressed substantially higher levels of transcripts representing CHS, F3H, DFR, ANS and UDP-glucose:flavonoid-3-O-glucosyltransferase genes, compared to lutea petals. Pelargonidin glycoside synthesis in aurantiaca petals therefore appears to reflect the higher steady-state levels of pelargonidin synthesis transcripts. Moreover, possible changes in the substrate specificity of DFR enzymes may represent additional mechanisms for producing red pelargonidin glycosides in petals of aurantiaca. Our report describing the exclusive accumulation of pelargonidin glycosides in aurantiaca petals may facilitate the modification of gentian flower color by the production of red anthocyanins. PMID:27589396

  14. Optimizing expression of the pregnancy malaria vaccine candidate, VAR2CSA in Pichia pastoris.

    PubMed

    Avril, Marion; Hathaway, Marianne J; Cartwright, Megan M; Gose, Severin O; Narum, David L; Smith, Joseph D

    2009-06-29

    VAR2CSA is the main candidate for a vaccine against pregnancy-associated malaria, but vaccine development is complicated by the large size and complex disulfide bonding pattern of the protein. Recent X-ray crystallographic information suggests that domain boundaries of VAR2CSA Duffy binding-like (DBL) domains may be larger than previously predicted and include two additional cysteine residues. This study investigated whether longer constructs would improve VAR2CSA recombinant protein secretion from Pichia pastoris and if domain boundaries were applicable across different VAR2CSA alleles. VAR2CSA sequences were bioinformatically analysed to identify the predicted C11 and C12 cysteine residues at the C-termini of DBL domains and revised N- and C-termimal domain boundaries were predicted in VAR2CSA. Multiple construct boundaries were systematically evaluated for protein secretion in P. pastoris and secreted proteins were tested as immunogens. From a total of 42 different VAR2CSA constructs, 15 proteins (36%) were secreted. Longer construct boundaries, including the predicted C11 and C12 cysteine residues, generally improved expression of poorly or non-secreted domains and permitted expression of all six VAR2CSA DBL domains. However, protein secretion was still highly empiric and affected by subtle differences in domain boundaries and allelic variation between VAR2CSA sequences. Eleven of the secreted proteins were used to immunize rabbits. Antibodies reacted with CSA-binding infected erythrocytes, indicating that P. pastoris recombinant proteins possessed native protein epitopes. These findings strengthen emerging data for a revision of DBL domain boundaries in var-encoded proteins and may facilitate pregnancy malaria vaccine development.

  15. Optimizing expression of the pregnancy malaria vaccine candidate, VAR2CSA in Pichia pastoris

    PubMed Central

    Avril, Marion; Hathaway, Marianne J; Cartwright, Megan M; Gose, Severin O; Narum, David L; Smith, Joseph D

    2009-01-01

    Background VAR2CSA is the main candidate for a vaccine against pregnancy-associated malaria, but vaccine development is complicated by the large size and complex disulfide bonding pattern of the protein. Recent X-ray crystallographic information suggests that domain boundaries of VAR2CSA Duffy binding-like (DBL) domains may be larger than previously predicted and include two additional cysteine residues. This study investigated whether longer constructs would improve VAR2CSA recombinant protein secretion from Pichia pastoris and if domain boundaries were applicable across different VAR2CSA alleles. Methods VAR2CSA sequences were bioinformatically analysed to identify the predicted C11 and C12 cysteine residues at the C-termini of DBL domains and revised N- and C-termimal domain boundaries were predicted in VAR2CSA. Multiple construct boundaries were systematically evaluated for protein secretion in P. pastoris and secreted proteins were tested as immunogens. Results From a total of 42 different VAR2CSA constructs, 15 proteins (36%) were secreted. Longer construct boundaries, including the predicted C11 and C12 cysteine residues, generally improved expression of poorly or non-secreted domains and permitted expression of all six VAR2CSA DBL domains. However, protein secretion was still highly empiric and affected by subtle differences in domain boundaries and allelic variation between VAR2CSA sequences. Eleven of the secreted proteins were used to immunize rabbits. Antibodies reacted with CSA-binding infected erythrocytes, indicating that P. pastoris recombinant proteins possessed native protein epitopes. Conclusion These findings strengthen emerging data for a revision of DBL domain boundaries in var-encoded proteins and may facilitate pregnancy malaria vaccine development. PMID:19563628

  16. Ape parasite origins of human malaria virulence genes

    PubMed Central

    Larremore, Daniel B.; Sundararaman, Sesh A.; Liu, Weimin; Proto, William R.; Clauset, Aaron; Loy, Dorothy E.; Speede, Sheri; Plenderleith, Lindsey J.; Sharp, Paul M.; Hahn, Beatrice H.; Rayner, Julian C.; Buckee, Caroline O.

    2015-01-01

    Antigens encoded by the var gene family are major virulence factors of the human malaria parasite Plasmodium falciparum, exhibiting enormous intra- and interstrain diversity. Here we use network analysis to show that var architecture and mosaicism are conserved at multiple levels across the Laverania subgenus, based on var-like sequences from eight single-species and three multi-species Plasmodium infections of wild-living or sanctuary African apes. Using select whole-genome amplification, we also find evidence of multi-domain var structure and synteny in Plasmodium gaboni, one of the ape Laverania species most distantly related to P. falciparum, as well as a new class of Duffy-binding-like domains. These findings indicate that the modular genetic architecture and sequence diversity underlying var-mediated host-parasite interactions evolved before the radiation of the Laverania subgenus, long before the emergence of P. falciparum. PMID:26456841

  17. Transcriptome analysis of ectopic chloroplast development in green curd cauliflower (Brassica oleracea L. var. botrytis).

    PubMed

    Zhou, Xiangjun; Fei, Zhangjun; Thannhauser, Theodore W; Li, Li

    2011-11-23

    Chloroplasts are the green plastids where photosynthesis takes place. The biogenesis of chloroplasts requires the coordinate expression of both nuclear and chloroplast genes and is regulated by developmental and environmental signals. Despite extensive studies of this process, the genetic basis and the regulatory control of chloroplast biogenesis and development remain to be elucidated. Green cauliflower mutant causes ectopic development of chloroplasts in the curd tissue of the plant, turning the otherwise white curd green. To investigate the transcriptional control of chloroplast development, we compared gene expression between green and white curds using the RNA-seq approach. Deep sequencing produced over 15 million reads with lengths of 86 base pairs from each cDNA library. A total of 7,155 genes were found to exhibit at least 3-fold changes in expression between green and white curds. These included light-regulated genes, genes encoding chloroplast constituents, and genes involved in chlorophyll biosynthesis. Moreover, we discovered that the cauliflower ELONGATED HYPOCOTYL5 (BoHY5) was expressed higher in green curds than white curds and that 2616 HY5-targeted genes, including 1600 up-regulated genes and 1016 down-regulated genes, were differently expressed in green in comparison to white curd tissue. All these 1600 up-regulated genes were HY5-targeted genes in the light. The genome-wide profiling of gene expression by RNA-seq in green curds led to the identification of large numbers of genes associated with chloroplast development, and suggested the role of regulatory genes in the high hierarchy of light signaling pathways in mediating the ectopic chloroplast development in the green curd cauliflower mutant.

  18. Transcriptome analysis of ectopic chloroplast development in green curd cauliflower (Brassica oleracea L. var. botrytis)

    PubMed Central

    2011-01-01

    Background Chloroplasts are the green plastids where photosynthesis takes place. The biogenesis of chloroplasts requires the coordinate expression of both nuclear and chloroplast genes and is regulated by developmental and environmental signals. Despite extensive studies of this process, the genetic basis and the regulatory control of chloroplast biogenesis and development remain to be elucidated. Results Green cauliflower mutant causes ectopic development of chloroplasts in the curd tissue of the plant, turning the otherwise white curd green. To investigate the transcriptional control of chloroplast development, we compared gene expression between green and white curds using the RNA-seq approach. Deep sequencing produced over 15 million reads with lengths of 86 base pairs from each cDNA library. A total of 7,155 genes were found to exhibit at least 3-fold changes in expression between green and white curds. These included light-regulated genes, genes encoding chloroplast constituents, and genes involved in chlorophyll biosynthesis. Moreover, we discovered that the cauliflower ELONGATED HYPOCOTYL5 (BoHY5) was expressed higher in green curds than white curds and that 2616 HY5-targeted genes, including 1600 up-regulated genes and 1016 down-regulated genes, were differently expressed in green in comparison to white curd tissue. All these 1600 up-regulated genes were HY5-targeted genes in the light. Conclusions The genome-wide profiling of gene expression by RNA-seq in green curds led to the identification of large numbers of genes associated with chloroplast development, and suggested the role of regulatory genes in the high hierarchy of light signaling pathways in mediating the ectopic chloroplast development in the green curd cauliflower mutant. PMID:22112144

  19. Transcriptome analysis of Brassica juncea var. tumida Tsen responses to Plasmodiophora brassicae primed by the biocontrol strain Zhihengliuella aestuarii.

    PubMed

    Luo, Yuanli; Dong, Daiwen; Su, Yu; Wang, Xuyi; Peng, Yumei; Peng, Jiang; Zhou, Changyong

    2018-05-01

    Mustard clubroot, caused by Plasmodiophora brassicae, is a serious disease that affects Brassica juncea var. tumida Tsen, a mustard plant that is the raw material for a traditional fermented food manufactured in Chongqing, China. In our laboratory, we screened the antagonistic bacteria Zhihengliuella aestuarii against P. brassicae. To better understand the biocontrol mechanism, three transcriptome analyses of B. juncea var. tumida Tsen were conducted using Illumina HiSeq 4000, one from B. juncea only inoculated with P. brassicae (P), one inoculated with P. brassica and the biocontrol agent Z. aestuarii at the same time (P + B), and the other was the control (H), in which P. brassicae was replaced by sterile water. A total of 19.94 Gb was generated by Illumina HiSeq sequencing. The sequence data were de novo assembled, and 107,617 unigenes were obtained. In total, 5629 differentially expressed genes between biocontrol-treated (P + B) and infected (P) samples were assigned to 126 KEGG pathways. Using multiple testing corrections, 20 pathways were significantly enriched with Qvalue ≤ 0.05. The resistance-related genes, involved in the production of pathogenesis-related proteins, pathogen-associated molecular pattern-triggered immunity, and effector-triggered immunity signaling pathways, calcium influx, salicylic acid pathway, reactive oxygen intermediates, and mitogen-activated protein kinase cascades, and cell wall modification, were obtained. The various defense responses induced by the biocontrol strain combatted the P. brassicae infection. The genes and pathways involved in plant resistance were induced by a biocontrol strain. The transcriptome data explained the molecular mechanism of the potential biocontrol strain against P. brassicae. The data will also serve as an important public information platform to study B. juncea var. tumida Tsen and will be useful for breeding mustard plants resistant to P. brassicae.

  20. Genic insights from integrated human proteomics in GeneCards.

    PubMed

    Fishilevich, Simon; Zimmerman, Shahar; Kohn, Asher; Iny Stein, Tsippi; Olender, Tsviya; Kolker, Eugene; Safran, Marilyn; Lancet, Doron

    2016-01-01

    GeneCards is a one-stop shop for searchable human gene annotations (http://www.genecards.org/). Data are automatically mined from ∼120 sources and presented in an integrated web card for every human gene. We report the application of recent advances in proteomics to enhance gene annotation and classification in GeneCards. First, we constructed the Human Integrated Protein Expression Database (HIPED), a unified database of protein abundance in human tissues, based on the publically available mass spectrometry (MS)-based proteomics sources ProteomicsDB, Multi-Omics Profiling Expression Database, Protein Abundance Across Organisms and The MaxQuant DataBase. The integrated database, residing within GeneCards, compares favourably with its individual sources, covering nearly 90% of human protein-coding genes. For gene annotation and comparisons, we first defined a protein expression vector for each gene, based on normalized abundances in 69 normal human tissues. This vector is portrayed in the GeneCards expression section as a bar graph, allowing visual inspection and comparison. These data are juxtaposed with transcriptome bar graphs. Using the protein expression vectors, we further defined a pairwise metric that helps assess expression-based pairwise proximity. This new metric for finding functional partners complements eight others, including sharing of pathways, gene ontology (GO) terms and domains, implemented in the GeneCards Suite. In parallel, we calculated proteome-based differential expression, highlighting a subset of tissues that overexpress a gene and subserving gene classification. This textual annotation allows users of VarElect, the suite's next-generation phenotyper, to more effectively discover causative disease variants. Finally, we define the protein-RNA expression ratio and correlation as yet another attribute of every gene in each tissue, adding further annotative information. The results constitute a significant enhancement of several GeneCards sections and help promote and organize the genome-wide structural and functional knowledge of the human proteome. Database URL:http://www.genecards.org/. © The Author(s) 2016. Published by Oxford University Press.

  1. Database resources of the National Center for Biotechnology Information.

    PubMed

    2016-01-04

    The National Center for Biotechnology Information (NCBI) provides a large suite of online resources for biological information and data, including the GenBank(®) nucleic acid sequence database and the PubMed database of citations and abstracts for published life science journals. Additional NCBI resources focus on literature (PubMed Central (PMC), Bookshelf and PubReader), health (ClinVar, dbGaP, dbMHC, the Genetic Testing Registry, HIV-1/Human Protein Interaction Database and MedGen), genomes (BioProject, Assembly, Genome, BioSample, dbSNP, dbVar, Epigenomics, the Map Viewer, Nucleotide, Probe, RefSeq, Sequence Read Archive, the Taxonomy Browser and the Trace Archive), genes (Gene, Gene Expression Omnibus (GEO), HomoloGene, PopSet and UniGene), proteins (Protein, the Conserved Domain Database (CDD), COBALT, Conserved Domain Architecture Retrieval Tool (CDART), the Molecular Modeling Database (MMDB) and Protein Clusters) and chemicals (Biosystems and the PubChem suite of small molecule databases). The Entrez system provides search and retrieval operations for most of these databases. Augmenting many of the web applications are custom implementations of the BLAST program optimized to search specialized datasets. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov. Published by Oxford University Press on behalf of Nucleic Acids Research 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  2. Database resources of the National Center for Biotechnology Information.

    PubMed

    2015-01-01

    The National Center for Biotechnology Information (NCBI) provides a large suite of online resources for biological information and data, including the GenBank(®) nucleic acid sequence database and the PubMed database of citations and abstracts for published life science journals. Additional NCBI resources focus on literature (Bookshelf, PubMed Central (PMC) and PubReader); medical genetics (ClinVar, dbMHC, the Genetic Testing Registry, HIV-1/Human Protein Interaction Database and MedGen); genes and genomics (BioProject, BioSample, dbSNP, dbVar, Epigenomics, Gene, Gene Expression Omnibus (GEO), Genome, HomoloGene, the Map Viewer, Nucleotide, PopSet, Probe, RefSeq, Sequence Read Archive, the Taxonomy Browser, Trace Archive and UniGene); and proteins and chemicals (Biosystems, COBALT, the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART), the Molecular Modeling Database (MMDB), Protein Clusters, Protein and the PubChem suite of small molecule databases). The Entrez system provides search and retrieval operations for many of these databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page at http://www.ncbi.nlm.nih.gov. Published by Oxford University Press on behalf of Nucleic Acids Research 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  3. Pectic polysaccharides extracted from Rauvolfia verticillata (Lour.) Baill. var. hainanensis Tsiang increase LκB-α expression and ameliorate ulcerative colitis.

    PubMed

    Miao, X P; Sun, X N; Wei, H; Liu, Z J; Cui, L J; Deng, T Z

    2015-02-01

    The therapeutic potential of pectic polysaccharides extracted from Rauvolfia verticillata (Lour.) Baill. var. hainanensis Tsiang in ulcerative colitis were investigated. This study showed that pectic polysaccharides extracted from Rauvolfia verticillata (Lour.) Baill. var. hainanensis Tsiang ameliorated ulcerative colitis and were proposed to exhibit anti-inflammatory effects via increased expression of IκB-α proteins and suppressing NF-αB translocation.

  4. Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grison, R.; Grezes-Besset, B.; Lucante, N.

    1996-05-01

    Constitutive overexpression of a protein involved in plant defense mechanisms to disease is one of the strategies proposed to increase plant tolerance to fungal pathogens. A hybrid endochitinase gene under a constitutive promoter was introduced by Agrobacterium-mediated transformation into a winter-type oilseed rape (Brassica napus var. oleifera) inbred line. Progeny from transformed plants was challenged using three different fungal pathogens (Cylindrosporium concentricum, Phoma lingam, Sclerotinia sclerotiorum) in field trials at two different geographical locations. These plants exhibited an increased tolerance to disease as compared with the nontransgenic parental plants. 31 refs., 1 fig., 2 tabs.

  5. Identification and expression pattern analysis of BoMYB51 involved in indolic glucosinolate biosynthesis from broccoli (Brassica oleracea var. italica).

    PubMed

    Yu, Qingyue; Hao, Guodong; Zhou, Jianxin; Wang, Jingying; Evivie, Ejiroghene Ruona; Li, Jing

    2018-06-22

    Glucosinolates are a class of amino acid-derived specialized metabolites characteristic of the Brassicales order. Trp derived indolic glucosinolates are essential for the effective plant defense responses to a wide range of pathogens and herbivores. In Arabidopsis, MYB51 is the key transcription factor positively regulates indolic glucosinolate production by activating certain biosynthetic genes. In this study, we report the isolation and identification of a MYB51 from broccoli designated as BoMYB51. Overexpression of BoMYB51 in Arabidopsis increased indolic glucosinolate production by upregulating biosynthetic genes and resulted in enhanced flagellin22 (Flg22) induced callose deposition. The spatial expression pattern and responsive expression of BoMYB51 to several hormones and stress treatments were investigated by expressing the β-glucuronidase (GUS) reporter gene driven by BoMYB51 promotor in Arabidopsis and quantitative real-time PCR analysis in broccoli. Our study provides information on molecular characteristics of BoMYB51 and possible physiological process BoMYB51 may involve. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. VarDetect: a nucleotide sequence variation exploratory tool

    PubMed Central

    Ngamphiw, Chumpol; Kulawonganunchai, Supasak; Assawamakin, Anunchai; Jenwitheesuk, Ekachai; Tongsima, Sissades

    2008-01-01

    Background Single nucleotide polymorphisms (SNPs) are the most commonly studied units of genetic variation. The discovery of such variation may help to identify causative gene mutations in monogenic diseases and SNPs associated with predisposing genes in complex diseases. Accurate detection of SNPs requires software that can correctly interpret chromatogram signals to nucleotides. Results We present VarDetect, a stand-alone nucleotide variation exploratory tool that automatically detects nucleotide variation from fluorescence based chromatogram traces. Accurate SNP base-calling is achieved using pre-calculated peak content ratios, and is enhanced by rules which account for common sequence reading artifacts. The proposed software tool is benchmarked against four other well-known SNP discovery software tools (PolyPhred, novoSNP, Genalys and Mutation Surveyor) using fluorescence based chromatograms from 15 human genes. These chromatograms were obtained from sequencing 16 two-pooled DNA samples; a total of 32 individual DNA samples. In this comparison of automatic SNP detection tools, VarDetect achieved the highest detection efficiency. Availability VarDetect is compatible with most major operating systems such as Microsoft Windows, Linux, and Mac OSX. The current version of VarDetect is freely available at . PMID:19091032

  7. The Drosophila Su(var)3-7 gene is required for oogenesis and female fertility, genetically interacts with piwi and aubergine, but impacts only weakly transposon silencing.

    PubMed

    Basquin, Denis; Spierer, Anne; Begeot, Flora; Koryakov, Dmitry E; Todeschini, Anne-Laure; Ronsseray, Stéphane; Vieira, Cristina; Spierer, Pierre; Delattre, Marion

    2014-01-01

    Heterochromatin is made of repetitive sequences, mainly transposable elements (TEs), the regulation of which is critical for genome stability. We have analyzed the role of the heterochromatin-associated Su(var)3-7 protein in Drosophila ovaries. We present evidences that Su(var)3-7 is required for correct oogenesis and female fertility. It accumulates in heterochromatic domains of ovarian germline and somatic cells nuclei, where it co-localizes with HP1. Homozygous mutant females display ovaries with frequent degenerating egg-chambers. Absence of Su(var)3-7 in embryos leads to defects in meiosis and first mitotic divisions due to chromatin fragmentation or chromosome loss, showing that Su(var)3-7 is required for genome integrity. Females homozygous for Su(var)3-7 mutations strongly impair repression of P-transposable element induced gonadal dysgenesis but have minor effects on other TEs. Su(var)3-7 mutations reduce piRNA cluster transcription and slightly impact ovarian piRNA production. However, this modest piRNA reduction does not correlate with transposon de-silencing, suggesting that the moderate effect of Su(var)3-7 on some TE repression is not linked to piRNA production. Strikingly, Su(var)3-7 genetically interacts with the piwi and aubergine genes, key components of the piRNA pathway, by strongly impacting female fertility without impairing transposon silencing. These results lead us to propose that the interaction between Su(var)3-7 and piwi or aubergine controls important developmental processes independently of transposon silencing.

  8. In Vitro Culture Conditions and OeARF and OeH3 Expressions Modulate Adventitious Root Formation from Oleaster (Olea europaea L. subsp. europaea var. sylvestris) Cuttings

    PubMed Central

    Gagliardi, Cinzia; Bruno, Leonardo; Bitonti, Maria Beatrice

    2014-01-01

    Olea europaea L. subsp. europaea var. sylvestris, also named oleaster, is the wild form of olive and it is used as rootstock and pollen donor for many cultivated varieties. An efficient procedure for in vitro propagation of oleaster was established in this study. A zeatin concentration of 2.5 mg/L was effective to induce an appreciable vegetative growth. Also high rooting efficiency was obtained by using a short IBA pulse, followed by two different IBA concentrations in the culture medium. With the aim to enlarge knowledge on the molecular aspects of adventitious rooting, we also evaluated the transcriptional modulation of an ARFs member and HISTONE H3 genes, involved in auxin signaling and cell replication, respectively, during the root induction phase of cuttings. The obtained results suggest that the selected genes, as markers of the induction phase, could be very useful for setting up efficient culture conditions along the rooting process, thus increasing micropropagation efficiency. PMID:24587768

  9. Transcriptome analysis and identification of genes associated with omega-3 fatty acid biosynthesis in Perilla frutescens (L.) var. frutescens

    USDA-ARS?s Scientific Manuscript database

    Background: Perilla (Perilla frutescens (L.) var frutescens) produces high levels of a-linolenic acid (ALA), an omega-3 fatty acid important to health and development. To uncover key genes involved in fatty acid (FA) and triacylglycerol (TAG) synthesis in perilla, we conducted deep sequencing of cD...

  10. RNA-seq analysis of transcriptome and glucosinolate metabolism in seeds and sprouts of broccoli (Brassica oleracea var. italic).

    PubMed

    Gao, Jinjun; Yu, Xinxin; Ma, Fengming; Li, Jing

    2014-01-01

    Broccoli (Brassica oleracea var. italica), a member of Cruciferae, is an important vegetable containing high concentration of various nutritive and functional molecules especially the anticarcinogenic glucosinolates. The sprouts of broccoli contain 10-100 times higher level of glucoraphanin, the main contributor of the anticarcinogenesis, than the edible florets. Despite the broccoli sprouts' functional importance, currently available genetic and genomic tools for their studies are very limited, which greatly restricts the development of this functionally important vegetable. A total of ∼85 million 251 bp reads were obtained. After de novo assembly and searching the assembled transcripts against the Arabidopsis thaliana and NCBI nr databases, 19,441 top-hit transcripts were clustered as unigenes with an average length of 2,133 bp. These unigenes were classified according to their putative functional categories. Cluster analysis of total unigenes with similar expression patterns and differentially expressed unigenes among different tissues, as well as transcription factor analysis were performed. We identified 25 putative glucosinolate metabolism genes sharing 62.04-89.72% nucleotide sequence identity with the Arabidopsis orthologs. This established a broccoli glucosinolate metabolic pathway with high colinearity to Arabidopsis. Many of the biosynthetic and degradation genes showed higher expression after germination than in seeds; especially the expression of the myrosinase TGG2 was 20-130 times higher. These results along with the previous reports about these genes' studies in Arabidopsis and the glucosinolate concentration in broccoli sprouts indicate the breakdown products of glucosinolates may play important roles in the stage of broccoli seed germination and sprout development. Our study provides the largest genetic resource of broccoli to date. These data will pave the way for further studies and genetic engineering of broccoli sprouts and will also provide new insight into the genomic research of this species and its relatives.

  11. Mutations in CG8878, a Novel Putative Protein Kinase, Enhance P Element Dependent Silencing (PDS) and Position Effect Variegation (PEV) in Drosophila melanogaster

    PubMed Central

    McCracken, Allen; Locke, John

    2014-01-01

    Genes in multicellular organisms are expressed as part of a developmental program that is largely dependent on self-perpetuating higher-order chromatin states. The mechanism of establishing and maintaining these epigenetic events is well studied in Drosophila. The first known example of an epigenetic effect was that of (PEV) in Drosophila, which has been shown to be due to gene silencing via heterochromatin formation. We are investigating a process similar to Position Effect Variegation (PEV) using a mini-w transgene, called Pci, inserted in the upstream regulatory region of ci. The mini-white + transgene in Pci is expressed throughout the adult eye; however, when other P or KP elements are present, a variegated eye phenotype results indicating random w + silencing during development. This P element dependent silencing (PDS) can be modified by the haplo-suppressors/triplo-enhancers, Su(var)205 and Su(var)3–7, indicating that these heterochromatic modifiers also act dose dependently in PDS. Here we use a spontaneous derivative mutation of Pci called PciE1 (E1) that variegates like PDS in the absence of P elements, presumably due to an adjacent gypsy element insertion, to screen for second-site modifier mutations that enhance variable silencing of white + in E1. We isolated 7 mutations in CG8878, an essential gene, that enhance the E1 variegated phenotype. CG8878, a previously uncharacterized gene, potentially encodes a serine/threonine kinase whose closest Drosophila paralogue, ballchen (nhk-1), phosphorylates histones. These mutant alleles enhance both PDS at E1 and Position Effect Variegation (PEV) at wm4, indicating a previously unknown common silencing mechanism between the two. PMID:24614804

  12. Effect of dietary arginine on growth, intestinal enzyme activities and gene expression in muscle, hepatopancreas and intestine of juvenile Jian carp (Cyprinus carpio var. Jian).

    PubMed

    Chen, Gangfu; Feng, Lin; Kuang, Shengyao; Liu, Yang; Jiang, Jun; Hu, Kai; Jiang, Weidan; Li, Shuhong; Tang, Ling; Zhou, Xiaoqiu

    2012-07-01

    The present study was conducted to test the hypothesis that dietary arginine promotes digestion and absorption capacity, and, thus, enhances fish growth. This improvement might be related to the target of rapamycin (TOR) and eIF4E-binding protein (4E-BP). A total of 1200 juvenile Jian carp, Cyprinus carpio var. Jian, with an average initial weight of 6.33 (SE 0.03) g, were fed with diets containing graded concentrations of arginine, namely, 9.8 (control), 12.7, 16.1, 18.5, 21.9 and 24.5 g arginine/kg diet for 9 weeks. An real-time quantitative PCR analysis was performed to determine the relative expression of TOR and 4E-BP in fish muscle, hepatopancreas and intestine. Dietary arginine increased (P < 0.05): (1) glutamate-oxaloacetate transaminase and glutamate-pyruvate transaminase activities in muscle and hepatopancreas; (2) intestine and hepatopancreas protein content, folds height, and trypsin, chymotrypsin, lipase, Na⁺/K⁺-ATPase, alkaline phosphatase, γ-glutamyl transpeptidase and creatine kinase activities in intestine; (3) Lactobacillus counts; (4) relative expression of TOR in the muscle, hepatopancreas and distal intestine (DI); (5) relative expression of 4E-BP in proximal intestine (PI) and mid-intestine (MI), as compared with the control group. In contrast, dietary arginine reduced (P < 0.05): (1) plasma ammonia content; (2) Aeromonas hydrophila and Escherichia coli counts; (3) relative expression of TOR in PI and MI; (4) relative expression of 4E-BP in the muscle, hepatopancreas and DI. The arginine requirement estimated by specific growth rate using quadratic regression analysis was found to be 18.0 g/kg diet. These results indicate that arginine improved fish growth, digestive and absorptive ability and regulated the expression of TOR and 4E-BP genes.

  13. Identification of a Major Dimorphic Region in the Functionally Critical N-Terminal ID1 Domain of VAR2CSA

    PubMed Central

    Doritchamou, Justin; Sabbagh, Audrey; Jespersen, Jakob S.; Renard, Emmanuelle; Salanti, Ali; Nielsen, Morten A.; Deloron, Philippe; Tuikue Ndam, Nicaise

    2015-01-01

    The VAR2CSA protein of Plasmodium falciparum is transported to and expressed on the infected erythrocyte surface where it plays a key role in placental malaria (PM). It is the current leading candidate for a vaccine to prevent PM. However, the antigenic polymorphism integral to VAR2CSA poses a challenge for vaccine development. Based on detailed analysis of polymorphisms in the sequence of its ligand-binding N-terminal region, currently the main focus for vaccine development, we assessed var2csa from parasite isolates infecting pregnant women. The results reveal for the first time the presence of a major dimorphic region in the functionally critical N-terminal ID1 domain. Parasite isolates expressing VAR2CSA with particular motifs present within this domain are associated with gravidity- and parasite density-related effects. These observations are of particular interest in guiding efforts with respect to optimization of the VAR2CSA-based vaccines currently under development. PMID:26393516

  14. Murine Model for Preclinical Studies of Var2CSA-Mediated Pathology Associated with Malaria in Pregnancy

    PubMed Central

    Dechavanne, Sebastien; Sousa, Patrícia M.; Barateiro, André; Cunha, Sónia F.; Nunes-Silva, Sofia; Lima, Flávia A.; Murillo, Oscar; Marinho, Claudio R. F.; Gangnard, Stephane; Srivastava, Anand; Braks, Joanna A.; Janse, Chris J.; Gamain, Benoit; Penha-Gonçalves, Carlos

    2016-01-01

    Plasmodium falciparum infection during pregnancy leads to abortions, stillbirth, low birth weight, and maternal mortality. Infected erythrocytes (IEs) accumulate in the placenta by adhering to chondroitin sulfate A (CSA) via var2CSA protein exposed on the P. falciparum IE membrane. Plasmodium berghei IE infection in pregnant BALB/c mice is a model for severe placental malaria (PM). Here, we describe a transgenic P. berghei parasite expressing the full-length var2CSA extracellular region (domains DBL1X to DBL6ε) fused to a P. berghei exported protein (EMAP1) and characterize a var2CSA-based mouse model of PM. BALB/c mice were infected at midgestation with different doses of P. berghei-var2CSA (P. berghei-VAR) or P. berghei wild-type IEs. Infection with 104 P. berghei-VAR IEs induced a higher incidence of stillbirth and lower fetal weight than P. berghei. At doses of 105 and 106 IEs, P. berghei-VAR-infected mice showed increased maternal mortality during pregnancy and fetal loss, respectively. Parasite loads in infected placentas were similar between parasite lines despite differences in maternal outcomes. Fetal weight loss normalized for parasitemia was higher in P. berghei-VAR-infected mice than in P. berghei-infected mice. In vitro assays showed that higher numbers of P. berghei-VAR IEs than P. berghei IEs adhered to placental tissue. Immunization of mice with P. berghei-VAR elicited IgG antibodies reactive to DBL1-6 recombinant protein, indicating that the topology of immunogenic epitopes is maintained between DBL1-6–EMAP1 on P. berghei-VAR and recombinant DBL1-6 (recDBL1-6). Our data suggested that impairments in pregnancy caused by P. berghei-VAR infection were attributable to var2CSA expression. This model provides a tool for preclinical evaluation of protection against PM induced by approaches that target var2CSA. PMID:27045035

  15. Rational confederation of genes and diseases: NGS interpretation via GeneCards, MalaCards and VarElect.

    PubMed

    Rappaport, Noa; Fishilevich, Simon; Nudel, Ron; Twik, Michal; Belinky, Frida; Plaschkes, Inbar; Stein, Tsippi Iny; Cohen, Dana; Oz-Levi, Danit; Safran, Marilyn; Lancet, Doron

    2017-08-18

    A key challenge in the realm of human disease research is next generation sequencing (NGS) interpretation, whereby identified filtered variant-harboring genes are associated with a patient's disease phenotypes. This necessitates bioinformatics tools linked to comprehensive knowledgebases. The GeneCards suite databases, which include GeneCards (human genes), MalaCards (human diseases) and PathCards (human pathways) together with additional tools, are presented with the focus on MalaCards utility for NGS interpretation as well as for large scale bioinformatic analyses. VarElect, our NGS interpretation tool, leverages the broad information in the GeneCards suite databases. MalaCards algorithms unify disease-related terms and annotations from 69 sources. Further, MalaCards defines hierarchical relatedness-aliases, disease families, a related diseases network, categories and ontological classifications. GeneCards and MalaCards delineate and share a multi-tiered, scored gene-disease network, with stringency levels, including the definition of elite status-high quality gene-disease pairs, coming from manually curated trustworthy sources, that includes 4500 genes for 8000 diseases. This unique resource is key to NGS interpretation by VarElect. VarElect, a comprehensive search tool that helps infer both direct and indirect links between genes and user-supplied disease/phenotype terms, is robustly strengthened by the information found in MalaCards. The indirect mode benefits from GeneCards' diverse gene-to-gene relationships, including SuperPaths-integrated biological pathways from 12 information sources. We are currently adding an important information layer in the form of "disease SuperPaths", generated from the gene-disease matrix by an algorithm similar to that previously employed for biological pathway unification. This allows the discovery of novel gene-disease and disease-disease relationships. The advent of whole genome sequencing necessitates capacities to go beyond protein coding genes. GeneCards is highly useful in this respect, as it also addresses 101,976 non-protein-coding RNA genes. In a more recent development, we are currently adding an inclusive map of regulatory elements and their inferred target genes, generated by integration from 4 resources. MalaCards provides a rich big-data scaffold for in silico biomedical discovery within the gene-disease universe. VarElect, which depends significantly on both GeneCards and MalaCards power, is a potent tool for supporting the interpretation of wet-lab experiments, notably NGS analyses of disease. The GeneCards suite has thus transcended its 2-decade role in biomedical research, maturing into a key player in clinical investigation.

  16. Occasional hybridization between a native and invasive Senecio species in Australia is unlikely to contribute to invasive success.

    PubMed

    Dormontt, Eleanor E; Prentis, Peter J; Gardner, Michael G; Lowe, Andrew J

    2017-01-01

    Hybridization between native and invasive species can facilitate introgression of native genes that increase invasive potential by providing exotic species with pre-adapted genes suitable for new environments. In this study we assessed the outcome of hybridization between native Senecio pinnatifolius var. pinnatifolius A.Rich. (dune ecotype) and invasive Senecio madagascariensis Poir. to investigate the potential for introgression of adaptive genes to have facilitated S. madagascariensis spread in Australia. We used amplified fragment length polymorphisms (141 loci) and nuclear microsatellites (2 loci) to genotype a total of 118 adults and 223 seeds from S. pinnatifolius var. pinnatifolius and S. madagascariensis at one allopatric and two shared sites. We used model based clustering and assignment methods to establish whether hybrid seed set and mature hybrids occur in the field. We detected no adult hybrids in any population. Low incidence of hybrid seed set was found at Lennox Head where the contact zone overlapped for 20 m (6% and 22% of total seeds sampled for S. pinnatifolius var. pinnatifolius and S. madagascariensis respectively). One hybrid seed was detected at Ballina where a gap of approximately 150 m was present between species (2% of total seeds sampled for S. madagascariensis ). We found no evidence of adult hybrid plants at two shared sites. Hybrid seed set from both species was identified at low levels. Based on these findings we conclude that introgression of adaptive genes from S. pinnatifolius var. pinnatifolius is unlikely to have facilitated S. madagascariensis invasions in Australia. Revisitation of one site after two years could find no remaining S. pinnatifolius var.  pinnatifolius , suggesting that contact zones between these species are dynamic and that S. pinnatifolius var.  pinnatifolius may be at risk of displacement by S. madagascariensis in coastal areas.

  17. Harnessing Omics Big Data in Nine Vertebrate Species by Genome-Wide Prioritization of Sequence Variants with the Highest Predicted Deleterious Effect on Protein Function.

    PubMed

    Rozman, Vita; Kunej, Tanja

    2018-05-10

    Harnessing the genomics big data requires innovation in how we extract and interpret biologically relevant variants. Currently, there is no established catalog of prioritized missense variants associated with deleterious protein function phenotypes. We report in this study, to the best of our knowledge, the first genome-wide prioritization of sequence variants with the most deleterious effect on protein function (potentially deleterious variants [pDelVars]) in nine vertebrate species: human, cattle, horse, sheep, pig, dog, rat, mouse, and zebrafish. The analysis was conducted using the Ensembl/BioMart tool. Genes comprising pDelVars in the highest number of examined species were identified using a Python script. Multiple genomic alignments of the selected genes were built to identify interspecies orthologous potentially deleterious variants, which we defined as the "ortho-pDelVars." Genome-wide prioritization revealed that in humans, 0.12% of the known variants are predicted to be deleterious. In seven out of nine examined vertebrate species, the genes encoding the multiple PDZ domain crumbs cell polarity complex component (MPDZ) and the transforming acidic coiled-coil containing protein 2 (TACC2) comprise pDelVars. Five interspecies ortho-pDelVars were identified in three genes. These findings offer new ways to harness genomics big data by facilitating the identification of functional polymorphisms in humans and animal models and thus provide a future basis for optimization of protocols for whole genome prioritization of pDelVars and screening of orthologous sequence variants. The approach presented here can inform various postgenomic applications such as personalized medicine and multiomics study of health interventions (iatromics).

  18. The floral transcriptome of ylang ylang (Cananga odorata var. fruticosa) uncovers biosynthetic pathways for volatile organic compounds and a multifunctional and novel sesquiterpene synthase

    PubMed Central

    Jin, Jingjing; Kim, Mi Jung; Dhandapani, Savitha; Tjhang, Jessica Gambino; Yin, Jun-Lin; Wong, Limsoon; Sarojam, Rajani; Chua, Nam-Hai; Jang, In-Cheol

    2015-01-01

    The pleasant fragrance of ylang ylang varieties (Cananga odorata) is mainly due to volatile organic compounds (VOCs) produced by the flowers. Floral scents are a key factor in plant–insect interactions and are vital for successful pollination. C. odorata var. fruticosa, or dwarf ylang ylang, is a variety of ylang ylang that is popularly grown in Southeast Asia as a small shrub with aromatic flowers. Here, we describe the combined use of bioinformatics and chemical analysis to discover genes for the VOC biosynthesis pathways and related genes. The scented flowers of C. odorata var. fruticosa were analysed by gas chromatography/mass spectrometry and a total of 49 VOCs were identified at four different stages of flower development. The bulk of these VOCs were terpenes, mainly sesquiterpenes. To identify the various terpene synthases (TPSs) involved in the production of these essential oils, we performed RNA sequencing on mature flowers. From the RNA sequencing data, four full-length TPSs were functionally characterized. In vitro assays showed that two of these TPSs were mono-TPSs. CoTPS1 synthesized four products corresponding to β-thujene, sabinene, β-pinene, and α-terpinene from geranyl pyrophosphate and CoTPS4 produced geraniol from geranyl pyrophosphate. The other two TPSs were identified as sesqui-TPSs. CoTPS3 catalysed the conversion of farnesyl pyrophosphate to α-bergamotene, whereas CoTPS2 was found to be a multifunctional and novel TPS that could catalyse the synthesis of three sesquiterpenes, β-ylangene, β-copaene, and β-cubebene. Additionally, the activities of the two sesqui-TPSs were confirmed in planta by transient expression of these TPS genes in Nicotiana benthamiana leaves by Agrobacterium-mediated infiltration. PMID:25956881

  19. Inheritance of the complete mitochondrial genomes Cyprinus capio furong(♀) × Cyprinus carpio var.singguonensis(♂).

    PubMed

    Peng, Huizhen; Liu, Qiaolin; Xiao, Tiaoyi

    2016-09-01

    In this study, 15 sets of primers were used to amplify contiguous, overlapping segments of the complete mitochondrial DNA (mtDNA) of C. capio furong(♀) × C. carpio var.singguonensis(♂) in order to characterize and compare their mitochondrial genomes. The total length of the mitochondrial genome was 16,581 bp and deposited in the GenBank with the accession number KP210473. The organization of the mitochondrial genomes contained 37 genes (13 protein-coding genes, 2 ribosomal RNA and 22 transfer RNAs) and a major non-coding control region which was similar to those reported mitochondrial genomes. Most genes were encoded on the H-strand, except for the ND6 and 8 tRNA genes, encoding on the L-strand. The nucleotide skewness for the coding strands of C. capio furong(♀) × C. carpio var.singguonensis(♂) (AT-skew = 0.12, GC-skew = -0.27) were biased toward T and G. The complete mitogenome may provide important date for the study of genetic mechanism of C. capio furong(♀) × C. carpio var.singguonensis(♂).

  20. Arabidopsis VARIEGATED 3 encodes a chloroplast-targeted, zinc-finger protein required for chloroplast and palisade cell development.

    PubMed

    Naested, Henrik; Holm, Agnethe; Jenkins, Tom; Nielsen, H Bjørn; Harris, Cassandra A; Beale, Michael H; Andersen, Mathias; Mant, Alexandra; Scheller, Henrik; Camara, Bilal; Mattsson, Ole; Mundy, John

    2004-09-15

    The stable, recessive Arabidopsis variegated 3 (var3) mutant exhibits a variegated phenotype due to somatic areas lacking or containing developmentally retarded chloroplasts and greatly reduced numbers of palisade cells. The VAR3 gene, isolated by transposon tagging, encodes the 85.9 kDa VAR3 protein containing novel repeats and zinc fingers described as protein interaction domains. VAR3 interacts specifically in yeast and in vitro with NCED4, a putative polyene chain or carotenoid dioxygenase, and both VAR3 and NCED4 accumulate in the chloroplast stroma. Metabolic profiling demonstrates that pigment profiles are qualitatively similar in wild type and var3, although var3 accumulates lower levels of chlorophylls and carotenoids. These results indicate that VAR3 is a part of a protein complex required for normal chloroplast and palisade cell development.

  1. Bioinformatics analysis of the ς-carotene desaturase gene in cabbage (Brassica oleracea var. capitata)

    NASA Astrophysics Data System (ADS)

    Sun, Bo; Zheng, Aihong; Jiang, Min; Xue, Shengling; Zhang, Fen; Tang, Haoru

    2018-04-01

    ς-carotene desaturase (ZDS) is an important enzyme in carotenoid biosynthesis. Here, the Brassica oleracea var. capitata ZDS (BocZDS) gene sequences were obtained from Brassica database (BRAD), and preformed for bioinformatics analysis. The BocZDS gene mapped to Scaffold000363, and contains an open reading frame of 1,686 bp that encodes a 561-amino acid protein with a calculated molecular mass of 62.00 kD and an isoelectric point (pI) of 8.2. Subcellular localization predicted the BocZDS gene was in the chloroplast. The conserved domain of the BocZDS protein is PLN02487, indicating that it belongs the member of zeta-carotene desaturase. Homology analysis indicates that the ZDS protein is apparently conserved during plant evolution and is most closely related to B. oleracea var. oleracea, B. napus, and B. rapa. The findings of the present study provide a molecular basis for the elucidation of ZDS gene function in cabbage.

  2. Complete mitochondrial genome of Xingguo red carp (Cyprinus carpio var. singuonensis) and purse red carp (Cyprinus carpio var. wuyuanensis).

    PubMed

    Hu, Guang-Fu; Liu, Xiang-Jiang; Li, Zhong; Liang, Hong-Wei; Hu, Shao-Na; Zou, Gui-Wei

    2016-01-01

    The complete mitochondrial genomes of Xingguo red carp (Cyprinus carpio var. singuonensis) and purse red carp (Cyprinus carpio var. wuyuanensis) were sequenced. Comparison of these two mitochondrial genomes revealed that the mtDNAs of these two common carp varieties were remarkably similar in genome length, gene order and content, and AT content. However, size variation between these two mitochondrial genomes presented here showed 39 site differences in overall length. About 2 site differences were located in rRNAs, 3 in tRNAs, 3 in the control region, 31 in protein-coding genes. Thirty-one variable bases in the protein-coding regions between the two varieties mitochondrial sequences led to three variable amino acids, which were mainly located in the protein ND5 and ND4.

  3. Identification and characterization of a LTR retrotransposon from the genome of Cyprinus carpio var. Jian.

    PubMed

    Cao, Liping; Yin, Guojun; Cao, Zheming; Bing, Xuwen; Ding, Weidong

    2016-06-01

    A Ty3/gypsy-retrotransposon-type transposon was found in the genome of the Jian carp (Cyprinus carpio var. Jian) in a previous study (unpublished), and was designated a JRE retrotransposon (Jian retrotransposon). The full-length JRE retrotransposon is 5126 bp, which includes two long terminal repeats of 470 bp at the 5' end and 453 bp at the 3' end, and two open reading frames between them: 4203 bp encoding the group-specific antigen (GAG) and polyprotein (POL). The pol gene has a typical Ty3/gypsy retrotransposon structure, and the gene order is protease, reverse transcriptase, RNase H, and integrase (PR-RT-RH-IN). A phylogenetic analysis of the pol gene showed that it has similarities of 40.7, 40, and 32.8 %, to retrotransposons of Azumapecten farreri, Mizuhopecten yessoensis, and Xiphophorus maculatus, respectively. Therefore, JRE might belong to the JULE retrotransposon family. The copy number of the JRE transposon in the genome of the Jian carp is 124, determined with real-time quantitative PCR. The mRNA of the JRE retrotransposon is expressed in five Jian carp tissues, the liver, kidney, blood, muscle, and gonad, and slightly higher in the kidney and liver than in the other tissues.

  4. Cloning and expression of 130-kd mosquito-larvicidal delta-endotoxin gene of Bacillus thuringiensis var. Israelensis in Escherichia coli.

    PubMed

    Angsuthanasombat, C; Chungjatupornchai, W; Kertbundit, S; Luxananil, P; Settasatian, C; Wilairat, P; Panyim, S

    1987-07-01

    Five recombinant E. coli clones exhibiting toxicity to Aedes aegypti larvae were obtained from a library of 800 clones containing XbaI DNA fragments of 110 kb plasmid from B. thuringiensis var. israelensis. All the five clones (pMU 14/258/303/388/679) had the same 3.8-kb insert and encoded a major protein of 130 kDa which was highly toxic to A. aegypti larvae. Three clones (pMU 258/303/388) transcribed the 130 kD a gene in the same direction as that of lac Z promoter of pUC12 vector whereas the transcription of the other two (pMU 14/679) was in the opposite direction. A 1.9-kb fragment of the 3.8 kb insert coded for a protein of 65 kDa. Partial DNA sequence of the 3.8 kb insert, corresponding to the 5'-terminal of the 130 kDa gene, revealed a continuous reading frame, a Shine-Dalgarno sequence and a tentative 5'-regulatory region. These results demonstrated that the 3.8 kb insert is a minimal DNA fragment containing a regulatory region plus the coding sequence of the 130 kDa protein that is highly toxic to mosquito larvae.

  5. The complete chloroplast genome sequence of American bird pepper (Capsicum annuum var. glabriusculum).

    PubMed

    Zeng, Fan-chun; Gao, Cheng-wen; Gao, Li-zhi

    2016-01-01

    The complete chloroplast genome sequence of American bird pepper (Capsicum annuum var. glabriusculum) is reported and characterized in this study. The genome size is 156,612 bp, containing a pair of inverted repeats (IRs) of 25,776 bp separated by a large single-copy region of 87,213 bp and a small single-copy region of 17,851 bp. The chloroplast genome harbors 130 known genes, including 89 protein-coding genes, 8 ribosomal RNA genes, and 37 tRNA genes. A total of 18 of these genes are duplicated in the inverted repeat regions, 16 genes contain 1 intron, and 2 genes and one ycf have 2 introns.

  6. Intracellular Ca(2+) and K(+) concentration in Brassica oleracea leaf induces differential expression of transporter and stress-related genes.

    PubMed

    Lee, Jeongyeo; Kim, Jungeun; Choi, Jae-Pil; Lee, MiYe; Kim, Min Keun; Lee, Young Han; Hur, Yoonkang; Nou, Ill-Sup; Park, Sang Un; Min, Sung Ran; Kim, HyeRan

    2016-03-09

    One of the most important members of the genus Brassica, cabbage, requires a relatively high level of calcium for normal growth (Plant Cell Environ 7: 397-405, 1984; Plant Physiol 60: 854-856, 1977). Localized Ca(2+) deficiency in cabbage leaves causes tip-burn, bringing about serious economic losses (Euphytica 9:203-208, 1960; Ann Bot 43:363-372, 1979; Sci Hortic 14:131-138, 1981). Although it has been known that the occurrence of tip-burn is related to Ca(2+) deficiency, there is limited information on the underlying mechanisms of tip-burn or the relationship between Ca(2+) and tip-burn incidence. To obtain more information on the genetic control of tip-burn symptoms, we focused on the identification of genes differentially expressed in response to increasing intracellular Ca(2+) and K(+) concentrations in B. oleracea lines derived from tip-burn susceptible, tip-burn resistant cabbages (B. oleracea var. capitata), and kale (B. oleracea var. acephala). We compared the levels of major macronutrient cations, including Ca(2+) and K(+), in three leaf segments, the leaf apex (LA), middle of leaf (LM), and leaf base (LB), of tip-burn susceptible, tip-burn resistant cabbages, and kale. Ca(2+) and K(+) concentrations were highest in kale, followed by tip-burn resistant and then tip-burn susceptible cabbages. These cations generally accumulated to a greater extent in the LB than in the LA. Transcriptome analysis identified 58,096 loci as putative non-redundant genes in the three leaf segments of the three B. oleracea lines and showed significant changes in expression of 27,876 loci based on Ca(2+) and K(+) levels. Among these, 1844 loci were identified as tip-burn related phenotype-specific genes. Tip-burn resistant cabbage and kale-specific genes were largely related to stress and transport activity based on GO annotation. Tip-burn resistant cabbage and kale plants showed phenotypes clearly indicative of heat-shock, freezing, and drought stress tolerance compared to tip-burn susceptible cabbages, demonstrating a correlation between intracellular Ca(2+) and K(+) concentrations and tolerance of abiotic stress with differential gene expression. We selected 165 genes that were up- or down-regulated in response to increasing Ca(2+) and K(+) concentrations in the three leaf segments of the three plant lines. Gene ontology enrichment analysis indicated that these genes participated in regulatory metabolic processes or stress responses. Our results indicate that the genes involved in regulatory metabolic processes or stress responses were differentially expressed in response to increasing Ca(2+) and K(+) concentrations in the B. oleracea leaf. Our transcriptome data and the genes identified may serve as a starting point for understanding the mechanisms underlying essential macronutrient deficiencies in plants, as well as the features of tip-burn in cabbage and other Brassica species.

  7. Expression analysis of fertilization/early embryogenesis-associated genes in Phalaenopsis orchids.

    PubMed

    Chen, Jhun-Chen; Wei, Miao-Ju; Fang, Su-Chiung

    2016-10-02

    One of the distinct reproductive programs in orchid species is pollination-triggered ovule development and megasporogenesis. During sexual reproduction, fertilization occurs days to months after pollination. The molecular mechanisms evolved to carry out this strategic reproductive program remain unclear. In the August issue of Plant Physiology 1 , we report comprehensive studies of comparative genome-wide gene expression in various reproductive tissues and the molecular events associated with developmental transitions unique to sexual reproduction of Phalaenopsis aphrodite. Transcriptional factors and signaling components whose expression is specifically enriched in interior ovary tissues when fertilization occurs and embryos start to develop have been identified. Here, we report verification of additional fertilization-associated genes, DOMAINS REARRANGED METHYLTRANSFERASE 1 (PaDRM1), CHROMOMETHYLTRANSFERASE 1 (PaCMT1), SU(VAR)3-9 RELATED PROTEIN 1 (PaSUVR1), INDOLE-3-ACETIC ACID inducible 30-like 1 (PaIAA30L1), and ETHYLENE INSENSITIVE 3-like 1 (PaEIN3L1), and discuss their potential roles in gametophyte development, epigenetic reprogramming, and hormone regulation during fertilization and establishment of embryo development in Phalaenopsis orchids.

  8. Genome of wild olive and the evolution of oil biosynthesis.

    PubMed

    Unver, Turgay; Wu, Zhangyan; Sterck, Lieven; Turktas, Mine; Lohaus, Rolf; Li, Zhen; Yang, Ming; He, Lijuan; Deng, Tianquan; Escalante, Francisco Javier; Llorens, Carlos; Roig, Francisco J; Parmaksiz, Iskender; Dundar, Ekrem; Xie, Fuliang; Zhang, Baohong; Ipek, Arif; Uranbey, Serkan; Erayman, Mustafa; Ilhan, Emre; Badad, Oussama; Ghazal, Hassan; Lightfoot, David A; Kasarla, Pavan; Colantonio, Vincent; Tombuloglu, Huseyin; Hernandez, Pilar; Mete, Nurengin; Cetin, Oznur; Van Montagu, Marc; Yang, Huanming; Gao, Qiang; Dorado, Gabriel; Van de Peer, Yves

    2017-10-31

    Here we present the genome sequence and annotation of the wild olive tree ( Olea europaea var. sylvestris ), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at ∼28 and ∼59 Mya. These events contributed to the expansion and neofunctionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as FAD2 , SACPD, EAR , and ACPTE , following duplication, has been responsible for the differential accumulation of oleic and linoleic acids produced in olive compared with sesame, a closely related oil crop. Duplicated oleaster FAD2 genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of FAD2 gene expression. Additionally, neofunctionalization of members of the SACPD gene family has led to increased expression of SACPD2 , 3 , 5 , and 7 , consequently resulting in an increased desaturation of steric acid. Taken together, decreased FAD2 expression and increased SACPD expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics.

  9. Genome of wild olive and the evolution of oil biosynthesis

    PubMed Central

    Unver, Turgay; Wu, Zhangyan; Sterck, Lieven; Turktas, Mine; Lohaus, Rolf; Li, Zhen; Yang, Ming; He, Lijuan; Deng, Tianquan; Escalante, Francisco Javier; Llorens, Carlos; Roig, Francisco J.; Parmaksiz, Iskender; Dundar, Ekrem; Xie, Fuliang; Zhang, Baohong; Ipek, Arif; Uranbey, Serkan; Erayman, Mustafa; Ilhan, Emre; Badad, Oussama; Ghazal, Hassan; Lightfoot, David A.; Kasarla, Pavan; Colantonio, Vincent; Tombuloglu, Huseyin; Hernandez, Pilar; Mete, Nurengin; Cetin, Oznur; Van Montagu, Marc; Yang, Huanming; Gao, Qiang; Dorado, Gabriel; Van de Peer, Yves

    2017-01-01

    Here we present the genome sequence and annotation of the wild olive tree (Olea europaea var. sylvestris), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at ∼28 and ∼59 Mya. These events contributed to the expansion and neofunctionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as FAD2, SACPD, EAR, and ACPTE, following duplication, has been responsible for the differential accumulation of oleic and linoleic acids produced in olive compared with sesame, a closely related oil crop. Duplicated oleaster FAD2 genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of FAD2 gene expression. Additionally, neofunctionalization of members of the SACPD gene family has led to increased expression of SACPD2, 3, 5, and 7, consequently resulting in an increased desaturation of steric acid. Taken together, decreased FAD2 expression and increased SACPD expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics. PMID:29078332

  10. Recombinant yeast as a functional tool for understanding bitterness and cucurbitacin biosynthesis in watermelon (Citrullus spp.).

    PubMed

    Davidovich-Rikanati, Rachel; Shalev, Lior; Baranes, Nadine; Meir, Ayala; Itkin, Maxim; Cohen, Shahar; Zimbler, Kobi; Portnoy, Vitaly; Ebizuka, Yutaka; Shibuya, Masaaki; Burger, Yosef; Katzir, Nurit; Schaffer, Arthur A; Lewinsohn, Efraim; Tadmor, Ya'akov

    2015-01-01

    Cucurbitacins are a group of bitter-tasting oxygenated tetracyclic triterpenes that are produced in the family Cucurbitaceae and other plant families. The natural roles of cucurbitacins in plants are probably related to defence against pathogens and pests. Cucurbitadienol, a triterpene synthesized from oxidosqualene, is the first committed precursor to cucurbitacins produced by a specialized oxidosqualene cyclase termed cucurbitadienol synthase. We explored cucurbitacin accumulation in watermelon in relation to bitterness. Our findings show that cucurbitacins are accumulated in bitter-tasting watermelon, Citrullus lanatus var. citroides, as well as in their wild ancestor, C. colocynthis, but not in non-bitter commercial cultivars of sweet watermelon (C. lanatus var. lanatus). Molecular analysis of genes expressed in the roots of several watermelon accessions led to the isolation of three sequences (CcCDS1, CcCDS2 and ClCDS1), all displaying high similarity to the pumpkin CpCPQ, encoding a protein previously shown to possess cucurbitadienol synthase activity. We utilized the Saccharomyces cerevisiae strain BY4743, heterozygous for lanosterol synthase, to probe for possible encoded cucurbitadienol synthase activity of the expressed watermelon sequences. Functional expression of the two sequences isolated from C. colocynthis (CcCDS1 and CcCDS2) in yeast revealed that only CcCDS2 possessed cucurbitadienol synthase activity, while CcCDS1 did not display cucurbitadienol synthase activity in recombinant yeast. ClCDS1 isolated from C. lanatus var. lanatus is almost identical to CcCDS1. Our results imply that CcCDS2 plays a role in imparting bitterness to watermelon. Yeast has been an excellent diagnostic tool to determine the first committed step of cucurbitacin biosynthesis in watermelon. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Identification and characterization of intracellular proteins that bind oligonucleotides with phosphorothioate linkages

    PubMed Central

    Liang, Xue-hai; Sun, Hong; Shen, Wen; Crooke, Stanley T.

    2015-01-01

    Although the RNase H-dependent mechanism of inhibition of gene expression by chemically modified antisense oligonucleotides (ASOs) has been well characterized, little is known about the interactions between ASOs and intracellular proteins that may alter cellular localization and/or potency of ASOs. Here, we report the identification of 56 intracellular ASO-binding proteins using multi-step affinity selection approaches. Many of the tested proteins had no significant effect on ASO activity; however, some proteins, including La/SSB, NPM1, ANXA2, VARS and PC4, appeared to enhance ASO activities, likely through mechanisms related to subcellular distribution. VARS and ANXA2 co-localized with ASOs in endocytic organelles, and reduction in the level of VARS altered lysosome/ASO localization patterns, implying that these proteins may facilitate ASO release from the endocytic pathway. Depletion of La and NPM1 reduced nuclear ASO levels, suggesting potential roles in ASO nuclear accumulation. On the other hand, Ku70 and Ku80 proteins inhibited ASO activity, most likely by competition with RNase H1 for ASO/RNA duplex binding. Our results demonstrate that phosphorothioate-modified ASOs bind a set of cellular proteins that affect ASO activity via different mechanisms. PMID:25712094

  12. Correlation analysis of the mRNA and miRNA expression profiles in the nascent synthetic allotetraploid Raphanobrassica

    PubMed Central

    Ye, Bingyuan; Wang, Ruihua; Wang, Jianbo

    2016-01-01

    Raphanobrassica is an allopolyploid species derived from inter-generic hybridization that combines the R genome from R. sativus and the C genome from B. oleracea var. alboglabra. In the present study, we used a high-throughput sequencing method to identify the mRNA and miRNA profiles in Raphanobrassica and its parents. A total of 33,561 mRNAs and 283 miRNAs were detected, 9,209 mRNAs and 134 miRNAs were differentially expressed respectively, 7,633 mRNAs and 39 miRNAs showed ELD expression, 5,219 mRNAs and 57 miRNAs were non-additively expressed in Raphanobrassica. Remarkably, differentially expressed genes (DEGs) were up-regulated and maternal bias was detected in Raphanobrassica. In addition, a miRNA-mRNA interaction network was constructed based on reverse regulated miRNA-mRNAs, which included 75 miRNAs and 178 mRNAs, 31 miRNAs were non-additively expressed target by 13 miRNAs. The related target genes were significantly enriched in the GO term ‘metabolic processes’. Non-additive related target genes regulation is involved in a range of biological pathways, like providing a driving force for variation and adaption in this allopolyploid. The integrative analysis of mRNA and miRNA profiling provides more information to elucidate gene expression mechanism and may supply a comprehensive and corresponding method to study genetic and transcription variation of allopolyploid. PMID:27874043

  13. Population Genetic Structure and Phylogeography of Camellia flavida (Theaceae) Based on Chloroplast and Nuclear DNA Sequences

    PubMed Central

    Wei, Su-Juan; Lu, Yong-Bin; Ye, Quan-Qing; Tang, Shao-Qing

    2017-01-01

    Camellia flavida is an endangered species of yellow camellia growing in limestone mountains in southwest China. The current classification of C. flavida into two varieties, var. flavida and var. patens, is controversial. We conducted a genetic analysis of C. flavida to determine its taxonomic structure. A total of 188 individual plants from 20 populations across the entire distribution range in southwest China were analyzed using two DNA fragments: a chloroplast DNA fragment from the small single copy region and a single-copy nuclear gene called phenylalanine ammonia-lyase (PAL). Sequences from both chloroplast and nuclear DNA were highly diverse; with high levels of genetic differentiation and restricted gene flow. This result can be attributed to the high habitat heterogeneity in limestone karst, which isolates C. flavida populations from each other. Our nuclear DNA results demonstrate that there are three differentiated groups within C. flavida: var. flavida 1, var. flavida 2, and var. patens. These genetic groupings are consistent with the morphological characteristics of the plants. We suggest that the samples included in this study constitute three taxa and the var. flavida 2 group is the genuine C. flavida. The three groups should be recognized as three management units for conservation concerns. PMID:28579991

  14. Evaluation of genotypic variation of broccoli (Brassica oleracea var. italic) in response to selenium treatment.

    PubMed

    Ramos, Silvio J; Yuan, Youxi; Faquin, Valdemar; Guilherme, Luiz Roberto G; Li, Li

    2011-04-27

    Broccoli (Brassica oleracea var. italic) fortified with selenium (Se) has been promoted as a functional food. Here, we evaluated 38 broccoli accessions for their capacity to accumulate Se and for their responses to selenate treatment in terms of nutritional qualities and sulfur gene expresion. We found that the total Se content varied with over 2-fold difference among the leaf tissues of broccoli accessions when the plants were treated with 20 μM Na(2)SeO(4). Approximately half of total Se accumulated in leaves was Se-methylselenocysteine and selenomethionine. Transcriptional regulation of adenosine 5'-phosphosulfate sulfurylase and selenocysteine Se-methyltransferase gene expression might contribute to the different levels of Se accumulation in broccoli. Total glucosinolate contents were not affected by the concentration of selenate application for the majority of broccoli accessions. Essential micronutrients (i.e., Fe, Zn, Cu, and Mn) remained unchanged among half of the germplasm. Moreover, the total antioxidant capacity was greatly stimulated by selenate in over half of the accessions. The diverse genotypic variation in Se, glucosinolate, and antioxidant contents among accessions provides the opportunity to breed broccoli cultivars that simultaneously accumulate Se and other health benefit compounds.

  15. Burkitt lymphoma expresses oncofetal chondroitin sulfate without being a reservoir for placental malaria sequestration.

    PubMed

    Agerbaek, Mette Ø; Pereira, Marina A; Clausen, Thomas M; Pehrson, Caroline; Oo, Htoo Zarni; Spliid, Charlotte; Rich, Jamie R; Fung, Vincent; Nkrumah, Francis; Neequaye, Janet; Biggar, Robert J; Reynolds, Steven J; Tosato, Giovanna; Pullarkat, Sheeja T; Ayers, Leona W; Theander, Thor G; Daugaard, Mads; Bhatia, Kishor; Nielsen, Morten A; Mbulaiteye, Sam M; Salanti, Ali

    2017-04-01

    Burkitt lymphoma (BL) is a malignant disease, which is frequently found in areas with holoendemic Plasmodium falciparum malaria. We have previously found that the VAR2CSA protein is present on malaria-infected erythrocytes and facilitates a highly specific binding to the placenta. ofCS is absent in other non-malignant tissues and thus VAR2CSA generally facilitates parasite sequestration and accumulation in pregnant women. In this study, we show that the specific receptor for VAR2CSA, the oncofetal chondroitin sulfate (ofCS), is likewise present in BL tissue and cell lines. We therefore explored whether ofCS in BL could act as anchor site for VAR2CSA-expressing infected erythrocytes. In contrast to the placenta, we found no evidence of in vivo sequestering of infected erythrocytes in the BL tissue. Furthermore, we found VAR2CSA-specific antibody titers in children with endemic BL to be lower than in control children from the same malaria endemic region. The abundant presence of ofCS in BL tissue and the absence of ofCS in non-malignant tissue encouraged us to examine whether recombinant VAR2CSA could be used to target BL. We confirmed the binding of VAR2CSA to BL-derived cells and showed that a VAR2CSA drug conjugate efficiently killed the BL-derived cell lines in vitro. These results identify ofCS as a novel therapeutic BL target and highlight how VAR2CSA could be used as a tool for the discovery of novel approaches for directing BL therapy. © 2016 UICC.

  16. Burkitt lymphoma express oncofetal Chondroitin Sulfate without being a reservoir for placental malaria sequestration

    PubMed Central

    Agerbæk, Mette Ø.; Pereira, Marina A.; Clausen, Thomas M.; Pehrson, Caroline; Oo, Htoo Zarni; Spliid, Charlotte; Rich, Jamie R.; Fung, Vincent; Nkrumah, Francis; Neequaye, Janet; Biggar, Robert J.; Reynolds, Steven J.; Tosato, Giovanna; Pullarkat, Sheeja T.; Ayers, Leona W.; Theander, Thor G.; Daugaard, Mads; Bhatia, Kishor; Nielsen, Morten A.; Mbulaiteye, Sam M.; Salanti, Ali

    2016-01-01

    Burkitt lymphoma (BL) is a malignant disease, which is frequently found in areas with holoendemic Plasmodium falciparum malaria. We have previously found that the VAR2CSA protein is present on malaria-infected erythrocytes and facilitates a highly specific binding to the placenta. OfCS is absent from other non-malignant tissues and thus VAR2CSA generally facilitates parasite sequestration and accumulation in pregnant women. In this study, we show that the specific receptor for VAR2CSA, the oncofetal chondroitin sulfate (ofCS), is likewise present in BL tissue and cell lines. We therefore explored whether ofCS in BL could act as anchor-site for VAR2CSA-expressing infected erythrocytes. In contrast to the placenta, we found no evidence of in vivo sequestering of infected erythrocytes in the BL tissue. Furthermore, we found VAR2CSA specific antibody titers in children with endemic BL to be lower than in control children from the same malaria endemic region. The abundant presence of ofCS in BL tissue and the absence of ofCS in non-malignant tissue, encouraged us to examine whether recombinant VAR2CSA could be used to target BL. We confirmed the binding of VAR2CSA to BL-derived cells and showed that a VAR2CSA drug conjugate efficiently killed the BL-derived cell lines in vitro. These results identify ofCS as a novel therapeutic BL target and highlight how VAR2CSA could be used as a tool for the discovery of novel approaches for directing BL therapy. PMID:27997697

  17. The Plasmodium falciparum transcriptome in severe malaria reveals altered expression of genes involved in important processes including surface antigen–encoding var genes

    PubMed Central

    Tonkin-Hill, Gerry Q.; Trianty, Leily; Noviyanti, Rintis; Nguyen, Hanh H. T.; Sebayang, Boni F.; Lampah, Daniel A.; Marfurt, Jutta; Cobbold, Simon A.; Rambhatla, Janavi S.; McConville, Malcolm J.; Rogerson, Stephen J.; Brown, Graham V.; Day, Karen P.; Price, Ric N.; Anstey, Nicholas M.

    2018-01-01

    Within the human host, the malaria parasite Plasmodium falciparum is exposed to multiple selection pressures. The host environment changes dramatically in severe malaria, but the extent to which the parasite responds to—or is selected by—this environment remains unclear. From previous studies, the parasites that cause severe malaria appear to increase expression of a restricted but poorly defined subset of the PfEMP1 variant, surface antigens. PfEMP1s are major targets of protective immunity. Here, we used RNA sequencing (RNAseq) to analyse gene expression in 44 parasite isolates that caused severe and uncomplicated malaria in Papuan patients. The transcriptomes of 19 parasite isolates associated with severe malaria indicated that these parasites had decreased glycolysis without activation of compensatory pathways; altered chromatin structure and probably transcriptional regulation through decreased histone methylation; reduced surface expression of PfEMP1; and down-regulated expression of multiple chaperone proteins. Our RNAseq also identified novel associations between disease severity and PfEMP1 transcripts, domains, and smaller sequence segments and also confirmed all previously reported associations between expressed PfEMP1 sequences and severe disease. These findings will inform efforts to identify vaccine targets for severe malaria and also indicate how parasites adapt to—or are selected by—the host environment in severe malaria. PMID:29529020

  18. NaCl regulation of plasma membrane H(+)-ATPase gene expression in a glycophyte and a halophyte.

    PubMed

    Niu, X; Narasimhan, M L; Salzman, R A; Bressan, R A; Hasegawa, P M

    1993-11-01

    NaCl regulation of plasma membrane H(+)-ATPase gene expression in the glycophyte tobacco (Nicotiana tabacum L. var Wisconsin 38) and the halophyte Atriplex nummularia L. was evaluated by comparison of organ-specific mRNA abundance using homologous cDNA probes encoding the ATPases of the respective plants. Accumulation of mRNA was induced by NaCl in fully expanded leaves and in roots but not in expanding leaves or stems. The NaCl responsiveness of the halophyte to accumulate plasma membrane H(+)-ATPase mRNA in roots was substantially greater than that of the glycophyte. Salt-induced transcript accumulation in A. nummularia roots was localized by in situ hybridization predominantly to the elongation zone, but mRNA levels also increased in the zone of differentiation. Increased message accumulation in A. nummularia roots could be detected within 8 h after NaCl (400 mM) treatment, and maximal levels were severalfold greater than in roots of untreated control plants. NaCl-induced plasma membrane H(+)-ATPase gene expression in expanded leaves and roots presumably indicates that these organs require increased H(+)-electrochemical potential gradients for the maintenance of plant ion homeostasis for salt adaptation. The greater capacity of the halophyte to induce plasma membrane H(+)-ATPase gene expression in response to NaCl may be a salt-tolerance determinant.

  19. NaCl regulation of plasma membrane H(+)-ATPase gene expression in a glycophyte and a halophyte.

    PubMed Central

    Niu, X; Narasimhan, M L; Salzman, R A; Bressan, R A; Hasegawa, P M

    1993-01-01

    NaCl regulation of plasma membrane H(+)-ATPase gene expression in the glycophyte tobacco (Nicotiana tabacum L. var Wisconsin 38) and the halophyte Atriplex nummularia L. was evaluated by comparison of organ-specific mRNA abundance using homologous cDNA probes encoding the ATPases of the respective plants. Accumulation of mRNA was induced by NaCl in fully expanded leaves and in roots but not in expanding leaves or stems. The NaCl responsiveness of the halophyte to accumulate plasma membrane H(+)-ATPase mRNA in roots was substantially greater than that of the glycophyte. Salt-induced transcript accumulation in A. nummularia roots was localized by in situ hybridization predominantly to the elongation zone, but mRNA levels also increased in the zone of differentiation. Increased message accumulation in A. nummularia roots could be detected within 8 h after NaCl (400 mM) treatment, and maximal levels were severalfold greater than in roots of untreated control plants. NaCl-induced plasma membrane H(+)-ATPase gene expression in expanded leaves and roots presumably indicates that these organs require increased H(+)-electrochemical potential gradients for the maintenance of plant ion homeostasis for salt adaptation. The greater capacity of the halophyte to induce plasma membrane H(+)-ATPase gene expression in response to NaCl may be a salt-tolerance determinant. PMID:8022933

  20. Epigenetic Silencing of Plasmodium falciparum Genes Linked to Erythrocyte Invasion

    PubMed Central

    Cortés, Alfred; Carret, Celine; Kaneko, Osamu; Yim Lim, Brian Y. S.; Ivens, Alasdair; Holder, Anthony A

    2007-01-01

    The process of erythrocyte invasion by merozoites of Plasmodium falciparum involves multiple steps, including the formation of a moving junction between parasite and host cell, and it is characterised by the redundancy of many of the receptor–ligand interactions involved. Several parasite proteins that interact with erythrocyte receptors or participate in other steps of invasion are encoded by small subtelomerically located gene families of four to seven members. We report here that members of the eba, rhoph1/clag, acbp, and pfRh multigene families exist in either an active or a silenced state. In the case of two members of the rhoph1/clag family, clag3.1 and clag3.2, expression was mutually exclusive. Silencing was clonally transmitted and occurred in the absence of detectable DNA alterations, suggesting that it is epigenetic. This was demonstrated for eba-140. Our data demonstrate that variant or mutually exclusive expression and epigenetic silencing in Plasmodium are not unique to genes such as var, which encode proteins that are exported to the surface of the erythrocyte, but also occur for genes involved in host cell invasion. Clonal variant expression of invasion-related ligands increases the flexibility of the parasite to adapt to its human host. PMID:17676953

  1. Physiological response and sulfur metabolism of the V. dahliae-infected tomato plants in tomato/potato onion companion cropping.

    PubMed

    Fu, Xuepeng; Li, Chunxia; Zhou, Xingang; Liu, Shouwei; Wu, Fengzhi

    2016-11-03

    Companion cropping with potato onions (Allium cepa var. agrogatum Don.) can enhance the disease resistance of tomato plants (Solanum lycopersicum) to Verticillium dahliae infection by increasing the expressions of genes related to disease resistance. However, it is not clear how tomato plants physiologically respond to V. dahliae infection and what roles sulfur plays in the disease-resistance. Pot experiments were performed to examine changes in the physiology and sulfur metabolism of tomato roots infected by V. dahliae under the companion cropping (tomato/potato onion). The results showed that the companion cropping increased the content of total phenol, lignin and glutathione and increased the activities of peroxidase, polyphenol oxidase and phenylalanine ammonia lyase in the roots of tomato plants. RNA-seq analysis showed that the expressions of genes involved in sulfur uptake and assimilation, and the formation of sulfur-containing defense compounds (SDCs) were up-regulated in the V. dahlia-infected tomatoes in the companion cropping. In addition, the interactions among tomato, potato onion and V. dahliae induced the expression of the high- affinity sulfate transporter gene in the tomato roots. These results suggest that sulfur may play important roles in tomato disease resistance against V. dahliae.

  2. Comparative Phytonutrient Analysis of Broccoli By-Products: The Potentials for Broccoli By-Product Utilization.

    PubMed

    Liu, Mengpei; Zhang, Lihua; Ser, Suk Lan; Cumming, Jonathan R; Ku, Kang-Mo

    2018-04-13

    The phytonutrient concentrations of broccoli ( Brassica oleracea var. italica) florets, stems, and leaves were compared to evaluate the value of stem and leaf by-products as a source of valuable nutrients. Primary metabolites, including amino acids, organic acids, and sugars, as well as glucosinolates, carotenoids, chlorophylls, vitamins E and K, essential mineral elements, total phenolic content, antioxidant activity, and expression of glucosinolate biosynthesis and hydrolysis genes were quantified from the different broccoli tissues. Broccoli florets had higher concentrations of amino acids, glucoraphanin, and neoglucobrassicin compared to other tissues, whereas leaves were higher in carotenoids, chlorophylls, vitamins E and K, total phenolic content, and antioxidant activity. Leaves were also good sources of calcium and manganese compared to other tissues. Stems had the lowest nitrile formation from glucosinolate. Each tissue exhibited specific core gene expression profiles supporting glucosinolate metabolism, with different gene homologs expressed in florets, stems, and leaves, which suggests that tissue-specific pathways function to support primary and secondary metabolic pathways in broccoli. This comprehensive nutrient and bioactive compound profile represents a useful resource for the evaluation of broccoli by-product utilization in the human diet, and as feedstocks for bioactive compounds for industry.

