2017-10-26
1 FINAL REPORT Converting Constant Volume, Multizone Air Handling Systems to Energy Efficient Variable Air Volume Multizone...Systems Energy and Water Projects Project Number: EW-201152 ERDC-CERL 26 October 2017 2 TABLE OF CONTENTS ACKNOWLEDGEMENTS...16 3.2.1 Energy Usage (Quantitative
2017-10-26
30. Energy Information Agency Natural Gas Price Data ..................................................................................... 65 Figure...different market sectors (residential, commercial, and industrial). Figure 30. Energy Information Agency Natural Gas Price Data 7.2.3 AHU Size...1 FINAL REPORT Converting Constant Volume, Multizone Air Handling Systems to Energy Efficient Variable Air Volume Multizone
The Analysis for Energy Consumption of Marine Air Conditioning System Based on VAV and VWV
NASA Astrophysics Data System (ADS)
Xu, Sai Feng; Yang, Xing Lin; Le, Zou Ying
2018-06-01
For ocean-going vessels sailing in different areas on the sea, the change of external environment factors will cause frequent changes in load, traditional ship air-conditioning system is usually designed with a fixed cooling capacity, this design method causes serious waste of resources. A new type of sea-based air conditioning system is proposed in this paper, which uses the sea-based source heat pump system, combined with variable air volume, variable water technology. The multifunctional cabins' dynamic loads for a ship navigating in a typical Eurasian route were calculated based on Simulink. The model can predict changes in full voyage load. Based on the simulation model, the effects of variable air volume and variable water volume on the energy consumption of the air-conditioning system are analyzed. The results show that: When the VAV is coupled with the VWV, the energy saving rate is 23.2%. Therefore, the application of variable air volume and variable water technology to marine air conditioning systems can achieve economical and energy saving advantages.
Batterman, Stuart
2015-01-01
Patterns of traffic activity, including changes in the volume and speed of vehicles, vary over time and across urban areas and can substantially affect vehicle emissions of air pollutants. Time-resolved activity at the street scale typically is derived using temporal allocation factors (TAFs) that allow the development of emissions inventories needed to predict concentrations of traffic-related air pollutants. This study examines the spatial and temporal variation of TAFs, and characterizes prediction errors resulting from their use. Methods are presented to estimate TAFs and their spatial and temporal variability and used to analyze total, commercial and non-commercial traffic in the Detroit, Michigan, U.S. metropolitan area. The variability of total volume estimates, quantified by the coefficient of variation (COV) representing the percentage departure from expected hourly volume, was 21, 33, 24 and 33% for weekdays, Saturdays, Sundays and holidays, respectively. Prediction errors mostly resulted from hour-to-hour variability on weekdays and Saturdays, and from day-to-day variability on Sundays and holidays. Spatial variability was limited across the study roads, most of which were large freeways. Commercial traffic had different temporal patterns and greater variability than noncommercial vehicle traffic, e.g., the weekday variability of hourly commercial volume was 28%. The results indicate that TAFs for a metropolitan region can provide reasonably accurate estimates of hourly vehicle volume on major roads. While vehicle volume is only one of many factors that govern on-road emission rates, air quality analyses would be strengthened by incorporating information regarding the uncertainty and variability of traffic activity. PMID:26688671
Variable volume combustor with an air bypass system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Thomas Edward; Ziminsky, Willy Steve; Ostebee, Heath Michael
The present application provides a combustor for use with flow of fuel and a flow of air in a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles positioned within a liner and an air bypass system position about the liner. The air bypass system variably allows a bypass portion of the flow of air to bypass the micro-mixer fuel nozzles.
NASA Technical Reports Server (NTRS)
Lin, Shian-Jiann; DaSilva, Arlindo; Atlas, Robert (Technical Monitor)
2001-01-01
Toward the development of a finite-volume Data Assimilation System (fvDAS), a consistent finite-volume methodology is developed for interfacing the NASA/DAO's Physical Space Statistical Analysis System (PSAS) to the joint NASA/NCAR finite volume CCM3 (fvCCM3). To take advantage of the Lagrangian control-volume vertical coordinate of the fvCCM3, a novel "shaving" method is applied to the lowest few model layers to reflect the surface pressure changes as implied by the final analysis. Analysis increments (from PSAS) to the upper air variables are then consistently put onto the Lagrangian layers as adjustments to the volume-mean quantities during the analysis cycle. This approach is demonstrated to be superior to the conventional method of using independently computed "tendency terms" for surface pressure and upper air prognostic variables.
An Award Winning Design for Downtown Manhattan High School
ERIC Educational Resources Information Center
Modern Schools, 1974
1974-01-01
New York City's downtown Commercial High School will be completely air conditioned with an unusual all-air, variable air volume system that will keep students and teachers comfortable throughout the year. (Author/MF)
Thosar, Archana; Patra, Amit; Bhattacharyya, Souvik
2008-07-01
Design of a nonlinear control system for a Variable Air Volume Air Conditioning (VAVAC) plant through feedback linearization is presented in this article. VAVAC systems attempt to reduce building energy consumption while maintaining the primary role of air conditioning. The temperature of the space is maintained at a constant level by establishing a balance between the cooling load generated in the space and the air supply delivered to meet the load. The dynamic model of a VAVAC plant is derived and formulated as a MIMO bilinear system. Feedback linearization is applied for decoupling and linearization of the nonlinear model. Simulation results for a laboratory scale plant are presented to demonstrate the potential of keeping comfort and maintaining energy optimal performance by this methodology. Results obtained with a conventional PI controller and a feedback linearizing controller are compared and the superiority of the proposed approach is clearly established.
ERIC Educational Resources Information Center
Schultz, Fred C.
2001-01-01
Reveals how seeking simplicity can help bring indoor air quality (IAQ) solutions to grade schools by balancing IAQ needs, cost, and energy. Issues involving ventilation rate requirements are reexamined, as are compliance with outside-air requirements, dealing with variable-air-volume air distribution regulators, and retrofitting issues involving…
Development of a Blood Pressure Measurement Instrument with Active Cuff Pressure Control Schemes.
Kuo, Chung-Hsien; Wu, Chun-Ju; Chou, Hung-Chyun; Chen, Guan-Ting; Kuo, Yu-Cheng
2017-01-01
This paper presents an oscillometric blood pressure (BP) measurement approach based on the active control schemes of cuff pressure. Compared with conventional electronic BP instruments, the novelty of the proposed BP measurement approach is to utilize a variable volume chamber which actively and stably alters the cuff pressure during inflating or deflating cycles. The variable volume chamber is operated with a closed-loop pressure control scheme, and it is activated by controlling the piston position of a single-acting cylinder driven by a screw motor. Therefore, the variable volume chamber could significantly eliminate the air turbulence disturbance during the air injection stage when compared to an air pump mechanism. Furthermore, the proposed active BP measurement approach is capable of measuring BP characteristics, including systolic blood pressure (SBP) and diastolic blood pressure (DBP), during the inflating cycle. Two modes of air injection measurement (AIM) and accurate dual-way measurement (ADM) were proposed. According to the healthy subject experiment results, AIM reduced 34.21% and ADM reduced 15.78% of the measurement time when compared to a commercial BP monitor. Furthermore, the ADM performed much consistently (i.e., less standard deviation) in the measurements when compared to a commercial BP monitor.
2014-01-01
Background Determination of regional lung air volume has several clinical applications. This study investigates the use of mid-tidal breathing CT scans to provide regional lung volume data. Methods Low resolution CT scans of the thorax were obtained during tidal breathing in 11 healthy control male subjects, each on two separate occasions. A 3D map of air volume was derived, and total lung volume calculated. The regional distribution of air volume from centre to periphery of the lung was analysed using a radial transform and also using one dimensional profiles in three orthogonal directions. Results The total air volumes for the right and left lungs were 1035 +/− 280 ml and 864 +/− 315 ml, respectively (mean and SD). The corresponding fractional air volume concentrations (FAVC) were 0.680 +/− 0.044 and 0.658 +/− 0.062. All differences between the right and left lung were highly significant (p < 0.0001). The coefficients of variation of repeated measurement of right and left lung air volumes and FAVC were 6.5% and 6.9% and 2.5% and 3.6%, respectively. FAVC correlated significantly with lung space volume (r = 0.78) (p < 0.005). FAVC increased from the centre towards the periphery of the lung. Central to peripheral ratios were significantly higher for the right (0.100 +/− 0.007 SD) than the left (0.089 +/− 0.013 SD) (p < 0.0001). Conclusion A technique for measuring the distribution of air volume in the lung at mid-tidal breathing is described. Mean values and reproducibility are described for healthy male control subjects. Fractional air volume concentration is shown to increase with lung size. PMID:25063729
Asleep Deep Brain Stimulation Reduces Incidence of Intracranial Air during Electrode Implantation.
Ko, Andrew L; Magown, Philippe; Ozpinar, Alp; Hamzaoglu, Vural; Burchiel, Kim J
2018-05-30
Asleep deep brain stimulation (aDBS) implantation replaces microelectrode recording for image-guided implantation, shortening the operative time and reducing cerebrospinal fluid egress. This may decrease pneumocephalus, thus decreasing brain shift during implantation. To compare the incidence and volume of pneumocephalus during awake (wkDBS) and aDBS procedures. A retrospective review of bilateral DBS cases performed at Oregon Health & Science University from 2009 to 2017 was undertaken. Postimplantation imaging was reviewed to determine the presence and volume of intracranial air and measure cortical brain shift. Among 371 patients, pneumocephalus was noted in 66% of wkDBS and 15.6% of aDBS. The average volume of air was significantly higher in wkDBS than aDBS (8.0 vs. 1.8 mL). Volumes of air greater than 7 mL, which have previously been linked to brain shift, occurred significantly more frequently in wkDBS than aDBS (34 vs 5.6%). wkDBS resulted in significantly larger cortical brain shifts (5.8 vs. 1.2 mm). We show that aDBS reduces the incidence of intracranial air, larger air volumes, and cortical brain shift. Large volumes of intracranial air have been correlated to shifting of brain structures during DBS procedures, a variable that could impact accuracy of electrode placement. © 2018 S. Karger AG, Basel.
Wave energy devices with compressible volumes.
Kurniawan, Adi; Greaves, Deborah; Chaplin, John
2014-12-08
We present an analysis of wave energy devices with air-filled compressible submerged volumes, where variability of volume is achieved by means of a horizontal surface free to move up and down relative to the body. An analysis of bodies without power take-off (PTO) systems is first presented to demonstrate the positive effects a compressible volume could have on the body response. Subsequently, two compressible device variations are analysed. In the first variation, the compressible volume is connected to a fixed volume via an air turbine for PTO. In the second variation, a water column separates the compressible volume from another volume, which is fitted with an air turbine open to the atmosphere. Both floating and bottom-fixed, axisymmetric, configurations are considered, and linear analysis is employed throughout. Advantages and disadvantages of each device are examined in detail. Some configurations with displaced volumes less than 2000 m 3 and with constant turbine coefficients are shown to be capable of achieving 80% of the theoretical maximum absorbed power over a wave period range of about 4 s.
Wave energy devices with compressible volumes
Kurniawan, Adi; Greaves, Deborah; Chaplin, John
2014-01-01
We present an analysis of wave energy devices with air-filled compressible submerged volumes, where variability of volume is achieved by means of a horizontal surface free to move up and down relative to the body. An analysis of bodies without power take-off (PTO) systems is first presented to demonstrate the positive effects a compressible volume could have on the body response. Subsequently, two compressible device variations are analysed. In the first variation, the compressible volume is connected to a fixed volume via an air turbine for PTO. In the second variation, a water column separates the compressible volume from another volume, which is fitted with an air turbine open to the atmosphere. Both floating and bottom-fixed, axisymmetric, configurations are considered, and linear analysis is employed throughout. Advantages and disadvantages of each device are examined in detail. Some configurations with displaced volumes less than 2000 m3 and with constant turbine coefficients are shown to be capable of achieving 80% of the theoretical maximum absorbed power over a wave period range of about 4 s. PMID:25484609
Choi, Sanghun; Hoffman, Eric A.; Wenzel, Sally E.; Tawhai, Merryn H.; Yin, Youbing; Castro, Mario
2013-01-01
The purpose of this work was to explore the use of image registration-derived variables associated with computed tomographic (CT) imaging of the lung acquired at multiple volumes. As an evaluation of the utility of such an imaging approach, we explored two groups at the extremes of population ranging from normal subjects to severe asthmatics. A mass-preserving image registration technique was employed to match CT images at total lung capacity (TLC) and functional residual capacity (FRC) for assessment of regional air volume change and lung deformation between the two states. Fourteen normal subjects and thirty severe asthmatics were analyzed via image registration-derived metrics together with their pulmonary function test (PFT) and CT-based air-trapping. Relative to the normal group, the severely asthmatic group demonstrated reduced air volume change (consistent with air trapping) and more isotropic deformation in the basal lung regions while demonstrating increased air volume change associated with increased anisotropic deformation in the apical lung regions. These differences were found despite the fact that both PFT-derived TLC and FRC in the two groups were nearly 100% of predicted values. Data suggest that reduced basal-lung air volume change in severe asthmatics was compensated by increased apical-lung air volume change and that relative increase in apical-lung air volume change in severe asthmatics was accompanied by enhanced anisotropic deformation. These data suggest that CT-based deformation, assessed via inspiration vs. expiration scans, provides a tool for distinguishing differences in lung mechanics when applied to the extreme ends of a population range. PMID:23743399
Heat recovery system employing a temperature controlled variable speed fan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, W.T.
1986-05-20
A heat recovery system is described for use in recovering heat from an industrial process producing a heated fluid comprising: a source of inlet air; a housing coupled to the source and including a heat exchanger; means for passing the heated fluid through the heat exchanger; the housing including means for moving a variable volume of air adjustable over a continuous range from the source through the heat exchanger; air discharge means communicating with the housing for discharging air which has passed through the heat exchanger; a control system including first temperature sensing means for sensing the discharge temperature ofmore » the discharge air moving through the discharge means and a control circuit coupled to the first temperature sensing means and to the moving means for varying the volume of air moved in response to the sensed discharge temperature to control the temperature of discharge air passing through the discharge means at a first predetermined value; and the control system including second temperature sensing means for sensing the temperature of the source of inlet air and valve means coupled to and controlled by the control circuit to cause liquid to bypass the heat exchanger when the inlet air temperature rises above a second predetermined value.« less
A large volume 2000 MPA air source for the radiatively driven hypersonic wind tunnel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constantino, M
1999-07-14
An ultra-high pressure air source for a hypersonic wind tunnel for fluid dynamics and combustion physics and chemistry research and development must provide a 10 kg/s pure air flow for more than 1 s at a specific enthalpy of more than 3000 kJ/kg. The nominal operating pressure and temperature condition for the air source is 2000 MPa and 900 K. A radial array of variable radial support intensifiers connected to an axial manifold provides an arbitrarily large total high pressure volume. This configuration also provides solutions to cross bore stress concentrations and the decrease in material strength with temperature. [hypersonic,more » high pressure, air, wind tunnel, ground testing]« less
2017-06-05
DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response...control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 4. TITLE AND...THIS PAGE 19b. TELEPHONE NUMBER (include area code) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 Cost & Performance Report June 2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Busch, J.F.; Warren, M.L.
1988-09-01
This paper describes an analysis of air conditioning performance under hot and humid tropical climate conditions appropriate to the Association of South East Asian Nations (ASEAN) countries. This region, with over 280 million people, has one of the fastest economic and energy consumption growth rates in the world. The work reported here is aimed at estimating the conservation potential derived from good design and control of air conditioning systems in commercial buildings. To test the performance of different air conditioning system types and control options, whole building energy performance was simulated using DOE-2. The 5100 m/sup 2/ (50,000 ft/sup 2/)more » prototype office building module was previously used in earlier commercial building energy standards analysis for Malaysia and Singapore. In general, the weather pattern for ASEAN countries is uniform, with hot and humid air masses known as ''monsoons'' dictating the weather patterns. Since a concentration of cities occurs near the tip of the Malay peninsula, hourly temperature, humidity, and wind speed data for Kuala Lumpur was used for the analysis. Because of the absence of heating loads in ASEAN regions, we have limited air conditioning configurations to two pipe fan coil, constant volume, variable air volume, powered induction, and ceiling bypass configurations. Control strategies were varied to determine the conservation potential in both energy use and peak electric power demands. Sensitivities including fan control, pre-cooling and night ventilation, supply air temperature control, zone temperature set point, ventilation and infiltration, daylighting and internal gains, and system sizing were examined and compared with a base case which was a variable air volume system with no reheat or economizer. Comfort issues, such as over-cooling and space humidity, were also examined.« less
40 CFR 86.1868-12 - CO2 credits for improving the efficiency of air conditioning systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., engine displacement, transmission class and configuration, interior volume, climate control system type... Creditvalue (g/mi) Reduced reheat, with externally-controlled, variable-displacement compressor (e.g. a compressor that controls displacement based on temperature setpoint and/or cooling demand of the air...
The goal of achieving verisimilitude of air quality simulations to observations is problematic. Chemical transport models such as the Community Multi-Scale Air Quality (CMAQ) modeling system produce volume averages of pollutant concentration fields. When grid sizes are such tha...
The report gives results of a project, in support of the intergared Air Cancer Project (IACP), to provide data on the specific effects of appliance type and operating variables on woodstove emissions. samples of particulate material and volatile organic compounds (VOCs) were coll...
A clinical prediction model for prolonged air leak after pulmonary resection.
Attaar, Adam; Winger, Daniel G; Luketich, James D; Schuchert, Matthew J; Sarkaria, Inderpal S; Christie, Neil A; Nason, Katie S
2017-03-01
Prolonged air leak increases costs and worsens outcomes after pulmonary resection. We aimed to develop a clinical prediction tool for prolonged air leak using pretreatment and intraoperative variables. Patients who underwent pulmonary resection for lung cancer/nodules (from January 2009 to June 2014) were stratified by prolonged parenchymal air leak (>5 days). Using backward stepwise logistic regression with bootstrap resampling for internal validation, candidate variables were identified and a nomogram risk calculator was developed. A total of 2317 patients underwent pulmonary resection for lung cancer/nodules. Prolonged air leak (8.6%, n = 200) was associated with significantly longer hospital stay (median 10 vs 4 days; P < .001). Final model variables associated with increased risk included low percent forced expiratory volume in 1 second, smoking history, bilobectomy, higher annual surgeon caseload, previous chest surgery, Zubrod score >2, and interaction terms for right-sided thoracotomy and wedge resection by thoracotomy. Wedge resection, higher body mass index, and unmeasured percent forced expiratory volume in 1 second were protective. Derived nomogram discriminatory accuracy was 76% (95% confidence interval [CI], 0.72-0.79) and facilitated patient stratification into low-, intermediate- and high-risk groups with monotonic increase in observed prolonged air leaks (2.0%, 8.9%, and 19.2%, respectively; P < .001). Patients at intermediate and high risk were 4.80 times (95% CI, 2.86-8.07) and 11.86 times (95% CI, 7.21-19.52) more likely to have prolonged air leak compared with patients at low risk. Using readily available candidate variables, our nomogram predicts increasing risk of prolonged air leak with good discriminatory ability. Risk stratification can support surgical decision making, and help initiate proactive, patient-specific surgical management. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Technical Review of the Laboratory Biosphere Closed Ecological System Facility
NASA Astrophysics Data System (ADS)
Dempster, W.; van Thillo, M.; Alling, A.; Allen, J.; Silverstone, S.; Nelson, M.
The "Laboratory Biosphere", a new closed ecological system facility in Santa Fe, New Mexico (USA) has been constructed and became operational in May 2002. Built and operated by the Global Ecotechnics consortium (Biosphere Technologies and Biosphere Foundation with Biospheric Design Inc., and the Institute of Ecotechnics), the research apparatus for intensive crop growth, biogeochemical cycle dynamics and recycling of inedible crop biomass comprises a sealed cylindrical steel chamber and attached variable volume chamber (lung) to prevent pressures caused by the expansion and contraction of the contained air. The cylindrical growing chamber is 3.7m (12 feet) long and 3.7m (12 foot) diameter, giving an internal volume of 34 m3 (1200 ft 3 ). The two crop growth beds cover 5.5 m2, with a soil depth of 0.3m (12 inches), with 12 x 1000 watt high-pressure sodium lights capable of variable lighting of 40-70 mol per m2 per day. A small soil bed reactor in the chamber can be activated to help with metabolism of chamber trace gases. The volume of the attached variable volume chamber (lung) can range between 0-11 m3 (0-400 ft 3 ). Evapotranspired and soil leachate water are collected, combined and recycled to water the planting beds. Sampling ports enable testing of water quality of leachate, condensate and irrigation water. Visual inspection windows provide views of the entire interior and growing beds. The chamber is also outfitted with an airlock to minimize air exchange when people enter and work in the chamber. Continuous sensors include atmospheric CO2 and oxygen, temperature, humidity, soil moisture, light level and water levels in reservoirs. Both "sniffer" (air ports) and "sipper" (water ports) will enable collection of water or air samples for detailed analysis. This paper reports on the development of this new soil-based bioregenerative life support closed system apparatus and its technical challenges and capabilities.
Ueda, Kazuhiro; Kaneda, Yoshikazu; Sudo, Manabu; Mitsutaka, Jinbo; Li, Tao-Sheng; Suga, Kazuyoshi; Tanaka, Nobuyuki; Hamano, Kimikazu
2005-11-01
Emphysema is a well-known risk factor for developing air leak or persistent air leak after pulmonary resection. Although quantitative computed tomography (CT) and spirometry are used to diagnose emphysema, it remains controversial whether these tests are predictive of the duration of postoperative air leak. Sixty-two consecutive patients who were scheduled to undergo major lung resection for cancer were enrolled in this prospective study to define the best predictor of postoperative air leak duration. Preoperative factors analyzed included spirometric variables and area of emphysema (proportion of the low-attenuation area) that was quantified in a three-dimensional CT lung model. Chest tubes were removed the day after disappearance of the air leak, regardless of pleural drainage. Univariate and multivariate proportional hazards analyses were used to determine the influence of preoperative factors on chest tube time (air leak duration). By univariate analysis, site of resection (upper, lower), forced expiratory volume in 1 second, predicted postoperative forced expiratory volume in 1 second, and area of emphysema (< 1%, 1% to 10%, > 10%) were significant predictors of air leak duration. By multivariate analysis, site of resection and area of emphysema were the best independent determinants of air leak duration. The results were similar for patients with a smoking history (n = 40), but neither forced expiratory volume in 1 second nor predicted postoperative forced expiratory volume in 1 second were predictive of air leak duration. Quantitative CT is superior to spirometry in predicting air leak duration after major lung resection for cancer. Quantitative CT may aid in the identification of patients, particularly among those with a smoking history, requiring additional preventive procedures against air leak.
Application of 3-D Urbanization Index to Assess Impact of Urbanization on Air Temperature
NASA Astrophysics Data System (ADS)
Wu, Chih-Da; Lung, Shih-Chun Candice
2016-04-01
The lack of appropriate methodologies and indicators to quantify three-dimensional (3-D) building constructions poses challenges to authorities and urban planners when formulating polices to reduce health risks due to heat stress. This study evaluated the applicability of an innovative three-dimensional Urbanization Index (3DUI), based on remote sensing database, with a 5 m spatial resolution of 3-D man-made constructions to representing intra-urban variability of air temperature by assessing correlation of 3DUI with air temperature from a 3-D perspective. The results showed robust high correlation coefficients, ranging from 0.83 to 0.85, obtained within the 1,000 m circular buffer around weather stations regardless of season, year, or spatial location. Our findings demonstrated not only the strength of 3DUI in representing intra-urban air-temperature variability, but also its great potential for heat stress assessment within cities. In view of the maximum correlation between building volumes within the 1,000 m circular buffer and ambient air temperature, urban planning should consider setting ceilings for man-made construction volume in each 2 × 2 km2 residential community for thermal environment regulation, especially in Asian metropolis with high population density in city centers.
Application of 3-D Urbanization Index to Assess Impact of Urbanization on Air Temperature
Wu, Chih-Da; Lung, Shih-Chun Candice
2016-01-01
The lack of appropriate methodologies and indicators to quantify three-dimensional (3-D) building constructions poses challenges to authorities and urban planners when formulating polices to reduce health risks due to heat stress. This study evaluated the applicability of an innovative three-dimensional Urbanization Index (3DUI), based on remote sensing database, with a 5 m spatial resolution of 3-D man-made constructions to representing intra-urban variability of air temperature by assessing correlation of 3DUI with air temperature from a 3-D perspective. The results showed robust high correlation coefficients, ranging from 0.83 to 0.85, obtained within the 1,000 m circular buffer around weather stations regardless of season, year, or spatial location. Our findings demonstrated not only the strength of 3DUI in representing intra-urban air-temperature variability, but also its great potential for heat stress assessment within cities. In view of the maximum correlation between building volumes within the 1,000 m circular buffer and ambient air temperature, urban planning should consider setting ceilings for man-made construction volume in each 2 × 2 km2 residential community for thermal environment regulation, especially in Asian metropolis with high population density in city centers. PMID:27079537
Choi, Sanghun; Hoffman, Eric A; Wenzel, Sally E; Castro, Mario; Lin, Ching-Long
2014-09-15
Lung air trapping is estimated via quantitative computed tomography (CT) using density threshold-based measures on an expiration scan. However, the effects of scanner differences and imaging protocol adherence on quantitative assessment are known to be problematic. This study investigates the effects of protocol differences, such as using different CT scanners and breath-hold coaches in a multicenter asthmatic study, and proposes new methods that can adjust intersite and intersubject variations. CT images of 50 healthy subjects and 42 nonsevere and 52 severe asthmatics at total lung capacity (TLC) and functional residual capacity (FRC) were acquired using three different scanners and two different coaching methods at three institutions. A fraction threshold-based approach based on the corrected Hounsfield unit of air with tracheal density was applied to quantify air trapping at FRC. The new air-trapping method was enhanced by adding a lung-shaped metric at TLC and the lobar ratio of air-volume change between TLC and FRC. The fraction-based air-trapping method is able to collapse air-trapping data of respective populations into distinct regression lines. Relative to a constant value-based clustering scheme, the slope-based clustering scheme shows the improved performance and reduced misclassification rate of healthy subjects. Furthermore, both lung shape and air-volume change are found to be discriminant variables for differentiating among three populations of healthy subjects and nonsevere and severe asthmatics. In conjunction with the lung shape and air-volume change, the fraction-based measure of air trapping enables differentiation of severe asthmatics from nonsevere asthmatics and nonsevere asthmatics from healthy subjects, critical for the development and evaluation of new therapeutic interventions. Copyright © 2014 the American Physiological Society.
Choi, Sanghun; Hoffman, Eric A.; Wenzel, Sally E.; Castro, Mario
2014-01-01
Lung air trapping is estimated via quantitative computed tomography (CT) using density threshold-based measures on an expiration scan. However, the effects of scanner differences and imaging protocol adherence on quantitative assessment are known to be problematic. This study investigates the effects of protocol differences, such as using different CT scanners and breath-hold coaches in a multicenter asthmatic study, and proposes new methods that can adjust intersite and intersubject variations. CT images of 50 healthy subjects and 42 nonsevere and 52 severe asthmatics at total lung capacity (TLC) and functional residual capacity (FRC) were acquired using three different scanners and two different coaching methods at three institutions. A fraction threshold-based approach based on the corrected Hounsfield unit of air with tracheal density was applied to quantify air trapping at FRC. The new air-trapping method was enhanced by adding a lung-shaped metric at TLC and the lobar ratio of air-volume change between TLC and FRC. The fraction-based air-trapping method is able to collapse air-trapping data of respective populations into distinct regression lines. Relative to a constant value-based clustering scheme, the slope-based clustering scheme shows the improved performance and reduced misclassification rate of healthy subjects. Furthermore, both lung shape and air-volume change are found to be discriminant variables for differentiating among three populations of healthy subjects and nonsevere and severe asthmatics. In conjunction with the lung shape and air-volume change, the fraction-based measure of air trapping enables differentiation of severe asthmatics from nonsevere asthmatics and nonsevere asthmatics from healthy subjects, critical for the development and evaluation of new therapeutic interventions. PMID:25103972
Babaei, Arash; Dua, Kulwinder; Naini, Sohrab Rahimi; Lee, Justin; Katib, Omar; Yan, Ke; Hoffmann, Raymond; Shaker, Reza
2012-04-01
Studies of the pressure response of the upper esophageal sphincter (UES) to simulated or spontaneous gastroesophageal reflux have shown conflicting results. These discrepancies could result from uncontrolled influence of variables such as posture, volume, and velocity of distension. We characterized in humans the effects of these variables on UES pressure response to esophageal distension. We studied 12 healthy volunteers (average, 27 ± 5 years old; 6 male) using concurrent esophageal infusion and high-resolution manometry to determine UES, lower esophageal sphincter, and intraesophageal pressure values. Reflux events were simulated by distal esophageal injections of room temperature air and water (5, 10, 20, and 50 mL) in individuals in 3 positions (upright, supine, and semisupine). Frequencies of various UES responses were compared using χ(2) analysis. Multinomial logistical regression analysis was used to identify factors that determine the UES response. UES contraction and relaxation were the overriding responses to esophageal water and air distension, respectively, in a volume-dependent fashion (P < .001). Water-induced UES contraction and air-induced UES relaxation were the predominant responses among individuals in supine and upright positions, respectively (P < .001). The prevalence of their respective predominant response significantly decreased in the opposite position. Proximal esophageal dp/dt significantly and independently differentiated the UES response to infusion with water or air. The UES response to esophageal distension is affected by combined effects of posture (spatial orientation of the esophagus), physical properties, and volume of refluxate, as well as the magnitude and rate of increase in intraesophageal pressure. The UES response to esophageal distension can be predicted using a model that incorporates these factors. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.
