Sample records for var niger spores

  1. Thermal Inactivation of Aerosolized Bacillus subtilis var. niger Spores

    PubMed Central

    Mullican, Charles L.; Buchanan, Lee M.; Hoffman, Robert K.

    1971-01-01

    A hot-air sterilizer capable of exposing airborne microorganisms to elevated temperatures with an almost instantaneous heating time was developed and evaluated. With this apparatus, aerosolized Bacillus subtilis var. niger spores were killed in about 0.02 sec when exposed to temperatures above 260 C. This is about 500 times faster than killing times reported by others. Extrapolation and comparison of data on the time and temperature required to klll B. subtilis var. niger spores on surfaces show that approximately the same killing time is required as is necessary for spores in air, if corrections are made for the heating time of the surface. PMID:5002138

  2. Dry-heat Resistance of Bacillus Subtilis Var. Niger Spores on Mated Surfaces

    NASA Technical Reports Server (NTRS)

    Simko, G. J.; Devlin, J. D.; Wardle, M. D.

    1971-01-01

    Bacillus subtilis var. niger spores were placed on the surfaces of test coupons manufactured from typical spacecraft materials including stainless steel, magnesium, titanium, and aluminum. These coupons were then juxtaposed at the inoculated surfaces and subjected to test pressures of 0, 1000, 5000, and 10,000 psi. Tests were conducted in ambient, nitrogen, and helium atmospheres. While under the test pressure condition, the spores were exposed to 125 C for intervals of 5, 10, 20, 50, or 80 min. Survivor data were subjected to a linear regression analysis that calculated decimal reduction times.

  3. Dry Heat Inactivation of Bacillus subtilis var. niger Spores as a Function of Relative Humidity

    PubMed Central

    Brannen, J. P.; Garst, D. M.

    1972-01-01

    Dry heat sterilization of Bacillus subtilis var. niger spores at 105 C is enhanced in the relative humidity range 0.03 to 0.2%. D-values of 115 and 125 C are predicted by a kinetic model with parameters set from 105 C data. These predictions are compared to observations. Images PMID:4625341

  4. Resistance of Spores of Bacillus subtilis var. niger on Kapton and Teflon Film to High Temperature and Dry Heat

    PubMed Central

    Bruch, Mary K.; Smith, Frederick W.

    1968-01-01

    To determine parameters that would assure sterility of a sealed seam of film for application in “split-seam entry,” spores of Bacillus subtilis var. niger were sprayed onto pieces of Kapton and Teflon film. Short-time, high-temperature (200 to 270 C) exposures were made with film pieces between aluminum blocks in a hot-air oven, and the D and z values were determined after subculture of surviving spores. The use of Kapton film allowed the study of high temperatures, since it is not heat sealable and could be used to make thin packages for heat treatment. Spores on Teflon were dry-heat treated in a package designed to simulate an actual seam to be sealed. The z values of 29.1 C (52.4 F) for spores on Kapton and 139 C (250.4 F) for spores on Teflon were calculated. Images Fig. 1 Fig. 2 Fig. 3 PMID:4973071

  5. Influence of Spore Moisture Content on the Dry-Heat Resistance of Bacillus subtilis var. niger

    PubMed Central

    Angelotti, Robert; Maryanski, James H.; Butler, Thomas F.; Peeler, James T.; Campbell, Jeptha E.

    1968-01-01

    The dry-heat resistance of Bacillus subtilis var. niger spores located in or on various materials was determined as D and z values in the range of 105 through 160 C. The systems tested included spores located on steel and paper strips, spores located between stainless-steel washers mated together under 150 inch-lb and 12 inch-lb of torque, and spores encapsulated in methylmethacrylate and epoxy plastics. D values for a given temperature varied with the test system. High D values were observed for the systems in which spores were encapsulated or under heavy torque, whereas lower D values were observed for the steel and paper strip systems and the lightly torqued system. Similar z values were obtained for the plastic and steel strip systems (zD = 21 C), but an unusually low z for spores on paper (zD = 12.9 C) and an unusually high z for spores on steel washers mated at 150 inch-lb of torque (zD = 32 C) were observed. The effect of spore moisture content on the D value of spores encapsulated in water-impermeable plastic was determined, and maximal resistance was observed for spores with a water activity (aw) of 0.2 to 0.4. Significantly decreased D values were observed for spores with moisture contents below aw 0.2 or above aw 0.4. The data indicate that the important factors to be considered when measuring the dry heat resistance of spores are (i) the initial moisture content of the spore, (ii) the rate of spore desiccation during heating, (iii) the water retention capacity of the material in or on which spores are located, and (iv) the relative humidity of the system at the test temperature. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 7 PMID:4968962

  6. Influence of spore moisture content on the dry-heat resistance of Bacillus subtilis var. niger.

    PubMed

    Angelotti, R; Maryanski, J H; Butler, T F; Peeler, J T; Campbell, J E

    1968-05-01

    The dry-heat resistance of Bacillus subtilis var. niger spores located in or on various materials was determined as D and z values in the range of 105 through 160 C. The systems tested included spores located on steel and paper strips, spores located between stainless-steel washers mated together under 150 inch-lb and 12 inch-lb of torque, and spores encapsulated in methylmethacrylate and epoxy plastics. D values for a given temperature varied with the test system. High D values were observed for the systems in which spores were encapsulated or under heavy torque, whereas lower D values were observed for the steel and paper strip systems and the lightly torqued system. Similar z values were obtained for the plastic and steel strip systems (z(D) = 21 C), but an unusually low z for spores on paper (z(D) = 12.9 C) and an unusually high z for spores on steel washers mated at 150 inch-lb of torque (z(D) = 32 C) were observed. The effect of spore moisture content on the D value of spores encapsulated in water-impermeable plastic was determined, and maximal resistance was observed for spores with a water activity (a(w)) of 0.2 to 0.4. Significantly decreased D values were observed for spores with moisture contents below a(w) 0.2 or above a(w) 0.4. The data indicate that the important factors to be considered when measuring the dry heat resistance of spores are (i) the initial moisture content of the spore, (ii) the rate of spore desiccation during heating, (iii) the water retention capacity of the material in or on which spores are located, and (iv) the relative humidity of the system at the test temperature.

  7. Examination of B. subtilis var. niger Spore Killing by Dry Heat Methods

    NASA Technical Reports Server (NTRS)

    Kempf, Michael J.; Kirschner, Larry E.

    2004-01-01

    Dry heat microbial reduction is the only NASA approved sterilization method to reduce the microbial bioburden on space-flight hardware prior to launch. Reduction of the microbial bioburden on spacecraft is necessary to meet planetary protection requirements specific for the mission. Microbial bioburden reduction also occurs if a spacecraft enters a planetary atmosphere (e.g., Mars) and is heated due to frictional forces. Temperatures reached during atmospheric entry events (>200 C) are sufficient to damage or destroy flight hardware and also kill microbial spores that reside on the in-bound spacecraft. The goal of this research is to determine the survival rates of bacterial spores when they are subjected to conditions similar to those the spacecraft would encounter (i.e., temperature, pressure, etc.). B. subtilis var. niger spore coupons were exposed to a range of temperatures from 125 C to 200 C in a vacuum oven (at <1 Torr). After the exposures, the spores were removed by sonication, dilutions were made, and the spores were plated using the pour plate method with tryptic soy agar. After 3 days incubation at 32 C, the number of colony-forming units was counted. Lethality rate constants and D-values were calculated at each temperature. The calculated D-values were: 27 minutes (at 125 C), 13 minutes (at 135 C), and <0.1 minutes (at 150 C). The 125 C and 135 C survivor curves appeared as concavedownward curves. The 150 C survivor curve appeared as a straight-line. Due to the prolonged ramp-up time to the exposure conditions, spore killing during the ramp-up resulted in insufficient data to draw curves for exposures at 160 C, 175 C, and 200 C. Exploratory experiments using novel techniques, with short ramp times, for performing high temperature exposures were also examined. Several of these techniques, such as vacuum furnaces, thermal spore exposure vessels, and laser heating of the coupons, will be discussed.

  8. The infrared spectral transmittance of Aspergillus niger spore aggregated particle swarm

    NASA Astrophysics Data System (ADS)

    Zhao, Xinying; Hu, Yihua; Gu, Youlin; Li, Le

    2015-10-01

    Microorganism aggregated particle swarm, which is quite an important composition of complex media environment, can be developed as a new kind of infrared functional materials. Current researches mainly focus on the optical properties of single microorganism particle. As for the swarm, especially the microorganism aggregated particle swarm, a more accurate simulation model should be proposed to calculate its extinction effect. At the same time, certain parameters deserve to be discussed, which helps to better develop the microorganism aggregated particle swarm as a new kind of infrared functional materials. In this paper, take Aspergillus Niger spore as an example. On the one hand, a new calculation model is established. Firstly, the cluster-cluster aggregation (CCA) model is used to simulate the structure of Aspergillus Niger spore aggregated particle. Secondly, the single scattering extinction parameters for Aspergillus Niger spore aggregated particle are calculated by using the discrete dipole approximation (DDA) method. Thirdly, the transmittance of Aspergillus Niger spore aggregated particle swarm is simulated by using Monte Carlo method. On the other hand, based on the model proposed above, what influences can wavelength causes has been studied, including the spectral distribution of scattering intensity of Aspergillus Niger spore aggregated particle and the infrared spectral transmittance of the aggregated particle swarm within the range of 8-14μm incident infrared wavelengths. Numerical results indicate that the scattering intensity of Aspergillus Niger spore aggregated particle reduces with the increase of incident wavelengths at each scattering angle. Scattering energy mainly concentrates on the scattering angle between 0-40°, forward scattering has an obvious effect. In addition, the infrared transmittance of Aspergillus Niger spore aggregated particle swarm goes up with the increase of incident wavelengths. However, some turning points of the trend are

  9. VeA of Aspergillus niger increases spore dispersing capacity by impacting conidiophore architecture.

    PubMed

    Wang, Fengfeng; Dijksterhuis, Jan; Wyatt, Timon; Wösten, Han A B; Bleichrodt, Robert-Jan

    2015-01-01

    Aspergillus species are highly abundant fungi worldwide. Their conidia are among the most dominant fungal spores in the air. Conidia are formed in chains on the vesicle of the asexual reproductive structure called the conidiophore. Here, it is shown that the velvet protein VeA of Aspergillus niger maximizes the diameter of the vesicle and the spore chain length. The length and width of the conidiophore stalk and vesicle were reduced nearly twofold in a ΔveA strain. The latter implies a fourfold reduced surface area to develop chains of spores. Over and above this, the conidial chain length was approximately fivefold reduced. The calculated 20-fold reduction in formation of conidia by ΔveA fits the 8- to 17-fold decrease in counted spore numbers. Notably, morphology of the ΔveA conidiophores of A. niger was very similar to that of wild-type Aspergillus sydowii. This suggests that VeA is key in conidiophore architecture diversity in the fungal kingdom. The finding that biomass formation of the A. niger ΔveA strain was reduced twofold shows that VeA not only impacts dispersion capacity but also colonization capacity of A. niger.

  10. Surface Modified Long Period Fiber Grating Sensor for Rapid Detection of Aspergillus Niger Fungal Spores

    NASA Astrophysics Data System (ADS)

    Gambhir, Monika; Gupta, Shilpi; John, Priya; Mahakud, Ramakanta; Kumar, Jitendra; Prakash, Om

    2018-03-01

    We present development of a compact and label-free sensor based on the surface modification of copper vapor laser fabricated long period fiber gratings for detection of airborne Aspergillus niger (A. niger) fungal spores. Surface of sensors were functionalized with monoclonal glucose oxidases IgG1 for target-specific covalent binding. In process of functionalization and binding of 103 cfu/ml of pathogenic A. niger fungal spores, notable shorter wave transition in resonance wavelength from 1562.93 nm to 1555.97 nm, and significant reduction in peak loss from 61.72 dB to 57.48 dB were recorded. The implementation was cost effective and yielded instantaneous results.

  11. Use of Magnetic Bead Resin and Automated Liquid Handler Extraction Methods to Robotically Isolate Nucleic Acids of Biological Agent Simulates

    DTIC Science & Technology

    2003-09-01

    concentration, and Bacillus subtilis var. niger spores were detectable at 10,000 CFU/ml. When combined with bead beating, these spores were consistently...Bioloeical Aaent Simulants. Cell suspensions of Bacillus subtilis var. niger spores (BG spores ) and Erwinia herbicola vegetative cells were prepared for...use as biological simulants. BG spores were prepared by inoculating 1 g spores of Bacillus subtilis var. niger (Merck & Co., Inc., Whitehouse Station

  12. Environmental microbiology as related to planetary quarantine. [water activity and temperature effects on bacterial spore survival

    NASA Technical Reports Server (NTRS)

    Pflug, I. J.

    1972-01-01

    The survival of Bacillus subtilis var. niger spores suspended in solutions of sucrose and glycerol at calculated water activities and varying temperatures was studied. The overall results indicated that as the water activity of the liquid decreased from .99 to .85, the heat resistance of the spores increased. The nature of the substance controlling the water activity, and the history of the spores prior to treatment also had an affect on their heat resistance.

  13. Fluorescence Spectra of Individual Flowing Airborne Biological Particles Measured in Real Time

    DTIC Science & Technology

    2001-02-01

    and fungal spores ( Aspergillus versicolor, ATCC 9577). B. subtilis var. niger (lyophilized cells) and E. herbicola were grown by streak- ing onto...Excitation Figure 7 shows fluorescence spectra of B. subtilis var. niger vegetative cells and fungal spores ( Aspergillus versicolor), both 5 µm in diameter...µm-diam clusters of B. subtilis var. niger spores, and B. subtilis var. niger vegetative cells ……………………………………… 10 5. Fluorescence spectra of starved

  14. Comparison of survivability of Staphylococcus aureus and spores of Aspergillus niger on commonly used floor materials.

    PubMed

    Gupta, Mridula; Bisesi, Michael; Lee, Jiyoung

    2017-07-01

    The survivability of Staphylococcus aureus and spores of Aspergillus niger was compared on 5 common floor materials. Floor materials were inoculated with a known concentration of S aureus and spores of A niger on day 0. Their survivability was measured on days, 2, 7, 14, and 28 by bulk rinsate method and enumerated using culture-based method. The difference in change of S aureus levels was statistically significant for all tested days (P < .001) for all floor materials. Vinyl composition tile (VCT) and porcelain tile (PT) had statistically similar survivability and differed statistically from carpets. On both VCT and PT, positive growth for S aureus occurred by day 2 (1-1.7 log 10 ), declined slightly (0.1 to -0.2 log 10 ) by day 7, and remained positive until day 28. However, S aureus was undetected by day 7 on both carpets. A niger spores were undetected on residential broadloom carpet and rubber-backed commercial carpet after day 2 but survived on VCT, PT, and wood until day 28. Floor materials with hard and smooth surfaces, such as VCT and PT, can allow survival of S aureus and A niger for up to 4 weeks. It may imply that floor materials can play a major role in preserving microbial contaminants in the built environment. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  15. Nano-Mechanical Properties of Heat Inactivated Bacillus anthracis and Bacillus thuringiensis Spores

    DTIC Science & Technology

    2008-03-01

    Scanner Laser Mirror Cantilever Sample Probe Tip 16 cereus strain 569, and Bacillus globigii var. niger . Zolock determined that there wer...been used to measure the surface elasticities of a variety of microbial organisms including Pseudomonas putida, Bacillus subtilis, Aspergillus ...66:307-311 (2005). Zhao, Liming, David Schaefer, and Mark R. Marten. “Assessment of Elasticity and Topography of Aspergillus nidulans Spores via

  16. Measuring Detachment of Aspergillus niger spores from Colonies with an Atomic Force Microscope.

    PubMed

    Li, Xian; Zhang, Tengfei Tim; Wang, Shugang

    2018-06-26

    Detachment of fungal spores from moldy surfaces and the subsequent aerosolization can lead to adverse health effects. Spore aerosolization occurs when the forces for aerosolization exceed the binding forces of spores with their colonies. The threshold force to detach a spore from a growing colony remains unknown. This investigation measured the detachment of spores of Aspergillus niger from a colony using an atomic force microscope (AFM). The spores were first affixed to the cantilever of the AFM with ultraviolet curing glue, and then the colony was moved downward until the spores detached. The threshold detachment forces were inferred from the deflection of the cantilever. In addition, the spores were aerosolized in a wind tunnel by a gradual increase of the blowing air speed. The forces measured by the AFM were compared with the hydrodynamic forces for aerosolization. The AFM measurements revealed that a force of 3.27 ± 0.25 nN was required to detach a single spore from the four-day-old colony, while 1.98 ± 0.13 nN was sufficient for the 10-day-old colony. Slightly smaller detachment forces were observed by the AFM than were determined by the aerosolization tests. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Quantitative inactivation-mechanisms of P. digitatum and A. niger spores based on atomic oxygen dose

    NASA Astrophysics Data System (ADS)

    Ito, Masafumi; Hashizume, Hiroshi; Ohta, Takayuki; Hori, Masaru

    2014-10-01

    We have investigated inactivation mechanisms of Penicillium digitatum and Asperguills niger spores using atmospheric-pressure radical source quantitatively. The radical source was specially developed for supplying only neutral radicals without charged species and UV-light emissions. Reactive oxygen radical densities such as grand-state oxygen atoms, excited-state oxygen molecules and ozone were measured using VUV and UV absorption spectroscopies. The measurements and the treatments of spores were carried out in an Ar-purged chamber for eliminating the influences of OH, NOx and so on. The results revealed that the inactivation of spores can be explained by atomic-oxygen dose under the conditions employing neutral ROS irradiations. On the basis of the dose, we have observed the changes of intracellular organelles and membrane functions using TEM, SEM and confocal- laser fluorescent microscopy. From these results, we discuss the detail inactivation-mechanisms quantitatively based on atomic-oxygen dose.

  18. Kinetics of Inactivation of Bacillus subtilis subsp. niger Spores and Staphylococcus albus on Paper by Chlorine Dioxide Gas in an Enclosed Space

    PubMed Central

    Wang, Tao; Wu, Jinhui; Hao, Limei; Yi, Ying; Zhang, Zongxing

    2016-01-01

    ABSTRACT Bacillus subtilis subsp. niger spore and Staphylococcus albus are typical biological indicators for the inactivation of airborne pathogens. The present study characterized and compared the behaviors of B. subtilis subsp. niger spores and S. albus in regard to inactivation by chlorine dioxide (ClO2) gas under different gas concentrations and relative humidity (RH) conditions. The inactivation kinetics under different ClO2 gas concentrations (1 to 5 mg/liter) were determined by first-order and Weibull models. A new model (the Weibull-H model) was established to reveal the inactivation tendency and kinetics for ClO2 gas under different RH conditions (30 to 90%). The results showed that both the gas concentration and RH were significantly (P < 0.05) and positively correlated with the inactivation of the two chosen indicators. There was a rapid improvement in the inactivation efficiency under high RH (>70%). Compared with the first-order model, the Weibull and Weibull-H models demonstrated a better fit for the experimental data, indicating nonlinear inactivation behaviors of the vegetative bacteria and spores following exposure to ClO2 gas. The times to achieve a six-log reduction of B. subtilis subsp. niger spore and S. albus were calculated based on the established models. Clarifying the kinetics of inactivation of B. subtilis subsp. niger spores and S. albus by ClO2 gas will allow the development of ClO2 gas treatments that provide an effective disinfection method. IMPORTANCE Chlorine dioxide (ClO2) gas is a novel and effective fumigation agent with strong oxidization ability and a broad biocidal spectrum. The antimicrobial efficacy of ClO2 gas has been evaluated in many previous studies. However, there are presently no published models that can be used to describe the kinetics of inactivation of airborne pathogens by ClO2 gas under different gas concentrations and RH conditions. The first-order and Weibull (Weibull-H) models established in this study can

  19. Kinetics of Inactivation of Bacillus subtilis subsp. niger Spores and Staphylococcus albus on Paper by Chlorine Dioxide Gas in an Enclosed Space.

    PubMed

    Wang, Tao; Wu, Jinhui; Qi, Jiancheng; Hao, Limei; Yi, Ying; Zhang, Zongxing

    2016-05-15

    Bacillus subtilis subsp. niger spore and Staphylococcus albus are typical biological indicators for the inactivation of airborne pathogens. The present study characterized and compared the behaviors of B. subtilis subsp. niger spores and S. albus in regard to inactivation by chlorine dioxide (ClO2) gas under different gas concentrations and relative humidity (RH) conditions. The inactivation kinetics under different ClO2 gas concentrations (1 to 5 mg/liter) were determined by first-order and Weibull models. A new model (the Weibull-H model) was established to reveal the inactivation tendency and kinetics for ClO2 gas under different RH conditions (30 to 90%). The results showed that both the gas concentration and RH were significantly (P < 0.05) and positively correlated with the inactivation of the two chosen indicators. There was a rapid improvement in the inactivation efficiency under high RH (>70%). Compared with the first-order model, the Weibull and Weibull-H models demonstrated a better fit for the experimental data, indicating nonlinear inactivation behaviors of the vegetative bacteria and spores following exposure to ClO2 gas. The times to achieve a six-log reduction of B. subtilis subsp. niger spore and S. albus were calculated based on the established models. Clarifying the kinetics of inactivation of B. subtilis subsp. niger spores and S. albus by ClO2 gas will allow the development of ClO2 gas treatments that provide an effective disinfection method. Chlorine dioxide (ClO2) gas is a novel and effective fumigation agent with strong oxidization ability and a broad biocidal spectrum. The antimicrobial efficacy of ClO2 gas has been evaluated in many previous studies. However, there are presently no published models that can be used to describe the kinetics of inactivation of airborne pathogens by ClO2 gas under different gas concentrations and RH conditions. The first-order and Weibull (Weibull-H) models established in this study can characterize and

  20. Improvement of foreign-protein production in Aspergillus niger var. awamori by constitutive induction of the unfolded-protein response.

    PubMed

    Valkonen, Mari; Ward, Michael; Wang, Huaming; Penttilä, Merja; Saloheimo, Markku

    2003-12-01

    Unfolded-protein response (UPR) denotes the upregulation of endoplasmic reticulum (ER)-resident chaperone and foldase genes and numerous other genes involved in secretory functions during the accumulation of unfolded proteins into the ER. Overexpression of individual foldases and chaperones has been used in attempts to improve protein production in different production systems. We describe here a novel strategy to improve foreign-protein production. We show that the constitutive induction of the UPR pathway in Aspergillus niger var. awamori can be achieved by expressing the activated form of the transcription factor hacA. This induction enhances the production of Trametes versicolor laccase by up to sevenfold and of bovine preprochymosin by up to 2.8-fold in this biotechnically important fungus. The regulatory range of UPR was studied by analyzing the mRNA levels of novel A. niger var. awamori genes involved in different secretory functions. This revealed both similarities and differences to corresponding studies in Saccharomyces cerevisiae.

  1. Constitutive expression of fluorescent protein by Aspergillus var. niger and Aspergillus carbonarius to monitor fungal colonization in maize plants

    USDA-ARS?s Scientific Manuscript database

    Aspergillus niger and A. carbonarius are two species in the Aspergillus section Nigri (black-spored aspergilli) frequently associated with peanut (Arachis hypogea), maize (Zea mays), and other plants as pathogens. These infections are symptomless and as such are major concerns since some black aspe...

  2. Selection of inactivation medium for fungal spores in clinical wastes by supercritical carbon dioxide.

    PubMed

    Noman, Efaq; Norulaini Nik Ab Rahman, Nik; Al-Gheethi, Adel; Nagao, Hideyuki; Talip, Balkis A; Ab Kadir, Omar

    2018-05-21

    The present study aimed to select the best medium for inactivation of Aspergillus fumigatus, Aspergillus spp. in section Nigri, A. niger, A. terreus var. terreus, A. tubingensis, Penicillium waksmanii, P. simplicissimum, and Aspergillus sp. strain no. 145 spores in clinical wastes by using supercritical carbon dioxide (SC-CO 2 ). There were three types of solutions used including normal saline, seawater, distilled water, and physiological saline with 1% of methanol; each solution was tested at 5, 10, and 20 mL of the water contents. The experiments were conducted at the optimum operating parameters of supercritical carbon dioxide (30 MPa, 75 °C, 90 min). The results showed that the inactivation rate was more effective in distilled water with the presence of 1% methanol (6 log reductions). Meanwhile, the seawater decreases inactivation rate more than normal saline (4.5 vs. 5.1 log reduction). On the other hand, the experiments performed with different volumes of distilled water (5, 10, and 20 mL) indicated that A. niger spores were completely inactivated with 10 mL of distilled water. The inactivation rate of fungal spores decreased from 6 to 4.5 log as the amount of distilled water increased from 10 to 20 mL. The analysis for the spore morphology of A. fumigatus and Aspergillus spp. in section Nigri using scanning electron microscopy (SEM) has revealed the role of temperature and pressure in the SC-CO 2 in the destruction of the cell walls of the spores. It can be concluded that the distilled water represent the best medium for inactivation of fungal spores in the clinical solid wastes by SC-CO 2 .

  3. Role of pigmentation in protecting Aspergillus niger conidiospores against pulsed light radiation.

    PubMed

    Esbelin, Julia; Mallea, Sabine; Ram, Arthur F; Carlin, Frédéric

    2013-01-01

    The photoprotective potential of fungus pigments was investigated by irradiating conidiospores of three Aspergillus niger strains possessing the same genetic background, but differing in their degree of pigmentation with pulsed light (PL) and monochromatic (254 nm) UV-C radiation. Spores of A. niger MA93.1 and JHP1.1 presenting, respectively, a fawn and a white pigmentation were more sensitive to PL and continuous UV-C radiation than the wild-type A. niger strain N402 possessing a dark pigment. Both spores of the dark A. niger N402 and the fawn-color mutant were equally resistant to moist heat at 56°C while spores of the white-color mutant were highly sensitive. These results indicate that melanin protects pigmented spores of A. niger from PL. © 2013 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2013 The American Society of Photobiology.

  4. Inhibitory effect of double atmospheric pressure argon cold plasma on spores and mycotoxin production of Aspergillus niger contaminating date palm fruits.

    PubMed

    Ouf, Salama A; Basher, Abdulrahman H; Mohamed, Abdel-Aleam H

    2015-12-01

    Aspergillus niger has been reported as a potentially dangerous pathogen of date-palm fruits in Saudi Arabia due to the production of fumonisin B2 (FB2 ) and ochratoxin A (OTA). In a trial to disinfect this product, a double atmospheric pressure argon cold plasma (DAPACP) jet system was set up and evaluated against spore germination and mycotoxin production of the pathogen. The plasma jets were characterised photographically, electrically and spectroscopically. DAPACP jet length increases with the increase of argon flow rate, with optimum rate at 3.5 L min(-1) . The viability of A. niger spores, inoculated onto sterilised date palm fruit discs, progressively decreases with extension of the exposure time of DAPACP due to the more quantitative amount of OH and O radicals interacting with the examined samples. There was a progressive reduction of the amount of FB2 and OTA detected in date palm discs on extension of the exposure time of the plasma-treated inoculums at flow rate of 3.5 L min(-1) . FB2 was not detected in the discs inoculated with 6-min plasma-treated A. niger, while OTA was completely absent when the fungus was treated for 7.5 min. DAPACP showed promising results in dry fruit decontamination and in inhibition of mycotoxin release by A. niger contaminating the fruits. The progress in the commercial application of cold plasma needs further investigation concerning the ideal width of the plasma output to enable it to cover wider surfaces of the sample and consequently inducing greater plasma performance. © 2014 Society of Chemical Industry.

  5. Sporicidal activity of chemical and physical tissue fixation methods.

    PubMed Central

    Vardaxis, N J; Hoogeveen, M M; Boon, M E; Hair, C G

    1997-01-01

    AIMS: The effects of alcohol based fixation and microwave stimulated alcohol fixation were investigated on spores of Bacillus stearothermophilus and Bacillus subtilis (var. niger). METHODS: Spores were exposed to 10% formalin, or different concentrations of various alcohol containing fixatives (Kryofix/Spuitfix). Adequate controls were also set up in conjunction with the test solutions. The spores were immersed with and without adjunctive microwave stimulation in the various solutions tested. Possible surviving spores were recovered in revival broth and after incubation, and Gram staining viable counts were performed. RESULTS: Alcohol based fixatives did not have a sporicidal effect on B stearothermophilus or B subtilis (var. niger) spores, and microwave stimulated alcohol fixation at 450 W and up to 75 degrees C did not have a sporicidal effect. CONCLUSIONS: When alcohol based fixatives are used for fixation, precautions should be taken with the material thus treated, as it may contain viable spores or other pathogens, which are destroyed after 24 hours of formalin treatment. Of the physicochemical methods tested involving microwaving, none was successful in eliminating viable spores from the test material. PMID:9215128

  6. Antifungal effect of gaseous nitric oxide on mycelium growth, sporulation and spore germination of the postharvest horticulture pathogens, Aspergillus niger, Monilinia fructicola and Penicillium italicum.

    PubMed

    Lazar, E E; Wills, R B H; Ho, B T; Harris, A M; Spohr, L J

    2008-06-01

    To evaluate the antifungal activity of nitric oxide (NO) against the growth of the postharvest horticulture pathogens Aspergillus niger, Monilinia fructicola and Penicillium italicum under in vitro conditions. Different volumes of NO gas were injected into the Petri dish headspace to obtain the desired concentrations of 50-500 microl l(-1). The growth of the fungi was measured for 8 days of incubation in air at 25 degrees C. All concentrations of NO were found to produce an antifungal effect on spore germination, sporulation and mycelial growth of the three fungi, with the most effective concentration for A. niger and P. italicum being 100 and 500 microl l(-1) for M. fructicola. Short-term exposure to a low concentration of NO gas was able to inhibit the subsequent growth of A. niger, M. fructicola and P. italicum. NO gas has potential use as a natural fungicide to inhibit microbial growth on postharvest fruit and vegetables.

  7. Foam Separation of Pseudomonas fluorescens and Bacillus subtilis var. niger

    PubMed Central

    Grieves, R. B.; Wang, S. L.

    1967-01-01

    An experimental investigation established the effect of the presence of inorganic salts on the foam separation of Pseudomonas fluorescens and of Bacillus subtilis var. niger (B. globigii) from aqueous suspension by use of a cationic surfactant. For P. fluorescens, 5.0 μeq/ml of NaCl, KCl, Na2SO4, K2SO4, CaCl2, CaSO4, MgCl2, or MgSO4 produced increases in the cell concentration in the residual suspension (not carried into the foam) from 2.9 × 105 up to 1.6 × 106 to 2.8 × 107 cells per milliliter (initial suspensions contain from 3.3 × 107 to 4.8 × 107 cells per milliliter). The exceptional influence of magnesium was overcome by bringing the cells into contact first with the surfactant and then the salt. For B. subtilis, the presence of 5.0 μeq/ml of any of the eight salts increased the residual cell concentration by one order of magnitude from 1.2 × 104 to about 4.0 × 105 cells per milliliter. This occurred regardless of the sequence of contact as long as the surfactant contact period was sufficient. The presence of salts increased collapsed foam volumes with P. fluorescens and decreased collapsed foam volumes with B. subtilis. PMID:4961933

  8. Foam separation of Pseudomonas fluorescens and Bacillus subtilis var. niger.

    PubMed

    Grieves, R B; Wang, S L

    1967-01-01

    An experimental investigation established the effect of the presence of inorganic salts on the foam separation of Pseudomonas fluorescens and of Bacillus subtilis var. niger (B. globigii) from aqueous suspension by use of a cationic surfactant. For P. fluorescens, 5.0 mueq/ml of NaCl, KCl, Na(2)SO(4), K(2)SO(4), CaCl(2), CaSO(4), MgCl(2), or MgSO(4) produced increases in the cell concentration in the residual suspension (not carried into the foam) from 2.9 x 10(5) up to 1.6 x 10(6) to 2.8 x 10(7) cells per milliliter (initial suspensions contain from 3.3 x 10(7) to 4.8 x 10(7) cells per milliliter). The exceptional influence of magnesium was overcome by bringing the cells into contact first with the surfactant and then the salt. For B. subtilis, the presence of 5.0 mueq/ml of any of the eight salts increased the residual cell concentration by one order of magnitude from 1.2 x 10(4) to about 4.0 x 10(5) cells per milliliter. This occurred regardless of the sequence of contact as long as the surfactant contact period was sufficient. The presence of salts increased collapsed foam volumes with P. fluorescens and decreased collapsed foam volumes with B. subtilis.

  9. Ecology and thermal inactivation of microbes in and on interplanetary space vehicle components

    NASA Technical Reports Server (NTRS)

    Campbell, J. E.

    1973-01-01

    Studies were made of atypical organisms found in Bacillus subtilis var. niger spore colonies. Efforts were aimed at: (1) determining the heat sensitivity of these atypical white spores treated under dry heat conditions and their influence on the nature of the survival curve, (2) preparing a new spore crop obtained from spore isolates by purification procedures, and (3) comparing spore crops obtained from Cape Kennedy (SSM-10) and Minnesota (Minn. sp. AAEF) with the old Cincinnati and new purified Cincinnati spore crop under dry heat conditions.

  10. Constitutive expression of fluorescent protein by Aspergillus var. niger and Aspergillus carbonarius to monitor fungal colonization in maize plants.

    PubMed

    Palencia, Edwin Rene; Glenn, Anthony Elbie; Hinton, Dorothy Mae; Bacon, Charles Wilson

    2013-09-01

    Aspergillus niger and Aspergillus carbonarius are two species in the Aspergillus section Nigri (black-spored aspergilli) frequently associated with peanut (Arachis hypogea), maize (Zea mays), and other plants as pathogens. These infections are symptomless and as such are major concerns since some black aspergilli produce important mycotoxins, ochratoxins A, and the fumonisins. To facilitate the study of the black aspergilli-maize interactions with maize during the early stages of infections, we developed a method that used the enhanced yellow fluorescent protein (eYFP) and the monomeric red fluorescent protein (mRFP1) to transform A. niger and A. carbonarius, respectively. The results were constitutive expressions of the fluorescent genes that were stable in the cytoplasms of hyphae and conidia under natural environmental conditions. The hyphal in planta distribution in 21-day-old seedlings of maize were similar wild type and transformants of A. niger and A. carbonarius. The in planta studies indicated that both wild type and transformants internally colonized leaf, stem and root tissues of maize seedlings, without any visible disease symptoms. Yellow and red fluorescent strains were capable of invading epidermal cells of maize roots intercellularly within the first 3 days after inoculation, but intracellular hyphal growth was more evident after 7 days of inoculation. We also tested the capacity of fluorescent transformants to produce ochratoxin A and the results with A. carbonarius showed that this transgenic strain produced similar concentrations of this secondary metabolite. This is the first report on the in planta expression of fluorescent proteins that should be useful to study the internal plant colonization patterns of two ochratoxigenic species in the Aspergillus section Nigri. © 2013.

  11. Antifungal compounds from Zanthoxylum chiloperone var. angustifolium.

    PubMed

    Thouvenel, Céline; Gantier, Jean-Charles; Duret, Philippe; Fourneau, Christophe; Hocquemiller, Reynald; Ferreira, Maria-Elena; Rojas de Arias, Antonieta; Fournet, Alain

    2003-06-01

    An alkaloidal extract of the stem barks of Zanthoxylum chiloperone var. angustifolium exhibited antifungal activity against Candida albicans, Aspergillus fumigatus and Trichophyton mentagrophytes var. interdigitale using a TLC bioautographic method. Bioassay-guided fractionation of this extract resulted in the isolation of two active compounds identi fi ed as canthin-6-one and 5-methoxycanthin-6-one. Canthin-6-one exhibited a broad spectrum of activities against Aspergillus fumigatus, A. niger, A. terreus, Candida albicans, C. tropicalis, C. glabrata, Cryptococcus neoformans, Geotrichum candidum, Saccharomyces cerevisiae, Trichosporon beigelii, Trichosporon cutaneum and Trichophyton mentagrophytes var. interdigitale with MICs values between 5.3 and 46 micro mol/L. 5-methoxy-canthin-6-one was active against only Trichophyton mentagrophytes var. interdigitale with a MIC value of 12.3 micro mol/L. Copyright 2003 John Wiley & Sons, Ltd.

  12. A novel photosensitization treatment for the inactivation of fungal spores and cells mediated by curcumin.

    PubMed

    Al-Asmari, Fahad; Mereddy, Ram; Sultanbawa, Yasmina

    2017-08-01

    The global concerns regarding the emergence of fungicide-resistant strains and the impact of the excessive use of fungicidal practises on our health, food, and environment have increased, leading to a demand for alternative clean green technologies as treatments. Photosensitization is a treatment that utilises a photosensitiser, light and oxygen to cause cell damage to microorganisms. The effect of photosensitization mediated by curcumin on Aspergillus niger, Aspergillus flavus, Penicillium griseofulvum, Penicillium chrysogenum, Fusarium oxysporum, Candida albicans and Zygosaccharomyces bailii was investigated using three methods. The viability of spores/cells suspended in aqueous buffer using different concentrations of curcumin solution (100-1000μM) and light dose (0, 24, 48, 72 and 96J/cm 2 ) were determined. Spraying curcumin solution on inoculated surfaces of agar plates followed by irradiation and soaking spores/cells in curcumin solution prior to irradiation was also investigated. In aqueous mixtures, photosensitised spores/cells of F. oxysporum and C. albicans were inhibited at all light doses and curcumin concentrations, while inactivation of A. niger, A. flavus P. griseofulvum, P. chrysogenum and Z. bailii were highly significant (P<0.001) reduced by 99%, 88.9%, 78%, 99.7% and 99.2% respectively. On the surface of agar plates, spores/cells exposed to a light dose of 360J/cm 2 sprayed with curcumin at 800μM showed complete inhibition for A. niger, F. oxysporum, C. albicans and Z. bailii, while A. flavus P. griseofulvum, and P. chrysogenum reduced by 75%, 80.4% and 88.5% respectively. Soaking spores/cells with curcumin solution prior to irradiation did not have a significant effect on the percentage reduction. These observations suggest that a novel photosensitization mediated curcumin treatment is effective against fungal spores/cells and the variation of percentage reduction was dependent on curcumin concentration, light dosage and fungal species

  13. Services provided in support of the planetary quarantine requirements of the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Favero, M. S.

    1972-01-01

    The efficiency of a biodetection grinder, used to recover buried contamination, was tested using spacecraft components and laminated polystyrene strips containing Bacillus subtilis var. niger spores. The surfaces were decontaminated before tests. Results are given in tabular form. Tables are also given for heat resistance of bacteria spores, prevalence of bacteria in spacecraft before launch, and the types of bacteria found in Apollo 15 spacecraft components and command modules.

  14. Environmental microbiology as related to planetary quarantine

    NASA Technical Reports Server (NTRS)

    Pflug, I. J.

    1971-01-01

    The experiments carried out to determine the effects of temperature and relative humidity on the survival rate of Bacillus subtillis var. niger spores are reported. The experiments were conducted in environmental chambers at temperatures of 75 and 90 C. Data are also included on the survival characteristics of the spores suspended in sucrose solutions at 90 C with water activities of 0.99, 0.9, and 0.85

  15. Dynamics of Bacillus thuringiensis var. israelensis and Lysinibacillus sphaericus Spores in Urban Catch Basins after Simultaneous Application against Mosquito Larvae

    PubMed Central

    Guidi, Valeria; Lehner, Angelika; Lüthy, Peter; Tonolla, Mauro

    2013-01-01

    Bacillus thuringiensis var. israelensis (Bti) and Lysinibacillus sphaericus (Lsph) are extensively used in mosquito control programs. These biocides are the active ingredients of a commercial larvicide. Quantitative data on the fate of both Bti and Lsph applied together for the control of mosquitoes in urban drainage structures such as catch basins are lacking. We evaluated the dynamics and persistence of Bti and Lsph spores released through their concomitant application in urban catch basins in southern Switzerland. Detection and quantification of spores over time in water and sludge samples from catch basins were carried out using quantitative real-time PCR targeting both cry4A and cry4B toxin genes for Bti and the binA gene for Lsph. After treatment, Bti and Lsph spores attained concentrations of 3.76 (±0.08) and 4.13 (±0.09) log ml−1 in water, then decreased progressively over time, reaching baseline values. For both Bti and Lsph, spore levels in the order of 105 g−1 were observed in the bottom sludge two days after the treatment and remained constant for the whole test period (275 days). Indigenous Lsph strains were isolated from previously untreated catch basins. A selection of those was genotyped using pulsed field gel electrophoresis of SmaI-digested chromosomal DNA, revealing that a subset of isolates were members of the clonal population of strain 2362. No safety issues related to the use of this biopesticide in the environment have been observed during this study, because no significant increase in the number of spores was seen during the long observation period. The isolation of native Lysinibacillus sphaericus strains belonging to the same clonal population as strain 2362 from catch basins never treated with Lsph-based products indicates that the use of a combination of Bti and Lsph for the control of mosquitoes does not introduce non-indigenous microorganisms in this area. PMID:23390547

  16. Ecology and thermal inactivation of microbes in and on interplanetary space vehicle components

    NASA Technical Reports Server (NTRS)

    Reyes, A. L.

    1974-01-01

    Dry heat inactivation characteristics were compared for 4-6 (B. brevis) spores and microbes from the Cincinnati soil samples at 105, 112, and 125. Characterized were the survival curves of 4-6 (B. brevis) spores at 112, 115, 118, 120, and 125 C, and 1.2 microgram of water per ml of headspace air (closed tin-can system), and the morphological characteristics of 4-6 (B. brevis), 6-12 (B. lentus), 7-11 (B. coagulans), and B. subtilis var. niger spores by scanning electron microscopy.

  17. Effect of low shear modeled microgravity on phenotypic and central chitin metabolism in the filamentous fungi Aspergillus niger and Penicillium chrysogenum.

    PubMed

    Sathishkumar, Yesupatham; Velmurugan, Natarajan; Lee, Hyun Mi; Rajagopal, Kalyanaraman; Im, Chan Ki; Lee, Yang Soo

    2014-08-01

    Phenotypic and genotypic changes in Aspergillus niger and Penicillium chrysogenum, spore forming filamentous fungi, with respect to central chitin metabolism were studied under low shear modeled microgravity, normal gravity and static conditions. Low shear modeled microgravity (LSMMG) response showed a similar spore germination rate with normal gravity and static conditions. Interestingly, high ratio of multiple germ tube formation of A. niger in LSMMG condition was observed. Confocal laser scanning microscopy images of calcofluor flurophore stained A. niger and P. chrysogenum showed no significant variations between different conditions tested. Transmission electron microscopy images revealed number of mitochondria increased in P. chrysogenum in low shear modeled microgravity condition but no stress related-woronin bodies in fungal hyphae were observed. To gain additional insight into the cell wall integrity under different conditions, transcription level of a key gene involved in cell wall integrity gfaA, encoding the glutamine: fructose-6-phosphate amidotransferase enzyme, was evaluated using qRT-PCR. The transcription level showed no variation among different conditions. Overall, the results collectively indicate that the LSMMG has shown no significant stress on spore germination, mycelial growth, cell wall integrity of potentially pathogenic fungi, A. niger and P. chrysogenum.

  18. New insight into the disinfection mechanism of Fusarium monoliforme and Aspergillus niger by TiO2 photocatalyst under low intensity UVA light.

    PubMed

    Pokhum, Chonlada; Viboonratanasri, Duangamon; Chawengkijwanich, Chamorn

    2017-11-01

    Titanium dioxide (TiO 2) photocatalytic reaction has great potential for the disinfection of harmful pathogens. However, the disinfection mechanisms of TiO 2 photocatalysis are not yet well-known for fungi and protozoa. In this work, the photocatalytic disinfection mechanism of Fusarium monoliforme and Aspergillus niger under low intensity UVA light (365nm, <10W/m 2 ) was studied at the ultrastructural level. Photocatalytic treatments showed that the photocatalytic oxidation of 10% TiO 2 based paint was efficacious in the complete disinfection of F. monoliforme under low intensity UVA light. No growth of F. monoliforme was observed on agar plate in the subsequent dark. Transmission electron microscopy (TEM) of F. monoliforme exposed to TiO 2 photocatalysis treatment showed a distinct damage to electron-dense outer cell wall, but not to an underlying electron-transparent layer cell wall. The TEM image revealed that the UVA-light only did not damage cell wall, cell membrane and cellular organelles. Unlike, A. niger was more sensitive to UVA-light. Serious destructions of cell membrane and cellular organelles were shown in A. niger exposed to UVA-light only and photocatalytic treatments. However, morphological change in A. niger cell wall was only observed in photocatalytic treatment. Changes to the outermost melanin like layer and cell wall of A. niger spore due to photocatalytic treatment were greatly apparent while the intracellular organelles of A. niger spore were not affected. Therefore, regrowth of A. niger on agar plate was expected from the germination of A. niger spore in the subsequent dark. These observations give a better understanding of the photocatalytic disinfection mechanism toward fungi. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Cytological and Proteomic Analyses of Osmunda cinnamomea Germinating Spores Reveal Characteristics of Fern Spore Germination and Rhizoid Tip Growth.

    PubMed

    Suo, Jinwei; Zhao, Qi; Zhang, Zhengxiu; Chen, Sixue; Cao, Jian'guo; Liu, Guanjun; Wei, Xing; Wang, Tai; Yang, Chuanping; Dai, Shaojun

    2015-09-01

    Fern spore is a good single-cell model for studying the sophisticated molecular networks in asymmetric cell division, differentiation, and polar growth. Osmunda cinnamomea L. var. asiatica is one of the oldest fern species with typical separate-growing trophophyll and sporophyll. The chlorophyllous spores generated from sporophyll can germinate without dormancy. In this study, the spore ultrastructure, antioxidant enzyme activities, as well as protein and gene expression patterns were analyzed in the course of spore germination at five typical stages (i.e. mature spores, rehydrated spores, double-celled spores, germinated spores, and spores with protonemal cells). Proteomic analysis revealed 113 differentially expressed proteins, which were mainly involved in photosynthesis, reserve mobilization, energy supplying, protein synthesis and turnover, reactive oxygen species scavenging, signaling, and cell structure modulation. The presence of multiple proteoforms of 25 differentially expressed proteins implies that post-translational modification may play important roles in spore germination. The dynamic patterns of proteins and their encoding genes exhibited specific characteristics in the processes of cell division and rhizoid tip growth, which include heterotrophic and autotrophic metabolisms, de novo protein synthesis and active protein turnover, reactive oxygen species and hormone (brassinosteroid and ethylene) signaling, and vesicle trafficking and cytoskeleton dynamic. In addition, the function skew of proteins in fern spores highlights the unique and common mechanisms when compared with evolutionarily divergent spermatophyte pollen. These findings provide an improved understanding of the typical single-celled asymmetric division and polar growth during fern spore germination. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Ecology and thermal inactivation of microbes in and on interplanetary space vehicle components

    NASA Technical Reports Server (NTRS)

    Campbell, J. E.

    1973-01-01

    The thermal inactivation curve for Bacillus subtilis var. niger spores on the Viking lander is examined. Tests were conducted at 113 C and 25% RH, and over a wide range of temperatures using .001% RH and additions of P2O5 to dry the environment. Results show the 25% RH environment did not significantly reduce the survival curve, while the survival curves for spores treated under the drier .001% RH environment was reduced by a factor of 3.

  1. Planetary quarantine program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A quantitative means was developed to investigate the sensitivity of current spacecraft sterilization plans to variations in D-values. A quantitative expression was derived to represent the distribution of D-values among a population of naturally occurring organisms. An investigation was made of (1) the inactivation of both Bacillus subtilis var. niger spores and Cape Kennedy soil spores by gamma-radiation at room temperature in a nitrogen environment, and (2) the thermoradiation resistance of Cape Kennedy soil spores at elevated temperatures below 125 C. The relation between standard survival experiments with bacterial spores in soils and results obtained on spacecraft surfaces is discussed. Sporocidal properties of aqueous formaldehyde can be increased by elevating the temperature.

  2. Mechanism of the hydrolysis of 4-methylumbelliferyl-beta-D-glucoside by germinating and outgrowing spores of Bacillus species.

    PubMed

    Setlow, B; Cabrera-Martinez, R-M; Setlow, P

    2004-01-01

    To determine the mechanism of the hydrolysis of 4-methylumbelliferyl-beta-D-glucopyranoside (beta-MUG) by germinating and outgrowing spores of Bacillus species. Spores of B. atrophaeus (formerly B. subtilis var. niger, Fritze and Pukall 2001) are used as biological indicators of the efficacy of ethylene oxide sterilization by measurement of beta-MUG hydrolysis during spore germination and outgrowth. It was previously shown that beta-MUG is hydrolysed to 4-methylumbelliferone (MU) during the germination and outgrowth of B. atrophaeus spores (Chandrapati and Woodson 2003), and this was also the case with spores of B. subtilis 168. Germination of spores of either B. atrophaeus or B. subtilis with chloramphenicol reduced beta-MUG hydrolysis by almost 99%, indicating that proteins needed for rapid beta-MUG hydrolysis are synthesized during spore outgrowth. However, the residual beta-MUG hydrolysis during spore germination with chloramphenicol indicated that dormant spores contain low levels of proteins needed for beta-MUG uptake and hydrolysis. With B. subtilis 168 spores that lacked several general proteins of the phosphotransferase system (PTS) for sugar uptake, beta-MUG hydrolysis during spore germination and outgrowth was decreased >99.9%. This indicated that beta-MUG is taken up by the PTS, resulting in the intracellular accumulation of the phosphorylated form of beta-MUG, beta-MUG-6-phosphate (beta-MUG-P). This was further demonstrated by the lack of detectable glucosidase activity on beta-MUG in dormant, germinated and outgrowing spore extracts, while phosphoglucosidase active on beta-MUG-P was readily detected. Dormant B. subtilis 168 spores had low levels of at least four phosphoglucosidases active on beta-MUG-P: BglA, BglH, BglC (originally called YckE) and BglD (originally called YdhP). These enzymes were also detected in spores germinating and outgrowing with beta-MUG, but levels of BglH were the highest, as this enzyme's synthesis was induced ca 100-fold

  3. The Aspergillus niger growth on the treated concrete substrate using variable antifungals

    NASA Astrophysics Data System (ADS)

    Parjo, U. K.; Sunar, N. M.; Leman, A. M.; Gani, P.; Embong, Z.; Tajudin, S. A. A.

    2016-11-01

    The aim of this study was to evaluate the Aspergillus niger (A. niger) growth on substrates after incorporates with different compounds of antifungals which is normally used in food industry. The antifungals named as potassium sorbate (PS), calcium benzoate (CB) and zinc salicylate (ZS) were applied on concrete substrate covered with different wall finishing such as acrylic paint (AP), glycerol based paint (GBP), thin wallpaper (THIN) and thick wallpaper (THICK). The concrete substrate were inoculated with spore suspension, incubated at selected temperature (30oC) and relative humidity (90%)in plant growth chamber. The observations were done from the Day 3 until Day 27. The results showed that the growth of the A. niger for concrete treated by PS for AP, GBP, THIN, and THICK were 64%, 32%, 11% and 100%, respectively. Meanwhile for CB, the growth of A. niger on AP, GBP, THIN, and THICK were 100%, 12%, 41%, and 13%, respectively. Similarly, treated concrete by ZS revealed that the growth of A. niger on the same substrate cover were 33%, 47%, 40%, and 39%, respectively. The results obtained in this study provide a valuable knowledge on the abilities of antifungals to remediate A. niger that inoculated on the concrete substrate. Consequently, this study proved that the PS covering with THIN more efficiency compares CB and ZS to prevent A. niger growth.

  4. Environmental microbiology as related to planetary quarantine. [synergetic effect of heat and radiation

    NASA Technical Reports Server (NTRS)

    Pflug, I. J.

    1973-01-01

    The mechanistic basis of the synergetic effect of combined heat and radiation on microbial destruction was analyzed and results show that radiation intensity, temperature, and relative humidity are the determining factors. Dry heat resistance evaluation for selected bacterial spore crops indicates that different strains of Bacillus stearothermophilus demonstrate marked differences in resistance. Preliminary work to determine the effects of storage time, suspending medium, storage temperature and spore crop cleaning procedures on dry heat survival characteristics of Bacillus subtilis var. Niger, and dry heat resistance of natural microflora in soil particles is also reported.

  5. Antilithiasic and Hypolipidaemic Effects of Raphanus sativus L. var. niger on Mice Fed with a Lithogenic Diet

    PubMed Central

    Castro-Torres, Ibrahim Guillermo; Naranjo-Rodríguez, Elia Brosla; Domínguez-Ortíz, Miguel Ángel; Gallegos-Estudillo, Janeth; Saavedra-Vélez, Margarita Virginia

    2012-01-01

    In Mexico, Raphanus sativus L. var. niger (black radish) has uses for the treatment of gallstones and for decreasing lipids serum levels. We evaluate the effect of juice squeezed from black radish root in cholesterol gallstones and serum lipids of mice. The toxicity of juice was analyzed according to the OECD guidelines. We used female C57BL/6 mice fed with a lithogenic diet. We performed histopathological studies of gallbladder and liver, and measured concentrations of cholesterol, HDL cholesterol and triglycerides. The juice can be considered bioactive and non-toxic; the lithogenic diet significantly induced cholesterol gallstones; increased cholesterol and triglycerides levels, and decreased HDL levels; gallbladder wall thickness increased markedly, showing epithelial hyperplasia and increased liver weight. After treatment with juice for 6 days, cholesterol gallstones were eradicated significantly in the gallbladder of mice; cholesterol and triglycerides levels decreased too, and there was also an increase in levels of HDL (P < 0.05). Gallbladder tissue continued to show epithelial hyperplasia and granulocyte infiltration; liver tissue showed vacuolar degeneration. The juice of black radish root has properties for treatment of cholesterol gallstones and for decreasing serum lipids levels; therefore, we confirm in a preclinical study the utility that people give it in traditional medicine. PMID:23093836

  6. Environmental microbiology as related to planetary quarantine

    NASA Technical Reports Server (NTRS)

    Pflug, I. J.

    1972-01-01

    The experimental design of a study to evaluate the effect of different cleaning methods and storage conditions on the dry heat resistance of Bacillus subtilis var. niger spores is described and the results for the first evaluation are reported. Specifically, the synergistic effect which occurs when spores are subjected simultaneously to dry heat and gamma radiation so as to be able to specify thermoradiation sterilization cycles was investigated. Attempts were made to understand the underlying mechanism(s) that lead to spore death from this combination of stresses. Data cover: (1) the survival of spores on surfaces at various temperatures in a precisely controlled environmental system, (2) the rate of destruction of these spores at ambient temperature when subjected to gamma radiation, and (3) the rate of destruction of spores when they are subjected to combined gamma radiation and thermal stresses.

  7. Malting of barley with combinations of Lactobacillus plantarum, Aspergillus niger, Trichoderma reesei, Rhizopus oligosporus and Geotrichum candidum to enhance malt quality.

    PubMed

    Hattingh, M; Alexander, A; Meijering, I; van Reenen, C A; Dicks, L M T

    2014-03-03

    Good quality malt is characterised by the presence of high levels of fermentable sugars, amino acids and vitamins. To reach the starch-rich endosperm of the kernel, β-glucan- and arabinoxylan-rich cell walls have to be degraded. β-Glucanase is synthesized in vast quantities by the aleurone layer and scutellum during germination. Secretion of hydrolytic enzymes is often stimulated by addition of the plant hormone gibberellic acid (GA3) during germination. We have shown an enhanced β-glucanase and α-amylase activity in malt when germinating barley was inoculated with a combination of Lactobacillus plantarum B.S1.6 and spores of Aspergillus niger MH1, Rhizopus oligosporus MH2 or Trichoderma reesei MH3, and L. plantarum B.S1.6 combined with cell-free culture supernatants from each of these fungi. Highest malt β-glucanase activity (414 Units/kg malt) was recorded with a combination of L. plantarum B.S1.6 and spores of A. niger MH1. Highest α-amylase activities were recorded with a combination of L. plantarum B.S1.6 and spores of R. oligosporus MH2 (373 Ceralpha Units/g malt). Highest FAN levels were recorded when L. plantarum was inoculated in combination with spores of either R. oligosporus MH2 or T. reesei MH3 (259 and 260 ppm, respectively). This is the first study showing that cell-free culture supernatants of Aspergillus, Rhizopus and Trichoderma have a stimulating effect on β-glucanase and α-amylase production during malting. A combination of L. plantarum B.S1.6, and spores of A. niger MH1 and R. oligosporus MH2 may be used as starter cultures to enhance malt quality. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Characterization of oxylipins and dioxygenase genes in the asexual fungus Aspergillus niger

    PubMed Central

    2009-01-01

    Background Aspergillus niger is an ascomycetous fungus that is known to reproduce through asexual spores, only. Interestingly, recent genome analysis of A. niger has revealed the presence of a full complement of functional genes related to sexual reproduction [1]. An example of such genes are the dioxygenase genes which in Aspergillus nidulans, have been shown to be connected to oxylipin production and regulation of both sexual and asexual sporulation [2-4]. Nevertheless, the presence of sex related genes alone does not confirm sexual sporulation in A. niger. Results The current study shows experimentally that A. niger produces the oxylipins 8,11-dihydroxy octadecadienoic acid (8,11-diHOD), 5,8-dihydroxy octadecadienoic acid (5,8-diHOD), lactonized 5,8-diHOD, 8-hydroxy octadecadienoic acid (8-HOD), 10-hydroxy octadecadienoic acid (10-HOD), small amounts of 8-hydroxy octadecamonoenoic acid (8-HOM), 9-hydroxy octadecadienoic acid (9-HOD) and 13-hydroxy octadecadienoic acid (13-HOD). Importantly, this study shows that the A. niger genome contains three putative dioxygenase genes, ppoA, ppoC and ppoD. Expression analysis confirmed that all three genes are indeed expressed under the conditions tested. Conclusion A. niger produces the same oxylipins and has similar dioxygenase genes as A. nidulans. Their presence could point towards the existence of sexual reproduction in A. niger or a broader role for the gene products in physiology, than just sexual development. PMID:19309517

  9. Effects of aeolian erosion on microbial release from solids.

    NASA Technical Reports Server (NTRS)

    Gustan, E. A.; Olson, R. L.; Taylor, D. M.; Green, R. H.

    1972-01-01

    This study was initiated to determine the percentage of spores that would be expected to be released from the interior of solid materials by aeolian erosion on a planetary surface. Methyl methacrylate and Eccobond disks were fabricated so that each disk contained approximately 40,000 Bacillus subtilis var. niger spores. The disks were placed in a specially designed sandblasting device and eroded. Exposure periods of 0.5, 2 and 24 hours were investigated using filtered air to accelerate the sand. A series of tests was also conducted for a 0.5 hour period using carbon dioxide. Examination of the erosion products showed that less than 1% of the spores originally contained in the solids was released by aeolian erosion.

  10. Simultaneous Production of Amyloglucosidase and Exo-Polygalacturonase by Aspergillus niger in a Rotating Drum Reactor.

    PubMed

    Colla, Eliane; Santos, Lucielen Oliveira; Deamici, Kricelle; Magagnin, Glênio; Vendruscolo, Mauricio; Costa, Jorge Alberto Vieira

    2017-02-01

    Simultaneous production of amyloglucosidase (AMG) and exo-polygalacturonase (exo-PG) was carried out by Aspergillus niger in substrate of defatted rice bran in a rotating drum bioreactor (RDB) and studied by a 3 1  × 2 2 factorial experimental design. Variables under study were A. niger strains (A. niger NRRL 3122 and A. niger t0005/007-2), types of inoculum (spore suspension and fermented bran), and types of inducer (starch, pectin, and a mix of both). Solid-state fermentation process (SSF) was conducted at 30 °C under 60-vvm aeration for 96 h in a pilot scale. Production of AMG and exo-PG was significantly affected by the fungal strain and the type of inoculum, but inducers did not trigger any significant effect, an evidence of the fact that these enzymes are constitutive. The maximum activity of exo-PG was 84 U g dm -1 whereas the maximum yield of AMG was 886.25 U g dm -1 .

  11. Antifungal effects of citronella oil against Aspergillus niger ATCC 16404.

    PubMed

    Li, Wen-Ru; Shi, Qing-Shan; Ouyang, You-Sheng; Chen, Yi-Ben; Duan, Shun-Shan

    2013-08-01

    Essential oils are aromatic oily liquids obtained from some aromatic plant materials. Certain essential oils such as citronella oil contain antifungal activity, but the antifungal effect is still unknown. In this study, we explored the antifungal effect of citronella oil with Aspergillus niger ATCC 16404. The antifungal activity of citronella oil on conidia of A. niger was determined by poisoned food technique, broth dilution method, and disc volatility method. Experimental results indicated that the citronella oil has strong antifungal activity: 0.125 (v/v) and 0.25 % (v/v) citronella oil inhibited the growth of 5 × 10⁵ spore/ml conidia separately for 7 and 28 days while 0.5 % (v/v) citronella oil could completely kill the conidia of 5 × 10⁵ spore/ml. Moreover, the fungicidal kinetic curves revealed that more than 90 % conidia (initial concentration is 5 × 10⁵ spore/ml) were killed in all the treatments with 0.125 to 2 % citronella oil after 24 h. Furthermore, with increase of citronella oil concentration and treatment time, the antifungal activity was increased correspondingly. The 0.5 % (v/v) concentration of citronella oil was a threshold to kill the conidia thoroughly. The surviving conidia treated with 0.5 to 2 % citronella oil decreased by an order of magnitude every day, and no fungus survived after 10 days. With light microscope, scanning electron microscope, and transmission electron microscope, we found that citronella oil could lead to irreversible alteration of the hyphae and conidia. Based on our observation, we hypothesized that the citronella oil destroyed the cell wall of the A. niger hyphae, passed through the cell membrane, penetrated into the cytoplasm, and acted on the main organelles. Subsequently, the hyphae was collapsed and squashed due to large cytoplasm loss, and the organelles were severely destroyed. Similarly, citronella oil could lead to the rupture of hard cell wall and then act on the sporoplasm to kill the

  12. Effects of Aspergillus niger-fermented Terminalia catappa seed meal-based diet on selected enzymes of some tissues of broiler chicks.

    PubMed

    Muhammad, N O; Oloyede, O B

    2010-05-01

    Effects of Aspergillus niger-fermented Terminalia catappa seed meal-based diet on the activities of alkaline phosphatase (ALP), alanine transaminase (ALT), aspartate transaminase (AST) and gamma-glutamate transferase (gamma-GT) in the crop, small intestine, gizzard, heart, liver and serum of broiler chicks were investigated. Milled T. catappa seed was inoculated with spores of A.niger (2.21 x 10(4) spores per ml) for 3 weeks. Forty-five day-old broiler chicks weighing between 27.62 and 36.21 g, were divided into three groups. The first group was fed soybean-based (control) diet; the second on raw T. catappa seed meal-based diet; and the third on A. niger-fermented T. catappa seed meal-based diet for 7 weeks. The results revealed a significantly increased (p<0.05) activity of ALP in the tissues. Contrarily, there were significant reductions (p<0.05) in the activities of ALP, ALT, AST and gamma-GT in the liver and heart of the broilers fed the raw T. catappa seed meal-based diet while there were significant increase (p<0.05) in the activities of these enzymes in the serum of the broilers in this group. The data obtained showed that A. niger-fermented T. catappa seed meal reduced the toxic effects of the raw seed meal on the tissues of broiler chicks. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  13. Ecology and Thermal Inactivation of Microbes in and on Interplanetary Space Vehicle Components

    NASA Technical Reports Server (NTRS)

    Reyes, A. L.; Campbell, J. E.

    1975-01-01

    Spores of Bacillus subtilis var. niger were heat treated in aqueous suspension at 90 C, and observed for morphological changes and loss of viability. The 5 logs reduction that occurred in broth at 90 min required 210 min in buffered water. Five characteristic changes observed after spores were exposed 120 min at 90 C in buffered water were: (1) 90% loss of spore viability, (2) 5% stainability, (3) 76% increase in spore size (as observed by scanning electron microscopy), (4) 21% of spore areas remaining refractile, and (5) an increase of 77% in packed cell volume (PCV). Stainability and PCV changes were recognized only after secondary exposure in broth. Extended heat exposure (3 h at 90 C) resulted in 99% loss of spore viability and 99% loss of stainability. After 4 hours of heat exposure, 90% of the cells disintegrated. These results suggest that early germinal changes occurr concurrently with the early changes in the heat susceptibility of dormant spores.

  14. Homogeneous Bacterial Aerosols Produced with a Spinning-Disc Generator

    PubMed Central

    Harstad, J. Bruce; Filler, Melvin E.; Hushen, William T.; Decker, Herbert M.

    1970-01-01

    Aerosols composed of viable particles of a uniform size were produced with a commercial spinning-disc generator from aqueous suspensions of Bacillus subtilis var. niger spores containing various amounts of an inert material, dextran, to regulate aerosol particle size. Aerosols composed of single naked spores having an equivalent spherical diameter of 0.87 μm were produced from spore suspensions without dextran, whereas aerosols produced from suspensions containing 0.001, 0.01, 0.1, and 1% dextran had median diameters of 0.90, 1.04, 1.80, and 3.62 μm, respectively. Such aerosols, both homogeneous and viable, would be useful for calibrating air sampling devices, evaluating air filter systems, or for employment wherever aerosol behavior may be size-dependent. Images PMID:4989672

  15. Fungal Spores Viability on the International Space Station

    NASA Astrophysics Data System (ADS)

    Gomoiu, I.; Chatzitheodoridis, E.; Vadrucci, S.; Walther, I.; Cojoc, R.

    2016-11-01

    In this study we investigated the security of a spaceflight experiment from two points of view: spreading of dried fungal spores placed on the different wafers and their viability during short and long term missions on the International Space Station (ISS). Microscopic characteristics of spores from dried spores samples were investigated, as well as the morphology of the colonies obtained from spores that survived during mission. The selected fungal species were: Aspergillus niger, Cladosporium herbarum, Ulocladium chartarum, and Basipetospora halophila. They have been chosen mainly based on their involvement in the biodeterioration of different substrate in the ISS as well as their presence as possible contaminants of the ISS. From biological point of view, three of the selected species are black fungi, with high melanin content and therefore highly resistant to space radiation. The visual inspection and analysis of the images taken before and after the short and the long term experiments have shown that all biocontainers were returned to Earth without damages. Microscope images of the lids of the culture plates revealed that the spores of all species were actually not detached from the surface of the wafers and did not contaminate the lids. From the adhesion point of view all types of wafers can be used in space experiments, with a special comment on the viability in the particular case of iron wafers when used for spores that belong to B. halophila (halophilic strain). This is encouraging in performing experiments with fungi without risking contamination. The spore viability was lower in the experiment for long time to ISS conditions than that of the short experiment. From the observations, it is suggested that the environment of the enclosed biocontainer, as well as the species'specific behaviour have an important effect, reducing the viability in time. Even the spores were not detached from the surface of the wafers, it was observed that spores used in the

  16. Fungal Spores Viability on the International Space Station.

    PubMed

    Gomoiu, I; Chatzitheodoridis, E; Vadrucci, S; Walther, I; Cojoc, R

    2016-11-01

    In this study we investigated the security of a spaceflight experiment from two points of view: spreading of dried fungal spores placed on the different wafers and their viability during short and long term missions on the International Space Station (ISS). Microscopic characteristics of spores from dried spores samples were investigated, as well as the morphology of the colonies obtained from spores that survived during mission. The selected fungal species were: Aspergillus niger, Cladosporium herbarum, Ulocladium chartarum, and Basipetospora halophila. They have been chosen mainly based on their involvement in the biodeterioration of different substrate in the ISS as well as their presence as possible contaminants of the ISS. From biological point of view, three of the selected species are black fungi, with high melanin content and therefore highly resistant to space radiation. The visual inspection and analysis of the images taken before and after the short and the long term experiments have shown that all biocontainers were returned to Earth without damages. Microscope images of the lids of the culture plates revealed that the spores of all species were actually not detached from the surface of the wafers and did not contaminate the lids. From the adhesion point of view all types of wafers can be used in space experiments, with a special comment on the viability in the particular case of iron wafers when used for spores that belong to B. halophila (halophilic strain). This is encouraging in performing experiments with fungi without risking contamination. The spore viability was lower in the experiment for long time to ISS conditions than that of the short experiment. From the observations, it is suggested that the environment of the enclosed biocontainer, as well as the species'specific behaviour have an important effect, reducing the viability in time. Even the spores were not detached from the surface of the wafers, it was observed that spores used in the

  17. The weak acid preservative sorbic acid inhibits conidial germination and mycelial growth of Aspergillus niger through intracellular acidification.

    PubMed

    Plumridge, Andrew; Hesse, Stephan J A; Watson, Adrian J; Lowe, Kenneth C; Stratford, Malcolm; Archer, David B

    2004-06-01

    The growth of the filamentous fungus Aspergillus niger, a common food spoilage organism, is inhibited by the weak acid preservative sorbic acid (trans-trans-2,4-hexadienoic acid). Conidia inoculated at 10(5)/ml of medium showed a sorbic acid MIC of 4.5 mM at pH 4.0, whereas the MIC for the amount of mycelia at 24 h developed from the same spore inoculum was threefold lower. The MIC for conidia and, to a lesser extent, mycelia was shown to be dependent on the inoculum size. A. niger is capable of degrading sorbic acid, and this ability has consequences for food preservation strategies. The mechanism of action of sorbic acid was investigated using (31)P nuclear magnetic resonance (NMR) spectroscopy. We show that a rapid decline in cytosolic pH (pH(cyt)) by more than 1 pH unit and a depression of vacuolar pH (pH(vac)) in A. niger occurs in the presence of sorbic acid. The pH gradient over the vacuole completely collapsed as a result of the decline in pH(cyt). NMR spectra also revealed that sorbic acid (3.0 mM at pH 4.0) caused intracellular ATP pools and levels of sugar-phosphomonoesters and -phosphodiesters of A. niger mycelia to decrease dramatically, and they did not recover. The disruption of pH homeostasis by sorbic acid at concentrations below the MIC could account for the delay in spore germination and retardation of the onset of subsequent mycelial growth.

  18. Reduction of Aspergillus niger Virulence in Apple Fruits by Deletion of the Catalase Gene cpeB.

    PubMed

    Zhang, Meng-Ke; Tang, Jun; Huang, Zhong-Qin; Hu, Kang-Di; Li, Yan-Hong; Han, Zhuo; Chen, Xiao-Yan; Hu, Lan-Ying; Yao, Gai-Fang; Zhang, Hua

    2018-05-30

    Aspergillus niger, a common saprophytic fungus, causes rot in many fruits. We studied the role of a putative catalase-peroxidase-encoding gene, cpeB, in oxidative stress and virulence in fruit. The cpeB gene was deleted in A. niger by homologous recombination, and the Δ cpeB mutant showed decreased CAT activity compared with that of the wild type. The cpeB gene deletion caused increased sensitivity to H 2 O 2 stress, and spore germination was significantly reduced; in addition, the reactive-oxygen-species (ROS) metabolites superoxide anions (·O 2 - ), hydrogen peroxide (H 2 O 2 ), and malondialdehyde (MDA) accumulated in the Δ cpeB mutant during H 2 O 2 stress. Furthermore, ROS metabolism in A. niger infected apples was determined, and our results showed that the Δ cpeB mutant induced an attenuated response in apple fruit during the fruit-pathogen interaction; the cpeB gene deletion significantly reduced the development of lesions, suggesting that the cpeB gene in A. niger is essential for full virulence in apples.

  19. Relation between germination and mycelium growth of individual fungal spores.

    PubMed

    Gougouli, Maria; Koutsoumanis, Konstantinos P

    2013-02-15

    The relation between germination time and lag time of mycelium growth of individual spores was studied by combining microscopic and macroscopic techniques. The radial growth of a large number (100-200) of Penicillium expansum and Aspergillus niger mycelia originating from single spores was monitored macroscopically at isothermal conditions ranging from 0 to 30°C and 10 to 41.5°C, respectively. The radial growth curve for each mycelium was fitted to a linear model for the estimation of mycelium lag time. The results showed that the lag time varied significantly among single spores. The cumulative frequency distributions of the lag times were fitted to the modified Gompertz model and compared with the respective distributions for the germination time, which were obtained microscopically. The distributions of the measured mycelium lag time were found to be similar to the germination time distributions under the same conditions but shifted in time with the lag times showing a significant delay compared to germination times. A numerical comparison was also performed based on the distribution parameters λ(m) and λ(g), which indicate the time required from the spores to start the germination process and the completion of the lag phase, respectively. The relative differences %(λ(m)-λ(g))/λ(m) were not found to be significantly affected by temperatures tested with mean values of 72.5±5.1 and 60.7±2.1 for P. expansum for A. niger, respectively. In order to investigate the source of the above difference, a time-lapse microscopy method was developed providing videos with the behavior of single fungal spore from germination until mycelium formation. The distances of the apexes of the first germ tubes that emerged from the swollen spore were measured in each frame of the videos and these data were expressed as a function of time. The results showed that in the early hyphal development, the measured radii appear to increase exponentially, until a certain time, where

  20. Sterilizing effects of high-intensity airborne sonic and ultrasonic waves.

    PubMed

    Pisano, M A; Boucher, M G; Alcamo, I E

    1966-09-01

    The lethal effects of high-intensity airborne sonic (9.9 kc/sec) and ultrasonic waves (30.4 kc/sec) on spores of Bacillus subtilis var. niger ATCC 9372 were determined. The spores, which were deposited on filter-paper strips, were exposed to sound waves for periods varying from 1 to 8 hr, at a temperature of 40 C and a relative humidity of 40%. Significant reductions in the viable counts of spores exposed to airborne sonic or ultrasonic irradiations were obtained. The antibacterial activity of airborne sound waves varied with the sound intensity level, the period of irradiation, and the distance of the sample from the sound source. At similar intensity levels, the amplitude of motion of the sound waves appeared to be a factor in acoustic sterilization.

  1. Phenyl ethers from cultured lichen mycobionts of Graphis scripta var. serpentina and G. rikuzensis.

    PubMed

    Takenaka, Yukiko; Tanahashi, Takao; Nagakura, Naotaka; Hamada, Nobuo

    2003-07-01

    Spore-derived mycobionts of the lichen Graphis scripta var. serpentina and G. rikuzensis were cultivated on a malt-yeast extract medium supplemented with 10% sucrose and their metabolites were investigated. 3,3'-Dihydroxy-5,5'-dimethyldiphenyl ether was isolated from the cultures of the mycobionts of G. scripta var. serpentina, while a new phenyl ether, rikuzenol, along with two known diphenyl ethers, violaceol-I and violaceol-II, were isolated from those of G. rikuzensis. The structure of the new compound was determined by spectroscopic methods. Violaceol-I was chemically synthesized and interconversion between violaceol-I and violaceol-II was proven.

  2. Ecology and thermal inactivation of microbes in and on interplanetary space vehicle components

    NASA Technical Reports Server (NTRS)

    Reyes, A. L.; Campbell, J. E.

    1975-01-01

    Dry heat treatment is specified as the preferred means for the terminal sterilization of spacecraft and for decontamination of spacecraft components. The presence of organisms highly resistant to dry heat in soil and fallout around assembly and industrial manufacturing areas is shown. The dry heat survival characteristics of the Cape Kennedy isolate 4-6 B. brevis spores is demonstrated. The presence of hardy organisms from soil samples obtained from geographical areas of the United States is shown. A resistant fraction appears to occur in low numbers in a soil sample. The heat resistance characteristics of 4-6 B. brevis and B. subtilis var. niger spores are compared. Their morphological characteristics are compared by scanning electron microscopy.

  3. An Antifungal Role of Hydrogen Sulfide on the Postharvest Pathogens Aspergillus niger and Penicillium italicum

    PubMed Central

    Li, Yan-Hong; Hu, Liang-Bin; Yan, Hong; Liu, Yong-Sheng; Zhang, Hua

    2014-01-01

    In this research, the antifungal role of hydrogen sulfide (H2S) on the postharvest pathogens Aspergillus niger and Penicillium italicum growing on fruits and under culture conditions on defined media was investigated. Our results show that H2S, released by sodium hydrosulfide (NaHS) effectively reduced the postharvest decay of fruits induced by A. niger and P. italicum. Furthermore, H2S inhibited spore germination, germ tube elongation, mycelial growth, and produced abnormal mycelial contractions when the fungi were grown on defined media in Petri plates. Further studies showed that H2S could cause an increase in intracellular reactive oxygen species (ROS) in A. niger. In accordance with this observation we show that enzyme activities and the expression of superoxide dismutase (SOD) and catalase (CAT) genes in A. niger treated with H2S were lower than those in control. Moreover, H2S also significantly inhibited the growth of Saccharomyces cerevisiae, Rhizopus oryzae, the human pathogen Candida albicans, and several food-borne bacteria. We also found that short time exposure of H2S showed a microbicidal role rather than just inhibiting the growth of microbes. Taken together, this study suggests the potential value of H2S in reducing postharvest loss and food spoilage caused by microbe propagation. PMID:25101960

  4. Damaging Effect of Low Energy N+ Implantation on Aspergillus niger Spores

    NASA Astrophysics Data System (ADS)

    Wang, Lisheng; Cai, Kezhou; Cheng, Maoji; Chen, Lijuan; Liu, Xuelan; Zhang, Shuqing; Yu, Zengliang

    2007-06-01

    The mutant effects of a keV range nitrogen ion (N+) beam on enzyme-producing probiotics were studied, particularly with regard to the induction in the genome. The electron spin resonance (ESR) results showed that the signal of ESR spectrum existed in both implanted and non-implanted spores, and the yields of free radicals increased in a dose-dependent manner. The ionic etching and dilapidation of cell wall could be observed distinctly through the scanning electron microscope (SEM). The mutagenic effect on genome indicated that N+ implantation could make base mutation. This study provided an insight into the roles low-energy ions might play in inducing mutagenesis of micro-organisms.

  5. Procedures for Leakage Testing and Disinfection of Containment Bed Isolators and Containment Aircraft Transit Isolators.

    DTIC Science & Technology

    1980-05-01

    the manufacturer are to inflate the isolator to a pressure of 10 mm of water on the gauge and seal off all air lines. If the pressure drops more than 4...results of these tests, it must be borne in mind that the tests were conducted using non-pathogenic Tl coliphage virus and B. subtilis var. niger spores...order as that for Tl coliphage . Also, the procedures described in- clude a large safety factor and would be expected to be adequate to eliminate all

  6. Germination of Aspergillus niger conidia is triggered by nitrogen compounds related to L-amino acids.

    PubMed

    Hayer, Kimran; Stratford, Malcolm; Archer, David B

    2014-10-01

    Conidial germination is fundamentally important to the growth and dissemination of most fungi. It has been previously shown (K. Hayer, M. Stratford, and D. B. Archer, Appl. Environ. Microbiol. 79:6924-6931, 2013, http://dx.doi.org/10.1128/AEM.02061-13), using sugar analogs, that germination is a 2-stage process involving triggering of germination and then nutrient uptake for hyphal outgrowth. In the present study, we tested this 2-stage germination process using a series of nitrogen-containing compounds for the ability to trigger the breaking of dormancy of Aspergillus niger conidia and then to support the formation of hyphae by acting as nitrogen sources. Triggering and germination were also compared between A. niger and Aspergillus nidulans using 2-deoxy-D-glucose (trigger), D-galactose (nontrigger in A. niger but trigger in A. nidulans), and an N source (required in A. niger but not in A. nidulans). Although most of the nitrogen compounds studied served as nitrogen sources for growth, only some nitrogen compounds could trigger germination of A. niger conidia, and all were related to L-amino acids. Using L-amino acid analogs without either the amine or the carboxylic acid group revealed that both the amine and carboxylic acid groups were essential for an L-amino acid to serve as a trigger molecule. Generally, conidia were able to sense and recognize nitrogen compounds that fitted into a specific size range. There was no evidence of uptake of either triggering or nontriggering compounds over the first 90 min of A. niger conidial germination, suggesting that the germination trigger sensors are not located within the spore. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Risk assessment of fungal spoilage: A case study of Aspergillus niger on yogurt.