  3. Cladosporium fulvum CfHNNI1 induces hypersensitive necrosis, defence gene expression and disease resistance in both host and nonhost plants.

    PubMed

    Cai, Xin-Zhong; Zhou, Xin; Xu, You-Ping; Joosten, Matthieu H A J; de Wit, Pierre J G M

    2007-05-01

    Nonhost resistance as a durable and broad-spectrum defence strategy is of great potential for agricultural applications. We have previously isolated a cDNA showing homology with genes encoding bZIP transcription factors from tomato leaf mould pathogen Cladosporium fulvum. Upon expression, the cDNA results in necrosis in C. fulvum host tomato and nonhost tobacco plants and is thus named CfHNNI1 (for C . f ulvum host and nonhost plant necrosis inducer 1). In the present study we report the induction of necrosis in a variety of nonhost plant species belonging to three families by the transient in planta expression of CfHNNI1 using virus-based vectors. Additionally, transient expression of CfHNNI1 also induced expression of the HR marker gene LeHSR203 and greatly reduced the accumulation of recombinant Potato virus X. Stable CfHNNI1 transgenic tobacco plants were generated in which the expression of CfHNNI1 is under the control of the pathogen-inducible hsr203J promoter. When infected with the oomycetes pathogen Phytophthora parasitica var. nicotianae, these transgenic plants manifested enhanced expression of CfHNNI1 and subsequent accumulation of CfHNNI1 protein, resulting in high expression of the HSR203J and PR genes, and strong resistance to the pathogen. The CfHNNI1 transgenic plants also exhibited induced resistance to Pseudomonas syringae pv. tabaci and Tobacco mosaic virus. Furthermore, CfHNNI1 was highly expressed and the protein was translocated into plant cells during the incompatible interactions between C. fulvum and host and nonhost plants. Our results demonstrate that CfHNNI1 is a potential general elicitor of hypersensitive response and nonhost resistance.

  4. Molecular cloning and characterization of a nonsymbiotic hemoglobin gene (GLB1) from Malus hupehensis Rehd. with heterologous expression in tomato.

    PubMed

    Shi, Xingzheng; Wang, Xinliang; Peng, Futian; Zhao, Yu

    2012-08-01

    Nonsymbiotic hemoglobins (nsHbs) are involved in a variety of cellular processes in plants. Previous studies indicate that nsHb expression improves plant tolerance during waterlogging and hypoxia. In the present work, the nsHb class-1 coding sequence was cloned from Malus hupehensis Rehd. var. pinyiensis Jiang and subsequently named MhGLB1. The results elucidated the expressed characteristics and physiological effects of MhGLB1. The full-length cDNA contained a 477 bp open reading frame encoding a protein with a molecular mass of 17.8 KDa with 158 amino acids. Quantitative real-time PCR analysis showed that MhGLB1 expresses in roots, stems and leaves growing under normal and nitrate-induced conditions. Hypoxic stress induced accumulation of MhGLB1 within 12 h, and abscisic acid significantly induced expression of MhGLB1 in roots. The photosynthetic, transpiration and stomatal conductance rates of transgenic MhGLB1 tomato plants decreased more slowly than that of wild-type plants under waterlogging treatment. These results indicated that the MhGLB1 gene has an important role in hypoxia.

  5. Adaptive Traits Are Maintained on Steep Selective Gradients despite Gene Flow and Hybridization in the Intertidal Zone

    PubMed Central

    Canovas, Fernando; Ferreira Costa, Joana; Serrão, Ester A.; Pearson, Gareth A.

    2011-01-01

    Gene flow among hybridizing species with incomplete reproductive barriers blurs species boundaries, while selection under heterogeneous local ecological conditions or along strong gradients may counteract this tendency. Congeneric, externally-fertilizing fucoid brown algae occur as distinct morphotypes along intertidal exposure gradients despite gene flow. Combining analyses of genetic and phenotypic traits, we investigate the potential for physiological resilience to emersion stressors to act as an isolating mechanism in the face of gene flow. Along vertical exposure gradients in the intertidal zone of Northern Portugal and Northwest France, the mid-low shore species Fucus vesiculosus, the upper shore species Fucus spiralis, and an intermediate distinctive morphotype of F. spiralis var. platycarpus were morphologically characterized. Two diagnostic microsatellite loci recovered 3 genetic clusters consistent with prior morphological assignment. Phylogenetic analysis based on single nucleotide polymorphisms in 14 protein coding regions unambiguously resolved 3 clades; sympatric F. vesiculosus, F. spiralis, and the allopatric (in southern Iberia) population of F. spiralis var. platycarpus. In contrast, the sympatric F. spiralis var. platycarpus (from Northern Portugal) was distributed across the 3 clades, strongly suggesting hybridization/introgression with both other entities. Common garden experiments showed that physiological resilience following exposure to desiccation/heat stress differed significantly between the 3 sympatric genetic taxa; consistent with their respective vertical distribution on steep environmental clines in exposure time. Phylogenetic analyses indicate that F. spiralis var. platycarpus is a distinct entity in allopatry, but that extensive gene flow occurs with both higher and lower shore species in sympatry. Experimental results suggest that strong selection on physiological traits across steep intertidal exposure gradients acts to maintain the 3 distinct genetic and morphological taxa within their preferred vertical distribution ranges. On the strength of distributional, genetic, physiological and morphological differences, we propose elevation of F. spiralis var. platycarpus from variety to species level, as F. guiryi. PMID:21695117

  6. Identification and characterization of intracellular proteins that bind oligonucleotides with phosphorothioate linkages.

    PubMed

    Liang, Xue-hai; Sun, Hong; Shen, Wen; Crooke, Stanley T

    2015-03-11

    Although the RNase H-dependent mechanism of inhibition of gene expression by chemically modified antisense oligonucleotides (ASOs) has been well characterized, little is known about the interactions between ASOs and intracellular proteins that may alter cellular localization and/or potency of ASOs. Here, we report the identification of 56 intracellular ASO-binding proteins using multi-step affinity selection approaches. Many of the tested proteins had no significant effect on ASO activity; however, some proteins, including La/SSB, NPM1, ANXA2, VARS and PC4, appeared to enhance ASO activities, likely through mechanisms related to subcellular distribution. VARS and ANXA2 co-localized with ASOs in endocytic organelles, and reduction in the level of VARS altered lysosome/ASO localization patterns, implying that these proteins may facilitate ASO release from the endocytic pathway. Depletion of La and NPM1 reduced nuclear ASO levels, suggesting potential roles in ASO nuclear accumulation. On the other hand, Ku70 and Ku80 proteins inhibited ASO activity, most likely by competition with RNase H1 for ASO/RNA duplex binding. Our results demonstrate that phosphorothioate-modified ASOs bind a set of cellular proteins that affect ASO activity via different mechanisms. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Cloning and expression analysis of the Ccrboh gene encoding respiratory burst oxidase in Citrullus colocynthis and grafting onto Citrullus lanatus (watermelon)

    PubMed Central

    Si, Ying; Dane, Fenny; Rashotte, Aaron; Kang, Kwonkyoo; Singh, Narendra K.

    2010-01-01

    A full-length drought-responsive gene Ccrboh, encoding the respiratory burst oxidase homologue (rboh), was cloned in Citrullus colocynthis, a very drought-tolerant cucurbit species. The robh protein, also named NADPH oxidase, is conserved in plants and animals, and functions in the production of reactive oxygen species (ROS). The Ccrboh gene accumulated in a tissue-specific pattern when C. colocynthis was treated with PEG, abscisic acid (ABA), salicylic acid (SA), jasmonic acid (JA), or NaCl, while the homologous rboh gene did not show any change in C. lanatus var. lanatus, cultivated watermelon, during drought. Grafting experiments were conducted using C. colocynthis or C. lanatus as the rootstock or scion. Results showed that the rootstock significantly affects gene expression in the scion, and some signals might be transported from the root to the shoot. Ccrboh in C. colocynthis was found to function early during plant development, reaching high mRNA transcript levels 3 d after germination. The subcellular location of Ccrboh was investigated by transient expression of the 35S::Ccrboh::GFP fusion construct in protoplasts. The result confirmed that Ccrboh is a transmembrane protein. Our data suggest that Ccrboh might be functionally important during the acclimation of plants to stress and also in plant development. It holds great promise for improving drought tolerance of other cucurbit species. PMID:20181664

  8. Cloning and expression analysis of the Ccrboh gene encoding respiratory burst oxidase in Citrullus colocynthis and grafting onto Citrullus lanatus (watermelon).

    PubMed

    Si, Ying; Dane, Fenny; Rashotte, Aaron; Kang, Kwonkyoo; Singh, Narendra K

    2010-06-01

    A full-length drought-responsive gene Ccrboh, encoding the respiratory burst oxidase homologue (rboh), was cloned in Citrullus colocynthis, a very drought-tolerant cucurbit species. The robh protein, also named NADPH oxidase, is conserved in plants and animals, and functions in the production of reactive oxygen species (ROS). The Ccrboh gene accumulated in a tissue-specific pattern when C. colocynthis was treated with PEG, abscisic acid (ABA), salicylic acid (SA), jasmonic acid (JA), or NaCl, while the homologous rboh gene did not show any change in C. lanatus var. lanatus, cultivated watermelon, during drought. Grafting experiments were conducted using C. colocynthis or C. lanatus as the rootstock or scion. Results showed that the rootstock significantly affects gene expression in the scion, and some signals might be transported from the root to the shoot. Ccrboh in C. colocynthis was found to function early during plant development, reaching high mRNA transcript levels 3 d after germination. The subcellular location of Ccrboh was investigated by transient expression of the 35S::Ccrboh::GFP fusion construct in protoplasts. The result confirmed that Ccrboh is a transmembrane protein. Our data suggest that Ccrboh might be functionally important during the acclimation of plants to stress and also in plant development. It holds great promise for improving drought tolerance of other cucurbit species.

  9. RNA-Seq Analysis of Transcriptome and Glucosinolate Metabolism in Seeds and Sprouts of Broccoli (Brassica oleracea var. italic)

    PubMed Central

    Gao, Jinjun; Yu, Xinxin; Ma, Fengming; Li, Jing

    2014-01-01

    Background Broccoli (Brassica oleracea var. italica), a member of Cruciferae, is an important vegetable containing high concentration of various nutritive and functional molecules especially the anticarcinogenic glucosinolates. The sprouts of broccoli contain 10–100 times higher level of glucoraphanin, the main contributor of the anticarcinogenesis, than the edible florets. Despite the broccoli sprouts’ functional importance, currently available genetic and genomic tools for their studies are very limited, which greatly restricts the development of this functionally important vegetable. Results A total of ∼85 million 251 bp reads were obtained. After de novo assembly and searching the assembled transcripts against the Arabidopsis thaliana and NCBI nr databases, 19,441 top-hit transcripts were clustered as unigenes with an average length of 2,133 bp. These unigenes were classified according to their putative functional categories. Cluster analysis of total unigenes with similar expression patterns and differentially expressed unigenes among different tissues, as well as transcription factor analysis were performed. We identified 25 putative glucosinolate metabolism genes sharing 62.04–89.72% nucleotide sequence identity with the Arabidopsis orthologs. This established a broccoli glucosinolate metabolic pathway with high colinearity to Arabidopsis. Many of the biosynthetic and degradation genes showed higher expression after germination than in seeds; especially the expression of the myrosinase TGG2 was 20–130 times higher. These results along with the previous reports about these genes’ studies in Arabidopsis and the glucosinolate concentration in broccoli sprouts indicate the breakdown products of glucosinolates may play important roles in the stage of broccoli seed germination and sprout development. Conclusion Our study provides the largest genetic resource of broccoli to date. These data will pave the way for further studies and genetic engineering of broccoli sprouts and will also provide new insight into the genomic research of this species and its relatives. PMID:24586398

  10. Microgenomic analysis reveals cell type-specific gene expression patterns between ray and fusiform initials within the cambial meristem of Populus.

    PubMed

    Goué, Nadia; Lesage-Descauses, Marie-Claude; Mellerowicz, Ewa J; Magel, Elisabeth; Label, Philippe; Sundberg, Björn

    2008-01-01

    The vascular cambium is the meristem in trees that produce wood. This meristem consists of two types of neighbouring initials: fusiform cambial cells (FCCs), which give rise to the axial cell system (i.e. fibres and vessel elements), and ray cambial cells (RCCs), which give rise to rays. There is little molecular information on the mechanisms whereby the differing characteristics of these neighbouring cells are maintained. A microgenomic approach was adopted in which the transcriptomes of FCCs and RCCs dissected out from the cambial meristem of poplar (Populus trichocarpa x Populus deltoïdes var. Boelare) were analysed, and a transcriptional database for these two cell types established. Photosynthesis genes were overrepresented in RCCs, providing molecular support for the presence of photosynthetic systems in rays. Genes that putatively encode transporters (vesicle, lipid and metal ion transporters and aquaporins) in RCCs were also identified. In addition, many cell wall-related genes showed cell type-specific expression patterns. Notably, genes involved in pectin metabolism and xyloglucan metabolism were overrepresented in RCCs and FCCs, respectively. The results demonstrate the use of microgenomics to reveal differences in biological processes in neighbouring meristematic cells, and to identify key genes involved in these processes.

  11. Comparative transcriptome analysis of unripe and mid-ripe fruit of Mangifera indica (var. “Dashehari”) unravels ripening associated genes

    PubMed Central

    Srivastava, Smriti; Singh, Rajesh K.; Pathak, Garima; Goel, Ridhi; Asif, Mehar Hasan; Sane, Aniruddha P.; Sane, Vidhu A.

    2016-01-01

    Ripening in mango is under a complex control of ethylene. In an effort to understand the complex spatio-temporal control of ripening we have made use of a popular N. Indian variety “Dashehari” This variety ripens from the stone inside towards the peel outside and forms jelly in the pulp in ripe fruits. Through a combination of 454 and Illumina sequencing, a transcriptomic analysis of gene expression from unripe and midripe stages have been performed in triplicates. Overall 74,312 unique transcripts with ≥1 FPKM were obtained. The transcripts related to 127 pathways were identified in “Dashehari” mango transcriptome by the KEGG analysis. These pathways ranged from detoxification, ethylene biosynthesis, carbon metabolism and aromatic amino acid degradation. The transcriptome study reveals differences not only in expression of softening associated genes but also those that govern ethylene biosynthesis and other nutritional characteristics. This study could help to develop ripening related markers for selective breeding to reduce the problems of excess jelly formation during softening in the “Dashehari” variety. PMID:27586495

  12. Protective Antibodies against Placental Malaria and Poor Outcomes during Pregnancy, Benin

    PubMed Central

    Denoeud-Ndam, Lise; Doritchamou, Justin; Viwami, Firmine; Salanti, Ali; Nielsen, Morten A.; Fievet, Nadine; Massougbodji, Achille; Luty, Adrian J.F.; Deloron, Philippe

    2015-01-01

    Placental malaria is caused by Plasmodium falciparum–infected erythrocytes that bind to placental tissue. Binding is mediated by VAR2CSA, a parasite antigen coded by the var gene, which interacts with chondroitin sulfate A (CSA). Consequences include maternal anemia and fetal growth retardation. Antibody-mediated immunity to placental malaria is acquired during successive pregnancies, but the target of VAR2CSA-specific protective antibodies is unclear. We assessed VAR2CSA-specific antibodies in pregnant women and analyzed their relationships with protection against placental infection, preterm birth, and low birthweight. Antibody responses to the N-terminal region of VAR2CSA during early pregnancy were associated with reduced risks for infections and low birthweight. Among women infected during pregnancy, an increase in CSA binding inhibition was associated with reduced risks for placental infection, preterm birth, and low birthweight. These data suggest that antibodies against VAR2CSA N-terminal region mediate immunity to placental malaria and associated outcomes. Our results validate current vaccine development efforts with VAR2CSA N-terminal constructs. PMID:25898123

  13. Pod Corn Is Caused by Rearrangement at the Tunicate1 Locus[W][OA

    PubMed Central

    Han, Jong-Jin; Jackson, David; Martienssen, Robert

    2012-01-01

    Pod corn (Zea mays var tunicata) was once regarded as ancestral to cultivated maize, and was prized by pre-Columbian cultures for its magical properties. Tunicate1 (Tu1) is a dominant pod corn mutation in which kernels are completely enclosed in leaflike glumes. Here we show that Tu1 encodes a MADS box transcription factor expressed in leaves whose 5′ regulatory region is fused by a 1.8-Mb chromosomal inversion to the 3′ region of a gene expressed in the inflorescence. Both genes are further duplicated, accounting for classical derivative alleles isolated by recombination, and Tu1 transgenes interact with these derivative alleles in a dose-dependent manner. In young ear primordia, TU1 proteins are nuclearly localized in specific cells at the base of spikelet pair meristems. Tu1 branch determination defects resemble those in ramosa mutants, which encode regulatory proteins expressed in these same cells, accounting for synergism in double mutants discovered almost 100 years ago. The Tu1 rearrangement is not found in ancestral teosinte and arose after domestication of maize. PMID:22829149

  14. Oncofetal Chondroitin Sulfate Glycosaminoglycans Are Key Players in Integrin Signaling and Tumor Cell Motility.

    PubMed

    Clausen, Thomas Mandel; Pereira, Marina Ayres; Al Nakouzi, Nader; Oo, Htoo Zarni; Agerbæk, Mette Ø; Lee, Sherry; Ørum-Madsen, Maj Sofie; Kristensen, Anders Riis; El-Naggar, Amal; Grandgenett, Paul M; Grem, Jean L; Hollingsworth, Michael A; Holst, Peter J; Theander, Thor; Sorensen, Poul H; Daugaard, Mads; Salanti, Ali

    2016-12-01

    Many tumors express proteoglycans modified with oncofetal chondroitin sulfate glycosaminoglycan chains (ofCS), which are normally restricted to the placenta. However, the role of ofCS in cancer is largely unknown. The function of ofCS in cancer was analyzed using the recombinant ofCS-binding VAR2CSA protein (rVAR2) derived from the malaria parasite, Plasmodium falciparum We demonstrate that ofCS plays a key role in tumor cell motility by affecting canonical integrin signaling pathways. Binding of rVAR2 to tumor cells inhibited the interaction of cells with extracellular matrix (ECM) components, which correlated with decreased phosphorylation of Src kinase. Moreover, rVAR2 binding decreased migration, invasion, and anchorage-independent growth of tumor cells in vitro Mass spectrometry of ofCS-modified proteoglycan complexes affinity purified from tumor cell lines on rVAR2 columns revealed an overrepresentation of proteins involved in cell motility and integrin signaling, such as integrin-β1 (ITGB1) and integrin-α4 (ITGA4). Saturating concentrations of rVAR2 inhibited downstream integrin signaling, which was mimicked by knockdown of the core chondroitin sulfate synthesis enzymes β-1,3-glucuronyltransferase 1 (B3GAT1) and chondroitin sulfate N-acetylgalactosaminyltransferase 1 (CSGALNACT1). The ofCS modification was highly expressed in both human and murine metastatic lesions in situ and preincubation or early intravenous treatment of tumor cells with rVAR2 inhibited seeding and spreading of tumor cells in mice. This was associated with a significant increase in survival of the animals. These data functionally link ofCS modifications with cancer cell motility and further highlights ofCS as a novel therapeutic cancer target. The cancer-specific expression of ofCS aids in metastatic phenotypes and is a candidate target for therapy. Mol Cancer Res; 14(12); 1288-99. ©2016 AACR. ©2016 American Association for Cancer Research.

  15. Heterologous expression of Fusarium oxysporum tomatinase in Saccharomyces cerevisiae increases its resistance to saponins and improves ethanol production during the fermentation of Agave tequilana Weber var. azul and Agave salmiana must.

    PubMed

    Cira, Luis Alberto; González, Gloria Angélica; Torres, Juan Carlos; Pelayo, Carlos; Gutiérrez, Melesio; Ramírez, Jesús

    2008-03-01

    This paper describes the effect of the heterologous expression of tomatinase from Fusarium oxysporum f. sp lycopersici in Saccharomyces cerevisiae. The gene FoTom1 under the control of the S. cerevisiae phosphoglycerate kinase (PGK1) promoter was cloned into pYES2. S. cerevisiae strain Y45 was transformed with this vector and URA3 transformant strains were selected for resistance to alpha-tomatine. Two transformants were randomly selected for further study (designated Y45-1 and Y45-2). Control strain Y45 was inhibited at 50 muM alpha-tomatine, in contrast, transformants Y45-1 and Y45-2 did not show inhibition at 200 muM. Tomatinase activity was detected by HPLC monitoring tomatine disappearance and tomatidine appearance in the supernatants of culture medium. Maximum tomatinase activity was observed in the transformants after 6 h, remaining constant during the following 24 h. No tomatinase activity was detected in the parental strain. Moreover, the transformants were able to grow and produce ethanol in a mix of Agave tequilana Weber var. azul and Agave salmiana must, contrary to the Y45 strain which was unable to grow and ferment under these conditions.

  16. Inhibition of initial adhesion of oral bacteria through a lectin from Bauhinia variegata L. var. variegata expressed in Escherichia coli.

    PubMed

    Klafke, G B; Borsuk, S; Gonçales, R A; Arruda, F V S; Carneiro, V A; Teixeira, E H; Coelho da Silva, A L; Cavada, B S; Dellagostin, O A; Pinto, L S

    2013-11-01

    The aim of the present work was to study the in vitro effect of native and recombinant Bauhinia variegata var. variegata lectins in inhibiting early adhesion of Streptococcus mutans, Streptococcus sanguis and Streptococcus sobrinus to experimentally acquired pellicle. Native lectin from B. variegata (BVL) was purified by affinity chromatography of extract of seeds. The recombinant lectin (rBVL-I) was expressed in E. coli strain BL21 (DE3) from a genomic clone encoding the mature B. variegata lectin gene using the vector pAE-bvlI. Recombinant protein deposited in inclusion bodies was solubilized and subsequently purified by affinity chromatography. The rBVL-I was compared to BVL for agglutination of erythrocytes and initial adherence of oral bacteria on a saliva-coated surface. The results revealed that rBVL-I acts similarly to BVL for agglutination of erythrocytes. Both lectins showed adhesion inhibition effect on Step. sanguis, Step. mutans and Step. sobrinus. We report, for the first time, the inhibition of early adhesion of oral bacteria by a recombinant lectin. Our results support the proposed biotechnological application of lectins in a strategy to reduce development of dental caries by inhibiting the initial adhesion and biofilm formation. © 2013 The Society for Applied Microbiology.

  17. Or mutation leads to photo-oxidative stress responses in cauliflower (Brassica oleracea) seedlings during de-etiolation.

    PubMed

    Men, Xiao; Dong, Kang

    2013-11-01

    The Orange (Or) gene is a gene mutation that can increase carotenoid content in plant tissues normally devoid of pigments. It affects plastid division and is involved in the differentiation of proplastids or non-colored plastids into chromoplasts. In this study, the de-etiolation process of the wild type (WT) cauliflower (Brassica oleracea L. var. botrytis) and Or mutant seedlings was investigated. We analyzed pigment content, plastid development, transcript abundance and protein levels of genes involved in the de-etiolation process. The results showed that Or can increase the carotenoid content in green tissues, although not as effectively as in non-green tissues, and this effect might be caused by the changes in biosynthetic pathway genes at both transcriptional and post-transcriptional levels. There was no significant difference in the plastid development process between the two lines. However, the increased content of antheraxanthin and anthocyanin, and higher expression levels of violaxanthin de-epoxidase gene (VDE) suggested a stress situation leading to photoinhibition and enhanced photoprotection in the Or mutant. The up-regulated expression levels of the reactive oxygen species (ROS)-induced genes, ZAT10 for salt tolerance zinc finger protein and ASCORBATE PEROXIDASE2 (APX2), suggested the existence of photo-oxidative stress in the Or mutant. In summary, abovementioned findings provide additional insight into the functions of the Or gene in different tissues and at different developmental stages.

  18. Development of CAPS markers based on three key genes of the phenylpropanoid pathway in tea, Camellia sinensis (L.) O. Kuntze, and differentiation between assamica and sinensis varieties.

    PubMed

    Kaundun, Shiv Shankhar; Matsumoto, Satoru

    2003-02-01

    The genetic diversity of tea, Camellia sinensis (L.) O. Kuntze, including the two main cultivated sinensis and assamica varieties, was investigated based on PCR-RFLP analysis of PAL, CHS2 and DFR, three key genes involved in catechin and tannin synthesis and directly responsible for tea taste and quality. Polymorphisms were of two types: amplicon length polymorphism (ALP) due to the presence of indels in two introns of PAL and DFR, and point mutations detected after restriction of amplified fragments with appropriate enzymes. A progeny test showed that all markers segregated in a Mendelian fashion and that polymorphisms were exclusively co-dominant. CHS2, which belongs to a multi-gene family, allowed for greater variation than the single-copy PAL gene. Based on Nei's gene diversity index, var. sinensis was revealed to be more variable than var. assamica, and that a higher proportion of overall diversity resided within varieties as compared to between varieties. Even though no specific DNA profile was found for either tea varieties following any single PCR-RFLP analysis, a factorial correspondence analysis carried out on all genotypes and markers separated the tea samples into two distinct groups according to their varietal status. This reflects the large difference between var. sinensis and var. assamica in their polyphenolic profiles. The STS-based markers developed in this study will be very useful in future mapping, population genetics and fingerprinting studies of this important crop species and other Camellia species, as the primers have also proven successful in the three other subgenera of this genus.

  19. Differentially expressed genes and proteins upon drought acclimation in tolerant and sensitive genotypes of Coffea canephora

    PubMed Central

    Marraccini, Pierre; Vinecky, Felipe; Alves, Gabriel S.C.; Ramos, Humberto J.O.; Elbelt, Sonia; Vieira, Natalia G.; Carneiro, Fernanda A.; Sujii, Patricia S.; Alekcevetch, Jean C.; Silva, Vânia A.; DaMatta, Fábio M.; Ferrão, Maria A.G.; Leroy, Thierry; Pot, David; Vieira, Luiz G.E.; da Silva, Felipe R.; Andrade, Alan C.

    2012-01-01

    The aim of this study was to investigate the molecular mechanisms underlying drought acclimation in coffee plants by the identification of candidate genes (CGs) using different approaches. The first approach used the data generated during the Brazilian Coffee expressed sequence tag (EST) project to select 13 CGs by an in silico analysis (electronic northern). The second approach was based on screening macroarrays spotted with plasmid DNA (coffee ESTs) with separate hybridizations using leaf cDNA probes from drought-tolerant and susceptible clones of Coffea canephora var. Conilon, grown under different water regimes. This allowed the isolation of seven additional CGs. The third approach used two-dimensional gel electrophoresis to identify proteins displaying differential accumulation in leaves of drought-tolerant and susceptible clones of C. canephora. Six of them were characterized by MALDI-TOF-MS/MS (matrix-assisted laser desorption-time of flight-tandem mass spectrometry) and the corresponding proteins were identified. Finally, additional CGs were selected from the literature, and quantitative real-time polymerase chain reaction (qPCR) was performed to analyse the expression of all identified CGs. Altogether, >40 genes presenting differential gene expression during drought acclimation were identified, some of them showing different expression profiles between drought-tolerant and susceptible clones. Based on the obtained results, it can be concluded that factors involved a complex network of responses probably involving the abscisic signalling pathway and nitric oxide are major molecular determinants that might explain the better efficiency in controlling stomata closure and transpiration displayed by drought-tolerant clones of C. canephora. PMID:22511801

  20. Diverse Functional Outcomes of Plasmodium falciparum Ligation of EPCR: Potential Implications for Malarial Pathogenesis

    PubMed Central

    Gillrie, Mark R.; Avril, Marion; Brazier, Andrew J.; Davis, Shevaun P.; Stins, Monique F.; Smith, Joseph D.; Ho, May

    2015-01-01

    Summary P. falciparum-infected erythrocytes (IRBC) expressing the domain cassettes (DC) 8 and 13 of the cytoadherent ligand PfEMP1 adhere to the endothelial protein C receptor (EPCR). By interfering with EPCR anti-coagulant and pro-endothelial barrier functions, IRBC adhesion could promote coagulation and vascular permeability that contribute to the pathogenesis of cerebral malaria. In this study, we examined adhesion of DC8- and DC13-expressing parasite lines to endothelial cells from different microvasculature, and the consequences of EPCR engagement on endothelial cell function. We found that IRBC from IT4var19 (DC8) and IT4var07 (DC13) parasite lines adhered to human brain, lung, and dermal endothelial cells under shear stress. However, the relative contribution of EPCR to parasite cytoadherence on the different types of endothelial cell varied. We also observed divergent functional outcomes for DC8 CIDRα1.1 and DC13 CIDRα1.4 domains. IT4var07 CIDRα1.4 inhibited generation of activated protein C (APC) on lung and dermal endothelial cells and blocked the APC-EPCR binding interaction on brain endothelial cells. IT4var19 CIDRα1.1 inhibited thrombin-induced endothelial barrier dysfunction in lung endothelial cells, while IT4var07 CIDRα1.4- inhibited the protective effect of APC on thrombin-induced permeability. Overall, these findings reveal a much greater complexity of how CIDRα1-expressing parasites may modulate malaria pathogenesis through EPCR adhesion. PMID:26119044

  1. Comparison of the aflR gene sequences of strains in Aspergillus section Flavi.

    PubMed

    Lee, Chao-Zong; Liou, Guey-Yuh; Yuan, Gwo-Fang

    2006-01-01

    Aflatoxins are polyketide-derived secondary metabolites produced by Aspergillus parasiticus, Aspergillus flavus, Aspergillus nomius and a few other species. The toxic effects of aflatoxins have adverse consequences for human health and agricultural economics. The aflR gene, a regulatory gene for aflatoxin biosynthesis, encodes a protein containing a zinc-finger DNA-binding motif. Although Aspergillus oryzae and Aspergillus sojae, which are used in fermented foods and in ingredient manufacture, have no record of producing aflatoxin, they have been shown to possess an aflR gene. This study examined 34 strains of Aspergillus section Flavi. The aflR gene of 23 of these strains was successfully amplified and sequenced. No aflR PCR products were found in five A. sojae strains or six strains of A. oryzae. These PCR results suggested that the aflR gene is absent or significantly different in some A. sojae and A. oryzae strains. The sequenced aflR genes from the 23 positive strains had greater than 96.6 % similarity, which was particularly conserved in the zinc-finger DNA-binding domain. The aflR gene of A. sojae has two obvious characteristics: an extra CTCATG sequence fragment and a C to T transition that causes premature termination of AFLR protein synthesis. Differences between A. parasiticus/A. sojae and A. flavus/A. oryzae aflR genes were also identified. Some strains of A. flavus as well as A. flavus var. viridis, A. oryzae var. viridis and A. oryzae var. effuses have an A. oryzae-type aflR gene. For all strains with the A. oryzae-type aflR gene, there was no evidence of aflatoxin production. It is suggested that for safety reasons, the aflR gene could be examined to assess possible aflatoxin production by Aspergillus section Flavi strains.

  2. Small RNA Sequencing Reveals Differential miRNA Expression in the Early Development of Broccoli (Brassica oleracea var. italica) Pollen

    PubMed Central

    Li, Hui; Wang, Yu; Wu, Mei; Li, Lihong; Jin, Chuan; Zhang, Qingli; Chen, Chengbin; Song, Wenqin; Wang, Chunguo

    2017-01-01

    Pollen development is an important and complex biological process in the sexual reproduction of flowering plants. Although the cytological characteristics of pollen development are well defined, the regulation of its early stages remains largely unknown. In the present study, miRNAs were explored in the early development of broccoli (Brassica oleracea var. italica) pollen. A total of 333 known miRNAs that originated from 235 miRNA families were detected. Fifty-five novel miRNA candidates were identified. Sixty of the 333 known miRNAs and 49 of the 55 predicted novel miRNAs exhibited significantly differential expression profiling in the three distinct developmental stages of broccoli pollen. Among these differentially expressed miRNAs, miRNAs that would be involved in the developmental phase transition from uninucleate microspores to binucleate pollen grains or from binucleate to trinucleate pollen grains were identified. miRNAs that showed significantly enriched expression in a specific early stage of broccoli pollen development were also observed. In addition, 552 targets for 127 known miRNAs and 69 targets for 40 predicted novel miRNAs were bioinformatically identified. Functional annotation and GO (Gene Ontology) analysis indicated that the putative miRNA targets showed significant enrichment in GO terms that were related to plant organ formation and morphogenesis. Some of enriched GO terms were detected for the targets directly involved in plant male reproduction development. These findings provided new insights into the functions of miRNA-mediated regulatory networks in broccoli pollen development. PMID:28392797

  3. Small RNA Sequencing Reveals Differential miRNA Expression in the Early Development of Broccoli (Brassica oleracea var. italica) Pollen.

    PubMed

    Li, Hui; Wang, Yu; Wu, Mei; Li, Lihong; Jin, Chuan; Zhang, Qingli; Chen, Chengbin; Song, Wenqin; Wang, Chunguo

    2017-01-01

    Pollen development is an important and complex biological process in the sexual reproduction of flowering plants. Although the cytological characteristics of pollen development are well defined, the regulation of its early stages remains largely unknown. In the present study, miRNAs were explored in the early development of broccoli ( Brassica oleracea var. italica ) pollen. A total of 333 known miRNAs that originated from 235 miRNA families were detected. Fifty-five novel miRNA candidates were identified. Sixty of the 333 known miRNAs and 49 of the 55 predicted novel miRNAs exhibited significantly differential expression profiling in the three distinct developmental stages of broccoli pollen. Among these differentially expressed miRNAs, miRNAs that would be involved in the developmental phase transition from uninucleate microspores to binucleate pollen grains or from binucleate to trinucleate pollen grains were identified. miRNAs that showed significantly enriched expression in a specific early stage of broccoli pollen development were also observed. In addition, 552 targets for 127 known miRNAs and 69 targets for 40 predicted novel miRNAs were bioinformatically identified. Functional annotation and GO (Gene Ontology) analysis indicated that the putative miRNA targets showed significant enrichment in GO terms that were related to plant organ formation and morphogenesis. Some of enriched GO terms were detected for the targets directly involved in plant male reproduction development. These findings provided new insights into the functions of miRNA-mediated regulatory networks in broccoli pollen development.

  4. Novel bioresources for studies of Brassica oleracea: identification of a kale MYB transcription factor responsible for glucosinolate production.

    PubMed

    Araki, Ryoichi; Hasumi, Akiko; Nishizawa, Osamu Ishizaki; Sasaki, Katsunori; Kuwahara, Ayuko; Sawada, Yuji; Totoki, Yasushi; Toyoda, Atsushi; Sakaki, Yoshiyuki; Li, Yimeng; Saito, Kazuki; Ogawa, Toshiya; Hirai, Masami Yokota

    2013-10-01

    Plants belonging to the Brassicaceae family exhibit species-specific profiles of glucosinolates (GSLs), a class of defence compounds against pathogens and insects. GSLs also exhibit various human health-promoting properties. Among them, glucoraphanin (aliphatic 4-methylsulphinylbutyl GSL) has attracted the most attention because it hydrolyses to form a potent anticancer compound. Increased interest in developing commercial varieties of Brassicaceae crops with desirable GSL profiles has led to attempts to identify genes that are potentially valuable for controlling GSL biosynthesis. However, little attention has been focused on genes of kale (Brassica oleracea var. acephala). In this study, we established full-length kale cDNA libraries containing 59 904 clones, which were used to generate an expressed sequence tag (EST) data set with 119 204 entries. The EST data set clarified genes related to the GSL biosynthesis pathway in kale. We specifically focused on BoMYB29, a homolog of Arabidopsis MYB29/PMG2/HAG3, not only to characterize its function but also to demonstrate its usability as a biological resource. BoMYB29 overexpression in wild-type Arabidopsis enhanced the expression of aliphatic GSL biosynthetic genes and the accumulation of aliphatic GSLs. When expressed in the myb28myb29 mutant, which exhibited no detectable aliphatic GSLs, BoMYB29 restored the expression of biosynthetic genes and aliphatic GSL accumulation. Interestingly, the ratio of methylsulphinyl GSL content, including glucoraphanin, to that of methylthio GSLs was greatly increased, indicating the suitability of BoMYB29 as a regulator for increasing methylsulphinyl GSL content. Our results indicate that these biological resources can facilitate further identification of genes useful for modifications of GSL profiles and accumulation in kale. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  5. A sulphur deficiency-induced gene, sdi1, involved in the utilization of stored sulphate pools under sulphur-limiting conditions has potential as a diagnostic indicator of sulphur nutritional status.

    PubMed

    Howarth, Jonathan R; Parmar, Saroj; Barraclough, Peter B; Hawkesford, Malcolm J

    2009-02-01

    A sulphate deficiency-induced gene, sdi1, has been identified by cDNA-amplified fragment length polymorphism (AFLP) analysis utilizing field-grown, nutrient-deficient wheat (Triticum aestivum var. Hereward). The expression of sdi1 was specifically induced in leaf and root tissues in response to sulphate deficiency, but was not induced by nitrogen, phosphorus, potassium or magnesium deficiency. Expression was also shown to increase in plant tissues as the external sulphate concentration in hydroponically grown plants was reduced from 1.0 to 0.0 mm. On this basis, sdi1 gene expression has potential as a sensitive indicator of sulphur nutritional status in wheat. Genome-walking techniques were used to clone the 2.7-kb region upstream of sdi1 from genomic DNA, revealing several cis-element motifs previously identified as being associated with sulphur responses in plants. The Arabidopsis thaliana gene most highly homologous to sdi1 is At5g48850, which was also demonstrated to be induced by sulphur deficiency, an observation confirmed by the analysis of microarray data available in the public domain. The expression of Atsdi1 was induced more rapidly than previously characterized sulphur-responsive genes in the period immediately following the transfer of plants to sulphur-deficient medium. Atsdi1 T-DNA 'knockout' mutants were shown to maintain higher tissue sulphate concentrations than wild-type plants under sulphur-limiting conditions, indicating a role in the utilization of stored sulphate under sulphur-deficient conditions. The structural features of the sdi1 gene and its application in the genetic determination of the sulphur nutritional status of wheat crops are discussed.

  6. Species delimitation in northern European water scavenger beetles of the genus Hydrobius (Coleoptera, Hydrophilidae)

    PubMed Central

    Fossen, Erlend I.; Ekrem, Torbjørn; Nilsson, Anders N.; Bergsten, Johannes

    2016-01-01

    Abstract The chiefly Holarctic Hydrobius species complex (Coleoptera, Hydrophilidae) currently consists of Hydrobius arcticus Kuwert, 1890, and three morphological variants of Hydrobius fuscipes (Linnaeus, 1758): var. fuscipes, var. rottenbergii and var. subrotundus in northern Europe. Here molecular and morphological data are used to test the species boundaries in this species complex. Three gene segments (COI, H3 and ITS2) were sequenced and analyzed with Bayesian methods to infer phylogenetic relationships. The Generalized Mixed Yule Coalescent (GMYC) model and two versions of the Bayesian species delimitation method BPP, with or without an a priori defined guide tree (v2.2 & v3.0), were used to evaluate species limits. External and male genital characters of primarily Fennoscandian specimens were measured and statistically analyzed to test for significant differences in quantitative morphological characters. The four morphotypes formed separate genetic clusters on gene trees and were delimited as separate species by GMYC and by both versions of BPP, despite specimens of Hydrobius fuscipes var. fuscipes and Hydrobius fuscipes var. subrotundus being sympatric. Hydrobius arcticus and Hydrobius fuscipes var. rottenbergii could only be separated genetically with ITS2, and were delimited statistically with GMYC on ITS2 and with BPP on the combined data. In addition, six or seven potentially cryptic species of the Hydrobius fuscipes complex from regions outside northern Europe were delimited genetically. Although some overlap was found, the mean values of six male genital characters were significantly different between the morphotypes (p < 0.001). Morphological characters previously presumed to be diagnostic were less reliable to separate Hydrobius fuscipes var. fuscipes from Hydrobius fuscipes var. subrotundus, but characters in the literature for Hydrobius arcticus and Hydrobius fuscipes var. rottenbergii were diagnostic. Overall, morphological and molecular evidence strongly suggest that Hydrobius arcticus and the three morphological variants of Hydrobius fuscipes are separate species and Hydrobius rottenbergii Gerhardt, 1872, stat. n. and Hydrobius subrotundus Stephens, 1829, stat. n. are elevated to valid species. An identification key to northern European species of Hydrobius is provided. PMID:27081333

  7. Physiological response and sulfur metabolism of the V. dahliae-infected tomato plants in tomato/potato onion companion cropping

    PubMed Central

    Fu, Xuepeng; Li, Chunxia; Zhou, Xingang; Liu, Shouwei; Wu, Fengzhi

    2016-01-01

    Companion cropping with potato onions (Allium cepa var. agrogatum Don.) can enhance the disease resistance of tomato plants (Solanum lycopersicum) to Verticillium dahliae infection by increasing the expressions of genes related to disease resistance. However, it is not clear how tomato plants physiologically respond to V. dahliae infection and what roles sulfur plays in the disease-resistance. Pot experiments were performed to examine changes in the physiology and sulfur metabolism of tomato roots infected by V. dahliae under the companion cropping (tomato/potato onion). The results showed that the companion cropping increased the content of total phenol, lignin and glutathione and increased the activities of peroxidase, polyphenol oxidase and phenylalanine ammonia lyase in the roots of tomato plants. RNA-seq analysis showed that the expressions of genes involved in sulfur uptake and assimilation, and the formation of sulfur-containing defense compounds (SDCs) were up-regulated in the V. dahlia-infected tomatoes in the companion cropping. In addition, the interactions among tomato, potato onion and V. dahliae induced the expression of the high- affinity sulfate transporter gene in the tomato roots. These results suggest that sulfur may play important roles in tomato disease resistance against V. dahliae. PMID:27808257

  8. Global Analysis of WRKY Genes and Their Response to Dehydration and Salt Stress in Soybean.

    PubMed

    Song, Hui; Wang, Pengfei; Hou, Lei; Zhao, Shuzhen; Zhao, Chuanzhi; Xia, Han; Li, Pengcheng; Zhang, Ye; Bian, Xiaotong; Wang, Xingjun

    2016-01-01

    WRKY proteins are plant specific transcription factors involved in various developmental and physiological processes, especially in biotic and abiotic stress resistance. Although previous studies suggested that WRKY proteins in soybean (Glycine max var. Williams 82) involved in both abiotic and biotic stress responses, the global information of WRKY proteins in the latest version of soybean genome (Wm82.a2v1) and their response to dehydration and salt stress have not been reported. In this study, we identified 176 GmWRKY proteins from soybean Wm82.a2v1 genome. These proteins could be classified into three groups, namely group I (32 proteins), group II (120 proteins), and group III (24 proteins). Our results showed that most GmWRKY genes were located on Chromosome 6, while chromosome 11, 12, and 20 contained the least number of this gene family. More GmWRKY genes were distributed on the ends of chromosomes to compare with other regions. The cis-acting elements analysis suggested that GmWRKY genes were transcriptionally regulated upon dehydration and salt stress. RNA-seq data analysis indicated that three GmWRKY genes responded negatively to dehydration, and 12 genes positively responded to salt stress at 1, 6, and 12 h, respectively. We confirmed by qRT-PCR that the expression of GmWRKY47 and GmWRKY 58 genes was decreased upon dehydration, and the expression of GmWRKY92, 144 and 165 genes was increased under salt treatment.

  9. On the complexity of the Saccharomyces bayanus taxon: hybridization and potential hybrid speciation.

    PubMed

    Pérez-Través, Laura; Lopes, Christian A; Querol, Amparo; Barrio, Eladio

    2014-01-01

    Although the genus Saccharomyces has been thoroughly studied, some species in the genus has not yet been accurately resolved; an example is S. bayanus, a taxon that includes genetically diverse lineages of pure and hybrid strains. This diversity makes the assignation and classification of strains belonging to this species unclear and controversial. They have been subdivided by some authors into two varieties (bayanus and uvarum), which have been raised to the species level by others. In this work, we evaluate the complexity of 46 different strains included in the S. bayanus taxon by means of PCR-RFLP analysis and by sequencing of 34 gene regions and one mitochondrial gene. Using the sequence data, and based on the S. bayanus var. bayanus reference strain NBRC 1948, a hypothetical pure S. bayanus was reconstructed for these genes that showed alleles with similarity values lower than 97% with the S. bayanus var. uvarum strain CBS 7001, and of 99-100% with the non S. cerevisiae portion in S. pastorianus Weihenstephan 34/70 and with the new species S. eubayanus. Among the S. bayanus strains under study, different levels of homozygosity, hybridization and introgression were found; however, no pure S. bayanus var. bayanus strain was identified. These S. bayanus hybrids can be classified into two types: homozygous (type I) and heterozygous hybrids (type II), indicating that they have been originated by different hybridization processes. Therefore, a putative evolutionary scenario involving two different hybridization events between a S. bayanus var. uvarum and unknown European S. eubayanus-like strains can be postulated to explain the genomic diversity observed in our S. bayanus var. bayanus strains.

  10. On the Complexity of the Saccharomyces bayanus Taxon: Hybridization and Potential Hybrid Speciation

    PubMed Central

    Pérez-Través, Laura; Lopes, Christian A.; Querol, Amparo; Barrio, Eladio

    2014-01-01

    Although the genus Saccharomyces has been thoroughly studied, some species in the genus has not yet been accurately resolved; an example is S. bayanus, a taxon that includes genetically diverse lineages of pure and hybrid strains. This diversity makes the assignation and classification of strains belonging to this species unclear and controversial. They have been subdivided by some authors into two varieties (bayanus and uvarum), which have been raised to the species level by others. In this work, we evaluate the complexity of 46 different strains included in the S. bayanus taxon by means of PCR-RFLP analysis and by sequencing of 34 gene regions and one mitochondrial gene. Using the sequence data, and based on the S. bayanus var. bayanus reference strain NBRC 1948, a hypothetical pure S. bayanus was reconstructed for these genes that showed alleles with similarity values lower than 97% with the S. bayanus var. uvarum strain CBS 7001, and of 99–100% with the non S. cerevisiae portion in S. pastorianus Weihenstephan 34/70 and with the new species S. eubayanus. Among the S. bayanus strains under study, different levels of homozygosity, hybridization and introgression were found; however, no pure S. bayanus var. bayanus strain was identified. These S. bayanus hybrids can be classified into two types: homozygous (type I) and heterozygous hybrids (type II), indicating that they have been originated by different hybridization processes. Therefore, a putative evolutionary scenario involving two different hybridization events between a S. bayanus var. uvarum and unknown European S. eubayanus-like strains can be postulated to explain the genomic diversity observed in our S. bayanus var. bayanus strains. PMID:24705561

  11. [Soluble and insoluble dietary fiber in cereals and legumes cultivated in Chile].

    PubMed

    Pak, N; Ayala, C; Vera, G; Pennacchiotti, I; Araya, H

    1990-03-01

    Insoluble, soluble and total dietary fiber (DF) were determined in 35 varieties of certified whole seeds (without processing) of cereals (rice, oat, rye, and wheat) and legumes (pea, cowpea, beans, chikpea, lentil and lupine). The enzymatic method of Asp, Johansson and Siljestrom was used, with modifications in relation to time of incubation with alpha amylase, filtration system and volumes of the filtrates. Results were expressed as g/100 g dry weight. Total DF for cereals showed a range from 10.1 (wheat var. Chasqui) to 22.2 (rice var Quella). Rye, var. Tetra Baer and oats var. Pony Baer presented the highest soluble fiber content (3.3 and 3.9, respectively). In legumes, total DF fluctuated between 12.7 (pea, var. yellow) and 36.6 (lupine, var. Multolupa). Bean, var. Pinto INIA and lupine var. Multolupa presented the highest soluble fiber values (5.8 for both). Based on the results of this research work, it might be concluded that great variation exists in regard to the amount of total soluble and insoluble DF in cereals and legumes, a fact which impedes generalization as to its content in each food item.

  12. Bioinformatics analysis of the phytoene synthase gene in cabbage (Brassica oleracea var. capitata)

    NASA Astrophysics Data System (ADS)

    Sun, Bo; Jiang, Min; Xue, Shengling; Zheng, Aihong; Zhang, Fen; Tang, Haoru

    2018-04-01

    Phytoene Synthase (PSY) is an important enzyme in carotenoid biosynthesis. Here, the Brassica oleracea var. capitata PSY (BocPSY) gene sequences were obtained from Brassica database (BRAD), and preformed for bioinformatics analysis. The BocPSY1, BocPSY2 and BocPSY3 genes mapped to chromosomes 2,3 and 9, and contains an open reading frame of 1,248 bp, 1,266 bp and 1,275 bp that encodes a 415, 421, 424 amino acid protein, respectively. Subcellular localization predicted all BocPSY genes were in the chloroplast. The conserved domain of the BocPSY protein is PLN02632. Homology analysis indicates that the levels of identity among BocPSYs were all more than 85%, and the PSY protein is apparently conserved during plant evolution. The findings of the present study provide a molecular basis for the elucidation of PSY gene function in cabbage.

  13. Placental Sequestration of Plasmodium falciparum Malaria Parasites Is Mediated by the Interaction Between VAR2CSA and Chondroitin Sulfate A on Syndecan-1

    PubMed Central

    Mao, Yang; Resende, Mafalda; Daugaard, Mads; Riis Kristensen, Anders; Damm, Peter; G. Theander, Thor; R. Hansson, Stefan; Salanti, Ali

    2016-01-01

    During placental malaria, Plasmodium falciparum infected erythrocytes sequester in the placenta, causing health problems for both the mother and fetus. The specific adherence is mediated by the VAR2CSA protein, which binds to placental chondroitin sulfate (CS) on chondroitin sulfate proteoglycans (CSPGs) in the placental syncytium. However, the identity of the CSPG core protein and the cellular impact of the interaction have remain elusive. In this study we identified the specific CSPG core protein to which the CS is attached, and characterized its exact placental location. VAR2CSA pull-down experiments using placental extracts from whole placenta or syncytiotrophoblast microvillous cell membranes showed three distinct CSPGs available for VAR2CSA adherence. Further examination of these three CSPGs by immunofluorescence and proximity ligation assays showed that syndecan-1 is the main receptor for VAR2CSA mediated placental adherence. We further show that the commonly used placental choriocarcinoma cell line, BeWo, express a different set of proteoglycans than those present on placental syncytiotrophoblast and may not be the most biologically relevant model to study placental malaria. Syncytial fusion of the BeWo cells, triggered by forskolin treatment, caused an increased expression of placental CS-modified syndecan-1. In line with this, we show that rVAR2 binding to placental CS impairs syndecan-1-related Src signaling in forskolin treated BeWo cells, but not in untreated cells. PMID:27556547

  14. [Genetic variation of some varieties of common juniper Juniperus communis L. inferred from analysis of allozyme loci].

    PubMed

    Khantemirova, E V; Semerikov, V L

    2010-05-01

    Using the method of allozyme analysis, genetic variation, diversity, and population structure of Juniperus communis L. var. communis and J. communis L. var. saxatilis Pall. (= J. sibirica Burgsd. = J. nana Wild), growing on the territory of Russia, J. c. var. communis from Sweden, and J. c. var. depressa Pursh from Northern America (Alaska), was investigated. The total level of genetic variation of these varieties was found to be higher than the values obtained for the other conifers. The population samples of J. c. var. depressa from Alaska and J. c. var. saxatilis from Sakhalin were noticeably different from all other populations examined. Between the other samples, no substantial genetic differences were observed. These populations were characterized by weak interpopulation differentiation along with the absence of expressed geographical pattern of the allele frequency spatial distribution. The only exception was the procumbent form of common juniper from the high mountain populations of South and North Ural, which was somewhat different from the others.

  15. Infective capacity of Cryptococcus neoformans and Cryptococcus gattii in a human astrocytoma cell line.

    PubMed

    Olave, M C; Vargas-Zambrano, J C; Celis, A M; Castañeda, E; González, J M

    2017-07-01

    Pathogenesis of cryptococcosis in the central nervous system (CNS) is a topic of ongoing research, including the mechanisms by which this fungus invades and infects the brain. Astrocytes, the most common CNS cells, play a fundamental role in the local immune response. Astrocytes might participate in cryptococcosis either as a host or by responding to fungal antigens. To determine the infectivity of Cryptococcus neoformans var. grubii and Cryptococcus gattii in a human astrocytoma cell line and the induction of major histocompatibility complex (MHC) molecules. A glioblastoma cell line was infected with C. neoformans var. grubii and C. gattii blastoconidia labelled with FUN-1 fluorescent stain. The percentage of infection and expression of HLA class I and II molecules were determined by flow cytometry. The interactions between the fungi and cells were observed by fluorescence microscopy. There was no difference between C. neoformans var. grubii and C. gattii in the percentage infection, but C. neoformans var. grubii induced higher expression of HLA class II than C. gattii. More blastoconidia were recovered from C. neoformans-infected cells than from C. gattii infected cells. Cryptococcus neoformans var. grubii may have different virulence mechanisms that allow its survival in human glia-derived cells. © 2017 Blackwell Verlag GmbH.

  16. The complete mitochondrial genome sequence of Malus hupehensis var. pinyiensis.

    PubMed

    Duan, Naibin; Sun, Honghe; Wang, Nan; Fei, Zhangjun; Chen, Xuesen

    2016-07-01

    The complete mitochondrial genome sequence of Malus hupehensis var. pinyiensis, a widely used apple rootstock, was determined using the Illumina high-throughput sequencing approach. The genome is 422,555 bp in length and has a GC content of 45.21%. It is separated by a pair of inverted repeats of 32,504 bp, to form a large single copy region of 213,055 bp and a small single copy region of 144,492 bp. The genome contains 38 protein-coding genes, four pseudogenes, 25 tRNA genes, and three rRNA genes. The genome is 25,608 bp longer than that of M. domestica, and several structural variations between these two mitogenomes were detected.

  17. Metabolism of 2,4-dichlorophenol in tobacco engineered with bacterial degradative genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, E.J.; Sekine, M.; Gordon, M.P.

    1990-05-01

    The potential use of plants in toxic waste remediation has been overlooked. While chlorophenols are relatively slowly metabolized in Nicotiana tabacum var. Xanthi leaf extracts, chlorocatechols are rapidly metabolized, presumably by polyphenol oxidases. Our initial focus has been the fate of 2,4-dichlorophenol (2,4DCP) in var. Xanthi plants which express a bacterial 2,4DCP hydroxylase, which converts 2,4DCP to 3,5-dichlorocatechol. The roots of wild type and 2,4DCP hydroxylase transgenic plants growing in hydroponics were exposed to {sup 14}C-2,4DCP. Approximately 95% of {sup 14}C-2,4DCP metabolites remained in the roots when exposed to 2,4DCP. Upon extraction of root tissue, three major metabolites were foundmore » in untransformed plants and four major metabolites in transformed plants. Upon digestion with beta-D-glucosidase, these metabolites disappeared concomitant with the appearance of free 2,4DCP in wild type plants and 2,4DCP and 3,5-dichlorocatechol in transgenic plants. It is apparent that the chlorophenols are not readily available substrates for polyphenol oxidases in whole plants.« less

  18. Population genomic scan for candidate signatures of balancing selection to guide antigen characterization in malaria parasites.

    PubMed

    Amambua-Ngwa, Alfred; Tetteh, Kevin K A; Manske, Magnus; Gomez-Escobar, Natalia; Stewart, Lindsay B; Deerhake, M Elizabeth; Cheeseman, Ian H; Newbold, Christopher I; Holder, Anthony A; Knuepfer, Ellen; Janha, Omar; Jallow, Muminatou; Campino, Susana; Macinnis, Bronwyn; Kwiatkowski, Dominic P; Conway, David J

    2012-01-01

    Acquired immunity in vertebrates maintains polymorphisms in endemic pathogens, leading to identifiable signatures of balancing selection. To comprehensively survey for genes under such selection in the human malaria parasite Plasmodium falciparum, we generated paired-end short-read sequences of parasites in clinical isolates from an endemic Gambian population, which were mapped to the 3D7 strain reference genome to yield high-quality genome-wide coding sequence data for 65 isolates. A minority of genes did not map reliably, including the hypervariable var, rifin, and stevor families, but 5,056 genes (90.9% of all in the genome) had >70% sequence coverage with minimum read depth of 5 for at least 50 isolates, of which 2,853 genes contained 3 or more single nucleotide polymorphisms (SNPs) for analysis of polymorphic site frequency spectra. Against an overall background of negatively skewed frequencies, as expected from historical population expansion combined with purifying selection, the outlying minority of genes with signatures indicating exceptionally intermediate frequencies were identified. Comparing genes with different stage-specificity, such signatures were most common in those with peak expression at the merozoite stage that invades erythrocytes. Members of clag, PfMC-2TM, surfin, and msp3-like gene families were highly represented, the strongest signature being in the msp3-like gene PF10_0355. Analysis of msp3-like transcripts in 45 clinical and 11 laboratory adapted isolates grown to merozoite-containing schizont stages revealed surprisingly low expression of PF10_0355. In diverse clonal parasite lines the protein product was expressed in a minority of mature schizonts (<1% in most lines and ∼10% in clone HB3), and eight sub-clones of HB3 cultured separately had an intermediate spectrum of positive frequencies (0.9 to 7.5%), indicating phase variable expression of this polymorphic antigen. This and other identified targets of balancing selection are now prioritized for functional study.

  19. Complete mitochondrial genome of the endophytic fungus Pestalotiopsis fici: features and evolution.

    PubMed

    Zhang, Shu; Wang, Xiu-Na; Zhang, Xiao-Ling; Liu, Xing-Zhong; Zhang, Yong-Jie

    2017-02-01

    Endophytic fungi (EF) live within plants and have profound impacts on plant communities. They are astonishingly diverse but poorly studied at the genome level. Herein, we assembled the mitochondrial genome (mitogenome) of the EF Pestalotiopsis fici, annotated and compared it with those of other relatives to better understand the evolution of the EF lineage. Except for standard fungal mitochondrial genes, the 69,529-bp circular mitogenome of P. fici harbors 18 introns acquired possibly through lateral transfer from other fungi and nine free-standing open reading frames with some scarcely seen in fungal mitogenomes. BLAST analysis detected no obvious duplication events of large fragments between mitochondrial and nuclear genomes of the fungus. Transcription analyses validated the expression of all mitochondrial genes, while most genes showed higher expression on rice than in two other media. The mitogenome of P. fici is highly syntenic with the Xylariales species Annulohypoxylon stygium and the endophyte Epichloe festucae var. lolii, but lacks synteny with another endophyte Penicillium polonicum. This study reports the first mitogenome of Pestalotiopsis and the third published mitogenome from an EF and provides insights into the evolution of the EF lineage.

  20. Comparison of transcriptome profiles by Fusarium oxysporum inoculation between Fusarium yellows resistant and susceptible lines in Brassica rapa L.

    PubMed

    Miyaji, Naomi; Shimizu, Motoki; Miyazaki, Junji; Osabe, Kenji; Sato, Maho; Ebe, Yusuke; Takada, Satoko; Kaji, Makoto; Dennis, Elizabeth S; Fujimoto, Ryo; Okazaki, Keiichi

    2017-12-01

    Resistant and susceptible lines in Brassica rapa have different immune responses against Fusarium oxysporum inoculation. Fusarium yellows caused by Fusarium oxysporum f. sp. conglutinans (Foc) is an important disease of Brassicaceae; however, the mechanism of how host plants respond to Foc is still unknown. By comparing with and without Foc inoculation in both resistant and susceptible lines of Chinese cabbage (Brassica rapa var. pekinensis), we identified differentially expressed genes (DEGs) between the bulked inoculated (6, 12, 24, and 72 h after inoculation (HAI)) and non-inoculated samples. Most of the DEGs were up-regulated by Foc inoculation. Quantitative real-time RT-PCR showed that most up-regulated genes increased their expression levels from 24 HAI. An independent transcriptome analysis at 24 and 72 HAI was performed in resistant and susceptible lines. GO analysis using up-regulated genes at 24 HAI indicated that Foc inoculation activated systemic acquired resistance (SAR) in resistant lines and tryptophan biosynthetic process and responses to chitin and ethylene in susceptible lines. By contrast, GO analysis using up-regulated genes at 72 HAI showed the overrepresentation of some categories for the defense response in susceptible lines but not in the resistant lines. We also compared DEGs between B. rapa and Arabidopsis thaliana after F. oxysporum inoculation at the same time point, and identified genes related to defense response that were up-regulated in the resistant lines of Chinese cabbage and A. thaliana. Particular genes that changed expression levels overlapped between the two species, suggesting that they are candidates for genes involved in the resistance mechanisms against F. oxysporum.

  1. Transcriptional profiling of sugarcane leaves and roots under progressive osmotic stress reveals a regulated coordination of gene expression in a spatiotemporal manner

    PubMed Central

    Zamora-Briseño, Jesus A.; Ayala-Sumuano, Jorge T.; Gonzalez-Mendoza, Victor M.; Espadas-Gil, Francisco; Alcaraz, Luis D.; Castaño, Enrique; Keb-Llanes, Miguel A.; Sanchez-Teyer, Felipe

    2017-01-01

    Sugarcane is one of the most important crops worldwide and is a key plant for the global production of sucrose. Sugarcane cultivation is severely affected by drought stress and it is considered as the major limiting factor for their productivity. In recent years, this plant has been subjected to intensive research focused on improving its resilience against water scarcity; particularly the molecular mechanisms in response to drought stress have become an underlying issue for its improvement. To better understand water stress and the molecular mechanisms we performed a de novo transcriptomic assembly of sugarcane (var. Mex 69–290). A total of 16 libraries were sequenced in a 2x100 bp configuration on a HiSeq-Illumina platform. A total of 536 and 750 genes were differentially up-regulated along with the stress treatments for leave and root tissues respectively, while 1093 and 531 genes were differentially down-regulated in leaves and roots respectively. Gene Ontology functional analysis showed that genes related to response of water deprivation, heat, abscisic acid, and flavonoid biosynthesis were enriched during stress treatment in our study. The reliability of the observed expression patterns was confirmed by RT-qPCR. Additionally, several physiological parameters of sugarcane were significantly affected due to stress imposition. The results of this study may help identify useful target genes and provide tissue-specific data set of genes that are differentially expressed in response to osmotic stress, as well as a complete analysis of the main groups is significantly enriched under this condition. This study provides a useful benchmark for improving drought tolerance in sugarcane and other economically important grass species. PMID:29228055

  2. Transcriptome Assembly and Analysis of Tibetan Hulless Barley (Hordeum vulgare L. var. nudum) Developing Grains, with Emphasis on Quality Properties

    PubMed Central

    Chen, Xin; Long, Hai; Gao, Ping; Deng, Guangbing; Pan, Zhifen; Liang, Junjun; Tang, Yawei; Tashi, Nyima; Yu, Maoqun

    2014-01-01

    Background Hulless barley is attracting increasing attention due to its unique nutritional value and potential health benefits. However, the molecular biology of the barley grain development and nutrient storage are not well understood. Furthermore, the genetic potential of hulless barley has not been fully tapped for breeding. Methodology/Principal Findings In the present study, we investigated the transcriptome features during hulless barley grain development. Using Illumina paired-end RNA-Sequencing, we generated two data sets of the developing grain transcriptomes from two hulless barley landraces. A total of 13.1 and 12.9 million paired-end reads with lengths of 90 bp were generated from the two varieties and were assembled to 48,863 and 45,788 unigenes, respectively. A combined dataset of 46,485 All-Unigenes were generated from two transcriptomes with an average length of 542 bp, and 36,278 among were annotated with gene descriptions, conserved protein domains or gene ontology terms. Furthermore, sequences and expression levels of genes related to the biosynthesis of storage reserve compounds (starch, protein, and β-glucan) were analyzed, and their temporal and spatial patterns were deduced from the transcriptome data of cultivated barley Morex. Conclusions/Significance We established a sequences and functional annotation integrated database and examined the expression profiles of the developing grains of Tibetan hulless barley. The characterization of genes encoding storage proteins and enzymes of starch synthesis and (1–3;1–4)-β-D-glucan synthesis provided an overview of changes in gene expression associated with grain nutrition and health properties. Furthermore, the characterization of these genes provides a gene reservoir, which helps in quality improvement of hulless barley. PMID:24871534

  3. Molecular Landscape of Modified Histones in Drosophila Heterochromatic Genes and Euchromatin-Heterochromatin Transition Zones

    PubMed Central

    Yasuhara, Jiro C; Wakimoto, Barbara T

    2008-01-01

    Constitutive heterochromatin is enriched in repetitive sequences and histone H3-methylated-at-lysine 9. Both components contribute to heterochromatin's ability to silence euchromatic genes. However, heterochromatin also harbors hundreds of expressed genes in organisms such as Drosophila. Recent studies have provided a detailed picture of sequence organization of D. melanogaster heterochromatin, but how histone modifications are associated with heterochromatic sequences at high resolution has not been described. Here, distributions of modified histones in the vicinity of heterochromatic genes of normal embryos and embryos homozygous for a chromosome rearrangement were characterized using chromatin immunoprecipitation and genome tiling arrays. We found that H3-di-methylated-at-lysine 9 (H3K9me2) was depleted at the 5′ ends but enriched throughout transcribed regions of heterochromatic genes. The profile was distinct from that of euchromatic genes and suggests that heterochromatic genes are integrated into, rather than insulated from, the H3K9me2-enriched domain. Moreover, the profile was only subtly affected by a Su(var)3–9 null mutation, implicating a histone methyltransferase other than SU(VAR)3–9 as responsible for most H3K9me2 associated with heterochromatic genes in embryos. On a chromosomal scale, we observed a sharp transition to the H3K9me2 domain, which coincided with increased retrotransposon density in the euchromatin-heterochromatin (eu-het) transition zones on the long chromosome arms. Thus, a certain density of retrotransposons, rather than specific boundary elements, may demarcate Drosophila pericentric heterochromatin. We also demonstrate that a chromosome rearrangement that created a new eu-het junction altered H3K9me2 distribution and induced new euchromatic sites of enrichment as far as several megabases away from the breakpoint. Taken together, the findings argue against simple classification of H3K9me as the definitive signature of silenced genes, and clarify roles of histone modifications and repetitive DNAs in heterochromatin. The results are also relevant for understanding the effects of chromosome aberrations and the megabase scale over which epigenetic position effects can operate in multicellular organisms. PMID:18208336

  4. Effects of sex, parity, and sequence variation on seroreactivity to candidate pregnancy malaria vaccine antigens.

    PubMed

    Oleinikov, Andrew V; Rossnagle, Eddie; Francis, Susan; Mutabingwa, Theonest K; Fried, Michal; Duffy, Patrick E

    2007-07-01

    Plasmodium falciparum-infected erythrocytes adhere to chondroitin sulfate A (CSA) to sequester in the human placenta, and pregnancy malaria (PM) is associated with the development of disease in and the death of both mother and child. A PM vaccine appears to be feasible, because women become protected as they develop antibodies against placental infected erythrocytes (IEs). Two IE surface molecules, VAR1CSA and VAR2CSA, bind CSA in vitro and are potential vaccine candidates. We expressed all domains of VAR1CSA and VAR2CSA as mammalian cell surface proteins, using a novel approach that allows rapid purification, immobilization, and quantification of target antigen. For serum samples from East Africa, we measured reactivity to all domains, and we examined the effects of host sex and parity, as well as the effects of parasite antigenic variation. Serum samples obtained from multigravid women had a higher reactivity to all VAR2CSA domains than did those obtained from primigravid women or from men. Conversely, serum samples obtained from men had consistently higher reactivity to VAR1CSA domains than did those obtained from gravid women. Seroreactivity was strongly influenced by antigenic variation of VAR2CSA Duffy binding-like domains. Women acquire antibodies to VAR2CSA over successive pregnancies, but they lose reactivity to VAR1CSA. Serum reactivity to VAR2CSA is variant specific, and future studies should examine the degree to which functional antibodies, such as binding-inhibition antibodies, are variant specific.

  5. Dual Role of a SAS10/C1D Family Protein in Ribosomal RNA Gene Expression and Processing Is Essential for Reproduction in Arabidopsis thaliana

    PubMed Central

    Chen, Ying-Jiun C.; Wang, Huei-Jing

    2016-01-01

    In eukaryotic cells, ribosomal RNAs (rRNAs) are transcribed, processed, and assembled with ribosomal proteins in the nucleolus. Regulatory mechanisms of rRNA gene (rDNA) transcription and processing remain elusive in plants, especially their connection to nucleolar organization. We performed an in silico screen for essential genes of unknown function in Arabidopsis thaliana and identified Thallo (THAL) encoding a SAS10/C1D family protein. THAL disruption caused enlarged nucleoli in arrested embryos, aberrant processing of precursor rRNAs at the 5’ External Transcribed Spacer, and repression of the major rDNA variant (VAR1). THAL overexpression lines showed de-repression of VAR1 and overall reversed effects on rRNA processing sites. Strikingly, THAL overexpression also induced formation of multiple nucleoli per nucleus phenotypic of mutants of heterochromatin factors. THAL physically associated with histone chaperone Nucleolin 1 (NUC1), histone-binding NUC2, and histone demethylase Jumonji 14 (JMJ14) in bimolecular fluorescence complementation assay, suggesting that it participates in chromatin regulation. Furthermore, investigation of truncated THAL proteins revealed that the SAS10 C-terminal domain is likely important for its function in chromatin configuration. THAL also interacted with putative Small Subunit processome components, including previously unreported Arabidopsis homologue of yeast M Phase Phosphoprotein 10 (MPP10). Our results uncovering the dual role of THAL in transcription and processing events critical for proper rRNA biogenesis and nucleolar organization during reproduction are the first to define the function of SAS10/C1D family members in plants. PMID:27792779

  6. B-Cell Responses to Pregnancy-Restricted and -Unrestricted Plasmodium falciparum Erythrocyte Membrane Protein 1 Antigens in Ghanaian Women Naturally Exposed to Malaria Parasites

    PubMed Central

    Ampomah, Paulina; Stevenson, Liz; Ofori, Michael F.; Barfod, Lea

    2014-01-01

    Protective immunity to Plasmodium falciparum malaria acquired after natural exposure is largely antibody mediated. IgG-specific P. falciparum EMP1 (PfEMP1) proteins on the infected erythrocyte surface are particularly important. The transient antibody responses and the slowly acquired protective immunity probably reflect the clonal antigenic variation and allelic polymorphism of PfEMP1. However, it is likely that other immune-evasive mechanisms are also involved, such as interference with formation and maintenance of immunological memory. We measured PfEMP1-specific antibody levels by enzyme-linked immunosorbent assay (ELISA) and memory B-cell frequencies by enzyme-linked immunosorbent spot (ELISPOT) assay in a cohort of P. falciparum-exposed nonpregnant Ghanaian women. The antigens used were a VAR2CSA-type PfEMP1 (IT4VAR04) with expression restricted to parasites infecting the placenta, as well as two commonly recognized PfEMP1 proteins (HB3VAR06 and IT4VAR60) implicated in rosetting and not pregnancy restricted. This enabled, for the first time, a direct comparison in the same individuals of immune responses specific for a clinically important parasite antigen expressed only during well-defined periods (pregnancy) to responses specific for comparable antigens expressed independent of pregnancy. Our data indicate that PfEMP1-specific B-cell memory is adequately acquired even when antigen exposure is infrequent (e.g., VAR2CSA-type PfEMP1). Furthermore, immunological memory specific for VAR2CSA-type PfEMP1 can be maintained for many years without antigen reexposure and after circulating antigen-specific IgG has disappeared. The study provides evidence that natural exposure to P. falciparum leads to formation of durable B-cell immunity to clinically important PfEMP1 antigens. This has encouraging implications for current efforts to develop PfEMP1-based vaccines. PMID:24566620

  7. BrWRKY65, a WRKY Transcription Factor, Is Involved in Regulating Three Leaf Senescence-Associated Genes in Chinese Flowering Cabbage.

    PubMed

    Fan, Zhong-Qi; Tan, Xiao-Li; Shan, Wei; Kuang, Jian-Fei; Lu, Wang-Jin; Chen, Jian-Ye

    2017-06-08

    Plant-specific WRKY transcription factors (TFs) have been implicated to function as regulators of leaf senescence, but their association with postharvest leaf senescence of economically important leafy vegetables, is poorly understood. In this work, the characterization of a Group IIe WRKY TF, BrWRKY65, from Chinese flowering cabbage ( Brassica rapa var. parachinensis) is reported. The expression of BrWRKY65 was up-regulated following leaf chlorophyll degradation and yellowing during postharvest senescence. Subcellular localization and transcriptional activation assays showed that BrWRKY65 was localized in the nucleus and exhibited trans-activation ability. Further electrophoretic mobility shift assay (EMSA) and transient expression analysis clearly revealed that BrWRKY65 directly bound to the W-box motifs in the promoters of three senescence-associated genes ( SAGs ) such as BrNYC1 and BrSGR1 associated with chlorophyll degradation, and BrDIN1 , and subsequently activated their expressions. These findings demonstrate that BrWRKY65 may be positively associated with postharvest leaf senescence, at least partially, by the direct activation of SAGs . Taken together, these findings provide new insights into the transcriptional regulatory mechanism of postharvest leaf senescence in Chinese flowering cabbage.

  8. Total alpha-globin gene cluster deletion has high frequency in Filipinos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, J.A.; Haruyama, A.Z.; Chu, B.M.

    1994-09-01

    Most {alpha}-thalassemias [Thal] are due to large deletions. In Southeast Asians, the (--{sup SEA}) double {alpha}-globin gene deletion is common, 3 (--{sup Tot}) total {alpha}-globin cluster deletions are known: Filipino (--{sup Fil}), Thai (--{sup Thai}), and Chinese (--{sup Chin}). In a Hawaii Thal project, provisional diagnosis of {alpha}-Thal-1 heterozygotes was based on microcytosis, normal isoelectric focusing, and no iron deficiency. One in 10 unselected Filipinos was an {alpha}-Thal-1 heterozygote, 2/3 of these had a (--{sup Tot}) deletion: a {var_sigma}-cDNA probe consistently showed fainter intensity of the constant 5.5 kb {var_sigma}{sub 2} BamHI band, with no heterzygosity for {var_sigma}-globin region polymorphisms;more » {alpha}-cDNA or {var_sigma}-cDNA probes showed no BamHI or BglII bands diagnostic of the (--{sup SEA}) deletion; bands for the (-{alpha}) {alpha}-Thal-2 single {alpha}-globin deletions were only seen in Hb H cases. A reliable monoclonal anti-{var_sigma}-peptide antibody test for the (--{sup SEA}) deletion was always negative in (--{sup Tot}) samples. Southern digests with the Lo probe, a gift from D. Higgs of Oxford Univ., confirmed that 49 of 50 (--{sup Tot}) chromosomes in Filipinos were (--{sup Fil}). Of 20 {alpha}-Thal-1 hydrops born to Filipinos, 11 were (--{sup Fil}/--{sup SEA}) compound heterozygotes; 9 were (--{sup SEA}/--{sup SEA}) homozygotes, but none was a (--{sup Fil}/--{sup Fil}).« less

  9. Expression of chloroperoxidase from Pseudomonas pyrrocinia in tobacco plastids for fungal resistance.

    PubMed

    Ruhlman, Tracey A; Rajasekaran, Kanniah; Cary, Jeffrey W

    2014-11-01

    The chloroperoxidase (cpo) gene from Pseudomonas pyrrocinia was transformed into the plastid genome (plastome) of Nicotiana tabacum var. Petit Havana and transplastomic lines were compared with a nuclear transformant for the same gene. Southern analysis confirmed integration in the plastome and western blotting confirmed the presence of the chloroperoxidase protein (CPO) in higher abundance in transplastomic plants than in cpo nuclear transformants. Northern analysis of primary plastome transformants for cpo showed 15-fold higher transcript abundance than in the nuclear transformant, yet this extent of enhancement was not observed in western blot, enzyme or bioassay, indicating a bottleneck at the post-transcriptional level. Representative plants from the two transplastomic lines showed resistance to fungal pathogens in vitro (Aspergillus flavus, Fusarium verticillioides, and Verticillium dahliae) and in planta (Alternaria alternata). Published by Elsevier Ireland Ltd.