An analysis of long and medium-haul air passenger demand, volume 1
NASA Technical Reports Server (NTRS)
Eriksen, S. E.
1978-01-01
A basic model was developed which is a two equation pair econometric system in which air passenger demand and airline level-of-service are the endogenous variables. The model aims to identify the relationship between each of these two variables and its determining factors, and to identify the interaction of demand and level-of-service with each other. The selected variable for the measure of air passenger traffic activity in a given pair market is defined as the number of passengers in a given time that originate in one region and fly to the other region for purposes other than to make a connection to a third region. For medium and long haul markets, the model seems to perform better for larger markets. This is due to a specification problem regarding the route structure variable. In larger markets, a greater percentage of nonlocal passengers are accounted for by this variable. Comparing the estimated fare elasticities of long and medium haul markets, it appears that air transportation demand is more price elastic in longer haul markets. Long haul markets demand will saturate with a fewer number of departures than will demand in medium haul markets.
Research on the operation control strategy of the cooling ceiling combined with fresh air system
NASA Astrophysics Data System (ADS)
Huang, Tao; Li, Hao
2018-03-01
The cooling ceiling combined with independent fresh air system was built by TRNSYS. And the cooling effects of the air conditioning system of an office in Beijing in a summer typical day were simulated. Based on the “variable temperature” control strategy, the operation strategy of “variable air volume auxiliary adjustment” was put forward. The variation of the indoor temperature, the indoor humidity, the temperature of supplying water and the temperature of returning water were simulated under the two control strategies. The energy consumption of system during the whole summer was compared by utilizing the two control strategies, and the indoor thermal comfort was analyzed. The optimal control strategy was proposed under the condition that the condensation on the surface of the cooling ceiling is not occurred and the indoor thermal comfort is satisfied.
NASA Technical Reports Server (NTRS)
Hilado, C. J.
1976-01-01
Relative toxicity data for a large number of natural and synthetic polymeric materials are presented which were obtained by 11 pyrolysis and three flaming-combustion test methods. The materials tested include flexible and rigid polyurethane foams, different kinds of fabrics and woods, and a variety of commodity polymers such as polyethylene. Animal exposure chambers of different volumes containing mice, rats, or rabbits were used in the tests, which were performed over the temperature range from ambient to 800 C with and without air flow or recirculation. The test results are found to be sensitive to such variables as exposure mode, temperature, air flow and dilution, material concentration, and animal species, but relative toxicity rankings appear to be similar for many methods and materials. It is concluded that times to incapacitance and to death provide a more suitable basis for relative toxicity rankings than percent mortality alone, that temperature is the most important variable in the tests reported, and that variables such as chamber volume and animal species may not significantly affect the rankings.
Dynamic evaluation of airflow rates for a variable air volume system serving an open-plan office.
Mai, Horace K W; Chan, Daniel W T; Burnett, John
2003-09-01
In a typical air-conditioned office, the thermal comfort and indoor air quality are sustained by delivering the amount of supply air with the correct proportion of outdoor air to the breathing zone. However, in a real office, it is not easy to measure these airflow rates supplied to space, especially when the space is served by a variable air volume (VAV) system. The most accurate method depends on what is being measured, the details of the building and types of ventilation system. The constant concentration tracer gas method as a means to determine ventilation system performance, however, this method becomes more complicated when the air, including the tracer gas is allowed to recirculate. An accurate measurement requires significant resource support in terms of instrumentation set up and also professional interpretation. This method deters regular monitoring of the performance of an airside systems by building managers, and hence the indoor environmental quality, in terms of thermal comfort and indoor air quality, may never be satisfactory. This paper proposes a space zone model for the calculation of all the airflow parameters based on tracer gas measurements, including flow rates of outdoor air, VAV supply, return space, return and exfiltration. Sulphur hexafluoride (SF6) and carbon dioxide (CO2) are used as tracer gases. After using both SF6 and CO2, the corresponding results provide a reference to justify the acceptability of using CO2 as the tracer gas. The validity of using CO2 has the significance that metabolic carbon dioxide can be used as a means to evaluate real time airflow rates. This approach provides a practical protocol for building managers to evaluate the performance of airside systems.
DOT National Transportation Integrated Search
1996-07-01
The increasingly sophisticated demands placed on transportation planning models by the 1990 Clean Air Act Amendments (CAAA), the 1991 Intermodal Surface Transportation Efficiency Act (ISTEA), and to a lesser extent some earlier legislation, have led ...
40 CFR 86.527-90 - Test procedures, overview.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 86.527-90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... constant volume (variable dilution) sampler. (d) Except in cases of component malfunction or failure, all... emissions measurements are made. For exhaust testing, this requires sampling and analysis of the dilution...
Method and apparatus for extracting water from air
Spletzer, Barry L.; Callow, Diane Schafer; Marron, Lisa C.; Salton, Jonathan R.
2002-01-01
The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water. The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.
40 CFR 60.316 - Test methods and procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 60.316 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... for the measurement of VOC concentration. (3) Method 1 for sample and velocity traverses. (4) Method 2... smaller volumes, when necessitated by process variables or other factors, may be approved by the...
Tokita, Kenneth M; Cuttino, Laurie W; Vicini, Frank A; Arthur, Douglas W; Todor, Dorin A; Julian, Thomas B; Lyden, Maureen R
2011-01-01
The impact of using the Contura multilumen balloon (MLB) (SenoRx, Inc., Irvine, CA) breast brachytherapy catheter's vacuum port in patients treated with accelerated partial breast irradiation (APBI) was analyzed. Data from 32 patients at two sites were reviewed. Variables analyzed included the seroma fluid (SF):air volume around the MLB before and after vacuum port use and on its ability to improve (1) the eligibility of patients for APBI and (2) dose coverage of the planning target volume for evaluation (PTV_EVAL) in eligible patients. The median SF/air volume before vacuum removal was 6.8 cc vs. 0.8 cc after vacuum removal (median reduction in SF/air volume was 90.5%). Before vacuum port use, the median SF/air volume expressed as percentage of the PTV_EVAL was 7.8% (range, 1.9-26.6) in all patients. After application of the vacuum, this was reduced to 1.2%. Before vacuum port use, 10 (31.3%) patients were not considered acceptable candidates for APBI because the SF/air volume:PTV_EVAL ratio (SF:PTV) was greater than 10% (range, 10.1-26.6%; median, 15.2%). After vacuum port use, the median SF:PTV ratio was 1.6% for a median reduction of 91.5%. In addition, the percentage of the prescribed dose covering greater than or equal to 90% of the PTV_EVAL proportionally increased a median of 8% (range, 3-10%) in eligible patients. Use of the Contura MLB vacuum port significantly improved the conformity of the target tissue to the balloon surface, leading to reproducible dose delivery and increased target volume coverage. In addition, application of the vacuum allowed the safe treatment of unacceptable patients with APBI. Copyright © 2011 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Predictive model for CO2 generation and decay in building envelopes
NASA Astrophysics Data System (ADS)
Aglan, Heshmat A.
2003-01-01
Understanding carbon dioxide generation and decay patterns in buildings with high occupancy levels is useful to identify their indoor air quality, air change rates, percent fresh air makeup, occupancy pattern, and how a variable air volume system to off-set undesirable CO2 level can be modulated. A mathematical model governing the generation and decay of CO2 in building envelopes with forced ventilation due to high occupancy is developed. The model has been verified experimentally in a newly constructed energy efficient healthy house. It was shown that the model accurately predicts the CO2 concentration at any time during the generation and decay processes.
Lung volume is a determinant of aerosol bolus dispersion.
Schulz, Holger; Eder, Gunter; Heyder, Joachim
2003-01-01
The technique of inhaling a small volume element labeled with particles ("aerosol bolus") can be used to assess convective gas mixing in the lung. While a bolus undergoes mixing in the lung, particles are dispersed in an increasing volume of the respired air. However, determining factors of bolus dispersion are not yet completely understood. The present study tested the hypothesis that bolus dispersion is related, among others, to the total volume in which the bolus is allowed to mix--i.e., to the individual lung size. Bolus dispersion was measured in 32 anesthetized, mechanically ventilated dogs with total lung capacities (TLCs) of 1.1-2.5 L. Six-milliliter aerosol boluses were introduced at various preselected time-points during inspiration to probe different volumetric lung depths. Dispersion (SD) was determined by moment analysis of particle concentrations in the expired air. We found linear correlations between SD at a given lung depth and the individual end-inspiratory lung volume (V(L)). The relationship was tightest for boluses inhaled deepest into the lungs: SD(40) = 0.068 V(L) - 1.77, r(2) = 0.59. Normalizing SD to V(L) abolished this dependency and resulted in a considerable reduction of inter-individual variability as compared to the uncorrected measurements. These data indicate that lung size influences measurements of bolus dispersion. It therefore appears reasonable to apply a normalization procedure before interpreting the data. Apart from a reduction in measurement variability, this should help to separate the effects on bolus dispersion of altered lung volumes and altered mixing processes in diseased lungs.
40 CFR 94.203 - Application for certification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 94.203 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... § 94.109(d) for Category 3 engines. Small-volume manufacturers may omit measurement and reporting of... application of the engine (e.g., used to propel planing vessels, use to propel vessels with variable-pitch...
Assessment of volume and leak measurements during CPAP using a neonatal lung model.
Fischer, H S; Roehr, C C; Proquitté, H; Wauer, R R; Schmalisch, G
2008-01-01
Although several commercial devices are available which allow tidal volume and air leak monitoring during continuous positive airway pressure (CPAP) in neonates, little is known about their measurement accuracy and about the influence of air leaks on volume measurement. The aim of this in vitro study was the validation of volume and leak measurement under CPAP using a commercial ventilatory device, taking into consideration the clinical conditions in neonatology. The measurement accuracy of the Leoni ventilator (Heinen & Löwenstein, Germany) was investigated both in a leak-free system and with leaks simulated using calibration syringes (2-10 ml, 20-100 ml) and a mechanical lung model. Open tubes of variable lengths were connected for leak simulation. Leak flow was measured with the flow-through technique. In a leak-free system the mean relative volume error +/-SD was 3.5 +/- 2.6% (2-10 ml) and 5.9 +/- 0.7% (20-60 ml), respectively. The influence of CPAP level, driving flow, respiratory rate and humidification of the breathing gas on the volume error was negligible. However, an increasing F(i)O(2) caused the measured tidal volume to increase by up to 25% (F(i)O(2) = 1.0). The relative error +/- SD of the leak measurements was -0.2 +/- 11.9%. For leaks > 19%, measured tidal volume was underestimated by more than 10%. In conclusion, the present in vitro study showed that the Leoni allowed accurate volume monitoring under CPAP conditions similar to neonates. Air leaks of up to 90% of patient flow were reliably detected. For an F(i)O(2) > 0.4 and for leaks > 19%, a numerical correction of the displayed volume should be performed.
Historical trend in river ice thickness and coherence in hydroclimatological trends in Maine
Huntington, T.G.; Hodgkins, G.A.; Dudley, R.W.
2003-01-01
We analyzed long-term records of ice thickness on the Piscataquis River in central Maine and air temperature in Maine to determine whether there were temporal trends that were associated with climate warming. The trend in ice thickness was compared and correlated with regional time series of winter air temperature, heating degree days (HDD), date of river ice-out, seasonal center-of-volume date (SCVD) (date on which half of the stream runoff volume during the period 1 Jan. to 31 May has occurred), water temperature, and lake ice-out date. All of these variables except lake ice-out date showed significant temporal trends during the 20th century. Average ice thickness around 28 February decreased by about 23 cm from 1912 to 2001. Over the period 1900 to 1999, winter air temperature increased by 1.7??C and HDD decreased by about 7.5%. Final ice-out date on the Piscataquis River occurred earlier (advanced), by 0.21 days yr-1 over the period 1931 to 2002, and the SCVD advanced by 0.11 days yr-1 over the period 1903 to 2001. Ice thickness was significantly correlated (P-value < 0.01) with winter air temperature, HDD, river ice-out, and SCVD. These systematic temporal trends in multiple hydrologic indicator variables indicate a coherent response to climate forcing.
McKinney, Timothy B; Babin, Elizabeth A; Ciolfi, Veronica; McKinney, Cynthia R; Shah, Nima
2018-04-01
Air-charged (AC) and water-perfused (WP) catheters have been evaluated for differences in measuring pressures for voiding dysfunction. Typically, a two-catheter system was used. We believe that simultaneous pressure measurements with AC and WP in a single catheter will provide analogous pressures for coughs, Valsalvas, and maximum pressures in voiding pressure studies (VPS). This IRB approved prospective study included 50 women over age 21. AC dual TDOC catheters were utilized. The water-filling channel served as the bladder filler and the water pressure readings. Patients were evaluated with empty bladders and at volumes of 50-100 mL, 200 mL, and maximum capacity with cough and Valsalva maneuvers. Comparative analysis was performed on maximum stress peak pressures. At maximum bladder capacity, VPS was done and maximum voiding pressure was recorded. Comparing coughs and Valsalva maneuvers pressures, there was significant increase in variability between AC and WP measurements with less than 50 mL volume (P < 0.001). Significant correlations were observed between AC and WP measurements for coughs and Valsalvas with bladder volume over 50 mL. Visual impression showed virtually identical tracings. Cough measurements had an average difference of 0.25 cmH 2 O (±8.81) and Valsalva measurements had an average difference of 3.15 cmH 2 O (±4.72). Thirty-eight women had usable maximum voiding pressure measurements and had a strong correlation. Cystometrogram and maximum voiding pressure measurements done with either water or air charged catheters will yield similarly accurate results and are comparable. Results suggest more variability at low bladder volumes <50 mL. © 2018 Wiley Periodicals, Inc.
Method and apparatus for extracting water from air
Spletzer, Barry L.
2001-01-01
The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water (ideally isothermal to a humidity of 1.0, then adiabatic thereafter). The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.
40 CFR 53.56 - Test for effect of variations in ambient pressure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... measurement accuracy. (iv) Coefficient of variability measurement accuracy. (v) Ambient pressure measurement... through the sample filter, measured in actual volume units at the temperature and pressure of the air as... volumetric flow rate corrections are made based on measurements of actual ambient temperature and pressure...
Temporal soil bulk density following tillage
USDA-ARS?s Scientific Manuscript database
Soil is the medium for air, energy, water, and chemical transport between the atmosphere and the solid earth. Soil bulk density is a key variable impacting the rate at which this transport occurs. Typically, soil bulk density is measured by the gravimetric method, where a sample of known volume is t...
Energy Management System Successful in Indiana Elementary School.
ERIC Educational Resources Information Center
School Business Affairs, 1984
1984-01-01
The new Oregon-Davis Elementary School in rural Indiana embodies state-of-the-art energy management. Its environmental systems include thorough insulation, dual heating and cooling equipment for flexible loads, and decentralized computer controls. A heat recovery unit and variable-air-volume discharge ducts also contribute to conservation. (MCG)
40 CFR 60.456 - Test methods and procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 60.456 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... § 60.453. (2) Method 25 for the measurement of the VOC concentration in the gas stream vent. (3) Method... sampling times or smaller volumes, when necessitated by process variables or other factors, may be approved...
40 CFR 86.143-96 - Calculations; evaporative emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... 86.143-96 Section 86.143-96 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... vehicles, and for gaseous-fueled vehicles. (b) Use the measurements of initial and final concentrations to... diurnal emission testing, g. (iii) For variable-volume enclosures, defined in § 86.107(a)(1)(i), the...
Macroscale hydrologic modeling of ecologically relevant flow metrics
Seth J. Wenger; Charles H. Luce; Alan F. Hamlet; Daniel J. Isaak; Helen M. Neville
2010-01-01
Stream hydrology strongly affects the structure of aquatic communities. Changes to air temperature and precipitation driven by increased greenhouse gas concentrations are shifting timing and volume of streamflows potentially affecting these communities. The variable infiltration capacity (VIC) macroscale hydrologic model has been employed at regional scales to describe...
Understanding Skill in EVA Mass Handling. Volume 2; Empirical Investigation
NASA Technical Reports Server (NTRS)
Riccio, Gary; McDonald, Vernon; Peters, Brian; Layne, Charles; Bloomberg, Jacob
1997-01-01
In this report we describe the details of our empirical protocol effort investigating skill in extravehicular mass handling using NASA's principal mass handling simulator, the precision air bearing floor. Contents of this report include a description of the necessary modifications to the mass handling simulator; choice of task, and the description of an operationally relevant protocol. Our independent variables are presented in the context of the specific operational issues they were designed to simulate. The explanation of our dependent variables focuses on the specific data processing procedures used to transform data from common laboratory instruments into measures that are relevant to a special class of nested control systems (discussed in Volume 1): manual interactions between an individual and the substantial environment. The data reduction is explained in the context of the theoretical foundation described in Volume 1. Finally as a preface to the presentation of the empirical data in Volume 3 of this report series, a set of detailed hypotheses is presented.
Air-Leak Effects on Ear-Canal Acoustic Absorbance
Rasetshwane, Daniel M.; Kopun, Judy G.; Gorga, Michael P.; Neely, Stephen T.
2015-01-01
Objective: Accurate ear-canal acoustic measurements, such as wideband acoustic admittance, absorbance, and otoacoustic emissions, require that the measurement probe be tightly sealed in the ear canal. Air leaks can compromise the validity of the measurements, interfere with calibrations, and increase variability. There are no established procedures for determining the presence of air leaks or criteria for what size leak would affect the accuracy of ear-canal acoustic measurements. The purpose of this study was to determine ways to quantify the effects of air leaks and to develop objective criteria to detect their presence. Design: Air leaks were simulated by modifying the foam tips that are used with the measurement probe through insertion of thin plastic tubing. To analyze the effect of air leaks, acoustic measurements were taken with both modified and unmodified foam tips in brass-tube cavities and human ear canals. Measurements were initially made in cavities to determine the range of critical leaks. Subsequently, data were collected in ears of 21 adults with normal hearing and normal middle-ear function. Four acoustic metrics were used for predicting the presence of air leaks and for quantifying these leaks: (1) low-frequency admittance phase (averaged over 0.1–0.2 kHz), (2) low-frequency absorbance, (3) the ratio of compliance volume to physical volume (CV/PV), and (4) the air-leak resonance frequency. The outcome variable in this analysis was the absorbance change (Δabsorbance), which was calculated in eight frequency bands. Results: The trends were similar for both the brass cavities and the ear canals. ΔAbsorbance generally increased with air-leak size and was largest for the lower frequency bands (0.1–0.2 and 0.2–0.5 kHz). Air-leak effects were observed in frequencies up to 10 kHz, but their effects above 1 kHz were unpredictable. These high-frequency air leaks were larger in brass cavities than in ear canals. Each of the four predictor variables exhibited consistent dependence on air-leak size. Low-frequency admittance phase and CV/PV decreased, while low-frequency absorbance and the air-leak resonance frequency increased. Conclusion: The effect of air leaks can be significant when their equivalent diameter exceeds 0.01 in. The observed effects were greatest at low frequencies where air leaks caused absorbance to increase. Recommended criteria for detecting air leaks include the following: when the frequency range of interest extends as low as 0.1 kHz, low-frequency absorbance should be ≤0.20 and low-frequency admittance phase ≥61 degrees. For frequency ranges as low as 0.2 kHz, low-frequency absorbance should be ≤0.29 and low-frequency admittance phase ≥44 degrees. PMID:25170779
Air-leak effects on ear-canal acoustic absorbance.
Groon, Katherine A; Rasetshwane, Daniel M; Kopun, Judy G; Gorga, Michael P; Neely, Stephen T
2015-01-01
Accurate ear-canal acoustic measurements, such as wideband acoustic admittance, absorbance, and otoacoustic emissions, require that the measurement probe be tightly sealed in the ear canal. Air leaks can compromise the validity of the measurements, interfere with calibrations, and increase variability. There are no established procedures for determining the presence of air leaks or criteria for what size leak would affect the accuracy of ear-canal acoustic measurements. The purpose of this study was to determine ways to quantify the effects of air leaks and to develop objective criteria to detect their presence. Air leaks were simulated by modifying the foam tips that are used with the measurement probe through insertion of thin plastic tubing. To analyze the effect of air leaks, acoustic measurements were taken with both modified and unmodified foam tips in brass-tube cavities and human ear canals. Measurements were initially made in cavities to determine the range of critical leaks. Subsequently, data were collected in ears of 21 adults with normal hearing and normal middle-ear function. Four acoustic metrics were used for predicting the presence of air leaks and for quantifying these leaks: (1) low-frequency admittance phase (averaged over 0.1-0.2 kHz), (2) low-frequency absorbance, (3) the ratio of compliance volume to physical volume (CV/PV), and (4) the air-leak resonance frequency. The outcome variable in this analysis was the absorbance change (Δabsorbance), which was calculated in eight frequency bands. The trends were similar for both the brass cavities and the ear canals. ΔAbsorbance generally increased with air-leak size and was largest for the lower frequency bands (0.1-0.2 and 0.2-0.5 kHz). Air-leak effects were observed in frequencies up to 10 kHz, but their effects above 1 kHz were unpredictable. These high-frequency air leaks were larger in brass cavities than in ear canals. Each of the four predictor variables exhibited consistent dependence on air-leak size. Low-frequency admittance phase and CV/PV decreased, while low-frequency absorbance and the air-leak resonance frequency increased. The effect of air leaks can be significant when their equivalent diameter exceeds 0.01 in. The observed effects were greatest at low frequencies where air leaks caused absorbance to increase. Recommended criteria for detecting air leaks include the following: when the frequency range of interest extends as low as 0.1 kHz, low-frequency absorbance should be ≤0.20 and low-frequency admittance phase ≥61 degrees. For frequency ranges as low as 0.2 kHz, low-frequency absorbance should be ≤0.29 and low-frequency admittance phase ≥44 degrees.
The report gives results of a project, in support of the intergrated Air Canver Project (IACP) to provide data on the specific effects of appliance type and operating variales on woodstove emissions. Samples of particulate material and volatile organic compounds (VOCs) were colle...
Temporal distribution of air quality related to meteorology and road traffic in Madrid.
Perez-Martinez, Pedro J; Miranda, Regina M
2015-04-01
The impact of climatology--air temperature, precipitation and wind speed--and road traffic--volume, vehicle speed and percentage of heavy-duty vehicles (HDVs)--on air quality in Madrid was studied by estimating the effect for each explanatory variable using generalized linear regression models controlling for monthly variations, days of week and parameter levels. Every 1 m/s increase in wind speed produced a decrease in PM10 concentrations by 10.3% (95% CI 12.6-8.6) for all weekdays and by 12.4% (95% CI 14.9-9.8) for working days (up to the cut-off of 2.4 m/s). Increases of PM10 concentrations due to air temperature (7.2% (95% CI 6.2-8.3)) and traffic volume (3.3% (95% CI 2.9-3.8)) were observed at every 10 °C and 1 million vehicle-km increases for all weekdays; oppositely, slight decreases of PM10 concentrations due to percentage of HDVs (3.2% (95% CI 2.7-3.7)) and vehicle speed (0.7% (95% CI 0.6-0.8)) were observed at every 1% and 1 km/h increases. Stronger effects of climatology on air quality than traffic parameters were found.
Use of Whatman-41 filters in air quality sampling networks (with applications to elemental analysis)
NASA Technical Reports Server (NTRS)
Neustadter, H. E.; Sidik, S. M.; King, R. B.; Fordyce, J. S.; Burr, J. C.
1974-01-01
The operation of a 16-site parallel high volume air sampling network with glass fiber filters on one unit and Whatman-41 filters on the other is reported. The network data and data from several other experiments indicate that (1) Sampler-to-sampler and filter-to-filter variabilities are small; (2) hygroscopic affinity of Whatman-41 filters need not introduce errors; and (3) suspended particulate samples from glass fiber filters averaged slightly, but not statistically significantly, higher than from Whatman-41-filters. The results obtained demonstrate the practicability of Whatman-41 filters for air quality monitoring and elemental analysis.
Moving in a moving medium: new perspectives on flight
Shepard, Emily L. C.; Portugal, Steven J.
2016-01-01
One of the defining features of the aerial environment is its variability; air is almost never still. This has profound consequences for flying animals, affecting their flight stability, speed selection, energy expenditure and choice of flight path. All these factors have important implications for the ecology of flying animals, and the ecosystems they interact with, as well as providing bio-inspiration for the development of unmanned aerial vehicles. In this introduction, we touch on the factors that drive the variability in airflows, the scales of variability and the degree to which given airflows may be predictable. We then summarize how papers in this volume advance our understanding of the sensory, biomechanical, physiological and behavioural responses of animals to air flows. Overall, this provides insight into how flying animals can be so successful in this most fickle of environments. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’. PMID:27528772
In-air versus underwater comparison of 3D reconstruction accuracy using action sport cameras.
Bernardina, Gustavo R D; Cerveri, Pietro; Barros, Ricardo M L; Marins, João C B; Silvatti, Amanda P
2017-01-25
Action sport cameras (ASC) have achieved a large consensus for recreational purposes due to ongoing cost decrease, image resolution and frame rate increase, along with plug-and-play usability. Consequently, they have been recently considered for sport gesture studies and quantitative athletic performance evaluation. In this paper, we evaluated the potential of two ASCs (GoPro Hero3+) for in-air (laboratory) and underwater (swimming pool) three-dimensional (3D) motion analysis as a function of different camera setups involving the acquisition frequency, image resolution and field of view. This is motivated by the fact that in swimming, movement cycles are characterized by underwater and in-air phases what imposes the technical challenge of having a split volume configuration: an underwater measurement volume observed by underwater cameras and an in-air measurement volume observed by in-air cameras. The reconstruction of whole swimming cycles requires thus merging of simultaneous measurements acquired in both volumes. Characterizing and optimizing the instrumental errors of such a configuration makes mandatory the assessment of the instrumental errors of both volumes. In order to calibrate the camera stereo pair, black spherical markers placed on two calibration tools, used both in-air and underwater, and a two-step nonlinear optimization were exploited. The 3D reconstruction accuracy of testing markers and the repeatability of the estimated camera parameters accounted for system performance. For both environments, statistical tests were focused on the comparison of the different camera configurations. Then, each camera configuration was compared across the two environments. In all assessed resolutions, and in both environments, the reconstruction error (true distance between the two testing markers) was less than 3mm and the error related to the working volume diagonal was in the range of 1:2000 (3×1.3×1.5m 3 ) to 1:7000 (4.5×2.2×1.5m 3 ) in agreement with the literature. Statistically, the 3D accuracy obtained in the in-air environment was poorer (p<10 -5 ) than the one in the underwater environment, across all the tested camera configurations. Related to the repeatability of the camera parameters, we found a very low variability in both environments (1.7% and 2.9%, in-air and underwater). This result encourage the use of ASC technology to perform quantitative reconstruction both in-air and underwater environments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Penguin lungs and air sacs: implications for baroprotection, oxygen stores and buoyancy.
Ponganis, P J; St Leger, J; Scadeng, M
2015-03-01
The anatomy and volume of the penguin respiratory system contribute significantly to pulmonary baroprotection, the body O2 store, buoyancy and hence the overall diving physiology of penguins. Therefore, three-dimensional reconstructions from computerized tomographic (CT) scans of live penguins were utilized to measure lung volumes, air sac volumes, tracheobronchial volumes and total body volumes at different inflation pressures in three species with different dive capacities [Adélie (Pygoscelis adeliae), king (Aptenodytes patagonicus) and emperor (A. forsteri) penguins]. Lung volumes scaled to body mass according to published avian allometrics. Air sac volumes at 30 cm H2O (2.94 kPa) inflation pressure, the assumed maximum volume possible prior to deep dives, were two to three times allometric air sac predictions and also two to three times previously determined end-of-dive total air volumes. Although it is unknown whether penguins inhale to such high volumes prior to dives, these values were supported by (a) body density/buoyancy calculations, (b) prior air volume measurements in free-diving ducks and (c) previous suggestions that penguins may exhale air prior to the final portions of deep dives. Based upon air capillary volumes, parabronchial volumes and tracheobronchial volumes estimated from the measured lung/airway volumes and the only available morphometry study of a penguin lung, the presumed maximum air sac volumes resulted in air sac volume to air capillary/parabronchial/tracheobronchial volume ratios that were not large enough to prevent barotrauma to the non-collapsing, rigid air capillaries during the deepest dives of all three species, and during many routine dives of king and emperor penguins. We conclude that volume reduction of airways and lung air spaces, via compression, constriction or blood engorgement, must occur to provide pulmonary baroprotection at depth. It is also possible that relative air capillary and parabronchial volumes are smaller in these deeper-diving species than in the spheniscid penguin of the morphometry study. If penguins do inhale to this maximum air sac volume prior to their deepest dives, the magnitude and distribution of the body O2 store would change considerably. In emperor penguins, total body O2 would increase by 75%, and the respiratory fraction would increase from 33% to 61%. We emphasize that the maximum pre-dive respiratory air volume is still unknown in penguins. However, even lesser increases in air sac volume prior to a dive would still significantly increase the O2 store. More refined evaluations of the respiratory O2 store and baroprotective mechanisms in penguins await further investigation of species-specific lung morphometry, start-of-dive air volumes and body buoyancy, and the possibility of air exhalation during dives. © 2015. Published by The Company of Biologists Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagnon, J.A.; Schaefer, D.D.; Shaw, D.N.