    PubMed

    Gougouli, Maria; Koutsoumanis, Konstantinos P

    2017-08-01

    A quantitative risk assessment model of yogurt spoilage by Aspergillus niger was developed based on a stochastic modeling approach for mycelium growth by taking into account the important sources of variability such as time-temperature conditions during the different stages of chill chain and individual spore behavior. Input parameters were fitted to the appropriate distributions and A. niger colony's diameter at each stage of the chill chain was estimated using Monte Carlo simulation. By combining the output of the growth model with the fungus prevalence, that can be estimated by the industry using challenge tests, the risk of spoilage translated to number of yogurt cups in which a visible mycelium of A. niger is being formed at the time of consumption was assessed. The risk assessment output showed that for a batch of 100,000 cups in which the percentage of contaminated cups with A. niger was 1% the predicted numbers (median (5 th , 95 th percentiles)) of the cups with a visible mycelium at consumption time were 8 (5, 14). For higher percentages of 3, 5 and 10 the predicted numbers (median (5 th , 95 th percentiles)) of the spoiled cups at consumption time were estimated to be 24 (16, 35), 39 (29, 52) and 80 (64, 94), respectively. The developed model can lead to a more effective risk-based quality management of yogurt and support the decision making in yogurt production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Disinfection by electrohydraulic treatment.

    PubMed

    Allen, M; Soike, K

    1967-04-28

    Electrohydraulic treatment was applied to suspensions of Escherichia coli, spores of Bacillus subtilis var. niger, Saccharomyces cerevisiae, and bacteriophage T2 at an input energy that, in most cases, was below the energy required to sterilize. The input energy was held relatively constant for each of these microorganisms, but the capacitance and voltage were varied. Data are presented which show the degree of disinfection as a function of capacitance and voltage. In all cases, the degree of disinfection for a given input energy increases as both capacitance and voltage are lowered.

  9. The Effect of Temperature on the Survival of Microorganisms in a Deep Space Vacuum

    NASA Technical Reports Server (NTRS)

    Hagen, C. A.; Godfrey, J. F.; Green, R. H.

    1971-01-01

    A space molecular sink research facility (Molsink) was used to evaluate the ability of microorganisms to survive the vacuum of outer space. This facility could be programmed to simulate flight spacecraft vacuum environments at pressures in the .1 nanotorr range and thermal gradients (30 to 60 C) closely associated to surface temperatures of inflight spacecraft. Initial populations of Staphylococcus epidermidis and a Micrococcus sp. were reduced approximately 1 log while exposed to -105 and 34 C, and approximately 2 logs while exposed to 59 C for 14 days in the vacuum environment. Spores of Bacillus subtilis var. niger were less affected by the environment. Initial spore populations were reduced 0.2, 0.3, and 0.8 log during the 14-day vacuum exposure at -124, 34, and 59 C, respectively.

  10. Spore coat architecture of Clostridium novyi NT spores.

    PubMed

    Plomp, Marco; McCaffery, J Michael; Cheong, Ian; Huang, Xin; Bettegowda, Chetan; Kinzler, Kenneth W; Zhou, Shibin; Vogelstein, Bert; Malkin, Alexander J

    2007-09-01

    Spores of the anaerobic bacterium Clostridium novyi NT are able to germinate in and destroy hypoxic regions of tumors in experimental animals. Future progress in this area will benefit from a better understanding of the germination and outgrowth processes that are essential for the tumorilytic properties of these spores. Toward this end, we have used both transmission electron microscopy and atomic force microscopy to determine the structure of both dormant and germinating spores. We found that the spores are surrounded by an amorphous layer intertwined with honeycomb parasporal layers. Moreover, the spore coat layers had apparently self-assembled, and this assembly was likely to be governed by crystal growth principles. During germination and outgrowth, the honeycomb layers, as well as the underlying spore coat and undercoat layers, sequentially dissolved until the vegetative cell was released. In addition to their implications for understanding the biology of C. novyi NT, these studies document the presence of proteinaceous growth spirals in a biological organism.

  11. Inhibition of oxidative phosphorylation for enhancing citric acid production by Aspergillus niger.

    PubMed

    Wang, Lu; Zhang, Jianhua; Cao, Zhanglei; Wang, Yajun; Gao, Qiang; Zhang, Jian; Wang, Depei

    2015-01-16

    The spore germination rate and growth characteristics were compared between the citric acid high-yield strain Aspergillus niger CGMCC 5751 and A. niger ATCC 1015 in media containing antimycin A or DNP. We inferred that differences in citric acid yield might be due to differences in energy metabolism between these strains. To explore the impact of energy metabolism on citric acid production, the changes in intracellular ATP, NADH and NADH/NAD+ were measured at various fermentation stages. In addition, the effects of antimycin A or DNP on energy metabolism and citric acid production was investigated by CGMCC 5751. By comparing the spore germination rate and the extent of growth on PDA plates containing antimycin A or DNP, CGMCC 5751 was shown to be more sensitive to antimycin A than ATCC 1015. The substrate-level phosphorylation of CGMCC 5751 was greater than that of ATCC 1015 on PDA plates with DNP. DNP at tested concentrations had no apparent effect on the growth of CGMCC 5751. There were no apparent effects on the mycelial morphology, the growth of mycelial pellets or the dry cell mass when 0.2 mg L(-1) antimycin A or 0.1 mg L(-1) DNP was added to medium at the 24-h time point. The concentrations of intracellular ATP, NADH and NADH/NAD+ of CGMCC 5751 were notably lower than those of ATCC 1015 at several fermentation stages. Moreover, at 96 h of fermentation, the citric acid production of CGMCC 5751 reached up to 151.67 g L(-1) and 135.78 g L(-1) by adding 0.2 mg L(-1) antimycin A or 0.1 mg L(-1) DNP, respectively, at the 24-h time point of fermentation. Thus, the citric acid production of CGMCC 5751 was increased by 19.89% and 7.32%, respectively. The concentrations of intracellular ATP, NADH and NADH/NAD+ of the citric acid high-yield strain CGMCC 5751 were notably lower than those of ATCC 1015. The excessive ATP has a strong inhibitory effect on citric acid accumulation by A. niger. Increasing NADH oxidation and appropriately reducing the concentration of

  12. Fungi in a changing world: growth rates will be elevated, but spore production may decrease in future climates

    NASA Astrophysics Data System (ADS)

    Damialis, Athanasios; Mohammad, Aqilah B.; Halley, John M.; Gange, Alan C.

    2015-09-01

    Very little is known about the impact of climate change on fungi and especially on spore production. Fungal spores can be allergenic, thus being important for human health. The aim of this study was to investigate how climate change influences the responsive ability of fungi by simulating differing environmental regimes. Fungal species with high spore allergenic potential and atmospheric abundance were grown and experimentally examined under a variety of temperatures and different nutrient availability. Each represented the average decadal air temperature of the 1980s, 1990s and 2000s in the UK, along with an Intergovernmental Panel on Climate Change (IPCC) climate change scenario for 2100. All tests were run on six fungal species: Alternaria alternata, Aspergillus niger, Botrytis cinerea, Cladosporium cladosporioides, Cladosporium oxysporum and Epicoccum purpurascens. Mycelium growth rate and spore production were examined on each single species and competitive capacity among species combinations in pairs. All fungal species grew faster at higher temperatures, and this was more pronounced for the temperature projection in 2100. Most species grew faster when there was lower nutrient availability. Exceptions were the species with the highest growth rate ( E. purpurascens) and with the highest competition capacity ( A. alternata). Most species (except for E. purpurascens) produced more spores in the richer nutrient medium but fewer as temperature increased. C. cladosporioides was an exception, exponentially increasing its spore production in the temperature of the 2100 scenario. Regarding competitive capacity, no species displayed any significant alterations within the environmental range checked. It is suggested that in future climates, fungi will display dramatic growth responses, with faster mycelium growth and lower spore production, with questions risen on relevant allergen potential.

  13. Photodynamic inactivation of mold fungi spores by newly developed charged corroles.

    PubMed

    Preuß, Annegret; Saltsman, Irena; Mahammed, Atif; Pfitzner, Michael; Goldberg, Israel; Gross, Zeev; Röder, Beate

    2014-04-05

    The photodynamic effect, originally used in photodynamic therapy (PDT) for the treatment of different diseases, e.g. of cancer, has recently been introduced for the inactivation of bacteria. Mold fungi, which provoke health problems like allergies and diseases of the respiratory tract, are even more resistant and their biology is also very different. This study presents the development of four new photosensitizers, which, in combination with low doses of white light, inhibit the germination of mold fungi spores. Two of them even cause lethal damage to the conidia (spores) which are responsible for the spreading of mold fungi. The photoactivity of the newly synthesized corroles was obtained by their application on three different mold fungi: Aspergillus niger, Cladosporium cladosporoides, and Penicillium purpurgenum. To distinguish between inactivation of germination and permanent damage, the fungi were first incubated under illumination for examination of photosensitizer-induced growth inhibition and then left in darkness to test the survival of the conidia. None of the compounds displayed dark toxicity, but all of them attenuated or prevented germination when exposed to light, and the positively charged complexes induced a complete damage of the conidia. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Palynostratigraphy, palaeoclimates and palaeodepositional environments of the Miocene aged Agbada Formation in the Niger Delta, Nigeria

    NASA Astrophysics Data System (ADS)

    Bankole, Samson I.; Schrank, Eckart; Osterloff, Peter L.

    2014-07-01

    A diverse assemblage of palynomorphs dominated by terrestrially derived pollen and spores is reported from three wells penetrating the Miocene Agbada Formation. The pteridophyte and bryophyte spores which form the background assemblages in the three wells are good indicators of humid tropical climates which might have prevailed in the Niger Delta during the Miocene. The abundance and variations of climate-sensitive taxa including mangrove affiliated pollen and spore types Acrostichumsporites, Psilatricolporites crassus, Zonocostites ramonae and Graminidites annulatus representing the savannah vegetation cover indicate a complex interplay between periods of wetter and drier climates. Marine-derived dinoflagellate cysts and foraminiferal test linings are significantly present in the three wells. Taxa indicating freshwater contributions including Botryococcus spp., Chomotriletes minor, Ovoidites parvus and Pediastrum spp. are also represented numerically across the three wells. The presence of age diagnostic palynomorphs such as Crassoretitriletes vanraadshooveni, Retibrevitricolporites obodoensis, Tuberculodinium vancampoae, Zonocostites ramonae and Tuberculodinium vancampoae recovered in the three sections studied suggest a Miocene age for the investigated Agbada Formation. The proposed age is supported by the ranges of key palynomorphs in contemporaneous basins in Africa, northern South America and other parts of the World.

  15. Spores

    MedlinePlus

    ... do not destroy their spores. A process called sterilization destroys spores and bacteria. It is done at ... and under high pressures. In health care settings, sterilization is usually done using a device called an ...

  16. In vivo and in vitro control activity of plant essential oils against three strains of Aspergillus niger.

    PubMed

    Kumar, Peeyush; Mishra, Sapna; Kumar, Atul; Kumar, Sanjeev; Prasad, Chandra Shekhar

    2017-09-01

    Contamination of environment and food from the prevalent spores and mycotoxins of Aspergillus niger has led to several diseases in humans and other animals. The present study investigated the control activity of plant essential oils against three strains of A. niger. In the elaborate assays done through microdilution plate assay and agar disk diffusion assay in the lab condition and in vivo assay on the stored wheat grains, the essential oil of Thymus vulgaris depicted overall superior efficacy. In microdilution plate assay, the oil of Anethum graveolens showed best fungistatic activity, while best fungicidal activity was depicted by Syzygium aromaticum oil. The oil of T. vulgaris showed moderate control efficacy against A. niger strains with its antifungal activity resulting mainly due to killing of microorganism rather than growth inhibition. In agar disk diffusion assay, T. vulgaris oil with a zone of inhibition (ZOI) of 23.3-61.1% was the most effective fungicide. The in vivo assay to evaluate the protection efficacy of oils for stored wheat grains against A. niger (AN1) revealed T. vulgaris (90.5-100%) to be the best control agent, followed by the oil of S. aromaticum (61.9-100%). The GC-MS analysis of T. vulgaris oil indicated the presence of thymol (39.11%), γ-terpinene (19.73%), o-cymene (17.21%), and β-pinene (5.38%) as major oil components. Phytotoxic effects of the oils on wheat seeds showed no significant phytotoxic effect of oils in terms of seed germination or seedling growth. The results of the study demonstrated control potentiality of essential oils for the protection of stored wheat against A. niger with prospect for development of eco-friendly antifungal products.

  17. Quantifying the effect of water activity and storage temperature on single spore lag times of three moulds isolated from spoiled bakery products.

    PubMed

    Dagnas, Stéphane; Gougouli, Maria; Onno, Bernard; Koutsoumanis, Konstantinos P; Membré, Jeanne-Marie

    2017-01-02

    The inhibitory effect of water activity (a w ) and storage temperature on single spore lag times of Aspergillus niger, Eurotium repens (Aspergillus pseudoglaucus) and Penicillium corylophilum strains isolated from spoiled bakery products, was quantified. A full factorial design was set up for each strain. Data were collected at levels of a w varying from 0.80 to 0.98 and temperature from 15 to 35°C. Experiments were performed on malt agar, at pH5.5. When growth was observed, ca 20 individual growth kinetics per condition were recorded up to 35days. Radius of the colony vs time was then fitted with the Buchanan primary model. For each experimental condition, a lag time variability was observed, it was characterized by its mean, standard deviation (sd) and 5 th percentile, after a Normal distribution fit. As the environmental conditions became stressful (e.g. storage temperature and a w lower), mean and sd of single spore lag time distribution increased, indicating longer lag times and higher variability. The relationship between mean and sd followed a monotonous but not linear pattern, identical whatever the species. Next, secondary models were deployed to estimate the cardinal values (minimal, optimal and maximal temperatures, minimal water activity where no growth is observed anymore) for the three species. That enabled to confirm the observation made based on raw data analysis: concerning the temperature effect, A. niger behaviour was significantly different from E. repens and P. corylophilum: T opt of 37.4°C (standard deviation 1.4°C) instead of 27.1°C (1.4°C) and 25.2°C (1.2°C), respectively. Concerning the a w effect, from the three mould species, E. repens was the species able to grow at the lowest a w (aw min estimated to 0.74 (0.02)). Finally, results obtained with single spores were compared to findings from a previous study carried out at the population level (Dagnas et al., 2014). For short lag times (≤5days), there was no difference between lag

  18. Tannase enzyme production by entrapped cells of Aspergillus niger FETL FT3 in submerged culture system.

    PubMed

    Darah, I; Sumathi, G; Jain, K; Lim, S H

    2011-09-01

    The ability of immobilized cell cultures of Aspergillus niger FETL FT3 to produce extracellular tannase was investigated. The production of enzyme was increased by entrapping the fungus in scouring mesh cubes compared to free cells. Using optimized parameters of six scouring mesh cubes and inoculum size of 1 × 10(6) spores/mL, the tannase production of 3.98 U/mL was obtained from the immobilized cells compared to free cells (2.81 U/mL). It was about 41.64% increment. The immobilized cultures exhibited significant tannase production stability of two repeated runs.

  19. Chlorine inactivation of fungal spores on cereal grains.

    PubMed

    Andrews, S; Pardoel, D; Harun, A; Treloar, T

    1997-04-01

    Although 0.4% chlorine for 2 min has been recommended for surface disinfection of food samples before direct plating for fungal enumeration, this procedure may not be adequate for highly contaminated products. The effectiveness of a range of chlorine solutions was investigated using barley samples artificially contaminated with four different concentrations of Aspergillus flavus. A. niger, A. ochraceus, Eurotium repens, Penicillium brevicompactum P. chrysogenum and Cladosporium cladosporioides. At initial contamination levels greater than 10(4)/g, 0.4% chlorine did not inactivate sufficient spores to produce less than 20% contamination. Of the test fungi, ascospores of E. repens were the most resistant to chlorine inactivation, whereas the conidia of C. cladosporioides were the most sensitive. Rinsing the samples with 70% ethanol improved the effectiveness of the recommended surface disinfection procedure. However, some ethanol appears to permeate into the grains and may inactivate sensitive internal fungi, although a minimal effect only was observed on wheat infected with Alternaria.

  20. Spore-to-spore agar culture of the myxomycete Physarum globuliferum.

    PubMed

    Liu, Pu; Wang, Qi; Li, Yu

    2010-02-01

    The ontogeny of the myxomycete Physarum globuliferum was observed on corn meal agar and hanging drop cultures without adding sterile oat flakes, bacteria or other microorganisms. Its complete life cycle including spore germination, myxamoebae, swarm cells, plasmodial development, and maturity of fructifications was demonstrated. Details of spore-to-spore development are described and illustrated.

  1. Distinction of broken cellular wall Ganoderma lucidum spores and G. lucidum spores using FTIR microspectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Xianliang; Liu, Xingcun; Sheng, Daping; Huang, Dake; Li, Weizu; Wang, Xin

    2012-11-01

    In this paper, FTIR microspectroscopy was used to identify broken cellular wall Ganoderma lucidum spores and G. lucidum spores. For IR spectra, broken cellular wall G. lucidum spores and G. lucidum spores were mainly different in the regions of 3000-2800, 1660-1600, 1400-1200 and 1100-1000 cm-1. For curve fitting, the results showed the differences in the protein secondary structures and the polysaccharide structures/content between broken cellular wall G. lucidum spores and G. lucidum spores. Moreover, the value of A1078/A1741 might be a potentially useful factor to distinguish broken cellular wall G. lucidum spores from G. lucidum spores. Additionally, FTIR microspectroscopy could identify broken cellular wall G. lucidum spores and G. lucidum spores accurately when it was combined with hierarchical cluster analysis. The result suggests FTIR microspectroscopy is very simple and efficient for distinction of broken cellular wall G. lucidum spores and G. lucidum spores. The result also indicates FTIR microspectroscopy may be useful for TCM identification.

  2. Distinction of broken cellular wall Ganoderma lucidum spores and G. lucidum spores using FTIR microspectroscopy.

    PubMed

    Chen, Xianliang; Liu, Xingcun; Sheng, Daping; Huang, Dake; Li, Weizu; Wang, Xin

    2012-11-01

    In this paper, FTIR microspectroscopy was used to identify broken cellular wall Ganoderma lucidum spores and G. lucidum spores. For IR spectra, broken cellular wall G. lucidum spores and G. lucidum spores were mainly different in the regions of 3000-2800, 1660-1600, 1400-1200 and 1100-1000 cm(-1). For curve fitting, the results showed the differences in the protein secondary structures and the polysaccharide structures/content between broken cellular wall G. lucidum spores and G. lucidum spores. Moreover, the value of A1078/A1741 might be a potentially useful factor to distinguish broken cellular wall G. lucidum spores from G. lucidum spores. Additionally, FTIR microspectroscopy could identify broken cellular wall G. lucidum spores and G. lucidum spores accurately when it was combined with hierarchical cluster analysis. The result suggests FTIR microspectroscopy is very simple and efficient for distinction of broken cellular wall G. lucidum spores and G. lucidum spores. The result also indicates FTIR microspectroscopy may be useful for TCM identification. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Ecology and thermal inactivation of microbes in and on interplanetary space vehicle components

    NASA Technical Reports Server (NTRS)

    Reyes, A. L.; Campbell, J. E.

    1978-01-01

    The experiments conducted to determine the heat resistance of Bacillus megaterium ATCC 6458 at 90 and 100 C were completed. Estimates from replicate experiments at eight percent relative humidities (less than 0.001 to 100% RH) for each temperature were computed. A Bacillus cereus strain with high heat resistance was cultured and the resistance determined in phosphate buffer (D sub 121.1 = 2.16 min and z = 8.7 C). The profile of the dry heat resistance of B. megaterium is summarized and the most resistant condition to the three spores (Bacillus subtilis var. niger, ATCC 29669, and Bacillus stearothermophilus, strain 1518) is compared.

  4. Arbuscular mycorrhizal fungi spore propagation using single spore as starter inoculum and a plant host.

    PubMed

    Selvakumar, G; Shagol, C C; Kang, Y; Chung, B N; Han, S G; Sa, T M

    2018-06-01

    The propagation of pure cultures of arbuscular mycorrhizal fungal (AMF) is an essential requirement for their large-scale agricultural application and commercialization as biofertilizers. The present study aimed to propagate AMF using the single-spore inoculation technique and compare their propagation ability with the known reference spores. Arbuscular mycorrhizal fungal spores were collected from salt-affected Saemangeum reclaimed soil in South Korea. The technique involved inoculation of sorghum-sudangrass (Sorghum bicolor L.) seedlings with single, healthy spores on filter paper followed by the transfer of successfully colonized seedlings to 1-kg capacity pots containing sterilized soil. After the first plant cycle, the contents were transferred to 2·5-kg capacity pots containing sterilized soil. Among the 150 inoculated seedlings, only 27 seedlings were colonized by AMF spores. After 240 days, among the 27 seedlings, five inoculants resulted in the production of over 500 spores. The 18S rDNA sequencing of spores revealed that the spores produced through single-spore inoculation method belonged to Gigaspora margarita, Claroideoglomus lamellosum and Funneliformis mosseae. Furthermore, indigenous spore F. mosseae M-1 reported a higher spore count than the reference spores. The AMF spores produced using the single-spore inoculation technique may serve as potential bio-inoculants with an advantage of being more readily adopted by farmers due to the lack of requirement of a skilled technique in spore propagation. The results of the current study describe the feasible and cost-effective method to mass produce AMF spores for large-scale application. The AMF spores obtained from this method can effectively colonize plant roots and may be easily introduced to the new environment. © 2018 The Society for Applied Microbiology.

  5. Enhanced hexadecane degradation and low biomass production by Aspergillus niger exposed to an electric current in a model system.

    PubMed

    Velasco-Alvarez, Nancy; González, Ignacio; Damian-Matsumura, Pablo; Gutiérrez-Rojas, Mariano

    2011-01-01

    The effects of an electric current on growth and hexadecane (HXD) degradation by Aspergillus niger growth were determined. A 450-mL electrochemical cell with titanium ruthenium-oxide coated electrodes and packed with 15 g of perlite (inert biomass support) was inoculated with A. niger (2.0×10(7) spores (g of dry inert support)(-1)) and incubated for 12 days (30 °C; constant ventilation). 4.5 days after starting culture a current of 0.42 mA cm(-2) was applied for 24h. The current reduced (52±11%) growth of the culture as compared to that of a culture not exposed to current. However, HXD degradation was 96±1.4% after 8 days whereas it was 81±1.2% after 12 days in control cultures. Carbon balances of cultures not exposed to current suggested an assimilative metabolism, but a non-assimilative metabolism when the current was applied. This change can be related to an increase in total ATP content. The study contributes to the knowledge on the effects of current on the mycelial growth phase of A. niger, and suggests the possibility of manipulating the metabolism of this organism with electric current. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Production and processing of Metarhizium anisopliae var. acridum submerged conidia for locust and grasshopper control.

    PubMed

    Kassa, Adane; Stephan, Dietrich; Vidal, Stefan; Zimmermann, Gisbert

    2004-01-01

    Currently, mycopesticide development for locust and grasshopper control depends on aerial conidia or submerged spores of entomopathogenic fungi. In our study, the production of submerged conidia of Metarhizium anisopliae var. acridum (IMI 330189) was investigated in a liquid medium containing 3% biomalt and 1% yeast extract (BH-medium). The effects of freeze and spray drying techniques on the quality of submerged conidia were determined. The influence of different additives on the viability of fresh submerged conidia and their suitability for oil flowable concentrate formulation development was assessed. In a BH medium maintained at 180 rev min(-1), at 30 degrees C for 72 h, IMI 330189 produced a green pigmented biomass of submerged conidia whereas in Adámek medium it produced a yellowish biomass of submerged spores. The spore concentration was high in both media; however, the size of the spores produced in the BH medium was significantly lower than those produced in Adámek medium (P < 0.001). Submerged conidia can be effectively dried using either freeze or spray drying techniques. The viability and speed of germination were significantly affected by the drying and pulverizing process (P < 0.001). The initial viability was significantly higher for spray-dried submerged conidia than for freeze-dried spores. Pulverizing of freeze-dried submerged conidia reduced the speed of germination and the viability by 63-95%. Dried submerged conidia can be stored over 45 wk at low temperatures (< 10 degrees) without suffering a significant loss in viability. Furthermore, we have identified carriers that are suitable for oil flowable concentrate formulation development.

  7. Immobilization of alginate-encapsulated Bacillus thuringiensis var. israelensis containing different multivalent counterions for mosquito control.

    PubMed

    Prabakaran, G; Hoti, S L

    2008-08-01

    Immobilized techniques have been used widely for the controlled release formulation of mosquitoes. Among the microbial formulations, polymeric matrices play an important role in the controlled release of microbial pesticide at rates sufficiently effective to kill mosquitoes in the field. The advantage of these matrices is that they enhance the stability of both spores and toxin against pH, temperature variations, and UV irradiation. The disadvantage of using calcium alginate beads is that they are unstable upon contact with phosphate of potassium or sodium ions rich in the mosquito habitats. To overcome these problems, attempts were made to encapsulate Bacillus thuringiensis var. israelensis within alginate by using different multivalent counterions, namely, calcium chloride, zinc sulfate, copper sulfate, cobalt chloride, and ferric chloride, and the beads formed were tested for its mosquito larvicidal activity. Among all the beads tested, zinc alginate beads resulted in maximum larvicidal activity of 98% (+/-1.40 SE) against Culex quinquefasciatus IIIrd instar larvae and maximum spore count of 3.36 x 10(5) (+/-5291.50 SE) CFU/ml. Zinc alginate beads maintained their structure for up to 48 h when shaken vigorously on a rotary shaker at 180 rpm in the presence of 10 mM potassium phosphate buffer (pH 6.8 +/- 0.1). In conclusion, our results suggest that the use of zinc sulfate as counterions to encapsulate B. thuringiensis var. israelensis within alginate may be a potent mosquito control program in the habitats where more phosphate ions are present.

  8. Effect of essential oils on Aspergillus spore germination, growth and mycotoxin production: a potential source of botanical food preservative

    PubMed Central

    Gemeda, Negero; Woldeamanuel, Yimtubezinash; Asrat, Daniel; Debella, Asfaw

    2014-01-01

    Objective To investigate effect of essential oils on Aspergillus spore germination, growth and mycotoxin production. Method In vitro antifungal and antiaflatoxigenic activity of essential oils was carried out using poisoned food techniques, spore germination assay, agar dilution assay, and aflatoxin arresting assay on toxigenic strains of Aspergillus species. Results Cymbopogon martinii, Foeniculum vulgare and Trachyspermum ammi (T. ammi) essential oils were tested against toxicogenic isolates of Aspergillus species. T. ammi oil showed highest antifungal activity. Absolute mycelial inhibition was recorded at 1 µl/mL by essential oils of T. ammi. The oil also showed, complete inhibition of spore germination at a concentration of 2 µl/mL. In addition, T. ammi oil showed significant antiaflatoxigenic potency by totally inhibiting aflatoxin production from Aspergillus niger and Aspergillus flavus at 0.5 and 0.75 µl/mL, respectively. Cymbopogon martinii, Foeniculum vulgare and T. ammi oils as antifungal were found superior over synthetic preservative. Moreover, a concentration of 5 336.297 µl/kg body weight was recorded for LC50 on mice indicating the low mammalian toxicity and strengthening its traditional reputations. Conclusions In conclusion, the essential oils from T. ammi can be a potential source of safe natural food preservative for food commodities contamination by storage fungi. PMID:25183114

  9. Spore formation in Myxococcus xanthus is tied to cytoskeleton functions and polysaccharide spore coat deposition

    PubMed Central

    Müller, Frank D.; Schink, Christian W.; Hoiczyk, Egbert; Cserti, Emöke; Higgs, Penelope I.

    2011-01-01

    Summary Myxococcus xanthus is a Gram-negative bacterium that differentiates into environmentally resistant spores. Spore differentiation involves septation-independent remodelling of the rod-shaped vegetative cell into a spherical spore and deposition of a thick and compact spore coat outside of the outer membrane. Our analyses suggest that spore coat polysaccharides are exported to the cell surface by the Exo outer membrane polysaccharide export/polysaccharide co-polymerase 2a (OPX/PCP-2a) machinery. Conversion of the capsule-like polysaccharide layer into a compact spore coat layer requires the Nfs proteins which likely form a complex in the cell envelope. Mutants in either nfs, exo, or two other genetic loci encoding homologs of polysaccharide synthesis enzymes, fail to complete morphogenesis from rods to spherical spores and instead produce a transient state of deformed cell morphology before reversion into typical rods. We additionally provide evidence that the cell cytoskeletal protein, MreB, plays an important role in rod to spore morphogenesis and for spore outgrowth. These studies provide evidence that this novel gram-negative differentiation process is tied to cytoskeleton functions and polysaccharide spore coat deposition. PMID:22188356

  10. [Microbial resistance to formaldehyde. I. Comparative quantitative studies in some selected species of vegetative bacteria, bacterial spores, fungi, bacteriophages and viruses].

    PubMed

    Spicher, G; Peters, J

    1976-12-01

    The resistence of different microorganisms to formaldehyde was determined. As test objects served gram-negative and gram-positive vegetative germs (Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella paratyphi-B, Staphylococcus aureus, Streptococcus faecalis), bacterial spores (Bacillus cereus, Bacillus pumilus, Bacillus stearothermophilus, Bacillus subtilis), fungi (Aspergillus niger, Candida albicans), bacteriophages (Escherichia coli phages, T1, T2, T3), and viruses (adenovirus, poliomyelitis virus, vaccinia virus). For the studies, suspensions of germs were exposed at identical temperature (20 degrees C) and pH (7.0). The microbicidal effect of formaldehyde was measured by the decrease of the proportion of germs capable of multiplication in the suspension (lg (N/N0); where: N0 equals initial number of germs capable of multiplication; N equals number of germs capable of multiplication after exposure to formaldehyde). For all germs the dependence of the microbicidal effect on the concentration of formaldehyde was determined. In all experiments, the duration of exposure was two hours. Pseudomonas aeruginosa, Klebsiella pneumoniae, and Salmonella paratyphi-B were found to be more susceptible than Staphylococcus aureus (vf. Fig. 1 A). The strains of Pseudomonas aeruginosa used were widely varying as to their susceptibility. To obtain equal microbicidal effects, concentrations of formaldehyde almost three times as high had to be used for the most resistant strain than were necessary for the most susceptible strain of Pseudomonas aeruginosa. All strains of Klebsiella pneumoniae examined were found to have an identical resistence to formaldehyde. Streptococcus faecalis was even more resistant to formaldehyde than Staphylococcus aureus. In the case of Streptococcus faecalis, a concentration of formaldehyde about three times as high had to be used to obtain microbicidal effects of identical magnitude. For the killing of Candida albicans cells concentrations of

  11. ENZYMES OF GLUCOSE AND PYRUVATE CATABOLISM IN CELLS, SPORES, AND GERMINATED SPORES OF CLOSTRIDIUM BOTULINUM1

    PubMed Central

    Simmons, Richard J.; Costilow, Ralph N.

    1962-01-01

    Simmons, R. J. (Michigan State University, East Lansing), and R. N. Costilow. Enzymes of glucose and pyruvate catabolism in cells, spores, and germinated spores of Clostridium botulinum. J. Bacteriol. 84:1274–1281. 1962.—An investigation was made of the enzymes of vegetative cells, spores, and germinated spores of Clostridium botulinum 62-A to elucidate a pathway of glucose metabolism. Manometric studies were conducted with intact cells, and various enzymes and enzyme systems were assayed in cell-free and spore-free extracts by use of spectrophotometric and colorimetric procedures. Glucose fermentation was found to be inducible; glucokinase was the controlling enzyme. All other enzymes of the Embden-Meyerhof-Parnas (EMP) pathway were found in both induced and non-induced cells, but they were in relatively low concentrations in the latter. This, plus the fact that no glucose-6-phosphate dehydrogenase was detected, led to the conclusion that glucose is catabolized primarily by the EMP system. A number of glycolytic enzymes were also found in extracts of spores and germinated spores of this organism, but the activities were extremely low as compared with activities in cell extracts. A phosphoroclastic-type reaction was readily demonstrated in both glucose-adapted and non-adapted cells, but not in spores and germinated spores. However, both acetokinase and phosphotransacetylase, as well as coenzyme A transphorase, were detected in spores and germinated-spore extracts, although at very low activity levels as compared with cell extracts. The specific activity of diaphorase in spore extracts was about one-half that of corresponding cell extracts, and the activity of reduced diphosphopyridine nucleotide (DPNH) oxidase was actually higher in the spore extracts. In addition, the DPNH oxidase in spore extracts was considerably more heat-stable than that in extracts of cells or germinated spores. PMID:13977433

  12. Enhancement of invertase production by Aspergillus niger OZ-3 using low-intensity static magnetic fields.

    PubMed

    Taskin, Mesut; Esim, Nevzat; Genisel, Mucip; Ortucu, Serkan; Hasenekoglu, Ismet; Canli, Ozden; Erdal, Serkan

    2013-01-01

    The aim of this study is to investigate the effect of low-intensity static magnetic fields (SMFs) on invertase activity and growth on different newly identified molds. The most positive effect of SMFs on invertase activity and growth was observed for Aspergillus niger OZ-3. The submerged production of invertase was performed with the spores obtained at the different exposure times (120, 144, 168, and 196 hr) and magnetic field intensities (0.45, 3, 5, 7, and 9 mT). The normal magnetic field of the laboratory was assayed as 0.45 mT (control). Optimization of magnetic field intensity and exposure time significantly increased biomass production and invertase activity compared to 0.45 mT. The maximum invertase activity (51.14 U/mL) and biomass concentration (4.36 g/L) were achieved with the spores obtained at the 144 hr exposure time and 5 mT magnetic field intensity. The effect of low-intensity static magnetic fields (SMFs) on invertase activities of molds was investigated for the first time in the present study. As an additional contribution, a new hyper-invertase-producing mold strain was isolated.

  13. Evaluation of the effect of Cassia surattensis Burm. f., flower methanolic extract on the growth and morphology of Aspergillus niger.

    PubMed

    Sumathy, V; Zakaria, Z; Chen, Y; Latha, L Y; Jothy, S L; Vijayarathna, S; Sasidharan, S

    2013-06-01

    Cassia (C.) surattensis Burm. f. (Leguminosae), a medicinal herb native to tropical equatorial Asia, was commonly used in folk medicine to treat various diseases. The aim of the present study is to investigate the effects of methanolic flower extract of C. surattensis against Aspergillus (A.) niger. Antifungal activity of C. surattensis flower extract was studied by using agar disc diffusion method, broth dilution method, percentage of hyphal growth inhibition and scanning electron microscopy (SEM) observation. The extract exhibited good antifungal activity with zone of inhibition 15 mm and minimum inhibitory concentration (MIC) 6.25 mg/ml. The flower extract exhibited considerable antifungal activity against A. niger with a IC50 of 2.49 mg/ml on the hyphal growth. In scanning electron microscopy (SEM) squashed, collapsed, empty and deformation of hyphae were the major changes observed. Shrunken conidiophores were the obvious alteration on the spores. Morphological alterations observed on A. niger caused by the flower extract could be the contribution of chemical compounds present in the Cassia flower. Phytochemical screening reveals the presence of carbohydrate, tannins, saponins and phenols in the extract. The amount of tannin, total phenolics and flavonoids were estimated to be 55.14 ± 3.11 mg/g, 349.87 ± 5.41 mg/g gallic acid equivalent and 89.64 ± 3.21 mg/g catechin equivalent respectively. C. surattensis flower extract potently inhibited the growth of A. niger and are, therefore, excellent candidates for use as the lead compounds for the development of novel antifungal agents.

  14. Understanding mechanisms of rarity in pteridophytes: competition and climate change threaten the rare fern Asplenium scolopendrium var. americanum (Aspleniaceae).

    PubMed

    Testo, Weston L; Watkins, James E

    2013-11-01

    Understanding the ecology of rare species can inform aspects of conservation strategies; however, the mechanisms of rarity remain elusive for most pteridophytes, which possess independent and ecologically distinct gametophyte and sporophyte generations. To elucidate factors contributing to recent declines of the rare fern Asplenium scolopendrium var. americanum, we studied the ecology and ecophysiology of its gametophyte generation, focusing on responses to competition, temperature, and water stress. Gametophytes of A. scolopendrium var. americanum, its widespread European relative A. scolopendrium var. scolopendrium, and five co-occurring fern species were grown from spores. Gametophytes were grown at 20°C and 25°C, and germination rates, intra- and interspecific competition, desiccation tolerance, and sporophyte production were determined for all species. Gametophytes of A. scolopendrium var. americanum had the lowest rates of germination and sporophyte production among all species studied and exhibited the greatest sensitivity to interspecific competition, temperature increases, and desiccation. Mature gametophytes of A. scolopendrium var. americanum grown at 25°C were 84.6% smaller than those grown at 20°C, and only 1.5% produced sporophytes after 200 d in culture. Similar responses were not observed in other species studied. The recent declines and current status of populations of A. scolopendrium var. americanum are linked to its gametophyte's limited capacity to tolerate competition and physiological stress linked to climate change. This is the first study to develop a mechanistic understanding of rarity and decline in a fern and demonstrates the importance of considering the ecology of the gametophyte in plants with independent sporophyte and gametophyte generations.

  15. Effect of combined heat and radiation on microbial destruction

    NASA Technical Reports Server (NTRS)

    Fisher, D. A.; Pflug, I. J.

    1977-01-01

    A series of experiments at several levels of relative humidity and radiation dose rates was carried out using spores of Bacillus subtilis var. niger to evaluate the effect of heat alone, radiation alone, and a combination of heat and radiation. Combined heat and radiation treatment of microorganisms yields a destruction rate greater than the additive rates of the independent agents. The synergistic mechanism shows a proportional dependency on radiation dose rate, an Arrhenius dependence on temperature, and a dependency on relative humidity. Maximum synergism occurs under conditions where heat and radiation individually destroy microorganisms at approximately equal rates. Larger synergistic advantage is possible at low relative humidities rather than at high relative humidities.

  16. The Conserved Spore Coat Protein SpoVM Is Largely Dispensable in Clostridium difficile Spore Formation.

    PubMed

    Ribis, John W; Ravichandran, Priyanka; Putnam, Emily E; Pishdadian, Keyan; Shen, Aimee

    2017-01-01

    The spore-forming bacterial pathogen Clostridium difficile is a leading cause of health care-associated infections in the United States. In order for this obligate anaerobe to transmit infection, it must form metabolically dormant spores prior to exiting the host. A key step during this process is the assembly of a protective, multilayered proteinaceous coat around the spore. Coat assembly depends on coat morphogenetic proteins recruiting distinct subsets of coat proteins to the developing spore. While 10 coat morphogenetic proteins have been identified in Bacillus subtilis , only two of these morphogenetic proteins have homologs in the Clostridia : SpoIVA and SpoVM. C. difficile SpoIVA is critical for proper coat assembly and functional spore formation, but the requirement for SpoVM during this process was unknown. Here, we show that SpoVM is largely dispensable for C. difficile spore formation, in contrast with B. subtilis . Loss of C. difficile SpoVM resulted in modest decreases (~3-fold) in heat- and chloroform-resistant spore formation, while morphological defects such as coat detachment from the forespore and abnormal cortex thickness were observed in ~30% of spoVM mutant cells. Biochemical analyses revealed that C. difficile SpoIVA and SpoVM directly interact, similarly to their B. subtilis counterparts. However, in contrast with B. subtilis , C. difficile SpoVM was not essential for SpoIVA to encase the forespore. Since C. difficile coat morphogenesis requires SpoIVA-interacting protein L (SipL), which is conserved exclusively in the Clostridia , but not the more broadly conserved SpoVM, our results reveal another key difference between C. difficile and B. subtilis spore assembly pathways. IMPORTANCE The spore-forming obligate anaerobe Clostridium difficile is the leading cause of antibiotic-associated diarrheal disease in the United States. When C. difficile spores are ingested by susceptible individuals, they germinate within the gut and

  17. Effects of meteorological conditions on spore plumes

    NASA Astrophysics Data System (ADS)

    Burch, M.; Levetin, E.

    2002-05-01

    Fungal spores are an ever-present component of the atmosphere, and have long been known to trigger asthma and hay fever symptoms in sensitive individuals. The atmosphere around Tulsa has been monitored for airborne spores and pollen with Burkard spore traps at several sampling stations. This study involved the examination of the hourly spore concentrations on days that had average daily concentrations near 50,000 spores/m3 or greater. Hourly concentrations of Cladosporium, Alternaria, Epicoccum, Curvularia, Pithomyces, Drechslera, smut spores, ascospores, basidiospores, other, and total spores were determined on 4 days at three sites and then correlated with hourly meteorological data including temperature, rainfall, wind speed, dew point, air pressure, and wind direction. On each of these days there was a spore plume, a phenomenon in which spore concentrations increased dramatically over a very short period of time. Spore plumes generally occurred near midday, and concentrations were seen to increase from lows around 20,000 total spores/m3 to highs over 170,000 total spores/m3 in 2 h. Multiple regression analysis of the data indicated that increases in temperature, dew point, and air pressure correlated with the increase in spore concentrations, but no single weather variable predicted the appearance of a spore plume. The proper combination of changes in these meteorological parameters that result in a spore plume may be due to the changing weather conditions associated with thunderstorms, as on 3 of the 4 days when spore plumes occurred there were thunderstorms later that evening. The occurrence of spore plumes may have clinical significance, because other studies have shown that sensitization to certain spore types can occur during exposure to high spore concentrations.

  18. Monitoring Rates and Heterogeneity of High-Pressure Germination of Bacillus Spores by Phase-Contrast Microscopy of Individual Spores

    DTIC Science & Technology

    2014-01-01

    wild-type spores but ~15-fold higher deltaTrelease values; v ) germination kinetics of wild-type spores given a ? 30 sec 140 MPa HP pulse followed by...15-fold longer than those for wild-type spores, but the two types of spores exhibited similar average Tlag values; and ( v ) the germination of wild-type...committed spores, as it does for nutrient-committed spores (14)? ( v ) Can these HP-com- mitted spores be isolated under conditions that do not allow

  19. Fifth international fungus spore conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timberlake, W.E.

    1993-04-01

    This folio contains the proceedings of the Fifth International Fungal Spore Conference held August 17-21, 1991 at the Unicoi State Park at Helen, Georgia. The volume contains abstracts of each oral presentation as well as a collection of abstracts describing the poster sessions. Presentations were organized around the themes (1) Induction of Sporulation, (2) Nuclear Division, (3) Spore Formation, (4) Spore Release and Dispersal, and (4) Spore Germination.

  20. The Conserved Spore Coat Protein SpoVM Is Largely Dispensable in Clostridium difficile Spore Formation

    PubMed Central

    Ribis, John W.; Ravichandran, Priyanka; Putnam, Emily E.; Pishdadian, Keyan

    2017-01-01

    ABSTRACT The spore-forming bacterial pathogen Clostridium difficile is a leading cause of health care-associated infections in the United States. In order for this obligate anaerobe to transmit infection, it must form metabolically dormant spores prior to exiting the host. A key step during this process is the assembly of a protective, multilayered proteinaceous coat around the spore. Coat assembly depends on coat morphogenetic proteins recruiting distinct subsets of coat proteins to the developing spore. While 10 coat morphogenetic proteins have been identified in Bacillus subtilis, only two of these morphogenetic proteins have homologs in the Clostridia: SpoIVA and SpoVM. C. difficile SpoIVA is critical for proper coat assembly and functional spore formation, but the requirement for SpoVM during this process was unknown. Here, we show that SpoVM is largely dispensable for C. difficile spore formation, in contrast with B. subtilis. Loss of C. difficile SpoVM resulted in modest decreases (~3-fold) in heat- and chloroform-resistant spore formation, while morphological defects such as coat detachment from the forespore and abnormal cortex thickness were observed in ~30% of spoVM mutant cells. Biochemical analyses revealed that C. difficile SpoIVA and SpoVM directly interact, similarly to their B. subtilis counterparts. However, in contrast with B. subtilis, C. difficile SpoVM was not essential for SpoIVA to encase the forespore. Since C. difficile coat morphogenesis requires SpoIVA-interacting protein L (SipL), which is conserved exclusively in the Clostridia, but not the more broadly conserved SpoVM, our results reveal another key difference between C. difficile and B. subtilis spore assembly pathways. IMPORTANCE The spore-forming obligate anaerobe Clostridium difficile is the leading cause of antibiotic-associated diarrheal disease in the United States. When C. difficile spores are ingested by susceptible individuals, they germinate within the gut and

  1. Spore collection and elimination apparatus and method

    DOEpatents

    Czajkowski, Carl [South Jamesport, NY; Warren, Barbara Panessa [Port Jefferson, NY

    2007-04-03

    The present invention is for a spore collection apparatus and its method of use. The portable spore collection apparatus includes a suction source, a nebulizer, an ionization chamber and a filter canister. The suction source collects the spores from a surface. The spores are activated by heating whereby spore dormancy is broken. Moisture is then applied to the spores to begin germination. The spores are then exposed to alpha particles causing extinction.

  2. Alterations in Aspergillus brasiliensis (niger) ATCC 9642 membranes associated to metabolism modifications during application of low-intensity electric current.

    PubMed

    Velasco-Alvarez, Nancy; Gutiérrez-Rojas, Mariano; González, Ignacio

    2017-12-01

    The effects of electric current on membranes associated with metabolism modifications in Aspergillus brasiliensis (niger) ATCC 9642 were studied. A 450-mL electrochemical cell with titanium ruthenium-oxide coated electrodes and packed with 15g of perlite, as inert support, was inoculated with A. brasiliensis spores and incubated in a solid inert-substrate culture (12 d; 30°C). Then, 4.5days after starting the culture, a current of 0.42mAcm -2 was applied for 24h. The application of low-intensity electric current increased the molecular oxygen consumption rate in the mitochondrial respiratory chain, resulting in high concentrations of reactive oxygen species, promoting high lipoperoxidation levels, according to measured malondialdehyde, and consequent alterations in membrane permeability explained the high n-hexadecane (HXD) degradation rates observed here (4.7-fold higher than cultures without current). Finally, cell differentiation and spore production were strongly stimulated. The study contributes to the understanding of the effect of current on the cell membrane and its association with HXD metabolism. Copyright © 2017. Published by Elsevier B.V.

  3. Analysis of the Spore Membrane Proteome in Clostridium perfringens Implicates Cyanophycin in Spore Assembly.

    PubMed

    Liu, Hualan; Ray, W Keith; Helm, Richard F; Popham, David L; Melville, Stephen B

    2016-06-15

    Heat-resistant endospore formation plays an important role in Clostridium perfringens-associated foodborne illnesses. The spores allow the bacterium to survive heating during normal cooking processes, followed by germination and outgrowth of the bacterium in contaminated foods. To identify proteins associated with germination and other spore functions, a comparative spore membrane proteome analysis of dormant and germinated spores of C. perfringens strain SM101 was performed by using gel-based protein separation and liquid chromatography coupled with matrix-assisted laser desorption ionization-tandem time of flight (MALDI-TOF/TOF) mass spectrometry. A total of 494 proteins were identified, and 117 of them were predicted to be integral membrane or membrane-associated proteins. Among these membrane proteins, 16 and 26 were detected only in dormant and germinated spores, respectively. One protein that was detected only in germinated spore membranes was the enzyme cyanophycinase, a protease that cleaves the polymer cyanophycin, which is composed of l-arginine-poly(l-aspartic acid), to β-Asp-Arg. Genes encoding cyanophycinase and cyanophycin synthetase have been observed in many species of Clostridium, but their role has not been defined. To determine the function of cyanophycin in C. perfringens, a mutation was introduced into the cphA gene, encoding cyanophycin synthetase. In comparison to parent strain SM101, the spores of the mutant strain retained wild-type levels of heat resistance, but fewer spores were made, and they were smaller, suggesting that cyanophycin synthesis plays a role in spore assembly. Although cyanophycin could not be extracted from sporulating C. perfringens cells, an Escherichia coli strain expressing the cphA gene made copious amounts of cyanophycin, confirming that cphA encodes a cyanophycin synthetase. Clostridium perfringens is a common cause of food poisoning, and germination of spores after cooking is thought to play a significant role in

  4. Photometric immersion refractometry of bacterial spores.

    PubMed Central

    Gerhardt, P; Beaman, T C; Corner, T R; Greenamyre, J T; Tisa, L S

    1982-01-01

    Photometric immersion refractometry was used to determine the average apparent refractive index (n) of five types of dormant Bacillus spores representing a 600-fold range in moist-heat resistance determined as a D100 value. The n of a spore type increased as the molecular size of various immersion solutes decreased. For comparison of the spore types, the n of the entire spore and of the isolated integument was determined by use of bovine serum albumin, which is excluded from permeating into them. The n of the sporoplast (the structures bounded by the outer pericortex membrane) was determined by use of glucose, which was shown to permeate into the spore only as deeply as the pericortex membrane. Among the various spore types, an exponential increase in the heat resistance correlated with the n of the entire spore and of the sporoplast, but not of the isolated perisporoplast integument. Correlation of the n with the solids content of the entire spore provided a method of experimentally obtaining the refractive index increment (dn/dc), which was constant for the various spore types and enables the calculation of solids and water content from an n. Altogether, the results showed that the total water content is distributed unequally within the dormant spore, with less water in the sporoplast than in the perisporoplast integument, and that the sporoplast becomes more refractile and therefore more dehydrated as the heat resistance becomes greater among the various spore types. PMID:6802796

  5. Inhibiting Inosine Hydrolase and Alanine Racemase to Enhance the Germination of Bacillus anthracis Sterne Spores: Potential Spore Decontamination Strategies

    DTIC Science & Technology

    2015-06-19

    animal waste an~ decompositiOn DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. UNCLASSIFIED PR-15-306 Anthrax...influx of water. Ungerminated spore Germination Germinated spore Spore hydratation ~ Non-refractile spore Refractile spore • Fluorescence

  6. Hydrazine vapor inactivates Bacillus spores

    NASA Astrophysics Data System (ADS)

    Schubert, Wayne W.; Engler, Diane L.; Beaudet, Robert A.

    2016-05-01

    NASA policy restricts the total number of bacterial spores that can remain on a spacecraft traveling to any planetary body which might harbor life or have evidence of past life. Hydrazine, N2H4, is commonly used as a propellant on spacecraft. Hydrazine as a liquid is known to inactivate bacterial spores. We have now verified that hydrazine vapor also inactivates bacterial spores. After Bacillus atrophaeus ATCC 9372 spores deposited on stainless steel coupons were exposed to saturated hydrazine vapor in closed containers, the spores were recovered from the coupons, serially diluted, pour plated and the surviving bacterial colonies were counted. The exposure times required to reduce the spore population by a factor of ten, known as the D-value, were 4.70 ± 0.50 h at 25 °C and 2.85 ± 0.13 h at 35 °C. These inactivation rates are short enough to ensure that the bioburden of the surfaces and volumes would be negligible after prolonged exposure to hydrazine vapor. Thus, all the propellant tubing and internal tank surfaces exposed to hydrazine vapor do not contribute to the total spore count.

  7. Measuring Total and Germinable Spore Populations

    NASA Technical Reports Server (NTRS)

    Noell, A.C.; Yung, P.T.; Yang, W.; Lee, C.; Ponce, A.

    2011-01-01

    It has been shown that bacterial endospores can be enumerated using a microscopy based assay that images the luminescent halos from terbium ions bound to dipicolinic acid, a spore specific chemical marker released upon spore germination. Further development of the instrument has simplified it towards automation while at the same time improving image quality. Enumeration of total spore populations has also been developed allowing measurement of the percentage of viable spores in any population by comparing the germinable/culturable spores to the total. Percentage viability will allow a more quantitative comparison of the ability of spores to survive across a wide range of extreme environments.

  8. Dual effects of single-walled carbon nanotubes coupled with near-infrared radiation on Bacillus anthracis spores: inactivates spores and stimulates the germination of surviving spores

    PubMed Central

    2013-01-01

    Background Bacillus anthracis is a pathogen that causes life-threatening disease--anthrax. B. anthracis spores are highly resistant to extreme temperatures and harsh chemicals. Inactivation of B. anthracis spores is important to ensure the environmental safety and public health. The 2001 bioterrorism attack involving anthrax spores has brought acute public attention and triggered extensive research on inactivation of B. anthracis spores. Single-walled carbon nanotubes (SWCNTs) as a class of emerging nanomaterial have been reported as a strong antimicrobial agent. In addition, continuous near infrared (NIR) radiation on SWCNTs induces excessive local heating which can enhance SWCNTs’ antimicrobial effect. In this study, we investigated the effects of SWCNTs coupled with NIR treatment on Bacillus anthracis spores. Results and discussion The results showed that the treatment of 10 μg/mL SWCNTs coupled with 20 min NIR significantly improved the antimicrobial effect by doubling the percentage of viable spore number reduction compared with SWCNTs alone treatment (88% vs. 42%). At the same time, SWCNTs-NIR treatment activated the germination of surviving spores and their dipicolinic acid (DPA) release during germination. The results suggested the dual effect of SWCNTs-NIR treatment on B. anthracis spores: enhanced the sporicidal effect and stimulated the germination of surviving spores. Molecular level examination showed that SWCNTs-NIR increased the expression levels (>2-fold) in 3 out of 6 germination related genes tested in this study, which was correlated to the activated germination and DPA release. SWCNTs-NIR treatment either induced or inhibited the expression of 3 regulatory genes detected in this study. When the NIR treatment time was 5 or 25 min, there were 3 out of 7 virulence related genes that showed significant decrease on expression levels (>2 fold decrease). Conclusions The results of this study demonstrated the dual effect of SWCNTs-NIR treatment on

  9. A novel fungal fruiting structure formed by Aspergillus niger and Aspergillus carbonarius in grape berries.

    PubMed

    Pisani, Cristina; Nguyen, Trang Thoaivan; Gubler, Walter Douglas

    2015-09-01

    Sour rot, is a pre-harvest disease that affects many grape varieties. Sour rot symptoms include initial berry cracking and breakdown of berry tissue. This is a disease complex with many filamentous fungi and bacteria involved, but is usually initiated by Aspergillus niger or Aspergillus carbonarius. Usually, by the time one sees the rot there are many other organisms involved and it is difficult to attribute the disease to one species. In this study two species of Aspergillus were shown to produce a previously unknown fruiting structure in infected berries. The nodulous morphology, bearing conidia, suggests them to be an 'everted polymorphic stroma'. This structure forms freely inside the berry pulp and assumes multiple shapes and sizes, sometimes sclerotium-like in form. It is composed of a mass of vegetative hyphae with or without tissue of the host containing spores or fruiting bodies bearing spores. Artificially inoculated berries placed in soil in winter showed the possible overwintering function of the fruiting body. Inoculated berry clusters on standing vines produced fruiting structures within 21 d post inoculation when wounds were made at veraison or after (July-September). Histological studies confirmed that the fruiting structure was indeed fungal tissue. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  10. Recent Niger Delta shoreline response to Niger River hydrology: Conflict between forces of Nature and Humans

    NASA Astrophysics Data System (ADS)

    Dada, Olusegun A.; Li, Guangxue; Qiao, Lulu; Asiwaju-Bello, Yinusa Ayodele; Anifowose, Adeleye Yekini Biodun

    2018-03-01

    The Niger River Delta is a prolific hydrocarbon province and a mega-delta of economic and environmental relevance. To understand patterns of its recent shoreline evolution (1923-2013) in response to the Niger River hydrology, and establish the role played by forces of Nature and Human, available topographic and satellite remote sensing data, combined with hydro-climatic (rainfall and runoff) data were analyzed. Results indicate that the entire delta coastline dramatically receded: 82% of the >400 km-long coast retreated, during the period 1950-1987; and 69% between 2007 and 2012. Prior to 1950, there was a continuation of seaward advancement along 53-74% of the delta coast. The 1950-1987 shoreline recession coincided with occurrences of two major events in the Niger River basin; these are downward trends in hydro-climatic conditions (the great droughts of the 1970s-1980s), and dam construction on the Lower Niger River at Kainji (1964-1968). The 2007-2012 event corresponded with the extensive channel dredging during 2009-2012 in the Lower Niger River from the coastal town of Warri in the south to Baro in the north. Remarkably, the largest net shoreline advancement recorded in 74% of the entire delta area occurred within a year (2012-2013), which we link to increased sediment supply to the coast caused by the '2012' floods, adjudged the worst floods in the entire Niger River Basin in the last few decades. With both anthropogenic and environmental factors inducing delta evolution, only innovative river and coastal management can determine the fortune of the future coastal development of the Niger Delta.

  11. Molecular identification of Bacillus thuringiensis var. israelensis to trace its fate after application as a biological insecticide in wetland ecosystems.

    PubMed

    De Respinis, S; Demarta, A; Patocchi, N; Lüthy, P; Peduzzi, R; Tonolla, M

    2006-11-01

    To determine the fate of viable Bacillus thuringiensis var. israelensis (Bti) spores dispersed in the environment, using a universally applicable molecular detection methodology. Soil samples were spread on growth medium, after a temperature selection of the spores. A PCR amplification of the cry4Aa and cry4Ba insecticidal genes was applied on the colonies. Ribotyping was performed subsequently. This combined molecular method proved to be very specific for Bti, which was easily differentiated from the other B. thuringiensis serovars. A site regularly treated with Vectobac-G was chosen within the 'Bolle di Magadino' natural reserve, and monitored throughout 1 year for the detection of Bti spores. The results showed that the numbers were relatively high after insecticidal applications (1.4 x 10(5) CFU g(-1)), and decreased approx. 10-fold after 220 days. A successive treatment induced a new increase. The results show that yearly repeated use of Vectobac-G does not seem to have a major ecological impact on the 'Bolle di Magadino' natural reserve. Bti spores followed a trend leading to their eventual disappearance from the ecosystem, despite the seasonal application of this biological insecticide for more than a decade. The molecular identification of Bti cells through the PCR analysis of the delta-endotoxins genes coupled to ribotyping, is an innovative method, that has enabled the identification of this organism into wetland environments.

  12. Anthrax Spores under a microscope

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Anthrax spores are inactive forms of Bacillus anthracis. They can survive for decades inside a spore's tough protective coating; they become active when inhaled by humans. A result of NASA- and industry-sponsored research to develop small greenhouses for space research is the unique AiroCide TiO2 system that kills anthrax spores and other pathogens.

  13. Detoxification of Benzoxazolinone Allelochemicals from Wheat by Gaeumannomyces graminis var. tritici, G. graminis var. graminis, G. graminis var. avenae, and Fusarium culmorum

    PubMed Central

    Friebe, A.; Vilich, V.; Hennig, L.; Kluge, M.; Sicker, D.

    1998-01-01

    The ability of phytopathogenic fungi to overcome the chemical defense barriers of their host plants is of great importance for fungal pathogenicity. We studied the role of cyclic hydroxamic acids and their related benzoxazolinones in plant interactions with pathogenic fungi. We identified species-dependent differences in the abilities of Gaeumannomyces graminis var. tritici, Gaeumannomyces graminis var. graminis, Gaeumannomyces graminis var. avenae, and Fusarium culmorum to detoxify these allelochemicals of gramineous plants. The G. graminis var. graminis isolate degraded benzoxazolin-2(3H)-one (BOA) and 6-methoxy-benzoxazolin-2(3H)-one (MBOA) more efficiently than did G. graminis var. tritici and G. graminis var. avenae. F. culmorum degraded BOA but not MBOA. N-(2-Hydroxyphenyl)-malonamic acid and N-(2-hydroxy-4-methoxyphenyl)-malonamic acid were the primary G. graminis var. graminis and G. graminis var. tritici metabolites of BOA and MBOA, respectively, as well as of the related cyclic hydroxamic acids. 2-Amino-3H-phenoxazin-3-one was identified as an additional G. graminis var. tritici metabolite of BOA. No metabolite accumulation was detected for G. graminis var. avenae and F. culmorum by high-pressure liquid chromatography. The mycelial growth of the pathogenic fungi was inhibited more by BOA and MBOA than by their related fungal metabolites. The tolerance of Gaeumannomyces spp. for benzoxazolinone compounds is correlated with their detoxification ability. The ability of Gaeumannomyces isolates to cause root rot symptoms in wheat (cultivars Rektor and Astron) parallels their potential to degrade wheat allelochemicals to nontoxic compounds. PMID:9647804

  14. Deposition rates of fungal spores in indoor environments, factors effecting them and comparison with non-biological aerosols

    NASA Astrophysics Data System (ADS)

    Kanaani, Hussein; Hargreaves, Megan; Ristovski, Zoran; Morawska, Lidia

    Particle deposition indoors is one of the most important factors that determine the effect of particle exposure on human health. While many studies have investigated the particle deposition of non-biological aerosols, few have investigated biological aerosols and even fewer have studied fungal spore deposition indoors. The purpose of this study was, for the first time, to investigate the deposition rates of fungal particles in a chamber of 20.4 m 3 simulating indoor environments by: (1) releasing fungal particles into the chamber, in sufficient concentrations so the particle deposition rates can be statistically analysed; (2) comparing the obtained deposition rates with non-bioaerosol particles of similar sizes, investigated under the same conditions; and (3) investigating the effects of ventilation on the particle deposition rates. The study was conducted for a wide size range of particle sizes (0.54-6.24 μm), at three different air exchange rates (0.009, 1.75 and 2.5 h -1). An Ultraviolet Aerodynamic Particle Sizer Spectrometer (UVAPS) was used to monitor the particle concentration decay rate. The study showed that the deposition rates of fungal spores ( Aspergillus niger and Penicillium species) and the other aerosols (canola oil and talcum powder) were similar, especially at very low air exchange rates (in the order of 0.009). Both the aerosol and the bioaerosol deposition rates were found to be a function of particle size. The results also showed increasing deposition rates with increasing ventilation rates, for all particles under investigation. These conclusions are important in understanding the dynamics of fungal spores in the air.

  15. Effects of steam autoclave treatment on Geobacillus stearothermophilus spores.

    PubMed

    Huesca-Espitia, L C; Suvira, M; Rosenbeck, K; Korza, G; Setlow, B; Li, W; Wang, S; Li, Y-Q; Setlow, P

    2016-11-01

    To determine the mechanism of autoclave killing of Geobacillus stearothermophilus spores used in biological indicators (BIs) for steam autoclave sterilization, and rates of loss of spore viability and a spore enzyme used in BIs. Spore viability, dipicolinic acid (DPA) release, nucleic acid staining, α-glucosidase activity, protein structure and mutagenesis were measured during autoclaving of G. stearothermophilus spores. Loss of DPA and increases in spore core nucleic acid staining were slower than loss of spore viability. Spore core α-glucosidase was also lost more slowly than spore viability, although soluble α-glucosidase in spore preparations was lost more rapidly. However, spores exposed to an effective autoclave sterilization lost all viability and α-glucosidase activity. Apparently killed autoclaved spores were not recovered by artificial germination in supportive media, much spore protein was denatured during autoclaving, and partially killed autoclave-treated spore preparations did not acquire mutations. These results indicate that autoclave-killed spores cannot be revived, spore killing by autoclaving is likely by protein damage, and spore core α-glucosidase activity is lost more slowly than spore viability. This work provides insight into the mechanism of autoclave killing of spores of an organism used in BIs, and that a spore enzyme in a BI is more stable to autoclaving than spore viability. © 2016 The Society for Applied Microbiology.

  16. [Progress in omics research of Aspergillus niger].

    PubMed

    Sui, Yufei; Ouyang, Liming; Lu, Hongzhong; Zhuang, Yingping; Zhang, Siliang

    2016-08-25

    Aspergillus niger, as an important industrial fermentation strain, is widely applied in the production of organic acids and industrial enzymes. With the development of diverse omics technologies, the data of genome, transcriptome, proteome and metabolome of A. niger are increasing continuously, which declared the coming era of big data for the research in fermentation process of A. niger. The data analysis from single omics and the comparison of multi-omics, to the integrations of multi-omics based on the genome-scale metabolic network model largely extends the intensive and systematic understanding of the efficient production mechanism of A. niger. It also provides possibilities for the reasonable global optimization of strain performance by genetic modification and process regulation. We reviewed and summarized progress in omics research of A. niger, and proposed the development direction of omics research on this cell factory.

  17. Gene activity during germination of spores of the fern, Onoclea sensibilis. Cell-free translation analysis of mRNA of spores and the effect of alpha-amanitin on spore germination

    NASA Technical Reports Server (NTRS)

    Raghavan, V.

    1992-01-01

    Poly(A)-RNA fractions of dormant, dark-imbibed (non-germinating) and photoinduced (germinating) spores of Onoclea sensibilis were poor templates in the rabbit reticulocyte lysate protein synthesizing system, but the translational efficiency of poly(A)+RNA was considerably higher than that of unfractionated RNA. Poly(A)+RNA isolated from photoinduced spores had a consistently higher translational efficiency than poly(A)+RNA from dark-imbibed spores. Analysis of the translation products by one-dimensional polyacrylamide gel electrophoresis showed no qualitative differences in the mRNA populations of dormant, dark-imbibed, and photoinduced spores. However, poly(A)+RNA from dark-imbibed spores appeared to encode in vitro fewer detectable polypeptides at a reduced intensity than photoinduced spores. A DNA clone encoding the large subunit of maize ribulose bisphosphate carboxylase hybridized at strong to moderate intensity to RNA isolated from dark-imbibed spores, indicating the absence of mRNA degradation. Although alpha-amanitin did not inhibit the germination of spores, the drug prevented the elongation of the rhizoid and protonemal initial with a concomitant effect on the synthesis of poly(A)+RNA. These results are consistent with the view that some form of translational control involving stored mRNA operates during dark-imbibition and photoinduced germination of spores.

  18. Role of the competitive microbial flora in the radiation-induced enhancement of ochratoxin production by Aspergillus alutaceus var. alutaceus NRRL 3174

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chelack, W.S.; Borsa, J.; Marquardt, R.R.

    1991-09-01

    The radiation sensitivity and the toxigenic potential of conidiospores of the fungus Aspergillus alutaceus var alutaceus were determined after irradiation with {sup 60}Co gamma rays and high-energy electrons. Over the pH range of 3.6 to 8.8, the doses required for a 1 log{sup 10} reduction in viability based on the exponential portion of the survival curve ranged from 0.21 to 0.22 kGy, with extrapolation numbers (extrapolation of the exponential portion of the survival curve to zero dose) of 1.01 to 1.33, for electron irradiation, and from 0.24 to 0.27 kGy, with extrapolation numbers of 2.26 to 5.13, for gamma irradiation.more » Nonsterile barley that was inoculated with conidia of the fungus and then irradiated with either electrons or gamma rays and incubated for prolonged periods at 28C and at a moisture content of 25% produced less ochratoxin levels compared with unirradiated controls. In these experiments, inoculation with 10{sup 2} spores per g produced greater radiation-induced enhancement than inoculation with 10{sup 5} spores per g. There was no radiation-induced enhancement when the barley was surface sterilized by chemical means prior to irradiation. These results are consistent with the hypothesis that a reduction in the competing microbial flora by irradiation is responsible for the enhanced mycotoxin production observed when nonsterile barley is inoculated with the toxigenic fungus A. alutaceus var. alutaceus after irradiation.« less

  19. Formation of Protoplasts from Resting Spores

    PubMed Central

    Fitz-James, Philip C.

    1971-01-01

    Coat-stripped spores suspended in hypertonic solutions and supplied with two essential cations can be converted into viable protoplasts by lysozyme digestion of both cortex and germ cell wall. Calcium ions are necessary to prevent membrane rupture, and magnesium ions are necessary for changes indicative of hydration of the core, particularily the nuclear mass. Since remnant spore coat covered such protoplasts of Bacillus subtilis and the germ cell wall of B. cereus spores is not lysozyme digestible, coatless spores of B. megaterium KM were more useful for these studies. Lysozyme digestion in cation-free environment produced a peculiar semi-refractile spore core free of a cortex but prone to rapid hydration and lytic changes on the addition of cations. Strontium could replace Ca2+ but Mn2+ could not replace Mg2+ in these digestions. When added to the spores, dipicolinic acid and other chelates appeared to compete with the membrane for the calcium needed for stabilization during lysozyme conversion to protoplasts. It is argued that calcium could function to stabilize the inner membrane anionic groups over the anhydrous dipicolinic acid-containing core of resting spores. Images PMID:4995380

  20. Identifying and Inactivating Bacterial Spores

    NASA Technical Reports Server (NTRS)

    Newcombe, David; Dekas, Anne; Venkateswaran, Kasthuri

    2009-01-01

    Problems associated with, and new strategies for, inactivating resistant organisms like Bacillus canaveralius (found at Kennedy Space Center during a survey of three NASA cleanrooms) have been defined. Identifying the particular component of the spore that allows its heightened resistance can guide the development of sterilization procedures that are targeted to the specific molecules responsible for resistance, while avoiding using unduly harsh methods that jeopardize equipment. The key element of spore resistance is a multilayered protein shell that encases the spore called the spore coat. The coat of the best-studied spore-forming microbe, B. subtilis, consists of at least 45 proteins, most of which are poorly characterized. Several protective roles for the coat are well characterized including resistance to desiccation, large toxic molecules, ortho-phthalaldehyde, and ultraviolet (UV) radiation. One important long-term specific goal is an improved sterilization procedure that will enable NASA to meet planetary protection requirements without a terminal heat sterilization step. This would support the implementation of planetary protection policies for life-detection missions. Typically, hospitals and government agencies use biological indicators to ensure the quality control of sterilization processes. The spores of B. canaveralius that are more resistant to osmotic stress would serve as a better biological indicator for potential survival than those in use currently.

  1. Biomarkers of Aspergillus spores

    NASA Astrophysics Data System (ADS)

    Sulc, Miroslav; Peslova, Katerina; Zabka, Martin; Hajduch, Marian; Havlicek, Vladimir

    2009-02-01

    We applied both matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometric and 1D sodium dodecylsulfate polyacrylamide gel electrophoretic (1D-PAGE) approaches for direct analysis of intact fungal spores of twenty four Aspergillus species. In parallel, we optimized various protocols for protein extraction from Aspergillus spores using acidic conditions, step organic gradient and variable sonication treatment. The MALDI-TOF mass spectra obtained from optimally prepared samples provided a reproducible fingerprint demonstrating the capability of the MALDI-TOF approach to type and characterize different fungal strains within the Aspergillus genus. Mass spectra of intact fungal spores provided signals mostly below 20 kDa. The minimum material amount represented 0.3 [mu]g (10,000 spores). Proteins with higher molecular weight were detected by 1D-PAGEE Eleven proteins were identified from three selected strains in the range 5-25 kDa by the proteomic approach. Hemolysin and hydrophobin have the highest relevance in host-pathogen interactions.

  2. Phase diagram of crystallization of Aspergillus niger acid proteinase A, a non-pepsin-type acid proteinase

    NASA Astrophysics Data System (ADS)

    Kudo, Norio; Ataka, Mitsuo; Sasaki, Hiroshi; Muramatsu, Tomonari; Katsura, Tatsuo; Tanokura, Masaru

    1996-10-01

    Proteinase A from Aspergillus niger var. macrosporus is a non-pepsin-type acid proteinase with an extremely low isoelectric point (pI 3.3). The protein is crystallized from ammonium sulfate solutions of pH lower than 4. The crystallization is affected by the presence of dimethylsulfoxide (DMSO). We have studied the phase diagram of the crystallization of proteinase A in the absence and presence of DMSO, to clarify crystallization at such an extremely low pH and to study the effects of DMSO. The results indicate that the logarithm of protein solubility is a rectilinear function of ammonium sulfate concentration in both the absence and presence of DMSO. DMSO definitely lowers the solubility at relatively low concentrations of ammonium sulfate, but had little effect on protein solubility at higher concentrations of ammonium sulfate.

  3. Aspergillus niger Secretes Citrate to Increase Iron Bioavailability

    PubMed Central

    Odoni, Dorett I.; van Gaal, Merlijn P.; Schonewille, Tom; Tamayo-Ramos, Juan A.; Martins dos Santos, Vitor A. P.; Suarez-Diez, Maria; Schaap, Peter J.

    2017-01-01

    Aspergillus niger has an innate ability to secrete various organic acids, including citrate. The conditions required for A. niger citrate overproduction are well described, but the physiological reasons underlying extracellular citrate accumulation are not yet fully understood. One of the less understood culture conditions is the requirement of growth-limiting iron concentrations. While this has been attributed to iron-dependent citrate metabolizing enzymes, this straightforward relationship does not always hold true. Here, we show that an increase in citrate secretion under iron limited conditions is a physiological response consistent with a role of citrate as A. niger iron siderophore. We found that A. niger citrate secretion increases with decreasing amounts of iron added to the culture medium and, in contrast to previous findings, this response is independent of the nitrogen source. Differential transcriptomics analyses of the two A. niger mutants NW305 (gluconate non-producer) and NW186 (gluconate and oxalate non-producer) revealed up-regulation of the citrate biosynthesis gene citA under iron limited conditions compared to iron replete conditions. In addition, we show that A. niger can utilize Fe(III) citrate as iron source. Finally, we discuss our findings in the general context of the pH-dependency of A. niger organic acid production, offering an explanation, besides competition, for why A. niger organic acid production is a sequential process influenced by the external pH of the culture medium. PMID:28824560

  4. Bacterial spore inactivation induced by cold plasma.

    PubMed

    Liao, Xinyu; Muhammad, Aliyu Idris; Chen, Shiguo; Hu, Yaqin; Ye, Xingqian; Liu, Donghong; Ding, Tian

    2018-04-05

    Cold plasma has emerged as a non-thermal technology for microbial inactivation in the food industry over the last decade. Spore-forming microorganisms pose challenges for microbiological safety and for the prevention of food spoilage. Inactivation of spores induced by cold plasma has been reported by several studies. However, the exact mechanism of spore deactivation by cold plasma is poorly understood; therefore, it is difficult to control this process and to optimize cold plasma processing for efficient spore inactivation. In this review, we summarize the factors that affect the resistance of spores to cold plasma, including processing parameters, environmental elements, and spore properties. We then describe possible inactivation targets in spore cells (e.g., outer structure, DNA, and metabolic proteins) that associated with inactivation by cold plasma according to previous studies. Kinetic models of the sporicidal activity of cold plasma have also been described here. A better understanding of the interaction between spores and cold plasma is essential for the development and optimization of cold plasma technology in food the industry.

  5. Ecology and thermal inactivation of microbes in and on interplanetary space vehicle components

    NASA Technical Reports Server (NTRS)

    Campbell, J. E.

    1972-01-01

    A set of conditions in which 90 C was a more lethal temperature than 125 C for the destruction of Bacillus subtilis var. niger was identified as a function of relative humidity, with maximum effectiveness at 100% R.H. A systematic study of the influence of head-space moisture and temperature on the destruction of B. subtilis var. niger is reported.

  6. Reaerosolization of Fluidized Spores in Ventilation Systems▿

    PubMed Central

    Krauter, Paula; Biermann, Arthur

    2007-01-01

    This project examined dry, fluidized spore reaerosolization in a heating, ventilating, and air conditioning duct system. Experiments using spores of Bacillus atrophaeus, a nonpathogenic surrogate for Bacillus anthracis, were conducted to delineate the extent of spore reaerosolization behavior under normal indoor airflow conditions. Short-term (five air-volume exchanges), long-term (up to 21,000 air-volume exchanges), and cycled (on-off) reaerosolization tests were conducted using two common duct materials. Spores were released into the test apparatus in turbulent airflow (Reynolds number, 26,000). After the initial pulse of spores (approximately 1010 to 1011 viable spores) was released, high-efficiency particulate air filters were added to the air intake. Airflow was again used to perturb the spores that had previously deposited onto the duct. Resuspension rates on both steel and plastic duct materials were between 10−3 and 10−5 per second, which decreased to 10 times less than initial rates within 30 min. Pulsed flow caused an initial spike in spore resuspension concentration that rapidly decreased. The resuspension rates were greater than those predicted by resuspension models for contamination in the environment, a result attributed to surface roughness differences. There was no difference between spore reaerosolization from metal and that from plastic duct surfaces over 5 hours of constant airflow. The spores that deposited onto the duct remained a persistent source of contamination over a period of several hours. PMID:17293522

  7. Imaging bacterial spores by soft-x-ray microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stead, A.D.; Ford, T.W.; Judge, J.

    1997-04-01

    Bacterial spores are able to survive dehydration, but neither the physiological nor structural basis of this have been fully elucidated. Furthermore, once hydrated, spores often require activation before they will germinate. Several treatments can be used to activate spores, but in the case of Bacillus subtlis the most effective is heat treatment. The physiological mechanism associated with activation is also not understood, but some workers suggest that the loss of calcium from the spores may be critical. However, just prior to germination, the spores change from being phase bright to phase dark when viewed by light microscopy. Imaging spores bymore » soft x-ray microscopy is possible without fixation. Thus, in contrast to electron microscopy, it is possible to compare the structure of dehydrated and hydrated spores in a manner not possible previously. A further advantage is that it is possible to monitor individual spores by phase contrast light microscopy immediately prior to imaging with soft x-rays; whereas, with both electron microscopy and biochemical studies, it is a population of spores being studied without knowledge of the phase characteristics of individual spores. This study has therefore tried to compare dehydrated and hydrated spores and to determine if there is a mass loss from individual spores as they pass the transition from being phase bright to phase dark.« less

  8. Use of yeast spores for microencapsulation of enzymes.

    PubMed

    Shi, Libing; Li, Zijie; Tachikawa, Hiroyuki; Gao, Xiao-Dong; Nakanishi, Hideki

    2014-08-01

    Here, we report a novel method to produce microencapsulated enzymes using Saccharomyces cerevisiae spores. In sporulating cells, soluble secreted proteins are transported to the spore wall. Previous work has shown that the spore wall is capable of retaining soluble proteins because its outer layers work as a diffusion barrier. Accordingly, a red fluorescent protein (RFP) fusion of the α-galactosidase, Mel1, expressed in spores was observed in the spore wall even after spores were subjected to a high-salt wash in the presence of detergent. In vegetative cells, however, the cell wall cannot retain the RFP fusion. Although the spore wall prevents diffusion of proteins, it is likely that smaller molecules, such as sugars, pass through it. In fact, spores can contain much higher α-galactosidase activity to digest melibiose than vegetative cells. When present in the spore wall, the enzyme acquires resistance to environmental stresses including enzymatic digestion and high temperatures. The outer layers of the spore wall are required to retain enzymes but also decrease accessibility of the substrates. However, mutants with mild spore wall defects can retain and stabilize the enzyme while still permitting access to the substrate. In addition to Mel1, we also show that spores can retain the invertase. Interestingly the encapsulated invertase has significantly lower activity toward raffinose than toward sucrose.This suggests that substrate selectivity could be altered by the encapsulation.

  9. Evolutionary Dynamics of Spore Killers

    PubMed Central

    Nauta, M. J.; Hoekstra, R. F.

    1993-01-01

    Spore killing in ascomycetes is a special form of segregation distortion. When a strain with the Killer genotype is crossed to a Sensitive type, spore killing is expressed by asci with only half the number of ascospores as usual, all surviving ascospores being of the Killer type. Using population genetic modeling, this paper explores conditions for invasion of Spore killers and for polymorphism of Killers, Sensitives and Resistants (which neither kill, nor get killed), as found in natural populations. The models show that a population with only Killers and Sensitives can never be stable. The invasion of Killers and stable polymorphism only occur if Killers have some additional advantage during the process of spore killing. This may be due to the effects of local sib competition or some kind of ``heterozygous'' advantage in the stage of ascospore formation or in the short diploid stage of the life cycle. This form of segregation distortion appears to be essentially different from other, well-investigated forms, and more field data are needed for a better understanding of spore killing. PMID:8293989

  10. Molecular docking and dynamics simulations of A.niger RNase from Aspergillus niger ATCC26550: for potential prevention of human cancer.

    PubMed

    Kumar, Gundampati Ravi; Chikati, Rajasekhar; Pandrangi, Santhi Latha; Kandapal, Manoj; Sonkar, Kirti; Gupta, Neeraj; Mulakayala, Chaitanya; Jagannadham, Medicherla V; Kumar, Chitta Suresh; Saxena, Sunita; Das, Mira Debnath

    2013-02-01

    The aim of the present research was to study the anticancer effects of Aspergillus niger (A.niger) RNase. We found that RNase (A.niger RNase) significantly and dose dependently inhibited invasiveness of breast cancer cell line MDA MB 231 by 55 % (P<0.01) at 1 μM concentration. At a concentration of 2 μM, the anti invasive effect of the enzyme increased to 90 % (P<0.002). Keeping the aim to determine molecular level interactions (molecular simulations and protein docking) of human actin with A.niger RNase we extended our work in-vitro to in-silico studies. To gain better relaxation and accurate arrangement of atoms, refinement was done on the human actin and A.niger RNase by energy minimization (EM) and molecular dynamics (MD) simulations using 43A(2) force field of Gromacs96 implemented in the Gromacs 4.0.5 package, finally the interaction energies were calculated by protein-protein docking using the HEX. These in vitro and in-silico structural studies prove the effective inhibition of actin activity by A.niger RNase in neoplastic cells and thereby provide new insights for the development of novel anti cancer drugs.