  10. Complete plastid genome of Astragalus mongholicus var. nakaianus (Fabaceae).

    PubMed

    Choi, In-Su; Kim, Joo-Hwan; Choi, Byoung-Hee

    2016-07-01

    The first complete plastid genome (plastome) of the largest angiosperm genus, Astragalus, was sequenced for the Korean endangered endemic species A. mongholicus var. nakaianus. Its genome is relatively short (123,633 bp) because it lacks an Inverted Repeat (IR) region. It comprises 110 genes, including four unique rRNAs, 30 tRNAs, and 76 protein-coding genes. Similar to other closely related plastomes, rpl22 and rps16 are absent. The putative pseudogene with abnormal stop codons is atpE. This plastome has no additional inversions when compared with highly variable plastomes from IRLC tribes Fabeae and Trifolieae. Our phylogenetic analysis confirms the non-monophyly of Galegeae.

  11. The complete chloroplast genome of Capsicum annuum var. glabriusculum using Illumina sequencing.

    PubMed

    Raveendar, Sebastin; Na, Young-Wang; Lee, Jung-Ro; Shim, Donghwan; Ma, Kyung-Ho; Lee, Sok-Young; Chung, Jong-Wook

    2015-07-20

    Chloroplast (cp) genome sequences provide a valuable source for DNA barcoding. Molecular phylogenetic studies have concentrated on DNA sequencing of conserved gene loci. However, this approach is time consuming and more difficult to implement when gene organization differs among species. Here we report the complete re-sequencing of the cp genome of Capsicum pepper (Capsicum annuum var. glabriusculum) using the Illumina platform. The total length of the cp genome is 156,817 bp with a 37.7% overall GC content. A pair of inverted repeats (IRs) of 50,284 bp were separated by a small single copy (SSC; 18,948 bp) and a large single copy (LSC; 87,446 bp). The number of cp genes in C. annuum var. glabriusculum is the same as that in other Capsicum species. Variations in the lengths of LSC; SSC and IR regions were the main contributors to the size variation in the cp genome of this species. A total of 125 simple sequence repeat (SSR) and 48 insertions or deletions variants were found by sequence alignment of Capsicum cp genome. These findings provide a foundation for further investigation of cp genome evolution in Capsicum and other higher plants.

  12. The legumin gene family: structure of a B type gene of Vicia faba and a possible legumin gene specific regulatory element.

    PubMed Central

    Bäumlein, H; Wobus, U; Pustell, J; Kafatos, F C

    1986-01-01

    The field bean, Vicia faba L. var. minor, possesses two sub-families of 11 S legumin genes named A and B. We isolated from a genomic library a B-type gene (LeB4) and determined its primary DNA sequence. Gene LeB4 codes for a 484 amino acid residue prepropolypeptide, encompassing a signal peptide of 22 amino acid residues, an acidic, very hydrophilic alpha-chain of 281 residues and a basic, somewhat hydrophobic beta-chain of 181 residues. The latter two coding regions are immediately contiguous, but each is interrupted by a short intron. Type A legumin genes from soybean and pea are known to have introns in the same two positions, in addition to an extra intron (within the alpha-coding sequence). Sequence comparisons of legumin genes from these three plants revealed a highly conserved sequence element of at least 28 bp, centered at approximately 100 bp upstream of each cap site. The element is absent from the equivalent position of all non-legumin and other plant and fungal genes examined. We tentatively name this element "legumin box" and suggest that it may have a function in the regulation of legumin gene expression. PMID:3960730

  13. Molecular cloning of Pcc-dmrt1s and their specific expression patterns in Pengze crucian carp (Carassius auratus var. Pengze) affected by 17α-methyltestosterone.

    PubMed

    Zheng, Yao; Liang, Hongwei; Xu, Peng; Li, Meng; Wang, Zaizhao

    2014-08-01

    Dmrt1, an important transcription factor associated with testicular differentiation, is conserved among teleost, which could also be detected in ovaries. In the present study, three isoforms of Pcc-dmrt1s (Pcc-dmrt1a, Pcc-dmrt1b and Pcc-dmrt1c) resulting from alternative splicing of the dmrt1 gene were cloned and characterized in the triploid gynogenetic fish, the Pengze crucian carp. Their mRNA expression profiling was investigated in juvenile developmental stages, tissues of the adult fish, and the juveniles under 84.2 ng/L 17α-methyltestosterone (MT) treatments. Results showed that their putative proteins shared high identities to Dmrt1 in cyprinid fish species. Gene expression profiling in the developmental stages showed that all the three target genes had a highest/lowest expression at 56/40 days post-hatching (dph), respectively. The period of 40 dph appeared to be a key time during the process of the ovary development of Pengze crucian carp. The tissue distribution results indicated that Pcc-dmrt1s were predominantly expressed in hepatopancreas, brain, spleen and ovary of the female fish. MT significantly increased the mRNA expression of Pcc-dmrt1a (all 4-week exposures) and Pcc-dmrt1b (except for week 2), while repressed Pcc-dmrt1c transcripts at all exposure period except for week 2. MT extremely significant repressed cyp19a1a transcripts for 1 week. The present study indicated that MT could influence the ovary development of Pengze crucian carp by disturbing gene expressions of Pcc-dmrt1s and cyp19a1a. Furthermore, the present study will be of great significance to broaden the understanding of masculinizing pathway during ovary development in gynogenetic teleost.

  14. The purple cauliflower arises from activation of a MYB transcription factor.

    PubMed

    Chiu, Li-Wei; Zhou, Xiangjun; Burke, Sarah; Wu, Xianli; Prior, Ronald L; Li, Li

    2010-11-01

    Anthocyanins are responsible for the color of many flowers, fruits, and vegetables. An interesting and unique Purple (Pr) gene mutation in cauliflower (Brassica oleracea var botrytis) confers an abnormal pattern of anthocyanin accumulation, giving the striking mutant phenotype of intense purple color in curds and a few other tissues. To unravel the nature of the Pr mutation in cauliflower, we isolated the Pr gene via a combination of candidate gene analysis and fine mapping. Pr encoded a R2R3 MYB transcription factor that exhibited tissue-specific expression, consistent with an abnormal anthocyanin accumulation pattern in the mutant. Transgenic Arabidopsis (Arabidopsis thaliana) and cauliflower plants expressing the Pr-D allele recapitulated the mutant phenotype, confirming the isolation of the Pr gene. Up-regulation of Pr specifically activated a basic helix-loop-helix transcription factor and a subset of anthocyanin structural genes encoding flavonoid 3'-hydroxylase, dihydroflavonol 4-reductase, and leucoanthocyanidin dioxygenase to confer ectopic accumulation of pigments in the purple cauliflower. Our results indicate that the genetic variation including a Harbinger DNA transposon insertion in the upstream regulatory region of the Pr-D allele is responsible for the up-regulation of the Pr gene in inducing phenotypic change in the plant. The successful isolation of Pr provides important information on the regulatory control of anthocyanin biosynthesis in Brassica vegetables, and offers a genetic resource for development of new varieties with enhanced health-promoting properties and visual appeal.

  15. The Purple Cauliflower Arises from Activation of a MYB Transcription Factor1[W][OA

    PubMed Central

    Chiu, Li-Wei; Zhou, Xiangjun; Burke, Sarah; Wu, Xianli; Prior, Ronald L.; Li, Li

    2010-01-01

    Anthocyanins are responsible for the color of many flowers, fruits, and vegetables. An interesting and unique Purple (Pr) gene mutation in cauliflower (Brassica oleracea var botrytis) confers an abnormal pattern of anthocyanin accumulation, giving the striking mutant phenotype of intense purple color in curds and a few other tissues. To unravel the nature of the Pr mutation in cauliflower, we isolated the Pr gene via a combination of candidate gene analysis and fine mapping. Pr encoded a R2R3 MYB transcription factor that exhibited tissue-specific expression, consistent with an abnormal anthocyanin accumulation pattern in the mutant. Transgenic Arabidopsis (Arabidopsis thaliana) and cauliflower plants expressing the Pr-D allele recapitulated the mutant phenotype, confirming the isolation of the Pr gene. Up-regulation of Pr specifically activated a basic helix-loop-helix transcription factor and a subset of anthocyanin structural genes encoding flavonoid 3’-hydroxylase, dihydroflavonol 4-reductase, and leucoanthocyanidin dioxygenase to confer ectopic accumulation of pigments in the purple cauliflower. Our results indicate that the genetic variation including a Harbinger DNA transposon insertion in the upstream regulatory region of the Pr-D allele is responsible for the up-regulation of the Pr gene in inducing phenotypic change in the plant. The successful isolation of Pr provides important information on the regulatory control of anthocyanin biosynthesis in Brassica vegetables, and offers a genetic resource for development of new varieties with enhanced health-promoting properties and visual appeal. PMID:20855520

  16. Chloroplast genome of Aconitum barbatum var. puberulum (Ranunculaceae) derived from CCS reads using the PacBio RS platform.

    PubMed

    Chen, Xiaochen; Li, Qiushi; Li, Ying; Qian, Jun; Han, Jianping

    2015-01-01

    The chloroplast genome (cp genome) of Aconitum barbatum var. puberulum was sequenced using the third-generation sequencing platform based on the single-molecule real-time (SMRT) sequencing approach. To our knowledge, this is the first reported complete cp genome of Aconitum, and we anticipate that it will have great value for phylogenetic studies of the Ranunculaceae family. In total, 23,498 CCS reads and 20,685,462 base pairs were generated, the mean read length was 880 bp, and the longest read was 2,261 bp. Genome coverage of 100% was achieved with a mean coverage of 132× and no gaps. The accuracy of the assembled genome is 99.973%; the assembly was validated using Sanger sequencing of six selected genes from the cp genome. The complete cp genome of A. barbatum var. puberulum is 156,749 bp in length, including a large single-copy region of 87,630 bp and a small single-copy region of 16,941 bp separated by two inverted repeats of 26,089 bp. The cp genome contains 130 genes, including 84 protein-coding genes, 34 tRNA genes and eight rRNA genes. Four forward, five inverted and eight tandem repeats were identified. According to the SSR analysis, the longest poly structure is a 20-T repeat. Our results presented in this paper will facilitate the phylogenetic studies and molecular authentication on Aconitum.

  17. Chloroplast genome of Aconitum barbatum var. puberulum (Ranunculaceae) derived from CCS reads using the PacBio RS platform

    PubMed Central

    Chen, Xiaochen; Li, Qiushi; Li, Ying; Qian, Jun; Han, Jianping

    2015-01-01

    The chloroplast genome (cp genome) of Aconitum barbatum var. puberulum was sequenced using the third-generation sequencing platform based on the single-molecule real-time (SMRT) sequencing approach. To our knowledge, this is the first reported complete cp genome of Aconitum, and we anticipate that it will have great value for phylogenetic studies of the Ranunculaceae family. In total, 23,498 CCS reads and 20,685,462 base pairs were generated, the mean read length was 880 bp, and the longest read was 2,261 bp. Genome coverage of 100% was achieved with a mean coverage of 132× and no gaps. The accuracy of the assembled genome is 99.973%; the assembly was validated using Sanger sequencing of six selected genes from the cp genome. The complete cp genome of A. barbatum var. puberulum is 156,749 bp in length, including a large single-copy region of 87,630 bp and a small single-copy region of 16,941 bp separated by two inverted repeats of 26,089 bp. The cp genome contains 130 genes, including 84 protein-coding genes, 34 tRNA genes and eight rRNA genes. Four forward, five inverted and eight tandem repeats were identified. According to the SSR analysis, the longest poly structure is a 20-T repeat. Our results presented in this paper will facilitate the phylogenetic studies and molecular authentication on Aconitum. PMID:25705213

  18. Analysis of the Complete Chloroplast Genome of a Medicinal Plant, Dianthus superbus var. longicalyncinus, from a Comparative Genomics Perspective.

    PubMed

    Raman, Gurusamy; Park, SeonJoo

    2015-01-01

    Dianthus superbus var. longicalycinus is an economically important traditional Chinese medicinal plant that is also used for ornamental purposes. In this study, D. superbus was compared to its closely related family of Caryophyllaceae chloroplast (cp) genomes such as Lychnis chalcedonica and Spinacia oleracea. D. superbus had the longest large single copy (LSC) region (82,805 bp), with some variations in the inverted repeat region A (IRA)/LSC regions. The IRs underwent both expansion and constriction during evolution of the Caryophyllaceae family; however, intense variations were not identified. The pseudogene ribosomal protein subunit S19 (rps19) was identified at the IRA/LSC junction, but was not present in the cp genome of other Caryophyllaceae family members. The translation initiation factor IF-1 (infA) and ribosomal protein subunit L23 (rpl23) genes were absent from the Dianthus cp genome. When the cp genome of Dianthus was compared with 31 other angiosperm lineages, the infA gene was found to have been lost in most members of rosids, solanales of asterids and Lychnis of Caryophyllales, whereas rpl23 gene loss or pseudogization had occurred exclusively in Caryophyllales. Nevertheless, the cp genome of Dianthus and Spinacia has two introns in the proteolytic subunit of ATP-dependent protease (clpP) gene, but Lychnis has lost introns from the clpP gene. Furthermore, phylogenetic analysis of individual protein-coding genes infA and rpl23 revealed that gene loss or pseudogenization occurred independently in the cp genome of Dianthus. Molecular phylogenetic analysis also demonstrated a sister relationship between Dianthus and Lychnis based on 78 protein-coding sequences. The results presented herein will contribute to studies of the evolution, molecular biology and genetic engineering of the medicinal and ornamental plant, D. superbus var. longicalycinus.

  19. Analysis of the Complete Chloroplast Genome of a Medicinal Plant, Dianthus superbus var. longicalyncinus, from a Comparative Genomics Perspective

    PubMed Central

    Raman, Gurusamy; Park, SeonJoo

    2015-01-01

    Dianthus superbus var. longicalycinus is an economically important traditional Chinese medicinal plant that is also used for ornamental purposes. In this study, D. superbus was compared to its closely related family of Caryophyllaceae chloroplast (cp) genomes such as Lychnis chalcedonica and Spinacia oleracea. D. superbus had the longest large single copy (LSC) region (82,805 bp), with some variations in the inverted repeat region A (IRA)/LSC regions. The IRs underwent both expansion and constriction during evolution of the Caryophyllaceae family; however, intense variations were not identified. The pseudogene ribosomal protein subunit S19 (rps19) was identified at the IRA/LSC junction, but was not present in the cp genome of other Caryophyllaceae family members. The translation initiation factor IF-1 (infA) and ribosomal protein subunit L23 (rpl23) genes were absent from the Dianthus cp genome. When the cp genome of Dianthus was compared with 31 other angiosperm lineages, the infA gene was found to have been lost in most members of rosids, solanales of asterids and Lychnis of Caryophyllales, whereas rpl23 gene loss or pseudogization had occurred exclusively in Caryophyllales. Nevertheless, the cp genome of Dianthus and Spinacia has two introns in the proteolytic subunit of ATP-dependent protease (clpP) gene, but Lychnis has lost introns from the clpP gene. Furthermore, phylogenetic analysis of individual protein-coding genes infA and rpl23 revealed that gene loss or pseudogenization occurred independently in the cp genome of Dianthus. Molecular phylogenetic analysis also demonstrated a sister relationship between Dianthus and Lychnis based on 78 protein-coding sequences. The results presented herein will contribute to studies of the evolution, molecular biology and genetic engineering of the medicinal and ornamental plant, D. superbus var. longicalycinus. PMID:26513163

  20. Differential recognition of P. falciparum VAR2CSA domains by naturally acquired antibodies in pregnant women from a malaria endemic area.

    PubMed

    Brolin, Kim J M; Persson, Kristina E M; Wahlgren, Mats; Rogerson, Stephen J; Chen, Qijun

    2010-02-16

    Plasmodium falciparum infected red blood cells (iRBC) express variant surface antigens (VSA) of which VAR2CSA is involved in placental sequestration and causes pregnancy-associated malaria (PAM). Primigravidae are most susceptible to PAM whereas antibodies associated with protection are often present at higher levels in multigravid women. However, HIV co-infection with malaria has been shown to alter this parity-dependent acquisition of immunity, with more severe symptoms as well as more malaria episodes in HIV positive women versus HIV negative women of a similar parity. Using VAR2CSA DBL-domains expressed on the surface of CHO-745 cells we quantified levels of DBL-domain specific IgG in sera from pregnant Malawian women by flow cytometry. Dissociations constants of DBL5epsilon specific antibodies were determined using a surface plasmon resonance technique, as an indication of antibody affinities. VAR2CSA DBL5epsilon was recognized in a gender and parity-dependent manner with anti-DBL5epsilon IgG correlating significantly with IgG levels to VSA-PAM on the iRBC surface. HIV positive women had lower levels of anti-DBL5epsilon IgG than HIV negative women of similar parity. In primigravidae, antibodies in HIV positive women also showed significantly lower affinity to VAR2CSA DBL5epsilon. Pregnant women from a malaria-endemic area had increased levels of anti-DBL5epsilon IgG by parity, indicating this domain of VAR2CSA to be a promising vaccine candidate against PAM. However, it is important to consider co-infection with HIV, as this seems to change the properties of antibody response against malaria. Understanding the characteristics of antibody response against VAR2CSA is undoubtedly imperative in order to design a functional and efficient vaccine against PAM.

  1. Differential recognition of terminal extracellular Plasmodium falciparum VAR2CSA domains by sera from multigravid, malaria-exposed Malian women.

    PubMed

    Travassos, Mark A; Coulibaly, Drissa; Bailey, Jason A; Niangaly, Amadou; Adams, Matthew; Nyunt, Myaing M; Ouattara, Amed; Lyke, Kirsten E; Laurens, Matthew B; Pablo, Jozelyn; Jasinskas, Algis; Nakajima, Rie; Berry, Andrea A; Takala-Harrison, Shannon; Kone, Abdoulaye K; Kouriba, Bourema; Rowe, J Alexandra; Doumbo, Ogobara K; Thera, Mahamadou A; Laufer, Miriam K; Felgner, Philip L; Plowe, Christopher V

    2015-06-01

    The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family mediates parasite sequestration in small capillaries through tissue-specific cytoadherence. The best characterized of these proteins is VAR2CSA, which is expressed on the surface of infected erythrocytes that bind to chondroitin sulfate in the placental matrix. Antibodies to VAR2CSA prevent placental cytoadherence and protect against placental malaria. The size and complexity of the VAR2CSA protein pose challenges for vaccine development, but smaller constitutive domains may be suitable for subunit vaccine development. A protein microarray was printed to include five overlapping fragments of the 3D7 VAR2CSA extracellular region. Malian women with a history of at least one pregnancy had antibody recognition of four of these fragments and had stronger reactivity against the two distal fragments than did nulliparous women, children, and men from Mali, suggesting that the C-terminal extracellular VAR2CSA domains are a potential focus of protective immunity. With carefully chosen sera from longitudinal studies of pregnant women, this approach has the potential to identify seroreactive VAR2CSA domains associated with protective immunity against pregnancy-associated malaria. © The American Society of Tropical Medicine and Hygiene.

  2. Database resources of the National Center for Biotechnology Information.

    PubMed

    Sayers, Eric W; Barrett, Tanya; Benson, Dennis A; Bolton, Evan; Bryant, Stephen H; Canese, Kathi; Chetvernin, Vyacheslav; Church, Deanna M; Dicuccio, Michael; Federhen, Scott; Feolo, Michael; Fingerman, Ian M; Geer, Lewis Y; Helmberg, Wolfgang; Kapustin, Yuri; Krasnov, Sergey; Landsman, David; Lipman, David J; Lu, Zhiyong; Madden, Thomas L; Madej, Tom; Maglott, Donna R; Marchler-Bauer, Aron; Miller, Vadim; Karsch-Mizrachi, Ilene; Ostell, James; Panchenko, Anna; Phan, Lon; Pruitt, Kim D; Schuler, Gregory D; Sequeira, Edwin; Sherry, Stephen T; Shumway, Martin; Sirotkin, Karl; Slotta, Douglas; Souvorov, Alexandre; Starchenko, Grigory; Tatusova, Tatiana A; Wagner, Lukas; Wang, Yanli; Wilbur, W John; Yaschenko, Eugene; Ye, Jian

    2012-01-01

    In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI Website. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central (PMC), Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Primer-BLAST, COBALT, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, dbVar, Epigenomics, Genome and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, BioProject, BioSample, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Probe, Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART), Biosystems, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.

  3. The genome-wide identification and transcriptional levels of DNA methyltransferases and demethylases in globe artichoke.

    PubMed

    Gianoglio, Silvia; Moglia, Andrea; Acquadro, Alberto; Comino, Cinzia; Portis, Ezio

    2017-01-01

    Changes to the cytosine methylation status of DNA, driven by the activity of C5 methyltransferases (C5-MTases) and demethylases, exert an important influence over development, transposon movement, gene expression and imprinting. Three groups of C5-MTase enzymes have been identified in plants, namely MET (methyltransferase 1), CMT (chromomethyltransferases) and DRM (domains rearranged methyltransferases). Here the repertoire of genes encoding C5-MTase and demethylase by the globe artichoke (Cynara cardunculus var. scolymus) is described, based on sequence homology, a phylogenetic analysis and a characterization of their functional domains. A total of ten genes encoding C5-MTase (one MET, five CMTs and four DRMs) and five demethylases was identified. An analysis of their predicted product's protein structure suggested an extensive level of conservation has been retained by the C5-MTases. Transcriptional profiling based on quantitative real time PCR revealed a number of differences between the genes encoding maintenance and de novo methyltransferases, sometimes in a tissue- or development-dependent manner, which implied a degree of functional specialization.

  4. Differences in Gene Transcriptomic Pattern of Plasmodium falciparum in Children with Cerebral Malaria and Asymptomatic Carriers

    PubMed Central

    Almelli, Talleh; Nuel, Grégory; Bischoff, Emmanuel; Aubouy, Agnès; Elati, Mohamed; Wang, Christian William; Dillies, Marie-Agnès; Coppée, Jean-Yves; Ayissi, Georges Nko; Basco, Leonardo Kishi; Rogier, Christophe; Ndam, Nicaise Tuikue; Deloron, Philippe; Tahar, Rachida

    2014-01-01

    The mechanisms underlying the heterogeneity of clinical malaria remain largely unknown. We hypothesized that differential gene expression contributes to phenotypic variation of parasites which results in a specific interaction with the host, leading to different clinical features of malaria. In this study, we analyzed the transcriptomes of isolates obtained from asymptomatic carriers and patients with uncomplicated or cerebral malaria. We also investigated the transcriptomes of 3D7 clone and 3D7-Lib that expresses severe malaria associated-variant surface antigen. Our findings revealed a specific up-regulation of genes involved in pathogenesis, adhesion to host cell, and erythrocyte aggregation in parasites from patients with cerebral malaria and 3D7-Lib, compared to parasites from asymptomatic carriers and 3D7, respectively. However, we did not find any significant difference between the transcriptomes of parasites from cerebral malaria and uncomplicated malaria, suggesting similar transcriptomic pattern in these two parasite populations. The difference between isolates from asymptomatic children and cerebral malaria concerned genes coding for exported proteins, Maurer's cleft proteins, transcriptional factor proteins, proteins implicated in protein transport, as well as Plasmodium conserved and hypothetical proteins. Interestingly, UPs A1, A2, A3 and UPs B1 of var genes were predominantly found in cerebral malaria-associated isolates and those containing architectural domains of DC4, DC5, DC13 and their neighboring rif genes in 3D7-lib. Therefore, more investigations are needed to analyze the effective role of these genes during malaria infection to provide with new knowledge on malaria pathology. In addition, concomitant regulation of genes within the chromosomal neighborhood suggests a common mechanism of gene regulation in P. falciparum. PMID:25479608

  5. The role of BoFLC2 in cauliflower (Brassica oleracea var. botrytis L.) reproductive development.

    PubMed

    Ridge, Stephen; Brown, Philip H; Hecht, Valérie; Driessen, Ronald G; Weller, James L

    2015-01-01

    In agricultural species that are sexually propagated or whose marketable organ is a reproductive structure, management of the flowering process is critical. Inflorescence development in cauliflower is particularly complex, presenting unique challenges for those seeking to predict and manage flowering time. In this study, an integrated physiological and molecular approach was used to clarify the environmental control of cauliflower reproductive development at the molecular level. A functional allele of BoFLC2 was identified for the first time in an annual brassica, along with an allele disrupted by a frameshift mutation (boflc2). In a segregating F₂ population derived from a cross between late-flowering (BoFLC2) and early-flowering (boflc2) lines, this gene behaved in a dosage-dependent manner and accounted for up to 65% of flowering time variation. Transcription of BoFLC genes was reduced by vernalization, with the floral integrator BoFT responding inversely. Overall expression of BoFT was significantly higher in early-flowering boflc2 lines, supporting the idea that BoFLC2 plays a key role in maintaining the vegetative state. A homologue of Arabidopsis VIN3 was isolated for the first time in a brassica crop species and was up-regulated by two days of vernalization, in contrast to findings in Arabidopsis where prolonged exposure to cold was required to elicit up-regulation. The correlations observed between gene expression and flowering time in controlled-environment experiments were validated with gene expression analyses of cauliflowers grown outdoors under 'natural' vernalizing conditions, indicating potential for transcript levels of flowering genes to form the basis of predictive assays for curd initiation and flowering time. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. The role of BoFLC2 in cauliflower (Brassica oleracea var. botrytis L.) reproductive development

    PubMed Central

    Ridge, Stephen; Brown, Philip H.; Hecht, Valérie; Driessen, Ronald G.; Weller, James L.

    2015-01-01

    In agricultural species that are sexually propagated or whose marketable organ is a reproductive structure, management of the flowering process is critical. Inflorescence development in cauliflower is particularly complex, presenting unique challenges for those seeking to predict and manage flowering time. In this study, an integrated physiological and molecular approach was used to clarify the environmental control of cauliflower reproductive development at the molecular level. A functional allele of BoFLC2 was identified for the first time in an annual brassica, along with an allele disrupted by a frameshift mutation (boflc2). In a segregating F2 population derived from a cross between late-flowering (BoFLC2) and early-flowering (boflc2) lines, this gene behaved in a dosage-dependent manner and accounted for up to 65% of flowering time variation. Transcription of BoFLC genes was reduced by vernalization, with the floral integrator BoFT responding inversely. Overall expression of BoFT was significantly higher in early-flowering boflc2 lines, supporting the idea that BoFLC2 plays a key role in maintaining the vegetative state. A homologue of Arabidopsis VIN3 was isolated for the first time in a brassica crop species and was up-regulated by two days of vernalization, in contrast to findings in Arabidopsis where prolonged exposure to cold was required to elicit up-regulation. The correlations observed between gene expression and flowering time in controlled-environment experiments were validated with gene expression analyses of cauliflowers grown outdoors under ‘natural’ vernalizing conditions, indicating potential for transcript levels of flowering genes to form the basis of predictive assays for curd initiation and flowering time. PMID:25355864

  7. Isolation and characterisation of a dwarf rice mutant exhibiting defective gibberellins biosynthesis.

    PubMed

    Ji, S H; Gururani, M A; Lee, J W; Ahn, B-O; Chun, S-C

    2014-03-01

    We have isolated a severe dwarf mutant derived from a Ds (Dissociation) insertion mutant rice (Oryza sativa var. japonica c.v. Dongjin). This severe dwarf phenotype, has short and dark green leaves, reduced shoot growth early in the seedling stage, and later severe dwarfism with failure to initiate flowering. When treated with bioactive GA3 , mutants are restored to the normal wild-type phenotype. Reverse transcription PCR analyses of 22 candidate genes related to the gibberellin (GA) biosynthesis pathway revealed that among 22 candidate genes tested, a dwarf mutant transcript was not expressed only in one OsKS2 gene. Genetic analysis revealed that the severe dwarf phenotype was controlled by recessive mutation of a single nuclear gene. The putative OsKS2 gene was a chromosome 4-located ent-kaurene synthase (KS), encoding the enzyme that catalyses an early step of the GA biosynthesis pathway. Sequence analysis revealed that osks2 carried a 1-bp deletion in the ORF region of OsKS2, which led to a loss-of-function mutation. The expression pattern of OsKS2 in wild-type cv Dongjin, showed that it is expressed in all organs, most prominently in the stem and floral organs. Morphological characteristics of the dwarf mutant showed dramatic modifications in internal structure and external morphology. We propose that dwarfism in this mutant is caused by a point mutation in OsKS2, which plays a significant role in growth and development of higher plants. Further investigation on OsKS2 and other OsKS-like proteins is underway and may yield better understanding of the putative role of OsKS in severe dwarf mutants. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  8. Polymorphism and methylation patterns in Agave tequilana Weber var. 'Azul' plants propagated asexually by three different methods.

    PubMed

    Díaz-Martínez, Miriam; Nava-Cedillo, Alejandro; Guzmán-López, José Alfredo; Escobar-Guzmán, Rocío; Simpson, June

    2012-04-01

    Genetic variation in three forms of asexually propagated Agave tequilana Weber var. 'Azul' plants namely offsets, bulbils and in vitro cultured individuals was studied by AFLP analysis. Low levels of variation were observed between mother plants and offsets and a higher level between mother plant and bulbils. Families obtained from commercial plantations showed lower levels of variation in comparison to families grown as ornamentals. No variation was observed between the original explant and four generations of in vitro cultured plants. Epigenetic variation was also studied by analyzing changes in methylation patterns between mother plants and offspring in each form of asexual reproduction. Offsets and bulbils showed an overall decrease in methylation whereas in vitro cultured plants showed patterns specific to each generation: Generations 1 and 4 showed overall demethylation whereas Generations 2 and 3 showed increased methylation. Analysis of ESTs associated with transposable elements revealed higher proportions of ESTs from Ty1-copia-like, Gypsy and CACTA transposable elements in cDNA libraries obtained from pluripotent tissue suggesting a possible correlation between methylation patterns, expression of transposable element associated genes and somaclonal variation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Assessment of the cytokine profile in peripheral blood mononuclear cells of naturally Sarcoptes scabiei var. canis infested dogs.

    PubMed

    Singh, Shanker K; Dimri, Umesh; Sharma, Bhaskar; Saxena, Meeta; Kumari, Priyambada

    2014-12-15

    The mechanism of cytokine secretion from T lymphocytes plays an important role in the immune response of dogs and parasitic skin infestations. Assessment of the cytokine profile of naturally S. scabiei var. canis infested dogs could augment understanding of the pathobiology of canine sarcoptic mange. Therefore, the present study examined the cytokines in peripheral blood mononuclear cells of dogs suffering from sarcoptic mange. Thirteen dogs naturally infected with sarcoptic mange participated in the study. The dogs were found positive for S. scabiei var. canis mites in skin scraping examinations and revealed at least three clinical inclusion criteria. Another five clinically healthy dogs were kept as healthy controls. Peripheral blood mononuclear cells were isolated from heparinized blood samples and used for extraction of mRNA. Further, cDNA was synthesized by using 1 mg of mRNA by reverse transcription using oligonucleotide primers. Relative levels of cytokine expression were compared with normalized glyceraldehyde-3-phosphate dehydrogenase (GAPDH) transcripts. The levels of interleukin-4, interleukin-5 and transforming growth factor beta (TGF-β) mRNA expression in dogs with sarcoptic mange were significantly higher (P ≤ 0.01), whereas the level of tumor necrosis factor alpha (TNF-α) was significantly lower (P ≤ 0.01) in comparison with the healthy dogs. No remarkable difference was seen for interleukin-2 mRNA expression between these animals. An overproduction IL-4 and IL-5 might be involved in immuno-pathogenesis of canine sarcoptic mange. S. scabiei var. canis mites possibly induce an overproduction of TGF-β and reduced expression of TNF-α and thus could be conferring the immune suppression of infested dogs. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Molecular and antigenic traits on hemagglutinin gene of avian influenza H9N2 viruses: Evidence of a new escape mutant in Egypt adapted in quails.

    PubMed

    Adel, Amany; Arafa, Abdelsatar; Hussein, Hussein A; El-Sanousi, Ahmed A

    2017-06-01

    The LPAI viruses of H9N2 subtype became widely distributed in Middle Eastern countries, causing great economic losses in poultry industry especially when complicated with other pathogens. The H9N2 viruses in Egypt have a wide spread nature since its first occurrence in 2011. In this study, we collected cloacal and tracheal samples from 19 flocks for detection and propagation of H9N2 virus using real-time RT-PCR and egg inoculation. We studied the molecular evolution of the Hemagglutinin gene of H9N2 viruses by full HA gene sequencing, then the antigenic characterization was implemented using the cross HI assay and analyzed using 3D Bioinformatics cartography software. The phylogenetic analysis of the HA gene of Egyptian H9N2 viruses clearly points out the presence of only one group (Egy/G1) of originally introduced viruses in 2011 related to the G1 lineage within group B, with the presence of multiple minor clusters includes viruses from 2011 to 2015. However, a new variant (Egy/G1var) cluster was detected in quails since 2012. Genetically, Egy/G1var viruses characterized by presence of 20 amino acid substitutions within and adjacent to the antigenic sites in comparison to other Egyptian viruses. In addition, two glycosylation sites at amino acid residues 127 and 189 were determined in close to the receptor binding and antigenic sites. The antigenic analysis based on 3D antigenic mapping showed that the Egy/G1var cluster was clearly distinct from the original Egy/G1 viruses. In conclusion, Egy/G1var is shown to be a new escape mutant variant cluster with an adaptive evolution in quails. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Selection of appropriate reference genes for the detection of rhythmic gene expression via quantitative real-time PCR in Tibetan hulless barley.

    PubMed

    Cai, Jing; Li, Pengfei; Luo, Xiao; Chang, Tianliang; Li, Jiaxing; Zhao, Yuwei; Xu, Yao

    2018-01-01

    Hulless barley (Hordeum vulgare L. var. nudum. hook. f.) has been cultivated as a major crop in the Qinghai-Tibet plateau of China for thousands of years. Compared to other cereal crops, the Tibetan hulless barley has developed stronger endogenous resistances to survive in the severe environment of its habitat. To understand the unique resistant mechanisms of this plant, detailed genetic studies need to be performed. The quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) is the most commonly used method in detecting gene expression. However, the selection of stable reference genes under limited experimental conditions was considered to be an essential step for obtaining accurate results in qRT-PCR. In this study, 10 candidate reference genes-ACT (Actin), E2 (Ubiquitin conjugating enzyme 2), TUBα (Alpha-tubulin), TUBβ6 (Beta-tubulin 6), GAPDH (Glyceraldehyde 3-phosphate dehydrogenase), EF-1α (Elongation factor 1-alpha), SAMDC (S-adenosylmethionine decarboxylase), PKABA1 (Gene for protein kinase HvPKABA1), PGK (Phosphoglycerate kinase), and HSP90 (Heat shock protein 90)-were selected from the NCBI gene database of barley. Following qRT-PCR amplifications of all candidate reference genes in Tibetan hulless barley seedlings under various stressed conditions, the stabilities of these candidates were analyzed by three individual software packages including geNorm, NormFinder, and BestKeeper. The results demonstrated that TUBβ6, E2, TUBα, and HSP90 were generally the most suitable sets under all tested conditions; similarly, TUBα and HSP90 showed peak stability under salt stress, TUBα and EF-1α were the most suitable reference genes under cold stress, and ACT and E2 were the most stable under drought stress. Finally, a known circadian gene CCA1 was used to verify the service ability of chosen reference genes. The results confirmed that all recommended reference genes by the three software were suitable for gene expression analysis under tested stress conditions by the qRT-PCR method.

  12. piRNA-mediated transposon regulation and the germ-line mutation rate in Drosophila melanogaster males.

    PubMed

    Simmons, Michael J; Peterson, Mark P; Thorp, Michael W; Buschette, Jared T; DiPrima, Stephanie N; Harter, Christine L; Skolnick, Matthew J

    2015-03-01

    Transposons, especially retrotransposons, are abundant in the genome of Drosophila melanogaster. These mobile elements are regulated by small RNAs that interact with the Piwi family of proteins-the piwi-interacting or piRNAs. The Piwi proteins are encoded by the genes argonaute3 (ago3), aubergine (aub), and piwi. Heterochromatin Protein 1 (HP1), a chromatin-organizing protein encoded by the Suppressor of variegation 205 [Su(var)205] gene, also plays a role in this regulation. To assess the mutational impact of weakening the system for transposon regulation, we measured the frequency of recessive X-linked lethal mutations occurring in the germ lines of males from stocks that were heterozygous for mutant alleles of the ago3, aub, piwi, or Su(var)205 genes. These mutant alleles are expected to deplete the wild-type proteins encoded by these genes by as much as 50%. The mutant alleles of piwi and Su(var)205 significantly increased the X-linked lethal mutation frequency, whereas the mutant alleles of ago3 did not. An increased mutation frequency was also observed in males from one of two mutant aub stocks, but this increase may not have been due to the aub mutant. The increased mutation frequency caused by depleting Piwi or HP1suggests that chromatin-organizing proteins play important roles in minimizing the germ-line mutation rate, possibly by stabilizing the structure of the heterochromatin in which many transposons are situated. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Expression of the rabies virus glycoprotein in transgenic tomatoes.

    PubMed

    McGarvey, P B; Hammond, J; Dienelt, M M; Hooper, D C; Fu, Z F; Dietzschold, B; Koprowski, H; Michaels, F H

    1995-12-01

    We have engineered tomato plants (Lycopersicon esculentum Mill var. UC82b) to express a gene for the glycoprotein (G-protein), which coats the outer surface of the rabies virus. The recombinant constructs contained the G-protein gene from the ERA strain of rabies virus, including the signal peptide, under the control of the 35S promoter of cauliflower mosaic virus. Plants were transformed by Agrobacterium tumefaciens-mediated transformation of cotyledons and tissue culture on selective media. PCR confirmed the presence of the G-protein gene in plants surviving selection. Northern blot analysis indicated that RNA of the appropriate molecular weight was produced in both leaves and fruit of the transgenic plants. The recombinant G-protein was immunoprecipitated and detected by Western blot from leaves and fruit using different antisera. The G-protein expressed in tomato appeared as two distinct bands with apparent molecular mass of 62 and 60 kDa as compared to the 66 kDa observed for G-protein from virus grown in BHK cells. Electron microscopy of leaf tissue using immunogold-labeling and antisera specific for rabies G-protein showed localization of the G-protein to the Golgi bodies, vesicles, plasmalemma and cell walls of vascular parenchyma cells. In light of our previous demonstration that orally administered rabies G-protein from the same ERA strain elicits protective immunity in animals, these transgenic plants should provide a valuable tool for the development of edible oral vaccines.

  14. Volatile Ester Formation in Roses. Identification of an Acetyl-Coenzyme A. Geraniol/Citronellol Acetyltransferase in Developing Rose Petals1

    PubMed Central

    Shalit, Moshe; Guterman, Inna; Volpin, Hanne; Bar, Einat; Tamari, Tal; Menda, Naama; Adam, Zach; Zamir, Dani; Vainstein, Alexander; Weiss, David; Pichersky, Eran; Lewinsohn, Efraim

    2003-01-01

    The aroma of roses (Rosa hybrida) is due to more than 400 volatile compounds including terpenes, esters, and phenolic derivatives. 2-Phenylethyl acetate, cis-3-hexenyl acetate, geranyl acetate, and citronellyl acetate were identified as the main volatile esters emitted by the flowers of the scented rose var. “Fragrant Cloud.” Cell-free extracts of petals acetylated several alcohols, utilizing acetyl-coenzyme A, to produce the corresponding acetate esters. Screening for genes similar to known plant alcohol acetyltransferases in a rose expressed sequence tag database yielded a cDNA (RhAAT1) encoding a protein with high similarity to several members of the BAHD family of acyltransferases. This cDNA was functionally expressed in Escherichia coli, and its gene product displayed acetyl-coenzyme A:geraniol acetyltransferase enzymatic activity in vitro. The RhAAT1 protein accepted other alcohols such as citronellol and 1-octanol as substrates, but 2-phenylethyl alcohol and cis-3-hexen-1-ol were poor substrates, suggesting that additional acetyltransferases are present in rose petals. The RhAAT1 protein is a polypeptide of 458 amino acids, with a calculated molecular mass of 51.8 kD, pI of 5.45, and is active as a monomer. The RhAAT1 gene was expressed exclusively in floral tissue with maximum transcript levels occurring at stage 4 of flower development, where scent emission is at its peak. PMID:12692346

  15. The Cryptococcus neoformans Transcriptome at the Site of Human Meningitis

    PubMed Central

    Chen, Yuan; Toffaletti, Dena L.; Tenor, Jennifer L.; Litvintseva, Anastasia P.; Fang, Charles; Mitchell, Thomas G.; McDonald, Tami R.; Nielsen, Kirsten; Boulware, David R.; Bicanic, Tihana; Perfect, John R.

    2014-01-01

    ABSTRACT Cryptococcus neoformans is the leading cause of fungal meningitis worldwide. Previous studies have characterized the cryptococcal transcriptome under various stress conditions, but a comprehensive profile of the C. neoformans transcriptome in the human host has not been attempted. Here, we extracted RNA from yeast cells taken directly from the cerebrospinal fluid (CSF) of two AIDS patients with cryptococcal meningitis prior to antifungal therapy. The patients were infected with strains of C. neoformans var. grubii of molecular type VNI and VNII. Using RNA-seq, we compared the transcriptional profiles of these strains under three environmental conditions (in vivo CSF, ex vivo CSF, and yeast extract-peptone-dextrose [YPD]). Although we identified a number of differentially expressed genes, single nucleotide variants, and novel genes that were unique to each strain, the overall expression patterns of the two strains were similar under the same environmental conditions. Specifically, yeast cells obtained directly from each patient’s CSF were more metabolically active than cells that were incubated ex vivo in CSF. Compared with growth in YPD, some genes were identified as significantly upregulated in both in vivo and ex vivo CSF, and they were associated with genes previously recognized for contributing to pathogenicity. For example, genes with known stress response functions, such as RIM101, ENA1, and CFO1, were regulated similarly in the two clinical strains. Conversely, many genes that were differentially regulated between the two strains appeared to be transporters. These findings establish a platform for further studies of how this yeast survives and produces disease. PMID:24496797

  16. Insights into Hydrocarbon Assimilation by Eurotialean and Hypocrealean Fungi: Roles for CYP52 and CYP53 Clans of Cytochrome P450 Genes.

    PubMed

    Huarte-Bonnet, Carla; Kumar, Suresh; Saparrat, Mario C N; Girotti, Juan R; Santana, Marianela; Hallsworth, John E; Pedrini, Nicolás

    2018-03-01

    Several filamentous fungi are able to concomitantly assimilate both aliphatic and polycyclic aromatic hydrocarbons that are the biogenic by-products of some industrial processes. Cytochrome P450 monooxygenases catalyze the first oxidation reaction for both types of substrate. Among the cytochrome P450 (CYP) genes, the family CYP52 is implicated in the first hydroxylation step in alkane-assimilation processes, while genes belonging to the family CYP53 have been linked with oxidation of aromatic hydrocarbons. Here, we perform a comparative analysis of CYP genes belonging to clans CYP52 and CYP53 in Aspergillus niger, Beauveria bassiana, Metarhizium robertsii (formerly M. anisopliae var. anisopliae), and Penicillium chrysogenum. These species were able to assimilate n-hexadecane, n-octacosane, and phenanthrene, exhibiting a species-dependent modification in pH of the nutrient medium during this process. Modeling of the molecular docking of the hydrocarbons to the cytochrome P450 active site revealed that both phenanthrene and n-octacosane are energetically favored as substrates for the enzymes codified by genes belonging to both CYP52 and CYP53 clans, and thus appear to be involved in this oxidation step. Analyses of gene expression revealed that CYP53 members were significantly induced by phenanthrene in all species studied, but only CYP52X1 and CYP53A11 from B. bassiana were highly induced with n-alkanes. These findings suggest that the set of P450 enzymes involved in hydrocarbon assimilation by fungi is dependent on phylogeny and reveal distinct substrate and expression specificities.

  17. Weak genetic divergence suggests extensive gene flow at the northeastern range limit of a dioecious Ficus species

    NASA Astrophysics Data System (ADS)

    Wang, Rong; Yang, Chang-Hong; Ding, Yuan-Yuan; Tong, Xin; Chen, Xiao-Yong

    2018-07-01

    Genus Ficus (Moraceae) plays a critical role in the sustainability and biodiversity in tropical and subtropical ecosystems. Ficus species and their host specific pollinating fig wasps (Agaonidae) represent a classic example of obligate mutualism. The genetic consequence of range expansion and range shift is still under investigation, but extensive gene flow and subsequently low level of genetic divergence may be expected to occur among the populations at the poleward range limit of some Ficus species due to long distance gene flow in the genus. In the present study, we focused on populations of F. sarmentosa var. henryi at its northeastern range limit in southeast China to test whether edge populations were genetically fragile. Consistent with our hypothesis, high level of genetic diversity and weak genetic structure were revealed in Ficus sarmentosa var. henryi populations, suggesting extensive gene flow at the plant's range limit. Long-distance movements of both pollinators and frugivorous birds were likely to be frequent and thereby predominantly contributed to the extensive gene flow at large scale despite of some magnificent landscape elements like huge mountains.

  18. Genome-Wide Expression Analysis of Reactive Oxygen Species Gene Network in Mizuna Plants Grown in Long-Term Spaceflight

    NASA Astrophysics Data System (ADS)

    Sugimoto, Manabu; Gusev, Oleg; Wheeler, Raymond; Levinskikh, Margarita; Sychev, Vladimir; Bingham, Gail; Hummerick, Mary; Oono, Youko; Matsumoto, Takashi; Yazawa, Takayuki

    We have developed a plant growth system, namely Lada, which was installed in ISS to study and grow plants, including vegetables in a spaceflight environment. We have succeeded in cultivating Mizuna, tomato, pea, radish, wheat, rice, and barley in long-term spaceflight. Transcription levels of superoxide dismutase, glutamyl transferase, catalase, and ascorbate peroxidase were increased in the barley germinated and grown for 26 days in Lada, though the whole-plant growth and development of the barley in spaceflight were the same as in the ground control barley. In this study, we investigated the response of the ROS gene network in Mizuna, Brassica rapa var. nipposinica, cultivated under spaceflight condition. Seeds of Mizuna were sown in the root module of LADA aboard the Zvezda module of ISS and the seedlings were grown under 24h lighting in the leaf chamber. After 27 days of cultivation, the plants were harvested and stored at -80(°) C in MELFI aboard the Destiny module, and were transported to the ground at < -20(°) C in GLACIER aboard Space Shuttle. Ground control cultivation was carried out under the same conditions in LADA. Total RNA isolated from leaves was subjected to mRNA-Seq using next generation sequencing (NGS) technology. A total of 20 in 32 ROS oxidative marker genes were up-regulated, including high expression of four hallmarks, and preferentially expressed genes associated with ROS-scavenging including thioredoxin, glutaredoxin, and alternative oxidase genes. In the transcription factors of the ROS gene network, MEKK1-MKK4-MPK3, OXI1-MKK4-MPK3, and OXI1-MPK3 of MAP cascades, induction of WRKY22 by MEKK1-MKK4-MPK3 cascade, induction of WRKY25 and repression of Zat7 by Zat12 were suggested. These results revealed that the spaceflight environment induced oxidative stress and the ROS gene network activation in the space-grown Mizuna.

  19. Strain-specific variation in a soilborne phytopathogenic fungus for the expression of genes involved in pH signal transduction pathway, pathogenesis and saprophytic survival in response to environmental pH changes.

    PubMed

    Daval, Stéphanie; Lebreton, Lionel; Gracianne, Cécile; Guillerm-Erckelboudt, Anne-Yvonne; Boutin, Morgane; Marchi, Muriel; Gazengel, Kévin; Sarniguet, Alain

    2013-12-01

    The soilborne fungus Gaeumannomyces graminis var. tritici (Ggt) causes take-all, a wheat root disease. In an original strain-specific way, a previous study indicates that inside the Ggt species, some strains grow preferentially at acidic pH and other strains at neutral/alkaline pH. The most important mechanism for a fungal response to the environmental pH is the Pal pathway which integrates the products of the six pal genes and the transcription factor PacC. To evaluate whether the Ggt strain-specific growth in function of the ambient pH is mediated via the Pal pathway, a transcriptional study of the genes encoding this pathway was carried out. This study provided the first evidence that the pH signalling pathway similar to those described in other fungi operated in Ggt. The pacC gene was induced at neutral pH whatever the strain. In an original way, the expression of Ggt genes coding for the different Pal proteins depended on the strain and on the ambient pH. In the strain growing better at acidic pH, few pal genes were pH-regulated, and some were overexpressed at neutral pH when regulated. In the strain growing better at neutral pH, underexpression of most of the pal genes at neutral pH occurred. The strains displayed higher gene expression in the ambient pH that unfavoured their growth as if it was a compensation system. All pH taken together, a globally weaker Pal transcript level occurred in the strains that were less sensitive to acidic pH, and on the contrary, the strain growing better on neutral pH showed higher Pal mRNA levels. The expression of genes involved in pathogenesis and saprophytic growth was also regulated by the ambient pH and the strain: each gene displayed a specific pH-regulation that was similar between strains. But all pH taken together, the global transcript levels of four out of six genes were higher in the strain growing better on neutral pH. Altogether, for the first time, the results show that inside a species, conditions affecting environmental pH modulate the expression of genes in an original strain-specific way. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Reclassification of the Candida haemulonii complex as Candida haemulonii (C. haemulonii group I), C. duobushaemulonii sp. nov. (C. haemulonii group II), and C. haemulonii var. vulnera var. nov.: three multiresistant human pathogenic yeasts.

    PubMed

    Cendejas-Bueno, E; Kolecka, A; Alastruey-Izquierdo, A; Theelen, B; Groenewald, M; Kostrzewa, M; Cuenca-Estrella, M; Gómez-López, A; Boekhout, T

    2012-11-01

    The Candida haemulonii species complex is currently known as C. haemulonii groups I and II. Here we describe C. haemulonii group II as a new species, Candida duobushaemulonii sp. nov., and C. haemulonii var. vulnera as new a variety of C. haemulonii group I using phenotypic and molecular methods. These taxa and other relatives of C. haemulonii (i.e., Candida auris and Candida pseudohaemulonii) cannot be differentiated by the commercial methods now used for yeast identification. Four isolates (C. haemulonii var. vulnera) differed from the other isolates of C. haemulonii in the sequence of the internal transcribed spacer (ITS) regions of the nuclear rRNA gene operon. The new species and the new variety have a multiresistant antifungal profile, which includes high MICs of amphotericin B (geometric mean MIC, 1.18 mg/liter for C. haemulonii var. vulnera and 2 mg/liter for C. duobushaemulonii sp. nov) and cross-resistance to azole compounds. Identification of these species should be based on molecular methods, such as sequence analysis of ITS regions and matrix-assisted laser desorption ionization-time of flight mass spectrometry.

  1. Chemical composition and some biological activities of the essential oils from basil Ocimum different cultivars.

    PubMed

    Avetisyan, Arpi; Markosian, Anahit; Petrosyan, Margarit; Sahakyan, Naira; Babayan, Anush; Aloyan, Samvel; Trchounian, Armen

    2017-01-19

    The plants belonging to the Ocimum genus of the Lamiaceae family are considered to be a rich source of essential oils which have expressed biological activity and use in different area of human activity. There is a great variety of chemotypes within the same basil species. Essential oils from three different cultivars of basil, O. basilicum var. purpureum, O. basilicum var. thyrsiflora, and O. citriodorum Vis. were the subjects of our investigations. The oils were obtained by steam distillation in a Clevenger-type apparatus. The gas chromatography mass selective analysis was used to determine their chemical composition. The antioxidant activities of these essential oils were measured using 1,1-diphenyl-2-picrylhydrazyl assays; the tyrosinase inhibition abilities of the given group of oils were also assessed spectophotometrically, and the antimicrobial activity of the essential oils was determined by the agar diffusion method, minimal inhibitory concentrations were expressed. According to the results, the qualitative and quantitative composition of essential oils was quite different: O. basilicum var. purpureum essential oil contained 57.3% methyl-chavicol (estragol); O. basilicum var. thyrsiflora oil had 68.0% linalool. The main constituents of O. citriodorum oil were nerol (23.0%) and citral (20.7%). The highest antioxidant activity was demonstrated by O. basilicum var. thyrsiflora essential oil. This oil has also exhibited the highest tyrosinase inhibition level, whereas the oil from O. citriodorum cultivar demonstrated the highest antimicrobial activity. The results obtained indicate that these essential oils have antioxidant, antibacterial and antifungal activity and can be used as natural antioxidant and antimicrobial agents in medicine, food industry and cosmetics.

  2. A Flexible Binding Site Architecture Provides New Insights into CcpA Global Regulation in Gram-Positive Bacteria.

    PubMed

    Yang, Yunpeng; Zhang, Lu; Huang, He; Yang, Chen; Yang, Sheng; Gu, Yang; Jiang, Weihong

    2017-01-24

    Catabolite control protein A (CcpA) is the master regulator in Gram-positive bacteria that mediates carbon catabolite repression (CCR) and carbon catabolite activation (CCA), two fundamental regulatory mechanisms that enable competitive advantages in carbon catabolism. It is generally regarded that CcpA exerts its regulatory role by binding to a typical 14- to 16-nucleotide (nt) consensus site that is called a catabolite response element (cre) within the target regions. However, here we report a previously unknown noncanonical flexible architecture of the CcpA-binding site in solventogenic clostridia, providing new mechanistic insights into catabolite regulation. This novel CcpA-binding site, named cre var , has a unique architecture that consists of two inverted repeats and an intervening spacer, all of which are variable in nucleotide composition and length, except for a 6-bp core palindromic sequence (TGTAAA/TTTACA). It was found that the length of the intervening spacer of cre var can affect CcpA binding affinity, and moreover, the core palindromic sequence of cre var is the key structure for regulation. Such a variable architecture of cre var shows potential importance for CcpA's diverse and fine regulation. A total of 103 potential cre var sites were discovered in solventogenic Clostridium acetobutylicum, of which 42 sites were picked out for electrophoretic mobility shift assays (EMSAs), and 30 sites were confirmed to be bound by CcpA. These 30 cre var sites are associated with 27 genes involved in many important pathways. Also of significance, the cre var sites are found to be widespread and function in a great number of taxonomically different Gram-positive bacteria, including pathogens, suggesting their global role in Gram-positive bacteria. In Gram-positive bacteria, the global regulator CcpA controls a large number of important physiological and metabolic processes. Although a typical consensus CcpA-binding site, cre, has been identified, it remains poorly explored for the diversity of CcpA-mediated catabolite regulation. Here, we discovered a novel flexible CcpA-binding site architecture (cre var ) that is highly variable in both length and base composition but follows certain principles, providing new insights into how CcpA can differentially recognize a variety of target genes to form a complicated regulatory network. A comprehensive search further revealed the wide distribution of cre var sites in Gram-positive bacteria, indicating it may have a universal function. This finding is the first to characterize such a highly flexible transcription factor-binding site architecture, which would be valuable for deeper understanding of CcpA-mediated global catabolite regulation in bacteria. Copyright © 2017 Yang et al.

  3. Probing the Role of N-Linked Glycans in the Stability and Activity of Fungal Cellobiohydrolases by Mutational Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adney, W. S.; Jeoh, T.; Beckham, G. T.

    2009-01-01

    The filamentous fungi Trichoderma reesei and Penicillium funiculosum produce highly effective enzyme mixtures that degrade the cellulose and hemicellulose components of plant cell walls. Many fungal species produce a glycoside hydrolase family 7 (Cel7A) cellobiohydrolase, a class of enzymes that catalytically process from the reducing end of cellulose. A direct amino acid comparison of these two enzymes shows that they not only have high amino acid homology, but also contain analogous N-linked glycosylation sites on the catalytic domain. We have previously shown (Jeoh et al. in Biotechnol Biofuels, 1:10, 2008) that expression of T. reesei cellobiohydrolase I in a commonlymore » used industrial expression host, Aspergillus niger var. awamori, results in an increase in the amount of N-linked glycosylation of the enzyme, which negatively affects crystalline cellulose degradation activity as well as thermal stability. This complementary study examines the significance of individual N-linked glycans on the surface of the catalytic domain of Cel7A cellobiohydrolases from T. reesei and P. funiculosum by genetically adding or removing N-linked glycosylation motifs using site directed mutagenesis. Modified enzymes, expressed in A. niger var. awamori, were tested for activity and thermal stability. It was concluded that N-linked glycans in peptide loops that form part of the active site tunnel have the greatest impact on both thermal stability and enzymatic activity on crystalline cellulose for both the T. reesei and P. funiculosum Cel7A enzymes. Specifically, for the Cel7A T. reesei enzyme expressed in A. niger var. awamori, removal of the N384 glycosylation site yields a mutant with 70% greater activity after 120 h compared to the heterologously expressed wild type T. reesei enzyme. In addition, similar activity improvements were found to be associated with the addition of a new glycosylation motif at N194 in P. funiculosum. This mutant also exhibits 70% greater activity after 120 h compared to the wild type P. funiculosum enzyme expressed in A. niger var. awamori. Overall, this study demonstrates that 'tuning' enzyme glycosylation for expression from heterologous expression hosts is essential for generating engineered enzymes with optimal stability and activity.« less

  4. iTRAQ-Based Quantitative Proteomics Analysis of Black Rice Grain Development Reveals Metabolic Pathways Associated with Anthocyanin Biosynthesis.

    PubMed

    Chen, Linghua; Huang, Yining; Xu, Ming; Cheng, Zuxin; Zhang, Dasheng; Zheng, Jingui

    2016-01-01

    Black rice (Oryza sativa L.), whose pericarp is rich in anthocyanins (ACNs), is considered as a healthier alternative to white rice. Molecular species of ACNs in black rice have been well documented in previous studies; however, information about the metabolic mechanisms underlying ACN biosynthesis during black rice grain development is unclear. The aim of the present study was to determine changes in the metabolic pathways that are involved in the dynamic grain proteome during the development of black rice indica cultivar, (Oryza sativa L. indica var. SSP). Isobaric tags for relative and absolute quantification (iTRAQ) MS/MS were employed to identify statistically significant alterations in the grain proteome. Approximately 928 proteins were detected, of which 230 were differentially expressed throughout 5 successive developmental stages, starting from 3 to 20 days after flowering (DAF). The greatest number of differentially expressed proteins was observed on 7 and 10 DAF, including 76 proteins that were upregulated and 39 that were downregulated. The biological process analysis of gene ontology revealed that the 230 differentially expressed proteins could be sorted into 14 functional groups. Proteins in the largest group were related to metabolic process, which could be integrated into multiple biochemical pathways. Specifically, proteins with a role in ACN biosynthesis, sugar synthesis, and the regulation of gene expression were upregulated, particularly from the onset of black rice grain development and during development. In contrast, the expression of proteins related to signal transduction, redox homeostasis, photosynthesis and N-metabolism decreased during grain maturation. Finally, 8 representative genes encoding different metabolic proteins were verified via quantitative real-time polymerase chain reaction (qRT-PCR) analysis, these genes had differed in transcriptional and translational expression during grain development. Expression analyses of metabolism-related protein groups belonging to different functional categories and subcategories indicated that significantly upregulated proteins were related to flavonoid and starch synthesis. On the other hand, the downregulated proteins were determined to be related to nitrogen metabolism, as well as other functional categories and subcategories, including photosynthesis, redox homeostasis, tocopherol biosynthetic, and signal transduction. The results provide valuable new insights into the characterization and understanding of ACN pigment production in black rice.

  5. Vitamin D inhibits lipopolysaccharide-induced inflammatory response potentially through the Toll-like receptor 4 signalling pathway in the intestine and enterocytes of juvenile Jian carp (Cyprinus carpio var. Jian).

    PubMed

    Jiang, Jun; Shi, Dan; Zhou, Xiao-Qiu; Yin, Long; Feng, Lin; Jiang, Wei-Dan; Liu, Yang; Tang, Ling; Wu, Pei; Zhao, Ye

    2015-11-28

    The present study was conducted to investigate the anti-inflammatory effect of vitamin D both in juvenile Jian carp (Cyprinus carpio var. Jian) in vivo and in enterocytes in vitro. In primary enterocytes, exposure to 10 mg lipopolysaccharide (LPS)/l increased lactate dehydrogenase activity in the culture medium (P<0·05) and resulted in a significant loss of cell viability (P<0·05). LPS exposure increased (P<0·05) the mRNA expression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6 and IL-8), which was decreased by pre-treatment with 1,25-dihydroxyvitamin D (1,25D3) in a dose-dependent manner (P<0·05). Further results showed that pre-treatment with 1,25D3 down-regulated Toll-like receptor 4 (TLR4), myeloid differentiation primary response gene 88 (Myd88) and NF-κB p65 mRNA expression (P<0·05), suggesting potential mechanisms against LPS-induced inflammatory response. In vivo, intraperitoneal injection of LPS significantly increased TNF-α, IL-1β, IL-6 and IL-8 mRNA expression in the intestine of carp (P<0·05). Pre-treatment of fish with vitamin D3 protected the fish intestine from the LPS-induced increase of TNF-α, IL-1β, IL-6 and IL-8 mainly by downregulating TLR4, Myd88 and NF-κB p65 mRNA expression (P<0·05). These observations suggest that vitamin D could inhibit LPS-induced inflammatory response in juvenile Jian carp in vivo and in enterocytes in vitro. The anti-inflammatory effect of vitamin D is mediated at least in part by TLR4-Myd88 signalling pathways in the intestine and enterocytes of juvenile Jian carp.

  6. Evidence for Globally Shared, Cross-Reacting Polymorphic Epitopes in the Pregnancy-Associated Malaria Vaccine Candidate VAR2CSA▿

    PubMed Central

    Avril, Marion; Kulasekara, Bridget R.; Gose, Severin O.; Rowe, Chris; Dahlbäck, Madeleine; Duffy, Patrick E.; Fried, Michal; Salanti, Ali; Misher, Lynda; Narum, David L.; Smith, Joseph D.

    2008-01-01

    Pregnancy-associated malaria (PAM) is characterized by the placental sequestration of Plasmodium falciparum-infected erythrocytes (IEs) with the ability to bind to chondroitin sulfate A (CSA). VAR2CSA is a leading candidate for a pregnancy malaria vaccine, but its large size (∼350 kDa) and extensive polymorphism may pose a challenge to vaccine development. In this study, rabbits were immunized with individual VAR2CSA Duffy binding-like (DBL) domains expressed in Pichia pastoris or var2csa plasmid DNA and sera were screened on different CSA-binding parasite lines. Rabbit antibodies to three recombinant proteins (DBL1, DBL3, and DBL6) and four plasmid DNAs (DBL1, DBL3, DBL5, and DBL6) reacted with homologous FCR3-CSA IEs. By comparison, antibodies to the DBL4 domain were unable to react with native VAR2CSA protein unless it was first partially proteolyzed with trypsin or chymotrypsin. To investigate the antigenic relationship of geographically diverse CSA-binding isolates, rabbit immune sera were screened on four heterologous CSA-binding lines from different continental origins. Antibodies did not target conserved epitopes exposed in all VAR2CSA alleles; however, antisera to several DBL domains cross-reacted on parasite isolates that had polymorphic loops in common with the homologous immunogen. This study demonstrates that VAR2CSA contains common polymorphic epitopes that are shared between geographically diverse CSA-binding lines. PMID:18250177

  7. Evidence for globally shared, cross-reacting polymorphic epitopes in the pregnancy-associated malaria vaccine candidate VAR2CSA.

    PubMed

    Avril, Marion; Kulasekara, Bridget R; Gose, Severin O; Rowe, Chris; Dahlbäck, Madeleine; Duffy, Patrick E; Fried, Michal; Salanti, Ali; Misher, Lynda; Narum, David L; Smith, Joseph D

    2008-04-01

    Pregnancy-associated malaria (PAM) is characterized by the placental sequestration of Plasmodium falciparum-infected erythrocytes (IEs) with the ability to bind to chondroitin sulfate A (CSA). VAR2CSA is a leading candidate for a pregnancy malaria vaccine, but its large size ( approximately 350 kDa) and extensive polymorphism may pose a challenge to vaccine development. In this study, rabbits were immunized with individual VAR2CSA Duffy binding-like (DBL) domains expressed in Pichia pastoris or var2csa plasmid DNA and sera were screened on different CSA-binding parasite lines. Rabbit antibodies to three recombinant proteins (DBL1, DBL3, and DBL6) and four plasmid DNAs (DBL1, DBL3, DBL5, and DBL6) reacted with homologous FCR3-CSA IEs. By comparison, antibodies to the DBL4 domain were unable to react with native VAR2CSA protein unless it was first partially proteolyzed with trypsin or chymotrypsin. To investigate the antigenic relationship of geographically diverse CSA-binding isolates, rabbit immune sera were screened on four heterologous CSA-binding lines from different continental origins. Antibodies did not target conserved epitopes exposed in all VAR2CSA alleles; however, antisera to several DBL domains cross-reacted on parasite isolates that had polymorphic loops in common with the homologous immunogen. This study demonstrates that VAR2CSA contains common polymorphic epitopes that are shared between geographically diverse CSA-binding lines.

  8. Phyllodulcin, a Natural Sweetener, Regulates Obesity-Related Metabolic Changes and Fat Browning-Related Genes of Subcutaneous White Adipose Tissue in High-Fat Diet-Induced Obese Mice.

    PubMed

    Kim, Eunju; Lim, Soo-Min; Kim, Min-Soo; Yoo, Sang-Ho; Kim, Yuri

    2017-09-21

    Phyllodulcin is a natural sweetener found in Hydrangea macrophylla var. thunbergii . This study investigated whether phyllodulcin could improve metabolic abnormalities in high-fat diet (HFD)-induced obese mice. Animals were fed a 60% HFD for 6 weeks to induce obesity, followed by 7 weeks of supplementation with phyllodulcin (20 or 40 mg/kg body weight (b.w.)/day). Stevioside (40 mg/kg b.w./day) was used as a positive control. Phyllodulcin supplementation reduced subcutaneous fat mass, levels of plasma lipids, triglycerides, total cholesterol, and low-density lipoprotein cholesterol and improved the levels of leptin, adiponectin, and fasting blood glucose. In subcutaneous fat tissues, supplementation with stevioside or phyllodulcin significantly decreased mRNA expression of lipogenesis-related genes, including CCAAT/enhancer-binding protein α ( C/EBPα ), peroxisome proliferator activated receptor γ ( PPARγ ), and sterol regulatory element-binding protein-1C ( SREBP-1c ) compared to the high-fat group. Phyllodulcin supplementation significantly increased the expression of fat browning-related genes, including PR domain containing 16 ( Prdm16 ), uncoupling protein 1 ( UCP1 ), and peroxisome proliferator-activated receptor γ coactivator 1-α ( PGC-1α ), compared to the high-fat group. Hypothalamic brain-derived neurotrophic factor-tropomyosin receptor kinase B (BDNF-TrkB) signaling was upregulated by phyllodulcin supplementation. In conclusion, phyllodulcin is a potential sweetener that could be used to combat obesity by regulating levels of leptin, fat browning-related genes, and hypothalamic BDNF-TrkB signaling.

  9. Soybean β-conglycinin induces inflammation and oxidation and causes dysfunction of intestinal digestion and absorption in fish.

    PubMed

    Zhang, Jin-Xiu; Guo, Lin-Ying; Feng, Lin; Jiang, Wei-Dan; Kuang, Sheng-Yao; Liu, Yang; Hu, Kai; Jiang, Jun; Li, Shu-Hong; Tang, Ling; Zhou, Xiao-Qiu

    2013-01-01

    β-Conglycinin has been identified as one of the major feed allergens. However, studies of β-conglycinin on fish are scarce. This study investigated the effects of β-conglycinin on the growth, digestive and absorptive ability, inflammatory response, oxidative status and gene expression of juvenile Jian carp (Cyprinus carpio var. Jian) in vivo and their enterocytes in vitro. The results indicated that the specific growth rate (SGR), feed intake, and feed efficiency were reduced by β-conglycinin. In addition, activities of trypsin, chymotrypsin, lipase, creatine kinase, Na(+),K(+)-ATPase and alkaline phosphatase in the intestine showed similar tendencies. The protein content of the hepatopancreas and intestines, and the weight and length of the intestines were all reduced by β-conglycinin. β-Conglycinin increased lipid and protein oxidation in the detected tissues and cells. However, β-conglycinin decreased superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione peroxidase (GPx) and glutathione reductase (GR) activities and glutathione (GSH) content in the intestine and enterocytes. Similar antioxidant activity in the hepatopancreas was observed, except for GST. The expression of target of rapamycin (TOR) gene was reduced by β-conglycinin. Furthermore, mRNA levels of interleukin-8 (IL-8), tumor necrosis factor-α (TNF-α), and transforming growth factor-β (TGF-β) genes were increased by β-conglycinin. However, β-conglycinin increased CuZnSOD, MnSOD, CAT, and GPx1b gene expression. In conclusion, this study indicates that β-conglycinin induces inflammation and oxidation, and causes dysfunction of intestinal digestion and absorption in fish, and finally reduces fish growth. The results of this study provide some information to the mechanism of β-conglycinin-induced negative effects.

  10. Database resources of the National Center for Biotechnology Information

    PubMed Central

    Sayers, Eric W.; Barrett, Tanya; Benson, Dennis A.; Bolton, Evan; Bryant, Stephen H.; Canese, Kathi; Chetvernin, Vyacheslav; Church, Deanna M.; DiCuccio, Michael; Federhen, Scott; Feolo, Michael; Fingerman, Ian M.; Geer, Lewis Y.; Helmberg, Wolfgang; Kapustin, Yuri; Krasnov, Sergey; Landsman, David; Lipman, David J.; Lu, Zhiyong; Madden, Thomas L.; Madej, Tom; Maglott, Donna R.; Marchler-Bauer, Aron; Miller, Vadim; Karsch-Mizrachi, Ilene; Ostell, James; Panchenko, Anna; Phan, Lon; Pruitt, Kim D.; Schuler, Gregory D.; Sequeira, Edwin; Sherry, Stephen T.; Shumway, Martin; Sirotkin, Karl; Slotta, Douglas; Souvorov, Alexandre; Starchenko, Grigory; Tatusova, Tatiana A.; Wagner, Lukas; Wang, Yanli; Wilbur, W. John; Yaschenko, Eugene; Ye, Jian

    2012-01-01

    In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI Website. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central (PMC), Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Primer-BLAST, COBALT, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, dbVar, Epigenomics, Genome and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, BioProject, BioSample, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Probe, Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART), Biosystems, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov. PMID:22140104

  11. Database resources of the National Center for Biotechnology Information

    PubMed Central

    2013-01-01

    In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central, Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Primer-BLAST, COBALT, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, dbVar, Epigenomics, the Genetic Testing Registry, Genome and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, BioProject, BioSample, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus, Probe, Online Mendelian Inheritance in Animals, the Molecular Modeling Database, the Conserved Domain Database, the Conserved Domain Architecture Retrieval Tool, Biosystems, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page. PMID:23193264

  12. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality.

    PubMed

    Wei, Chaoling; Yang, Hua; Wang, Songbo; Zhao, Jian; Liu, Chun; Gao, Liping; Xia, Enhua; Lu, Ying; Tai, Yuling; She, Guangbiao; Sun, Jun; Cao, Haisheng; Tong, Wei; Gao, Qiang; Li, Yeyun; Deng, Weiwei; Jiang, Xiaolan; Wang, Wenzhao; Chen, Qi; Zhang, Shihua; Li, Haijing; Wu, Junlan; Wang, Ping; Li, Penghui; Shi, Chengying; Zheng, Fengya; Jian, Jianbo; Huang, Bei; Shan, Dai; Shi, Mingming; Fang, Congbing; Yue, Yi; Li, Fangdong; Li, Daxiang; Wei, Shu; Han, Bin; Jiang, Changjun; Yin, Ye; Xia, Tao; Zhang, Zhengzhu; Bennetzen, Jeffrey L; Zhao, Shancen; Wan, Xiaochun

    2018-05-01

    Tea, one of the world's most important beverage crops, provides numerous secondary metabolites that account for its rich taste and health benefits. Here we present a high-quality sequence of the genome of tea, Camellia sinensis var. sinensis (CSS), using both Illumina and PacBio sequencing technologies. At least 64% of the 3.1-Gb genome assembly consists of repetitive sequences, and the rest yields 33,932 high-confidence predictions of encoded proteins. Divergence between two major lineages, CSS and Camellia sinensis var. assamica (CSA), is calculated to ∼0.38 to 1.54 million years ago (Mya). Analysis of genic collinearity reveals that the tea genome is the product of two rounds of whole-genome duplications (WGDs) that occurred ∼30 to 40 and ∼90 to 100 Mya. We provide evidence that these WGD events, and subsequent paralogous duplications, had major impacts on the copy numbers of secondary metabolite genes, particularly genes critical to producing three key quality compounds: catechins, theanine, and caffeine. Analyses of transcriptome and phytochemistry data show that amplification and transcriptional divergence of genes encoding a large acyltransferase family and leucoanthocyanidin reductases are associated with the characteristic young leaf accumulation of monomeric galloylated catechins in tea, while functional divergence of a single member of the glutamine synthetase gene family yielded theanine synthetase. This genome sequence will facilitate understanding of tea genome evolution and tea metabolite pathways, and will promote germplasm utilization for breeding improved tea varieties. Copyright © 2018 the Author(s). Published by PNAS.

  13. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality

    PubMed Central

    Wei, Chaoling; Yang, Hua; Wang, Songbo; Zhao, Jian; Liu, Chun; Gao, Liping; Xia, Enhua; Lu, Ying; Tai, Yuling; She, Guangbiao; Sun, Jun; Cao, Haisheng; Tong, Wei; Gao, Qiang; Li, Yeyun; Deng, Weiwei; Jiang, Xiaolan; Wang, Wenzhao; Chen, Qi; Zhang, Shihua; Li, Haijing; Wu, Junlan; Wang, Ping; Li, Penghui; Shi, Chengying; Zheng, Fengya; Jian, Jianbo; Huang, Bei; Shan, Dai; Shi, Mingming; Fang, Congbing; Yue, Yi; Li, Fangdong; Li, Daxiang; Wei, Shu; Han, Bin; Jiang, Changjun; Yin, Ye; Xia, Tao; Zhang, Zhengzhu; Bennetzen, Jeffrey L.; Zhao, Shancen; Wan, Xiaochun

    2018-01-01

    Tea, one of the world’s most important beverage crops, provides numerous secondary metabolites that account for its rich taste and health benefits. Here we present a high-quality sequence of the genome of tea, Camellia sinensis var. sinensis (CSS), using both Illumina and PacBio sequencing technologies. At least 64% of the 3.1-Gb genome assembly consists of repetitive sequences, and the rest yields 33,932 high-confidence predictions of encoded proteins. Divergence between two major lineages, CSS and Camellia sinensis var. assamica (CSA), is calculated to ∼0.38 to 1.54 million years ago (Mya). Analysis of genic collinearity reveals that the tea genome is the product of two rounds of whole-genome duplications (WGDs) that occurred ∼30 to 40 and ∼90 to 100 Mya. We provide evidence that these WGD events, and subsequent paralogous duplications, had major impacts on the copy numbers of secondary metabolite genes, particularly genes critical to producing three key quality compounds: catechins, theanine, and caffeine. Analyses of transcriptome and phytochemistry data show that amplification and transcriptional divergence of genes encoding a large acyltransferase family and leucoanthocyanidin reductases are associated with the characteristic young leaf accumulation of monomeric galloylated catechins in tea, while functional divergence of a single member of the glutamine synthetase gene family yielded theanine synthetase. This genome sequence will facilitate understanding of tea genome evolution and tea metabolite pathways, and will promote germplasm utilization for breeding improved tea varieties. PMID:29678829

  14. ScMED7, a sugarcane mediator subunit gene, acts as a regulator of plant immunity and is responsive to diverse stress and hormone treatments.