1980-09-02
A compact, helical screw compressor/expander unit is described that is mounted in a vehicle and connected to the vehicle engine driven drive shaft has inlet and outlet ports and a capacity control slide valve and a pressure matching or volume ratio slide valve, respectively, for said ports. A refrigerant loop includes the compressor, a condenser mounted in the path of air flow over the engine and an evaporator mounted in a fresh air/cab return air flow duct for the occupant. Heat pipes thermally connect the cab air flow duct to the engine exhaust system which also bears the vapor boiler.more » Selectively operated damper valves control the fresh air/cab return air for passage selectively over the evaporator coil and the heat pipes as well as the exhaust gas flow over opposite ends of the heat pipes and the vapor boiler.« less
Parry, J Preston; Riche, Daniel; Aldred, Justin; Isaacs, John; Lutz, Elizabeth; Butler, Vicki; Shwayder, James
To determine whether air bubbles infused into saline during flexible office hysteroscopy can accurately predict tubal patency. Diagnostic accuracy study (Canadian Task Force classification II-1). An academic hospital. Women undergoing office hysteroscopy and ultrasound. Air infusion into saline during office hysteroscopy. The primary outcome measures were whether air bubbles traverse the ostia at hysteroscopy, whether there is patency at abdominal surgery, and the rate of cul-de-sac (CDS) fluid accumulation from office hysteroscopy. Four hundred thirty-five patients underwent office hysteroscopy with air infusion, 89 of whom also had abdominal surgery. Depending on interpretation, sensitivity to tubal occlusion was 98.3% to 100%, and specificity was 83.7% with standard chromopertubation pressures; 95.3% to 100% of the time proximal patency was observed, whole tubal patency was observed through chromopertubation for patients with surgical data. Changes in CDS fluid volume from before to after office hysteroscopy were also used as an indirect proxy for tubal patency. Patients with risk factors for occlusion such as known or suspected tubal disease, known or suspected adhesions, and sonographic identification of adhesions through the sliding sign were all less likely to demonstrate a change in CDS fluid volume after hysteroscopy than women without these risk factors (p < .0001). Bilateral dispersion of air bubbles during hysteroscopy better predicted shifts in CDS volume than these risk factors and demonstrated shifts comparable with bilateral patency at laparoscopy (p < .001). Air-infused saline at office hysteroscopy can accurately assess tubal patency. Additionally, bilateral patency identified through office hysteroscopy may predict bilateral patency at surgery better than several commonly used historic and sonographic variables. Published by Elsevier Inc.
Scan-rescan reproducibility of CT densitometric measures of emphysema
NASA Astrophysics Data System (ADS)
Chong, D.; van Rikxoort, E. M.; Kim, H. J.; Goldin, J. G.; Brown, M. S.
2011-03-01
This study investigated the reproducibility of HRCT densitometric measures of emphysema in patients scanned twice one week apart. 24 emphysema patients from a multicenter study were scanned at full inspiration (TLC) and expiration (RV), then again a week later for four scans total. Scans for each patient used the same scanner and protocol, except for tube current in three patients. Lung segmentation with gross airway removal was performed on the scans. Volume, weight, mean lung density (MLD), relative area under -950HU (RA-950), and 15th percentile (PD-15) were calculated for TLC, and volume and an airtrapping mask (RA-air) between -950 and -850HU for RV. For each measure, absolute differences were computed for each scan pair, and linear regression was performed against volume difference in a subgroup with volume difference <500mL. Two TLC scan pairs were excluded due to segmentation failure. The mean lung volumes were 5802 +/- 1420mL for TLC, 3878 +/- 1077mL for RV. The mean absolute differences were 169mL for TLC volume, 316mL for RV volume, 14.5g for weight, 5.0HU for MLD, 0.66p.p. for RA-950, 2.4HU for PD-15, and 3.1p.p. for RA-air. The <500mL subgroup had 20 scan pairs for TLC and RV. The R2 values were 0.8 for weight, 0.60 for MLD, 0.29 for RA-950, 0.31 for PD-15, and 0.64 for RA-air. Our results indicate that considerable variability exists in densitometric measures over one week that cannot be attributed to breathhold or physiology. This has implications for clinical trials relying on these measures to assess emphysema treatment efficacy.
The Use of Feedback in Lab Energy Conservation: Fume Hoods at MIT
ERIC Educational Resources Information Center
Wesolowski, Daniel; Olivetti, Elsa; Graham, Amanda; Lanou, Steve; Cooper, Peter; Doughty, Jim; Wilk, Rich; Glicksman, Leon
2010-01-01
Purpose: The purpose of this paper is to report on the results of an Massachusetts Institute of Technology Chemistry Department campaign to reduce energy consumption in chemical fume hoods. Hood use feedback to lab users is a crucial component of this campaign. Design/methodology/approach: Sash position sensor data on variable air volume fume…
Variational approach to the volume viscosity of fluids
NASA Astrophysics Data System (ADS)
Zuckerwar, Allan J.; Ash, Robert L.
2006-04-01
The variational principle of Hamilton is applied to develop an analytical formulation to describe the volume viscosity in fluids. The procedure described here differs from those used in the past in that a dissipative process is represented by the chemical affinity and progress variable (sometimes called "order parameter") of a reacting species. These state variables appear in the variational integral in two places: first, in the expression for the internal energy, and second, in a subsidiary condition accounting for the conservation of the reacting species. As a result of the variational procedure, two dissipative terms appear in the Navier-Stokes equation. The first is the traditional volume viscosity term, proportional to the dilatational component of velocity; the second term is proportional to the material time derivative of the pressure gradient. Values of the respective volume viscosity coefficients are determined by applying the resulting volume-viscous Navier-Stokes equation to the case of acoustical propagation and then comparing expressions for the dispersion and absorption of sound. The formulation includes the special case of equilibration of the translational degrees of freedom. As examples, values are tabulated for dry and humid air, argon, and sea water.
Gas dynamics and mixture formation in swirled flows with precession of air flow
NASA Astrophysics Data System (ADS)
Tretyakov, V. V.; Sviridenkov, A. A.
2017-10-01
The effect of precessing air flow on the processes of mixture formation in the wake of the front winding devices of the combustion chambers is considered. Visual observations have shown that at different times the shape of the atomized jet is highly variable and has signs of precessing motion. The experimental data on the distribution of the velocity and concentration fields of the droplet fuel in the working volume of the flame tube of a typical combustion chamber are obtained. The method of calculating flows consisted in integrating the complete system of Reynolds equations written in Euler variables and closed with the two-parameter model of turbulence k-ε. Calculation of the concentration fields of droplet and vapor fuel is based on the use of models for disintegration into droplets of fuel jets, fragmentation of droplets and analysis of motion and evaporation of individual droplets in the air flow. Comparison of the calculation results with experimental data showed their good agreement.
Air Force Research Initiation Program 1986 Technical Report Volume 2
1988-04-01
the two time points where q I= I - Pi, etc. The likelihood of the whole data for the Truncated case can be written as 2 m.K xk m,-xk 7k Yn y k-n k L...variables as "truly independent". No matter how a problem is reformulated, it will always trend in the same direction on these variables. Trend...addition, the Principal Investigat,"r atteVidEd the VDI meetings and Network Management workshop as well as being consulted. The Principal Investigator al
Quantify fluid saturation in fractures by light transmission technique and its application
NASA Astrophysics Data System (ADS)
Ye, S.; Zhang, Y.; Wu, J.
2016-12-01
The Dense Non-Aqueous Phase Liquids (DNAPLs) migration in transparent and rough fractures with variable aperture was studied experimentally using a light transmission technique. The migration of trichloroethylene (TCE) in variable-aperture fractures (20 cm wide x 32.5 cm high) showed that a TCE blob moved downward with snap-off events in four packs with apertures from 100 μm to 1000 μm, and that the pattern presented a single and tortuous cluster with many fingers in a pack with two apertures of 100 μm and 500 μm. The variable apertures in the fractures were measured by light transmission. A light intensity-saturation (LIS) model based on light transmission was used to quantify DNAPL saturation in the fracture system. Known volumes of TCE, were added to the chamber and these amounts were compared to the results obtained by LIS model. Strong correlation existed between results obtained based on LIS model and the known volumes of T CE. Sensitivity analysis showed that the aperture was more sensitive than parameter C2 of LIS model. LIS model was also used to measure dyed TCE saturation in air sparging experiment. The results showed that the distribution and amount of TCE significantly influenced the efficient of air sparging. The method developed here give a way to quantify fluid saturation in two-phase system in fractured medium, and provide a non-destructive, non-intrusive tool to investigate changes in DNAPL architecture and flow characteristics in laboratory experiments. Keywords: light transmission, fluid saturation, fracture, variable aperture AcknowledgementsFunding for this research from NSFC Project No. 41472212.
Pompili, Cecilia; Falcoz, Pierre Emmanuel; Salati, Michele; Szanto, Zalan; Brunelli, Alessandro
2017-04-01
The study objective was to develop an aggregate risk score for predicting the occurrence of prolonged air leak after video-assisted thoracoscopic lobectomy from patients registered in the European Society of Thoracic Surgeons database. A total of 5069 patients who underwent video-assisted thoracoscopic lobectomy (July 2007 to August 2015) were analyzed. Exclusion criteria included sublobar resections or pneumonectomies, lung resection associated with chest wall or diaphragm resections, sleeve resections, and need for postoperative assisted mechanical ventilation. Prolonged air leak was defined as an air leak more than 5 days. Several baseline and surgical variables were tested for a possible association with prolonged air leak using univariable and logistic regression analyses, determined by bootstrap resampling. Predictors were proportionally weighed according to their regression estimates (assigning 1 point to the smallest coefficient). Prolonged air leak was observed in 504 patients (9.9%). Three variables were found associated with prolonged air leak after logistic regression: male gender (P < .0001, score = 1), forced expiratory volume in 1 second less than 80% (P < .0001, score = 1), and body mass index less than 18.5 kg/m 2 (P < .0001, score = 2). The aggregate prolonged air leak risk score was calculated for each patient by summing the individual scores assigned to each variable (range, 0-4). Patients were then grouped into 4 classes with an incremental risk of prolonged air leak (P < .0001): class A (score 0 points, 1493 patients) 6.3% with prolonged air leak, class B (score 1 point, 2240 patients) 10% with prolonged air leak, class C (score 2 points, 1219 patients) 13% with prolonged air leak, and class D (score >2 points, 117 patients) 25% with prolonged air leak. An aggregate risk score was created to stratify the incidence of prolonged air leak after video-assisted thoracoscopic lobectomy. The score can be used for patient counseling and to identify those patients who can benefit from additional intraoperative preventative measures. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Model-based flow rate control for an orfice-type low-volume air sampler
USDA-ARS?s Scientific Manuscript database
The standard method of measuring air suspended particulate matter concentration per volume of air consists of continuously drawing a defined volume of air across a filter over an extended period of time, then measuring the mass of the filtered particles and dividing it by the total volume sampled ov...
Variability in EIT Images of Lung Ventilation as a Function of Electrode Planes and Body Positions
Zhang, Jie; Patterson, Robert
2014-01-01
This study is aimed at investigating the variability in resistivity changes in the lung region as a function of air volume, electrode plane and body position. Six normal subjects (33.8 ± 4.7 years, range from 26 to 37 years) were studied using the Sheffield Electrical Impedance Tomography (EIT) portable system. Three transverse planes at the level of second intercostal space, the level of the xiphisternal joint, and midway between upper and lower locations were chosen for measurements. For each plane, sixteen electrodes were uniformly positioned around the thorax. Data were collected with the breath held at end expiration and after inspiring 0.5, 1.0, or 1.5 liters of air from end expiration, with the subject in both the supine and sitting position. The average resistivity change in five regions, two 8x8 pixel local regions in the right lung, entire right, entire left and total lung regions, were calculated. The results show the resistivity change averaged over electrode positions and subject positions was 7-9% per liter of air, with a slightly larger resistivity change of 10 % per liter air in the lower electrode plane. There was no significant difference (p>0.05) between supine and sitting. The two 8x8 regions show a larger inter individual variability (coefficient of variation, CV, is from 30% to 382%) compared to the entire left, entire right and total lung (CV is from 11% to 51%). The results for the global regions are more consistent. The large inter individual variability appears to be a problem for clinical applications of EIT, such as regional ventilation. The variability may be mitigated by choosing appropriate electrode plane, body position and region of interest for the analysis. PMID:25110529
Variability in EIT Images of Lung Ventilation as a Function of Electrode Planes and Body Positions.
Zhang, Jie; Patterson, Robert
2014-01-01
This study is aimed at investigating the variability in resistivity changes in the lung region as a function of air volume, electrode plane and body position. Six normal subjects (33.8 ± 4.7 years, range from 26 to 37 years) were studied using the Sheffield Electrical Impedance Tomography (EIT) portable system. Three transverse planes at the level of second intercostal space, the level of the xiphisternal joint, and midway between upper and lower locations were chosen for measurements. For each plane, sixteen electrodes were uniformly positioned around the thorax. Data were collected with the breath held at end expiration and after inspiring 0.5, 1.0, or 1.5 liters of air from end expiration, with the subject in both the supine and sitting position. The average resistivity change in five regions, two 8x8 pixel local regions in the right lung, entire right, entire left and total lung regions, were calculated. The results show the resistivity change averaged over electrode positions and subject positions was 7-9% per liter of air, with a slightly larger resistivity change of 10 % per liter air in the lower electrode plane. There was no significant difference (p>0.05) between supine and sitting. The two 8x8 regions show a larger inter individual variability (coefficient of variation, CV, is from 30% to 382%) compared to the entire left, entire right and total lung (CV is from 11% to 51%). The results for the global regions are more consistent. The large inter individual variability appears to be a problem for clinical applications of EIT, such as regional ventilation. The variability may be mitigated by choosing appropriate electrode plane, body position and region of interest for the analysis.
Arjomandi, Mehrdad; Zeng, Siyang; Geerts, Jeroen; Stiner, Rachel K; Bos, Bruce; van Koeverden, Ian; Keene, Jason; Elicker, Brett; Blanc, Paul D; Gold, Warren M
2018-01-01
Exposure to secondhand smoke (SHS) is associated with occult obstructive lung disease as evident by abnormal airflow indices representing small airway disease despite having preserved spirometry (normal forced expiratory volume in 1 s-to-forced vital capacity ratio, FEV 1 /FVC). The significance of lung volumes that reflect air trapping in the presence of preserved spirometry is unclear. To investigate whether lung volumes representing air trapping could determine susceptibility to respiratory morbidity in people with SHS exposure but without spirometric chronic obstructive pulmonary disease, we examined a cohort of 256 subjects with prolonged occupational SHS exposure and preserved spirometry. We elicited symptom prevalence by structured questionnaires, examined functional capacity (maximum oxygen uptake, VO 2max ) by exercise testing, and estimated associations of those outcomes with air trapping (plethysmography-measured residual volume-to-total lung capacity ratio, RV/TLC), and progressive air trapping with exertion (increase in fraction of tidal breathing that is flow limited on expiration during exercise (per cent of expiratory flow limitation, %EFL)). RV/TLC was within the predicted normal limits, but was highly variable spanning 22%±13% and 16%±8% across the increments of FEV 1 /FVC and FEV 1 , respectively. Respiratory complaints were prevalent (50.4%) with the most common symptom being ≥2 episodes of cough per year (44.5%). Higher RV/TLC was associated with higher OR of reporting respiratory symptoms (n=256; r 2 =0.03; p=0.011) and lower VO 2max (n=179; r 2 =0.47; p=0.013), and %EFL was negatively associated with VO 2max (n=32; r 2 =0.40; p=0.017). In those at risk for obstruction due to SHS exposure but with preserved spirometry, higher RV/TLC identifies a subgroup with increased respiratory symptoms and lower exercise capacity.
Grading of Emphysema Is Indispensable for Predicting Prolonged Air Leak After Lung Lobectomy.
Murakami, Junichi; Ueda, Kazuhiro; Tanaka, Toshiki; Kobayashi, Taiga; Hamano, Kimikazu
2018-04-01
The aim of this study was to assess the utility of quantitative computed tomography-based grading of emphysema for predicting prolonged air leak after thoracoscopic lobectomy. A consecutive series of 284 patients undergoing thoracoscopic lobectomy for lung cancer was retrospectively reviewed. Prolonged air leak was defined as air leaks lasting 7 days or longer. The grade of emphysema (emphysema index) was defined by the proportion of the emphysematous lung volume (less than -910 HU) to the total lung volume (-600 to -1,024 HU) by a computer-assisted histogram analysis of whole-lung computed tomography scans. The mean length of chest tube drainage was 1.5 days. Fifteen patients (5.3%) presented with prolonged air leak. According to a receiver-operating characteristics curve analysis, the emphysema index was the best predictor of prolonged air leak, with an area under the curve of 0.85 (95% confidence interval: 0.73 to 0.98). An emphysema index of 35% or greater was the best cutoff value for predicting prolonged air leak, with a negative predictive value of 0.99. The emphysema index was the only significant predictor for the length of postoperative chest tube drainage among conventional variables, including the pulmonary function and resected lobe, in both univariate and multivariate analyses. Prolonged air leak resulted in an increased duration of hospitalization (p < 0.001) and was frequently accompanied by pneumonia or empyema (p < 0.001). The grade of emphysema on computed tomography scan is the best predictor of prolonged air leak that adversely influences early postoperative outcomes. We must take new measures against prolonged air leak in quantitative computed tomography-based high-risk patients. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Diurnal and seasonal variability of outdoor radon concentration in the area of the NRPI Prague.
Jilek, K; Slezákova, M; Thomas, J
2014-07-01
In autumn 2010, an outdoor measuring station for measurement of atmospheric radon, gamma equivalent dose rate in the range of 100 nSv h(-1)-1 Sv h(-1) and proper meteorological parameters such as thermal air gradient, relative air humidity, wind speed and direction and solar radiation intensity was built in the area of the National Radiation Protection Institute vvi. The station was designed to be independent of an electrical network and enables on-line wireless transfer of all data. After introduction of the station, illustrations of its measurement properties and the results of measured diurnal and seasonal variability of atmospheric radon, based on annual continuous measurement using a high-volume scintillation cell at a height of 2.5 m above the ground, are presented. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Rosen, Bruce S.
1991-01-01
An upwind three-dimensional volume Navier-Stokes code is modified to facilitate modeling of complex geometries and flow fields represented by proposed National Aerospace Plane concepts. Code enhancements include an equilibrium air model, a generalized equilibrium gas model and several schemes to simplify treatment of complex geometric configurations. The code is also restructured for inclusion of an arbitrary number of independent and dependent variables. This latter capability is intended for eventual use to incorporate nonequilibrium/chemistry gas models, more sophisticated turbulence and transition models, or other physical phenomena which will require inclusion of additional variables and/or governing equations. Comparisons of computed results with experimental data and results obtained using other methods are presented for code validation purposes. Good correlation is obtained for all of the test cases considered, indicating the success of the current effort.
The role of the Atlantic Water in multidecadal ocean variability in the Nordic and Barents Seas
NASA Astrophysics Data System (ADS)
Yashayaev, Igor; Seidov, Dan
2015-03-01
The focus of this work is on the temporal and spatial variability of the Atlantic Water (AW). We analyze the existing historic hydrographic data from the World Ocean Database to document the long-term variability of the AW throughflow across the Norwegian Sea to the western Barents Sea. Interannual-to-multidecadal variability of water temperature, salinity and density are analyzed along six composite sections crossing the AW flow and coastal currents at six selected locations. The stations are lined up from southwest to northeast - from the northern North Sea (69°N) throughout the Norwegian Sea to the Kola Section in the Barents Sea (33°30‧E). The changing volume and characteristics of the AW throughflow dominate the hydrographic variability on decadal and longer time scales in the studied area. We examine the role of fluctuations of the volume of inflow versus the variable local factors, such as the air-sea interaction and mixing with the fresh coastal and cold Arctic waters, in controlling the long-term regional variability. It is shown that the volume of the AW, passing through the area and affecting the position of the outer edge of the warm and saline core, correlates well with temperature and salinity averaged over the central portions of the studied sections. The coastal flow (mostly associated with the Norwegian Coastal Current flowing over the continental shelf) is largely controlled by seasonal local heat and freshwater impacts. Temperature records at all six lines show a warming trend superimposed on a series of relatively warm and cold periods, which in most cases follow, with a delay of four to five years, the periods of relatively low and high North Atlantic Oscillation (NAO), and the periods of relatively high and low Atlantic Multidecadal Oscillation (AMO), respectively. In general, there is a relatively high correlation between the year-to-year changes of the NAO and AMO indices, which is to some extent reflected in the (delayed) AW temperature fluctuations. It takes about two years for freshening and salinification events and a much shorter time (of about a year or less) for cooling and warming episodes to propagate or spread across the region. This significant difference in the propagation rates of salinity and temperature anomalies is explained by the leading role of horizontal advection in the propagation of salinity anomalies, whereas temperature is also controlled by the competing air-sea interaction along the AW throughflow. Therefore, although a water parcel moves within the flow as a whole, the temperature, salinity and density anomalies split and propagate separately, with the temperature and density signals leading relative to the salinity signal. A new hydrographic index, coastal-to-offshore density step, is introduced to capture variability in the strength of the AW volume transport. This index shows the same cycles of variability as observed in temperature, NAO and AMO but without an obvious trend.
Dorn, Melissa J; Bockstahler, Barbara A; Dupré, Gilles P
2017-05-01
OBJECTIVE To evaluate the pressure-volume relationship during capnoperitoneum in dogs and effects of body weight and body conformation. ANIMALS 86 dogs scheduled for routine laparoscopy. PROCEDURES Dogs were allocated into 3 groups on the basis of body weight. Body measurements, body condition score, and body conformation indices were calculated. Carbon dioxide was insufflated into the abdomen with a syringe, and pressure was measured at the laparoscopic cannula. Volume and pressure data were processed, and the yield point, defined by use of a cutoff volume (COV) and cutoff pressure (COP), was calculated. RESULTS 20 dogs were excluded because of recording errors, air leakage attributable to surgical flaws, or trocar defects. For the remaining 66 dogs, the pressure-volume curve was linear-like until the yield point was reached, and then it became visibly exponential. Mean ± SD COP was 5.99 ± 0.805 mm Hg. No correlation was detected between yield point, body variables, or body weight. Mean COV was 1,196.2 ± 697.9 mL (65.15 ± 20.83 mL of CO 2 /kg), and COV was correlated significantly with body weight and one of the body condition indices but not with other variables. CONCLUSION AND CLINICAL RELEVANCE In this study, there was a similar COP for all dogs of all sizes. In addition, results suggested that increasing the abdominal pressure after the yield point was reached did not contribute to a substantial increase in working space in the abdomen. No correlation was found between yield point, body variables, and body weight.
1976-03-01
special access; PS2 will be for the variable perimeter; and PS3, PS4 , and PS5 will make up the normal access area. This added computer power will be...implementation of PS1 and PS4 will continue as new com- munications consoles are actively established for possible side-by-side opera- tion of the
Kim, Dongsu; Cox, Sam J.; Cho, Heejin; ...
2017-05-22
Variable refrigerant flow (VRF) systems are known for their high energy performance and thus can improve energy efficiency both in residential and commercial buildings. The energy savings potential of this system has been demonstrated in several studies by comparing the system performance with conventional HVAC systems such as rooftop variable air volume systems (RTU-VAV) and central chiller and boiler systems. This paper evaluates the performance of VRF and RTU-VAV systems in a simulation environment using widely-accepted whole building energy modeling software, EnergyPlus. A medium office prototype building model, developed by the U.S. Department of Energy (DOE), is used to assessmore » the performance of VRF and RTU-VAV systems. Each system is placed in 16 different locations, representing all U.S. climate zones, to evaluate the performance variations. Both models are compliant with the minimum energy code requirements prescribed in ASHRAE standard 90.1-2010 — energy standard for buildings except low-rise residential buildings. Finally, a comparison study between the simulation results of VRF and RTU-VAV models is made to demonstrate energy savings potential of VRF systems. The simulation results show that the VRF systems would save around 15–42% and 18–33% for HVAC site and source energy uses compared to the RTU-VAV systems. In addition, calculated results for annual HVAC cost savings point out that hot and mild climates show higher percentage cost savings for the VRF systems than cold climates mainly due to the differences in electricity and gas use for heating sources.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dongsu; Cox, Sam J.; Cho, Heejin
Variable refrigerant flow (VRF) systems are known for their high energy performance and thus can improve energy efficiency both in residential and commercial buildings. The energy savings potential of this system has been demonstrated in several studies by comparing the system performance with conventional HVAC systems such as rooftop variable air volume systems (RTU-VAV) and central chiller and boiler systems. This paper evaluates the performance of VRF and RTU-VAV systems in a simulation environment using widely-accepted whole building energy modeling software, EnergyPlus. A medium office prototype building model, developed by the U.S. Department of Energy (DOE), is used to assessmore » the performance of VRF and RTU-VAV systems. Each system is placed in 16 different locations, representing all U.S. climate zones, to evaluate the performance variations. Both models are compliant with the minimum energy code requirements prescribed in ASHRAE standard 90.1-2010 — energy standard for buildings except low-rise residential buildings. Finally, a comparison study between the simulation results of VRF and RTU-VAV models is made to demonstrate energy savings potential of VRF systems. The simulation results show that the VRF systems would save around 15–42% and 18–33% for HVAC site and source energy uses compared to the RTU-VAV systems. In addition, calculated results for annual HVAC cost savings point out that hot and mild climates show higher percentage cost savings for the VRF systems than cold climates mainly due to the differences in electricity and gas use for heating sources.« less
Meli, Athinoula; Hancock, Vicky; Doughty, Heidi; Smedley, Steve; Cardigan, Rebecca; Wiltshire, Michael
2018-02-01
Maritime medical capability may be compromised by blood resupply. Air-dropped red blood cells (RBCs) is a possible mitigation factor. This study set out to evaluate RBC storage variables after a simulated parachute air drop into the sea, as limited data exist. The air load construction for the air drop of blood was subject to static drop assessment to simulate a worst-case parachute drop scenario. One control and two test Golden Hour shipping containers were each packaged with 10 RBC units. The control box was not dropped; Test Boxes 1 and 2 were further reinforced with waterproof boxes and underwent a simulated air drop on Day 7 or Day 8 postdonation, respectively. One day after the drop and once a week thereafter until Day 43 of storage, RBCs from each box were sampled and tested for full blood counts, hemolysis, adenosine triphosphate, 2,3-diphosphoglycerate, pH, extracellular potassium, glucose, lactate, deformability, and RBC microvesicles. The packaging configuration completed the air drop with no water ingress or physical damage. All units met UK specifications for volume, hemoglobin, and hemolysis. There were no significant differences for any of the variables studied between RBCs in the control box compared to RBCs in Test Boxes 1 and 2 combined over storage. The test proved that the packaging solution and the impact of a maritime air drop as performed in this study, on Day 7 or Day 8 postdonation, did not affect the in vitro quality of RBCs in SAGM over storage for 35 days. © 2017 AABB.
A method to directly measure maximum volume of fish stomachs or digestive tracts
Burley, C.C.; Vigg, S.
1989-01-01
A new method for measuring maximum stomach or digestive tract volume of fish incorporates air injection at constant pressure with water displacement to measure directly the internal volume of a stomach or analogous structure. The method was tested with coho salmon, Oncorhynchus kisutch (Walbaum), which has a true stomach, and northern squawfish, Ptychocheilus oregonensis(Richardson), which has a modified foregut as a functional analogue. Both species were collected during July-October 1987 from the Columbia River, U.S.A. Relationships between fish weight (= volume) and maximum volume of the digestive organ were best fitted for coho salmon by an allometric model and for northern squawfish by an exponential model. Least squares regression analysis of individual measurements showed less variability in the volume of coho salmon stomachs (R2= 0.85) than in the total digestive tracts (R2= 0.55) and foreguts (R2= 0.61) of northern squawfish, relative to fish size. Compared to previous methods, the new technique has the advantage of accurately measuring the internal volume of a wide range of digestive organ shapes and sizes.
Brändström, Helge; Sundelin, Anna; Hoseason, Daniela; Sundström, Nina; Birgander, Richard; Johansson, Göran; Winsö, Ola; Koskinen, Lars-Owe; Haney, Michael
2017-05-12
Post-craniotomy intracranial air can be present in patients scheduled for air ambulance transport to their home hospital. We aimed to assess risk for in-flight intracranial pressure (ICP) increases related to observed intracranial air volumes, hypothetical sea level pre-transport ICP, and different potential flight levels and cabin pressures. A cohort of consecutive subdural hematoma evacuation patients from one University Medical Centre was assessed with post-operative intracranial air volume measurements by computed tomography. Intracranial pressure changes related to estimated intracranial air volume effects of changing atmospheric pressure (simulating flight and cabin pressure changes up to 8000 ft) were simulated using an established model for intracranial pressure and volume relations. Approximately one third of the cohort had post-operative intracranial air. Of these, approximately one third had intracranial air volumes less than 11 ml. The simulation estimated that the expected changes in intracranial pressure during 'flight' would not result in intracranial hypertension. For intracranial air volumes above 11 ml, the simulation suggested that it was possible that intracranial hypertension could develop 'inflight' related to cabin pressure drop. Depending on the pre-flight intracranial pressure and air volume, this could occur quite early during the assent phase in the flight profile. DISCUSSION: These findings support the idea that there should be radiographic verification of the presence or absence of intracranial air after craniotomy for patients planned for long distance air transport. Very small amounts of air are clinically inconsequential. Otherwise, air transport with maintained ground-level cabin pressure should be a priority for these patients.