  11. Survival of Spores of Trichoderma longibrachiatum in Space: data from the Space Experiment SPORES on EXPOSE-R

    NASA Astrophysics Data System (ADS)

    Neuberger, Katja; Lux-Endrich, Astrid; Panitz, Corinna

    2015-01-01

    In the space experiment `Spores in artificial meteorites' (SPORES), spores of the fungus Trichoderma longibrachiatum were exposed to low-Earth orbit for nearly 2 years on board the EXPOSE-R facility outside of the International Space Station. The environmental conditions tested in space were: space vacuum at 10-7-10-4 Pa or argon atmosphere at 105 Pa as inert gas atmosphere, solar extraterrestrial ultraviolet (UV) radiation at λ > 110 nm or λ > 200 nm with fluences up to 5.8 × 108 J m-2, cosmic radiation of a total dose range from 225 to 320 mGy, and temperature fluctuations from -25 to +50°C, applied isolated or in combination. Comparable control experiments were performed on ground. After retrieval, viability of spores was analysed by two methods: (i) ethidium bromide staining and (ii) test of germination capability. About 30% of the spores in vacuum survived the space travel, if shielded against insolation. However, in most cases no significant decrease was observed for spores exposed in addition to the full spectrum of solar UV irradiation. As the spores were exposed in clusters, the outer layers of spores may have shielded the inner part. The results give some information about the likelihood of lithopanspermia, the natural transfer of micro-organisms between planets. In addition to the parameters of outer space, sojourn time in space seems to be one of the limiting parameters.

  12. Microbiological efficacy of superheated steam. I. Communication: results with spores of Bacillus subtilis and Bacillus stearothermophilus and with spore earth.

    PubMed

    Spicher, G; Peters, J; Borchers, U

    1999-02-01

    For the spores of Bacillus subtilis and Bacillus stearothermophilus as well as for spore earth (acc. DIN 58,946 Part 4 of August 1982), the dependence of resistance on the superheating of the steam used to kill germs was determined. A material (glass fibre fleece) was used as the germ carrier which does not superheat on contact with steam. The temperature of the saturated steam was 100 degrees C (B. subtilis) and 120 degrees C (B. stearothermophilus and spore earth). The yardstick for the resistance of the spores or bioindicators was the exposure period of the saturated or superheated steam at which 50% of the treated test objects no longer showed any viable test germs. The spores of Bacillus subtilis were far more sensitive to superheating of steam and reacted far more than the spores of Bacillus stearothermophilus and the germs in the spore earth. When superheating by 4 Kelvin the spores of Bacillus subtilis were approximately 2.5 times more resistant than they were to saturated steam. The resistance of Bacillus stearothermophilus and spore earth was only slightly higher up to superheating by 10 Kelvin. The spores of Bacillus subtilis had the highest resistance during superheating by 29 Kelvin; they were 119 times more resistant than they were to saturated steam. The resistance maximum of the spores of Bacillus stearothermophilus was at an superheating by around 22 Kelvin. However, the spores were only 4.1 times more resistant than they were to saturated steam. When using steam to kill germs, we must expect superheated steam. This raises the question whether the spores of Bacillus stearothermophilus, with their weaker reaction to the superheating of steam, are suitable as test germs for sterilisation with steam in all cases.

  13. Sensitizing Clostridium difficile Spores with Germinants on Skin and Environmental Surfaces Represents a New Strategy for Reducing Spores via Ambient Mechanisms

    PubMed Central

    Nerandzic, Michelle M.; Donskey, Curtis J.

    2017-01-01

    Background Clostridium difficile is a leading cause of healthcare-associated infections worldwide. Prevention of C. difficile transmission is challenging because spores are not killed by alcohol-based hand sanitizers or many commonly used disinfectants. One strategy to control spores is to induce germination, thereby rendering the spores more susceptible to benign disinfection measures and ambient stressors. Methods/Results C. difficile spores germinated on skin after a single application of cholic acid-class bile salts and co-germinants; for 4 C. difficile strains, recovery of viable spores from skin was reduced by ~0.3 log10CFU to 2 log10CFU after 2 hours and ~1 log10CFU to > 2.5 log10CFU after 24 hours. The addition of taurocholic acid to 70% and 30% ethanol significantly enhanced reduction of viable spores on skin and on surfaces. Desiccation, and to a lesser extent the presence of oxygen, were identified as the stressors responsible for reductions of germinated spores on skin and surfaces. Additionally, germinated spores became susceptible to killing by pH 1.5 hydrochloric acid, suggesting that germinated spores that remain viable on skin and surfaces might be killed by gastric acid after ingestion. Antibiotic-treated mice did not become colonized after exposure to germinated spores, whereas 100% of mice became colonized after exposure to the same quantity of dormant spores. Conclusions Germination could provide a new approach to reduce C. difficile spores on skin and in the environment and to render surviving spores less capable of causing infection. Our findings suggest that it may be feasible to develop alcohol-based hand sanitizers containing germinants that reduce spores on hands. PMID:29167835

  14. Expression of Meiotic Drive Elements Spore Killer-2 and Spore Killer-3 in Asci of Neurospora Tetrasperma

    PubMed Central

    Raju, N. B.; Perkins, D. D.

    1991-01-01

    It was shown previously that when a chromosomal Spore killer factor is heterozygous in Neurospora species with eight-spored asci, the four sensitive ascospores in each ascus die and the four survivors are all killers. Sk-2(K) and Sk-3(K) are nonrecombining haplotypes that segregate with the centromere of linkage group III. No killing occurs when either one of these killers is homozygous, but each is sensitive to killing by the other in crosses of Sk-2(K) X Sk-3(K). In the present study, Sk-2(K) and Sk-3(K) were transferred by recurrent backcrosses from the eight-spored species Neurospora crassa into Neurospora tetrasperma, a pseudohomothallic species which normally makes asci with four large spores, each heterokaryotic for mating type and for any other centromere-linked genes that are heterozygous in the cross. The action of Sk-2(K) and Sk-3(K) in N. tetrasperma is that predicted from their behavior in eight-spored species. A sensitive nucleus is protected from killing if it is enclosed in the same ascospore with a killer nucleus. Crosses of Sk-2(K) X Sk-2(S), Sk-3(K) X Sk-3(S), and Sk-2(K) X Sk-3(K) all produce four-spored asci that are wild type in appearance, with the ascospores heterokaryotic and viable. The Eight-spore gene E, which shows variable penetrance, was used to obtain N. tetrasperma asci in which two to eight spores are small and homokaryotic. When killer and sensitive alleles are segregating in the presence of E, only those ascospores that contain a killer allele survive. Half of the small ascospores are killed. In crosses of Sk-2(K) X Sk-3(K) (with E heterozygous), effectively all small ascospores are killed. The ability of N. tetrasperma to carry killer elements in cryptic condition suggests a possible role for Spore killers in the origin of pseudohomothallism, with adoption of the four-spored mode restoring ascospore viability of crosses in which killing would otherwise occur. PMID:1834522

  15. Understanding of the importance of the spore coat structure and pigmentation in the Bacillus subtilis spore resistance to low-pressure plasma sterilization

    NASA Astrophysics Data System (ADS)

    Raguse, Marina; Fiebrandt, Marcel; Denis, Benjamin; Stapelmann, Katharina; Eichenberger, Patrick; Driks, Adam; Eaton, Peter; Awakowicz, Peter; Moeller, Ralf

    2016-07-01

    Low-pressure plasmas have been evaluated for their potential in biomedical and defense purposes. The sterilizing effect of plasma can be attributed to several active agents, including (V)UV radiation, charged particles, radical species, neutral and excited atoms and molecules, and the electric field. Spores of Bacillus subtilis were used as a bioindicator and a genetic model system to study the sporicidal effects of low-pressure plasma decontamination. Wild-type spores, spores lacking the major protective coat layers (inner, outer, and crust), pigmentation-deficient spores or spore impaired in encasement (a late step in coat assembly) were systematically tested for their resistance to low-pressure argon, hydrogen, and oxygen plasmas with and without admixtures. We demonstrate that low-pressure plasma discharges of argon and oxygen discharges cause significant physical damage to spore surface structures as visualized by atomic force microscopy. Spore resistance to low-pressure plasma was primarily dependent on the presence of the inner, and outer spore coat layers as well as spore encasement, with minor or less importance of the crust and spore pigmentation, whereas spore inactivation itself was strongly influenced by the gas composition and operational settings.

  16. Metabolic activity in dormant conidia of Aspergillus niger and developmental changes during conidial outgrowth.

    PubMed

    Novodvorska, Michaela; Stratford, Malcolm; Blythe, Martin J; Wilson, Raymond; Beniston, Richard G; Archer, David B

    2016-09-01

    The early stages of development of Aspergillus niger conidia during outgrowth were explored by combining genome-wide gene expression analysis (RNAseq), proteomics, Warburg manometry and uptake studies. Resting conidia suspended in water were demonstrated for the first time to be metabolically active as low levels of oxygen uptake and the generation of carbon dioxide were detected, suggesting that low-level respiratory metabolism occurs in conidia for maintenance. Upon triggering of spore germination, generation of CO2 increased dramatically. For a short period, which coincided with mobilisation of the intracellular polyol, trehalose, there was no increase in uptake of O2 indicating that trehalose was metabolised by fermentation. Data from genome-wide mRNA profiling showed the presence of transcripts associated with fermentative and respiratory metabolism in resting conidia. Following triggering of conidial outgrowth, there was a clear switch to respiration after 25min, confirmed by cyanide inhibition. No effect of SHAM, salicylhydroxamic acid, on respiration suggests electron flow via cytochrome c oxidase. Glucose entry into spores was not detectable before 1h after triggering germination. The impact of sorbic acid on germination was examined and we showed that it inhibits glucose uptake. O2 uptake was also inhibited, delaying the onset of respiration and extending the period of fermentation. In conclusion, we show that conidia suspended in water are not completely dormant and that conidial outgrowth involves fermentative metabolism that precedes respiration. Copyright © 2016. Published by Elsevier Inc.

  17. Aspergillus Niger Genomics: Past, Present and into the Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Scott E.

    2006-09-01

    Aspergillus niger is a filamentous ascomycete fungus that is ubiquitous in the environment and has been implicated in opportunistic infections of humans. In addition to its role as an opportunistic human pathogen, A. niger is economically important as a fermentation organism used for the production of citric acid. Industrial citric acid production by A. niger represents one of the most efficient, highest yield bioprocesses in use currently by industry. The genome size of A. niger is estimated to be between 35.5 and 38.5 megabases (Mb) divided among eight chromosomes/linkage groups that vary in size from 3.5 - 6.6 Mb. Currently,more » there are three independent A. niger genome projects, an indication of the economic importance of this organism. The rich amount of data resulting from these multiple A. niger genome sequences will be used for basic and applied research programs applicable to fermentation process development, morphology and pathogenicity.« less

  18. Micro-sonicator for spore lysis

    DOEpatents

    Miles, Robin R.; Belgrader, Phillip; Nasarabadi, Shanavaz L.

    2000-01-01

    A micro-sonicator for spore lysis. Using micromachining technology, the micro-sonicator uses ultrasonic excitation of spores to perform spore and cell lysis. The micro-sonicator comprises a container with a cavity therein for retaining the sample in an ultrasonic transmission medium, the cavity being closed by a silicon membrane to which an electrode and piezoelectric material are attached, with the electrode and piezoelectric material being electrically connected to an AC signal generator which causes the membrane to flex and vibrate at the frequency of the applied voltage.

  19. Antifungal, Mechanical, and Physical Properties of Edible Film Containing Williopsis saturnus var. saturnus Antagonistic Yeast.

    PubMed

    Karabulut, Gulsah; Cagri-Mehmetoglu, Arzu

    2018-03-01

    The molding of food products causing health risks is a main problem in the food industry. In this study, as an alternative solution for preventing mold growth, an antifungal edible film was developed by incorporating Williopsis saturnus var. saturnus (0; 3; 7; and 9 logs CFU/cm 2 ) into whey protein concentrate (WPC) based films. Antifungal properties of the films against Penicilium expansum and Aspergillus niger were analyzed using the disc diffusion method. Physical (barrier, solubility, color), mechanical (tensile strength and percent elongation) properties of the films as well as the survival of W. saturnus in the film were assessed during 28 days of storage at 23 °C. According to the results, the viability of W. saturnus (7 and 9 logs CFU/cm 2 ) in WPC films stored for 28 days under vacuum or non-vacuum decreased to 36% and 60%, respectively. In addition, films containing W. saturnus decreased the viability of P. expansum and A. niger by 29% and 19%, respectively. Adding yeast did not change the tensile strength (P > 0.05), but significantly decreased % elongation and increased water vapor and oxygen permeability and water solubility (P < 0.05). In conclusion, this study showed that the developed films may be useful for inhibiting mold growth on foods. © 2018 Institute of Food Technologists®.

  20. Plasma Assisted Decontamination of Bacterial Spores

    PubMed Central

    Kuo, Spencer P

    2008-01-01

    The efficacy and mechanism of killing bacterial spores by a plasma torch is studied. Bacterial-spore (Bacillus cereus) suspension is inoculated onto glass/paper slide-coupons and desiccated into dry samples, and inoculated into well-microplate as wet sample. The exposure distance of all samples is 4 cm from the nozzle of the torch. In the experiment, paper slide-coupon is inserted inside an envelope. The kill times on spores in three types of samples are measured to be about 3, 9, and 24 seconds. The changes in the morphology and shape of still viable spores in treated wet samples are recorded by scanning electron and atomic force microscopes. The loss of appendages and exosporium in the structure and squashed/flattened cell shape are observed. The emission spectroscopy of the torch indicates that the plasma effluent carries abundant reactive atomic oxygen, which is responsible for the destruction of spores. PMID:19662115

  1. Fern Spore Longevity in Saline Water: Can Sea Bottom Sediments Maintain a Viable Spore Bank?

    PubMed Central

    de Groot, G. Arjen; During, Heinjo

    2013-01-01

    Freshwater and marine sediments often harbor reservoirs of plant diaspores, from which germination and establishment may occur whenever the sediment falls dry. Therewith, they form valuable records of historical inter- and intraspecific diversity, and are increasingly exploited to facilitate diversity establishment in new or restored nature areas. Yet, while ferns may constitute a considerable part of a vegetation’s diversity and sediments are known to contain fern spores, little is known about their longevity, which may suffer from inundation and - in sea bottoms - salt stress. We tested the potential of ferns to establish from a sea or lake bottom, using experimental studies on spore survival and gametophyte formation, as well as a spore bank analysis on sediments from a former Dutch inland sea. Our experimental results revealed clear differences among species. For Asplenium scolopendrium and Gymnocarpium dryopteris, spore germination was not affected by inundated storage alone, but decreased with rising salt concentrations. In contrast, for Asplenium trichomanes subsp. quadrivalens germination decreased following inundation, but not in response to salt. Germination rates decreased with time of storage in saline water. Smaller and less viable gametophytes were produced when saline storage lasted for a year. Effects on germination and gametophyte development clearly differed among genotypes of A. scolopendrium. Spore bank analyses detected no viable spores in marine sediment layers. Only two very small gametophytes (identified as Thelypteris palustris via DNA barcoding) emerged from freshwater sediments. Both died before maturation. We conclude that marine, and likely even freshwater sediments, will generally be of little value for long-term storage of fern diversity. The development of any fern vegetation on a former sea floor will depend heavily on the deposition of spores onto the drained land by natural or artificial means of dispersal. PMID:24223951

  2. On the neutralization of bacterial spores in post-detonation flows

    NASA Astrophysics Data System (ADS)

    Gottiparthi, K. C.; Schulz, J. C.; Menon, S.

    2014-09-01

    In multiple operational scenarios, explosive charges are used to neutralize confined or unconfined stores of bacterial spores. The spore destruction is achieved by post-detonation combustion and mixing of hot detonation product gases with the ambient flow and spore clouds. In this work, blast wave interaction with bacterial spore clouds and the effect of post-detonation combustion on spore neutralization are investigated using numerical simulations. Spherical explosive charges (radius, = 5.9 cm) comprising of nitromethane are modeled in the vicinity of a spore cloud, and the spore kill in the post-detonation flow is quantified. The effect of the mass of the spores and the initial distance, , of the spore cloud from the explosive charge on the percentage of spores neutralized is investigated. When the spores are initially placed within a distance of 3.0, within 0.1 ms after detonation of the charge, all the spores are neutralized by the blast wave and the hot detonation product gases. In contrast, almost all the spores survived the explosion when is greater than 8.0. The percentage of intact spores varied from 0 to 100 for 3.0 8.0 with spore neutralization dependent on time spent by the spores in the post-detonation mixing/combustion zone.

  3. Memory of Germinant Stimuli in Bacterial Spores

    PubMed Central

    Wang, Shiwei; Faeder, James R.; Setlow, Peter

    2015-01-01

    ABSTRACT Bacterial spores, despite being metabolically dormant, possess the remarkable capacity to detect nutrients and other molecules in their environment through a biochemical sensory apparatus that can trigger spore germination, allowing the return to vegetative growth within minutes of exposure of germinants. We demonstrate here that bacterial spores of multiple species retain memory of transient exposures to germinant stimuli that can result in altered responses to subsequent exposure. The magnitude and decay of these memory effects depend on the pulse duration as well as on the separation time, incubation temperature, and pH values between the pulses. Spores of Bacillus species germinate in response to nutrients that interact with germinant receptors (GRs) in the spore’s inner membrane, with different nutrient types acting on different receptors. In our experiments, B. subtilis spores display memory when the first and second germinant pulses target different receptors, suggesting that some components of spore memory are downstream of GRs. Furthermore, nonnutrient germinants, which do not require GRs, exhibit memory either alone or in combination with nutrient germinants, and memory of nonnutrient stimulation is found to be more persistent than that induced by GR-dependent stimuli. Spores of B. cereus and Clostridium difficile also exhibit germination memory, suggesting that memory may be a general property of bacterial spores. These observations along with experiments involving strains with mutations in various germination proteins suggest a model in which memory is stored primarily in the metastable states of SpoVA proteins, which comprise a channel for release of dipicolinic acid, a major early event in spore germination. PMID:26604257

  4. Morphogenetic Pathway of Spore Wall Assembly in Saccharomyces cerevisiae

    PubMed Central

    Coluccio, Alison; Bogengruber, Edith; Conrad, Michael N.; Dresser, Michael E.; Briza, Peter; Neiman, Aaron M.

    2004-01-01

    The Saccharomyces cerevisiae spore is protected from environmental damage by a multilaminar extracellular matrix, the spore wall, which is assembled de novo during spore formation. A set of mutants defective in spore wall assembly were identified in a screen for mutations causing sensitivity of spores to ether vapor. The spore wall defects in 10 of these mutants have been characterized in a variety of cytological and biochemical assays. Many of the individual mutants are defective in the assembly of specific layers within the spore wall, leading to arrests at discrete stages of assembly. The localization of several of these gene products has been determined and distinguishes between proteins that likely are involved directly in spore wall assembly and probable regulatory proteins. The results demonstrate that spore wall construction involves a series of dependent steps and provide the outline of a morphogenetic pathway for assembly of a complex extracellular structure. PMID:15590821

  5. Survival strategies of Bacillus spores in food.

    PubMed

    Stecchini, Mara Lucia; Del Torre, Manuela; Polese, Pierluigi

    2013-11-01

    Control of bacterial spores is one of the major problem in the food preservation. Spores of Bacillus genus are commonly present in different environments, including soil and the gut of insects and animals and, as a result, they can be spread to all kind of foods. Due to their high resistance properties, their complete inactivation in food is often impossible without changing the product characteristics. Surviving spores can germinate and grow out to vegetative cells, with the consequent great risk of food spoilage and food poisoning after consumption. Spores have evolved various mechanisms, including phenotypic variability, to protect themselves from a wide range of damage resulting from food preservation treatments. Even if the phenotypic heterogeneity contributes to increase the chances of survival of Bacillus spore to conventional preservation treatments, in some specific instances, an homogeneous response could be the result of a strategy adopted by the spores to increase resistance to those treatments.

  6. Comparison of Psilocybe cubensis spore and mycelium allergens.

    PubMed

    Helbling, A; Horner, W E; Lehrer, S B

    1993-05-01

    Basidiospores are an important cause of respiratory allergy in mold-sensitive atopic subjects. Collection of the large amounts of spores required for extract preparation is tedious and difficult. A desirable alternative could be mycelium grown in vitro if it is allergenically similar to spores. Therefore this study compared the allergen contents of Psilocybe cubensis spore and mycelium extracts by different techniques with the use of pooled sera from subjects who had skin test and RAST results that were positive to P. cubensis spores. Isoelectric focusing immunoprints revealed six common IgE-binding bands at isoelectric points 4.7, 5.0, 5.5, 5.6, 8.7, and 9.3. Two additional bands at isoelectric points 3.9 and 5.7 were detected only in the spore extract. Sodium dodecylsulfate-polyacrylamide gel electrophoresis immunoblots exhibited six common IgE-binding bands at 16, 35, 487, 52, 62, and 76 kd; 20 and 40 kd bands were present only in the spore extract. Although RAST and isoelectric focusing inhibition demonstrated that P. cubensis spore and mycelium extracts share many allergens, spores were allergenically more potent than mycelium. The results indicate that mycelium is a useful source of P. cubensis allergen, even though several spore allergens were not detected in mycelium.

  7. Sphagnum moss disperses spores with vortex rings.

    PubMed

    Whitaker, Dwight L; Edwards, Joan

    2010-07-23

    Sphagnum spores, which have low terminal velocities, are carried by turbulent wind currents to establish colonies many kilometers away. However, spores that are easily kept aloft are also rapidly decelerated in still air; thus, dispersal range depends strongly on release height. Vascular plants grow tall to lift spores into sufficient wind currents for dispersal, but nonvascular plants such as Sphagnum cannot grow sufficiently high. High-speed videos show that exploding capsules of Sphagnum generate vortex rings to efficiently carry spores high enough to be dispersed by turbulent air currents. Spores launched ballistically at similar speeds through still air would travel a few millimeters and not easily reach turbulent air. Vortex rings are used by animals; here, we report vortex rings generated by plants.

  8. Survival of bacterial isolates exposed to simulated Jovian trapped radiation belt electrons and solar wind protons

    NASA Technical Reports Server (NTRS)

    Taylor, D. M.; Hagen, C. A.; Renninger, G. M.; Simko, G. J.; Smith, C. D.; Yelinek, J. A.

    1973-01-01

    With missions to Jupiter, the spacecraft will be exposed for extended durations to solar wind radiation and the Jovian trapped radiation belt. This study is designed to determine the effect of these radiation environments on spacecraft bacterial isolates. The information can be used in the probability of contamination analysis for these missions. A bacterial subpopulation from Mariner Mars 1971 spacecraft (nine spore-forming and three non-spore-forming isolates) plus two comparative organisms, Staphylococcus epidermidis ATCC 17917 and a strain of Bacillus subtilis var. niger, were exposed to 2, 12, and 25 MeV electrons at different doses with simultaneous exposure to a vacuum of 1.3 x 10(-4) N m-2 at 20 and -20 degrees C. The radioresistance of the subpopulation was dependent on the isolate, dose and energy of electrons. Temperature affected the radioresistance of only the spore-forming isolates. Survival data indicated that spores were reduced approximately 1 log/1500 J kg-1 (10 J kg-1=1 krad), while non-spore-forming isolates (micrococci) were reduced 1.5-2 logs/1500 J kg-1 with the exception of an apparent radioresistant isolate whose resistance approached that of the spores. The subpopulation was found to be less resistant to lower energy than to higher energy electrons. The bacterial isolates were exposed to 3 keV protons under the same conditions as the electrons with a total fluence of 1.5 x 10(13) p cm-2 and a dose rate of 8.6 x 10(9) p cm-2 s-1. The results showed that only 20% of S. epidermidis and 45% of B. subtilis populations survived exposure to the 3 keV protons, while the mean survival of the spacecraft subpopulation was 45% with a range from 31.8% (non-spore-former) to 64.8% (non-spore-former). No significant difference existed between spore-forming and non-spore-forming isolates.

  9. Decoupled Changes in Western Niger Delta Primary Productivity and Niger River Discharge Across the Last Deglacial

    NASA Astrophysics Data System (ADS)

    Parker, A. O.; Schmidt, M. W.; Slowey, N. C.; Jobe, Z. R.; Marcantonio, F.

    2014-12-01

    Abrupt droughts in West Africa impart significant socio-economic impacts on the developing countries of this region, and yet a comprehensive understanding of the causes and duration of such droughts remains elusive. Much of the summertime rainfall associated with the West African Monsoon (WAM) falls within the Niger River basin and eventually drains into the eastern Gulf of Guinea, contributing to the low sea-surface salinity of this region. Of the limited number of studies that reconstruct Gulf of Guinea salinity through the deglacial, the most comprehensive of those is located ~ 400 km east of the Niger delta and may not be solely influenced by WAM runoff. Here, we present XRF and foraminiferal trace metal data from two new cores located less than 100 km from the Western Niger Delta. Radiocarbon dating of cores Grand 21 (4.72oN, 4.48oE) and Fan 17 (4.81oN, 4.41oE) produced near linear sedimentation rates of 20 cm/kyr and 15 cm/kyr respectively. Elemental sediment compositions from XRF core scanning reveal an abrupt 50% increase in SiO2 between 17-15 ka during Heinrich Event 1. This increase, coeval with increases of CaCO3 (+12%) content and Ba/Ti ratios suggests a large increase in primary productivity during H1. Values then decrease at the onset of the Bolling-Allerod (~14.6 kyr) until a similar, albeit smaller increase is recorded during the Younger Dryas beginning at 12.7 kyr. In contrast, FeO2 and TiO2 are thought to be a proxies of Niger River discharge strength and suggest a more gradual change in riverine discharge across the deglacial that is most likely driven by precession. These proxies suggest Niger River runoff was low from the LGM through Heinrich 1, gradually increasing around 13 ka. FeO2 and TiO2 values then peak between 11.5-7.5 kyr, consistent with the African Humid Period, before gradually decreasing through the mid-late Holocene. This deglacial pattern of riverine input is markedly different from previous reconstructions of WAM variability and

  10. Evaluating novel synthetic compounds active against Bacillus subtilis and Bacillus cereus spores using Live imaging with SporeTrackerX.

    PubMed

    Omardien, Soraya; Ter Beek, Alexander; Vischer, Norbert; Montijn, Roy; Schuren, Frank; Brul, Stanley

    2018-06-14

    An empirical approach was taken to screen a novel synthetic compound library designed to be active against Gram-positive bacteria. We obtained five compounds that were active against spores from the model organism Bacillus subtilis and the food-borne pathogen Bacillus cereus during our population based experiments. Using single cell live imaging we were able to observe effects of the compounds on spore germination and outgrowth. Difference in sensitivity to the compounds could be observed between B. subtilis and B. cereus using live imaging, with minor difference in the minimal inhibitory and bactericidal concentrations of the compounds against the spores. The compounds all delayed the bursting time of germinated spores and affected the generation time of vegetative cells at sub-inhibitory concentrations. At inhibitory concentrations spore outgrowth was prevented. One compound showed an unexpected potential for preventing spore germination at inhibitory concentrations, which merits further investigation. Our study shows the valuable role single cell live imaging can play in the final selection process of antimicrobial compounds.

  11. Morphological and ultrastructural aspects of Myxobolus niger n. sp. (Myxozoa) gill parasite of Corydoras melini (Siluriformes: Callichthyidae) from Brazilian Amazon.

    PubMed

    Mathews, Patrick D; Maia, Antônio A M; Adriano, Edson A

    2016-06-01

    Myxobolus niger n. sp. (Myxozoa) is described in the connective tissue of the serosa layer of the gill arch of Corydoras melini (Callichthyidae) captured from the Negro River, Amazonas State, Brazil. The prevalence of the parasite was 20% and the range intensity was 1-2 cysts per fish. The plasmodia were white and spherical to ellipsoidal, measuring 175 μm in diameter and were surrounded by a well-defined capsule of host connective tissue, with distinct delicate and interlaced collagen fibers. The myxospores body was ellipsoidal in frontal view and biconvex in sutural view. Spore dimensions were 11.3 ± 0.4 μm in length, 6.8 ± 0.2 μm in width and 4.1 ± 0.2 μm in thickness. The valves were symmetrical and smooth. The two polar capsules were elongated as pyriform and equal in size, measure 5.0 ± 0.3 μm in length and 2.0 ± 0.1 μm in width. The polar capsule had six to seven polar filament turns. Some aberrant spores were round in shape and had three polar capsules. The sporoplasm was binucleated and contained moderated number of sporoplasmosomes. The development of the plasmodia was asynchronic, with mature and immature spores. The plasmodium had moderated pynocitic channels. There were no projections, no invaginations and no microvilli in the plasmodial wall. This study is the first description of Myxobolus species in the fish of the Callichthyidae family. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Spore development and nuclear inheritance in arbuscular mycorrhizal fungi

    PubMed Central

    2011-01-01

    Background A conventional tenet of classical genetics is that progeny inherit half their genome from each parent in sexual reproduction instead of the complete genome transferred to each daughter during asexual reproduction. The transmission of hereditary characteristics from parents to their offspring is therefore predictable, although several exceptions are known. Heredity in microorganisms, however, can be very complex, and even unknown as is the case for coenocytic organisms such as Arbuscular Mycorrhizal Fungi (AMF). This group of fungi are plant-root symbionts, ubiquitous in most ecosystems, which reproduce asexually via multinucleate spores for which sexuality has not yet been observed. Results We examined the number of nuclei per spore of four AMF taxa using high Z-resolution live confocal microscopy and found that the number of nuclei was correlated with spore diameter. We show that AMF have the ability, through the establishment of new symbioses, to pass hundreds of nuclei to subsequent generations of multinucleated spores. More importantly, we observed surprising heterogeneity in the number of nuclei among sister spores and show that massive nuclear migration and mitosis are the mechanisms by which AMF spores are formed. We followed spore development of Glomus irregulare from hyphal swelling to spore maturity and found that the spores reached mature size within 30 to 60 days, and that the number of nuclei per spores increased over time. Conclusions We conclude that the spores used for dispersal of AMF contain nuclei with two origins, those that migrate into the spore and those that arise by mitosis in the spore. Therefore, these spores do not represent a stage in the life cycle with a single nucleus, raising the possibility that AMF, unlike all other known eukaryotic organisms, lack the genetic bottleneck of a single-nucleus stage. PMID:21349193

  13. Spore development and nuclear inheritance in arbuscular mycorrhizal fungi.

    PubMed

    Marleau, Julie; Dalpé, Yolande; St-Arnaud, Marc; Hijri, Mohamed

    2011-02-24

    A conventional tenet of classical genetics is that progeny inherit half their genome from each parent in sexual reproduction instead of the complete genome transferred to each daughter during asexual reproduction. The transmission of hereditary characteristics from parents to their offspring is therefore predictable, although several exceptions are known. Heredity in microorganisms, however, can be very complex, and even unknown as is the case for coenocytic organisms such as Arbuscular Mycorrhizal Fungi (AMF). This group of fungi are plant-root symbionts, ubiquitous in most ecosystems, which reproduce asexually via multinucleate spores for which sexuality has not yet been observed. We examined the number of nuclei per spore of four AMF taxa using high Z-resolution live confocal microscopy and found that the number of nuclei was correlated with spore diameter. We show that AMF have the ability, through the establishment of new symbioses, to pass hundreds of nuclei to subsequent generations of multinucleated spores. More importantly, we observed surprising heterogeneity in the number of nuclei among sister spores and show that massive nuclear migration and mitosis are the mechanisms by which AMF spores are formed. We followed spore development of Glomus irregulare from hyphal swelling to spore maturity and found that the spores reached mature size within 30 to 60 days, and that the number of nuclei per spores increased over time. We conclude that the spores used for dispersal of AMF contain nuclei with two origins, those that migrate into the spore and those that arise by mitosis in the spore. Therefore, these spores do not represent a stage in the life cycle with a single nucleus, raising the possibility that AMF, unlike all other known eukaryotic organisms, lack the genetic bottleneck of a single-nucleus stage.

  14. Inactivation of Clostridium difficile spores by microwave irradiation.

    PubMed

    Ojha, Suvash Chandra; Chankhamhaengdecha, Surang; Singhakaew, Sombat; Ounjai, Puey; Janvilisri, Tavan

    2016-04-01

    Spores are a potent agent for Clostridium difficile transmission. Therefore, factors inhibiting spores have been of continued interest. In the present study, we investigated the influence of microwave irradiation in addition to conductive heating for C. difficile spore inactivation in aqueous suspension. The spores of 15 C. difficile isolates from different host origins were exposed to conductive heating and microwave irradiation. The complete inhibition of spore viability at 10(7) CFU/ml was encountered following microwave treatment at 800 W for 60 s, but was not observed in the conductive-heated spores at the same time-temperature exposure. The distinct patterns of ultrastructural alterations following microwave and conductive heat treatment were observed and the degree of damages by microwave was in the exposure time-dependent manner. Microwave would therefore be a simple and time-efficient tool to inactivate C. difficile spores, thus reducing the risk of C. difficile transmission. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Bryophyte spore germinability is inhibited by peatland substrates

    NASA Astrophysics Data System (ADS)

    Bu, Zhao-Jun; Li, Zhi; Liu, Li-Jie; Sundberg, Sebastian; Feng, Ya-Min; Yang, Yun-He; Liu, Shuang; Song, Xue; Zhang, Xing-Lin

    2017-01-01

    Bryophyte substrates and species may affect spore germination through allelopathy. Polytrichum strictum is currently expanding in peatlands in north-eastern China - is this an effect of its superior spore germinability or do its gametophytes have a stronger allelopathic effect than do Sphagnum? We conducted a spore burial experiment to test the effect of species identity, substrate and water table depth (WTD) on spore germinability and bryophyte allelopathic effect with P. strictum and two Sphagnum species (S. palustre and S. magellanicum). After 5 months of burial during a growing season, the spores were tested for germinability. Allelopathic effect of bryophyte substrates was assessed by the difference between spore germinability after being stored inside or outside the substrates. After burial, more than 90% of the spores lost their germinability across all three species due to ageing and allelopathy. Spore germinability differed among species, where the spores in S. palustre had a higher germination frequency than those in P. strictum. The three bryophytes maintained a higher germinability in Sphagnum than in Polytrichum hummocks, probably due to a stronger allelopathic effect of P. strictum. Water table drawdown by 10 cm increased germinability by more than 60% across the three species. The study indicates that P. strictum does not possess an advantage regarding spore germination but rather its gametophytes have a stronger allelopathic effect. Due to the weaker inhibitive effect of Sphagnum gametophytes, P. strictum may have a potential establishment superiority over Sphagnum in peatlands, in addition to a better drought tolerance, which may explain its current expansion.

  16. Elastic and inelastic light scattering from single bacterial spores in an optical trap allows the monitoring of spore germination dynamics

    PubMed Central

    Peng, Lixin; Chen, De; Setlow, Peter; Li, Yong-qing

    2009-01-01

    Raman scattering spectroscopy and elastic light scattering intensity (ESLI) were used to simultaneously measure levels of Ca-dipicolinic acid (CaDPA) and changes in spore morphology and refractive index during germination of individual B. subtilis spores with and without the two redundant enzymes (CLEs), CwlJ and SleB, that degrade spores’ peptidoglycan cortex. Conclusions from these measurements include: 1) CaDPA release from individual wild-type germinating spores was biphasic; in a first heterogeneous slow phase, Tlag, CaDPA levels decreased ∼15% and in the second phase ending at Trelease, remaining CaDPA was released rapidly; 2) in L-alanine germination of wild-type spores and spores lacking SleB: a) the ESLI rose ∼2-fold shortly before Tlag at T1; b) following Tlag, the ESLI again rose ∼2-fold at T2 when CaDPA levels had decreased ∼50%; and c) the ESLI reached its maximum value at ∼Trelease and then decreased; 3) in CaDPA germination of wild-type spores: a) Tlag increased and the first increase in ESLI occurred well before Tlag, consistent with different pathways for CaDPA and L-alanine germination; b) at Trelease the ESLI again reached its maximum value; 4) in L-alanine germination of spores lacking both CLEs and unable to degrade their cortex, the time ΔTrelease (Trelease–Tlag) for excretion of ≥75% of CaDPA was ∼15-fold higher than that for wild-type or sleB spores; and 5) spores lacking only CwlJ exhibited a similar, but not identical ESLI pattern during L-alanine germination to that seen with cwlJ sleB spores, and the high value for ΔTrelease. PMID:19374431

  17. Viability and infectivity of fresh and cryopreserved Nosema ceranae spores.

    PubMed

    McGowan, Janine; De la Mora, Alvaro; Goodwin, Paul H; Habash, Marc; Hamiduzzaman, Mollah Md; Kelly, Paul G; Guzman-Novoa, Ernesto

    2016-12-01

    The microsporidium fungus Nosema ceranae is an intracellular parasite that infects the midgut of the honey bee, Apis mellifera. A major limitation of research on N. ceranae is that the fungus is non-culturable and thus studying it depends on the seasonal availability of Nosema spores. Also, spore viability and infectivity can vary considerably, and thus there is a need for reliable methods for determining those traits. This study examined different conditions for N. ceranae spore cryopreservation at -70°C, assessing spore viability and infectivity. Viability was determined by a staining procedure counting total spores numbers with bright field microscopy and un-viable spore numbers with the fluorescent dye, propidium iodide. Spore infectivity was determined with a dilution inoculation assay. Infectivity was dependent on the inoculum dose for the proportion of bees with detectable Nosema infections based on the number of spores per bee at 18days after inoculation; 4000 spores per bee or higher were needed to get approx. 100% of the inoculated bees infected. The median infective dose (ID 50 ) was 149 spores per bee, and the minimum dose capable of causing a detectable infection was 1.28 spores. The proportion of N. ceranae infected bees correlated significantly with the number of spores per bee (r=0.98, P<0.0001). N. ceranae spores cryopreserved in water or 10% glycerol did not differ in viability compared to fresh spores, but lost infectivity when inoculated into bees. This study shows that while cryopreservation of N. ceranae spores can preserve viability, the spores can have reduced infectivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Sensitive, Rapid Detection of Bacterial Spores

    NASA Technical Reports Server (NTRS)

    Kern, Roger G.; Venkateswaran, Kasthuri; Chen, Fei; Pickett, Molly; Matsuyama, Asahi

    2009-01-01

    A method of sensitive detection of bacterial spores within delays of no more than a few hours has been developed to provide an alternative to a prior three-day NASA standard culture-based assay. A capability for relatively rapid detection of bacterial spores would be beneficial for many endeavors, a few examples being agriculture, medicine, public health, defense against biowarfare, water supply, sanitation, hygiene, and the food-packaging and medical-equipment industries. The method involves the use of a commercial rapid microbial detection system (RMDS) that utilizes a combination of membrane filtration, adenosine triphosphate (ATP) bioluminescence chemistry, and analysis of luminescence images detected by a charge-coupled-device camera. This RMDS has been demonstrated to be highly sensitive in enumerating microbes (it can detect as little as one colony-forming unit per sample) and has been found to yield data in excellent correlation with those of culture-based methods. What makes the present method necessary is that the specific RMDS and the original protocols for its use are not designed for discriminating between bacterial spores and other microbes. In this method, a heat-shock procedure is added prior to an incubation procedure that is specified in the original RMDS protocols. In this heat-shock procedure (which was also described in a prior NASA Tech Briefs article on enumerating sporeforming bacteria), a sample is exposed to a temperature of 80 C for 15 minutes. Spores can survive the heat shock, but nonspore- forming bacteria and spore-forming bacteria that are not in spore form cannot survive. Therefore, any colonies that grow during incubation after the heat shock are deemed to have originated as spores.

  19. Mushrooms use convectively created airflows to disperse their spores

    PubMed Central

    Dressaire, Emilie; Yamada, Lisa; Song, Boya; Roper, Marcus

    2016-01-01

    Thousands of basidiomycete fungal species rely on mushroom spores to spread across landscapes. It has long been thought that spores depend on favorable winds for dispersal—that active control of spore dispersal by the parent fungus is limited to an impulse delivered to the spores to carry them clear of the gill surface. Here we show that evaporative cooling of the air surrounding the pileus creates convective airflows capable of carrying spores at speeds of centimeters per second. Convective cells can transport spores from gaps that may be only 1 cm high and lift spores 10 cm or more into the air. This work reveals how mushrooms tolerate and even benefit from crowding and explains their high water needs. PMID:26929324

  20. Classification of Streptomyces Spore Surfaces into Five Groups

    PubMed Central

    Dietz, Alma; Mathews, John

    1971-01-01

    Streptomyces spores surfaces have been classified into five groups, smooth, warty, spiny, hairy, and rugose, by examination of carbon replicas of spores with the transmission electron microscope and by direct examination of spores with the scanning electron microscope. Images PMID:4928607

  1. Survival of bacterial isolates exposed to simulated Jovian trapped radiation belt electrons and solar wind protons

    NASA Technical Reports Server (NTRS)

    Taylor, D. M.; Hagen, C. A.; Renninger, G. M.; Simko, G. J.; Smith, C. D.; Yelinek, J. A.

    1972-01-01

    With missions to Jupiter, the spacecraft will be exposed for extended duration to solar wind radiation and the Jovian trapped radiation belt. This study is designed to determine the effect of these radiation environments on spacecraft bacterial isolates. The information can be used in the probability of contamination analysis for these missions. A bacterial subpopulation from Mariner Mars 1971 spacecraft (nine sporeforming and three nonsporeforming isolates) plus two comparative organisms, Staphylococcus epidermidis ATCC 17917 and a strain of Bacillus subtilis var. niger, were exposed to 2-, 12-, and 25-MeV electrons at different doses with simultaneous exposure to a vacuum of 0.0013 N/sqm at 20 and -20 C. The radioresistance of the subpopulation was dependent on the isolate, dose, and energy of electrons. Temperature affected the radioresistance of only the sporeforming isolates. Survival data indicated that spores were reduced approximately 1 log/1500 J/kg, while nonsporeforming isolates (micrococci) were reduced 1.5 to 2 logs/1500 J/kg with the exception of an apparent radioresistant isolate whose resistance approached that of the spores. The subpopulation was found to be less resistant to lower energy than to higher energy electrons.

  2. [Survival of Bacillus anthracis spores in various tannery baths].

    PubMed

    Mendrycka, M; Mierzejewski, J

    2000-01-01

    The influence of tannery baths: liming, deliming, bating, pickling, tanning, retannage on the survival and on the germination dynamism of B. anthracis spores (Sterne strain) was investigated. The periods and the conditions of this influence were established according to technological process of cow hide tannage. Practically after every bath some part of the spores remained vital. The most effective killing of spores occurred after pickling, liming and deliming. Inversely, the most viable spores remained after bating and retannage process. The lack of correlation that was observed between survival and germination of spores after retannage bath can be explained by different mechanism of spores germination inhibition and their killing.

  3. Improvement of Biological Indicators by Uniformly Distributing Bacillus subtilis Spores in Monolayers To Evaluate Enhanced Spore Decontamination Technologies

    PubMed Central

    Raguse, Marina; Fiebrandt, Marcel; Stapelmann, Katharina; Madela, Kazimierz; Laue, Michael; Lackmann, Jan-Wilm; Thwaite, Joanne E.; Setlow, Peter; Awakowicz, Peter

    2016-01-01

    Novel decontamination technologies, including cold low-pressure plasma and blue light (400 nm), are promising alternatives to conventional surface decontamination methods. However, the standardization of the assessment of such sterilization processes remains to be accomplished. Bacterial endospores of the genera Bacillus and Geobacillus are frequently used as biological indicators (BIs) of sterility. Ensuring standardized and reproducible BIs for reliable testing procedures is a significant problem in industrial settings. In this study, an electrically driven spray deposition device was developed, allowing fast, reproducible, and homogeneous preparation of Bacillus subtilis 168 spore monolayers on glass surfaces. A detailed description of the structural design as well as the operating principle of the spraying device is given. The reproducible formation of spore monolayers of up to 5 × 107 spores per sample was verified by scanning electron microscopy. Surface inactivation studies revealed that monolayered spores were inactivated by UV-C (254 nm), low-pressure argon plasma (500 W, 10 Pa, 100 standard cubic cm per min), and blue light (400 nm) significantly faster than multilayered spores were. We have thus succeeded in the uniform preparation of reproducible, highly concentrated spore monolayers with the potential to generate BIs for a variety of nonpenetrating surface decontamination techniques. PMID:26801572

  4. "Spore" and the Sociocultural Moment

    ERIC Educational Resources Information Center

    Meyer, W. Max

    2012-01-01

    Analyses of the game "Spore" have centered on the important issues of accuracy of evolution content and engendering interest in science. This paper suggests that examination of the degree of scaffolding necessary to use the game in pedagogy is a missing part of the discussion, and then questions the longevity of the "Spore" discussion relative to…

  5. Asynchronous spore germination in isogenic natural isolates of Saccharomyces paradoxus.

    PubMed

    Stelkens, Rike B; Miller, Eric L; Greig, Duncan

    2016-05-01

    Spores from wild yeast isolates often show great variation in the size of colonies they produce, for largely unknown reasons. Here we measure the colonies produced from single spores from six different wild Saccharomyces paradoxus strains. We found remarkable variation in spore colony sizes, even among spores that were genetically identical. Different strains had different amounts of variation in spore colony sizes, and variation was not affected by the number of preceding meioses, or by spore maturation time. We used time-lapse photography to show that wild strains also have high variation in spore germination timing, providing a likely mechanism for the variation in spore colony sizes. When some spores from a laboratory strain make small colonies, or no colonies, it usually indicates a genetic or meiotic fault. Here, we demonstrate that in wild strains spore colony size variation is normal. We discuss and assess potential adaptive and non-adaptive explanations for this variation. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Strategy to inactivate Clostridium perfringens spores in meat products.

    PubMed

    Akhtar, Saeed; Paredes-Sabja, Daniel; Torres, J Antonio; Sarker, Mahfuzur R

    2009-05-01

    The current study aimed to develop an inactivation strategy for Clostridium perfringens spores in meat through a combination of spore activation at low pressure (100-200 MPa, 7 min) and elevated temperature (80 degrees C, 10 min); spore germination at high temperatures (55, 60 or 65 degrees C); and inactivation of germinated spores with elevated temperatures (80 and 90 degrees C, 10 and 20 min) and high pressure (586 MPa, at 23 and 73 degrees C, 10 min). Low pressures (100-200 MPa) were insufficient to efficiently activate C. perfringens spores for germination. However, C. perfringens spores were efficiently activated with elevated temperature (80 degrees C, 10 min), and germinated at temperatures lethal for vegetative cells (>or= 55 degrees C) when incubated for 60 min with a mixture of L-asparagine and KCl (AK) in phosphate buffer (pH 7) and in poultry meat. Inactivation of spores (approximately 4 decimal reduction) in meat by elevated temperatures (80-90 degrees C for 20 min) required a long germination period (55 degrees C for 60 min). However, similar inactivation level was reached with shorter germination period (55 degrees C for 15 min) when spore contaminated-meat was treated with pressure-assisted thermal processing (568 MPa, 73 degrees C, 10 min). Therefore, the most efficient strategy to inactivate C. perfringens spores in poultry meat containing 50 mM AK consisted: (i) a primary heat treatment (80 degrees C, 10 min) to pasteurize and denature the meat proteins and to activate C. perfringens spores for germination; (ii) cooling of the product to 55 degrees C in about 20 min and further incubation at 55 degrees C for about 15 min for spore germination; and (iii) inactivation of germinated spores by pressure-assisted thermal processing (586 MPa at 73 degrees C for 10 min). Collectively, this study demonstrates the feasibility of an alternative and novel strategy to inactivate C. perfringens spores in meat products formulated with germinants specific for C

  7. Inactivation of chemical and heat-resistant spores of Bacillus and Geobacillus by nitrogen cold atmospheric plasma evokes distinct changes in morphology and integrity of spores.

    PubMed

    van Bokhorst-van de Veen, Hermien; Xie, Houyu; Esveld, Erik; Abee, Tjakko; Mastwijk, Hennie; Nierop Groot, Masja

    2015-02-01

    Bacterial spores are resistant to severe conditions and form a challenge to eradicate from food or food packaging material. Cold atmospheric plasma (CAP) treatment is receiving more attention as potential sterilization method at relatively mild conditions but the exact mechanism of inactivation is still not fully understood. In this study, the biocidal effect by nitrogen CAP was determined for chemical (hypochlorite and hydrogen peroxide), physical (UV) and heat-resistant spores. The three different sporeformers used are Bacillus cereus a food-borne pathogen, and Bacillus atrophaeus and Geobacillus stearothermophilus that are used as biological indicators for validation of chemical sterilization and thermal processes, respectively. The different spores showed variation in their degree of inactivation by applied heat, hypochlorite, hydrogen peroxide, and UV treatments, whereas similar inactivation results were obtained with the different spores treated with nitrogen CAP. G. stearothermophilus spores displayed high resistance to heat, hypochlorite, hydrogen peroxide, while for UV treatment B. atrophaeus spores are most tolerant. Scanning electron microscopy analysis revealed distinct morphological changes for nitrogen CAP-treated B. cereus spores including etching effects and the appearance of rough spore surfaces, whereas morphology of spores treated with heat or disinfectants showed no such changes. Moreover, microscopy analysis revealed CAP-exposed B. cereus spores to turn phase grey conceivably because of water influx indicating damage of the spores, a phenomenon that was not observed for non-treated spores. In addition, data are supplied that exclude UV radiation as determinant of antimicrobial activity of nitrogen CAP. Overall, this study shows that nitrogen CAP treatment has a biocidal effect on selected Bacillus and Geobacillus spores associated with alterations in spore surface morphology and loss of spore integrity. Copyright © 2014 Elsevier Ltd. All

  8. Mycena sect. Hygrocyboideae in the mountains of the Dominican Republic

    Treesearch

    D. Jean Lodge; B.A. Perry; D.E. Desjardin

    2004-01-01

    A collection of Mycena epipterygia from montane cloud forest in the Dominican Republic was found to have one-fourth to one-half monosporous basidia mixed with bisporous basidia. It is described as a new variety, M. epipterygia var. domingensis Lodge, differing from M. epipterygia var. epipterygioides and other two-spored varieties in having smaller dimensions of spores...

  9. Surface tension propulsion of fungal spores by use of microdroplets

    NASA Astrophysics Data System (ADS)

    Noblin, Xavier; Yang, Sylvia; Dumais, Jacques

    2010-11-01

    Most basidiomycete fungi (such as edible mushrooms) actively eject their spores. The process begins with the condensation of a water droplet at the base of the spore. The fusion of the droplet onto the spore creates a momentum that propels the spore forward. The use of surface tension for spore ejection offers a new paradigm to perform work at small length scales. However, this mechanism of force generation remains poorly understood. To elucidate how fungal spores make effective use of surface tension, we performed high-speed video imaging of spore ejection in Auricularia auricula and Sporobolomyces yeast, along with a detailed mechanical analysis of the spore ejection. We developed an explicit relation for the conversion of surface energy into kinetic energy during the coalescence process. The relation was validated with a simple artificial system.

  10. Spore coat protein of Bacillus subtilis. Structure and precursor synthesis.

    PubMed

    Munoz, L; Sadaie, Y; Doi, R H

    1978-10-10

    The coat protein of Bacillus subtilis spores comprises about 10% of the total dry weight of spores and 25% of the total spore protein. One protein with a molecular weight of 13,000 to 15,000 comprises a major portion of the spore coat. This mature spore coat protein has histidine at its NH2 terminus and is relatively rich in hydrophobic amino acids. Netropsin, and antibiotic which binds to A-T-rich regions of DNA and inhibits sporulation, but not growth, decreased the synthesis of this spore coat protein by 75%. A precursor spore coat protein with a molecular weight of 25,000 is made initially at t1 of sporulation and is converted to the mature spore coat protein with a molecular weight of 13,500 at t2 - t3. These data indicate that the spore coat protein gene is expressed very early in sporulation prior to the modifications of RNA polymerase which have been noted.

  11. Biotransformation of Stypotriol triacetate by Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Areche, Carlos; Vaca, Inmaculada; Labbe, Pamela; Soto-Delgado, Jorge; Astudillo, Luis; Silva, Mario; Rovirosa, Juana; San-Martin, Aurelio

    2011-07-01

    Biological transformation of the meroditerpenoid, stypotriol triacetate ( 1) by the fungi Aspergillus niger, Cunninghamella elegans, Gibberella fujikuroi and Mucor plumbeus was studied. The incubation of 1 with A. niger yielded the new compound 6',14-diacetoxy-stypol-4,5-dione ( 2) whose structure was established by 1H, 13C and 2D NMR and supported by DFT/GIAO.

  12. Activation and injury of Clostridium perfringens spores by alcohols.

    PubMed Central

    Craven, S E; Blankenship, L C

    1985-01-01

    The activation properties of Clostridium perfringens NCTC 8679 spores were demonstrated by increases in CFU after heating in water or aqueous alcohols. The temperature range for maximum activation, which was 70 to 80 degrees C in water, was lowered by the addition of alcohols. The response at a given temperature was dependent on the time of exposure and the alcohol concentration. The monohydric alcohols and some, but not all, of the polyhydric alcohols could activate spores at 37 degrees C. The concentration of a monohydric alcohol that produced optimal spore activation was inversely related to its lipophilic character. Spore injury, which was manifested as a dependence on lysozyme for germination and colony formation, occurred under some conditions of alcohol treatment that exceeded those for optimal spore activation. Treatment with aqueous solutions of monohydric alcohols effectively activated C. perfringens spores and suggests a hydrophobic site for spore activation. PMID:2864897

  13. 4D-Var Developement at GMAO

    NASA Technical Reports Server (NTRS)

    Pelc, Joanna S.; Todling, Ricardo; Akkraoui, Amal El

    2014-01-01

    The Global Modeling and Assimilation Offce (GMAO) is currently using an IAU-based 3D-Var data assimilation system. GMAO has been experimenting with a 3D-Var-hybrid version of its data assimilation system (DAS) for over a year now, which will soon become operational and it will rapidly progress toward a 4D-EnVar. Concurrently, the machinery to exercise traditional 4DVar is in place and it is desirable to have a comparison of the traditional 4D approach with the other available options, and evaluate their performance in the Goddard Earth Observing System (GEOS) DAS. This work will also explore the possibility for constructing a reduced order model (ROM) to make traditional 4D-Var computationally attractive for increasing model resolutions. Part of the research on ROM will be to search for a suitably acceptable space to carry on the corresponding reduction. This poster illustrates how the IAU-based 4D-Var assimilation compares with our currently used IAU-based 3D-Var.

  14. 9 CFR 113.66 - Anthrax Spore Vaccine-Nonencapsulated.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Anthrax Spore Vaccine-Nonencapsulated... REQUIREMENTS Live Bacterial Vaccines § 113.66 Anthrax Spore Vaccine—Nonencapsulated. Anthrax Spore Vaccine.... All serials of vaccine shall be prepared from the first through the fifth passage from the Master Seed...

  15. 9 CFR 113.66 - Anthrax Spore Vaccine-Nonencapsulated.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Anthrax Spore Vaccine-Nonencapsulated... REQUIREMENTS Live Bacterial Vaccines § 113.66 Anthrax Spore Vaccine—Nonencapsulated. Anthrax Spore Vaccine.... All serials of vaccine shall be prepared from the first through the fifth passage from the Master Seed...

  16. 9 CFR 113.66 - Anthrax Spore Vaccine-Nonencapsulated.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Anthrax Spore Vaccine-Nonencapsulated... REQUIREMENTS Live Bacterial Vaccines § 113.66 Anthrax Spore Vaccine—Nonencapsulated. Anthrax Spore Vaccine.... All serials of vaccine shall be prepared from the first through the fifth passage from the Master Seed...

  17. 9 CFR 113.66 - Anthrax Spore Vaccine-Nonencapsulated.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Anthrax Spore Vaccine-Nonencapsulated... REQUIREMENTS Live Bacterial Vaccines § 113.66 Anthrax Spore Vaccine—Nonencapsulated. Anthrax Spore Vaccine.... All serials of vaccine shall be prepared from the first through the fifth passage from the Master Seed...

  18. Development of an aerosol surface inoculation method for bacillus spores.

    PubMed

    Lee, Sang Don; Ryan, Shawn P; Snyder, Emily Gibb

    2011-03-01

    A method was developed to deposit Bacillus subtilis spores via aerosolization onto various surface materials for biological agent decontamination and detection studies. This new method uses an apparatus coupled with a metered dose inhaler to reproducibly deposit spores onto various surfaces. A metered dose inhaler was loaded with Bacillus subtilis spores, a surrogate for Bacillus anthracis. Five different material surfaces (aluminum, galvanized steel, wood, carpet, and painted wallboard paper) were tested using this spore deposition method. This aerosolization method deposited spores at a concentration of more than 10(7) CFU per coupon (18-mm diameter) with less than a 50% coefficient of variation, showing that the aerosolization method developed in this study can deposit reproducible numbers of spores onto various surface coupons. Scanning electron microscopy was used to probe the spore deposition patterns on test coupons. The deposition patterns observed following aerosol impaction were compared to those of liquid inoculation. A physical difference in the spore deposition patterns was observed to result from the two different methods. The spore deposition method developed in this study will help prepare spore coupons via aerosolization fast and reproducibly for bench top decontamination and detection studies.

  19. REVERSIBLE ACTIVATION FOR GERMINATION AND SUBSEQUENT CHANGES IN BACTERIAL SPORES1

    PubMed Central

    Lee, W. H.; Ordal, Z. John

    1963-01-01

    Lee, W. H. (University of Illinois, Urbana) and Z. John Ordal. Reversible activation for germination and subsequent changes in bacterial spores. J. Bacteriol. 85:207–217. 1963.—It was possible to isolate refractile spores of Bacillus megaterium, from a calcium dipicolinate germination solution, that were activated and would germinate spontaneously in distilled water. Some of the characteristics of the initial phases of bacterial spore germination were determined by studying these unstable activated spores. Activated spores of B. megaterium were resistant to stains and possessed a heat resistance intermediate between that of dormant and of germinated spores. The spontaneous germination of activated spores was inhibited by copper, iron, silver, or mercury salts, saturated o-phenanthroline, or solutions having a low pH value, but not by many common inhibitors. These inhibitions could be partially or completely reversed by the addition of sodium dipicolinate. The activated spores could be deactivated and made similar to dormant spores by treatment with acid. Analyses of the exudates from the variously treated spore suspensions revealed that whatever inhibited the germination of activated spores also inhibited the release of spore material. The composition of the germination exudates was different than that of extracts of dormant spores. Although heavy suspensions of activated spores gradually became swollen and dark when suspended in solutions of o-phenanthroline or at pH 4, the materials released resembled those found in extracts of dormant spores rather than those of normal germination exudates. Images PMID:16561987

  20. The Niger Delta petroleum system; Niger Delta Province, Nigeria, Cameroon, and equatorial Guinea, Africa

    USGS Publications Warehouse

    Tuttle, Michele L.W.; Charpentier, Ronald R.; Brownfield, Michael E.

    1999-01-01

    In the Niger Delta province, we have identified one petroleum system--the Tertiary Niger Delta (Akata-Agbada) petroleum system. The delta formed at the site of a rift triple junction related to the opening of the southern Atlantic starting in the Late Jurassic and continuing into the Cretaceous. The delta proper began developing in the Eocene, accumulating sediments that now are over 10 kilometers thick. The primary source rock is the upper Akata Formation, the marine-shale facies of the delta, with possibly contribution from interbedded marine shale of the lowermost Agbada Formation. Oil is produced from sandstone facies within the Agbada Formation, however, turbidite sand in the upper Akata Formation is a potential target in deep water offshore and possibly beneath currently producing intervals onshore. Known oil and gas resources of the Niger Delta rank the province as the twelfth largest in the world. To date, 34.5 billion barrels of recoverable oil and 93.8 trillion cubic feet of recoverable gas have been discovered. In 1997, Nigeria was the fifth largest crude oil supplier to the United States, supplying 689,000 barrels/day of crude.

  1. Novel Route for Agmatine Catabolism in Aspergillus niger Involves 4-Guanidinobutyrase.

    PubMed

    Kumar, Sunil; Saragadam, Tejaswani; Punekar, Narayan S

    2015-08-15

    Agmatine, a significant polyamine in bacteria and plants, mostly arises from the decarboxylation of arginine. The functional importance of agmatine in fungi is poorly understood. The metabolism of agmatine and related guanidinium group-containing compounds in Aspergillus niger was explored through growth, metabolite, and enzyme studies. The fungus was able to metabolize and grow on l-arginine, agmatine, or 4-guanidinobutyrate as the sole nitrogen source. Whereas arginase defined the only route for arginine catabolism, biochemical and bioinformatics approaches suggested the absence of arginine decarboxylase in A. niger. Efficient utilization by the parent strain and also by its arginase knockout implied an arginase-independent catabolic route for agmatine. Urea and 4-guanidinobutyrate were detected in the spent medium during growth on agmatine. The agmatine-grown A. niger mycelia contained significant levels of amine oxidase, 4-guanidinobutyraldehyde dehydrogenase, 4-guanidinobutyrase (GBase), and succinic semialdehyde dehydrogenase, but no agmatinase activity was detected. Taken together, the results support a novel route for agmatine utilization in A. niger. The catabolism of agmatine by way of 4-guanidinobutyrate to 4-aminobutyrate into the Krebs cycle is the first report of such a pathway in any organism. A. niger GBase peptide fragments were identified by tandem mass spectrometry analysis. The corresponding open reading frame from the A. niger NCIM 565 genome was located and cloned. Subsequent expression of GBase in both Escherichia coli and A. niger along with its disruption in A. niger functionally defined the GBase locus (gbu) in the A. niger genome. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Novel Route for Agmatine Catabolism in Aspergillus niger Involves 4-Guanidinobutyrase

    PubMed Central

    Kumar, Sunil; Saragadam, Tejaswani

    2015-01-01

    Agmatine, a significant polyamine in bacteria and plants, mostly arises from the decarboxylation of arginine. The functional importance of agmatine in fungi is poorly understood. The metabolism of agmatine and related guanidinium group-containing compounds in Aspergillus niger was explored through growth, metabolite, and enzyme studies. The fungus was able to metabolize and grow on l-arginine, agmatine, or 4-guanidinobutyrate as the sole nitrogen source. Whereas arginase defined the only route for arginine catabolism, biochemical and bioinformatics approaches suggested the absence of arginine decarboxylase in A. niger. Efficient utilization by the parent strain and also by its arginase knockout implied an arginase-independent catabolic route for agmatine. Urea and 4-guanidinobutyrate were detected in the spent medium during growth on agmatine. The agmatine-grown A. niger mycelia contained significant levels of amine oxidase, 4-guanidinobutyraldehyde dehydrogenase, 4-guanidinobutyrase (GBase), and succinic semialdehyde dehydrogenase, but no agmatinase activity was detected. Taken together, the results support a novel route for agmatine utilization in A. niger. The catabolism of agmatine by way of 4-guanidinobutyrate to 4-aminobutyrate into the Krebs cycle is the first report of such a pathway in any organism. A. niger GBase peptide fragments were identified by tandem mass spectrometry analysis. The corresponding open reading frame from the A. niger NCIM 565 genome was located and cloned. Subsequent expression of GBase in both Escherichia coli and A. niger along with its disruption in A. niger functionally defined the GBase locus (gbu) in the A. niger genome. PMID:26048930

  3. Surface Sampling of Spores in Dry-Deposition Aerosols▿

    PubMed Central

    Edmonds, Jason M.; Collett, Patricia J.; Valdes, Erica R.; Skowronski, Evan W.; Pellar, Gregory J.; Emanuel, Peter A.

    2009-01-01

    The ability to reliably and reproducibly sample surfaces contaminated with a biological agent is a critical step in measuring the extent of contamination and determining if decontamination steps have been successful. The recovery operations following the 2001 attacks with Bacillus anthracis spores were complicated by the fact that no standard sample collection format or decontamination procedures were established. Recovery efficiencies traditionally have been calculated based upon biological agents which were applied to test surfaces in a liquid format and then allowed to dry prior to sampling tests, which may not be best suited for a real-world event with aerosolized biological agents. In order to ascertain if differences existed between air-dried liquid deposition and biological spores which were allowed to settle on a surface in a dried format, a study was undertaken to determine if differences existed in surface sampling recovery efficiencies for four representative surfaces. Studies were then undertaken to compare sampling efficiencies between liquid spore deposition and aerosolized spores which were allowed to gradually settle under gravity on four different test coupon types. Tests with both types of deposition compared efficiencies of four unique swabbing materials applied to four surfaces with various surface properties. Our studies demonstrate that recovery of liquid-deposited spores differs significantly from recovery of dry aerosol-deposited spores in most instances. Whether the recovery of liquid-deposited spores is overexaggerated or underrepresented with respect to that of aerosol-deposited spores depends upon the surface material being tested. PMID:18997021

  4. Laser induced disruption of bacterial spores on a microchip.

    PubMed

    Hofmann, Oliver; Murray, Kirk; Wilkinson, Alan-Shaun; Cox, Timothy; Manz, Andreas

    2005-04-01

    We report on the development of a laser based spore disruption method. Bacillus globigii spores were mixed with a laser light absorbing matrix and co-crystallized into 200-microm-wide and 20-microm-deep nanovials formed in a polydimethylsiloxane (PDMS) target plate. Surface tension effects were exploited to effect up to 125-fold spore enrichment. When the target zones were illuminated at atmospheric pressure with pulsed UV-laser light at fluences below 20 mJ cm(-2) a change in spore morphology was observed within seconds. Post illumination PCR analysis suggests the release of endogenous DNA indicative of spore disruption. For laser fluences above 20 mJ cm(-2), desorption of spores and fragments was also observed even without a matrix being employed. Desorbed material was collected in a PDMS flowcell attached to the target plate during laser illumination. This opens up a route towards the direct extraction of released DNA in an integrated spore disruption-PCR amplification microchip device.

  5. Binding Affinity of Glycoconjugates to BACILLUS Spores and Toxins

    NASA Astrophysics Data System (ADS)

    Rasol, Aveen; Eassa, Souzan; Tarasenko, Olga

    2010-04-01

    Early recognition of Bacillus cereus group species is important since they can cause food-borne illnesses and deadly diseases in humans. Glycoconjugates (GCs) are carbohydrates covalently linked to non-sugar moieties including lipids, proteins or other entities. GCs are involved in recognition and signaling processes intrinsic to biochemical functions in cells. They also stimulate cell-cell adhesion and subsequent recognition and activation of receptors. We have demonstrated that GCs are involved in Bacillus cereus spore recognition. In the present study, we have investigated whether GCs possess the ability to bind and recognize B. cereus spores and Bacillus anthracis recombinant single toxins (sTX) and complex toxins (cTX). The affinity of GCs to spores + sTX and spores + cTX toxins was studied in the binding essay. Our results demonstrated that GC9 and GC10 were able to selectively bind to B. cereus spores and B. anthracis toxins. Different binding affinities for GCs were found toward Bacillus cereus spores + sTX and spores + cTX. Dilution of GCs does not impede the recognition and binding. Developed method provides a tool for simultaneous recognition and targeting of spores, bacteria toxins, and/or other entities.

  6. Structural Features of Sugars That Trigger or Support Conidial Germination in the Filamentous Fungus Aspergillus niger

    PubMed Central

    Hayer, Kimran; Stratford, Malcolm

    2013-01-01

    The asexual spores (conidia) of Aspergillus niger germinate to produce hyphae under appropriate conditions. Germination is initiated by conidial swelling and mobilization of internal carbon and energy stores, followed by polarization and emergence of a hyphal germ tube. The effects of different pyranose sugars, all analogues of d-glucose, on the germination of A. niger conidia were explored, and we define germination as the transition from a dormant conidium into a germling. Within germination, we distinguish two distinct stages, the initial swelling of the conidium and subsequent polarized growth. The stage of conidial swelling requires a germination trigger, which we define as a compound that is sensed by the conidium and which leads to catabolism of d-trehalose and isotropic growth. Sugars that triggered germination and outgrowth included d-glucose, d-mannose, and d-xylose. Sugars that triggered germination but did not support subsequent outgrowth included d-tagatose, d-lyxose, and 2-deoxy-d-glucose. Nontriggering sugars included d-galactose, l-glucose, and d-arabinose. Certain nontriggering sugars, including d-galactose, supported outgrowth if added in the presence of a complementary triggering sugar. This division of functions indicates that sugars are involved in two separate events in germination, triggering and subsequent outgrowth, and the structural features of sugars that support each, both, or none of these events are discussed. We also present data on the uptake of sugars during the germination process and discuss possible mechanisms of triggering in the absence of apparent sugar uptake during the initial swelling of conidia. PMID:23995938

  7. Structural features of sugars that trigger or support conidial germination in the filamentous fungus Aspergillus niger.

    PubMed

    Hayer, Kimran; Stratford, Malcolm; Archer, David B

    2013-11-01

    The asexual spores (conidia) of Aspergillus niger germinate to produce hyphae under appropriate conditions. Germination is initiated by conidial swelling and mobilization of internal carbon and energy stores, followed by polarization and emergence of a hyphal germ tube. The effects of different pyranose sugars, all analogues of d-glucose, on the germination of A. niger conidia were explored, and we define germination as the transition from a dormant conidium into a germling. Within germination, we distinguish two distinct stages, the initial swelling of the conidium and subsequent polarized growth. The stage of conidial swelling requires a germination trigger, which we define as a compound that is sensed by the conidium and which leads to catabolism of d-trehalose and isotropic growth. Sugars that triggered germination and outgrowth included d-glucose, d-mannose, and d-xylose. Sugars that triggered germination but did not support subsequent outgrowth included d-tagatose, d-lyxose, and 2-deoxy-d-glucose. Nontriggering sugars included d-galactose, l-glucose, and d-arabinose. Certain nontriggering sugars, including d-galactose, supported outgrowth if added in the presence of a complementary triggering sugar. This division of functions indicates that sugars are involved in two separate events in germination, triggering and subsequent outgrowth, and the structural features of sugars that support each, both, or none of these events are discussed. We also present data on the uptake of sugars during the germination process and discuss possible mechanisms of triggering in the absence of apparent sugar uptake during the initial swelling of conidia.

  8. Fifth international fungus spore conference. [Abstracts]: Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timberlake, W.E.

    1993-04-01

    This folio contains the proceedings of the Fifth International Fungal Spore Conference held August 17-21, 1991 at the Unicoi State Park at Helen, Georgia. The volume contains abstracts of each oral presentation as well as a collection of abstracts describing the poster sessions. Presentations were organized around the themes (1) Induction of Sporulation, (2) Nuclear Division, (3) Spore Formation, (4) Spore Release and Dispersal, and (4) Spore Germination.

  9. Method for collecting spores from a mold

    DOEpatents

    Au, Frederick H. F.; Beckert, Werner F.

    1977-01-01

    A technique and apparatus used therewith for determining the uptake of plutonium and other contaminants by soil microorganisms which, in turn, gives a measure of the plutonium and/or other contaminants available to the biosphere at that particular time. A measured quantity of uncontaminated spores of a selected mold is added to a moistened sample of the soil to be tested. The mixture is allowed to sit a predetermined number of days under specified temperature conditions. An agar layer is then applied to the top of the sample. After three or more days, when spores of the mold growing in the sample have formed, the spores are collected by a miniature vacuum collection apparatus operated under preselected vacuum conditions, which collect only the spores with essentially no contamination by mycelial fragments or culture medium. After collection, the fungal spores are dried and analyzed for the plutonium and/or other contaminants. The apparatus is also suitable for collection of pollen, small insects, dust and other small particles, material from thin-layer chromatography plates, etc.

  10. Kinetics of Germination of Bacillus Spores1

    PubMed Central

    Vary, J. C.; Halvorson, H. O.

    1965-01-01

    Vary, J. C. (University of Wisconsin, Madison), and H. O. Halvorson. Kinetics or germination of Bacillus spores. J. Bacteriol. 89:1340–1347. 1965.—The kinetics of germination of Bacillus cereus strain T spores was accurately described by McCormick. To study the mechanism of germination, it is necessary to correlate the characteristic changes in a population of germinating spores with the behavior of the individual spores in the same population. Two microscopic events are apparent during germination: microlag, the time interval between the addition of l-alanine to heat-activated spores and the beginning of loss in refractility, and microgermination time, the time for the actual change in refractility to occur. The frequency distributions of both events are skewed, and appear to be independent. The effects of l-alanine concentration, heat activation, and temperature of germination on three parameters, microlag, microgermination, and per cent germination, were microscopically studied. The data are discussed in relation to the mechanism of germination, and a correlation between microlag and microgermination times with the constants of McCormick's equation has been suggested. Images PMID:14293008

  11. Comparison of hand hygiene procedures for removing Bacillus cereus spores.

    PubMed

    Sasahara, Teppei; Hayashi, Shunji; Hosoda, Kouichi; Morisawa, Yuji; Hirai, Yoshikazu

    2014-01-01

    Bacillus cereus is a spore-forming bacterium. B. cereus occasionally causes nosocomial infections, in which hand contamination with the spores plays an important role. Therefore, hand hygiene is the most important practice for controlling nosocomial B. cereus infections. This study aimed to determine the appropriate hand hygiene procedure for removing B. cereus spores. Thirty volunteers' hands were experimentally contaminated with B. cereus spores, after which they performed 6 different hand hygiene procedures. We compared the efficacy of the procedures in removing the spores from hands. The alcohol-based hand-rubbing procedures scarcely removed them. The soap washing procedures reduced the number of spores by more than 2 log10. Extending the washing time increased the spore-removing efficacy of the washing procedures. There was no significant difference in efficacy between the use of plain soap and antiseptic soap. Handwashing with soap is appropriate for removing B. cereus spores from hands. Alcohol-based hand-rubbing is not effective.

  12. [Sporogenesis, sporoderm and mature spore ornamentation in Lycopodiaceae].

    PubMed

    Rincon Baron, Edgar Javier; Rolleri, Cristina Hilda; Passarelli, Lilian M; Espinosa Matías, Silvia; Torres, Alba Marina

    2014-09-01

    Studies on reproductive aspects, spore morphology and ultrastructure of Lycopodiaceae are not very common in the scientific literature, and constitute essential information to support taxonomic and systematic relationships among the group. In order to complete existing information, adding new and broader contributions on these topics, a comparative analysis of the sporogenesis ultrastructure, with emphasis on cytological aspects of the sporocyte coat development, tapetum, monoplastidic and polyplastidic meiosis, sporoderm ontogeny and ornamentation of the mature spores, was carried out in 43 taxa of eight genera of the Lycopodiaceae: Austrolycopodium, Diphasium, Diphasiastrum, Huperzia (including Phlegmariurus), Lycopodium, Lycopodiella, Palhinhaea and Pseudolycopodiella growing in the Andes of Colombia and the Neotropics. For this study, the transmission elec- tron microscopy (TEM) samples were collected in Cauca and Valle del Cauca Departments, while most of the spores for scanning electron microscopy (SEM) analysis were obtained from herbarium samples. We followed standard preparation procedures for spore observation by TEM and SEM. Results showed that the sporocyte coat is largely composed by primary wall components; the sporocyte develop much of their metabolic activity in the production of their coat, which is retained until the spores release; protective functions for the diploid cells undergoing meiosis is postulated here for this layer. The abundance of dictyosomes in the sporocyte cytoplasm was related to the formation and development of the sporocyte coat. Besides microtubule activity, the membrane of sporocyte folds, associated with electrodense material, and would early determine the final patterns of spore ornamentation. Monoplastidic condition is common in Lycopodium s.l., whereas polyplastidic condition was observed in species of Huperzia and Lycopodiella s. l. In monoplastidic species, the tapetum presents abun- dant multivesicular bodies, while in

  13. PERMEABILITY OF BACTERIAL SPORES II.

    PubMed Central

    Gerhardt, Philipp; Black, S. H.

    1961-01-01

    Gerhardt, Philipp (University of Michigan, Ann Arbor) and S. H. Black. Permeability of bacterial spores. II. Molecular variables affecting solute permeation. J. Bacteriol. 82:750–760. 1961.—More than 100 compounds were tested for their uptake by dormant spores of a bacillus. The extent of penetration was found to be dependent on at least three molecular properties: (i) The dissociation of electrolytes usually resulted in high or low uptake predictable from their charge. (ii) Lipid insolubility restricted permeation of small molecules. (iii) The molecular weight of unsubstituted glycol and sugar polymers exponentially limited penetration to eventual exclusion at mol wt above 160,000. The results were plotted as a generalized curve, calculations from which permitted an interpretation that the effective spore surface contains pores varying in diameter from 10 to 200 A. PMID:13897940

  14. The cellulose-binding activity of the PsB multiprotein complex is required for proper assembly of the spore coat and spore viability in Dictyostelium discoideum.

    PubMed

    Srinivasan, S; Griffiths, K R; McGuire, V; Champion, A; Williams, K L; Alexander, S

    2000-08-01

    The terminal event of spore differentiation in the cellular slime mould Dictyostelium discoideum is the assembly of the spore coat, which surrounds the dormant amoeba and allows the organism to survive during extended periods of environmental stress. The spore coat is a polarized extracellular matrix composed of glycoproteins and cellulose. The process of spore coat formation begins by the regulated secretion of spore coat proteins from the prespore vesicles (PSVs). Four of the major spore coat proteins (SP96, PsB/SP85, SP70 and SP60) exist as a preassembled multiprotein complex within the PSVs. This complete complex has an endogenous cellulose-binding activity. Mutant strains lacking either the SP96 or SP70 proteins produce partial complexes that do not have cellulose-binding activity, while mutants lacking SP60 produce a partial complex that retains this activity. Using a combination of immunofluorescence microscopy and biochemical methods we now show that the lack of cellulose-binding activity in the SP96 and SP70 mutants results in abnormally assembled spore coats and spores with greatly reduced viability. In contrast, the SP60 mutant, in which the PsB complex retains its cellulose-binding activity, produces spores with apparently unaltered structure and viability. Thus, it is the loss of the cellulose-binding activity of the PsB complex, rather than the mere loss of individual spore coat proteins, that results in compromised spore coat structure. These results support the idea that the cellulose-binding activity associated with the complete PsB complex plays an active role in the assembly of the spore coat.

  15. Thermal Spore Exposure Vessels

    NASA Technical Reports Server (NTRS)

    Beaudet, Robert A.; Kempf, Michael; Kirschner, Larry

    2006-01-01

    Thermal spore exposure vessels (TSEVs) are laboratory containers designed for use in measuring rates of death or survival of microbial spores at elevated temperatures. A major consideration in the design of a TSEV is minimizing thermal mass in order to minimize heating and cooling times. This is necessary in order to minimize the number of microbes killed before and after exposure at the test temperature, so that the results of the test accurately reflect the effect of the test temperature. A typical prototype TSEV (see figure) includes a flat-bottomed stainless-steel cylinder 4 in. (10.16 cm) long, 0.5 in. (1.27 cm) in diameter, having a wall thickness of 0.010 plus or minus 0.002 in. (0.254 plus or minus 0.051 mm). Microbial spores are deposited in the bottom of the cylinder, then the top of the cylinder is closed with a sterile rubber stopper. Hypodermic needles are used to puncture the rubber stopper to evacuate the inside of the cylinder or to purge the inside of the cylinder with a gas. In a typical application, the inside of the cylinder is purged with dry nitrogen prior to a test. During a test, the lower portion of the cylinder is immersed in a silicone-oil bath that has been preheated to and maintained at the test temperature. Test temperatures up to 220 C have been used. Because the spores are in direct contact with the thin cylinder wall, they quickly become heated to the test temperature.