    PubMed

    Zhang, Xu; Yang, Yuting; Zou, Jiake; Chen, Yun; Wu, Qibin; Guo, Jinlong; Que, Youxiong; Xu, Liping

    2017-12-01

    The Mediator complex, is an essential component of the RNA polymerase II general transcriptional machinery in eukaryotes. Mediator subunit 7 (MED7), a key subunit in the central module of this complex, plays an important role in gene transcriptional regulation. The present study isolated the full-length cDNA of the MED7 gene of sugarcane, hereby designated as ScMED7, which was characterized to harbor a 525-bp open reading frame that is predicted to encode a 174-amino acid protein with a molecular mass of 19.9 kDa and was localized to the nucleus and cytoplasm. ScMED7 contains one typical conserved domain of MED7 proteins and shares 98% homology with that from Sorghum bicolor (XP_002447862.1). ScMED7 was constitutively expressed, yet significantly higher in bud tissues. ScMED7 transcription was obviously induced by heavy metal (CdCl 2 ), low temperature (4 °C), and hormone (SA and MeJA) treatments, while inhibited by osmotic stresses of NaCl and PEG. The role of ScMED7 in plant immunity was demonstrated by transient overexpression in tobacco, which in turn induces the expression of six out of nine defense-related marker genes, including all the three hypersensitive response genes. The responses of defense-related marker genes in the mock and in the ScMED7 transiently overexpressed leaves challenged by pathogenic Pseudomonas solanacearum and Fusarium solani var. coeruleum suggest that ScMED7 acts as a negative regulator during pathogen infections, whereas only fungal infection was clearly phenotypically expressed. In sum, ScMED7 plays an important role in modulating sugarcane responses to biotic and abiotic stresses, and may have dual roles in hypersensitive responses and basal defense against pathogens.

  15. Characterization of transcriptome dynamics during watermelon fruit development: sequencing, assembly, annotation and gene expression profiles

    PubMed Central

    2011-01-01

    Background Cultivated watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus] is an important agriculture crop world-wide. The fruit of watermelon undergoes distinct stages of development with dramatic changes in its size, color, sweetness, texture and aroma. In order to better understand the genetic and molecular basis of these changes and significantly expand the watermelon transcript catalog, we have selected four critical stages of watermelon fruit development and used Roche/454 next-generation sequencing technology to generate a large expressed sequence tag (EST) dataset and a comprehensive transcriptome profile for watermelon fruit flesh tissues. Results We performed half Roche/454 GS-FLX run for each of the four watermelon fruit developmental stages (immature white, white-pink flesh, red flesh and over-ripe) and obtained 577,023 high quality ESTs with an average length of 302.8 bp. De novo assembly of these ESTs together with 11,786 watermelon ESTs collected from GenBank produced 75,068 unigenes with a total length of approximately 31.8 Mb. Overall 54.9% of the unigenes showed significant similarities to known sequences in GenBank non-redundant (nr) protein database and around two-thirds of them matched proteins of cucumber, the most closely-related species with a sequenced genome. The unigenes were further assigned with gene ontology (GO) terms and mapped to biochemical pathways. More than 5,000 SSRs were identified from the EST collection. Furthermore we carried out digital gene expression analysis of these ESTs and identified 3,023 genes that were differentially expressed during watermelon fruit development and ripening, which provided novel insights into watermelon fruit biology and a comprehensive resource of candidate genes for future functional analysis. We then generated profiles of several interesting metabolites that are important to fruit quality including pigmentation and sweetness. Integrative analysis of metabolite and digital gene expression profiles helped elucidating molecular mechanisms governing these important quality-related traits during watermelon fruit development. Conclusion We have generated a large collection of watermelon ESTs, which represents a significant expansion of the current transcript catalog of watermelon and a valuable resource for future studies on the genomics of watermelon and other closely-related species. Digital expression analysis of this EST collection allowed us to identify a large set of genes that were differentially expressed during watermelon fruit development and ripening, which provide a rich source of candidates for future functional analysis and represent a valuable increase in our knowledge base of watermelon fruit biology. PMID:21936920

  16. Characterization of transcriptome dynamics during watermelon fruit development: sequencing, assembly, annotation and gene expression profiles.

    PubMed

    Guo, Shaogui; Liu, Jingan; Zheng, Yi; Huang, Mingyun; Zhang, Haiying; Gong, Guoyi; He, Hongju; Ren, Yi; Zhong, Silin; Fei, Zhangjun; Xu, Yong

    2011-09-21

    Cultivated watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus] is an important agriculture crop world-wide. The fruit of watermelon undergoes distinct stages of development with dramatic changes in its size, color, sweetness, texture and aroma. In order to better understand the genetic and molecular basis of these changes and significantly expand the watermelon transcript catalog, we have selected four critical stages of watermelon fruit development and used Roche/454 next-generation sequencing technology to generate a large expressed sequence tag (EST) dataset and a comprehensive transcriptome profile for watermelon fruit flesh tissues. We performed half Roche/454 GS-FLX run for each of the four watermelon fruit developmental stages (immature white, white-pink flesh, red flesh and over-ripe) and obtained 577,023 high quality ESTs with an average length of 302.8 bp. De novo assembly of these ESTs together with 11,786 watermelon ESTs collected from GenBank produced 75,068 unigenes with a total length of approximately 31.8 Mb. Overall 54.9% of the unigenes showed significant similarities to known sequences in GenBank non-redundant (nr) protein database and around two-thirds of them matched proteins of cucumber, the most closely-related species with a sequenced genome. The unigenes were further assigned with gene ontology (GO) terms and mapped to biochemical pathways. More than 5,000 SSRs were identified from the EST collection. Furthermore we carried out digital gene expression analysis of these ESTs and identified 3,023 genes that were differentially expressed during watermelon fruit development and ripening, which provided novel insights into watermelon fruit biology and a comprehensive resource of candidate genes for future functional analysis. We then generated profiles of several interesting metabolites that are important to fruit quality including pigmentation and sweetness. Integrative analysis of metabolite and digital gene expression profiles helped elucidating molecular mechanisms governing these important quality-related traits during watermelon fruit development. We have generated a large collection of watermelon ESTs, which represents a significant expansion of the current transcript catalog of watermelon and a valuable resource for future studies on the genomics of watermelon and other closely-related species. Digital expression analysis of this EST collection allowed us to identify a large set of genes that were differentially expressed during watermelon fruit development and ripening, which provide a rich source of candidates for future functional analysis and represent a valuable increase in our knowledge base of watermelon fruit biology.

  17. [Identification and polymorphism of pectinase genes PGU in the Saccharomyces bayanus complex].

    PubMed

    Shalamitskiy, M Yu; Naumov, G I

    2016-05-01

    Pectinase (endo-polygalacturonase) is the key enzyme splitting plant pectin. The corresponding single gene PGU1 is documented for the yeast S. cerevisiae. On the basis of phylogenetic analysis of the PGU nucleotide sequence available in the GenBank, a family of divergent PGU genes is found in the species complex S. bayanus: S. bayanus var. uvarum, S. eubayanus, and hybrid taxon S. pastorianus. The PGU genes have different chromosome localization.

  18. Effects of partial replacement of fish meal by yeast hydrolysate on complement system and stress resistance in juvenile Jian carp (Cyprinus carpio var. Jian).

    PubMed

    Yuan, Xiang-Yang; Liu, Wen-Bin; Liang, Chao; Sun, Cun-Xin; Xue, Yun-Fei; Wan, Zu-De; Jiang, Guang-Zhen

    2017-08-01

    A 10-week feeding trial was carried out to investigate the effects of dietary fish meal replacement by yeast hydrolysate (YH) on growth performance, complement system and stress resistance of juvenile Jian carp (Cyprinus carpio var. Jian) (initial average weight 19.44 ± 0.06 g). In the study, there were five groups: one control group was fed with a basal diet (YH0), and four treatment groups were fed with dietary fish meal replaced by 1% YH (YH1), 3% (YH3), 5% (YH5) and 7% (YH7), respectively. Each group had four replicates. At the end of feeding trial, twelve fish from each group (three fish per replicate) were randomly selected for assessing the growth and immunity. Meanwhile, 20 fish per replicate were injected by Aeromonas hydrophila. The results showed that (1) Replacement levels of YH significantly affected the growth of the fish with the highest values of weight gain (WG) occurred in fish fed YH3 diet. However, no significant difference in feed conversion ratios (FCR) was observed among all groups. (2) Pre-stressed plasma lysozyme activity, total protein and albumin contents and complement component 3 (C3) and complement component 4 (C4) levels of fish fed YH3 diet were significantly higher than those of fish fed YH0 diet. However, post-stressed immune parameters of fish in all groups were significantly lower. (3) There was a trend that the expression levels of the complement-related genes (c1r/s-A, c4-1, c3-H1, c5-1, fb/c2-A, mbl-2 and masp) initially increased and then decreased except mbl-2 and masp, with the maximum values observed in fish fed YH3 diet. Before stress, the expression levels of the inflammation-related genes (alp, il-1β and tnf-α) in the hepatopancreas and spleen of fish fed YH1 diet and YH7 diet were significant higher than that of fish fed YH0 diet. After stress, no significant difference in the expression levels of those genes was observed among all groups. These results indicated that FM replacement by YH could improve growth performance, enhance innate immunity, and activate complement via the alternative complement pathway (ACP) and the classical complement pathway (CCP). Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. PaDef defensin from avocado (Persea americana var. drymifolia) is cytotoxic to K562 chronic myeloid leukemia cells through extrinsic apoptosis.

    PubMed

    Flores-Alvarez, Luis José; Guzmán-Rodríguez, Jaquelina Julia; López-Gómez, Rodolfo; Salgado-Garciglia, Rafael; Ochoa-Zarzosa, Alejandra; López-Meza, Joel E

    2018-06-01

    Plant defensins, a group of antimicrobial peptides, show selective cytotoxicity toward cancer cells. However, their mechanisms of action remain poorly understood. Here, we evaluated the cytotoxicity of PaDef defensin from avocado (Persea americana var. drymifolia) on K562 chronic myeloid leukemia cells and analyzed the pathway involved in the induction of cell death. The defensin PaDef was not cytotoxic against human PBMCs; however, it was cytotoxic for K562 cell line (IC 50  = 97.3 μg/ml) activating apoptosis at 12 h. PaDef did not affect the mitochondrial membrane potential (ΔΨm), neither the transmembranal potential or the release of intracellular calcium. Also, PaDef induced gene expression of caspase 8 (∼2 fold), TNF-α (∼4 fold) and TNFR1 (∼10 fold). In addition, the activation of caspase 8 was detected at 24 h, whereas caspase 9 activity was not modified, suggesting that the extrinsic apoptosis pathway could be activated. In conclusion, PaDef induces apoptosis on K562 cells, which is related to the activation of caspase 8 and involves the participation of TNF-α, which is a novel property for a plant defensin. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. The defensin from avocado (Persea americana var. drymifolia) PaDef induces apoptosis in the human breast cancer cell line MCF-7.

    PubMed

    Guzmán-Rodríguez, Jaquelina Julia; López-Gómez, Rodolfo; Salgado-Garciglia, Rafael; Ochoa-Zarzosa, Alejandra; López-Meza, Joel E

    2016-08-01

    Antimicrobial peptides (AMPs) are cytotoxic to cancer cells; however, mainly the effects of AMPs from animals have been evaluated. In this work, we assessed the cytotoxicity of PaDef defensin from avocado (Persea americana var. drymifolia) on the MCF-7 cancer cell line (a breast cancer cell line) and evaluated its mechanism of action. PaDef inhibited the viability of MCF-7 cells in a concentration-dependent manner, with an IC50=141.62μg/ml. The viability of normal peripheral blood mononuclear cells was unaffected by this AMP. Additionally, PaDef induced apoptosis in MCF-7 cells in a time-dependent manner, but did not affect the membrane potential or calcium flow. In addition, PaDef IC50 induced the expression of cytochrome c, Apaf-1, and the caspase 7 and 9 genes. Likewise, this defensin induced the loss of mitochondrial Δψm and increased the phosphorylation of MAPK p38, which may lead to MCF-7 apoptosis by the intrinsic pathway. This is the first report of an avocado defensin inducing intrinsic apoptosis in cancer cells, which suggests that it could be a potential therapeutic molecule in the treatment of cancer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Cloning and Expression Pattern of a Gene Encoding an α-Xylosidase Active against Xyloglucan Oligosaccharides from Arabidopsis1

    PubMed Central

    Sampedro, Javier; Sieiro, Carmen; Revilla, Gloria; González-Villa, Tomás; Zarra, Ignacio

    2001-01-01

    An α-xylosidase active against xyloglucan oligosaccharides was purified from cabbage (Brassica oleracea var. capitata) leaves. Two peptide sequences were obtained from this protein, the N-terminal and an internal one, and these were used to identify an Arabidopsis gene coding for an α-xylosidase that we propose to call AtXYL1. It has been mapped to a region of chromosome I between markers at 100.44 and 107.48 cM. AtXYL1 comprised three exons and encoded a peptide that was 915 amino acids long, with a potential signal peptide of 22 amino acids and eight possible N-glycosylation sites. The protein encoded by AtXYL1 showed the signature regions of family 31 glycosyl hydrolases, which comprises not only α-xylosidases, but also α-glucosidases. The α-xylosidase activity is present in apoplastic extractions from Arabidopsis seedlings, as suggested by the deduced signal peptide. The first eight leaves from Arabidopsis plants were harvested to analyze α-xylosidase activity and AtXYL1 expression levels. Both increased from older to younger leaves, where xyloglucan turnover is expected to be higher. When this gene was introduced in a suitable expression vector and used to transform Saccharomyces cerevisiae, significantly higher α-xylosidase activity was detected in the yeast cells. α-Glucosidase activity was also increased in the transformed cells, although to a lesser extent. These results show that AtXYL1 encodes for an apoplastic α-xylosidase active against xyloglucan oligosaccharides that probably also has activity against p-nitrophenyl-α-d-glucoside. PMID:11402218

  2. Cloning and expression pattern of a gene encoding an alpha-xylosidase active against xyloglucan oligosaccharides from Arabidopsis.

    PubMed

    Sampedro, J; Sieiro, C; Revilla, G; González-Villa, T; Zarra, I

    2001-06-01

    An alpha-xylosidase active against xyloglucan oligosaccharides was purified from cabbage (Brassica oleracea var. capitata) leaves. Two peptide sequences were obtained from this protein, the N-terminal and an internal one, and these were used to identify an Arabidopsis gene coding for an alpha-xylosidase that we propose to call AtXYL1. It has been mapped to a region of chromosome I between markers at 100.44 and 107.48 cM. AtXYL1 comprised three exons and encoded a peptide that was 915 amino acids long, with a potential signal peptide of 22 amino acids and eight possible N-glycosylation sites. The protein encoded by AtXYL1 showed the signature regions of family 31 glycosyl hydrolases, which comprises not only alpha-xylosidases, but also alpha-glucosidases. The alpha-xylosidase activity is present in apoplastic extractions from Arabidopsis seedlings, as suggested by the deduced signal peptide. The first eight leaves from Arabidopsis plants were harvested to analyze alpha-xylosidase activity and AtXYL1 expression levels. Both increased from older to younger leaves, where xyloglucan turnover is expected to be higher. When this gene was introduced in a suitable expression vector and used to transform Saccharomyces cerevisiae, significantly higher alpha-xylosidase activity was detected in the yeast cells. alpha-Glucosidase activity was also increased in the transformed cells, although to a lesser extent. These results show that AtXYL1 encodes for an apoplastic alpha-xylosidase active against xyloglucan oligosaccharides that probably also has activity against p-nitrophenyl-alpha-D-glucoside.

  3. Expression of an osmotin-like protein from Solanum nigrum confers drought tolerance in transgenic soybean.

    PubMed

    Weber, Ricardo Luís Mayer; Wiebke-Strohm, Beatriz; Bredemeier, Christian; Margis-Pinheiro, Márcia; de Brito, Giovani Greigh; Rechenmacher, Ciliana; Bertagnolli, Paulo Fernando; de Sá, Maria Eugênia Lisei; Campos, Magnólia de Araújo; de Amorim, Regina Maria Santos; Beneventi, Magda Aparecida; Margis, Rogério; Grossi-de-Sa, Maria Fátima; Bodanese-Zanettini, Maria Helena

    2014-12-10

    Drought is by far the most important environmental factor contributing to yield losses in crops, including soybeans [Glycine max (L.) Merr.]. To address this problem, a gene that encodes an osmotin-like protein isolated from Solanum nigrum var. americanum (SnOLP) driven by the UBQ3 promoter from Arabidopsis thaliana was transferred into the soybean genome by particle bombardment. Two independently transformed soybean lines expressing SnOLP were produced. Segregation analyses indicated single-locus insertions for both lines. qPCR analysis suggested a single insertion of SnOLP in the genomes of both transgenic lines, but one copy of the hpt gene was inserted in the first line and two in the second line. Transgenic plants exhibited no remarkable phenotypic alterations in the seven analyzed generations. When subjected to water deficit, transgenic plants performed better than the control ones. Leaf physiological measurements revealed that transgenic soybean plants maintained higher leaf water potential at predawn, higher net CO2 assimilation rate, higher stomatal conductance and higher transpiration rate than non-transgenic plants. Grain production and 100-grain weight were affected by water supply. Decrease in grain productivity and 100-grain weight were observed for both transgenic and non-transgenic plants under water deficit; however, it was more pronounced for non-transgenic plants. Moreover, transgenic lines showed significantly higher 100-grain weight than non-transgenic plants under water shortage. This is the first report showing that expression of SnOLP in transgenic soybeans improved physiological responses and yield components of plants when subjected to water deficit, highlighting the potential of this gene for biotechnological applications.

  4. Antidepressant-like Effect of Kaempferol and Quercitirin, Isolated from Opuntia ficus-indica var. saboten

    PubMed Central

    Park, Soo-Hyun; Sim, Yun-Beom; Han, Pyung-Lim; Lee, Jin-Koo

    2010-01-01

    Opuntia ficus-indica var. saboten. is widely cultivated in Jeju Island (South Korea) for use in manufacture of health foods. This study described antidepressant effect of two flavonoids (kaempferol and quercitrin) isolated from the Opuntia ficus-indica var. saboten. The expression of the hypothalamic POMC mRNA or plasma β-endorphin levels were increased by extract of Opuntia ficus-indica var. saboten or its flavoniods administered orally. In addition, antidepressant activity was studied using tail suspension test (TST), forced swimming test (FST) and rota-rod test in chronically restraint immobilization stress group in mice. After restraint stress (2 hrs/day for 14 days), animals were kept in cage for 14 days without any further stress, bet with drugs. Mice were fed with a diet supplemented for 14 days and during the behavioral test period with kaempferol or quercitrin (30 mg/kg/day). POMC mRNA or plasma β-endorphin level was increased by extract of Opuntia ficus-indica var. saboten and its flavoniods. In addition, immobility time in TST and FST was significantly reduced by kaempferol or quercitrin. In rota-rod test, the time of permanence was maintained to the semblance of control group in turning at 15 rpm. Our results suggest that two flavonoids (kaempferol and quercitrin) isolated from the Opuntia ficus-indica var. saboten. show a potent antidepressant effect. PMID:22110339

  5. Antidepressant-like Effect of Kaempferol and Quercitirin, Isolated from Opuntia ficus-indica var. saboten.

    PubMed

    Park, Soo-Hyun; Sim, Yun-Beom; Han, Pyung-Lim; Lee, Jin-Koo; Suh, Hong-Won

    2010-06-01

    Opuntia ficus-indica var. saboten. is widely cultivated in Jeju Island (South Korea) for use in manufacture of health foods. This study described antidepressant effect of two flavonoids (kaempferol and quercitrin) isolated from the Opuntia ficus-indica var. saboten. The expression of the hypothalamic POMC mRNA or plasma β-endorphin levels were increased by extract of Opuntia ficus-indica var. saboten or its flavoniods administered orally. In addition, antidepressant activity was studied using tail suspension test (TST), forced swimming test (FST) and rota-rod test in chronically restraint immobilization stress group in mice. After restraint stress (2 hrs/day for 14 days), animals were kept in cage for 14 days without any further stress, bet with drugs. Mice were fed with a diet supplemented for 14 days and during the behavioral test period with kaempferol or quercitrin (30 mg/kg/day). POMC mRNA or plasma β-endorphin level was increased by extract of Opuntia ficus-indica var. saboten and its flavoniods. In addition, immobility time in TST and FST was significantly reduced by kaempferol or quercitrin. In rota-rod test, the time of permanence was maintained to the semblance of control group in turning at 15 rpm. Our results suggest that two flavonoids (kaempferol and quercitrin) isolated from the Opuntia ficus-indica var. saboten. show a potent antidepressant effect.

  6. Functional Antibodies against VAR2CSA in Nonpregnant Populations from Colombia Exposed to Plasmodium falciparum and Plasmodium vivax

    PubMed Central

    Doritchamou, Justin; Arango, Eliana M.; Cabrera, Ana; Arroyo, Maria Isabel; Kain, Kevin C.; Ndam, Nicaise Tuikue; Maestre, Amanda

    2014-01-01

    In pregnancy, parity-dependent immunity is observed in response to placental infection with Plasmodium falciparum. Antibodies recognize the surface antigen, VAR2CSA, expressed on infected red blood cells and inhibit cytoadherence to the placental tissue. In most settings of malaria endemicity, antibodies against VAR2CSA are predominantly observed in multigravid women and infrequently in men, children, and nulligravid women. However, in Colombia, we detected antibodies against multiple constructs of VAR2CSA among men and children with acute P. falciparum and Plasmodium vivax infection. The majority of men and children (>60%) had high levels of IgGs against three recombinant domains of VAR2CSA: DBL5ε, DBL3X, and ID1-ID2. Surprisingly, these antibodies were observed only in pregnant women, men, and children exposed either to P. falciparum or to P. vivax. Moreover, the anti-VAR2CSA antibodies are of high avidity and efficiently inhibit adherence of infected red blood cells to chondroitin sulfate A in vitro, suggesting that they are specific and functional. These unexpected results suggest that there may be genotypic or phenotypic differences in the parasites of this region or in the host response to either P. falciparum or P. vivax infection outside pregnancy. These findings may hold significant clinical relevance to the pathophysiology and outcome of malaria infections in this region. PMID:24686068

  7. Transcriptome analysis and metabolic profiling of green and red kale (Brassica oleracea var. acephala) seedlings.

    PubMed

    Jeon, Jin; Kim, Jae Kwang; Kim, HyeRan; Kim, Yeon Jeong; Park, Yun Ji; Kim, Sun Ju; Kim, Changsoo; Park, Sang Un

    2018-02-15

    Kale (Brassica oleracea var. acephala) is a rich source of numerous health-benefiting compounds, including vitamins, glucosinolates, phenolic compounds, and carotenoids. However, the genetic resources for exploiting the phyto-nutritional traits of kales are limited. To acquire precise information on secondary metabolites in kales, we performed a comprehensive analysis of the transcriptome and metabolome of green and red kale seedlings. Kale transcriptome datasets revealed 37,149 annotated genes and several secondary metabolite biosynthetic genes. HPLC analysis revealed 14 glucosinolates, 20 anthocyanins, 3 phenylpropanoids, and 6 carotenoids in the kale seedlings that were examined. Red kale contained more glucosinolates, anthocyanins, and phenylpropanoids than green kale, whereas the carotenoid contents were much higher in green kale than in red kale. Ultimately, our data will be a valuable resource for future research on kale bio-engineering and will provide basic information to define gene-to-metabolite networks in kale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A Unique Chromosomal Rearrangement in the Cryptococcus neoformans var. grubii Type Strain Enhances Key Phenotypes Associated with Virulence

    PubMed Central

    Morrow, Carl A.; Lee, I. Russel; Chow, Eve W. L.; Ormerod, Kate L.; Goldinger, Anita; Byrnes, Edmond J.; Nielsen, Kirsten; Heitman, Joseph; Schirra, Horst Joachim; Fraser, James A.

    2012-01-01

    ABSTRACT The accumulation of genomic structural variation between closely related populations over time can lead to reproductive isolation and speciation. The fungal pathogen Cryptococcus is thought to have recently diversified, forming a species complex containing members with distinct morphologies, distributions, and pathologies of infection. We have investigated structural changes in genomic architecture such as inversions and translocations that distinguish the most pathogenic variety, Cryptococcus neoformans var. grubii, from the less clinically prevalent Cryptococcus neoformans var. neoformans and Cryptococcus gattii. Synteny analysis between the genomes of the three Cryptococcus species/varieties (strains H99, JEC21, and R265) reveals that C. neoformans var. grubii possesses surprisingly few unique genomic rearrangements. All but one are relatively small and are shared by all molecular subtypes of C. neoformans var. grubii. In contrast, the large translocation peculiar to the C. neoformans var. grubii type strain is found in all tested subcultures from multiple laboratories, suggesting that it has possessed this rearrangement since its isolation from a human clinical sample. Furthermore, we find that the translocation directly disrupts two genes. The first of these encodes a novel protein involved in metabolism of glucose at human body temperature and affects intracellular levels of trehalose. The second encodes a homeodomain-containing transcription factor that modulates melanin production. Both mutations would be predicted to increase pathogenicity; however, when recreated in an alternate genetic background, these mutations do not affect virulence in animal models. The type strain of C. neoformans var. grubii in which the majority of molecular studies have been performed is therefore atypical for carbon metabolism and key virulence attributes. PMID:22375073

  9. Cell division and endoreduplication play important roles in stem swelling of tuber mustard (Brassica juncea Coss. var. tumida Tsen et Lee).

    PubMed

    Shi, H; Wang, L L; Sun, L T; Dong, L L; Liu, B; Chen, L P

    2012-11-01

    We investigated spatio-temporal variations in cell division and the occurrence of endoreduplication in cells of tuber mustard stems during development. Cells in the stem had 8C nuclei (C represents DNA content of a two haploid genome), since it is an allotetraploid species derived from diploid Brassica rapa (AA) and B. nigra (BB), thus indicating the occurrence of endoreduplication. Additionally, we observed a dynamic change of cell ploidy in different regions of the swollen stems, with a decrease in 4C proportion in P4-1 and a sharp increase in 8C cells that became the dominant cell type (86.33% at most) in the inner pith cells. Furthermore, cDNAs of 14 cell cycle genes and four cell expansion genes were cloned and their spatial transcripts analysed in order to understand their roles in stem development. The expression of most cell cycle genes peaked in regions of the outer pith (P2 or P3), some genes regulating S/G2 and G2/M (BjCDKB1;2, BjCYCB1;1 and BjCYCB1;2) significantly decrease in P5 and P6, while G1/S regulators (BjE2Fa, BjE2Fb and BjE2Fc) showed a relative high expression level in the inner pith (P5) where cells were undergoing endoreduplication. Coincidentally, BjXTH1and BjXTH2 were exclusively expressed in the endoreduplicated cells. Our results suggest that cells of outer pith regions (P2 and P3) mainly divide for cell proliferation, while cells of the inner pith expand through endoreduplication. Endoreduplication could trigger expression of BjXTH1 and BjXTH2 and thus function in cell expansion of the pith tissue. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  10. Use of MSAP Markers to Analyse the Effects of Salt Stress on DNA Methylation in Rapeseed (Brassica napus var. oleifera)

    PubMed Central

    Marconi, Gianpiero; Pace, Roberta; Traini, Alessandra; Raggi, Lorenzo; Lutts, Stanley; Chiusano, Marialuisa; Guiducci, Marcello; Falcinelli, Mario; Benincasa, Paolo; Albertini, Emidio

    2013-01-01

    Excessive soil salinity is a major ecological and agronomical problem, the adverse effects of which are becoming a serious issue in regions where saline water is used for irrigation. Plants can employ regulatory strategies, such as DNA methylation, to enable relatively rapid adaptation to new conditions. In this regard, cytosine methylation might play an integral role in the regulation of gene expression at both the transcriptional and post-transcriptional levels. Rapeseed, which is the most important oilseed crop in Europe, is classified as being tolerant of salinity, although cultivars can vary substantially in their levels of tolerance. In this study, the Methylation Sensitive Amplified Polymorphism (MSAP) approach was used to assess the extent of cytosine methylation under salinity stress in salinity-tolerant (Exagone) and salinity-sensitive (Toccata) rapeseed cultivars. Our data show that salinity affected the level of DNA methylation. In particular methylation decreased in Exagone and increased in Toccata. Nineteen DNA fragments showing polymorphisms related to differences in methylation were sequenced. In particular, two of these were highly similar to genes involved in stress responses (Lacerata and trehalose-6-phosphatase synthase S4) and were chosen to further characterization. Bisulfite sequencing and quantitative RT-PCR analysis of selected MSAP loci showed that cytosine methylation changes under salinity as well as gene expression varied. In particular, our data show that salinity stress influences the expression of the two stress-related genes. Moreover, we quantified the level of trehalose in Exagone shoots and found that it was correlated to TPS4 expression and, therefore, to DNA methylation. In conclusion, we found that salinity could induce genome-wide changes in DNA methylation status, and that these changes, when averaged across different genotypes and developmental stages, accounted for 16.8% of the total site-specific methylation differences in the rapeseed genome, as detected by MSAP analysis. PMID:24086583

  11. Spatial genetic structure in wild cardoon, the ancestor of cultivated globe artichoke: Limited gene flow, fragmentation and population history.

    PubMed

    Rau, D; Rodriguez, M; Rapposelli, E; Murgia, M L; Papa, R; Brown, A H D; Attene, G

    2016-12-01

    Nuclear and chloroplast markers and phenotypic characters were integrated to analyse the population genetic structure of wild cardoon, Cynara cardunculus var. sylvestris, the ancestor of cultivated globe artichoke, Cynara cardunculus var. scolymus on the island of Sardinia, Italy. The spatial scale ranged from a few metres to ∼200km. Wild cardoon appears to be genetically fragmented, with significant genetic divergence at various scales, indicating that gene flow is insufficient to counterbalance the effects of genetic drift or founder effects. Divergence between populations was higher for chloroplast (40%) than for nuclear markers (15%), suggesting that gene flow via seed was lower than via pollen. Two main genetic groups were detected; these correlated with differences in flowering time, capitula size, glossiness, and anthocyanin pigmentation. A complex population structure of wild cardoon emerged over small spatial scales, likely resulting from the interplay between gene dispersal, colonisation history and selective forces. Indeed, Sardinia appears to be a 'hybrid zone' of different gene pools. The island has unique diverse germplasm that has originated from hybridisation among different gene pools. The sampling of seeds from a few plants but from many sites is suggested as the best strategy to harvest the genetic diversity of wild cardoon. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. [Effects of Valeriana officinalis var. latifolia on expression of transforming growth factor beta 1 in hypercholesterolemic rats].

    PubMed

    Si, Xiao-yun; Jia, Ru-han; Huang, Cong-xin; Ding, Guo-hua; Liu, Hong-yan

    2003-09-01

    To evaluate the effect of Valeriana officinalis var latifolia(VOL) on expression of transforming growth factor beta 1 (TGF-beta 1) in hypercholesterolemic rats and study its possible mechanisms. Dietary-induced hypercholesterolemia was induced in male Wistar rats by given 4% cholesterol and 1% cholic acid diet for 16 weeks. Changes of serum lipid, urinary albumin, renal function and Mesangial matrix index were assessed. Moreover, immunohistochemical stain for TGF-beta 1 and type IV collagen were performed. VOL could reduce the serum levels of total cholesterol, low density lipoprotein, urinary albumin and serum creatinine. Light microscopy and immunohistochemical stain revealed that in the same time of lowing serum lipid, Mesangial matrix index was significantly reduced, accompanied by decreased expression of TGF-beta 1 and type IV collagen. VOL has the protective effect on lipid-induced nephropathy, and the inhibition of TGF-beta 1 expression might be the mechanism of VOL on renal protection.

  13. Global transcriptome analysis profiles metabolic pathways in traditional herb Astragalus membranaceus Bge. var. mongolicus (Bge.) Hsiao

    PubMed Central

    2015-01-01

    Background Astragalus membranaceus Bge. var. mongolicus (Bge.) Hsiao (A. mongolicus, family Leguminosae) is one of the most important traditional Chinese herbs. Among many secondary metabolites it produces, the effective bioactive constituents include isoflavonoids and triterpene saponins. The genomic resources regarding the biosynthesis of these metabolites in A. mongolicus are limited. Although roots are the primary material harvested for medical use, the biosynthesis of the bioactive compounds and its regulation in A. mongolicus are not well understood. Therefore, a global transcriptome analysis on A. mongolicus tissues was performed to identify the genes essential for the metabolism and to profile their expression patterns in greater details. Results RNA-sequencing was performed for three different A. mongolicus tissues: leaf, stem, and root, using the Illumina Hiseq2000 platform. A total of 159.5 million raw sequence reads were generated, and assembled into 186,324 unigenes with an N50 of 1,524bp. Among them, 129,966 unigenes (~69.7%) were annotated using four public databases (Swiss-Prot, TrEMBL, CDD, Pfam), and 90,202, 63,946, and 78,326 unigenes were found to express in leaves, roots, and stems, respectively. A total of 8,025 transcription factors (TFs) were identified, in which the four largest families, bHLH, MYB, C3H, and WRKY, were implicated in regulation of tissue development, metabolisms, stress response, etc. Unigenes associated with secondary metabolism, especially those with isolavonoids and triterpene saponins biosynthesis were characterized and profiled. Most genes involved in the isoflavonoids biosynthesis had the lowest expression in the leaves, and the highest in the stems. For triterpene saponin biosynthesis, we found the genes in MVA and non-MVA pathways were differentially expressed among three examined tissues, indicating the parallel but compartmentally separated biosynthesis pathways of IPP and DMAPP in A. mongolicus. The first committed enzyme in triterpene saponin biosynthesis from A. mongolicus, cycloartenol synthase (AmCAS), which belongs to the oxidosqualene cyclase family, was cloned by us to study the astragalosides biosynthesis. Further co-expression analysis indicated the candidate CYP450s and glycosyltransferases (GTs) in the cascade of triterpene saponins biosynthesis. The presence of the large CYP450 families in A. mongolicus was further compared with those from Medicago truncatula and Arabidopsis thaliana, and the diversity and phylegenetic relationships of the CYP450 families were established. Conclusion A transcriptome study was performed for A. mongolicus tissues to construct and profile their metabolic pathways, especially for the important bioactive molecules. The results revealed a comprehensive profile for metabolic activities among tissues, pointing to the equal importance of leaf, stem, and root in A. mongolicus for the production of bioactive compounds. This work provides valuable resources for bioengineering and in vitro synthesis of the natural compounds for medical research and for potential drug development. PMID:26099797

  14. The role of tree improvement programs for ex situ gene conservation of coastal Douglas-fir in the Pacific Northwest.

    Treesearch

    Sara R. Lipow; G. Randy Johnson; J. Bradley St. Claiff; Keith J. Jayawickrama

    2003-01-01

    We enumerate the genetic resources for coastal Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. menziesii) in tree improvement programs in the Pacific Northwest USA and evaluate how they contribute to gene conservation of the species. The first-generation programs include over four million progeny from 33,928 selections...

  15. A new species and a new record of Laccaria (Fungi, Basidiomycota) found in a relict forest of the endangered Fagus grandifolia var. mexicana

    PubMed Central

    Ramos, Antero; Bandala, Victor M.; Montoya, Leticia

    2017-01-01

    Abstract Two species of Laccaria discovered in relicts of Fagus grandifolia var. mexicana forests in eastern Mexico are described based on the macro- and micromorphological features, and their identity supported by molecular analysis of the internal transcribed spacer (ITS) and large subunit (LSU) of the ribosomal RNA gene. The phylogeny obtained here showed that one of the Mexican species is nested in an exclusive clade which in combination with its striking morphological features, infers that it represents a new species, while the other species is placed as a member in the Laccaria trichodermophora clade. This is the first report in Mexico of Laccaria with Fagus grandifolia var. mexicana trees, with which the reported species may form ectomycorrhizal association. Descriptions are accompanied with illustrations of macro- and micromorphological characters and a discussion of related taxa are presented. PMID:29559819

  16. Effect of Medium Supplements on Agrobacterium rhizogenes Mediated Hairy Root Induction from the Callus Tissues of Camellia sinensis var. sinensis.

    PubMed

    Rana, Mohammad M; Han, Zhuo-Xiao; Song, Da-Peng; Liu, Guo-Feng; Li, Da-Xiang; Wan, Xiao-Chun; Karthikeyan, Alagarsamy; Wei, Shu

    2016-07-15

    Tea (Camellia sinensis L.) is recalcitrant to Agrobacterium-mediated genetic transformation largely due to the bactericidal effects of tea polyphenols and phenolics oxidation induced by necrosis of explant tissue over the process of transformation. In this study, different antioxidants/adsorbents were added as supplements to the co-cultivation and post co-cultivation media to overcome these problems for the transformation improvement. Tea-cotyledon-derived calli were used as explants and Agrobacterium rhizognes strain ATCC 15834 was used as a mediator. Results showed that Agrobacterium growth, virulence (vir) gene expression and browning of explant tissue were greatly influenced by different supplements. Murashige and Skoog (MS) basal salts medium supplemented with 30 g·L(-1) sucrose, 0.1 g·L(-1) l-glutamine and 5 g·L(-1) polyvinylpolypyrrolidone (PVPP) as co-cultivation and post co-cultivation media could maintain these parameters better that ultimately led to significant improvement of hairy root generation efficiency compared to that in the control (MS + 30 g·L(-1) sucrose). Additionally, the reporter genes β-glucuronidase (gusA) and cyan fluorescent protein (cfp) were also stably expressed in the transgenic hairy roots. Our study would be helpful in establishing a feasible approach for tea biological studies and genetic improvement of tea varieties.

  17. Isolation of a polyphenol oxidase (PPO) cDNA from artichoke and expression analysis in wounded artichoke heads.

    PubMed

    Quarta, Angela; Mita, Giovanni; Durante, Miriana; Arlorio, Marco; De Paolis, Angelo

    2013-07-01

    The polyphenol oxidase (PPO) enzyme, which can catalyze the oxidation of phenolics to quinones, has been reported to be involved in undesirable browning in many plant foods. This phenomenon is particularly severe in artichoke heads wounded during the manufacturing process. A full-length cDNA encoding for a putative polyphenol oxidase (designated as CsPPO) along with a 1432 bp sequence upstream of the starting ATG codon was characterized for the first time from [Cynara cardunculus var. scolymus (L.) Fiori]. The 1764 bp CsPPO sequence encodes a putative protein of 587 amino acids with a calculated molecular mass of 65,327 Da and an isoelectric point of 5.50. Analysis of the promoter region revealed the presence of cis-acting elements, some of which are putatively involved in the response to light and wounds. Expression analysis of the gene in wounded capitula indicated that CsPPO was significantly induced after 48 h, even though the browning process had started earlier. This suggests that the early browning event observed in artichoke heads was not directly related to de novo mRNA synthesis. Finally, we provide the complete gene sequence encoding for polyphenol oxidase and the upstream regulative region in artichoke. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  18. Utilizing nanobody technology to target non-immunodominant domains of VAR2CSA.

    PubMed

    Ditlev, Sisse B; Florea, Raluca; Nielsen, Morten A; Theander, Thor G; Magez, Stefan; Boeuf, Philippe; Salanti, Ali

    2014-01-01

    Placental malaria is a major health problem for both pregnant women and their fetuses in malaria endemic regions. It is triggered by the accumulation of Plasmodium falciparum-infected erythrocytes (IE) in the intervillous spaces of the placenta and is associated with foetal growth restriction and maternal anemia. IE accumulation is supported by the binding of the parasite-expressed protein VAR2CSA to placental chondroitin sulfate A (CSA). Defining specific CSA-binding epitopes of VAR2CSA, against which to target the immune response, is essential for the development of a vaccine aimed at blocking IE adhesion. However, the development of a VAR2CSA adhesion-blocking vaccine remains challenging due to (i) the large size of VAR2CSA and (ii) the extensive immune selection for polymorphisms and thereby non-neutralizing B-cell epitopes. Camelid heavy-chain-only antibodies (HcAbs) are known to target epitopes that are less immunogenic to classical IgG and, due to their small size and protruding antigen-binding loop, able to reach and recognize cryptic, conformational epitopes which are inaccessible to conventional antibodies. The variable heavy chain (VHH) domain is the antigen-binding site of camelid HcAbs, the so called Nanobody, which represents the smallest known (15 kDa) intact, native antigen-binding fragment. In this study, we have used the Nanobody technology, an approach new to malaria research, to generate small and functional antibody fragments recognizing unique epitopes broadly distributed on VAR2CSA.

  19. Designing a VAR2CSA-based vaccine to prevent placental malaria.

    PubMed

    Fried, Michal; Duffy, Patrick E

    2015-12-22

    Placental malaria (PM) due to Plasmodium falciparum is a major cause of maternal, fetal and infant mortality, but the mechanisms of pathogenesis and protective immunity are relatively well-understood for this condition, providing a path for vaccine development. P. falciparum parasites bind to chondroitin sulfate A (CSA) to sequester in the placenta, and women become resistant over 1-2 pregnancies as they acquire antibodies that block adhesion to CSA. The protein VAR2CSA, a member of the PfEMP1 variant surface antigen family, mediates parasite adhesion to CSA, and is the leading target for a vaccine to prevent PM. Obstacles to PM vaccine development include the large size (∼ 350 kD), high cysteine content, and sequence variation of VAR2CSA. A number of approaches have been taken to identify the combination of VAR2CSA domains and alleles that can induce broadly active antibodies that block adhesion of heterologous parasite isolates to CSA. This review summarizes these approaches, which have examined VAR2CSA fragments for binding activity, antigenicity with naturally acquired antibodies, and immunogenicity in animals for inducing anti-adhesion or surface-reactive antibodies. Two products are expected to enter human clinical studies in the near future based on N-terminal VAR2CSA fragments that have high binding affinity for CSA, and additional proteins preferentially expressed by placental parasites are also being examined for their potential contribution to a PM vaccine. Copyright © 2015. Published by Elsevier Ltd.

  20. Structure of the DBL3X-DBL4ε region of the VAR2CSA placental malaria vaccine candidate: insight into DBL domain interactions

    PubMed Central

    Gangnard, Stéphane; Lewit-Bentley, Anita; Dechavanne, Sébastien; Srivastava, Anand; Amirat, Faroudja; Bentley, Graham A.; Gamain, Benoît

    2015-01-01

    The human malaria parasite, Plasmodium falciparum, is able to evade spleen-mediated clearing from blood stream by sequestering in peripheral organs. This is due to the adhesive properties conferred by the P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1) family exported by the parasite to the surface of infected erythrocytes. Expression of the VAR2CSA variant of PfEMP1 leads to pregnancy-associated malaria, which occurs when infected erythrocytes massively sequester in the placenta by binding to low-sulfated Chondroitin Sulfate A (CSA) present in the intervillous spaces. VAR2CSA is a 350 kDa protein that carries six Duffy-Binding Like (DBL) domains, one Cysteine-rich Inter-Domain Regions (CIDR) and several inter-domain regions. In the present paper, we report for the first time the crystal structure at 2.9 Å of a VAR2CSA double domain, DBL3X-DBL4ε, from the FCR3 strain. DBL3X and DBL4ε share a large contact interface formed by residues that are invariant or highly conserved in VAR2CSA variants, which suggests that these two central DBL domains (DBL3X-DBL4ε) contribute significantly to the structuring of the functional VAR2CSA extracellular region. We have also examined the antigenicity of peptides corresponding to exposed loop regions of the DBL4ε structure. PMID:26450557

  1. Redefinition of Aureobasidium pullulans and its varieties

    PubMed Central

    Zalar, P.; Gostinčar, C.; de Hoog, G.S.; Uršič, V.; Sudhadham, M.; Gunde-Cimerman, N.

    2008-01-01

    Using media with low water activity, a large numbers of aureobasidium-like black yeasts were isolated from glacial and subglacial ice of three polythermal glaciers from the coastal Arctic environment of Kongsfjorden (Svalbard, Spitsbergen), as well as from adjacent sea water, sea ice and glacial meltwaters. To characterise the genetic variability of Aureobasidium pullulans strains originating from the Arctic and strains originating pan-globally, a multilocus molecular analysis was performed, through rDNA (internal transcribed spacers, partial 28 S rDNA), and partial introns and exons of genes encoding β-tubulin (TUB), translation elongation factor (EF1α) and elongase (ELO). Two globally ubiquitous varieties were distinguished: var. pullulans, occurring particularly in slightly osmotic substrates and in the phyllosphere; and var. melanogenum, mainly isolated from watery habitats. Both varieties were commonly isolated from the sampled Arctic habitats. However, some aureobasidium-like strains from subglacial ice from three different glaciers in Kongsfjorden (Svalbard, Spitsbergen), appeared to represent a new variety of A. pullulans. A strain from dolomitic marble in Namibia was found to belong to yet another variety. No molecular support has as yet been found for the previously described var. aubasidani. A partial elongase-encoding gene was successfully used as a phylogenetic marker at the (infra-)specific level. PMID:19287524

  2. Detecting past changes of effective population size

    PubMed Central

    Nikolic, Natacha; Chevalet, Claude

    2014-01-01

    Understanding and predicting population abundance is a major challenge confronting scientists. Several genetic models have been developed using microsatellite markers to estimate the present and ancestral effective population sizes. However, to get an overview on the evolution of population requires that past fluctuation of population size be traceable. To address the question, we developed a new model estimating the past changes of effective population size from microsatellite by resolving coalescence theory and using approximate likelihoods in a Monte Carlo Markov Chain approach. The efficiency of the model and its sensitivity to gene flow and to assumptions on the mutational process were checked using simulated data and analysis. The model was found especially useful to provide evidence of transient changes of population size in the past. The times at which some past demographic events cannot be detected because they are too ancient and the risk that gene flow may suggest the false detection of a bottleneck are discussed considering the distribution of coalescence times. The method was applied on real data sets from several Atlantic salmon populations. The method called VarEff (Variation of Effective size) was implemented in the R package VarEff and is made available at https://qgsp.jouy.inra.fr and at http://cran.r-project.org/web/packages/VarEff. PMID:25067949

  3. The Regulatory Properties of Autonomous Subtelomeric P Elements Are Sensitive to a Suppressor of Variegation in Drosophila Melanogaster

    PubMed Central

    Ronsseray, S.; Lehmann, M.; Nouaud, D.; Anxolabehere, D.

    1996-01-01

    Genetic recombination was used in Drosophila melanogaster to isolate P elements, inserted at the telomeres of X chromosomes (cytological site 1A) from natural populations, in a genetic background devoid of other P elements. We show that complete maternally inherited P repression in the germline (P cytotype) can be elicited by only two autonomous P elements at 1A and that a single element at this site has partial regulatory properties. The analysis of the surrounding chromosomal regions of the P elements at 1A shows that in all cases these elements are flanked by Telomeric Associated Sequences, tandemly repetitive noncoding sequences that have properties of heterochromatin. In addition, we show that the regulatory properties of P elements at 1A can be inhibited by some of the mutant alleles of the Su(var)205 gene and by a deficiency of this gene. However, the regulatory properties of reference P strains (Harwich and Texas 007) are not impaired by Su(var)205 mutations. Su(var)205 encodes Heterochromatin Protein 1 (HP1). These results suggest that the HP1 dosage effect on the P element properties is site-dependent and could involve the structure of the chromatin. PMID:8844154

  4. Clinical laboratories collaborate to resolve differences in variant interpretations submitted to ClinVar.

    PubMed

    Harrison, Steven M; Dolinsky, Jill S; Knight Johnson, Amy E; Pesaran, Tina; Azzariti, Danielle R; Bale, Sherri; Chao, Elizabeth C; Das, Soma; Vincent, Lisa; Rehm, Heidi L

    2017-10-01

    Data sharing through ClinVar offers a unique opportunity to identify interpretation differences between laboratories. As part of a ClinGen initiative, four clinical laboratories (Ambry, GeneDx, Partners Healthcare Laboratory for Molecular Medicine, and University of Chicago Genetic Services Laboratory) collaborated to identify the basis of interpretation differences and to investigate if data sharing and reassessment resolve interpretation differences by analyzing a subset of variants. ClinVar variants with submissions from at least two of the four participating laboratories were compared. For a subset of identified differences, laboratories documented the basis for discordance, shared internal data, independently reassessed with the American College of Medical Genetics and Genomics-Association for Molecular Pathology (ACMG-AMP) guidelines, and then compared interpretations. At least two of the participating laboratories interpreted 6,169 variants in ClinVar, of which 88.3% were initially concordant. Laboratories reassessed 242/724 initially discordant variants, of which 87.2% (211) were resolved by reassessment with current criteria and/or internal data sharing; 12.8% (31) of reassessed variants remained discordant owing to differences in the application of the ACMG-AMP guidelines. Participating laboratories increased their overall concordance from 88.3 to 91.7%, indicating that sharing variant interpretations in ClinVar-thereby allowing identification of differences and motivation to resolve those differences-is critical to moving toward more consistent variant interpretations.Genet Med advance online publication 09 March 2017.

  5. Gene expression in developing watermelon fruit

    PubMed Central

    Wechter, W Patrick; Levi, Amnon; Harris, Karen R; Davis, Angela R; Fei, Zhangjun; Katzir, Nurit; Giovannoni, James J; Salman-Minkov, Ayelet; Hernandez, Alvaro; Thimmapuram, Jyothi; Tadmor, Yaakov; Portnoy, Vitaly; Trebitsh, Tova

    2008-01-01

    Background Cultivated watermelon form large fruits that are highly variable in size, shape, color, and content, yet have extremely narrow genetic diversity. Whereas a plethora of genes involved in cell wall metabolism, ethylene biosynthesis, fruit softening, and secondary metabolism during fruit development and ripening have been identified in other plant species, little is known of the genes involved in these processes in watermelon. A microarray and quantitative Real-Time PCR-based study was conducted in watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus] in order to elucidate the flow of events associated with fruit development and ripening in this species. RNA from three different maturation stages of watermelon fruits, as well as leaf, were collected from field grown plants during three consecutive years, and analyzed for gene expression using high-density photolithography microarrays and quantitative PCR. Results High-density photolithography arrays, composed of probes of 832 EST-unigenes from a subtracted, fruit development, cDNA library of watermelon were utilized to examine gene expression at three distinct time-points in watermelon fruit development. Analysis was performed with field-grown fruits over three consecutive growing seasons. Microarray analysis identified three hundred and thirty-five unique ESTs that are differentially regulated by at least two-fold in watermelon fruits during the early, ripening, or mature stage when compared to leaf. Of the 335 ESTs identified, 211 share significant homology with known gene products and 96 had no significant matches with any database accession. Of the modulated watermelon ESTs related to annotated genes, a significant number were found to be associated with or involved in the vascular system, carotenoid biosynthesis, transcriptional regulation, pathogen and stress response, and ethylene biosynthesis. Ethylene bioassays, performed with a closely related watermelon genotype with a similar phenotype, i.e. seeded, bright red flesh, dark green rind, etc., determined that ethylene levels were highest during the green fruit stage followed by a decrease during the white and pink fruit stages. Additionally, quantitative Real-Time PCR was used to validate modulation of 127 ESTs that were differentially expressed in developing and ripening fruits based on array analysis. Conclusion This study identified numerous ESTs with putative involvement in the watermelon fruit developmental and ripening process, in particular the involvement of the vascular system and ethylene. The production of ethylene during fruit development in watermelon gives further support to the role of ethylene in fruit development in non-climacteric fruits. PMID:18534026

  6. Association Genetics of Coastal Douglas Fir (Pseudotsuga menziesii var. menziesii, Pinaceae). I. Cold-Hardiness Related Traits

    Treesearch

    Andrew J. Eckert; Andrew D. Bower; Jill L. Wegrzyn; Barnaly Pande; Kathleen D. Jermstad; Konstantin V. Krutovsky; J. Bradley St. Clair; David B. Neale

    2009-01-01

    Adaptation to cold is one of the greatest challenges to forest trees. This process is highly synchronized with environmental cues relating to photoperiod and temperature. Here, we use a candidate gene-based approach to search for genetic associations between 384 single-nucleotide polymorphism (SNP) markers from 117 candidate genes and 21 cold-hardiness related traits....

  7. Role of Chromatin assembly factor 1 in DNA replication of Plasmodium falciparum.

    PubMed

    Gupta, Mohit Kumar; Agarawal, Meetu; Banu, Khadija; Reddy, K Sony; Gaur, Deepak; Dhar, Suman Kumar

    2018-01-01

    Nucleosome assembly in P. falciparum could be the key process in maintaining its genomic integrity as DNA replicates more than once per cell cycle during several stages of its life cycle. Here, we report the functional characterization of P. falciparum chromatin assembly factor 1 (CAF1), which interacts with several proteins namely PfCAF2, Histones, PfHP1 and others. Consistent with the above findings, we demonstrate the presence of PfCAF1 at the telomeric repeat regions, central and subtelomeric var genes of multiple var gene family along with PfHP1. Further, we report the upregulation of PfCAF1 after treatment with genotoxic agents like MMS and HU. Together, these findings establish role of PfCAF1 in heterochromatin maintenance and as histone chaperone in nucleosome assembly and DNA damage repair. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Cgl2 plays an essential role in cuticular wax biosynthesis in cabbage (Brassica oleracea L. var. capitata).

    PubMed

    Liu, Dongming; Tang, Jun; Liu, Zezhou; Dong, Xin; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao; Sun, Peitian; Liu, Yumei; Li, Zhansheng; Ye, Zhibiao; Fang, Zhiyuan; Yang, Limei

    2017-11-28

    The aerial parts of most land plants are covered with cuticular wax which is important for plants to avoid harmful factors. There is still no cloning study about wax synthesis gene of the alcohol-forming pathway in Brassica species. Scanning electron microscopy (SEM) showed that, compared with wild type (WT), wax crystal are severely reduced in both the adaxial and abaxial sides of cabbage (Brassica oleracea L. var. capitata L.) leaves from the LD10GL mutant. Genetic analysis results revealed that the glossy trait of LD10GL is controlled by a single recessive gene, and fine mapping results revealed that the target gene Cgl2 (Cabbage glossy 2) is located within a physical region of 170 kb on chromosome 1. Based on sequence analysis of the genes in the mapped region, the gene designated Bol013612 was speculated to be the candidate gene. Gene Bol013612 is homologous to Arabidopsis CER4, which encodes fatty acyl-coenzyme A reductase. Sequencing identified a single nucleotide substitution at an intron/exon boundary that results in an insertion of six nucleotides in the cDNA of Bol013612 in LD10GL. The phenotypic defect of LD10GL was confirmed by a functional complementation test with Arabidopsis mutant cer4. Our results indicated that wax crystals of cabbage mutant LD10GL are severely reduced and mutation of gene Bol013612 causes a glossy phenotype in the LD10GL mutant.

  9. Database resources of the National Center for Biotechnology Information.

    PubMed

    Sayers, Eric W; Barrett, Tanya; Benson, Dennis A; Bolton, Evan; Bryant, Stephen H; Canese, Kathi; Chetvernin, Vyacheslav; Church, Deanna M; DiCuccio, Michael; Federhen, Scott; Feolo, Michael; Fingerman, Ian M; Geer, Lewis Y; Helmberg, Wolfgang; Kapustin, Yuri; Landsman, David; Lipman, David J; Lu, Zhiyong; Madden, Thomas L; Madej, Tom; Maglott, Donna R; Marchler-Bauer, Aron; Miller, Vadim; Mizrachi, Ilene; Ostell, James; Panchenko, Anna; Phan, Lon; Pruitt, Kim D; Schuler, Gregory D; Sequeira, Edwin; Sherry, Stephen T; Shumway, Martin; Sirotkin, Karl; Slotta, Douglas; Souvorov, Alexandre; Starchenko, Grigory; Tatusova, Tatiana A; Wagner, Lukas; Wang, Yanli; Wilbur, W John; Yaschenko, Eugene; Ye, Jian

    2011-01-01

    In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI Web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central (PMC), Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Primer-BLAST, COBALT, Electronic PCR, OrfFinder, Splign, ProSplign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, dbVar, Epigenomics, Cancer Chromosomes, Entrez Genomes and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Entrez Probe, GENSAT, Online Mendelian Inheritance in Man (OMIM), Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART), IBIS, Biosystems, Peptidome, OMSSA, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.

  10. Reduction in the critical dark length for flower induction during aging in the short-day plant Pharbitis nil var. Kidachi.

    PubMed

    Hasegawa, Hiroshi; Yamada, Mizuki; Iwase, Yuiko; Wada, Kaede C; Takeno, Kiyotoshi

    2010-12-01

    The stress-sensitive short-day plant Pharbitis nil var. Kidachi flowers under a 16-h light and 8-h dark regime and non-stress conditions when grown for long periods of time. Such flowering was found to occur from the third week, and the floral buds were formed from the eighth node of the main stem. When young plants were grafted onto aged plants, the scions were induced to flower early. This flower induction by grafting was more effective when older plants were used as rootstocks. Grafting experiments using a single leaf as a donor revealed that younger leaves are more responsive to flower induction, suggesting that this age-mediated flowering response is not induced by aging or senescence of individual leaves. Rather, the plant may obtain the ability to flower as the whole plant ages. Flowering does not occur under continuous light conditions. A night break given in the 8-h dark period inhibits flowering. These results suggest that 8-h dark conditions, which are normally considered to be long-day conditions, actually correspond to short-day conditions for this plant. The 8-h dark conditions caused early flowering more efficiently in older plants. The critical dark length determined by a single treatment was 12 h in 0-week-old plants and was reduced to 6 h in 2- and 4-week-old plants. These results suggest that the critical dark length becomes shorter when plants get older. The expression of PnFT1 and PnFT2, orthologs of the flowering gene flowering locus T, was analyzed by reverse transcription-polymerase chain reaction revealing that the expression of PnFT at the end of dark period is correlated with flowering.

  11. iTRAQ-Based Quantitative Proteomics Analysis of Black Rice Grain Development Reveals Metabolic Pathways Associated with Anthocyanin Biosynthesis

    PubMed Central

    Chen, Linghua; Huang, Yining; Xu, Ming; Cheng, Zuxin; Zhang, Dasheng; Zheng, Jingui

    2016-01-01

    Background Black rice (Oryza sativa L.), whose pericarp is rich in anthocyanins (ACNs), is considered as a healthier alternative to white rice. Molecular species of ACNs in black rice have been well documented in previous studies; however, information about the metabolic mechanisms underlying ACN biosynthesis during black rice grain development is unclear. Results The aim of the present study was to determine changes in the metabolic pathways that are involved in the dynamic grain proteome during the development of black rice indica cultivar, (Oryza sativa L. indica var. SSP). Isobaric tags for relative and absolute quantification (iTRAQ) MS/MS were employed to identify statistically significant alterations in the grain proteome. Approximately 928 proteins were detected, of which 230 were differentially expressed throughout 5 successive developmental stages, starting from 3 to 20 days after flowering (DAF). The greatest number of differentially expressed proteins was observed on 7 and 10 DAF, including 76 proteins that were upregulated and 39 that were downregulated. The biological process analysis of gene ontology revealed that the 230 differentially expressed proteins could be sorted into 14 functional groups. Proteins in the largest group were related to metabolic process, which could be integrated into multiple biochemical pathways. Specifically, proteins with a role in ACN biosynthesis, sugar synthesis, and the regulation of gene expression were upregulated, particularly from the onset of black rice grain development and during development. In contrast, the expression of proteins related to signal transduction, redox homeostasis, photosynthesis and N-metabolism decreased during grain maturation. Finally, 8 representative genes encoding different metabolic proteins were verified via quantitative real-time polymerase chain reaction (qRT-PCR) analysis, these genes had differed in transcriptional and translational expression during grain development. Conclusions Expression analyses of metabolism-related protein groups belonging to different functional categories and subcategories indicated that significantly upregulated proteins were related to flavonoid and starch synthesis. On the other hand, the downregulated proteins were determined to be related to nitrogen metabolism, as well as other functional categories and subcategories, including photosynthesis, redox homeostasis, tocopherol biosynthetic, and signal transduction. The results provide valuable new insights into the characterization and understanding of ACN pigment production in black rice. PMID:27415428

  12. Comparative miRNAs analysis of Two contrasting broccoli inbred lines with divergent head-forming capacity under temperature stress.

    PubMed

    Chen, Chi-Chien; Fu, Shih-Feng; Norikazu, Monma; Yang, Yau-Wen; Liu, Yu-Ju; Ikeo, Kazuho; Gojobori, Takashi; Huang, Hao-Jen

    2015-12-01

    MicroRNAs (miRNAs) play a vital role in growth, development, and stress response at the post-transcriptional level. Broccoli (Brassica oleracea L. var italic) is an important vegetable crop, and the yield and quality of broccoli are decreased by heat stress. The broccoli inbred lines that are capable of producing head at high temperature in summer are unique varieties in Taiwan. However, knowledge of miRNAomes during the broccoli head formation under heat stress is limited. In this study, molecular characterization of two nearly isogenic lines with contrasting head-forming capacity was investigated. Head-forming capacity was better for heat-tolerant (HT) than heat-sensitive (HS) broccoli under heat stress. By deep sequencing and computational analysis, 20 known miRNAs showed significant differential expression between HT and HS genotypes. According to the criteria for annotation of new miRNAs, 24 novel miRNA sequences with differential expression between the two genotypes were identified. To gain insight into functional significance, 213 unique potential targets of these 44 differentially expressed miRNAs were predicted. These targets were implicated in shoot apical development, phase change, response to temperature stimulus, hormone and energy metabolism. The head-forming capacity of the unique HT line was related to autonomous regulation of Bo-FT genes and less expression level of heat shock protein genes as compared to HS. For the genotypic comparison, a set of miRNAs and their targets had consistent expression patterns in various HT genotypes. This large-scale characterization of broccoli miRNAs and their potential targets is to unravel the regulatory roles of miRNAs underlying heat-tolerant head-forming capacity.

  13. Transformation of Solanum tuberosum plastids allows high expression levels of β-glucuronidase both in leaves and microtubers developed in vitro.

    PubMed

    Segretin, María Eugenia; Lentz, Ezequiel Matías; Wirth, Sonia Alejandra; Morgenfeld, Mauro Miguel; Bravo-Almonacid, Fernando Félix

    2012-04-01

    Plastid genome transformation offers an attractive methodology for transgene expression in plants, but for potato, only expression of gfp transgene (besides the selective gene aadA) has been published. We report here successful expression of β-glucuronidase in transplastomic Solanum tuberosum (var. Desiree) plants, with accumulation levels for the recombinant protein of up to 41% of total soluble protein in mature leaves. To our knowledge, this is the highest expression level reported for a heterologous protein in S. tuberosum. Accumulation of the recombinant protein in soil-grown minitubers was very low, as described in previous reports. Interestingly, microtubers developed in vitro showed higher accumulation of β-glucuronidase. As light exposure during their development could be the trigger for this high accumulation, we analyzed the effect of light on β-glucuronidase accumulation in transplastomic tubers. Exposure to light for 8 days increased β-glucuronidase accumulation in soil-grown tubers, acting as a light-inducible expression system for recombinant protein accumulation in tuber plastids. In this paper we show that plastid transformation in potato allows the highest recombinant protein accumulation in foliar tissue described so far for this food crop. We also demonstrate that in tubers high accumulation is possible and depends on light exposure. Because tubers have many advantages as protein storage organs, these results could lead to new recombinant protein production schemes based on potato.

  14. High-resolution mapping of heterochromatin redistribution in a Drosophila position-effect variegation model.

    PubMed

    Vogel, Maartje J; Pagie, Ludo; Talhout, Wendy; Nieuwland, Marja; Kerkhoven, Ron M; van Steensel, Bas

    2009-01-29

    Position-effect variegation (PEV) is the stochastic transcriptional silencing of a gene positioned adjacent to heterochromatin. white-mottled X-chromosomal inversions in Drosophila are classic PEV models that show variegation of the eye color gene white due to its relocation next to pericentric heterochromatin. It has been suggested that in these models the spreading of heterochromatin across the rearrangement breakpoint causes the silencing of white. However, the extent of this spreading and the precise pattern of heterochromatin redistribution have remained unclear. To obtain insight into the mechanism of PEV, we constructed high-resolution binding maps of Heterochromatin Protein 1 (HP1) on white-mottled chromosomes. We find that HP1 invades euchromatin across the inversion breakpoints over approximately 175 kb and approximately 30 kb, causing de novo association of HP1 with 20 genes. However, HP1 binding levels in these regions show substantial local variation, and white is the most strongly bound gene. Remarkably, white is also the only gene that is detectably repressed by heterochromatin. Furthermore, we find that HP1 binding to the invaded region is particularly sensitive to the dosage of the histone methyltransferase Su(var)3-9, indicating that the de novo formed heterochromatin is less stable than naturally occurring constitutive heterochromatin. Our molecular maps demonstrate that heterochromatin can invade a normally euchromatic region, yet the strength of HP1 binding and effects on gene expression are highly dependent on local context. Our data suggest that the white gene has an unusual intrinsic affinity for heterochromatin, which may cause this gene to be more sensitive to PEV than most other genes.

  15. Dominant gene for rust resistance in pearl millet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanna, W.W.; Wells, H.D.; Burton, G.W.

    1985-01-01

    Rust (Puccinia substriata var. indica) resistance was discovered in three Pennisetum americanum (L.) Leeke subspecies monodii (Maire) Brunken accessions from Senegal. Resistant plant were free of rust, although the bottom one or two leaves of some plants did develop a brown discoloration without pustules. Resistance was controlled by a dominant gene assigned the gene symbol Rr1. Backcrossing has been effective in transferring resistance from the wild grassy, monodii to cultivated pearl millet. The Rr1 gene should be useful in the production of rust resistant pearl millet hybrids and cultivars. 6 references, 1 table.

  16. Literature-Based Gene Curation and Proposed Genetic Nomenclature for Cryptococcus

    PubMed Central

    Inglis, Diane O.; Skrzypek, Marek S.; Liaw, Edward; Moktali, Venkatesh; Sherlock, Gavin

    2014-01-01

    Cryptococcus, a major cause of disseminated infections in immunocompromised patients, kills over 600,000 people per year worldwide. Genes involved in the virulence of the meningitis-causing fungus are being characterized at an increasing rate, and to date, at least 648 Cryptococcus gene names have been published. However, these data are scattered throughout the literature and are challenging to find. Furthermore, conflicts in locus identification exist, so that named genes have been subsequently published under new names or names associated with one locus have been used for another locus. To avoid these conflicts and to provide a central source of Cryptococcus gene information, we have collected all published Cryptococcus gene names from the scientific literature and associated them with standard Cryptococcus locus identifiers and have incorporated them into FungiDB (www.fungidb.org). FungiDB is a panfungal genome database that collects gene information and functional data and provides search tools for 61 species of fungi and oomycetes. We applied these published names to a manually curated ortholog set of all Cryptococcus species currently in FungiDB, including Cryptococcus neoformans var. neoformans strains JEC21 and B-3501A, C. neoformans var. grubii strain H99, and Cryptococcus gattii strains R265 and WM276, and have written brief descriptions of their functions. We also compiled a protocol for gene naming that summarizes guidelines proposed by members of the Cryptococcus research community. The centralization of genomic and literature-based information for Cryptococcus at FungiDB will help researchers communicate about genes of interest, such as those related to virulence, and will further facilitate research on the pathogen. PMID:24813190

  17. Desiccation and osmotic stress increase the abundance of mRNA of the tonoplast aquaporin BobTIP26-1 in cauliflower cells.

    PubMed

    Barrieu, F; Marty-Mazars, D; Thomas, D; Chaumont, F; Charbonnier, M; Marty, F

    1999-07-01

    Changes in vacuolar structure and the expression at the RNA level of a tonoplast aquaporin (BobTIP26-1) were examined in cauliflower (Brassicaoleracea L. var. botrytis) under water-stress conditions. Gradual drying out of slices of cauliflower floret tissue caused its collapse, with a shrinkage in tissue and cell volumes and an apparent vesiculation of the central vacuole, whereas osmotic stress resulted in plasmolysis with a collapse of the cytoplasm and the central vacuole within. Osmotic stress caused a rapid and substantial increase in BobTIP26 mRNA in slices of floret tissue. Exposure of tissue slices to a regime of desiccation showed a slower but equally large rise in BobTIP26 mRNA followed by a rapid decline upon rehydration. In situ hybridization showed that BobTIP26-2 mRNA is expressed most highly in meristematic and expanding cells of the cauliflower florets and that desiccation strongly increased the expression in those cells and in differentiated cells near the xylem vessels. These data indicate that under water-deficit conditions, expression of the tonoplast aquaporin gene in cauliflower is subject to a precise regulation that can be correlated with important cytological changes in the cells.

  18. Genetic variation of temperature-regulated curd induction in cauliflower: elucidation of floral transition by genome-wide association mapping and gene expression analysis

    PubMed Central

    Matschegewski, Claudia; Zetzsche, Holger; Hasan, Yaser; Leibeguth, Lena; Briggs, William; Ordon, Frank; Uptmoor, Ralf

    2015-01-01

    Cauliflower (Brassica oleracea var. botrytis) is a vernalization-responsive crop. High ambient temperatures delay harvest time. The elucidation of the genetic regulation of floral transition is highly interesting for a precise harvest scheduling and to ensure stable market supply. This study aims at genetic dissection of temperature-dependent curd induction in cauliflower by genome-wide association studies and gene expression analysis. To assess temperature-dependent curd induction, two greenhouse trials under distinct temperature regimes were conducted on a diversity panel consisting of 111 cauliflower commercial parent lines, genotyped with 14,385 SNPs. Broad phenotypic variation and high heritability (0.93) were observed for temperature-related curd induction within the cauliflower population. GWA mapping identified a total of 18 QTL localized on chromosomes O1, O2, O3, O4, O6, O8, and O9 for curding time under two distinct temperature regimes. Among those, several QTL are localized within regions of promising candidate flowering genes. Inferring population structure and genetic relatedness among the diversity set assigned three main genetic clusters. Linkage disequilibrium (LD) patterns estimated global LD extent of r2 = 0.06 and a maximum physical distance of 400 kb for genetic linkage. Transcriptional profiling of flowering genes FLOWERING LOCUS C (BoFLC) and VERNALIZATION 2 (BoVRN2) was performed, showing increased expression levels of BoVRN2 in genotypes with faster curding. However, functional relevance of BoVRN2 and BoFLC2 could not consistently be supported, which probably suggests to act facultative and/or might evidence for BoVRN2/BoFLC-independent mechanisms in temperature-regulated floral transition in cauliflower. Genetic insights in temperature-regulated curd induction can underpin genetically informed phenology models and benefit molecular breeding strategies toward the development of thermo-tolerant cultivars. PMID:26442034

  19. Identification, Classification, and Phylogeny of the Pathogenic Species Exophiala jeanselmei and Related Species by Mitochondrial Cytochrome b Gene Analysis

    PubMed Central

    Wang, Li; Yokoyama, Koji; Miyaji, Makoto; Nishimura, Kazuko

    2001-01-01

    We analyzed a 402-bp sequence of the mitochondrial cytochrome b gene of 34 strains of Exophiala jeanselmei and 16 strains representing 12 related species. The strains of E. jeanselmei were classified into 20 DNA types and 17 amino acid types. The differences between these strains were found in 1 to 60 nucleotides and 1 to 17 amino acids. On the basis of the identities and similarities of nucleotide and amino acid sequences, some strains were reidentified: i.e., two strains of E. jeanselmei var. hetermorpha and one strain of E. castellanii as E. dermatitidis (including the type strain), three strains of E. jeanselmei as E. jeanselmei var. lecanii-corni (including the type strain), three strains of E. jeanselmei as E. bergeri (including the type strain), seven strains of E. jeanselmei as E. pisciphila (including the type strain), seven strains of E. jeanselmei as E. jeanselmei var. jeanselmei (including the type strain), one strain of E. jeanselmei as Fonsecaea pedrosoi (including the type strain), and one strain of E. jeanselmei as E. spinifera (including the type strain). Some E. jeanselmei strains showed distinct nucleotide and amino acid sequences. The amino-acid-based UPGMA (unweighted pair group method with the arithmetic mean) tree exhibited nearly the same topology as those of the DNA-based trees obtained by neighbor joining, maximum parsimony, and maximum likelihood methods. PMID:11724862

  20. Transcriptome profiling of anthocyanin-related genes reveals effects of light intensity on anthocyanin biosynthesis in red leaf lettuce.

    PubMed

    Zhang, Yanzhao; Xu, Shuzhen; Cheng, Yanwei; Peng, Zhengfeng; Han, Jianming

    2018-01-01

    Red leaf lettuce ( Lactuca sativa L.) is popular due to its high anthocyanin content, but poor leaf coloring often occurs under low light intensity. In order to reveal the mechanisms of anthocyanins affected by light intensity, we compared the transcriptome of L. sativa L. var. capitata under light intensities of 40 and 100 μmol m -2 s -1 . A total of 62,111 unigenes were de novo assembled with an N50 of 1,681 bp, and 48,435 unigenes were functionally annotated in public databases. A total of 3,899 differentially expressed genes (DEGs) were detected, of which 1,377 unigenes were up-regulated and 2,552 unigenes were down-regulated in the high light samples. By Kyoto Encyclopedia of Genes and Genomes enrichment analysis, the DEGs were significantly enriched in 14 pathways. Using gene annotation and phylogenetic analysis, we identified seven anthocyanin structural genes, including CHS , CHI , F3H , F3'H , DFR , ANS , and 3GT , and two anthocyanin transport genes, GST and MATE . In terms of anthocyanin regulatory genes, five MYBs and one bHLH gene were identified. An HY5 gene was discovered, which may respond to light-signaling and regulate anthocyanin structural genes. These genes showed a log2FC of 2.7-9.0 under high irradiance, and were validated using quantitative real-time-PCR. In conclusion, our results indicated transcriptome variance in red leaf lettuce under low and high light intensity, and observed a anthocyanin biosynthesis and regulation pattern. The data should further help to unravel the molecular mechanisms of anthocyanins influenced by light intensity.

  1. Cardenolide glycosides from Elaeodendron australe var. integrifolium.

    PubMed

    Butler, Mark S; Towerzey, Leanne; Pham, Ngoc B; Hyde, Edward; Wadi, Sao Khemar; Guymer, Gordon P; Quinn, Ronald J

    2014-02-01

    Extracts from dried leaf and stems of Elaeodendron australe var. integrifolium (Celastraceae) collected in South East Queensland, Australia, were active in an assay that measured Ca(2+) driven expression of IL-2/luciferase designed to identify inhibitors of the ICRAC channel. Bioassay-guided isolation using C18 and polyamide column chromatography, HPLC (Phenyl and C18) and centrifugal partition chromatography (CPC) led to the isolation of digitoxigenin (1) and three cardenolide glycosides, glucoside 2, quinovoside 3 and the new natural product xyloside 4, as the active components with low nM activity in the reporter assay. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. The plant pathogenic fungus Gaeumannomyces graminis var. tritici improves bacterial growth and triggers early gene regulations in the biocontrol strain Pseudomonas fluorescens Pf29Arp.

    PubMed

    Barret, M; Frey-Klett, P; Boutin, M; Guillerm-Erckelboudt, A-Y; Martin, F; Guillot, L; Sarniguet, A

    2009-01-01

    In soil, some antagonistic rhizobacteria contribute to reduce root diseases caused by phytopathogenic fungi. Direct modes of action of these bacteria have been largely explored; however, commensal interaction also takes place between these microorganisms and little is known about the influence of filamentous fungi on bacteria. An in vitro confrontation bioassay between the pathogenic fungus Gaeumannomyces graminis var. tritici (Ggt) and the biocontrol bacterial strain Pseudomonas fluorescens Pf29Arp was set up to analyse bacterial transcriptional changes induced by the fungal mycelium at three time-points of the interaction before cell contact and up until contact. For this, a Pf29Arp shotgun DNA microarray was constructed. Specifity of Ggt effect was assessed in comparison with one of two other filamentous fungi, Laccaria bicolor and Magnaporthe grisea. During a commensal interaction, Ggt increased the growth rate of Pf29Arp. Before contact, Ggt induced bacterial genes involved in mycelium colonization. At contact, genes encoding protein of stress response and a patatin-like protein were up-regulated. Among all the bacterial genes identified, xseB was specifically up-regulated at contact by Ggt but down-regulated by the other fungi. Data showed that the bacterium sensed the presence of the fungus early, but the main gene alteration occurred during bacterial-fungal cell contact.

  3. Multilocus patterns of nucleotide diversity and divergence reveal positive selection at candidate genes related to cold hardiness in coastal Douglas Fir (Pseudotsuga menziesii var. menziesii).