Effects of air vessel on water hammer in high-head pumping station
NASA Astrophysics Data System (ADS)
Wang, L.; Wang, F. J.; Zou, Z. C.; Li, X. N.; Zhang, J. C.
2013-12-01
Effects of air vessel on water hammer process in a pumping station with high-head were analyzed by using the characteristics method. The results show that the air vessel volume is the key parameter that determines the protective effect on water hammer pressure. The maximum pressure in the system declines with increasing air vessel volume. For a fixed volume of air vessel, the shape of air vessel and mounting style, such as horizontal or vertical mounting, have little effect on the water hammer. In order to obtain good protection effects, the position of air vessel should be close to the outlet of the pump. Generally, once the volume of air vessel is guaranteed, the water hammer of a entire pipeline is effectively controlled.
1996-03-01
NATIONAL GUARD GENERAL BILLY MITCHELL FIELD AIR NATIONAL GUARD BASE MILWAUKEE, WISCONSIN MARCH 1996 ______ 19960509 134 HQ ANG/CEVR ANDREWS AFB...Report for IRP Site No. 4, Wisconsin Air National Guard, 128th Air Refueling Wing, General Billy Mitchell Field, Milwaukee, Wisconsin - Volume III...Wisconsin Air National Guard, 128th Air Refueling Wing, General Billy Mitchell Field, Milwaukee, Wisconsin, Volume III - Appendices D-I. This is the
Raju, Seshadri; Ward, Mark; Jones, Tamekia L
2015-01-01
Quantification of reflux is desirable in advanced chronic venous disease as clinical features are based on its adverse impact on ambulatory venous pressure (AMVP). Prior clinical observation suggests that reflux in a saphenous vein > 5 mm is likely significant. On the basis of normal calf pump mechanics, we hypothesized that a reflux volume ≥ 30 mL was necessary to upset pump equilibrium. Venous laboratory data in 119 limbs with isolated saphenous reflux were analyzed. Reflux volume was calculated by duplex ultrasound (area × velocity × duration). The relationship of reflux volume to saphenous size, calf pump function (air plethysmography, AMVP), flow resistance (Poiseuille equation), and clinical severity were examined. Saphenous size had a bimodal relationship to reflux volume. Reflux volume of ≥ 30 mL occurred mostly (97% of limbs) with saphenous size of ≥ 5.5 mm, but 51% of saphenous veins >5.5 mm had reflux volumes <30 mL. This is because saphenous veins invariably carried less than their maximum reflux potential indicated by their size (Poiseuille equation). Variable additional focal resistance across refluxive valve cusps and narrower re-entry perforators is not taken into account when only saphenous truncal size is used for resistance calculation. Furthermore, the association of AMVP with reflux was found not to be based on a set (≥ 30 mL) threshold but was variable, depending on existing calf pump mechanics, compensatory in some (12% of limbs) and aggravating reflux effects in others (26%). Calf pump abnormalities were found in 70% of refluxive limbs and in 44% (n = 16) of contralateral limbs without any reflux. Reflux volume was significantly higher overall in limbs with ulcer (C6), but the range overlapped with lesser clinical classes. Seven of 14 limbs with active ulcers had reflux volume >30 mL; six of seven limbs with active ulcers and reflux volume of <30 mL had calf pump abnormalities that would be poorly tolerant of reflux even at these smaller volumes. Saphenous size alone cannot be used as an indicator of significant reflux. More than two thirds of the limbs with isolated saphenous reflux have calf pump abnormalities, which also occurred without reflux in the opposite limb--a novel finding. This means that in addition to quantification of reflux volume, calf pump assessment such as with air plethysmography and AMVP is desirable in clinical classes 3 and higher for proper assessment. Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Cheng, Xiaolong; Liu, Jinxiang; Wang, Yu; Yuan, Xiaolei; Jin, Hui
2018-05-01
The fresh air volume in Temperature and Humidity Independent Control of Air-conditioning System(THIC) of a typical office was comfirmed, under the premise of adopting the refrigeration dehumidifying fresh air unit(7°C/12°C). By detailed calculating the space moisture load and the fresh air volume required for dehumidification in 120 selected major cities in China, it can be inferred that the minimum fresh air volume required for dehumidification in THIC is mainly determined by the local outdoor air moisture and the outdoor wind speed; Then the mathematical fitting software Matlab was used to fit the three parameters, and a simplified formula for calculating the minimum per capita fresh air volume required for dehumidification was obtained; And the indoor relative humidity was simulated by the numerical software Airpak and the results by using the formula data and the data for hygiene were compared to verify the relibility of the simplified formula.
Development of a distributed air pollutant dry deposition modeling framework.
Hirabayashi, Satoshi; Kroll, Charles N; Nowak, David J
2012-12-01
A distributed air pollutant dry deposition modeling system was developed with a geographic information system (GIS) to enhance the functionality of i-Tree Eco (i-Tree, 2011). With the developed system, temperature, leaf area index (LAI) and air pollutant concentration in a spatially distributed form can be estimated, and based on these and other input variables, dry deposition of carbon monoxide (CO), nitrogen dioxide (NO(2)), sulfur dioxide (SO(2)), and particulate matter less than 10 microns (PM10) to trees can be spatially quantified. Employing nationally available road network, traffic volume, air pollutant emission/measurement and meteorological data, the developed system provides a framework for the U.S. city managers to identify spatial patterns of urban forest and locate potential areas for future urban forest planting and protection to improve air quality. To exhibit the usability of the framework, a case study was performed for July and August of 2005 in Baltimore, MD. Copyright © 2012 Elsevier Ltd. All rights reserved.
SU-C-213-02: Characterizing 3D Printing in the Fabrication of Variable Density Phantoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madamesila, J; McGeachy, P; Villarreal-Barajas, J
Purpose: In this work, we present characterization, process flow, quality control and application of 3D fabricated low density phantoms for radiotherapy quality assurance. Methods: A Rostock delta 3D printer using polystyrene filament of diameter 1.75 mm was used to print geometric volumes of 2×2×1 cm{sup 3} of varying densities. The variable densities of 0.1 to 0.75 g/cm {sup 3} were created by modulating the infill. A computed tomography (CT) scan was performed to establish an infill-density calibration curve as well as characterize the quality of the print such as uniformity and the infill pattern. The time required to print thesemore » volumes was also recorded. Using the calibration, two low density cones (0.19, 0.52 g/cm{sup 3}) were printed and benchmarked against commercially available phantoms. The dosimetric validation of the low density scaling of Anisotropic Analytical Algorithm (AAA) was performed by using a 0.5 g/cm{sup 3} slab of 10×10×2.4 cm{sup 3} with EBT3 GafChromic film. The gamma analysis at 3%/3mm criteria were compared for the measured and computed dose planes. Results: Analysis of the volume of air pockets in the infill resulted in a reasonable uniformity for densities 0.4 to 0.75 g/cm{sup 3}. Printed phantoms with densities below 0.4 g/cm{sup 3} exhibited a higher ratio of air to polystyrene resulting in large non-uniformity. Compared to the commercial inserts, good agreement was observed only for the printed 0.52 g/cm{sup 3} cone. Dosimetric comparison for a printed low density volume placed in-between layers of solid water resulted in >95% gamma agreement between AAA calculated dose planes and measured EBT3 films for a 6MV 5×5 cm{sup 2} clinical beam. The comparison showed disagreement in the penumbra region. Conclusion: In conclusion, 3D printing technology opens the door to desktop fabrication of variable density phantoms at economical prices in an efficient manner for the quality assurance needs of a small clinic.« less
Method and apparatus for extracting water from air using a desiccant
Spletzer, Barry L.; Callow, Diane Schafer
2003-01-01
The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method can be considered as four phases: (1) adsorbing water from air into a desiccant, (2) isolating the water-laden desiccant from the air source, (3) desorbing water as vapor from the desiccant into a chamber, and (4) isolating the desiccant from the chamber, and compressing the vapor in the chamber to form liquid condensate. The liquid condensate can be removed for use. Careful design of the dead volumes and pressure balances can minimize the energy required. The dried air can be exchanged for fresh moist air and the process repeated. An apparatus comprises a first chamber in fluid communication with a desiccant, and having ports to intake moist air and exhaust dried air. The apparatus also comprises a second chamber in fluid communication with the desiccant. The second chamber allows variable internal pressure, and has a port for removal of liquid condensate. Each chamber can be configured to be isolated or in communication with the desiccant. The first chamber can be configured to be isolated or in communication with a course of moist air. Various arrangements of valves, pistons, and chambers are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenlee, K. J.; Henry, J. R.; Kirkton, S. D.
2009-11-01
As grasshoppers increase in size during ontogeny, they have mass specifically greater whole body tracheal and tidal volumes and ventilation than predicted by an isometric relationship with body mass and body volume. However, the morphological and physiological bases to this respiratory hypermetry are unknown. In this study, we use synchrotron imaging to demonstrate that tracheal hypermetry in developing grasshoppers (Schistocerca americana) is due to increases in air sacs and tracheae and occurs in all three body segments, providing evidence against the hypothesis that hypermetry is due to gaining flight ability. We also assessed the scaling of air sac structure andmore » function by assessing volume changes of focal abdominal air sacs. Ventilatory frequencies increased in larger animals during hypoxia (5% O{sub 2}) but did not scale in normoxia. For grasshoppers in normoxia, inflated and deflated air sac volumes and ventilation scaled hypermetrically. During hypoxia (5% O{sub 2}), many grasshoppers compressed air sacs nearly completely regardless of body size, and air sac volumes scaled isometrically. Together, these results demonstrate that whole body tracheal hypermetry and enhanced ventilation in larger/older grasshoppers are primarily due to proportionally larger air sacs and higher ventilation frequencies in larger animals during hypoxia. Prior studies showed reduced whole body tracheal volumes and tidal volume in late-stage grasshoppers, suggesting that tissue growth compresses air sacs. In contrast, we found that inflated volumes, percent volume changes, and ventilation were identical in abdominal air sacs of late-stage fifth instar and early-stage animals, suggesting that decreasing volume of the tracheal system later in the instar occurs in other body regions that have harder exoskeleton.« less
2012-03-22
the fraction of the design space to be filled with material (termed “volume fraction”), and any other desired design restrictions such as a ...topology problem is called a distributed parameter system because the design variables represent a field or continuum with infinite degrees of freedom... with the addition of a few solutions that were a combination of honeycomb and fiber cells. Unlike
1985-03-01
comparison of samples would be difficult. (5) A restrictive random sample allows the sample to be irregularly spaced throughout the auxiliary variable space ...looking or downward-looking probes and the very low background radiation from space contribute to high signal-to-noise ratio and allow the...sunshine and earthshine, chemiluminescent processes, and radiation to space , in addition to collisional processes, determine the vibrational
Lung volumes predict survival in patients with chronic lung allograft dysfunction.
Kneidinger, Nikolaus; Milger, Katrin; Janitza, Silke; Ceelen, Felix; Leuschner, Gabriela; Dinkel, Julien; Königshoff, Melanie; Weig, Thomas; Schramm, René; Winter, Hauke; Behr, Jürgen; Neurohr, Claus
2017-04-01
Identification of disease phenotypes might improve the understanding of patients with chronic lung allograft dysfunction (CLAD). The aim of the study was to assess the impact of pulmonary restriction and air trapping by lung volume measurements at the onset of CLAD.A total of 396 bilateral lung transplant recipients were analysed. At onset, CLAD was further categorised based on plethysmography. A restrictive CLAD (R-CLAD) was defined as a loss of total lung capacity from baseline. CLAD with air trapping (AT-CLAD) was defined as an increased ratio of residual volume to total lung capacity. Outcome was survival after CLAD onset. Patients with insufficient clinical information were excluded (n=95).Of 301 lung transplant recipients, 94 (31.2%) developed CLAD. Patients with R-CLAD (n=20) and AT-CLAD (n=21), respectively, had a significantly worse survival (p<0.001) than patients with non-R/AT-CLAD. Both R-CLAD and AT-CLAD were associated with increased mortality when controlling for multiple confounding variables (hazard ratio (HR) 3.57, 95% CI 1.39-9.18; p=0.008; and HR 2.65, 95% CI 1.05-6.68; p=0.039). Furthermore, measurement of lung volumes was useful to identify patients with combined phenotypes.Measurement of lung volumes in the long-term follow-up of lung transplant recipients allows the identification of patients who are at risk for worse outcome and warrant special consideration. Copyright ©ERS 2017.
Code of Federal Regulations, 2012 CFR
2012-04-01
... respective volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor... volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor. This... gallon of water in air by the specific gravity in air of the spirits—8.32823 by 0.88862—the product (7...
Code of Federal Regulations, 2010 CFR
2010-04-01
... respective volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor... volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor. This... gallon of water in air by the specific gravity in air of the spirits—8.32823 by 0.88862—the product (7...
Code of Federal Regulations, 2011 CFR
2011-04-01
... respective volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor... volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor. This... gallon of water in air by the specific gravity in air of the spirits—8.32823 by 0.88862—the product (7...
Code of Federal Regulations, 2013 CFR
2013-04-01
... respective volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor... volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor. This... gallon of water in air by the specific gravity in air of the spirits—8.32823 by 0.88862—the product (7...
Code of Federal Regulations, 2014 CFR
2014-04-01
... respective volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor... volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor. This... gallon of water in air by the specific gravity in air of the spirits—8.32823 by 0.88862—the product (7...
Gibson, Ann L; Roper, Jenevieve L; Mermier, Christine M
2016-10-01
Air displacement plethysmography (ADP) is a popular method for estimating body density (Db). Most ADP tests are performed once, with test-retest investigations scarce. Therefore, we investigated test-retest reliability of ADP. Active men (n = 25) and women (n = 25) volunteered and followed standard pretest guidelines. Participants wore dry, form-fitting swimwear and manufacturer-supplied swim caps. In a single session, two ADP trials with measured thoracic gas volume (TGV) were performed without repositioning participants. Separate 2 (sex) × 2 (ADP trial) repeated-measures ANOVAs were performed to investigate within-between comparisons of Db, TGV, body volume (Vb), and relative fatness (%BF). Paired t tests were used to investigate significant differences as appropriate. The Bland and Altman technique was used to depict individual intertrial variations. For all analyses, α =.05. A significant main effect for sex was found; men were lower in %BF and higher in all other variables compared with women. Individual variability was notable (ADP1-ADP2). The range of individual intertrial differences were larger for women than men, respectively, for Db (-0.0096-0.0045 g/cc; -0.0019-0.0054 g/cc), TGV (-0.623-1.325 L; -0.584-0.378 L), Vb (-0.249-2.10 L; -0.234-0.397 L), and %BF (-2.1-4.4%; -0.2-0.9%). When assessing body composition of women via ADP or using Db from ADP in a multicomponent model, at least two trials with measured TGV should be performed and the average of the values recorded and reported.
NASA Astrophysics Data System (ADS)
Lewtas, Joellen; Goto, Sumio; Williams, Katherine; Chuang, Jane C.; Petersen, Bruce A.; Wilson, Nancy K.
The mutagenicity of indoor air paniculate matter has been measured in a pilot field study of homes in Columbus, Ohio during the 1984 winter. The study was conducted in eight all natural-gas homes and two all electric homes. Paniculate matter and semi-volatile organic compounds were collected indoors using a medium volume sampler. A micro-forward mutation bioassay employing Salmonella typhimurium strain TM 677 was used to quantify the mutagenicity in solvent extracts of microgram quantities of indoor air particles. The mutagenicity was quantified in terms of both mutation frequency per mg of organic matter extracted and per cubic meter of air sampled. The combustion source variables explored in this study included woodburning in fireplaces and cigarette smoking. Homes in which cigarette smoking occurred had the highest concentrations of mutagenicity per cubic meter of air. The average indoor air mutagenicity per cubic meter was highly correlated with the number of cigarettes smoked. When the separate sampling periods in each room were compared, the mutagenicity in the kitchen samples was the most highly correlated with the number of cigarettes smoked.
NASA Technical Reports Server (NTRS)
Jacobson, I. D.
1978-01-01
The framework for a model of travel demand which will be useful in predicting the total market for air travel between two cities is discussed. Variables to be used in determining the need for air transportation where none currently exists and the effect of changes in system characteristics on attracting latent demand are identified. Existing models are examined in order to provide insight into their strong points and shortcomings. Much of the existing behavioral research in travel demand is incorporated to allow the inclusion of non-economic factors, such as convenience. The model developed is characterized as a market segmentation model. This is a consequence of the strengths of disaggregation and its natural evolution to a usable aggregate formulation. The need for this approach both pedagogically and mathematically is discussed.
Maestro, Armando; Jones, Daniel; Sánchez de Rojas Candela, Carmen; Guzman, Eduardo; Duits, Michel H G; Cicuta, Pietro
2018-06-05
By combining controlled experiments on single interfaces with measurements on solitary bubbles and liquid foams, we show that poly( N-isopropylacrylamide) (PNIPAM) microgels assembled at air/water interfaces exhibit a solid to liquid transition changing the temperature, and that this is associated with the change in the interfacial microstructure of the PNIPAM particles around their volume phase transition temperature. We show that the solid behaves as a soft 2D colloidal glass, and that the existence of this solid/liquid transition offers an ideal platform to tune the permeability of air bubbles covered by PNIPAM and to control macroscopic foam properties such as drainage, stability, and foamability. PNIPAM particles on fluid interfaces allow new tunable materials, for example foam structures with variable mechanical properties upon small temperature changes.
HIGH VOLUME INJECTION FOR GCMS ANALYSIS OF PARTICULATE ORGANIC SPECIES IN AMBIENT AIR
Detection of organic species in ambient particulate matter typically requires large air sample volumes, frequently achieved by grouping samples into monthly composites. Decreasing the volume of air sample required would allow shorter collection times and more convenient sample c...
Lee, Yejin; Hong, Kyunghi; Hong, Sung-Ae
2007-05-01
Garment fit and resultant air volume is a crucial factor in thermal insulation, and yet, it has been difficult to quantify the air volume of clothing microclimate and relate it to the thermal insulation value just using the information on the size of clothing pattern without actual 3D volume measurement in wear condition. As earlier methods for the computation of air volume in clothing microclimate, vacuum over suit and circumference model have been used. However, these methods have inevitable disadvantages in terms of cost or accuracy due to the limitations of measurement equipment. In this paper, the phase-shifting moiré topography was introduced as one of the 3D scanning tools to measure the air volume of clothing microclimate quantitatively. The purpose of this research is to adopt a non-contact image scanning technology, phase-shifting moiré topography, to ascertain relationship between air volume and insulation value of layered clothing systems in wear situations where the 2D fabric creates new conditions in 3D spaces. The insulation of vests over shirts as a layered clothing system was measured with a thermal manikin in the environmental condition of 20 degrees C, 65% RH and air velocity of 0.79 m/s. As the pattern size increased, the insulation of the clothing system was increased. But beyond a certain limit, the insulation started to decrease due to convection and ventilation, which is more apparent when only the vest was worn over the torso of manikin. The relationship between clothing air volume and insulation was difficult to predict with a single vest due to the extreme openings which induced active ventilation. But when the vest was worn over the shirt, the effects of thickness of the fabrics on insulation were less pronounced compared with that of air volume. In conclusion, phase-shifting moiré topography was one of the efficient and accurate ways of quantifying air volume and its distribution across the clothing microclimate. It is also noted that air volume becomes more crucial factor in predicting thermal insulation when clothing is layered.
[Airports and air quality: a critical synthesis of the literature].
Cattani, Giorgio; Di Menno di Bucchianico, Alessandro; Gaeta, Alessandra; Romani, Daniela; Fontana, Luca; Iavicoli, Ivo
2014-01-01
This work reviewed existing literature on airport related activities that could worsen surrounding air quality; its aim is to underline the progress coming from recent-year studies, the knowledge emerging from new approaches, the development of semi-empiric analytical methods as well as the questions still needing to be clarified. To estimate pollution levels, spatial and temporal variability, and the sources relative contributions integrated assessment, using both fixed point measurement and model outputs, are needed. The general picture emerging from the studies was a non-negligible and highly spatially variable (within 2-3 km from the fence line) airport contribution; even if it is often not dominant compared to other concomitant pollution sources. Results were highly airport-specific. Traffic volumes, landscape and meteorology were the key variables that drove the impacts. Results were thus hardly exportable to other contexts. Airport related pollutant sources were found to be characterized by unusual emission patterns (particularly ultrafine particles, black carbon and nitrogen oxides during take-off); high time-resolution measurements allow to depict the rapidly changing take-off effect on air quality that could not be adequately observed otherwise. Few studies used high time resolution data in a successful way as statistical models inputs to estimate the aircraft take-off contribution to the observed average levels. These findings should not be neglected when exposure of people living near airports is to be assessed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Im, Piljae; Malhotra, Mini; Munk, Jeffrey D.
This report provides second-year cooling season test results for the multi-year project titled “Evaluation of Variable Refrigeration Flow (VRF) System on Oak Ridge National Laboratory (ORNL)’s Flexible Research Platform (FRP).” The purpose of the second-year project was to (1) evaluate the full- and partload performance of VRF systems compared with an existing baseline heating, ventilation, and airconditioning (HVAC) system, which is a conventional rooftop unit (RTU) variable-air-volume (VAV) system with electric resistance heating and (2) use hourly building energy simulation to evaluate the energy savings potential of using VRF systems in major US cities. The second-year project performance period wasmore » from July 2015 through June 2016.« less
Alonso-Torres, Beatriz; Hernández-Pérez, José Alfredo; Sierra-Espinoza, Fernando; Schenker, Stefan; Yeretzian, Chahan
2013-01-01
Heat and mass transfer in individual coffee beans during roasting were simulated using computational fluid dynamics (CFD). Numerical equations for heat and mass transfer inside the coffee bean were solved using the finite volume technique in the commercial CFD code Fluent; the software was complemented with specific user-defined functions (UDFs). To experimentally validate the numerical model, a single coffee bean was placed in a cylindrical glass tube and roasted by a hot air flow, using the identical geometrical 3D configuration and hot air flow conditions as the ones used for numerical simulations. Temperature and humidity calculations obtained with the model were compared with experimental data. The model predicts the actual process quite accurately and represents a useful approach to monitor the coffee roasting process in real time. It provides valuable information on time-resolved process variables that are otherwise difficult to obtain experimentally, but critical to a better understanding of the coffee roasting process at the individual bean level. This includes variables such as time-resolved 3D profiles of bean temperature and moisture content, and temperature profiles of the roasting air in the vicinity of the coffee bean.
1987-07-01
Groundwater." Developments in Industrial Microbiology, Volume 24, pp. 225-234. Society of Industrial Microbiology, Arlington, Virginia. 18. Product ...ESL-TR-85-52 cv) VOLUME II CN IN SITU BIOLOGICAL TREATMENT TEST AT KELLY AIR FORCE BASE, VOLUME !1: FIELD TEST RESULTS AND COST MODEL R.S. WETZEL...Kelly Air Force Base, Volume II: Field Test Results and Cost Model (UNCLASSIFIED) 12 PERSONAL AUTHOR(S) Roger S. Wetzel, Connie M. Durst, Donald H
Air core notch-coil magnet with variable geometry for fast-field-cycling NMR.
Kruber, S; Farrher, G D; Anoardo, E
2015-10-01
In this manuscript we present details on the optimization, construction and performance of a wide-bore (71 mm) α-helical-cut notch-coil magnet with variable geometry for fast-field-cycling NMR. In addition to the usual requirements for this kind of magnets (high field-to-power ratio, good magnetic field homogeneity, low inductance and resistance values) a tunable homogeneity and a more uniform heat dissipation along the magnet body are considered. The presented magnet consists of only one machined metallic cylinder combined with two external movable pieces. The optimal configuration is calculated through an evaluation of the magnetic flux density within the entire volume of interest. The magnet has a field-to-current constant of 0.728 mT/A, allowing to switch from zero to 0.125 T in less than 3 ms without energy storage assistance. For a cylindrical sample volume of 35 cm(3) the effective magnet homogeneity is lower than 130 ppm. Copyright © 2015 Elsevier Inc. All rights reserved.
Integrated firn elevation change model for glaciers and ice caps
NASA Astrophysics Data System (ADS)
Saß, Björn; Sauter, Tobias; Braun, Matthias
2016-04-01
We present the development of a firn compaction model in order to improve the volume to mass conversion of geodetic glacier mass balance measurements. The model is applied on the Arctic ice cap Vestfonna. Vestfonna is located on the island Nordaustlandet in the north east of Svalbard. Vestfonna covers about 2400 km² and has a dome like shape with well-defined outlet glaciers. Elevation and volume changes measured by e.g. satellite techniques are becoming more and more popular. They are carried out over observation periods of variable length and often covering different meteorological and snow hydrological regimes. The elevation change measurements compose of various components including dynamic adjustments, firn compaction and mass loss by downwasting. Currently, geodetic glacier mass balances are frequently converted from elevation change measurements using a constant conversion factor of 850 kg m-³ or the density of ice (917 kg m-³) for entire glacier basins. However, the natural conditions are rarely that static. Other studies used constant densities for the ablation (900 kg m-³) and accumulation (600 kg m-³) areas, whereby density variations with varying meteorological and climate conditions are not considered. Hence, each approach bears additional uncertainties from the volume to mass conversion that are strongly affected by the type and timing of the repeat measurements. We link and adapt existing models of surface energy balance, accumulation and snow and firn processes in order to improve the volume to mass conversion by considering the firn compaction component. Energy exchange at the surface is computed by a surface energy balance approach and driven by meteorological variables like incoming short-wave radiation, air temperature, relative humidity, air pressure, wind speed, all-phase precipitation, and cloud cover fraction. Snow and firn processes are addressed by a coupled subsurface model, implemented with a non-equidistant layer discretisation. On our poster we present a general view on the model structure, the input data (model forcing) and finally, an exemplary test case with basic approaches of validation.
NASA Astrophysics Data System (ADS)
Nelson, Mark; Leigh, Linda; Alling, Abigail; MacCallum, Taber; Allen, John; Alvarez-Romo, Norberto
Constructed in 1986, the Biosphere 2 Test Module has been used since the end of that year for closed ecological systems experiments. It is the largest closed ecological facility ever built, with a sealed variable volume of some 480 cubic meters. It is built with a skin of steel spaceframes with double-laminated glass panels admitting about 65 percent Photosynthetically Active Radiation (PAR). The floor is of welded steel and there is an underground atmospheric connection via an air duct to a variable volume chamber (``lung'') permitting expansion and contraction of the Test Module's air volume caused by changes in temperature and barometric pressure, which causes a slight positive pressure from inside the closed system to the outside thereby insuring that the very small leakage rate is outward. Several series of closed ecological system investigations have been carried out in this facility. One series of experiments investigated the dynamics of higher plants and associated soils with the atmosphere under varying light and temperature conditions. Another series of experiments included one human in the closed system for three, five and twenty-one days. During these experiments the Test Module had subsystems which completely recycled its water and atmosphere; all the human dietary needs were produced within the facility, and all wastes were recycled using a marsh plant/microbe system. Other experiments have examined the capability of individual component systems used, such as the soil bed reactors, to eliminate experimentally introduced trace gases. Analytic systems developed for these experiments include continuous monitors of eleven atmospheric gases in addition to the complete gas chromatography mass spectrometry (GCMS) examinations of potable, waste system and irrigation water quality.
Reservoirs performances under climate variability: a case study
NASA Astrophysics Data System (ADS)
Longobardi, A.; Mautone, M.; de Luca, C.
2014-09-01
A case study, the Piano della Rocca dam (southern Italy) is discussed here in order to quantify the system performances under climate variability conditions. Different climate scenarios have been stochastically generated according to the tendencies in precipitation and air temperature observed during recent decades for the studied area. Climate variables have then been filtered through an ARMA model to generate, at the monthly scale, time series of reservoir inflow volumes. Controlled release has been computed considering the reservoir is operated following the standard linear operating policy (SLOP) and reservoir performances have been assessed through the calculation of reliability, resilience and vulnerability indices (Hashimoto et al. 1982), comparing current and future scenarios of climate variability. The proposed approach can be suggested as a valuable tool to mitigate the effects of moderate to severe and persistent droughts periods, through the allocation of new water resources or the planning of appropriate operational rules.
Isolating Added Mass Load Components of CPAS Main Clusters
NASA Technical Reports Server (NTRS)
Ray, Eric S.
2017-01-01
The current simulation for the Capsule Parachute Assembly System (CPAS) lacks fidelity in representing added mass for the 116 ft Do ringsail Main parachute. The availability of 3-D models of inflating Main canopies allowed for better estimation the enclosed air volume as a function of time. This was combined with trajectory state information to estimate the components making up measured axial loads. A proof-of-concept for an alternate simulation algorithm was developed based on enclosed volume as the primary independent variable rather than drag area growth. Databases of volume growth and parachute drag area vs. volume were developed for several flight tests. Other state information was read directly from test data, rather than numerically propagated. The resulting simulated peak loads were close in timing and magnitude to the measured loads data. However, results are very sensitive to data curve fitting and may not be suitable for Monte Carlo simulations. It was assumed that apparent mass was either negligible or a small fraction of enclosed mass, with little difference in results.