  16. Apparatus and method for automated monitoring of airborne bacterial spores

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian (Inventor)

    2009-01-01

    An apparatus and method for automated monitoring of airborne bacterial spores. The apparatus is provided with an air sampler, a surface for capturing airborne spores, a thermal lysis unit to release DPA from bacterial spores, a source of lanthanide ions, and a spectrometer for excitation and detection of the characteristic fluorescence of the aromatic molecules in bacterial spores complexed with lanthanide ions. In accordance with the method: computer-programmed steps allow for automation of the apparatus for the monitoring of airborne bacterial spores.

  17. Multifactorial Resistance of Bacillus subtilis Spores to High-Energy Proton Radiation: Role of Spore Structural Components and the Homologous Recombination and Non-Homologous End Joining DNA Repair Pathways

    PubMed Central

    Reitz, Günther; Li, Zuofeng; Klein, Stuart; Nicholson, Wayne L.

    2012-01-01

    Abstract The space environment contains high-energy charged particles (e.g., protons, neutrons, electrons, α-particles, heavy ions) emitted by the Sun and galactic sources or trapped in the radiation belts. Protons constitute the majority (87%) of high-energy charged particles. Spores of Bacillus species are one of the model systems used for astro- and radiobiological studies. In this study, spores of different Bacillus subtilis strains were used to study the effects of high energetic proton irradiation on spore survival. Spores of the wild-type B. subtilis strain [mutants deficient in the homologous recombination (HR) and non-homologous end joining (NHEJ) DNA repair pathways and mutants deficient in various spore structural components such as dipicolinic acid (DPA), α/β-type small, acid-soluble spore protein (SASP) formation, spore coats, pigmentation, or spore core water content] were irradiated as air-dried multilayers on spacecraft-qualified aluminum coupons with 218 MeV protons [with a linear energy transfer (LET) of 0.4 keV/μm] to various final doses up to 2500 Gy. Spores deficient in NHEJ- and HR-mediated DNA repair were significantly more sensitive to proton radiation than wild-type spores, indicating that both HR and NHEJ DNA repair pathways are needed for spore survival. Spores lacking DPA, α/β-type SASP, or with increased core water content were also significantly more sensitive to proton radiation, whereas the resistance of spores lacking pigmentation or spore coats was essentially identical to that of the wild-type spores. Our results indicate that α/β-type SASP, core water content, and DPA play an important role in spore resistance to high-energy proton irradiation, suggesting their essential function as radioprotectants of the spore interior. Key Words: Bacillus—Spores—DNA repair—Protection—High-energy proton radiation. Astrobiology 12, 1069–1077. PMID:23088412

  18. Ice Nucleation of Fungal Spores from the Classes Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes, and the effect on the Atmospheric Transport of these Spores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haga, D. I.; Burrows, Susannah M.; Iannone, R.

    2014-08-26

    Ice nucleation on fungal spores may affect the frequency and properties of ice and mixed-phase clouds. We studied the ice nucleation properties of 12 different species of fungal spores chosen from three classes: Agaricomycetes, Ustilagomycetes, and Eurotiomycetes. Agaricomycetes include many types of mushroom species and are cosmopolitan all over the globe. Ustilagomycetes are agricultural pathogens and have caused widespread damage to crops. Eurotiomycetes are found on all types of decaying material and include important human allergens. We focused on these classes since they are thought to be abundant in the atmosphere and because there is very little information on themore » ice nucleation ability of these classes of spores in the literature. All of the fungal spores investigated were found to cause freezing of water droplets at temperatures warmer than homogeneous freezing. The cumulative number of ice nuclei per spore was 0.001 at temperatures between -19 °C and -29 °C, 0.01 between -25.5 °C and -31 °C, and 0.1 between -26 °C and -36 °C. On average, the order of ice nucleating ability for these spores is Ustilagomycetes > Agaricomycetes ≅ Eurotiomycetes. We show that at temperatures below -20 °C, all of the fungal spores studied here are less efficient ice nuclei compared to Asian mineral dust on a per surface area basis. We used our new freezing results together with data in the literature to compare the freezing temperatures of spores from the phyla Basidiomycota and Ascomycota, which together make up 98 % of known fungal species found on Earth. The data show that within both phyla (Ascomycota and Basidiomycota) there is a wide range of freezing properties, and also that the variation within a phylum is greater than the variation between the average freezing properties of the phyla. Using a global chemistry-climate transport model, we investigated whether ice nucleation on the studied spores, followed by precipitation, can influence the

  19. Dispersal of spores following a persistent random walk.

    PubMed

    Bicout, D J; Sache, I

    2003-03-01

    A model of a persistent random walk is used to describe the transport and deposition of the spore dispersal process. In this model, the spore particle flies along straight line trajectories, with constant speed v, which are interrupted by scattering, originating from interaction of spores with the field and wind variations, which randomly change its direction. To characterize the spore dispersal gradients, we have derived analytical expressions of the deposition probability epsilon (r|v) of airborne spores as a function of the distance r from the spore source in an infinite free space and in a disk of radius R with an absorbing edge that mimics an agricultural field surrounded with fields of nonhost plants and bare land. It is found in the free space that epsilon (r|v) approximately e(-alphar/l), with alpha a function of l(d)/l, where l and l(d) are the scattering and deposition mean free paths, respectively. In the disk, however, epsilon (r|v) is an infinite series of Bessel functions and, exhibits three regimes: absorbing (Rl(d)).

  20. Inhibition of spore germination of Alternaria tenuis by sulfur dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couey, H.M.

    1962-08-01

    As a part of a continuing study of SO/sub 2/ fumigation of table grapes, the effect of SO/sub 2/ on spores of an isolate of A. tenuis Auct. causing decay of table grapes was determined. The amount of SO/sub 2/ required to inhibit completely spore germination depended on availability of moisture and the temperature. At 20/sup 0/C, wet spores required 20-min exposure to 100 ppm SO/sub 2/ to prevent germination, but spores equilibrated at 90% relative humidity (RH) required 10-min exposure to 1000 ppm SO/sub 2/. Dry spores at 60% RH were unaffected by a 20-min exposure to 4000 ppmmore » SO/sub 2/. Increasing the temperature in the range 5-20/sup 0/C increased effectiveness of the SO/sub 2/ treatment. A comparison of Alternaria with Botrytis cinerea Fr. (studied earlier) showed that wet spores of these organisms were about equally sensitive to SO/sub 2/, but that dry Alternaria spores were more resistant to SO/sub 2/ than dry Botrytis spores under comparable conditions.« less

  1. Chlorine Dioxide Gas Sterilization under Square-Wave Conditions

    PubMed Central

    Jeng, David K.; Woodworth, Archie G.

    1990-01-01

    Experiments were designed to study chlorine dioxide (CD) gas sterilization under square-wave conditions. By using controlled humidity, gas concentration, and temperature at atmospheric pressure, standard biological indicators (BIs) and spore disks of environmental isolates were exposed to CD gas. The sporicidal activity of CD gas was found to be concentration dependent. Prehumidification enhanced the CD activity. The D values (time required for 90% inactivation) of Bacillus subtilis subsp. niger ATCC 9372 BIs were estimated to be 1.5, 2.5, and 4.2 min when exposed to CD concentrations of 30, 15, and 7 mg/liter, respectively, at 23°C and ambient (20 to 40%) relative humidity (RH). Survivor tailings were observed. Prehumidification of BIs to 70 to 75% RH in an environmental chamber for 30 min resulted in a D value of 1.6 min after exposure to a concentration of 6 to 7 mg of CD per liter at 23°C and eliminated survivor tailing. Prolonging prehumidification at 70 to 75% RH for up to 16 h did not further improve the inactivation rate. Prehumidification by ultrasonic nebulization was found to be more effective than prehumidification in the environmental chamber, improving the D value to 0.55 min at a CD concentration of 6 to 7 mg/liter. Based on the current observations, CD gas is estimated, on a molar concentration basis, to be 1,075 times more potent than ethylene oxide as a sterilant at 30°C. A comparative study showed B. subtilis var. niger BIs were more resistant than other types of BIs and most of the tested bacterial spores of environmental isolates. PMID:16348127

  2. Macroalgal spore dysfunction: ocean acidification delays and weakens adhesion.

    PubMed

    Guenther, Rebecca; Miklasz, Kevin; Carrington, Emily; Martone, Patrick T

    2018-04-01

    Early life stages of marine organisms are predicted to be vulnerable to ocean acidification. For macroalgae, reproduction and population persistence rely on spores to settle, adhere and continue the algal life cycle, yet the effect of ocean acidification on this critical life stage has been largely overlooked. We explicitly tested the biomechanical impact of reduced pH on early spore adhesion. We developed a shear flume to examine the effect of reduced pH on spore attachment time and strength in two intertidal rhodophyte macroalgae, one calcified (Corallina vancouveriensis) and one noncalcified (Polyostea robusta). Reduced pH delayed spore attachment of both species by 40%-52% and weakened attachment strength in C. vancouveriensis, causing spores to dislodge at lower flow-induced shear forces, but had no effect on the attachment strength of P. robusta. Results are consistent with our prediction that reduced pH disrupts proper curing and gel formation of spore adhesives (anionic polysaccharides and glycoproteins) via protonation and cation displacement, although experimental verification is needed. Our results demonstrate that ocean acidification negatively, and differentially, impacts spore adhesion in two macroalgae. If results hold in field conditions, reduced ocean pH has the potential to impact macroalgal communities via spore dysfunction, regardless of the physiological tolerance of mature thalli. © 2017 Phycological Society of America.

  3. Impact of alg3 gene deletion on growth, development, pigment production, protein secretion, and functions of recombinant Trichoderma reesei cellobiohydrolases in Aspergillus niger.

    PubMed

    Dai, Ziyu; Aryal, Uma K; Shukla, Anil; Qian, Wei-Jun; Smith, Richard D; Magnuson, Jon K; Adney, William S; Beckham, Gregg T; Brunecky, Roman; Himmel, Michael E; Decker, Stephen R; Ju, Xiaohui; Zhang, Xiao; Baker, Scott E

    2013-12-01

    Dolichyl-P-Man:Man(5)GlcNAc(2)-PP-dolichyl α-1,3-mannosyltransferase (also known as "asparagine-linked glycosylation 3", or ALG3) is involved in early N-linked glycan synthesis and thus is essential for formation of N-linked protein glycosylation. In this study, we examined the effects of alg3 gene deletion (alg3Δ) on growth, development, pigment production, protein secretion and recombinant Trichoderma reesei cellobiohydrolase (rCel7A) expressed in Aspergillus niger. The alg3Δ delayed spore germination in liquid cultures of complete medium (CM), potato dextrose (PD), minimal medium (MM) and CM with addition of cAMP (CM+cAMP), and resulted in significant reduction of hyphal growth on CM, potato dextrose agar (PDA), and CM+cAMP and spore production on CM. The alg3Δ also led to a significant accumulation of red pigment on both liquid and solid CM cultures. The relative abundances of 54 of the total 215 proteins identified in the secretome were significantly altered as a result of alg3Δ, 63% of which were secreted at higher levels in alg3Δ strain than the parent. The rCel7A expressed in the alg3Δ mutant was smaller in size than that expressed in both wild-type and parental strains, but still larger than T. reesei Cel7A. The circular dichroism (CD)-melt scans indicated that change in glycosylation of rCel7A does not appear to impact the secondary structure or folding. Enzyme assays of Cel7A and rCel7A on nanocrystalline cellulose and bleached kraft pulp demonstrated that the rCel7As have improved activities on hydrolyzing the nanocrystalline cellulose. Overall, the results suggest that alg3 is critical for growth, sporulation, pigment production, and protein secretion in A. niger, and demonstrate the feasibility of this alternative approach to evaluate the roles of N-linked glycosylation in glycoprotein secretion and function. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Mechanisms of Bacterial Spore Germination and Its Heterogeneity

    DTIC Science & Technology

    2015-01-10

    mathematical model describing spore germination has been developed; 9) much of the work above has been extended to Clostridium spores; and 10) ~90...germination. C) Faeder lab, with Li and Setlow labs. We have developed a mathematical model of bacterial spore germination that accounts for...heterogeneity in both Tlag and commitment times. The model is built from three main mathematical components: a receptor distribution function

  5. Effects of superheated steam on Geobacillus stearothermophilus spore viability.

    PubMed

    Head, D S; Cenkowski, S; Holley, R; Blank, G

    2008-04-01

    To examine the effect of processing with superheated steam (SS) on Geobacillus stearothermophilus ATCC 10149 spores. Two inoculum levels of spores of G. stearothermophilus were mixed with sterile sand and exposed to SS at 105-175 degrees C. The decimal reduction time (D-value) and the thermal resistance constant (z-value) were calculated. The effect of cooling of spores between periods of exposure to SS was also examined. A mean z-value of 25.4 degrees C was calculated for both inoculum levels for SS processing temperatures between 130 degrees C and 175 degrees C. Spore response to SS treatment depends on inoculum size. SS treatment may be effective for reduction in viability of thermally resistant bacterial spores provided treatments are separated by intermittent cooling periods. There is a need for technologies that require short thermal processing times to eliminate bacterial spores in foods. The SS processing technique has the potential to reduce microbial load and to modify food texture with less energy in comparison to commonly used hot air treatment. This work provides information on the effect of SS processing parameters on the viability of G. stearothermophilus spores.

  6. Mushroom Emergence Detected by Combining Spore Trapping with Molecular Techniques.

    PubMed

    Castaño, Carles; Oliva, Jonàs; Martínez de Aragón, Juan; Alday, Josu G; Parladé, Javier; Pera, Joan; Bonet, José Antonio

    2017-07-01

    Obtaining reliable and representative mushroom production data requires time-consuming sampling schemes. In this paper, we assessed a simple methodology to detect mushroom emergence by trapping the fungal spores of the fruiting body community in plots where mushroom production was determined weekly. We compared the performance of filter paper traps with that of funnel traps and combined these spore trapping methods with species-specific quantitative real-time PCR and Illumina MiSeq to determine the spore abundance. Significantly more MiSeq proportional reads were generated for both ectomycorrhizal and saprotrophic fungal species using filter traps than were obtained using funnel traps. The spores of 37 fungal species that produced fruiting bodies in the study plots were identified. Spore community composition changed considerably over time due to the emergence of ephemeral fruiting bodies and rapid spore deposition (lasting from 1 to 2 weeks), which occurred in the absence of rainfall events. For many species, the emergence of epigeous fruiting bodies was followed by a peak in the relative abundance of their airborne spores. There were significant positive relationships between fruiting body yields and spore abundance in time for five of seven fungal species. There was no relationship between fruiting body yields and their spore abundance at plot level, indicating that some of the spores captured in each plot were arriving from the surrounding areas. Differences in fungal detection capacity by spore trapping may indicate different dispersal ability between fungal species. Further research can help to identify the spore rain patterns for most common fungal species. IMPORTANCE Mushroom monitoring represents a serious challenge in economic and logistical terms because sampling approaches demand extensive field work at both the spatial and temporal scales. In addition, the identification of fungal taxa depends on the expertise of experienced fungal taxonomists

  7. Mushroom Emergence Detected by Combining Spore Trapping with Molecular Techniques

    PubMed Central

    Oliva, Jonàs; Martínez de Aragón, Juan; Alday, Josu G.; Parladé, Javier; Pera, Joan; Bonet, José Antonio

    2017-01-01

    ABSTRACT Obtaining reliable and representative mushroom production data requires time-consuming sampling schemes. In this paper, we assessed a simple methodology to detect mushroom emergence by trapping the fungal spores of the fruiting body community in plots where mushroom production was determined weekly. We compared the performance of filter paper traps with that of funnel traps and combined these spore trapping methods with species-specific quantitative real-time PCR and Illumina MiSeq to determine the spore abundance. Significantly more MiSeq proportional reads were generated for both ectomycorrhizal and saprotrophic fungal species using filter traps than were obtained using funnel traps. The spores of 37 fungal species that produced fruiting bodies in the study plots were identified. Spore community composition changed considerably over time due to the emergence of ephemeral fruiting bodies and rapid spore deposition (lasting from 1 to 2 weeks), which occurred in the absence of rainfall events. For many species, the emergence of epigeous fruiting bodies was followed by a peak in the relative abundance of their airborne spores. There were significant positive relationships between fruiting body yields and spore abundance in time for five of seven fungal species. There was no relationship between fruiting body yields and their spore abundance at plot level, indicating that some of the spores captured in each plot were arriving from the surrounding areas. Differences in fungal detection capacity by spore trapping may indicate different dispersal ability between fungal species. Further research can help to identify the spore rain patterns for most common fungal species. IMPORTANCE Mushroom monitoring represents a serious challenge in economic and logistical terms because sampling approaches demand extensive field work at both the spatial and temporal scales. In addition, the identification of fungal taxa depends on the expertise of experienced fungal taxonomists

  8. Model simulations of fungal spore distribution over the Indian region

    NASA Astrophysics Data System (ADS)

    Ansari, Tabish U.; Valsan, Aswathy E.; Ojha, N.; Ravikrishna, R.; Narasimhan, Balaji; Gunthe, Sachin S.

    2015-12-01

    Fungal spores play important role in the health of humans, animals, and plants by constituting a class of the primary biological aerosol particles (PBAPs). Additionally, these could mediate the hydrological cycle by acting as nuclei for ice and cloud formation (IN and CCN respectively). Various processes in the biosphere and the variations in the meteorological conditions control the releasing mechanism of spores through active wet and dry discharge. In the present paper, we simulate the concentration of fungal spores over the Indian region during three distinct meteorological seasons by combining a numerical model (WRF-Chem) with the fungal spore emissions based on land-use type. Maiden high-resolution regional simulations revealed large spatial gradient and strong seasonal dependence in the concentration of fungal spores over the Indian region. The fungal spore concentrations are found to be the highest during winter (0-70 μg m-3 in December), moderately higher during summer (0-35 μg m-3 in May) and lowest during the monsoon (0-25 μg m-3 in July). The elevated concentrations during winter are attributed to the shallower boundary layer trapping the emitted fungal spores in smaller volume. In contrast, the deeper boundary layer mixing in May and stronger monsoonal-convection in July distribute the fungal spores throughout the lower troposphere (∼5 km). We suggest that the higher fungal spore concentrations during winter could have potential health impacts. While, stronger vertical mixing could enable fungal spores to influence the cloud formation during summer and monsoon. Our study provides the first information about the distribution and seasonal variation of fungal spores over the densely populated and observationally sparse Indian region.

  9. Airborne fungal spores of Alternaria, meteorological parameters and predicting variables

    NASA Astrophysics Data System (ADS)

    Filali Ben Sidel, Farah; Bouziane, Hassan; del Mar Trigo, Maria; El Haskouri, Fatima; Bardei, Fadoua; Redouane, Abdelbari; Kadiri, Mohamed; Riadi, Hassane; Kazzaz, Mohamed

    2015-03-01

    Alternaria is frequently found as airborne fungal spores and is recognized as an important cause of respiratory allergies. The aerobiological monitoring of fungal spores was performed using a Burkard volumetric spore traps. To establish predicting variables for daily and weakly spore counts, a stepwise multiple regression between spore concentrations and independent variables (meteorological parameters and lagged values from the series of spore concentrations: previous day or week concentration (Alt t - 1) and mean concentration of the same day or week in other years ( C mean)) was made with data obtained during 2009-2011. Alternaria conidia are present throughout the year in the atmosphere of Tetouan, although they show important seasonal fluctuations. The highest levels of Alternaria spores were recorded during the spring and summer or autumn. Alternaria showed maximum daily values in April, May or October depending on year. When the spore variables of Alternaria, namely C mean and Alt t - 1, and meteorological parameters were included in the equation, the resulting R 2 satisfactorily predict future concentrations for 55.5 to 81.6 % during the main spore season and the pre-peak 2. In the predictive model using weekly values, the adjusted R 2 varied from 0.655 to 0.676. The Wilcoxon test was used to compare the results from the expected values and the pre-peak spore data or weekly values for 2012, indicating that there were no significant differences between series compared. This test showed the C mean, Alt t - 1, frequency of the wind third quadrant, maximum wind speed and minimum relative humidity as the most efficient independent variables to forecast the overall trend of this spore in the air.

  10. A study of Ganoderma lucidum spores by FTIR microspectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Chen, Xianliang; Qi, Zeming; Liu, Xingcun; Li, Weizu; Wang, Shengyi

    2012-06-01

    In order to obtain unique information of Ganoderma lucidum spores, FTIR microspectroscopy was used to study G. lucidum spores from Anhui Province (A), Liaoning Province (B) and Shangdong Province (C) of China. IR micro-spectra were acquired with high-resolution and well-reproducibility. The IR spectra of G. lucidum spores from different areas were similar and mainly made up of the absorption bands of polysaccharide, sterols, proteins, fatty acids, etc. The results of curve fitting indicated the protein secondary structures were dissimilar among the above G. lucidum spores. To identify G. lucidum spores from different areas, the H1078/H1640 value might be a potentially useful factor, furthermore FTIR microspectroscopy could realize this identification efficiently with the help of hierarchical cluster analysis. The result indicates FTIR microspectroscopy is an efficient tool for identification of G. lucidum spores from different areas. The result also suggests FTIR microspectroscopy is a potentially useful tool for the study of TCM.

  11. Surface Bacterial-Spore Assay Using Tb3+/DPA Luminescence

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian

    2007-01-01

    Equipment and a method for rapidly assaying solid surfaces for contamination by bacterial spores are undergoing development. The method would yield a total (nonviable plus viable) spore count of a surface within minutes and a viable-spore count in about one hour. In this method, spores would be collected from a surface by use of a transparent polymeric tape coated on one side with a polymeric adhesive that would be permeated with one or more reagent(s) for detection of spores by use of visible luminescence. The sticky side of the tape would be pressed against a surface to be assayed, then the tape with captured spores would be placed in a reader that illuminates the sample with ultraviolet light and counts the green luminescence spots under a microscope to quantify the number of bacterial spores per unit area. The visible luminescence spots seen through the microscope would be counted to determine the concentration of spores on the surface. This method is based on the chemical and physical principles of methods described in several prior NASA Tech Briefs articles, including Live/Dead Spore Assay Using DPA-Triggered Tb Luminescence (NPO-30444), Vol. 27, No. 3 (March 2003), page 7a. To recapitulate: The basic idea is to exploit the observations that (1) dipicolinic acid (DPA) is present naturally only in bacterial spores; and (2) when bound to Tb3+ ions, DPA triggers intense green luminescence of the ions under ultraviolet excitation; (3) DPA can be released from the viable spores by using L-alanine to make them germinate; and (4) by autoclaving, microwaving, or sonicating the sample, one can cause all the spores (non-viable as well as viable) to release their DPA. One candidate material for use as the adhesive in the present method is polydimethysiloxane (PDMS). In one variant of the method for obtaining counts of all (viable and nonviable) spores the PDMS would be doped with TbCl3. After collection of a sample, the spores immobilized on the sticky tape surface

  12. Endotrophic Calcium, Strontium, and Barium Spores of Bacillus megaterium and Bacillus cereus1

    PubMed Central

    Foerster, Harold F.; Foster, J. W.

    1966-01-01

    Foerster, Harold F. (The University of Texas, Austin), and J. W. Foster. Endotrophic calcium, strontium, and barium spores of Bacillus megaterium and Bacillus cereus. J. Bacteriol. 91:1333–1345. 1966.—Spores were produced by washed vegetative cells suspended in deionized water supplemented with CaCl2, SrCl2, or BaCl2. Normal, refractile spores were produced in each case; a portion of the barium spores lost refractility and darkened. Thin-section electron micrographs revealed no apparent anatomical differences among the three types of spores. Analyses revealed that the different spore types were enriched specifically in the metal to which they were exposed during sporogenesis. The calcium content of the strontium and the barium spores was very small. From binary equimolar mixtures of the metal salts, endotrophic spores accumulated both metals to nearly the same extent. Viability of the barium spores was considerably less than that of the other two types. Strontium and barium spores were heat-resistant; however, calcium was essential for maximal heat resistance. Significant differences existed in the rates of germination; calcium spores germinated fastest, strontium spores were slower, and barium spores were slowest. Calcium-barium and calcium-strontium spores germinated readily. Endotrophic calcium and strontium spores germinated without the prior heat activation essential for growth spores. Chemical germination of the different metal-type spores with n-dodecylamine took place at the same relative rates as physiological germination. Heat-induced release of dipicolinic acid occurred much faster with barium and strontium spores than with calcium spores. The washed “coat fraction” from disrupted spores contained little of the spore calcium but most of the spore barium. The metal in this fraction was released by dilute acid. The demineralized coats reabsorbed calcium and barium at neutral pH. Images PMID:4956334

  13. Development of an Aerosol Surface Inoculation Method for Bacillus Spores

    PubMed Central

    Lee, Sang Don; Ryan, Shawn P.; Snyder, Emily Gibb

    2011-01-01

    A method was developed to deposit Bacillus subtilis spores via aerosolization onto various surface materials for biological agent decontamination and detection studies. This new method uses an apparatus coupled with a metered dose inhaler to reproducibly deposit spores onto various surfaces. A metered dose inhaler was loaded with Bacillus subtilis spores, a surrogate for Bacillus anthracis. Five different material surfaces (aluminum, galvanized steel, wood, carpet, and painted wallboard paper) were tested using this spore deposition method. This aerosolization method deposited spores at a concentration of more than 107 CFU per coupon (18-mm diameter) with less than a 50% coefficient of variation, showing that the aerosolization method developed in this study can deposit reproducible numbers of spores onto various surface coupons. Scanning electron microscopy was used to probe the spore deposition patterns on test coupons. The deposition patterns observed following aerosol impaction were compared to those of liquid inoculation. A physical difference in the spore deposition patterns was observed to result from the two different methods. The spore deposition method developed in this study will help prepare spore coupons via aerosolization fast and reproducibly for bench top decontamination and detection studies. PMID:21193670

  14. Measurement of Metabolic Activity in Dormant Spores of Bacillus Species

    DTIC Science & Technology

    2015-01-14

    SECURITY CLASSIFICATION OF: Spores of Bacillus megaterium and Bacillus subtilis were harvested shortly after release from sporangia, incubated under...Measurement of Metabolic Activity in Dormant Spores of Bacillus Species Report Title Spores of Bacillus megaterium and Bacillus subtilis were...ribosomal RNA when newly harvested Bacillus subtilis spores are incubated at physiological temperatures, as well as some evidence for transcription in

  15. The Molecular Timeline of a Reviving Bacterial Spore

    PubMed Central

    Sinai, Lior; Rosenberg, Alex; Smith, Yoav; Segev, Einat; Ben-Yehuda, Sigal

    2015-01-01

    Summary The bacterial spore can rapidly convert from a dormant to a fully active cell. Here we study this remarkable cellular transition in Bacillus subtilis and reveal the identity of the newly synthesized proteins throughout spore revival. Our analysis uncovers a highly ordered developmental program that correlates with the spore morphological changes and reveals the spatial and temporal molecular events fundamental to reconstruct a cell. As opposed to current knowledge, we found that translation takes place during the earliest revival event, termed germination, a process hitherto considered to occur without the need for any macromolecule synthesis. Furthermore, we demonstrate that translation is required for execution of germination and relies on the bona fide translational factors RpmE and Tig. Our study sheds light on the spore revival process and on the vital building blocks underlying cellular awakening, thereby paving the way for designing new antimicrobial agents to eradicate spore-forming pathogens. PMID:25661487

  16. Grapefruit extract activity in the control of rose powdery mildew and black spot.

    PubMed

    Wojdyła, A T

    2001-01-01

    Efficacy of grapefruit extract (a.i. of Biosept 33 SL) in the control of Sphaerotheca pannosa var. rosae and Diplocarpon rosae on roses was investigated during 1998-1999. The extract was applied as plant spray in concentrations from 0.017 to 0.099%. First treatment of rose shrubs was done when visible disease symptoms occurred on leaves and spraying was repeated 3 (in plastic tunnel) or 10-times (in the field) at weekly intervals. In the second experiment roses with visible powdery mildew symptoms were sprayed once with grapefruit extract. Leaves were sampled one or 7 days after the extract application and germination of spores of S. pannosa var. rosae on potato dextrose agar was evaluated. In the next experiment roses grown under plastic tunnel were sprayed once with the tested preparation. After 24 hours leaves were collected and appearance of fungal hyphae and spores of S. pannosa var. rosae was studied in scanning electron microscope. In the control of S. pannosa var. rosae grapefruit extract at conc. 0.066% was as effective as triforine (standard) applied at 0.027%. Reduction of concentration resulted in the decreased efficacy of the tested preparation. Spores of S. pannosa var. rosae collected one day after grapefruit extract application germinated in about 5%. Analyses of spore vitality 6 days letter showed that only about 15% of conidia could germinated on PDA agar. In contrary, spores from untreated leaves germinated in about 95%. Scanning electrone microscope analysis of leaves taken from plants protected with grapefruit extract showed that most of hyphae were separated from leaf surface. Almost all hyphae and spores were degenerated. In the control of D. rosae the preparation in all tested concentrations gave satisfactory results but was less effective than triforine.

  17. Quantification of Spore-forming Bacteria Carried by Dust Particles

    NASA Technical Reports Server (NTRS)

    Lin, Ying; Cholakian, Tanya; Gao, Wenming; Osman, Shariff; Barengoltz, Jack

    2006-01-01

    In order to establish a biological contamination transport model for predicting the cross contamination risk during spacecraft assembly and upon landing on Mars, it is important to understand the relationship between spore-forming bacteria and their carrier particles. We conducted air and surface sampling in indoor, outdoor, and cleanroom environments to determine the ratio of spore forming bacteria to their dust particle carriers of different sizes. The number of spore forming bacteria was determined from various size groups of particles in a given environment. Our data also confirms the existence of multiple spores on a single particle and spore clumps. This study will help in developing a better bio-contamination transport model, which in turn will help in determining forward contamination risks for future missions.

  18. Sterilization Resistance of Bacterial Spores Explained with Water Chemistry.

    PubMed

    Friedline, Anthony W; Zachariah, Malcolm M; Middaugh, Amy N; Garimella, Ravindranath; Vaishampayan, Parag A; Rice, Charles V

    2015-11-05

    Bacterial spores can survive for long periods without nutrients and in harsh environmental conditions. This survival is influenced by the structure of the spore, the presence of protective compounds, and water retention. These compounds, and the physical state of water in particular, allow some species of bacterial spores to survive sterilization schemes with hydrogen peroxide and UV light. The chemical nature of the spore core and its water has been a subject of some contention and the chemical environment of the water impacts resistance paradigms. Either the spore has a glassy core, where water is immobilized along with other core components, or the core is gel-like with mobile water diffusion. These properties affect the movement of peroxide and radical species, and hence resistance. Deuterium solid-state NMR experiments are useful for examining the nature of the water inside the spore. Previous work in our lab with spores of Bacillus subtilis indicate that, for spores, the core water is in a more immobilized state than expected for the gel-like core theory, suggesting a glassy core environment. Here, we report deuterium solid-state NMR observations of the water within UV- and peroxide-resistant spores from Bacillus pumilus SAFR-032. Variable-temperature NMR experiments indicate no change in the line shape after heating to 50 °C, but an overall decrease in signal after heating to 100 °C. These results show glass-like core dynamics within B. pumilus SAFR-032 that may be the potential source of its known UV-resistance properties. The observed NMR traits can be attributed to the presence of an exosporium containing additional labile deuterons that can aid in the deactivation of sterilizing agents.

  19. Improved Large-Volume Sampler for the Collection of Bacterial Cells from Aerosol

    PubMed Central

    White, L. A.; Hadley, D. J.; Davids, D. E.; Naylor, R.

    1975-01-01

    A modified large-volume sampler was demonstrated to be an efficient device for the collection of mono-disperse aerosols of rhodamine B and poly-disperse aerosols of bacterial cells. Absolute efficiency for collection of rhodamine B varied from 100% with 5-μm particles to about 70% with 0.5-μm particles. The sampler concentrated the particles from 950 liters of air into a flow of between 1 and 2 ml of collecting fluid per min. Spores of Bacillus subtilis var. niger were collected at an efficiency of about 82% compared to the collection in the standard AGI-30 sampler. In the most desirable collecting fluids tested, aerosolized cells of Serratia marcescens, Escherichia coli, and Aerobacter aerogenes were collected at comparative efficiencies of approximately 90, 80, and 90%, respectively. The modified sampler has practical application in the study of aerosol transmission of respiratory pathogens. Images PMID:803820

  20. Ecology and thermal inactivation of microbes in and on interplanetary space vehicle components

    NASA Technical Reports Server (NTRS)

    Campbell, J. E.

    1972-01-01

    The sterilization parameters for the Viking lander of D sub 125 C = 30 minutes and z = 21 C for the exposed bioburden were derived from the experimental findings of several laboratories conducting thermal inactivation studies on Bacillus subtilis var. niger by dry heat. The moisture constraint, that the sterilizing gas shall be less than 25 percent relative humidity at standard conditions of 0 C and 760 mm Hg pressure, was added in recognition of the profound influence of water vapor on the time and temperature required for thermal inactivation of these spores. Data is presented demonstrating that the application of the moisture parameter does not significantly change the D sub 125 C and z values of 30 minutes and 21 C, respectively. Data are presented also to show the maximum influence that could be expected by decreasing the humidity to near zero percent relative humidity at 105, 113, and 125 C.

  1. Mushrooms as Rainmakers: How Spores Act as Nuclei for Raindrops

    PubMed Central

    2015-01-01

    Millions of tons of fungal spores are dispersed in the atmosphere every year. These living cells, along with plant spores and pollen grains, may act as nuclei for condensation of water in clouds. Basidiospores released by mushrooms form a significant proportion of these aerosols, particularly above tropical forests. Mushroom spores are discharged from gills by the rapid displacement of a droplet of fluid on the cell surface. This droplet is formed by the condensation of water on the spore surface stimulated by the secretion of mannitol and other hygroscopic sugars. This fluid is carried with the spore during discharge, but evaporates once the spore is airborne. Using environmental electron microscopy, we have demonstrated that droplets reform on spores in humid air. The kinetics of this process suggest that basidiospores are especially effective as nuclei for the formation of large water drops in clouds. Through this mechanism, mushroom spores may promote rainfall in ecosystems that support large populations of ectomycorrhizal and saprotrophic basidiomycetes. Our research heightens interest in the global significance of the fungi and raises additional concerns about the sustainability of forests that depend on heavy precipitation. PMID:26509436

  2. Transcriptome analysis of Aspergillus niger grown on sugarcane bagasse

    PubMed Central

    2011-01-01

    Background Considering that the costs of cellulases and hemicellulases contribute substantially to the price of bioethanol, new studies aimed at understanding and improving cellulase efficiency and productivity are of paramount importance. Aspergillus niger has been shown to produce a wide spectrum of polysaccharide hydrolytic enzymes. To understand how to improve enzymatic cocktails that can hydrolyze pretreated sugarcane bagasse, we used a genomics approach to investigate which genes and pathways are transcriptionally modulated during growth of A. niger on steam-exploded sugarcane bagasse (SEB). Results Herein we report the main cellulase- and hemicellulase-encoding genes with increased expression during growth on SEB. We also sought to determine whether the mRNA accumulation of several SEB-induced genes encoding putative transporters is induced by xylose and dependent on glucose. We identified 18 (58% of A. niger predicted cellulases) and 21 (58% of A. niger predicted hemicellulases) cellulase- and hemicellulase-encoding genes, respectively, that were highly expressed during growth on SEB. Conclusions Degradation of sugarcane bagasse requires production of many different enzymes which are regulated by the type and complexity of the available substrate. Our presently reported work opens new possibilities for understanding sugarcane biomass saccharification by A. niger hydrolases and for the construction of more efficient enzymatic cocktails for second-generation bioethanol. PMID:22008461

  3. Seasonal Trends in Airborne Fungal Spores in Coastal California Ecosystems

    NASA Astrophysics Data System (ADS)

    Morfin, J.; Crandall, S. G.; Gilbert, G. S.

    2014-12-01

    Airborne fungal spores cause disease in plants and animals and may trigger respiratory illnesses in humans. In terrestrial systems, fungal sporulation, germination, and persistence are strongly regulated by local meteorological conditions. However, few studies investigate how microclimate affects the spatio-temporal dynamics of airborne spores. We measured fungal aerospora abundance and microclimate at varying spatial and time scales in coastal California in three habitat-types: coast redwood forest, mixed-evergreen forest, and maritime chaparral. We asked: 1) is there a difference in total airborne spore concentration between habitats, 2) when do we see peak spore counts, and 3) do spore densities correlate with microclimate conditions? Fungal spores were caught from the air with a volumetric vacuum air spore trap during the wet season (January - March) in 2013 and 2014, as well as monthly in 2014. Initial results suggest that mixed-evergreen forests exhibit the highest amounts of spore abundance in both years compared to the other habitats. This may be due to either a higher diversity of host plants in mixed-evergreen forests or a rich leaf litter layer that may harbor a greater abundance of saprotrophic fungi. Based on pilot data, we predict that temperature and to a lesser degree, relative humidity, will be important microclimate predictors for high spore densities. These data are important for understanding when and under what weather conditions we can expect to see high levels of fungal spores in the air; this can be useful information for managers who are interested in treating diseased plants with fungicides.

  4. PpASCL, the Physcomitrella patens Anther-Specific Chalcone Synthase-Like Enzyme Implicated in Sporopollenin Biosynthesis, Is Needed for Integrity of the Moss Spore Wall and Spore Viability

    PubMed Central

    Daku, Rhys M.; Rabbi, Fazle; Buttigieg, Josef; Coulson, Ian M.; Horne, Derrick; Martens, Garnet; Ashton, Neil W.; Suh, Dae-Yeon

    2016-01-01

    Sporopollenin is the main constituent of the exine layer of spore and pollen walls. The anther-specific chalcone synthase-like (ASCL) enzyme of Physcomitrella patens, PpASCL, has previously been implicated in the biosynthesis of sporopollenin, the main constituent of exine and perine, the two outermost layers of the moss spore cell wall. We made targeted knockouts of the corresponding gene, PpASCL, and phenotypically characterized ascl sporophytes and spores at different developmental stages. Ascl plants developed normally until late in sporophytic development, when the spores produced were structurally aberrant and inviable. The development of the ascl spore cell wall appeared to be arrested early in microspore development, resulting in small, collapsed spores with altered surface morphology. The typical stratification of the spore cell wall was absent with only an abnormal perine recognisable above an amorphous layer possibly representing remnants of compromised intine and/or exine. Equivalent resistance of the spore walls of ascl mutants and the control strain to acetolysis suggests the presence of chemically inert, defective sporopollenin in the mutants. Anatomical abnormalities of late-stage ascl sporophytes include a persistent large columella and an air space incompletely filled with spores. Our results indicate that the evolutionarily conserved PpASCL gene is needed for proper construction of the spore wall and for normal maturation and viability of moss spores. PMID:26752629

  5. Effects of nifedipine on gravi-dependent germination of moss spores

    NASA Astrophysics Data System (ADS)

    Khorkavtsiv, O. Y.; Demkiv, O. T.

    Influence of gravity on germination of spores and dependence of the generation of a polar axis on a Ca2+ influx were investigated. The germination of spores does not depend on gravity but outgrowth polarity is controlled by light and gravity (Sytnik et al., 1989; Pundiak et al., 2001). We have shown that gravity determines the polarity of germination of spores and development of rhizoid and chloronemal outgrowths in both moss species -- Ceratodon purpureus and Pohlia nutans, the alignment of polar of germinating spores in C. purpureus, however, is less dependent on gravistimulus than in P. nutans. In 48 h after sowing onto culture medium+0,2% glucose in vertically oriented petri dishes in darkness spores of P. nutans germinated positively gravitropic rhizoid at the lower spore side and negatively gravitropic chloronema at the opposite one. The germination of C. purpureus spores is similar but the outgrowths show the lower level of alignment to the gravity vector than that of P. nutans, the dispersion of angles being 8,9 vs. 1,2 respectively. The cellular mechanism by which gravity acts remains unknown. The intracellular signaling Ca2+ ions play a crucial role in gravity perception and ability of a single cell to respond to gravity. We determined relative intensity of Ca2+ luminescence in the spores before their germination and at the early stages of outgrowth formation after treatment with the nifedipine and in a dependence on gravity vector. Gravity determined the position of outgrowth initiation zone and later on the growth direction of spore filaments. Treatment with nifedipine suppressed the gravity-directed calcium channel influx and distrupted polar growth of outgrowths. In experiments with calcium channel blocker sterilized spores were pregerminated on normal Knop's agar one day after were transferred to 50 μ M nifedipine just before emergence of the germ tube. After 48 h on nifedipine treatment, 50% spores did not germinate, 35% grew apolarily and in 15

  6. Carvacrol suppresses high pressure high temperature inactivation of Bacillus cereus spores.

    PubMed

    Luu-Thi, Hue; Corthouts, Jorinde; Passaris, Ioannis; Grauwet, Tara; Aertsen, Abram; Hendrickx, Marc; Michiels, Chris W

    2015-03-16

    The inactivation of bacterial spores generally proceeds faster and at lower temperatures when heat treatments are conducted under high pressure, and high pressure high temperature (HPHT) processing is, therefore, receiving an increased interest from food processors. However, the mechanisms of spore inactivation by HPHT treatment are poorly understood, particularly at moderately elevated temperature. In the current work, we studied inactivation of the spores of Bacillus cereus F4430/73 by HPHT treatment for 5 min at 600MPa in the temperature range of 50-100°C, using temperature increments of 5°C. Additionally, we investigated the effect of the natural antimicrobial carvacrol on spore germination and inactivation under these conditions. Spore inactivation by HPHT was less than about 1 log unit at 50 to 70°C, but gradually increased at higher temperatures up to about 5 log units at 100°C. DPA release and loss of spore refractility in the spore population were higher at moderate (≤65°C) than at high (≥70°C) treatment temperatures, and we propose that moderate conditions induced the normal physiological pathway of spore germination resulting in fully hydrated spores, while at higher temperatures this pathway was suppressed and replaced by another mechanism of pressure-induced dipicolinic acid (DPA) release that results only in partial spore rehydration, probably because spore cortex hydrolysis is inhibited. Carvacrol strongly suppressed DPA release and spore rehydration during HPHT treatment at ≤65°C and also partly inhibited DPA release at ≥65°C. Concomitantly, HPHT spore inactivation was reduced by carvacrol at 65-90°C but unaffected at 95-100°C. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Spore Formation and Toxin Production in Clostridium difficile Biofilms

    PubMed Central

    Semenyuk, Ekaterina G.; Laning, Michelle L.; Foley, Jennifer; Johnston, Pehga F.; Knight, Katherine L.; Gerding, Dale N.; Driks, Adam

    2014-01-01

    The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA), polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection. PMID:24498186

  8. Bacteriocins: Novel Solutions to Age Old Spore-Related Problems?

    PubMed Central

    Egan, Kevin; Field, Des; Rea, Mary C.; Ross, R. Paul; Hill, Colin; Cotter, Paul D.

    2016-01-01

    Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, which have the ability to kill or inhibit other bacteria. Many bacteriocins are produced by food grade lactic acid bacteria (LAB). Indeed, the prototypic bacteriocin, nisin, is produced by Lactococcus lactis, and is licensed in over 50 countries. With consumers becoming more concerned about the levels of chemical preservatives present in food, bacteriocins offer an alternative, more natural approach, while ensuring both food safety and product shelf life. Bacteriocins also show additive/synergistic effects when used in combination with other treatments, such as heating, high pressure, organic compounds, and as part of food packaging. These features are particularly attractive from the perspective of controlling sporeforming bacteria. Bacterial spores are common contaminants of food products, and their outgrowth may cause food spoilage or food-borne illness. They are of particular concern to the food industry due to their thermal and chemical resistance in their dormant state. However, when spores germinate they lose the majority of their resistance traits, making them susceptible to a variety of food processing treatments. Bacteriocins represent one potential treatment as they may inhibit spores in the post-germination/outgrowth phase of the spore cycle. Spore eradication and control in food is critical, as they are able to spoil and in certain cases compromise the safety of food by producing dangerous toxins. Thus, understanding the mechanisms by which bacteriocins exert their sporostatic/sporicidal activity against bacterial spores will ultimately facilitate their optimal use in food. This review will focus on the use of bacteriocins alone, or in combination with other innovative processing methods to control spores in food, the current knowledge and gaps therein with regard to bacteriocin-spore interactions and discuss future research approaches to enable spores to be more

  9. Bacteriocins: Novel Solutions to Age Old Spore-Related Problems?

    PubMed

    Egan, Kevin; Field, Des; Rea, Mary C; Ross, R Paul; Hill, Colin; Cotter, Paul D

    2016-01-01

    Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, which have the ability to kill or inhibit other bacteria. Many bacteriocins are produced by food grade lactic acid bacteria (LAB). Indeed, the prototypic bacteriocin, nisin, is produced by Lactococcus lactis, and is licensed in over 50 countries. With consumers becoming more concerned about the levels of chemical preservatives present in food, bacteriocins offer an alternative, more natural approach, while ensuring both food safety and product shelf life. Bacteriocins also show additive/synergistic effects when used in combination with other treatments, such as heating, high pressure, organic compounds, and as part of food packaging. These features are particularly attractive from the perspective of controlling sporeforming bacteria. Bacterial spores are common contaminants of food products, and their outgrowth may cause food spoilage or food-borne illness. They are of particular concern to the food industry due to their thermal and chemical resistance in their dormant state. However, when spores germinate they lose the majority of their resistance traits, making them susceptible to a variety of food processing treatments. Bacteriocins represent one potential treatment as they may inhibit spores in the post-germination/outgrowth phase of the spore cycle. Spore eradication and control in food is critical, as they are able to spoil and in certain cases compromise the safety of food by producing dangerous toxins. Thus, understanding the mechanisms by which bacteriocins exert their sporostatic/sporicidal activity against bacterial spores will ultimately facilitate their optimal use in food. This review will focus on the use of bacteriocins alone, or in combination with other innovative processing methods to control spores in food, the current knowledge and gaps therein with regard to bacteriocin-spore interactions and discuss future research approaches to enable spores to be more

  10. Spore formation and toxin production in Clostridium difficile biofilms.

    PubMed

    Semenyuk, Ekaterina G; Laning, Michelle L; Foley, Jennifer; Johnston, Pehga F; Knight, Katherine L; Gerding, Dale N; Driks, Adam

    2014-01-01

    The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA), polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection.

  11. Bacteria, mould and yeast spore inactivation studies by scanning electron microscope observations.

    PubMed

    Rozali, Siti N M; Milani, Elham A; Deed, Rebecca C; Silva, Filipa V M

    2017-12-18

    Spores are the most resistant form of microbial cells, thus difficult to inactivate. The pathogenic or food spoilage effects of certain spore-forming microorganisms have been the primary basis of sterilization and pasteurization processes. Thermal sterilization is the most common method to inactivate spores present on medical equipment and foods. High pressure processing (HPP) is an emerging and commercial non-thermal food pasteurization technique. Although previous studies demonstrated the effectiveness of thermal and non-thermal spore inactivation, the in-depth mechanisms of spore inactivation are as yet unclear. Live and dead forms of two food spoilage bacteria, a mould and a yeast were examined using scanning electron microscopy before and after the inactivation treatment. Alicyclobacillus acidoterrestris and Geobacillus stearothermophilus bacteria are indicators of acidic foods pasteurization and sterilization processes, respectively. Neosartorya fischeri is a phyto-pathogenic mould attacking fruits. Saccharomyces cerevisiae is a yeast with various applications for winemaking, brewing, baking and the production of biofuel from crops (e.g. sugar cane). Spores of the four microbial species were thermally inactivated. Spores of S. cerevisiae were observed in the ascus and free form after thermal and HPP treatments. Different forms of damage and cell destruction were observed for each microbial spore. Thermal treatment inactivated bacterial spores of A. acidoterrestris and G. stearothermophilus by attacking the inner core of the spore. The heat first altered the membrane permeability allowing the release of intracellular components. Subsequently, hydration of spores, physicochemical modifications of proteins, flattening and formation of indentations occurred, with subsequent spore death. Regarding N. fischeri, thermal inactivation caused cell destruction and leakage of intracellular components. Both thermal and HPP treatments of S. cerevisiae free spores attacked

  12. Enumerating Spore-Forming Bacteria Airborne with Particles

    NASA Technical Reports Server (NTRS)

    Lin, Ying; Barengoltz, Jack

    2006-01-01

    A laboratory method has been conceived to enable the enumeration of (1) Cultivable bacteria and bacterial spores that are, variously, airborne by themselves or carried by, parts of, or otherwise associated with, other airborne particles; and (2) Spore-forming bacteria among all of the aforementioned cultivable microbes.

  13. Characterizing Aeroallergens by Infrared Spectroscopy of Fungal Spores and Pollen

    PubMed Central

    Zimmermann, Boris; Tkalčec, Zdenko; Mešić, Armin; Kohler, Achim

    2015-01-01

    Background Fungal spores and plant pollen cause respiratory diseases in susceptible individuals, such as asthma, allergic rhinitis and hypersensitivity pneumonitis. Aeroallergen monitoring networks are an important part of treatment strategies, but unfortunately traditional analysis is time consuming and expensive. We have explored the use of infrared spectroscopy of pollen and spores for an inexpensive and rapid characterization of aeroallergens. Methodology The study is based on measurement of spore and pollen samples by single reflectance attenuated total reflectance Fourier transform infrared spectroscopy (SR-ATR FTIR). The experimental set includes 71 spore (Basidiomycota) and 121 pollen (Pinales, Fagales and Poales) samples. Along with fresh basidiospores, the study has been conducted on the archived samples collected within the last 50 years. Results The spectroscopic-based methodology enables clear spectral differentiation between pollen and spores, as well as the separation of confamiliar and congeneric species. In addition, the analysis of the scattering signals inherent in the infrared spectra indicates that the FTIR methodology offers indirect estimation of morphology of pollen and spores. The analysis of fresh and archived spores shows that chemical composition of spores is well preserved even after decades of storage, including the characteristic taxonomy-related signals. Therefore, biochemical analysis of fungal spores by FTIR could provide economical, reliable and timely methodologies for improving fungal taxonomy, as well as for fungal identification and monitoring. This proof of principle study shows the potential for using FTIR as a rapid tool in aeroallergen studies. In addition, the presented method is ready to be immediately implemented in biological and ecological studies for direct measurement of pollen and spores from flowers and sporocarps. PMID:25867755

  14. Effects of High Pressure on Bacillus licheniformis Spore Germination and Inactivation

    PubMed Central

    Borch-Pedersen, Kristina; Mellegård, Hilde; Reineke, Kai; Boysen, Preben; Sevenich, Robert; Lindbäck, Toril

    2017-01-01

    ABSTRACT Bacillus and Clostridium species form spores, which pose a challenge to the food industry due to their ubiquitous nature and extreme resistance. Pressurization at <300 MPa triggers spore germination by activating germination receptors (GRs), while pressurization at >300 MPa likely triggers germination by opening dipicolinic acid (DPA) channels present in the inner membrane of the spores. In this work, we expose spores of Bacillus licheniformis, a species associated with food spoilage and occasionally with food poisoning, to high pressure (HP) for holding times of up to 2 h. By using mutant spores lacking one or several GRs, we dissect the roles of the GerA, Ynd, and GerK GRs in moderately HP (mHP; 150 MPa)-induced spore germination. We show that Ynd alone is sufficient for efficient mHP-induced spore germination. GerK also triggers germination with mHP, although at a reduced germination rate compared to that of Ynd. GerA stimulates mHP-induced germination but only in the presence of either the intact GerK or Ynd GR. These results suggests that the effectiveness of the individual GRs in mHP-induced germination differs from their effectiveness in nutrient-induced germination, where GerA plays an essential role. In contrast to Bacillus subtilis spores, treatment with very HP (vHP) of 550 MPa at 37°C did not promote effective germination of B. licheniformis spores. However, treatment with vHP in combination with elevated temperatures (60°C) gave a synergistic effect on spore germination and inactivation. Together, these results provide novel insights into how HP affects B. licheniformis spore germination and inactivation and the role of individual GRs in this process. IMPORTANCE Bacterial spores are inherently resistant to food-processing regimes, such as high-temperature short-time pasteurization, and may therefore compromise food durability and safety. The induction of spore germination facilitates subsequent inactivation by gentler processing conditions

  15. Small acid soluble proteins for rapid spore identification.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branda, Steven S.; Lane, Todd W.; VanderNoot, Victoria A.

    2006-12-01

    This one year LDRD addressed the problem of rapid characterization of bacterial spores such as those from the genus Bacillus, the group that contains pathogenic spores such as B. anthracis. In this effort we addressed the feasibility of using a proteomics based approach to spore characterization using a subset of conserved spore proteins known as the small acid soluble proteins or SASPs. We proposed developing techniques that built on our previous expertise in microseparations to rapidly characterize or identify spores. An alternative SASP extraction method was developed that was amenable to both the subsequent fluorescent labeling required for laser-induced fluorescencemore » detection and the low ionic strength requirements for isoelectric focusing. For the microseparations, both capillary isoelectric focusing and chip gel electrophoresis were employed. A variety of methods were evaluated to improve the molecular weight resolution for the SASPs, which are in a molecular weight range that is not well resolved by the current methods. Isoelectric focusing was optimized and employed to resolve the SASPs using UV absorbance detection. Proteomic signatures of native wild type Bacillus spores and clones genetically engineered to produce altered SASP patterns were assessed by slab gel electrophoresis, capillary isoelectric focusing with absorbance detection as well as microchip based gel electrophoresis employing sensitive laser-induced fluorescence detection.« less

  16. Tip-enhanced Raman scattering of bacillus subtilis spores

    NASA Astrophysics Data System (ADS)

    Rusciano, G.; Zito, G.; Pesce, G.; Sasso, A.; Isticato, R.; Ricca, E.

    2015-07-01

    Understanding of the complex interactions of molecules at biological interfaces is a fundamental issue in biochemistry, biotechnology as well as biomedicine. A plethora of biological processes are ruled by the molecular texture of cellular membrane: cellular communications, drug transportations and cellular recognition are just a few examples of such chemically-mediated processes. Tip-Enhanced Raman Scattering (TERS) is a novel, Raman-based technique which is ideally suited for this purpose. TERS relies on the combination of scanning probe microscopy and Raman spectroscopy. The basic idea is the use of a metalled tip as a sort of optical nano-antenna, which gives place to SERS effect close to the tip end. Herein, we present the application of TERS to analyze the surface of Bacillus subtilis spores. The choice of this biological systems is related to the fact that a number of reasons support the use of spores as a mucosal delivery system. The remarkable and well-documented resistance of spores to various environmental and toxic effects make them clear potentials as a novel, surface-display system. Our experimental outcomes demonstrate that TERS is able to provide a nano-scale chemical imaging of spore surface. Moreover, we demonstrate that TERS allows differentiation between wilde-type spore and genetically modified strains. These results hold promise for the characterization and optimization of spore surface for drug-delivery applications.

  17. Expression of Lactate Dehydrogenase in Aspergillus niger for L-Lactic Acid Production

    PubMed Central

    Dave, Khyati K.; Punekar, Narayan S.

    2015-01-01

    Different engineered organisms have been used to produce L-lactate. Poor yields of lactate at low pH and expensive downstream processing remain as bottlenecks. Aspergillus niger is a prolific citrate producer and a remarkably acid tolerant fungus. Neither a functional lactate dehydrogenase (LDH) from nor lactate production by A. niger is reported. Its genome was also investigated for the presence of a functional ldh. The endogenous A. niger citrate synthase promoter relevant to A. niger acidogenic metabolism was employed to drive constitutive expression of mouse lactate dehydrogenase (mldhA). An appraisal of different branches of the A. niger pyruvate node guided the choice of mldhA for heterologous expression. A high copy number transformant C12 strain, displaying highest LDH specific activity, was analyzed under different growth conditions. The C12 strain produced 7.7 g/l of extracellular L-lactate from 60 g/l of glucose, in non-neutralizing minimal media. Significantly, lactate and citrate accumulated under two different growth conditions. Already an established acidogenic platform, A. niger now promises to be a valuable host for lactate production. PMID:26683313

  18. Develop Systems for Manufacturing 100,000,000 Doses of an Emergency Pharmaceutical (e.g. Vaccine or Monoclonal Antibody) Within 2 Months of Product Identification

    DTIC Science & Technology

    2006-06-08

    protein production. At Genencor, we have developed strains of Aspergillus niger var. awamori, which demonstrate improved secretion of foreign proteins...2000. Characterization of the kexin-like maturase of Aspergillus niger . Appl. Environ. Microbiol. 66:363-368 Jefferis, R., J. Lund, and J. D. Pound...N., Gieswein C., Park M., Wang H. 2004. Characterization of humanized antibodies secreted by Aspergillus niger . Appl Environ Microbiol. 70:2567

  19. Meteorological factors associated with abundance of airborne fungal spores over natural vegetation

    NASA Astrophysics Data System (ADS)

    Crandall, Sharifa G.; Gilbert, Gregory S.

    2017-08-01

    The abundance of airborne fungal spores in agricultural and urban settings increases with greater air temperature, relative humidity, or precipitation. The same meteorological factors that affect temporal patterns in spore abundance in managed environments also vary spatially across natural habitats in association with differences in vegetation structure. Here we investigated how temporal and spatial variation in aerial spore abundance is affected by abiotic (weather) and biotic (vegetation) factors as a foundation for predicting how fungi may respond to changes in weather and land-use patterns. We measured the phenology of airborne fungal spores across a mosaic of naturally occurring vegetation types at different time scales to describe (1) how spore abundance changes over time, (2) which local meteorological variables are good predictors for airborne spore density, and (3) whether spore abundance differs across vegetation types. Using an air volumetric vacuum sampler, we collected spore samples at 3-h intervals over a 120-h period in a mixed-evergreen forest and coastal prairie to measure diurnal, nocturnal, and total airborne spore abundance across vegetation types. Spore samples were also collected at weekly and monthly intervals in mixed-evergreen forest, redwood forest, and maritime chaparral vegetation types from 12 field sites across two years. We found greater airborne spore densities during the wetter winter months compared to the drier summer months. Mean total spore abundance in the mixed-evergreen forest was twice than in the coastal prairie, but there were no significant differences in total airborne spore abundance among mixed-evergreen forest, redwood forest, and maritime chaparral vegetation types. Weekly and monthly peaks in airborne spore abundance corresponded with rain events and peaks in soil moisture. Overall, temporal patterns in meteorological factors were much more important in determining airborne fungal spore abundance than the

  20. Viable spore counts in biological controls pre-sterilization.

    PubMed

    Brusca, María I; Bernat, María I; Turcot, Liliana; Nastri, Natalia; Nastri, Maria; Rosa, Alcira

    2005-01-01

    The aim of the present study was to evaluate the total count of viable spores in standardized inoculated carriers pre-sterilization. Samples of "Bacterial Spore Sterilization Strip" (R Biological Laboratories) (well before their expiry date) were divided into Group A (B. subtilis) and Group B (B. stearothermophylus). Twenty-four strips were tested per group. The strips were minced in groups of three, placed in chilled sterile water and vortexed for 5 minutes to obtain a homogenous suspension. Ten ml of the homogenous suspension were transferred to two sterile jars, i.e. one jar per group. The samples were then heated in a water bath at 95 degrees C (Group A) or 80 degrees C (Group B) for 15 minutes and cooled rapidly in an ice bath at 0- 4 degrees C during 15 minutes. Successive dilutions were performed until a final aliquot of 30 to 300 colony-forming units (CFU) was obtained. The inoculums were placed in Petri dishes with culture medium (soy extract, casein agar adapted for spores, melted and cooled to 45-50 degrees C) and incubated at 55 degrees C or 37 degrees C. Statistical analysis of the data was performed. A larger number of spores were found at 48 hours than at 24 hours. However, this finding did not hold true for all the groups. The present results show that monitoring viable spores pre-sterilization would guarantee the accuracy of the data. Total spore counts must be within 50 and 300% of the number of spores indicated in the biological control. The procedure is essential to guarantee the efficacy of the biological control.

  1. Growth from spores of Clostridium perfringens in the presence of sodium nitrite.

    PubMed

    Labbe, R G; Duncan, C L

    1970-02-01

    The method by which sodium nitrite may act to prevent germination or outgrowth, or both, of heat-injured spores in canned cured meats was investigated by using Clostridium perfringens spores. Four possible mechanisms were tested: (i) prevention of germination of the heat-injured spores, (ii) prior combination with a component in a complex medium to prevent germination of heat-injured spores, (iii) inhibition of outgrowth of heat-injured spores, and (iv) induction of germination (which would render the spore susceptible to thermal inactivation). Only the third mechanism was effective with the entire spore population when levels of sodium nitrite commercially acceptable in canned cured meats were used. Concentrations of 0.02 and 0.01% prevented outgrowth of heat-sensitive and heat-resistant spores, respectively. Nitrite-induced germination occurred with higher sodium nitrite concentrations.

  2. Moist-Heat Resistance, Spore Aging, and Superdormancy in Clostridium difficile▿†

    PubMed Central

    Rodriguez-Palacios, Alexander; LeJeune, Jeffrey T.

    2011-01-01

    Clostridium difficile spores can survive extended heating at 71°C (160°F), a minimum temperature commonly recommended for adequate cooking of meats. To determine the extent to which higher temperatures would be more effective at killing C. difficile, we quantified (D values) the effect of moist heat at 85°C (145°F, for 0 to 30 min) on C. difficile spores and compared it to the effects at 71 and 63°C. Fresh (1-week-old) and aged (≥20-week-old) C. difficile spores from food and food animals were tested in multiple experiments. Heating at 85°C markedly reduced spore recovery in all experiments (5 to 6 log10 within 15 min of heating; P < 0.001), regardless of spore age. In ground beef, the inhibitory effect of 85°C was also reproducible (P < 0.001), but heating at 96°C reduced 6 log10 within 1 to 2 min. Mechanistically, optical density and enumeration experiments indicated that 85°C inhibits cell division but not germination, but the inhibitory effect was reversible in some spores. Heating at 63°C reduced counts for fresh spores (1 log10, 30 min; P < 0.04) but increased counts of 20-week-old spores by 30% (15 min; P < 0.02), indicating that sublethal heat treatment reactivates superdormant spores. Superdormancy is an increasingly recognized characteristic in Bacillus spp., and it is likely to occur in C. difficile as spores age. The potential for reactivation of (super)dormant spores with sublethal temperatures may be a food safety concern, but it also has potential diagnostic value. Ensuring that food is heated to >85°C would be a simple and important intervention to reduce the risk of inadvertent ingestion of C. difficile spores. PMID:21398481

  3. Chemical composition and biological activities of the essential oil from Rubus pungens var. oldhamii.

    PubMed

    Zhang, Yaojie; Chen, Jiajing; Wang, Lizhi; Cao, Jingjing; Xu, Lishan

    2017-06-01

    This paper presents a study on chemical composition, antimicrobial, antioxidant and tyrosinase inhibitory properties of the essential oil from leaves of Rubus pungens var. oldhamii (REO). The major component of the REO is sesquiterpenes (36.04%), which consists of 1,5-Cyclooctadiene,3-(1-me thylallyl)-(8CI)(17.66%), 5,6-Diethenyl-1-methylcyclohexene (12%), (+) - γ-Elemene (10.48%) and β-Caryophyllene (8.39%).The REO is shown to be moderately active against Staphylococcus aureus, Aspergillus niger and Penicillium glaucum, and has weak antioxidant activity in 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. Furthermore, tyrosinase inhibition was investigated against monophenolase (L-tyrosine). IC 50 values of REO and arbutin were found 0.923 and 0.657 mg/mL, respectively. The REO exerted potential antityrosinase activity. Our test results indicated that the REO was rich in sesquiterpenes, and also exhibited good antityrosinase activity, and moderate antimicrobial activity against pathogenic micro-organisms. The REO can be used as a natural source of promising antimicrobial and tyrosinase inhibiting agent.

  4. Sterilization by pure oxygen plasma and by oxygen-hydrogen peroxide plasma: an efficacy study.

    PubMed

    Boscariol, M R; Moreira, A J; Mansano, R D; Kikuchi, I S; Pinto, T J A

    2008-04-02

    Plasma is an innovative sterilization method characterized by a low toxicity to operators and patients, and also by its operation at temperatures close to room temperatures. The use of different parameters for this method of sterilization and the corresponding results were analyzed in this study. A low-pressure inductive discharge was used to study the plasma sterilization processes. Oxygen and a mixture of oxygen and hydrogen peroxide were used as plasma source gases. The efficacy of the processes using different combinations of parameters such as plasma-generation method, type of gas, pressure, gas flow rate, temperature, power, and exposure time was evaluated. Two phases were developed for the processes, one using pure oxygen and the other a mixture of gases. Bacillus subtilis var. niger ATCC 9372 (Bacillus atrophaeus) spores inoculated on glass coverslips were used as biological indicators to evaluate the efficacy of the processes. All cycles were carried out in triplicate for different sublethal exposure times to calculate the D value by the enumeration method. The pour-plate technique was used to quantify the spores. D values of between 8 and 3 min were obtained. Best results were achieved at high power levels (350 and 400 W) using pure oxygen, showing that plasma sterilization is a promising alternative to other sterilization methods.

  5. Fungal spores are transported long distances in smoke from biomass fires

    NASA Astrophysics Data System (ADS)

    Mims, Sarah A.; Mims, Forrest M.

    Viable fungal spores are present in smoke from distant biomass fires. This finding has potentially important implications for prescribed burning, agricultural management and public health. While attempting to find fungal spores in dust blown from China to Texas, one of us (S.A.M.) discovered that smoke from Yucatan contains viable bacteria and fungal spores, including the genera Alternaria, Cladosporium, Fusariella and Curvularia. There was a high correlation ( r2=0.78) of spores and coarse carbon particles collected on microscope slides during 13 days of the 2002 smoke season. To eliminate possible contamination by local spores, an air sampler was flown from a kite at a Texas Gulf Coast beach during and after the 2003 smoke season on days when the NOAA back trajectory showed air arriving from Yucatan. Fifty-two spores and 19 coarse black carbon particles (>2.5 μm) were collected during a 30-min kite flight on the smoke day and 12 spores and four carbons on the day without smoke. We have found spores in smoke from an Arizona forest fire and in Asian smoke at Mauna Loa Observatory, Hawaii. We have tested these findings by burning dried grass, leaves, twigs and flood detritus. The smoke from all test fires contained many spores.

  6. Spore test parameters matter: Mesophilic and thermophilic spore counts detected in raw milk and dairy powders differ significantly by test method.

    PubMed

    Kent, D J; Chauhan, K; Boor, K J; Wiedmann, M; Martin, N H

    2016-07-01

    United States dairy industry exports have steadily risen in importance over the last 10yr, with dairy powders playing a particularly critical role. Currently, approximately half of US-produced nonfat dry milk and skim milk powder is exported. Reaching new and expanding existing export markets relies in part on the control of endospore-forming bacteria in dairy powders. This study reports baseline mesophilic and thermophilic spore counts and spore populations from 55 raw material samples (primarily raw milk) and 33 dairy powder samples from dairy powder processors across the United States. Samples were evaluated using various spore testing methodologies and included initial heat treatments of (1) 80°C for 12 min; (2) 100°C for 30 min; and (3) 106°C for 30 min. Results indicate that significant differences in both the level and population of spores were found for both raw milk and dairy powders with the various testing methods. Additionally, on average, spore counts were not found to increase significantly from the beginning to the end of dairy powder processing, most likely related to the absence of biofilm formation by processing plant-associated sporeformers (e.g., Anoxybacillus sp.) in the facilities sampled. Finally, in agreement with other studies, Bacillus licheniformis was found to be the most prevalent sporeformer in both raw materials and dairy powders, highlighting the importance of this organism in developing strategies for control and reduction of spore counts in dairy powders. Overall, this study emphasizes the need for standardization of spore enumeration methodologies in the dairy powder industry. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Atmospheric mold spore counts in relation to meteorological parameters

    NASA Astrophysics Data System (ADS)

    Katial, R. K.; Zhang, Yiming; Jones, Richard H.; Dyer, Philip D.

    Fungal spore counts of Cladosporium, Alternaria, and Epicoccum were studied during 8 years in Denver, Colorado. Fungal spore counts were obtained daily during the pollinating season by a Rotorod sampler. Weather data were obtained from the National Climatic Data Center. Daily averages of temperature, relative humidity, daily precipitation, barometric pressure, and wind speed were studied. A time series analysis was performed on the data to mathematically model the spore counts in relation to weather parameters. Using SAS PROC ARIMA software, a regression analysis was performed, regressing the spore counts on the weather variables assuming an autoregressive moving average (ARMA) error structure. Cladosporium was found to be positively correlated (P<0.02) with average daily temperature, relative humidity, and negatively correlated with precipitation. Alternaria and Epicoccum did not show increased predictability with weather variables. A mathematical model was derived for Cladosporium spore counts using the annual seasonal cycle and significant weather variables. The model for Alternaria and Epicoccum incorporated the annual seasonal cycle. Fungal spore counts can be modeled by time series analysis and related to meteorological parameters controlling for seasonallity; this modeling can provide estimates of exposure to fungal aeroallergens.

  8. Polycistronic gene expression in Aspergillus niger.

    PubMed

    Schuetze, Tabea; Meyer, Vera

    2017-09-25

    Genome mining approaches predict dozens of biosynthetic gene clusters in each of the filamentous fungal genomes sequenced so far. However, the majority of these gene clusters still remain cryptic because they are not expressed in their natural host. Simultaneous expression of all genes belonging to a biosynthetic pathway in a heterologous host is one approach to activate biosynthetic gene clusters and to screen the metabolites produced for bioactivities. Polycistronic expression of all pathway genes under control of a single and tunable promoter would be the method of choice, as this does not only simplify cloning procedures, but also offers control on timing and strength of expression. However, polycistronic gene expression is a feature not commonly found in eukaryotic host systems, such as Aspergillus niger. In this study, we tested the suitability of the viral P2A peptide for co-expression of three genes in A. niger. Two genes descend from Fusarium oxysporum and are essential to produce the secondary metabolite enniatin (esyn1, ekivR). The third gene (luc) encodes the reporter luciferase which was included to study position effects. Expression of the polycistronic gene cassette was put under control of the Tet-On system to ensure tunable gene expression in A. niger. In total, three polycistronic expression cassettes which differed in the position of luc were constructed and targeted to the pyrG locus in A. niger. This allowed direct comparison of the luciferase activity based on the position of the luciferase gene. Doxycycline-mediated induction of the Tet-On expression cassettes resulted in the production of one long polycistronic mRNA as proven by Northern analyses, and ensured comparable production of enniatin in all three strains. Notably, gene position within the polycistronic expression cassette matters, as, luciferase activity was lowest at position one and had a comparable activity at positions two and three. The P2A peptide can be used to express at

  9. Clarification of Tomato Juice with Polygalacturonase Obtained from Tomato Fruits Infected by Aspergillus niger.

    PubMed

    Ajayi, A A; Peter-Albert, C F; Akeredolu, M; Shokunbi, A A

    2015-02-01

    Two varieties of tomato fruits commonly available in Nigerian markets are the Roma VF and Ibadan local varieties of tomato fruits. The Roma VF fruits are oval in shape. It is a common type of cultivar in the Northern region of Nigeria and it is not susceptible to cracking. The Ibadan local variety of tomato fruits is a local variety commonly found on farmers fields in South-western region of Nigeria. They are highly susceptible to cracking. The Ibadan local variety was employed for this research. There are lots of benefits derived from the consumption of tomato fruits. The fruits can be made into tomato juice clarified with pectinases. Polygalacturonase is one of the pectinases used commercially in the clarification of fruit juice from different fruits. This study examined the production of polygalacturonase during the deterioration of tomato fruits by Aspergillus niger and the role of the purified polygalacturonase in the clarification of tomato juice. Tomato fruits of the Ibadan local variety were inoculated with mycelia discs containing spores of a 96-h-old culture of Aspergillus niger served as the inoculum. The organism from the stock culture was subcultured onto potato dextrose agar plates. The extraction of polygalacturonase after 10 days of incubation at 27 degrees C was carried out by homogenizing the fruits with liquid extractant using the MSE homogenizer after the deteriorated fruits had been chilled for 30 min inside a freezer. Control fruits were similarly treated except that sterile potato dextrose agar served as the inoculum. The effect of different temperature of incubation and different volume of enzyme on the tomato juice from the tomato fruits was investigated. Extracts from the inoculated fruits exhibited appreciable polygalacturonase activity. The juice with polygalacturonase was visually clearer and more voluminous than the juice treated with water for all parameters studied. The highest volume of juice was obtained after an incubation period

  10. Pollen and spores of terrestrial plants

    USGS Publications Warehouse

    Bernhardt, Christopher E.; Willard, Debra A.; Shennan, Ian; Long, Antony J.; Horton, Benjamin P.

    2015-01-01

    Pollen and spores are valuable tools in reconstructing past sea level and climate because of their ubiquity, abundance, and durability as well as their reciprocity with source vegetation to environmental change (Cronin, 1999; Traverse, 2007; Willard and Bernhardt, 2011). Pollan is found in many sedimentary environments, from freshwater to saltwater, terrestrial to marine. It can be abundant in a minimal amount of sample material, for example half a gram, as concentrations can be as high as four million grains per gram (Traverse, 2007). The abundance of pollen in a sample lends it to robust statistical analysis for the quantitative reconstruction of environments. The outer cell wall is resistant to decay in sediments and allows palynomorphs (pollen and spores) to record changes in plant communities and sea level over millions of years. These characteristics make pollen and spores a powerful tool to use in sea-level research.This chapter describes the biology of pollen and spores and how they are transported and preserved in sediments. We present a methodology for isolating pollen from sediments and a general language and framework to identify pollen as well as light micrographs of a selection of common pollen grains, We then discuss their utility in sea-level research.

  11. Survival of Bacillus anthracis spores in fruit juices and wine.

    PubMed

    Leishman, Oriana N; Johnson, Miranda J; Labuza, Theodore P; Diez-Gonzalez, Francisco

    2010-09-01

    Foods have been identified as a potential target for bioterrorism due to their essential nature and global distribution. Foods produced in bulk have the potential to have large batches of product intentionally contaminated, which could affect hundreds or thousands of individuals. Bacillus anthracis spores are one potential bioterrorism agent that may survive pasteurization and remain viable throughout the shelf life of fruit juices and cause disease if consumed. This project examined B. anthracis spore survival in orange, apple, and grape juices, as well as wine. Samples of beverages were inoculated with spores of two nonpathogenic B. anthracis strains at approximately 10(6) CFU/ml, and the spore count was determined periodically during storage for 30 days at 4°C. After this time, the counts of survival spores never declined more than 1 log CFU/ml in any of the beverage types. These results indicate that spores can survive, with little to no loss in viability, for at least a month in fruit juices and wine.

  12. Sudden substrate dilution induces a higher rate of citric acid production by Aspergillus niger.

    PubMed Central

    Legisa, M; Gradisnik-Grapulin, M

    1995-01-01

    On the basis of the present knowledge of Aspergillus niger metabolism during citric acid fermentation, an idea on how to improve the process was formed. Initially, a higher sucrose concentration was used for the germination of spores, which caused a higher intracellular level of the osmoregulator, glycerol, to be present. When citric acid started to be excreted into the medium, the substrate was suddenly diluted. Optimization of this procedure resulted in a nearly tripled volumetric rate (grams per liter per hour) of acid production, while the overall fermentation time was halved compared with the usual batch process. Yet, a characteristic delay was observed at the start of the acid excretion after the dilution. Hypo-osmotic shock caused a prominent elevation of intracellular cyclic AMP levels. Simultaneously, the specific activity of 6-phosphofructo-1-kinase increased significantly, probably due to phosphorylation of the protein molecule by cyclic AMP-dependent protein kinase. Specific 6-phosphofructo-1-kinase activity was much higher in the treated than in the normally growing mycelium. The metabolic flow through glycolysis was expected to be higher, which should contribute to a higher volumetric rate of acid production. PMID:7618885

  13. Sudden substrate dilution induces a higher rate of citric acid production by Aspergillus niger.

    PubMed

    Legisa, M; Gradisnik-Grapulin, M

    1995-07-01

    On the basis of the present knowledge of Aspergillus niger metabolism during citric acid fermentation, an idea on how to improve the process was formed. Initially, a higher sucrose concentration was used for the germination of spores, which caused a higher intracellular level of the osmoregulator, glycerol, to be present. When citric acid started to be excreted into the medium, the substrate was suddenly diluted. Optimization of this procedure resulted in a nearly tripled volumetric rate (grams per liter per hour) of acid production, while the overall fermentation time was halved compared with the usual batch process. Yet, a characteristic delay was observed at the start of the acid excretion after the dilution. Hypo-osmotic shock caused a prominent elevation of intracellular cyclic AMP levels. Simultaneously, the specific activity of 6-phosphofructo-1-kinase increased significantly, probably due to phosphorylation of the protein molecule by cyclic AMP-dependent protein kinase. Specific 6-phosphofructo-1-kinase activity was much higher in the treated than in the normally growing mycelium. The metabolic flow through glycolysis was expected to be higher, which should contribute to a higher volumetric rate of acid production.

  14. Water Behavior in Bacterial Spores by Deuterium NMR Spectroscopy

    PubMed Central

    2015-01-01

    Dormant bacterial spores are able to survive long periods of time without nutrients, withstand harsh environmental conditions, and germinate into metabolically active bacteria when conditions are favorable. Numerous factors influence this hardiness, including the spore structure and the presence of compounds to protect DNA from damage. It is known that the water content of the spore core plays a role in resistance to degradation, but the exact state of water inside the core is a subject of discussion. Two main theories present themselves: either the water in the spore core is mostly immobile and the core and its components are in a glassy state, or the core is a gel with mobile water around components which themselves have limited mobility. Using deuterium solid-state NMR experiments, we examine the nature of the water in the spore core. Our data show the presence of unbound water, bound water, and deuterated biomolecules that also contain labile deuterons. Deuterium–hydrogen exchange experiments show that most of these deuterons are inaccessible by external water. We believe that these unreachable deuterons are in a chemical bonding state that prevents exchange. Variable-temperature NMR results suggest that the spore core is more rigid than would be expected for a gel-like state. However, our rigid core interpretation may only apply to dried spores whereas a gel core may exist in aqueous suspension. Nonetheless, the gel core, if present, is inaccessible to external water. PMID:24950158

  15. Expression of the Aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus niger

    PubMed Central

    2014-01-01

    Background Aspergillus terreus is a natural producer of itaconic acid and is currently used to produce itaconic acid on an industrial scale. The metabolic process for itaconic acid biosynthesis is very similar to the production of citric acid in Aspergillus niger. However, a key enzyme in A. niger, cis-aconitate decarboxylase, is missing. The introduction of the A. terreus cadA gene in A. niger exploits the high level of citric acid production (over 200 g per liter) and theoretically can lead to production levels of over 135 g per liter of itaconic acid in A. niger. Given the potential for higher production levels in A. niger, production of itaconic acid in this host was investigated. Results Expression of Aspergillus terreus cis-aconitate decarboxylase in Aspergillus niger resulted in the production of a low concentration (0.05 g/L) of itaconic acid. Overexpression of codon-optimized genes for cis-aconitate decarboxylase, a mitochondrial transporter and a plasma membrane transporter in an oxaloacetate hydrolase and glucose oxidase deficient A. niger strain led to highly increased yields and itaconic acid production titers. At these higher production titers, the effect of the mitochondrial and plasma membrane transporters was much more pronounced, with levels being 5–8 times higher than previously described. Conclusions Itaconic acid can be produced in A. niger by the introduction of the A. terreus cis-aconitate decarboxylase encoding cadA gene. This results in a low itaconic acid production level, which can be increased by codon-optimization of the cadA gene for A. niger. A second crucial requirement for efficient production of itaconic acid is the expression of the A. terreus mttA gene, encoding a putative mitochondrial transporter. Expression of this transporter results in a twenty-fold increase in the secretion of itaconic acid. Expression of the A. terreus itaconic acid cluster consisting of the cadA gene, the mttA gene and the mfsA gene results in A

  16. Expression of the Aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus niger.

    PubMed

    van der Straat, Laura; Vernooij, Marloes; Lammers, Marieke; van den Berg, Willy; Schonewille, Tom; Cordewener, Jan; van der Meer, Ingrid; Koops, Andries; de Graaff, Leo H

    2014-01-17

    Aspergillus terreus is a natural producer of itaconic acid and is currently used to produce itaconic acid on an industrial scale. The metabolic process for itaconic acid biosynthesis is very similar to the production of citric acid in Aspergillus niger. However, a key enzyme in A. niger, cis-aconitate decarboxylase, is missing. The introduction of the A. terreus cadA gene in A. niger exploits the high level of citric acid production (over 200 g per liter) and theoretically can lead to production levels of over 135 g per liter of itaconic acid in A. niger. Given the potential for higher production levels in A. niger, production of itaconic acid in this host was investigated. Expression of Aspergillus terreus cis-aconitate decarboxylase in Aspergillus niger resulted in the production of a low concentration (0.05 g/L) of itaconic acid. Overexpression of codon-optimized genes for cis-aconitate decarboxylase, a mitochondrial transporter and a plasma membrane transporter in an oxaloacetate hydrolase and glucose oxidase deficient A. niger strain led to highly increased yields and itaconic acid production titers. At these higher production titers, the effect of the mitochondrial and plasma membrane transporters was much more pronounced, with levels being 5-8 times higher than previously described. Itaconic acid can be produced in A. niger by the introduction of the A. terreus cis-aconitate decarboxylase encoding cadA gene. This results in a low itaconic acid production level, which can be increased by codon-optimization of the cadA gene for A. niger. A second crucial requirement for efficient production of itaconic acid is the expression of the A. terreus mttA gene, encoding a putative mitochondrial transporter. Expression of this transporter results in a twenty-fold increase in the secretion of itaconic acid. Expression of the A. terreus itaconic acid cluster consisting of the cadA gene, the mttA gene and the mfsA gene results in A. niger strains that produce over

  17. Correlation of spring spore concentrations and meteorological conditions in Tulsa, Oklahoma

    NASA Astrophysics Data System (ADS)

    Troutt, C.; Levetin, E.