    PubMed

    Eckert, Andrew J; Wegrzyn, Jill L; Pande, Barnaly; Jermstad, Kathleen D; Lee, Jennifer M; Liechty, John D; Tearse, Brandon R; Krutovsky, Konstantin V; Neale, David B

    2009-09-01

    Forest trees exhibit remarkable adaptations to their environments. The genetic basis for phenotypic adaptation to climatic gradients has been established through a long history of common garden, provenance, and genecological studies. The identities of genes underlying these traits, however, have remained elusive and thus so have the patterns of adaptive molecular diversity in forest tree genomes. Here, we report an analysis of diversity and divergence for a set of 121 cold-hardiness candidate genes in coastal Douglas fir (Pseudotsuga menziesii var. menziesii). Application of several different tests for neutrality, including those that incorporated demographic models, revealed signatures of selection consistent with selective sweeps at three to eight loci, depending upon the severity of a bottleneck event and the method used to detect selection. Given the high levels of recombination, these candidate genes are likely to be closely linked to the target of selection if not the genes themselves. Putative homologs in Arabidopsis act primarily to stabilize the plasma membrane and protect against denaturation of proteins at freezing temperatures. These results indicate that surveys of nucleotide diversity and divergence, when framed within the context of further association mapping experiments, will come full circle with respect to their utility in the dissection of complex phenotypic traits into their genetic components.

  4. Multilocus patterns of nucleotide diversity and divergence reveal positive selection at candidate genes related to cold hardiness in coastal Douglas Fir (Pseudotsuga menziesii var. menziesii).

    Treesearch

    A. Eckert; J. Wegrzyn; B. Pande; K. Jermstad; J. Lee; J. Liechty; B. Tearse; K. Krutovsky; D. Neale

    2009-01-01

    Forest trees exhibit remarkable adaptations to their environments. The genetic basis for phenotypic adaptation to climatic gradients has been established through a long history of common garden, provenance, and genecological studies. The identities of genes underlying these traits, however, have remained elusive and thus so have the patterns of adaptive molecular...

  5. Efficient and rapid Agrobacterium-mediated genetic transformation of durum wheat (Triticum turgidum L. var. durum) using additional virulence genes.

    PubMed

    Wu, Huixia; Doherty, Angela; Jones, Huw D

    2008-06-01

    Genetic transformation of wheat, using biolistics or Agrobacterium, underpins a range of specific research methods for identifying genes and studying their function in planta. Transgenic approaches to study and modify traits in durum wheat have lagged behind those for bread wheat. Here we report the use of Agrobacterium strain AGL1, with additional vir genes housed in a helper plasmid, to transform and regenerate the durum wheat variety Ofanto. The use of the basic pSoup helper plasmid with no additional vir genes failed to generate transformants, whereas the presence of either virG542 or the 15 kb Komari fragment containing virB, virC and virG542 produced transformation efficiencies of between 0.6 and 9.7%. Of the 42 transgenic plants made, all but one (which set very few seeds) appeared morphologically normal and produced between 100 and 300 viable seeds. The transgene copy number and the segregation ratios were found to be very similar to those previously reported for bread wheat. We believe that this is the first report describing successful genetic transformation of tetraploid durum wheat (Triticum turgidum L. var. durum) mediated by Agrobacterium tumefaciens using immature embryos as the explant.

  6. Molecular Cloning and Characterization of Apricot Fruit Polyphenol Oxidase

    PubMed Central

    Chevalier, Tony; de Rigal, David; Mbéguié-A-Mbéguié, Didier; Gauillard, Frédéric; Richard-Forget, Florence; Fils-Lycaon, Bernard R.

    1999-01-01

    A reverse transcriptase-polymerase chain reaction experiment was done to synthesize a homologous polyphenol oxidase (PPO) probe from apricot (Prunus armeniaca var Bergeron) fruit. This probe was further used to isolate a full-length PPO cDNA, PA-PPO (accession no. AF020786), from an immature-green fruit cDNA library. PA-PPO is 2070 bp long and contains a single open reading frame encoding a PPO precursor peptide of 597 amino acids with a calculated molecular mass of 67.1 kD and an isoelectric point of 6.84. The mature protein has a predicted molecular mass of 56.2 kD and an isoelectric point of 5.84. PA-PPO belongs to a multigene family. The gene is highly expressed in young, immature-green fruit and is turned off early in the ripening process. The ratio of PPO protein to total proteins per fruit apparently remains stable regardless of the stage of development, whereas PPO specific activity peaks at the breaker stage. These results suggest that, in addition to a transcriptional control of PPO expression, other regulation factors such as translational and posttranslational controls also occur. PMID:10198084

  7. Comparative assessment of the Euglena gracilis var. saccharophila variant strain as a producer of the β-1,3-glucan paramylon under varying light conditions.

    PubMed

    Sun, Angela; Hasan, Mafruha Tasnin; Hobba, Graham; Nevalainen, Helena; Te'o, Junior

    2018-06-11

    Euglena gracilis Z and a 'sugar loving' variant strain Euglena gracilis var. saccharophila, were investigated as producers of paramylon, a β-1,3-glucan polysaccharide with potential medicinal and industrial applications. The strains were grown under diurnal or dark growth conditions on a glucose-yeast extract medium supporting high-level paramylon production. Both strains produced the highest paramylon yields (7.4 to 8 g · L -1 , respectively) while grown in the dark, but the maximum yield was achieved faster by E. gracilis var. saccharophila (48 h vs 72 h). The glucose-to-paramylon yield coefficient Y par/glu = 0.46±0.03 in the Euglena gracilis var. saccharophila cultivation, obtained in this study, is the highest reported to date. Proteomic analysis of the metabolic pathways provided molecular clues for the strain behavior observed during cultivation. For example, overexpression of enzymes in the gluconeogenesis/glycolysis pathways including fructokinase-1 and chloroplastic fructose-1,6-bisphosphatase may have contributed to the faster rate of paramylon accumulation in E. gracilis var. saccharophila. Differentially expressed proteins in the early steps of chloroplastogenesis pathway including plastid uroporphyrinogen decarboxylases, photoreceptors, and a highly abundant (68 fold increase) plastid transketolase may have provided the E. gracilis var. saccharophila strain an advantage in paramylon production during diurnal cultivations. In conclusion, the variant strain E. gracilis var. saccharophila seems to be well suited for producing large amounts of paramylon. This work has also resulted in the identification of molecular targets for future improvement of paramylon production in E. gracilis, including the chloroplastic fructose-1,6-bisphosphatase (FBP) and phosophofructokinase 1 (PFK-1), the latter being a key regulator of glycolysis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Variola virus F1L is a Bcl-2-like protein that unlike its vaccinia virus counterpart inhibits apoptosis independent of Bim

    PubMed Central

    Marshall, B; Puthalakath, H; Caria, S; Chugh, S; Doerflinger, M; Colman, P M; Kvansakul, M

    2015-01-01

    Subversion of host cell apoptosis is an important survival strategy for viruses to ensure their own proliferation and survival. Certain viruses express proteins homologous in sequence, structure and function to mammalian pro-survival B-cell lymphoma 2 (Bcl-2) proteins, which prevent rapid clearance of infected host cells. In vaccinia virus (VV), the virulence factor F1L was shown to be a potent inhibitor of apoptosis that functions primarily be engaging pro-apoptotic Bim. Variola virus (VAR), the causative agent of smallpox, harbors a homolog of F1L of unknown function. We show that VAR F1L is a potent inhibitor of apoptosis, and unlike all other characterized anti-apoptotic Bcl-2 family members lacks affinity for the Bim Bcl-2 homology 3 (BH3) domain. Instead, VAR F1L engages Bid BH3 as well as Bak and Bax BH3 domains. Unlike its VV homolog, variola F1L only protects against Bax-mediated apoptosis in cellular assays. Crystal structures of variola F1L bound to Bid and Bak BH3 domains reveal that variola F1L forms a domain-swapped Bcl-2 fold, which accommodates Bid and Bak BH3 in the canonical Bcl-2-binding groove, in a manner similar to VV F1L. Despite the observed conservation of structure and sequence, variola F1L inhibits apoptosis using a startlingly different mechanism compared with its VV counterpart. Our results suggest that unlike during VV infection, Bim neutralization may not be required during VAR infection. As molecular determinants for the human-specific tropism of VAR remain essentially unknown, identification of a different mechanism of action and utilization of host factors used by a VAR virulence factor compared with its VV homolog suggest that studying VAR directly may be essential to understand its unique tropism. PMID:25766319

  9. Variola virus F1L is a Bcl-2-like protein that unlike its vaccinia virus counterpart inhibits apoptosis independent of Bim.

    PubMed

    Marshall, B; Puthalakath, H; Caria, S; Chugh, S; Doerflinger, M; Colman, P M; Kvansakul, M

    2015-03-12

    Subversion of host cell apoptosis is an important survival strategy for viruses to ensure their own proliferation and survival. Certain viruses express proteins homologous in sequence, structure and function to mammalian pro-survival B-cell lymphoma 2 (Bcl-2) proteins, which prevent rapid clearance of infected host cells. In vaccinia virus (VV), the virulence factor F1L was shown to be a potent inhibitor of apoptosis that functions primarily be engaging pro-apoptotic Bim. Variola virus (VAR), the causative agent of smallpox, harbors a homolog of F1L of unknown function. We show that VAR F1L is a potent inhibitor of apoptosis, and unlike all other characterized anti-apoptotic Bcl-2 family members lacks affinity for the Bim Bcl-2 homology 3 (BH3) domain. Instead, VAR F1L engages Bid BH3 as well as Bak and Bax BH3 domains. Unlike its VV homolog, variola F1L only protects against Bax-mediated apoptosis in cellular assays. Crystal structures of variola F1L bound to Bid and Bak BH3 domains reveal that variola F1L forms a domain-swapped Bcl-2 fold, which accommodates Bid and Bak BH3 in the canonical Bcl-2-binding groove, in a manner similar to VV F1L. Despite the observed conservation of structure and sequence, variola F1L inhibits apoptosis using a startlingly different mechanism compared with its VV counterpart. Our results suggest that unlike during VV infection, Bim neutralization may not be required during VAR infection. As molecular determinants for the human-specific tropism of VAR remain essentially unknown, identification of a different mechanism of action and utilization of host factors used by a VAR virulence factor compared with its VV homolog suggest that studying VAR directly may be essential to understand its unique tropism.

  10. Effect of Medium Supplements on Agrobacterium rhizogenes Mediated Hairy Root Induction from the Callus Tissues of Camellia sinensis var. sinensis

    PubMed Central

    Rana, Mohammad M.; Han, Zhuo-Xiao; Song, Da-Peng; Liu, Guo-Feng; Li, Da-Xiang; Wan, Xiao-Chun; Karthikeyan, Alagarsamy; Wei, Shu

    2016-01-01

    Tea (Camellia sinensis L.) is recalcitrant to Agrobacterium-mediated genetic transformation largely due to the bactericidal effects of tea polyphenols and phenolics oxidation induced by necrosis of explant tissue over the process of transformation. In this study, different antioxidants/adsorbents were added as supplements to the co-cultivation and post co-cultivation media to overcome these problems for the transformation improvement. Tea-cotyledon-derived calli were used as explants and Agrobacterium rhizognes strain ATCC 15834 was used as a mediator. Results showed that Agrobacterium growth, virulence (vir) gene expression and browning of explant tissue were greatly influenced by different supplements. Murashige and Skoog (MS) basal salts medium supplemented with 30 g·L−1 sucrose, 0.1 g·L−1 l-glutamine and 5 g·L−1 polyvinylpolypyrrolidone (PVPP) as co-cultivation and post co-cultivation media could maintain these parameters better that ultimately led to significant improvement of hairy root generation efficiency compared to that in the control (MS + 30 g·L−1 sucrose). Additionally, the reporter genes β-glucuronidase (gusA) and cyan fluorescent protein (cfp) were also stably expressed in the transgenic hairy roots. Our study would be helpful in establishing a feasible approach for tea biological studies and genetic improvement of tea varieties. PMID:27428960

  11. Literature-based gene curation and proposed genetic nomenclature for cryptococcus.

    PubMed

    Inglis, Diane O; Skrzypek, Marek S; Liaw, Edward; Moktali, Venkatesh; Sherlock, Gavin; Stajich, Jason E

    2014-07-01

    Cryptococcus, a major cause of disseminated infections in immunocompromised patients, kills over 600,000 people per year worldwide. Genes involved in the virulence of the meningitis-causing fungus are being characterized at an increasing rate, and to date, at least 648 Cryptococcus gene names have been published. However, these data are scattered throughout the literature and are challenging to find. Furthermore, conflicts in locus identification exist, so that named genes have been subsequently published under new names or names associated with one locus have been used for another locus. To avoid these conflicts and to provide a central source of Cryptococcus gene information, we have collected all published Cryptococcus gene names from the scientific literature and associated them with standard Cryptococcus locus identifiers and have incorporated them into FungiDB (www.fungidb.org). FungiDB is a panfungal genome database that collects gene information and functional data and provides search tools for 61 species of fungi and oomycetes. We applied these published names to a manually curated ortholog set of all Cryptococcus species currently in FungiDB, including Cryptococcus neoformans var. neoformans strains JEC21 and B-3501A, C. neoformans var. grubii strain H99, and Cryptococcus gattii strains R265 and WM276, and have written brief descriptions of their functions. We also compiled a protocol for gene naming that summarizes guidelines proposed by members of the Cryptococcus research community. The centralization of genomic and literature-based information for Cryptococcus at FungiDB will help researchers communicate about genes of interest, such as those related to virulence, and will further facilitate research on the pathogen. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  12. Lactoferrin derived resistance against plant pathogen in transgenic plants

    USDA-ARS?s Scientific Manuscript database

    Lactoferrin (LF) is a ubiquitous cationic iron-binding milk glycoprotein and it is known to exert a broad-spectrum primary defense activity against bacteria, fungi, protozoa and viruses in mammals. The Bovine lactoferrin gene was introduced to tobacco (Nicotiana tabacum var Xanthi), Arabidopsis (A. ...

  13. The purple cauliflower arises from activation of a myb transcription factor

    USDA-ARS?s Scientific Manuscript database

    Anthocyanins are responsible for the color of many flowers, fruits, and vegetables. An interesting and unique Purple (Pr) gene mutation in cauliflower (Brassica oleracea var botrytis) confers an abnormal pattern of anthocyanin accumulation, giving the striking mutant phenotype of intense purple colo...

  14. Bulked fusiform rust inocula and Fr gene interactions in loblolly pine

    Treesearch

    Fikret Isik; Henry Amerson; Saul Garcia; Ross Whetten; Steve. McKeand

    2012-01-01

    Fusiform rust disease in loblolly (Pinus taeda L.) and slash (Pinus elliottii Engelm. var elliottii) pine plantations in the southern United States causes multi-million dollar annual losses. The disease is endemic to the region. The fusiform rust fungus (Cronartium quercuum sp.

  15. Sergey gen. n., a new doryctine genus from temperate forests of Mexico and Cuba (Hymenoptera, Braconidae).

    PubMed

    Martínez, Juan José; Lázaro, Rubi Nelsi Meza; Pedraza-Lara, Carlos; Zaldívar-Riverón, Alejandro

    2016-01-01

    The new doryctine genus Sergey gen. n. is described with four new species (Sergey cubaensis Zaldívar-Riverón & Martínez, sp. n., Sergey coahuilensis Zaldívar-Riverón & Martínez, sp. n., Sergey tzeltal Martínez & Zalídivar-Riverón, sp. n., Sergey tzotzil Martínez & Zalídivar-Riverón, sp. n.) from temperate forests of Mexico and Cuba. Similar to many other doryctine taxa, the new genus has a considerably elongated, petiolate basal sternal plate of the first metasomal tergite, although it can be distinguished from these by having the mesoscutum sharply declivous anteriorly with sharp anterolateral edges. The described species have been characterised molecularly based on two mitochondrial (COI, cyt b) and one nuclear (28S) gene markers. Based on the mitochondrial gene genealogies reconstructed, the evidence suggests the existence of incomplete lineage sorting or hybridization in the populations from Chiapas and Oaxaca assigned to Sergey tzeltal sp. n.

  16. Sergey gen. n., a new doryctine genus from temperate forests of Mexico and Cuba (Hymenoptera, Braconidae)

    PubMed Central

    Martínez, Juan José; Lázaro, Rubi Nelsi Meza; Pedraza-Lara, Carlos; Zaldívar-Riverón, Alejandro

    2016-01-01

    Abstract The new doryctine genus Sergey gen. n. is described with four new species (Sergey cubaensis Zaldívar-Riverón & Martínez, sp. n., Sergey coahuilensis Zaldívar-Riverón & Martínez, sp. n., Sergey tzeltal Martínez & Zalídivar-Riverón, sp. n., Sergey tzotzil Martínez & Zalídivar-Riverón, sp. n.) from temperate forests of Mexico and Cuba. Similar to many other doryctine taxa, the new genus has a considerably elongated, petiolate basal sternal plate of the first metasomal tergite, although it can be distinguished from these by having the mesoscutum sharply declivous anteriorly with sharp anterolateral edges. The described species have been characterised molecularly based on two mitochondrial (COI, cyt b) and one nuclear (28S) gene markers. Based on the mitochondrial gene genealogies reconstructed, the evidence suggests the existence of incomplete lineage sorting or hybridization in the populations from Chiapas and Oaxaca assigned to Sergey tzeltal sp. n. PMID:27408539

  17. Hb Mozhaisk [β92(F8)His→Arg; HBB: c.278A>G] as a De Novo Mutation in a Child of Mixed Ethnic Origins.

    PubMed

    Benzoni, Elena; Giannone, Valentina; Michetti, Laura; Seia, Manuela; Cavalleri, Laura; Curcio, Cristina

    Approximately 150 variants described in the HbVar database have been found to be unstable and about 80.0% of these are on the β-globin gene. We describe the case of a 3-year-old child who presented at the emergency room with fever and asthenia. Hematological data suggested severe hemolytic anemia. Sequencing of the β-globin gene revealed the mutation HBB: c.278A>G at codon 92 in a heterozygous state, reported as Hb Mozhaisk in the HbVar database. Other family members did not have Hb Mozhaisk, thus, this variant is due to a de novo mutation. Because of the rarity of this globin variant, we believe it is important to report similar cases, to have a more complete phenotype description of the pathology and define an adequate reproductive risk for couples, considering the dominant inheritance pattern (hence an inheritance risk of 50.0%).

  18. The midgut cadherin-like gene is not associated with resistance to Bacillus thuringiensis toxin Cry1Ac in Plutella xylostella (L.).

    PubMed

    Guo, Zhaojiang; Kang, Shi; Zhu, Xun; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhang, Youjun

    2015-03-01

    The Gram-positive bacterium Bacillus thuringiensis (Bt) produces Cry toxins that have been used to control important agricultural pests. Evolution of resistance in target pests threatens the effectiveness of these toxins when used either in sprayed biopesticides or in Bt transgenic crops. Although alterations of the midgut cadherin-like receptor can lead to Bt Cry toxin resistance in many insects, whether the cadherin gene is involved in Cry1Ac resistance of Plutella xylostella (L.) remains unclear. Here, we present experimental evidence that resistance to Cry1Ac or Bt var. kurstaki (Btk) in P. xylostella is not due to alterations of the cadherin gene. The bona fide P. xylostella cadherin cDNA sequence was cloned and analyzed, and comparisons of the cadherin cDNA sequence among susceptible and resistant P. xylostella strains confirmed that Cry1Ac resistance was independent of mutations in this gene. In addition, real-time quantitative PCR (qPCR) indicated that cadherin transcript levels did not significantly differ among susceptible and resistant P. xylostella strains. RNA interference (RNAi)-mediated suppression of cadherin gene expression did not affect larval susceptibility to Cry1Ac toxin. Furthermore, genetic linkage assays using four cadherin gDNA allelic biomarkers confirmed that the cadherin gene is not linked to resistance against Cry1Ac in P. xylostella. Taken together, our findings demonstrate that Cry1Ac resistance of P. xylostella is independent of the cadherin gene. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Expression of novel cytosolic malate dehydrogenases (cMDH) in Lupinus angustifolius nodules during phosphorus starvation.

    PubMed

    Le Roux, Marcellous; Phiri, Ethel; Khan, Wesaal; Sakiroğlu, Muhammet; Valentine, Alex; Khan, Sehaam

    2014-11-01

    During P deficiency, the increased activity of malate dehydrogenase (MDH, EC 1.1.1.37) can lead to malate accumulation. Cytosolic- and nodule-enhanced MDH (cMDH and neMDH, respectively) are known isoforms, which contribute to MDH activity in root nodules. The aim of this study was to investigate the role of the cMDH isoforms in nodule malate supply under P deficiency. Nodulated lupins (Lupinus angustifolius var. Tanjil) were hydroponically grown at adequate P (+P) or low P (-P). Total P concentration in nodules decreased under P deficiency, which coincided with an increase in total MDH activity. A consequence of higher MDH activity was the enhanced accumulation of malate derived from dark CO2 fixation via PEPC and not from pyruvate. Although no measurable neMDH presence could be detected via PCR, gene-specific primers detected two 1kb amplicons of cMDH, designated LangMDH1 (corresponding to +P, HQ690186) and LangMDH2 (corresponding to -P, HQ690187), respectively. Sequencing analyses of these cMDH amplicons showed them to be 96% identical on an amino acid level. There was a high degree of diversification between proteins detected in this study and other known MDH proteins, particularly those from other leguminous plants. Enhanced malate synthesis in P-deficient nodules was achieved via increased anaplerotic CO2 fixation and subsequent higher MDH activities. Novel isoforms of cytosolic MDH may be involved, as shown by gene expression of specific genes under P deficiency. Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. Transcriptomic and proteomic analyses of a pale-green durum wheat mutant shows variations in photosystem components and metabolic deficiencies under drought stress

    PubMed Central

    2014-01-01

    Background Leaf pigment content is an important trait involved in environmental interactions. In order to determine its impact on drought tolerance in wheat, we characterized a pale-green durum wheat mutant (Triticum turgidum L. var. durum) under contrasting water availability conditions. Results The pale-green mutant was investigated by comparing pigment content and gene/protein expression profiles to wild-type plants at anthesis. Under well-watered (control) conditions the mutant had lower levels of chlorophylls and carotenoids, but higher levels of xanthophyll de-epoxidation compared to wild-type. Transcriptomic analysis under control conditions showed that defense genes (encoding e.g. pathogenesis-related proteins, peroxidases and chitinases) were upregulated in the mutant, suggesting the presence of mild oxidative stress that was compensated without altering the net rate of photosynthesis. Transcriptomic analysis under terminal water stress conditions, revealed the modulation of antioxidant enzymes, photosystem components, and enzymes representing carbohydrate metabolism and the tricarboxylic acid cycle, indicating that the mutant was exposed to greater oxidative stress than the wild-type plants, but had a limited capacity to respond. We also compared the two genotypes under irrigated and rain-fed field conditions over three years, finding that the greater oxidative stress and corresponding molecular changes in the pale-green mutant were associated to a yield reduction. Conclusions This study provides insight on the effect of pigment content in the molecular response to drought. Identified genes differentially expressed under terminal water stress may be valuable for further studies addressing drought resistance in wheat. PMID:24521234

  1. UV-B Irradiation Changes Specifically the Secondary Metabolite Profile in Broccoli Sprouts: Induced Signaling Overlaps with Defense Response to Biotic Stressors

    PubMed Central

    Mewis, Inga; Schreiner, Monika; Nguyen, Chau Nhi; Krumbein, Angelika; Ulrichs, Christian; Lohse, Marc; Zrenner, Rita

    2012-01-01

    Only a few environmental factors have such a pronounced effect on plant growth and development as ultraviolet light (UV). Concerns have arisen due to increased UV-B radiation reaching the Earth’s surface as a result of stratospheric ozone depletion. Ecologically relevant low to moderate UV-B doses (0.3–1 kJ m–2 d–1) were applied to sprouts of the important vegetable crop Brassica oleracea var. italica (broccoli), and eco-physiological responses such as accumulation of non-volatile secondary metabolites were related to transcriptional responses with Agilent One-Color Gene Expression Microarray analysis using the 2×204 k format Brassica microarray. UV-B radiation effects have usually been linked to increases in phenolic compounds. As expected, the flavonoids kaempferol and quercetin accumulated in broccoli sprouts (the aerial part of the seedlings) 24 h after UV-B treatment. A new finding is the specific UV-B-mediated induction of glucosinolates (GS), especially of 4-methylsulfinylbutyl GS and 4-methoxy-indol-3-ylmethyl GS, while carotenoids and Chl levels remained unaffected. Accumulation of defensive GS metabolites was accompanied by increased expression of genes associated with salicylate and jasmonic acid signaling defense pathways and up-regulation of genes responsive to fungal and bacterial pathogens. Concomitantly, plant pre-exposure to moderate UV-B doses had negative effects on the performance of the caterpillar Pieris brassicae (L.) and on the population growth of the aphid Myzus persicae (Sulzer). Moreover, insect-specific induction of GS in broccoli sprouts was affected by UV-B pre-treatment. PMID:22773681

  2. Construction and analysis of an SSH cDNA library of early heat-induced genes of Vigna aconitifolia variety RMO-40.

    PubMed

    Rampuria, Sakshi; Joshi, Uma; Palit, Paramita; Deokar, Amit A; Meghwal, Raju R; Mohapatra, T; Srinivasan, R; Bhatt, K V; Sharma, Ramavtar

    2012-11-01

    Moth bean ( Vigna aconitifolia (Jacq.) Marechal) is an important grain legume crop grown in rain fed areas of hot desert regions of Thar, India, under scorching sun rays with very little supplementation of water. An SSH cDNA library was generated from leaf tissues of V. aconitifolia var. RMO-40 exposed to an elevated temperature of 42 °C for 5 min to identify early-induced genes. A total of 488 unigenes (114 contigs and 374 singletons) were derived by cluster assembly and sequence alignment of 738 ESTs; out of 206 ESTs (28%) of unknown proteins, 160 ESTs (14%) were found to be novel to moth bean. Only 578 ESTs (78%) showed significant BLASTX similarity (<1 × 10(-6)) in the NCBI non-redundant database. Gene ontology functional classification terms were retrieved for 479 (65%) sequences, and 339 sequences were annotated with 165 EC codes and mapped to 68 different KEGG pathways. Four hundred and fifty-two ESTs were further annotated with InterProScan (IPS), and no IPS was assigned to 153 ESTs. In addition, the expression level of 27 ESTs in response to heat stress was evaluated through semiquantitative RT-PCR assay. Approximately 20 different signaling genes and 16 different transcription factors have been shown to be associated with heat stress in moth bean for the first time.

  3. HbVar: A relational database of human hemoglobin variants and thalassemia mutations at the globin gene server.

    PubMed

    Hardison, Ross C; Chui, David H K; Giardine, Belinda; Riemer, Cathy; Patrinos, George P; Anagnou, Nicholas; Miller, Webb; Wajcman, Henri

    2002-03-01

    We have constructed a relational database of hemoglobin variants and thalassemia mutations, called HbVar, which can be accessed on the web at http://globin.cse.psu.edu. Extensive information is recorded for each variant and mutation, including a description of the variant and associated pathology, hematology, electrophoretic mobility, methods of isolation, stability information, ethnic occurrence, structure studies, functional studies, and references. The initial information was derived from books by Dr. Titus Huisman and colleagues [Huisman et al., 1996, 1997, 1998]. The current database is updated regularly with the addition of new data and corrections to previous data. Queries can be formulated based on fields in the database. Tables of common categories of variants, such as all those involving the alpha1-globin gene (HBA1) or all those that result in high oxygen affinity, are maintained by automated queries on the database. Users can formulate more precise queries, such as identifying "all beta-globin variants associated with instability and found in Scottish populations." This new database should be useful for clinical diagnosis as well as in fundamental studies of hemoglobin biochemistry, globin gene regulation, and human sequence variation at these loci. Copyright 2002 Wiley-Liss, Inc.

  4. Phylogeography and genetic structure of endemic Acmispon argophyllus and A. dendroideus (Fabaceae) across the California Channel Islands.

    PubMed

    Wallace, Lisa E; Wheeler, Gregory L; McGlaughlin, Mitchell E; Bresowar, Gerald; Helenurm, Kaius

    2017-05-01

    Taxa inhabiting the California Channel Islands exhibit variation in their degree of isolation, but few studies have considered patterns across the entire archipelago. We studied phylogeography of insular Acmispon argophyllus and A. dendroideus to determine whether infraspecific taxa are genetically divergent and to elucidate patterns of diversification across these islands. DNA sequences were collected from nuclear (ADH) and plastid genomes ( rpL16 , ndhA , psbD-trnT ) from >450 samples on the Channel Islands and California. We estimated population genetic diversity and structure, phylogenetic patterns among populations, and migration rates, and tested for population growth. Populations of northern island A. argophyllus var. niveus are genetically distinct from conspecific populations on southern islands. On the southern islands, A. argophyllus var. argenteus populations on Santa Catalina are phylogenetically distinct from populations of var. argenteus and var. adsurgens on the other southern islands. For A. dendroideus , we found the varieties to be monophyletic. Populations of A. dendroideus var. traskiae on San Clemente are genetically differentiated from other conspecific populations, whereas populations on the northern islands and Santa Catalina show varying degrees of gene flow. Evidence of population growth was found in both species. Oceanic barriers between islands have had a strong influence on population genetic structure in both Acmispon species, although the species have differing phylogeographic patterns. This study provides a contrasting pattern of dispersal on a near island system that does not follow a strict stepping-stone model, commonly found on isolated island systems. © 2017 Botanical Society of America.

  5. Edible blue-green algae reduce the production of pro-inflammatory cytokines by inhibiting NF-κB pathway in macrophages and splenocytes

    PubMed Central

    Ku, Chai Siah; Pham, Tho X.; Park, Youngki; Kim, Bohkyung; Shin, Min; Kang, Insoo; Lee, Jiyoung

    2013-01-01

    Background Chronic inflammation contributes to the development of pathological disorders including insulin resistance and atherosclerosis. Identification of anti-inflammatory natural products can prevent the inflammatory diseases. Methods Anti-inflammatory effects of blue-green algae (BGA), i.e., Nostoc commune var. Sphaeroides Kützing (NO) and Spirulina Platensis (SP), were compared in RAW 264.7 and mouse bone marrow-derived macrophages (BMM) as well as splenocytes from apolipoprotein E knockout (apoE−/−) mice fed BGA. Results When macrophages pretreated with 100 μg/ml NO lipid extract (NOE) or SP lipid extract (SPE) were activated by lipopolysaccharide (LPS), expression and secretion of pro-inflammatory cytokines, such as tumor necrosis factor α (TNFα), interleukin 1β (IL-1β), and IL-6, were significantly repressed. NOE and SPE also significantly repressed the expression of TNFα and IL-1β in BMM. LPS-induced secretion of IL-6 was lower in splenocytes from apoE−/− fed an atherogenic diet containing 5% NO or SP for 12 weeks. In RAW 264.7 macrophages, NOE and SPE markedly decreased nuclear translocation of NF-κB. The degree of repression of pro-inflammatory gene expression by algal extracts was much stronger than that of SN50, an inhibitor of NF-κB nuclear translocation. Trichostatin A, a pan histone deacetylase inhibitor, increased basal expression of IL-1β and attenuated the repression of the gene expression by SPE. SPE significantly down-regulated mRNA abundance of 11 HDAC isoforms, consequently increasing acetylated histone 3 levels. Conclusion NOE and SPE repress pro-inflammatory cytokine expression and secretion in macrophages and splenocytes via inhibition of NF-κB pathway. Histone acetylation state is likely involved in the inhibition. General significance This study underscores natural products can exert anti-inflammatory effects by epigenetic modifications such as histone acetylation. PMID:23357040

  6. Cytological and Proteomic Analyses of Osmunda cinnamomea Germinating Spores Reveal Characteristics of Fern Spore Germination and Rhizoid Tip Growth.

    PubMed

    Suo, Jinwei; Zhao, Qi; Zhang, Zhengxiu; Chen, Sixue; Cao, Jian'guo; Liu, Guanjun; Wei, Xing; Wang, Tai; Yang, Chuanping; Dai, Shaojun

    2015-09-01

    Fern spore is a good single-cell model for studying the sophisticated molecular networks in asymmetric cell division, differentiation, and polar growth. Osmunda cinnamomea L. var. asiatica is one of the oldest fern species with typical separate-growing trophophyll and sporophyll. The chlorophyllous spores generated from sporophyll can germinate without dormancy. In this study, the spore ultrastructure, antioxidant enzyme activities, as well as protein and gene expression patterns were analyzed in the course of spore germination at five typical stages (i.e. mature spores, rehydrated spores, double-celled spores, germinated spores, and spores with protonemal cells). Proteomic analysis revealed 113 differentially expressed proteins, which were mainly involved in photosynthesis, reserve mobilization, energy supplying, protein synthesis and turnover, reactive oxygen species scavenging, signaling, and cell structure modulation. The presence of multiple proteoforms of 25 differentially expressed proteins implies that post-translational modification may play important roles in spore germination. The dynamic patterns of proteins and their encoding genes exhibited specific characteristics in the processes of cell division and rhizoid tip growth, which include heterotrophic and autotrophic metabolisms, de novo protein synthesis and active protein turnover, reactive oxygen species and hormone (brassinosteroid and ethylene) signaling, and vesicle trafficking and cytoskeleton dynamic. In addition, the function skew of proteins in fern spores highlights the unique and common mechanisms when compared with evolutionarily divergent spermatophyte pollen. These findings provide an improved understanding of the typical single-celled asymmetric division and polar growth during fern spore germination. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Phytoremediation of arsenic from the contaminated soil using transgenic tobacco plants expressing ACR2 gene of Arabidopsis thaliana.

    PubMed

    Nahar, Noor; Rahman, Aminur; Nawani, Neelu N; Ghosh, Sibdas; Mandal, Abul

    2017-11-01

    We have cloned, characterized and transformed the AtACR2 gene (arsenic reductase 2) of Arabidopsis thaliana into the genome of tobacco (Nicotiana tabacum, var Sumsun). Our results revealed that the transgenic tobacco plants are more tolerant to arsenic than the wild type ones. These plants can grow on culture medium containing 200μM arsenate, whereas the wild type can barely survive under this condition. Furthermore, when exposed to 100μM arsenate for 35days the amount of arsenic accumulated in the shoots of transgenic plants was significantly lower (28μg/g d wt.) than that found in the shoots of non-transgenic controls (40μg/g d wt.). However, the arsenic content in the roots of transgenic plants was significantly higher (2400μg/g d. wt.) than that (2100μg/g d. wt.) observed in roots of wild type plants. We have demonstrated that Arabidopsis thaliana AtACR2 gene is a potential candidate for genetic engineering of plants to develop new crop cultivars that can be grown on arsenic contaminated fields to reduce arsenic content of the soil and can become a source of food containing no arsenic or exhibiting substantially reduced amount of this metalloid. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Subcellular localization of celery mannitol dehydrogenase. A cytosolic metabolic enzyme in nuclei.

    PubMed Central

    Yamamoto, Y T; Zamski, E; Williamson, J D; Conkling, M A; Pharr, D M

    1997-01-01

    Mannitol dehydrogenase (MTD) is the first enzyme in mannitol catabolism in celery (Apium graveolens L. var dulce [Mill] Pers. cv Florida 638). Mannitol is an important photoassimilate, as well as providing plants with resistance to salt and osmotic stress. Previous work has shown that expression of the celery Mtd gene is regulated by many factors, such as hexose sugars, salt and osmotic stress, and salicylic acid. Furthermore, MTD is present in cells of sink organs, phloem cells, and mannitol-grown suspension cultures. Immunogold localization and biochemical analyses presented here demonstrate that celery MTD is localized in the cytosol and nuclei. Although the cellular density of MTD varies among different cell types, densities of nuclear and cytosolic MTD in a given cell are approximately equal. Biochemical analyses of nuclear extracts from mannitol-grown cultured cells confirmed that the nuclear-localized MTD is enzymatically active. The function(s) of nuclear-localized MTD is unknown. PMID:9414553

  9. Molecular and Physiological Analysis of a Heat-Shock Response in Wheat 1

    PubMed Central

    McElwain, Elizabeth F.; Spiker, Steven

    1992-01-01

    We have isolated two cDNA clones from wheat (Triticum aestivum L. var Stephens), designated WHSP16.8 and WHSP16.9, that are highly similar in sequence to the low molecular weight heat-shock protein genes previously isolated from soybean. RNA blot analysis confirms that these sequences are present in heat-shocked wheat seedlings, but not in control tissues. The WHSP16.8 and WHSP16.9 cDNAs were isolated by screening a lambda gt11 expression library with antibodies to HMGc (a chromosomal protein of wheat). Immunoblot analysis has demonstrated that the antibodies raised against HMGc also recognize a group of proteins that are induced by heat shock and have molecular weights (estimated by sodium dodecyl sulfate electrophoresis) consistent with the molecular weights of the proteins deduced from the sequences of the cDNAs. ImagesFigure 3Figure 4Figure 5 PMID:16669058

  10. Gene sequences present in Citrullus sp. having been lost during domestication of watermelon

    USDA-ARS?s Scientific Manuscript database

    A wide genetic diversity exists among Citrullus species, while watermelon cultivars (Citrullus lanatus var. lanatus) share a narrow genetic base as a result of many years of domestication and selection for desirable fruit qualities. The recent international watermelon genome sequencing project reve...

  11. Genetic mapping and identification of QTL for earliness in the globe artichoke/cultivated cardoon complex.

    PubMed

    Portis, Ezio; Scaglione, Davide; Acquadro, Alberto; Mauromicale, Giovanni; Mauro, Rosario; Knapp, Steven J; Lanteri, Sergio

    2012-05-23

    The Asteraceae species Cynara cardunculus (2n = 2x = 34) includes the two fully cross-compatible domesticated taxa globe artichoke (var. scolymus L.) and cultivated cardoon (var. altilis DC). As both are out-pollinators and suffer from marked inbreeding depression, linkage analysis has focussed on the use of a two way pseudo-test cross approach. A set of 172 microsatellite (SSR) loci derived from expressed sequence tag DNA sequence were integrated into the reference C. cardunculus genetic maps, based on segregation among the F1 progeny of a cross between a globe artichoke and a cultivated cardoon. The resulting maps each detected 17 major linkage groups, corresponding to the species' haploid chromosome number. A consensus map based on 66 co-dominant shared loci (64 SSRs and two SNPs) assembled 694 loci, with a mean inter-marker spacing of 2.5 cM. When the maps were used to elucidate the pattern of inheritance of head production earliness, a key commercial trait, seven regions were shown to harbour relevant quantitative trait loci (QTL). Together, these QTL accounted for up to 74% of the overall phenotypic variance. The newly developed consensus as well as the parental genetic maps can accelerate the process of tagging and eventually isolating the genes underlying earliness in both the domesticated C. cardunculus forms. The largest single effect mapped to the same linkage group in each parental maps, and explained about one half of the phenotypic variance, thus representing a good candidate for marker assisted selection.

  12. Biological control of wheat root diseases by the CLP-producing strain Pseudomonas fluorescens HC1-07.

    PubMed

    Yang, Ming-Ming; Wen, Shan-Shan; Mavrodi, Dmitri V; Mavrodi, Olga V; von Wettstein, Diter; Thomashow, Linda S; Guo, Jian-Hua; Weller, David M

    2014-03-01

    Pseudomonas fluorescens HC1-07, previously isolated from the phyllosphere of wheat grown in Hebei province, China, suppresses the soilborne disease of wheat take-all, caused by Gaeumannomyces graminis var. tritici. We report here that strain HC1-07 also suppresses Rhizoctonia root rot of wheat caused by Rhizoctonia solani AG-8. Strain HC1-07 produced a cyclic lipopeptide (CLP) with a molecular weight of 1,126.42 based on analysis by electrospray ionization mass spectrometry. Extracted CLP inhibited the growth of G. graminis var. tritici and R. solani in vitro. To determine the role of this CLP in biological control, plasposon mutagenesis was used to generate two nonproducing mutants, HC1-07viscB and HC1-07prtR2. Analysis of regions flanking plasposon insertions in HC1-07prtR2 and HC1-07viscB revealed that the inactivated genes were similar to prtR and viscB, respectively, of the well-described biocontrol strain P. fluorescens SBW25 that produces the CLP viscosin. Both genes in HC1-07 were required for the production of the viscosin-like CLP. The two mutants were less inhibitory to G. graminis var. tritici and R. solani in vitro and reduced in ability to suppress take-all. HC1-07viscB but not HC-07prtR2 was reduced in ability to suppress Rhizoctonia root rot. In addition to CLP production, prtR also played a role in protease production.

  13. Adaptive Genetic Divergence Despite Significant Isolation-by-Distance in Populations of Taiwan Cow-Tail Fir (Keteleeria davidiana var. formosana)

    PubMed Central

    Shih, Kai-Ming; Chang, Chung-Te; Chung, Jeng-Der; Chiang, Yu-Chung; Hwang, Shih-Ying

    2018-01-01

    Double digest restriction site-associated DNA sequencing (ddRADseq) is a tool for delivering genome-wide single nucleotide polymorphism (SNP) markers for non-model organisms useful in resolving fine-scale population structure and detecting signatures of selection. This study performs population genetic analysis, based on ddRADseq data, of a coniferous species, Keteleeria davidiana var. formosana, disjunctly distributed in northern and southern Taiwan, for investigation of population adaptive divergence in response to environmental heterogeneity. A total of 13,914 SNPs were detected and used to assess genetic diversity, FST outlier detection, population genetic structure, and individual assignments of five populations (62 individuals) of K. davidiana var. formosana. Principal component analysis (PCA), individual assignments, and the neighbor-joining tree were successful in differentiating individuals between northern and southern populations of K. davidiana var. formosana, but apparent gene flow between the southern DW30 population and northern populations was also revealed. Fifteen of 23 highly differentiated SNPs identified were found to be strongly associated with environmental variables, suggesting isolation-by-environment (IBE). However, multiple matrix regression with randomization analysis revealed strong IBE as well as significant isolation-by-distance. Environmental impacts on divergence were found between populations of the North and South regions and also between the two southern neighboring populations. BLASTN annotation of the sequences flanking outlier SNPs gave significant hits for three of 23 markers that might have biological relevance to mitochondrial homeostasis involved in the survival of locally adapted lineages. Species delimitation between K. davidiana var. formosana and its ancestor, K. davidiana, was also examined (72 individuals). This study has produced highly informative population genomic data for the understanding of population attributes, such as diversity, connectivity, and adaptive divergence associated with large- and small-scale environmental heterogeneity in K. davidiana var. formosana. PMID:29449860

  14. Scanning genomic areas under selection sweep and association mapping as tools to identify horticultural important genes in watermelon

    USDA-ARS?s Scientific Manuscript database

    Watermelon (Citrullus lanatus var. lanatus) contains 88% water, sugars, and several important health-related compounds, including lycopene, citrulline, arginine, and glutathione. The current genetic diversity study uses microsatellites with known map positions to identify genomic regions that under...

  15. The n-butanolic extract of Opuntia ficus-indica var. saboten enhances long-term memory in the passive avoidance task in mice.

    PubMed

    Kim, Jong Min; Kim, Dong Hyun; Park, Se Jin; Park, Dong Hyun; Jung, Seo Yun; Kim, Hyoung Ja; Lee, Yong Sup; Jin, Changbae; Ryu, Jong Hoon

    2010-08-16

    Opuntia ficus-indica var. saboten Makino (Cactaceae) is used to treat burns, edema, dyspepsia, and asthma in traditional medicine. The present study investigated the beneficial effects of the n-butanolic extract of O. ficus-indica var. saboten (BOF) on memory performance in mice and attempts to uncover the mechanisms underlying its action. Memory performance was assessed with the passive avoidance task, and western blotting and immunohistochemistry were used to measure changes in protein expression and cell survival. After the oral administration of BOF for 7 days, the latency time in the passive avoidance task was significantly increased relative to vehicle-treated controls (P<0.05). Western blotting revealed that the expression levels of brain-derived neurotrophic factor (BDNF), phosphorylated cAMP response element binding-protein (pCREB), and phosphorylated extracellular signal-regulated kinase (pERK) 1/2 were significantly increased in hippocampal tissue after 7 days of BOF administration (P<0.05). Doublecortin and 5-bromo-2-deoxyuridine immunostaining also revealed that BOF significantly enhanced the survival of immature neurons, but did not affect neuronal cell proliferation in the subgranular zone of the hippocampal dentate gyrus. These results suggest that the subchronic administration of BOF enhances long-term memory, and that this effect is partially mediated by ERK-CREB-BDNF signaling and the survival of immature neurons. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  16. Suppressive effect of pectic polysaccharides extracted from Rauwolfia verticillata (Lour.) Baill.var.hainanensis Tsiang on inflammation by regulation of NF- κ B pathway and interleukin-17 in mice with dextran sulphatesodium-induced ulcerative colitis.

    PubMed

    Miao, Xin-Pu; Sun, Xiao-Ning; Cui, Lu-Jia; Cao, Qin-Fang; Zhuang, Gui-Feng; Deng, Tao-Zhi; Zhang, Dong-Yan

    2015-02-01

    To investigate the effects of pectic polysaccharides extracted from Rauwolfia verticillata (Lour.) Baill.var.hainanensis Tsiang on an experimental murine colitis model. Experimental colitis was induced by dextran sulfate sodium (DSS), and mice were divided into 4 groups: control, DSS alone, DSS plus SASP, DSS plus pectic polysaccharides. The disease activity index (DAI) and histological score were observed. The tumor necrosis factor (TNF)- α and interleukin (IL)-17 levels were measured by enzyme-linked immunosorbent assay. I κ B and NF- κ B p65 expression were assessed by western blot analysis. Myeloperoxidase (MPO) activity was determined by using MPO assay kit. Administration of pectic polysaccharides significantly reduced the severity of DSS-induced colitis as assessed by DAI and histological score, and resulted in down regulation of MPO activity and NF- κ B p65 expression and subsequent degradation of I κ B protein, strikingly reduced the production of TNF- a and IL-17. Pectic polysaccharides extracted from Rauvolfia verticillata (Lour.)Baill.var. hainanensis Tsiang exerts beneficial effects in experimental colitis and may therefore provide a useful therapeutic approach for the treatment of UC. Copyright © 2015 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  17. Introgression of a Tombusvirus Resistance Locus from Nicotiana edwardsonii var. Columbia to N. clevelandii.

    PubMed

    Schoelz, James E; Wiggins, B Elizabeth; Wintermantel, William M; Ross, Kathleen

    2006-05-01

    ABSTRACT A new variety of Nicotiana, N. edwardsonii var. Columbia, was evaluated for its capacity to serve as a new source for virus resistance genes. Columbia was developed from a hybridization between N. glutinosa and N. clevelandii, the same parents used for the formation of the original N. edwardsonii. However, in contrast to the original N. edwardsonii, crosses between Columbia and either of its parents are fertile. Thus, the inheritance of virus resistance genes present in N. glutinosa could be characterized by using Columbia as a bridge plant in crosses with the susceptible parent, N. clevelandii. To determine how virus resistance genes would segregate in interspecific crosses between Columbia and N. clevelandii, we followed the fate of the N gene, a single dominant gene that specifies resistance to Tobacco mosaic virus (TMV). Our genetic evidence indicated that the entire chromosome containing the N gene was introgressed into N. clevelandii to create an addition line, designated N. clevelandii line 19. Although line 19 was homozygous for resistance to TMV, it remained susceptible to Tomato bushy stunt virus (TBSV) and Cauliflower mosaic virus (CaMV) strain W260, indicating that resistance to these viruses must reside on other N. glutinosa chromosomes. We also developed a second addition line, N. clevelandii line 36, which was homozygous for resistance to TBSV. Line 36 was susceptible to TMV and CaMV strain W260, but was resistant to other tombusviruses, including Cucumber necrosis virus, Cymbidium ringspot virus, Lettuce necrotic stunt virus, and Carnation Italian ringspot virus.

  18. Characterization of two fungal lipoxygenases expressed in Aspergillus oryzae.

    PubMed

    Sugio, Akiko; Østergaard, Lars Henrik; Matsui, Kenji; Takagi, Shinobu

    2018-05-24

    Two fungal lipoxygenase genes were cloned from a rice pathogen, Magnaporthe salvinii, and the take-all fungus, Gaeumannomyces graminis var. tritici, and successfully expressed in Aspergillus oryzae in secreted form. The lipoxygenases expressed, termed MLOX and GLOX, were purified and characterized to evaluate suitability for industrial applications. Both enzymes were active broadly at pH 4-11 and had optimum temperatures around 60 °C, but they were largely different in substrate specificity. Where MLOX was active broadly on arachidonic acid, EPA and DHA, and even on derivatives of fatty acids, such as methyl linoleate or linoleoyl alcohol, GLOX was more specific to linoleic acid and linolenic acid. The most remarkable difference between the two fungal LOXs was the positional and stereo-specificity of oxygenation reactions on polyunsaturated fatty acids. When using linoleic acid as the substrate, the product of MLOX was 9S-hydroperoxy-(E,Z)-octadecadienoic acid (9S(E,Z)-HPODE), on the other hand, the product of GLOX was 13R(E,Z)-HPODE. The enzymes were evaluated for a couple of potential applications and found to be effective on bleaching colored compounds such as carotenoids. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Construction of a reference molecular linkage map of globe artichoke (Cynara cardunculus var. scolymus).

    PubMed

    Portis, E; Mauromicale, G; Mauro, R; Acquadro, A; Scaglione, D; Lanteri, S

    2009-12-01

    The genome organization of globe artichoke (Cynara cardunculus var. scolymus), unlike other species belonging to Asteraceae (=Compositae) family (i.e. sunflower, lettuce and chicory), remains largely unexplored. The species is highly heterozygous and suffers marked inbreeding depression when forced to self-fertilize. Thus a two-way pseudo-testcross represents the optimal strategy for linkage analysis. Here, we report linkage maps based on the progeny of a cross between globe artichoke (C. cardunculus var. scolymus) and cultivated cardoon (C. cardunculus var. altilis). The population was genotyped using a variety of PCR-based marker platforms, resulting in the identification of 708 testcross markers suitable for map construction. The male map consisted of 177 loci arranged in 17 major linkage groups, spanning 1,015.5 cM, while female map was built with 326 loci arranged into 20 major linkage groups, spanning 1,486.8 cM. The presence of 84 loci shared between these maps and those previously developed from a cross within globe artichoke allowed for map alignment and the definition of 17 homologous linkage groups, corresponding to the haploid number of the species. This will provide a favourable property for QTL scanning; furthermore, as 25 mapped markers (8%) correspond to coding regions, it has an additional value as functional map and might represent an important genetic tool for candidate gene studies in globe artichoke.

  20. Wheat beta-expansin (EXPB11) genes: Identification of the expressed gene on chromosome 3BS carrying a pollen allergen domain

    PubMed Central

    2010-01-01

    Background Expansins form a large multi-gene family found in wheat and other cereal genomes that are involved in the expansion of cell walls as a tissue grows. The expansin family can be divided up into two main groups, namely, alpha-expansin (EXPA) and beta-expansin proteins (EXPB), with the EXPB group being of particular interest as group 1-pollen allergens. Results In this study, three beta-expansin genes were identified and characterized from a newly sequenced region of the Triticum aestivum cv. Chinese Spring chromosome 3B physical map at the Sr2 locus (FPC contig ctg11). The analysis of a 357 kb sub-sequence of FPC contig ctg11 identified one beta-expansin genes to be TaEXPB11, originally identified as a cDNA from the wheat cv Wyuna. Through the analysis of intron sequences of the three wheat cv. Chinese Spring genes, we propose that two of these beta-expansin genes are duplications of the TaEXPB11 gene. Comparative sequence analysis with two other wheat cultivars (cv. Westonia and cv. Hope) and a Triticum aestivum var. spelta line validated the identification of the Chinese Spring variant of TaEXPB11. The expression in maternal and grain tissues was confirmed by examining EST databases and carrying out RT-PCR experiments. Detailed examination of the position of TaEXPB11 relative to the locus encoding Sr2 disease resistance ruled out the possibility of this gene directly contributing to the resistance phenotype. Conclusions Through 3-D structural protein comparisons with Zea mays EXPB1, we proposed that variations within the coding sequence of TaEXPB11 in wheats may produce a functional change within features such as domain 1 related to possible involvement in cell wall structure and domain 2 defining the pollen allergen domain and binding to IgE protein. The variation established in this gene suggests it is a clearly identifiable member of a gene family and reflects the dynamic features of the wheat genome as it adapted to a range of different environments and uses. Accession Numbers: ctg11 =FN564426 Survey sequences of TaEXPB11ws and TsEXPB11 are provided request. PMID:20507562

  1. Chromosome numbers of populations of three varieties of Bidens pilosa in Taiwan.

    PubMed

    Huang, Ya-Lun; Kao, Wen-Yuan

    2015-12-01

    Hairy beggar-ticks (Bidens pilosa L.) is a common invasive plant in tropical and subtropical regions. The Flora of Taiwan listed three varieties of B. pilosa in Taiwan, var. minor, var. pilosa and var. radiata. Among the three varieties, var. radiata was the most recently, in 1970s, introduced into Taiwan. However, after its introduction into Taiwan, var. radiata has become dominant over the other two varieties and is considered a serious invasive plant in lowland of Taiwan. Our previous study showed that var. radiata is self-incompatible and the other two varieties are self-fertile. Could it be possible that different chromosome numbers contribute to the different breeding systems of these three varieties? In addition, the heterogeneities of traits of var. radiata were found higher than those of var. minor and var. pilosa. Is the phenomenon resulting from the hybridization between var. radiata with other varieties? We counted chromosome numbers of populations of these three varieties distributed in Taiwan and conducted hand pollination treatment between var. radiata (as pollen receiver) and var. minor or var. pilosa (as pollen donor) to provide answer for the aforementioned questions. No difference was found in chromosome numbers among populations of the same variety. Forty-eight chromosomes (2n = 48) were counted for var. radiata while 72 (2n = 72) chromosomes for var. minor and var. pilosa. Therefore, var. radiata is tetraploid and var. minor and var. pilosa are hexaploid. No successful hybridization was found between var. radiata and var. minor or between var. radiata and var. pilosa. This study provided the evidence that the invasive plant (B. pilosa var. radiata) has different chromosome numbers from the other two varieties and is unlikely to hybridize with the other two varieties.

  2. Anti-U-like as an alloantibody in S-s-U- and S-s-U+(var) black people.

    PubMed

    Peyrard, Thierry; Lam, Yin; Saison, Carole; Arnaud, Lionel; Babinet, Jérôme; Rouger, Philippe; Bierling, Philippe; Janvier, Daniel

    2012-03-01

    S, s, and U antigens belong to the MNS system. They are carried by glycophorin B (GPB), encoded by GYPB. Black people with the low-prevalence S-s- phenotype, either U- or U+(var), can make a clinically significant anti-U. Anti-U-like, a cold immunoglobulin G autoantibody quite commonly observed in S-s+U+ black persons, was previously described to be nonreactive with ficin-, α-chymotrypsin-, and pronase-treated red blood cells (RBCs); nonreactive or weakly reactive with papain-treated RBCs; and reactive with trypsin-treated RBCs. Here we describe, in S-s- people from different molecular backgrounds, an alloantibody to a high-prevalence GPB antigen, which presents the same pattern of reactivity with proteases as autoanti-U-like. Four S-s- patients with an alloantibody to a high-prevalence GPB antigen were investigated by serologic and molecular methods. An alloantibody was observed in two S-s-U-/Del GYPB, one S-s-U+(var)/GYPB(P2), and one S-s-U+(var)/GYPB(NY) patients. As this alloantibody showed the same pattern of reactivity with proteases as autoanti-U-like, we decided to name it "anti-U-like." Anti-U-like made by the two S-s-U- patients was reactive with the S-s-U+(var) RBCs of the two other patients. S-s-U-/Del GYPB, S-s-U+(var)/GYPB(P2), and S-s-U+(var)/GYPB(NY) patients can make an alloanti-U-like. Anti-U-like made by S-s-U- people appears reactive with GYPB(P2) and GYPB(NY) RBCs, which both express a weak and partial U-like reactivity. We recommend transfusing S-s-U- RBCs in S-s-U- patients showing alloanti-U-like. Our study contributes to a better understanding of alloimmunization to GPB in black people and confirms importance of genotyping in S-s- patients, especially those with sickle cell disease to be frequently transfused. © 2011 American Association of Blood Banks.

  3. Kale BoRACK1 is involved in the plant response to salt stress and Peronospora brassicae Gaumann.

    PubMed

    Li, Da-Hong; Shen, Fu-Jia; Li, Hong-Yan; Li, Wei

    2017-06-01

    The receptor for activated C kinase 1 (RACK1) belongs to a protein subfamily containing a tryptophan-aspartic acid-domain (WD) repeat structure. Compelling evidence indicates that RACK1 can interact with many signal molecules and affect different signal transduction pathways. In this study, a kale (Brassica oleracea var. acephala f.tricolor) RACK1 gene (BoRACK1) was cloned by RT-PCR. The amino acid sequence of BoRACK1 had seven WD repeats in which there were typical GH (glycine-histidine) and WD dipeptides. Comparison with AtRACK1 from Arabidopsis revealed 87.1% identity at the amino acid level. Expression pattern analysis by RT-PCR showed that BoRACK1 was expressed in all analyzed tissues of kale and that its transcription in leaves was down-regulated by salt, abscisic acid, and H 2 O 2 at a high concentration. Overexpression of BoRACK1 in kale led to a reduction in symptoms caused by Peronospora brassicae Gaumann on kale leaves. The expression levels of the pathogenesis-related protein genes, PR-1 and PRB-1, increased 2.5-4-fold in transgenic kale, and reactive oxygen species production was more active than in the wild-type. They also exhibited increased tolerance to salt stress in seed germination. H 2 O 2 may also be involved in the regulation of BoRACK1 during seed germination under salt stress. Quantitative real-time PCR analyses showed that the transcript levels of BoRbohs genes were significantly higher in overexpression of BoRACK1 transgenic lines. Yeast two-hybrid assays showed that BoRACK1 could interact with WNK8, eIF6, RAR1, and SGT1. This study and previous work lead us to believe that BoRACK1 may form a complex with regulators of plant salt and disease resistance to coordinate kale reactions to pathogens. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Expression of the 1-SST and 1-FFT genes and consequent fructan accumulation in Agave tequilana and A. inaequidens is differentially induced by diverse (a)biotic-stress related elicitors.

    PubMed

    Suárez-González, Edgar Martín; López, Mercedes G; Délano-Frier, John P; Gómez-Leyva, Juan Florencio

    2014-02-15

    The expression of genes coding for sucrose:sucrose 1-fructosyltransferase (1-SST; EC 2.4.1.99) and fructan:fructan 1-fructosyltransferase (1-FFT; EC 2.4.1.100), both fructan biosynthesizing enzymes, characterization by TLC and HPAEC-PAD, as well as the quantification of the fructo-oligosaccharides (FOS) accumulating in response to the exogenous application of sucrose, kinetin (cytokinin) or other plant hormones associated with (a)biotic stress responses were determined in two Agave species grown in vitro, domesticated Agave tequilana var. azul and wild A. inaequidens. It was found that elicitors such as salicylic acid (SA), and jasmonic acid methyl ester (MeJA) had the strongest effect on fructo-oligosaccharide (FOS) accumulation. The exogenous application of 1mM SA induced a 36-fold accumulation of FOS of various degrees of polymerization (DP) in stems of A. tequilana. Other treatments, such as 50mM abscisic acid (ABA), 8% Sucrose (Suc), and 1.0 mg L(-1) kinetin (KIN) also led to a significant accumulation of low and high DP FOS in this species. Conversely, treatment with 200 μM MeJA, which was toxic to A. tequilana, induced an 85-fold accumulation of FOS in the stems of A. inaequidens. Significant FOS accumulation in this species also occurred in response to treatments with 1mM SA, 8% Suc, and 10% polyethylene glycol (PEG). Maximum yields of 13.6 and 8.9 mg FOS per g FW were obtained in stems of A. tequilana and A. inaequidens, respectively. FOS accumulation in the above treatments was tightly associated with increased expression levels of either the 1-FFT or the 1-SST gene in tissues of both Agave species. Copyright © 2013 Elsevier GmbH. All rights reserved.

  5. Immunostimulatory Activity of Opuntia ficus-indica var. Saboten Cladodes Fermented by Lactobacillus plantarum and Bacillus subtilis in RAW 264.7 Macrophages.

    PubMed

    Hwang, Joon-Ho; Lim, Sang-Bin

    2017-02-01

    To increase the functionality of Opuntia ficus-indica var. saboten cladodes, it was fermented by Lactobacillus plantarum and Bacillus subtilis. Eighty percent methanol extracts were investigated for their effects on nitric oxide (NO) production, cytokine secretion, nuclear factor-κB (NF-κB) activity, and mitogen-activated protein kinase (MAPK) phosphorylation in RAW 264.7 cells. Methanol extracts of L. plantarum culture medium (LPCME) and B. subtilis culture medium (BSCME) did not affect lipopolysaccharide (LPS)-induced NO production but, at 500 μg/mL, increased interferon (IFN)-γ-induced NO production by 55.2 and 66.5 μM, respectively, in RAW 264.7 cells. In RAW 264.7 cells not treated with LPS and IFN-γ, LPCME did not affect NO production, but BSCME increased NO production significantly in a dose-dependent manner. In addition, BSCME induced the expression of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in RAW 264.7 cells in a dose-dependent manner. BSCME at 500 μg/mL increased TNF-α and IL-1β mRNA levels by 83.8% and 82.2%, respectively. BSCME increased NF-κB-dependent luciferase activity in a dose-dependent manner; 500 μg/mL BSCME increased activity 9.1-fold compared with the control. BSCME induced the phosphorylation of p38, c-JUN NH 2 -terminal protein kinase (JNK), and extracellular signal-regulated kinase (ERK) in a dose-dependent manner, but did not affect total ERK levels. In conclusion, BSCME exerted immunostimulatory effects, which were mediated by MAPK phosphorylation and NF-κB activation, resulting in increased TNF-α and IL-1β gene expression in RAW 264.7 macrophages. Therefore, BSCM shows promise for use as an immunostimulatory therapeutic.

  6. Characterization of the regulatory network of BoMYB2 in controlling anthocyanin biosynthesis in purple cauliflower.

    PubMed

    Chiu, Li-Wei; Li, Li

    2012-10-01

    Purple cauliflower (Brassica oleracea L. var. botrytis) Graffiti represents a unique mutant in conferring ectopic anthocyanin biosynthesis, which is caused by the tissue-specific activation of BoMYB2, an ortholog of Arabidopsis PAP2 or MYB113. To gain a better understanding of the regulatory network of anthocyanin biosynthesis, we investigated the interaction among cauliflower MYB-bHLH-WD40 network proteins and examined the interplay of BoMYB2 with various bHLH transcription factors in planta. Yeast two-hybrid studies revealed that cauliflower BoMYBs along with the other regulators formed the MYB-bHLH-WD40 complexes and BobHLH1 acted as a bridge between BoMYB and BoWD40-1 proteins. Different BoMYBs exhibited different binding activity to BobHLH1. Examination of the BoMYB2 transgenic lines in Arabidopsis bHLH mutant backgrounds demonstrated that TT8, EGL3, and GL3 were all involved in the BoMYB2-mediated anthocyanin biosynthesis. Expression of BoMYB2 in Arabidopsis caused up-regulation of AtTT8 and AtEGL3 as well as a subset of anthocyanin structural genes encoding flavonoid 3'-hydroxylase, dihydroflavonol 4-reductase, and leucoanthocyanidin dioxygenase. Taken together, our results show that MYB-bHLH-WD40 network transcription factors regulated the bHLH gene expression, which may represent a critical feature in the control of anthocyanin biosynthesis. BoMYB2 together with various BobHLHs specifically regulated the late anthocyanin biosynthetic pathway genes for anthocyanin biosynthesis. Our findings provide additional information for the complicated regulatory network of anthocyanin biosynthesis and the transcriptional regulation of transcription factors in vegetable crops.

  7. Identification of a hybrid PKS-NRPS required for the biosynthesis of NG-391 in Metarhizium anisopliae var. anisopliae

    USDA-ARS?s Scientific Manuscript database

    A 19,818 kb genomic region harboring six predicted ORFs was identified in M. anisopliae ARSEF 2575. ORF4, putatively encoding a hybrid polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) was targeted using Agrobacterium-mediated gene knockout. Homologous recombinants failed to produce det...

  8. Artemisia princeps var orientalis induces apoptosis in human breast cancer MCF-7 cells.

    PubMed

    Sarath, Vasiraju J; So, Chang-Sok; Won, Young Doo; Gollapudi, Sastry

    2007-01-01

    Dried leaves of Artemisia princeps var orientalis are used in the Eastern practice of moxibustion to improve general health. The ability of A. princeps smoke and water extracts to induce apoptosis was evaluated in human breast cancer MCF-7 cells in vitro. Tumor cells were cultured with a smoke or water extract (1.5-50% v/v) for 72 h, and cytotoxicity and apoptosis were determined by MTT and TUNEL assays, respectively. Activation of caspases, changes in membrane potential, and BCL-2 expression were determined by flow cytometry. Both preparations inhibited the growth of breast cancer cells in a dose-dependent- manner. Induction of apoptosis was associated with activation of caspases 3, 8 and 9, depolarization of the mitochondrial membrane potential and down-regulation of BCL-2 expression. Furthermore, A. princeps smoke exerted synergistic cytotoxicity with doxorubicin. The data suggest that A. princeps smoke and water soluble extracts induce apoptosis via the mitochondrial pathway and may represent a novel adjuvant for the treatment of breast cancer.

  9. Non-synonymous single nucleotide polymorphisms in the watermelon eIF4E gene are closely associated with resistance to zucchini yellow mosaic virus.

    PubMed

    Ling, Kai-Shu; Harris, Karen R; Meyer, Jenelle D F; Levi, Amnon; Guner, Nihat; Wehner, Todd C; Bendahmane, Abdelhafid; Havey, Michael J

    2009-12-01

    Zucchini yellow mosaic virus (ZYMV) is one of the most economically important potyviruses infecting cucurbit crops worldwide. Using a candidate gene approach, we cloned and sequenced eIF4E and eIF(iso)4E gene segments in watermelon. Analysis of the nucleotide sequences between the ZYMV-resistant watermelon plant introduction PI 595203 (Citrullus lanatus var. lanatus) and the ZYMV-susceptible watermelon cultivar 'New Hampshire Midget' ('NHM') showed the presence of single nucleotide polymorphisms (SNPs). Initial analysis of the identified SNPs in association studies indicated that SNPs in the eIF4E, but not eIF(iso)4E, were closely associated to the phenotype of ZYMV-resistance in 70 F(2) and 114 BC(1R) progenies. Subsequently, we focused our efforts in obtaining the entire genomic sequence of watermelon eIF4E. Three SNPs were identified between PI 595203 and NHM. One of the SNPs (A241C) was in exon 1 and the other two SNPs (C309A and T554G) were in the first intron of the gene. SNP241 which resulted in an amino acid substitution (proline to threonine) was shown to be located in the critical cap recognition and binding area, similar to that of several plant species resistance to potyviruses. Analysis of a cleaved amplified polymorphism sequence (CAPS) marker derived from this SNP in F(2) and BC(1R) populations demonstrated a cosegregation between the CAPS-2 marker and their ZYMV resistance or susceptibility phenotype. When we investigated whether such SNP mutation in the eIF4E was also conserved in several other PIs of C. lanatus var. citroides, we identified a different SNP (A171G) resulting in another amino acid substitution (D71G) from four ZYMV-resistant C. lanatus var. citroides (PI 244018, PI 482261, PI 482299, and PI 482322). Additional CAPS markers were also identified. Availability of all these CAPS markers will enable marker-aided breeding of watermelon for ZYMV resistance.

  10. COTIP: Cotton TILLING Platform, a Resource for Plant Improvement and Reverse Genetic Studies

    PubMed Central

    Aslam, Usman; Cheema, Hafiza M. N.; Ahmad, Sheraz; Khan, Iqrar A.; Malik, Waqas; Khan, Asif A.

    2016-01-01

    Cotton is cultivated worldwide for its white fiber, of which around 90% is tetraploid upland cotton (Gossypium hirsutum L.) carrying both A and D genome. Since centuries, yield increasing efforts for the cotton crop by conventional breeding approaches have caused an extensive erosion of natural genetic variability. Mutation based improvement strategies provide an effective way of creating new allelic variations. Targeting Induced Local Lesions IN Genomes (TILLING) provides a mutation based reverse genetic strategy to create and evaluate induced genetic variability at DNA level. Here, we report development and testing of TILLING populations of allotetraploid cotton (G. hirsutum) for functional genomic studies and mutation based enrichment of cotton genetic resources. Seed of two cotton cultivars “PB-899 and PB-900” were mutagenized with 0.3 and 0.2% (v/v) ethyl methanesulfonate, respectively. The phenotyping of M1 and M2 populations presented numerous mutants regarding the branching pattern, leaf morphology, disease resistance, photosynthetic lesions and flower sterility. Molecular screening for point mutations was performed by TILLING PCR aided CEL1 mismatch cleavage. To estimate the mutation frequency in the mutant genomes, five gene classes were TILLed in 8000 M2 plants of each var. “PB-899” and “PB-900.” These include actin (GhACT), Pectin Methyl Esterase (GhPME), sucrose synthase (GhSUS), resistance gene analog, and defense response gene (DRGs). The var. PB-899 was harboring 47% higher mutation induction rate than PB-900. The highest rate of mutation frequency was identified for NAC-TF5 (EU706348) of DRGs class, ranging from 1/58 kb in PB-899 to 1/105 kb in PB-900. The mutation screening assay revealed the presence of significant proportion of induced mutations in cotton TILLING populations such as 1/153 kb and 1/326 kb in var. “PB-899” and “PB-900,” respectively. The establishment of a cotton TILLING platform (COTIP) and data obtained from the resource TILLING population suggest its effectiveness in widening the genetic bases of cotton for improvement and utilizing it for subsequent reverse genetic studies of various genes. PMID:28082993

  11. Genome-Wide Identification of BAHD Acyltransferases and In vivo Characterization of HQT-like Enzymes Involved in Caffeoylquinic Acid Synthesis in Globe Artichoke

    PubMed Central

    Moglia, Andrea; Acquadro, Alberto; Eljounaidi, Kaouthar; Milani, Anna M.; Cagliero, Cecilia; Rubiolo, Patrizia; Genre, Andrea; Cankar, Katarina; Beekwilder, Jules; Comino, Cinzia

    2016-01-01

    Globe artichoke (Cynara cardunculus L. var. scolymus) is a rich source of compounds promoting human health (phytonutrients), among them caffeoylquinic acids (CQAs), mainly represented by chlorogenic acid (CGA), and dicaffeoylquinic acids (diCQAs). The enzymes involved in their biosynthesis belong to the large family of BAHD acyltransferases. Following a survey of the globe artichoke genome, we identified 69 BAHD proteins carrying the catalytic site (HXXXD). Their phylogenetic analysis together with another 43 proteins, from 21 species, representative of the BAHD family, highlighted their grouping in seven major clades. Nine globe artichoke acyltransferases clustered in a sub-group of Clade V, with 3 belonging to hydroxycinnamoyl-CoA:quinate hydroxycinnamoyl transferase (HQT) and 2 to hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyl transferase (HCT) like proteins. We focused our attention on the former, HQT1, HQT2, and HQT3, as they are known to play a key role in CGA biosynthesis. The expression of genes coding for the three HQTs and correlation of expression with the CQA content is reported for different globe artichoke tissues. For the first time in the globe artichoke, we developed and applied the virus-induced gene silencing approach with the goal of assessing in vivo the effect of HQT1 silencing, which resulted in a marked reduction of both CGA and diCQAs. On the other hand, when the role of the three HQTs was assessed in leaves of Nicotiana benthamiana through their transient overexpression, significant increases in mono- and diCQAs content were observed. Using transient GFP fusion proteins expressed in N. benthamiana leaves we also established the sub-cellular localization of these three enzymes. PMID:27721818

  12. Validation of the Antidiabetic and Hypolipidemic Effects of Hawthorn by Assessment of Gluconeogenesis and Lipogenesis Related Genes and AMP-Activated Protein Kinase Phosphorylation.

    PubMed

    Shih, Chun-Ching; Lin, Cheng-Hsiu; Lin, Yih-Jiun; Wu, Jin-Bin

    2013-01-01

    Since with the increased use of antidiabetic and antihyperlipidemic effect of phytonutrients for daily supplement has gained considerable attention worldwide, we examine the effect and molecular mechanism of Crataegus pinnatifida Bge. var. major N.E. Br. (hawthorn) by quantifying the expression of hepatic gluconeogenesis and lipogenesis on diabetes and dyslipidemia in high-fat (HF)-fed C57BL/6J mice. Firstly, mice were divided randomly into two groups: the control (CON) group was fed with a low-fat diet, whereas the experimental group was fed a 45% HF diet for 8 weeks. Afterwards, the CON group was treated with vehicle, whereas the HF group was subdivided into five groups and was given orally hawthorn extract (including 0.2, 0.5, 1.0 g/kg/day extracts) or rosiglitazone (Rosi) or vehicle for 4 weeks afterward. Diabetic mice showed an increase in plasma glucose and insulin. Glucose lowering was comparable with Rosi-treated mice. This study demonstrated that hawthorn was effective in ameliorating the HF diet-induced hyperglycemia, hypertriglyceridemia and hypercholesterolaemia. Hawthorn extract significantly increases the hepatic protein contents of AMP-activated protein kinase (AMPK) phosphorylation and reduces expression of phosphenol pyruvate carboxykinase (PEPCK) and glucose production. Furthermore, hawthorn decreased in hepatic triacylglycerol and cholesterol synthesis (including sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase (FAS), SREBP2). An increase in expressions of apoA-I gene and high-density lipoprotein cholesterol (HDL-C) was detected in HF-fed mice treated with high dose hawthorn. Our data suggest that hawthorn extract are capable of decreasing glucose production and triacylglycerol synthesis by inducing AMPK-phosphorylation and hawthorn is a candidate source of antidiabetic and antihyperlipidemic phytonutrients factors.

  13. Validation of the Antidiabetic and Hypolipidemic Effects of Hawthorn by Assessment of Gluconeogenesis and Lipogenesis Related Genes and AMP-Activated Protein Kinase Phosphorylation

    PubMed Central

    Shih, Chun-Ching; Lin, Cheng-Hsiu; Lin, Yih-Jiun; Wu, Jin-Bin

    2013-01-01

    Since with the increased use of antidiabetic and antihyperlipidemic effect of phytonutrients for daily supplement has gained considerable attention worldwide, we examine the effect and molecular mechanism of Crataegus pinnatifida Bge. var. major N.E. Br. (hawthorn) by quantifying the expression of hepatic gluconeogenesis and lipogenesis on diabetes and dyslipidemia in high-fat (HF)-fed C57BL/6J mice. Firstly, mice were divided randomly into two groups: the control (CON) group was fed with a low-fat diet, whereas the experimental group was fed a 45% HF diet for 8 weeks. Afterwards, the CON group was treated with vehicle, whereas the HF group was subdivided into five groups and was given orally hawthorn extract (including 0.2, 0.5, 1.0 g/kg/day extracts) or rosiglitazone (Rosi) or vehicle for 4 weeks afterward. Diabetic mice showed an increase in plasma glucose and insulin. Glucose lowering was comparable with Rosi-treated mice. This study demonstrated that hawthorn was effective in ameliorating the HF diet-induced hyperglycemia, hypertriglyceridemia and hypercholesterolaemia. Hawthorn extract significantly increases the hepatic protein contents of AMP-activated protein kinase (AMPK) phosphorylation and reduces expression of phosphenol pyruvate carboxykinase (PEPCK) and glucose production. Furthermore, hawthorn decreased in hepatic triacylglycerol and cholesterol synthesis (including sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase (FAS), SREBP2). An increase in expressions of apoA-I gene and high-density lipoprotein cholesterol (HDL-C) was detected in HF-fed mice treated with high dose hawthorn. Our data suggest that hawthorn extract are capable of decreasing glucose production and triacylglycerol synthesis by inducing AMPK-phosphorylation and hawthorn is a candidate source of antidiabetic and antihyperlipidemic phytonutrients factors. PMID:23690849

  14. Biological Control of Wheat Root Diseases by the CLP-Producing Strain Pseudomonas fluorescens HC1-07

    PubMed Central

    Yang, Ming-Ming; Wen, Shan-Shan; Mavrodi, Dmitri V.; Mavrodi, Olga V.; von Wettstein, Diter; Thomashow, Linda S.; Guo, Jian-Hua; Weller, David M.