The relationship between air layers and evaporative resistance of male Chinese ethnic clothing.
Wang, Faming; Peng, Hui; Shi, Wen
2016-09-01
In this study, the air layer distribution and evaporative resistances of 39 sets of male Chinese ethnic clothing were investigated using a sweating thermal manikin and the three-dimensional (3D) body scanning technique. Relationships between the evaporative resistance and air layers (i.e., air gap thickness and air volume) were explored. The results demonstrated that the clothing total evaporative resistance increases with the increasing air gap size/air volume, but the rate of increase gradually decreases as the mean air gap size or the total air volume becomes larger. The clothing total evaporative resistance reaches its maximum when the average air gap size and the total air volume are 41.6 mm and 69.9 dm(3), respectively. Similar general trends were also found between local mean air gap size and clothing local evaporative resistance at different body parts. However, different body parts show varied rates of increase and decrease in the local evaporative resistance. The research findings provide a comprehensive database for predicting overall and local human thermal comfort while wearing male Chinese ethnic clothing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ventilation/odor study, field study. Final report, Volume I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffee, R.A.; Jann, P.
1981-04-01
The results are presented of field investigations in schools, hospitals, and an office building on the relation between ventilation rate and odor within the buildings. The primary objective of the study was to determine: the reduction in ventilation rates that could be achieved in public buildings without causing adverse effects on odor; the sources of odor in public buildings; and the identity of the odorants. The variables of particular interest include: type of odor, occupant density, odorant identity and concentration, differences in impressions between occupants adapted to prevailing conditions and visitors, and the influence of temperature and humidity on bothmore » the generation and perception of common contaminants. Sensory odor measurements, chemical measurements, fresh air ventilation measurements, and acceptability evaluations via questionnaires were made. Sensory odor levels were found to be quite low in most buildings tested. A three-to-five-fold reduction in the fresh air ventilation in schools, hospitals, and office buildings can be achieved without significantly affecting perceived odor intensities or detectability. Tobacco smoking was found to be the most significant, pervasive contributor to interior odor level. Total hydrocarbon content of indoor air varies directly with ventilation rates; odor, however, does not. The complete set of reduced data are contained in Volume II. (LEW)« less
An open-loop controlled active lung simulator for preterm infants.
Cecchini, Stefano; Schena, Emiliano; Silvestri, Sergio
2011-01-01
We describe the underlying theory, design and experimental evaluation of an electromechanical analogue infant lung to simulate spontaneous breathing patterns of preterm infants. The aim of this work is to test the possibility to obtain breathing patterns of preterm infants by taking into consideration the air compressibility. Respiratory volume function represents the actuation pattern, and pulmonary pressure and flow-rate waveforms are mathematically obtained through the application of the perfect gas and adiabatic laws. The mathematical model reduces the simulation interval into a step shorter than 1 ms, allowing to consider an entire respiratory act as composed of a large number of almost instantaneous adiabatic transformations. The device consists of a spherical chamber where the air is compressed by four cylinder-pistons, moved by stepper motors, and flows through a fluid-dynamic resistance, which also works as flow-rate sensor. Specifically designed software generates the actuators motion, based on the desired ventilation parameters, without controlling the gas pneumatic parameters with a closed-loop. The system is able to simulate tidal volumes from 3 to 8 ml, breathing frequencies from 60 to 120 bpm and functional residual capacities from 25 to 80 ml. The simulated waveforms appear very close to the measured ones. Percentage differences on the tidal volume waveform vary from 7% for the tidal volume of 3 ml, down to 2.2-3.5% for tidal volumes in the range of 4-7 ml, and 1.3% for the tidal volume equal to 8 ml in the whole breathing frequency and functional residual capacity ranges. The open-loop electromechanical simulator shows that gas compressibility can be theoretically assessed in the typical pneumatic variable range of preterm infant respiratory mechanics. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.
Highly-reliable fly-by-light/power-by-wire technology
NASA Technical Reports Server (NTRS)
Pitts, Felix L.
1993-01-01
This paper presents in viewgraph format an overview of the program at NASA Langley Research Center to develop fly-by-light/power-by-wire (FBL/PBW) technology. Benefits of FBL/PBW include intrinsic electromagnetic interference (EMI) immunity and lifetime immunity to signal EMI of optics; simplified certification; the elimination of hydraulics, engine bleed air, and variable speed, constant frequency drive; and weight and volume reduction. The paper summarizes a study on the electromagnetic environmental effects on FBL/PBW systems. The paper concludes with FY 1993 plans.
Variable volume combustor with aerodynamic support struts
Ostebee, Heath Michael; Johnson, Thomas Edward; Stewart, Jason Thurman; Keener, Christopher Paul
2017-03-07
The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a number of support struts supporting the fuel nozzles and providing the flow of fuel therethrough. The support struts may include an aerodynamic contoured shape so as to distribute evenly a flow of air to the micro-mixer fuel nozzles.
Brunelli, Alessandro; Salati, Michele; Pompili, Cecilia; Gentili, Paolo; Sabbatini, Armando
2017-11-01
To verify the association between the air leak objectively measured intraoperatively (IAL) using the ventilator and the air leak duration after pulmonary lobectomy. Prospective analysis on 111 patients submitted to pulmonary lobectomy (33 by video-assisted thoracic surgery). After resection, objective assessment of air leak (in milliliter per minute) was performed before closure of the chest by measuring the difference between a fixed inspired and expired volume, using a tidal volume of 8 ml/kg, a respiratory rate of 10 and a positive-end expiratory pressure of 5 cmH2O. A multivariable analysis was performed for identifying factors associated with duration of postoperative air leak. Average IAL was 158 ml/min (range 0-1500 ml/min). The best cut-off (receiver-operating characteristics analysis) associated with air leak longer than 5 days was 500 ml/min. Nine patients had IAL >500 ml/min (8%). They had a longer duration of postoperative air leak compared with those with a lower IAL (mean values, 10.1 days, SD 8.8 vs 1.5 days, SD 4.9 P < 0.001). The following variables remained associated with days of air leak duration after multivariable regression: left side resection (P = 0.018), upper site resection (P = 0.031) and IAL >500 ml/min (P < 0.001). The following equation estimating the days of air leak duration was generated: 1.7 + 2.4 × left side + 2.2 × upper site + 8.8 × IAL >500. The air leak measurement using the ventilator parameters after lung resection may assist in estimating the risk of postoperative prolonged air leak. An IAL > 500 ml/min may warrant the use of intraoperative preventative measures, particularly after video-assisted thoracic surgery lobectomy where a submersion test is often unreliable. © 2017 European Society of Cardiology and European Atherosclerosis Association. All rights reserved. For permissions please email: journals.permissions@oup.com.
The Impact of Sources of Variability on Parametric Response Mapping of Lung CT Scans
Boes, Jennifer L.; Bule, Maria; Hoff, Benjamin A.; Chamberlain, Ryan; Lynch, David A.; Stojanovska, Jadranka; Martinez, Fernando J.; Han, Meilan K.; Kazerooni, Ella A.; Ross, Brian D.; Galbán, Craig J.
2015-01-01
Parametric response mapping (PRM) of inspiration and expiration computed tomography (CT) images improves the radiological phenotyping of chronic obstructive pulmonary disease (COPD). PRM classifies individual voxels of lung parenchyma as normal, emphysematous, or nonemphysematous air trapping. In this study, bias and noise characteristics of the PRM methodology to CT and clinical procedures were evaluated to determine best practices for this quantitative technique. Twenty patients of varying COPD status with paired volumetric inspiration and expiration CT scans of the lungs were identified from the baseline COPD-Gene cohort. The impact of CT scanner manufacturer and reconstruction kernels were evaluated as potential sources of variability in PRM measurements along with simulations to quantify the impact of inspiration/expiration lung volume levels, misregistration, and image spacing on PRM measurements. Negligible variation in PRM metrics was observed when CT scanner type and reconstruction were consistent and inspiration/expiration lung volume levels were near target volumes. CT scanner Hounsfield unit drift occurred but remained difficult to ameliorate. Increasing levels of image misregistration and CT slice spacing were found to have a minor effect on PRM measurements. PRM-derived values were found to be most sensitive to lung volume levels and mismatched reconstruction kernels. As with other quantitative imaging techniques, reliable PRM measurements are attainable when consistent clinical and CT protocols are implemented. PMID:26568983
NASA Astrophysics Data System (ADS)
Chen, Shimon; Bekhor, Shlomo; Yuval; Broday, David M.
2016-10-01
Most air quality models use traffic-related variables as an input. Previous studies estimated nearby vehicular activity through sporadic traffic counts or via traffic assignment models. Both methods have previously produced poor or no data for nights, weekends and holidays. Emerging technologies allow the estimation of traffic through passive monitoring of location-aware devices. Examples of such devices are GPS transceivers installed in vehicles. In this work, we studied traffic volumes that were derived from such data. Additionally, we used these data for estimating ambient nitrogen dioxide concentrations, using a non-linear optimisation model that includes basic dispersion properties. The GPS-derived data show great potential for use as a proxy for pollutant emissions from motor-vehicles.
High tidal volume ventilation induces NOS2 and impairs cAMP- dependent air space fluid clearance.
Frank, James A; Pittet, Jean-Francois; Lee, Hyon; Godzich, Micaela; Matthay, Michael A
2003-05-01
Tidal volume reduction during mechanical ventilation reduces mortality in patients with acute lung injury and the acute respiratory distress syndrome. To determine the mechanisms underlying the protective effect of low tidal volume ventilation, we studied the time course and reversibility of ventilator-induced changes in permeability and distal air space edema fluid clearance in a rat model of ventilator-induced lung injury. Anesthetized rats were ventilated with a high tidal volume (30 ml/kg) or with a high tidal volume followed by ventilation with a low tidal volume of 6 ml/kg. Endothelial and epithelial protein permeability were significantly increased after high tidal volume ventilation but returned to baseline levels when tidal volume was reduced. The basal distal air space fluid clearance (AFC) rate decreased by 43% (P < 0.05) after 1 h of high tidal volume but returned to the preventilation rate 2 h after tidal volume was reduced. Not all of the effects of high tidal volume ventilation were reversible. The cAMP-dependent AFC rate after 1 h of 30 ml/kg ventilation was significantly reduced and was not restored when tidal volume was reduced. High tidal volume ventilation also increased lung inducible nitric oxide synthase (NOS2) expression and air space total nitrite at 3 h. Inhibition of NOS2 activity preserved cAMP-dependent AFC. Because air space edema fluid inactivates surfactant and reduces ventilated lung volume, the reduction of cAMP-dependent AFC by reactive nitrogen species may be an important mechanism of clinical ventilator-associated lung injury.
1994-12-01
Research Program Phillips Laboratory Kirtland Air Force Base Albuquerque, New Mexico Sponsored by: Air ...Summer Research Program Phillips Laboratory Sponsored by. Air Force Office of Scientific Research Kirtland Air Force Base, Albuquerque, New Mexico...UNITED STATES AIR FORCE SUMMER RESEARCH PROGRAM -- 1993 SUMMER RESEARCH PROGRAM FINAL REPORTS VOLUME 8
Air velocity distributions inside tree canopies from a variable-rate air-assisted sprayer
USDA-ARS?s Scientific Manuscript database
A variable-rate, air assisted, five-port sprayer had been in development to achieve variable discharge rates of both liquid and air. To verify the variable air rate capability by changing the fan inlet diameter of the sprayer, air jet velocities impeded by plant canopies were measured at various loc...
A Mass Diffusion Model for Dry Snow Utilizing a Fabric Tensor to Characterize Anisotropy
NASA Astrophysics Data System (ADS)
Shertzer, Richard H.; Adams, Edward E.
2018-03-01
A homogenization algorithm for randomly distributed microstructures is applied to develop a mass diffusion model for dry snow. Homogenization is a multiscale approach linking constituent behavior at the microscopic level—among ice and air—to the macroscopic material—snow. Principles of continuum mechanics at the microscopic scale describe water vapor diffusion across an ice grain's surface to the air-filled pore space. Volume averaging and a localization assumption scale up and down, respectively, between microscopic and macroscopic scales. The model yields a mass diffusivity expression at the macroscopic scale that is, in general, a second-order tensor parameterized by both bulk and microstructural variables. The model predicts a mass diffusivity of water vapor through snow that is less than that through air. Mass diffusivity is expected to decrease linearly with ice volume fraction. Potential anisotropy in snow's mass diffusivity is captured due to the tensor representation. The tensor is built from directional data assigned to specific, idealized microstructural features. Such anisotropy has been observed in the field and laboratories in snow morphologies of interest such as weak layers of depth hoar and near-surface facets.
Yoon, Seung-Il; Heo, Sungmoo; Song, Soonho; Kim, Yong-Jun
2010-06-01
A micro-electric-NO(x)-converter based on volume treatment is proposed for the evaluation of NO(x) concentrations in air. It can electrically convert NO(x) mixture from variable mixing rates into a fixed-mixing rate of 25% NO(2) and 75% NO using the corona discharge process with stable conversion efficiency and high throughput (space velocity = 6.3 x 10(4) h(-1)). The micro-electric-NO(x)-converter is based on a volume process. Applying high voltage to the electrodes of the micro-electric-NO(x)-converter generates a corona discharge. This discharge creates high-energy electrons, which collide with gas molecules. After these collisions, NO and O(2) are broken into single atoms, and they are re-combined as a balanced form, NO(2) in this case. The fabricated micro-electric-NO(x)-converter converted NO into NO(2) at conversion efficiency of 25.63%, when 5.5 kV (the applied corona power = 0.196 W) was applied to the micro-electric-NO(x)-converter.
Water content dependence of trapped air in two soils
Stonestrom, David A.; Rubin, Jacob
1989-01-01
An improved air pycnometer method was used to examine the water content dependence of trapped-air volumes in two repacked, nonswelling soils. Trapped-air volumes were determined at a series of hydrostatic equilibrium stages which were attained during water pressure-controlled wetting and drying cycles over a range of 0 to −10 kPa for a sand and 0 to −20 kPa for a loam. Small pressure perturbations, between 0.2 and 0.6 kPa, were used in the air pycnometer method. Volumes of trapped air obtained at each hydrostatic equilibrium stage were independent of perturbation level and remained relatively constant over the time required to make repeated determinations. In contrast with most of the results obtained in previous studies, which often showed irregular relations, in this study the volume fraction of trapped air was found to be a regular, monotonically increasing (though possibly hysteretic) function of water content. For the soils studied, the function definitely exceeded zero only at water contents greater than 70% of saturation. However, during the initial drying from complete water saturation, the volume fraction of trapped air was virtually zero. Air trapping influenced the water retention curves significantly only at water contents higher than about 60% of saturation. Except at zero water pressure, however, not all of the differences between the initial and the other drying retention curves were accounted for by observed differences in trapped-air volumes. Air trapping was not required for the onset of hysteresis in the water retention relation for the cases studied, i.e., when drying-to-wetting reversals were imposed at about 27% and 40% of saturation for the sand and loam soils, respectively.
Jahani, Nariman; Choi, Jiwoong; Iyer, Krishna; Hoffman, Eric A.
2015-01-01
This study aims to assess regional ventilation, nonlinearity, and hysteresis of human lungs during dynamic breathing via image registration of four-dimensional computed tomography (4D-CT) scans. Six healthy adult humans were studied by spiral multidetector-row CT during controlled tidal breathing as well as during total lung capacity and functional residual capacity breath holds. Static images were utilized to contrast static vs. dynamic (deep vs. tidal) breathing. A rolling-seal piston system was employed to maintain consistent tidal breathing during 4D-CT spiral image acquisition, providing required between-breath consistency for physiologically meaningful reconstructed respiratory motion. Registration-derived variables including local air volume and anisotropic deformation index (ADI, an indicator of preferential deformation in response to local force) were employed to assess regional ventilation and lung deformation. Lobar distributions of air volume change during tidal breathing were correlated with those of deep breathing (R2 ≈ 0.84). Small discrepancies between tidal and deep breathing were shown to be likely due to different distributions of air volume change in the left and the right lungs. We also demonstrated an asymmetric characteristic of flow rate between inhalation and exhalation. With ADI, we were able to quantify nonlinearity and hysteresis of lung deformation that can only be captured in dynamic images. Nonlinearity quantified by ADI is greater during inhalation, and it is stronger in the lower lobes (P < 0.05). Lung hysteresis estimated by the difference of ADI between inhalation and exhalation is more significant in the right lungs than that in the left lungs. PMID:26316512
Comparison of air space measurement imaged by CT, small-animal CT, and hyperpolarized Xe MRI
NASA Astrophysics Data System (ADS)
Madani, Aniseh; White, Steven; Santyr, Giles; Cunningham, Ian
2005-04-01
Lung disease is the third leading cause of death in the western world. Lung air volume measurements are thought to be early indicators of lung disease and markers in pharmaceutical research. The purpose of this work is to develop a lung phantom for assessing and comparing the quantitative accuracy of hyperpolarized xenon 129 magnetic resonance imaging (HP 129Xe MRI), conventional computed tomography (HRCT), and highresolution small-animal CT (μCT) in measuring lung gas volumes. We developed a lung phantom consisting of solid cellulose acetate spheres (1, 2, 3, 4 and 5 mm diameter) uniformly packed in circulated air or HP 129Xe gas. Air volume is estimated based on simple thresholding algorithm. Truth is calculated from the sphere diameters and validated using μCT. While this phantom is not anthropomorphic, it enables us to directly measure air space volume and compare these imaging methods as a function of sphere diameter for the first time. HP 129Xe MRI requires partial volume analysis to distinguish regions with and without 129Xe gas and results are within %5 of truth but settling of the heavy 129Xe gas complicates this analysis. Conventional CT demonstrated partial-volume artifacts for the 1mm spheres. μCT gives the most accurate air-volume results. Conventional CT and HP 129Xe MRI give similar results although non-uniform densities of 129Xe require more sophisticated algorithms than simple thresholding. The threshold required to give the true air volume in both HRCT and μCT, varies with sphere diameters calling into question the validity of thresholding method.
Determining Atmospheric Pressure with a Eudiometer and Glycerol
ERIC Educational Resources Information Center
Brody, Jed; Rohald, Kate; Sutton, Atasha
2010-01-01
We consider a volume of air trapped over a glycerol column in a eudiometer. We demonstrate that there is an approximately linear relationship between the volume of trapped air and the height of the glycerol column. Simply by moving the eudiometer up and down, we cause the glycerol-column height and trapped-air volume to vary. The plot of volume…
Withers, R T; Hamdorf, P A
1989-01-01
Immersion of 18 male subjects in water caused a 20.4% (787 ml) increase (P less than 0.05) in the mean inspiratory capacity (IC) whereas there were no changes (P greater than 0.05) in tidal volume (VT) and the frequency of respiration. All the means for the other pulmonary variables decreased (P less than 0.05) by varying amounts: total lung capacity (TLC) = 8.4% (599 ml), vital capacity (VC) = 5.5% (308 ml), functional residual capacity (FRC) = 42.6% (1386 ml), expiratory reserve volume (ERV) = 61.9% (1095 ml) and residual volume (RV) = 19.7% (292 ml). Variation of only the RV in the body density (BD) formula from which the percentage body fat (%BF) is estimated resulted in a significantly (P less than 0.05) lower mean of 15.2% BF for the RV in air (means = 1482 ml) compared with that of 17.1% BF for the RV in water (means = 1190 ml). All but one of the subjects exhibited a smaller RV in water than in air; the six largest differences were equivalent to 2.4-5.1% BF. These results indicate that the net effect of the hydrostatic pressure (decreases RV), pulmonary vascular engorgement (decreases RV) and diminished compliance (increases RV) is to reduce the ventilated RV. It is therefore advisable to measure the RV when the subject is immersed in order to minimize error in the determination of BD and hence the estimation of % BF.
Sensitivity of Great Lakes Ice Cover to Air Temperature
NASA Astrophysics Data System (ADS)
Austin, J. A.; Titze, D.
2016-12-01
Ice cover is shown to exhibit a strong linear sensitivity to air temperature. Upwards of 70% of ice cover variability on all of the Great Lakes can be explained in terms of air temperature, alone, and nearly 90% of ice cover variability can be explained in some lakes. Ice cover sensitivity to air temperature is high, and a difference in seasonally-averaged (Dec-May) air temperature on the order of 1°C to 2°C can be the difference between a low-ice year and a moderate- to high- ice year. The total amount of seasonal ice cover is most influenced by air temperatures during the meteorological winter, contemporaneous with the time of ice formation. Air temperature conditions during the pre-winter conditioning period and during the spring melting period were found to have less of an impact on seasonal ice cover. This is likely due to the fact that there is a negative feedback mechanism when heat loss goes toward cooling the lake, but a positive feedback mechanism when heat loss goes toward ice formation. Ice cover sensitivity relationships were compared between shallow coastal regions of the Great Lakes and similarly shallow smaller, inland lakes. It was found that the sensitivity to air temperature is similar between these coastal regions and smaller lakes, but that the absolute amount of ice that forms varies significantly between small lakes and the Great Lakes, and amongst the Great Lakes themselves. The Lake Superior application of the ROMS three-dimensional hydrodynamic numerical model verifies a deterministic linear relationship between air temperature and ice cover, which is also strongest around the period of ice formation. When the Lake Superior bathymetry is experimentally adjusted by a constant vertical multiplier, average lake depth is shown to have a nonlinear relationship with seasonal ice cover, and this nonlinearity may be associated with a nonlinear increase in the lake-wide volume of the surface mixed layer.
NASA Technical Reports Server (NTRS)
Burgin, G. H.; Fogel, L. J.; Phelps, J. P.
1975-01-01
A technique for computer simulation of air combat is described. Volume 1 decribes the computer program and its development in general terms. Two versions of the program exist. Both incorporate a logic for selecting and executing air combat maneuvers with performance models of specific fighter aircraft. In the batch processing version the flight paths of two aircraft engaged in interactive aerial combat and controlled by the same logic are computed. The realtime version permits human pilots to fly air-to-air combat against the adaptive maneuvering logic (AML) in Langley Differential Maneuvering Simulator (DMS). Volume 2 consists of a detailed description of the computer programs.
The theory and programming of statistical tests for evaluating the Real-Time Air-Quality Model (RAM) using the Regional Air Pollution Study (RAPS) data base are fully documented in four report volumes. Moreover, the tests are generally applicable to other model evaluation problem...
Probabilistic Modeling of Aircraft Trajectories for Dynamic Separation Volumes
NASA Technical Reports Server (NTRS)
Lewis, Timothy A.
2016-01-01
With a proliferation of new and unconventional vehicles and operations expected in the future, the ab initio airspace design will require new approaches to trajectory prediction for separation assurance and other air traffic management functions. This paper presents an approach to probabilistic modeling of the trajectory of an aircraft when its intent is unknown. The approach uses a set of feature functions to constrain a maximum entropy probability distribution based on a set of observed aircraft trajectories. This model can be used to sample new aircraft trajectories to form an ensemble reflecting the variability in an aircraft's intent. The model learning process ensures that the variability in this ensemble reflects the behavior observed in the original data set. Computational examples are presented.
Use of Chemi-Ionization to Calculate Temperature of Hydrocarbon Flame
NASA Astrophysics Data System (ADS)
Shaikin, A. P.; Galiev, I. R.
2018-04-01
In the present paper, we have experimentally studied the dependences of the maximum temperature of the hydrocarbon flame on the electron current (due to the flame chemi-ionization), the width of the turbulent combustion zone, and the amount and composition of the air-fuel mixture in the combustion chamber of variable volume. Based on the proposed formula, we have been also able to estimate the temperature and compare with its experimental value showing that the convergence has been more than 85% at an excess air factor value ranging from 0.8 to 1.15. The obtained results can be used to predict and monitor the maximum flame temperature in the combustion chamber of an internal combustion engine and other power plants by using the ionization probe.
United States Air Force Summer Research Program -- 1993. Volume 8. Phillips Laboratory
1993-12-01
Research Program Phillips Laboratory Kirtland Air Force Base Albuquerque. New Mexico Sponsored by...Best Available Copy UNITED STATES AIR FORCE SUMMER RESEARCH PROGRAM -- 1993 SUMMER RESEARCH PROGRAM FINAL REPORTS VOLUME 8 PHILLIPS LABORATORY ...Alabama Box 870344 Tuscaloosa, AL 35487-0344 Final Report for: Graduate Student Research Program Phillips Laboratory , Hanscom AFB Sponsored by: Air
The theory and programming of statistical tests for evaluating the Real-Time Air-Quality Model (RAM) using the Regional Air Pollution Study (RAPS) data base are fully documented in four volumes. Moreover, the tests are generally applicable to other model evaluation problems. Volu...
The theory and programming of statistical tests for evaluating the Real-Time Air-Quality Model (RAM) using the Regional Air Pollution Study (RAPS) data base are fully documented in four volumes. Moreover, the tests are generally applicable to other model evaluation problems. Volu...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-08
... went into effect, low volume manufacturers now have access to advanced air bag technology. Accordingly, NHTSA has concluded that the expense of advanced air bag technology is not now sufficient, in and of... into effect, low volume manufacturers now have access to advanced air bag technology.\\14\\ Accordingly...
Solar powered dehumidifier apparatus
Jebens, Robert W.
1980-12-30
A thermally insulated light transmitting housing forms a chamber containing a desiccant and having a first gas port open to the ambient and a second gas port connected by a two way valve to a volume to be dried. Solar energy transmitted through the housing heats and dries the desiccant. The increased air pressure due to the heating of the volume to be dried causes the air from the volume to be expelled through the valve into the chamber. The desiccant is then cooled by shielding it from solar energy before the volume cools thereby increasing its moisture absorbing capacity. Then the volume is allowed to cool drawing dehumidified air through the desiccant and the valve into the volume to be dried. This cycle is then repeated.
Software for Experimental Air-Ground Data Link Volume I : Functional Description and Flowcharts.
DOT National Transportation Integrated Search
1975-10-01
Experimental Data Link System which was implemented for flight test during the Air-Ground Data Link Development Program (FAA-TSC Project Number FA-13). : The software development is presented in three volumes as follows: : Volume I: -- Functional Des...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houssainy, Sammy; Janbozorgi, Mohammad; Kavehpour, Pirouz
Compressed Air Energy Storage (CAES) can potentially allow renewable energy sources to meet electricity demands as reliably as coal-fired power plants. However, conventional CAES systems rely on the combustion of natural gas, require large storage volumes, and operate at high pressures, which possess inherent problems such as high costs, strict geological locations, and the production of greenhouse gas emissions. A novel and patented hybrid thermal-compressed air energy storage (HT-CAES) design is presented which allows a portion of the available energy, from the grid or renewable sources, to operate a compressor and the remainder to be converted and stored in themore » form of heat, through joule heating in a sensible thermal storage medium. The HT-CAES design incudes a turbocharger unit that provides supplementary mass flow rate alongside the air storage. The hybrid design and the addition of a turbocharger have the beneficial effect of mitigating the shortcomings of conventional CAES systems and its derivatives by eliminating combustion emissions and reducing storage volumes, operating pressures, and costs. Storage efficiency and cost are the two key factors, which upon integration with renewable energies would allow the sources to operate as independent forms of sustainable energy. The potential of the HT-CAES design is illustrated through a thermodynamic optimization study, which outlines key variables that have a major impact on the performance and economics of the storage system. The optimization analysis quantifies the required distribution of energy between thermal and compressed air energy storage, for maximum efficiency, and for minimum cost. This study provides a roundtrip energy and exergy efficiency map of the storage system and illustrates a trade off that exists between its capital cost and performance.« less
NASA Astrophysics Data System (ADS)
Prayitno, Rulianah, Sri; Saroso, Hadi; Meilany, Diah
2017-06-01
BOD and Ammonia-free (NH3-N) are pollutants of hospital wastewater which often exceed the quality standards. It is because biological processes in wastewater treatment plant (WWTP) have not been effective in degrading BOD and NH3-N. Therefore, a study on factors that influence the biodegradation of BOD and NH3-N by choosing the type of bacteria to improve the mechanisms of biodegradation processes is required. Bacterial consortium is a collection of several types of bacteria obtained from isolation process, which is known to be more effective than a single bacterial in degrading pollutants. On the other hand, AF2B is a type of reactor in wastewater treatment system. The AF2B contains a filter media that has a large surface area so that the biodegradation process of pollutants by microorganism can be improved. The objective of this research is to determine the effect of volume of starter and air supplies on decreasing BOD and NH3-N in hospital wastewater using bacterial consortium in the AF2B on batch process. The research was conducted in three stages: the making of the growth curve of the bacterial consortium, bacterial consortium acclimatization, and hospital wastewater treatment in the AF2B with batch process. The variables used are the volume of starter (65%, 75%, and 85% in volume) and air supplies (2.5, 5, and 7.5 L/min). Meanwhile, the materials used are hospital wastewater, bacterial consortium (Pseudomonas diminuta, Pseudomonas capica, Bacillius sp, and Nitrobacter sp), blower, and AF2B. AF2B is a plastic basin containing a filter media with a wasp-nest shape used as a medium for growing the bacterial consortium. In the process of making the growth curve, a solid form of bacterial consortium was dissolved in sterilized water, then grown in a nutrient broth (NB). Then, shaking and sampling were done at any time to determine the path growth of bacterial consortium. In the acclimatization process, bacterial isolates were grown using hospital wastewater as a media that was added gradually, followed by the addition of nutrients and aeration. Furthermore, in the biodegradation process of AF2B, the result of acclimatization (as a starter) was fed into the AF2B, then added to the hospital wastewater at a certain volume (as variables), and followed by aeration at a certain flow rate (as variables). Sampling was done at any time to determine the decrease of the concentration of BOD, NH3-N, and MLSS (Mixed Liqour Suspended Solid). BOD and Ammonia-free analyses were conducted using winkler bottle titration and spectrophotometry method. MLSS analysis used gravimetric methods. The results of the research shos that the volume of starter 85% (v) and air supplies of 7.5 L/min can reduce BOD and NH3-N of 92% and 76% respectively. Besides that, AF2B and bacterial consortium have a great ability and are very fast in degrading BOD and NH3-N.