    Different spore types are abundant in the atmosphere depending on the weather conditions. Ascospores generally follow precipitation, while spore types such as Alternaria and Cladosporium are abundant in dry conditions. This project attempted to correlate fungal spore concentrations with meteorological data from Tulsa, Oklahoma during May 1998 and May 1999. Air samples were collected and analyzed by the 12-traverse method. The spore types included were Cladosporium, Alternaria, Epicoccum, Curvularia, Pithomyces, Drechslera, smut spores, ascospores, basidiospores, and other spores. Weather variables included precipitation levels, temperature, dew point, air pressure, wind speed, wind direction and wind gusts. There were over 242.57 mm of rainfall in May 1999 and only 64.01 mm in May 1998. The most abundant spore types during May 1998 and May 1999 were Cladosporium, ascospores, and basidiospores. Results showed that there were significant differences in the dry-air spora between May 1998 and May 1999. There were twice as many Cladosporium in May 1998 as in May 1999; both ascospores and basidiospores showed little change. Multiple regression analysis was used to determine which meteorological variables influenced spore concentrations. Results showed that there was no single model for all spore types. Different combinations of factors were predictors of concentration for the various fungi examined; however, temperature and dew point seemed to be the most important meteorological factors.

  18. Decontamination of fluid milk containing Bacillus spores using commercial household products.

    PubMed

    Black, D G; Taylor, T M; Kerr, H J; Padhi, S; Montville, T J; Davidson, P M

    2008-03-01

    Although commercial sanitizers can inactivate bacterial spores in food processing environments, relatively little data exist as to the decontamination of products and surfaces by consumers using commercial household products. Should a large scale bioterrorism incident occur in which consumer food products were contaminated with a pathogenic sporeformer such as Bacillus anthracis, there may be a need to decontaminate these products before disposal as liquid or solid waste. Studies were conducted to test the efficacy of commercial household products for inactivating spores of Bacillus cereus (used as a surrogate for B. anthracis) in vitro and in fluid milk. Validation of the resistance of the B. cereus spores was confirmed with B. anthracis spores. Fifteen commercial products, designed as either disinfectants or sanitizers or as potential sanitizers, were purchased from retail markets. Products selected had one of the following active compounds: NaOCl, HCl, H2O2, acetic acid, quaternary ammonium compounds, ammonium hydroxide, citric acid, isopropanol, NaOH, or pine oil. Compounds were diluted in water (in vitro) or in 2% fat fluid milk, and spores were exposed for up to 6 h. Products containing hypochlorite were most effective against B. cereus spores. Products containing HCl or H2O2 also reduced significant numbers of spores but at a slower rate. The resistance of spores of surrogate B. cereus strains to chlorine-containing compounds was similar to that of B. anthracis spores. Therefore, several household products on the market may be used to decontaminate fluid milk or similar food products contaminated by spores of B. anthracis.

  19. Cytological and proteomic analyses of horsetail (Equisetum arvense L.) spore germination

    PubMed Central

    Zhao, Qi; Gao, Jing; Suo, Jinwei; Chen, Sixue; Wang, Tai; Dai, Shaojun

    2015-01-01

    Spermatophyte pollen tubes and root hairs have been used as single-cell-type model systems to understand the molecular processes underlying polar growth of plant cells. Horsetail (Equisetum arvense L.) is a perennial herb species in Equisetopsida, which creates separately growing spring and summer stems in its life cycle. The mature chlorophyllous spores produced from spring stems can germinate without dormancy. Here we report the cellular features and protein expression patterns in five stages of horsetail spore germination (mature spores, rehydrated spores, double-celled spores, germinated spores, and spores with protonemal cells). Using 2-DE combined with mass spectrometry, 80 proteins were found to be abundance changed upon spore germination. Among them, proteins involved in photosynthesis, protein turnover, and energy supply were over-represented. Thirteen proteins appeared as proteoforms on the gels, indicating the potential importance of post-translational modification. In addition, the dynamic changes of ascorbate peroxidase, peroxiredoxin, and dehydroascorbate reductase implied that reactive oxygen species homeostasis is critical in regulating cell division and tip-growth. The time course of germination and diverse expression patterns of proteins in photosynthesis, energy supply, lipid and amino acid metabolism indicated that heterotrophic and autotrophic metabolism were necessary in light-dependent germination of the spores. Twenty-six proteins were involved in protein synthesis, folding, and degradation, indicating that protein turnover is vital to spore germination and rhizoid tip-growth. Furthermore, the altered abundance of 14-3-3 protein, small G protein Ran, actin, and caffeoyl-CoA O-methyltransferase revealed that signaling transduction, vesicle trafficking, cytoskeleton dynamics, and cell wall modulation were critical to cell division and polar growth. These findings lay a foundation toward understanding the molecular mechanisms underlying fern

  20. Aspergillus niger contains the cryptic phylogenetic species A. awamori.

    PubMed

    Perrone, Giancarlo; Stea, Gaetano; Epifani, Filomena; Varga, János; Frisvad, Jens C; Samson, Robert A

    2011-11-01

    Aspergillus section Nigri is an important group of species for food and medical mycology, and biotechnology. The Aspergillus niger 'aggregate' represents its most complicated taxonomic subgroup containing eight morphologically indistinguishable taxa: A. niger, Aspergillus tubingensis, Aspergillus acidus, Aspergillus brasiliensis, Aspergillus costaricaensis, Aspergillus lacticoffeatus, Aspergillus piperis, and Aspergillus vadensis. Aspergillus awamori, first described by Nakazawa, has been compared taxonomically with other black aspergilli and recently it has been treated as a synonym of A. niger. Phylogenetic analyses of sequences generated from portions of three genes coding for the proteins β-tubulin (benA), calmodulin (CaM), and the translation elongation factor-1 alpha (TEF-1α) of a population of A. niger strains isolated from grapes in Europe revealed the presence of a cryptic phylogenetic species within this population, A. awamori. Morphological, physiological, ecological and chemical data overlap occurred between A. niger and the cryptic A. awamori, however the splitting of these two species was also supported by AFLP analysis of the full genome. Isolates in both phylospecies can produce the mycotoxins ochratoxin A and fumonisin B₂, and they also share the production of pyranonigrin A, tensidol B, funalenone, malformins, and naphtho-γ-pyrones. In addition, sequence analysis of four putative A. awamori strains from Japan, used in the koji industrial fermentation, revealed that none of these strains belong to the A. awamori phylospecies. Copyright © 2011 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  1. Hay-scented fern spore production following clearcutting

    Treesearch

    Kathy A. Penrod; Larry H. McCormick

    1997-01-01

    Hay-scented fern is a common forest understory weed native to the Appalachian region. It interferes with oak and other hardwood seedling growth and often leads to regeneration failures. Harvesting is know to increase rates of vegetative expansion, spore germination, and possibly spore production of hay-scented fern. To examine the latter effect, a progressive series of...

  2. The transcriptomic fingerprint of glucoamylase over-expression in Aspergillus niger

    PubMed Central

    2012-01-01

    Background Filamentous fungi such as Aspergillus niger are well known for their exceptionally high capacity for secretion of proteins, organic acids, and secondary metabolites and they are therefore used in biotechnology as versatile microbial production platforms. However, system-wide insights into their metabolic and secretory capacities are sparse and rational strain improvement approaches are therefore limited. In order to gain a genome-wide view on the transcriptional regulation of the protein secretory pathway of A. niger, we investigated the transcriptome of A. niger when it was forced to overexpression the glaA gene (encoding glucoamylase, GlaA) and secrete GlaA to high level. Results An A. niger wild-type strain and a GlaA over-expressing strain, containing multiple copies of the glaA gene, were cultivated under maltose-limited chemostat conditions (specific growth rate 0.1 h-1). Elevated glaA mRNA and extracellular GlaA levels in the over-expressing strain were accompanied by elevated transcript levels from 772 genes and lowered transcript levels from 815 genes when compared to the wild-type strain. Using GO term enrichment analysis, four higher-order categories were identified in the up-regulated gene set: i) endoplasmic reticulum (ER) membrane translocation, ii) protein glycosylation, iii) vesicle transport, and iv) ion homeostasis. Among these, about 130 genes had predicted functions for the passage of proteins through the ER and those genes included target genes of the HacA transcription factor that mediates the unfolded protein response (UPR), e.g. bipA, clxA, prpA, tigA and pdiA. In order to identify those genes that are important for high-level secretion of proteins by A. niger, we compared the transcriptome of the GlaA overexpression strain of A. niger with six other relevant transcriptomes of A. niger. Overall, 40 genes were found to have either elevated (from 36 genes) or lowered (from 4 genes) transcript levels under all conditions that were

  3. NanoSIMS analysis of Bacillus spores for forensics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, P K; Davisson, M L; Velsko, S P

    2010-02-23

    The threat associated with the potential use of radiological, nuclear, chemical and biological materials in terrorist acts has resulted in new fields of forensic science requiring the application of state-of-the-science analytical techniques. Since the anthrax letter attacks in the United States in the fall of 2001, there has been increased interest in physical and chemical characterization of bacterial spores. While molecular methods are powerful tools for identifying genetic differences, other methods may be able to differentiate genetically identical samples based on physical and chemical properties, as well as provide complimentary information, such as methods of production and approximate date ofmore » production. Microanalysis has the potential to contribute significantly to microbial forensics. Bacillus spores are highly structured, consisting of a core, cortex, coat, and in some species, an exosporium. This structure provides a template for constraining elemental abundance differences at the nanometer scale. The primary controls on the distribution of major elements in spores are likely structural and physiological. For example, P and Ca are known to be abundant in the spore core because that is where P-rich nucleic acids and Cadipicolinic acid are located, respectively. Trace elements are known to bind to the spore coat but the controls on these elements are less well understood. Elemental distributions and abundances may be directly related to spore production, purification and stabilization methodologies, which are of particular interest for forensic investigation. To this end, we are developing a high-resolution secondary ion mass spectrometry method using a Cameca NanoSIMS 50 to study the distribution and abundance of trace elements in bacterial spores. In this presentation we will review and compare methods for preparing and analyzing samples, as well as review results on the distribution and abundance of elements in bacterial spores. We use Nano

  4. Live/Dead Bacterial Spore Assay Using DPA-Triggered Tb Luminescence

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian

    2003-01-01

    A method of measuring the fraction of bacterial spores in a sample that remain viable exploits DPA-triggered luminescence of Tb(3+) and is based partly on the same principles as those described earlier. Unlike prior methods for performing such live/dead assays of bacterial spores, this method does not involve counting colonies formed by cultivation (which can take days), or counting of spores under a microscope, and works whether or not bacterial spores are attached to other small particles (i.e., dust), and can be implemented on a time scale of about 20 minutes.

  5. Bacillus spore-based oral carriers loading curcumin for the therapy of colon cancer.

    PubMed

    Yin, Liang; Meng, Zhan; Zhang, Yuxiao; Hu, Kaikai; Chen, Wuya; Han, Kaibin; Wu, Bao-Yan; You, Rong; Li, Chu-Hua; Jin, Ying; Guan, Yan-Qing

    2018-02-10

    Oral drug delivery has attracted substantial attention due to its advantages over other administration routes. Bacillus spores, as oral probiotic agents, are applied widely. In this paper, a novel Bacillus spore-based oral colon targeted carrier loading curcumin was developed for colon cancer treatment. Curcumin was linked covalently with the outer coat of Bacillus spore and folate, respectively (SPORE-CUR-FA). Bacillus spores are capable of delivering drugs to the colon area through gastric barrier, taking the advantage of its tolerance to the harsh conditions and disintegration of the outer coat of spores after germination in the colon. The drug release in vitro and in vivo of SPORE-CUR-FA was investigated. Results showed that SPORE-CUR-FA had the characteristics of colon-targeted drug release. Pharmacokinetic studies confirmed that Bacillus spore-based carriers could efficiently improve the oral bioavailability of curcumin. In vitro and in vivo anti-tumor studies showed that SPORE-CUR-FA had substantial ability for inhibiting colon cancer cells. These findings suggest that this Bacillus spore-based oral drug delivery system has a great potential for the treatment of colon cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Discrimination of Spore-Forming Bacilli Using spoIVA

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri; LaDuc, Myron; Stuecker, Tara

    2009-01-01

    A method of discriminating between spore-forming and non-spore-forming bacteria is based on a combination of simultaneous sporulation-specific and non-sporulation-specific quantitative polymerase chain reactions (Q-PCRs). The method was invented partly in response to the observation that for the purposes of preventing or reducing biological contamination affecting many human endeavors, ultimately, only the spore-forming portions of bacterial populations are the ones that are problematic (or, at least, more problematic than are the non-spore-forming portions). In some environments, spore-forming bacteria constitute small fractions of the total bacterial populations. The use of sporulation-specific primers in Q-PCR affords the ability to assess the spore-forming fraction of a bacterial population present in an environment of interest. This assessment can provide a more thorough and accurate understanding of the bacterial contamination in the environment, thereby making it possible to focus contamination- testing, contamination-prevention, sterilization, and decontamination resources more economically and efficiently. The method includes the use of sporulation-specific primers in the form of designed, optimized deoxyribonucleic acid (DNA) oligonucleotides specific for the bacterial spoIVA gene (see table). [In "spoIVA," "IV" signifies Roman numeral four and the entire quoted name refers to gene A for the fourth stage of sporulation.] These primers are mixed into a PCR cocktail with a given sample of bacterial cells. A control PCR cocktail into which are mixed universal 16S rRNA primers is also prepared. ["16S rRNA" denotes a ribosomal ribonucleic acid (rRNA) sequence that is common to all organisms.] Following several cycles of heating and cooling according to the PCR protocol to amplify amounts of DNA molecules, the amplification products can be analyzed to determine the types of bacterial cells present within the samples. If the amplification product is strong

  7. Optical Approaches for Drug Screening Based Light-Harvesting Conjugated Polyelectrolyte

    DTIC Science & Technology

    2010-03-01

    membrane and inhibit spore germination/’ Aspergillus niger (A. niger ) was chosen for these studies since it is one of the most common species of the...We have also shown that the 𔃺: formation by PTP can be used to inhibit the growth of Aspergillus niger , which is more resistant than other fungi...genus Aspergillus , is more resistant to antimicrobial agents than other species such as Candida albicans,and is responsible for mold infections on

  8. Biominerlization and possible endosulfan degradation pathway adapted by Aspergillus niger.

    PubMed

    Bhalerao, Tejomyee S

    2013-11-28

    Endosulfan is a chlorinated pesticide; its persistence in the environment and toxic effects on biota are demanding its removal. This study aims at improving the tolerance of the previously isolated fungus Aspergillus niger (A. niger) ARIFCC 1053 to endosulfan. Released chloride, dehalogenase activity, and released proteins were estimated along with analysis of endosulfan degradation and pathway identification. The culture could tolerate 1,000 mg/ml of technical grade endosulfan. Complete disappearance of endosulfan was seen after 168 h of incubation. The degradation study could easily be correlated with increase in released chlorides, dehalogenase activity and protein released. Comparative infrared spectral analysis suggested that the molecule of endosulfan was degraded efficiently by A. niger ARIFCC 1053. Obtained mass ion values by GC-MS suggested a hypothetical pathway during endosulfan degradation by A. niger ARIFCC 1053. All these results provide a basis for the development of bioremediation strategies to remediate the pollutant under study in the environment.

  9. Aerosol and Surface Deposition Characteristics of Two Surrogates for Bacillus anthracis Spores

    PubMed Central

    Stapleton, Helen L.

    2016-01-01

    ABSTRACT Spores of an acrystalliferous derivative of Bacillus thuringiensis subsp. kurstaki, termed Btcry−, are morphologically, aerodynamically, and structurally indistinguishable from Bacillus anthracis spores. Btcry− spores were dispersed in a large, open-ended barn together with spores of Bacillus atrophaeus subsp. globigii, a historically used surrogate for Bacillus anthracis. Spore suspensions (2 × 1012 CFU each of B. atrophaeus subsp. globigii and Btcry−) were aerosolized in each of five spray events using a backpack misting device incorporating an air blower; a wind of 4.9 to 7.6 m s−1 was also flowing through the barn in the same direction. Filter air samplers were situated throughout the barn to assess the aerosol density of the spores during each release. Trays filled with a surfactant in aqueous buffer were placed on the floor near the filter samplers to assess spore deposition. Spores were also recovered from arrays of solid surfaces (concrete, aluminum, and plywood) that had been laid on the floor and set up as a wall at the end of the barn. B. atrophaeus subsp. globigii spores were found to remain airborne for significantly longer periods, and to be deposited on horizontal surfaces at lower densities, than Btcry− spores, particularly near the spray source. There was a 6-fold-higher deposition of Btcry− spores than of B. atrophaeus subsp. globigii spores on vertical surfaces relative to the surrounding airborne density. This work is relevant for selecting the best B. anthracis surrogate for the prediction of human exposure, hazard assessment, and hazard management following a malicious release of B. anthracis. IMPORTANCE There is concern that pathogenic bacteria could be maliciously disseminated in the air to cause human infection and disruption of normal life. The threat from spore-forming organisms, such as the causative agent of anthrax, is particularly serious. In order to assess the extent of this risk, it is important to have a

  10. Using Remote Sensing and GIS in the Analysis of Ecosystem Decline along the River Niger Basin: The Case of Mali and Niger

    PubMed Central

    Twumasi, Yaw A.; Merem, Edmund C.

    2007-01-01

    In the Sub-Saharan African region of the River Niger Basin, where none of the major rivers is fully contained within the borders of a single nation, riverine ecosystem health monitoring is essential for survival. Even the globally proclaimed goals of sustainability and environmental security in the region are unattainable without using geospatial technologies of remote sensing and Geographic Information Systems (GIS) as conduits for environmental health within shared waters. Yet the systematic study of the nature of cooperation between states over shared water resources in troubled areas of the Middle East continues to dominate the literature with minimal coverage of the Sub-Saharan Africa experience and the role of GIS and remote sensing in monitoring the problem. Considering the intense ecosystem stress inflicted on River Niger by human activities and natural forces emanating from upstream and downstream nations. Researching the growing potential for acute riverine ecosystem decline among the nations of Niger and Mali along the River Niger Basin with the latest advances in spatial information technology as a decision support tool not only helps in ecosystem recovery and the avoidance of conflicts, but it has the potentials to bring countries much closer through information exchange. While the nature of the problem remains compounded due to the depletion of available water resources and environmental resources within shared waters, the lack of information exchange extracts ecological costs from all players. This is essential as the Niger Basin nations move towards a multinational watershed management as a conduit for sustainability. To confront these problems, some research questions with relevance to the paper have been posed. The questions include, Have there been any declines in the riverine ecosystem of the study area? What are the effects and what factors trigger the changes? What mitigation measures are in place for dealing with the problems? The first

  11. Using remote sensing and GIS in the analysis of ecosystem decline along the River Niger Basin: the case of Mali and Niger.

    PubMed

    Twumasi, Yaw A; Merem, Edmund C

    2007-06-01

    In the Sub-Saharan African region of the River Niger Basin, where none of the major rivers is fully contained within the borders of a single nation, riverine ecosystem health monitoring is essential for survival. Even the globally proclaimed goals of sustainability and environmental security in the region are unattainable without using geospatial technologies of remote sensing and Geographic Information Systems (GIS) as conduits for environmental health within shared waters. Yet the systematic study of the nature of cooperation between states over shared water resources in troubled areas of the Middle East continues to dominate the literature with minimal coverage of the Sub- Saharan Africa experience and the role of GIS and remote sensing in monitoring the problem. Considering the intense ecosystem stress inflicted on River Niger by human activities and natural forces emanating from upstream and downstream nations. Researching the growing potential for acute riverine ecosystem decline among the nations of Niger and Mali along the River Niger Basin with the latest advances in spatial information technology as a decision support tool not only helps in ecosystem recovery and the avoidance of conflicts, but it has the potentials to bring countries much closer through information exchange. While the nature of the problem remains compounded due to the depletion of available water resources and environmental resources within shared waters, the lack of information exchange extracts ecological costs from all players. This is essential as the Niger Basin nations move towards a multinational watershed management as a conduit for sustainability. To confront these problems, some research questions with relevance to the paper have been posed. The questions include, Have there been any declines in the riverine ecosystem of the study area? What are the effects and what factors trigger the changes? What mitigation measures are in place for dealing with the problems? The first

  12. Availability of websites offering to sell psilocybin spores and psilocybin.

    PubMed

    Lott, Jason P; Marlowe, Douglas B; Forman, Robert F

    2009-09-01

    This study assesses the availability of websites offering to sell psilocybin spores and psilocybin, a powerful hallucinogen contained in Psilocybe mushrooms. Over a 25-month period beginning in March 2003, eight searches were conducted in Google using the term "psilocybin spores." In each search the first 100 nonsponsored links obtained were scored by two independent raters according to standardized criteria to determine whether they offered to sell psilocybin or psilocybin spores. No attempts were made to procure the products offered for sale in order to ascertain whether the marketed psilocybin was in fact "genuine" or "counterfeit." Of the 800 links examined, 58% led to websites offering to sell psilocybin spores. Additionally, evidence that whole Psilocybe mushrooms are offered for sale online was obtained. Psilocybin and psilocybin spores were found to be widely available for sale over the Internet. Online purchase of psilocybin may facilitate illicit use of this potent psychoactive substance. Additional studies are needed to assess whether websites offering to sell psilocybin and psilocybin spores actually deliver their products as advertised.

  13. Differential cytotoxic properties of Helleborus niger L. on tumour and immunocompetent cells.

    PubMed

    Schink, Michael; Garcia-Käufer, Manuel; Bertrams, Julia; Duckstein, Sarina M; Müller, Margit B; Huber, Roman; Stintzing, Florian C; Gründemann, Carsten

    2015-01-15

    In Romanian folk medicine, Helleborus niger L. is used for the treatment of rheumatoid arthritis or viral infections and in complementary therapy, especially in anthroposophic medicine (AM), where the plant is administered as an adjuvant to treat malignant diseases. In the present study, we investigated the differential cytotoxic effects of H. niger on human tumour and healthy cells of the human immune system in vitro. Protoanemonin and saponins, as significant constituents of H. niger extracts, were quantified in five individual batches using validated HPLC methods. Further, the impact of H. niger on proliferation capacity (MTT assay) as well as on apoptosis and necrosis induction in a panel of tumour cell lines and human lymphocytes (combined annexin V and propidium iodide staining) was monitored. In addition, NK cell function (degranulation-CD107a assay and IFN-gamma secretion) was also investigated since these immunocompetent cells are important for the control of malignancies within the human body. Extracts of H. niger induced proliferation inhibition not only of lymphoblastic leukaemia cells (MOLT4; IC50: 171 µg/mL) but also of myosarcoma (SK-UT-1b; IC50: 304 µg/mL) and melanoma cells (HT-144; IC50: 569 µg/mL) due to the induction of apoptosis. Purified T cells or NK cells were significantly affected through the presence of high H. niger concentrations while bulk lymphocytes were not affected. NK cells' anti-tumour functions expressed by degranulation capacity as well as IFN-y production were unaffected by the presence of the H. niger extract. Since protoanemonin and saponins have been reported in the literature to exert cytotoxic effects, their content was also determined. H. niger extracts exhibit differential cytotoxicity towards tumour cell lines and healthy human T- and NK-cells. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Gas discharge plasmas are effective in inactivating Bacillus and Clostridium spores.

    PubMed

    Tseng, Shawn; Abramzon, Nina; Jackson, James O; Lin, Wei-Jen

    2012-03-01

    Bacterial spores are the most resistant form of life and have been a major threat to public health and food safety. Nonthermal atmospheric gas discharge plasma is a novel sterilization method that leaves no chemical residue. In our study, a helium radio-frequency cold plasma jet was used to examine its sporicidal effect on selected strains of Bacillus and Clostridium. The species tested included Bacillus subtilis, Bacillus stearothermophilus, Clostridium sporogenes, Clostridium perfringens, Clostridium difficile, and Clostridium botulinum type A and type E. The plasmas were effective in inactivating selected Bacillus and Clostridia spores with D values (decimal reduction time) ranging from 2 to 8 min. Among all spores tested, C. botulinum type A and C. sporogenes were significantly more resistant to plasma inactivation than other species. Observations by phase contrast microscopy showed that B. subtilis spores were severely damaged by plasmas and the majority of the treated spores were unable to initiate the germination process. There was no detectable fragmentation of the DNA when the spores were treated for up to 20 min. The release of dipicolinic acid was observed almost immediately after the plasma treatment, indicating the spore envelope damage could occur quickly resulting in dipicolinic acid release and the reduction of spore resistance.

  15. Inactivation of Bacillus subtilis spores by high pressure CO2 with high temperature.

    PubMed

    Rao, Lei; Xu, Zhenzhen; Wang, Yongtao; Zhao, Feng; Hu, Xiaosong; Liao, Xiaojun

    2015-07-16

    The objective of this study was to investigate the inactivation of the Bacillus subtilis spores by high pressure CO2 combined with high temperature (HPCD+HT) and to analyze the clumping effect of the spores on their HPCD+HT resistance. The spores of B. subtilis were subjected to heat at 0.1 MPa and HPCD at 6.5-25 MPa, and 82 °C, 86 °C, and 91 °C for 0-120 min. The spores were effectively inactivated by HPCD+HT, but a protective effect on the spores was also found, which was closely correlated to the pressure, temperature and time. The spores treated by HPCD+HT at 6.5 and 10 MPa exhibited a two-stage inactivation curve of shoulder and log-linear regions whereas the spores at 15-25 MPa exhibited a three-stage inactivation curve of shoulder, log-linear and tailing regions, and these curves were well fitted to the Geeraerd model. Approximately 90% of pyridine-2,6-dicarboxylic acid (DPA) was released after HPCD+HT and the 90% DPA release time depend on the pressure and temperature. Moreover, the spore clumping in suspensions was examined by dynamic light scattering. The particle size of the spore suspensions increased with the increase of pressure, temperature and time, indicating the spore clumping. 0.1% Tween 80 as a surfactant inhibited the spore clumping and increased the inactivation ratio of the spores by HPCD+HT. These results indicated that the spore clumping enhanced the spores' resistance to HPCD+HT and induced a protective effect. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Methods for Integrated Air Sampling and DNA Analysis for Detection of Airborne Fungal Spores

    PubMed Central

    Williams, Roger H.; Ward, Elaine; McCartney, H. Alastair

    2001-01-01

    Integrated air sampling and PCR-based methods for detecting airborne fungal spores, using Penicillium roqueforti as a model fungus, are described. P. roqueforti spores were collected directly into Eppendorf tubes using a miniature cyclone-type air sampler. They were then suspended in 0.1% Nonidet P-40, and counted using microscopy. Serial dilutions of the spores were made. Three methods were used to produce DNA for PCR tests: adding untreated spores to PCRs, disrupting spores (fracturing of spore walls to release the contents) using Ballotini beads, and disrupting spores followed by DNA purification. Three P. roqueforti-specific assays were tested: single-step PCR, nested PCR, and PCR followed by Southern blotting and probing. Disrupting the spores was found to be essential for achieving maximum sensitivity of the assay. Adding untreated spores to the PCR did allow the detection of P. roqueforti, but this was never achieved when fewer than 1,000 spores were added to the PCR. By disrupting the spores, with or without subsequent DNA purification, it was possible to detect DNA from a single spore. When known quantities of P. roqueforti spores were added to air samples consisting of high concentrations of unidentified fungal spores, pollen, and dust, detection sensitivity was reduced. P. roqueforti DNA could not be detected using untreated or disrupted spore suspensions added to the PCRs. However, using purified DNA, it was possible to detect 10 P. roqueforti spores in a background of 4,500 other spores. For all DNA extraction methods, nested PCR was more sensitive than single-step PCR or PCR followed by Southern blotting. PMID:11375150

  17. Micromotors to capture and destroy anthrax simulant spores.

    PubMed

    Orozco, Jahir; Pan, Guoqing; Sattayasamitsathit, Sirilak; Galarnyk, Michael; Wang, Joseph

    2015-03-07

    Towards addressing the need for detecting and eliminating biothreats, we describe a micromotor-based approach for screening, capturing, isolating and destroying anthrax simulant spores in a simple and rapid manner with minimal sample processing. The B. globilli antibody-functionalized micromotors can recognize, capture and transport B. globigii spores in environmental matrices, while showing non-interactions with excess of non-target bacteria. Efficient destruction of the anthrax simulant spores is demonstrated via the micromotor-induced mixing of a mild oxidizing solution. The new micromotor-based approach paves a way to dynamic multifunctional systems that rapidly recognize, isolate, capture and destroy biological threats.

  18. Use of Ultrasonic Energy in Assessing Microbial Contamination on Surfaces

    PubMed Central

    Puleo, John R.; Favero, Martin S.; Petersen, Norman J.

    1967-01-01

    Ultrasonic tanks were evaluated for their ability to remove viable microorganisms from various surfaces for subsequent enumeration. Test surfaces were polished stainless steel, smooth glass, frosted glass, and electronic components. The position of contaminated surfaces in relation to the ultrasonic energy source, distance of the ultrasonic source from the test surfaces, and temperature of the rinse fluid were some of the factors which influenced recovery. Experimental systems included both naturally occurring microbial contamination and artificial contamination with spores of Bacillus subtilis var. niger. The results showed that ultrasonic energy was more reliable and efficient than mechanical agitation for recovering surface contaminants. Conditions which increased the number and percentage of microorganisms recovered by ultrasonic energy were: using a cold rinse fluid, placing the sample bottle on the bottom of the ultrasonic tank, and facing the contaminated surfaces toward the energy source. It was also demonstrated that ultrasonic energy could be effectively used for eluting microorganisms from cotton swabs. PMID:16349743

  19. Characterization of fungal spores in ambient particulate matter: A study from the Himalayan region

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Attri, Arun K.

    2016-10-01

    Fungal spores as a constituent of ambient particulate matter (PM) is of concern; they not only display the physical traits of a particle, but are also potential allergens and health risk. An investigation over fourteen month was undertaken at a rural site located in the Western Himalayan region, to evaluate the PM associated fungal spores' concentration and diversity. The season-wise change in the fungal spores concentration in the Coarse Particulate Matter (CPM) fraction (aerodynamic diameter > 10 μm) varied from 500 to 3899 spores m-3. Their average concentration over 14 months was 1517 spores m-3. Significant diversity of fungal spores in the CPM samples was observed; 27 individual genera of fungal spores were identified, of which many were known allergens. Presence of Ascomycota and Basidiomycota fungal spores was dominant in the samples; ∼20% of the spores were un-characterized. The season-wise variability in fungal spores showed a statistically significant high correlation with CPM load. Maximum number concentration of the spores in CPM was recorded in the summer, while minimum in the winter. The high diversity of spores occurred during monsoon and post monsoon months. The meteorological factors played an important role in the fungal spores' distribution profile. The temporal profile of the spores showed significant correlation with the ambient temperature (T), relative humidity (RH), wind speed (WS) and planetary boundary layer (PBL) height. Strong correlation of WS with fungal spores and CPM, and wind back trajectories suggest that re-suspension and wind assisted transport of PM contributes to ambient CPM associated fungal spores.

  20. Thermal inactivation kinetics of Bacillus coagulans spores in tomato juice.

    PubMed

    Peng, Jing; Mah, Jae-Hyung; Somavat, Romel; Mohamed, Hussein; Sastry, Sudhir; Tang, Juming

    2012-07-01

    The thermal characteristics of the spores and vegetative cells of three strains of Bacillus coagulans (ATCC 8038, ATCC 7050, and 185A) in tomato juice were evaluated. B. coagulans ATCC 8038 was chosen as the target microorganism for thermal processing of tomato products due to its spores having the highest thermal resistance among the three strains. The thermal inactivation kinetics of B. coagulans ATCC 8038 spores in tomato juice between 95 and 115°C were determined independently in two different laboratories using two different heating setups. The results obtained from both laboratories were in general agreement, with z-values (z-value is defined as the change in temperature required for a 10-fold reduction of the D-value, which is defined as the time required at a certain temperature for a 1-log reduction of the target microorganisms) of 8.3 and 8.7°C, respectively. The z-value of B. coagulans 185A spores in tomato juice (pH 4.3) was found to be 10.2°C. The influence of environmental factors, including cold storage time, pH, and preconditioning, upon the thermal resistance of these bacterial spores is discussed. The results obtained showed that a storage temperature of 4°C was appropriate for maintaining the viability and thermal resistance of B. coagulans ATCC 8038 spores. Acidifying the pH of tomato juice decreased the thermal resistance of these spores. A 1-h exposure at room temperature was considered optimal for preconditioning B. coagulans ATCC 8038 spores in tomato juice.

  1. Contribution of arginase to manganese metabolism of Aspergillus niger.

    PubMed

    Keni, Sarita; Punekar, Narayan S

    2016-02-01

    Aspects of manganese metabolism during normal and acidogenic growth of Aspergillus niger were explored. Arginase from this fungus was a Mn[II]-enzyme. The contribution of the arginase protein towards A. niger manganese metabolism was investigated using arginase knockout (D-42) and arginase over-expressing (ΔXCA-29) strains of A. niger NCIM 565. The Mn[II] contents of various mycelial fractions were found in the order: D-42 strain < parent strain < ΔXCA-29 strain. While the soluble fraction forms 60% of the total mycelial Mn[II] content, arginase accounted for a significant fraction of this soluble Mn[II] pool. Changes in the arginase levels affected the absolute mycelial Mn[II] content but not its distribution in the various mycelial fractions. The A. niger mycelia harvested from acidogenic growth media contain substantially less Mn[II] as compared to those from normal growth media. Nevertheless, acidogenic mycelia harbor considerable Mn[II] levels and a functional arginase. Altered levels of mycelial arginase protein did not significantly influence citric acid production. The relevance of arginase to cellular Mn[II] pool and homeostasis was evaluated and the results suggest that arginase regulation could occur via manganese availability.

  2. Lead immobilization by geological fluorapatite and fungus Aspergillus niger.

    PubMed

    Li, Zhen; Wang, Fuwei; Bai, Tongshuo; Tao, Jinjin; Guo, Jieyun; Yang, Mengying; Wang, Shimei; Hu, Shuijin

    2016-12-15

    Phosphate solubilizing fungi have high ability to secrete organic acids. In this study, fungus Aspergillus niger and geological fluorapatite were applied in lead remediation in aqueous solution. Formation and morphology of the lead minerals, e.g., pyromorphite and lead oxalate, were investigated by SEM, XRD, and ATR-IR. The total quantity of organic acids reached the maximum at the sixth day, which improved the concentration of soluble P up to ∼370mg/L from ∼0.4mg/L. The organic acids, especially the oxalic acid, enhance the solubility of fluorapatite significantly. The stable fluoropyromorphite [Pb 5 (PO 4 ) 3 F] is precipitated with the elevated solubility of fluorapatite in the acidic environment. Furthermore, A. niger grows normally with the presence of lead cations. It is shown that >99% lead cations can be removed from the solution. However, immobilization caused by the precipitation of lead oxalate cannot be ignored if the fungus A. niger was cultured in the Pb solution. This study elucidates the mechanisms of lead immobilization by FAp and A. niger, and sheds its perspective in lead remediation, especially for high Pb concentration solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Assessing Niger-Delta Wetland Resources: A Case-Study of Mangrove Ecosystem

    NASA Astrophysics Data System (ADS)

    Anwan, R. H.; Ndimele, P. E.; Whenu, O. O.; Anetekhai, M. A.; Essien-Ibok, M. A.; Erondu, E. S.

    2016-02-01

    The Niger Delta is located in the Atlantic coast of Southern Nigeria and is the world's second largest delta with a coastline of about 450km. The Niger Delta region occupies a surface area of about 112,110km2, representing about 12% of Nigeria's total surface area. The Delta's environment can be broken down into four ecological zones: coastal barrier islands, mangrove swamp forests, freshwater swamps, and lowland rainforests. The mangrove swamps of Niger Delta, which is the largest delta in Africa constitute the dominant wetland ecosystem in the Niger Delta region and covers an area of about 1,900km2. Mangroves constitute important nurseries for fishes, crustaceans, sponges, algae and other invertebrates, and also acts as a sink, retaining pollutants from contaminated tidal water. The Niger Delta mangrove together with the creeks and rivers are a major source of food and livelihood for about 30 million people, which represents more than 17% of Nigeria's population. Other ecosystem services provided by this unique environment are flood control, ground water re-fill, reservoir of biodiversity, fuel wood, cultural values etc. This ecosystem also plays important role in climate change mitigation because of its high blue carbon sequestration potential. This is particularly important because of continuous gas flaring in Niger Delta from petroleum operations, which releases carbon dioxide among other gases into the atmosphere. This wetland is potentially a good site for ecotourism and also qualifies to be a world heritage site and Ramsar site if proper steps are taken. The benefits derivable from this fragile ecosystem are under severe threat by anthropogenic stressors. These include the installation of pipelines and seismic exploration by oil companies, crude oil pollution, deforestation, urbanization etc. This paper discusses the extent of depletion and loss of mangrove ecosystem in the Niger Delta region and the value of its goods and services.

  4. Survival of B. Horneckiae Spores Under Ground-simulated Space Conditions

    NASA Technical Reports Server (NTRS)

    Schanche, Bradley

    2012-01-01

    To prevent forward contamination and maintain the scientific integrity of future life detection missions, it is important to characterize and attempt to eliminate terrestrial microorganisms associated with exploratory spacecraft and landing vehicles. Among the organisms isolated from spacecraft-associated habitats, spore-forming microbes are highly resistant to various physical and chemical conditions, which include ionizing and UV radiation, desiccation and oxidative stress, and the harsh environment of outer space or planetary surfaces. Recently a radiation resistant, spore forming bacterial isolate, Bacillus horneckiae, was isolated from a clean room of the Kennedy Space Center where the Phoenix spacecraft was assembled. The exceptionally high tolerance of extreme conditions demonstrated by sporeforming bacteria highlighted the need to assess the viability of these microbes in situ (in real) space. The proposed BOSS (Biofilm Organisms Surfing Space) project aims to understand the mechanisms by which biofilm forming organisms, such as B. horneckiae, will potentially be able to withstand harsh space conditions. As previously stated, the spore producing ability of these species gives them increased survivability to harsh conditions. Some of the spores will have the protective exosporium layer artificially removed before the test to determine if the existence of this layer significantly changes the survivability during the mission. In preparation for that experiment, we analyzed spores which were exposed during a ground simulation, the EXPOSE R2 Biofilm Organisms Surfing Space (BOSS). Previous to exposure, spores were deposited onto spacecraft grade aluminum coupons in a spore suspension calculated to contain between 10(exp 7) and 10(exp 8) spores. This precursor series will be used to establish a baseline survivability function for comparison with the future flight tests during EXPOSE-R. For each coupon, a 10% polyvinyl alcohol (PVA) film was applied and peeled

  5. A Standard Method To Inactivate Bacillus anthracis Spores to Sterility via Gamma Irradiation

    PubMed Central

    Cote, Christopher K.; Buhr, Tony; Bernhards, Casey B.; Bohmke, Matthew D.; Calm, Alena M.; Esteban-Trexler, Josephine S.; Hunter, Melissa; Katoski, Sarah E.; Kennihan, Neil; Klimko, Christopher P.; Miller, Jeremy A.; Minter, Zachary A.; Pfarr, Jerry W.; Prugh, Amber M.; Quirk, Avery V.; Rivers, Bryan A.; Shea, April A.; Shoe, Jennifer L.; Sickler, Todd M.; Young, Alice A.; Fetterer, David P.; Welkos, Susan L.; McPherson, Derrell; Fountain, Augustus W.

    2018-01-01

    ABSTRACT In 2015, a laboratory of the United States Department of Defense (DoD) inadvertently shipped preparations of gamma-irradiated spores of Bacillus anthracis that contained live spores. In response, a systematic evidence-based method for preparing, concentrating, irradiating, and verifying the inactivation of spore materials was developed. We demonstrate the consistency of spore preparations across multiple biological replicates and show that two different DoD institutions independently obtained comparable dose-inactivation curves for a monodisperse suspension of B. anthracis spores containing 3 × 1010 CFU. Spore preparations from three different institutions and three strain backgrounds yielded similar decimal reduction (D10) values and irradiation doses required to ensure sterility (DSAL) to the point at which the probability of detecting a viable spore is 10−6. Furthermore, spores of a genetically tagged strain of B. anthracis strain Sterne were used to show that high densities of dead spores suppress the recovery of viable spores. Together, we present an integrated method for preparing, irradiating, and verifying the inactivation of spores of B. anthracis for use as standard reagents for testing and evaluating detection and diagnostic devices and techniques. IMPORTANCE The inadvertent shipment by a U.S. Department of Defense (DoD) laboratory of live Bacillus anthracis (anthrax) spores to U.S. and international destinations revealed the need to standardize inactivation methods for materials derived from biological select agents and toxins (BSAT) and for the development of evidence-based methods to prevent the recurrence of such an event. Following a retrospective analysis of the procedures previously employed to generate inactivated B. anthracis spores, a study was commissioned by the DoD to provide data required to support the production of inactivated spores for the biodefense community. The results of this work are presented in this publication

  6. Real time viability detection of bacterial spores

    DOEpatents

    Vanderberg, Laura A.; Herdendorf, Timothy J.; Obiso, Richard J.

    2003-07-29

    This invention relates to a process for detecting the presence of viable bacterial spores in a sample and to a spore detection system, the process including placing a sample in a germination medium for a period of time sufficient for commitment of any present viable bacterial spores to occur, mixing the sample with a solution of a lanthanide capable of forming a fluorescent complex with dipicolinic acid, and, measuring the sample for the presence of dipicolinic acid, and the system including a germination chamber having inlets from a sample chamber, a germinant chamber and a bleach chamber, the germination chamber further including an outlet through a filtering means, the outlet connected to a detection chamber, the detection chamber having an inlet from a fluorescence promoting metal chamber and the detection chamber including a spectral excitation source and a means of measuring emission spectra from a sample, the detection chamber further connected to a waste chamber. A germination reaction mixture useful for promoting commitment of any viable bacterial spores in a sample including a combination of L-alanine, L-asparagine and D-glucose is also described.

  7. Conversion of xylan by recyclable spores of Bacillus subtilis displaying thermophilic enzymes.

    PubMed

    Mattossovich, Rosanna; Iacono, Roberta; Cangiano, Giuseppina; Cobucci-Ponzano, Beatrice; Isticato, Rachele; Moracci, Marco; Ricca, Ezio

    2017-11-28

    The Bacillus subtilis spore has long been used to display antigens and enzymes. Spore display can be accomplished by a recombinant and a non-recombinant approach, with the latter proved more efficient than the recombinant one. We used the non-recombinant approach to independently adsorb two thermophilic enzymes, GH10-XA, an endo-1,4-β-xylanase (EC 3.2.1.8) from Alicyclobacillus acidocaldarius, and GH3-XT, a β-xylosidase (EC 3.2.1.37) from Thermotoga thermarum. These enzymes catalyze, respectively, the endohydrolysis of (1-4)-β-D-xylosidic linkages of xylans and the hydrolysis of (1-4)-β-D-xylans to remove successive D-xylose residues from the non-reducing termini. We report that both purified enzymes were independently adsorbed on purified spores of B. subtilis. The adsorption was tight and both enzymes retained part of their specific activity. When spores displaying either GH10-XA or GH3-XT were mixed together, xylan was hydrolysed more efficiently than by a mixture of the two free, not spore-adsorbed, enzymes. The high total activity of the spore-bound enzymes is most likely due to a stabilization of the enzymes that, upon adsorption on the spore, remained active at the reaction conditions for longer than the free enzymes. Spore-adsorbed enzymes, collected after the two-step reaction and incubated with fresh substrate, were still active and able to continue xylan degradation. The recycling of the mixed spore-bound enzymes allowed a strong increase of xylan degradation. Our results indicate that the two-step degradation of xylans can be accomplished by mixing spores displaying either one of two required enzymes. The two-step process occurs more efficiently than with the two un-adsorbed, free enzymes and adsorbed spores can be reused for at least one other reaction round. The efficiency of the process, the reusability of the adsorbed enzymes, and the well documented robustness of spores of B. subtilis indicate the spore as a suitable platform to display enzymes

  8. Chemical and Stress Resistances of Clostridium difficile Spores and Vegetative Cells

    PubMed Central

    Edwards, Adrianne N.; Karim, Samiha T.; Pascual, Ricardo A.; Jowhar, Lina M.; Anderson, Sarah E.; McBride, Shonna M.

    2016-01-01

    Clostridium difficile is a Gram-positive, sporogenic and anaerobic bacterium that causes a potentially fatal colitis. C. difficile enters the body as dormant spores that germinate in the colon to form vegetative cells that secrete toxins and cause the symptoms of infection. During transit through the intestine, some vegetative cells transform into spores, which are more resistant to killing by environmental insults than the vegetative cells. Understanding the inherent resistance properties of the vegetative and spore forms of C. difficile is imperative for the development of methods to target and destroy the bacterium. The objective of this study was to define the chemical and environmental resistance properties of C. difficile vegetative cells and spores. We examined vegetative cell and spore tolerances of three C. difficile strains, including 630Δerm, a 012 ribotype and a derivative of a past epidemic strain; R20291, a 027 ribotype and current epidemic strain; and 5325, a clinical isolate that is a 078 ribotype. All isolates were tested for tolerance to ethanol, oxygen, hydrogen peroxide, butanol, chloroform, heat and sodium hypochlorite (household bleach). Our results indicate that 630Δerm vegetative cells (630 spo0A) are more resistant to oxidative stress than those of R20291 (R20291 spo0A) and 5325 (5325 spo0A). In addition, 5325 spo0A vegetative cells exhibited greater resistance to organic solvents. In contrast, 630Δerm spores were more sensitive than R20291 or 5325 spores to butanol. Spores from all three strains exhibited high levels of resistance to ethanol, hydrogen peroxide, chloroform and heat, although R20291 spores were more resistant to temperatures in the range of 60–75°C. Finally, household bleach served as the only chemical reagent tested that consistently reduced C. difficile vegetative cells and spores of all tested strains. These findings establish conditions that result in vegetative cell and spore elimination and illustrate the

  9. Relation of indoor and outdoor airborne fungal spore levels in the Kansas City metropolitan area.

    PubMed

    Jara, David; Portnoy, Jay; Dhar, Minati; Barnes, Charles

    2017-03-01

    Environmental control is an important component of asthma management for persons with asthma. A damp indoor environment and elevated airborne spore levels are factors in housing environmental control. We investigated if indoor airborne fungal spore levels correlated with outdoor ground-level airborne fungal spores or outdoor centrally collected spore levels as to types and abundance. Air collections were taken from home interiors, outdoor areas adjacent to the homes, and at a central location in the metropolitan area at the approximate same time. All air collections were examined and enumerated microscopically, and airborne spore estimates per cubic meter of air were reported for total fungal spores and for 11 identifiable spore groups. The 244 homes in the study were typical of the North American Midwest. The overall mean total spore counts in spores per cubic meter of air was indoors (4076 spores/m3), outdoors at ground level (8899 spores/m3), and outdoor metropolitan area (8342 spores/m3). All of the major indoor taxa were strongly correlated with the mean total spores present in the home. Total outdoor ground spore levels were highly correlated with levels of major outdoor taxa, such as ascospores and Cladosporium. Correlations of indoor spore levels with outdoor spore levels are strong for most major outdoor taxa. Indoor Aspergillus-Penicillium and Chaetomium are significantly correlated between indoor and local ground-level outdoor air. Although conditions may exist where indoor or outdoor spore levels were not well aligned, in most circumstances, the outdoor airborne spore community was reflected in the indoor airborne spore community.

  10. Spore populations among bulk tank raw milk and dairy powders are significantly different.

    PubMed

    Miller, Rachel A; Kent, David J; Watterson, Matthew J; Boor, Kathryn J; Martin, Nicole H; Wiedmann, Martin

    2015-12-01

    To accommodate stringent spore limits mandated for the export of dairy powders, a more thorough understanding of the spore species present will be necessary to develop prospective strategies to identify and reduce sources (i.e., raw materials or in-plant) of contamination. We characterized 1,523 spore isolates obtained from bulk tank raw milk (n=33 farms) and samples collected from 4 different dairy powder-processing plants producing acid whey, nonfat dry milk, sweet whey, or whey protein concentrate 80. The spores isolated comprised 12 genera, at least 44 species, and 216 rpoB allelic types. Bacillus and Geobacillus represented the most commonly isolated spore genera (approximately 68.9 and 12.1%, respectively, of all spore isolates). Whereas Bacillus licheniformis was isolated from samples collected from all plants and farms, Geobacillus spp. were isolated from samples from 3 out of 4 plants and just 1 out of 33 farms. We found significant differences between the spore population isolated from bulk tank raw milk and those isolated from dairy powder plant samples, except samples from the plant producing acid whey. A comparison of spore species isolated from raw materials and finished powders showed that although certain species, such as B. licheniformis, were found in both raw and finished product samples, other species, such as Geobacillus spp. and Anoxybacillus spp., were more frequently isolated from finished powders. Importantly, we found that 8 out of 12 genera were isolated from at least 2 different spore count methods, suggesting that some spore count methods may provide redundant information if used in parallel. Together, our results suggest that (1) Bacillus and Geobacillus are the predominant spore contaminants in a variety of dairy powders, implying that future research efforts targeted at elucidating approaches to reduce levels of spores in dairy powders should focus on controlling levels of spore isolates from these genera; and (2) the spore

  11. Characterization of Clostridium difficile Spores Lacking Either SpoVAC or Dipicolinic Acid Synthetase

    PubMed Central

    Donnelly, M. Lauren; Fimlaid, Kelly A.

    2016-01-01

    ABSTRACT The spore-forming obligate anaerobe Clostridium difficile is a leading cause of antibiotic-associated diarrhea around the world. In order for C. difficile to cause infection, its metabolically dormant spores must germinate in the gastrointestinal tract. During germination, spores degrade their protective cortex peptidoglycan layers, release dipicolinic acid (DPA), and hydrate their cores. In C. difficile, cortex hydrolysis is necessary for DPA release, whereas in Bacillus subtilis, DPA release is necessary for cortex hydrolysis. Given this difference, we tested whether DPA synthesis and/or release was required for C. difficile spore germination by constructing mutations in either spoVAC or dpaAB, which encode an ion channel predicted to transport DPA into the forespore and the enzyme complex predicted to synthesize DPA, respectively. C. difficile spoVAC and dpaAB mutant spores lacked DPA but could be stably purified and were more hydrated than wild-type spores; in contrast, B. subtilis spoVAC and dpaAB mutant spores were unstable. Although C. difficile spoVAC and dpaAB mutant spores exhibited wild-type germination responses, they were more readily killed by wet heat. Cortex hydrolysis was not affected by this treatment, indicating that wet heat inhibits a stage downstream of this event. Interestingly, C. difficile spoVAC mutant spores were significantly more sensitive to heat treatment than dpaAB mutant spores, indicating that SpoVAC plays additional roles in conferring heat resistance. Taken together, our results demonstrate that SpoVAC and DPA synthetase control C. difficile spore resistance and reveal differential requirements for these proteins among the Firmicutes. IMPORTANCE Clostridium difficile is a spore-forming obligate anaerobe that causes ∼500,000 infections per year in the United States. Although spore germination is essential for C. difficile to cause disease, the factors required for this process have been only partially characterized

  12. Fungal spore concentrations in indoor and outdoor air in university libraries, and their variations in response to changes in meteorological variables.

    PubMed

    Flores, María Elena Báez; Medina, Pável Gaxiola; Camacho, Sylvia Páz Díaz; de Jesús Uribe Beltrán, Magdalena; De la Cruz Otero, María del Carmen; Ramírez, Ignacio Osuna; Hernández, Martín Ernesto Tiznado

    2014-08-01

    The fungal spore concentration (FSC) in the air poses a risk for human health. This work studied the FSC in university libraries and how it is affected by environmental factors. A total of 347 samples were obtained using a Microbio MB2(®) Aerosol Sampler. The wind speed (WS), cross wind (CW), temperature (T), relative humidity (HR), barometric pressure (BP) and dew point (DP) were recorded using a Kestrel(®) 4500 weather station. The median indoor/outdoor FSC was 360/1230 CFU m(-3). FSC correlated inversely with BP, HR and DP; and positively with WS and CW; whereas T showed negative or positive correlation with FSC, depending on the region or sampling time. Eleven fungal genera were found and the dominant isolates were identified as Aspergillus niger, Aspergillus tamarii and Aspergillus oryzae. All fungi identified are known to be allergenic. It was concluded that environmental variables can influence the air FSC in different ways.

  13. Measuring spore settling velocity for an improved assessment of dispersal rates in mosses

    PubMed Central

    Zanatta, Florian; Patiño, Jairo; Lebeau, Frederic; Massinon, Mathieu; Hylander, Kristofer; de Haan, Myriam; Ballings, Petra; Degreef, Jerôme; Vanderpoorten, Alain

    2016-01-01

    Background and Aims The settling velocity of diaspores is a key parameter for the measurement of dispersal ability in wind-dispersed plants and one of the most relevant parameters in explicit dispersal models, but remains largely undocumented in bryophytes. The settling velocities of moss spores were measured and it was determined whether settling velocities can be derived from spore diameter using Stokes’ Law or if specific traits of spore ornamentation cause departures from theoretical expectations. Methods A fall tower design combined with a high-speed camera was used to document spore settling velocities in nine moss species selected to cover the range of spore diameters within the group. Linear mixed effect models were employed to determine whether settling velocity can be predicted from spore diameter, taking specific variation in shape and surface roughness into account. Key Results Average settling velocity of moss spores ranged from 0·49 to 8·52 cm s–1. There was a significant positive relationship between spore settling velocity and size, but the inclusion of variables of shape and texture of spores in the best-fit models provides evidence for their role in shaping spore settling velocities. Conclusions Settling velocities in mosses can significantly depart from expectations derived from Stokes’ Law. We suggest that variation in spore shape and ornamentation affects the balance between density and drag, and results in different dispersal capacities, which may be correlated with different life-history traits or ecological requirements. Further studies on spore ultrastructure would be necessary to determine the role of complex spore ornamentation patterns in the drag-to-mass ratio and ultimately identify what is the still poorly understood function of the striking and highly variable ornamentation patterns of the perine layer on moss spores. PMID:27296133

  14. Architecture and assembly of the Bacillus subtilis spore coat.

    PubMed

    Plomp, Marco; Carroll, Alicia Monroe; Setlow, Peter; Malkin, Alexander J

    2014-01-01

    Bacillus spores are encased in a multilayer, proteinaceous self-assembled coat structure that assists in protecting the bacterial genome from stresses and consists of at least 70 proteins. The elucidation of Bacillus spore coat assembly, architecture, and function is critical to determining mechanisms of spore pathogenesis, environmental resistance, immune response, and physicochemical properties. Recently, genetic, biochemical and microscopy methods have provided new insight into spore coat architecture, assembly, structure and function. However, detailed spore coat architecture and assembly, comprehensive understanding of the proteomic composition of coat layers, and specific roles of coat proteins in coat assembly and their precise localization within the coat remain in question. In this study, atomic force microscopy was used to probe the coat structure of Bacillus subtilis wild type and cotA, cotB, safA, cotH, cotO, cotE, gerE, and cotE gerE spores. This approach provided high-resolution visualization of the various spore coat structures, new insight into the function of specific coat proteins, and enabled the development of a detailed model of spore coat architecture. This model is consistent with a recently reported four-layer coat assembly and further adds several coat layers not reported previously. The coat is organized starting from the outside into an outermost amorphous (crust) layer, a rodlet layer, a honeycomb layer, a fibrous layer, a layer of "nanodot" particles, a multilayer assembly, and finally the undercoat/basement layer. We propose that the assembly of the previously unreported fibrous layer, which we link to the darkly stained outer coat seen by electron microscopy, and the nanodot layer are cotH- and cotE- dependent and cotE-specific respectively. We further propose that the inner coat multilayer structure is crystalline with its apparent two-dimensional (2D) nuclei being the first example of a non-mineral 2D nucleation crystallization

  15. Architecture and Assembly of the Bacillus subtilis Spore Coat

    PubMed Central

    Plomp, Marco; Carroll, Alicia Monroe; Setlow, Peter; Malkin, Alexander J.

    2014-01-01

    Bacillus spores are encased in a multilayer, proteinaceous self-assembled coat structure that assists in protecting the bacterial genome from stresses and consists of at least 70 proteins. The elucidation of Bacillus spore coat assembly, architecture, and function is critical to determining mechanisms of spore pathogenesis, environmental resistance, immune response, and physicochemical properties. Recently, genetic, biochemical and microscopy methods have provided new insight into spore coat architecture, assembly, structure and function. However, detailed spore coat architecture and assembly, comprehensive understanding of the proteomic composition of coat layers, and specific roles of coat proteins in coat assembly and their precise localization within the coat remain in question. In this study, atomic force microscopy was used to probe the coat structure of Bacillus subtilis wild type and cotA, cotB, safA, cotH, cotO, cotE, gerE, and cotE gerE spores. This approach provided high-resolution visualization of the various spore coat structures, new insight into the function of specific coat proteins, and enabled the development of a detailed model of spore coat architecture. This model is consistent with a recently reported four-layer coat assembly and further adds several coat layers not reported previously. The coat is organized starting from the outside into an outermost amorphous (crust) layer, a rodlet layer, a honeycomb layer, a fibrous layer, a layer of “nanodot” particles, a multilayer assembly, and finally the undercoat/basement layer. We propose that the assembly of the previously unreported fibrous layer, which we link to the darkly stained outer coat seen by electron microscopy, and the nanodot layer are cotH- and cotE- dependent and cotE-specific respectively. We further propose that the inner coat multilayer structure is crystalline with its apparent two-dimensional (2D) nuclei being the first example of a non-mineral 2D nucleation crystallization

  16. Reversible Inhibition of Spore Germination by Alcohols 1

    PubMed Central

    Trujillo, Ralph; Laible, Nancy

    1970-01-01

    Low levels of alcohols have been found to inhibit the process of spore germination. The extent of germination is dependent upon the concentration of alcohol present in the germinating medium. This inhibition is reversible since removal of the alcohol from the spore environment allows germination to proceed. PMID:4993360

  17. Germination of Spores of Astrobiologically Relevant Bacillus Species in High-Salinity Environments.

    PubMed

    Nagler, Katja; Julius, Christina; Moeller, Ralf

    2016-07-01

    In times of increasing space exploration and search for extraterrestrial life, new questions and challenges for planetary protection, aiming to avoid forward contamination of different planets or moons with terrestrial life, are emerging. Spore-forming bacteria such as Bacillus species have a high contamination potential due to their spores' extreme resistance, enabling them to withstand space conditions. Spores require liquid water for their conversion into a growing cell (i.e., spore germination and subsequent growth). If present, water on extraterrestrial planets or moons is likely to be closely associated with salts (e.g., in salty oceans or brines), thus constituting high-salinity environments. Spores of Bacillus subtilis can germinate despite very high salt concentrations, although salt stress does exert negative effects on this process. In this study, germination and metabolic reactivation ("outgrowth") of spores of five astrobiologically relevant Bacillus species (B. megaterium, B. pumilus SAFR-032, B. nealsonii, B. mojavensis, and B. vallismortis) in high salinity (≤3.6 M NaCl) were investigated. Spores of different species exhibited different germination and outgrowth capabilities in high salinity, which strongly depended on germination conditions, especially the exact composition of the medium. In this context, a new "universal" germination trigger for Bacillus spores, named KAGE (KCl, L-alanine, D-glucose, ectoine), was identified, which will be very useful for future comparative germination and outgrowth studies on different Bacillus species. Overall, this study yielded interesting new insights on salt stress effects on spore germination and points out the difficulty of predicting the potential of spores to contaminate salty environments on extraterrestrial celestial bodies. Bacillus species-Spores-Germination-High salinity-Salt stress-NaCl-Inhibition. Astrobiology 16, 500-512.

  18. Role of YpeB in Cortex Hydrolysis during Germination of Bacillus anthracis Spores

    PubMed Central

    Bernhards, Casey B.

    2014-01-01

    The infectious agent of the disease anthrax is the spore of Bacillus anthracis. Bacterial spores are extremely resistant to environmental stresses, which greatly hinders spore decontamination efforts. The spore cortex, a thick layer of modified peptidoglycan, contributes to spore dormancy and resistance by maintaining the low water content of the spore core. The cortex is degraded by germination-specific lytic enzymes (GSLEs) during spore germination, rendering the cells vulnerable to common disinfection techniques. This study investigates the relationship between SleB, a GSLE in B. anthracis, and YpeB, a protein necessary for SleB stability and function. The results indicate that ΔsleB and ΔypeB spores exhibit similar germination phenotypes and that the two proteins have a strict codependency for their incorporation into the dormant spore. In the absence of its partner protein, SleB or YpeB is proteolytically degraded soon after expression during sporulation, rather than escaping the developing spore. The three PepSY domains of YpeB were examined for their roles in the interaction with SleB. YpeB truncation mutants illustrate the necessity of a region beyond the first PepSY domain for SleB stability. Furthermore, site-directed mutagenesis of highly conserved residues within the PepSY domains resulted in germination defects corresponding to reduced levels of both SleB and YpeB in the mutant spores. These results identify residues involved in the stability of both proteins and reiterate their codependent relationship. It is hoped that the study of GSLEs and interacting proteins will lead to the use of GSLEs as targets for efficient activation of spore germination and facilitation of spore cleanup. PMID:25022853

  19. Chemical Sensitization of Clostridium botulinum Spores to Radiation in Meat1

    PubMed Central

    Krabbenhoft, K. L.; Corlett, D. A.; Anderson, A. W.; Elliker, P. R.

    1964-01-01

    Beef ground round inoculated with 1,000,000 spores of Clostridium botulinum 33-A per gram and containing various additives was exposed to gamma radiation. Spores were inactivated in samples (irradiated at 2.0, 2.5, and 3.0 Mrad) which contained sodium nitrate (1,000 ppm) plus sodium chloride (2.5%). Similar results were obtained when sodium nitrite (200 ppm) was substituted for sodium nitrate, except that there was evidence of spore survival in 1 of 120 cans irradiated at 2.0 Mrad. Spore destruction was based upon the absence of spores and mouse-lethal toxin in meat subcultures made from cans incubated at 35 C for 120 days. Spores were not destroyed when exposed to 2.5 or 3.0 Mrad in the absence of sodium nitrate, sodium nitrite, or sodium chloride. Furthermore, the use of these chemicals individually, together with radiation, was ineffective. The additives alone in the absence of radiation also did not cause spore destruction. Radiation levels of 2.0, 2.5, and 3.0 Mrad, when used with sodium chloride at 1.5 or 2.0% and sodium nitrate at 500 ppm or sodium nitrite at 100 ppm, were ineffective. PMID:14215973

  20. Residual Agar Determination in Bacterial Spores by Electrospray Ionization Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahl, Karen L.; Colburn, Heather A.; Wunschel, David S.

    2010-02-15

    Presented here is an analytical method to detect residual agar from a bacterial spore sample as an indication of culturing on an agar plate. This method is based on the resolubilization of agar polysaccharide from a bacterial spore sample, enzymatic digestion, followed by electrospray ionization tandem mass spectrometry (ESI-MSn) analysis for detection of a specific agar fragment ion. A range of Bacillus species and strains were selected to demonstrate the effectiveness of this approach. The characteristic agar fragment ion was detected in the spores grown on agar that were washed from 1 to 5 times, irradiated or non-irradiated and notmore » in the spores grown in broth. A sample containing approximately 108 spores is currently needed for confident detection of residual agar from culture on agar plates in the presence of bacterial spores with a limit of detection of approximately 1 ppm agar spiked into a broth-grown spore sample. The results of a proficiency test with 42 blinded samples are presented demonstrating the utility of this method with no false positives and only 3 false negatives for samples that were below the detection level of the method as documented.« less

  1. Quantification of Nonproteolytic Clostridium botulinum Spore Loads in Food Materials.

    PubMed

    Barker, Gary C; Malakar, Pradeep K; Plowman, June; Peck, Michael W

    2016-01-04

    We have produced data and developed analysis to build representations for the concentration of spores of nonproteolytic Clostridium botulinum in materials that are used during the manufacture of minimally processed chilled foods in the United Kingdom. Food materials are categorized into homogenous groups which include meat, fish, shellfish, cereals, fresh plant material, dairy liquid, dairy nonliquid, mushroom and fungi, and dried herbs and spices. Models are constructed in a Bayesian framework and represent a combination of information from a literature survey of spore loads from positive-control experiments that establish a detection limit and from dedicated microbiological tests for real food materials. The detection of nonproteolytic C. botulinum employed an optimized protocol that combines selective enrichment culture with multiplex PCR, and the majority of tests on food materials were negative. Posterior beliefs about spore loads center on a concentration range of 1 to 10 spores kg(-1). Posterior beliefs for larger spore loads were most significant for dried herbs and spices and were most sensitive to the detailed results from control experiments. Probability distributions for spore loads are represented in a convenient form that can be used for numerical analysis and risk assessments. Copyright © 2016 Barker et al.

  2. Permeability of bacterial spores. IV. Water content, uptake, and distribution.

    PubMed

    BLACK, S H; GERHARDT, P

    1962-05-01

    Black, S. H. (The University of Michigan, Ann Arbor) and Philipp Gerhardt. Permeability of bacterial spores. IV. Water content, uptake, and distribution. J. Bacteriol. 83:960-967. 1962.-Dormant and germinated spores of Bacillus cereus strain terminalis were examined for water properties. Respectively, they exhibited a mean density of 1.28 and 1.11 g/ml, a water content of 64.8 and 73.0%, and a total water uptake of 66.6 and 75.6%, based on spore weight, or 86.0 and 83.9%, based on spore volume. The results confirmed a previous report that internal and external water are in virtually complete equilibrium, but refuted a prevailing hypothesis that heat resistance is attributable to a dry core. A model of spore ultrastructure that evolved from the cumulative results pictures a moist, dense, heteroporous core. A new hypothesis is formulated as an explanation for thermostability in spores and possibly in other instances; it postulates the occurrence of an insolubly gelled core with cross-linking between macromolecules through stable but reversible bonds so as to form a high-polymer matrix with entrapped free water.

  3. Quantification of Nonproteolytic Clostridium botulinum Spore Loads in Food Materials

    PubMed Central

    Barker, Gary C.; Malakar, Pradeep K.; Plowman, June

    2016-01-01

    We have produced data and developed analysis to build representations for the concentration of spores of nonproteolytic Clostridium botulinum in materials that are used during the manufacture of minimally processed chilled foods in the United Kingdom. Food materials are categorized into homogenous groups which include meat, fish, shellfish, cereals, fresh plant material, dairy liquid, dairy nonliquid, mushroom and fungi, and dried herbs and spices. Models are constructed in a Bayesian framework and represent a combination of information from a literature survey of spore loads from positive-control experiments that establish a detection limit and from dedicated microbiological tests for real food materials. The detection of nonproteolytic C. botulinum employed an optimized protocol that combines selective enrichment culture with multiplex PCR, and the majority of tests on food materials were negative. Posterior beliefs about spore loads center on a concentration range of 1 to 10 spores kg−1. Posterior beliefs for larger spore loads were most significant for dried herbs and spices and were most sensitive to the detailed results from control experiments. Probability distributions for spore loads are represented in a convenient form that can be used for numerical analysis and risk assessments. PMID:26729721

  4. Dipicolinic Acid Release by Germinating Clostridium difficile Spores Occurs through a Mechanosensing Mechanism.

    PubMed

    Francis, Michael B; Sorg, Joseph A

    2016-01-01

    Classically, dormant endospores are defined by their resistance properties, particularly their resistance to heat. Much of the heat resistance is due to the large amount of dipicolinic acid (DPA) stored within the spore core. During spore germination, DPA is released and allows for rehydration of the otherwise-dehydrated core. In Bacillus subtilis , 7 proteins are encoded by the spoVA operon and are important for DPA release. These proteins receive a signal from the activated germinant receptor and release DPA. This DPA activates the cortex lytic enzyme CwlJ, and cortex degradation begins. In Clostridium difficile , spore germination is initiated in response to certain bile acids and amino acids. These bile acids interact with the CspC germinant receptor, which then transfers the signal to the CspB protease. Activated CspB cleaves the cortex lytic enzyme, pro-SleC, to its active form. Subsequently, DPA is released from the core. C. difficile encodes orthologues of spoVAC , spoVAD , and spoVAE . Of these, the B. subtilis SpoVAC protein was shown to be capable of mechanosensing. Because cortex degradation precedes DPA release during C. difficile spore germination (opposite of what occurs in B. subtilis ), we hypothesized that cortex degradation would relieve the osmotic constraints placed on the inner spore membrane and permit DPA release. Here, we assayed germination in the presence of osmolytes, and we found that they can delay DPA release from germinating C. difficile spores while still permitting cortex degradation. Together, our results suggest that DPA release during C. difficile spore germination occurs though a mechanosensing mechanism. IMPORTANCE Clostridium difficile is transmitted between hosts in the form of a dormant spore, and germination by C. difficile spores is required to initiate infection, because the toxins that are necessary for disease are not deposited on the spore form. Importantly, the C. difficile spore germination pathway

  5. The distribution of Paenibacillus larvae spores in adult bees and honey and larval mortality, following the addition of American foulbrood diseased brood or spore-contaminated honey in honey bee (Apis mellifera) colonies.

    PubMed

    Lindström, Anders; Korpela, Seppo; Fries, Ingemar

    2008-09-01

    Within colony transmission of Paenibacillus larvae spores was studied by giving spore-contaminated honey comb or comb containing 100 larvae killed by American foulbrood to five experimental colonies respectively. We registered the impact of the two treatments on P. larvae spore loads in adult bees and honey and on larval mortality by culturing for spores in samples of adult bees and honey, respectively, and by measuring larval survival. The results demonstrate a direct effect of treatment on spore levels in adult bees and honey as well as on larval mortality. Colonies treated with dead larvae showed immediate high spore levels in adult bee samples, while the colonies treated with contaminated honey showed a comparable spore load but the effect was delayed until the bees started to utilize the honey at the end of the flight season. During the winter there was a build up of spores in the adult bees, which may increase the risk for infection in spring. The results confirm that contaminated honey can act as an environmental reservoir of P. larvae spores and suggest that less spores may be needed in honey, compared to in diseased brood, to produce clinically diseased colonies. The spore load in adult bee samples was significantly related to larval mortality but the spore load of honey samples was not.

  6. A Climate Trend Analysis of Niger

    USGS Publications Warehouse

    Funk, Christopher C.; Rowland, Jim; Eilerts, Gary; Adoum, Alkhalil; White, Libby

    2012-01-01

    This brief report, drawing from a multi-year effort by the U.S. Agency for International Development (USAID) Famine Early Warning Systems Network (FEWS NET), identifies a substantial recovery of rainfall in Niger, accompanied by increases in air temperatures. These analyses are based on quality-controlled station observations. Conclusions: * Summer rains have increased during the past 20 years and have almost returned to 1960-89 levels. * Temperatures have increased by 0.6° Celsius since 1975, amplifying the effect of droughts. * Crop yields are very low and stagnant, and the population is growing very rapidly. * Niger has offset very rapid population growth with a large expansion of cultivated land. * If the expansion of farmland slows down, stagnant yields and population growth could lead to increased food insecurity.

  7. Antitumor effects and mechanisms of Ganoderma extracts and spores oil

    PubMed Central

    Chen, Chun; Li, Peng; Li, Ye; Yao, Guan; Xu, Jian-Hua

    2016-01-01

    Ganoderma lucidum is a popular herbal medicine used in China to promote health. Modern studies have disclosed that the active ingredients of Ganoderma can exhibit several effects, including antitumor effects and immunomodulation. The present study evaluated the antitumor effects of self-prepared Ganoderma extracts and spores oil, and investigated the possible underlying mechanisms by observing the effects of the extracts and oil on topoisomerases and the cell cycle. The results showed that Ganoderma extracts and spores oil presented dose-dependent inhibitory effects on tumor cells. The half maximal inhibitory concentration (IC50) values of Ganoderma extracts on HL60, K562 and SGC-7901 cells for 24 h were 0.44, 0.39 and 0.90 mg/ml, respectively; for Ganoderma spores oil, the IC50 values were 1.13, 2.27 and 6.29 mg/ml, respectively. In the in vivo study, the inhibitory rates of Ganoderma extracts (4 g/kg/d, intragastrically) on S180 and H22 cells were 39.1 and 44.6%, respectively, and for Ganoderma spores oil (1.2 g/kg/d, intragastrically) the inhibitory rates were 30.9 and 44.9%, respectively. Ganoderma extracts and spores oil inhibited the activities of topoisomerase I and II. Ganoderma spores oil was shown block the cell cycle at the transition between the G1 and S phases and induce a marked decrease in cyclin D1 levels in K562 cells, with no significant change in cyclin E level. These results suggest that the Ganoderma extracts and spores oil possessed antitumor effects in the in vitro and in vivo studies. The antitumor mechanisms of the extracts and spores oil were associated with inhibitory effects on topoisomerase I and II activities, and for Ganoderma spores oil, the antitumor effects may also be associated with decreased cyclin D1 levels, thus inducing G1 arrest in the cell cycle. PMID:27900038

  8. Single cell transcriptomics of neighboring hyphae of Aspergillus niger

    PubMed Central

    2011-01-01

    Single cell profiling was performed to assess differences in RNA accumulation in neighboring hyphae of the fungus Aspergillus niger. A protocol was developed to isolate and amplify RNA from single hyphae or parts thereof. Microarray analysis resulted in a present call for 4 to 7% of the A. niger genes, of which 12% showed heterogeneous RNA levels. These genes belonged to a wide range of gene categories. PMID:21816052

  9. Germination of Spores of Astrobiologically Relevant Bacillus Species in High-Salinity Environments

    NASA Astrophysics Data System (ADS)

    Nagler, Katja; Julius, Christina; Moeller, Ralf

    2016-07-01

    In times of increasing space exploration and search for extraterrestrial life, new questions and challenges for planetary protection, aiming to avoid forward contamination of different planets or moons with terrestrial life, are emerging. Spore-forming bacteria such as Bacillus species have a high contamination potential due to their spores' extreme resistance, enabling them to withstand space conditions. Spores require liquid water for their conversion into a growing cell (i.e., spore germination and subsequent growth). If present, water on extraterrestrial planets or moons is likely to be closely associated with salts (e.g., in salty oceans or brines), thus constituting high-salinity environments. Spores of Bacillus subtilis can germinate despite very high salt concentrations, although salt stress does exert negative effects on this process. In this study, germination and metabolic reactivation ("outgrowth") of spores of five astrobiologically relevant Bacillus species (B. megaterium, B. pumilus SAFR-032, B. nealsonii, B. mojavensis, and B. vallismortis) in high salinity (≤3.6 M NaCl) were investigated. Spores of different species exhibited different germination and outgrowth capabilities in high salinity, which strongly depended on germination conditions, especially the exact composition of the medium. In this context, a new "universal" germination trigger for Bacillus spores, named KAGE (KCl, L-alanine, D-glucose, ectoine), was identified, which will be very useful for future comparative germination and outgrowth studies on different Bacillus species. Overall, this study yielded interesting new insights on salt stress effects on spore germination and points out the difficulty of predicting the potential of spores to contaminate salty environments on extraterrestrial celestial bodies.

  10. Monitoring of Commitment, Blocking, and Continuation of Nutrient Germination of Individual Bacillus subtilis Spores

    PubMed Central

    Zhang, Pengfei; Liang, Jintao; Yi, Xuan; Setlow, Peter

    2014-01-01

    Short exposures of Bacillus spores to nutrient germinants can commit spores to germinate when germinants are removed or their binding to the spores' nutrient germinant receptors (GRs) is inhibited. Bacillus subtilis spores were exposed to germinants for various periods, followed by germinant removal to prevent further commitment. Release of spore dipicolinic acid (DPA) was then measured by differential interference contrast microscopy to monitor germination of multiple individual spores, and spores did not release DPA after 1 to 2 min of germinant exposure until ∼7 min after germinant removal. With longer germinant exposures, percentages of committed spores with times for completion of DPA release (Trelease) greater than the time of germinant removal (Tb) increased, while the time Tlag − Tb, where Tlag represents the time when rapid DPA release began, was decreased but rapid DPA release times (ΔTrelease = Trelease − Tlag) were increased; Factors affecting average Trelease values and the percentages of committed spores were germinant exposure time, germinant concentration, sporulation conditions, and spore heat activation, as previously shown for commitment of spore populations. Surprisingly, germination of spores given a 2nd short germinant exposure 30 to 45 min after a 1st exposure of the same duration was significantly higher than after the 1st exposure, but the number of spores that germinated in the 2nd germinant exposure decreased as the interval between germinant exposures increased up to 12 h. The latter results indicate that spores have some memory, albeit transient, of their previous exposure to nutrient germinants. PMID:24769693

  11. Mechanism of Bacillus subtilis spore inactivation by and resistance to supercritical CO2 plus peracetic acid.

    PubMed

    Setlow, B; Korza, G; Blatt, K M S; Fey, J P; Setlow, P

    2016-01-01

    Determine how supercritical CO2 (scCO2 ) plus peracetic acid (PAA) inactivates Bacillus subtilis spores, factors important in spore resistance to scCO2 -PAA, and if spores inactivated by scCO2 -PAA are truly dead. Spores of wild-type B. subtilis and isogenic mutants lacking spore protective proteins were treated with scCO2 -PAA in liquid or dry at 35°C. Wild-type wet spores (aqueous suspension) were more susceptible than dry spores. Treated spores were examined for viability (and were truly dead), dipicolinic acid (DPA), mutations, permeability to nucleic acid stains, germination under different conditions, energy metabolism and outgrowth. ScCO2 -PAA-inactivated spores retained DPA, and survivors had no notable DNA damage. However, DPA was released from inactivated spores at a normally innocuous temperature (85°C), and colony formation from treated spores was salt sensitive. The inactivated spores germinated but did not outgrow, and these germinated spores had altered plasma membrane permeability and defective energy metabolism. Wet or dry coat-defective spores had increased scCO2 -PAA sensitivity, and dry spores but not wet spores lacking DNA protective proteins were more scCO2 -PAA sensitive. These findings suggest that scCO2 -PAA inactivates spores by damaging spores' inner membrane. The spore coat provided scCO2 -PAA resistance for both wet and dry spores. DNA protective proteins provided scCO2 -PAA resistance only for dry spores. These results provide information on mechanisms of spore inactivation of and resistance to scCO2 -PAA, an agent with increasing use in sterilization applications. © 2015 The Society for Applied Microbiology.