    2017-01-01

    Pseudomonas fluorescens HC1-07, previously isolated from the phyllosphere of wheat grown in Hebei province, China, suppresses the soilborne disease of wheat take-all, caused by Gaeumannomyces graminis var. tritici. We report here that strain HC1-07 also suppresses Rhizoctonia root rot of wheat caused by Rhizoctonia solani AG-8. Strain HC1-07 produced a cyclic lipopeptide (CLP) with a molecular weight of 1,126.42 based on analysis by electrospray ionization mass spectrometry. Extracted CLP inhibited the growth of G. graminis var. tritici and R. solani in vitro. To determine the role of this CLP in biological control, plasposon mutagenesis was used to generate two nonproducing mutants, HC1-07viscB and HC1-07prtR2. Analysis of regions flanking plasposon insertions in HC1-07prtR2 and HC1-07viscB revealed that the inactivated genes were similar to prtR and viscB, respectively, of the well-described biocontrol strain P. fluorescens SBW25 that produces the CLP viscosin. Both genes in HC1-07 were required for the production of the viscosin-like CLP. The two mutants were less inhibitory to G. graminis var. tritici and R. solani in vitro and reduced in ability to suppress take-all. HC1-07viscB but not HC-07prtR2 was reduced in ability to suppress Rhizoctonia root rot. In addition to CLP production, prtR also played a role in protease production. PMID:24512115

  15. Development of Useful Recombinant Promoter and Its Expression Analysis in Different Plant Cells Using Confocal Laser Scanning Microscopy

    PubMed Central

    Kumar, Deepak; Sahoo, Dipak K.; Maiti, Indu B.; Dey, Nrisingha

    2011-01-01

    Background Designing functionally efficient recombinant promoters having reduced sequence homology and enhanced promoter activity will be an important step toward successful stacking or pyramiding of genes in a plant cell for developing transgenic plants expressing desired traits(s). Also basic knowledge regarding plant cell specific expression of a transgene under control of a promoter is crucial to assess the promoter's efficacy. Methodology/Principal Findings We have constructed a set of 10 recombinant promoters incorporating different up-stream activation sequences (UAS) of Mirabilis mosaic virus sub-genomic transcript (MS8, -306 to +27) and TATA containing core domains of Figwort mosaic virus sub-genomic transcript promoter (FS3, −271 to +31). Efficacies of recombinant promoters coupled to GUS and GFP reporter genes were tested in tobacco protoplasts. Among these, a 369-bp long hybrid sub-genomic transcript promoter (MSgt-FSgt) showed the highest activity in both transient and transgenic systems. In a transient system, MSgt-FSgt was 10.31, 2.86 and 2.18 times more active compared to the CaMV35S, MS8 and FS3 promoters, respectively. In transgenic tobacco (Nicotiana tabaccum, var. Samsun NN) and Arabidopsis plants, the MSgt-FSgt hybrid promoter showed 14.22 and 7.16 times stronger activity compared to CaMV35S promoter respectively. The correlation between GUS activity and uidA-mRNA levels in transgenic tobacco plants were identified by qRT-PCR. Both CaMV35S and MSgt-FSgt promoters caused gene silencing but the degree of silencing are less in the case of the MSgt-FSgt promoter compared to CaMV35S. Quantification of GUS activity in individual plant cells driven by the MSgt-FSgt and the CaMV35S promoter were estimated using confocal laser scanning microscopy and compared. Conclusion and Significance We propose strong recombinant promoter MSgt-FSgt, developed in this study, could be very useful for high-level constitutive expression of transgenes in a wide variety of plant cells. PMID:21931783

  16. In vitro screening of probiotic properties of Saccharomyces cerevisiae var. boulardii and food-borne Saccharomyces cerevisiae strains.

    PubMed

    van der Aa Kühle, Alis; Skovgaard, Kerstin; Jespersen, Lene

    2005-05-01

    The probiotic potential of 18 Saccharomyces cerevisiae strains used for production of foods or beverages or isolated from such, and eight strains of Saccharomyces cerevisiae var. boulardii, was investigated. All strains included were able to withstand pH 2.5 and 0.3% Oxgall. Adhesion to the nontumorigenic porcine jejunal epithelial cell line (IPEC-J2) was investigated by incorporation of 3H-methionine into the yeast cells and use of liquid scintillation counting. Only few of the food-borne S. cerevisiae strains exhibited noteworthy adhesiveness with the strongest levels of adhesion (13.6-16.8%) recorded for two isolates from blue veined cheeses. Merely 25% of the S. cerevisiae var. boulardii strains displayed good adhesive properties (16.2-28.0%). The expression of the proinflammatory cytokine IL-1alpha decreased strikingly in IPEC-J2 cells exposed to a Shiga-like toxin 2e producing Escherichia coli strain when the cells were pre- and coincubated with S. cerevisiae var. boulardii even though this yeast strain was low adhesive (5.4%), suggesting that adhesion is not a mandatory prerequisite for such a probiotic effect. A strain of S. cerevisiae isolated from West African sorghum beer exerted similar effects hence indicating that food-borne strains of S. cerevisiae may possess probiotic properties in spite of low adhesiveness.

  17. NSR-seq transcriptional profiling enables identification of a gene signature of Plasmodium falciparum parasites infecting children.

    PubMed

    Vignali, Marissa; Armour, Christopher D; Chen, Jingyang; Morrison, Robert; Castle, John C; Biery, Matthew C; Bouzek, Heather; Moon, Wonjong; Babak, Tomas; Fried, Michal; Raymond, Christopher K; Duffy, Patrick E

    2011-03-01

    Malaria caused by Plasmodium falciparum results in approximately 1 million annual deaths worldwide, with young children and pregnant mothers at highest risk. Disease severity might be related to parasite virulence factors, but expression profiling studies of parasites to test this hypothesis have been hindered by extensive sequence variation in putative virulence genes and a preponderance of host RNA in clinical samples. We report here the application of RNA sequencing to clinical isolates of P. falciparum, using not-so-random (NSR) primers to successfully exclude human ribosomal RNA and globin transcripts and enrich for parasite transcripts. Using NSR-seq, we confirmed earlier microarray studies showing upregulation of a distinct subset of genes in parasites infecting pregnant women, including that encoding the well-established pregnancy malaria vaccine candidate var2csa. We also describe a subset of parasite transcripts that distinguished parasites infecting children from those infecting pregnant women and confirmed this observation using quantitative real-time PCR and mass spectrometry proteomic analyses. Based on their putative functional properties, we propose that these proteins could have a role in childhood malaria pathogenesis. Our study provides proof of principle that NSR-seq represents an approach that can be used to study clinical isolates of parasites causing severe malaria syndromes as well other blood-borne pathogens and blood-related diseases.

  18. NSR-seq transcriptional profiling enables identification of a gene signature of Plasmodium falciparum parasites infecting children

    PubMed Central

    Vignali, Marissa; Armour, Christopher D.; Chen, Jingyang; Morrison, Robert; Castle, John C.; Biery, Matthew C.; Bouzek, Heather; Moon, Wonjong; Babak, Tomas; Fried, Michal; Raymond, Christopher K.; Duffy, Patrick E.

    2011-01-01

    Malaria caused by Plasmodium falciparum results in approximately 1 million annual deaths worldwide, with young children and pregnant mothers at highest risk. Disease severity might be related to parasite virulence factors, but expression profiling studies of parasites to test this hypothesis have been hindered by extensive sequence variation in putative virulence genes and a preponderance of host RNA in clinical samples. We report here the application of RNA sequencing to clinical isolates of P. falciparum, using not-so-random (NSR) primers to successfully exclude human ribosomal RNA and globin transcripts and enrich for parasite transcripts. Using NSR-seq, we confirmed earlier microarray studies showing upregulation of a distinct subset of genes in parasites infecting pregnant women, including that encoding the well-established pregnancy malaria vaccine candidate var2csa. We also describe a subset of parasite transcripts that distinguished parasites infecting children from those infecting pregnant women and confirmed this observation using quantitative real-time PCR and mass spectrometry proteomic analyses. Based on their putative functional properties, we propose that these proteins could have a role in childhood malaria pathogenesis. Our study provides proof of principle that NSR-seq represents an approach that can be used to study clinical isolates of parasites causing severe malaria syndromes as well other blood-borne pathogens and blood-related diseases. PMID:21317536

  19. Saccharomyces cerevisiae variety diastaticus friend or foe?-spoilage potential and brewing ability of different Saccharomyces cerevisiae variety diastaticus yeast isolates by genetic, phenotypic and physiological characterization.

    PubMed

    Meier-Dörnberg, Tim; Kory, Oliver Ingo; Jacob, Fritz; Michel, Maximilian; Hutzler, Mathias

    2018-06-01

    Saccharomyces cerevisiae variety diastaticus is generally considered to be an obligatory spoilage microorganism and spoilage yeast in beer and beer-mixed beverages. Their super-attenuating ability causes increased carbon dioxide concentrations, beer gushing and potential bottle explosion along with changes in flavor, sedimentation and increased turbidity. This research shows clear differences in the super-attenuating properties of S. cerevisiae var. diastaticus yeast strains and their potential for industrial brewing applications. Nineteen unknown spoilage yeast cultures were obtained as isolates and characterized using a broad spectrum of genetic and phenotypic methods. Results indicated that all isolates represent genetically different S. cerevisiae var. diastaticus strains except for strain TUM PI BA 124. Yeast strains were screened for their super-attenuating ability and sporulation. Even if the STA1 gene responsible for super-attenuation by encoding for the enzyme glucoamylase could be verified by real-time polymerase chain reaction, no correlation to the spoilage potential could be demonstrated. Seven strains were further characterized focusing on brewing and sensory properties according to the yeast characterization platform developed by Meier-Dörnberg. Yeast strain TUM 3-H-2 cannot metabolize dextrin and soluble starch and showed no spoilage potential or super-attenuating ability even when the strain belongs to the species S. cerevisiae var. diastaticus. Overall, the beer produced with S. cerevisiae var. diastaticus has a dry and winey body with noticeable phenolic off-flavors desirable in German wheat beers.

  20. Frequency and clinical and molecular aspects of familial hypercholesterolemia in an endocrinology unit in Ciudad Bolívar, Venezuela.

    PubMed

    Lima-Martínez, Marcos M; Paoli, Mariela; Vázquez-Cárdenas, Alejandra; Magaña-Torres, María Teresa; Guevara, Ornella; Muñoz, María Carolina; Parrilla-Alvarez, Alberto; Márquez, Yuliangelys; Medeiros, Ana; Bourbon, Mafalda

    2017-10-01

    To assess the frequency and the clinical, biochemical, and molecular aspects of familial hypercholesterolemia (FH) in subjects attending an endocrinology unit. An observational, descriptive study evaluating 3,140 subjects attending the endocrinology unit of Centro Médico Orinoco in Ciudad Bolívar, Venezuela, from 7 January 2013 to 9 December 2016. The index cases were selected using the Dutch Lipid Clinic Network criteria. Plasma lipid levels were measured, and a molecular analysis was performed by DNA sequencing of the LDLR and APOB genes. Ten (0.32%) of the 3,140 study patients had clinical and biochemical characteristics consistent with FH. All but one were female. Three had first-degree relatives with prior premature coronary artery; and none had a personal history of this condition. Three patients were obese; three had high blood pressure; and no one suffered from diabetes. Three patients had a history of tendon xanthomas, and one of corneal arcus. LDL-C levels ranged from 191 to 486mg/dL. Two patients were on statin therapy. The genetic causes of FH were identified in four patients, and were LDLR gene mutations in three of them and an APOB gene mutation in exon 26 in the other. Approximately, one out of every 300 people attending this endocrinology unit in those four years had FH, and LDLR gene mutations were the most prevalent cause. Copyright © 2017 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Genetic mapping and identification of QTL for earliness in the globe artichoke/cultivated cardoon complex

    PubMed Central

    2012-01-01

    Background The Asteraceae species Cynara cardunculus (2n = 2x = 34) includes the two fully cross-compatible domesticated taxa globe artichoke (var. scolymus L.) and cultivated cardoon (var. altilis DC). As both are out-pollinators and suffer from marked inbreeding depression, linkage analysis has focussed on the use of a two way pseudo-test cross approach. Results A set of 172 microsatellite (SSR) loci derived from expressed sequence tag DNA sequence were integrated into the reference C. cardunculus genetic maps, based on segregation among the F1 progeny of a cross between a globe artichoke and a cultivated cardoon. The resulting maps each detected 17 major linkage groups, corresponding to the species’ haploid chromosome number. A consensus map based on 66 co-dominant shared loci (64 SSRs and two SNPs) assembled 694 loci, with a mean inter-marker spacing of 2.5 cM. When the maps were used to elucidate the pattern of inheritance of head production earliness, a key commercial trait, seven regions were shown to harbour relevant quantitative trait loci (QTL). Together, these QTL accounted for up to 74% of the overall phenotypic variance. Conclusion The newly developed consensus as well as the parental genetic maps can accelerate the process of tagging and eventually isolating the genes underlying earliness in both the domesticated C. cardunculus forms. The largest single effect mapped to the same linkage group in each parental maps, and explained about one half of the phenotypic variance, thus representing a good candidate for marker assisted selection. PMID:22621324

  2. High Levels of Antibodies to Multiple Domains and Strains of VAR2CSA Correlate with the Absence of Placental Malaria in Cameroonian Women Living in an Area of High Plasmodium falciparum Transmission

    PubMed Central

    Tutterrow, Yeung L.; Avril, Marion; Singh, Kavita; Long, Carole A.; Leke, Robert J.; Sama, Grace; Salanti, Ali; Smith, Joseph D.; Leke, Rose G. F.

    2012-01-01

    Placental malaria, caused by sequestration of Plasmodium falciparum-infected erythrocytes in the placenta, is associated with increased risk of maternal morbidity and poor birth outcomes. The parasite antigen VAR2CSA (variant surface antigen 2-chondroitin sulfate A) is expressed on infected erythrocytes and mediates binding to chondroitin sulfate A, initiating inflammation and disrupting homeostasis at the maternal-fetal interface. Although antibodies can prevent sequestration, it is unclear whether parasite clearance is due to antibodies to a single Duffy binding-like (DBL) domain or to an extensive repertoire of antibodies to multiple DBL domains and allelic variants. Accordingly, plasma samples collected longitudinally from pregnant women were screened for naturally acquired antibodies against an extensive panel of VAR2CSA proteins, including 2 to 3 allelic variants for each of 5 different DBL domains. Analyses were performed on plasma samples collected from 3 to 9 months of pregnancy from women living in areas in Cameroon with high and low malaria transmission. The results demonstrate that high antibody levels to multiple VAR2CSA domains, rather than a single domain, were associated with the absence of placental malaria when antibodies were present from early in the second trimester until term. Absence of placental malaria was associated with increasing antibody breadth to different DBL domains and allelic variants in multigravid women. Furthermore, the antibody responses of women in the lower-transmission site had both lower magnitude and lesser breadth than those in the high-transmission site. These data suggest that immunity to placental malaria results from high antibody levels to multiple VAR2CSA domains and allelic variants and that antibody breadth is influenced by malaria transmission intensity. PMID:22331427

  3. Hepatoprotective effects of Auricularia cornea var. Li. polysaccharides against the alcoholic liver diseases through different metabolic pathways.

    PubMed

    Wang, Xiuxiu; Lan, Yufei; Zhu, Yongfa; Li, Shangshang; Liu, Min; Song, Xinling; Zhao, Huajie; Liu, Weiru; Zhang, Jianjun; Wang, Shouxian; Jia, Le

    2018-05-15

    The present work was designed to evaluate the antioxidation and hepatoprotective effects of Auricularia cornea var. Li. polysaccharides (APS) and enzymatic-extractable APS (EAPS) on the acute alcohol-induced alcoholic liver diseases (ALD). The in vitro antioxidant activities demonstrated that both APS and EAPS had strong reducing power and potential effects on scavenging reactive oxygen species. The in vivo mice experiments showed that the pretreatment with APS or EAPS showed potential hepatoprotective effects on the ALD possibly by increasing the antioxidant activities, reducing the lipid peroxidation, improving the alcohol metabolism, inhibiting the expression levels of inflammatory mediators and preventing the alcohol-induced histopathological alterations. In addition, the fourier-transform infrared (FT-IR), 1 H and 13 C nuclear magnetic resonance spectroscopy (NMR) and gas chromatography (GC) had been analyzed to obtained the primarily characteristics. The results indicated that abundant xylose and glucose contents probably had potential effects on possessing the bioactivities. The findings suggested that the A. cornea var. Li. might be considered as promising natural resource on exploring clinical drugs for the prevention and treatment with ALD and its complications.

  4. Cucumis melo ssp. Agrestis var. Agrestis Ameliorates High Fat Diet Induced Dyslipidemia in Syrian Golden Hamsters and Inhibits Adipogenesis in 3T3-L1 Adipocytes.

    PubMed

    Shankar, Kripa; Singh, Sumit K; Kumar, Durgesh; Varshney, Salil; Gupta, Abhishek; Rajan, Sujith; Srivastava, Ankita; Beg, Muheeb; Srivastava, Anurag Kumar; Kanojiya, Sanjeev; Mishra, Dipak K; Gaikwad, Anil N

    2015-10-01

    Cucumis melo ssp. agrestis var. agrestis (CMA) is a wild variety of C. melo. This study aimed to explore anti-dyslipidemic and anti-adipogenic potential of CMA. For initial anti-dyslipidemic and antihyperglycemic potential of CMA fruit extract (CMFE), male Syrian golden hamsters were fed a chow or high-fat diet with or without CMFE (100 mg/kg). Further, we did fractionation of this CMFE into two fractions namely; CMA water fraction (CMWF) and CMA hexane fraction (CMHF). Phytochemical screening was done with liquid chromatography-mass spectrometry LC- (MS)/MS and direct analysis in real time-MS to detect active compounds in the fractions. Further, high-fat diet fed dyslipidemic hamsters were treated with CMWF and CMHF at 50 mg/kg for 7 days. Oral administration of CMFE and both fractions (CMWF and CMHF) reduced the total cholesterol, triglycerides, low-density lipoprotein cholesterol, and very low-density lipoprotein-cholesterol levels in high fat diet-fed dyslipidemic hamsters. CMHF also modulated expression of genes involved in lipogenesis, lipid metabolism, and reverse cholesterol transport. Standard biochemical diagnostic tests suggested that neither of fractions causes any toxicity to hamster liver or kidneys. CMFE and CMHF also decreased oil-red-O accumulation in 3T3-L1 adipocytes. Based on these results, it is concluded that CMA possesses anti-dyslipidemic and anti-hyperglycemic activity along with the anti-adipogenic activity. The oral administration of Cucumis melo agrestis fruit extract (CMFE) and its fractions (CMWF and CMHF) improved serum lipid profile in HFD fed dyslipidemic hamsters.CMFE, CMWF and CMHF significantly attenuated body weight gain and eWAT hypertrophy.The CMHF decreased lipogenesis in both liver and adipose tissue.CMFE and CMHF also inhibited adipogenesis in 3T3-L1 adipocytes. Abbreviation used: CMA: Cucumis melo ssp. agrestis var. agrestis, CMFE: CMA fruit extract, CMWF: CMA water fraction, CMHF: CMA hexane fraction, FAS: Fatty acid synthase, SREBP1c: Sterol regulatory element binding protein 1c, ACC: Acetyl CoA carboxylase, LXR α: Liver X receptor α.

  5. Cucumis melo ssp. Agrestis var. Agrestis Ameliorates High Fat Diet Induced Dyslipidemia in Syrian Golden Hamsters and Inhibits Adipogenesis in 3T3-L1 Adipocytes

    PubMed Central

    Shankar, Kripa; Singh, Sumit K.; Kumar, Durgesh; Varshney, Salil; Gupta, Abhishek; Rajan, Sujith; Srivastava, Ankita; Beg, Muheeb; Srivastava, Anurag Kumar; Kanojiya, Sanjeev; Mishra, Dipak K.; Gaikwad, Anil N.

    2015-01-01

    Background: Cucumis melo ssp. agrestis var. agrestis (CMA) is a wild variety of C. melo. This study aimed to explore anti-dyslipidemic and anti-adipogenic potential of CMA. Materials and Methods: For initial anti-dyslipidemic and antihyperglycemic potential of CMA fruit extract (CMFE), male Syrian golden hamsters were fed a chow or high-fat diet with or without CMFE (100 mg/kg). Further, we did fractionation of this CMFE into two fractions namely; CMA water fraction (CMWF) and CMA hexane fraction (CMHF). Phytochemical screening was done with liquid chromatography-mass spectrometry LC- (MS)/MS and direct analysis in real time-MS to detect active compounds in the fractions. Further, high-fat diet fed dyslipidemic hamsters were treated with CMWF and CMHF at 50 mg/kg for 7 days. Results: Oral administration of CMFE and both fractions (CMWF and CMHF) reduced the total cholesterol, triglycerides, low‐density lipoprotein cholesterol, and very low‐density lipoprotein-cholesterol levels in high fat diet-fed dyslipidemic hamsters. CMHF also modulated expression of genes involved in lipogenesis, lipid metabolism, and reverse cholesterol transport. Standard biochemical diagnostic tests suggested that neither of fractions causes any toxicity to hamster liver or kidneys. CMFE and CMHF also decreased oil-red-O accumulation in 3T3-L1 adipocytes. Conclusion: Based on these results, it is concluded that CMA possesses anti-dyslipidemic and anti-hyperglycemic activity along with the anti-adipogenic activity. SUMMARY The oral administration of Cucumis melo agrestis fruit extract (CMFE) and its fractions (CMWF and CMHF) improved serum lipid profile in HFD fed dyslipidemic hamsters.CMFE, CMWF and CMHF significantly attenuated body weight gain and eWAT hypertrophy.The CMHF decreased lipogenesis in both liver and adipose tissue.CMFE and CMHF also inhibited adipogenesis in 3T3-L1 adipocytes. Abbreviation used: CMA: Cucumis melo ssp. agrestis var. agrestis, CMFE: CMA fruit extract, CMWF: CMA water fraction, CMHF: CMA hexane fraction, FAS: Fatty acid synthase, SREBP1c: Sterol regulatory element binding protein 1c, ACC: Acetyl CoA carboxylase, LXR α: Liver X receptor α. PMID:27013786

  6. Mapping of Ppd-B1, a Major Candidate Gene for Late Heading on Wild Emmer Chromosome Arm 2BS and Assessment of Its Interactions with Early Heading QTLs on 3AL.

    PubMed

    Zhou, Wei; Wu, Shasha; Ding, Mingquan; Li, Jingjuan; Shi, Zhaobin; Wei, Wei; Guo, Jialian; Zhang, Hua; Jiang, Yurong; Rong, Junkang

    2016-01-01

    Wheat heading date is an important agronomic trait determining maturation time and yield. A set of common wheat (Triticum aestivum var. Chinese Spring; CS)-wild emmer (T. turgidum L. subsp. dicoccoides (TDIC)) chromosome arm substitution lines (CASLs) was used to identify and allocate QTLs conferring late or early spike emergence by examining heading date. Genetic loci accelerating heading were found on TDIC chromosome arms 3AL and 7BS, while loci delaying heading were located on 4AL and 2BS. To map QTLs conferring late heading on 2BS, F2 populations derived from two cross combinations of CASL2BS × CS and CASL3AL × CASL2BS were developed and each planted at two times, constituting four F2 mapping populations. Heading date varied continuously among individuals of these four populations, suggesting quantitative characteristics. A genetic map of 2BS, consisting of 23 SSR and one single-stranded conformation polymorphism (SSCP) marker(s), was constructed using these F2 populations. This map spanned a genetic length of 53.2 cM with average marker density of 2.3 cM. The photoperiod-sensitivity gene Ppd-B1 was mapped to chromosome arm 2BS as a SSCP molecular marker, and was validated as tightly linked to a major QTL governing late heading of CASL2BS in all mapping populations. A significant dominance by additive effect of Ppd-B1 with the LUX gene located on 3AL was also detected. CS had more copies of Ppd-B1 than CASL2BS, implying that increased copy number could elevate the expression of Ppd-1 in CS, also increasing expression of LUX and FT genes and causing CS to have an earlier heading date than CASL2BS in long days.

  7. Mapping of Ppd-B1, a Major Candidate Gene for Late Heading on Wild Emmer Chromosome Arm 2BS and Assessment of Its Interactions with Early Heading QTLs on 3AL

    PubMed Central

    Ding, Mingquan; Li, Jingjuan; Shi, Zhaobin; Wei, Wei; Guo, Jialian; Zhang, Hua; Jiang, Yurong; Rong, Junkang

    2016-01-01

    Wheat heading date is an important agronomic trait determining maturation time and yield. A set of common wheat (Triticum aestivum var. Chinese Spring; CS)-wild emmer (T. turgidum L. subsp. dicoccoides (TDIC)) chromosome arm substitution lines (CASLs) was used to identify and allocate QTLs conferring late or early spike emergence by examining heading date. Genetic loci accelerating heading were found on TDIC chromosome arms 3AL and 7BS, while loci delaying heading were located on 4AL and 2BS. To map QTLs conferring late heading on 2BS, F2 populations derived from two cross combinations of CASL2BS × CS and CASL3AL × CASL2BS were developed and each planted at two times, constituting four F2 mapping populations. Heading date varied continuously among individuals of these four populations, suggesting quantitative characteristics. A genetic map of 2BS, consisting of 23 SSR and one single-stranded conformation polymorphism (SSCP) marker(s), was constructed using these F2 populations. This map spanned a genetic length of 53.2 cM with average marker density of 2.3 cM. The photoperiod-sensitivity gene Ppd-B1 was mapped to chromosome arm 2BS as a SSCP molecular marker, and was validated as tightly linked to a major QTL governing late heading of CASL2BS in all mapping populations. A significant dominance by additive effect of Ppd-B1 with the LUX gene located on 3AL was also detected. CS had more copies of Ppd-B1 than CASL2BS, implying that increased copy number could elevate the expression of Ppd-1 in CS, also increasing expression of LUX and FT genes and causing CS to have an earlier heading date than CASL2BS in long days. PMID:26848576

  8. Ceratocystis fagacearum in Living and Dead Texas Live Oaks

    Treesearch

    R. Lewis

    1987-01-01

    Ceratocystis fagacearum colonized Texas live oaks (Quercus virginiana var. fusiformis) to a depth of 10 annual increments in sapwood, either before or shortly after initial symptom expression. The fungus survived in dead wood up to 12 months after oak wilt caused crown mortality. Both moist wood at the root...

  9. Diaphorodoris alba Portmann & Sandmeier, 1960 is a valid species: molecular and morphological comparison with D. luteocincta (M. Sars, 1870) (Gastropoda: Nudibranchia).

    PubMed

    Furfaro, Giulia; Picton, Bernard; Martynov, Alexander; Mariottini, Paolo

    2016-11-15

    The nudibranch Diaphorodoris luteocincta (M. Sars, 1870) shows two colour morphotypes defined as D. luteocincta var. alba and D. luteocincta var. reticulata, which are easy to identify and which share an overlapping distribution in the Mediterranean Sea and the North-Eastern Atlantic Ocean. Their systematics has long been discussed by several authors until recently when a molecular study proposed the two varieties as intraspecific colour variability occurring within D. luteocincta species. In order to solve their ranking status, we have carried out a morphological study on anatomical characters and molecular analyses on the mitochondrial markers (COI and 16S rDNA) and the nuclear H3 gene. Results proved the usefulness of the integrative taxonomy approach in assessing species delimitation; in fact Diaphorodoris alba stat. nov. and D. luteocincta were revealed to be two different species. D. luteocincta var. reticulata is confirmed as synonym of D. luteocincta s.str. A hypothesis on phylogenetic relationship among most of the currently recognised species of the genus Diaphorodoris Iredale & O'Donoghue, 1923 is also here presented.

  10. Two Lactarius species associated with a relict Fagus grandifolia var. mexicana population in a Mexican montane cloud forest.

    PubMed

    Montoya, L; Haug, I; Bandala, V M

    2010-01-01

    Ectomycorrhizal (EM) fleshy fungi are being monitored in a population of Fagus grandifolia var. mexicana persisting in a montane cloud forest refuge on a volcano in a subtropical region of central Veracruz (eastern Mexico). The population of Fagus studied represents one of the 10 recognized forest fragments still housing this tree genus in Mexico. This is the first attempt to document EM fungi associated with this tree species in Mexico. We present evidence of the ectomycorrhizal symbiosis for Lactarius badiopallescens and L. cinereus with this endemic tree. Species identification of Lactarius on Fagus grandifolia var. mexicana was based on the comparison of DNAsequences (ITS rDNA) of spatiotemporally co-occurring basidiomes and EM root tips. The host of the EM tips was identified by comparison of the large subunit of the ribulose-bisphosphate carboxylase gene (rbcL). The occurrence of Lactarius badiopallescens and L. cinereus populations in the area of study represent the southernmost record known to date of these two species in North America and are new for the Neotropical Lactarius mycota. Descriptions coupled with illustrations of macro- and micromorphological features of basidiomes as well as photographs of ectomycorrhizas are presented.

  11. Whole Genome Analysis of Leptospira licerasiae Provides Insight into Leptospiral Evolution and Pathogenicity

    PubMed Central

    Selengut, Jeremy D.; Harkins, Derek M.; Patra, Kailash P.; Moreno, Angelo; Lehmann, Jason S.; Purushe, Janaki; Sanka, Ravi; Torres, Michael; Webster, Nicholas J.; Vinetz, Joseph M.; Matthias, Michael A.

    2012-01-01

    The whole genome analysis of two strains of the first intermediately pathogenic leptospiral species to be sequenced (Leptospira licerasiae strains VAR010 and MMD0835) provides insight into their pathogenic potential and deepens our understanding of leptospiral evolution. Comparative analysis of eight leptospiral genomes shows the existence of a core leptospiral genome comprising 1547 genes and 452 conserved genes restricted to infectious species (including L. licerasiae) that are likely to be pathogenicity-related. Comparisons of the functional content of the genomes suggests that L. licerasiae retains several proteins related to nitrogen, amino acid and carbohydrate metabolism which might help to explain why these Leptospira grow well in artificial media compared with pathogenic species. L. licerasiae strains VAR010T and MMD0835 possess two prophage elements. While one element is circular and shares homology with LE1 of L. biflexa, the second is cryptic and homologous to a previously identified but unnamed region in L. interrogans serovars Copenhageni and Lai. We also report a unique O-antigen locus in L. licerasiae comprised of a 6-gene cluster that is unexpectedly short compared with L. interrogans in which analogous regions may include >90 such genes. Sequence homology searches suggest that these genes were acquired by lateral gene transfer (LGT). Furthermore, seven putative genomic islands ranging in size from 5 to 36 kb are present also suggestive of antecedent LGT. How Leptospira become naturally competent remains to be determined, but considering the phylogenetic origins of the genes comprising the O-antigen cluster and other putative laterally transferred genes, L. licerasiae must be able to exchange genetic material with non-invasive environmental bacteria. The data presented here demonstrate that L. licerasiae is genetically more closely related to pathogenic than to saprophytic Leptospira and provide insight into the genomic bases for its infectiousness and its unique antigenic characteristics. PMID:23145189

  12. Molecular characterization of five steroid receptors from pengze crucian carp and their expression profiles of juveniles in response to 17α-ethinylestradiol and 17α-methyltestosterone.

    PubMed

    Zheng, Yao; Wang, Lihong; Li, Meng; Liang, Hongwei; Qin, Fang; Liu, Shaozhen; Wang, Houpeng; Wu, Tingting; Zhang, Yingying; Wang, Zaizhao

    2013-09-15

    Pengze crucian carp (Carassius auratus var. pengze, Pcc), a triploid gynogenetic fish, was used in this study to investigate the cross-talk between EDCs and steroid receptors. The full-length cDNAs of five steroid receptors (esr1, er alpha2, esr2a, esr2b, ar) and partial cDNA of vtg B were isolated. The tissue distributions of these genes were analyzed in adult fish by qRT-PCR. Then the expression profiles of five steroid receptors (esrs and ar) and vtg B were detected in the juveniles exposed to 17α-ethinylestradiol (EE2, 0.1, 1 and 10ng/L) and 17α-methyltestosterone (MT, 50μg/L) for 4weeks. The results demonstrated that esrs, ar, and vtg B were predominantly expressed in liver of adult fish. However, among these detected genes, esr1 and er alpha2 mRNAs are sensitive biomarkers in response to EE2 at 0.1, 1, and 10ng/L for 1 and 2weeks compared to esr2a, esr2b, ar, and vtg B in the juveniles of mono-female gynogenetic fish. Totally, the subtypes of esrs show biphasic responses to EE2 exposures for 4weeks, and most of the EE2 exposures at 0.1, 1, and 10ng/L for 1, 2, 3 and 4weeks did not induce the mRNA expressions of vtg B. However, 1-, 2-, and 4-week 50μg/L MT all significantly stimulated vtg B transcripts. Further investigations are needed to elucidate the mechanism underlying the insensitivity or down-regulation of vtg B mRNA in response to EE2 in juvenile Pcc. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. GmPGIP3 enhanced resistance to both take-all and common root rot diseases in transgenic wheat.

    PubMed

    Wang, Aiyun; Wei, Xuening; Rong, Wei; Dang, Liang; Du, Li-Pu; Qi, Lin; Xu, Hui-Jun; Shao, Yanjun; Zhang, Zengyan

    2015-05-01

    Take-all (caused by the fungal pathogen Gaeumannomyces graminis var. tritici, Ggt) and common root rot (caused by Bipolaris sorokiniana) are devastating root diseases of wheat (Triticum aestivum L.). Development of resistant wheat cultivars has been a challenge since no resistant wheat accession is available. GmPGIP3, one member of polygalacturonase-inhibiting protein (PGIP) family in soybean (Glycine max), exhibited inhibition activity against fungal endopolygalacturonases (PGs) in vitro. In this study, the GmPGIP3 transgenic wheat plants were generated and used to assess the effectiveness of GmPGIP3 in protecting wheat from the infection of Ggt and B. sorokiniana. Four independent transgenic lines were identified by genomic PCR, Southern blot, and reverse transcription PCR (RT-PCR). The introduced GmPGIP3 was integrated into the genomes of these transgenic lines and could be expressed. The expressing GmPGIP3 protein in these transgenic wheat lines could inhibit the PGs produced by Ggt and B. sorokiniana. The disease response assessments postinoculation showed that the GmPGIP3-expressing transgenic wheat lines displayed significantly enhanced resistance to both take-all and common root rot diseases caused by the infection of Ggt and B. sorokiniana. These data suggested that GmPGIP3 is an attractive gene resource in improving resistance to both take-all and common root rot diseases in wheat.

  14. Accumulation of cynaropicrin in globe artichoke and localization of enzymes involved in its biosynthesis.

    PubMed

    Eljounaidi, K; Comino, C; Moglia, A; Cankar, K; Genre, A; Hehn, A; Bourgaud, F; Beekwilder, J; Lanteri, S

    2015-10-01

    Globe artichoke (Cynara cardunculus var. scolymus) belongs to the Asteraceae family, in which one of the most biologically significant class of secondary metabolites are sesquiterpene lactones (STLs). In globe artichoke the principal STL is the cynaropicrin, which contributes to approximately 80% of its characteristic bitter taste. Cynaropicrin content was assessed in globe artichoke tissues and was observed to accumulate in leaves of different developmental stages. In the receptacle, a progressive decrease was observed during inflorescence development, while the STL could not be detected in the inflorescence bracts. Almost undetectable amounts were found in the roots and inflorescence stems at the commercial stage. Cynaropicrin content was found to correlate with expression of genes encoding CcGAS, CcGAO and CcCOS, which are involved in the STL biosynthesis. A more detailed study of leaf material revealed that cynaropicrin predominantly accumulates in the trichomes, and not in the apoplastic cavity fluids. Analysis of the promoter regions of CcGAO and CcCOS revealed the presence of L1-box motifs, which confers trichome-specific expression in Arabidopsis, suggesting that cynaropicrin is not only stored but also synthesized in trichomes. A transient expression of GFP fusion proteins was performed in Nicotiana benthamiana plants: the CcGAS fluorescence signal was located in the cytoplasm while the CcGAO and CcCOS localized to the endoplasmatic reticulum. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. The complete chloroplast genome of Aconitum chiisanense Nakai (Ranunculaceae).

    PubMed

    Lim, Chae Eun; Kim, Goon-Bo; Baek, Seunghoon; Han, Su-Min; Yu, Hee-Ju; Mun, Jeong-Hwan

    2017-01-01

    We determined the complete chloroplast DNA sequence of Aconitum chiisanense Nakai, a rare Aconitum species endemic to Korea. The chloroplast genome is 155 934 bp in length and contains 4 rRNA, 30 tRNA, and 78 protein-coding genes. Phylogenetic analysis revealed that the chloroplast genome of A. chiisanense is closely related to that of A. barbatum var. puberulum. Sequence comparison with other Ranunculaceae chloroplasts identified a unique deletion in the rps16 gene of A. chiisanense chloroplast DNA that can serve as a molecular marker for species identification.

  16. Sequence analysis of DBL2β domain of vargene of Indonesian Plasmodium falciparum

    NASA Astrophysics Data System (ADS)

    Sulistyaningsih, E.; Romadhon, B. D.; Palupi, I.; Hidayah, F.; Dewi, R.; Prasetyo, A.

    2018-03-01

    Malaria is a major health problem in tropical countries including Indonesia. The most deadly agent is Plasmodium falciparum. In P. falciparum infection, PfEMP1 is supposed to play an important role in the pathogenesis of malaria. PfEMP1 is encoded by var gene family, it is a polymorphic protein where the extra-cellular portion contains of three distinct binding domains: Duffy binding-like (DBL), Cysteine-rich interdomain regions (CIDR) and C2. PfEMP1 varies in domain composition and binding specificity. The study explored the characteristic of Indonesian DBL2β-var genes and investigated its role to the malaria outcome. Twenty blood samples from clinically mild to severe malaria patients in Jember, East Java were collected for DNA extraction. Diagnosis was confirmed by Giemsa-stained thick blood smear. PCR was conducted using specific primer targeting on the full-length of DBL2ß and resulted approximately single band of 1,7 kb in a sample. This band was observed only from severe malaria sample. Sequence analysis directly from PCR product showed 74-99% similarities with previous sequences in Gene Bank. In conclusion, the DBL2β domain of vargene of Indonesian isolates was 1603 nucleotides in length and there was a possible association of the existence of DBL2β domain with the severity of malaria outcome.

  17. An Evaluation of Voluntary Varicella Vaccination Coverage in Zhejiang Province, East China.

    PubMed

    Hu, Yu; Chen, Yaping; Zhang, Bing; Li, Qian

    2016-06-03

    In 2014 a 2-doses varicella vaccine (VarV) schedule was recommended by the Zhejiang Provincial Center for Disease Control and Prevention. We aimed to assess the coverage of the 1st dose of VarV (VarV₁) and the 2nd dose of VarV (VarV₂) among children aged 2-6 years through the Zhejiang Provincial Immunization Information System (ZJIIS) and to explore the determinants associated with the VarV coverage. Children aged 2-6 years (born from 1 January 2009 to 31 December 2013) registered in ZJIIS were enrolled. Anonymized individual records of target children were extracted from the ZJIIS database on 1 January 2016, including their VarV and (measles-containing vaccine) MCV vaccination information. The VarV₁ and VarV₂ coverage rates were evaluated for each birth cohorts. The coverage of VarV also was estimated among strata defined by cities, gender and immigration status. We also evaluated the difference in coverage between VarV and MCV. A total of 3,028,222 children aged 2-6 years were enrolled. The coverage of VarV₁ ranged from 84.8% to 87.9% in the 2009-2013 birth cohorts, while the coverage of VarV₂ increased from 31.8% for the 2009 birth cohort to 48.7% for the 2011 birth cohort. Higher coverage rates for both VarV₁ and VarV₂ were observed among resident children in relevant birth cohorts. The coverage rates of VarV₁ and VarV₂ were lower than those for the 1st and 2nd dose of MCV, which were above 95%. The proportion of children who were vaccinated with VarV₁ at the recommended age increased from 34.6% for the 2009 birth cohort to 75.2% for the 2013 birth cohort, while the proportion of children who were vaccinated with VarV₂ at the recommended age increased from 19.7% for the 2009 birth cohort to 48.7% for the 2011 birth cohort. Our study showed a rapid increasing VarV₂ coverage of children, indicating a growing acceptance of the 2-doses VarV schedule among children's caregivers and physicians after the new recommendation released. We highlighted the necessity for a 2-doses VarV vaccination school-entry requirement to achieve the high coverage of >90% and to eliminate disparities in coverage among sub-populations. We also recommended continuous monitoring of the VarV coverage via ZJIIS over time.

  18. Amplicon-based semiconductor sequencing of human exomes: performance evaluation and optimization strategies.

    PubMed

    Damiati, E; Borsani, G; Giacopuzzi, Edoardo

    2016-05-01

    The Ion Proton platform allows to perform whole exome sequencing (WES) at low cost, providing rapid turnaround time and great flexibility. Products for WES on Ion Proton system include the AmpliSeq Exome kit and the recently introduced HiQ sequencing chemistry. Here, we used gold standard variants from GIAB consortium to assess the performances in variants identification, characterize the erroneous calls and develop a filtering strategy to reduce false positives. The AmpliSeq Exome kit captures a large fraction of bases (>94 %) in human CDS, ClinVar genes and ACMG genes, but with 2,041 (7 %), 449 (13 %) and 11 (19 %) genes not fully represented, respectively. Overall, 515 protein coding genes contain hard-to-sequence regions, including 90 genes from ClinVar. Performance in variants detection was maximum at mean coverage >120×, while at 90× and 70× we measured a loss of variants of 3.2 and 4.5 %, respectively. WES using HiQ chemistry showed ~71/97.5 % sensitivity, ~37/2 % FDR and ~0.66/0.98 F1 score for indels and SNPs, respectively. The proposed low, medium or high-stringency filters reduced the amount of false positives by 10.2, 21.2 and 40.4 % for indels and 21.2, 41.9 and 68.2 % for SNP, respectively. Amplicon-based WES on Ion Proton platform using HiQ chemistry emerged as a competitive approach, with improved accuracy in variants identification. False-positive variants remain an issue for the Ion Torrent technology, but our filtering strategy can be applied to reduce erroneous variants.

  19. Spatio-temporal genetic variation of the biting midge vector species Culicoides imicola (Ceratopogonidae) Kieffer in France.

    PubMed

    Jacquet, Stéphanie; Huber, Karine; Guis, Hélène; Setier-Rio, Marie-Laure; Goffredo, Maria; Allène, Xavier; Rakotoarivony, Ignace; Chevillon, Christine; Bouyer, Jérémy; Baldet, Thierry; Balenghien, Thomas; Garros, Claire

    2016-03-11

    Introduction of vector species into new areas represents a main driver for the emergence and worldwide spread of vector-borne diseases. This poses a substantial threat to livestock economies and public health. Culicoides imicola Kieffer, a major vector species of economically important animal viruses, is described with an apparent range expansion in Europe where it has been recorded in south-eastern continental France, its known northern distribution edge. This questioned on further C. imicola population extension and establishment into new territories. Studying the spatio-temporal genetic variation of expanding populations can provide valuable information for the design of reliable models of future spread. Entomological surveys and population genetic approaches were used to assess the spatio-temporal population dynamics of C. imicola in France. Entomological surveys (2-3 consecutive years) were used to evaluate population abundances and local spread in continental France (28 sites in the Var department) and in Corsica (4 sites). We also genotyped at nine microsatellite loci insects from 3 locations in the Var department over 3 years (2008, 2010 and 2012) and from 6 locations in Corsica over 4 years (2002, 2008, 2010 and 2012). Entomological surveys confirmed the establishment of C. imicola populations in Var department, but indicated low abundances and no apparent expansion there within the studied period. Higher population abundances were recorded in Corsica. Our genetic data suggested the absence of spatio-temporal genetic changes within each region but a significant increase of the genetic differentiation between Corsican and Var populations through time. The lack of intra-region population structure may result from strong gene flow among populations. We discussed the observed temporal variation between Corsica and Var as being the result of genetic drift following introduction, and/or the genetic characteristics of populations at their range edge. Our results suggest that local range expansion of C. imicola in continental France may be slowed by the low population abundances and unsuitable climatic and environmental conditions.

  20. A model of genetic variation for Pinus ponderosa in the Inland Northwest (U.S.A.): applications in gene resource management

    Treesearch

    Gerald Rehfeldt

    1991-01-01

    Models were developed to describe genetic variation among 201 seedling populations of Pinus ponderosa var. ponderosa in the Inland Northwest of the United States. Common-garden studies provided three variables Jhat reflected growth and development in field environments and three principal components of six variables that reflected patterns of shoot elongation....

  1. Embryonic genetic load in coastal Douglas-fir, Pseudotsuga menziesii var. menziesii.

    Treesearch

    Frank C. Sorensen

    1969-01-01

    Genetic load has been estimated for a number of outcrossing organisms, for example, Drosophila (Malogolowkin-Cohen et al. 1964), Tribolium (Levene et al. 1965), and man (Morton, Crow, and Muller 1956). However, little informaiton about load of deleterious genes in higher plants has been published. The purpose of this article is to provide some data on plants by...

  2. The maize (Zea mays ssp. mays var. B73) genome encodes 33 members of the purple acid phosphatase family

    PubMed Central

    González-Muñoz, Eliécer; Avendaño-Vázquez, Aida-Odette; Montes, Ricardo A. Chávez; de Folter, Stefan; Andrés-Hernández, Liliana; Abreu-Goodger, Cei; Sawers, Ruairidh J. H.

    2015-01-01

    Purple acid phosphatases (PAPs) play an important role in plant phosphorus nutrition, both by liberating phosphorus from organic sources in the soil and by modulating distribution within the plant throughout growth and development. Furthermore, members of the PAP protein family have been implicated in a broader role in plant mineral homeostasis, stress responses and development. We have identified 33 candidate PAP encoding gene models in the maize (Zea mays ssp. mays var. B73) reference genome. The maize Pap family includes a clear single-copy ortholog of the Arabidopsis gene AtPAP26, shown previously to encode both major intracellular and secreted acid phosphatase activities. Certain groups of PAPs present in Arabidopsis, however, are absent in maize, while the maize family contains a number of expansions, including a distinct radiation not present in Arabidopsis. Analysis of RNA-sequencing based transcriptome data revealed accumulation of maize Pap transcripts in multiple plant tissues at multiple stages of development, and increased accumulation of specific transcripts under low phosphorus availability. These data suggest the maize PAP family as a whole to have broad significance throughout the plant life cycle, while highlighting potential functional specialization of individual family members. PMID:26042133

  3. Physiological Characterization and Comparative Transcriptome Analysis of White and Green Leaves of Ananas comosus var. bracteatus

    PubMed Central

    Li, Xia; Kanakala, Surapathrudu; He, Yehua; Zhong, Xiaolan; Yu, Sanmiao; Li, Ruixue; Sun, Lingxia; Ma, Jun

    2017-01-01

    Leaf coloration is one of the most important and attractive characteristics of Ananas comosus var. bracteatus. The chimeric character is not stable during the in vitro tissue culturing. Many regenerated plants lost economic values for the loss of the chimeric character of leaves. In order to reveal the molecular mechanisms involved in the albino phenotype of the leaf cells, the physiological and transcriptional differences between complete white (CWh) and green (CGr) leaf cells of A. comosus var. bracteatus were analyzed. A total of 1,431 differentially expressed unigenes (DEGs) in CGr and CWh leaves were identified using RNA-seq. A comparison to the COG, GO and KEGG annotations revealed DEGs involved in chlorophyll biosynthesis, chloroplast development and photosynthesis. Furthermore, the measurement of main precursors of chlorophyll in the CWh leaves confirmed that the rate-limiting step in chlorophyll biosynthesis, and thus the cause of the albino phenotype of the white cells, was the conversion of pyrrole porphobilinogen (PBG) to uroporphyrinogen III (Uro III). The enzyme activity of porphobilinogen deaminase (PBGD) and uroporporphyrinogn III synthase (UROS), which catalyze the transition of PBG to Uro III, was significantly decreased in the CWh leaves. Our data showed the transcriptional differences between the CWh and CGr plants and characterized key steps in chlorophyll biosynthesis of the CWh leaves. These results contribute to our understanding of the mechanisms and regulation of pigment biosynthesis in the CWh leaf cells of A. comosus var. bracteatus. PMID:28095462

  4. Physiological Characterization and Comparative Transcriptome Analysis of White and Green Leaves of Ananas comosus var. bracteatus.

    PubMed

    Li, Xia; Kanakala, Surapathrudu; He, Yehua; Zhong, Xiaolan; Yu, Sanmiao; Li, Ruixue; Sun, Lingxia; Ma, Jun

    2017-01-01

    Leaf coloration is one of the most important and attractive characteristics of Ananas comosus var. bracteatus. The chimeric character is not stable during the in vitro tissue culturing. Many regenerated plants lost economic values for the loss of the chimeric character of leaves. In order to reveal the molecular mechanisms involved in the albino phenotype of the leaf cells, the physiological and transcriptional differences between complete white (CWh) and green (CGr) leaf cells of A. comosus var. bracteatus were analyzed. A total of 1,431 differentially expressed unigenes (DEGs) in CGr and CWh leaves were identified using RNA-seq. A comparison to the COG, GO and KEGG annotations revealed DEGs involved in chlorophyll biosynthesis, chloroplast development and photosynthesis. Furthermore, the measurement of main precursors of chlorophyll in the CWh leaves confirmed that the rate-limiting step in chlorophyll biosynthesis, and thus the cause of the albino phenotype of the white cells, was the conversion of pyrrole porphobilinogen (PBG) to uroporphyrinogen III (Uro III). The enzyme activity of porphobilinogen deaminase (PBGD) and uroporporphyrinogn III synthase (UROS), which catalyze the transition of PBG to Uro III, was significantly decreased in the CWh leaves. Our data showed the transcriptional differences between the CWh and CGr plants and characterized key steps in chlorophyll biosynthesis of the CWh leaves. These results contribute to our understanding of the mechanisms and regulation of pigment biosynthesis in the CWh leaf cells of A. comosus var. bracteatus.

  5. Constitutive expression of fluorescent protein by Aspergillus var. niger and Aspergillus carbonarius to monitor fungal colonization in maize plants

    USDA-ARS?s Scientific Manuscript database

    Aspergillus niger and A. carbonarius are two species in the Aspergillus section Nigri (black-spored aspergilli) frequently associated with peanut (Arachis hypogea), maize (Zea mays), and other plants as pathogens. These infections are symptomless and as such are major concerns since some black aspe...

  6. Melanocortin receptor 1 and black pigmentation in the Japanese ornamental carp (Cyprinus carpio var. Koi).

    PubMed

    Bar, Ido; Kaddar, Ethan; Velan, Ariel; David, Lior

    2013-01-01

    Colors and their patterns are fascinating phenotypes with great importance for fitness under natural conditions. For this reason and because pigmentation is associated with diseases, much research was devoted to study the genetics of pigmentation in animals. Considerable contribution to our understanding of color phenotypes was made by studies in domesticated animals that exhibit dazzling variation in color traits. Koi strains, the ornamental variants of the common carp, are a striking example for color variability that was selected by man during a very short period on an evolutionary timescale. Among several pigmentation genes, genetic variation in Melanocrtin receptor 1 was repeatedly associated with dark pigmentation phenotypes in numerous animals. In this study, we cloned Melanocrtin receptor 1 from the common carp. We found that alleles of the gene were not associated with the development of black color in Koi. However, the mRNA expression levels of the gene were higher during dark pigmentation development in larvae and in dark pigmented tissues of adult fish, suggesting that variation in the regulation of the gene is associated with black color in Koi. These regulatory differences are reflected in both the timing of the dark-pigmentation development and the different mode of inheritance of the two black patterns associated with them. Identifying the genetic basis of color and color patterns in Koi will promote the production of this valuable ornamental fish. Furthermore, given the rich variety of colors and patterns, Koi serves as a good model to unravel pigmentation genes and their phenotypic effects and by that to improve our understanding of the genetic basis of colors also in natural populations.

  7. MARRVEL: Integration of Human and Model Organism Genetic Resources to Facilitate Functional Annotation of the Human Genome.

    PubMed

    Wang, Julia; Al-Ouran, Rami; Hu, Yanhui; Kim, Seon-Young; Wan, Ying-Wooi; Wangler, Michael F; Yamamoto, Shinya; Chao, Hsiao-Tuan; Comjean, Aram; Mohr, Stephanie E; Perrimon, Norbert; Liu, Zhandong; Bellen, Hugo J

    2017-06-01

    One major challenge encountered with interpreting human genetic variants is the limited understanding of the functional impact of genetic alterations on biological processes. Furthermore, there remains an unmet demand for an efficient survey of the wealth of information on human homologs in model organisms across numerous databases. To efficiently assess the large volume of publically available information, it is important to provide a concise summary of the most relevant information in a rapid user-friendly format. To this end, we created MARRVEL (model organism aggregated resources for rare variant exploration). MARRVEL is a publicly available website that integrates information from six human genetic databases and seven model organism databases. For any given variant or gene, MARRVEL displays information from OMIM, ExAC, ClinVar, Geno2MP, DGV, and DECIPHER. Importantly, it curates model organism-specific databases to concurrently display a concise summary regarding the human gene homologs in budding and fission yeast, worm, fly, fish, mouse, and rat on a single webpage. Experiment-based information on tissue expression, protein subcellular localization, biological process, and molecular function for the human gene and homologs in the seven model organisms are arranged into a concise output. Hence, rather than visiting multiple separate databases for variant and gene analysis, users can obtain important information by searching once through MARRVEL. Altogether, MARRVEL dramatically improves efficiency and accessibility to data collection and facilitates analysis of human genes and variants by cross-disciplinary integration of 18 million records available in public databases to facilitate clinical diagnosis and basic research. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  8. Melanocortin receptor 1 and black pigmentation in the Japanese ornamental carp (Cyprinus carpio var. Koi)

    PubMed Central

    Bar, Ido; Kaddar, Ethan; Velan, Ariel; David, Lior

    2013-01-01

    Colors and their patterns are fascinating phenotypes with great importance for fitness under natural conditions. For this reason and because pigmentation is associated with diseases, much research was devoted to study the genetics of pigmentation in animals. Considerable contribution to our understanding of color phenotypes was made by studies in domesticated animals that exhibit dazzling variation in color traits. Koi strains, the ornamental variants of the common carp, are a striking example for color variability that was selected by man during a very short period on an evolutionary timescale. Among several pigmentation genes, genetic variation in Melanocrtin receptor 1 was repeatedly associated with dark pigmentation phenotypes in numerous animals. In this study, we cloned Melanocrtin receptor 1 from the common carp. We found that alleles of the gene were not associated with the development of black color in Koi. However, the mRNA expression levels of the gene were higher during dark pigmentation development in larvae and in dark pigmented tissues of adult fish, suggesting that variation in the regulation of the gene is associated with black color in Koi. These regulatory differences are reflected in both the timing of the dark-pigmentation development and the different mode of inheritance of the two black patterns associated with them. Identifying the genetic basis of color and color patterns in Koi will promote the production of this valuable ornamental fish. Furthermore, given the rich variety of colors and patterns, Koi serves as a good model to unravel pigmentation genes and their phenotypic effects and by that to improve our understanding of the genetic basis of colors also in natural populations. PMID:23355846

  9. Cytotaxonomic study of the Chilean endemic complex Alstroemeria magnifica Herb. (Alstroemeriaceae).

    PubMed

    Baeza, Carlos M; Finot, Víctor; Ruiz, Eduardo; Carrasco, Pedro; Novoa, Patricio; Rosas, Marcelo; Toro-Núñez, Oscar

    2018-05-14

    Alstroemeria L. (Alstroemeriaceae) represents one of the most diverse genera of vascular plants in Chile. It contains approximately 54 taxa, 40 of which are endemic. The "complex" Alstroemeria magnifica is endemic to Chile, and it comprises four varieties: A. magnifica var. magenta, A. magnifica var. magnifica, A. magnifica var. sierrae, and A. magnifica var. tofoensis. It is distributed from Coquimbo to the Valparaíso Region. We analyzed karyotypes of 10 populations along its natural distribution. All the populations presented an asymmetric karyotype, with 2n = 16 chromosomes but with three different karyotypic formulae. Alstroemeria magnifica var. magnifica and A. magnifica var. sierrae presented the same karyotypic fomula, and A. magnifica var. magenta, and A. magnifica var. tofoensis each had a different formula. The scatter plot among CVCL vs. MCA shows different groupings between populations of the four varieties. Based on the results, it is possible to consider raising Alstroemeria magnifica var. magenta to species level (A. magenta) and A. magnifica var. tofoensis to subspecies level (A. magnifica subsp. tofoensis); A. magnifica var. magnifica and A. magnifica var. sierrae should each remain as varieties. Nevertheless, these taxonomic changes should be considered tentative, as additional sources of evidence become available.

  10. Soyabean glycinin depresses intestinal growth and function in juvenile Jian carp (Cyprinus carpio var Jian): protective effects of glutamine.

    PubMed

    Jiang, Wei-Dan; Hu, Kai; Zhang, Jin-Xiu; Liu, Yang; Jiang, Jun; Wu, Pei; Zhao, Juan; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu; Feng, Lin

    2015-11-28

    This study investigated the effects of glycinin on the growth, intestinal oxidative status, tight junction components, cytokines and apoptosis signalling factors of fish. The results showed that an 80 g/kg diet of glycinin exposure for 42 d caused poor growth performance and depressed intestinal growth and function of juvenile Jian carp (Cyprinus carpio var. Jian). Meanwhile, dietary glycinin exposure induced increases in lipid peroxidation and protein oxidation; it caused reductions in superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) activities; and it increased MnSOD, CuZnSOD, GPx1b and GPx4a mRNA levels, suggesting an adaptive mechanism against stress in the intestines of fish. However, dietary glycinin exposure decreased both the activity and mRNA levels of nine isoforms of glutathione-S-transferase (GST) (α, μ, π, ρ, θ, κ, mGST1, mGST2 and mGST3), indicating toxicity to this enzyme activity and corresponding isoform gene expressions. In addition, glycinin exposure caused partial disruption of intestinal cell-cell tight junction components, disturbances of cytokines and induced apoptosis signalling in the distal intestines>mid intestines>proximal intestines of fish. Glycinin exposure also disturbed the mRNA levels of intestinal-related signalling factors Nrf2, Keap1a, Keap1b, eleven isoforms of protein kinase C and target of rapamycin/4E-BP. Interestingly, glutamine was observed to partially block those negative influences. In conclusion, this study indicates that dietary glycinin exposure causes intestinal oxidative damage and disruption of intestinal physical barriers and functions and reduces fish growth, but glutamine can reverse those negative effects in fish. This study provides some information on the mechanism of glycinin-induced negative effects.

  11. De novo assembly, characterization and functional annotation of pineapple fruit transcriptome through massively parallel sequencing.

    PubMed

    Ong, Wen Dee; Voo, Lok-Yung Christopher; Kumar, Vijay Subbiah

    2012-01-01

    Pineapple (Ananas comosus var. comosus), is an important tropical non-climacteric fruit with high commercial potential. Understanding the mechanism and processes underlying fruit ripening would enable scientists to enhance the improvement of quality traits such as, flavor, texture, appearance and fruit sweetness. Although, the pineapple is an important fruit, there is insufficient transcriptomic or genomic information that is available in public databases. Application of high throughput transcriptome sequencing to profile the pineapple fruit transcripts is therefore needed. To facilitate this, we have performed transcriptome sequencing of ripe yellow pineapple fruit flesh using Illumina technology. About 4.7 millions Illumina paired-end reads were generated and assembled using the Velvet de novo assembler. The assembly produced 28,728 unique transcripts with a mean length of approximately 200 bp. Sequence similarity search against non-redundant NCBI database identified a total of 16,932 unique transcripts (58.93%) with significant hits. Out of these, 15,507 unique transcripts were assigned to gene ontology terms. Functional annotation against Kyoto Encyclopedia of Genes and Genomes pathway database identified 13,598 unique transcripts (47.33%) which were mapped to 126 pathways. The assembly revealed many transcripts that were previously unknown. The unique transcripts derived from this work have rapidly increased of the number of the pineapple fruit mRNA transcripts as it is now available in public databases. This information can be further utilized in gene expression, genomics and other functional genomics studies in pineapple.

  12. De Novo Assembly, Characterization and Functional Annotation of Pineapple Fruit Transcriptome through Massively Parallel Sequencing

    PubMed Central

    Ong, Wen Dee; Voo, Lok-Yung Christopher; Kumar, Vijay Subbiah

    2012-01-01

    Background Pineapple (Ananas comosus var. comosus), is an important tropical non-climacteric fruit with high commercial potential. Understanding the mechanism and processes underlying fruit ripening would enable scientists to enhance the improvement of quality traits such as, flavor, texture, appearance and fruit sweetness. Although, the pineapple is an important fruit, there is insufficient transcriptomic or genomic information that is available in public databases. Application of high throughput transcriptome sequencing to profile the pineapple fruit transcripts is therefore needed. Methodology/Principal Findings To facilitate this, we have performed transcriptome sequencing of ripe yellow pineapple fruit flesh using Illumina technology. About 4.7 millions Illumina paired-end reads were generated and assembled using the Velvet de novo assembler. The assembly produced 28,728 unique transcripts with a mean length of approximately 200 bp. Sequence similarity search against non-redundant NCBI database identified a total of 16,932 unique transcripts (58.93%) with significant hits. Out of these, 15,507 unique transcripts were assigned to gene ontology terms. Functional annotation against Kyoto Encyclopedia of Genes and Genomes pathway database identified 13,598 unique transcripts (47.33%) which were mapped to 126 pathways. The assembly revealed many transcripts that were previously unknown. Conclusions The unique transcripts derived from this work have rapidly increased of the number of the pineapple fruit mRNA transcripts as it is now available in public databases. This information can be further utilized in gene expression, genomics and other functional genomics studies in pineapple. PMID:23091603

  13. Surgery

    MedlinePlus

    ... each(function(i){ var city = $(this).find('city').text(); var state = $(this).find('state').text(); var date = $(this).find('date').text(); if ((city != "") && (state != "")){ var citystate = ' | ' + city + ', ' + state; } else ...

  14. Genetics and fine mapping of a purple leaf gene, BoPr, in ornamental kale (Brassica oleracea L. var. acephala).

    PubMed

    Liu, Xiao-Ping; Gao, Bao-Zhen; Han, Feng-Qing; Fang, Zhi-Yuan; Yang, Li-Mei; Zhuang, Mu; Lv, Hong-Hao; Liu, Yu-Mei; Li, Zhan-Sheng; Cai, Cheng-Cheng; Yu, Hai-Long; Li, Zhi-Yuan; Zhang, Yang-Yong

    2017-03-14

    Due to its variegated and colorful leaves, ornamental kale (Brassica oleracea L. var. acephala) has become a popular ornamental plant. In this study, we report the fine mapping and analysis of a candidate purple leaf gene using a backcross population and an F 2 population derived from two parental lines: W1827 (with white leaves) and P1835 (with purple leaves). Genetic analysis indicated that the purple leaf trait is controlled by a single dominant gene, which we named BoPr. Using markers developed based on the reference genome '02-12', the BoPr gene was preliminarily mapped to a 280-kb interval of chromosome C09, with flanking markers M17 and BoID4714 at genetic distances of 4.3 cM and 1.5 cM, respectively. The recombination rate within this interval is almost 12 times higher than the usual level, which could be caused by assembly error for reference genome '02-12' at this interval. Primers were designed based on 'TO1000', another B. oleracea reference genome. Among the newly designed InDel markers, BRID485 and BRID490 were found to be the closest to BoPr, flanking the gene at genetic distances of 0.1 cM and 0.2 cM, respectively; the interval between the two markers is 44.8 kb (reference genome 'TO1000'). Seven annotated genes are located within the 44.8 kb genomic region, of which only Bo9g058630 shows high homology to AT5G42800 (dihydroflavonol reductase), which was identified as a candidate gene for BoPr. Blast analysis revealed that this 44.8 kb interval is located on an unanchored scaffold (Scaffold000035_P2) of '02-12', confirming the existence of assembly error at the interval between M17 and BoID4714 for reference genome '02-12'. This study identified a candidate gene for BoPr and lays a foundation for the cloning and functional analysis of this gene.

  15. Cloning of a phenol oxidase gene from Acremonium murorum and its expression in Aspergillus awamori.

    PubMed

    Gouka, R J; van der Heiden, M; Swarthoff, T; Verrips, C T

    2001-06-01

    Fungal multicopper oxidases have many potential industrial applications, since they perform reactions under mild conditions. We isolated a phenol oxidase from the fungus Acremonium murorum var. murorum that was capable of decolorizing plant chromophores (such as anthocyanins). This enzyme is of interest in laundry-cleaning products because of its broad specificity for chromophores. We expressed an A. murorum cDNA library in Saccharomyces cerevisiae and subsequently identified enzyme-producing yeast colonies based on their ability to decolor a plant chromophore. The cDNA sequence contained an open reading frame of 1,806 bp encoding an enzyme of 602 amino acids. The phenol oxidase was overproduced by Aspergillus awamori as a fusion protein with glucoamylase, cleaved in vivo, and purified from the culture broth by hydrophobic-interaction chromatography. The phenol oxidase is active at alkaline pH (the optimum for syringaldazine is pH 9) and high temperature (optimum, 60 degrees C) and is fully stable for at least 1 h at 60 degrees C under alkaline conditions. These characteristics and the high production level of 0.6 g of phenol oxidase per liter in shake flasks, which is equimolar with the glucoamylase protein levels, make this enzyme suitable for use in processes that occur under alkaline conditions, such as laundry cleaning.

  16. Cloning of a Phenol Oxidase Gene from Acremonium murorum and Its Expression in Aspergillus awamori

    PubMed Central

    Gouka, Robin J.; van der Heiden, Monique; Swarthoff, Ton; Verrips, C. Theo

    2001-01-01

    Fungal multicopper oxidases have many potential industrial applications, since they perform reactions under mild conditions. We isolated a phenol oxidase from the fungus Acremonium murorum var. murorum that was capable of decolorizing plant chromophores (such as anthocyanins). This enzyme is of interest in laundry-cleaning products because of its broad specificity for chromophores. We expressed an A. murorum cDNA library in Saccharomyces cerevisiae and subsequently identified enzyme-producing yeast colonies based on their ability to decolor a plant chromophore. The cDNA sequence contained an open reading frame of 1,806 bp encoding an enzyme of 602 amino acids. The phenol oxidase was overproduced by Aspergillus awamori as a fusion protein with glucoamylase, cleaved in vivo, and purified from the culture broth by hydrophobic-interaction chromatography. The phenol oxidase is active at alkaline pH (the optimum for syringaldazine is pH 9) and high temperature (optimum, 60°C) and is fully stable for at least 1 h at 60°C under alkaline conditions. These characteristics and the high production level of 0.6 g of phenol oxidase per liter in shake flasks, which is equimolar with the glucoamylase protein levels, make this enzyme suitable for use in processes that occur under alkaline conditions, such as laundry cleaning. PMID:11375170

  17. Understanding Pneumonia

    MedlinePlus

    ... each(function(i){ var city = $(this).find('city').text(); var state = $(this).find('state').text(); var date = $(this).find('date').text(); if ((city != "") && (state != "")){ var citystate = ' | ' + city + ', ' + state; } else ...

  18. Oxygen Therapy

    MedlinePlus

    ... each(function(i){ var city = $(this).find('city').text(); var state = $(this).find('state').text(); var date = $(this).find('date').text(); if ((city != "") && (state != "")){ var citystate = ' | ' + city + ', ' + state; } else ...

  19. Evaluating Variant Calling Tools for Non-Matched Next-Generation Sequencing Data

    NASA Astrophysics Data System (ADS)

    Sandmann, Sarah; de Graaf, Aniek O.; Karimi, Mohsen; van der Reijden, Bert A.; Hellström-Lindberg, Eva; Jansen, Joop H.; Dugas, Martin

    2017-02-01

    Valid variant calling results are crucial for the use of next-generation sequencing in clinical routine. However, there are numerous variant calling tools that usually differ in algorithms, filtering strategies, recommendations and thus, also in the output. We evaluated eight open-source tools regarding their ability to call single nucleotide variants and short indels with allelic frequencies as low as 1% in non-matched next-generation sequencing data: GATK HaplotypeCaller, Platypus, VarScan, LoFreq, FreeBayes, SNVer, SAMtools and VarDict. We analysed two real datasets from patients with myelodysplastic syndrome, covering 54 Illumina HiSeq samples and 111 Illumina NextSeq samples. Mutations were validated by re-sequencing on the same platform, on a different platform and expert based review. In addition we considered two simulated datasets with varying coverage and error profiles, covering 50 samples each. In all cases an identical target region consisting of 19 genes (42,322 bp) was analysed. Altogether, no tool succeeded in calling all mutations. High sensitivity was always accompanied by low precision. Influence of varying coverages- and background noise on variant calling was generally low. Taking everything into account, VarDict performed best. However, our results indicate that there is a need to improve reproducibility of the results in the context of multithreading.

  20. Draft Genome Sequence of Grammothele lineata SDL-CO-2015-1, a Jute Endophyte with a Potential for Paclitaxel Biosynthesis

    PubMed Central

    Das, Avizit; Ahmed, Oly; Baten, A. K. M. Abdul; Bushra, Samira; Islam, M. Tariqul; Ferdous, Ahlan Sabah; Islam, Mohammad Riazul

    2017-01-01

    ABSTRACT Grammothele lineata strain SDL-CO-2015-1, a basidiomycete fungus, was identified as an endophyte from a jute species, Corchorus olitorius var. 2015, and found to produce paclitaxel, a diterpenic polyoxygenated pseudoalkaloid with antitumor activity. Here, we report the draft genome sequence (42.8 Mb with 9,395 genes) of this strain. PMID:28818909

  1. Living with Tuberculosis

    MedlinePlus

    ... each(function(i){ var city = $(this).find('city').text(); var state = $(this).find('state').text(); var date = $(this).find('date').text(); if ((city != "") && (state != "")){ var citystate = ' | ' + city + ', ' + state; } else ...

  2. Learn About Sarcoidosis

    MedlinePlus

    ... each(function(i){ var city = $(this).find('city').text(); var state = $(this).find('state').text(); var date = $(this).find('date').text(); if ((city != "") && (state != "")){ var citystate = ' | ' + city + ', ' + state; } else ...

  3. How Lungs Work

    MedlinePlus

    ... each(function(i){ var city = $(this).find('city').text(); var state = $(this).find('state').text(); var date = $(this).find('date').text(); if ((city != "") && (state != "")){ var citystate = ' | ' + city + ', ' + state; } else ...

  4. Understand Your Medication

    MedlinePlus

    ... each(function(i){ var city = $(this).find('city').text(); var state = $(this).find('state').text(); var date = $(this).find('date').text(); if ((city != "") && (state != "")){ var citystate = ' | ' + city + ', ' + state; } else ...

  5. Learn About Silicosis

    MedlinePlus

    ... each(function(i){ var city = $(this).find('city').text(); var state = $(this).find('state').text(); var date = $(this).find('date').text(); if ((city != "") && (state != "")){ var citystate = ' | ' + city + ', ' + state; } else ...

  6. Learn About Tuberculosis

    MedlinePlus

    ... each(function(i){ var city = $(this).find('city').text(); var state = $(this).find('state').text(); var date = $(this).find('date').text(); if ((city != "") && (state != "")){ var citystate = ' | ' + city + ', ' + state; } else ...

  7. Localization of a variational particle smoother

    NASA Astrophysics Data System (ADS)

    Morzfeld, M.; Hodyss, D.; Poterjoy, J.

    2017-12-01

    Given the success of 4D-variational methods (4D-Var) in numerical weather prediction,and recent efforts to merge ensemble Kalman filters with 4D-Var,we consider a method to merge particle methods and 4D-Var.This leads us to revisit variational particle smoothers (varPS).We study the collapse of varPS in high-dimensional problemsand show how it can be prevented by weight-localization.We test varPS on the Lorenz'96 model of dimensionsn=40, n=400, and n=2000.In our numerical experiments, weight localization prevents the collapse of the varPS,and we note that the varPS yields results comparable to ensemble formulations of 4D-variational methods,while it outperforms EnKF with tuned localization and inflation,and the localized standard particle filter.Additional numerical experiments suggest that using localized weights in varPS may not yield significant advantages over unweighted or linearizedsolutions in near-Gaussian problems.

  8. Surface fatigue life of M50NiL and AISI 9310 spur gears and R C bars

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.; Bamberger, Eric N.

    1991-01-01

    Spur gear endurance tests and rolling element surface fatigue tests were conducted to study vacuum induction melted, vacuum arc remelted (VIM-VAR) M50NiL steel for use as a gear steel in advanced aircraft applications, to determine its endurance characteristics, and to compare the results with those for standard VAR and VIM-VAR AISI 9310 gear material. Tests were conducted with spur gears and rolling contact bars manufactured from VIM-VAR M50NiL and VAR and VIM-VAR AISI 9310. The gear pitch diameter was 8.9 cm. Gear test conditions were an inlet oil temperature of 320 K, and outlet oil temperature of 350 K, a maximum Hertz stress of 1.71 GPa, and a speed of 10000 rpm. Bench rolling element fatigue tests were conducted at ambient temperatures with a bar speed of 12,500 rpm and a maximum Hertz stress of 4.83 GPa. The VIM-VAR M50NiL gears had a surface fatigue life that was 4.5 and 11.5 times that for VIM-VAR and VAR AISI 9310 gears, respectively. The surface fatigue life of the VIM-VAR M50NiL rolling contact bars was 13.2 and 21.6 times that for the VIM-VAR and VAR AISI 9310, respectively. The VIM-VAR M50NiL material was shown to have good resistance to fracture through a fatigue spall and superior fatigue life to both other gears.

  9. Plastid transformation in cabbage (Brassica oleracea L. var. capitata L.) by the biolistic process.

    PubMed

    Tseng, Menq-Jiau; Yang, Ming-Te; Chu, Wan-Ru; Liu, Cheng-Wei

    2014-01-01

    Cabbage (Brassica oleracea L. var. capitata L.) is one of the most important vegetable crops grown worldwide. Scientists are using biotechnology in addition to traditional breeding methods to develop new cabbage varieties with desirable traits. Recent biotechnological advances in chloroplast transformation technology have opened new avenues for crop improvement. In 2007, we developed a stable plastid transformation system for cabbage and reported the successful transformation of the cry1Ab gene into the cabbage chloroplast genome. This chapter describes the methods for cabbage transformation using biolistic procedures. The following sections are included in this protocol: preparation of donor materials, coating gold particles with DNA, biolistic bombardment, as well as the regeneration and selection of transplastomic cabbage plants. The establishment of a plastid transformation system for cabbage offers new possibilities for introducing new agronomic and horticultural traits into Brassica crops.

  10. What's in a Cigarette?

    MedlinePlus

    ... each(function(i){ var city = $(this).find('city').text(); var state = $(this).find('state').text(); var date = $(this).find('date').text(); if ((city != "") && (state != "")){ var citystate = ' | ' + city + ', ' + state; } else ...

  11. Managing Your COPD Medications

    MedlinePlus

    ... each(function(i){ var city = $(this).find('city').text(); var state = $(this).find('state').text(); var date = $(this).find('date').text(); if ((city != "") && (state != "")){ var citystate = ' | ' + city + ', ' + state; } else ...