Reversibility of trapped air on chest computed tomography in cystic fibrosis patients.
Loeve, Martine; Rosenow, Tim; Gorbunova, Vladlena; Hop, Wim C J; Tiddens, Harm A W M; de Bruijne, Marleen
2015-06-01
To investigate changes in trapped air volume and distribution over time and compare computed tomography (CT) with pulmonary function tests for determining trapped air. Thirty children contributed two CTs and pulmonary function tests over 2 years. Localized changes in trapped air on CT were assessed using image analysis software, by deforming the CT at timepoint 2 to match timepoint 1, and measuring the volume of stable (TAstable), disappeared (TAdisappeared) and new (TAnew) trapped air as a proportion of total lung volume. We used the difference between total lung capacity measured by plethysmography and helium dilution, residual volume to total lung capacity ratio, forced expiratory flow at 75% of vital capacity, and maximum mid-expiratory flow as pulmonary function test markers of trapped air. Statistical analysis included Wilcoxon's signed rank test and Spearman correlation coefficients. Median (range) age at baseline was 11.9 (5-17) years. Median (range) of trapped air was 9.5 (2-33)% at timepoint 1 and 9.0 (0-25)% at timepoint 2 (p=0.49). Median (range) TAstable, TAdisappeared and TAnew were respectively 3.0 (0-12)%, 5.0 (1-22)% and 7.0 (0-20)%. Trapped air on CT correlated statistically significantly with all pulmonary function measures (p<0.01), other than residual volume to total lung capacity ratio (p=0.37). Trapped air on CT did not significantly progress over 2 years, may have a substantial stable component, and is significantly correlated with pulmonary function markers. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Wenzel, V; Idris, A H; Dörges, V; Nolan, J P; Parr, M J; Gabrielli, A; Stallinger, A; Lindner, K H; Baskett, P J
2001-05-01
The fear of acquiring infectious diseases has resulted in reluctance among healthcare professionals and the lay public to perform mouth-to-mouth ventilation. However, the benefit of basic life support for a patient in cardiopulmonary or respiratory arrest greatly outweighs the risk for secondary infection in the rescuer or the patient. The distribution of ventilation volume between lungs and stomach in the unprotected airway depends on patient variables such as lower oesophageal sphincter pressure, airway resistance and respiratory system compliance, and the technique applied while performing basic or advanced airway support, such as head position, inflation flow rate and time, which determine upper airway pressure. The combination of these variables determines gas distribution between the lungs and the oesophagus and subsequently, the stomach. During bag-valve-mask ventilation of patients in respiratory or cardiac arrest with oxygen supplementation (> or = 40% oxygen), a tidal volume of 6-7 ml kg(-1) ( approximately 500 ml) given over 1-2 s until the chest rises is recommended. For bag-valve-mask ventilation with room-air, a tidal volume of 10 ml kg(-1) (700-1000 ml) in an adult given over 2 s until the chest rises clearly is recommended. During mouth-to-mouth ventilation, a breath over 2 s sufficient to make the chest rise clearly (a tidal volume of approximately 10 ml kg(-1) approximately 700-1000 ml in an adult) is recommended.
Concept for a Satellite-Based Advanced Air Traffic Management System : Volume 7. System Cost.
DOT National Transportation Integrated Search
1973-02-01
The volume presents estimates of the federal government and user costs for the Satellite-Based Advanced Air Traffic Management System and the supporting rationale. The system configuration is that presented in volumes II and III. The cost estimates a...
Understand Centrifugal Compressor stage curves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stadler, E.L.
1986-08-01
Multistage Centrifugal Compressor Performance is generally presented in the form of a composite curve showing discharge pressure and bhp plotted as a function of capacity. This composite curve represents the cumulative performance of each stage performance curve. A simple yet quite accurate means of measuring compressor total performance is to test each stage as a single-stage compressor, usually on air with atmospheric inlets. Stage curves are then generated from the test data and three important variables are plotted: head coefficient, work coefficient and adiabatic efficiency. These variables are plotted against a normalized flow coefficient, Q/N, which is inlet volume flowmore » (cfm) divided by impeller speed (rpm). The nomenclature used to define these stage variables changes from manufacturer to manufacturer; however, the parameters presented are the same. An understanding of each parameter's theoretical derivation and determination from test data will help the engineer reviewing test curves to be more cognizant of the interrelationships between these variables; specifically, how they affect overall machine pressure rise and power consumption.« less
Saini, Amandeep; Okeme, Joseph O; Goosey, Emma; Diamond, Miriam L
2015-10-01
Two passive air samplers (PAS), polyurethane foam (PUF) disks and Sorbent Impregnated PUF (SIP) disks, were characterized for uptake of phthalates and brominated flame-retardants (BFRs) indoors using fully and partially sheltered housings. Based on calibration against an active low-volume air sampler for gas- and particle-phase compounds, we recommend generic sampling rates of 3.5±0.9 and 1.0±0.4 m(3)/day for partially and fully sheltered housing, respectively, which applies to gas-phase phthalates and BFRs as well as particle-phase DEHP (the later for the partially sheltered PAS). For phthalates, partially sheltered SIPs are recommended. Further, we recommend the use of partially sheltered PAS indoors and a deployment period of one month. The sampling rate for the partially sheltered PUF and SIP of 3.5±0.9 m(3)/day is indistinguishable from that reported for fully sheltered PAS deployed outdoors, indicating the role of the housing outdoors to minimize the effect of variable wind velocities on chemical uptake, versus the partially sheltered PAS deployed indoors to maximize chemical uptake where air flow rates are low. Copyright © 2015. Published by Elsevier Ltd.
High air volume to low liquid volume aerosol collector
Masquelier, Donald A.; Milanovich, Fred P.; Willeke, Klaus
2003-01-01
A high air volume to low liquid volume aerosol collector. A high volume flow of aerosol particles is drawn into an annular, centripetal slot in a collector which directs the aerosol flow into a small volume of liquid pool contained is a lower center section of the collector. The annular jet of air impinges into the liquid, imbedding initially airborne particles in the liquid. The liquid in the pool continuously circulates in the lower section of the collector by moving to the center line, then upwardly, and through assistance by a rotating deflector plate passes back into the liquid at the outer area adjacent the impinging air jet which passes upwardly through the liquid pool and through a hollow center of the collector, and is discharged via a side outlet opening. Any liquid droplets escaping with the effluent air are captured by a rotating mist eliminator and moved back toward the liquid pool. The collector includes a sensor assembly for determining, controlling, and maintaining the level of the liquid pool, and includes a lower centrally located valve assembly connected to a liquid reservoir and to an analyzer for analyzing the particles which are impinged into the liquid pool.
Air Occupation: Asking the Right Questions
1997-03-01
Darrel D. Whitcomb, “Air Power and the Ho Chi Minh Trail,” Airpower and Campaign Planning, Air Command and Staff College Coursebook , Volume 8, March 1997...measure of benevolence.14 Some form of physical repression may be necessary, but focusing on the cultural aspects to exploit the population’s existing...Campaign Planning, Air Command and Staff College Coursebook , Volume 8, March 1997. Widnall, Honorable Sheila E., Secretary of the Air Force, Fiscal Years
Air Pollution Translations: A Bibliography with Abstracts - Volume 4.
ERIC Educational Resources Information Center
Environmental Protection Agency, Research Triangle Park, NC. Air Pollution Technical Information Center.
This volume is the fourth in a series of compilations presenting abstracts and indexes of translations of technical air pollution literature. The entries are grouped into 12 subject categories: Emission Sources, Control Methods, Measurement Methods, Air Quality Measurements, Atmospheric Interaction, Basic Science and Technology, Effects--Human…
Ragagnin, Marilia Nagata; Gorman, Daniel; McCarthy, Ian Donald; Sant'Anna, Bruno Sampaio; de Castro, Cláudio Campi; Turra, Alexander
2018-01-11
Obtaining accurate and reproducible estimates of internal shell volume is a vital requirement for studies into the ecology of a range of shell-occupying organisms, including hermit crabs. Shell internal volume is usually estimated by filling the shell cavity with water or sand, however, there has been no systematic assessment of the reliability of these methods and moreover no comparison with modern alternatives, e.g., computed tomography (CT). This study undertakes the first assessment of the measurement reproducibility of three contrasting approaches across a spectrum of shell architectures and sizes. While our results suggested a certain level of variability inherent for all methods, we conclude that a single measure using sand/water is likely to be sufficient for the majority of studies. However, care must be taken as precision may decline with increasing shell size and structural complexity. CT provided less variation between repeat measures but volume estimates were consistently lower compared to sand/water and will need methodological improvements before it can be used as an alternative. CT indicated volume may be also underestimated using sand/water due to the presence of air spaces visible in filled shells scanned by CT. Lastly, we encourage authors to clearly describe how volume estimates were obtained.
Air Quality Criteria for Ozone and Related Photochemical Oxidants (Second External Review Draft)
This second external review draft of the Air Quality Criteria for Ozone and Related Photochemical Oxidants, Volumes I-III (Ozone Criteria Document) is being released for public comment and for review by EPA's Clean Air Scientific Advisory Committee (CASAC) r...
DOT National Transportation Integrated Search
1974-08-01
Volume 2 contains the analysis and description of air traffic management activities at three levels of detail - functions, subfunctions, and tasks. A total of 265 tasks are identified and described, and the flow of information inputs and outputs amon...
40 CFR 52.70 - Identification of plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... nonattainment areas submitted by the Governor of Alaska on January 18, 1980 as follows: Volume II. Analysis of...: Volume II. Analysis of Problems, Control Actions Section V. Ambient Air Monitoring A. Purpose C. Air Monitoring Network E. Annual Review (9) Provisions of a State Air Quality Control Plan submitted by the...
40 CFR 52.70 - Identification of plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... nonattainment areas submitted by the Governor of Alaska on January 18, 1980 as follows: Volume II. Analysis of...: Volume II. Analysis of Problems, Control Actions Section V. Ambient Air Monitoring A. Purpose C. Air Monitoring Network E. Annual Review (9) Provisions of a State Air Quality Control Plan submitted by the...
DOT National Transportation Integrated Search
1974-08-01
Volume 2 contains the analysis and description of air traffic management activities at three levels of detail - functions, subfunctions, and tasks. A total of 265 tasks are identified and described, and the flow of information inputs and outputs amon...
DOT National Transportation Integrated Search
1974-08-01
Volume 2 contains the analysis and description of air traffic management activities at three levels of detail - functions, subfunctions, and tasks. A total of 265 tasks are identified and described, and the flow of information inputs and outputs amon...
DOT National Transportation Integrated Search
1974-08-01
Volume 2 contains the analysis and description of air traffic management activities at three levels of detail - functions, subfunctions, and tasks. A total of 265 tasks are identified and described, and the flow of information inputs and outputs amon...
NASA Astrophysics Data System (ADS)
Japuntich, Daniel A.; Franklin, Luke M.; Pui, David Y.; Kuehn, Thomas H.; Kim, Seong Chan; Viner, Andrew S.
2007-01-01
Two different air filter test methodologies are discussed and compared for challenges in the nano-sized particle range of 10-400 nm. Included in the discussion are test procedure development, factors affecting variability and comparisons between results from the tests. One test system which gives a discrete penetration for a given particle size is the TSI 8160 Automated Filter tester (updated and commercially available now as the TSI 3160) manufactured by the TSI, Inc., Shoreview, MN. Another filter test system was developed utilizing a Scanning Mobility Particle Sizer (SMPS) to sample the particle size distributions downstream and upstream of an air filter to obtain a continuous percent filter penetration versus particle size curve. Filtration test results are shown for fiberglass filter paper of intermediate filtration efficiency. Test variables affecting the results of the TSI 8160 for NaCl and dioctyl phthalate (DOP) particles are discussed, including condensation particle counter stability and the sizing of the selected particle challenges. Filter testing using a TSI 3936 SMPS sampling upstream and downstream of a filter is also shown with a discussion of test variables and the need for proper SMPS volume purging and filter penetration correction procedure. For both tests, the penetration versus particle size curves for the filter media studied follow the theoretical Brownian capture model of decreasing penetration with decreasing particle diameter down to 10 nm with no deviation. From these findings, the authors can say with reasonable confidence that there is no evidence of particle thermal rebound in the size range.
1992-01-01
Research Program Phillips Laboratory I4oJ A*6Iv4 Sponsored by: Air Force Office of Scientific Research Kirtland Air ...UNITED STATES AIR FORCE SUMMER RESEARCH PROGki"A -- 1992 HIGH SCHOOL APPRENTICESHIP PROGRAM (HSAP) REPORTS VOLUME 13 (t PHILLIPS LABORATORY . RESEARCH ...Arlington High School Final Report for: Summer Research Program Geophysics Directorate Phillips Laboratory
Air volume measurement of 'Braeburn' apple fruit.
Drazeta, Lazar; Lang, Alexander; Hall, Alistair J; Volz, Richard K; Jameson, Paula E
2004-05-01
The radial disposition of air in the flesh of fruit of Malus domestica Borkh., cv 'Braeburn' was investigated using a gravimetric technique based on Archimedes' principle. Intercellular air volume was measured by weighing a small tissue sample under water before and after vacuum infiltration to remove the air. In a separate procedure, the volume of the same sample was measured by recording the buoyant upthrust experienced by it when fully immersed in water. The method underestimates tissue air volume due to a slight invasion of the intercellular air spaces around the edges of the sample when it is immersed in water. To correct for this error, an adjustment factor was made based upon an analysis of a series of measurements of air volume in samples of different dimensions. In 'Braeburn' there is a gradient of declining air content from just beneath the skin to the centre of the fruit with a sharp discontinuity at the core line. Cell shape and cell packing were observed in the surface layers of freshly excised and stained flesh samples using a dissecting microscope coupled to a video camera and a PC running proprietary software. Tissue organization changed with distance below the skin. It is speculated that reduced internal gas movement, due to the tightly packed tissue of 'Braeburn' and to the potential diffusion barrier at the core line between the cortex and the pith, may increase susceptibility of the flesh to disorders associated with tissue browning and breakdown.
NASA Astrophysics Data System (ADS)
Valenzuela, Victor Hugo
Air pollution emissions control strategies to reduce ozone precursor pollutants are analyzed by applying a photochemical modeling system. Simulations of air quality conditions during an ozone episode which occurred in June, 2006 are undertaken by increasing or reducing area source emissions in Ciudad Juarez, Chihuahua, Mexico. Two air pollutants are primary drivers in the formation of tropospheric ozone. Oxides of nitrogen (NOx) and volatile organic compounds (VOC) undergo multiple chemical reactions under favorable meteorological conditions to form ozone, which is a secondary pollutant that irritates respiratory systems in sensitive individuals especially the elderly and young children. The U.S. Environmental Protection Agency established National Ambient Air Quality Standards (NAAQS) to limit ambient air pollutants such as ozone by establishing an 8-hour average concentration of 0.075 ppm as the threshold at which a violation of the standard occurs. Ozone forms primarily due reactions in the troposphere of NOx and VOC emissions generated primarily by anthropogenic sources in urban regions. Data from emissions inventories indicate area sources account for ˜15 of NOx and ˜45% of regional VOC emissions. Area sources include gasoline stations, automotive paint bodyshops and nonroad mobile sources. Multiplicity of air pollution emissions sources provides an opportunity to investigate and potentially implement air quality improvement strategies to reduce emissions which contribute to elevated ozone concentrations. A baseline modeling scenario was established using the CAMx photochemical air quality model from which a series of sensitivity analyses for evaluating air quality control strategies were conducted. Modifications to area source emissions were made by varying NOx and / or VOC emissions in the areas of particular interest. Model performance was assessed for each sensitivity analysis. Normalized bias (NB) and normalized error (NE) were used to identify variability of the PREDICTED to OBSERVED ozone concentrations of both BASELINE model and simulations with modified emissions assessed by the sensitivity analysis. All simulations were found to vary within acceptable ranges of these two criteria variables. Simulation results indicate ozone formation in the PdN region is VOC-limited. Under VOC-limited conditions, modifications to NOx emissions do not produce a marked increase or decrease in ozone concentrations. Modifications to VOC emissions generated the highest variability in ozone concentrations. Increasing VOC emissions by 75% produced results which minimized model bias and error when comparing PREDICTED and OBSERVED ozone concentrations. Increasing VOC emissions by 75% either alone or in combination with a 75% increase in NOx emissions generated PREDICTED ozone concentrations very near to OBSERVED ozone. By evaluating the changes in ambient ozone concentrations through photochemical modeling, air quality planners may identify the most efficient or effective VOC emissions control strategies for area sources. Among the strategies to achieve emissions reductions are installation of gasoline vapor recovery systems, replacing high-pressure low-volume surface coating paint spray guns with high-volume low-pressure spray paint guns, requiring emissions control booths for surface coating operations as well as undertaking solvent management practices, requiring the sale of low VOC paint solvents in the surface-coating industry, and requiring low-VOC solvents in the dry cleaning industry. Other strategies to reduce VOC emissions include initiating Eco-Driving strategies to reduce fuel consumption from mobile sources and minimize vehicle idling at the international ports of entry by reducing bridge wait times. This dissertation depicts a tool for evaluating impacts of emissions on regional air quality by addressing the highly unresolved fugitive emissions in the Paso del Norte region. It provides a protocol for decision makers to assess the effects of various emission control strategies in the region. Impacts of specific source categories such as the international ports of entry, gasoline stations, paint body shops, truck stops, and military installations on the regional air quality can be easily and systematically addressed in a timely manner in the future.
Comparing two-zone models of dust exposure.
Jones, Rachael M; Simmons, Catherine E; Boelter, Fred W
2011-09-01
The selection and application of mathematical models to work tasks is challenging. Previously, we developed and evaluated a semi-empirical two-zone model that predicts time-weighted average (TWA) concentrations (Ctwa) of dust emitted during the sanding of drywall joint compound. Here, we fit the emission rate and random air speed variables of a mechanistic two-zone model to testing event data and apply and evaluate the model using data from two field studies. We found that the fitted random air speed values and emission rate were sensitive to (i) the size of the near-field and (ii) the objective function used for fitting, but this did not substantially impact predicted dust Ctwa. The mechanistic model predictions were lower than the semi-empirical model predictions and measured respirable dust Ctwa at Site A but were within an acceptable range. At Site B, a 10.5 m3 room, the mechanistic model did not capture the observed difference between PBZ and area Ctwa. The model predicted uniform mixing and predicted dust Ctwa up to an order of magnitude greater than was measured. We suggest that applications of the mechanistic model be limited to contexts where the near-field volume is very small relative to the far-field volume.
Cargo Logistics Airlift Systems Study (CLASS). Volume 1: Analysis of current air cargo system
NASA Technical Reports Server (NTRS)
Burby, R. J.; Kuhlman, W. H.
1978-01-01
The material presented in this volume is classified into the following sections; (1) analysis of current routes; (2) air eligibility criteria; (3) current direct support infrastructure; (4) comparative mode analysis; (5) political and economic factors; and (6) future potential market areas. An effort was made to keep the observations and findings relating to the current systems as objective as possible in order not to bias the analysis of future air cargo operations reported in Volume 3 of the CLASS final report.
Changes in the timing of high river flows in New England over the 20th Century
Hodgkins, G.A.; Dudley, R.W.; Huntington, T.G.
2003-01-01
The annual timing of river flows is a good indicator of climate-related changes, or lack of changes, for rivers with long-term data that drain unregulated basins with stable land use. Changes in the timing of annual winter/spring (January 1 to May 31) and fall (October 1 to December 31) center of volume dates were analyzed for 27 rural, unregulated river gaging stations in New England, USA with an average of 68 years of record. The center of volume date is the date by which half of the total volume of water for a given period of time flows past a river gaging station, and is a measure of the timing of the bulk of flow within the time period. Winter/spring center of volume (WSCV) dates have become significantly earlier (p < 0.1) at all 11 river gaging stations in areas of New England where snowmelt runoff has the most effect on spring river flows. Most of this change has occurred in the last 30 years with dates advancing by 1-2 weeks. WSCV dates were correlated with March through April air temperatures (r = -0.72) and with January precipitation (r = -0.37). Three of 16 river gaging stations in the remainder of New England had significantly earlier WSCV dates. Four out of 27 river gaging stations had significantly earlier fall center of volume dates in New England. Changes in the timing of winter/spring and fall peak flow dates were consistent with the changes in the respective center of volume dates, given the greater variability in the peak flow dates. Changes in the WSCV dates over the last 30 years are consistent with previous studies of New England last-frost dates, lilac bloom dates, lake ice-out dates, and spring air temperatures. This suggests that these New England spring geophysical and biological changes all were caused by a common mechanism, temperature increases.
NASA Astrophysics Data System (ADS)
Tiedeman, C. R.; Barrash, W.; Thrash, C. J.; Patterson, J.; Johnson, C. D.
2016-12-01
Hydraulic tomography was performed in a 100 m2 by 20 m thick volume of contaminated fractured mudstones at the former Naval Air Warfare Center (NAWC) in the Newark Basin, New Jersey, with the objective of estimating the detailed distribution of hydraulic conductivity (K). Characterizing the fine-scale K variability is important for designing effective remediation strategies in complex geologic settings such as fractured rock. In the tomography experiment, packers isolated two to six intervals in each of seven boreholes in the volume of investigation, and fiber-optic pressure transducers enabled collection of high-resolution drawdown observations. A hydraulic tomography dataset was obtained by conducting multiple aquifer tests in which a given isolated well interval was pumped and drawdown was monitored in all other intervals. The collective data from all tests display a wide range of behavior indicative of highly heterogeneous K within the tested volume, such as: drawdown curves for different intervals crossing one another on drawdown-time plots; unique drawdown curve shapes for certain intervals; and intervals with negligible drawdown adjacent to intervals with large drawdown. Tomographic inversion of data from 15 tests conducted in the first field season focused on estimating the K distribution at a scale of 1 m3 over approximately 25% of the investigated volume, where observation density was greatest. The estimated K field is consistent with prior geologic, geophysical, and hydraulic information, including: highly variable K within bedding-plane-parting fractures that are the primary flow and transport paths at NAWC, connected high-K features perpendicular to bedding, and a spatially heterogeneous distribution of low-K rock matrix and closed fractures. Subsequent tomographic testing was conducted in the second field season, with the region of high observation density expanded to cover a greater volume of the wellfield.
1991-04-01
hold large quantities of air in solution at high pressures and at 8000 psi CTFE holds 500 times its volume of standard atmospheric air. Since air...cart bleeding can be expected to reduce dissolved air to about 1.5 times the amount held at atmospheric pressure. This is more than adequate for...aircraft hydraulic systems while circulating fluid through the cart reservoir which is vented to atmosphere . After open loop air bleeding, the aircraft
40 CFR 52.74 - Original identification of plan section.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Governor of Alaska on January 18, 1980 as follows: Volume II. Analysis of Problems, Control Actions Section... requirements of Air Quality Monitoring, 40 CFR part 58, subpart C, § 58.20, as follows: Volume II. Analysis of Problems, Control Actions Section V. Ambient Air Monitoring A. Purpose C. Air Monitoring Network E. Annual...
40 CFR 52.70 - Identification of plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... submitted by the Governor of Alaska on January 18, 1980 as follows: Volume II. Analysis of Problems, Control... requirements of Air Quality Monitoring, 40 CFR part 58, subpart C, § 58.20, as follows: Volume II. Analysis of Problems, Control Actions Section V. Ambient Air Monitoring A. Purpose C. Air Monitoring Network E. Annual...
DOT National Transportation Integrated Search
1974-02-01
The volume presents the plans for implementing the Satellite-Based Advanced Air Traffic Management System (SAATMS) described in Volumes II, III, and IV. Two plans are presented: an RDT&E plan and a transition plan. The RDT&E plan is presented as a se...
USAF (United States Air Force) bioenvironmental noise data handbook. Volume 2: Index
NASA Astrophysics Data System (ADS)
Cole, J. N.; Peachey, N. J.
1983-03-01
This report is an index which identifies the individual volumes published during the 1975-1982 period by the Air Force Aerospace Medical Research Laboratory (AFAMRL) as a multi-volume report, ""USAF Bioenvironmental Noise Data Handbook'', AMRL-TR-75-50 and lists those aircraft, ground equipment and other systems reported there in.
DOT National Transportation Integrated Search
2002-09-01
This is volume I1 of a two-volume report of a study to increase the scope and clarity of air pollution models for : depressed highway and street canyon sites. It presents the atmospheric wind tunnel program conducted to increase the : data base and i...
Chen, Rong; Sung, Wen-Pei; Chang, Hung-Chang; Chi, Yi-Rou
2013-01-01
A human life demand set to emerge in the future is the achievement of sustainability by maintaining a comfortable indoor environment without excessive reliance on energy-consuming air conditioners. The major research processes in this study are: (1) measuring indoor air quality and thermal comfort to evaluate the comfort of an indoor environment; (2) implementing questionnaire survey analysis to explore people's environmental self-perceptions and conducting a meta-analysis of the measurement results for air quality and physical aspects; and (3) constructing an indoor monitoring and management system. The experimental and analysis results of this research reveal that most of the office occupants preferred a cooler environment with a lower temperature. Additionally, because the summers in Taiwan are humid and hot, the occupants of an indoor space tend to feel uncomfortable because of the high humidity and poor indoor air quality. Therefore, Variable Air Volume (VAV), two air intakes, and exhaust plant are installed to improve indoor environment. After improvement, a lower temperature (approximately 21.2–23.9°C) indirectly reduces humidity, thereby making the occupants comfortable. Increasing air velocity to 0.1 ~ 0.15 m/s, the carbon dioxide concentrations decrease below the requirement of the WHO. Ninety-five percent of the workers corresponded to the standard comfort zone after this improvement. PMID:24311976
Flight test of an improved solid waste collection system
NASA Technical Reports Server (NTRS)
Thornton, W.; Brasseaux, H.; Whitmore, H.
1991-01-01
A system for human waste collection is described and evaluated on the basis of a prototype employed for the shuttle flight STS-35. The manually operated version of the unit is designed to collect, compact, and store human waste and cleaning material in replaceable volumes. The system is presented with illustrations and descriptions of the disposable pads that are used to clean the cylinder and occlusive air valves as well as seal the unit. Temporary retention and waste entrainment are provided by the variable airflow in the manual unit tested. The prototype testing indicates that sufficient airflow is achieved at 45 CFM and that the stowage volume (18.7 cu in.) is adequate for storing human waste with minimal logistical support. Higher compaction pressure and the use of a directed airstream are proposed for improving the packing efficiency of the unit.
Plummer, Emily Megan; Goller, Franz
2008-01-01
Song of the zebra finch (Taeniopygia guttata) is a complex temporal sequence generated by a drastic change to the regular oscillations of the normal respiratory pattern. It is not known how respiratory functions, such as supply of air volume and gas exchange, are controlled during song. To understand the integration between respiration and song, we manipulated respiration during song by injecting inert dental medium into the air sacs. Increased respiratory rate after injections indicates that the reduction of air affected quiet respiration and that birds compensated for the reduced air volume. During song, air sac pressure, tracheal airflow and sound amplitude decreased substantially with each injection. This decrease was consistently present during each expiratory pulse of the song motif irrespective of the air volume used. Few changes to the temporal pattern of song were noted, such as the increased duration of a minibreath in one bird and the decrease in duration of a long syllable in another bird. Despite the drastic reduction in air sac pressure, airflow and sound amplitude, no increase in abdominal muscle activity was seen. This suggests that during song, birds do not compensate for the reduced physiological or acoustic parameters. Neither somatosensory nor auditory feedback mechanisms appear to effect a correction in expiratory effort to compensate for reduced air sac pressure and sound amplitude.
Collaborative Multidisciplinary Sciences for Analysis and Design of Aerospace Vehicles. Volume 1
2017-05-01
AEROSPACE VEHICLES Volume 1 5a. CONTRACT NUMBER FA8650-09-2-3938 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62201F 6. AUTHOR(S) Raymond M...S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBERDesign and Analysis Branch (AFRL/RQVC) Aerospace Vehicles Division Air Force Research...Laboratory, Aerospace Systems Directorate Wright-Patterson Air Force Base, OH 45433-7542 Air Force Materiel Command, United States Air Force Virginia
Detection of the urban release of a bacillus anthracis simulant by air sampling.
Garza, Alexander G; Van Cuyk, Sheila M; Brown, Michael J; Omberg, Kristin M
2014-01-01
In 2005 and 2009, the Pentagon Force Protection Agency (PFPA) staged deliberate releases of a commercially available organic pesticide containing Bacillus amyloliquefaciens to evaluate PFPA's biothreat response protocols. In concert with, but independent of, these releases, the Department of Homeland Security sponsored experiments to evaluate the efficacy of commonly employed air and surface sampling techniques for detection of an aerosolized biological agent. High-volume air samplers were placed in the expected downwind plume, and samples were collected before, during, and after the releases. Environmental surface and personal air samples were collected in the vicinity of the high-volume air samplers hours after the plume had dispersed. The results indicate it is feasible to detect the release of a biological agent in an urban area both during and after the release of a biological agent using high-volume air and environmental sampling techniques.