  12. 21 CFR 173.120 - Carbohydrase and cellulase derived from Aspergillus niger.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.120 Carbohydrase and cellulase derived from Aspergillus niger. Carbohydrase and cellulase enzyme preparation derived from... Aspergillus niger from the carbohydrase and cellulase enzyme product. (d) The additive is used or intended for...

  13. 21 CFR 173.120 - Carbohydrase and cellulase derived from Aspergillus niger.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.120 Carbohydrase and cellulase derived from Aspergillus niger. Carbohydrase and cellulase enzyme preparation derived from... Aspergillus niger from the carbohydrase and cellulase enzyme product. (d) The additive is used or intended for...

  14. 21 CFR 173.120 - Carbohydrase and cellulase derived from Aspergillus niger.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Enzyme Preparations and Microorganisms § 173.120 Carbohydrase and cellulase derived from Aspergillus niger. Carbohydrase and cellulase enzyme preparation derived from Aspergillus niger may be safely used... the carbohydrase and cellulase enzyme product. (d) The additive is used or intended for use as follows...

  15. 21 CFR 173.120 - Carbohydrase and cellulase derived from Aspergillus niger.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.120 Carbohydrase and cellulase derived from Aspergillus niger. Carbohydrase and cellulase enzyme preparation derived from... Aspergillus niger from the carbohydrase and cellulase enzyme product. (d) The additive is used or intended for...

  16. 21 CFR 173.120 - Carbohydrase and cellulase derived from Aspergillus niger.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.120 Carbohydrase and cellulase derived from Aspergillus niger. Carbohydrase and cellulase enzyme preparation derived from... Aspergillus niger from the carbohydrase and cellulase enzyme product. (d) The additive is used or intended for...

  17. Inactivation of Spores of Bacillus Species by Wet Heat: Studies on Single Spores Using Laser Tweezers Taman Spectroscopy

    DTIC Science & Technology

    2013-02-01

    a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. a...Applied and Environmental Microbiology, (08 2011): 0. doi: 10.1128/ AEM .05031-11 11/13/2011 21.00 J. Liu, J. R. Faeder, P. Setlow, X. Yi. Synergism...individual spores was measured by fluorescence emission , while changes in spore refractility and the level of CaDPA were monitored by phase contrast

  18. Aspergillus niger membrane-associated proteome analysis for the identification of glucose transporters.

    PubMed

    Sloothaak, J; Odoni, D I; de Graaff, L H; Martins Dos Santos, V A P; Schaap, P J; Tamayo-Ramos, J A

    2015-01-01

    The development of biological processes that replace the existing petrochemical-based industry is one of the biggest challenges in biotechnology. Aspergillus niger is one of the main industrial producers of lignocellulolytic enzymes, which are used in the conversion of lignocellulosic feedstocks into fermentable sugars. Both the hydrolytic enzymes responsible for lignocellulose depolymerisation and the molecular mechanisms controlling their expression have been well described, but little is known about the transport systems for sugar uptake in A. niger. Understanding the transportome of A. niger is essential to achieve further improvements at strain and process design level. Therefore, this study aims to identify and classify A. niger sugar transporters, using newly developed tools for in silico and in vivo analysis of its membrane-associated proteome. In the present research work, a hidden Markov model (HMM), that shows a good performance in the identification and segmentation of functionally validated glucose transporters, was constructed. The model (HMMgluT) was used to analyse the A. niger membrane-associated proteome response to high and low glucose concentrations at a low pH. By combining the abundance patterns of the proteins found in the A. niger plasmalemma proteome with their HMMgluT scores, two new putative high-affinity glucose transporters, denoted MstG and MstH, were identified. MstG and MstH were functionally validated and biochemically characterised by heterologous expression in a S. cerevisiae glucose transport null mutant. They were shown to be a high-affinity glucose transporter (K m = 0.5 ± 0.04 mM) and a very high-affinity glucose transporter (K m = 0.06 ± 0.005 mM), respectively. This study, focusing for the first time on the membrane-associated proteome of the industrially relevant organism A. niger, shows the global response of the transportome to the availability of different glucose concentrations. Analysis of the A. niger

  19. A Novel Protocol for Decoating and Permeabilizing Bacterial Spores for Epifluorescent Microscopy

    NASA Technical Reports Server (NTRS)

    LaDuc, Myron T.; Mohapatra, Bidyut

    2014-01-01

    Based on previously reported procedures for permeabilizing vegetative bacterial cells, and numerous trial-and-error attempts with bacterial endospores, a protocol was developed for effectively permeabilizing bacterial spores, which facilitated the applicability of fluorescent in situ hybridization (FISH) microscopy. Bacterial endospores were first purified from overgrown, sporulated suspensions of B. pumilus SAFR-032. Purified spores at a concentration of approx equals 10 million spores/mL then underwent proteinase-K treatment, in a solution of 468.5 µL of 100 mM Tris-HCl, 30 µL of 10% SDS, and 1.5 microL of 20 mg/mL proteinase-K for ten minutes at 35 ºC. Spores were then harvested by centrifugation (15,000 g for 15 minutes) and washed twice with sterile phosphate-buffered saline (PBS) solution. This washing process consisted of resuspending the spore pellets in 0.5 mL of PBS, vortexing momentarily, and harvesting again by centrifugation. Treated and washed spore pellets were then resuspended in 0.5 mL of decoating solution, which consisted of 4.8 g urea, 3 mL Milli-Q water, 1 mL 0.5M Tris, 1 mL 1M dithiothreitol (DTT), and 2 mL 10% sodium-dodecylsulfate (SDS), and were incubated at 65 ºC for 15 minutes while being shaken at 165 rpm. Decoated spores were then, once again, washed twice with sterile PBS, and subjected to lysozyme/mutanolysin treatment (7 mg/mL lysozyme and 7U mutanolysin) for 15 minutes at 35 C. Spores were again washed twice with sterile PBS, and spore pellets were resuspended in 1-mL of 2% SDS. This treatment, facilitating inner membrane permeabilization, lasted for ten minutes at room temperature. Permeabilized spores were washed two final times with PBS, and were resuspended in 200 mkcroL of sterile PBS. At this point, the spores were permeable and ready for downstream processing, such as oligonucleotideprobe infiltration, hybridization, and microscopic evaluation. FISH-microscopic imagery confirmed the effective and efficient (˜50

  20. HisB as novel selection marker for gene targeting approaches in Aspergillus niger.

    PubMed

    Fiedler, Markus R M; Gensheimer, Tarek; Kubisch, Christin; Meyer, Vera

    2017-03-08

    For Aspergillus niger, a broad set of auxotrophic and dominant resistance markers is available. However, only few offer targeted modification of a gene of interest into or at a genomic locus of choice, which hampers functional genomics studies. We thus aimed to extend the available set by generating a histidine auxotrophic strain with a characterized hisB locus for targeted gene integration and deletion in A. niger. A histidine-auxotrophic strain was established via disruption of the A. niger hisB gene by using the counterselectable pyrG marker. After curing, a hisB - , pyrG - strain was obtained, which served as recipient strain for further studies. We show here that both hisB orthologs from A. nidulans and A. niger can be used to reestablish histidine prototrophy in this recipient strain. Whereas the hisB gene from A. nidulans was suitable for efficient gene targeting at different loci in A. niger, the hisB gene from A. niger allowed efficient integration of a Tet-on driven luciferase reporter construct at the endogenous non-functional hisB locus. Subsequent analysis of the luciferase activity revealed that the hisB locus is tight under non-inducing conditions and allows even higher luciferase expression levels compared to the pyrG integration locus. Taken together, we provide here an alternative selection marker for A. niger, hisB, which allows efficient homologous integration rates as well as high expression levels which compare favorably to the well-established pyrG selection marker.

  1. Inactivation of Geobacillus stearothermophilus Spores by High-Pressure Carbon Dioxide Treatment

    PubMed Central

    Watanabe, Taisuke; Furukawa, Soichi; Hirata, Junichi; Koyama, Tetsuya; Ogihara, Hirokazu; Yamasaki, Makari

    2003-01-01

    High-pressure CO2 treatment has been studied as a promising method for inactivating bacterial spores. In the present study, we compared this method with other sterilization techniques, including heat and pressure treatment. Spores of Bacillus coagulans, Bacillus subtilis, Bacillus cereus, Bacillus licheniformis, and Geobacillus stearothermophilus were subjected to CO2 treatment at 30 MPa and 35°C, to high-hydrostatic-pressure treatment at 200 MPa and 65°C, or to heat treatment at 0.1 MPa and 85°C. All of the bacterial spores except the G. stearothermophilus spores were easily inactivated by the heat treatment. The highly heat- and pressure-resistant spores of G. stearothermophilus were not the most resistant to CO2 treatment. We also investigated the influence of temperature on CO2 inactivation of G. stearothermophilus. Treatment with CO2 and 30 MPa of pressure at 95°C for 120 min resulted in 5-log-order spore inactivation, whereas heat treatment at 95°C for 120 min and high-hydrostatic-pressure treatment at 30 MPa and 95°C for 120 min had little effect. The activation energy required for CO2 treatment of G. stearothermophilus spores was lower than the activation energy for heat or pressure treatment. Although heat was not necessary for inactivationby CO2 treatment of G. stearothermophilus spores, CO2 treatment at 95°C was more effective than treatment at 95°C alone. PMID:14660357

  2. Inactivation of Geobacillus stearothermophilus spores by high-pressure carbon dioxide treatment.

    PubMed

    Watanabe, Taisuke; Furukawa, Soichi; Hirata, Junichi; Koyama, Tetsuya; Ogihara, Hirokazu; Yamasaki, Makari

    2003-12-01

    High-pressure CO2 treatment has been studied as a promising method for inactivating bacterial spores. In the present study, we compared this method with other sterilization techniques, including heat and pressure treatment. Spores of Bacillus coagulans, Bacillus subtilis, Bacillus cereus, Bacillus licheniformis, and Geobacillus stearothermophilus were subjected to CO2 treatment at 30 MPa and 35 degrees C, to high-hydrostatic-pressure treatment at 200 MPa and 65 degrees C, or to heat treatment at 0.1 MPa and 85 degrees C. All of the bacterial spores except the G. stearothermophilus spores were easily inactivated by the heat treatment. The highly heat- and pressure-resistant spores of G. stearothermophilus were not the most resistant to CO2 treatment. We also investigated the influence of temperature on CO2 inactivation of G. stearothermophilus. Treatment with CO2 and 30 MPa of pressure at 95 degrees C for 120 min resulted in 5-log-order spore inactivation, whereas heat treatment at 95 degrees C for 120 min and high-hydrostatic-pressure treatment at 30 MPa and 95 degrees C for 120 min had little effect. The activation energy required for CO2 treatment of G. stearothermophilus spores was lower than the activation energy for heat or pressure treatment. Although heat was not necessary for inactivationby CO2 treatment of G. stearothermophilus spores, CO2 treatment at 95 degrees C was more effective than treatment at 95 degrees C alone.

  3. Detection of Bacillus spores using PCR and FTA filters.

    PubMed

    Lampel, Keith A; Dyer, Deanne; Kornegay, Leroy; Orlandi, Palmer A

    2004-05-01

    Emphasis has been placed on developing and implementing rapid detection systems for microbial pathogens. We have explored the utility of expanding FTA filter technology for the preparation of template DNA for PCR from bacterial spores. Isolated spores from several Bacillus spp., B. subtilis, B. cereus, and B. megaterium, were applied to FTA filters, and specific DNA products were amplified by PCR. Spore preparations were examined microscopically to ensure that the presence of vegetative cells, if any, did not yield misleading results. PCR primers SRM86 and SRM87 targeted a conserved region of bacterial rRNA genes, whereas primers Bsub5F and Bsub3R amplified a product from a conserved sequence of the B. subtilis rRNA gene. With the use of the latter set of primers for nested PCR, the sensitivity of the PCR-based assay was increased. Overall, 53 spores could be detected after the first round of PCR, and the sensitivity was increased to five spores by nested PCR. FTA filters are an excellent platform to remove PCR inhibitors and have universal applications for environmental, clinical, and food samples.

  4. Environmental Persistence of Bacillus anthracis and Bacillus subtilis Spores

    PubMed Central

    Wood, Joseph P.; Meyer, Kathryn M.; Kelly, Thomas J.; Choi, Young W.; Rogers, James V.; Riggs, Karen B.; Willenberg, Zachary J.

    2015-01-01

    There is a lack of data for how the viability of biological agents may degrade over time in different environments. In this study, experiments were conducted to determine the persistence of Bacillus anthracis and Bacillus subtilis spores on outdoor materials with and without exposure to simulated sunlight, using ultraviolet (UV)-A/B radiation. Spores were inoculated onto glass, wood, concrete, and topsoil and recovered after periods of 2, 14, 28, and 56 days. Recovery and inactivation kinetics for the two species were assessed for each surface material and UV exposure condition. Results suggest that with exposure to UV, decay of spore viability for both Bacillus species occurs in two phases, with an initial rapid decay, followed by a slower inactivation period. The exception was with topsoil, in which there was minimal loss of spore viability in soil over 56 days, with or without UV exposure. The greatest loss in viable spore recovery occurred on glass with UV exposure, with nearly a four log10 reduction after just two days. In most cases, B. subtilis had a slower rate of decay than B. anthracis, although less B. subtilis was recovered initially. PMID:26372011

  5. Scanning Surface Potential Microscopy of Spore Adhesion on Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ida; Chung, Eunhyea; Kweon, Hyojin

    2012-01-01

    The adhesion of spores of Bacillus anthracis - the cause of anthrax and a likely biological threat - to solid surfaces is an important consideration in cleanup after an accidental or deliberate release. However, because of safety concerns, directly studying B. anthracis spores with advanced instrumentation is problematic. As a first step, we are examining the electrostatic potential of Bacillus thuringiensis (Bt), which is a closely related species that is often used as a simulant to study B. anthracis. Scanning surface potential microscopy (SSPM), also known as Kelvin probe force microscopy (KPFM), was used to investigate the influence of relativemore » humidity (RH) on the surface electrostatic potential of Bt that had adhered to silica, mica, or gold substrates. AFM/SSPM side-by-side images were obtained separately in air, at various values of RH, after an aqueous droplet with spores was applied on each surface and allowed to dry before measurements. In the SSPM images, a negative potential on the surface of the spores was observed compared with that of the substrates. The surface potential decreased as the humidity increased. Spores were unable to adhere to a surface with an extremely negative potential, such as mica.« less

  6. Microorganisms as Analytical Indicators. Experimental Methods and Techniques,

    DTIC Science & Technology

    1980-01-01

    Representa- tives of the genera Bacillus, Micrococcus, Escherichia, Pseudomonas, Aspergillus , and Penicillium are most frequently encountered...necessary for synthesis of prodigiosin, and magnesium is required for synthesis of bacteriochlorophylls. A change in the color of aspergillus spores...mesentericus niger and Bac. subtilis niger as a function of the concentration of phosphonium salts in the nutrient medium. The degree of

  7. New amino acid germinants for spores of the enterotoxigenic Clostridium perfringens type A isolates.

    PubMed

    Udompijitkul, Pathima; Alnoman, Maryam; Banawas, Saeed; Paredes-Sabja, Daniel; Sarker, Mahfuzur R

    2014-12-01

    Clostridium perfringens spore germination plays a critical role in the pathogenesis of C. perfringens-associated food poisoning (FP) and non-food-borne (NFB) gastrointestinal diseases. Germination is initiated when bacterial spores sense specific nutrient germinants (such as amino acids) through germinant receptors (GRs). In this study, we aimed to identify and characterize amino acid germinants for spores of enterotoxigenic C. perfringens type A. The polar, uncharged amino acids at pH 6.0 efficiently induced germination of C. perfringens spores; L-asparagine, L-cysteine, L-serine, and L-threonine triggered germination of spores of most FP and NFB isolates; whereas, L-glutamine was a unique germinant for FP spores. For cysteine- or glutamine-induced germination, gerKC spores (spores of a gerKC mutant derivative of FP strain SM101) germinated to a significantly lower extent and released less DPA than wild type spores; however, a less defective germination phenotype was observed in gerAA or gerKB spores. The germination defects in gerKC spores were partially restored by complementing the gerKC mutant with a recombinant plasmid carrying wild-type gerKA-KC, indicating that GerKC is an essential GR protein. The gerKA, gerKC, and gerKB spores germinated significantly slower with L-serine and L-threonine than their parental strain, suggesting the requirement for these GR proteins for normal germination of C. perfringens spores. In summary, these results indicate that the polar, uncharged amino acids at pH 6.0 are effective germinants for spores of C. perfringens type A and that GerKC is the main GR protein for germination of spores of FP strain SM101 with L-cysteine, L-glutamine, and L-asparagine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Diatom resting spore ecology drives enhanced carbon export from a naturally iron-fertilized bloom in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Salter, Ian; Kemp, Alan E. S.; Moore, C. Mark; Lampitt, Richard S.; Wolff, George A.; Holtvoeth, Jens

    2012-03-01

    Southern Ocean Island systems sustain phytoplankton blooms induced by natural iron fertilization that are important for the uptake of atmospheric carbon dioxide and serve as analogues for past and future climate change. We present data on diatom flux assemblages and the biogeochemical properties of sinking particles to explain the enhanced particulate organic carbon (POC) export fluxes observed in response to natural iron supply in the Crozet Islands region (CROZeX). Moored deep-ocean sediment traps (>2000 m) were located beneath a naturally fertilized island bloom and beneath an adjacent High Nutrient Low Chlorophyll (HNLC) control site. Deep-ocean carbon flux from the naturally-fertilized bloom area was tightly correlated (R = 0.83, n = 12, P < 0.0006) with the resting spore flux of a single island-associated diatom species,Eucampia antarctica var. antarctica. The unusually well preserved state of the Eucampia-associated carbon flux, determined by amino acid studies of organic matter degradation, was likely influenced by their ecology, since diatom resting spores are adapted to settle rapidly out of the surface ocean preserving viable cells. The naturally fertilized bloom enhanced carbon flux and the resulting Si/C and Si/N ratios were 2.0-3.4-fold and 2.2-3.5-fold lower than those measured in the adjacent HNLC control area. The enhanced carbon export and distinctive stoichiometry observed in naturally fertilized systems is therefore largely not attributable to iron relief of open ocean diatoms, but rather to the advection and growth of diatom species characteristic of island systems and the subsequent flux of resting spores. Carbon export estimates from current natural iron fertilization studies therefore represent a highly specific response of the island systems chosen as natural laboratories and may not be appropriate analogues for the larger Southern Ocean response. The broader implications of our results emphasize the role of phytoplankton diversity and

  9. Influence of food matrix on outgrowth heterogeneity of heat damaged Bacillus cereus spores.

    PubMed

    Warda, Alicja K; den Besten, Heidy M W; Sha, Na; Abee, Tjakko; Nierop Groot, Masja N

    2015-05-18

    Spoilage of heat treated foods can be caused by the presence of surviving spore-formers. It is virtually impossible to prevent contamination at the primary production level as spores are ubiquitous present in the environment and can contaminate raw products. As a result spore inactivation treatments are widely used by food producing industries to reduce the microbial spore loads. However consumers prefer mildly processed products that have less impact on its quality and this trend steers industry towards milder preservation treatments. Such treatments may result in damaged instead of inactivated spores, and these spores may germinate, repair, and grow out, possibly leading to quality and safety issues. The ability to repair and grow out is influenced by the properties of the food matrix. In the current communication we studied the outgrowth from heat damaged Bacillus cereus ATCC 14579 spores on Anopore membrane, which allowed following outgrowth heterogeneity of individual spores on broccoli and rice-based media as well as standard and mildly acidified (pH 5.5) meat-based BHI. Rice, broccoli and BHI pH 5.5 media resulted in delayed outgrowth from untreated spores, and increased heterogeneity compared to BHI pH 7.4, with the most pronounced effect in rice media. Exposure to wet heat for 1 min at 95 °C caused 2 log inactivation and approximately 95% of the spores in the surviving fraction were damaged resulting in substantial delay in outgrowth based on the time required to reach a maximum microcolony size of 256 cells. The delay was most pronounced for heat-treated spores on broccoli medium followed by spores on rice media (both untreated and treated). Interestingly, the increase in outgrowth heterogeneity of heat treated spores on BHI pH 7.4 was more pronounced than on rice, broccoli and BHI pH 5.5 conceivably reflecting that conditions in BHI pH 7.4 better support spore damage repair. This study compares the effects of three main factors, namely heat treatment, p

  10. Mechanism of Bacillus subtilis Spore Inactivation by and Resistance to Supercritical CO2 plus Peracetic Acid

    PubMed Central

    Setlow, Barbara; Korza, George; Blatt, Kelly M.S.; Fey, Julien P.; Setlow, Peter

    2015-01-01

    Aims Determine how supercritical CO2 (scCO2) plus peracetic acid (PAA) inactivates Bacillus subtilis spores, factors important in spore resistance to scCO2-PAA, and if spores inactivated by scCO2-PAA are truly dead. Methods and Results Spores of wild-type B. subtilis and isogenic mutants lacking spore protective proteins were treated with scCO2-PAA in liquid or dry at 35°C. Wild-type wet spores (aqueous suspension) were more susceptible than dry spores. Treated spores were examined for viability (and were truly dead), dipicolinic acid (DPA), mutations, permeability to nucleic acid stains, germination under different conditions, energy metabolism and outgrowth. ScCO2-PAA-inactivated spores retained DPA, and survivors had no notable DNA damage. However, DPA was released from inactivated spores at a normally innocuous temperature (85°C), and colony formation from treated spores was salt sensitive. The inactivated spores germinated but did not outgrow, and these germinated spores had altered plasma membrane permeability and defective energy metabolism. Wet or dry coat-defective spores had increased scCO2-PAA sensitivity, and dry spores but not wet spores lacking DNA protective proteins were more scCO2-PAA sensitive. Conclusions These findings suggest that scCO2-PAA inactivates spores by damaging spores’ inner membrane. The spore coat provided scCO2-PAA resistance for both wet and dry spores. DNA protective proteins provided scCO2-PAA resistance only for dry spores. Significance and Impact of Study These results provide information on mechanisms of spore inactivation of and resistance to scCO2-PAA, an agent with increasing use in sterilization applications. PMID:26535794

  11. Polarity of Spore Germination in Funaria hygrometrica Hedw.

    NASA Astrophysics Data System (ADS)

    Pundyak, O. I.; Demkiv, O. T.; Khorkavtsiv, O. Ya; Bagrii, B. B.

    It is shown that in darkness the spores of moss Funaria hygrometrica Hedw. germinated polarly under the influence of gravity. At the beginning the rhizoids appeared. They grew downwards. Then future chloronematical stolons started to form a germination spore. Usually, they grew upwards. Clinorotation or horizontal placing of Petry dishes could discoordinate such a gravisensitivity.

  12. Isolated Bacterial Spores at High-velocity Survive Surface Impacts in Vacuum

    NASA Astrophysics Data System (ADS)

    Austin, Daniel; Barney, Brandon

    We present experiments in which bacterial spores were found to survive being accelerated in vacuum to velocities in the range 30-120 m/s and impacted on a dense target. In these experiments, spores of Bacillus subtilis spores were charged using electrospray at atmospheric pressure, dried, and then introduced into high vacuum. Through choice of skimmers and beam tubes, different velocity ranges were achieved. An image-charge detector observed the charged spores, providing total charge and velocity. The spores then impacted a glass target within a collection vessel. After the experiment, the collection vessel contents were extracted and cultured. Several positive and negative controls were used, including the use of antibiotic-resistant spores and antibiotic-containing (rifampicin) agar for culturing. These impact velocities are of particular interest for possible transport of bacterial spores from Mars to Phobos, and may have implications for planetary protection in a Phobos sample return mission. In addition, bacteria may reach similar velocities during a spacecraft crash (e.g., within components, or from spacecraft to surface materials during impact, etc.), raising concerns about forward contamination. The velocities of interest to transport of life between planets (panspermia) are somewhat higher, but these results complement shock-based experiments and contribute to the general discussion of impact survivability of organisms.

  13. Nanoscale Structural and Mechanical Analysis of Bacillus anthracis Spores Inactivated with Rapid Dry Heating

    PubMed Central

    Felker, Daniel L.; Burggraf, Larry W.

    2014-01-01

    Effective killing of Bacillus anthracis spores is of paramount importance to antibioterrorism, food safety, environmental protection, and the medical device industry. Thus, a deeper understanding of the mechanisms of spore resistance and inactivation is highly desired for developing new strategies or improving the known methods for spore destruction. Previous studies have shown that spore inactivation mechanisms differ considerably depending upon the killing agents, such as heat (wet heat, dry heat), UV, ionizing radiation, and chemicals. It is believed that wet heat kills spores by inactivating critical enzymes, while dry heat kills spores by damaging their DNA. Many studies have focused on the biochemical aspects of spore inactivation by dry heat; few have investigated structural damages and changes in spore mechanical properties. In this study, we have inactivated Bacillus anthracis spores with rapid dry heating and performed nanoscale topographical and mechanical analysis of inactivated spores using atomic force microscopy (AFM). Our results revealed significant changes in spore morphology and nanomechanical properties after heat inactivation. In addition, we also found that these changes were different under different heating conditions that produced similar inactivation probabilities (high temperature for short exposure time versus low temperature for long exposure time). We attributed the differences to the differential thermal and mechanical stresses in the spore. The buildup of internal thermal and mechanical stresses may become prominent only in ultrafast, high-temperature heat inactivation when the experimental timescale is too short for heat-generated vapor to efficiently escape from the spore. Our results thus provide direct, visual evidences of the importance of thermal stresses and heat and mass transfer to spore inactivation by very rapid dry heating. PMID:24375142

  14. Using ClinVar as a Resource to Support Variant Interpretations

    PubMed Central

    Harrison, Steven M.; Riggs, Erin R.; Maglott, Donna R.; Lee, Jennifer M.; Azzariti, Danielle R.; Niehaus, Annie; Ramos, Erin M.; Martin, Christa L.; Landrum, Melissa J.; Rehm, Heidi L.

    2016-01-01

    ClinVar is a freely accessible, public archive of reports of the relationships among genomic variants and phenotypes. To facilitate evaluation of the clinical significance of each variant, ClinVar aggregates submissions of the same variant, displays supporting data from each submission, and determines if the submitted clinical interpretations are conflicting or concordant. The unit describes how to (1) identify sequence and structural variants of interest in ClinVar with by multiple searching approaches, including Variation Viewer and (2) understand the display of submissions to ClinVar and the evidence supporting each interpretation. By following this protocol, ClinVar users will be able to learn how to incorporate the wealth of resources and knowledge in ClinVar into variant curation and interpretation. PMID:27037489

  15. Intestinal calcium and bile salts facilitate germination of Clostridium difficile spores

    PubMed Central

    Kochan, Travis J.; Kaiser, Alyssa M.; Hastie, Jessica L.; Giordano, Nicole P.; Smith, Ashley D.

    2017-01-01

    Clostridium difficile (C. difficile) is an anaerobic gram-positive pathogen that is the leading cause of nosocomial bacterial infection globally. C. difficile infection (CDI) typically occurs after ingestion of infectious spores by a patient that has been treated with broad-spectrum antibiotics. While CDI is a toxin-mediated disease, transmission and pathogenesis are dependent on the ability to produce viable spores. These spores must become metabolically active (germinate) in order to cause disease. C. difficile spore germination occurs when spores encounter bile salts and other co-germinants within the small intestine, however, the germination signaling cascade is unclear. Here we describe a signaling role for Ca2+ during C. difficile spore germination and provide direct evidence that intestinal Ca2+ coordinates with bile salts to stimulate germination. Endogenous Ca2+ (released from within the spore) and a putative AAA+ ATPase, encoded by Cd630_32980, are both essential for taurocholate-glycine induced germination in the absence of exogenous Ca2+. However, environmental Ca2+ replaces glycine as a co-germinant and circumvents the need for endogenous Ca2+ fluxes. Cd630_32980 is dispensable for colonization in a murine model of C. difficile infection and ex vivo germination in mouse ileal contents. Calcium-depletion of the ileal contents prevented mutant spore germination and reduced WT spore germination by 90%, indicating that Ca2+ present within the gastrointestinal tract plays a critical role in C. difficile germination, colonization, and pathogenesis. These data provide a biological mechanism that may explain why individuals with inefficient intestinal calcium absorption (e.g., vitamin D deficiency, proton pump inhibitor use) are more prone to CDI and suggest that modulating free intestinal calcium is a potential strategy to curb the incidence of CDI. PMID:28704538

  16. Germination and amplification of anthrax spores by soil-dwelling amoebas.

    PubMed

    Dey, Rafik; Hoffman, Paul S; Glomski, Ian J

    2012-11-01

    While anthrax is typically associated with bioterrorism, in many parts of the world the anthrax bacillus (Bacillus anthracis) is endemic in soils, where it causes sporadic disease in livestock. These soils are typically rich in organic matter and calcium that promote survival of resilient B. anthracis spores. Outbreaks of anthrax tend to occur in warm weather following rains that are believed to concentrate spores in low-lying areas where runoff collects. It has been concluded that elevated spore concentrations are not the result of vegetative growth as B. anthracis competes poorly against indigenous bacteria. Here, we test an alternative hypothesis in which amoebas, common in moist soils and pools of standing water, serve as amplifiers of B. anthracis spores by enabling germination and intracellular multiplication. Under simulated environmental conditions, we show that B. anthracis germinates and multiplies within Acanthamoeba castellanii. The growth kinetics of a fully virulent B. anthracis Ames strain (containing both the pX01 and pX02 virulence plasmids) and vaccine strain Sterne (containing only pX01) inoculated as spores in coculture with A. castellanii showed a nearly 50-fold increase in spore numbers after 72 h. In contrast, the plasmidless strain 9131 showed little growth, demonstrating that plasmid pX01 is essential for growth within A. castellanii. Electron and time-lapse fluorescence microscopy revealed that spores germinate within amoebal phagosomes, vegetative bacilli undergo multiplication, and, following demise of the amoebas, bacilli sporulate in the extracellular milieu. This analysis supports our hypothesis that amoebas contribute to the persistence and amplification of B. anthracis in natural environments.

  17. VUV absorption spectroscopy of bacterial spores and DNA components

    NASA Astrophysics Data System (ADS)

    Fiebrandt, Marcel; Lackmann, Jan-Wilm; Raguse, Marina; Moeller, Ralf; Awakowicz, Peter; Stapelmann, Katharina

    2017-01-01

    Low-pressure plasmas can be used to inactivate bacterial spores and sterilize goods for medical and pharmaceutical applications. A crucial factor are damages induced by UV and VUV radiation emitted by the plasma. To analyze inactivation processes and protection strategies of spores, absorption spectra of two B. subtilis strains are measured. The results indicate, that the inner and outer coat of the spore significantly contribute to the absorption of UV-C and also of the VUV, protecting the spore against radiation based damages. As the sample preparation can significantly influence the absorption spectra due to salt residues, the cleaning procedure and sample deposition is tested for its reproducibility by measuring DNA oligomers and pUC18 plasmid DNA. The measurements are compared and discussed with results from the literature, showing a strong decrease of the salt content enabling the detection of absorption structures in the samples.

  18. A side-by-side comparison of Rotorod and Burkard pollen and spore collections.

    PubMed

    Crisp, Howard C; Gomez, Robert A; White, Kevin M; Quinn, James M

    2013-08-01

    The Rotorod sampler and Burkard spore trap are 2 devices commonly used to quantify airborne particles. To evaluate the differences in collections between the 2 devices for a wide range of plant pollens and fungal spores. Pollens and spores were collected simultaneously with each device on 167 days during a 1-year period. The Burkard yielded significantly higher total and individual mold spore counts. It yielded statistically higher total grass, total weed, and Urticaceae daily pollen counts, although the absolute differences were small. Daily counts were positively correlated between the 2 devices for the most abundant pollens and mold spores. The Burkard spore trap collects many more mold spores than the Rotorod over a wide variety of species. The Burkard also yielded higher total grass, total weed, and Urticaceae daily pollen counts. Despite these differences, however, either device can be used to follow trends in the most abundant pollen and mold spores. Copyright © 2013 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  19. Spore: Spawning Evolutionary Misconceptions?

    NASA Astrophysics Data System (ADS)

    Bean, Thomas E.; Sinatra, Gale M.; Schrader, P. G.

    2010-10-01

    The use of computer simulations as educational tools may afford the means to develop understanding of evolution as a natural, emergent, and decentralized process. However, special consideration of developmental constraints on learning may be necessary when using these technologies. Specifically, the essentialist (biological forms possess an immutable essence), teleological (assignment of purpose to living things and/or parts of living things that may not be purposeful), and intentionality (assumption that events are caused by an intelligent agent) biases may be reinforced through the use of computer simulations, rather than addressed with instruction. We examine the video game Spore for its depiction of evolutionary content and its potential to reinforce these cognitive biases. In particular, we discuss three pedagogical strategies to mitigate weaknesses of Spore and other computer simulations: directly targeting misconceptions through refutational approaches, targeting specific principles of scientific inquiry, and directly addressing issues related to models as cognitive tools.

  20. Knowledge of the physiology of spore-forming bacteria can explain the origin of spores in the food environment.

    PubMed

    Gauvry, Emilie; Mathot, Anne-Gabrielle; Leguérinel, Ivan; Couvert, Olivier; Postollec, Florence; Broussolle, Véronique; Coroller, Louis

    2017-05-01

    Spore-forming bacteria are able to grow under a wide range of environmental conditions, to form biofilms and to differentiate into resistant forms: spores. This resistant form allows their dissemination in the environment; consequently, they may contaminate raw materials. Sporulation can occur all along the food chain, in raw materials, but also in food processes, leading to an increase in food contamination. However, the problem of sporulation during food processing is poorly addressed and sporulation niches are difficult to identify from the farm to the fork. Sporulation is a survival strategy. Some environmental factors are required to trigger this differentiation process and others act by modulating it. The efficiency of sporulation is the result of the combined effects of these two types of factors on vegetative cell metabolism. This paper aims to explain and help identify sporulation niches in the food chain, based on features of spore-former physiology. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  1. Myxomycete (slime mold) spores: unrecognized aeroallergens?

    PubMed

    Lierl, Michelle B

    2013-12-01

    Myxomycete spores are present in the outdoor air but have not been studied for allergenicity. To determine whether patients with seasonal allergic rhinitis (SAR) symptoms are sensitized to myxomycete spores. Myxomycete specimens were collected in the field. Nine species of myxomycetes were collected and identified: Arcyria cinerea, Ceratiomyxa fruticulosa, Fuligo septica, Hemitrichia clavata, Lycogala epidendrum, Metatrichia vesparium, Stemonitis nigrescens, Tubifera ferruginosa, and Trichea favoginea. Allergen extracts were made for each species. Protein content of each extract was measured by bicinchoninic acid assay. Protein electrophoresis was performed. Subjects with a history of SAR symptoms were enrolled, and allergy skin prick testing was performed with each extract. Protein content of the extracts ranged from 1.05 to 5.8 mg/mL. Protein bands were seen at 10 to 250 kD. Allergy prick testing was performed in 69 subjects; 42% of subjects had positive prick test results for at least 1 myxomycete extract, with 9% to 22% reacting to each extract. Five of the 12 subjects who tested negative for all allergens on the standard aeroallergen panel had positive prick test results for myxomycetes. Forty-two percent of subjects with SAR were sensitized to myxomycete spores. A significant subset of subjects who had SAR symptoms and otherwise negative skin test results showed sensitization to myxomycetes. These spores are present in the outdoor air during the summer and autumn and might be significant aeroallergens. Copyright © 2013 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  2. Significance of air humidity and air velocity for fungal spore release into the air

    NASA Astrophysics Data System (ADS)

    Pasanen, A.-L.; Pasanen, P.; Jantunen, M. J.; Kalliokoski, P.

    Our previous field studies have shown that the presence of molds in buildings does not necessarily mean elevated airborne spore counts. Therefore, we investigated the release of fungal spores from cultures of Aspergillus fumigatus, Penicillium sp. and Cladosporium sp. at different air velocities and air humidities. Spores of A. fumigatus and Penicillium sp. were released from conidiophores already at air velocity of 0.5 ms -1, whereas Cladosporium spores required at least a velocity of 1.0 ms -1. Airborne spore counts of A. fumigatus and Penicillium sp. were usually higher in dry than moist air, being minimal at relative humidities (r.h.) above 70%, while the effect of r.h. on the release of Cladosporium sp. was ambivalent. The geometric mean diameter of released spores increased when the r.h. exceeded a certain level which depends on fungal genus. Thus, spores of all three fungi were hygroscopic but the hygroscopicity of various spores appeared at different r.h.-ranges. This study indicates that spore release is controlled by external factors and depends on fungal genus which can be one reason for considerable variation of airborne spore counts in buildings with mold problems.

  3. Pollen and spore monitoring in the world.

    PubMed

    Buters, J T M; Antunes, C; Galveias, A; Bergmann, K C; Thibaudon, M; Galán, C; Schmidt-Weber, C; Oteros, J

    2018-01-01

    Ambient air quality monitoring is a governmental duty that is widely carried out in order to detect non-biological ("chemical") components in ambient air, such as particles of < 10 µm (PM 10 , PM 2.5 ), ozone, sulphur dioxide, and nitrogen oxides. These monitoring networks are publicly funded and air quality data are open to the public. The situation for biological particles that have detrimental effects on health, as is the case of pollen and fungal spores, is however very different. Most pollen and spore monitoring networks are not publicly funded and data are not freely available. The information regarding which biological particle is being monitored, where and by whom, is consequently often not known, even by aerobiologists themselves. This is a considerable problem, as local pollen data are an important tool for the prevention of allergic symptoms. The aim of this study was to review pollen monitoring stations throughout the world and to create an interactive visualization of their distribution. The method employed to collect information was based on: (a) a review of the recent and historical bibliography related to pollen and fungal spore monitoring, and (b) personal surveys of the managers of national and regional monitoring networks. The interactive application was developed using the R programming language. We have created an inventory of the active pollen and spore monitoring stations in the world. There are at least 879 active pollen monitoring stations in the world, most of which are in Europe (> 500). The prevalent monitoring method is based on the Hirst principle (> 600 stations). The inventory is visualised as an interactive and on-line map. It can be searched, its appearance can be adjusted to the users' needs and it is updated regularly, as new stations or changes to those that already exist can be submitted online. The map shows the current situation of pollen and spore monitoring and facilitates collaboration among those individuals who

  4. Fighting Ebola with novel spore decontamination technologies for the military.

    PubMed

    Doona, Christopher J; Feeherry, Florence E; Kustin, Kenneth; Olinger, Gene G; Setlow, Peter; Malkin, Alexander J; Leighton, Terrance

    2015-01-01

    Recently, global public health organizations such as Doctors without Borders (MSF), the World Health Organization (WHO), Public Health Canada, National Institutes of Health (NIH), and the U.S. government developed and deployed Field Decontamination Kits (FDKs), a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned). The basis for effectuating sterilization with FDKs is chlorine dioxide (ClO2) produced from a patented invention developed by researchers at the US Army Natick Soldier RD&E Center (NSRDEC) and commercialized as a dry mixed-chemical for bacterial spore decontamination. In fact, the NSRDEC research scientists developed an ensemble of ClO2 technologies designed for different applications in decontaminating fresh produce; food contact and handling surfaces; personal protective equipment; textiles used in clothing, uniforms, tents, and shelters; graywater recycling; airplanes; surgical instruments; and hard surfaces in latrines, laundries, and deployable medical facilities. These examples demonstrate the far-reaching impact, adaptability, and versatility of these innovative technologies. We present herein the unique attributes of NSRDEC's novel decontamination technologies and a Case Study of the development of FDKs that were deployed in West Africa by international public health organizations to sterilize Ebola-contaminated medical equipment. FDKs use bacterial spores as indicators of sterility. We review the properties and structures of spores and the mechanisms of bacterial spore inactivation by ClO2. We also review mechanisms of bacterial spore inactivation by novel, emerging, and established non-thermal technologies for food preservation, such as high pressure processing, irradiation, cold plasma, and chemical sanitizers, using an array of Bacillus

  5. Fighting Ebola with novel spore decontamination technologies for the military

    PubMed Central

    Doona, Christopher J.; Feeherry, Florence E.; Kustin, Kenneth; Olinger, Gene G.; Setlow, Peter; Malkin, Alexander J.; Leighton, Terrance

    2015-01-01

    Recently, global public health organizations such as Doctors without Borders (MSF), the World Health Organization (WHO), Public Health Canada, National Institutes of Health (NIH), and the U.S. government developed and deployed Field Decontamination Kits (FDKs), a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned). The basis for effectuating sterilization with FDKs is chlorine dioxide (ClO2) produced from a patented invention developed by researchers at the US Army Natick Soldier RD&E Center (NSRDEC) and commercialized as a dry mixed-chemical for bacterial spore decontamination. In fact, the NSRDEC research scientists developed an ensemble of ClO2 technologies designed for different applications in decontaminating fresh produce; food contact and handling surfaces; personal protective equipment; textiles used in clothing, uniforms, tents, and shelters; graywater recycling; airplanes; surgical instruments; and hard surfaces in latrines, laundries, and deployable medical facilities. These examples demonstrate the far-reaching impact, adaptability, and versatility of these innovative technologies. We present herein the unique attributes of NSRDEC’s novel decontamination technologies and a Case Study of the development of FDKs that were deployed in West Africa by international public health organizations to sterilize Ebola-contaminated medical equipment. FDKs use bacterial spores as indicators of sterility. We review the properties and structures of spores and the mechanisms of bacterial spore inactivation by ClO2. We also review mechanisms of bacterial spore inactivation by novel, emerging, and established non-thermal technologies for food preservation, such as high pressure processing, irradiation, cold plasma, and chemical sanitizers, using an array of Bacillus

  6. Fumonisin and Ochratoxin Production in Industrial Aspergillus niger Strains

    PubMed Central

    Frisvad, Jens C.; Larsen, Thomas O.; Thrane, Ulf; Meijer, Martin; Varga, Janos; Samson, Robert A.; Nielsen, Kristian F.

    2011-01-01

    Aspergillus niger is perhaps the most important fungus used in biotechnology, and is also one of the most commonly encountered fungi contaminating foods and feedstuffs, and occurring in soil and indoor environments. Many of its industrial applications have been given GRAS status (generally regarded as safe). However, A. niger has the potential to produce two groups of potentially carcinogenic mycotoxins: fumonisins and ochratoxins. In this study all available industrial and many non-industrial strains of A. niger (180 strains) as well as 228 strains from 17 related black Aspergillus species were examined for mycotoxin production. None of the related 17 species of black Aspergilli produced fumonisins. Fumonisins (B2, B4, and B6) were detected in 81% of A. niger, and ochratoxin A in 17%, while 10% of the strains produced both mycotoxins. Among the industrial strains the same ratios were 83%, 33% and 26% respectively. Some of the most frequently used strains in industry NRRL 337, 3112 and 3122 produced both toxins and several strains used for citric acid production were among the best producers of fumonisins in pure agar culture. Most strains used for other biotechnological processes also produced fumonisins. Strains optimized through random mutagenesis usually maintained their mycotoxin production capability. Toxigenic strains were also able to produce the toxins on media suggested for citric acid production with most of the toxins found in the biomass, thereby questioning the use of the remaining biomass as animal feed. In conclusion it is recommended to use strains of A. niger with inactive or inactivated gene clusters for fumonisins and ochratoxins, or to choose isolates for biotechnological uses in related non-toxigenic species such as A. tubingensis, A. brasiliensis, A vadensis or A. acidus, which neither produce fumonisins nor ochratoxins. PMID:21853139

  7. Rapid Detection of Bacillus anthracis Spores Using Immunomagnetic Separation and Amperometry

    PubMed Central

    Waller, David F.; Hew, Brian E.; Holdaway, Charlie; Jen, Michael; Peckham, Gabriel D.

    2016-01-01

    Portable detection and quantitation methods for Bacillus anthracis (anthrax) spores in pure culture or in environmental samples are lacking. Here, an amperometric immunoassay has been developed utilizing immunomagnetic separation to capture the spores and remove potential interferents from test samples followed by amperometric measurement on a field-portable instrument. Antibody-conjugated magnetic beads and antibody-conjugated glucose oxidase were used in a sandwich format for the capture and detection of target spores. Glucose oxidase activity of spore pellets was measured indirectly via amperometry by applying a bias voltage after incubation with glucose, horseradish peroxidase, and the electron mediator 2,2′-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid). Target capture was mediated by polyclonal antisera, whereas monoclonal antibodies were used for signal generation. This strategy maximized sensitivity (500 target spores, 5000 cfu/mL), while also providing a good specificity for Bacillus anthracis spores. Minimal signal deviation occurs in the presence of environmental interferents including soil and modified pH conditions, demonstrating the strengths of immunomagnetic separation. The simultaneous incubation of capture and detection antibodies and rapid substrate development (5 min) result in short sample-to-signal times (less than an hour). With attributes comparable or exceeding that of ELISA and LFDs, amperometry is a low-cost, low-weight, and practical method for detecting anthrax spores in the field. PMID:27999382

  8. Octanal inhibits spore germination of Penicillium digitatum involving membrane peroxidation.

    PubMed

    Dou, Shiwen; Liu, Shengquan; Xu, Xiaoyong; OuYang, Qiuli; Tao, Nengguo

    2017-07-01

    Octanal is a potential alternative to chemical fungicides in controlling postharvest disease of citrus fruit. In this study, the antifungal activity and the underlying mechanism of octanal against spore germination of Penicillium digitatum, one of the main postharvest pathogens in citrus, were investigated. Results showed that octanal at different concentrations (0, 0.25, 0.50, 1.00, 2.00 μl/ml) inhibited the growth of P. digitatum spores in a dose-dependent manner. The morphology and the membrane permeability of P. digitatum spores were visibly altered by 0.25 and 2.00 μl/ml of octanal. Meanwhile, octanal decreased the total lipids contents of P. digitatum spores, indicating that the membrane integrity is damaged. Furthermore, octanal apparently induced the massive accumulation of total malonaldehyde (MDA) and the reactive oxygen species (ROS). An increase in the activities of lipoxygenase (LOX), NADH oxidase, superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) was also observed. These results suggested that a membrane damage mechanism involving membrane peroxidation might contribute to the antifungal activity of octanal against P. digitatum spores.

  9. Involvement of Physical Parameters in Medium Improvement for Tannase Production by Aspergillus niger FETL FT3 in Submerged Fermentation

    PubMed Central

    Darah, I.; Sumathi, G.; Jain, K.; Hong, Lim Sheh

    2011-01-01

    Aspergillus niger FETL FT3, a local extracellular tannase producer strain that was isolated from one of dumping sites of tannin-rich barks of Rhizophora apiculata in Perak, Malaysia. This fungus was cultivated in 250 mL Erlenmeyer flask under submerged fermentation system. Various physical parameters were studied in order to maximize the tannase production. Maximal yield of tannase production, that is, 2.81 U per mL was obtained on the fourth day of cultivation when the submerged fermentation was carried out using liquid Czapek-Dox medium containing (percent; weight per volume) 0.25% NaNO3, 0.1% KH2PO4, 0.05% MgSO4 ·7H2O, 0.05% KCl, and 1.0% tannic acid. The physical parameters used initial medium pH of 6.0, incubation temperature of 30°C, agitation speed of 200 rpm and inoculums size of 6 × 106 spores/ ml. This research has showed that physical parameters were influenced the tannase production by the fungus with 156.4 percent increment. PMID:21826273

  10. Involvement of Physical Parameters in Medium Improvement for Tannase Production by Aspergillus niger FETL FT3 in Submerged Fermentation.

    PubMed

    Darah, I; Sumathi, G; Jain, K; Hong, Lim Sheh

    2011-01-01

    Aspergillus niger FETL FT3, a local extracellular tannase producer strain that was isolated from one of dumping sites of tannin-rich barks of Rhizophora apiculata in Perak, Malaysia. This fungus was cultivated in 250 mL Erlenmeyer flask under submerged fermentation system. Various physical parameters were studied in order to maximize the tannase production. Maximal yield of tannase production, that is, 2.81 U per mL was obtained on the fourth day of cultivation when the submerged fermentation was carried out using liquid Czapek-Dox medium containing (percent; weight per volume) 0.25% NaNO(3), 0.1% KH(2)PO(4), 0.05% MgSO(4) ·7H(2)O, 0.05% KCl, and 1.0% tannic acid. The physical parameters used initial medium pH of 6.0, incubation temperature of 30°C, agitation speed of 200 rpm and inoculums size of 6 × 10(6) spores/ ml. This research has showed that physical parameters were influenced the tannase production by the fungus with 156.4 percent increment.

  11. FACTORS RELATING TO THE RELEASE OF STACHYBOTRYS CHARTARUM SPORES FROM CONTAMINATED SOURCES

    EPA Science Inventory

    The paper describes preliminary results of a research project to determine the factors that control the release of S. chartarum spores from a contaminated source and test ways to reduce spore release and thus exposure. As anticipated, S. chartarum spore emissions from gypsum boar...

  12. Contamination pathways of spore-forming bacteria in a vegetable cannery.

    PubMed

    Durand, Loïc; Planchon, Stella; Guinebretiere, Marie-Hélène; André, Stéphane; Carlin, Frédéric; Remize, Fabienne

    2015-06-02

    Spoilage of low-acid canned food during prolonged storage at high temperatures is caused by heat resistant thermophilic spores of strict or facultative bacteria. Here, we performed a bacterial survey over two consecutive years on the processing line of a French company manufacturing canned mixed green peas and carrots. In total, 341 samples were collected, including raw vegetables, green peas and carrots at different steps of processing, cover brine, and process environment samples. Thermophilic and highly-heat-resistant thermophilic spores growing anaerobically were counted. During vegetable preparation, anaerobic spore counts were significantly decreased, and tended to remain unchanged further downstream in the process. Large variation of spore levels in products immediately before the sterilization process could be explained by occasionally high spore levels on surfaces and in debris of vegetable combined with long residence times in conditions suitable for growth and sporulation. Vegetable processing was also associated with an increase in the prevalence of highly-heat-resistant species, probably due to cross-contamination of peas via blanching water. Geobacillus stearothermophilus M13-PCR genotypic profiling on 112 isolates determined 23 profile-types and confirmed process-driven cross-contamination. Taken together, these findings clarify the scheme of contamination pathway by thermophilic spore-forming bacteria in a vegetable cannery. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Size matters for violent discharge height and settling speed of Sphagnum spores: important attributes for dispersal potential.

    PubMed

    Sundberg, Sebastian

    2010-02-01

    Initial release height and settling speed of diaspores are biologically controlled components which are key to modelling wind dispersal. Most Sphagnum (peat moss) species have explosive spore liberation. In this study, how capsule and spore sizes affect the height to which spores are propelled were measured, and how spore size and spore number of discharged particles relate to settling speed in the aspherical Sphagnum spores. Spore discharge and spore cloud development were filmed in a closed chamber (nine species). Measurements were taken from snapshots at three stages of cloud development. Settling speed of spores (14 species) and clusters were timed in a glass tube. The maximum discharge speed measured was 3.6 m s(-1). Spores reached a maximum height of 20 cm (average: 15 cm) above the capsule. The cloud dimensions at all stages were related positively to capsule size (R(2) = 0.58-0.65). Thus species with large shoots (because they have large capsules) have a dispersal advantage. Half of the spores were released as singles and the rest as clusters (usually two to four spores). Single spores settled at 0.84-1.86 cm s(-1), about 52 % slower than expected for spherical spores with the same diameters. Settling speed displayed a positive curvilinear relationship with spore size, close to predictions by Stokes' law for spherical spores with 68 % of the actual diameters. Light-coloured spores settled slower than dark spores. Settling speed of spore clusters agrees with earlier studies. Effective spore discharge and small, slowly settling spores appear particularly important for species in forested habitats. The spore discharge heights in Sphagnum are among the greatest for small, wind-dispersed propagules. The discharge heights and the slow settling of spores affect dispersal distances positively and may help to explain the wide distribution of most boreal Sphagnum species.

  14. Inactivation Strategies for Clostridium perfringens Spores and Vegetative Cells.

    PubMed

    Talukdar, Prabhat K; Udompijitkul, Pathima; Hossain, Ashfaque; Sarker, Mahfuzur R

    2017-01-01

    Clostridium perfringens is an important pathogen to human and animals and causes a wide array of diseases, including histotoxic and gastrointestinal illnesses. C. perfringens spores are crucial in terms of the pathogenicity of this bacterium because they can survive in a dormant state in the environment and return to being live bacteria when they come in contact with nutrients in food or the human body. Although the strategies to inactivate C. perfringens vegetative cells are effective, the inactivation of C. perfringens spores is still a great challenge. A number of studies have been conducted in the past decade or so toward developing efficient inactivation strategies for C. perfringens spores and vegetative cells, which include physical approaches and the use of chemical preservatives and naturally derived antimicrobial agents. In this review, different inactivation strategies applied to control C. perfringens cells and spores are summarized, and the potential limitations and challenges of these strategies are discussed. Copyright © 2016 American Society for Microbiology.

  15. Isolation of the Paenibacillus phoenicis, a Spore-Forming Bacterium

    NASA Technical Reports Server (NTRS)

    Benardini, James N.; Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Osman, Shariff; Satomi, Masataka

    2010-01-01

    A microorganism was isolated from the surfaces of the cleanroom facility in which the Phoenix lander was assembled. The isolated bacterial strain was subjected to a comprehensive polyphasic analysis to characterize its taxonomic position. Both phenotypic and phylogenetic analyses clearly indicate that this isolate belongs to the genus Paenibacillus and represents a novel species. Bacillus spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. Spores of Bacillus species are of particular concern to planetary protection due to the extreme resistance of some members of the genus to space environmental conditions such as UV and gamma radiation, vacuum, oxidation, and temperature fluctuation. These resistive spore phenotypes have enhanced potential for transfer, and subsequent proliferation, of terrestrial microbes on another solar body. Due to decreased nutrient conditions within spacecraft assembly facility clean rooms, the vegetative cells of Bacillus species and other spore-forming Paenibacillus species are induced to sporulate, thereby enhancing their survivability of bioreduction

  16. Inactivation Strategies for Clostridium perfringens Spores and Vegetative Cells

    PubMed Central

    Talukdar, Prabhat K.; Udompijitkul, Pathima; Hossain, Ashfaque

    2016-01-01

    ABSTRACT Clostridium perfringens is an important pathogen to human and animals and causes a wide array of diseases, including histotoxic and gastrointestinal illnesses. C. perfringens spores are crucial in terms of the pathogenicity of this bacterium because they can survive in a dormant state in the environment and return to being live bacteria when they come in contact with nutrients in food or the human body. Although the strategies to inactivate C. perfringens vegetative cells are effective, the inactivation of C. perfringens spores is still a great challenge. A number of studies have been conducted in the past decade or so toward developing efficient inactivation strategies for C. perfringens spores and vegetative cells, which include physical approaches and the use of chemical preservatives and naturally derived antimicrobial agents. In this review, different inactivation strategies applied to control C. perfringens cells and spores are summarized, and the potential limitations and challenges of these strategies are discussed. PMID:27795314

  17. Systematic Assessment of Nonproteolytic Clostridium botulinum Spores for Heat Resistance

    PubMed Central

    Stringer, Sandra C.; Barker, Gary C.; Peck, Michael W.

    2016-01-01

    ABSTRACT Heat treatment is an important controlling factor that, in combination with other hurdles (e.g., pH, aw), is used to reduce numbers and prevent the growth of and associated neurotoxin formation by nonproteolytic C. botulinum in chilled foods. It is generally agreed that a heating process that reduces the spore concentration by a factor of 106 is an acceptable barrier in relation to this hazard. The purposes of the present study were to review the available data relating to heat resistance properties of nonproteolytic C. botulinum spores and to obtain an appropriate representation of parameter values suitable for use in quantitative microbial risk assessment. In total, 753 D values and 436 z values were extracted from the literature and reveal significant differences in spore heat resistance properties, particularly those corresponding to recovery in the presence or absence of lysozyme. A total of 503 D and 338 z values collected for heating temperatures at or below 83°C were used to obtain a probability distribution representing variability in spore heat resistance for strains recovered in media that did not contain lysozyme. IMPORTANCE In total, 753 D values and 436 z values extracted from literature sources reveal significant differences in spore heat resistance properties. On the basis of collected data, two z values have been identified, z = 7°C and z = 9°C, for spores recovered without and with lysozyme, respectively. The findings support the use of heat treatment at 90°C for 10 min to reduce the spore concentration by a factor of 106, providing that lysozyme is not present during recovery. This study indicates that greater heat treatment is required for food products containing lysozyme, and this might require consideration of alternative recommendation/guidance. In addition, the data set has been used to test hypotheses regarding the dependence of spore heat resistance on the toxin type and strain, on the heating technique used, and on the

  18. The Spore Coat Protein CotE Facilitates Host Colonization by Clostridium difficile

    PubMed Central

    Hong, Huynh A; Ferreira, William T; Hosseini, Siamand; Anwar, Saba; Hitri, Krisztina; Wilkinson, Anthony J; Vahjen, Wilfried; Zentek, Jürgen; Soloviev, Mikhail; Cutting, Simon M

    2017-01-01

    Abstract Clostridium difficile infection (CDI) is an important hospital-acquired infection resulting from the germination of spores in the intestine as a consequence of antibiotic-mediated dysbiosis of the gut microbiota. Key to this is CotE, a protein displayed on the spore surface and carrying 2 functional elements, an N-terminal peroxiredoxin and a C-terminal chitinase domain. Using isogenic mutants, we show in vitro and ex vivo that CotE enables binding of spores to mucus by direct interaction with mucin and contributes to its degradation. In animal models of CDI, we show that when CotE is absent, both colonization and virulence were markedly reduced. We demonstrate here that the attachment of spores to the intestine is essential in the development of CDI. Spores are usually regarded as biochemically dormant, but our findings demonstrate that rather than being simply agents of transmission and dissemination, spores directly contribute to the establishment and promotion of disease. PMID:28968845

  19. Toolkit for visualization of the cellular structure and organelles in Aspergillus niger.

    PubMed

    Buren, Emiel B J Ten; Karrenbelt, Michiel A P; Lingemann, Marit; Chordia, Shreyans; Deng, Ying; Hu, JingJing; Verest, Johanna M; Wu, Vincen; Gonzalez, Teresita J Bello; Heck, Ruben G A van; Odoni, Dorett I; Schonewille, Tom; Straat, Laura van der; Graaff, Leo H de; Passel, Mark W J van

    2014-12-19

    Aspergillus niger is a filamentous fungus that is extensively used in industrial fermentations for protein expression and the production of organic acids. Inherent biosynthetic capabilities, such as the capacity to secrete these biomolecules in high amounts, make A. niger an attractive production host. Although A. niger is renowned for this ability, the knowledge of the molecular components that underlie its production capacity, intercellular trafficking processes and secretion mechanisms is far from complete. Here, we introduce a standardized set of tools, consisting of an N-terminal GFP-actin fusion and codon optimized eforRed chromoprotein. Expression of the GFP-actin construct facilitates visualization of the actin filaments of the cytoskeleton, whereas expression of the chromoprotein construct results in a clearly distinguishable red phenotype. These experimentally validated constructs constitute the first set of standardized A. niger biomarkers, which can be used to study morphology, intercellular trafficking, and secretion phenomena.

  20. Contribution of Spores to the Ability of Clostridium difficile To Adhere to Surfaces

    PubMed Central

    Joshi, Lovleen Tina; Phillips, Daniel S.; Williams, Catrin F.; Alyousef, Abdullah

    2012-01-01

    Clostridium difficile is the commonest cause of hospital-acquired infection in the United Kingdom. We characterized the abilities of 21 clinical isolates to form spores; to adhere to inorganic and organic surfaces, including stainless steel and human adenocarcinoma cells; and to germinate. The composition of culture media had a significant effect on spore formation, as significantly more spores were produced in brain heart infusion broth (Student's t test; P = 0.018). The spore surface relative hydrophobicity (RH) varied markedly (14 to 77%) and was correlated with the ability to adhere to stainless steel. We observed no correlation between the ribotype and the ability to adhere to steel. When the binding of hydrophobic (DS1813; ribotype 027; RH, 77%) and hydrophilic (DS1748; ribotype 002; RH, 14%) spores to human gut epithelial cells at different stages of cell development was examined, DS1813 spores adhered more strongly, suggesting the presence of surface properties that aid attachment to human cells. Electron microscopy studies revealed the presence of an exosporium surrounding DS1813 spores that was absent from spores of DS1748. Finally, the ability of spores to germinate was found to be strain and medium dependent. While the significance of these findings to the disease process has yet to be determined, this study has highlighted the importance of analyzing multiple isolates when attempting to characterize the behavior of a bacterial species. PMID:22923404

  1. Architecture and Assembly of the Bacillus subtilis Spore Coat

    DTIC Science & Technology

    2014-09-26

    with chromosomal DNA was as described [32]. Table 1. 8. subtifis strains used in this study. Stra in Genotype Phenotype• PS832 wild type PS3394...of the morphology of fully hydrated and air dried spores demonstrate that surface ridges on dehydrated spores mostly disappear or decrease in size

  2. Architecture and High-Resolution Structure of Bacillus thuringiensis and Bacillus cereus Spore Coat Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plomp, M; Leighton, T; Wheeler, K

    2005-02-18

    We have utilized atomic force microscopy (AFM) to visualize the native surface topology and ultrastructure of Bacillus thuringiensis and Bacillus cereus spores in water and in air. AFM was able to resolve the nanostructure of the exosporium and three distinctive classes of appendages. Removal of the exosporium exposed either a hexagonal honeycomb layer (B. thuringiensis) or a rodlet outer spore coat layer (B. cereus). Removal of the rodlet structure from B. cereus spores revealed an underlying honeycomb layer similar to that observed with B. thuringiensis spores. The periodicity of the rodlet structure on the outer spore coat of B. cereusmore » was {approx}8 nm, and the length of the rodlets was limited to the cross-patched domain structure of this layer to {approx}200 nm. The lattice constant of the honeycomb structures was {approx}9 nm for both B. cereus and B. thuringiensis spores. Both honeycomb structures were composed of multiple, disoriented domains with distinct boundaries. Our results demonstrate that variations in storage and preparation procedures result in architectural changes in individual spore surfaces, which establish AFM as a useful tool for evaluation of preparation and processing ''fingerprints'' of bacterial spores. These results establish that high-resolution AFM has the capacity to reveal species-specific assembly and nanometer scale structure of spore surfaces. These species-specific spore surface structural variations are correlated with sequence divergences in a spore core structural protein SspE.« less

  3. The identity of the enigmatic "Black Shrew" (Sorex niger Ord, 1815)

    USGS Publications Warehouse

    Woodman, Neal

    2013-01-01

    The scientific name Sorex niger Ord, 1815 (Mammalia, Soricidae) was originally applied to a North American species that George Ord called the “Black Shrew.” The origin of the name “Black Shrew,” however, was obscure, and Samuel Rhoads subsequently wrote that the species represented by this name could not be determined. The names Sorex niger Ord and Black Shrew have since been mostly forgotten. Two of Ord's contemporaries, however, noted that Ord's use of these names probably alluded to Benjamin Smith Barton's Black Shrew, whose discovery near Philadelphia was announced by Barton in 1806. Examination of two unpublished illustrations of the Black Shrew made by Barton indicates that the animal depicted is Blarina brevicauda (Say, 1822). Had the connection between Ord's and Barton's names been made more clearly, one of the most common mammals in eastern North America would bear a different scientific name today. This connection also would have affected the validity of Sorex niger Horsfield, 1851. While Sorex niger Ord remains a nomen nudum, the animal it referenced can now be identified.

  4. Lethality of chlorine, chlorine dioxide, and a commercial fruit and vegetable sanitizer to vegetative cells and spores of Bacillus cereus and spores of Bacillus thuringiensis.

    PubMed

    Beuchat, Larry R; Pettigrew, Charles A; Tremblay, Mario E; Roselle, Brian J; Scouten, Alan J

    2004-08-01

    Chlorine, ClO2, and a commercial raw fruit and vegetable sanitizer were evaluated for their effectiveness in killing vegetative cells and spores of Bacillus cereus and spores of Bacillus thuringiensis. The ultimate goal was to use one or both species as a potential surrogate(s) for Bacillus anthracis in studies that focus on determining the efficacy of sanitizers in killing the pathogen on food contact surfaces and foods. Treatment with alkaline (pH 10.5 to 11.0) ClO2 (200 microg/ml) produced by electrochemical technologies reduced populations of a five-strain mixture of vegetative cells and a five-strain mixture of spores of B. cereus by more than 5.4 and more than 6.4 log CFU/ml respectively, within 5 min. This finding compares with respective reductions of 4.5 and 1.8 log CFU/ml resulting from treatment with 200 microg/ml of chlorine. Treatment with a 1.5% acidified (pH 3.0) solution of Fit powder product was less effective, causing 2.5- and 0.4-log CFU/ml reductions in the number of B. cereus cells and spores, respectively. Treatment with alkaline ClO2 (85 microg/ml), acidified (pH 3.4) ClO2 (85 microg/ml), and a mixture of ClO2 (85 microg/ml) and Fit powder product (0.5%) (pH 3.5) caused reductions in vegetative cell/spore populations of more than 5.3/5.6, 5.3/5.7, and 5.3/6.0 log CFU/ml, respectively. Treatment of B. cereus and B. thuringiensis spores in a medium (3.4 mg/ml of organic and inorganic solids) in which cells had grown and produced spores with an equal volume of alkaline (pH 12.1) ClO2 (400 microg/ml) for 30 min reduced populations by 4.6 and 5.2 log CFU/ml, respectively, indicating high lethality in the presence of materials other than spores that would potentially react with and neutralize the sporicidal activity of ClO2.

  5. Recent progress in Bacillus subtilis spore-surface display: concept, progress, and future.

    PubMed

    Wang, He; Wang, Yunxiang; Yang, Ruijin

    2017-02-01

    With the increased knowledge on spore structure and advances in biotechnology engineering, the newly developed spore-surface display system confers several inherent advantages over other microbial cell-surface display systems including enhanced stability and high safety. Bacillus subtilis is the most commonly used Bacillus species for spore-surface display. The expression of heterologous antigen or protein on the surface of B. subtilis spores has now been practiced for over a decade with noteworthy success. As an update and supplement to other previous reviews, we comprehensively summarize recent studies in the B. subtilis spore-surface display technique. We focus on its benefits as well as the critical factors affecting its display efficiency and offer suggestions for the future success of this field.

  6. Adenosine Monophosphate-Based Detection of Bacterial Spores

    NASA Technical Reports Server (NTRS)

    Kern, Roger G.; Chen, Fei; Venkateswaran, Kasthuri; Hattori, Nori; Suzuki, Shigeya

    2009-01-01

    A method of rapid detection of bacterial spores is based on the discovery that a heat shock consisting of exposure to a temperature of 100 C for 10 minutes causes the complete release of adenosine monophosphate (AMP) from the spores. This method could be an alternative to the method described in the immediately preceding article. Unlike that method and related prior methods, the present method does not involve germination and cultivation; this feature is an important advantage because in cases in which the spores are those of pathogens, delays involved in germination and cultivation could increase risks of infection. Also, in comparison with other prior methods that do not involve germination, the present method affords greater sensitivity. At present, the method is embodied in a laboratory procedure, though it would be desirable to implement the method by means of a miniaturized apparatus in order to make it convenient and economical enough to encourage widespread use.

  7. Astrobiological aspects of the mutagenesis of cosmic radiation on bacterial spores.

    PubMed

    Moeller, Ralf; Reitz, Günther; Berger, Thomas; Okayasu, Ryuichi; Nicholson, Wayne L; Horneck, Gerda

    2010-06-01

    Based on their unique resistance to various space parameters, Bacillus endospores are one of the model systems used for astrobiological studies. In this study, spores of B. subtilis were used to study the effects of galactic cosmic radiation (GCR) on spore survival and induced mutagenesis. In interplanetary space, outside Earth's protective magnetic field, spore-containing rocks would be exposed to bombardment by high-energy charged particle radiation from galactic sources and from the Sun, which consists of photons (X-rays, gamma rays), protons, electrons, and heavy, high-energy charged (HZE) particles. B. subtilis spores were irradiated with X-rays and accelerated heavy ions (helium, carbon, silicon and iron) in the linear energy transfer (LET) range of 2-200 keV/mum. Spore survival and the rate of the induced mutations to rifampicin resistance (Rif(R)) depended on the LET of the applied species of ions and radiation, whereas the exposure to high-energy charged particles, for example, iron ions, led to a low level of spore survival and increased frequency of mutation to Rif(R) compared to low-energy charged particles and X-rays. Twenty-one Rif(R) mutant spores were isolated from X-ray and heavy ion-irradiated samples. Nucleotide sequencing located the Rif(R) mutations in the rpoB gene encoding the beta-subunit of RNA polymerase. Most mutations were primarily found in Cluster I and were predicted to result in amino acid changes at residues Q469L, A478V, and H482P/Y. Four previously undescribed alleles in B. subtilis rpoB were isolated: L467P, R484P, and A488P in Cluster I and H507R in the spacer between Clusters I and II. The spectrum of Rif(R) mutations arising from spores exposed to components of GCR is distinctly different from those of spores exposed to simulated space vacuum and martian conditions.

  8. Resistance of Bacillus subtilis Spore DNA to Lethal Ionizing Radiation Damage Relies Primarily on Spore Core Components and DNA Repair, with Minor Effects of Oxygen Radical Detoxification

    PubMed Central

    Raguse, Marina; Reitz, Günther; Okayasu, Ryuichi; Li, Zuofeng; Klein, Stuart; Setlow, Peter; Nicholson, Wayne L.

    2014-01-01

    The roles of various core components, including α/β/γ-type small acid-soluble spore proteins (SASP), dipicolinic acid (DPA), core water content, and DNA repair by apurinic/apyrimidinic (AP) endonucleases or nonhomologous end joining (NHEJ), in Bacillus subtilis spore resistance to different types of ionizing radiation including X rays, protons, and high-energy charged iron ions have been studied. Spores deficient in DNA repair by NHEJ or AP endonucleases, the oxidative stress response, or protection by major α/β-type SASP, DPA, and decreased core water content were significantly more sensitive to ionizing radiation than wild-type spores, with highest sensitivity to high-energy-charged iron ions. DNA repair via NHEJ and AP endonucleases appears to be the most important mechanism for spore resistance to ionizing radiation, whereas oxygen radical detoxification via the MrgA-mediated oxidative stress response or KatX catalase activity plays only a very minor role. Synergistic radioprotective effects of α/β-type but not γ-type SASP were also identified, indicating that α/β-type SASP's binding to spore DNA is important in preventing DNA damage due to reactive oxygen species generated by ionizing radiation. PMID:24123749

  9. Sporicidal efficacy of genipin: a potential theoretical alternative for biomaterial and tissue graft sterilization.

    PubMed

    Reich, Michael S; Akkus, Ozan

    2013-09-01

    Terminal sterilization of musculoskeletal allografts by gamma radiation minimizes the risk of disease transmission but impairs allograft mechanical properties. Commonly employed crosslinking agents can sterilize tissues without affecting mechanical properties adversely; however, these agents are toxic. Genipin is reported to be a benign crosslinking agent that strengthens mechanical properties of tissues; however, the antimicrobial capacity of genipin is largely unknown. The present study's aims were: (1) to assess the sporicidal potential of genipin, (2) to improve antimicrobial capacity by changing chemical and physical treatment conditions. To establish genipin's sterilization potential Bacillus subtilis var. niger spore strips were treated with 0-10% genipin in PBS or in 1:1 DMSO:PBS up to 72 h at room temperature (RT). Sterilizing doses and concentrations of genipin were used to treat B. pumilus and Geobacillus stearothermophilus spores to assess broader spectrum sporicidal activity of genipin. Scanning electron microscopy (SEM) was performed to evaluate gross morphological changes after genipin treatment. Optimal sterilization conditions were determined by evaluating the effects of temperature (RT-50 °C), DMSO:PBS ratio (0:100-100:0), and treatment duration (24-72 h) on B. subtilis. Genipin penetration of full thickness bovine patellar tendon and cortical bone specimens was observed to assess the feasibility of the agent for treating grafts. Initial studies showed that after 72 h of treatment at RT with 0.63-10% genipin/DMSO:PBS B. subtilis spore strips were sterilized; 0.63% genipin/PBS did not sterilize spore strips at 72 h at RT. Genipin doses and concentrations that sterilized B. subtilis spore strips sterilized B. pumilus and G. stearothermophilus spore strips. SEM revealed no gross morphological differences between untreated and treated spores. Treatment optimization resulted in sterilization within 24 h with 100% PBS, and DMSO facilitated sporicidal

  10. Size matters for violent discharge height and settling speed of Sphagnum spores: important attributes for dispersal potential

    PubMed Central

    Sundberg, Sebastian

    2010-01-01

    Background and Aims Initial release height and settling speed of diaspores are biologically controlled components which are key to modelling wind dispersal. Most Sphagnum (peat moss) species have explosive spore liberation. In this study, how capsule and spore sizes affect the height to which spores are propelled were measured, and how spore size and spore number of discharged particles relate to settling speed in the aspherical Sphagnum spores. Methods Spore discharge and spore cloud development were filmed in a closed chamber (nine species). Measurements were taken from snapshots at three stages of cloud development. Settling speed of spores (14 species) and clusters were timed in a glass tube. Key Results The maximum discharge speed measured was 3·6 m s−1. Spores reached a maximum height of 20 cm (average: 15 cm) above the capsule. The cloud dimensions at all stages were related positively to capsule size (R2 = 0·58–0·65). Thus species with large shoots (because they have large capsules) have a dispersal advantage. Half of the spores were released as singles and the rest as clusters (usually two to four spores). Single spores settled at 0·84–1·86 cm s−1, about 52 % slower than expected for spherical spores with the same diameters. Settling speed displayed a positive curvilinear relationship with spore size, close to predictions by Stokes' law for spherical spores with 68 % of the actual diameters. Light-coloured spores settled slower than dark spores. Settling speed of spore clusters agrees with earlier studies. Effective spore discharge and small, slowly settling spores appear particularly important for species in forested habitats. Conclusions The spore discharge heights in Sphagnum are among the greatest for small, wind-dispersed propagules. The discharge heights and the slow settling of spores affect dispersal distances positively and may help to explain the wide distribution of most boreal Sphagnum species. PMID:20123930

  11. Genetic Diversity and Association Characters of Bacteria Isolated from Arbuscular Mycorrhizal Fungal Spore Walls

    PubMed Central

    Selvakumar, Gopal; Krishnamoorthy, Ramasamy; Kim, Kiyoon; Sa, Tong-Min

    2016-01-01

    Association between arbuscular mycorrhizal fungi (AMF) and bacteria has long been studied. However, the factors influencing their association in the natural environment is still unknown. This study aimed to isolate bacteria associated with spore walls of AMF and identify their potential characters for association. Spores collected from coastal reclamation land were differentiated based on their morphology and identified by 18S rDNA sequencing as Funneliformis caledonium, Racocetra alborosea and Funneliformis mosseae. Bacteria associated with AMF spore walls were isolated after treating them with disinfection solution at different time intervals. After 0, 10 and 20 min of spore disinfection, 86, 24 and 10 spore associated bacteria (SAB) were isolated, respectively. BOX-PCR fingerprinting analysis showed that diverse bacterial communities were associated to AMF spores. Bacteria belonging to the same genera could associate with different AMF spores. Gram positive bacteria were more closely associated with AMF spores. Isolated SAB were characterized and tested for spore association characters such as chitinase, protease, cellulase enzymes and exopolysaccharide production (EPS). Among the 120 SAB, 113 SAB were able to show one or more characters for association and seven SAB did not show any association characters. The 16S rDNA sequence of SAB revealed that bacteria belonging to the phyla Firmicutes, Proteobacteria, Actinobacteria and Bactereiodes were associated with AMF spore walls. PMID:27479250

  12. Sporulation environment influences spore properties in Bacillus: evidence and insights on underlying molecular and physiological mechanisms.

    PubMed

    Bressuire-Isoard, Christelle; Broussolle, Véronique; Carlin, Frédéric

    2018-05-17

    Bacterial spores are resistant to physical and chemical insults, which make them a major concern for public health and for industry. Spores help bacteria to survive extreme environmental conditions that vegetative cells cannot tolerate. Spore resistance and dormancy are important properties for applications in medicine, veterinary health, food safety, crop protection, and other domains. The resistance of bacterial spores results from a protective multilayered structure and from the unique composition of the spore core. The mechanisms of sporulation and germination, the first stage after breaking of dormancy, and organization of spore structure have been extensively studied in Bacillus species. This review aims to illustrate how far the structure, composition and properties of spores are shaped by the environmental conditions in which spores form. We look at the physiological and molecular mechanisms underpinning how sporulation media and environment deeply affect spore yield, spore properties like resistance to wet heat and physical and chemical agents, germination, and further growth. For example, spore core water content decreases as sporulation temperature increases, and resistance to wet heat increases. Controlling the fate of Bacillus spores is pivotal to controlling bacterial risks and process efficiencies in, for example, the food industry, and better control hinges on better understanding how sporulation conditions influence spore properties.

  13. Turbulent Dispersion of Pathogenic Spores Within and Above Plant Canopies: Field Experiments and Lagrangian Modeling

    NASA Astrophysics Data System (ADS)

    Gleicher, S.; Chamecki, M.; Isard, S.; Katul, G. G.

    2012-12-01

    Plant disease epidemics caused by pathogenic spores are a common and consequential threat to agricultural crops. In most cases, pathogenic spores are produced and released deep inside plant canopies and must be transported out of the canopy region in order to infect other fields and spread the disease. The fraction of spores that "escape" the canopy is crucial in determining how fast and far these plant diseases will spread. The goal of this work is to use a field experiment, coupled with a Lagrangian Stochastic Model (LSM), to investigate how properties of canopy turbulence impact the dispersion of spores inside the canopy and the fraction of spores that escape from the canopy. An extensive field experiment was conducted to study spore dispersion inside and outside a corn canopy. The spores were released from point sources located at various depths inside the canopy. Concentration measurements were obtained inside and above the canopy by a 3-dimensional grid of spore collectors. The experimental measurements of mean spore concentration are used to validate a LSM for spore dispersion. In the LSM, flow field statistics used to drive the particle dispersion are specified by a second-order closure model for turbulence within plant canopies. The dispersion model includes spore deposition on and rebound from canopy elements. The combination of experimental and numerical simulations is used to quantify the fraction of spores that escape the canopy. Effects of release height, friction velocity, and canopy architecture on the escape fraction of spores are explored using the LSM, and implications for disease propagation are discussed.

  14. Spatio-temporal dynamics of genetic diversity in Sorghum bicolor in Niger.

    PubMed

    Deu, Monique; Sagnard, F; Chantereau, J; Calatayud, C; Vigouroux, Y; Pham, J L; Mariac, C; Kapran, I; Mamadou, A; Gérard, B; Ndjeunga, J; Bezançon, G

    2010-05-01

    The dynamics of crop genetic diversity need to be assessed to draw up monitoring and conservation priorities. However, few surveys have been conducted in centres of diversity. Sub-Saharan Africa is the centre of origin of sorghum. Most Sahel countries have been faced with major human, environmental and social changes in recent decades, which are suspected to cause genetic erosion. Sorghum is the second staple cereal in Niger, a centre of diversity for this crop. Niger was submitted to recurrent drought period and to major social changes during these last decades. We report here on a spatio-temporal analysis of sorghum genetic diversity, conducted in 71 villages covering the rainfall gradient and range of agro-ecological conditions in Niger's agricultural areas. We used 28 microsatellite markers and applied spatial and genetic clustering methods to investigate change in genetic diversity over a 26-year period (1976-2003). Global genetic differentiation between the two collections was very low (F (st) = 0.0025). Most of the spatial clusters presented no major differentiation, as measured by F (st), and showed stability or an increase in allelic richness, except for two of them located in eastern Niger. The genetic clusters identified by Bayesian analysis did not show a major change between the two collections in the distribution of accessions between them or in their spatial location. These results suggest that farmers' management has globally preserved sorghum genetic diversity in Niger.

  15. Evolutionary clade affects resistance of Clostridium difficile spores to Cold Atmospheric Plasma

    NASA Astrophysics Data System (ADS)

    Connor, Mairéad; Flynn, Padrig B.; Fairley, Derek J.; Marks, Nikki; Manesiotis, Panagiotis; Graham, William G.; Gilmore, Brendan F.; McGrath, John W.