  12. Inference of Gene Regulatory Networks Incorporating Multi-Source Biological Knowledge via a State Space Model with L1 Regularization

    PubMed Central

    Hasegawa, Takanori; Yamaguchi, Rui; Nagasaki, Masao; Miyano, Satoru; Imoto, Seiya

    2014-01-01

    Comprehensive understanding of gene regulatory networks (GRNs) is a major challenge in the field of systems biology. Currently, there are two main approaches in GRN analysis using time-course observation data, namely an ordinary differential equation (ODE)-based approach and a statistical model-based approach. The ODE-based approach can generate complex dynamics of GRNs according to biologically validated nonlinear models. However, it cannot be applied to ten or more genes to simultaneously estimate system dynamics and regulatory relationships due to the computational difficulties. The statistical model-based approach uses highly abstract models to simply describe biological systems and to infer relationships among several hundreds of genes from the data. However, the high abstraction generates false regulations that are not permitted biologically. Thus, when dealing with several tens of genes of which the relationships are partially known, a method that can infer regulatory relationships based on a model with low abstraction and that can emulate the dynamics of ODE-based models while incorporating prior knowledge is urgently required. To accomplish this, we propose a method for inference of GRNs using a state space representation of a vector auto-regressive (VAR) model with L1 regularization. This method can estimate the dynamic behavior of genes based on linear time-series modeling constructed from an ODE-based model and can infer the regulatory structure among several tens of genes maximizing prediction ability for the observational data. Furthermore, the method is capable of incorporating various types of existing biological knowledge, e.g., drug kinetics and literature-recorded pathways. The effectiveness of the proposed method is shown through a comparison of simulation studies with several previous methods. For an application example, we evaluated mRNA expression profiles over time upon corticosteroid stimulation in rats, thus incorporating corticosteroid kinetics/dynamics, literature-recorded pathways and transcription factor (TF) information. PMID:25162401

  13. Facts about the Common Cold

    MedlinePlus

    ... each(function(i){ var city = $(this).find('city').text(); var state = $(this).find('state').text(); var date = $(this).find('date').text(); if ((city != "") && (state != "")){ var citystate = ' | ' + city + ', ' + state; } else ...

  14. Diagnosing and Treating Acute Bronchitis

    MedlinePlus

    ... each(function(i){ var city = $(this).find('city').text(); var state = $(this).find('state').text(); var date = $(this).find('date').text(); if ((city != "") && (state != "")){ var citystate = ' | ' + city + ', ' + state; } else ...

  15. Warning Signs of Lung Disease

    MedlinePlus

    ... each(function(i){ var city = $(this).find('city').text(); var state = $(this).find('state').text(); var date = $(this).find('date').text(); if ((city != "") && (state != "")){ var citystate = ' | ' + city + ', ' + state; } else ...

  16. Learn about Respiratory Syncytial Virus (RSV)

    MedlinePlus

    ... each(function(i){ var city = $(this).find('city').text(); var state = $(this).find('state').text(); var date = $(this).find('date').text(); if ((city != "") && (state != "")){ var citystate = ' | ' + city + ', ' + state; } else ...

  17. Symptoms, Diagnosis and Treatment of Pneumonia

    MedlinePlus

    ... each(function(i){ var city = $(this).find('city').text(); var state = $(this).find('state').text(); var date = $(this).find('date').text(); if ((city != "") && (state != "")){ var citystate = ' | ' + city + ', ' + state; } else ...

  18. 75 FR 78932 - Federal Seed Act Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ....'', ``Broccoli-- Brassica oleracea L. var. botrytis L.'', ``Brussels sprouts--Brassica oleracea L. var. gemmifera...--Vicia faba L. var. faba'', ``Broccoli-- Brassica oleracea L. var. italica Plenck'', ``Brussels sprouts...

  19. 40 CFR 80.170 - Volumetric additive reconciliation (VAR), equipment calibration, and recordkeeping requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., the preceding twelve months of VAR formula records plus the preceding two months of VAR supporting... request, the preceding two months of VAR formula records and VAR supporting documentation. (3) Facilities... accurately and separately measured, either through the use of a separate storage tank, a separate meter, or...

  20. 40 CFR 80.170 - Volumetric additive reconciliation (VAR), equipment calibration, and recordkeeping requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., the preceding twelve months of VAR formula records plus the preceding two months of VAR supporting... request, the preceding two months of VAR formula records and VAR supporting documentation. (3) Facilities... accurately and separately measured, either through the use of a separate storage tank, a separate meter, or...

  1. 40 CFR 80.170 - Volumetric additive reconciliation (VAR), equipment calibration, and recordkeeping requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., the preceding twelve months of VAR formula records plus the preceding two months of VAR supporting... request, the preceding two months of VAR formula records and VAR supporting documentation. (3) Facilities... accurately and separately measured, either through the use of a separate storage tank, a separate meter, or...

  2. 40 CFR 80.170 - Volumetric additive reconciliation (VAR), equipment calibration, and recordkeeping requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., the preceding twelve months of VAR formula records plus the preceding two months of VAR supporting... request, the preceding two months of VAR formula records and VAR supporting documentation. (3) Facilities... accurately and separately measured, either through the use of a separate storage tank, a separate meter, or...

  3. 40 CFR 80.170 - Volumetric additive reconciliation (VAR), equipment calibration, and recordkeeping requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., the preceding twelve months of VAR formula records plus the preceding two months of VAR supporting... request, the preceding two months of VAR formula records and VAR supporting documentation. (3) Facilities... accurately and separately measured, either through the use of a separate storage tank, a separate meter, or...

  4. Nontuberculous Mycobacterium Infections: Symptoms, Causes & Risk Factors

    MedlinePlus

    ... each(function(i){ var city = $(this).find('city').text(); var state = $(this).find('state').text(); var date = $(this).find('date').text(); if ((city != "") && (state != "")){ var citystate = ' | ' + city + ', ' + state; } else ...

  5. Mitochondrial DNA variation and genetic relationships of Populus species.

    PubMed

    Barrett, J W; Rajora, O P; Yeh, F C; Dancik, B P; Strobeck, C

    1993-02-01

    We examined variation in and around the region coding for the cytochrome c oxidase I (coxI) and ATPase 6 (atp6) genes in the mitochondrial genomes of four Populus species (P. nigra, P. deltoides, P. maximowiczii, and P. tremuloides) and the natural hybrid P. x canadensis (P. deltoides x P. nigra). Total cellular DNAs of these poplars were digested with 16 restriction endonucleases and probed with maize mtDNA-specific probes (CoxI and Atp6). The only variant observed for Atp6 was interspecific, with P. maximowiczii separated from the other species as revealed by EcoRI digestions. No intraspecific mtDNA variation was observed among individuals of P. nigra, P. maximowiczii, P. x canadensis, or P. tremuloides for the CoxI probe. However, two varieties of P. deltoides were distinct because of a single site change in the KpnI digestions, demonstrating that P. deltoides var. deltoides (eastern cottonwood) and var. occidentalis (plains cottonwood) have distinct mitochondrial genomes in the region of the coxI gene. Populus x canadensis shared the same restriction fragment patterns as its suspected maternal parent P. deltoides. Nucleotide substitutions per base in and around the coxI and atp6 genes among the Populus species and the hybrid ranged from 0.0017 to 0.0077. The interspecific estimates of nucleotide substitution per base suggested that P. tremuloides was furthest removed from P. deltoides and P. x canadensis and least diverged from P. nigra. Populus maximowiczii was placed between these two clusters.

  6. dAdd1 and dXNP prevent genome instability by maintaining HP1a localization at Drosophila telomeres.

    PubMed

    Chavez, Joselyn; Murillo-Maldonado, Juan Manuel; Bahena, Vanessa; Cruz, Ana Karina; Castañeda-Sortibrán, América; Rodriguez-Arnaiz, Rosario; Zurita, Mario; Valadez-Graham, Viviana

    2017-12-01

    Telomeres are important contributors to genome stability, as they prevent linear chromosome end degradation and contribute to the avoidance of telomeric fusions. An important component of the telomeres is the heterochromatin protein 1a (HP1a). Mutations in Su(var)205, the gene encoding HP1a in Drosophila, result in telomeric fusions, retrotransposon regulation loss and larger telomeres, leading to chromosome instability. Previously, it was found that several proteins physically interact with HP1a, including dXNP and dAdd1 (orthologues to the mammalian ATRX gene). In this study, we found that mutations in the genes encoding the dXNP and dAdd1 proteins affect chromosome stability, causing chromosomal aberrations, including telomeric defects, similar to those observed in Su(var)205 mutants. In somatic cells, we observed that dXNP and dAdd1 participate in the silencing of the telomeric HTT array of retrotransposons, preventing anomalous retrotransposon transcription and integration. Furthermore, the lack of dAdd1 results in the loss of HP1a from the telomeric regions without affecting other chromosomal HP1a binding sites; mutations in dxnp also affected HP1a localization but not at all telomeres, suggesting a specialized role for dAdd1 and dXNP proteins in locating HP1a at the tips of the chromosomes. These results place dAdd1 as an essential regulator of HP1a localization and function in the telomere heterochromatic domain.

  7. Morphology, biometry, and taxonomy of freshwater and marine interstitial cyphoderia (cercozoa: euglyphida).

    PubMed

    Todorov, Milcho; Golemansky, Vassil; Mitchell, Edward A D; Heger, Thierry J

    2009-01-01

    Good taxonomy is essential for ecological, biogeographical, and evolutionary studies of any group of organisms. Therefore, we performed detailed light- and scanning electron microscopy investigations on the shell ultrastructure and biometric analyses of the morphometric variability of five freshwater and marine interstitial testate amoebae of the genus Cyphoderia (C. trochus var. amphoralis, C. ampulla, C. margaritacea var. major, C. compressa, and C. littoralis), isolated from different populations in Bulgaria and Switzerland. Our aims were (1) to clarify the morphological characteristics of these taxa, and (2) to compare the morphology of a given taxon (C. ampulla) among different locations in Bulgaria and Switzerland as a first step towards an assessment of the geographical variation within a supposedly cosmopolitan taxon. Four of the studied taxa are characterized by a well-expressed main-size class and by a small size range of all the characters and can be defined as size-monomorphic species. Based on these results, the following systematic changes are proposed: C. major (Penard, 1891) n. comb. (Syn.: C. margaritacea var. major (Penard, 1891) and C. amphoralis (Wailes & Penard, 1911) n. comb. (Syn.: C. trochus var. amphoralis (Wailes & Penard, 1911)). However, we also show significant morphological variability between the Swiss and Bulgarian populations of C. ampulla, suggesting the possible existence of more than one taxon within this species. Further studies are required to assess (1) if these two morphologically different taxa represent individual species, (2) if so, if more species exist, and if this diversity is due to limited distribution ranges (endemism) or if several closely related taxa occur together in different geographical areas.

  8. What is Multidrug and Extensively Drug Resistant TB?

    MedlinePlus

    ... each(function(i){ var city = $(this).find('city').text(); var state = $(this).find('state').text(); var date = $(this).find('date').text(); if ((city != "") && (state != "")){ var citystate = ' | ' + city + ', ' + state; } else ...

  9. Detoxification of Benzoxazolinone Allelochemicals from Wheat by Gaeumannomyces graminis var. tritici, G. graminis var. graminis, G. graminis var. avenae, and Fusarium culmorum

    PubMed Central

    Friebe, A.; Vilich, V.; Hennig, L.; Kluge, M.; Sicker, D.

    1998-01-01

    The ability of phytopathogenic fungi to overcome the chemical defense barriers of their host plants is of great importance for fungal pathogenicity. We studied the role of cyclic hydroxamic acids and their related benzoxazolinones in plant interactions with pathogenic fungi. We identified species-dependent differences in the abilities of Gaeumannomyces graminis var. tritici, Gaeumannomyces graminis var. graminis, Gaeumannomyces graminis var. avenae, and Fusarium culmorum to detoxify these allelochemicals of gramineous plants. The G. graminis var. graminis isolate degraded benzoxazolin-2(3H)-one (BOA) and 6-methoxy-benzoxazolin-2(3H)-one (MBOA) more efficiently than did G. graminis var. tritici and G. graminis var. avenae. F. culmorum degraded BOA but not MBOA. N-(2-Hydroxyphenyl)-malonamic acid and N-(2-hydroxy-4-methoxyphenyl)-malonamic acid were the primary G. graminis var. graminis and G. graminis var. tritici metabolites of BOA and MBOA, respectively, as well as of the related cyclic hydroxamic acids. 2-Amino-3H-phenoxazin-3-one was identified as an additional G. graminis var. tritici metabolite of BOA. No metabolite accumulation was detected for G. graminis var. avenae and F. culmorum by high-pressure liquid chromatography. The mycelial growth of the pathogenic fungi was inhibited more by BOA and MBOA than by their related fungal metabolites. The tolerance of Gaeumannomyces spp. for benzoxazolinone compounds is correlated with their detoxification ability. The ability of Gaeumannomyces isolates to cause root rot symptoms in wheat (cultivars Rektor and Astron) parallels their potential to degrade wheat allelochemicals to nontoxic compounds. PMID:9647804

  10. Rosetting Plasmodium falciparum-infected erythrocytes bind to human brain microvascular endothelial cells in vitro, demonstrating a dual adhesion phenotype mediated by distinct P. falciparum erythrocyte membrane protein 1 domains.

    PubMed

    Adams, Yvonne; Kuhnrae, Pongsak; Higgins, Matthew K; Ghumra, Ashfaq; Rowe, J Alexandra

    2014-03-01

    Adhesion interactions between Plasmodium falciparum-infected erythrocytes (IE) and human cells underlie the pathology of severe malaria. IE cytoadhere to microvascular endothelium or form rosettes with uninfected erythrocytes to survive in vivo by sequestering IE in the microvasculature and avoiding splenic clearance mechanisms. Both rosetting and cytoadherence are mediated by the parasite-derived IE surface protein family Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). Rosetting and cytoadherence have been widely studied as separate entities; however, the ability of rosetting P. falciparum strains to cytoadhere has received little attention. Here, we show that IE of the IT/R29 strain expressing a rosette-mediating PfEMP1 variant (IT4var09) cytoadhere in vitro to a human brain microvascular endothelial cell line (HBEC-5i). Cytoadherence was inhibited by heparin and by treatment of HBEC-5i with heparinase III, suggesting that the endothelial receptors for IE binding are heparan sulfate proteoglycans. Antibodies to the N-terminal regions of the IT4var09 PfEMP1 variant (NTS-DBL1α and DBL2γ domains) specifically inhibited and reversed cytoadherence down to low concentrations (<10 μg/ml of total IgG). Surface plasmon resonance experiments showed that the NTS-DBLα and DBL2γ domains bind strongly to heparin, with half-maximal binding at a concentration of ∼0.5 μM in both cases. Therefore, cytoadherence of IT/R29 IE is distinct from rosetting, which is primarily mediated by NTS-DBL1α interactions with complement receptor 1. These data show that IT4var09-expressing parasites are capable of dual interactions with both endothelial cells and uninfected erythrocytes via distinct receptor-ligand interactions.

  11. Expression in Escherichia coli, purification, refolding and antifungal activity of an osmotin from Solanum nigrum

    PubMed Central

    Campos, Magnólia de A; Silva, Marilia S; Magalhães, Cláudio P; Ribeiro, Simone G; Sarto, Rafael PD; Vieira, Eduardo A; Grossi de Sá, Maria F

    2008-01-01

    Background Heterologous protein expression in microorganisms may contribute to identify and demonstrate antifungal activity of novel proteins. The Solanum nigrum osmotin-like protein (SnOLP) gene encodes a member of pathogenesis-related (PR) proteins, from the PR-5 sub-group, the last comprising several proteins with different functions, including antifungal activity. Based on deduced amino acid sequence of SnOLP, computer modeling produced a tertiary structure which is indicative of antifungal activity. Results To validate the potential antifungal activity of SnOLP, a hexahistidine-tagged mature SnOLP form was overexpressed in Escherichia coli M15 strain carried out by a pQE30 vector construction. The urea solubilized His6-tagged mature SnOLP protein was affinity-purified by immobilized-metal (Ni2+) affinity column chromatography. As SnOLP requires the correct formation of eight disulfide bonds, not correctly formed in bacterial cells, we adapted an in vitro method to refold the E. coli expressed SnOLP by using reduced:oxidized gluthatione redox buffer. This method generated biologically active conformations of the recombinant mature SnOLP, which exerted antifungal action towards plant pathogenic fungi (Fusarium solani f. sp.glycines, Colletotrichum spp., Macrophomina phaseolina) and oomycete (Phytophthora nicotiana var. parasitica) under in vitro conditions. Conclusion Since SnOLP displays activity against economically important plant pathogenic fungi and oomycete, it represents a novel PR-5 protein with promising utility for biotechnological applications. PMID:18334031

  12. A comparison between EDA-EnVar and ETKF-EnVar data assimilation techniques using radar observations at convective scales through a case study of Hurricane Ike (2008)

    NASA Astrophysics Data System (ADS)

    Shen, Feifei; Xu, Dongmei; Xue, Ming; Min, Jinzhong

    2017-07-01

    This study examines the impacts of assimilating radar radial velocity (Vr) data for the simulation of hurricane Ike (2008) with two different ensemble generation techniques in the framework of the hybrid ensemble-variational (EnVar) data assimilation system of Weather Research and Forecasting model. For the generation of ensemble perturbations we apply two techniques, the ensemble transform Kalman filter (ETKF) and the ensemble of data assimilation (EDA). For the ETKF-EnVar, the forecast ensemble perturbations are updated by the ETKF, while for the EDA-EnVar, the hybrid is employed to update each ensemble member with perturbed observations. The ensemble mean is analyzed by the hybrid method with flow-dependent ensemble covariance for both EnVar. The sensitivity of analyses and forecasts to the two applied ensemble generation techniques is investigated in our current study. It is found that the EnVar system is rather stable with different ensemble update techniques in terms of its skill on improving the analyses and forecasts. The EDA-EnVar-based ensemble perturbations are likely to include slightly less organized spatial structures than those in ETKF-EnVar, and the perturbations of the latter are constructed more dynamically. Detailed diagnostics reveal that both of the EnVar schemes not only produce positive temperature increments around the hurricane center but also systematically adjust the hurricane location with the hurricane-specific error covariance. On average, the analysis and forecast from the ETKF-EnVar have slightly smaller errors than that from the EDA-EnVar in terms of track, intensity, and precipitation forecast. Moreover, ETKF-EnVar yields better forecasts when verified against conventional observations.

  13. Effects of Lactobacillus delbrueckii on immune response, disease resistance against Aeromonas hydrophila, antioxidant capability and growth performance of Cyprinus carpio Huanghe var.

    PubMed

    Zhang, Chun-Nuan; Zhang, Ji-Liang; Guan, Wen-Chao; Zhang, Xiao-Fei; Guan, Su-Hua; Zeng, Qing-Hui; Cheng, Gao-Feng; Cui, Wei

    2017-09-01

    The aim of the present study was to investigate effects of dietary Lactobacillus delbrueckii (L. delbrueckii) on immune response, disease resistance against Aeromonas hydrophila (A. hydrophila), antioxidant capability and growth performance of Cyprinus carpio Huanghe var. 450 fish (mean weight of 1.05 ± 0.03 g) were randomly distributed into five groups that fed diets containing different levels of L. delbrueckii (0, 1 × 10 5 , 1 × 10 6 , 1 × 10 7 and 1 × 10 8  CFU g -1 ) for 8 weeks. The results showed that intestinal immune parameters such as lysozyme, acid phosphatase, and myeloperoxidase activities, immunoglobulin M content, and the survival rate were improved in fish fed with 1 × 10 6 and 1 × 10 7  CFU g -1 L. delbrueckii. In addition, 1 × 10 7  CFU g -1 L. delbrueckii supplementation down-regulated mRNA levels of TNF-α, IL-8, IL-1β and NF-κBp65, and up-regulated IL-10 and TGF-β mRNA levels in the intestine. The survival rate was significantly (P < 0.05) higher (68.33%) in fish fed 1 × 10 6  CFU g -1 L. delbrueckii than the control diet-fed group (40%) after challenge by A. hydrophila. Fish fed with diet containing 1 × 10 6  CFU g -1 L. delbrueckii showed higher antioxidant enzyme activities such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and total antioxidant capacity (T-AOC) and lower MDA concentrations than those of the control group (P < 0.05). The relative gene expression (SOD, CAT, GPX) showed the same trend with their activities. In addition, the growth performance was significantly improved in fish fed with the diet containing 1 × 10 6 and 1 × 10 7  CFU g -1 L. delbrueckii (P < 0.05). These results demonstrated that dietary optimal levels of L. delbrueckii enhanced immunity, disease resistance against A. hydrophila antioxidant capability and growth performance in Cyprinus carpio Huanghe var. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Draft Genome Sequence of Grammothele lineata SDL-CO-2015-1, a Jute Endophyte with a Potential for Paclitaxel Biosynthesis.

    PubMed

    Das, Avizit; Ahmed, Oly; Baten, A K M Abdul; Bushra, Samira; Islam, M Tariqul; Ferdous, Ahlan Sabah; Islam, Mohammad Riazul; Khan, Haseena

    2017-08-17

    Grammothele lineata strain SDL-CO-2015-1, a basidiomycete fungus, was identified as an endophyte from a jute species, Corchorus olitorius var. 2015, and found to produce paclitaxel, a diterpenic polyoxygenated pseudoalkaloid with antitumor activity. Here, we report the draft genome sequence (42.8 Mb with 9,395 genes) of this strain. Copyright © 2017 Das et al.

  15. IkeNet: Social Network Analysis of E-mail Traffic in the Eisenhower Leadership Development Program

    DTIC Science & Technology

    2007-11-01

    8217Create the recipients TO TempArray = Sphit(strTo,") For Each varArrayltem In TemnpArray hextGuy = Chr(34) & CStr (Trim(varArrayltem)) & Chr(34) MsgBox...34next guy = " & nextGuy ’Set oRecipient = Recipients.Add(nextGuy) Set oRecipient = Recipients.Add( CStr (Trim(varArrayItem))) oRecipient.Type = olTo...TempArray = Split(strAttachments, "" For Each varArrayltern In TempArray .Attachments.Add CStr (Trim(varArrayItem)) Next varArrayltern .Send No return value

  16. Suppressive effects of wild bitter gourd (Momordica charantia Linn. var. abbreviata ser.) fruit extracts on inflammatory responses in RAW264.7 macrophages.

    PubMed

    Lii, Chong-Kuei; Chen, Haw-Wen; Yun, Wen-Tzu; Liu, Kai-Li

    2009-03-18

    Bitter gourd (Momordica charantia) is used to treat various diseases including inflammation. A wild species of bitter gourd, Momordica charantia Linn. var. abbreviata ser. (WBG), is considered to be more potent in disease prevention than is bitter gourd; however, little is known about the biological and physiological characteristics of WBG. The present study investigated the anti-inflammatory effect of WBG on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Among the hot water, 95% ethanol, and ethyl acetate extracts of WBG, the ethanol extract showed the greatest reduction of LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production and inducible nitric oxide synthase (iNOS) and pro-interleukin-1beta expression. LPS-induced cyclooxygenase-2 expression was not affected byWBGextracts. Compared with WBG, extracts from bitter gourd showed a lesser inhibition of LPS-induced events. Electrophoretic mobility shift assay further showed that both the hot water and the ethanol extracts of WBG inhibited NF-kappaB activation. Although information is lacking on the bioactive components of WBG, the phenolic compound contents of each extract significantly paralleled its anti-inflammatory ability (r = 0.74, 0.88 and 0.65 for NO, PGE2 and iNOS expression, respectively, P < 0.05). These results suggest that WBG is beneficial for reducing LPS-induced inflammatory responses by modulating NF-kappaB activation.

  17. Inheritance of Mesotrione Resistance in an Amaranthus tuberculatus (var. rudis) Population from Nebraska, USA

    PubMed Central

    Oliveira, Maxwel C.; Gaines, Todd A.; Jhala, Amit J.; Knezevic, Stevan Z.

    2018-01-01

    A population of Amaranthus tuberculatus (var. rudis) evolved resistance to 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor herbicides (mesotrione, tembotrione, and topramezone) in Nebraska. The level of resistance was the highest to mesotrione, and the mechanism of resistance in this population is metabolism-based likely via cytochrome P450 enzymes. The increasing number of weeds resistant to herbicides warrants studies on the ecology and evolutionary factors contributing for resistance evolution, including inheritance of resistance traits. In this study, we investigated the genetic control of mesotrione resistance in an A. tuberculatus population from Nebraska, USA. Results showed that reciprocal crosses in the F1 families exhibited nuclear inheritance, which allows pollen movement carrying herbicide resistance alleles. The mode of inheritance varied from incomplete recessive to incomplete dominance depending upon the F1 family. Observed segregation patterns for the majority of the F2 and back-cross susceptible (BC/S) families did not fit to a single major gene model. Therefore, multiple genes are likely to confer metabolism-based mesotrione resistance in this A. tuberculatus population from Nebraska. The results of this study aid to understand the genetics and inheritance of a non-target-site based mesotrione resistant A. tuberculatus population from Nebraska, USA. PMID:29456544

  18. The genome sequence of the outbreeding globe artichoke constructed de novo incorporating a phase-aware low-pass sequencing strategy of F1 progeny

    PubMed Central

    Scaglione, Davide; Reyes-Chin-Wo, Sebastian; Acquadro, Alberto; Froenicke, Lutz; Portis, Ezio; Beitel, Christopher; Tirone, Matteo; Mauro, Rosario; Lo Monaco, Antonino; Mauromicale, Giovanni; Faccioli, Primetta; Cattivelli, Luigi; Rieseberg, Loren; Michelmore, Richard; Lanteri, Sergio

    2016-01-01

    Globe artichoke (Cynara cardunculus var. scolymus) is an out-crossing, perennial, multi-use crop species that is grown worldwide and belongs to the Compositae, one of the most successful Angiosperm families. We describe the first genome sequence of globe artichoke. The assembly, comprising of 13,588 scaffolds covering 725 of the 1,084 Mb genome, was generated using ~133-fold Illumina sequencing data and encodes 26,889 predicted genes. Re-sequencing (30×) of globe artichoke and cultivated cardoon (C. cardunculus var. altilis) parental genotypes and low-coverage (0.5 to 1×) genotyping-by-sequencing of 163 F1 individuals resulted in 73% of the assembled genome being anchored in 2,178 genetic bins ordered along 17 chromosomal pseudomolecules. This was achieved using a novel pipeline, SOILoCo (Scaffold Ordering by Imputation with Low Coverage), to detect heterozygous regions and assign parental haplotypes with low sequencing read depth and of unknown phase. SOILoCo provides a powerful tool for de novo genome analysis of outcrossing species. Our data will enable genome-scale analyses of evolutionary processes among crops, weeds, and wild species within and beyond the Compositae, and will facilitate the identification of economically important genes from related species. PMID:26786968

  19. Taxonomic study on Japanese Salvia (Lamiaceae): Phylogenetic position of S. akiensis, and polyphyletic nature of S. lutescens var. intermedia.

    PubMed

    Takano, Atsuko

    2017-01-01

    Both Salvia akiensis and S. lutescens (Lamiaceae) are endemic to Japan. Salvia akiensis was recently described in 2014 in the Chugoku (= SW Honshu) region, and each four varieties of S. lutescens distributed allopatrically. Among varieties in S. lutescens , var. intermedia show a disjunctive distribution in the Kanto (=E Honshu) and Kinki (= W Honshu) regions. Recent field studies of S. lutescens var. intermedia revealed several morphological differences between the Kanto and Kinki populations. Here, I evaluated these differences among Salvia lutescens var. intermedia and its allies with morphological analysis and molecular phylogenetic analyses of nuclear ribosomal DNA (internal and external transcribed spacer regions) and plastid DNA ( ycf1-rps15 spacer, rbcL , and trnL-F ) sequences. Both morphological analysis and molecular phylogenetic analyses showed that S. lutescens var. intermedia from the Kinki region and var. lutescens were closely related to each other. However, var. intermedia from the Kanto region exhibited an association with S. lutescens var. crenata and var. stolonifera, which also grew in eastern Japan, rather than var. intermedia in the Kinki region. These results indicated that S. lutescens var. intermedia is not a taxon with a disjunctive distribution, but a combination of two or more allopatric taxa. Present study also suggested that S. akiensis was most closely related to S. omerocalyx .

  20. Manufacture of TATB and TNT from Biosynthesized Phloroglucinols

    DTIC Science & Technology

    2010-07-01

    the microbial synthesis of mono-O-methylphloroglucinols, phloroglucinol O-methyl transferase (POMT) from Rosa chinensis var. spontanea has been...successfully de novo synthesized in codon-optimized form for expression in E. coli, which is the host currently used for microbial synthesis of...efforts had been made in both strain development and optimizing fermentation conditions for microbial phloroglucinol synthesis . Under optimized resin

  1. Expression of amyloid-beta 1-40 and 1-42 peptides in Capsicum annum var. angulosum for oral immunization.

    PubMed

    Szabó, Beáta; Hori, Koichi; Nakajima, Akiko; Sasagawa, Noboru; Watanabe, Yuichiro; Ishiura, Shoichi

    2004-08-01

    Alzheimer's disease (AD), the leading cause of dementia in the elderly population, still remains without an effective treatment. The accumulation and deposition of the amyloid-beta peptide (Abeta) in the brain is thought to be a key event in the pathogenesis of AD. Recently, a novel exciting technology has been investigated to combat AD: new immunotherapeutic approaches have been described that are based on vaccination with the Abeta peptide itself, and this has been shown to induce functionally beneficial anti-Abeta antibody responses in different transgenic animal models of AD. Here we report the high level expression of GFP-Abeta1-40 and 1-42 peptides in Capsicum annum var. angulosum (green pepper) using a new tomato mosaic tobamovirus-based hybrid replication vector. After preinoculation of Nicotiana benthamiana plants with the in vitro transcript of the vector, the isolated virions were used to inoculate green pepper, which accumulated the GFPAbeta1-40 or 1-42 fusion proteins to a level of 100 microg/g of leaves 7 days after inoculation. These results make it possible to test whether oral immunization by feeding plant samples could stimulate antibody production against Abeta peptides.

  2. Inhibition of nitric oxide synthase expression in activated microglia and peroxynitrite scavenging activity by Opuntia ficus indica var. saboten.

    PubMed

    Lee, Ming Hong; Kim, Jae Yeon; Yoon, Jeong Hoon; Lim, Hyo Jin; Kim, Tae Hee; Jin, Changbae; Kwak, Wie-Jong; Han, Chang-Kyun; Ryu, Jae-Ha

    2006-09-01

    Activated microglia by neuronal injury or inflammatory stimulation overproduce nitric oxide (NO) by inducible nitric oxide synthase (iNOS) and reactive oxygen species (ROS) such as superoxide anion, resulting in neurodegenerative diseases. The toxic peroxynitrite (ONOO-), the reaction product of NO and superoxide anion further contributes to oxidative neurotoxicity. A butanol fraction obtained from 50% ethanol extracts of Opuntia ficus indica var. saboten (Cactaceae) stem (SK OFB901) and its hydrolysis product (SK OFB901H) inhibited the production of NO in LPS-activated microglia in a dose dependent manner (IC50 15.9, 4.2 microg/mL, respectively). They also suppressed the expression of protein and mRNA of iNOS in LPS-activated microglial cells at higher than 30 microg/mL as observed by western blot analysis and RT-PCR experiment. They also inhibited the degradation of I-kappaB-alpha in activated microglia. Moreover, they showed strong activity of peroxynitrite scavenging in a cell free bioassay system. These results imply that Opuntia ficus indica may have neuroprotective activity through the inhibition of NO production by activated microglial cells and peroxynitrite scavenging activity. Copyright (c) 2006 John Wiley & Sons, Ltd.

  3. Studies on callose and cutin during the expression of competence and determination for organogenic nodule formation from internodes of Humulus lupulus var. Nugget.

    PubMed

    Fortes, Ana M; Testillano, Pilar S; Del Carmen Risueño, Maria; Pais, Maria S

    2002-09-01

    Callose and cutin deposition were followed by staining with Aniline Blue and Nile Red and by immunolocalization using antibodies raised against callose. Along with morphogenesis induction from internodes of Humulus lupulus var. Nugget, a temporal and spatial differential deposition of callose and cutin was observed. A cutin layer showing bright yellow autofluorescence appears, surrounding cells or groups of cells committed to express morphogenic competence. This cutin layer that evolves to a randomly organized network appeared underneath a callose layer and may create a specific cellular environment with altered permeability and altered receptors providing conditions for entering the cell cycle. The incipient callose accumulation in control explants cultured on basal medium suggests the involvement of callose in the initiation of the morphogenic programme leading to nodule formation. A scanning electron microscopic study during the organogenic process showed that before shoot bud regeneration, the cutin layer increases in thickness and acquires a smooth texture. This cutin layer is specific to nodular organogenic regions and disappeared with plantlet regeneration. This layer may control permeability to water and solute transfer throughout plantlet regeneration.

  4. The Antibody Response of Pregnant Cameroonian Women to VAR2CSA ID1-ID2a, a Small Recombinant Protein Containing the CSA-Binding Site

    PubMed Central

    Babakhanyan, Anna; Leke, Rose G. F.; Salanti, Ali; Bobbili, Naveen; Gwanmesia, Philomina; Leke, Robert J. I.; Quakyi, Isabella A.; Chen, John J.; Taylor, Diane Wallace

    2014-01-01

    In pregnant women, Plasmodium falciparum-infected erythrocytes expressing the VAR2CSA antigen bind to chondroitin sulfate A in the placenta causing placental malaria. The binding site of VAR2CSA is present in the ID1-ID2a region. This study sought to determine if pregnant Cameroonian women naturally acquire antibodies to ID1-ID2a and if antibodies to ID1-ID2a correlate with absence of placental malaria at delivery. Antibody levels to full-length VAR2CSA and ID1-ID2a were measured in plasma samples from 745 pregnant Cameroonian women, 144 Cameroonian men, and 66 US subjects. IgM levels and IgG avidity to ID1-ID2a were also determined. As expected, antibodies to ID1-ID2a were absent in US controls. Although pregnant Cameroonian women developed increasing levels of antibodies to full-length VAR2CSA during pregnancy, no increase in either IgM or IgG to ID1-ID2a was observed. Surprisingly, no differences in antibody levels to ID1-ID2a were detected between Cameroonian men and pregnant women. For example, in rural settings only 8–9% of males had antibodies to full-length VAR2CSA, but 90–96% had antibodies to ID1-ID2a. In addition, no significant difference in the avidity of IgG to ID1-ID2a was found between pregnant women and Cameroonian men, and no correlation between antibody levels at delivery and absence of placental malaria was found. Thus, the response to ID1-ID2a was not pregnancy specific, but predominantly against cross-reactivity epitopes, which may have been induced by other PfEMP1 antigens, malarial antigens, or microbes. Currently, ID1-ID2a is a leading vaccine candidate, since it binds to the CSA with the same affinity as the full-length molecule and elicits binding-inhibitory antibodies in animals. Further studies are needed to determine if the presence of naturally acquired cross-reactive antibodies in women living in malaria endemic countries will alter the response to ID1-ID2a following vaccination with ID1-ID2a. PMID:24505415

  5. Cloning, Sequencing, and Functional Analysis of an Iterative Type I Polyketide Synthase Gene Cluster for Biosynthesis of the Antitumor Chlorinated Polyenone Neocarzilin in “Streptomyces carzinostaticus”

    PubMed Central

    Otsuka, Miyuki; Ichinose, Koji; Fujii, Isao; Ebizuka, Yutaka

    2004-01-01

    Neocarzilins (NCZs) are antitumor chlorinated polyenones produced by “Streptomyces carzinostaticus” var. F-41. The gene cluster responsible for the biosynthesis of NCZs was cloned and characterized. DNA sequence analysis of a 33-kb region revealed a cluster of 14 open reading frames (ORFs), three of which (ORF4, ORF5, and ORF6) encode type I polyketide synthase (PKS), which consists of four modules. Unusual features of the modular organization is the lack of an obvious acyltransferase domain on modules 2 and 4 and the presence of longer interdomain regions more than 200 amino acids in length on each module. Involvement of the PKS genes in NCZ biosynthesis was demonstrated by heterologous expression of the cluster in Streptomyces coelicolor CH999, which produced the apparent NCZ biosynthetic intermediates dechloroneocarzillin A and dechloroneocarzilin B. Disruption of ORF5 resulted in a failure of NCZ production, providing further evidence that the cluster is essential for NCZ biosynthesis. Mechanistic consideration of NCZ formation indicates the iterative use of at least one module of the PKS, which subsequently releases its product by decarboxylation to generate an NCZ skeleton, possibly catalyzed by a type II thioesterase encoded by ORF7. This is a novel type I PKS system of bacterial origin for the biosynthesis of a reduced polyketide chain. Additionally, the protein encoded by ORF3, located upstream of the PKS genes, closely resembles the FADH2-dependent halogenases involved in the formation of halometabolites. The ORF3 protein could be responsible for the halogenation of NCZs, presenting a unique example of a halogenase involved in the biosynthesis of an aliphatic halometabolite. PMID:15328113

  6. Resistance to Southern Root-knot Nematode (Meloidogyne incognita) in Wild Watermelon (Citrullus lanatus var. citroides)

    PubMed Central

    Thies, Judy A.; Ariss, Jennifer J.; Kousik, Chandrasekar S.; Hassell, Richard L.; Levi, Amnon

    2016-01-01

    Southern root-knot nematode (RKN, Meloidogyne incognita) is a serious pest of cultivated watermelon (Citrullus lanatus var. lanatus) in southern regions of the United States and no resistance is known to exist in commercial watermelon cultivars. Wild watermelon relatives (Citrullus lanatus var. citroides) have been shown in greenhouse studies to possess varying degrees of resistance to RKN species. Experiments were conducted over 2 yr to assess resistance of southern RKN in C. lanatus var. citroides accessions from the U.S. Watermelon Plant Introduction Collection in an artificially infested field site at the U.S. Vegetable Laboratory in Charleston, SC. In the first study (2006), 19 accessions of C. lanatus var. citroides were compared with reference entries of Citrullus colocynthis and C. lanatus var. lanatus. Of the wild watermelon accessions, two entries exhibited significantly less galling than all other entries. Five of the best performing C. lanatus var. citroides accessions were evaluated with and without nematicide at the same field site in 2007. Citrullus lanatus var. citroides accessions performed better than C. lanatus var. lanatus and C. colocynthis. Overall, most entries of C. lanatus var. citroides performed similarly with and without nematicide treatment in regard to root galling, visible egg masses, vine vigor, and root mass. In both years of field evaluations, most C. lanatus var. citroides accessions showed lesser degrees of nematode reproduction and higher vigor and root mass than C. colocynthis and C. lanatus var. lanatus. The results of these two field evaluations suggest that wild watermelon populations may be useful sources of resistance to southern RKN. PMID:27168648

  7. Resistance to Southern Root-knot Nematode (Meloidogyne incognita) in Wild Watermelon (Citrullus lanatus var. citroides).

    PubMed

    Thies, Judy A; Ariss, Jennifer J; Kousik, Chandrasekar S; Hassell, Richard L; Levi, Amnon

    2016-03-01

    Southern root-knot nematode (RKN, Meloidogyne incognita) is a serious pest of cultivated watermelon (Citrullus lanatus var. lanatus) in southern regions of the United States and no resistance is known to exist in commercial watermelon cultivars. Wild watermelon relatives (Citrullus lanatus var. citroides) have been shown in greenhouse studies to possess varying degrees of resistance to RKN species. Experiments were conducted over 2 yr to assess resistance of southern RKN in C. lanatus var. citroides accessions from the U.S. Watermelon Plant Introduction Collection in an artificially infested field site at the U.S. Vegetable Laboratory in Charleston, SC. In the first study (2006), 19 accessions of C. lanatus var. citroides were compared with reference entries of Citrullus colocynthis and C. lanatus var. lanatus. Of the wild watermelon accessions, two entries exhibited significantly less galling than all other entries. Five of the best performing C. lanatus var. citroides accessions were evaluated with and without nematicide at the same field site in 2007. Citrullus lanatus var. citroides accessions performed better than C. lanatus var. lanatus and C. colocynthis. Overall, most entries of C. lanatus var. citroides performed similarly with and without nematicide treatment in regard to root galling, visible egg masses, vine vigor, and root mass. In both years of field evaluations, most C. lanatus var. citroides accessions showed lesser degrees of nematode reproduction and higher vigor and root mass than C. colocynthis and C. lanatus var. lanatus. The results of these two field evaluations suggest that wild watermelon populations may be useful sources of resistance to southern RKN.

  8. Using ClinVar as a Resource to Support Variant Interpretations

    PubMed Central

    Harrison, Steven M.; Riggs, Erin R.; Maglott, Donna R.; Lee, Jennifer M.; Azzariti, Danielle R.; Niehaus, Annie; Ramos, Erin M.; Martin, Christa L.; Landrum, Melissa J.; Rehm, Heidi L.

    2016-01-01

    ClinVar is a freely accessible, public archive of reports of the relationships among genomic variants and phenotypes. To facilitate evaluation of the clinical significance of each variant, ClinVar aggregates submissions of the same variant, displays supporting data from each submission, and determines if the submitted clinical interpretations are conflicting or concordant. The unit describes how to (1) identify sequence and structural variants of interest in ClinVar with by multiple searching approaches, including Variation Viewer and (2) understand the display of submissions to ClinVar and the evidence supporting each interpretation. By following this protocol, ClinVar users will be able to learn how to incorporate the wealth of resources and knowledge in ClinVar into variant curation and interpretation. PMID:27037489

  9. Quantitative proteomics reveals the importance of nitrogen source to control glucosinolate metabolism in Arabidopsis thaliana and Brassica oleracea

    PubMed Central

    Marino, Daniel; Ariz, Idoia; Lasa, Berta; Santamaría, Enrique; Fernández-Irigoyen, Joaquín; González-Murua, Carmen; Aparicio Tejo, Pedro M.

    2016-01-01

    Accessing different nitrogen (N) sources involves a profound adaptation of plant metabolism. In this study, a quantitative proteomic approach was used to further understand how the model plant Arabidopsis thaliana adjusts to different N sources when grown exclusively under nitrate or ammonium nutrition. Proteome data evidenced that glucosinolate metabolism was differentially regulated by the N source and that both TGG1 and TGG2 myrosinases were more abundant under ammonium nutrition, which is generally considered to be a stressful situation. Moreover, Arabidopsis plants displayed glucosinolate accumulation and induced myrosinase activity under ammonium nutrition. Interestingly, these results were also confirmed in the economically important crop broccoli (Brassica oleracea var. italica). Moreover, these metabolic changes were correlated in Arabidopsis with the differential expression of genes from the aliphatic glucosinolate metabolic pathway. This study underlines the importance of nitrogen nutrition and the potential of using ammonium as the N source in order to stimulate glucosinolate metabolism, which may have important applications not only in terms of reducing pesticide use, but also for increasing plants’ nutritional value. PMID:27085186

  10. A benchmark study of scoring methods for non-coding mutations.

    PubMed

    Drubay, Damien; Gautheret, Daniel; Michiels, Stefan

    2018-05-15

    Detailed knowledge of coding sequences has led to different candidate models for pathogenic variant prioritization. Several deleteriousness scores have been proposed for the non-coding part of the genome, but no large-scale comparison has been realized to date to assess their performance. We compared the leading scoring tools (CADD, FATHMM-MKL, Funseq2 and GWAVA) and some recent competitors (DANN, SNP and SOM scores) for their ability to discriminate assumed pathogenic variants from assumed benign variants (using the ClinVar, COSMIC and 1000 genomes project databases). Using the ClinVar benchmark, CADD was the best tool for detecting the pathogenic variants that are mainly located in protein coding gene regions. Using the COSMIC benchmark, FATHMM-MKL, GWAVA and SOMliver outperformed the other tools for pathogenic variants that are typically located in lincRNAs, pseudogenes and other parts of the non-coding genome. However, all tools had low precision, which could potentially be improved by future non-coding genome feature discoveries. These results may have been influenced by the presence of potential benign variants in the COSMIC database. The development of a gold standard as consistent as ClinVar for these regions will be necessary to confirm our tool ranking. The Snakemake, C++ and R codes are freely available from https://github.com/Oncostat/BenchmarkNCVTools and supported on Linux. damien.drubay@gustaveroussy.fr or stefan.michiels@gustaveroussy.fr. Supplementary data are available at Bioinformatics online.

  11. Communities of arbuscular mycorrhizal fungi in the roots of Pyrus pyrifolia var. culta (Japanese pear) in orchards with variable amounts of soil-available phosphorus.

    PubMed

    Yoshimura, Yuko; Ido, Akifumi; Iwase, Koji; Matsumoto, Teruyuki; Yamato, Masahide

    2013-01-01

    We examined the colonization rate and communities of arbuscular mycorrhizal fungi (AMF) in the roots of Pyrus pyrifolia var. culta (Japanese pear) in orchards to investigate the effect of phosphorus (P) fertilization on AMF. Soil cores containing the roots of Japanese pear were collected from 13 orchards in Tottori Prefecture, Japan. Soil-available P in the examined orchards was 75.7 to 1,200 mg kg(-1), showing the extreme accumulation of soil P in many orchards. The AMF colonization rate was negatively correlated with soil-available P (P <0.01). AMF communities were examined on the basis of the partial fungal DNA sequences of the nuclear small-subunit ribosomal RNA gene (SSU rDNA) amplified by AMF-specific primers AML1 and AML2. The obtained AMF sequences were divided into 14 phylotypes, and the number of phylotypes (species richness) was also negatively correlated with soil-available P (P <0.05). It was also suggested that some AM fungi may be adapted to high soil-available P conditions. Redundancy analysis showed the significant effects of soil pH, available P in soil, and P content in leaves of P. pyrifolia var. culta trees on AMF distribution. These results suggested that the accumulation of soil-available P affected AMF communities in the roots of Japanese pear in the orchard environment.

  12. Overproduction, purification and crystallization of a chondroitin sulfate A-binding DBL domain from a Plasmodium falciparum var2csa-encoded PfEMP1 protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, Matthew K., E-mail: mkh20@cam.ac.uk

    A chondroitin sulfate A-binding DBL important in placental malaria has been overproduced, purified and crystallized. Diffraction data were collected to 1.9 Å resolution. The PfEMP1 proteins of the malaria parasite Plasmodium falciparum are inserted into the membrane of infected red blood cells, where they mediate adhesion to a variety of human receptors. The DBL domains of the var2csa-encoded PfEMP1 protein play a critical role in malaria of pregnancy, tethering infected cells to the surface of the placenta through interactions with the glycosaminoglycan carbohydrate chondroitin sulfate A (CSA). A CSA-binding DBL domain has been overproduced in a bacterial expression system, purifiedmore » and crystallized. Native data sets extending to 1.9 Å resolution have been collected and phasing is under way.« less

  13. A Preliminary Study of Genetic Variation in Populations of Monstera adansonii var. klotzschiana (Araceae) from North-East Brazil, Estimated with AFLP Molecular Markers

    PubMed Central

    Andrade, I. M.; Mayo, S. J.; van den Berg, C.; Fay, M. F.; Chester, M.; Lexer, C.; Kirkup, D.

    2007-01-01

    Background and Aims This study sought genetic evidence of long-term isolation in populations of Monstera adansonii var. klotzschiana (Araceae), a herbaceous, probably outbreeding, humid forest hemi-epiphyte, in the brejo forests of Ceará (north-east Brazil), and clarification of their relationships with populations in Amazonia and the Atlantic forest of Brazil. Methods Within-population genetic diversity and between-population dissimilarity were estimated using AFLP molecular markers in 75 individuals from eight populations located in Ceará, the Brazilian Atlantic Forest and Amazonia. Key Results The populations showed a clinal pattern of weak genetic differentiation over a large geographical region (FST = 0·1896). A strong correlation between genetic and geographical distance (Mantel test: r = 0·6903, P = 0·002) suggests a historical pattern of isolation by distance. Genetic structure analysis revealed at least two distinct gene pools in the data. The two isolated Ceará populations are significantly different from each other (pairwise ΦPT = 0·137, P = 0·003) and as diverse (Nei's gene diversity, average He = 0·1832, 0·1706) as those in the Atlantic and Amazon forest regions. The population in southern Brazil is less diverse (Nei's gene diversity, average He = 0·127) than the rest. The Ceará populations are related to those of the Atlantic forest rather than those from Amazonia (AMOVA, among-groups variation = 11·95 %, P = 0·037). Conclusions The gene pools detected within an overall pattern of clinal variation suggest distinct episodes of gene flow, possibly correlated with past humid forest expansions. The Ceará populations show no evidence of erosion of genetic diversity, although this was expected because of their isolation. Their genetic differentiation and relatively high diversity reinforce the importance of conserving the endangered brejo forests. PMID:17823112

  14. Morphogenic Regulators Baby boom and Wuschel Improve Monocot Transformation.

    PubMed

    Lowe, Keith; Wu, Emily; Wang, Ning; Hoerster, George; Hastings, Craig; Cho, Myeong-Je; Scelonge, Chris; Lenderts, Brian; Chamberlin, Mark; Cushatt, Josh; Wang, Lijuan; Ryan, Larisa; Khan, Tanveer; Chow-Yiu, Julia; Hua, Wei; Yu, Maryanne; Banh, Jenny; Bao, Zhongmeng; Brink, Kent; Igo, Elizabeth; Rudrappa, Bhojaraja; Shamseer, P M; Bruce, Wes; Newman, Lisa; Shen, Bo; Zheng, Peizhong; Bidney, Dennis; Falco, S Carl; RegisterIII, James C; Zhao, Zuo-Yu; Xu, Deping; Jones, Todd J; Gordon-Kamm, William James

    2016-09-06

    While transformation of the major monocot crops is currently possible, the process typically remains confined to one or two genotypes per species, often with poor agronomics, and efficiencies that place these methods beyond the reach of most academic laboratories. Here, we report a transformation approach involving overexpression of the maize (Zea mays) Baby boom (Bbm) and maize Wuschel2 (Wus2) genes, which produced high transformation frequencies in numerous previously non-transformable maize inbred lines. For example, the Pioneer inbred PHH5G is recalcitrant to biolistic and Agrobacterium transformation. However, when Bbm and Wus2 were expressed, transgenic calli were recovered from over 40% of the starting explants, with most producing healthy, fertile plants. Another limitation for many monocots is the intensive labor and greenhouse space required to supply immature embryos for transformation. This problem could be alleviated by using alternative target tissues that could be supplied consistently with automated preparation. As a major step toward this objective, we transformed Bbm and Wus2 directly into either embryo slices from mature seed or leaf segments from seedlings in a variety of Pioneer inbred lines, routinely recovering healthy, fertile T0 plants. Finally, we demonstrated that the maize Bbm and Wus2 genes stimulate transformation in sorghum (Sorghum bicolor) immature embryos, sugarcane (Saccharum officinarum) callus, and indica rice (Oryza sativa var. indica) callus. {copyright, serif} 2016 American Society of Plant Biologists. All rights reserved.

  15. OsSUV3 transgenic rice maintains higher endogenous levels of plant hormones that mitigates adverse effects of salinity and sustains crop productivity.

    PubMed

    Sahoo, Ranjan Kumar; Ansari, Mohammad Wahid; Tuteja, Renu; Tuteja, Narendra

    2014-01-01

    The SUV3 (suppressor of Var 3) gene encodes a DNA and RNA helicase, which is localized in the mitochondria. Plant SUV3 has not yet been characterized in detail. However, the Arabidopsis ortholog of SUV3 (AT4G14790) has been shown to be involved in embryo sac development. Previously, we have reported that rice SUV3 functions as DNA and RNA helicase and provides salinity stress tolerance by maintaining photosynthesis and antioxidant machinery. Here, we report further analysis of the transgenic OsSUV3 rice plants under salt stress. The transgenic OsSUV3 overexpressing rice T1 lines showed significantly higher endogenous content of plant hormones viz., gibberellic acid (GA3), zeatin (Z) and indole-3-acetic acid (IAA) in leaf, stem and root as compared to wild-type (WT), vector control (VC) and antisense (AS) plants under salt (200 mM NaCl) stress condition. A similar trend of endogenous plant hormones profile was also reflected in the T2 generation of OsSUV3 transgenic rice under defined parameters and stress condition. In response to stress, OsSUV3 rice plants maintained plant hormone levels that regulate the expression of several stress-induced genes and reduce adverse effects of salt on plant growth and development and therefore sustains crop productivity.

  16. Isolation, characterization, and structure analysis of a vacuolar processing enzyme gene (MhVPEγ) from Malus hupehensis (Pamp) Rehd.

    PubMed

    Ran, Kun; Yang, Hongqiang; Sun, Xiaoli; Li, Qiang; Jiang, Qianqian; Zhang, Weiwei; Shen, Wei

    2014-05-01

    Vacuolar processing enzymes (VPEs) have received considerable attention recently, as they exhibit caspase-1-like cleavage activity and regulate the process of PCD. However, knowledge about their detailed characteristics and structures is relatively limited. In this study, a gamma vacuolar processing enzyme gene, MhVPEγ, has been isolated from the leaves of Malus hupehensis (Ramp) Rehd. var pinyiensis Jiang. MhVPEγ coded-translated protein sequence comprised of 494 amino acids with a signal peptide and a transmembrane helix structure at N-terminal, peptidase_C13 domain, and vacuolar sorting signal at C-terminal. Consequently, genomic walking approach was performed for the isolation of its upstream sequence. Computational analysis demonstrated several motifs of the promoter exhibiting hypothetic MeJA, ABA, and light-induced characteristics, as well as some typical domains universally discovered in promoter, such as TATA-box and CAAT-box. MhVPEγ transcript level was enhanced during wounding treatment, and WUN-motif, as one of the cis-acting regulatory elements existing in the upstream sequence perhaps regulates its expression. In silico-constructed 3D models revealed that MhCPYL successively interacts with MhVPEγ like that of "Induced Fit-Lock and Key" model, providing molecular conformation evidence that CPY is a direct substrate of VPEγ. This study is the first stride to understand the molecular mechanism of VPEγ and CPYL interactions.

  17. Intra-dialytic blood oxygen saturation (SO2): association with dialysis hypotension (the SOGLIA Study).

    PubMed

    Mancini, E; Perazzini, C; Gesualdo, L; Aucella, F; Limido, A; Scolari, F; Savoldi, S; Tramonti, M; Corazza, L; Atti, M; Severi, S; Bolasco, P; Santoro, A

    2017-12-01

    Intradialytic hypotension (IDH) has a dramatic impact on the main outcomes of dialysis patients. Early warning of hemodynamic worsening during dialysis would enable preventive measures to be taken. Blood oxygen saturation (SO 2 ) is used for hemodynamic monitoring in the critical care setting and may provide useful information about IDH onset. To evaluate whether short- and medium-term variations in the SO 2 signal (ST-SO 2var , MT-SO 2var ,) during dialysis are a predictor of IDH. In this 3-month observational cohort study, 51 hypotension-prone chronic hemodialysis (HD) patients, with vascular access by arteriovenous fistula (AVF) or central venous catheter (CVC), were enrolled. Continuous non-invasive blood SO 2 was monitored (fc = 0.2 Hz) by an optical sensor on the arterial line of the extracorporeal circulation; blood pressure (every 30 min), symptoms and their time of appearance were noted. Predictive power of IDH was expressed by the area under curve (AUC) sensitivity and specificity based on intradialytic variations in SO 2 . A total of 1290 HD sessions were analyzed. Overall, off-line ST-SO 2var analysis proved able to correctly predict IDH in 67 % of the sessions where IDH occurred. The best predictive performance was found in the presence of highly arterialized AVF (SO 2  > 95 %) (75 % sensitivity; AUC 0.825; p < 0.05). On the contrary, in sessions with CVC, IDH prediction proved more efficient by MT-SO 2var (AUC 0.575; p = 0.01). Intradialytic SO 2 variability could be a valid parameter to detect in advance the hemodynamic worsening that precedes IDH. Appropriate timely intervention could help prevent IDH onset.

  18. iVAR: a program for imputing missing data in multivariate time series using vector autoregressive models.

    PubMed

    Liu, Siwei; Molenaar, Peter C M

    2014-12-01

    This article introduces iVAR, an R program for imputing missing data in multivariate time series on the basis of vector autoregressive (VAR) models. We conducted a simulation study to compare iVAR with three methods for handling missing data: listwise deletion, imputation with sample means and variances, and multiple imputation ignoring time dependency. The results showed that iVAR produces better estimates for the cross-lagged coefficients than do the other three methods. We demonstrate the use of iVAR with an empirical example of time series electrodermal activity data and discuss the advantages and limitations of the program.

  19. JAK signaling globally counteracts heterochromatic gene silencing.

    PubMed

    Shi, Song; Calhoun, Healani C; Xia, Fan; Li, Jinghong; Le, Long; Li, Willis X

    2006-09-01

    The JAK/STAT pathway has pleiotropic roles in animal development, and its aberrant activation is implicated in multiple human cancers. JAK/STAT signaling effects have been attributed largely to direct transcriptional regulation by STAT of specific target genes that promote tumor cell proliferation or survival. We show here in a Drosophila melanogaster hematopoietic tumor model, however, that JAK overactivation globally disrupts heterochromatic gene silencing, an epigenetic tumor suppressive mechanism. This disruption allows derepression of genes that are not direct targets of STAT, as evidenced by suppression of heterochromatin-mediated position effect variegation. Moreover, mutations in the genes encoding heterochromatin components heterochromatin protein 1 (HP1) and Su(var)3-9 enhance tumorigenesis induced by an oncogenic JAK kinase without affecting JAK/STAT signaling. Consistently, JAK loss of function enhances heterochromatic gene silencing, whereas overexpressing HP1 suppresses oncogenic JAK-induced tumors. These results demonstrate that the JAK/STAT pathway regulates cellular epigenetic status and that globally disrupting heterochromatin-mediated tumor suppression is essential for tumorigenesis induced by JAK overactivation.

  20. JAK signaling globally counteracts heterochromatic gene silencing

    PubMed Central

    Shi, Song; Calhoun, Healani C; Xia, Fan; Li, Jinghong; Le, Long; Li, Willis X

    2011-01-01

    The JAK/STAT pathway has pleiotropic roles in animal development, and its aberrant activation is implicated in multiple human cancers1–3. JAK/STAT signaling effects have been attributed largely to direct transcriptional regulation by STAT of specific target genes that promote tumor cell proliferation or survival. We show here in a Drosophila melanogaster hematopoietic tumor model, however, that JAK overactivation globally disrupts heterochromatic gene silencing, an epigenetic tumor suppressive mechanism4. This disruption allows derepression of genes that are not direct targets of STAT, as evidenced by suppression of heterochromatin-mediated position effect variegation. Moreover, mutations in the genes encoding heterochromatin components heterochromatin protein 1 (HP1) and Su(var)3-9 enhance tumorigenesis induced by an oncogenic JAK kinase without affecting JAK/STAT signaling. Consistently, JAK loss of function enhances heterochromatic gene silencing, whereas overexpressing HP1 suppresses oncogenic JAK-induced tumors. These results demonstrate that the JAK/STAT pathway regulates cellular epigenetic status and that globally disrupting heterochromatin-mediated tumor suppression is essential for tumorigenesis induced by JAK overactivation. PMID:16892059

  1. AFLP Phylogeny of 36 Erythroxylum species- genetic relationships among Erythroxylum species inferred by AFLP analysis

    USDA-ARS?s Scientific Manuscript database

    The plant genus Erythroxylum is known for four cultivated taxa, Erythroxylum coca var. coca (Ecc), Erythroxylum coca var. ipadu (Eci), Erythroxylum novogranatense var. novogranatense (Enn) and Erythroxylum novogranatense var. truxillense (Ent) that are cultivated primarily for the illicit extraction...

  2. Comparative Transcriptome Analysis between Broccoli (Brassica oleracea var. italica) and Wild Cabbage (Brassica macrocarpa Guss.) in Response to Plasmodiophora brassicae during Different Infection Stages.

    PubMed

    Zhang, Xiaoli; Liu, Yumei; Fang, Zhiyuan; Li, Zhansheng; Yang, Limei; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao

    2016-01-01

    Clubroot, one of the most devastating diseases to the Brassicaceae family, is caused by the obligate biotrophic pathogen Plasmodiophora brassicae . However, studies of the molecular basis of disease resistance are still poor especially in quantitative resistance. In the present paper, two previously identified genotypes, a clubroot-resistant genotype (wild cabbage, B2013) and a clubroot-susceptible genotype (broccoli, 90196) were inoculated by P. brassicae for 0 (T0), 7 (T7), and 14 (T14) day after inoculation (DAI). Gene expression pattern analysis suggested that response changes in transcript level of two genotypes under P. brassicae infection were mainly activated at the primary stage (T7). Based on the results of DEGs functional enrichments from two infection stages, genes associated with cell wall biosynthesis, glucosinolate biosynthesis, and plant hormone signal transduction showed down-regulated at T14 compared to T7, indicating that defense responses to P. brassicae were induced earlier, and related pathways were repressed at T14. In addition, the genes related to NBS-LRR proteins, SA signal transduction, cell wall and phytoalexins biosynthesis, chitinase, Ca 2+ signals and RBOH proteins were mainly up-regulated in B2013 by comparing those of 90196, indicating the pathways of response defense to clubroot were activated in the resistant genotype. This is the first report about comparative transcriptome analysis for broccoli and its wild relative during the different stages of P. brassicae infection and the results should be useful for molecular assisted screening and breeding of clubroot-resistant genotypes.

  3. Comparative Transcriptome Analysis between Broccoli (Brassica oleracea var. italica) and Wild Cabbage (Brassica macrocarpa Guss.) in Response to Plasmodiophora brassicae during Different Infection Stages

    PubMed Central

    Zhang, Xiaoli; Liu, Yumei; Fang, Zhiyuan; Li, Zhansheng; Yang, Limei; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao

    2016-01-01

    Clubroot, one of the most devastating diseases to the Brassicaceae family, is caused by the obligate biotrophic pathogen Plasmodiophora brassicae. However, studies of the molecular basis of disease resistance are still poor especially in quantitative resistance. In the present paper, two previously identified genotypes, a clubroot-resistant genotype (wild cabbage, B2013) and a clubroot-susceptible genotype (broccoli, 90196) were inoculated by P. brassicae for 0 (T0), 7 (T7), and 14 (T14) day after inoculation (DAI). Gene expression pattern analysis suggested that response changes in transcript level of two genotypes under P. brassicae infection were mainly activated at the primary stage (T7). Based on the results of DEGs functional enrichments from two infection stages, genes associated with cell wall biosynthesis, glucosinolate biosynthesis, and plant hormone signal transduction showed down-regulated at T14 compared to T7, indicating that defense responses to P. brassicae were induced earlier, and related pathways were repressed at T14. In addition, the genes related to NBS-LRR proteins, SA signal transduction, cell wall and phytoalexins biosynthesis, chitinase, Ca2+ signals and RBOH proteins were mainly up-regulated in B2013 by comparing those of 90196, indicating the pathways of response defense to clubroot were activated in the resistant genotype. This is the first report about comparative transcriptome analysis for broccoli and its wild relative during the different stages of P. brassicae infection and the results should be useful for molecular assisted screening and breeding of clubroot-resistant genotypes. PMID:28066482

  4. [Construction of genetic linkage map and localization of NBS-LRR like resistance gene analogues in cauliflower (Brassica oleracea var. botrytis)].

    PubMed

    Gu, Yu; Zhao, Qian-Cheng; Sun, De-Ling; Song, Wen-Qin

    2007-06-01

    Nucleotide binding site (NBS) profiling, a new method was used to map resistance gene analogues (RGAs) in cauliflower (Brassica oleracea var. botrytis). This method allows amplification and the mapping of genetic markers anchored in the conserved NBS encoding domain of plant disease resistance genes. AFLP was also performed to construct the cauliflower intervarietal genetic map. The aim of constructing genetic map was to identify potential molecular markers linked to important agronomic traits that would be particularly useful for development and improving the species. Using 17 AFLP primer combinations and two degeneration primer/enzyme combinations, a total of 234 AFLP markers and 21 NBS markers were mapped in the F2 population derived from self-pollinating a single F1 plant of the cross AD White Flower x C-8. The markers were mapped in 9 of major linkage groups spanning 668.4 cM, with an average distance of 2.9 cM between adjacent mapped markers. The AFLP markers were well distributed throughout the linkage groups. The linkage groups contained from 12 to 47 loci each and the distance between two consecutive loci ranged from 0 to 14.9 cM. NBS markers were mapped on 8 of the 9 linkage groups of the genetic map. Most of these markers were organized in clusters. This result demonstrates the feasibility of the NBS-profiling method for generating NBS markers for resistance loci in cauliflower. The clustering of the markers mapped in this study adds to the evidence that most of them could be real RGAs.

  5. Efficient and stable transformation of hop (Humulus lupulus L.) var. Eroica by particle bombardment.

    PubMed

    Batista, Dora; Fonseca, Sandra; Serrazina, Susana; Figueiredo, Andreia; Pais, Maria Salomé

    2008-07-01

    To the best of our knowledge, this is the first accurate and reliable protocol for hop (Humulus lupulus L.) genetic transformation using particle bombardment. Based on the highly productive regeneration system previously developed by us for hop var. Eroica, two efficient transformation protocols were established using petioles and green organogenic nodular clusters (GONCs) bombarded with gusA reporter and hpt selectable genes. A total of 36 hygromycin B-resistant (hyg(r)) plants obtained upon continuous selection were successfully transferred to the greenhouse, and a first generation group of transplanted plants was followed after spending a complete vegetative cycle. PCR analysis showed the presence of one of both transgenes in 25 plants, corresponding to an integration frequency of 69.4% and an overall transformation efficiency of 7.5%. Although all final transformants were GUS negative, the integration frequency of gusA gene was higher than that of hpt gene. Petiole-derived transgenic plants showed a higher co-integration rate of 76.9%. Real-time PCR analysis confirmed co-integration in 86% of the plants tested and its stability until the first generation, and identified positive plants amongst those previously assessed as hpt (+) only by conventional PCR. Our results suggest that the integration frequencies presented here, as well as those of others, may have been underestimated, and that PCR results should be taken with precaution not only for false positives, but also for false negatives. The protocols here described could be very useful for future introduction of metabolic or resistance traits in hop cultivars even if slight modifications for other genotypes are needed.

  6. IVS-II-648/649 (-T) (HBB: c.316-202del) Triggers a Novel β-Thalassemia Phenotype.

    PubMed

    Azimi, Azam; Alibakhshi, Reza; Hayati, Hasibeh; Tahmasebi, Soosan; Alimoradi, Sasan

    2017-01-01

    Thalassemia is the most common inherited disorder in Iran. There are approximately 800 different genomic alterations of the β-globin gene described in the HbVar database. In this study, we identified a novel mutation in a 21-year-old woman [IVS-II-648/649 (-T); HBB: c.316-202del)] and describe its clinical implications. Two other members of this family, all with hematological and clinical features associated with β-thalassemia (β-thal), also carried this mutation. The molecular diagnosis of the β-globin gene mutation was performed by direct sequencing. Based on the observed β-thal phenotype and in silico analysis results, we concluded that this novel β-globin gene mutation was associated with the mild phenotype of β-thal.

  7. Insights into Resistance to Fe Deficiency Stress from a Comparative Study of In Vitro-Selected Novel Fe-Efficient and Fe-Inefficient Potato Plants

    PubMed Central

    Boamponsem, Georgina A.; Leung, David W. M.; Lister, Carolyn

    2017-01-01

    Iron (Fe) deficiency induces chlorosis (IDC) in plants and can result in reduced plant productivity. Therefore, development of Fe-efficient plants is of great interest. To gain a better understanding of the physiology of Fe-efficient plants, putative novel plant variants were regenerated from potato (Solanum tubersosum L. var. ‘Iwa’) callus cultures selected under Fe deficient or low Fe supply (0–5 μM Fe). Based on visual chlorosis rating (VCR), 23% of callus-derived regenerants were classified as Fe-efficient (EF) and 77% as Fe-inefficient (IFN) plant lines when they were grown under Fe deficiency conditions. Stem height was found to be highly correlated with internodal distance, leaf and root lengths in the EF plant lines grown under Fe deficiency conditions. In addition, compared to the IFN plant lines and control parental biotype, the EF plants including the lines named A1, B2, and B9, exhibited enhanced formation of lateral roots and root hairs as well as increased expression of ferritin (fer3) in the leaf and iron-regulated transporter (irt1) in the root. These morphological adaptations and changes in expression the fer3 and irt1 genes of the selected EF potato lines suggest that they are associated with resistance to low Fe supply stress. PMID:28955367

  8. Suppression of cotton leaf curl disease symptoms in Gossypium hirsutum through over expression of host-encoded miRNAs.

    PubMed

    Akmal, Mohd; Baig, Mirza S; Khan, Jawaid A

    2017-12-10

    Cotton leaf curl disease (CLCuD), a major factor resulting in the enormous yield losses in cotton crop, is caused by a distinct monopartite begomovirus in association with Cotton leaf curl Multan betasatellite (CLCuMB). Micro(mi)RNAs are known to regulate gene expression in eukaryotes, including antiviral defense in plants. In a previous study, we had computationally identified a set of cotton miRNAs, which were shown to have potential targets in the genomes of Cotton leaf curl Multan virus (CLCuMuV) and CLCuMB at multiple loci. In the current study, effect of Gossypium arboreum-encoded miRNAs on the genome of CLCuMuV and CLCuMB was investigated in planta. Two computationally predicted cotton-encoded miRNAs (miR398 and miR2950) that showed potential to bind multiple Open Reading Frames (ORFs; C1, C4, V1, and non- coding intergenic region) of CLCuMuV, and (βC1) of CLCuMB were selected. Functional validation of miR398 and miR2950 was done by overexpression approach in G. hirsutum var. HS6. A total of ten in vitro cotton plants were generated from independent events and subjected to biological and molecular analyses. Presence of the respective Precursor (pre)-miRNA was confirmed through PCR and Southern blotting, and their expression level was assessed by semi quantitative RT-PCR, Real Time quantitative PCR and northern hybridization in the PCR-positive lines. Southern hybridization revealed 2-4 copy integration of T-DNA in the genome of the transformed lines. Remarkably, expression of pre-miRNAs was shown up to 5.8-fold higher in the transgenic (T 0 ) lines as revealed by Real Time PCR. The virus resistance was monitored following inoculation of the transgenic cotton lines with viruliferous whitefly (Bemisia tabaci) insect vector. After inoculation, four of the transgenic lines remained apparently symptom free. While a very low titre of viral DNA could be detected by Rolling circle amplification, betasatellite responsible for symptom induction could not be detected in any of the healthy looking transgenic lines. In this study for the first time, efficacy of the host (G. arboreum)-encoded miRNAs against CLCuD symptoms was experimentally demonstrated through overexpression of miR398 and miR2950 in G. hirsutum var. HS6 plants. Computational prediction of miRNAs targeting virus genome and their subsequent implication in translational inhibition or cleavage based suppression of viral mRNA via overexpression could help in generating virus resistant plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Vector autoregressive model approach for forecasting outflow cash in Central Java

    NASA Astrophysics Data System (ADS)

    hoyyi, Abdul; Tarno; Maruddani, Di Asih I.; Rahmawati, Rita

    2018-05-01

    Multivariate time series model is more applied in economic and business problems as well as in other fields. Applications in economic problems one of them is the forecasting of outflow cash. This problem can be viewed globally in the sense that there is no spatial effect between regions, so the model used is the Vector Autoregressive (VAR) model. The data used in this research is data on the money supply in Bank Indonesia Semarang, Solo, Purwokerto and Tegal. The model used in this research is VAR (1), VAR (2) and VAR (3) models. Ordinary Least Square (OLS) is used to estimate parameters. The best model selection criteria use the smallest Akaike Information Criterion (AIC). The result of data analysis shows that the AIC value of VAR (1) model is equal to 42.72292, VAR (2) equals 42.69119 and VAR (3) equals 42.87662. The difference in AIC values is not significant. Based on the smallest AIC value criteria, the best model is the VAR (2) model. This model has satisfied the white noise assumption.

  10. Systematics of Juniperus section Juniperus based on leaf essential oils and random amplified polymorphic DNAs (RAPDs).

    PubMed

    Adams

    2000-07-01

    The composition of the leaf essential oils of all the species of Juniperus in sect. Juniperus (=sect. Oxycedrus) are reported and compared (J. brevifolia, J. cedrus, J. communis, J. c. var. saxatilis, J. c. var. oblonga, J. formosana, J. oxycedrus, J. o. subsp. badia, J. o. subsp. macrocarpa, J. o. subsp. transtagana, J. rigida, J. r. subsp. conferta, J. sibirica, J. taxifolia and J. t. var. lutchuensis). In addition, DNA fingerprinting by RAPDs was utilized. Based on these data, several taxa remained at the same taxonomic level: J. brevifolia, J. cedrus, J. communis, J. c. var. saxatilis, J. formosana, J. oxycedrus, J. rigida, J. r. var. conferta, and J. taxifolia. However, several taxa exhibited considerable differentiation that warranted their recognition at the specific level: J. oblonga M.-Bieb. (=J. communis var. oblonga), J. badia H. Gay (=J. oxycedrus subsp. badia), J. macrocarpa Sibth. and Sm. (=J. oxycedrus subsp. macrocarpa), J. navicularis Gand. (=J. oxycedrus subsp. transtagana), J. sibirica Brugsd. (=J. communis var. saxatilis in part), and J. lutchuensis Koidz. (= J. taxifolia var. lutchuensis).

  11. A Two-Dimensional Variational Analysis Method for NSCAT Ambiguity Removal: Methodology, Sensitivity, and Tuning

    NASA Technical Reports Server (NTRS)

    Hoffman, R. N.; Leidner, S. M.; Henderson, J. M.; Atlas, R.; Ardizzone, J. V.; Bloom, S. C.; Atlas, Robert (Technical Monitor)

    2001-01-01

    In this study, we apply a two-dimensional variational analysis method (2d-VAR) to select a wind solution from NASA Scatterometer (NSCAT) ambiguous winds. 2d-VAR determines a "best" gridded surface wind analysis by minimizing a cost function. The cost function measures the misfit to the observations, the background, and the filtering and dynamical constraints. The ambiguity closest in direction to the minimizing analysis is selected. 2d-VAR method, sensitivity and numerical behavior are described. 2d-VAR is compared to statistical interpolation (OI) by examining the response of both systems to a single ship observation and to a swath of unique scatterometer winds. 2d-VAR is used with both NSCAT ambiguities and NSCAT backscatter values. Results are roughly comparable. When the background field is poor, 2d-VAR ambiguity removal often selects low probability ambiguities. To avoid this behavior, an initial 2d-VAR analysis, using only the two most likely ambiguities, provides the first guess for an analysis using all the ambiguities or the backscatter data. 2d-VAR and median filter selected ambiguities usually agree. Both methods require horizontal consistency, so disagreements occur in clumps, or as linear features. In these cases, 2d-VAR ambiguities are often more meteorologically reasonable and more consistent with satellite imagery.

  12. [Effect of Water Extracts from Rhizosphere Soil of Cultivated Astragalus membranaceus var. mongholicus on It's Seed Germination and Physiological Characteristics].

    PubMed

    Lang, Duo-yong; Fu, Xue-yan; Rong, Jia-wang; Zhang, Xin-hui

    2015-01-01

    To explore the relationship between continuous cropping obstacle and autotoxicity of Astragalus membranaceus var. mongholicus. Distilled water(CK), water extracts of rhizosphere soil(50, 100, 200 and 400 mg/mL) were applied to test their effect on early growth and physiological characteristics of Astragalus membranaceus var. mongholicus. The water extracts from rhizospher soil of cultivated Astragalus membranaceus var. mongholicus significantly increased seedling emergence rate, root length and vigor index of Astragalus membranaceus var. mongholicus seedling when at the concentration of 100 mg/mL or below, however,there was no significant effect at 200 mg/mL or higher. The water extracts from rhizosphere soil of cultivated Astragalus membranaceus var. mongholicus significantly reduced the SOD activity in Astragalus membranaceus var. mongholicus seedling at 400 mg/mL and POD activity at 200 mg/mL and 400 mg/mL,while significantly increased the MDA content. Water extracts from Astragalus membranaceus var. mongholicus rhizosphere soil significantly affected Astragalus membranaceus var. mongholicus germination and seedling growth in a concentration-dependent manner, generally, low concentrations increased the SOD and POD activity which improved seed germination and seedling growth, while high concentrations caused cell membrane damage of the seedling.