Atmospheric forcing on the seasonal variability of sea level at Cochin, southwest coast of India
NASA Astrophysics Data System (ADS)
Srinivas, K.; Dinesh Kumar, P. K.
2006-07-01
The seasonal cycles of some atmospheric parameters at Cochin (southwest coast of India) have been studied with a specific emphasis on the role played by them in forcing the seasonal sea level. Equatorward along-shore wind stress as well as equatorward volume transport by coastal currents along the Indian peninsula could play an important role in the sea level low during the premonsoon and southwest monsoon seasons. During postmonsoon season, along-shore wind stress plays no major role in the high sea level whereas this could be due to the poleward volume transport by the coastal along-shore currents. Atmospheric pressure and river discharge do not seem to influence much the sea level during the southwest monsoon period, even though the river discharge during that period is considerable. The sea level was minimal during the southwest monsoon season, when the river discharge was at its annual maximum. The difference between the seasonal march of observed and pressure corrected sea level (CSL) was not significant for the study region. Harmonic analysis of the climatological data on the various parameters revealed that air temperature is the only parameter with a dominance of the semi-annual over the annual cycle. Cross-shore wind stress indicated strong interannual variability whereas relative density showed strong seasonal variability. The climatological seasonal cycles of CSL at eight other tide gauge stations along the west coast of the Indian subcontinent are also examined, to assess the role of various forcings on the seasonal sea level cycle. The signatures of El Nino-Southern Oscillation (ENSO) phenomenon could be seen in some of the parameters (SST, air temperature, atmospheric pressure, along-shore wind stress, relative density and sea level). The signature of ENSO was particularly strong in the case of atmospheric pressure followed by relative density, the variance accounted by the relationship being 47% and 16%, respectively.
40 CFR 63.11930 - What requirements must I meet for closed vent systems?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Chloride and Copolymers Production Testing and Compliance Requirements § 63.11930 What requirements must I...) Zero air (less than 10 parts per million by volume hydrocarbon in air). (B) Mixtures of methane in air at a concentration less than 10,000 parts per million by volume. A calibration gas other than methane...
40 CFR 63.11930 - What requirements must I meet for closed vent systems?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Chloride and Copolymers Production Testing and Compliance Requirements § 63.11930 What requirements must I...) Zero air (less than 10 parts per million by volume hydrocarbon in air). (B) Mixtures of methane in air at a concentration less than 10,000 parts per million by volume. A calibration gas other than methane...
DOT National Transportation Integrated Search
1974-02-01
The volume presents a description of the services a generic Advanced Air Traffic Management System (AATMS) should provide to the useres of the system to facilitate the safe, efficient flow of traffic. It provides a definition of the functions which t...
Bajaj, Pramila; Nanda, Rajan; Goyal, Pradeep KR
2004-10-01
The study was designed to investigate the changes in pressure and volume of a tracheal tube-cuff inflated with air, mixture of N2O + O2, saline and 4% lidocaine during nitrous oxide anesthesia. This study was conducted in 80 patients (33 male & 47 female). The pressure and volume of a tracheal tube cuff increased with air, decreased with mixture of N2O + O2 and almost remained the same with saline and 4% lidocaine. The complications were more in the air group.
[The application of air abrasion in dentistry].
Mandinić, Zoran; Vulićević, Zoran R; Beloica, Milos; Radović, Ivana; Mandić, Jelena; Carević, Momir; Tekić, Jasmina
2014-01-01
One of the main objectives of contemporary dentistry is to preserve healthy tooth structure by applying techniques of noninvasive treatment. Air abrasion is a minimally invasive nonmechanical technique of tooth preparation that uses kinetic energy to remove carious tooth structure. A powerful narrow stream of moving aluminum-oxide particles hit the tooth surface and they abrade it without heat, vibration or noise. Variables that affect speed of cutting include air pressure, particle size, powder flow, tip's size, angle and distance from the tooth. It has been proposed that air abrasion can be used to diagnose early occlusal-surface lesions and treat them with minimal tooth preparation using magnifier. Reported advantages of air abrasion include reduced noise, vibration and sensitivity. Air abrasion cavity preparations have more rounded internal contours than those prepared with straight burs. This may increase the longevity of placed restorations because it reduces the incidence of fractures and a consequence of decreased internal stresses. However, air abrasion cannot be used for all patients, i.e. in cases involving severe dust allergy, asthma, chronic obstructive lung disease, recent extraction or other oral surgery, open wounds, advanced periodontal disease, recent placement of orthodontic appliances and oral abrasions, or subgingival caries removal. Many of these conditions increase the risk of air embolism in the oral soft tissues. Dust control is a challenge, and it necessitates the use of rubber dam, high-volume evacuation, protective masks and safety eyewear for both the patient and the therapist.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glide-Hurst, Carri K.; Gopan, Ellen; Department of Radiation Oncology Wayne State University, Detroit, MI
2010-07-01
Purpose: To evaluate intra- and interfraction variability of tumor and lung volume and position using a hybrid active breath-hold gating technique. Methods and Materials: A total of 159 repeat normal inspiration active breath-hold CTs were acquired weekly during radiotherapy for 9 lung cancer patients (12-21 scans per patient). A physician delineated the gross tumor volume (GTV), lungs, and spinal cord on the first breath-hold CT, and contours were propagated semiautomatically. Intra- and interfraction variability of tumor and lung position and volume were evaluated. Tumor centroid and border variability were quantified. Results: On average, intrafraction variability of lung and GTV centroidmore » position was <2.0 mm. Interfraction population variability was 3.6-6.7 mm (systematic) and 3.1-3.9 mm (random) for the GTV centroid and 1.0-3.3 mm (systematic) and 1.5-2.6 mm (random) for the lungs. Tumor volume regressed 44.6% {+-} 23.2%. Gross tumor volume border variability was patient specific and demonstrated anisotropic shape change in some subjects. Interfraction GTV positional variability was associated with tumor volume regression and contralateral lung volume (p < 0.05). Inter-breath-hold reproducibility was unaffected by time point in the treatment course (p > 0.1). Increases in free-breathing tidal volume were associated with increases in breath-hold ipsilateral lung volume (p < 0.05). Conclusions: The breath-hold technique was reproducible within 2 mm during each fraction. Interfraction variability of GTV position and shape was substantial because of tumor volume and breath-hold lung volume change during therapy. These results support the feasibility of a hybrid breath-hold gating technique and suggest that online image guidance would be beneficial.« less
[Spirograph for small laboratory animals].
Daniiarov, S B; Lanskiĭ, Iu M; Bebinov, E M
1986-10-01
A design of dry spirograph is described. It is characterized by greater precision, lack of inertia, high reliability, absence of respiration resistance, adequate form of recording, rapid resetting to any respiratory rate. The device consists of two similar injection syringes, photoelectric sensor for the identification of the initial moments of respiration stages, electromagnetic valves, two photoelectric converters of the air volume into the impulse signal, vacuum micro-pump, microcompressor and a system of air-driving tubes. In the initial position of pistons and valves the microcompressor pumps air into the inhalation cylinder and lifts the piston to the upper extreme position. With the signal marking the beginning of inspiration, the valves switch over and the piston lowers, pushing out the air, which moves into the animals' respiratory organs. Simultaneously, the signals of the inhaled air volume from the photoelectric transducer reach the recorder. During expiration the air pushes the piston down into the second cylinder and photoelectric transducer gives the information on the volume of the expired air.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klett, James; Klett, Lynn
An apparatus for maintaining the temperature of an article at a temperature that is below the ambient air temperature includes an enclosure having an outer wall that defines an interior chamber for holding a volume of sealed air. An insert is disposed inside of the chamber and has a body that is made of a porous graphite foam material. A vacuum pump penetrates the outer wall and fluidly connects the sealed air in the interior chamber with the ambient air outside of the enclosure. The temperatures of the insert and article is maintained at temperatures that are below the ambientmore » air temperature when a volume of a liquid is wicked into the pores of the porous insert and the vacuum pump is activated to reduce the pressure of a volume of sealed air within the interior chamber to a pressure that is below the vapor pressure of the liquid.« less
Avoiding low frequency noise in packaged HVAC equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebbing, C.E.; Blazier, W.E.Jr.
1993-06-01
The purpose of this article is to help those involved in the design and commissioning of packaged HVAC systems to understand the root causes of low frequency noise problems and how to avoid many of them at the design stage. In the 1980's, two things happened to dramatically change the types of noise problems encountered in typical new construction. The first was the introduction of new energy regulations that favored variable air volume (VAV) distribution systems over constant volume air distribution systems. A by-product of VAV design is that mid- and high frequency sound pressure levels produced by current airmore » terminal devices and diffusers in many applications are significantly lower than in the past. The second factor was a trend away from the use of built-up central station fan equipment in favor of packaged, floor-by-floor air handlers or rooftop units. As a result, today's HVAC system noise problems are not confined to just the roar and hiss of the past, but now include intense low frequency rumble and time modulation. Indeed, most current noise problems in modern buildings occur in the frequency range well below 250 Hz. A large fraction of these are a result of the dominant sound pressure levels in the 12 to 40 Hz region. These factors, combined with a substantial increase in the level of low frequency sound from the rest of the system, can produce a non-neutral, time modulated, rumbly sounding background noise that many people find objectionable.« less
Measurement of absolute regional lung air volumes from near-field x-ray speckles.
Leong, Andrew F T; Paganin, David M; Hooper, Stuart B; Siew, Melissa L; Kitchen, Marcus J
2013-11-18
Propagation-based phase contrast x-ray (PBX) imaging yields high contrast images of the lung where airways that overlap in projection coherently scatter the x-rays, giving rise to a speckled intensity due to interference effects. Our previous works have shown that total and regional changes in lung air volumes can be accurately measured from two-dimensional (2D) absorption or phase contrast images when the subject is immersed in a water-filled container. In this paper we demonstrate how the phase contrast speckle patterns can be used to directly measure absolute regional lung air volumes from 2D PBX images without the need for a water-filled container. We justify this technique analytically and via simulation using the transport-of-intensity equation and calibrate the technique using our existing methods for measuring lung air volume. Finally, we show the full capabilities of this technique for measuring regional differences in lung aeration.
Kan, Monica W K; Leung, Lucullus H T; Yu, Peter K N
2013-11-04
A new version of progressive resolution optimizer (PRO) with an option of air cavity correction has been implemented for RapidArc volumetric-modulated arc therapy (RA). The purpose of this study was to compare the performance of this new PRO with the use of air cavity correction option (PRO10_air) against the one without the use of the air cavity correction option (PRO10_no-air) for RapidArc planning in targets with low-density media of different sizes and complexities. The performance of PRO10_no-air and PRO10_air was initially compared using single-arc plans created for four different simple heterogeneous phantoms with virtual targets and organs at risk. Multiple-arc planning of 12 real patients having nasopharyngeal carcinomas (NPC) and ten patients having non-small cell lung cancer (NSCLC) were then performed using the above two options for further comparison. Dose calculations were performed using both the Acuros XB (AXB) algorithm with the dose to medium option and the analytical anisotropic algorithm (AAA). The effect of using intermediate dose option after the first optimization cycle in PRO10_air and PRO10_no-air was also investigated and compared. Plans were evaluated and compared using target dose coverage, critical organ sparing, conformity index, and dose homogeneity index. For NSCLC cases or cases for which large volumes of low-density media were present in or adjacent to the target volume, the use of the air cavity correction option in PRO10 was shown to be beneficial. For NPC cases or cases for which small volumes of both low- and high-density media existed in the target volume, the use of air cavity correction in PRO10 did not improve the plan quality. Based on the AXB dose calculation results, the use of PRO10_air could produce up to 18% less coverage to the bony structures of the planning target volumes for NPC cases. When the intermediate dose option in PRO10 was used, there was negligible difference observed in plan quality between optimizations with and without using the air cavity correction option.
Lee, Kil Yong; Burnett, William C
A simple method for the direct determination of the air-loop volume in a RAD7 system as well as the radon partition coefficient was developed allowing for an accurate measurement of the radon activity in any type of water. The air-loop volume may be measured directly using an external radon source and an empty bottle with a precisely measured volume. The partition coefficient and activity of radon in the water sample may then be determined via the RAD7 using the determined air-loop volume. Activity ratios instead of absolute activities were used to measure the air-loop volume and the radon partition coefficient. In order to verify this approach, we measured the radon partition coefficient in deionized water in the temperature range of 10-30 °C and compared the values to those calculated from the well-known Weigel equation. The results were within 5 % variance throughout the temperature range. We also applied the approach for measurement of the radon partition coefficient in synthetic saline water (0-75 ppt salinity) as well as tap water. The radon activity of the tap water sample was determined by this method as well as the standard RAD-H 2 O and BigBottle RAD-H 2 O. The results have shown good agreement between this method and the standard methods.
Developing Toolsets for AirBorne Data (TAD): Overview of Design Concept
NASA Astrophysics Data System (ADS)
Parker, L.; Perez, J.; Chen, G.; Benson, A.; Peeters, M. C.
2013-12-01
NASA has conducted airborne tropospheric chemistry studies for about three decades. These field campaigns have generated a great wealth of observations, including a wide range of the trace gases and aerosol properties. Even though the spatial and temporal coverage is limited, the aircraft data offer high resolution and comprehensive simultaneous coverage of many variables, e.g. ozone precursors, intermediate photochemical species, and photochemical products. The recent NASA Earth Venture Program has generated an unprecedented amount of aircraft observations in terms of the sheer number of measurements and data volume. The ASDC Toolset for Airborne Data (TAD) is being designed to meet the user community needs for aircraft data for scientific research on climate change and air quality relevant issues, particularly: 1) Provide timely access to a broad user community, 2) Provide an intuitive user interface to facilitate quick discovery of the variables and data, 3) Provide data products and tools to facilitate model assessment activities, e.g., merge files and data subsetting capabilities, 4) Provide simple utility 'calculators', e.g., unit conversion and aerosol size distribution processing, and 5) Provide Web Coverage Service capable tools to enhance the data usability. The general strategy and design of TAD will be presented.
Grimm, J W; Lynch, J A
2005-06-01
Daily precipitation nitrate and ammonium concentration models were developed for the Chesapeake Bay Watershed (USA) using a linear least-squares regression approach and precipitation chemistry data from 29 National Atmospheric Deposition Program/National Trends Network (NADP/NTN) sites. Only weekly samples that comprised a single precipitation event were used in model development. The most significant variables in both ammonium and nitrate models included: precipitation volume, the number of days since the last event, a measure of seasonality, latitude, and the proportion of land within 8km covered by forest or devoted to industry and transportation. Additional variables included in the nitrate model were the proportion of land within 0.8km covered by water and/or forest. Local and regional ammonia and nitrogen oxide emissions were not as well correlated as land cover. Modeled concentrations compared very well with event chemistry data collected at six NADP/AirMoN sites within the Chesapeake Bay Watershed. Wet deposition estimates were also consistent with observed deposition at selected sites. Accurately describing the spatial distribution of precipitation volume throughout the watershed is important in providing critical estimates of wet-fall deposition of ammonium and nitrate.
NASA Technical Reports Server (NTRS)
Kopasakis, George; Connolly, Joseph W.; Cheng, Larry
2015-01-01
This paper covers the development of stage-by-stage and parallel flow path compressor modeling approaches for a Variable Cycle Engine. The stage-by-stage compressor modeling approach is an extension of a technique for lumped volume dynamics and performance characteristic modeling. It was developed to improve the accuracy of axial compressor dynamics over lumped volume dynamics modeling. The stage-by-stage compressor model presented here is formulated into a parallel flow path model that includes both axial and rotational dynamics. This is done to enable the study of compressor and propulsion system dynamic performance under flow distortion conditions. The approaches utilized here are generic and should be applicable for the modeling of any axial flow compressor design accurate time domain simulations. The objective of this work is as follows. Given the parameters describing the conditions of atmospheric disturbances, and utilizing the derived formulations, directly compute the transfer function poles and zeros describing these disturbances for acoustic velocity, temperature, pressure, and density. Time domain simulations of representative atmospheric turbulence can then be developed by utilizing these computed transfer functions together with the disturbance frequencies of interest.
Influence of temperature on the single-stage ATAD process predicted by a thermal equilibrium model.
Cheng, Jiehong; Zhu, Jun; Kong, Feng; Zhang, Chunyong
2015-06-01
Autothermal thermophilic aerobic digestion (ATAD) is a promising biological process that will produce an effluent satisfying the Class A requirements on pathogen control and land application. The thermophilic temperature in an ATAD reactor is one of the critical factors that can affect the satisfactory operation of the ATAD process. This paper established a thermal equilibrium model to predict the effect of variables on the auto-rising temperature in an ATAD system. The reactors with volumes smaller than 10 m(3) could not achieve temperatures higher than 45 °C under ambient temperature of -5 °C. The results showed that for small reactors, the reactor volume played a key role in promoting auto-rising temperature in the winter. Thermophilic temperature achieved in small ATAD reactors did not entirely depend on the heat release from biological activities during degrading organic matters in sludges, but was related to the ambient temperature. The ratios of surface area-to-effective volume less than 2.0 had less impact on the auto-rising temperature of an ATAD reactor. The influence of ambient temperature on the auto-rising reactor temperature decreased with increasing reactor volumes. High oxygen transfer efficiency had a significant influence on the internal temperature rise in an ATAD system, indicating that improving the oxygen transfer efficiency of aeration devices was a key factor to achieve a higher removal rate of volatile solids (VS) during the ATAD process operation. Compared with aeration using cold air, hot air demonstrated a significant effect on maintaining the internal temperature (usually 4-5 °C higher). Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Okeme, Joseph O.; Saini, Amandeep; Yang, Congqiao; Zhu, Jiping; Smedes, Foppe; Klánová, Jana; Diamond, Miriam L.
2016-10-01
Polydimethylsiloxane (PDMS) has seen wide use as the stationary phase of gas chromatographic columns, a passive sampler in water, and recently as a personal exposure sampler, while styrene divinyl-benzene copolymer (XAD) has been used extensively as a passive air sampler outdoors and indoors. We have introduced PDMS and XAD-Pocket as new indoor passive air samplers (PASs). The XAD-Pocket was designed to maximize the surface area-to-volume ratio of XAD and to minimize obstruction of air flow by the sampler housing. Methods were developed to expedite the use of these PASs for measuring phthalates, novel brominated flame-retardants (NFRs) and polybrominated diphenyl ethers (PBDEs) indoors. Sampling rates, Rs, (m3 day-1), were measured during a 7-week calibration study. Variability within and between analyte groups was not statistically significant. As a result, generic values of 0.8 ± 0.4 and 0.5 ± 0.3 m3 day-1 dm-2 are recommended for PDMS and XAD-Pocket for a 50-day deployment time, respectively. PDMS has a higher uptake rate and is easier to use than XAD-Pocket.
ERIC Educational Resources Information Center
Calderon-Garciduenas, Lilian; Engle, Randall; Mora-Tiscareno, Antonieta; Styner, Martin; Gomez-Garza, Gilberto; Zhu, Hongtu; Jewells, Valerie; Torres-Jardon, Ricardo; Romero, Lina; Monroy-Acosta, Maria E.; Bryant, Christopher; Gonzalez-Gonzalez, Luis Oscar; Medina-Cortina, Humberto; D'Angiulli, Amedeo
2011-01-01
Exposure to severe air pollution produces neuroinflammation and structural brain alterations in children. We tested whether patterns of brain growth, cognitive deficits and white matter hyperintensities (WMH) are associated with exposures to severe air pollution. Baseline and 1 year follow-up measurements of global and regional brain MRI volumes,…
NASA Technical Reports Server (NTRS)
Sadler, S. G.
1972-01-01
A mathematical model and computer program was implemented to study the main rotor free wake geometry effects on helicopter rotor blade air loads and response in steady maneuvers. Volume 1 (NASA CR-2110) contains the theoretical formulation and analysis of results. Volume 2 contains the computer program listing.
Increasing the Air Charge and Scavenging the Clearance Volume of a Compression-Ignition Engine
NASA Technical Reports Server (NTRS)
Spanogle, J A; Hicks, C W; Foster, H H
1934-01-01
The object of the investigation presented in this report was to determine the effects of increasing the air charge and scavenging the clearance volume of a 4-stroke-cycle compression-ignition engine having a vertical-disk form combustion chamber. Boosting the inlet-air pressure with normal valve timing increased the indicated engine power in proportion to the additional air inducted and resulted in smoother engine operation with less combustion shock. Scavenging the clearance volume by using a valve overlap of 145 degrees and an inlet-air boost pressure of approximately 2 1/2 inches of mercury produced a net increase in performance for clear exhaust operation of 33 percent over that obtained with normal valve timing and the same boost pressure. The improved combustion characteristics result in lower specific fuel consumption, and a clearer exhaust.
Kerkhoff, M.J.; Lee, T.M.; Allen, E.R.; Lundgren, D.A.; Winefordner, J.D.
1985-01-01
A high-volume sampler fitted with a glass-fiber filter and backed by polyurethane foam (PUF) was employed to collect airborne particulate and gas-phase polycylic aromatic hydrocarbons (PAHs) in ambient air. Samples were collected from four sources representing a range of environmental conditions: gasoline engine exhaust, diesel engine exhaust, air near a heavily traveled interstate site, and air from a moderately polluted urban site. Spectral fingerprints of the unseparated particulate and gas-phase samples were obtained by constant energy synchronous luminescence spectroscopy (CESLS). Five major PAHs in the gas-phase extracts were characterized and estimated. The compatibility of a high-volume sampling method using polyurethane foam coupled with CESLS detection is explored for use as a screening technique for PAHs in ambient air. ?? 1985 American Chemical Society.
A travel mode comparison of commuters' exposures to air pollutants in Barcelona
NASA Astrophysics Data System (ADS)
de Nazelle, Audrey; Fruin, Scott; Westerdahl, Dane; Martinez, David; Ripoll, Anna; Kubesch, Nadine; Nieuwenhuijsen, Mark
2012-11-01
Daily commutes may contribute disproportionately to overall daily inhalations of urban air contaminants. Understanding factors that explain variability of exposures during travel, and especially differences across transportation modes, is essential to accurately assess health impacts of traffic emissions and to develop effective mitigating measures. We evaluated exposures and inhaled doses of air pollution and assessed factors that contributed to their variability in different travel modes in Barcelona. Black carbon (BC), ultrafine particles (UFP), carbon monoxide (CO), fine particle mass (PM2.5) and carbon dioxide (CO2) were measured and compared across walk, bike, bus, and car modes for a total of 172 trips made on two different round trip routes. On average, the car mode experienced highest concentrations for all contaminants. In pairwise t-tests between concurrent mode runs, statistically significant differences were found for cars compared to walking and biking. Car-to-walk or car-to-bike concentration ratios ranged from 1.3 for CO2 to 25 for CO and were 2-3 for PM2.5, BC, and UFP. In multivariate analyses, travel mode explained the greatest variability in travel exposures, from 8% for PM2.5 to 70% for CO. Different modal patterns emerged when estimating daily inhaled dose, with active commuters' two to three times greater total inhalation volume during travel producing about equal UFP and BC daily inhaled doses to car commuters and 33-50% higher UFP and BC doses compared to bus commuters. These findings, however, are specific to the bike and pedestrian lanes in this study being immediately adjacent to the roadways measured. Dedicated bike or pedestrian routes away from traffic would lead to lower active travel doses.
Field test and simulation evaluation of variable refrigerant flow systems performance
Lee, Je Hyeon; Im, Piljae; Song, Young-hak
2017-10-24
Our study aims to compare the performance of a Variable Refrigerant Flow (VRF) system with a Roof Top Unit, (RTU) and a variable-air-volume (VAV) system through field tests and energy simulations. The field test was conducted in as similar conditions as possible between the two systems, such as the installation and operating environments of heating, the ventilation and air conditioning (HVAC) system, including internal heat gain and outdoor conditions, including buildings to compare the performance of the two systems accurately. A VRF system and RTU were installed at the test building located in Oak Ridge, Tennessee, in the USA. Themore » same internal heat gain was generated at the same operating time of the two systems using lighting, electric heaters, and humidifiers inside the building. The HVAC system was alternately operated between cooling and heating operations to acquire energy performance data and to compare energy usage. Furthermore, an hourly building energy simulation model was developed with regard to the VRF system and RTU, and then the model was calibrated using actual measured data. Then, annual energy consumption of the two systems were compared and analyzed using the calibrated model. Moreover, additional analysis was conducted when the controlled discharge air temperature in the RTU was changed. The field test result showed that when energy consumptions of two systems were compared at the same outdoor conditions, using the weather-normalized model, the VRF system exhibited an energy reduction of approximately 17% during cooling operation and of approximately 74% during heating operations. A comparison on the annual energy consumption using simulations showed that the VRF system reduced energy consumption more than that of the RTU by 60%. Furthermore, when the discharge air temperature in the RTU was controlled according to the outdoor air temperature, energy consumption of the RTU was reduced by 6% in cooling operations and by 18% in heating operation. As a result, energy consumption of the VRF system was reduced by more than that of the RTU by 55% approximately.« less
Field test and simulation evaluation of variable refrigerant flow systems performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Je Hyeon; Im, Piljae; Song, Young-hak
Our study aims to compare the performance of a Variable Refrigerant Flow (VRF) system with a Roof Top Unit, (RTU) and a variable-air-volume (VAV) system through field tests and energy simulations. The field test was conducted in as similar conditions as possible between the two systems, such as the installation and operating environments of heating, the ventilation and air conditioning (HVAC) system, including internal heat gain and outdoor conditions, including buildings to compare the performance of the two systems accurately. A VRF system and RTU were installed at the test building located in Oak Ridge, Tennessee, in the USA. Themore » same internal heat gain was generated at the same operating time of the two systems using lighting, electric heaters, and humidifiers inside the building. The HVAC system was alternately operated between cooling and heating operations to acquire energy performance data and to compare energy usage. Furthermore, an hourly building energy simulation model was developed with regard to the VRF system and RTU, and then the model was calibrated using actual measured data. Then, annual energy consumption of the two systems were compared and analyzed using the calibrated model. Moreover, additional analysis was conducted when the controlled discharge air temperature in the RTU was changed. The field test result showed that when energy consumptions of two systems were compared at the same outdoor conditions, using the weather-normalized model, the VRF system exhibited an energy reduction of approximately 17% during cooling operation and of approximately 74% during heating operations. A comparison on the annual energy consumption using simulations showed that the VRF system reduced energy consumption more than that of the RTU by 60%. Furthermore, when the discharge air temperature in the RTU was controlled according to the outdoor air temperature, energy consumption of the RTU was reduced by 6% in cooling operations and by 18% in heating operation. As a result, energy consumption of the VRF system was reduced by more than that of the RTU by 55% approximately.« less
NASA Technical Reports Server (NTRS)
Oele, J. S.
1975-01-01
Chamber is designed to be airtight; it includes face mask for person to breathe outside air so that he does not disturb chamber environment. Chamber includes piston to vary air volume inside. Also included are two microphone transducers which record pressure information inside chamber.
Indoor air in schools and lung function of Austrian school children.
Wallner, Peter; Kundi, Michael; Moshammer, Hanns; Piegler, Kathrin; Hohenblum, Philipp; Scharf, Sigrid; Fröhlich, Marina; Damberger, Bernhard; Tappler, Peter; Hutter, Hans-Peter
2012-07-01
The Children's Environment and Health Action Plan for Europe (CEHAPE) of WHO focuses (inter alia) on improving indoor environments where children spend most of their time. At present, only little is known about air pollution in schools and its effect on the lung function of school children. Our project was set up as an Austrian contribution to CEHAPE. In a cross-sectional approach, differences in indoor pollution in nine elementary all-day schools were assessed and 34 of these pollutants were analyzed for a relationship with respiratory health determined by spirometry using a linear regression model. Overall 596 children (aged 6-10 years) were eligible for the study. Spirometry was performed in 433 children. Socio-economic status, area of living (urban/rural), and smoking at home were included in the model as potential confounders with school-related average concentration of air pollutants as the variable of primary interest. A negative association with flow volumes (MEF(75)) was found for formaldehyde in air samples, benzylbutylphthalate and the sum of polybrominated diphenylethers in school dust. FVC and FEV(1) were negatively associated with ethylbenzene and xylenes in air samples and tris(1,3-dichlor-2-propyl)-phosphate on particulates. Although, in general, the quality of school indoor air was not worse than that reported for homes, effects on the respiratory health of children cannot be excluded. A multi-faceted strategy to improve the school environment is needed.
Purging of working atmospheres inside freight containers.