    2017-02-01

    Clostridium difficile is a spore forming bacterium and the leading cause of colitis and antibiotic associated diarrhoea in the developed world. Spores produced by C. difficile are robust and can remain viable for months, leading to prolonged healthcare-associated outbreaks with high mortality. Exposure of C. difficile spores to a novel, non-thermal atmospheric pressure gas plasma was assessed. Factors affecting sporicidal efficacy, including percentage of oxygen in the helium carrier gas admixture, and the effect on spores from different strains representing the five evolutionary C. difficile clades was investigated. Strains from different clades displayed varying resistance to cold plasma. Strain R20291, representing the globally epidemic ribotype 027 type, was the most resistant. However all tested strains displayed a ~3 log reduction in viable spore counts after plasma treatment for 5 minutes. Inactivation of a ribotype 078 strain, the most prevalent clinical type seen in Northern Ireland, was further assessed with respect to surface decontamination, pH, and hydrogen peroxide concentration. Environmental factors affected plasma activity, with dry spores without the presence of organic matter being most susceptible. This study demonstrates that cold atmospheric plasma can effectively inactivate C. difficile spores, and highlights factors that can affect sporicidal activity.

  16. The role of analytical chemistry in Niger Delta petroleum exploration: a review.

    PubMed

    Akinlua, Akinsehinwa

    2012-06-12

    Petroleum and organic matter from which the petroleum is derived are composed of organic compounds with some trace elements. These compounds give an insight into the origin, thermal maturity and paleoenvironmental history of petroleum, which are essential elements in petroleum exploration. The main tool to acquire the geochemical data is analytical techniques. Due to progress in the development of new analytical techniques, many hitherto petroleum exploration problems have been resolved. Analytical chemistry has played a significant role in the development of petroleum resources of Niger Delta. Various analytical techniques that have aided the success of petroleum exploration in the Niger Delta are discussed. The analytical techniques that have helped to understand the petroleum system of the basin are also described. Recent and emerging analytical methodologies including green analytical methods as applicable to petroleum exploration particularly Niger Delta petroleum province are discussed in this paper. Analytical chemistry is an invaluable tool in finding the Niger Delta oils. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Lipoxygenase activity accelerates programmed spore germination in Aspergillus fumigatus

    Treesearch

    Gregory J. Fischer; William Bacon; Jun Yang; Jonathan M. Palmer; Taylor Dagenais; Bruce D. Hammock; Nancy P. Keller

    2017-01-01

    The opportunistic human pathogen Aspergillus fumigatus initiates invasive growth through a programmed germination process that progresses from dormant spore to swollen spore (SS) to germling (GL) and ultimately invasive hyphal growth. We find a lipoxygenase with considerable homology to human Alox5 and Alox15, LoxB, that impacts the transitions of...

  18. Utilization of Low-Pressure Plasma to Inactivate Bacterial Spores on Stainless Steel Screws

    PubMed Central

    Stapelmann, Katharina; Fiebrandt, Marcel; Raguse, Marina; Awakowicz, Peter; Reitz, Günther

    2013-01-01

    Abstract A special focus area of planetary protection is the monitoring, control, and reduction of microbial contaminations that are detected on spacecraft components and hardware during and after assembly. In this study, wild-type spores of Bacillus pumilus SAFR-032 (a persistent spacecraft assembly facility isolate) and the laboratory model organism B. subtilis 168 were used to study the effects of low-pressure plasma, with hydrogen alone and in combination with oxygen and evaporated hydrogen peroxide as a process gas, on spore survival, which was determined by a colony formation assay. Spores of B. pumilus SAFR-032 and B. subtilis 168 were deposited with an aseptic technique onto the surface of stainless steel screws to simulate a spore-contaminated spacecraft hardware component, and were subsequently exposed to different plasmas and hydrogen peroxide conditions in a very high frequency capacitively coupled plasma reactor (VHF-CCP) to reduce the spore burden. Spores of the spacecraft isolate B. pumilus SAFR-032 were significantly more resistant to plasma treatment than spores of B. subtilis 168. The use of low-pressure plasma with an additional treatment of evaporated hydrogen peroxide also led to an enhanced spore inactivation that surpassed either single treatment when applied alone, which indicates the potential application of this method as a fast and suitable way to reduce spore-contaminated spacecraft hardware components for planetary protection purposes. Key Words: Bacillus spores—Contamination—Spacecraft hardware—Plasma sterilization—Planetary protection. Astrobiology 13, 597–606. PMID:23768085

  19. Bacillus subtilis Spores as Vaccine Adjuvants: Further Insights into the Mechanisms of Action

    PubMed Central

    de Souza, Renata Damásio; Batista, Milene Tavares; Luiz, Wilson Barros; Cavalcante, Rafael Ciro Marques; Amorim, Jaime Henrique; Bizerra, Raíza Sales Pereira; Martins, Eduardo Gimenes; de Souza Ferreira, Luís Carlos

    2014-01-01

    Bacillus subtilis spores have received growing attention regarding potential biotechnological applications, including the use as probiotics and in vaccine formulations. B. subtilis spores have also been shown to behave as particulate vaccine adjuvants, promoting the increase of antibody responses after co-administration with antigens either admixed or adsorbed on the spore surface. In this study, we further evaluated the immune modulatory properties of B. subtilis spores using a recombinant HIV gag p24 protein as a model antigen. The adjuvant effects of B. subtilis spores were not affected by the genetic background of the mouse lineage and did not induce significant inflammatory or deleterious effects after parenteral administration. Our results demonstrated that co-administration, but not adsorption to the spore surface, enhanced the immunogenicity of that target antigen after subcutaneous administration to BALB/c and C57BL/6 mice. Spores promoted activation of antigen presenting cells as demonstrated by the upregulation of MHC and CD40 molecules and enhanced secretion of pro-inflammatory cytokines by murine dendritic cells. In addition, in vivo studies indicated a direct role of the innate immunity on the immunomodulatory properties of B. subtilis spores, as demonstrated by the lack of adjuvant effects on MyD88 and TLR2 knockout mouse strains. PMID:24475289

  20. Cryogenic Irradiation of Bacillus Atrophaeus spores to understand microbial survival on Icy Bodies

    NASA Astrophysics Data System (ADS)

    Yerby, C. J.; Noell, A. C.; Hodyss, R. P.; Johnson, P. V.; Ponce, A.

    2017-12-01

    Bacterial Spores are useful indicator organisms for studying the survival of microbes and degradation of biomolecules on the surface of planetary icy bodies. To predict the limits of life's proliferation in space, specifically on icy bodies, it is essential to understand the ability of microbes to withstand photon and particle irradiation at cryogenic temperatures. Bacillus Atrophaeus spores were transferred onto stainless steel coupons by varied processes and subsequently frozen at Europan temperatures (16oK—273oK) in a vacuum at 8.7x10-8 Torr. An argon lamp bombarded the spore-containing coupons with a solar-like radiation spectra for a variety of times, and spores were removed from the coupons and enumerated in culture. To date, (n=43) coupons have been analyzed for spore kill-rates with regards to ice temperature and radiation exposure time. Results will be presented on the effect of cryogenic temperatures in improving radiation resistance of bacterial spores. This works also details methodology improvements by comparing different spore deposition and recovery methods before and after cryogenic irradiation.

  1. Differentiation of Dictyostelium discoideum vegetative cells into spores during earth orbit in space

    NASA Astrophysics Data System (ADS)

    Takahashi, A.; Ohnishi, K.; Takahashi, S.; Masukawa, M.; Sekikawa, K.; Amano, T.; Nakano, T.; Nagaoka, S.; Ohnishi, T.

    2001-01-01

    We reported previously that emerged amoebae of Dictyosterium ( D.) discoideum grew, aggregated and differentiated to fruiting bodies with normal morphology in space. Here, we investigated the effects of space radiation and/or microgravity on the number, viability, kinetics of germination, growth rate and mutation frequency of spores formed in space in a radiation-sensitive strain, γs13, and the parental strain, NC4. In γs13, there were hardly spores in the fruiting bodies formed in space. In NC4, we found a decrease in the number of spores, a delay in germination of the spores and delayed start of cell growth of the spores formed in space when compared to the ground control. However, the mutation frequency of the NC4 spores formed in space was similar to that of the ground control. We conclude that the depression of spore formation might be induced by microgravity and/or space radiation through the depression of some stage(s) of DNA repair during cell differentiation in the slime mold.

  2. Fruiting bodies of the social amoeba Dictyostelium discoideum increase spore transport by Drosophila

    PubMed Central

    2014-01-01

    Background Many microbial phenotypes are the product of cooperative interactions among cells, but their putative fitness benefits are often not well understood. In the cellular slime mold Dictyostelium discoideum, unicellular amoebae aggregate when starved and form multicellular fruiting bodies in which stress-resistant spores are held aloft by dead stalk cells. Fruiting bodies are thought to be adaptations for dispersing spores to new feeding sites, but this has not been directly tested. Here we experimentally test whether fruiting bodies increase the rate at which spores are acquired by passing invertebrates. Results Drosophila melanogaster accumulate spores on their surfaces more quickly when exposed to intact fruiting bodies than when exposed to fruiting bodies physically disrupted to dislodge spore masses from stalks. Flies also ingest and excrete spores that still express a red fluorescent protein marker. Conclusions Multicellular fruiting bodies created by D. discoideum increase the likelihood that invertebrates acquire spores that can then be transported to new feeding sites. These results thus support the long-hypothesized dispersal benefits of altruism in a model system for microbial cooperation. PMID:24884856

  3. A comparison between EDA-EnVar and ETKF-EnVar data assimilation techniques using radar observations at convective scales through a case study of Hurricane Ike (2008)

    NASA Astrophysics Data System (ADS)

    Shen, Feifei; Xu, Dongmei; Xue, Ming; Min, Jinzhong

    2017-07-01

    This study examines the impacts of assimilating radar radial velocity (Vr) data for the simulation of hurricane Ike (2008) with two different ensemble generation techniques in the framework of the hybrid ensemble-variational (EnVar) data assimilation system of Weather Research and Forecasting model. For the generation of ensemble perturbations we apply two techniques, the ensemble transform Kalman filter (ETKF) and the ensemble of data assimilation (EDA). For the ETKF-EnVar, the forecast ensemble perturbations are updated by the ETKF, while for the EDA-EnVar, the hybrid is employed to update each ensemble member with perturbed observations. The ensemble mean is analyzed by the hybrid method with flow-dependent ensemble covariance for both EnVar. The sensitivity of analyses and forecasts to the two applied ensemble generation techniques is investigated in our current study. It is found that the EnVar system is rather stable with different ensemble update techniques in terms of its skill on improving the analyses and forecasts. The EDA-EnVar-based ensemble perturbations are likely to include slightly less organized spatial structures than those in ETKF-EnVar, and the perturbations of the latter are constructed more dynamically. Detailed diagnostics reveal that both of the EnVar schemes not only produce positive temperature increments around the hurricane center but also systematically adjust the hurricane location with the hurricane-specific error covariance. On average, the analysis and forecast from the ETKF-EnVar have slightly smaller errors than that from the EDA-EnVar in terms of track, intensity, and precipitation forecast. Moreover, ETKF-EnVar yields better forecasts when verified against conventional observations.

  4. Airborne myxomycete spores: detection using molecular techniques

    NASA Astrophysics Data System (ADS)

    Kamono, Akiko; Kojima, Hisaya; Matsumoto, Jun; Kawamura, Kimitaka; Fukui, Manabu

    2009-01-01

    Myxomycetes are organisms characterized by a life cycle that includes a fruiting body stage. Myxomycete fruiting bodies contain spores, and wind dispersal of the spores is considered important for this organism to colonize new areas. In this study, the presence of airborne myxomycetes and the temporal changes in the myxomycete composition of atmospheric particles (aerosols) were investigated with a polymerase chain reaction (PCR)-based method for Didymiaceae and Physaraceae. Twenty-one aerosol samples were collected on the roof of a three-story building located in Sapporo, Hokkaido Island, northern Japan. PCR analysis of DNA extracts from the aerosol samples indicated the presence of airborne myxomycetes in all the samples, except for the one collected during the snowfall season. Denaturing gradient gel electrophoresis (DGGE) analysis of the PCR products showed seasonally varying banding patterns. The detected DGGE bands were subjected to sequence analyses, and four out of nine obtained sequences were identical to those of fruiting body samples collected in Hokkaido Island. It appears that the difference in the fruiting period of each species was correlated with the seasonal changes in the myxomycete composition of the aerosols. Molecular evidence shows that newly formed spores are released and dispersed in the air, suggesting that wind-driven dispersal of spores is an important process in the life history of myxomycetes. This study is the first to detect airborne myxomycetes with the use of molecular ecological analyses and to characterize their seasonal distribution.

  5. Perspective: big oil, rural poverty, and environmental degradation in the Niger Delta region of Nigeria.

    PubMed

    Aaron, K K

    2005-05-01

    The Niger Delta region of Nigeria is richly endowed with both renewable and non-renewable natural resources. It contains 20 billion of Africa's proven 66 billion barrels of oil reserves and more than 3 trillion cubic meters of gas reserves. Oil and gas resources of the Niger Delta account for over 85% of the nation's gross domestic product (GDP), over 95% of the national budget, and over 80% of the nation's wealth. Paradoxically, the Niger Delta remains the poorest region, due largely to the ecologically unfriendly exploitation of oil and gas and state policies that expropriate the indigenous peoples of the Niger Delta of their rights to these natural resources. The ecological devastation occasioned by the activities of oil transnational corporations (TNCs) have rendered farming and fishing useless, previously the main occupations of these rural people. The people of the Niger Delta are deprived of their share of the wealth on which the entire nation depends; they "benefit" only from compensation for incidents of oil pollution. At the same time, occurrences of oil spills in the Niger Delta region have increased. In this article, it is argued that the ecologically unfriendly activities of oil TNCs, and the state's petroleum development policies, lead to poverty in the Niger Delta, and poverty in turn leads to environmental degradation. It is the dynamics of this interconnectedness that we wish to explore.

  6. Distribution, dispersal and abundance of hayscented fern spores in mixed hardwood stands

    Treesearch

    Larry H. McCormick; Kathy A. Penrod

    1995-01-01

    A study was conducted in 1992 to assess the abundance and distribution of viable hayscented fern spores in the forest floor of central Pennsylvania hardwood stands before and after seasonal spore dispersal. Intact soil samples were collected at various distances and directions from established fern communities and placed in a greenhouse to effect spore germination....

  7. Spore-forming organisms in platelet concentrates: a challenge in transfusion bacterial safety.

    PubMed

    Störmer, M; Vollmer, T; Kleesiek, K; Dreier, J

    2008-12-01

    Bacterial detection and pathogen reduction are widely used methods of minimizing the risk of transfusion-transmitted bacterial infection. But, bacterial spores are highly resistant to chemical and physical agents. In this study, we assessed the bacterial proliferation of spore-forming organisms seeded into platelet concentrates (PCs) to demonstrate that spores can enter the vegetative state in PCs during storage. In the in vitro study, PCs were inoculated with 1-10 spores mL(-1)of Bacillus cereus (n = 1), Bacillus subtilis (n = 2) and Clostridium sporogenes (n = 2). Sampling was performed during 6-day aerobic storage at 22 degrees C. The presence of bacteria was assessed by plating culture, automated culture and real-time reverse transcriptase-polymerase chain reaction (RT-PCR). Spores of the C. sporogenes do not enter the vegetative phase under PC storage conditions, whereas B. subtilis and B. cereus showed growth in the PC and could be detected using RT-PCR and automated culture. Depending on the species and inoculums, bacterial spores may enter the vegetative phase during PC storage and can be detected by bacterial detection methods.

  8. Demulsification of crude oil-in-water emulsions by means of fungal spores.

    PubMed

    Vallejo-Cardona, Alba Adriana; Martínez-Palou, Rafael; Chávez-Gómez, Benjamín; García-Caloca, Graciela; Guerra-Camacho, Jairo; Cerón-Camacho, Ricardo; Reyes-Ávila, Jesús; Karamath, James Robert; Aburto, Jorge

    2017-01-01

    The present feature describes for the first time the application of spores from Aspergillus sp. IMPMS7 to break out crude oil-in-water emulsions (O/W). The fungal spores were isolated from marine sediments polluted with petroleum hydrocarbons. The spores exhibited the ability to destabilize different O/W emulsions prepared with medium, heavy or extra-heavy Mexican crude oils with specific gravities between 10.1 and 21.2°API. The isolated fungal spores showed a high hydrophobic power of 89.3 ± 1.9% and with 2 g of spores per liter of emulsion, the half-life for emulsion destabilization was roughly 3.5 and 0.7 h for extra-heavy and medium crude oil, respectively. Then, the kinetics of water separation and the breaking of the O/W emulsion prepared with heavy oil through a spectrofluorometric technique were studied. A decrease in the fluorescence ratio at 339 and 326 nm (I339/I326) was observed in emulsions treated with spores, which is similar to previously reported results using chemical demulsifiers.

  9. Demulsification of crude oil-in-water emulsions by means of fungal spores

    PubMed Central

    Vallejo-Cardona, Alba Adriana; Martínez-Palou, Rafael; Chávez-Gómez, Benjamín; García-Caloca, Graciela; Guerra-Camacho, Jairo; Cerón-Camacho, Ricardo; Reyes-Ávila, Jesús; Karamath, James Robert

    2017-01-01

    The present feature describes for the first time the application of spores from Aspergillus sp. IMPMS7 to break out crude oil-in-water emulsions (O/W). The fungal spores were isolated from marine sediments polluted with petroleum hydrocarbons. The spores exhibited the ability to destabilize different O/W emulsions prepared with medium, heavy or extra-heavy Mexican crude oils with specific gravities between 10.1 and 21.2°API. The isolated fungal spores showed a high hydrophobic power of 89.3 ± 1.9% and with 2 g of spores per liter of emulsion, the half-life for emulsion destabilization was roughly 3.5 and 0.7 h for extra-heavy and medium crude oil, respectively. Then, the kinetics of water separation and the breaking of the O/W emulsion prepared with heavy oil through a spectrofluorometric technique were studied. A decrease in the fluorescence ratio at 339 and 326 nm (I339/I326) was observed in emulsions treated with spores, which is similar to previously reported results using chemical demulsifiers. PMID:28234917

  10. Characteristics of Deoxyribonucleic Acid Polymerase Isolated from Spores of Rhizopus stolonifer1

    PubMed Central

    Gong, Cheng-Shung; Dunkle, Larry D.; Van Etten, James L.

    1973-01-01

    Deoxyribonucleic acid (DNA)-dependent DNA polymerase was purified several hundredfold from germinated and ungerminated spores of the fungus Rhizopus stolonifer. The partially purified enzymes from both spore stages exhibited identical characteristics; incorporation of [3H]deoxythymidine monophosphate into DNA required Mg2+, DNA, a reducing agent, and the simultaneous presence of deoxyguanosine triphosphate, deoxycytidine triphosphate, and deoxyadenosine triphosphate. Heat-denatured and activated DNAs were better templates than were native DNAs. The buoyant density of the radioactive product of the reaction was similar to that of the template DNA. The enzyme is probably composed of a single polypeptide chain with an S value of 5.12 and an estimated molecular weight of 70,000 to 75,000. During the early stages of purification, the enzyme fraction from ungerminated spores required exogenous DNA for maximum activity, whereas the corresponding enzyme fraction from germinated spores did not require added DNA. Apparently DNA polymerase from germinated spores was more tightly bound to endogenous DNA than was the enzyme from ungerminated spores. PMID:4728271

  11. FluG affects secretion in colonies of Aspergillus niger.

    PubMed

    Wang, Fengfeng; Krijgsheld, Pauline; Hulsman, Marc; de Bekker, Charissa; Müller, Wally H; Reinders, Marcel; de Vries, Ronald P; Wösten, Han A B

    2015-01-01

    Colonies of Aspergillus niger are characterized by zonal heterogeneity in growth, sporulation, gene expression and secretion. For instance, the glucoamylase gene glaA is more highly expressed at the periphery of colonies when compared to the center. As a consequence, its encoded protein GlaA is mainly secreted at the outer part of the colony. Here, multiple copies of amyR were introduced in A. niger. Most transformants over-expressing this regulatory gene of amylolytic genes still displayed heterogeneous glaA expression and GlaA secretion. However, heterogeneity was abolished in transformant UU-A001.13 by expressing glaA and secreting GlaA throughout the mycelium. Sequencing the genome of UU-A001.13 revealed that transformation had been accompanied by deletion of part of the fluG gene and disrupting its 3' end by integration of a transformation vector. Inactivation of fluG in the wild-type background of A. niger also resulted in breakdown of starch under the whole colony. Asexual development of the ∆fluG strain was not affected, unlike what was previously shown in Aspergillus nidulans. Genes encoding proteins with a signal sequence for secretion, including part of the amylolytic genes, were more often downregulated in the central zone of maltose-grown ∆fluG colonies and upregulated in the intermediate part and periphery when compared to the wild-type. Together, these data indicate that FluG of A. niger is a repressor of secretion.

  12. Mapping and dating based evolution studies of the Niger Vallis outflow channel, Mars

    NASA Astrophysics Data System (ADS)

    Kukkonen, S.; Kostama, V.-P.

    2018-04-01

    Niger Vallis is one of the four large outflow channel systems in the eastern Hellas rim region of Mars. Niger, as well as the other nearby valles, is assumed to have been carved by water and later covered by ice-rich deposits. Thus, it plays a significant role both in the fluvial and glacial evolution of the region. This work presents the photogeological mapping and crater count dating results of the Niger Vallis system achieved based on the images of the ConTeXt (CTX) and High Resolution Imaging Science Experiment (HiRISE) cameras of Mars Reconnaissance Orbiter (MRO). The results show that Niger Vallis formed in at least two stages. The southern branch of Niger Vallis originated from Ausonia Cavus, ∼3.7-3.9 Ga ago, whereas the northern branch formed from Peraea Cavus, ∼3.3-3.4 Ga ago. Both of the time scales correspond to the volcanic activity phases of the nearby highland volcanoes of Tyrrhenus and Hadriacus Montes. The fluvial activity of Niger Vallis was not, however, as intense as the activity of the other nearby outflow channels, and it seems to have weakened soon after the formation of the northern branch. The outflow channel was resurfaced again ∼0.9-1.5 Ga ago, probably by regional fluvial activity. After that, the floor of Niger Vallis was covered by lineated valley fills and corresponding ice-rich deposits, the formation of which ended ∼220-470 Ma ago, or not later than ∼110 Ma ago. Although the origin of the deposits was probably related to contemporary climate conditions, the emplacement of some deposits, or even their formation, may have been contributed by impact events. After lineated valley fill formation, the region was resurfaced several times, probably because of changes in regional climatic or endogenic circumstances.

  13. Role of Visible Light-Activated Photocatalyst on the Reduction of Anthrax Spore-Induced Mortality in Mice

    PubMed Central

    Huang, Hsin-Hsien; Wong, Ming-Show; Lin, Hung-Chi; Chang, Hsin-Hou

    2009-01-01

    Background Photocatalysis of titanium dioxide (TiO2) substrates is primarily induced by ultraviolet light irradiation. Anion-doped TiO2 substrates were shown to exhibit photocatalytic activities under visible-light illumination, relative environmentally-friendly materials. Their anti-spore activity against Bacillus anthracis, however, remains to be investigated. We evaluated these visible-light activated photocatalysts on the reduction of anthrax spore-induced pathogenesis. Methodology/Principal Findings Standard plating method was used to determine the inactivation of anthrax spore by visible light-induced photocatalysis. Mouse models were further employed to investigate the suppressive effects of the photocatalysis on anthrax toxin- and spore-mediated mortality. We found that anti-spore activities of visible light illuminated nitrogen- or carbon-doped titania thin films significantly reduced viability of anthrax spores. Even though the spore-killing efficiency is only approximately 25%, our data indicate that spores from photocatalyzed groups but not untreated groups have a less survival rate after macrophage clearance. In addition, the photocatalysis could directly inactivate lethal toxin, the major virulence factor of B. anthracis. In agreement with these results, we found that the photocatalyzed spores have tenfold less potency to induce mortality in mice. These data suggest that the photocatalysis might injury the spores through inactivating spore components. Conclusion/Significance Photocatalysis induced injuries of the spores might be more important than direct killing of spores to reduce pathogenicity in the host. PMID:19132100

  14. Walking dead: Permeabilization of heat-treated Geobacillus stearothermophilus ATCC 12980 spores under growth-preventing conditions.

    PubMed

    Mtimet, Narjes; Trunet, Clément; Mathot, Anne-Gabrielle; Venaille, Laurent; Leguérinel, Ivan; Coroller, Louis; Couvert, Olivier

    2017-06-01

    Although heat treatment is probably the oldest and the most common method used to inactivate spores in food processes, the specific mechanism of heat killing of spores is still not fully understood. The purpose of this study is to investigate the evolution of the permeabilization and the viability of heat-treated spores during storage under growth-preventing conditions. Geobacillus stearothermophilus spores were heat-treated under various conditions of temperature and pH, and then stored under conditions of temperature and pH that prevent growth. Spore survival was evaluated by count plating immediately after heat treatment, and then during storage over a period of months. Flow cytometry analyses were performed to investigate the Syto 9 permeability of heat-treated spores. Sub-lethally heat-treated spores of G. stearothermophilus were physically committed to permeabilization after heat treatment. However, prolonged heat treatment may abolish the spore permeabilization and block heat-treated spores in the refractive state. However, viability loss and permeabilization during heat treatment seem to be two different mechanisms that occur independently, and the loss of permeabilization properties takes place at a much slower rate than spore killing. Under growth-preventing conditions, viable heat-treated spores presumably lose their viability due to the permeabilization phenomena, which makes them more susceptible to the action of adverse conditions precluding growth. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Physical-biological coupling in spore dispersal of kelp forest macroalgae

    NASA Astrophysics Data System (ADS)

    Gaylord, Brian; Reed, Daniel C.; Washburn, Libe; Raimondi, Peter T.

    2004-08-01

    The physical-biological linkages controlling the dispersal of spores produced by macroalgae that reside in kelp forests are complicated and laced with feedbacks. Here we discuss the fundamental elements of these interactions. Biological considerations include spore swimming and sinking speeds, their periods of viability in the plankton, and the height of spore release above the seafloor, which together determine the durations over which spores can be swept by horizontal currents before they contact the seafloor. Morphologies and material properties of canopy forming kelps may also influence the drag exerted on passing waters by the kelps, the plants' ability to persist in the face of rapid flows, and thereby the degree to which impinging currents are redirected around, or slowed within, kelp forests. Macroalgal life histories, and the size of spore sources as controlled by the dimensions of kelp forests and the density and fecundity of individuals within them, influence effective dispersal distances as well. Physical considerations encompass the mean speed, direction, and timescales of variability of currents relative to spore suspension times, the interaction of surface gravity waves with currents in producing turbulence in the benthic boundary layer, wind-driven surface mixing, water stratification, and shoreline bathymetry and substratum roughness, all of which can affect the interplay of vertical and horizontal transport of macroalgal spores. Intricate within-forest processes may induce attenuation of current speeds and consequent reductions in seabed shear, along with simultaneous production of small-scale turbulence in kelp wakes. Slower mean currents and smaller eddy scales in turn may attenuate vertical mixing within forests, thus extending spore suspension times. Further complexities likely arise due to changes in the relative rates of horizontal and vertical dispersion, modifications to the overall profiles of vertical mixing, and the creation of fine

  16. Method and Apparatus for Detecting and Quantifying Bacterial Spores on a Surface

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian (Inventor)

    2017-01-01

    A method and an apparatus for detecting and quantifying bacterial spores on a surface. In accordance with the method: a matrix including lanthanide ions is provided on the surface containing the bacterial spores; functionalized aromatic molecules are released from the bacterial spores on the surface; a complex of the lanthanide ion and the aromatic molecule is formed on the surface; the complex of the lanthanide ion and the aromatic molecule is excited to generate a characteristic luminescence of the complex on the surface; and the bacterial spores exhibiting the luminescence of the complex on the surface are detected and quantified.

  17. Method and apparatus for detecting and quantifying bacterial spores on a surface

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian (Inventor)

    2009-01-01

    A method and an apparatus for detecting and quantifying bacterial spores on a surface. In accordance with the method: a matrix including lanthanide ions is provided on the surface containing the bacterial spores; functionalized aromatic molecules are released from the bacterial spores on the surface; a complex of the lanthanide ion and the aromatic molecule is formed on the surface; the complex of the lanthanide ion and the aromatic molecule is excited to generate a characteristic luminescence of the complex on the surface; and the bacterial spores exhibiting the luminescence of the complex on the surface are detected and quantified.

  18. Coupled hydrologic and hydraulic modeling of Upper Niger River Basin

    NASA Astrophysics Data System (ADS)

    Fleischmann, Ayan; Siqueira, Vinícius; Paris, Adrien; Collischonn, Walter; Paiva, Rodrigo; Gossett, Marielle; Pontes, Paulo; Calmant, Stephane; Biancamaria, Sylvain; Crétaux, Jean-François; Tanimoune, Bachir

    2017-04-01

    The Upper Niger Basin is located in Western Africa, flowing from Guinea Highlands towards the Sahel region. In this area lies the seasonally inundated Niger Inland Delta, which supports important environmental services such as habitats for wildlife, climate and flood regulation, as well as large fishery and agricultural areas. In this study, we present the application of MGB-IPH large scale hydrologic and hydrodynamic model for the Upper Niger Basin, totaling c.a. 650,000 km2 and set up until the city of Niamey in Niger. The model couples hydrological vertical balance and runoff generation with hydrodynamic flood wave propagation, by allowing infiltration from floodplains into soil column as well as representing backwater effects and floodplain storage throughout flat areas such as the Inland Delta. The model is forced with TRMM 3B42 daily precipitation and Climate Research Unit (CRU) climatology for the period 2000-2010, and was calibrated against in-situ discharge gauges and validated with in-situ water level, remotely sensed estimations of flooded areas (classification of MODIS imagery) and satellite altimetry (JASON-2 mission). Model results show good predictions for calibrated daily discharge and validated water level and altimetry at stations both upstream and downstream of the delta (Nash-Sutcliffe Efficiency>0.7 for all stations), as well as for flooded areas within the delta region (ENS=0.5; r2=0.8), allowing a good representation of flooding dynamics basinwide and simulation of flooding behavior of both perennial (e.g., Niger main stem) and ephemeral rivers (e.g., Niger Red Flood tributaries in Sahel). Coupling between hydrology and hydrodynamic processes indicates an important feedback between floodplain and soil water storage that allows high evapotranspiration rates even after the flood passage around the inner delta area. Also, representation of water retention in floodplain channels and distributaries in the inner delta (e.g., Diaka river

  19. Fungal spores as potential ice nuclei in fog/cloud water and snow

    NASA Astrophysics Data System (ADS)

    Bauer, Heidi; Goncalves, Fabio L. T.; Schueller, Elisabeth; Puxbaum, Hans

    2010-05-01

    INTRODUCTION: In discussions about climate change and precipitation frequency biological ice nucleation has become an issue. While bacterial ice nucleation (IN) is already well characterized and even utilized in industrial processes such as the production of artificial snow or to improve freezing processes in food industry, less is known about the IN potential of fungal spores which are also ubiquitous in the atmosphere. A recent study performed at a mountain top in the Rocky Mountains suggests that fungal spores and/or pollen might play a role in increased IN abundance during periods of cloud cover (Bowers et al. 2009). In the present work concentrations of fungal spores in fog/cloud water and snow were determined. EXPERIMENTAL: Fog samples were taken with an active fog sampler in 2008 in a traffic dominated area and in a national park in São Paulo, Brazil. The number concentrations of fungal spores were determined by microscopic by direct enumeration by epifluorescence microscopy after staining with SYBR Gold nucleic acid gel stain (Bauer et al. 2008). RESULTS: In the fog water collected in the polluted area at a junction of two highly frequented highways around 22,000 fungal spores mL-1 were counted. Fog in the national park contained 35,000 spores mL-1. These results were compared with cloud water and snow samples from Mt. Rax, situated at the eastern rim of the Austrian Alps. Clouds contained on average 5,900 fungal spores mL-1 cloud water (1,300 - 11,000) or 2,200 spores m-3 (304 - 5,000). In freshly fallen snow spore concentrations were lower than in cloud water, around 1,000 fungal spores mL-1 were counted (Bauer et al. 2002). In both sets of samples representatives of the ice nucleating genus Fusarium could be observed. REFERENCES: Bauer, H., Kasper-Giebl, A., Löflund, M., Giebl, H., Hitzenberger, R., Zibuschka, F., Puxbaum, H. (2002). The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols

  20. Oxidation mechanism of Penicillium digitatum spores through neutral oxygen radicals

    NASA Astrophysics Data System (ADS)

    Hashizume, Hiroshi; Ohta, Takayuki; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Ito, Masafumi

    2014-01-01

    To investigate the inactivation process of Penicillium digitatum spores through neutral oxygen species, the spores were treated with an atmospheric-pressure oxygen radical source and observed in-situ using a fluorescent confocal-laser microscope. The treated spores were stained with two fluorescent dyes, 1,1‧-dioctadecyl-3,3,Y,3‧-tetramethylindocarbocyanine perchlorate (DiI) and diphenyl-1-pyrenylphosphine (DPPP). The intracellular organelles as well as the cell membranes in the spores treated with the oxygen radical source were stained with DiI without a major morphological change of the membranes. DPPP staining revealed that the organelles were oxidized by the oxygen radical treatment. These results suggest that neutral oxygen species, especially atomic oxygen, induce a minor structural change or functional inhibition of cell membranes, which leads to the oxidation of the intracellular organelles through the penetration of reactive oxygen species into the cell.

  1. Bacterial spore survival after exposure to HZE particle bombardment -implication for the lithopanspermia hypothesis.

    NASA Astrophysics Data System (ADS)

    Moeller, Ralf; Berger, Thomas; Matthiä, Daniel; Okayasu, Ryuichi; Kitamura, H.; Reitz, Guenther

    Based on their unique resistance to various space parameters, bacterial spores (mainly spores of Bacillus subtilis) are one of the model systems used for astrobiological studies. More re-cently, spores of B. subtilis have been applied for experimental research on the likelihood of interplanetary transfer of life. Since its first postulation by Arrhenius in 1903, the pansper-mia hypothesis has been revisited many-times, e.g. after the discovery of several lunar and Martian meteorites on Earth [1,2]. These information provided intriguing evidence that rocks may naturally be transferred between the terrestrial planets. The scenario of panspermia, now termed "lithopanspermia" involves three basic hypothetical steps: (i) the escape process, i.e. removal to space of biological material, which has survived being lifted from the surface to high altitudes; (ii) interim state in space, i.e., survival of the biological material over time scales comparable with interplanetary or interstellar passage; (iii) the entry process, i.e. nondestruc-tive deposition of the biological material on another planet [2]. In our research, spores of B. subtilis were used to study the effects of galactic cosmic radiation on spore survival and induced mutations. On an interplanetary journey, outside a protective magnetic field, spore-containing rocks would be exposed to bombardment by high-energy charged particle radiation from galac-tic sources and from the sun. Air-dried spore layers on three different host materials (i.e., non-porous igneous rocks (gabbro), quartz, and spacecraft analog material (aluminum)) were irradiated with accelerated heavy ions (Helium and Iron) with a LET (linear energy transfer) ˆ of 2 and 200 keV/Am, at the Heavy Ion Medical Accelerator (HIMAC) at the National In-stitute of Radiological Sciences, (NIRS), Chiba, Japan in the frame of the HIMAC research project 20B463 "Characterization of heavy ion-induced damage in Bacillus subtilis spores and their global

  2. Germination and Inactivation of Alicyclobacillus acidoterrestris Spores Induced by Moderate Hydrostatic Pressure.

    PubMed

    Sokołowska, Barbara; Skapska, Sylwia; Fonberg-Broczek, Monika; Niezgoda, Jolanta; Porebska, Izabela; Dekowska, Agnieszka; Rzoska, Sylwester J

    2015-01-01

    Given the importance of spoilage caused by Alicyclobacillus acidoterrestris for the fruit juice industry, the objective of this work was to study the germination and inactivation of A. acidoterrestris spores induced by moderate hydrostatic pressure. Hydrostatic pressure treatment can induce the germination and inactivation of A. acidoterrestris spores. At low pH, spore germination of up to 3.59-3.75 log and inactivation of 1.85-2.04 log was observed in a low pressure window (200-300 MPa) applied at 50 degrees C for 20 min. Neutral pH suppressed inactivation, the number of spores inactivated at pH 7.0 was only 0.24-1.06 log. The pressurization temperature significantly affected spore germination and inactivation. The degree of germination in apple juice after pressurization for 30 min with 200 MPa at 20 degrees C was 2.04 log, with only 0.61 log of spores being inactivated, while at 70 degrees C spore germination was 5.94 log and inactivation 4.72 log. This temperature strongly stimulated germination and inactivation under higher (500 MPa) than lower (200 MPa) pressure. When the oscillatory mode was used, the degree of germination and inactivation was slightly higher than at continuous mode. The degree of germination and inactivation was inversely proportional to the soluble solids content and was lowest in concentrated apple juice.

  3. Spore ornamentation of Haplosporidium pickfordi Barrow, 1961 (Haplosporidia), a parasite of freshwater snails in Michigan, USA.

    PubMed

    Burreson, E M

    2001-01-01

    Spore ornamentation is increasingly recognized as a key character for species differentiation and genus assignment in the phylum Haplosporidia. Unfortunately, spore ornamentation is known for only a small number of described species so it is difficult to assign most species to genera with any confidence. Scanning and transmission electron microscopy were used to determine the presence and morphology of spore ornamentation of Haplosporidium pickfordi collected from the digestive gland of the snail Physella parkeri in Douglas Lake, Michigan. Spores possess filaments that are derived from the spore wall and originate from two separate areas at the posterior end of the spore. When spores are first isolated from host tissue, filaments are fused into a sheet that wraps around the spore, passing under the opercular lid. These filaments gradually unravel when spores are held in water and after about 14 d most filaments project freely from the posterior end of the spore. The number of filaments could not be determined with certainty, but appears to be approximately nine. Filaments are 100 nm in diam. and up to 50 microm in length. The presence of spore wall-derived filaments confirms the placement of the parasite in the genus Haplosporidium.

  4. Effect of Fertilizers and Neem Cake Amendment in Soil on Spore Germination of Arthrobotrys dactyloides

    PubMed Central

    Kumar, D.; Jaiswal, R. K.

    2005-01-01

    Application of fertilizers such as urea, diammonium phosphate (DAP) and muriate of potash in soil adversely affected the spore germination of Arthrobotrys dactyloides. Amendment of soil with urea at the concentrations of 1.0%, 0.5% and 0.1% completely inhibited spore germination and direct trap formation on the conidium, whereas muriate of potash delayed and reduced the spore germination even at the lowest concentration. DAP also inhibited spore germination at 1.0% concentration, while at lower concentration the percentage of spore germination was reduced. Application of neem cake at the concentration of 0.5% also inhibited spore germination after 24 h of amendment. The inhibitory effect of neem cake was reduced after 15 days of amendment, while after 30 days after amendment the inhibitory effect was completely lost and the spore germinated by direct trap as in unamended soil. Nematodes were not attracted to ungerminated spores after 24 h of amendment. After 15 days of amendment nematodes were attracted to agar blocks containing fewer germinated spores after 24 h of incubation but after 48 h of incubation large number of nematodes were attracted and trapped by the germinated spores with direct traps. After 30 days of amendment, larger number of nematodes were attracted and trapped by direct traps. PMID:24049500

  5. 1-Octanol, a self-inhibitor of spore germination in Penicillium camemberti.

    PubMed

    Gillot, Guillaume; Decourcelle, Nicolas; Dauer, Gaëlle; Barbier, Georges; Coton, Emmanuel; Delmail, David; Mounier, Jérôme

    2016-08-01

    Penicillium camemberti is a technologically relevant fungus used to manufacture mold-ripened cheeses. This fungal species produces many volatile organic compounds (VOCs) including ammonia, methyl-ketones, alcohols and esters. Although it is now well known that VOCs can act as signaling molecules, nothing is known about their involvement in P. camemberti lifecycle. In this study, spore germination was shown to be self-regulated by quorum sensing in P. camemberti. This phenomenon, also called "crowding effect", is population-dependent (i.e. observed at high population densities). After determining the volatile nature of the compounds involved in this process, 1-octanol was identified as the main compound produced at high-spore density using GC-MS. Its inhibitory effect was confirmed in vitro and 3 mM 1-octanol totally inhibited spore germination while 100 μM only transiently inhibited spore germination. This is the first time that self-inhibition of spore germination is demonstrated in P. camemberti. The obtained results provide interesting perspectives for better control of mold-ripened cheese processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Requirements for the Development of Bacillus Anthracis Spore Reference Materials Used to Test Detection Systems

    DTIC Science & Technology

    2006-01-01

    the sporangium) contributes the com- plex layers of the spore coats that encase the spore DNA. The mother cell dies and begins to fall apart at the end...spores. Bacillus spores contain a number of coat layers and some species posses an additional outermost layer called the exosporium. BA, B. cereus, and B...exosporium is the outermost layer of the BA spores, it likely contains important protein and carbohydrate markers that are recognized by antibodies

  7. Recovery of commercially produced Bacillus thuringiensis var. israelensis and Bacillus sphaericus from tires and prevalence of bacilli in artificial and natural containers.

    PubMed

    Siegel, J P; Smith, A R; Novak, R J

    2001-03-01

    We conducted surveys to identify the species of spore-forming bacteria present in natural and artificial containers. Most of our samples came from Illinois. Identification was based on the cellular fatty acid composition of the bacterial cell wall. In addition, we utilized a custom database for commercially produced strains of Bacillus thuringiensis var. israelensis (Bti) and B. sphaericus, to differentiate between larvicidal isolates with commercial or native origin. Native Bti was present at low levels in almost all habitats but was not recovered from bromeliads and metal containers. In temporary woodland pools, 27.9% of the colonies recovered were native Bti. We did not recover larvicidal B. sphaericus in untreated habitats. VectoBac and VectoLex were applied to tires containing water and the tires were sampled 3 months and 9 months after treatment. Isolates of Bti and B. sphaericus with commercial origin were recovered as long as 9 months after application. We noticed numerous cadavers of Aedes triseriatus in several tires 9 months after treatment with VectoBac. We could not determine if this mortality resulted from recycling of Bti in these tires or whether insecticidal crystal proteins from the original treatment were resuspended. Bacillus thuringiensis var. israelensis isolates with commercial ancestry were recovered from untreated tires 9 months after application. Isolates of larvicidal B. sphaericus that differed from the bacteria in VectoLex were also recovered from untreated tires.

  8. Incidence Study of Spores of Clostridium botulinum in Convenience Foods

    PubMed Central

    Insalata, N. F.; Witzeman, S. J.; Fredericks, G. J.; Sunga, F. C. A.

    1969-01-01

    The objective of this study was to gather data on the incidence of Clostridium botulinum spores in selected consumer-convenience food products. The incidence of spores of C. botulinum in 100 samples of each of four categories of commercially available convenience foods was determined. These categories included (i) “boil-in-the-bag” foods, (ii) vacuum-packed foods, (iii) pressurized foods, and (iv) dehydrated and freeze-dried foods. Of the 400 samples analyzed, one was found to contain the spores of C. botulinum. This occurred in vacuum-packed frank-furters and was identified as type B. PMID:4890746

  9. Clostridium difficile shows no trade-off between toxin and spore production within the human host.

    PubMed

    Blanco, Natalia; Walk, Seth; Malani, Anurag N; Rickard, Alexander; Benn, Michele; Eisenberg, Marisa; Zhang, Min; Foxman, Betsy

    2018-05-01

    This study aimed to describe the correlation between Clostridium difficile spore and toxin levels within the human host. In addition, we assessed whether overgrowth of Candida albicans modified this association. We measured toxin, spore and Candida albicans levels among 200 successively collected stool samples that tested positive for C. difficile, and PCR ribotyped these C. difficile isolates. Analysis of variance and linear regression were used to test the association between spore and toxin levels. Kruskal-Wallis tests and t-tests were used to compare the association between spore or toxin levels and host, specimen, or pathogen characteristics. C. difficile toxin and spore levels were positively associated (P<0.001); this association did not vary significantly with C. albicans overgrowth [≥5 logs of C. albicans colony-forming units (c.f.u.) g -1 ]. However, ribotypes 027 and 078-126 were significantly associated with higher levels of toxin and spores, and C. albicans overgrowth. The strong positive association observed between in vivo levels of C. difficile toxin and spores suggests that patients with more severe C. difficile infections may have increased spore production, enhancing C. difficile transmission. Although, on average, spore levels were higher in toxin-positive samples than in toxin-negative/PCR-positive samples, spores were found in almost all toxin-negative samples. The ubiquity of spore production among toxin-negative and formed stool samples emphasizes the importance of following infection prevention and control measures for all C. difficile-positive patients during their entire hospital stay.

  10. Measurement and analysis on optical characteristics of Aspergillus oryzae spores in infrared band

    NASA Astrophysics Data System (ADS)

    Li, Le; Hu, Yihua; Gu, Youlin; Chen, Wei; Xu, Shilong; Zhao, Xinying

    2015-10-01

    Spore is an important part of bioaerosols. The optical characteristics of spore is a crucial parameter for study on bioaerosols. The reflection within the waveband of 2.5 to15μm were measured by squash method. Based on the measured data, Complex refractive index of Aspergillus oryzae spores within the waveband of 3 to 5μm and 8 to 14 μm were calculated by using Krames-Kronig (K-K) relationship. Then,the mass extinction coefficient of Aspergillus oryzae spores within the waveband of 3 to 5μm and 8 to 14μm were obtained by utilizing Mie scattering theory, and the results were analyzed and discussed. The average mass extinction coefficient of Aspergillus oryzae spores is 0.51 m2/g in the range of 3 to 5μm and 0.48m2/g in the range of 8 to 14μm. Compared with common inorganic compounds, Aspergillus oryzae spores possesses a good extinction performance in infrared band.

  11. Rising Water Storage in the Niger River basin: Clues and Cause

    NASA Astrophysics Data System (ADS)

    Werth, S.

    2016-12-01

    Heavily populated west African regions along the Niger River are affected by climate and land cover changes, altering the distribution of water resources. To maintain a reliable water supply in the region, water management authorities require knowledge of hydrological changes at various spatial and temporal scales. Local and regional studies reported rising water tables over the last decades as a consequence of complex responses on land use change in the Sahel zone. The spatial extend of this responses is not well understood, as of yet. Thus, this study provides an in-depth investigation of long-term changes in the water storages of Niger River basin and its sub-regions by analyzing more than a decade of satellite based gravity data from the Gravity Recovery And Climate Change (GRACE) satellites. Soil moisture data from four global hydrological models serve to separate freshwater resources (WR) from GRACE-based terrestrial water storage variations. Surface water variations from a global water storage model and trends from altimetry data were applied to separate the groundwater component from WR trends. Errors of all datasets are taken into account. Trends in WR are positive, except for the tropical Upper Niger with negative trends. For the Niger basin, a rise in GW stocks was detected. On the subbasin scale, GW changes are positive for the Sahelian Middle Niger and the Benue. The findings confirm previous observations of water tables in the Sahel and tropical zones, indicating that reported effects of land use change are relevant on large, i.e. basin and subbasin, scales. Our results have implications for Niger water management strategies. While areas with rising water storage are stocking a comfortable backup to mitigate possible future droughts and to deliver water to remote areas with no access to rivers or reservoirs. Increasing groundwater recharges may be accompanied by a reduction in water quality. This study helps to inform authority's decision to address

  12. The nature of water within bacterial spores: protecting life in extreme environments

    NASA Astrophysics Data System (ADS)

    Rice, Charles V.; Friedline, Anthony; Johnson, Karen; Zachariah, Malcolm M.; Thomas, Kieth J., III

    2011-10-01

    The bacterial spore is a formidable container of life, protecting the vital contents from chemical attack, antimicrobial agents, heat damage, UV light degradation, and water dehydration. The exact role of the spore components remains in dispute. Nevertheless, water molecules are important in each of these processes. The physical state of water within the bacterial spore has been investigated since the early 1930's. The water is found two states, free or bound, in two different areas, core and non-core. It is established that free water is accessible to diffuse and exchange with deuterated water and that the diffusible water can access all areas of the spore. The presence of bound water has come under recent scrutiny and has been suggested the water within the core is mobile, rather than bound, based on the analysis of deuterium relaxation rates. Using an alternate method, deuterium quadrupole-echo spectroscopy, we are able to distinguish between mobile and immobile water molecules. In the absence of rapid motion, the deuterium spectrum of D2O is dominated by a broad line, whose line shape is used as a characteristic descriptor of molecular motion. The deuterium spectrum of bacterial spores reveals three distinct features: the broad peak of immobilized water, a narrow line of water in rapid motion, and a signal of intermediate width. This third signal is assigned this peak from partially deuterated proteins with the spore in which N-H groups have undergone exchange with water deuterons to form N-D species. As a result of these observations, the nature of water within the spore requires additional explanation to understand how the spore and its water preserve life.

  13. Decontamination Options for Bacillus anthracis-Contaminated Drinking Water Determined from Spore Surrogate Studies ▿

    PubMed Central

    Raber, Ellen; Burklund, Alison

    2010-01-01

    Five parameters were evaluated with surrogates of Bacillus anthracis spores to determine effective decontamination alternatives for use in a contaminated drinking water supply. The parameters were as follows: (i) type of Bacillus spore surrogate (B. thuringiensis or B. atrophaeus), (ii) spore concentration in suspension (102 and 106 spores/ml), (iii) chemical characteristics of the decontaminant (sodium dichloro-S-triazinetrione dihydrate [Dichlor], hydrogen peroxide, potassium peroxymonosulfate [Oxone], sodium hypochlorite, and VirkonS), (iv) decontaminant concentration (0.01% to 5%), and (v) exposure time to decontaminant (10 min to 1 h). Results from 138 suspension tests with appropriate controls are reported. Hydrogen peroxide at a concentration of 5% and Dichlor or sodium hypochlorite at a concentration of 2% were highly effective at spore inactivation regardless of spore type tested, spore exposure time, or spore concentration evaluated. This is the first reported study of Dichlor as an effective decontaminant for B. anthracis spore surrogates. Dichlor's desirable characteristics of high oxidation potential, high level of free chlorine, and a more neutral pH than that of other oxidizers evaluated appear to make it an excellent alternative. All three oxidizers were effective against B. atrophaeus spores in meeting the EPA biocide standard of greater than a 6-log kill after a 10-min exposure time and at lower concentrations than typically reported for biocide use. Solutions of 5% VirkonS and Oxone were less effective as decontaminants than other options evaluated in this study and did not meet the EPA's efficacy standard for a biocide, although they were found to be as effective for concentrations of 102 spores/ml. Differences in methods and procedures reported by other investigators make quantitative comparisons among studies difficult. PMID:20709855

  14. The characterisation of Bacillus spores occurring in the manufacturing of (low acid) canned products.

    PubMed

    Oomes, S J C M; van Zuijlen, A C M; Hehenkamp, J O; Witsenboer, H; van der Vossen, J M B M; Brul, S

    2007-11-30

    Spore-forming bacteria can be a problem in the food industry, especially in the canning industry. Spores present in ingredients or present in the processing environment severely challenge the preservation process since their thermal resistance may be very high. We therefore asked the question which bacterial spore formers are found in a typical soup manufacturing plant, where they originate from and what the thermal resistance of their spores is. To answer these questions molecular techniques for bacterial species and strain identification were used as well as a protocol for the assessment of spore heat stress resistance based on the Kooiman method. The data indicate the existence and physiological cause of the high thermal resistance of spores of many of the occurring species. In particular it shows that ingredients used in soup manufacturing are a rich source of high thermal resistant spores and that sporulation in the presence of ingredients rich in divalent metal ions exerts a strong influence on spore heat resistance. It was also indicated that Bacillus spores may well be able to germinate and resporulate during manufacturing i.e. through growth and sporulation in line. Both these spores and those originating from the ingredients were able to survive certain thermal processing settings. Species identity was confirmed using fatty acid analysis, 16SrRNA gene sequencing and DNA-DNA hybridisation. Finally, molecular typing experiments using Ribotyping and AFLP analysis show that strains within the various Bacillus species can be clustered according to the thermal resistance properties of their spores. AFLP performed slightly better than Ribotyping. The data proofed to be useful for the generation of strain specific probes. Protocols to validate these probes in routine identification and innovation aimed at tailor made heat processing in soup manufacturing have been formulated.

  15. Real-time PCR-based method for rapid detection of Aspergillus niger and Aspergillus welwitschiae isolated from coffee.

    PubMed

    von Hertwig, Aline Morgan; Sant'Ana, Anderson S; Sartori, Daniele; da Silva, Josué José; Nascimento, Maristela S; Iamanaka, Beatriz Thie; Pelegrinelli Fungaro, Maria Helena; Taniwaki, Marta Hiromi

    2018-05-01

    Some species from Aspergillus section Nigri are morphologically very similar and altogether have been called A. niger aggregate. Although the species included in this group are morphologically very similar, they differ in their ability to produce mycotoxins and other metabolites and their taxonomical status has evolved continuously. Among them, A. niger and A. welwitschiae are ochratoxin A and fumonisin B 2 producers and their detection and/or identification is of crucial importance for food safety. The aim of this study was the development of a real-time PCR-based method for simultaneous discrimination of A. niger and A. welwitschiae from other species of the A. niger aggregate isolated from coffee beans. One primer pair and a hybridization probe specific for detection of A. niger and A. welwitschiae strains were designed based on the BenA gene sequences, and used in a Real-time PCR assay for the rapid discrimination between both these species from all others of the A. niger aggregate. The Real-time PCR assay was shown to be 100% efficient in discriminating the 73 isolates of A. niger/A. welwitschiae from the other A. niger aggregate species analyzed as a negative control. This result testifies to the use of this technique as a good tool in the rapid detection of these important toxigenic species. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Spore inactivation and DPA release in Alicyclobacillus acidoterrestris under different stress conditions.

    PubMed

    Bevilacqua, Antonio; Ciuffreda, Emanuela; Sinigaglia, Milena; Corbo, Maria Rosaria

    2015-04-01

    This paper reports on the inactivation of spores of 5 strains of Alicyclobacillus acidoterrestris under different stress conditions (acidic and alkaline pH, high temperature, addition of lysozyme, hydrogen peroxide and p-coumaric acid). The research was divided into two different steps; first, each stress was studied alone, thus pointing out a partial uncoupling between spore inactivation and DPA release, as H2O2 reduced spore level below the detection but it did not cause the release of DPA. A partial correlation was found only for acidic and alkaline pH. 2nd step was focused on the combination of pH, temperature and H2O2 through a factorial design; experiments were performed on both fresh and 4 month-old spores and pinpointed a different trend for DPA release as a function of spore age. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Modeling Radiation Effectiveness for Inactivation of Bacillus Spores

    DTIC Science & Technology

    2015-09-17

    are the exosporium, the spore coat, the outer membrane, the cortex, the germ cell wall, the inner membrane, and the core. These are illustrated in...small amounts of carbohydrates and lipids. The 6 coat acts as the spore’s first line of defense against some chemical infiltration such as lytic enzymes...the spore as water makes up 48-57 percent of the cortex [2]. Immediately interior to the cortex is the germ cell wall which is also a peptidoglycan

  18. Effect of Plasterboard Composition on Stachybotrys chartarum Growth and Biological Activity of Spores

    PubMed Central

    Murtoniemi, Timo; Nevalainen, Aino; Hirvonen, Maija-Riitta

    2003-01-01

    The effects of plasterboard composition on the growth and sporulation of Stachybotrys chartarum as well as on the inflammatory potential of the spores were studied. S. chartarum was grown on 13 modified plasterboards under saturated humidity conditions. The biomass was estimated by measuring the ergosterol content of the S. chartarum culture while the spore-induced cytotoxicity and production of nitric oxide (NO), tumor necrosis factor alpha (TNF-α), and interleukin-6 in mouse macrophages was used to illustrate the bioactivity of spores. The ergosterol content of S. chartarum correlated with the number of spores collected from plasterboards. The growth and sporulation decreased compared to that of the reference board in those cases where (i) the liner was treated with biocide, (ii) starch was removed from the plasterboard, or (iii) desulfurization gypsum was used in the core. Spores collected from all the plasterboards were toxic to the macrophages. The biocide added to the core did not reduce the growth; in fact, the spores collected from that board evoked the highest cytotoxicity. The conventional additives used in the core had inhibitory effects on growth. Recycled plasterboards used in the core and the board lacking the starch triggered spore-induced TNF-α production in macrophages. In summary, this study shows that the growth of a strain of S. chartarum on plasterboard and the subsequent bioactivity of spores were affected by minor changes to the composition of the core or liners, but it could not be totally prevented without resorting to the use of biocides. However, incomplete prevention of microbial growth by biocides even increased the cytotoxic potential of the spores. PMID:12839740

  19. Advances in citric acid fermentation by Aspergillus niger: biochemical aspects, membrane transport and modeling.

    PubMed

    Papagianni, Maria

    2007-01-01

    Citric acid is regarded as a metabolite of energy metabolism, of which the concentration will rise to appreciable amounts only under conditions of substantive metabolic imbalances. Citric acid fermentation conditions were established during the 1930s and 1940s, when the effects of various medium components were evaluated. The biochemical mechanism by which Aspergillus niger accumulates citric acid has continued to attract interest even though its commercial production by fermentation has been established for decades. Although extensive basic biochemical research has been carried out with A. niger, the understanding of the events relevant for citric acid accumulation is not completely understood. This review is focused on citric acid fermentation by A. niger. Emphasis is given to aspects of fermentation biochemistry, membrane transport in A. niger and modeling of the production process.

  20. Pollution of the River Niger and its main tributaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nwokedi, G.I.C.; Obodo, G.A.

    1993-08-01

    The River Niger system, with a length of about 4200 kilometers, and a discharge volume of 190 cubic kilometers, per year is the third largest river in Africa, and the largest in West Africa. It serves as an important waterway for the transportation of goods and provides rich agricultural flood basins for the cultivation of food and vegetables. Also it is a major source of animal proteins in form of fishes, snails and other aquatics. Above all the River and its tributaries represent the main source of domestic water supply for the rural communities, and water for irrigation. Therefore theremore » is a need to establish the nature and present levels of pollutants in the river, and the contribution made by the tributaries to the gross pollution level. A number of studies have been reported. Martins reported on the geochemistry of the River Niger while Nriagu; Livingstone; and Imevbore provided some chemical data on the upper reaches around and above its confluence with River Benue at Lokoja. Ajayi and Osibanjo reported on the chemical properties of some tributaries above the confluence of the Niger and the Benue. So far no work has been reported on the lower reaches of the Niger where contributions of the Benue and other major tributaries are significant, and where there are large settlements on its banks and the banks of the tributaries. This work aims at establishing base-line levels of the various pollutants and their sources. 12 refs., 1 fig., 2 tabs.« less

  1. Fluorescence-based methods for the detection of pressure-induced spore germination and inactivation

    NASA Astrophysics Data System (ADS)

    Baier, Daniel; Reineke, Kai; Doehner, Isabel; Mathys, Alexander; Knorr, Dietrich

    2011-03-01

    The application of high pressure (HP) provides an opportunity for the non-thermal preservation of high-quality foods, whereas highly resistant bacterial endospores play an important role. It is known that the germination of spores can be initiated by the application of HP. Moreover, the resistance properties of spores are highly dependent on their physiological states, which are passed through during the germination. To distinguish between different physiological states and to detect the amount of germinated spores after HP treatments, two fluorescence-based methods were applied. A flow cytometric method using a double staining with SYTO 16 as an indicator for germination and propidium iodide as an indicator for membrane damage was used to detect different physiological states of the spores. During the first step of germination, the spore-specific dipicolinic acid (DPA) is released [P. Setlow, Spore germination, Curr. Opin. Microbiol. 6 (2003), pp. 550-556]. DPA reacts with added terbium to form a distinctive fluorescent complex. After measuring the fluorescence intensity at 270 nm excitation wavelength in a fluorescence spectrophotometer, the amount of germinated spores can be determined. Spores of Bacillus subtilis were treated at pressures from 150 to 600 MPa and temperatures from 37 °C to 60 °C in 0.05 M ACES buffer solution (pH 7) for dwell times of up to 2 h. During the HP treatments, inactivation up to 2log 10 cycles and thermal sensitive populations up to 4log 10 cycles could be detected by plate counts. With an increasing number of thermal sensitive spores, an increased proportion of spores in germinated states was detected by flow cytometry. Also the released amount of DPA increased during the dwell times. Moreover, a clear pressure-temperature-time-dependency was shown by screening different conditions. The fluorescence-based measurement of the released DPA can provide the opportunity of an online monitoring of the germination of spores under HP inside

  2. Spore dispersal of a resupinate ectomycorrhizal fungus, Tomentella sublilacina, via soil food webs

    Treesearch

    Erik A. Lilleskov; Thomas D. Bruns

    2005-01-01

    Patterns of fungal spore dispersal affect gene flow, population structure and fungal community structure. Many Basidiomycota produce resupinate (crust-like) basidiocarps buried in the soil. Although spores are actively discharged, they often do not appear to be well positioned for aerial dispersal. We investigated the potential spore dispersal mechanisms of one...

  3. A method of increasing test range and accuracy of bioindicators: Geobacillus stearothermophilus spores.

    PubMed

    Lundahl, Gunnel

    2003-01-01

    Spores of Geobacillus stearothermophilus are very sensitive to changes in temperature. When validating sterilizing processes, the most common bioindicator (BI) is spores of Geobacillus stearothermophilus ATCC12980 and ATCC7953 with about 10(6) spores /BI and a D121-value of about 2 minutes in water. Because these spores of Geobacillus stearothermophilus do not survive at a F0-value above 12 minutes, it has not been possible to evaluate the agreement between the biological F-value (F(BIO)) and physical measurements (time and temperature) when the physical F0-value exceeds that limit. However, it has been proven that glycerin substantially increases the heat resistance of the spores, and it is possible to utilize that property when manufacturing BIs suitable to use in processes with longer sterilization time or high temperature (above 121 degrees C). By the method described, it is possible to make use of the sensitivity and durability of Geobacillus stearothermophilus' spores when glycerin has increased both test range and accuracy. Experience from years of development and validation work with the use of the highly sensitive glycerin-water-spore-suspension sensor (GWS-sensor) is reported. Validation of the steam sterilization process at high temperature has been possible with the use of GWS-sensors. It has also been shown that the spores in suspension keep their characteristics for a period of 19 months when stored cold (8 degrees C).

  4. New detection targets for amyloid-reactive probes: spectroscopic recognition of bacterial spores

    NASA Astrophysics Data System (ADS)

    Jones, Guilford, II; Landsman, Pavel

    2005-05-01

    We report characteristic changes in fluorescence of amyloid-binding dyes Thioflavin T (TfT), pinacyanol (PIN) and related dyes, caused by their interaction with suspended Bacillus spore cultures (B. subtilis, B thuringiensis). The gain in TfT emission in the presence of spores allowed their immediate detection in aqueous suspensions, with a sensitivity limit of < 105 spores per ml. The spectroscopic signatures are consistent with a large number of binding sites for the two dyes on spore coats. The possible structural relationship of these dye binding loci with characteristic motifs (β-stacks) of amyloid deposits and other misfolded protein formations suggests new designs for probing biocontamination and also for clinical studies of non-microbial human pathogens (e.g., amyloid-related protein aggregates in prion-related transmissible encephalopathies or in Alzheimer's disease). Also reported is a special screening technique that was designed and used herein for calibration of new detection probes and assays for spore detection. It employed spectroscopic interactions between the candidate amyloid stains and poly(vinylpyrrolidone)-coated colloid silica (Percoll) nanoparticles that also display remarkable parallelism with the corresponding dye-amyloid and dye-spore reactivities. Percoll may thus find new applications as a convenient non-biological structural model mimicking the putative probe-targeted motifs in both classes of bioanalytes. These findings are important in the design of new probes and assays for important human pathogens (i.e. bacterial spores and amyloidogenic protein aggregates).

  5. Multigeneration Cross-Contamination of Mail with Bacillus anthracis Spores

    PubMed Central

    Edmonds, Jason; Lindquist, H. D. Alan; Sabol, Jonathan; Martinez, Kenneth; Shadomy, Sean; Cymet, Tyler; Emanuel, Peter

    2016-01-01

    The release of biological agents, including those which could be used in biowarfare or bioterrorism in large urban areas, has been a concern for governments for nearly three decades. Previous incidents from Sverdlosk and the postal anthrax attack of 2001 have raised questions on the mechanism of spread of Bacillus anthracis spores as an aerosol or contaminant. Prior studies have demonstrated that Bacillus atrophaeus is easily transferred through simulated mail handing, but no reports have demonstrated this ability with Bacillus anthracis spores, which have morphological differences that may affect adhesion properties between spore and formite. In this study, equipment developed to simulate interactions across three generations of envelopes subjected to tumbling and mixing was used to evaluate the potential for cross-contamination of B. anthracis spores in simulated mail handling. In these experiments, we found that the potential for cross-contamination through letter tumbling from one generation to the next varied between generations while the presence of a fluidizer had no statistical impact on the transfer of material. Likewise, the presence or absence of a fluidizer had no statistically significant impact on cross-contamination levels or reaerosolization from letter opening. PMID:27123934

  6. Taphonomic bias in pollen and spore record: a review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisk, L.H.

    The high dispersibility and ease of pollen and spore transport have led researchers to conclude erroneously that fossil pollen and spore floras are relatively complete and record unbiased representations of the regional vegetation extant at the time of sediment deposition. That such conclusions are unjustified is obvious when the authors remember that polynomorphs are merely organic sedimentary particles and undergo hydraulic sorting not unlike clastic sedimentary particles. Prior to deposition in the fossil record, pollen and spores can be hydraulically sorted by size, shape, and weight, subtly biasing relative frequencies in fossil assemblages. Sorting during transport results in palynofloras whosemore » composition is environmentally dependent. Therefore, depositional environment is an important consideration to make correct inferences on the source vegetation. Sediment particle size of original rock samples may contain important information on the probability of a taphonomically biased pollen and spore assemblage. In addition, a reasonable test of hydraulic sorting is the distribution of pollen grain sizes and shapes in each assemblage. Any assemblage containing a wide spectrum of grain sizes and shapes has obviously not undergone significant sorting. If unrecognized, taphonomic bias can lead to paleoecologic, paleoclimatic, and even biostratigraphic misinterpretations.« less

  7. Comparing phosphorus mobilization strategies using Aspergillus niger for the mineral dissolution of three phosphate rocks.

    PubMed

    Schneider, K D; van Straaten, P; de Orduña, R Mira; Glasauer, S; Trevors, J; Fallow, D; Smith, P S

    2010-01-01

    Phosphorus deficiencies are limiting crop production in agricultural soils worldwide. Locally available sources of raw phosphate rock (PR) are being recognized for their potential role in soil fertility improvement. Phosphorus bioavailability is essential for the efficiency of PRs and can be increased by acid treatments. The utilization of organic acid producing micro-organisms, notably Aspergillus niger, presents a sustainable alternative to the use of strong inorganic acids, but acid production of A. niger strongly depends on the mineral content of the growth media. This study compared the phosphorus mobilization efficiency of two biological treatments, namely addition of acidic cell-free supernatants from A. niger cultivations to PRs and the direct cultivation of A. niger with PRs. The results show that addition of PR to cultivations leads to significant differences in the profile of organic acids produced by A. niger. Additions of PR, especially igneous rocks containing high amounts of iron and manganese, lead to reduced citric acid concentrations. In spite of these differences, phosphorus mobilization was similar between treatments, suggesting that the simpler direct cultivation method was not inferior. In addition to citric acid, it is suggested that oxalic acid contributes to PR solubilization in direct cultivations with A. niger, which would benefit farmers in developing countries where conventional fertilizers are not adequately accessible.

  8. Cloning and Genomic Organization of a Rhamnogalacturonase Gene from Locally Isolated Strain of Aspergillus niger.

    PubMed

    Damak, Naourez; Abdeljalil, Salma; Taeib, Noomen Hadj; Gargouri, Ali

    2015-08-01

    The rhg gene encoding a rhamnogalacturonase was isolated from the novel strain A1 of Aspergillus niger. It consists of an ORF of 1.505 kb encoding a putative protein of 446 amino acids with a predicted molecular mass of 47 kDa, belonging to the family 28 of glycosyl hydrolases. The nature and position of amino acids comprising the active site as well as the three-dimensional structure were well conserved between the A. niger CTM10548 and fungal rhamnogalacturonases. The coding region of the rhg gene is interrupted by three short introns of 56 (introns 1 and 3) and 52 (intron 2) bp in length. The comparison of the peptide sequence with A. niger rhg sequences revealed that the A1 rhg should be an endo-rhamnogalacturonases, more homologous to rhg A than rhg B A. niger known enzymes. The comparison of rhg nucleotide sequence from A. niger A1 with rhg A from A. niger shows several base changes. Most of these changes (59 %) are located at the third base of codons suggesting maintaining the same enzyme function. We used the rhamnogalacturonase A from Aspergillus aculeatus as a template to build a structural model of rhg A1 that adopted a right-handed parallel β-helix.

  9. Production of catalases by Aspergillus niger isolates as a response to pollutant stress by heavy metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckova, M.; Godocikova, J.; Simonovicova, A.

    2005-04-15

    Isolates of Aspergillus niger, selected from the coal dust of a mine containing arsenic (As; 400 mg/kg) and from the river sediment of mine surroundings (As, 1651 mg/kg, Sb, 362 mg/kg), growing in minimal nitrate medium in the phase of hyphal development and spore formation, exhibited much higher levels of total catalase activity than the same species from the culture collection or a culture adapted to soil contaminated with As (5 mg/L). Electrophoretic resolution of catalases in cell-free extracts revealed three isozymes of catalases and production of individual isozymes was not significantly affected by stress environments. Exogenously added stressors (As{supmore » 5+}, Cd{sup 2+}, Cu{sup 2+}) at final concentrations of 25 and 50 mg/L and H{sub 2}O{sub 2} (20 or 40 m(M)) mostly stimulated production of catalases only in isolates from mines surroundings, and H{sub 2}O{sub 2} and Hg{sup 2+} caused the disappearance of the smallest catalase I. Isolates exhibited a higher tolerance of the toxic effects of heavy metals and H{sub 2}O{sub 2}, as monitored by growth, than did the strain from the culture collection.« less

  10. Analytical and computational approaches to define the Aspergillus niger secretome.

    PubMed

    Tsang, Adrian; Butler, Gregory; Powlowski, Justin; Panisko, Ellen A; Baker, Scott E

    2009-03-01

    We used computational and mass spectrometric approaches to characterize the Aspergillus niger secretome.The 11,200 gene models predicted in the genome of A. niger strain ATCC 1015 were the data source for the analysis. Depending on the computational methods used, 691 to 881 proteins were predicted to be secreted proteins. We cultured A. niger in six different media and analyzed the extracellular proteins produced using mass spectrometry. A total of 222 proteins were identified, with 39 proteins expressed under all six conditions and 74 proteins expressed under only one condition. The secreted proteins identified by mass spectrometry were used to guide the correction of about 20 gene models. Additional analysis focused on extracellular enzymes of interest for biomass processing. Of the 63 glycoside hydrolases predicted to be capable of hydrolyzing cellulose, hemicellulose or pectin, 94% of the exo-acting enzymes and only 18% of the endo-acting enzymes were experimentally detected.

  11. Analytical and computational approaches to define the Aspergillus niger secretome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsang, Adrian; Butler, Gregory D.; Powlowski, Justin

    2009-03-01

    We used computational and mass spectrometric approaches to characterize the Aspergillus niger secretome. The 11,200 gene models predicted in the genome of A. niger strain ATCC 1015 were the data source for the analysis. Depending on the computational methods used, 691 to 881 proteins were predicted to be secreted proteins. We cultured A. niger in six different media and analyzed the extracellular proteins produced using mass spectrometry. A total of 222 proteins were identified, with 39 proteins expressed under all six conditions and 74 proteins expressed under only one condition. The secreted proteins identified by mass spectrometry were used tomore » guide the correction of about 20 gene models. Additional analysis focused on extracellular enzymes of interest for biomass processing. Of the 63 glycoside hydrolases predicted to be capable of hydrolyzing cellulose, hemicellulose or pectin, 94% of the exo-acting enzymes and only 18% of the endo-acting enzymes were experimentally detected.« less

  12. Detecting invisible bacillus spores on surfaces using a portable surface-enhanced Raman analyzer

    NASA Astrophysics Data System (ADS)

    Farquharson, Stuart; Inscore, Frank; Sperry, Jay F.

    2006-10-01

    Since the distribution of anthrax causing spores through the U.S. Postal System in the autumn of 2001, numerous methods have been developed to detect spores with the goal of minimizing casualties. During and following an attack it is also important to detect spores on surfaces, to assess extent of an attack, to quantify risk of infection by contact, as well as to evaluate post-attack clean-up. To perform useful measurements, analyzers and/or methods must be capable of detecting as few as 10 spores/cm2, in under 5-minutes, with little or no sample preparation or false-positive responses, using a portable device. In an effort to develop such a device, we have been investigating the ability of surfaceenhanced Raman spectroscopy (SERS) to detect dipicolinic acid (DPA) as a chemical signature of bacilli spores. In 2003 we employed SERS to measure DPA extracted from a 10,000 spores per μL sample using hot dodecylamine. Although the entire measurement was performed in 2 minutes, the need to heat the dodecylamine limits field portability of the method. Here we describe the use of a room temperature digesting agent in combination with SERS to detect 220 spores collected from a surface in a 1 μL sample within 3 minutes.

  13. From fundamental studies of sporulation to applied spore research.

    PubMed

    Barák, Imrich; Ricca, Ezio; Cutting, Simon M

    2005-01-01

    Sporulation in the Gram-positive bacterium, Bacillus subtilis, has been used as an excellent model system to study cell differentiation for almost half a century. This research has given us a detailed picture of the genetic, physiological and biochemical mechanisms that allow bacteria to survive harsh environmental conditions by forming highly robust spores. Although many basic aspects of this process are now understood in great detail, including the crystal and NMR structures of some of the key proteins and their complexes, bacterial sporulation still continues to be a highly attractive model for studying various cell processes at a molecular level. There are several reasons for such scientific interest. First, some of the complex steps in sporulation are not fully understood and/or are only described by 'controversial' models. Second, intensive research on unicellular development of a single microorganism, B. subtilis, left us largely unaware of the multitude of diverse sporulation mechanisms in many other Gram-positive endospore and exospore formers. This diversity would likely be increased if we were to include sporulation processes in the Gram-negative spore formers. Spore formers have great potential in applied research. They have been used for many years as biodosimeters and as natural insecticides, exploited in the industrial production of enzymes, antibiotics, used as probiotics and, more, exploited as possible vectors for drug delivery, vaccine antigens and other immunomodulating molecules. This report describes these and other aspects of current fundamental and applied spore research that were presented at European Spores Conference held in Smolenice Castle, Slovakia, June 2004.

  14. Decontamination of Anthrax spores in critical infrastructure and critical assets.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boucher, Raymond M.; Crown, Kevin K.; Tucker, Mark David

    2010-05-01

    Decontamination of anthrax spores in critical infrastructure (e.g., subway systems, major airports) and critical assets (e.g., the interior of aircraft) can be challenging because effective decontaminants can damage materials. Current decontamination methods require the use of highly toxic and/or highly corrosive chemical solutions because bacterial spores are very difficult to kill. Bacterial spores such as Bacillus anthracis, the infectious agent of anthrax, are one of the most resistant forms of life and are several orders of magnitude more difficult to kill than their associated vegetative cells. Remediation of facilities and other spaces (e.g., subways, airports, and the interior of aircraft)more » contaminated with anthrax spores currently requires highly toxic and corrosive chemicals such as chlorine dioxide gas, vapor- phase hydrogen peroxide, or high-strength bleach, typically requiring complex deployment methods. We have developed a non-toxic, non-corrosive decontamination method to kill highly resistant bacterial spores in critical infrastructure and critical assets. A chemical solution that triggers the germination process in bacterial spores and causes those spores to rapidly and completely change to much less-resistant vegetative cells that can be easily killed. Vegetative cells are then exposed to mild chemicals (e.g., low concentrations of hydrogen peroxide, quaternary ammonium compounds, alcohols, aldehydes, etc.) or natural elements (e.g., heat, humidity, ultraviolet light, etc.) for complete and rapid kill. Our process employs a novel germination solution consisting of low-cost, non-toxic and non-corrosive chemicals. We are testing both direct surface application and aerosol delivery of the solutions. A key Homeland Security need is to develop the capability to rapidly recover from an attack utilizing biological warfare agents. This project will provide the capability to rapidly and safely decontaminate critical facilities and assets to return

  15. Dry thermal resistance of Bacillus anthracis (Sterne) spores and spores of other Bacillus species: implications for biological agent destruction via waste incineration.

    PubMed

    Wood, J P; Lemieux, P; Betancourt, D; Kariher, P; Gatchalian, N G

    2010-07-01

    To obtain needed data on the dry thermal resistance of Bacillus anthracis spores and other Bacillus species for waste incinerator applications. Tests were conducted in a pilot-scale incinerator utilizing biological indicators comprised of spores of Geobacillus stearothermophilus, Bacillus atrophaeus and B. anthracis (Sterne) and embedded in building material bundles. Tests were also conducted in a dry heat oven to determine the destruction kinetics for the same species. In the pilot-scale incinerator tests, B. atrophaeus and G. stearothermophilus demonstrated similar thermal sensitivity, but B. anthracis (Sterne) was less thermally resistant than G. stearothermophilus. For the dry heat oven tests conducted at 175°C, the D-values were 0·4, 0·2 and 0·3 min for B. atrophaeus, B. anthracis (Sterne) and G. stearothermophilus, respectively. Bacillus anthracis (Sterne) possesses similar or less dry heat resistance compared to B. atrophaeus and G. stearothermophilus. Previous studies have demonstrated conditions under which bacterial spores may survive in an incinerator environment. The data from this study may assist in the selection of surrogates or indicator micro-organisms to ensure B. anthracis spores embedded in building materials are completely inactivated in an incinerator. © 2009 The Society for Applied Microbiology, Journal of Applied Microbiology. No claim to US Government works.

  16. The sps Gene Products Affect the Germination, Hydrophobicity, and Protein Adsorption of Bacillus subtilis Spores

    PubMed Central

    Cangiano, Giuseppina; Sirec, Teja; Panarella, Cristina; Isticato, Rachele; Baccigalupi, Loredana; De Felice, Maurilio

    2014-01-01

    The multilayered surface of the Bacillus subtilis spore is composed of proteins and glycans. While over 70 different proteins have been identified as surface components, carbohydrates associated with the spore surface have not been characterized in detail yet. Bioinformatic data suggest that the 11 products of the sps operon are involved in the synthesis of polysaccharides present on the spore surface, but an experimental validation is available only for the four distal genes of the operon. Here, we report a transcriptional analysis of the sps operon and a functional study performed by constructing and analyzing two null mutants lacking either all or only the promoter-proximal gene of the operon. Our results show that both sps mutant spores apparently have normal coat and crust but have a small germination defect and are more hydrophobic than wild-type spores. We also show that spores lacking all Sps proteins are highly adhesive and form extensive clumps. In addition, sps mutant spores have an increased efficiency in adsorbing a heterologous enzyme, suggesting that hydrophobic force is a major determinant of spore adsorption and indicating that a deep understanding of the surface properties of the spore is essential for its full development as a surface display platform. PMID:25239894

  17. Expression of naturally ionic liquid-tolerant thermophilic cellulases in Aspergillus niger

    DOE PAGES

    Amaike Campen, Saori; Lynn, Jed; Sibert, Stephanie J.; ...