  13. Knowledge, Attitude and Practice of Pregnant Women towards Varicella and Their Children’s Varicella Vaccination: Evidence from Three Distrcits in Zhejiang Province, China

    PubMed Central

    Hu, Yu; Chen, Yaping; Wang, Ying; Liang, Hui

    2017-01-01

    Background: The objectives of this study were to examine the knowledge, attitudes and practice (KAP) towards varicella and varicella vaccine (VarV) vaccination among pregnant women in three distrcits in Zhejiang Province, China. Methods: From 1 January to 31 March 2014, pregnant women with ≥12 gestational weeks were recruited and received a self-administrated questionnaire. The first dose of VarV (VarV1) vaccination status of children from present pregnancy was extracted at 24 months of age from Zhejiang provincial immunization information system (ZJIIS). Three variables was defined as the main outcomes, which included: (1) knowing about both the availability of VarV and the number of doses required; (2) positive attitude towards the utility of varicella vaccination; (3) the vaccination coverage of VarV1, which meant the proportion of children having received the VarV1. Counts and proportions were used to describe the socio-demographic characteristics of study participants, and their relationship with study outcomes were tested using chi-square tests in univariate analysis and logistic regression in multivariable analysis. Results: A total of 629 pregnant women participated in this study. The majority of the participants (68.0%) answered correctly about the transmission route of varicella. The proportion of participants who heard about varicella vaccination was 76.5% and 66.8% knew that VarV was currently available. Only 13.5% of the participants answered correctly that the complete VarV series needed two doses. Age, immigration status, education level, household income, and number of children of the pregnant women were significant predictors of the KAP regarding the VarV vaccination. Conclusions: The current survey indicated that optimal KAP levels and coverage on VarV vaccination were observed in three districts of Zhejiang Province. Health education programs on varicella and VarV vaccination directed towards both pre-natal and post-natal women are needed, which will result in a better attitude on vaccination of VarV and in a high coverage of VarV. PMID:28946647

  14. Crassostrea gigas mortality in France: the usual suspect, a herpes virus, may not be the killer in this polymicrobial opportunistic disease.

    PubMed

    Petton, Bruno; Bruto, Maxime; James, Adèle; Labreuche, Yannick; Alunno-Bruscia, Marianne; Le Roux, Frédérique

    2015-01-01

    Successive disease outbreaks in oyster (Crassostrea gigas) beds in France have resulted in dramatic losses in production, and subsequent decline in the oyster-farming industry. Deaths of juvenile oysters have been associated with the presence of a herpes virus (OsHV-1 μvar) and bacterial populations of the genus Vibrio. Although the pathogenicity of OsHV-1 μvar, as well as several strains of Vibrio has been demonstrated by experimental infections, our understanding of the complexity of infections occurring in the natural environment remains limited. In the present study, we use specific-pathogen-free (SPF) oysters infected in an estuarine environment to study the diversity and dynamics of cultured microbial populations during disease expression. We observe that rapid Vibrio colonization followed by viral replication precedes oyster death. No correlation was found between the vibrio concentration and viral load in co-infected animals. We show that the quantity of viral DNA is a predictor of mortality, however, in the absence of bacteria, a high load of herpes virus is not sufficient to induce the full expression of the disease. In addition, we demonstrate that juvenile mortalities can occur in the absence of herpes virus, indicating that the herpes virus appears neither essential nor sufficient to cause juvenile deaths; whereas bacteria are necessary for the disease. Finally, we demonstrate that oysters are a reservoir of putative pathogens, and that the geographic origin, age, and cultivation method of oysters influence disease expression.

  15. Assessing signatures of selection through variation in linkage disequilibrium between taurine and indicine cattle

    PubMed Central

    2014-01-01

    Background Signatures of selection are regions in the genome that have been preferentially increased in frequency and fixed in a population because of their functional importance in specific processes. These regions can be detected because of their lower genetic variability and specific regional linkage disequilibrium (LD) patterns. Methods By comparing the differences in regional LD variation between dairy and beef cattle types, and between indicine and taurine subspecies, we aim at finding signatures of selection for production and adaptation in cattle breeds. The VarLD method was applied to compare the LD variation in the autosomal genome between breeds, including Angus and Brown Swiss, representing taurine breeds, and Nelore and Gir, representing indicine breeds. Genomic regions containing the top 0.01 and 0.1 percentile of signals were characterized using the UMD3.1 Bos taurus genome assembly to identify genes in those regions and compared with previously reported selection signatures and regions with copy number variation. Results For all comparisons, the top 0.01 and 0.1 percentile included 26 and 165 signals and 17 and 125 genes, respectively, including TECRL, BT.23182 or FPPS, CAST, MYOM1, UVRAG and DNAJA1. Conclusions The VarLD method is a powerful tool to identify differences in linkage disequilibrium between cattle populations and putative signatures of selection with potential adaptive and productive importance. PMID:24592996

  16. Mutant selection in the self-incompatible plant radish (Raphanus sativus L. var. sativus) using two-step TILLING

    PubMed Central

    Kohzuma, Kaori; Chiba, Motoko; Nagano, Soichiro; Anai, Toyoaki; Ueda, Miki U.; Oguchi, Riichi; Shirai, Kazumasa; Hanada, Kousuke; Hikosaka, Kouki; Fujii, Nobuharu

    2017-01-01

    Radish (Raphanus sativus L. var. sativus), a widely cultivated root vegetable crop, possesses a large sink organ (the root), implying that photosynthetic activity in radish can be enhanced by altering both the source and sink capacity of the plant. However, since radish is a self-incompatible plant, improved mutation-breeding strategies are needed for this crop. TILLING (Targeting Induced Local Lesions IN Genomes) is a powerful method used for reverse genetics. In this study, we developed a new TILLING strategy involving a two-step mutant selection process for mutagenized radish plants: the first selection is performed to identify a BC1M1 line, that is, progenies of M1 plants crossed with wild-type, and the second step is performed to identify BC1M1 individuals with mutations. We focused on Rubisco as a target, since Rubisco is the most abundant plant protein and a key photosynthetic enzyme. We found that the radish genome contains six RBCS genes and one pseudogene encoding small Rubisco subunits. We screened 955 EMS-induced BC1M1 lines using our newly developed TILLING strategy and obtained six mutant lines for the six RsRBCS genes, encoding proteins with four different types of amino acid substitutions. Finally, we selected a homozygous mutant and subjected it to physiological measurements. PMID:28744180

  17. Cryptococcosis

    MedlinePlus

    C. neoformans var. neoformans infection; C. neoformans var. gatti infection; C. neoformans var. grubii infection ... C. neoformans and C. gattii are the fungi that cause this disease. Infection with C. neoformans is ...

  18. Over-expression of StZFP2 in Solanum tuberosum L. var. Kennebec (potato) inhibits growth of tobacco hornworm larvae (THW, Manduca sexta L.)

    USDA-ARS?s Scientific Manuscript database

    Tobacco hornworm (Manduca sexta, THW) is a voracious pest of Solanaceous plants such as tomato and potato. Finding new approaches to enhance protection against this pest in potato has led to investigating transcription factors (TF) that are induced upon insect infestation. StZFP2 is a Q-type C2H2 z...

  19. Identification and characterization of microRNAs related to salt stress in broccoli, using high-throughput sequencing and bioinformatics analysis.

    PubMed

    Tian, Yunhong; Tian, Yunming; Luo, Xiaojun; Zhou, Tao; Huang, Zuoping; Liu, Ying; Qiu, Yihan; Hou, Bing; Sun, Dan; Deng, Hongyu; Qian, Shen; Yao, Kaitai

    2014-09-03

    MicroRNAs (miRNAs) are a new class of endogenous regulators of a broad range of physiological processes, which act by regulating gene expression post-transcriptionally. The brassica vegetable, broccoli (Brassica oleracea var. italica), is very popular with a wide range of consumers, but environmental stresses such as salinity are a problem worldwide in restricting its growth and yield. Little is known about the role of miRNAs in the response of broccoli to salt stress. In this study, broccoli subjected to salt stress and broccoli grown under control conditions were analyzed by high-throughput sequencing. Differential miRNA expression was confirmed by real-time reverse transcription polymerase chain reaction (RT-PCR). The prediction of miRNA targets was undertaken using the Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology (KO) database and Gene Ontology (GO)-enrichment analyses. Two libraries of small (or short) RNAs (sRNAs) were constructed and sequenced by high-throughput Solexa sequencing. A total of 24,511,963 and 21,034,728 clean reads, representing 9,861,236 (40.23%) and 8,574,665 (40.76%) unique reads, were obtained for control and salt-stressed broccoli, respectively. Furthermore, 42 putative known and 39 putative candidate miRNAs that were differentially expressed between control and salt-stressed broccoli were revealed by their read counts and confirmed by the use of stem-loop real-time RT-PCR. Amongst these, the putative conserved miRNAs, miR393 and miR855, and two putative candidate miRNAs, miR3 and miR34, were the most strongly down-regulated when broccoli was salt-stressed, whereas the putative conserved miRNA, miR396a, and the putative candidate miRNA, miR37, were the most up-regulated. Finally, analysis of the predicted gene targets of miRNAs using the GO and KO databases indicated that a range of metabolic and other cellular functions known to be associated with salt stress were up-regulated in broccoli treated with salt. A comprehensive study of broccoli miRNA in relation to salt stress has been performed. We report significant data on the miRNA profile of broccoli that will underpin further studies on stress responses in broccoli and related species. The differential regulation of miRNAs between control and salt-stressed broccoli indicates that miRNAs play an integral role in the regulation of responses to salt stress.

  20. Identification of the protective effects of traditional medicinal plants against SDS-induced Drosophila gut damage.

    PubMed

    Zhou, Yang; Liu, Zonglin; Chen, Yuchen; Jin, Li Hua

    2016-10-01

    Traditional medicinal plants are widely used as immunomodulatory medicines that help improve health. A total of 50 different plants used for the treatment of toxicity were screened for their in vivo protective effects. Flies were fed a standard cornmeal-yeast medium (control group) or the standard medium containing medicinal plant extracts (experimental groups). Assessment of the survival rate was performed by feeding flies with toxic compounds. Gut epithelial cells were analyzed for cell proliferation and death by green fluorescent protein antibodies and 7-aminoactinomycin D staining under the microscope. The expression of antimicrobial peptides (AMPs) was evaluated by the quantitative polymerase chain reaction and the results revealed that after feeding the flies with toxic compounds, aqueous extracts from Codonopsis pilosula (Franch.) Nannf ( C. pilosula ), Saussurea lappa (Decne.) C.B.Clarke ( S. lappa ), Imperata cylindrica Beauv.var. major (Nees) C.E. Hubb. ( I. cylindrical var. major ) and Melia toosendan Sied. Et Zucc. ( M.toosendan ) increased the fly survival rate, reduced epithelial cell death and improved gut morphology. In addition, C. pilosula extracts induced the antimicrobial peptide levels (Dpt and Mtk) following treatment with sodium dodecyl sulfate (SDS). However, these extracts were not observed to increase SDS-induced cell proliferation in vivo . These results indicate that there are strong protective effects in extracts of C. pilosula , S. lappa , I. cylindrical var. major and M. toosendan on Drosophila intestinal cells among 50 medicinal plants.

  1. Antibody levels to recombinant VAR2CSA domains vary with Plasmodium falciparum parasitaemia, gestational age, and gravidity, but do not predict pregnancy outcomes.

    PubMed

    Fried, Michal; Kurtis, Jonathan D; Swihart, Bruce; Morrison, Robert; Pond-Tor, Sunthorn; Barry, Amadou; Sidibe, Youssoufa; Keita, Sekouba; Mahamar, Almahamoudou; Andemel, Naissem; Attaher, Oumar; Dembele, Adama B; Cisse, Kadidia B; Diarra, Bacary S; Kanoute, Moussa B; Narum, David L; Dicko, Alassane; Duffy, Patrick E

    2018-03-09

    Maternal malaria is a tropical scourge associated with poor pregnancy outcomes. Women become resistant to Plasmodium falciparum pregnancy malaria as they acquire antibodies to the variant surface antigen VAR2CSA, a leading vaccine candidate. Because malaria infection may increase VAR2CSA antibody levels and thereby confound analyses of immune protection, gravidity-dependent changes in antibody levels during and after infection, and the effect of VAR2CSA antibodies on pregnancy outcomes were evaluated. Pregnant women enrolled in a longitudinal cohort study of mother-infant pairs in Ouelessebougou, Mali provided plasma samples at enrollment, gestational week 30-32, and delivery. Antibody levels to VAR2CSA domains were measured using a multiplex bead-based assay. Antibody levels to VAR2CSA were higher in multigravidae than primigravidae. Malaria infection was associated with increased antibody levels to VAR2CSA domains. In primigravidae but not in secundigravidae or multigravidae, antibodies levels sharply declined after an infection. A relationship between any VAR2CSA antibody specificity and protection from adverse pregnancy outcomes was not detected. During malaria infection, primigravidae acquire short-lived antibodies. The lack of an association between VAR2CSA domain antibody reactivity and improved pregnancy outcomes suggests that the recombinant proteins may not present native epitopes targeted by protective antibodies.

  2. VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research

    PubMed Central

    Lai, Zhongwu; Markovets, Aleksandra; Ahdesmaki, Miika; Chapman, Brad; Hofmann, Oliver; McEwen, Robert; Johnson, Justin; Dougherty, Brian; Barrett, J. Carl; Dry, Jonathan R.

    2016-01-01

    Abstract Accurate variant calling in next generation sequencing (NGS) is critical to understand cancer genomes better. Here we present VarDict, a novel and versatile variant caller for both DNA- and RNA-sequencing data. VarDict simultaneously calls SNV, MNV, InDels, complex and structural variants, expanding the detected genetic driver landscape of tumors. It performs local realignments on the fly for more accurate allele frequency estimation. VarDict performance scales linearly to sequencing depth, enabling ultra-deep sequencing used to explore tumor evolution or detect tumor DNA circulating in blood. In addition, VarDict performs amplicon aware variant calling for polymerase chain reaction (PCR)-based targeted sequencing often used in diagnostic settings, and is able to detect PCR artifacts. Finally, VarDict also detects differences in somatic and loss of heterozygosity variants between paired samples. VarDict reprocessing of The Cancer Genome Atlas (TCGA) Lung Adenocarcinoma dataset called known driver mutations in KRAS, EGFR, BRAF, PIK3CA and MET in 16% more patients than previously published variant calls. We believe VarDict will greatly facilitate application of NGS in clinical cancer research. PMID:27060149

  3. 4D-Var Developement at GMAO

    NASA Technical Reports Server (NTRS)

    Pelc, Joanna S.; Todling, Ricardo; Akkraoui, Amal El

    2014-01-01

    The Global Modeling and Assimilation Offce (GMAO) is currently using an IAU-based 3D-Var data assimilation system. GMAO has been experimenting with a 3D-Var-hybrid version of its data assimilation system (DAS) for over a year now, which will soon become operational and it will rapidly progress toward a 4D-EnVar. Concurrently, the machinery to exercise traditional 4DVar is in place and it is desirable to have a comparison of the traditional 4D approach with the other available options, and evaluate their performance in the Goddard Earth Observing System (GEOS) DAS. This work will also explore the possibility for constructing a reduced order model (ROM) to make traditional 4D-Var computationally attractive for increasing model resolutions. Part of the research on ROM will be to search for a suitably acceptable space to carry on the corresponding reduction. This poster illustrates how the IAU-based 4D-Var assimilation compares with our currently used IAU-based 3D-Var.

  4. Isolation of Cryptococcus neoformans var. gattii from Eucalyptus camaldulensis in India.

    PubMed Central

    Chakrabarti, A; Jatana, M; Kumar, P; Chatha, L; Kaushal, A; Padhye, A A

    1997-01-01

    Cryptococcus neoformans var. gattii has an ecological association with five Eucalyptus species: E. blakelyi, E. camaldulensis, E. gomphocephala, E. rudis, and E. tereticornis. After human infections due to C. neoformans var. gattii were diagnosed in the states of Punjab, Himachal Pradesh, and Karnataka, India, a study was undertaken to investigate the association of C. neoformans var. gattii with Indian eucalypts, especially in the state of Punjab. A total of 696 specimens collected from E. camaldulensis, E. citriodora and E. tereticornis (hybrid) trees were examined for the presence of C. neoformans var. gattii. Flowers from two trees of E. camaldulensis in the Chak Sarkar forest and one from the village of Periana near the Ferozepur area yielded five isolates of C. neoformans var. gattii. The origin of the trees could be traced to Australia, thus providing evidence that the distribution of E. camaldulensis correlated with the distribution of human cryptococcosis cases caused by C. neoformans var. gattii in northern India. PMID:9399553

  5. Arundina graminifolia var. revoluta (Arethuseae, Orchidaceae) has fern-type rheophyte characteristics in the leaves.

    PubMed

    Yorifuji, Eri; Ishikawa, Naoko; Okada, Hiroshi; Tsukaya, Hirokazu

    2015-03-01

    Morphological and molecular variation between Arundina graminifolia var. graminifolia and the dwarf variety, A. graminifolia var. revoluta, was examined to assess the validity of their taxonomic characteristics and genetic background for identification. Morphological analysis in combination with field observations indicated that A. graminifolia var. revoluta is a rheophyte form of A. graminifolia characterized by narrow leaves, whereas the other morphological characteristics described for A. graminifolia var. revoluta, such as smaller flowers and short stems, were not always accompanied by the narrower leaf phenotype. Molecular analysis based on matK sequences indicated that only partial differentiation has occurred between A. graminifolia var. graminifolia and A. graminifolia var. revoluta. Therefore, we should consider the rheophyte form an ecotype rather than a variety. Anatomical observations of the leaves revealed that the rheophyte form of A. graminifolia possessed characteristics of the rheophytes of both ferns and angiosperms, such as narrower palisade tissue cells and thinner spongy tissue cells, as well as fewer cells in the leaf-width direction and fewer mesophyll cell layers.

  6. Empirical analysis on future-cash arbitrage risk with portfolio VaR

    NASA Astrophysics Data System (ADS)

    Chen, Rongda; Li, Cong; Wang, Weijin; Wang, Ze

    2014-03-01

    This paper constructs the positive arbitrage position by alternating the spot index with Chinese Exchange Traded Fund (ETF) portfolio and estimating the arbitrage-free interval of futures with the latest trade data. Then, an improved Delta-normal method was used, which replaces the simple linear correlation coefficient with tail dependence correlation coefficient, to measure VaR (Value-at-risk) of the arbitrage position. Analysis of VaR implies that the risk of future-cash arbitrage is less than that of investing completely in either futures or spot market. Then according to the compositional VaR and the marginal VaR, we should increase the futures position and decrease the spot position appropriately to minimize the VaR, which can minimize risk subject to certain revenues.

  7. Genome-wide identification and characterization of miRNAs in the hypocotyl and cotyledon of cauliflower (Brassica oleracea L. var. botrytis) seedlings.

    PubMed

    Geng, Meijuan; Li, Hui; Jin, Chuan; Liu, Qian; Chen, Chengbin; Song, Wenqin; Wang, Chunguo

    2014-02-01

    MicroRNAs (miRNAs) are a class of small endogenous, non-coding RNAs that have key regulatory functions in plant growth, development, and other biological processes. Hypocotyl and cotyledon are the two major tissues of cauliflower (Brassica oleracea L. var. botrytis) seedlings. Tissue culture experiments have indicated that the regenerative abilities of these two tissues are significantly different. However, the characterization of miRNAs and their roles in regulating organ development in cauliflower remain unexplored. In the present study, two small RNA libraries were sequenced by Solexa sequencing technology. 99 known miRNAs belonging to 28 miRNA families were identified, in which 6 miRNA families were detected only in Brassicaceae. A total of 162 new miRNA sequences with single nucleotide substitutions corresponding to the known miRNAs, and 32 potentially novel miRNAs were also first discovered. Comparative analysis indicated that 42 of 99 known miRNAs and 17 of 32 novel miRNAs exhibited significantly differential expression between hypocotyl and cotyledon, and the differential expression of several miRNAs was further validated by stem-loop RT-PCR. In addition, 235 targets for 89 known miRNAs and 198 targets for 24 novel miRNAs were predicted, and their functions were further discussed. The expression patterns of several representative targets were also confirmed by qRT-PCR analysis. The results identified that the transcriptional expression patterns of miRNAs were negatively correlated with their targets. These findings gave new insights into the characteristics of miRNAs in cauliflower, and provided important clues to elucidate the roles of miRNAs in the tissue differentiation and development of cauliflower.

  8. Ultra-Sensitive Detection of Plasmodium falciparum by Amplification of Multi-Copy Subtelomeric Targets

    PubMed Central

    Hofmann, Natalie; Mwingira, Felista; Shekalaghe, Seif; Robinson, Leanne J.; Mueller, Ivo; Felger, Ingrid

    2015-01-01

    Background Planning and evaluating malaria control strategies relies on accurate definition of parasite prevalence in the population. A large proportion of asymptomatic parasite infections can only be identified by surveillance with molecular methods, yet these infections also contribute to onward transmission to mosquitoes. The sensitivity of molecular detection by PCR is limited by the abundance of the target sequence in a DNA sample; thus, detection becomes imperfect at low densities. We aimed to increase PCR diagnostic sensitivity by targeting multi-copy genomic sequences for reliable detection of low-density infections, and investigated the impact of these PCR assays on community prevalence data. Methods and Findings Two quantitative PCR (qPCR) assays were developed for ultra-sensitive detection of Plasmodium falciparum, targeting the high-copy telomere-associated repetitive element 2 (TARE-2, ∼250 copies/genome) and the var gene acidic terminal sequence (varATS, 59 copies/genome). Our assays reached a limit of detection of 0.03 to 0.15 parasites/μl blood and were 10× more sensitive than standard 18S rRNA qPCR. In a population cross-sectional study in Tanzania, 295/498 samples tested positive using ultra-sensitive assays. Light microscopy missed 169 infections (57%). 18S rRNA qPCR failed to identify 48 infections (16%), of which 40% carried gametocytes detected by pfs25 quantitative reverse-transcription PCR. To judge the suitability of the TARE-2 and varATS assays for high-throughput screens, their performance was tested on sample pools. Both ultra-sensitive assays correctly detected all pools containing one low-density P. falciparum–positive sample, which went undetected by 18S rRNA qPCR, among nine negatives. TARE-2 and varATS qPCRs improve estimates of prevalence rates, yet other infections might still remain undetected when absent in the limited blood volume sampled. Conclusions Measured malaria prevalence in communities is largely determined by the sensitivity of the diagnostic tool used. Even when applying standard molecular diagnostics, prevalence in our study population was underestimated by 8% compared to the new assays. Our findings highlight the need for highly sensitive tools such as TARE-2 and varATS qPCR in community surveillance and for monitoring interventions to better describe malaria epidemiology and inform malaria elimination efforts. PMID:25734259

  9. Phytochemical characterization of several hawthorn (Crataegus spp.) species sampled from the Eastern Mediterranean region of Turkey.

    PubMed

    Calişkan, Oğuzhan; Gündüz, Kazim; Serçe, Sedat; Toplu, Celil; Kamiloğlu, Onder; Sengül, Memnune; Ercişli, Sezai

    2012-01-01

    We evaluated the total phenolic content, antioxidant capacity as well as antioxidant activity of five Crataegus species (A1, A2, Y1, Y2, Y4 accessions of Crataegus aronia var. aronia; B2, B3, B5, B6, B7, B9, Y5 accessions of C. aronia var. dentata; B10 accession of C. aronia var. minuta; Y3 accession of Crataegus orientalis var. orientalis and A3 accession of Crataegus monogyna subsp. azarella). Antioxidant activity and total phenolic content of fruits were determined by β-carotene bleaching and Folin-Ciocalteu assays. Antioxidant capacity was determined by using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. C. monogyna subsp. azarella had the highest total phenol, antioxidant activity and antioxidant capacity of 55.2 mg gallic acid equivalents (GAE)/g dry weight (DW), 81.9% and 31.2%, respectively. C. aronia var. aronia was found to have the lowest total phenolic content (35.7 mg GAE/g DW). The antioxidant activities of fruit extracts increased in the order of C. orientalis var. orientalis < C. aronia var. minuta < C. aronia var. dentata < C. aronia var. aronia < C. monogyna subsp. azarella according to β-carotene/linoleic acid assay. In recent years, C. aronia var. dentata has gained importance as a commercial species in this region. B3 and B7 accessions had fruit weight more than 14 g, and considerable total phenol content, antioxidant activity and antioxidant capacity. This investigation shows the potential value of hawthorn fruit species as a good source of natural antioxidants and that consumption of hawthorn fruit or its products may contribute substantial amounts of antioxidants to the diet.

  10. Phytochemical characterization of several hawthorn (Crataegus spp.) species sampled from the Eastern Mediterranean region of Turkey

    PubMed Central

    Çalişkan, Oğuzhan; Gündüz, Kazim; Serçe, Sedat; Toplu, Celil; Kamiloğlu, Önder; Şengül, Memnune; Ercişli, Sezai

    2012-01-01

    Background: We evaluated the total phenolic content, antioxidant capacity as well as antioxidant activity of five Crataegus species (A1, A2, Y1, Y2, Y4 accessions of Crataegus aronia var. aronia; B2, B3, B5, B6, B7, B9, Y5 accessions of C. aronia var. dentata; B10 accession of C. aronia var. minuta; Y3 accession of Crataegus orientalis var. orientalis and A3 accession of Crataegus monogyna subsp. azarella). Materials and Methods: Antioxidant activity and total phenolic content of fruits were determined by β-carotene bleaching and Folin–Ciocalteu assays. Antioxidant capacity was determined by using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Results: C. monogyna subsp. azarella had the highest total phenol, antioxidant activity and antioxidant capacity of 55.2 mg gallic acid equivalents (GAE)/g dry weight (DW), 81.9% and 31.2%, respectively. C. aronia var. aronia was found to have the lowest total phenolic content (35.7 mg GAE/g DW). The antioxidant activities of fruit extracts increased in the order of C. orientalis var. orientalis < C. aronia var. minuta < C. aronia var. dentata < C. aronia var. aronia < C. monogyna subsp. azarella according to β-carotene/linoleic acid assay. In recent years, C. aronia var. dentata has gained importance as a commercial species in this region. B3 and B7 accessions had fruit weight more than 14 g, and considerable total phenol content, antioxidant activity and antioxidant capacity. Conclusion: This investigation shows the potential value of hawthorn fruit species as a good source of natural antioxidants and that consumption of hawthorn fruit or its products may contribute substantial amounts of antioxidants to the diet. PMID:22438658

  11. Comparative Analysis of VaR Estimation of Double Long-Memory GARCH Models: Empirical Analysis of China's Stock Market

    NASA Astrophysics Data System (ADS)

    Cao, Guangxi; Guo, Jianping; Xu, Lin

    GARCH models are widely used to model the volatility of financial assets and measure VaR. Based on the characteristics of long-memory and lepkurtosis and fat tail of stock market return series, we compared the ability of double long-memory GARCH models with skewed student-t-distribution to compute VaR, through the empirical analysis of Shanghai Composite Index (SHCI) and Shenzhen Component Index (SZCI). The results show that the ARFIMA-HYGARCH model performance better than others, and at less than or equal to 2.5 percent of the level of VaR, double long-memory GARCH models have stronger ability to evaluate in-sample VaRs in long position than in short position while there is a diametrically opposite conclusion for ability of out-of-sample VaR forecast.

  12. Influence ofArtemisia princeps var.orientalis components on callus induction and growth.

    PubMed

    Kil, B S; Yun, K W; Lee, S Y

    1992-08-01

    An in vitro study was performed to determine the potential application of tissue culture in determining allelopathic potentialof Artemisia princeps var.Orientalis (wormwood). Aqueous extracts and volatile substances ofA. princeps var.Orientalis were tested to determine their effects on callus induction and growth of several tested species. Extracts of 5%A. princeps var.Orientalis caused some reduction in concentration, induction, and growth of callus, although they looked normal, whereas the expiants of most receptor plants did not develop callus at higher concentration. Lettuce andEclipta prostrata were the most sensitive species, andA. princeps var.Orientalis was affected by its own extracts. The growth of calluses in MS 121 medium treated with essential oil ofA. princeps var.Orientalis was inhibited, and the degree of inhibition was proportional to the concentration of the essential oil.

  13. Biofilm monitoring using complex permittivity.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altman, Susan Jeanne; McGrath, Lucas K.; Dolan, Patricia L.

    2008-10-01

    There is strong interest in the detection and monitoring of bio-fouling. Bio-fouling problems are common in numerous water treatments systems, medical and dental apparatus and food processing equipment. Current bio-fouling control protocols are time consuming and costly. New early detection techniques to monitor bio-forming contaminates are means to enhanced efficiency. Understanding the unique dielectric properties of biofilm development, colony forming bacteria and nutrient background will provide a basis to the effectiveness of controlling or preventing biofilm growth. Dielectric spectroscopy measurements provide values of complex permittivity, {var_epsilon}*, of biofilm formation by applying a weak alternating electric field at various frequencies. Themore » dielectric characteristic of the biofilm, {var_epsilon}{prime}, is the real component of {var_epsilon}* and measures the biofilm's unique ability to store energy. Graphically observed dependencies of {var_epsilon}{prime} to frequency indicate dielectric relaxation or dielectric dispersion behaviors that mark the particular stage of progression during the development of biofilms. In contrast, any frequency dependency of the imaginary component, {var_epsilon}{double_prime} the loss factor, is expressed as dielectric losses from the biofilm due to dipole relaxation. The tangent angle of these two component vectors is the ratio of the imaginary component to the real component, {var_epsilon}{double_prime}/{var_epsilon}{prime} and is referred to as the loss angle tangent (tan {delta}) or dielectric loss. Changes in tan {delta} are characteristic of changes in dielectric losses during various developmental stages of the films. Permittivity scans in the above figure are of biofilm growth from P. Fluorescens (10e7 CFU's at the start). Three trends are apparent from these scans, the first being a small drop in the imaginary permittivity over a 7 hours period, best seen in the Cole-Cole plot (a). The second trend is observed two hours after inoculation when the permittivity begins to increase slightly over the next 20 hours, best seen in the shift from 1000 Hz to 5000 Hz in tan {delta} at the high frequencies (c). Because of similar dielectric relaxation properties noted by the comparable size of the semicircles, plot (a), and the height of tan {delta}, plot (c), within the first 29 hours, cell activity levels did not appreciably change. The third trend is observed when the complex permittivity value drops by orders of magnitude between 29 hours and 37 hours, best seen in the log [E] plot (b), and in the drop of the dielectric loss, tan {delta}, to 0. This change in the dielectric properties in the bio environment is nearly independent of all frequencies (c) and dissimilar from the original condition when only bacteria and nutrient was present in the biofilm chambers. The semicircles in plot (a) for this period decreased below the resolution of the graph, implying a large difference in the dielectric behavior of the cells/biofilms consisting of low dielectric losses. We believe these large changes are related to the on-set of biofilms.« less

  14. Draft Genome Sequence of Pantoea ananatis Strain 1.38, a Bacterium Isolated from the Rhizosphere of Oryza sativa var. Puntal That Shows Biotechnological Potential as an Inoculant

    PubMed Central

    Megías, Esaú; dos Reis Junior, Fábio Bueno; Ribeiro, Renan Augusto; Ollero, Francisco Javier; Megías, Manuel

    2018-01-01

    ABSTRACT Pantoea ananatis 1.38 is a strain isolated from the rhizosphere of irrigated rice in southern Spain. Its genome was estimated at 4,869,281 bp, with 4,644 coding sequences (CDSs). The genome encompasses several CDSs related to plant growth promotion, such as that for siderophore metabolism, and virulence genes characteristic of pathogenic Pantoea spp. are absent. PMID:29371365

  15. Diversity and genetic structure of the Mexican endemic epiphyte Tillandsia achyrostachys E. Morr. ex Baker var. achyrostachys (Bromeliaceae).

    PubMed

    González-Astorga, Jorge; Cruz-Angón, Andrea; Flores-Palacios, Alejandro; Vovides, Andrew P

    2004-10-01

    The monoecious, bird-pollinated epiphytic Tillandsia achyrostachys E. Morr. ex Baker var. achyrostachys is an endemic bromeliad of the tropical dry forests of Mexico with clonal growth. In the Sierra de Huautla Natural Reserve this species shows a host preference for Bursera copallifera (Sessé & Moc ex. DC) Bullock. As a result of deforestation in the study area, B. copallifera has become a rare tree species in the remaining forest patches. This human-induced disturbance has directly affected the population densities of T. achyrostachys. In this study the genetic consequences of habitat fragmentation were assessed by comparing the genetic diversity, gene flow and genetic differentiation in six populations of T. achyrostachys in the Sierra de Huautla Natural Reserve, Mexico. Allozyme electrophoresis of sixteen loci (eleven polymorphic and five monomorphic) were used. The data were analysed with standard statistical approximations for obtaining diversity, genetic structure and gene flow. Genetic diversity and allelic richness were: HE = 0.21 +/- 0.02, A = 1.86 +/- 0.08, respectively. F-statistics revealed a deficiency of heterozygous plants in all populations (Fit = 0.65 +/- 0.02 and Fis = 0.43 +/- 0.06). Significant genetic differentiation between populations was detected (Fst = 0.39 +/- 0.07). Average gene flow between pairs of populations was relatively low and had high variation (Nm = 0.46 +/- 0.21), which denotes a pattern of isolation by distance. The genetic structure of populations of T. achyrostachys suggests that habitat fragmentation has reduced allelic richness and genetic diversity, and increased significant genetic differentiation (by approx. 40 %) between populations. The F-statistic values (>0) and the level of gene flow found suggest that habitat fragmentation has broken up the former population structure. In this context, it is proposed that the host trees of T. achyrostachys should be considered as a conservation priority, since they represent the limiting factor to bromeliad population growth and connectivity.

  16. Pollen-mediated gene flow and fine-scale spatial genetic structure in Olea europaea subsp. europaea var. sylvestris

    PubMed Central

    Piotti, A.; Satovic, Z.; de la Rosa, R.; Belaj, A.

    2017-01-01

    Abstract Background and Aims Wild olive (Olea europaea subsp. europaea var. sylvestris) is important from an economic and ecological point of view. The effects of anthropogenic activities may lead to the genetic erosion of its genetic patrimony, which has high value for breeding programmes. In particular, the consequences of the introgression from cultivated stands are strongly dependent on the extent of gene flow and therefore this work aims at quantitatively describing contemporary gene flow patterns in wild olive natural populations. Methods The studied wild population is located in an undisturbed forest, in southern Spain, considered one of the few extant hotspots of true oleaster diversity. A total of 225 potential father trees and seeds issued from five mother trees were genotyped by eight microsatellite markers. Levels of contemporary pollen flow, in terms of both pollen immigration rates and within-population dynamics, were measured through paternity analyses. Moreover, the extent of fine-scale spatial genetic structure (SGS) was studied to assess the relative importance of seed and pollen dispersal in shaping the spatial distribution of genetic variation. Key Results The results showed that the population under study is characterized by a high genetic diversity, a relatively high pollen immigration rate (0·57), an average within-population pollen dispersal of about 107 m and weak but significant SGS up to 40 m. The population is a mosaic of several intermingled genetic clusters that is likely to be generated by spatially restricted seed dispersal. Moreover, wild oleasters were found to be self-incompatible and preferential mating between some genotypes was revealed. Conclusions Knowledge of the within-population genetic structure and gene flow dynamics will lead to identifying possible strategies aimed at limiting the effect of anthropogenic activities and improving breeding programmes for the conservation of olive tree forest genetic resources. PMID:28028015

  17. Pollen-mediated gene flow and fine-scale spatial genetic structure in Olea europaea subsp. europaea var. sylvestris.

    PubMed

    Beghè, D; Piotti, A; Satovic, Z; de la Rosa, R; Belaj, A

    2017-03-01

    Wild olive ( Olea europaea subsp. europaea var. sylvestris ) is important from an economic and ecological point of view. The effects of anthropogenic activities may lead to the genetic erosion of its genetic patrimony, which has high value for breeding programmes. In particular, the consequences of the introgression from cultivated stands are strongly dependent on the extent of gene flow and therefore this work aims at quantitatively describing contemporary gene flow patterns in wild olive natural populations. The studied wild population is located in an undisturbed forest, in southern Spain, considered one of the few extant hotspots of true oleaster diversity. A total of 225 potential father trees and seeds issued from five mother trees were genotyped by eight microsatellite markers. Levels of contemporary pollen flow, in terms of both pollen immigration rates and within-population dynamics, were measured through paternity analyses. Moreover, the extent of fine-scale spatial genetic structure (SGS) was studied to assess the relative importance of seed and pollen dispersal in shaping the spatial distribution of genetic variation. The results showed that the population under study is characterized by a high genetic diversity, a relatively high pollen immigration rate (0·57), an average within-population pollen dispersal of about 107 m and weak but significant SGS up to 40 m. The population is a mosaic of several intermingled genetic clusters that is likely to be generated by spatially restricted seed dispersal. Moreover, wild oleasters were found to be self-incompatible and preferential mating between some genotypes was revealed. Knowledge of the within-population genetic structure and gene flow dynamics will lead to identifying possible strategies aimed at limiting the effect of anthropogenic activities and improving breeding programmes for the conservation of olive tree forest genetic resources. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  18. Semi-nonparametric VaR forecasts for hedge funds during the recent crisis

    NASA Astrophysics Data System (ADS)

    Del Brio, Esther B.; Mora-Valencia, Andrés; Perote, Javier

    2014-05-01

    The need to provide accurate value-at-risk (VaR) forecasting measures has triggered an important literature in econophysics. Although these accurate VaR models and methodologies are particularly demanded for hedge fund managers, there exist few articles specifically devoted to implement new techniques in hedge fund returns VaR forecasting. This article advances in these issues by comparing the performance of risk measures based on parametric distributions (the normal, Student’s t and skewed-t), semi-nonparametric (SNP) methodologies based on Gram-Charlier (GC) series and the extreme value theory (EVT) approach. Our results show that normal-, Student’s t- and Skewed t- based methodologies fail to forecast hedge fund VaR, whilst SNP and EVT approaches accurately success on it. We extend these results to the multivariate framework by providing an explicit formula for the GC copula and its density that encompasses the Gaussian copula and accounts for non-linear dependences. We show that the VaR obtained by the meta GC accurately captures portfolio risk and outperforms regulatory VaR estimates obtained through the meta Gaussian and Student’s t distributions.

  19. Overexpression of AtEDT1/HDG11 in Chinese Kale (Brassica oleracea var. alboglabra) Enhances Drought and Osmotic Stress Tolerance

    PubMed Central

    Zhu, Zhangsheng; Sun, Binmei; Xu, Xiaoxia; Chen, Hao; Zou, Lifang; Chen, Guoju; Cao, Bihao; Chen, Changming; Lei, Jianjun

    2016-01-01

    Plants are constantly challenged by environmental stresses, including drought and high salinity. Improvement of drought and osmotic stress tolerance without yield decrease has been a great challenge in crop improvement. The Arabidopsis ENHANCED DROUGHT TOLERANCE1/HOMEODOMAIN GLABROUS11 (AtEDT1/HDG11), a protein of the class IV HD-Zip family, has been demonstrated to significantly improve drought tolerance in Arabidopsis, rice, and pepper. Here, we report that AtEDT1/HDG11 confers drought and osmotic stress tolerance in the Chinese kale. AtEDT1/HDG11-overexpression lines exhibit auxin-overproduction phenotypes, such as long hypocotyls, tall stems, more root hairs, and a larger root system architecture. Compared with the untransformed control, transgenic lines have significantly reduced stomatal density. In the leaves of transgenic Chinese kale plants, proline (Pro) content and reactive oxygen species-scavenging enzyme activity was significantly increased after drought and osmotic stress, particularly compared to wild kale. More importantly, AtEDT1/HDG11-overexpression leads to abscisic acid (ABA) hypersensitivity, resulting in ABA inhibitor germination and induced stomatal closure. Consistent with observed phenotypes, the expression levels of auxin, ABA, and stress-related genes were also altered under both normal and/or stress conditions. Further analysis showed that AtEDT1/HDG11, as a transcription factor, can target the auxin biosynthesis gene YUCC6 and ABA response genes ABI3 and ABI5. Collectively, our results provide a new insight into the role of AtEDT1/HDG11 in enhancing abiotic stress resistance through auxin- and ABA-mediated signaling response in Chinese kale. PMID:27625663

  20. Overexpression of AtEDT1/HDG11 in Chinese Kale (Brassica oleracea var. alboglabra) Enhances Drought and Osmotic Stress Tolerance.

    PubMed

    Zhu, Zhangsheng; Sun, Binmei; Xu, Xiaoxia; Chen, Hao; Zou, Lifang; Chen, Guoju; Cao, Bihao; Chen, Changming; Lei, Jianjun

    2016-01-01

    Plants are constantly challenged by environmental stresses, including drought and high salinity. Improvement of drought and osmotic stress tolerance without yield decrease has been a great challenge in crop improvement. The Arabidopsis ENHANCED DROUGHT TOLERANCE1/HOMEODOMAIN GLABROUS11 (AtEDT1/HDG11), a protein of the class IV HD-Zip family, has been demonstrated to significantly improve drought tolerance in Arabidopsis, rice, and pepper. Here, we report that AtEDT1/HDG11 confers drought and osmotic stress tolerance in the Chinese kale. AtEDT1/HDG11-overexpression lines exhibit auxin-overproduction phenotypes, such as long hypocotyls, tall stems, more root hairs, and a larger root system architecture. Compared with the untransformed control, transgenic lines have significantly reduced stomatal density. In the leaves of transgenic Chinese kale plants, proline (Pro) content and reactive oxygen species-scavenging enzyme activity was significantly increased after drought and osmotic stress, particularly compared to wild kale. More importantly, AtEDT1/HDG11-overexpression leads to abscisic acid (ABA) hypersensitivity, resulting in ABA inhibitor germination and induced stomatal closure. Consistent with observed phenotypes, the expression levels of auxin, ABA, and stress-related genes were also altered under both normal and/or stress conditions. Further analysis showed that AtEDT1/HDG11, as a transcription factor, can target the auxin biosynthesis gene YUCC6 and ABA response genes ABI3 and ABI5. Collectively, our results provide a new insight into the role of AtEDT1/HDG11 in enhancing abiotic stress resistance through auxin- and ABA-mediated signaling response in Chinese kale.

  1. Reduced ABA Accumulation in the Root System is Caused by ABA Exudation in Upland Rice (Oryza sativa L. var. Gaoshan1) and this Enhanced Drought Adaptation.

    PubMed

    Shi, Lu; Guo, Miaomiao; Ye, Nenghui; Liu, Yinggao; Liu, Rui; Xia, Yiji; Cui, Suxia; Zhang, Jianhua

    2015-05-01

    Lowland rice (Nipponbare) and upland rice (Gaoshan 1) that are comparable under normal and moderate drought conditions showed dramatic differences in severe drought conditions, both naturally occurring long-term drought and simulated rapid water deficits. We focused on their root response and found that enhanced tolerance of upland rice to severe drought conditions was mainly due to the lower level of ABA in its roots than in those of the lowland rice. We first excluded the effect of ABA biosynthesis and catabolism on root-accumulated ABA levels in both types of rice by monitoring the expression of four OsNCED genes and two OsABA8ox genes. Next, we excluded the impact of the aerial parts on roots by suppressing leaf-biosynthesized ABA with fluridone and NDGA (nordihydroguaiaretic acid), and measuring the ABA level in detached roots. Instead, we proved that upland rice had the ability to export considerably more root-sourced ABA than lowland rice under severe drought, which improved ABA-dependent drought adaptation. The investigation of apoplastic pH in root cells and root anatomy showed that ABA leakage in the root system of upland rice was related to high apoplastic pH and the absence of Casparian bands in the sclerenchyma layer. Finally, taking some genes as examples, we predicted that different ABA levels in rice roots stimulated distinct ABA perception and signaling cascades, which influenced its response to water stress. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Discovery of precursor and mature microRNAs and their putative gene targets using high-throughput sequencing in pineapple (Ananas comosus var. comosus).

    PubMed

    Yusuf, Noor Hydayaty Md; Ong, Wen Dee; Redwan, Raimi Mohamed; Latip, Mariam Abd; Kumar, S Vijay

    2015-10-15

    MicroRNAs (miRNAs) are a class of small, endogenous non-coding RNAs that negatively regulate gene expression, resulting in the silencing of target mRNA transcripts through mRNA cleavage or translational inhibition. MiRNAs play significant roles in various biological and physiological processes in plants. However, the miRNA-mediated gene regulatory network in pineapple, the model tropical non-climacteric fruit, remains largely unexplored. Here, we report a complete list of pineapple mature miRNAs obtained from high-throughput small RNA sequencing and precursor miRNAs (pre-miRNAs) obtained from ESTs. Two small RNA libraries were constructed from pineapple fruits and leaves, respectively, using Illumina's Solexa technology. Sequence similarity analysis using miRBase revealed 579,179 reads homologous to 153 miRNAs from 41 miRNA families. In addition, a pineapple fruit transcriptome library consisting of approximately 30,000 EST contigs constructed using Solexa sequencing was used for the discovery of pre-miRNAs. In all, four pre-miRNAs were identified (MIR156, MIR399, MIR444 and MIR2673). Furthermore, the same pineapple transcriptome was used to dissect the function of the miRNAs in pineapple by predicting their putative targets in conjunction with their regulatory networks. In total, 23 metabolic pathways were found to be regulated by miRNAs in pineapple. The use of high-throughput sequencing in pineapples to unveil the presence of miRNAs and their regulatory pathways provides insight into the repertoire of miRNA regulation used exclusively in this non-climacteric model plant. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. The antitussive activity of polysaccharides from Althaea officinalis l., var. Robusta, Arctium lappa L., var. Herkules, and Prunus persica L., Batsch.

    PubMed

    Sutovska, M; Nosalova, G; Franova, S; Kardosova, A

    2007-01-01

    The therapy of pathological type of cough presents serious medical problem. The aim of experiments was to investigate polysaccacharide influence on experimentally induced cough. The purified and/or modified polysaccharides from the flowers and plants, characterized by chemical composition and molecular properties were subjected to tests for antitussive activity on cough, induced mechanically in conscious cats of both sexes. The results revealed that the tested polysaccharides exhibited statistically significant cough-suppressing activity, which was noticeably higher than that of the non-narcotic drug used in clinical practice to treat coughing. The most expressive antitussive activity was observed with the polysaccharide from marsh mallow, containing the highest proportion of the uronic acid constituent. Negative influence of the tested compounds on expectoration was negligible when compared to that of codeine. Antitussive activity of various plant polysaccharides was confirmed. These results allow ranging them among prospective antitussive agents (Tab. 2, Fig. 6, Ref. 15) Full Text (Free, PDF) www.bmj.sk.

  4. Introgression of genes for cotton leaf curl virus resistance and increased fiber strength from Gossypium stocksii into upland cotton (G. hirsutum).

    PubMed

    Nazeer, W; Ahmad, S; Mahmood, K; Tipu, A L; Mahmood, A; Zhou, B

    2014-02-21

    Cotton leaf curl virus disease is a major hurdle for successful cotton production in Pakistan. There has been considerable economic loss due to this disease during the last decade. It would be desirable to have cotton varieties resistant to this disease. We explored the possibility of transferring virus resistant genes from the wild species Gossypium stocksii into MNH-786, a cultivar of G. hirsutum. Hybridization was done under field condition at the Cotton Research Station, Multan, during 2010-11. Boll shedding was controlled by application of exogenous hormones. F1 seeds were treated with 0.03% colchicine solution for 6 h and germinated. Cytological observations at peak squaring/flowering stage showed that these plants were hexaploid, having 2n = 6x = 78 chromosomes. The F1 plants showed intermediate expression for leaf size, leaf area, petiole length, bracteole number and size, bracteole area, bracteole dentation, flower size, pedicel size, and petal number and size. Moreover it possessed high fiber strength of 54.4 g/tex, which is 54% greater than that of the check variety, i.e. MNH-786 (G. hirsutum). The F1 population did not show any symptom of CLCuVD in the field, tested by grafting with CLCuVD susceptible rootstock (var. S12). We conclude that it is possible to transfer CLCuVD resistance and high fiber strength from G. stocksii to G. hirsutum.

  5. H3.3 demarcates GC-rich coding and subtelomeric regions and serves as potential memory mark for virulence gene expression in Plasmodium falciparum

    PubMed Central

    Fraschka, Sabine Anne-Kristin; Henderson, Rob Wilhelmus Maria; Bártfai, Richárd

    2016-01-01

    Histones, by packaging and organizing the DNA into chromatin, serve as essential building blocks for eukaryotic life. The basic structure of the chromatin is established by four canonical histones (H2A, H2B, H3 and H4), while histone variants are more commonly utilized to alter the properties of specific chromatin domains. H3.3, a variant of histone H3, was found to have diverse localization patterns and functions across species but has been rather poorly studied in protists. Here we present the first genome-wide analysis of H3.3 in the malaria-causing, apicomplexan parasite, P. falciparum, which revealed a complex occupancy profile consisting of conserved and parasite-specific features. In contrast to other histone variants, PfH3.3 primarily demarcates euchromatic coding and subtelomeric repetitive sequences. Stable occupancy of PfH3.3 in these regions is largely uncoupled from the transcriptional activity and appears to be primarily dependent on the GC-content of the underlying DNA. Importantly, PfH3.3 specifically marks the promoter region of an active and poised, but not inactive antigenic variation (var) gene, thereby potentially contributing to immune evasion. Collectively, our data suggest that PfH3.3, together with other histone variants, indexes the P. falciparum genome to functionally distinct domains and contribute to a key survival strategy of this deadly pathogen. PMID:27555062

  6. Comparative study on the chemical composition, antioxidant properties and hypoglycaemic activities of two Capsicum annuum L. cultivars (Acuminatum small and Cerasiferum).

    PubMed

    Tundis, Rosa; Loizzo, Monica R; Menichini, Federica; Bonesi, Marco; Conforti, Filomena; Statti, Giancarlo; De Luca, Damiano; de Cindio, Bruno; Menichini, Francesco

    2011-09-01

    The present study aimed to evaluate for the first time the phenols, flavonoids, carotenoids, capsaicin and dihydrocapsaicin content and the antioxidant and hypoglycemic properties of Capsicum annuum var. acuminatum small and C. annuum var. cerasiferum air-dried fruits. The ethanol extract of C. annuum var. acuminatum small, characterized by the major content of total poliphenols, flavonoids, carotenoids and capsaicinoids, showed the highest radical scavenging activity (IC(50) of 152.9 μg/ml). On the contrary, C. annuum var. cerasiferum showed a significant antioxidant activity evaluated by the β-carotene bleaching test (IC(50) of 3.1 μg/ml). The lipophilic fraction of both C. annuum var. acuminatum and C. annuum var. cerasiferum exhibited an interesting and selective inhibitory activity against α-amylase (IC(50) of 6.9 and 20.1 μg/ml, respectively).

  7. Design of inhibitors of thymidylate kinase from Variola virus as new selective drugs against smallpox.

    PubMed

    Guimarães, Ana P; de Souza, Felipe R; Oliveira, Aline A; Gonçalves, Arlan S; de Alencastro, Ricardo B; Ramalho, Teodorico C; França, Tanos C C

    2015-02-16

    Recently we constructed a homology model of the enzyme thymidylate kinase from Variola virus (VarTMPK) and proposed it as a new target to the drug design against smallpox. In the present work, we used the antivirals cidofovir and acyclovir as reference compounds to choose eleven compounds as leads to the drug design of inhibitors for VarTMPK. Docking and molecular dynamics (MD) studies of the interactions of these compounds inside VarTMPK and human TMPK (HssTMPK) suggest that they compete for the binding region of the substrate and were used to propose the structures of ten new inhibitors for VarTMPK. Further docking and MD simulations of these compounds, inside VarTMPK and HssTMPK, suggest that nine among ten are potential selective inhibitors of VarTMPK. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. A new framework for comprehensive, robust, and efficient global sensitivity analysis: 2. Application

    NASA Astrophysics Data System (ADS)

    Razavi, Saman; Gupta, Hoshin V.

    2016-01-01

    Based on the theoretical framework for sensitivity analysis called "Variogram Analysis of Response Surfaces" (VARS), developed in the companion paper, we develop and implement a practical "star-based" sampling strategy (called STAR-VARS), for the application of VARS to real-world problems. We also develop a bootstrap approach to provide confidence level estimates for the VARS sensitivity metrics and to evaluate the reliability of inferred factor rankings. The effectiveness, efficiency, and robustness of STAR-VARS are demonstrated via two real-data hydrological case studies (a 5-parameter conceptual rainfall-runoff model and a 45-parameter land surface scheme hydrology model), and a comparison with the "derivative-based" Morris and "variance-based" Sobol approaches are provided. Our results show that STAR-VARS provides reliable and stable assessments of "global" sensitivity across the full range of scales in the factor space, while being 1-2 orders of magnitude more efficient than the Morris or Sobol approaches.

  9. Sex differences in attenuation of nicotine reinstatement after individual and combined treatments of progesterone and varenicline.

    PubMed

    Swalve, Natashia; Smethells, John R; Carroll, Marilyn E

    2016-07-15

    Tobacco use is the largest cause of preventable mortality in the western world. Even after treatment, relapse rates for tobacco are high, and more effective pharmacological treatments are needed. Progesterone (PRO), a female hormone used in contraceptives, reduces stimulant use but its effects on tobacco addiction are unknown. Varenicline (VAR) is a commonly used medication that reduces tobacco use. The present study examined sex differences in the individual vs. combined effects of PRO and VAR on reinstatement of nicotine-seeking behavior in a rat model of relapse. Adult female and male Wistar rats self-administered nicotine (NIC, 0.03mg/kg/infusion) for 14days followed by 21days of extinction when no cues or drug were present. Rats were then divided into 4 treatment groups: control (VEH+SAL), PRO alone (PRO+SAL), VAR alone (VEH+VAR) and the combination (PRO+VAR). Reinstatement of nicotine-seeking behavior induced by priming injections of NIC or caffeine (CAF), presentation of cues (CUES), and the combination of drugs and cues (e.g. NIC+CUES, CAF+CUES) were tested after extinction. Male and female rats did not differ in self-administration of nicotine or extinction responding, and both showed elevated levels of responding to the CAF+CUES condition. However, males, but not females, reinstated active lever-pressing to the NIC+CUES condition, and that was attenuated by both VAR and VAR+PRO treatment. Thus, males were more sensitive to NIC+CUE-induced reinstatement than females, and VAR alone and VAR combined with PRO effectively reduced nicotine relapse. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Crassostrea gigas mortality in France: the usual suspect, a herpes virus, may not be the killer in this polymicrobial opportunistic disease

    PubMed Central

    Petton, Bruno; Bruto, Maxime; James, Adèle; Labreuche, Yannick; Alunno-Bruscia, Marianne; Le Roux, Frédérique

    2015-01-01

    Successive disease outbreaks in oyster (Crassostrea gigas) beds in France have resulted in dramatic losses in production, and subsequent decline in the oyster-farming industry. Deaths of juvenile oysters have been associated with the presence of a herpes virus (OsHV-1 μvar) and bacterial populations of the genus Vibrio. Although the pathogenicity of OsHV-1 μvar, as well as several strains of Vibrio has been demonstrated by experimental infections, our understanding of the complexity of infections occurring in the natural environment remains limited. In the present study, we use specific-pathogen-free (SPF) oysters infected in an estuarine environment to study the diversity and dynamics of cultured microbial populations during disease expression. We observe that rapid Vibrio colonization followed by viral replication precedes oyster death. No correlation was found between the vibrio concentration and viral load in co-infected animals. We show that the quantity of viral DNA is a predictor of mortality, however, in the absence of bacteria, a high load of herpes virus is not sufficient to induce the full expression of the disease. In addition, we demonstrate that juvenile mortalities can occur in the absence of herpes virus, indicating that the herpes virus appears neither essential nor sufficient to cause juvenile deaths; whereas bacteria are necessary for the disease. Finally, we demonstrate that oysters are a reservoir of putative pathogens, and that the geographic origin, age, and cultivation method of oysters influence disease expression. PMID:26217318

  11. A Novel Virus-Like Particle Based Vaccine Platform Displaying the Placental Malaria Antigen VAR2CSA.

    PubMed

    Thrane, Susan; Janitzek, Christoph M; Agerbæk, Mette Ø; Ditlev, Sisse B; Resende, Mafalda; Nielsen, Morten A; Theander, Thor G; Salanti, Ali; Sander, Adam F

    2015-01-01

    Placental malaria caused by Plasmodium falciparum is a major cause of mortality and severe morbidity. Clinical testing of a soluble protein-based vaccine containing the parasite ligand, VAR2CSA, has been initiated. VAR2CSA binds to the human receptor chondroitin sulphate A (CSA) and is responsible for sequestration of Plasmodium falciparum infected erythrocytes in the placenta. It is imperative that a vaccine against malaria in pregnancy, if administered to women before they become pregnant, can induce a strong and long lasting immune response. While most soluble protein-based vaccines have failed during clinical testing, virus-like particle (VLP) based vaccines (e.g., the licensed human papillomavirus vaccines) have demonstrated high efficacy, suggesting that the spatial assembly of the vaccine antigen is a critical parameter for inducing an optimal long-lasting protective immune response. We have developed a VLP vaccine display platform by identifying regions of the HPV16 L1 coat protein where a biotin acceptor site (AviTagTM) can be inserted without compromising VLP-assembly. Subsequent biotinylation of Avi-L1 VLPs allow us to anchor monovalent streptavidin (mSA)-fused proteins to the biotin, thereby obtaining a dense and repetitive VLP-display of the vaccine antigen. The mSA-VAR2CSA antigen was delivered on the Avi-L1 VLP platform and tested in C57BL/6 mice in comparison to two soluble protein-based vaccines consisting of naked VAR2CSA and mSA-VAR2CSA. The mSA-VAR2CSA Avi-L1 VLP and soluble mSA-VAR2CSA vaccines induced higher antibody titers than the soluble naked VAR2CSA vaccine after three immunizations. The VAR2CSA Avi-L1 VLP vaccine induced statistically significantly higher endpoint titres compared to the soluble mSA-VAR2CSA vaccine, after 1st and 2nd immunization; however, this difference was not statistically significant after 3rd immunization. Importantly, the VLP-VAR2CSA induced antibodies were functional in inhibiting the binding of parasites to CSA. This study demonstrates that the described Avi-L1 VLP-platform may serve as a versatile system for facilitating optimal VLP-display of large and complex vaccine antigens.

  12. Lactoferrin-derived resistance against plant pathogens in transgenic plants.

    PubMed

    Lakshman, Dilip K; Natarajan, Savithiry; Mandal, Sudhamoy; Mitra, Amitava

    2013-12-04

    Lactoferrin (LF) is a ubiquitous cationic iron-binding milk glycoprotein that contributes to nutrition and exerts a broad-spectrum primary defense against bacteria, fungi, protozoa, and viruses in mammals. These qualities make lactoferrin protein and its antimicrobial motifs highly desirable candidates to be incorporated in plants to impart broad-based resistance against plant pathogens or to economically produce them in bulk quantities for pharmaceutical and nutritional purposes. This study introduced bovine LF (BLF) gene into tobacco ( Nicotiana tabacum var. Xanthi), Arabidopsis ( A. thaliana ) and wheat ( Triticum aestivum ) via Agrobacterium -mediated plant transformation. Transgenic plants or detached leaves exhibited high levels of resistance against the damping-off causing fungal pathogen Rhizoctonia solani and the head blight causing fungal pathogen Fusarium graminearum . LF also imparted resistance to tomato plants against a bacterial pathogen, Ralstonia solanacearum . Similarly, other researchers demonstrated expression of LF and LF-mediated high-quality resistance to several other aggressive fungal and bacterial plant pathogens in transgenic plants and against viral pathogens by foliar applications of LF or its derivatives. Taken together, these studies demonstrated the effectiveness of LF for improving crop quality and its biopharming potentials for pharmaceautical and nutritional applications.

  13. Morphological analyses suggest a new taxonomic circumscription for Hymenaea courbaril L. (Leguminosae, Caesalpinioideae)

    PubMed Central

    Souza, Isys Mascarenhas; Funch, Ligia Silveira; de Queiroz, Luciano Paganucci

    2014-01-01

    Abstract Hymenaea is a genus of the Resin-producing Clade of the tribe Detarieae (Leguminosae: Caesalpinioideae) with 14 species. Hymenaea courbaril is the most widespread species of the genus, ranging from southern Mexico to southeastern Brazil. As currently circumscribed, Hymenaea courbaril is a polytypic species with six varieties: var. altissima, var. courbaril, var. longifolia, var. stilbocarpa, var. subsessilis, and var. villosa. These varieties are distinguishable mostly by traits related to leaflet shape and indumentation, and calyx indumentation. We carried out morphometric analyses of 14 quantitative (continuous) leaf characters in order to assess the taxonomy of Hymenaea courbaril under the Unified Species Concept framework. Cluster analysis used the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) based on Bray-Curtis dissimilarity matrices. Principal Component Analyses (PCA) were carried out based on the same morphometric matrix. Two sets of Analyses of Similarity and Non Parametric Multivariate Analysis of Variance were carried out to evaluate statistical support (1) for the major groups recovered using UPGMA and PCA, and (2) for the varieties. All analyses recovered three major groups coincident with (1) var. altissima, (2) var. longifolia, and (3) all other varieties. These results, together with geographical and habitat information, were taken as evidence of three separate metapopulation lineages recognized here as three distinct species. Nomenclatural adjustments, including reclassifying formerly misapplied types, are proposed. PMID:25009440

  14. Morphological analyses suggest a new taxonomic circumscription for Hymenaea courbaril L. (Leguminosae, Caesalpinioideae).

    PubMed

    Souza, Isys Mascarenhas; Funch, Ligia Silveira; de Queiroz, Luciano Paganucci

    2014-01-01

    Hymenaea is a genus of the Resin-producing Clade of the tribe Detarieae (Leguminosae: Caesalpinioideae) with 14 species. Hymenaea courbaril is the most widespread species of the genus, ranging from southern Mexico to southeastern Brazil. As currently circumscribed, Hymenaea courbaril is a polytypic species with six varieties: var. altissima, var. courbaril, var. longifolia, var. stilbocarpa, var. subsessilis, and var. villosa. These varieties are distinguishable mostly by traits related to leaflet shape and indumentation, and calyx indumentation. We carried out morphometric analyses of 14 quantitative (continuous) leaf characters in order to assess the taxonomy of Hymenaea courbaril under the Unified Species Concept framework. Cluster analysis used the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) based on Bray-Curtis dissimilarity matrices. Principal Component Analyses (PCA) were carried out based on the same morphometric matrix. Two sets of Analyses of Similarity and Non Parametric Multivariate Analysis of Variance were carried out to evaluate statistical support (1) for the major groups recovered using UPGMA and PCA, and (2) for the varieties. All analyses recovered three major groups coincident with (1) var. altissima, (2) var. longifolia, and (3) all other varieties. These results, together with geographical and habitat information, were taken as evidence of three separate metapopulation lineages recognized here as three distinct species. Nomenclatural adjustments, including reclassifying formerly misapplied types, are proposed.

  15. Oil and fatty acid contents in seed of Citrullus lanatus Schrad.

    PubMed

    Jarret, Robert L; Levy, Irvin J

    2012-05-23

    Intact seed of 475 genebank accessions of Citrullus ( C. lanatus var. lanatus and C. lanatus var. citroides) were analyzed for percent oil content using TD-NMR. Extracts from whole seed of 96 accessions of C. lanatus (30 var. citroides, 33 var. lanatus, and 33 egusi), C. colocynthis (n = 3), C. ecirrhosus (n = 1), C. rehmii (n = 1), and Benincasa fistulosa (n = 3) were also analyzed for their fatty acids content. Among the materials analyzed, seed oil content varied from 14.8 to 43.5%. Mean seed oil content in egusi types of C. lanatus was significantly higher (mean = 35.6%) than that of either var. lanatus (mean = 23.2%) or var. citroides (mean = 22.6%). Egusi types of C. lanatus had a significantly lower hull/kernel ratio when compared to other C. lanatus var. lanatus or C. lanatus var. citroides. The principal fatty acid in all C. lanatus materials examined was linoleic acid (43.6-73%). High levels of linoleic acid were also present in the materials of C. colocynthis (71%), C. ecirrhosus (62.7%), C. rehmii (75.8%), and B. fistulosa (73.2%), which were included for comparative purposes. Most all samples contained traces (<0.5%) of arachidonic acid. The data presented provide novel information on the range in oil content and variability in the concentrations of individual fatty acids present in a diverse array of C. lanatus, and its related species, germplasm.

  16. Effects of exogenous glutathione and cysteine on growth, lead accumulation, and tolerance of Iris lactea var. chinensis.

    PubMed

    Yuan, Haiyan; Zhang, Yongxia; Huang, Suzhen; Yang, Yongheng; Gu, Chunsun

    2015-02-01

    Effects of exogenous reduced glutathione (GSH) and cysteine (Cys) on growth, lead (Pb) accumulation, and nonprotein thiol (NPT) contents of Iris lactea var. chinensis under 100 and 500 mg L(-1) Pb stress were studied. Our results showed that 500 mg L(-1) Pb stress caused a dramatical decline in fresh weights, while the reduction of aboveground biomass was alleviated by exogenous GSH and Cys even though keeping higher Pb contents in roots and shoots. Exogenous GSH and Cys could enhance Pb accumulation in the shoots and roots compared with single Pb treatment. The promoting effect of GSH to Pb accumulation was larger than the effect of Cys, and the Pb contents in the shoots and roots treated with 500 mg L(-1) Pb + GSH reached 1,712 and 14,603 mg kg(-1), about 4.19 and 2.78 times of single 500 mg L(-1) Pb treatment, respectively. Microscopic imaging of Pb in roots and leaves showed that higher intensive fluorescence was observed in cell wall of root epidermis, stele, vascular tissues of the roots, and sclerenchyma cells of leaves treated with 500 mg L(-1) Pb + GSH and treated with 500 mg L(-1) Pb + Cys. Exogenous GSH had an apparent promoting effect on root and shoot GSH synthesis, while exogenous Cys reduced the synthesis of cellular GSH in shoot and increased Cys contents. Pb only induced the synthesis of phytochelatin (PC)2 in roots, and the PC2 content declined in GSH- and Cys-treated plant roots. These results suggested that GSH synthesis was a more effective approach to improve Pb accumulation and translocation of I. lactea var. chinensis. Further analysis of protein expression in plants by exogenous GSH and buthionine sulfoximine (BSO) application showed that the proteins regulated by GSH and BSO may constitute various enzymes involved in GSH biosynthesis and play certain roles in Pb accumulation and tolerance of I. lactea var. chinensis.

  17. Identification and characterization of an efficient acyl-CoA: diacylglycerol acyltransferase 1 (DGAT1) gene from the microalga Chlorella ellipsoidea.

    PubMed

    Guo, Xuejie; Fan, Chengming; Chen, Yuhong; Wang, Jingqiao; Yin, Weibo; Wang, Richard R C; Hu, Zanmin

    2017-02-21

    Oil in the form of triacylglycerols (TAGs) is quantitatively the most important storage form of energy for eukaryotic cells. Diacylglycerol acyltransferase (DGAT) is considered the rate-limiting enzyme for TAG accumulation. Chlorella, a unicellular eukaryotic green alga, has attracted much attention as a potential feedstock for renewable energy production. However, the function of DGAT1 in Chlorella has not been reported. A full-length cDNA encoding a putative diacylglycerol acyltransferase 1 (DGAT1, EC 2.3.1.20) was obtained from Chlorella ellipsoidea. The 2,142 bp open reading frame of this cDNA, designated CeDGAT1, encodes a protein of 713 amino acids showing no more than 40% identity with DGAT1s of higher plants. Transcript analysis showed that the expression level of CeDGAT1 markedly increased under nitrogen starvation, which led to significant triacylglycerol (TAG) accumulation. CeDGAT1 activity was confirmed in the yeast quadruple mutant strain H1246 by restoring its ability to produce TAG. Upon expression of CeDGAT1, the total fatty acid content in wild-type yeast (INVSc1) increased by 142%, significantly higher than that transformed with DGAT1s from higher plants, including even the oil crop soybean. The over-expression of CeDGAT1 under the NOS promoter in wild-type Arabidopsis thaliana and Brassica napus var. Westar significantly increased the oil content by 8-37% and 12-18% and the average 1,000-seed weight by 9-15% and 6-29%, respectively, but did not alter the fatty acid composition of the seed oil. The net increase in the 1,000-seed total lipid content was up to 25-50% in both transgenic Arabidopsis and B. napus. We identified a gene encoding DGAT1 in C. ellipsoidea and confirmed that it plays an important role in TAG accumulation. This is the first functional analysis of DGAT1 in Chlorella. This information is important for understanding lipid synthesis and accumulation in Chlorella and for genetic engineering to enhance oil production in microalgae and oil plants.

  18. Challenges and disparities in the application of personalized genomic medicine to populations with African ancestry

    PubMed Central

    Kessler, Michael D.; Yerges-Armstrong, Laura; Taub, Margaret A.; Shetty, Amol C.; Maloney, Kristin; Jeng, Linda Jo Bone; Ruczinski, Ingo; Levin, Albert M.; Williams, L. Keoki; Beaty, Terri H.; Mathias, Rasika A.; Barnes, Kathleen C.; Boorgula, Meher Preethi; Campbell, Monica; Chavan, Sameer; Ford, Jean G.; Foster, Cassandra; Gao, Li; Hansel, Nadia N.; Horowitz, Edward; Huang, Lili; Ortiz, Romina; Potee, Joseph; Rafaels, Nicholas; Scott, Alan F.; Vergara, Candelaria; Gao, Jingjing; Hu, Yijuan; Johnston, Henry Richard; Qin, Zhaohui S.; Padhukasahasram, Badri; Dunston, Georgia M.; Faruque, Mezbah U.; Kenny, Eimear E.; Gietzen, Kimberly; Hansen, Mark; Genuario, Rob; Bullis, Dave; Lawley, Cindy; Deshpande, Aniket; Grus, Wendy E.; Locke, Devin P.; Foreman, Marilyn G.; Avila, Pedro C.; Grammer, Leslie; Kim, Kwang-YounA; Kumar, Rajesh; Schleimer, Robert; Bustamante, Carlos; De La Vega, Francisco M.; Gignoux, Chris R.; Shringarpure, Suyash S.; Musharoff, Shaila; Wojcik, Genevieve; Burchard, Esteban G.; Eng, Celeste; Gourraud, Pierre-Antoine; Hernandez, Ryan D.; Lizee, Antoine; Pino-Yanes, Maria; Torgerson, Dara G.; Szpiech, Zachary A.; Torres, Raul; Nicolae, Dan L.; Ober, Carole; Olopade, Christopher O.; Olopade, Olufunmilayo; Oluwole, Oluwafemi; Arinola, Ganiyu; Song, Wei; Abecasis, Goncalo; Correa, Adolfo; Musani, Solomon; Wilson, James G.; Lange, Leslie A.; Akey, Joshua; Bamshad, Michael; Chong, Jessica; Fu, Wenqing; Nickerson, Deborah; Reiner, Alexander; Hartert, Tina; Ware, Lorraine B.; Bleecker, Eugene; Meyers, Deborah; Ortega, Victor E.; Pissamai, Maul R. N.; Trevor, Maul R. N.; Watson, Harold; Araujo, Maria Ilma; Oliveira, Ricardo Riccio; Caraballo, Luis; Marrugo, Javier; Martinez, Beatriz; Meza, Catherine; Ayestas, Gerardo; Herrera-Paz, Edwin Francisco; Landaverde-Torres, Pamela; Erazo, Said Omar Leiva; Martinez, Rosella; Mayorga, Alvaro; Mayorga, Luis F.; Mejia-Mejia, Delmy-Aracely; Ramos, Hector; Saenz, Allan; Varela, Gloria; Vasquez, Olga Marina; Ferguson, Trevor; Knight-Madden, Jennifer; Samms-Vaughan, Maureen; Wilks, Rainford J.; Adegnika, Akim; Ateba-Ngoa, Ulysse; Yazdanbakhsh, Maria; O'Connor, Timothy D.

    2016-01-01

    To characterize the extent and impact of ancestry-related biases in precision genomic medicine, we use 642 whole-genome sequences from the Consortium on Asthma among African-ancestry Populations in the Americas (CAAPA) project to evaluate typical filters and databases. We find significant correlations between estimated African ancestry proportions and the number of variants per individual in all variant classification sets but one. The source of these correlations is highlighted in more detail by looking at the interaction between filtering criteria and the ClinVar and Human Gene Mutation databases. ClinVar's correlation, representing African ancestry-related bias, has changed over time amidst monthly updates, with the most extreme switch happening between March and April of 2014 (r=0.733 to r=−0.683). We identify 68 SNPs as the major drivers of this change in correlation. As long as ancestry-related bias when using these clinical databases is minimally recognized, the genetics community will face challenges with implementation, interpretation and cost-effectiveness when treating minority populations. PMID:27725664

  19. Molecular identification of Bacillus thuringiensis var. israelensis to trace its fate after application as a biological insecticide in wetland ecosystems.

    PubMed

    De Respinis, S; Demarta, A; Patocchi, N; Lüthy, P; Peduzzi, R; Tonolla, M

    2006-11-01

    To determine the fate of viable Bacillus thuringiensis var. israelensis (Bti) spores dispersed in the environment, using a universally applicable molecular detection methodology. Soil samples were spread on growth medium, after a temperature selection of the spores. A PCR amplification of the cry4Aa and cry4Ba insecticidal genes was applied on the colonies. Ribotyping was performed subsequently. This combined molecular method proved to be very specific for Bti, which was easily differentiated from the other B. thuringiensis serovars. A site regularly treated with Vectobac-G was chosen within the 'Bolle di Magadino' natural reserve, and monitored throughout 1 year for the detection of Bti spores. The results showed that the numbers were relatively high after insecticidal applications (1.4 x 10(5) CFU g(-1)), and decreased approx. 10-fold after 220 days. A successive treatment induced a new increase. The results show that yearly repeated use of Vectobac-G does not seem to have a major ecological impact on the 'Bolle di Magadino' natural reserve. Bti spores followed a trend leading to their eventual disappearance from the ecosystem, despite the seasonal application of this biological insecticide for more than a decade. The molecular identification of Bti cells through the PCR analysis of the delta-endotoxins genes coupled to ribotyping, is an innovative method, that has enabled the identification of this organism into wetland environments.

  20. Real-time PCR to identify variola virus or other human pathogenic orthopox viruses.

    PubMed

    Scaramozzino, Natale; Ferrier-Rembert, Audrey; Favier, Anne-Laure; Rothlisberger, Corinne; Richard, Stéphane; Crance, Jean-Marc; Meyer, Hermann; Garin, Daniel

    2007-04-01

    Variola virus (family Poxviridae, genus Orthopoxvirus) and the closely related cowpox, vaccinia, and monkeypox viruses can infect humans. Efforts are mounting to replenish the smallpox vaccine stocks, optimize diagnostic methods for poxviruses, and develop new antivirals against smallpox, because it is feared that variola virus might be used as a weapon of bioterrorism. We developed an assay for the detection of variola virus DNA. The assay is based on TaqMan chemistry targeting the 14-kD protein gene. For the 1st stage of the assay we used genus consensus primers and a mixture of 2 probes (14-kD POX and 14-kD VAR) spanning the 14-kD protein-encoding gene for detection of all human pathogenic orthopoxviruses. We then tested positive samples with the specific orthopoxvirus-specific probe 14-kD POX to identify monkeypox, cowpox, and vaccinia viruses and with the 14-kD VAR probe to identify variola viruses. The assay was established on 4 different PCR cycler platforms. It was assessed in a study with 85 different orthopoxvirus species and strains that included variola, camelpox, cowpox, monkeypox, and vaccinia viruses at concentrations ranging from 100 ng/L to 1 microg/L. The assay detected as little as 0.05 fg of DNA, corresponding to 25 copies of DNA, and enabled differentiation of variola virus from the other orthopoxviruses. This real-time PCR assay provides a rapid method for the early detection and differentiation of smallpox and other human pathogenic orthopoxvirus infections.

Top