    2017-12-27

    Efficient deconstruction of plant biomass is a major barrier to the development of viable lignocellulosic biofuels. Pretreatment with ionic liquids reduces lignocellulose recalcitrance to enzymatic hydrolysis, increasing yields of sugars for conversion into biofuels. However, commercial cellulases are not compatible with many ionic liquids, necessitating extensive water washing of pretreated biomass prior to hydrolysis. To circumvent this issue, previous research has demonstrated that several thermophilic bacterial cellulases can efficiently deconstruct lignocellulose in the presence of the ionic liquid, 1-ethyl-3-methylimadizolium acetate. As promising as these enzymes are, they would need to be produced at high titer in an industrial enzyme productionmore » host before they could be considered a viable alternative to current commercial cellulases. Aspergillus Niger has been used to produce high titers of secreted enzymes in industry and therefore, we assessed the potential of this organism to be used as an expression host for these ionic liquid-tolerant cellulases. We demonstrated that 29 of these cellulases were expressed at detectable levels in a wild-type strain of A. Niger, indicating a basic level of compatibility and potential to be produced at high levels in a host engineered to produce high titers of enzymes. We then profiled one of these enzymes in detail, the β-glucosidase A5IL97, and compared versions expressed in both A. Niger and Escherichia coli. Finally, this comparison revealed the enzymatic activity of A5IL97 purified from E. coli and A. Niger is equivalent, suggesting that A. Niger could be an excellent enzyme production host for enzymes originally characterized in E. coli, facilitating the transition from the laboratory to industry.« less

  18. Expression of naturally ionic liquid-tolerant thermophilic cellulases in Aspergillus niger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amaike Campen, Saori; Lynn, Jed; Sibert, Stephanie J.

    Efficient deconstruction of plant biomass is a major barrier to the development of viable lignocellulosic biofuels. Pretreatment with ionic liquids reduces lignocellulose recalcitrance to enzymatic hydrolysis, increasing yields of sugars for conversion into biofuels. However, commercial cellulases are not compatible with many ionic liquids, necessitating extensive water washing of pretreated biomass prior to hydrolysis. To circumvent this issue, previous research has demonstrated that several thermophilic bacterial cellulases can efficiently deconstruct lignocellulose in the presence of the ionic liquid, 1-ethyl-3-methylimadizolium acetate. As promising as these enzymes are, they would need to be produced at high titer in an industrial enzyme productionmore » host before they could be considered a viable alternative to current commercial cellulases. Aspergillus Niger has been used to produce high titers of secreted enzymes in industry and therefore, we assessed the potential of this organism to be used as an expression host for these ionic liquid-tolerant cellulases. We demonstrated that 29 of these cellulases were expressed at detectable levels in a wild-type strain of A. Niger, indicating a basic level of compatibility and potential to be produced at high levels in a host engineered to produce high titers of enzymes. We then profiled one of these enzymes in detail, the β-glucosidase A5IL97, and compared versions expressed in both A. Niger and Escherichia coli. Finally, this comparison revealed the enzymatic activity of A5IL97 purified from E. coli and A. Niger is equivalent, suggesting that A. Niger could be an excellent enzyme production host for enzymes originally characterized in E. coli, facilitating the transition from the laboratory to industry.« less

  19. Expression of naturally ionic liquid-tolerant thermophilic cellulases in Aspergillus niger

    PubMed Central

    Lynn, Jed; Sibert, Stephanie J.; Srikrishnan, Sneha; Phatale, Pallavi; Feldman, Taya; Guenther, Joel M.; Hiras, Jennifer; Tran, Yvette Thuy An; Singer, Steven W.; Adams, Paul D.; Sale, Kenneth L.; Simmons, Blake A.; Baker, Scott E.; Magnuson, Jon K.; Gladden, John M.

    2017-01-01

    Efficient deconstruction of plant biomass is a major barrier to the development of viable lignocellulosic biofuels. Pretreatment with ionic liquids reduces lignocellulose recalcitrance to enzymatic hydrolysis, increasing yields of sugars for conversion into biofuels. However, commercial cellulases are not compatible with many ionic liquids, necessitating extensive water washing of pretreated biomass prior to hydrolysis. To circumvent this issue, previous research has demonstrated that several thermophilic bacterial cellulases can efficiently deconstruct lignocellulose in the presence of the ionic liquid, 1-ethyl-3-methylimadizolium acetate. As promising as these enzymes are, they would need to be produced at high titer in an industrial enzyme production host before they could be considered a viable alternative to current commercial cellulases. Aspergillus niger has been used to produce high titers of secreted enzymes in industry and therefore, we assessed the potential of this organism to be used as an expression host for these ionic liquid-tolerant cellulases. We demonstrated that 29 of these cellulases were expressed at detectable levels in a wild-type strain of A. niger, indicating a basic level of compatibility and potential to be produced at high levels in a host engineered to produce high titers of enzymes. We then profiled one of these enzymes in detail, the β-glucosidase A5IL97, and compared versions expressed in both A. niger and Escherichia coli. This comparison revealed the enzymatic activity of A5IL97 purified from E. coli and A. niger is equivalent, suggesting that A. niger could be an excellent enzyme production host for enzymes originally characterized in E. coli, facilitating the transition from the laboratory to industry. PMID:29281693

  20. Expression of naturally ionic liquid-tolerant thermophilic cellulases in Aspergillus niger.

    PubMed

    Amaike Campen, Saori; Lynn, Jed; Sibert, Stephanie J; Srikrishnan, Sneha; Phatale, Pallavi; Feldman, Taya; Guenther, Joel M; Hiras, Jennifer; Tran, Yvette Thuy An; Singer, Steven W; Adams, Paul D; Sale, Kenneth L; Simmons, Blake A; Baker, Scott E; Magnuson, Jon K; Gladden, John M

    2017-01-01

    Efficient deconstruction of plant biomass is a major barrier to the development of viable lignocellulosic biofuels. Pretreatment with ionic liquids reduces lignocellulose recalcitrance to enzymatic hydrolysis, increasing yields of sugars for conversion into biofuels. However, commercial cellulases are not compatible with many ionic liquids, necessitating extensive water washing of pretreated biomass prior to hydrolysis. To circumvent this issue, previous research has demonstrated that several thermophilic bacterial cellulases can efficiently deconstruct lignocellulose in the presence of the ionic liquid, 1-ethyl-3-methylimadizolium acetate. As promising as these enzymes are, they would need to be produced at high titer in an industrial enzyme production host before they could be considered a viable alternative to current commercial cellulases. Aspergillus niger has been used to produce high titers of secreted enzymes in industry and therefore, we assessed the potential of this organism to be used as an expression host for these ionic liquid-tolerant cellulases. We demonstrated that 29 of these cellulases were expressed at detectable levels in a wild-type strain of A. niger, indicating a basic level of compatibility and potential to be produced at high levels in a host engineered to produce high titers of enzymes. We then profiled one of these enzymes in detail, the β-glucosidase A5IL97, and compared versions expressed in both A. niger and Escherichia coli. This comparison revealed the enzymatic activity of A5IL97 purified from E. coli and A. niger is equivalent, suggesting that A. niger could be an excellent enzyme production host for enzymes originally characterized in E. coli, facilitating the transition from the laboratory to industry.

  1. New insights in the bacterial spore resistance to extreme terrestrial and extraterrestrial factors

    NASA Astrophysics Data System (ADS)

    Moeller, Ralf; Horneck, Gerda; Reitz, Guenther

    Based on their unique resistance to various space parameters, Bacillus endospores are one of the model systems used for astrobiological studies. The extremely high resistance of bacterial endospores to environmental stress factors has intrigued researchers since long time and many characteristic spore features, especially those involved in the protection of spore DNA, have already been uncovered. The disclosure of the complete genomic sequence of Bacillus subtilis 168, one of the often used astrobiological model system, and the rapid development of tran-scriptional microarray techniques have opened new opportunities of gaining further insights in the enigma of spore resistance. Spores of B. subtilis were exposed to various extreme ter-restrial and extraterrestrial stressors to reach a better understanding of the DNA protection and repair strategies, which them to cope with the induced DNA damage. Following physical stress factors of environmental importance -either on Earth or in space -were selected for this thesis: (i) mono-and polychromatic UV radiation, (ii) ionizing radiation, (iii) exposure to ultrahigh vacuum; and (iv) high shock pressures simulating meteorite impacts. To reach a most comprehensive understanding of spore resistance to those harsh terrestrial or simulated extraterrestrial conditions, a standardized experimental protocol of the preparation and ana-lyzing methods was established including the determination of the following spore responses: (i) survival, (ii) induced mutations, (iii) DNA damage, (iv) role of different repair pathways by use of a set of repair deficient mutants, and (v) transcriptional responses during spore germi-nation by use of genome-wide transcriptome analyses and confirmation by RT-PCR. From this comprehensive set of data on spore resistance to a variety of environmental stress parameters a model of a "built-in" transcriptional program of bacterial spores in response to DNA damaging treatments to ensure DNA restoration

  2. Isolation of Cryptococcus neoformans var. gattii from Eucalyptus camaldulensis in India.

    PubMed Central

    Chakrabarti, A; Jatana, M; Kumar, P; Chatha, L; Kaushal, A; Padhye, A A

    1997-01-01

    Cryptococcus neoformans var. gattii has an ecological association with five Eucalyptus species: E. blakelyi, E. camaldulensis, E. gomphocephala, E. rudis, and E. tereticornis. After human infections due to C. neoformans var. gattii were diagnosed in the states of Punjab, Himachal Pradesh, and Karnataka, India, a study was undertaken to investigate the association of C. neoformans var. gattii with Indian eucalypts, especially in the state of Punjab. A total of 696 specimens collected from E. camaldulensis, E. citriodora and E. tereticornis (hybrid) trees were examined for the presence of C. neoformans var. gattii. Flowers from two trees of E. camaldulensis in the Chak Sarkar forest and one from the village of Periana near the Ferozepur area yielded five isolates of C. neoformans var. gattii. The origin of the trees could be traced to Australia, thus providing evidence that the distribution of E. camaldulensis correlated with the distribution of human cryptococcosis cases caused by C. neoformans var. gattii in northern India. PMID:9399553

  3. Vulnerability of Bacillus spores and of related genera to physical impaction injury with particular reference to spread-plating.

    PubMed

    Thomas, P; Sekhar, A C; Mujawar, M M

    2014-11-01

    To examine whether bacterial spores are vulnerable to impaction injury during standard spread-plating or to other modes of physical impaction. Employing heat-challenged spores of Bacillus pumilus, Bacillus subtilis, Bacillus thuringiensis, Lysinibacillus, Paenibacillus and Brevibacillus spp. from day-4 to day-10 nutrient agar (NA) plates in 50% ethanol, plating the spore suspension to the extent of just drying the agar surface on fresh NA (50-60 s; SP-B) was tested in comparison with the spreader-independent approach of spotting-and-tilt-spreading (SATS), or a brief plating (<10 s; SP-A). Spore CFU was significantly reduced with SP-B in different organisms (23-40%) over SATS independent of the spore size. Comparing 4-, 7- and 10-day-old B. pumilus spores, the former two displayed significant CFU reduction in SP-B indicating a spore age-related effect. Continuous plating for 2-5 min showed a reduction in spore CFU in all organisms depending on plating duration. CFU reduction effect with SP-B was less manifest on refrigerated plates where no friction was experienced but acute on prewarmed and surface-dried plates. Spreader movement over agar surface subsequent to the exhaustion of free moisture proved highly detrimental to spores. A simulated plating study by plating the spores over a plastic film till drying showed a significant reduction in spore CFU. DAPI staining and glass bead-vortexing studies confirmed spore disruption through physical impaction. Bacterial spores are vulnerable to injury during spread-plating or with other forms of physical impaction with variable effects on different genotypes independent of the spore size but altered by spore age. Implications during spore CFU estimations employing spread-plating and during spore surveillance, and the recommendation of SATS as an easier and safer alternative for spore CFU enumeration. © 2014 The Society for Applied Microbiology.

  4. Forecasting methodologies for Ganoderma spore concentration using combined statistical approaches and model evaluations

    NASA Astrophysics Data System (ADS)

    Sadyś, Magdalena; Skjøth, Carsten Ambelas; Kennedy, Roy

    2016-04-01

    High concentration levels of Ganoderma spp. spores were observed in Worcester, UK, during 2006-2010. These basidiospores are known to cause sensitization due to the allergen content and their small dimensions. This enables them to penetrate the lower part of the respiratory tract in humans. Establishment of a link between occurring symptoms of sensitization to Ganoderma spp. and other basidiospores is challenging due to lack of information regarding spore concentration in the air. Hence, aerobiological monitoring should be conducted, and if possible extended with the construction of forecast models. Daily mean concentration of allergenic Ganoderma spp. spores in the atmosphere of Worcester was measured using 7-day volumetric spore sampler through five consecutive years. The relationships between the presence of spores in the air and the weather parameters were examined. Forecast models were constructed for Ganoderma spp. spores using advanced statistical techniques, i.e. multivariate regression trees and artificial neural networks. Dew point temperature along with maximum temperature was the most important factor influencing the presence of spores in the air of Worcester. Based on these two major factors and several others of lesser importance, thresholds for certain levels of fungal spore concentration, i.e. low (0-49 s m-3), moderate (50-99 s m-3), high (100-149 s m-3) and very high (150 < n s m-3), could be designated. Despite some deviation in results obtained by artificial neural networks, authors have achieved a forecasting model, which was accurate (correlation between observed and predicted values varied from r s = 0.57 to r s = 0.68).

  5. Forecasting methodologies for Ganoderma spore concentration using combined statistical approaches and model evaluations.

    PubMed

    Sadyś, Magdalena; Skjøth, Carsten Ambelas; Kennedy, Roy

    2016-04-01

    High concentration levels of Ganoderma spp. spores were observed in Worcester, UK, during 2006-2010. These basidiospores are known to cause sensitization due to the allergen content and their small dimensions. This enables them to penetrate the lower part of the respiratory tract in humans. Establishment of a link between occurring symptoms of sensitization to Ganoderma spp. and other basidiospores is challenging due to lack of information regarding spore concentration in the air. Hence, aerobiological monitoring should be conducted, and if possible extended with the construction of forecast models. Daily mean concentration of allergenic Ganoderma spp. spores in the atmosphere of Worcester was measured using 7-day volumetric spore sampler through five consecutive years. The relationships between the presence of spores in the air and the weather parameters were examined. Forecast models were constructed for Ganoderma spp. spores using advanced statistical techniques, i.e. multivariate regression trees and artificial neural networks. Dew point temperature along with maximum temperature was the most important factor influencing the presence of spores in the air of Worcester. Based on these two major factors and several others of lesser importance, thresholds for certain levels of fungal spore concentration, i.e. low (0-49 s m(-3)), moderate (50-99 s m(-3)), high (100-149 s m(-3)) and very high (150 < n s m(-3)), could be designated. Despite some deviation in results obtained by artificial neural networks, authors have achieved a forecasting model, which was accurate (correlation between observed and predicted values varied from r s = 0.57 to r s = 0.68).

  6. Empirical analysis on future-cash arbitrage risk with portfolio VaR

    NASA Astrophysics Data System (ADS)

    Chen, Rongda; Li, Cong; Wang, Weijin; Wang, Ze

    2014-03-01

    This paper constructs the positive arbitrage position by alternating the spot index with Chinese Exchange Traded Fund (ETF) portfolio and estimating the arbitrage-free interval of futures with the latest trade data. Then, an improved Delta-normal method was used, which replaces the simple linear correlation coefficient with tail dependence correlation coefficient, to measure VaR (Value-at-risk) of the arbitrage position. Analysis of VaR implies that the risk of future-cash arbitrage is less than that of investing completely in either futures or spot market. Then according to the compositional VaR and the marginal VaR, we should increase the futures position and decrease the spot position appropriately to minimize the VaR, which can minimize risk subject to certain revenues.

  7. Distribution Management System Volt/VAR Evaluation | Grid Modernization |

    Science.gov Websites

    NREL Distribution Management System Volt/VAR Evaluation Distribution Management System Volt/VAR Evaluation This project involves building a prototype distribution management system testbed that links a GE Grid Solutions distribution management system to power hardware-in-the-loop testing. This setup is

  8. 47 annual records of allergenic fungi spore: predictive models from the NW Iberian Peninsula.

    PubMed

    Aira, M Jesus; Rodriguez-Rajo, F; Jato, Victoria

    2008-01-01

    An analysis was carried out of the atmospheric representivity of Cladosporium and Alternaria spores in the north-western Iberian Peninsula, registering mean annual concentrations in excess of 300,000 spores/m(3). During the main sporulation period, the highest average daily concentrations corresponded to Cladosporium herbarum type (1,197 spores/m(3)) while the highest daily value was 7,556 spores/m(3) (Cladosporium cladosporioides type). Alternaria only represents between 0.1-1% of the total spores identified. In these spore types, the intraday variation was more acute inland than along the coastline due to oceanic influence. In the predictive models proposed that use the meteorological parameters with which a higher correlation was obtained (mean and maximum temperature) as predictive variables, it was seen that the predicted values did not reveal any significant differences as compared to those observed in 2006, data that was only used for verification purposes.

  9. Rapid inactivation of Penicillium digitatum spores using high-density nonequilibrium atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Iseki, Sachiko; Ohta, Takayuki; Aomatsu, Akiyoshi; Ito, Masafumi; Kano, Hiroyuki; Higashijima, Yasuhiro; Hori, Masaru

    2010-04-01

    A promising, environmentally safe method for inactivating fungal spores of Penicillium digitatum, a difficult-to-inactivate food spoilage microorganism, was developed using a high-density nonequilibrium atmospheric pressure plasma (NEAPP). The NEAPP employing Ar gas had a high electron density on the order of 1015 cm-3. The spores were successfully and rapidly inactivated using the NEAPP, with a decimal reduction time in spores (D value) of 1.7 min. The contributions of ozone and UV radiation on the inactivation of the spores were evaluated and concluded to be not dominant, which was fundamentally different from the conventional sterilizations.

  10. Rapid inactivation of Penicillium digitatum spores using high-density nonequilibrium atmospheric pressure plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iseki, Sachiko; Hori, Masaru; Ohta, Takayuki

    2010-04-12

    A promising, environmentally safe method for inactivating fungal spores of Penicillium digitatum, a difficult-to-inactivate food spoilage microorganism, was developed using a high-density nonequilibrium atmospheric pressure plasma (NEAPP). The NEAPP employing Ar gas had a high electron density on the order of 10{sup 15} cm{sup -3}. The spores were successfully and rapidly inactivated using the NEAPP, with a decimal reduction time in spores (D value) of 1.7 min. The contributions of ozone and UV radiation on the inactivation of the spores were evaluated and concluded to be not dominant, which was fundamentally different from the conventional sterilizations.

  11. Two complementary approaches to quantify variability in heat resistance of spores of Bacillus subtilis.

    PubMed

    den Besten, Heidy M W; Berendsen, Erwin M; Wells-Bennik, Marjon H J; Straatsma, Han; Zwietering, Marcel H

    2017-07-17

    Realistic prediction of microbial inactivation in food requires quantitative information on variability introduced by the microorganisms. Bacillus subtilis forms heat resistant spores and in this study the impact of strain variability on spore heat resistance was quantified using 20 strains. In addition, experimental variability was quantified by using technical replicates per heat treatment experiment, and reproduction variability was quantified by using two biologically independent spore crops for each strain that were heat treated on different days. The fourth-decimal reduction times and z-values were estimated by a one-step and two-step model fitting procedure. Grouping of the 20 B. subtilis strains into two statistically distinguishable groups could be confirmed based on their spore heat resistance. The reproduction variability was higher than experimental variability, but both variabilities were much lower than strain variability. The model fitting approach did not significantly affect the quantification of variability. Remarkably, when strain variability in spore heat resistance was quantified using only the strains producing low-level heat resistant spores, then this strain variability was comparable with the previously reported strain variability in heat resistance of vegetative cells of Listeria monocytogenes, although in a totally other temperature range. Strains that produced spores with high-level heat resistance showed similar temperature range for growth as strains that produced low-level heat resistance. Strain variability affected heat resistance of spores most, and therefore integration of this variability factor in modelling of spore heat resistance will make predictions more realistic. Copyright © 2017. Published by Elsevier B.V.

  12. 40 CFR 80.170 - Volumetric additive reconciliation (VAR), equipment calibration, and recordkeeping requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., the preceding twelve months of VAR formula records plus the preceding two months of VAR supporting... request, the preceding two months of VAR formula records and VAR supporting documentation. (3) Facilities... accurately and separately measured, either through the use of a separate storage tank, a separate meter, or...

  13. 40 CFR 80.170 - Volumetric additive reconciliation (VAR), equipment calibration, and recordkeeping requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., the preceding twelve months of VAR formula records plus the preceding two months of VAR supporting... request, the preceding two months of VAR formula records and VAR supporting documentation. (3) Facilities... accurately and separately measured, either through the use of a separate storage tank, a separate meter, or...

  14. 40 CFR 80.170 - Volumetric additive reconciliation (VAR), equipment calibration, and recordkeeping requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., the preceding twelve months of VAR formula records plus the preceding two months of VAR supporting... request, the preceding two months of VAR formula records and VAR supporting documentation. (3) Facilities... accurately and separately measured, either through the use of a separate storage tank, a separate meter, or...

  15. 40 CFR 80.170 - Volumetric additive reconciliation (VAR), equipment calibration, and recordkeeping requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., the preceding twelve months of VAR formula records plus the preceding two months of VAR supporting... request, the preceding two months of VAR formula records and VAR supporting documentation. (3) Facilities... accurately and separately measured, either through the use of a separate storage tank, a separate meter, or...

  16. 40 CFR 80.170 - Volumetric additive reconciliation (VAR), equipment calibration, and recordkeeping requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., the preceding twelve months of VAR formula records plus the preceding two months of VAR supporting... request, the preceding two months of VAR formula records and VAR supporting documentation. (3) Facilities... accurately and separately measured, either through the use of a separate storage tank, a separate meter, or...

  17. Heterologous and endogenous U6 snRNA promoters enable CRISPR/Cas9 mediated genome editing in Aspergillus niger.

    PubMed

    Zheng, Xiaomei; Zheng, Ping; Sun, Jibin; Kun, Zhang; Ma, Yanhe

    2018-01-01

    U6 promoters have been used for single guide RNA (sgRNA) transcription in the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas9) genome editing system. However, no available U6 promoters have been identified in Aspergillus niger, which is an important industrial platform for organic acid and protein production. Two CRISPR/Cas9 systems established in A. niger have recourse to the RNA polymerase II promoter or in vitro transcription for sgRNA synthesis, but these approaches generally increase cloning efforts and genetic manipulation. The validation of functional RNA polymerase II promoters is therefore an urgent need for A. niger . Here, we developed a novel CRISPR/Cas9 system in A. niger for sgRNA expression, based on one endogenous U6 promoter and two heterologous U6 promoters. The three tested U6 promoters enabled sgRNA transcription and the disruption of the polyketide synthase albA gene in A. niger . Furthermore, this system enabled highly efficient gene insertion at the targeted genome loci in A. niger using donor DNAs with homologous arms as short as 40-bp. This study demonstrated that both heterologous and endogenous U6 promoters were functional for sgRNA expression in A. niger . Based on this result, a novel and simple CRISPR/Cas9 toolbox was established in A. niger, that will benefit future gene functional analysis and genome editing.

  18. IMMUNOCYTOCHEMICAL LOCALIZATION OF STACHYLYSIN IN STACHYBOTRYS CHARTARUM SPORES AND SPORE-IMPACTED MOUSE AND RAT LUNG TISSUES

    EPA Science Inventory

    Stachylysin is a proteinaceous hemolytic agent that is producted by S. chartarum. Stachylysin was found, using immunohistochemistical and immunocytochemical methods, to be localized in S. chartarum spores/mycelia primarily in the inner wall suggesting that it is constitutively ...

  19. Genomic analysis of the aconidial and high-performance protein producer, industrially relevant Aspergillus niger SH2 strain.

    PubMed

    Yin, Chao; Wang, Bin; He, Pan; Lin, Ying; Pan, Li

    2014-05-15

    Aspergillus niger is usually regarded as a beneficial species widely used in biotechnological industry. Obtaining the genome sequence of the widely used aconidial A. niger SH2 strain is of great importance to understand its unusual production capability. In this study we assembled a high-quality genome sequence of A. niger SH2 with approximately 11,517 ORFs. Relatively high proportion of genes enriched for protein expression related FunCat items verify its efficient capacity in protein production. Furthermore, genome-wide comparative analysis between A. niger SH2 and CBS513.88 reveals insights into unique properties of A. niger SH2. A. niger SH2 lacks the gene related with the initiation of asexual sporulation (PrpA), leading to its distinct aconidial phenotype. Frame shift mutations and non-synonymous SNPs in genes of cell wall integrity signaling, β-1,3-glucan synthesis and chitin synthesis influence its cell wall development which is important for its hyphal fragmentation during industrial high-efficiency protein production. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Rapid detection of Bacillus anthracis spores using a super-paramagnetic lateral-flow immunological detection system.

    PubMed

    Wang, Dian-Bing; Tian, Bo; Zhang, Zhi-Ping; Deng, Jiao-Yu; Cui, Zong-Qiang; Yang, Rui-Fu; Wang, Xu-Ying; Wei, Hong-Ping; Zhang, Xian-En

    2013-04-15

    There is an urgent need for convenient, sensitive, and specific methods to detect the spores of Bacillus anthracis, the causative agent of anthrax, because of the bioterrorism threat posed by this bacterium. In this study, we firstly develop a super-paramagnetic lateral-flow immunological detection system for B. anthracis spores. This system involves the use of a portable magnetic assay reader, super-paramagnetic iron oxide particles, lateral-flow strips and two different monoclonal antibodies directed against B. anthracis spores. This detection system specifically recognises as few as 400 pure B. anthracis spores in 30 min. This system has a linear range of 4×10³-10⁶ CFU ml⁻¹ and reproducible detection limits of 200 spores mg⁻¹ milk powder and 130 spores mg⁻¹ soil for simulated samples. In addition, this approach shows no obvious cross-reaction with other related Bacillus spores, even at high concentrations, and has no significant dependence on the duration of the storage of the immunological strips. Therefore, this super-paramagnetic lateral-flow immunological detection system is a promising tool for the rapid and sensitive detection of Bacillus anthracis spores under field conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Two distinct groups within the Bacillus subtilis group display significantly different spore heat resistance properties.

    PubMed

    Berendsen, Erwin M; Zwietering, Marcel H; Kuipers, Oscar P; Wells-Bennik, Marjon H J

    2015-02-01

    The survival of bacterial spores after heat treatment and the subsequent germination and outgrowth in a food product can lead to spoilage of the food product and economical losses. Prediction of time-temperature conditions that lead to sufficient inactivation requires access to detailed spore thermal inactivation kinetics of relevant model strains. In this study, the thermal inactivation kinetics of spores of fourteen strains belonging to the Bacillus subtilis group were determined in detail, using both batch heating in capillary tubes and continuous flow heating in a micro heater. The inactivation data were fitted using a log linear model. Based on the spore heat resistance data, two distinct groups (p < 0.001) within the B. subtilis group could be identified. One group of strains had spores with an average D120 °C of 0.33 s, while the spores of the other group displayed significantly higher heat resistances, with an average D120 °C of 45.7 s. When comparing spore inactivation data obtained using batch- and continuous flow heating, the z-values were significantly different, hence extrapolation from one system to the other was not justified. This study clearly shows that heat resistances of spores from different strains in the B. subtilis group can vary greatly. Strains can be separated into two groups, to which different spore heat inactivation kinetics apply. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Comparison of Fe(VI) (FeO4(2-)) and ozone in inactivating Bacillus subtilis spores.

    PubMed

    Makky, Essam A; Park, Gui-Su; Choi, Ik-Won; Cho, Sung-Il; Kim, Hyunook

    2011-05-01

    The protozoan parasites such as Cryptosporidiumparvum and Giardialamblia have been recognized as a frequent cause of recent waterborne disease outbreaks because of their strong resistance against chlorine disinfection. In this study, ozone and Fe(VI) (i.e., FeO(4)(2-)) were compared in terms of inactivation efficiency for Bacillus subtilis spores which are commonly utilized as an indicator of protozoan pathogens. Both oxidants highly depended on water pH and temperature in the spore inactivation. Since redox potential of Fe(VI) is almost the same as that of ozone, spore inactivation efficiency of Fe(VI) was expected to be similar with that of ozone. However, it was found that ozone was definitely superior over Fe(VI): at pH 7 and 20°C, ozone with the product of concentration×contact time (C¯T) of 10mgL(-1)min inactivate the spores more than 99.9% within 10min, while Fe(VI) with C¯T of 30mgL(-1) min could inactivate 90% spores. The large difference between ozone and Fe(VI) in spore inactivation was attributed mainly to Fe(III) produced from Fe(VI) decomposition at the spore coat layer which might coagulate spores and make it difficult for free Fe(VI) to attack live spores. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  3. Trehalose synthesis in Aspergillus niger: characterization of six homologous genes, all with conserved orthologs in related species

    PubMed Central

    2014-01-01

    Background The disaccharide trehalose is a major component of fungal spores and is released upon germination. Moreover, the sugar is well known for is protective functions, e.g. against thermal stress and dehydration. The properties and synthesis of trehalose have been well investigated in the bakers’ yeast Saccharomyces cerevisiae. In filamentous fungi, such knowledge is limited, although several gene products have been identified. Results Using Aspergillus niger as a model fungus, the aim of this study was to provide an overview of all genes involved in trehalose synthesis. This fungus has three potential trehalose-6-phosphate synthase encoding genes, tpsA-C, and three putative trehalose phosphate phosphatase encoding genes, tppA-C, of which two have not previously been identified. Expression of all six genes was confirmed using real-time PCR, and conserved orthologs could be identified in related Aspergilli. Using a two-hybrid approach, there is a strong indication that four of the proteins physically interact, as has previously been shown in S. cerevisiae. When creating null mutants of all the six genes, three of them, ΔtpsA, ΔtppA and ΔtppB, had lower internal trehalose contents. The only mutant with a pronounced morphological difference was ΔtppA, in which sporulation was severely reduced with abnormal conidiophores. This was also the only mutant with accumulated levels of trehalose-6-phosphate, indicating that the encoded protein is the main phosphatase under normal conditions. Besides ΔtppA, the most studied deletion mutant in this work was ΔtppB. This gene encodes a protein conserved in filamentous Ascomycota. The ΔtppB mutant displayed a low, but not depleted, internal trehalose content, and conidia were more susceptible to thermal stress. Conclusion A. niger contains at least 6 genes putatively involved in trehalose synthesis. Gene expressions related to germination have been quantified and deletion mutants characterized: Mutants lacking tps

  4. Inhibitive effect on apoptosis in splenic lymphocytes of mice pretreated with lingzhi (Ganoderma lucidum) spores.

    PubMed

    Wang, Quanxi; Huang, Yifan; Wu, Baocheng; Mei, Jingliang; Zhang, Honglei; Qi, Baomin

    2014-04-01

    To investigate how the pretreatment of mice with Ganoderma spores affected the apoptosis of their splenic lymphocytes induced by dexamethasone after 19 days treatment. Sixty Kunming mice were randomly divided into six groups: blank control groupdrenched with normal saline; a drug control group drenched with 150 mg/mL Ganoderma spores; a model group treated with saline; a low dose group with 50 mg/mL Ganoderma spores; a moderate dose group with 100 mg/mL Ganoderma spores; and a high dose group with 150 mg/mL Ganoderma spores. The effect of Ganoderma spores on apoptosis in spleen lymphocytes was analyzed. All groups were treated for 19 days. On day 20, the model group and the 3 treatment groups were intraperitoneally injected dexamethasone to induce apoptosis. Splenic index and apoptosis indes were employed to measure cell apoptosis. The results showed that Ganoderma spores reduced the splenic index to different degrees in each group and the best effect was seen in the high dose group (P < 0.05).Terminal dexynucleotidyl transferase (TdT)-mediated 2'-Deoxyuridine 5'-Triphosphate nick end labeling staining revealed that the apoptotic index in all groups administered Ganoderma spores differed significantly from the model group, and a dose-response was observed. Flow cytometric analysis indicated that spleen lymphocyte apoptosis in the model group was extensive. Each dose of Ganoderma spores inhibited dexamethasone-induced apoptosis in spleen lymphocytes, and a dose-response was observed as well. The highest dose of Ganoderma spores decreased Malondialdehyde content in serum induced by dexamethasone (P < 0.05). The findings imply that the pretreatment of the mice with Ganoderma spores could reduce the apoptosis rate induced by dexamethasone in their splenic lymphocytes.

  5. Interpretation of satellite images of the Republic of Niger

    NASA Technical Reports Server (NTRS)

    Bender, F.; Bannert, D.

    1981-01-01

    Interpretations of LANDSAT pictures were carried out for an area located in the west of the Niger Republic in the geological, hydrogeological and pedological sectors. Checking of the extent of vegetation and use of the soils and effects of desertification for the purpose of yearly map making was carried out. The proposed control of land use may be optimized by the direct reception of LANDSAT data by the receiving station planned for Ouagadougou. Since that station will not be operating before 1983, the establishment of a mobile reception station in the Republic of Niger to enable the installation of the required control system is advised.

  6. Spatial and temporal distribution of Alternaria spores in the Iberian Peninsula atmosphere, and meteorological relationships: 1993-2009

    NASA Astrophysics Data System (ADS)

    Aira, María-Jesús; Rodríguez-Rajo, Francisco-Javier; Fernández-González, María; Seijo, Carmen; Elvira-Rendueles, Belén; Abreu, Ilda; Gutiérrez-Bustillo, Montserrat; Pérez-Sánchez, Elena; Oliveira, Manuela; Recio, Marta; Tormo, Rafael; Morales, Julia

    2013-03-01

    This paper provides an updated of airborne Alternaria spore spatial and temporal distribution patterns in the Iberian Peninsula, using a common non-viable volumetric sampling method. The highest mean annual spore counts were recorded in Sevilla (39,418 spores), Mérida (33,744) and Málaga (12,947), while other sampling stations never exceeded 5,000. The same cities also recorded the highest mean daily spore counts (Sevilla 109 spores m-3; Mérida 53 spores m-3 and Málaga 35 spores m-3) and the highest number of days on which counts exceeded the threshold levels required to trigger allergy symptoms (Sevilla 38 % and Mérida 30 % of days). Analysis of annual spore distribution patterns revealed either one or two peaks, depending on the location and prevailing climate of sampling stations. For all stations, average temperature was the weather parameter displaying the strongest positive correlation with airborne spore counts, whilst negative correlations were found for rainfall and relative humidity.

  7. Spatial and temporal distribution of Alternaria spores in the Iberian Peninsula atmosphere, and meteorological relationships: 1993-2009.

    PubMed

    Aira, María-Jesús; Rodríguez-Rajo, Francisco-Javier; Fernández-González, María; Seijo, Carmen; Elvira-Rendueles, Belén; Abreu, Ilda; Gutiérrez-Bustillo, Montserrat; Pérez-Sánchez, Elena; Oliveira, Manuela; Recio, Marta; Tormo, Rafael; Morales, Julia

    2013-03-01

    This paper provides an updated of airborne Alternaria spore spatial and temporal distribution patterns in the Iberian Peninsula, using a common non-viable volumetric sampling method. The highest mean annual spore counts were recorded in Sevilla (39,418 spores), Mérida (33,744) and Málaga (12,947), while other sampling stations never exceeded 5,000. The same cities also recorded the highest mean daily spore counts (Sevilla 109 spores m(-3); Mérida 53 spores m(-3) and Málaga 35 spores m(-3)) and the highest number of days on which counts exceeded the threshold levels required to trigger allergy symptoms (Sevilla 38 % and Mérida 30 % of days). Analysis of annual spore distribution patterns revealed either one or two peaks, depending on the location and prevailing climate of sampling stations. For all stations, average temperature was the weather parameter displaying the strongest positive correlation with airborne spore counts, whilst negative correlations were found for rainfall and relative humidity.

  8. The influence of lime and nitrogen fertilisers on spore counts of Pithomyces chartarum in pasture.

    PubMed

    Cuttance, E L; Laven, R A; Mason, W A; Stevenson, M

    2016-11-01

    To determine whether the application of lime or nitrogen to pasture affected the spore counts of Pithomyces chartarum. The lime application studies were undertaken on a spring-calving, pasture-based, commercial dairy farm near Te Awamutu, New Zealand. On 6 November 2012, five randomly selected paddocks were split into three equal sections. In two of the sections, lime was applied at either 1.5 or 2.5 t/ha, and the central section was left as an untreated control. Each section was sampled for spore counting weekly from 16 January to 15 May 2013. Starting in January 2013, five other randomly selected paddocks were monitored for spore counts. On 20 March 2013 the average spore counts in three paddocks were >100,000 spores/g of pasture. These paddocks were then divided into three equal sections and lime was applied as described above. Spore counting in each section continued weekly until 15 May 2013. The nitrogen application study was carried out on three commercial dairy farms near Te Awamutu, New Zealand. Two randomly selected paddocks on each farm were divided into three equal sections and, on 20 December 2012, nitrogen in the form of urea was applied at either 50 or 80 kg urea/ha to two of the sections; the central section remained as an untreated control. Each section was sampled for spore counting weekly from 16 January to 15 May 2013. Following pre-summer lime application, treatment at 1.5 or 2.5 t/ha did not affect spore counts over time compared with the control section (p>0.26). Similarly following autumn lime application, treatment at 1.5 or 2.5 t/ha did not affect spore counts over time compared with the control section (p>0.11). Following nitrogen application median spore counts remained <20,000 spores/g pasture throughout the trial period and there was no effect of treatment on spore counts over time (p>0.49). This study found that application of lime before the risk period for facial eczema, in November, application of lime after a spore count

  9. Terahertz vibrational signature of bacterial spores arising from nanostructure decorated endospore surface.

    PubMed

    Datta, Debopam; Stroscio, Michael A; Dutta, Mitra; Zhang, Weidong; Brown, Elliott R

    2018-05-03

    This theoretical effort is the first to explore the possible hypothesis that terahertz optical activity of Bacillus spores arises from normal vibrational modes of spore coat subcomponents in the terahertz frequency range. Bacterial strains like Bacillus and Clostridium form spores with a hardened coating made of peptidoglycan to protect its genetic material in harsh conditions. In recent years, electron microscopy and atomic force microscopy has revealed that bacterial spore surfaces are decorated with nanocylinders and honeycomb nanostructures. In this article, a simple elastic continuum model is used to describe the vibration of these nanocylinders mainly in Bacillus subtilis, which also leads to the conclusion that the terahertz signature of these spores arises from the vibration of these nanostructures. Three vibrating modes: radial/longitudinal, torsional and flexural, have been identified and discussed for the nanocylinders. The effect of bound water, which shifts the vibration frequency, is also discussed. The peptidoglycan molecule consists of polar and charged amino acids; hence, the sporal surface local vibrations interact strongly with the terahertz radiation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Adherence of Clostridium perfringens spores to human intestinal epithelial Caco-2 cells.

    PubMed

    Sakanoue, Hideyo; Nakano, Takashi; Sano, Kouichi; Yasugi, Mayo; Monma, Chie; Miyake, Masami

    2018-03-01

    Clostridium perfringens is a gram-positive, spore-forming bacillus, and is a causative agent of foodborne infection, antibiotic-associated diarrhoea and sporadic diarrhoea in humans. In cases of antibiotic-associated and sporadic diarrhoea, C. perfringens colonises the intestine, proliferates and causes disease. However, bacterial colonisation of the intestine is not considered necessary in the pathogenesis of foodborne illness, because such pathogenesis can be explained by anchorage-independent production of diarrhoeic toxin by the bacterium in the intestine. In this study, we used an in vitro adherence assay to examine the adherence of C. perfringens spores to human intestinal Caco-2 cells. Adherence of spores from isolates of foodborne illness and nosocomial infection was observed within 15 min, and plateaued 60 min after inoculation. Electron microscopy revealed a tight association of spores with the surface of Caco-2 cells. The adherence of vegetative cells could not be confirmed by the same method, however. These results suggest that C. perfringens spores may adhere to intestinal epithelial cells in vivo, although its biological significance remains to be determined.

  11. Remediation of contaminated lands in the Niger Delta, Nigeria: Prospects and challenges.

    PubMed

    Zabbey, Nenibarini; Sam, Kabari; Onyebuchi, Adaugo Trinitas

    2017-05-15

    Contamination of the total environment (air, soil, water and biota) by crude oil has become a paramount interest in the Niger Delta region of Nigeria. Studies have revealed variable impacts of oil toxicity on the environment and exposed populations. The revelation gained much international attention in 2011 with the release of Environmental Assessment of Ogoniland report by the United Nations Environment Programme (UNEP). This has up scaled local and international pressures for urgent clean-up and restoration of degraded bio-resource rich environments of the Niger Delta, starting from Ogoniland. Previous remediation attempts in the area had failed due to erroneous operational conclusions (such as conclusions by oil industry operators that the Niger Delta soil is covered by a layer of clay and as such oil percolation remains within the top soil and makes remediation by enhanced natural attenuation (RENA) suitable for the region) and the adoption of incompatible and ineffective approaches (i.e. RENA) for the complex and dynamic environments. Perennial conflicts, poor regulatory oversights and incoherent standards are also challenges. Following UNEP recommendations, the Federal Government of Nigeria recently commissioned the clean-up and remediation of Ogoniland project; it would be novel and trend setting. While UNEP outlined some measures of contaminated land remediation, no specific approach was identified to be most effective for the Niger Delta region. Resolving the technical dilemma and identified social impediments is the key success driver of the above project. In this paper, we reviewed the socio-economic and ecological impacts of contaminated land in the Niger Delta region and the global state-of-the-art remediation approaches. We use coastal environment clean-up case studies to demonstrate the effectiveness of bioremediation (sometimes in combination with other technologies) for remediating most of the polluted sites in the Niger Delta. Bioremediation

  12. Preferential inclusion of extrachromosomal genetic elements in yeast meiotic spores.

    PubMed

    Brewer, B J; Fangman, W L

    1980-09-01

    During meiosis and sporulation in the yeast Saccharomyces cerevisiae, extrachromosomal traits are efficiently transmitted to haploid spores. Although the pattern of inheritance of chromosomal traits reflects the mechanism of regular chromosomal segregation in meiosis, it is not known what processes are reflected by the efficient inheritance of extrachromosomal traits. Because extrachromosomal genetic elements in yeast are present in multiple copies, perpetuation of an extrachromosomal trait could occur by the passive envelopment of a subset of copies or by an active sequestering of all or a subset of copies within the four spores. We show that only subsets of the four extrachromosomal nucleic acids commonly found in yeast are transmitted through meiosis--55% of mitochondrial DNA copies, 82% of the 2-micron DNA plasmids, and about 70% of the L and M double-stranded RNAs. However, electron micrographs of serial sections through yeast asci indicate that the four spore enclose only 30% of the total ascus material. Thus these extrachromosomal elements are preferentially included within the spores, indicating that their inheritance is not a random process. Transmission of mitochondrial DNA can be accounted for by the observed enclosure of 52% of the mitochondrial volume within the spores. The high transmission frequencies of the double-stranded RNAs (which exist as virus-like particles in the cytoplasm) and 2-micron DNA must indicate that either these nucleic acids are actively recruited from the cytoplasm by some mechanism or they are associated in some way with the nucleus during meiosis.

  13. Phosphorylation of spore coat proteins by a family of atypical protein kinases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Kim B.; Sreelatha, Anju; Durrant, Eric S.

    The modification of proteins by phosphorylation occurs in all life forms and is catalyzed by a large superfamily of enzymes known as protein kinases. We recently discovered a family of secretory pathway kinases that phosphorylate extracellular proteins. One member, family with sequence similarity 20C (Fam20C), is the physiological Golgi casein kinase. While examining distantly related protein sequences, we observed low levels of identity between the spore coat protein H (CotH), and the Fam20C-related secretory pathway kinases. CotH is a component of the spore in many bacterial and eukaryotic species, and is required for efficient germination of spores in Bacillus subtilis;more » however, the mechanism by which CotH affects germination is unclear. In this paper, we show that CotH is a protein kinase. The crystal structure of CotH reveals an atypical protein kinase-like fold with a unique mode of ATP binding. Examination of the genes neighboring cotH in B. subtilis led us to identify two spore coat proteins, CotB and CotG, as CotH substrates. Furthermore, we show that CotH-dependent phosphorylation of CotB and CotG is required for the efficient germination of B. subtilis spores. Finally and collectively, our results define a family of atypical protein kinases and reveal an unexpected role for protein phosphorylation in spore biology.« less

  14. The effect of growth medium on B. anthracis Sterne spore carbohydrate content.

    PubMed

    Colburn, Heather A; Wunschel, David S; Antolick, Kathryn C; Melville, Angela M; Valentine, Nancy B

    2011-06-01

    The expressed characteristics of biothreat agents may be impacted by variations in the culture environment, including growth medium formulation. The carbohydrate composition of B. anthracis spores has been well studied, particularly for the exosporium, which is the outermost spore structure. The carbohydrate composition of the exosporium has been demonstrated to be distinct from the vegetative form containing unique monosaccharides. We have investigated the carbohydrate composition of B. anthracis Sterne spores produced using four different medium types formulated with different sources of medium components. The amount of rhamnose, 3-O-methyl rhamnose and galactosamine was found to vary significantly between spores cultured using different medium formulations. The relative abundance of these monosaccharides compared to other monosaccharides such as mannosamine was also found to vary with medium type. Specific medium components were also found to impact the carbohydrate profile. Xylose has not been previously described in B. anthracis spores but was detected at low levels in two media. This may represent residual material from the brewery yeast extract used to formulate these two media. These results illustrate the utility of this method to capture the impact of growth medium on carbohydrate variation in spores. Detecting carbohydrate profiles in B. anthracis evidentiary material may provide useful forensic information on the growth medium used for sporulation. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Phosphorylation of spore coat proteins by a family of atypical protein kinases

    DOE PAGES

    Nguyen, Kim B.; Sreelatha, Anju; Durrant, Eric S.; ...

    2016-05-16

    The modification of proteins by phosphorylation occurs in all life forms and is catalyzed by a large superfamily of enzymes known as protein kinases. We recently discovered a family of secretory pathway kinases that phosphorylate extracellular proteins. One member, family with sequence similarity 20C (Fam20C), is the physiological Golgi casein kinase. While examining distantly related protein sequences, we observed low levels of identity between the spore coat protein H (CotH), and the Fam20C-related secretory pathway kinases. CotH is a component of the spore in many bacterial and eukaryotic species, and is required for efficient germination of spores in Bacillus subtilis;more » however, the mechanism by which CotH affects germination is unclear. In this paper, we show that CotH is a protein kinase. The crystal structure of CotH reveals an atypical protein kinase-like fold with a unique mode of ATP binding. Examination of the genes neighboring cotH in B. subtilis led us to identify two spore coat proteins, CotB and CotG, as CotH substrates. Furthermore, we show that CotH-dependent phosphorylation of CotB and CotG is required for the efficient germination of B. subtilis spores. Finally and collectively, our results define a family of atypical protein kinases and reveal an unexpected role for protein phosphorylation in spore biology.« less

  16. Isolation and analysis of bacteria associated with spores of Gigaspora margarita.

    PubMed

    Cruz, A F; Horii, S; Ochiai, S; Yasuda, A; Ishii, T

    2008-06-01

    The aim of this work was to observe bacteria associated with the spores of Gigaspora margarita, an arbuscular mycorrhizal fungus (AMF). First, a direct analysis of DNA from sterilized spores indicated the bacteria belonging to the genus Janthinobacterium. In the second assay, two bacterial strains were isolated by osmosis from protoplasts, which were derived from spores by using two particular enzymes: lysing enzymes and yatalase. After isolation, cultivation and identification by their DNA as performed in the first experiment, the species with the closest relation were Janthinobacterium lividum (KCIGM01) and Paenibacillus polymyxa (KCIGM04) isolated with lysing enzymes and yatalase respectively. Morphologically, J. lividum was Gram negative and oval, while P. polymyxa was also oval, but Gram positive. Both strains had antagonistic effects to the pathogenic fungi Rosellimia necatrix, Pythium ultimum, Fusarium oxysporum and Rhizoctonia solani. In particular, J. lividum was much stronger in this role. However, in phosphorus (P) solubilization P. polymyxa functioned better than J. lividum. This experiment had revealed two new bacteria species (P. polymyxa and J. lividum), associated with AMF spores, which functioned to suppress diseases and to solubilize P. AMF spores could be a useful source for bacterial antagonists to soil-borne diseases and P solubilization.

  17. Novel Fungitoxicity Assays for Inhibition of Germination-Associated Adhesion of Botrytis cinerea and Puccinia recondita Spores

    PubMed Central

    Slawecki, Richard A.; Ryan, Eileen P.; Young, David H.

    2002-01-01

    Botrytis cinerea and Puccinia recondita spores adhere strongly to polystyrene microtiter plates coincident with germination. We developed assays for inhibition of spore adhesion in 96-well microtiter plates by using sulforhodamine B staining to quantify the adherent spores. In both organisms, fungicides that inhibited germination strongly inhibited spore adhesion, with 50% effective concentrations (EC50s) comparable to those for inhibition of germination. In contrast, fungicides that acted after germination in B. cinerea inhibited spore adhesion to microtiter plates only at concentrations much higher than their EC50s for inhibition of mycelial growth. Similarly, in P. recondita the ergosterol biosynthesis inhibitors myclobutanil and fenbuconazole acted after germination and did not inhibit spore adhesion. The assays provide a rapid, high-throughput alternative to traditional spore germination assays and may be applicable to other fungi. PMID:11823196

  18. Comparative ozone responses of cutleaf coneflowers (Rudbeckia laciniata var. digitata, var. ampla) from Rocky Mountain and Great Smoky Mountains National Parks, USA.

    PubMed

    Neufeld, Howard S; Johnson, Jennifer; Kohut, Robert

    2018-01-01

    Cutleaf coneflower (Rudbeckia laciniata L. var. digitata) is native to Great Smoky Mountains National Park (GRSM) and an ozone bioindicator species. Variety ampla, whose ozone sensitivity is less well known, is native to Rocky Mountain National Park (ROMO). In the early 2000s, researchers found putative ozone symptoms on var. ampla and rhizomes were sent to Appalachian State University to verify that the symptoms were the result of ozone exposure. In 2011, potted plants were exposed to ambient ozone from May to August. These same plants were grown in open-top chambers (OTCs) in 2012 and 2013, and exposed to charcoal-filtered (CF), non-filtered (NF), elevated ozone (EO), NF+50ppb in 2012 for 47days and NF+30/NF+50ppb ozone in 2013 for 36 and 36days, respectively. Ozone symptoms similar to those found in ROMO (blue-black adaxial stippling) were reproduced both in ambient air and in the OTCs. Both varieties exhibited foliar injury in the OTCs in an exposure-dependent manner, verifying that symptoms resulted from ozone exposure. In two of the three study years, var. digitata appeared more sensitive than var. ampla. Exposure to EO caused reductions in ambient photosynthetic rate (A) and stomatal conductance (g s ) for both varieties. Light response curves indicated that ozone reduced A, g s , and the apparent quantum yield while it increased the light compensation point. In CF air, var. ampla had higher light saturated A (18.2±1.04 vs 11.6±0.37μmolm -2 s -1 ), higher light saturation (1833±166.7 vs 1108±141.7μmolm -2 s -1 ), and lower Ci/Ca ratio (0.67±0.01 vs 0.77±0.01) than var. digitata. Coneflowers in both Parks are adversely affected by exposure to ambient ozone and if ozone concentrations increase in the Rocky Mountains, greater amounts of injury on var. ampla can be expected. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Prospecting for the incidence of genes involved in ochratoxin and fumonisin biosynthesis in Brazilian strains of Aspergillus niger and Aspergillus welwitschiae.

    PubMed

    Massi, Fernanda Pelisson; Sartori, Daniele; de Souza Ferranti, Larissa; Iamanaka, Beatriz Thie; Taniwaki, Marta Hiromi; Vieira, Maria Lucia Carneiro; Fungaro, Maria Helena Pelegrinelli

    2016-03-16

    Aspergillus niger "aggregate" is an informal taxonomic rank that represents a group of species from the section Nigri. Among A. niger "aggregate" species Aspergillus niger sensu stricto and its cryptic species Aspergillus welwitschiae (=Aspergillus awamori sensu Perrone) are proven as ochratoxin A and fumonisin B2 producing species. A. niger has been frequently found in tropical and subtropical foods. A. welwitschiae is a new species, which was recently dismembered from the A. niger taxon. These species are morphologically very similar and molecular data are indispensable for their identification. A total of 175 Brazilian isolates previously identified as A. niger collected from dried fruits, Brazil nuts, coffee beans, grapes, cocoa and onions were investigated in this study. Based on partial calmodulin gene sequences about one-half of our isolates were identified as A. welwitschiae. This new species was the predominant species in onions analyzed in Brazil. A. niger and A. welwitschiae differ in their ability to produce ochratoxin A and fumonisin B2. Among A. niger isolates, approximately 32% were OTA producers, but in contrast only 1% of the A. welwitschiae isolates revealed the ability to produce ochratoxin A. Regarding fumonisin B2 production, there was a higher frequency of FB2 producing isolates in A. niger (74%) compared to A. welwitschiae (34%). Because not all A. niger and A. welwitschiae strains produce ochratoxin A and fumonisin B2, in this study a multiplex PCR was developed for detecting the presence of essential genes involved in ochratoxin (polyketide synthase and radHflavin-dependent halogenase) and fumonisin (α-oxoamine synthase) biosynthesis in the genome of A. niger and A. welwitschiae isolates. The frequency of strains harboring the mycotoxin genes was markedly different between A. niger and A. welwitschiae. All OTA producing isolates of A. niger and A. welwitschiae showed in their genome the pks and radH genes, and 95.2% of the nonproducing

  20. Interplanetary survival probability of Aspergillus terreus spores under simulated solar vacuum ultraviolet irradiation

    NASA Astrophysics Data System (ADS)

    Sarantopoulou, E.; Gomoiu, I.; Kollia, Z.; Cefalas, A. C.

    2011-01-01

    This work is a part of ESA/EU SURE project aiming to quantify the survival probability of fungal spores in space under solar irradiation in the vacuum ultraviolet (VUV) (110-180 nm) spectral region. The contribution and impact of VUV photons, vacuum, low temperature and their synergies on the survival probability of Aspergillus terreus spores is measured at simulated space conditions on Earth. To simulate the solar VUV irradiation, the spores are irradiated with a continuous discharge VUV hydrogen photon source and a molecular fluorine laser, at low and high photon intensities at 10 15 photon m -2 s -1 and 3.9×10 27 photons pulse -1 m -2 s -1, respectively. The survival probability of spores is independent from the intensity and the fluence of photons, within certain limits, in agreement with previous studies. The spores are shielded from a thin carbon layer, which is formed quickly on the external surface of the proteinaceous membrane at higher photon intensities at the start of the VUV irradiation. Extrapolating the results in space conditions, for an interplanetary direct transfer orbit from Mars to Earth, the spores will be irradiated with 3.3×10 21 solar VUV photons m -2. This photon fluence is equivalent to the irradiation of spores on Earth with 54 laser pulses with an experimental ˜92% survival probability, disregarding the contribution of space vacuum and low temperature, or to continuous solar VUV irradiation for 38 days in space near the Earth with an extrapolated ˜61% survival probability. The experimental results indicate that the damage of spores is mainly from the dehydration stress in vacuum. The high survival probability after 4 days in vacuum (˜34%) is due to the exudation of proteins on the external membrane, thus preventing further dehydration of spores. In addition, the survival probability is increasing to ˜54% at 10 K with 0.12 K/s cooling and heating rates.

  1. Detection of Only Viable Bacterial Spores Using a Live/Dead Indicator in Mixed Populations

    NASA Technical Reports Server (NTRS)

    Behar, Alberto E.; Stam, Christina N.; Smiley, Ronald

    2013-01-01

    This method uses a photoaffinity label that recognizes DNA and can be used to distinguish populations of bacterial cells from bacterial spores without the use of heat shocking during conventional culture, and live from dead bacterial spores using molecular-based methods. Biological validation of commercial sterility using traditional and alternative technologies remains challenging. Recovery of viable spores is cumbersome, as the process requires substantial incubation time, and the extended time to results limits the ability to quickly evaluate the efficacy of existing technologies. Nucleic acid amplification approaches such as PCR (polymerase chain reaction) have shown promise for improving time to detection for a wide range of applications. Recent real-time PCR methods are particularly promising, as these methods can be made at least semi-quantitative by correspondence to a standard curve. Nonetheless, PCR-based methods are rarely used for process validation, largely because the DNA from dead bacterial cells is highly stable and hence, DNA-based amplification methods fail to discriminate between live and inactivated microorganisms. Currently, no published method has been shown to effectively distinguish between live and dead bacterial spores. This technology uses a DNA binding photoaffinity label that can be used to distinguish between live and dead bacterial spores with detection limits ranging from 109 to 102 spores/mL. An environmental sample suspected of containing a mixture of live and dead vegetative cells and bacterial endospores is treated with a photoaffinity label. This step will eliminate any vegetative cells (live or dead) and dead endospores present in the sample. To further determine the bacterial spore viability, DNA is extracted from the spores and total population is quantified by real-time PCR. The current NASA standard assay takes 72 hours for results. Part of this procedure requires a heat shock step at 80 degC for 15 minutes before the

  2. Effect of medium components and culture conditions in Bacillus subtilis EA-CB0575 spore production.

    PubMed

    Posada-Uribe, Luisa F; Romero-Tabarez, Magally; Villegas-Escobar, Valeska

    2015-10-01

    Bacillus subtilis spores have important biotechnological applications; however, achieving both, high spore cell densities and sporulation efficiencies in fermentation, is poorly reported. In this study, medium components and culture conditions were optimized with different statistical methods to increase spore production of the plant growth promoting rhizobacteria B. subtilis EA-CB0575. Key medium components were determined with Plackett-Burman (PB) design, and the optimum concentration levels of two components (glucose, MgSO4·7H2O) were optimized with a full factorial and central composite design, achieving 1.37 × 10(9) CFU/mL of spore cell density and 93.5 % of sporulation efficiency in shake flask. The optimized medium was used to determine the effect of culture conditions on spore production at bioreactor level, finding that maintaining pH control did not affect significantly spore production, while the interaction of agitation and aeration rates had a significant effect on spore cell density. The overall optimization generated a 17.2-fold increase in spore cell density (8.78 × 10(9) CFU/mL) and 1.9-fold increase in sporulation efficiency (94.2 %) compared to that of PB design. These results indicate the potential of B. subtilis EA-CB0575 to produce both, high spore cell densities and sporulation efficiencies, with very low nutrient requirements and short incubation period which can represent savings of process production.

  3. Evaluating the Transport of Bacillus subtilis Spores as a Potential Surrogate for Cryptosporidium parvum Oocysts.

    PubMed

    Bradford, Scott A; Kim, Hyunjung; Headd, Brendan; Torkzaban, Saeed

    2016-02-02

    The U.S. Environmental Protection Agency has recommended the use of aerobic spores as an indicator for Cryptosporidium oocysts when determining groundwater under the direct influence of surface water. Surface properties, interaction energies, transport, retention, and release behavior of B. subtilis spores were measured over a range of physicochemical conditions, and compared with reported information for C. parvum oocysts. Interaction energy calculations predicted a much larger energy barrier and a shallower secondary minimum for spores than oocysts when the solution ionic strength (IS) equaled 0.1, 1, and 10 mM, and no energy barrier when the IS = 100 mM. Spores and oocysts exhibited similar trends of increasing retention with IS and decreasing Darcy water velocity (qw), and the predicted setback distance to achieve a six log removal was always larger for spores than oocysts. However, low levels of observed spore and oocyst release significantly influenced the predicted setback distance, especially when the fraction of reversibly retained microbes (Frev) was high. An estimate for Frev was obtained from large release pulses of spore and oocyst when the IS was reduced to deionized water. The value of Frev always increased with qw, whereas an opposition trend for Frev with IS was observed for spores (decreasing) and oocysts (increasing).

  4. Caenorhabditis elegans Predation on Bacillus anthracis: Decontamination of Spore Contaminated Soil with Germinants and Nematodes.

    PubMed

    Schelkle, Bettina; Choi, Young; Baillie, Leslie W; Richter, William; Buyuk, Fatih; Celik, Elif; Wendling, Morgan; Sahin, Mitat; Gallagher, Theresa

    2017-01-01

    Remediation of Bacillus anthracis -contaminated soil is challenging and approaches to reduce overall spore levels in environmentally contaminated soil or after intentional release of the infectious disease agent in a safe, low-cost manner are needed. B. anthracis spores are highly resistant to biocides, but once germinated they become susceptible to traditional biocides or potentially even natural predators such as nematodes in the soil environment. Here, we describe a two-step approach to reducing B. anthracis spore load in soil during laboratory trials, whereby germinants and Caenorhabditis elegans nematodes are applied concurrently. While the application of germinants reduced B. anthracis spore load by up to four logs depending on soil type, the addition of nematodes achieved a further log reduction in spore count. These laboratory based results suggest that the combined use of nematodes and germinants could represent a promising approach for the remediation of B. anthracis spore contaminated soil. Originality-Significance Statement: This study demonstrates for the first time the successful use of environmentally friendly decontamination methods to inactivate Bacillus anthracis spores in soil using natural predators of the bacterium, nematode worms.

  5. Dipicolinic Acid Release and the Germination of Alicyclobacillus acidoterrestris Spores under Nutrient Germinants.

    PubMed

    Porębska, Izabela; Sokołowska, Barbara; Woźniak, Łukasz

    2017-03-30

    The presence of Alicyclobacillus, a thermoacidophilic and spore-forming bacterium, in acidic fruit juices poses a serious problem for the processing industry. A typical sign of spoilage in contaminated juices is a characteristic phenolic off-flavour associated with the production of guaiacol. Spores are formed in response to starvation and in a natural environment re-access the nutrients, e.g.: L-alanine and AGFK - a mixture of asparagine, glucose, fructose and potassium, triggers germination. The aim of this study was to estimate the impact of L-alanine and AGFK on the germination of the spores of two Alicyclobacillus acidoterrestris strains and to evaluate the relationship of the germination rate with dipicolinic acid (DPA) release. The spores were suspended in apple juice or in buffers at pH 4 and pH 7, followed by the addition of L-alanine and AGFK. Suspensions were or were not subjected, to a temperature of 80°C/10 min and incubated for various periods of time at 45°C. Optical density (OD660) was used to estimate the number of germinated spores. The amount of DPA released was determined using HPLC. The results indicate that the degree of germination of A. acidoterrestris spores depended on the strain and time of incubation and the nutritious compounds used. The data obtained show that the amount of DPA released correlated to the number of A. acidoterrestris spores germinated.

  6. Image Cytometric Analysis of Algal Spores for Evaluation of Antifouling Activities of Biocidal Agents.

    PubMed

    Il Koo, Bon; Lee, Yun-Soo; Seo, Mintae; Seok Choi, Hyung; Leng Seah, Geok; Nam, Taegu; Nam, Yoon Sung

    2017-07-31

    Chemical biocides have been widely used as marine antifouling agents, but their environmental toxicity impose regulatory restriction on their use. Although various surrogate antifouling biocides have been introduced, their comparative effectiveness has not been well investigated partly due to the difficulty of quantitative evaluation of their antifouling activity. Here we report an image cytometric method to quantitatively analyze the antifouling activities of seven commercial biocides using Ulva prolifera as a target organism, which is known to be a dominant marine species causing soft fouling. The number of spores settled on a substrate is determined through image analysis using the intrinsic fluorescence of chlorophylls in the spores. Pre-determined sets of size and shape of spores allow for the precise determination of the number of settled spores. The effects of biocide concentration and combination of different biocides on the spore settlement are examined. No significant morphological changes of Ulva spores are observed, but the amount of adhesive pad materials is appreciably decreased in the presence of biocides. It is revealed that the growth rate of Ulva is not directly correlated with the antifouling activities against the settlement of Ulva spores. This work suggests that image cytometric analysis is a very convenient, fast-processable method to directly analyze the antifouling effects of biocides and coating materials.

  7. Luna stain, an improved selective stain for detection of microsporidian spores in histologic sections.

    PubMed

    Peterson, Tracy S; Spitsbergen, Jan M; Feist, Stephen W; Kent, Michael L

    2011-06-16

    Microsporidia in histologic sections are most often diagnosed by observing spores in host tissues. Spores are easy to identify if they occur in large aggregates or xenomas when sections are stained with hematoxylin and eosin (H&E). However, individual spores are not frequently detected in host tissues with conventional H&E staining, particularly if spores are scattered within the tissues, areas of inflammation, or small spores in nuclei (i.e. Nucleospora salmonis). Hence, a variety of selective stains that enhance visualization of spores is recommended. We discovered that the Luna stain, used to highlight eosinophils, red blood cells, and chitin in arthropods and other invertebrates, also stains spores of Pseudoloma neurophilia. We compared this stain to the Gram, Fite's acid fast, Giemsa, and H&E stains on 8 aquatic microsporidian organisms that were readily available in our 2 laboratories: Loma salmonae, Glugea anomala, Pseudoloma neurophilia, Pleistophora hyphessobryconis, Pleistophora vermiformis, Glugea sp., Steinhausia mytilovum, and an unidentified microsporidian from UK mitten crabs Eriocheir sinensis. Based on tinctorial properties and background staining, the Luna stain performed better for detection of 6 of the 8 microsporidia. Gram stain was superior for the 2 microsporidia from invertebrates: S. mytilovum and the unidentified microsporidian from E. sinensis.

  8. Spore coat protein synthesis in cell-free systems from sporulating cells of Bacillus subtilis.

    PubMed

    Nakayama, T; Munoz, L E; Sadaie, Y; Doi, R H

    1978-09-01

    Cell-free systems for protein synthesis were prepared from Bacillus subtilis 168 cells at several stages of sporulation. Immunological methods were used to determine whether spore coat protein could be synthesized in the cell-free systems prepared from sporulating cells. Spore coat protein synthesis first occurred in extracts from stage t2 cells. The proportion of spore coat protein to total proteins synthesized in the cell-free systems was 2.4 and 3.9% at stages t2 and t4, respectively. The sodium dodecyl sulfate-urea-polyacrylamide gel electrophoresis patterns of immunoprecipitates from the cell-free systems showed the complete synthesis of an apparent spore coat protein precursor (molecular weight, 25,000). A polypeptide of this weight was previously identified in studies in vivo (L.E. Munoz, Y. Sadaie, and R.H. Doi, J. Biol. Chem., in press). The synthesis in vitro of polysome-associated nascent spore coat polypeptides with varying molecular weights up to 23,000 was also detected. These results indicate that the spore coat protein may be synthesized as a precursor protein. The removal of proteases in the crude extracts by treatment with hemoglobin-Sepharose affinity techniques may be preventing the conversion of the large 25,000-dalton precursor to the 12,500-dalton mature spore coat protein.

  9. Long-term survival of bacterial spores in space

    NASA Technical Reports Server (NTRS)

    Horneck, G.; Bucker, H.; Reitz, G.

    1994-01-01

    On board of the NASA Long Duration Exposure Facility (LDEF), spores of Bacillus subtilis in monolayers (10(exp 6)/sample) or multilayers (10(exp 8)/sample) were exposed to the space environment for nearly six years and their survival was analyzed after retrieval. The response to space parameters, such as vacuum (10(exp -6) Pa), solar electromagnetic radiation up to the highly energetic vacuum-ultraviolet range 10(exp 9) J/sq m) and/or cosmic radiation (4.8 Gy), was studied and compared to the results of a simultaneously running ground control experiment. If shielded against solar ultraviolet (UV)-radiation, up to 80% of spores in multilayers survive in space. Solar UV-radiation, being the most deleterious parameter of space, reduces survival by 4 orders of magnitude or more. However, up to 10(exp 4) viable spores were still recovered, even in completely unprotected samples. Substances, such as glucose or buffer salts serve as chemical protectants. With this 6 year study in space, experimental data are provided to the discussion on the likelihood of 'Panspermia'.

  10. [Atmospheric concentration of fungus spores in Ankara and the effect of meteorological factors in 2003 period].

    PubMed

    Ceter, Talip; Pinar, Nur Münevver

    2009-10-01

    The atmospheric concentrations of airborne fungus spores change continuously according to the meteorological factors, and their intensity have important allergic effects on atopic subjects and opportunistic pathogenic effects on immunocompromised patients. The aim of this study was to identify the fungal spores found in Ankara atmosphere during 2003 period and to investigate the changes in spore concentrations in relation to meteorological factors. Fungal spores were sampled by using 7-day Burkard volumetric trap between January to December 2003, and probable identification was performed microscopically based on their morphological structures. A total of 433.079 spores/m3 belonging to 35 taxa were observed during the study. The rates of these taxa were as follows; 75.5% Cladosporium, 6.1% Alternaria, 2.2% Leptosphaeria, 2.2% Ustilago, 2.1% 1-septate ascospores, 2% Exosporium, 1.6% Pleospora, and 1.3% Drechslera. The other taxa with concentrations < 1% have consisted a total of 7.1% of all atmospheric spores (Puccinia, Curvularia, Coprinus, Nigrospora, Periconia, Melanomma, Torula, Ascobolus, Agrocybe, Pithomyces, Stemphyllium, Ganoderma, Boletus, Peronospora, Venturia, Paraphaeosphaeria, Epicoccum, Didymella, Chaetomium and Fusarium rates between 0.7-0.1%; Oidium, Xylaria, Botrytis, Melanospora, Dictyosporium, Sporormiella and Tetracoccosporium rates between 0.09-0.01%). Although fungal spores were detected in all months in Ankara atmosphere, the evaluation of the seasonal distribution of spore concentrations revealed that the highest value was detected in July (100.697 spores/m3), while the lowest value was in January (4268 spores/m3). When the effects of meteorological factors on spore concentrations were investigated, it was found that, monthly mean temperature (> 20 degrees C) has a strong positive correlation (p < 0.01), and monthly mean relative humidity (< %50) and precipitation (0-20 mm) have strong negative correlations (p < 0.01) on the spore

  11. Invasive Aspergillus niger complex infections in a Belgian tertiary care hospital.

    PubMed

    Vermeulen, E; Maertens, J; Meersseman, P; Saegeman, V; Dupont, L; Lagrou, K

    2014-05-01

    The incidence of invasive infections caused by the Aspergillus niger species complex was 0.043 cases/10 000 patient-days in a Belgian university hospital (2005-2011). Molecular typing was performed on six available A. niger complex isolates involved in invasive disease from 2010 to 2011, revealing A. tubingensis, which has higher triazole minimal inhibitory concentrations, in five out of six cases. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  12. Effect of different polyphenol sources on the efficiency of ellagic acid release by Aspergillus niger.

    PubMed

    Sepúlveda, Leonardo; de la Cruz, Reynaldo; Buenrostro, José Juan; Ascacio-Valdés, Juan Alberto; Aguilera-Carbó, Antonio Francisco; Prado, Arely; Rodríguez-Herrera, Raúl; Aguilar, Cristóbal Noé

    2016-01-01

    Fungal hydrolysis of ellagitannins produces hexahydroxydiphenic acid, which is considered an intermediate molecule in ellagic acid release. Ellagic acid has important and desirable beneficial health properties. The aim of this work was to identify the effect of different sources of ellagitannins on the efficiency of ellagic acid release by Aspergillus niger. Three strains of A. niger (GH1, PSH and HT4) were assessed for ellagic acid release from different polyphenol sources: cranberry, creosote bush, and pomegranate used as substrate. Polyurethane foam was used as support for solid-state culture in column reactors. Ellagitannase activity was measured for each of the treatments. Ellagic acid was quantified by high performance liquid chromatography. When pomegranate polyphenols were used, a maximum value of ellagic acid (350.21 mg/g) was reached with A. niger HT4 in solid-state culture. The highest amount of ellagitannase (5176.81 U/l) was obtained at 8h of culture when cranberry polyphenols and strain A. niger PSH were used. Results demonstrated the effect of different polyphenol sources and A. niger strains on ellagic acid release. It was observed that the best source for releasing ellagic acid was pomegranate polyphenols and A. niger HT4 strain, which has the ability to degrade these compounds for obtaining a potent bioactive molecule such as ellagic acid. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Protozoal Digestion of Coat-Defective Bacillus subtilis Spores Produces “Rinds” Composed of Insoluble Coat Protein▿

    PubMed Central

    Carroll, Alicia Monroe; Plomp, Marco; Malkin, Alexander J.; Setlow, Peter

    2008-01-01

    The Bacillus subtilis spore coat is a multilayer, proteinaceous structure that consists of more than 50 proteins. Located on the surface of the spore, the coat provides resistance to potentially toxic molecules as well as to predation by the protozoan Tetrahymena thermophila. When coat-defective spores are fed to Tetrahymena, the spores are readily digested. However, a residue termed a “rind” that looks like coat material remains. As observed with a phase-contrast microscope, the rinds are spherical or hemispherical structures that appear to be devoid of internal contents. Atomic force microscopy and chemical analyses showed that (i) the rinds are composed of insoluble protein largely derived from both outer and inner spore coat layers, (ii) the amorphous layer of the outer coat is largely responsible for providing spore resistance to protozoal digestion, and (iii) the rinds and intact spores do not contain significant levels of silicon. PMID:18689521

  14. Salmonella biofilm formation on Aspergillus niger involves cellulose--chitin interactions.

    PubMed

    Brandl, Maria T; Carter, Michelle Q; Parker, Craig T; Chapman, Matthew R; Huynh, Steven; Zhou, Yaguang

    2011-01-01

    Salmonella cycles between host and nonhost environments, where it can become an active member of complex microbial communities. The role of fungi in the environmental adaptation of enteric pathogens remains relatively unexplored. We have discovered that S. enterica Typhimurium rapidly attaches to and forms biofilms on the hyphae of the common fungus, Aspergillus niger. Several Salmonella enterica serovars displayed a similar interaction, whereas other bacterial species were unable to bind to the fungus. Bacterial attachment to chitin, a major constituent of fungal cell walls, mirrored this specificity. Pre-incubation of S. Typhimurium with N-acetylglucosamine, the monomeric component of chitin, reduced binding to chitin beads by as much as 727-fold and inhibited attachment to A. niger hyphae considerably. A cellulose-deficient mutant of S. Typhimurium failed to attach to chitin beads and to the fungus. Complementation of this mutant with the cellulose operon restored binding to chitin beads to 79% of that of the parental strain and allowed for attachment and biofilm formation on A. niger, indicating that cellulose is involved in bacterial attachment to the fungus via the chitin component of its cell wall. In contrast to cellulose, S. Typhimurium curli fimbriae were not required for attachment and biofilm development on the hyphae but were critical for its stability. Our results suggest that cellulose-chitin interactions are required for the production of mixed Salmonella-A. niger biofilms, and support the hypothesis that encounters with chitinaceous alternate hosts may contribute to the ecological success of human pathogens.

  15. Method and apparatus for detecting and quantifying bacterial spores on a surface

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian (Inventor)

    2009-01-01

    A method and an apparatus for detecting and quantifying bacterial spores on a surface. In accordance with the method: bacterial spores are transferred from a place of origin to a test surface, the test surface comprises lanthanide ions. Aromatic molecules are released from the bacterial spores; a complex of the lanthanide ions and aromatic molecules is formed on the test surface, the complex is excited to generate a characteristic luminescence on the test surface; the luminescence on the test surface is detected and quantified.

  16. Method and Apparatus for Detecting and Quantifying Bacterial Spores on a Surface

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian (Inventor)

    2016-01-01

    A method and an apparatus for detecting and quantifying bacterial spores on a surface. In accordance with the method: bacterial spores are transferred from a place of origin to a test surface, the test surface comprises lanthanide ions. Aromatic molecules are released from the bacterial spores; a complex of the lanthanide ions and aromatic molecules is formed on the test surface, the complex is excited to generate a characteristic luminescence on the test surface; the luminescence on the test surface is detected and quantified.

  17. Inactivation of Bacillus anthracis Spores during Laboratory-Scale Composting of Feedlot Cattle Manure

    PubMed Central

    Xu, Shanwei; Harvey, Amanda; Barbieri, Ruth; Reuter, Tim; Stanford, Kim; Amoako, Kingsley K.; Selinger, Leonard B.; McAllister, Tim A.

    2016-01-01

    Anthrax outbreaks in livestock have social, economic and health implications, altering farmer’s livelihoods, impacting trade and posing a zoonotic risk. Our study investigated the survival of Bacillus thuringiensis and B. anthracis spores sporulated at 15, 20, or 37°C, over 33 days of composting. Spores (∼7.5 log10 CFU g-1) were mixed with manure and composted in laboratory scale composters. After 15 days, the compost was mixed and returned to the composter for a second cycle. Temperatures peaked at 71°C on day 2 and remained ≥55°C for an average of 7 days in the first cycle, but did not exceed 55°C in the second. For B. thuringiensis, spores generated at 15 and 21°C exhibited reduced (P < 0.05) viability of 2.7 and 2.6 log10 CFU g-1 respectively, as compared to a 0.6 log10 CFU g-1 reduction for those generated at 37°C. For B. anthracis, sporulation temperature did not impact spore survival as there was a 2.5, 2.2, and 2.8 log10 CFU g-1 reduction after composting for spores generated at 15, 21, and 37°C, respectively. For both species, spore viability declined more rapidly (P < 0.05) in the first as compared to the second composting cycle. Our findings suggest that the duration of thermophilic exposure (≥55°C) is the main factor influencing survival of B. anthracis spores in compost. As sporulation temperature did not influence survival of B. anthracis, composting may lower the viability of spores associated with carcasses infected with B. anthracis over a range of sporulation temperatures. PMID:27303388

  18. Remote sensing experiment in West Africa. [drought effects on desert agriculture and vegetation in Niger

    NASA Technical Reports Server (NTRS)

    Macleod, N. H.

    1974-01-01

    There are substantial needs of the Sahelien Zone to detail the state of regional agricultural resources in the face of a sixth year of serious drought conditions. While most of the work has been done in the Republic of Niger, the principles which have emerged from the analysis seem to be applicable to much of the Sahel. The discussion relates to quite specific rehabilitation and development initiations under consideration in Niger which are based in part upon direct analysis of ERTS imagery of the country, in part on field surveys and on discussions with Nigerian officials and technicians. Again, because the entire Sahelien Zone (including Niger) has large zones of similar ecologic characteristics, modificiations of the approaches suggested for Niger are applicable to the solution of rehabilitation of the desert, the savannah and the woodlands of West Africa in general.

  19. β-1,6-glucan synthesis-associated genes are required for proper spore wall formation in Saccharomyces cerevisiae.

    PubMed

    Pan, Hua-Ping; Wang, Ning; Tachikawa, Hiroyuki; Nakanishi, Hideki; Gao, Xiao-Dong

    2017-11-01

    The yeast spore wall is an excellent model to study the assembly of an extracellular macromolecule structure. In the present study, mutants defective in β-1,6-glucan synthesis, including kre1∆, kre6∆, kre9∆ and big1∆, were sporulated to analyse the effect of β-1,6-glucan defects on the spore wall. Except for kre6∆, these mutant spores were sensitive to treatment with ether, suggesting that the mutations perturb the integrity of the spore wall. Morphologically, the mutant spores were indistinguishable from wild-type spores. They lacked significant sporulation defects partly because the chitosan layer, which covers the glucan layer, compensated for the damage. The proof for this model was obtained from the effect of the additional deletion of CHS3 that resulted in the absence of the chitosan layer. Among the double mutants, the most severe spore wall deficiency was observed in big1∆ spores. The majority of the big1∆chs3∆ mutants failed to form visible spores at a higher temperature. Given that the big1∆ mutation caused a failure to attach a GPI-anchored reporter, Cwp2-GFP, to the spore wall, β-1,6-glucan is involved in tethering of GPI-anchored proteins in the spore wall as well as in the vegetative cell wall. Thus, β-1,6-glucan is required for proper organization of the spore wall. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Measurements of DNA Damage and Repair in Bacillus anthracis Sterne Spores by UV Radiation

    DTIC Science & Technology

    2014-09-18

    MEASUREMENTS OF DNA DAMAGE AND REPAIR IN BACILLUS ANTHRACIS STERNE SPORES BY UV RADIATION...AFIT-ENP-T-14-S-01 MEASUREMENTS OF DNA DAMAGE AND REPAIR IN BACILLUS ANTHRACIS STERNE SPORES BY UV RADIATION THESIS Presented to the... DAMAGE AND REPAIR IN BACILLUS ANTHRACIS STERNE SPORES BY UV RADIATION Chelsea C. Marcum, BS Approved