Braconnier, Robert; Keller, François-Xavier
2015-06-01
This article focuses on prevention of possible exposure to chemical agents, when opening, entering, and stripping freight containers. The container purging process is investigated using tracer gas measurements and numerical airflow simulations. Three different container ventilation conditions are studied, namely natural, mixed mode, and forced ventilation. The tests conducted allow purging time variations to be quantified in relation to various factors such as container size, degree of filling, or type of load. Natural ventilation performance characteristics prove to be highly variable, depending on environmental conditions. Use of a mechanically supplied or extracted airflow under mixed mode and forced ventilation conditions enables purging to be significantly accelerated. Under mixed mode ventilation, extracting air from the end of the container furthest from the door ensures quicker purging than supplying fresh air to this area. Under forced ventilation, purging rate is proportional to the applied ventilation flow. Moreover, purging rate depends mainly on the location at which air is introduced: the most favourable position being above the container loading level. Many of the results obtained during this study can be generalized to other cases of purging air in a confined space by general ventilation, e.g. the significance of air inlet positioning or the advantage of generating high air velocities to maximize stirring within the volume. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Detection of deep stratospheric intrusions by cosmogenic 35S
Su, Lin; Shaheen, Robina; Fung, Jimmy C. H.; Thiemens, Mark H.
2016-01-01
The extent to which stratospheric intrusions on synoptic scales influence the tropospheric ozone (O3) levels remains poorly understood, because quantitative detection of stratospheric air has been challenging. Cosmogenic 35S mainly produced in the stratosphere has the potential to identify stratospheric air masses at ground level, but this approach has not yet been unambiguously shown. Here, we report unusually high 35S concentrations (7,390 atoms m−3; ∼16 times greater than annual average) in fine sulfate aerosols (aerodynamic diameter less than 0.95 µm) collected at a coastal site in southern California on May 3, 2014, when ground-level O3 mixing ratios at air quality monitoring stations across southern California (43 of 85) exceeded the recently revised US National Ambient Air Quality Standard (daily maximum 8-h average: 70 parts per billion by volume). The stratospheric origin of the significantly enhanced 35S level is supported by in situ measurements of air pollutants and meteorological variables, satellite observations, meteorological analysis, and box model calculations. The deep stratospheric intrusion event was driven by the coupling between midlatitude cyclones and Santa Ana winds, and it was responsible for the regional O3 pollution episode. These results provide direct field-based evidence that 35S is an additional sensitive and unambiguous tracer in detecting stratospheric air in the boundary layer and offer the potential for resolving the stratospheric influences on the tropospheric O3 level. PMID:27655890
AlTaan, S L; Mohammed, I; Said, D G; Dua, H S
2018-01-01
PurposeTo measure the pressure and volume of air required to create a big bubble (BB) in simulated deep anterior lamellar keratoplasty (DALK) in donor eyes and ascertain the bursting pressure of the BB.Patients and methodsTwenty-two human sclera-corneal discs were used. Air was injected into the corneal stroma to create a BB and the pressure measured by means of a pressure converter attached to the system via a side port. A special clamp was designed to prevent air leak from the periphery of the discs. The pressure at which air emerged in the corneal tissue; the bursting pressure measured after advancing the needle into the bubble cavity and injecting more air; the volume of air required to create a BB and the volume of the BB were ascertained.ResultsType-1 BB were achieved in 19 and type-2 BB in 3 eyes. The maximum pressure reached to create a BB was 96.25+/- 21.61 kpa; the mean type-1 intrabubble pressure was 10.16 +/- 3.65 kpa. The mean bursting pressure of a type-1 BB was 66.65 +/- 18.65 kpa, while that of a type-2 BB was 14.77 +/- 2.44 kpa. The volume of air required to create a type-1 BB was 0.54 ml and the volume of a type-1 BB was consistently 0.1 ml.ConclusionsDua's layer baring DALK can withstand high intraoperative pressures compared to Descemet's membrane baring DALK. The study suggests that it could be safe to undertake procedures such as DALK-triple with a type-1 BB but not with a type-2 BB.
Malka, Shachar; Hawkins, Michelle G; Jones, James H; Pascoe, Peter J; Kass, Philip H; Wisner, Erik R
2009-09-01
To determine the effects of body position on lung and air-sac volumes in anesthetized and spontaneously breathing red-tailed hawks (Buteo jamaicensis). 6 adult red-tailed hawks (sex unknown). A crossover study design was used for quantitative estimation of lung and air-sac volumes in anesthetized hawks in 3 body positions: dorsal, right lateral, and sternal recumbency. Lung volume, lung density, and air-sac volume were calculated from helical computed tomographic (CT) images by use of software designed for volumetric analysis of CT data. Effects of body position were compared by use of repeated-measures ANOVA and a paired Student t test. Results for all pairs of body positions were significantly different from each other. Mean +/- SD lung density was lowest when hawks were in sternal recumbency (-677 +/- 28 CT units), followed by right lateral (-647 +/- 23 CT units) and dorsal (-630 +/- 19 CT units) recumbency. Mean lung volume was largest in sternal recumbency (28.6 +/- 1.5 mL), followed by right lateral (27.6 +/- 1.7 mL) and dorsal (27.0 +/- 1.5 mL) recumbency. Mean partial air-sac volume was largest in sternal recumbency (27.0 +/- 19.3 mL), followed by right lateral (21.9 +/- 16.1 mL) and dorsal (19.3 +/- 16.9 mL) recumbency. In anesthetized red-tailed hawks, positioning in sternal recumbency resulted in the greatest lung and air-sac volumes and lowest lung density, compared with positioning in right lateral and dorsal recumbency. Additional studies are necessary to determine the physiologic effects of body position on the avian respiratory system.
Performance evaluation of radiant cooling system application on a university building in Indonesia
NASA Astrophysics Data System (ADS)
Satrio, Pujo; Sholahudin, S.; Nasruddin
2017-03-01
The paper describes a study developed to estimate the energy savings potential of a radiant cooling system installed in an institutional building in Indonesia. The simulations were carried out using IESVE to evaluate thermal performance and energy consumption The building model was calibrated using the measured data for the installed radiant system. Then this calibrated model was used to simulate the energy consumption and temperature distribution to determine the proportional energy savings and occupant comfort under different systems. The result was radiant cooling which integrated with a Dedicated Outside Air System (DOAS) could make 41,84% energy savings compared to the installed cooling system. The Computational Fluid Dynamics (CFD) simulation showed that a radiant system integrated with DOAS provides superior human comfort than a radiant system integrated with Variable Air Volume (VAV). Percentage People Dissatisfied was kept below 10% using the proposed system.
NASA Technical Reports Server (NTRS)
Oum, Tae Hoon (Editor); Bowen, Brent D. (Editor)
1998-01-01
This report (Volume 1) is comprised of 5 sessions of the Air Transport Research Group (ATRG) Conference held in Antwerp, Belgium, July 1998. The sessions contain 3-4 papers (presentations) each. The session numbers and their respective headings are: (1) Airline alliances; (2) Airline Competition and Market Structure; (4) Liberalization, Open Skies, and Policy Issues; (5) Yield Management and Other Models; and (11) Air Traffic Control (ATC) and Air Navigational Systems (ANS).
Comprehensive Monitoring Program: Air Quality Data Assessment Report for FY90. Volume 2. Version 3.1
1991-09-01
91311R01 If VERSION 3.10) VOLUME II Comm 2ND COPY COMPREHENSIVE MONITORING PROGRAM Contract Number DAAAI5-87-0095 AIR QUALITY DATA ASSESSMENT REPORT...MONITORING PROGRAM. FINAL AIR QUALITY DATA ASSESSMENT REPORT FOR FY90, VERSION 3.1 NONE 6. AUTHOR(S) 7. PERFORMING ORGANIZATION NAME(S) AND ADDRES.S(S) 8...RELEASE; DISTRIBUTION IS UNLIMITED 13. ABSTRACT (Maximum 200 words) THE OBJECTIVE OF THIS CMP IS TO: VERIFY AND EVALUATE POTENTIAL AIR QUALITY HEALTH
Characterization of air profiles impeded by plant canopies for a variable-rate air-assisted sprayer
USDA-ARS?s Scientific Manuscript database
The preferential design for variable-rate orchard and nursery sprayers relies on tree structure to control liquid and air flow rates. Demand for this advanced feature has been incremental as the public demand on reduction of pesticide use. A variable-rate, air assisted, five-port sprayer had been in...
DOT National Transportation Integrated Search
1974-02-01
The volume presents a detailed description of the subsystems that comprise the Satellite-Based Advanced Air Traffic Management System. Described in detail are the surveillance, navigation, communications, data processing, and airport subsystems. The ...
DOT National Transportation Integrated Search
1974-08-01
Volume 4 describes the automation requirements. A presentation of automation requirements is made for an advanced air traffic management system in terms of controller work force, computer resources, controller productivity, system manning, failure ef...
Supplementary Computer Generated Cueing to Enhance Air Traffic Controller Efficiency
2013-03-01
assess the complexity of air traffic control (Mogford, Guttman, Morrow, & Kopardekar, 1995; Laudeman, Shelden, Branstrom, & Brasil , 1998). Controllers...Behaviorial Sciences: Volume 1: Methodological Issues Volume 2: Statistical Issues, 1, 257. Laudeman, I. V., Shelden, S. G., Branstrom, R., & Brasil
DOT National Transportation Integrated Search
1974-02-01
The volume presents the results of the subsystem performance requirements study for an Advanced Air Traffic Management System (AATMS). The study determined surveillance and navigation subsystem requirements for terminal and enroute area operations. I...
FAA Rotorcraft Research, Engineering, and Development Bibliography, 1962-1988. Supplement
1989-03-01
fires, the aircraft engine was the major fire origin for twin- and single- engine air - craft. Only in single- engine aircraft was the instrument panel a...Certification Issues. The topics of Operational Requirements, Procedures, Air - worthiness and Engineering Capabilities are discussed. Volume II presents the...Issues. The topics of Operational Requirements, Procedures, Air - worthiness and Engineering Capabilities are discussed. Volume II presents the operator
Near-infrared spectroscopy (NIRS) as a tool to monitor exhaust air from poultry operations.
Druckenmüller, Katharina; Günther, Klaus; Elbers, Gereon
2018-07-15
Intensive poultry operation systems emit a considerable volume of inorganic and organic matter in the surrounding environment. Monitoring cleaning properties of exhaust air cleaning systems and to detect small but significant changes in emission characteristics during a fattening cycle is important for both emission and fattening process control. In the present study, we evaluated the potential of near-infrared spectroscopy (NIRS) combined with chemometric techniques as a monitoring tool of exhaust air from poultry operation systems. To generate a high-quality data set for evaluation, the exhaust air of two poultry houses was sampled by applying state-of-the-art filter sampling protocols. The two stables were identical except for one crucial difference, the presence or absence of an exhaust air cleaning system. In total, twenty-one exhaust air samples were collected at the two sites to monitor spectral differences caused by the cleaning device, and to follow changes in exhaust air characteristics during a fattening period. The total dust load was analyzed by gravimetric determination and included as a response variable in multivariate data analysis. The filter samples were directly measured with NIR spectroscopy. Principal component analysis (PCA), linear discriminant analysis (LDA), and factor analysis (FA) were effective in classifying the NIR exhaust air spectra according to fattening day and origin. The results indicate that the dust load and the composition of exhaust air (inorganic or organic matter) substantially influence the NIR spectral patterns. In conclusion, NIR spectroscopy as a tool is a promising and very rapid way to detect differences between exhaust air samples based on still not clearly defined circumstances triggered during a fattening period and the availability of an exhaust air cleaning system. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Keeping the Edge. Air Force Materiel Command Cold War Context (1945-1991). Volume 3: Index
2003-08-01
485 The Architects Collaborative (Harvard University) see Gropius , Walter , under Architects and Engineers, across the Department of Defense The...Sons (Newark, New Jersey) Volume II: 250 Graham, Anderson, Probst & White (Chicago) Volume II: 392, 455, 460, 461,475 Gropius , Walter ...models for Air Force research and development centers Gropius , Walter (The Architects Collaborative) see Architects and Engineers, across the
Numerical simulation of seismic wave propagation from land-excited large volume air-gun source
NASA Astrophysics Data System (ADS)
Cao, W.; Zhang, W.
2017-12-01
The land-excited large volume air-gun source can be used to study regional underground structures and to detect temporal velocity changes. The air-gun source is characterized by rich low frequency energy (from bubble oscillation, 2-8Hz) and high repeatability. It can be excited in rivers, reservoirs or man-made pool. Numerical simulation of the seismic wave propagation from the air-gun source helps to understand the energy partitioning and characteristics of the waveform records at stations. However, the effective energy recorded at a distance station is from the process of bubble oscillation, which can not be approximated by a single point source. We propose a method to simulate the seismic wave propagation from the land-excited large volume air-gun source by finite difference method. The process can be divided into three parts: bubble oscillation and source coupling, solid-fluid coupling and the propagation in the solid medium. For the first part, the wavelet of the bubble oscillation can be simulated by bubble model. We use wave injection method combining the bubble wavelet with elastic wave equation to achieve the source coupling. Then, the solid-fluid boundary condition is implemented along the water bottom. And the last part is the seismic wave propagation in the solid medium, which can be readily implemented by the finite difference method. Our method can get accuracy waveform of land-excited large volume air-gun source. Based on the above forward modeling technology, we analysis the effect of the excited P wave and the energy of converted S wave due to different water shapes. We study two land-excited large volume air-gun fields, one is Binchuan in Yunnan, and the other is Hutubi in Xinjiang. The station in Binchuan, Yunnan is located in a large irregular reservoir, the waveform records have a clear S wave. Nevertheless, the station in Hutubi, Xinjiang is located in a small man-made pool, the waveform records have very weak S wave. Better understanding of the characteristics of land-excited large volume air-gun can help to better use of the air-gun source.
Experimental Determination of Air Density Using a 1 kg Mass Comparator in Vacuum
NASA Astrophysics Data System (ADS)
Gläser, M.; Schwartz, R.; Mecke, M.
1991-01-01
The density of ambient air has been determined by a straightforward experimental method. The apparent masses of two artefacts having about the same mass and surface, but different well-known volumes, have been compared by using a 1 kg balance in vacuum and in air. The differences of apparent masses and volumes yield the air density with a relative uncertainty (1σ) of 5 × 10-5. From measurements made using a third artefact, surface sorption effects caused by the change between vacuum and air conditions gave a coefficient of about 0,2 μg cm-2.
An experimental study of geyser-like flows induced by a pressurized air pocket
NASA Astrophysics Data System (ADS)
Elayeb, I. S.; Leon, A.; Choi, Y.; Alnahit, A. O.
2015-12-01
Previous studies argues that the entrapment of pressurized air pockets within combined sewer systems can produce geyser flows, which is an oscillating jetting of a mixture of gas-liquid flows. To verify that pressurized air pockets can effectively produce geysers, laboratory experiments were conducted. However, past experiments were conducted in relatively small-scale apparatus (i.e. maximum φ2" vertical shaft). This study conducted a set of experiments in a larger apparatus. The experimental setup consists of an upstream head tank, a downstream head tank, a horizontal pipe (46.5ft long, φ6") and a vertical pipe (10ft long, φ6"). The initial condition for the experiments is constant flow discharge through the horizontal pipe. The experiments are initiated by injecting an air pocket with pre-determined volume and pressure at the upstream end of the horizontal pipe. The air pocket propagates through the horizontal pipe until it arrives to the vertical shaft, where it is released producing a geyser-like flow. Three flow rates in the horizontal pipe and three injected air pressures were tested. The variables measured were pressure at two locations in the horizontal pipe and two locations in the vertical pipe. High resolution videos at two regions in the vertical shaft were also recorded. To gain further insights in the physics of air-water interaction, the laboratory experiments were complemented with numerical simulations conducted using a commercial 3D CFD model, previously validated with experiments.
Bubble Detachment in Variable Gravity Under the Influence of a Non-Uniform Electric Field
NASA Technical Reports Server (NTRS)
Chang, Shinan; Herman, Cila; Iacona, Estelle
2002-01-01
The objective of the study reported in this paper is to investigate the effects of variable, reduced gravity on the formation and detachment behavior of individual air bubbles under the influence of a non-uniform electric field. For this purpose, variable gravity experiments were carried out in parabolic nights. The non-uniform electric field was generated by a spherical electrode and a plate electrode. The effect of the magnitude of the non-uniform electric field and gravity level on bubble formation, development and detachment at an orifice was investigated. An image processing code was developed that allows the measurement of bubble volume, dimensions and contact angle at detachment. The results of this research can be used to explore the possibility of enhancing boiling heat transfer in the variable and low gravity environments by substituting the buoyancy force with a force induced by the electric field. The results of experiments and measurements indicate that the level of gravity significantly affects bubble shape, size and frequency. The electric field magnitude also influences bubble detachment, however, its impact is not as profound as that of variable gravity for the range of electric field magnitudes investigated in the present study.
Air elimination capability in rapid infusion systems.
Zoremba, N; Gruenewald, C; Zoremba, M; Rossaint, R; Schaelte, G
2011-11-01
Pressure infusion devices are used in clinical practice to apply large volumes of fluid over a short period of time. Although air infusion is a major complication, they have limited capability to detect and remove air during pressure infusion. In this investigation, we tested the air elimination capabilities of the Fluido(®) (The Surgical Company), Level 1(®) (Level 1 Technologies Inc.) and Ranger(®) (Augustine Medical GmbH) pressure infusion devices. Measurements were undertaken with a crystalloid solution during an infusion flow of 100, 200, 400 and 800 ml.min(-1). Four different volumes of air (25, 50, 100 and 200 ml) were injected as boluses in one experimental setting, or infused continuously over the time needed to perfuse 2 l saline in the other setting. The perfusion fluid was collected in an airtight infusion bag and the amount of air obtained in the bag was measured. The delivered air volume was negligible and would not cause any significant air embolism in all experiments. In our experimental setting, we found, during high flow, an increased amount of uneliminated air in all used devices compared with lower perfusion flows. All tested devices had a good air elimination capability. The use of ultrasonic air detection coupled with an automatic shutoff is a significant safety improvement and can reliably prevent accidental air embolism at rapid flows. © 2011 The Authors. Anaesthesia © 2011 The Association of Anaesthetists of Great Britain and Ireland.
Mobile automatic metabolic analyzer
NASA Technical Reports Server (NTRS)
Bynum, B. G.; Currie, J. R.
1975-01-01
Two flexible pipes, attached to face mask, are connected to spirometers in mobile cart. Inhaled air volume is measured as it is drawn from one spirometer, and exhaled air volume is measured as it is breathed into second spirometer. Sensor is used to monitor heartbeat rate.
DOT National Transportation Integrated Search
1974-08-01
Volume 4 describes the automation requirements. A presentation of automation requirements is made for an advanced air traffic management system in terms of controller work for-e, computer resources, controller productivity, system manning, failure ef...
Concept for a Satellite-Based Advanced Air Traffic Management System : Volume 5. System Performance.
DOT National Transportation Integrated Search
1974-02-01
The volume presents the results of the performance evaluation of the Satellite-Based Advanced Air Traffic Management System (SAATMS). The evaluation established the capacity, safety, and delay performance of the system for the Los Angeles Basin termi...
Control of gill ventilation and air-breathing in the bowfin amia calva
Hedrick; Jones
1999-01-01
The purpose of this study was to investigate the roles of branchial and gas bladder reflex pathways in the control of gill ventilation and air-breathing in the bowfin Amia calva. We have previously determined that bowfin use two distinct air-breathing mechanisms to ventilate the gas bladder: type I air breaths are characterized by exhalation followed by inhalation, are stimulated by aquatic or aerial hypoxia and appear to regulate O2 gas exchange; type II air breaths are characterized by inhalation alone and possibly regulate gas bladder volume and buoyancy. In the present study, we test the hypotheses (1) that gill ventilation and type I air breaths are controlled by O2-sensitive chemoreceptors located in the branchial region, and (2) that type II air breaths are controlled by gas bladder mechanosensitive stretch receptors. Hypothesis 1 was tested by examining the effects of partial or complete branchial denervation of cranial nerves IX and X to the gill arches on gill ventilation frequency (fg) and the proportion of type I air breaths during normoxia and hypoxia; hypothesis II was tested by gas bladder inflation and deflation. Following complete bilateral branchial denervation, fg did not differ from that of sham-operated control fish; in addition, fg was not significantly affected by aquatic hypoxia in sham-operated or denervated fish. In sham-operated fish, aquatic hypoxia significantly increased overall air-breathing frequency (fab) and the percentage of type I breaths. In fish with complete IX-X branchial denervation, fab was also significantly increased during aquatic hypoxia, but there were equal percentages of type I and type II air breaths. Branchial denervation did not affect the frequency of type I air breaths during aquatic hypoxia. Gas bladder deflation via an indwelling catheter resulted in type II breaths almost exclusively; furthermore, fab was significantly correlated with the volume removed from the gas bladder, suggesting a volume-regulating function for type II air breaths. These results indicate that chronic (3-4 weeks) branchial denervation does not significantly affect fg or type I air-breathing responses to aquatic hypoxia. Because type I air-breathing responses to aquatic hypoxia persist after IX-X cranial nerve denervation, O2-sensitive chemoreceptors that regulate air-breathing may be carried in other afferent pathways, such as the pseudobranch. Gas bladder deflation reflexly stimulates type II breaths, suggesting that gas bladder volume-sensitive stretch receptors control this particular air-breathing mechanism. It is likely that type II air breaths function to regulate buoyancy when gas bladder volume declines during the inter-breath interval.
NASA Technical Reports Server (NTRS)
Chameides, W. L.; Davis, D. D.; Gregory, G. L.; Sachse, G.; Torres, A. L.
1989-01-01
Simultaneous high-resolution measurements of O3, NO, CO, dew point temperature, and UV flux obtained during the NASA Global Tropospheric Experiment Chemical Instrumentation Test and Evaluation (GTE/CITE 1) spring 1984 airborne field exercise over the eastern North Pacific Ocean are analyzed. Mid-tropospheric CO, O3, and NO mixing ratios averaged about 120 parts per billion by volume (ppbv), 50 ppbv, and 10 parts per trillion by volume (pptv), respectively. Statistical analysis of the high-resolution data indicates the existence of two ozone sources, one related to the downward transport of ozone-rich air from the upper troposphere and stratosphere, and the other to the transport of ozone-rich air from the continents. Modeling calculations based on these average levels imply that, from the surface to about 8 km, photochemical reactions probably supplied a net sink of ozone to the region overlying the eastern North Pacific Ocean during the sampling period. However, because the NO levels measured during the flights were frequently at or near the detection limit of the instruments and because the results are very sensitive to the absolute NO levels and their temporal variability, the conclusion must be considered provisional.
Respiratory responses of vigorously exercising children to 0. 12 ppm ozone exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonnell, W.F. 3d.; Chapman, R.S.; Leigh, M.W.
1985-10-01
Changes in respiratory function have been suggested for children exposed to less than 0.12 ppm ozone (O3) while engaged in normal activities. Because the results of these studies have been confounded by other variables, such as temperature or the presence of other pollutants or have been questioned as to the adequacy of exposure measurements, the authors determined the acute response of children exposed to 0.12 ppm O3 in a controlled chamber environment. Twenty-three white males 8 to 11 yr of age were exposed once to clean air and once to 0.12 ppm O3 in random order. Exposures were for 2.5more » h and included 2 h of intermittent heavy exercise. Measures of forced expiratory volume in one second (FEV1) and the symptom cough were determined prior to and after each exposure. A significant decline in FEV1 was found after the O3 exposure compared to the air exposure, and it appeared to persist for 16 to 20 h. No significant increase in cough was found due to O3 exposure. Forced vital capacity, specific airways resistance, respiratory frequency, tidal volume, and other symptoms were measured in a secondary exploratory analysis of this study.« less
Moser, C; Opitz, I; Zhai, W; Rousson, V; Russi, E W; Weder, W; Lardinois, D
2008-10-01
Prolonged air leak is reported in up to 50% of patients after lung volume reduction surgery. The effect of an autologous fibrin sealant on the intensity and duration of air leak and on the time to chest drain removal after lung volume reduction surgery was investigated in a randomized prospective clinical trial. Twenty-five patients underwent bilateral thoracoscopic lung volume reduction surgery. In each patient, an autologous fibrin sealant was applied along the staple lines on one side, whereas no additional measure was taken on the other side. Randomization of treatment was performed at the end of the resection on the first side. Air leak was assessed semiquantitatively by use of a severity score (0 = no leak; 4 = continuous severe leak) by two investigators blinded to the treatment. Mean value of the total severity scores for the first 48 hours postoperative was significantly lower in the treated group (4.7 +/- 7.7) than in the control group (16.0 +/- 10.1) (P < .001), independently of the length of the resection. Prolonged air leak and mean duration of drainage were also significantly reduced after application of the sealant (4.5% and 2.8 +/- 1.9 days versus 31.8% and 5.9 +/- 2.9 days) (P = .03 and P < .001). Autologous fibrin sealant for reinforcement of the staple lines after lung volume reduction surgery significantly reduces prolonged air leak and duration of chest tube drainage.
Variable volume combustor with a conical liner support
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Thomas Edward; McConnaughhay, Johnie Franklin; Keener, Chrisophter Paul
The present application provides a variable volume combustor for use with a gas turbine engine. The variable volume combustor may include a liner, a number of micro-mixer fuel nozzles positioned within the liner, and a conical liner support supporting the liner.
Du, Yiping P; Jin, Zhaoyang
2009-10-01
To develop a robust algorithm for tissue-air segmentation in magnetic resonance imaging (MRI) using the statistics of phase and magnitude of the images. A multivariate measure based on the statistics of phase and magnitude was constructed for tissue-air volume segmentation. The standard deviation of first-order phase difference and the standard deviation of magnitude were calculated in a 3 x 3 x 3 kernel in the image domain. To improve differentiation accuracy, the uniformity of phase distribution in the kernel was also calculated and linear background phase introduced by field inhomogeneity was corrected. The effectiveness of the proposed volume segmentation technique was compared to a conventional approach that uses the magnitude data alone. The proposed algorithm was shown to be more effective and robust in volume segmentation in both synthetic phantom and susceptibility-weighted images of human brain. Using our proposed volume segmentation method, veins in the peripheral regions of the brain were well depicted in the minimum-intensity projection of the susceptibility-weighted images. Using the additional statistics of phase, tissue-air volume segmentation can be substantially improved compared to that using the statistics of magnitude data alone. (c) 2009 Wiley-Liss, Inc.
Humidity Testing for Human Rated Spacecraft
NASA Technical Reports Server (NTRS)
Johnson, Gary B.
2009-01-01
Determination that equipment can operate in and survive exposure to the humidity environments unique to human rated spacecraft presents widely varying challenges. Equipment may need to operate in habitable volumes where the atmosphere contains perspiration, exhalation, and residual moisture. Equipment located outside the pressurized volumes may be exposed to repetitive diurnal cycles that may result in moisture absorption and/or condensation. Equipment may be thermally affected by conduction to coldplate or structure, by forced or ambient air convection (hot/cold or wet/dry), or by radiation to space through windows or hatches. The equipment s on/off state also contributes to the equipment s susceptibility to humidity. Like-equipment is sometimes used in more than one location and under varying operational modes. Due to these challenges, developing a test scenario that bounds all physical, environmental and operational modes for both pressurized and unpressurized volumes requires an integrated assessment to determine the "worst-case combined conditions." Such an assessment was performed for the Constellation program, considering all of the aforementioned variables; and a test profile was developed based on approximately 300 variable combinations. The test profile has been vetted by several subject matter experts and partially validated by testing. Final testing to determine the efficacy of the test profile on actual space hardware is in the planning stages. When validation is completed, the test profile will be formally incorporated into NASA document CxP 30036, "Constellation Environmental Qualification and Acceptance Testing Requirements (CEQATR)."
DOT National Transportation Integrated Search
1974-08-01
Volume 4 describes the automation requirements. A presentation of automation requirements is made for an advanced air traffic management system in terms of controller work for-e, computer resources, controller productivity, system manning, failure ef...
DOT National Transportation Integrated Search
1973-02-01
The volume provides a functional description and specification for the Satellite-Based Advanced Air Traffic Management System. The system description is presented in terms of the surveillance, navigation, and communications functions along with the a...
AIR QUALITY CRITERIA FOR PARTICULATE MATTER, VOLUMES I-III
There is no abstract available for these documents. If further information is requested, please refer to the bibliographic citation and contact the Technical Information Staff at the number listed below.
Software for an experimental air-ground data link : volume 1. functional description and flowcharts.
DOT National Transportation Integrated Search
1975-10-01
This report documents the complete software system developed for the Experimental Data Link System which was implementd for flight test during the Air-Ground Data Link Development Program. The software development is presented in three volumes as fol...
DOT National Transportation Integrated Search
1974-02-01
The volume presents a description of how the Satellite-Based Advanced Air Traffic Management System (SAATMS) operates and a qualitative assessment of the system. The operational description includes the services, functions, and tasks performed by the...
AIRS Data Subsetting Service at the Goddard Earth Sciences (GES) DISC/DAAC
NASA Technical Reports Server (NTRS)
Vicente, Gilberto A.; Qin, Jianchun; Li, Jason; Gerasimov, Irina; Savtchenko, Andrey
2004-01-01
The AIRS mission, as a combination of the Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU) and the Humidity Sounder for Brazil (HSB), brings climate research and weather prediction into 21st century. From NASA' Aqua spacecraft, the AIRS/AMSU/HSB instruments measure humidity, temperature, cloud properties and the amounts of greenhouse gases. The AIRS also reveals land and sea- surface temperatures. Measurements from these three instruments are analyzed . jointly to filter out the effects of clouds from the IR data in order to derive clear-column air-temperature profiles and surface temperatures with high vertical resolution and accuracy. Together, they constitute an advanced operational sounding data system that have contributed to improve global modeling efforts and numerical weather prediction; enhance studies of the global energy and water cycles, the effects of greenhouse gases, and atmosphere-surface interactions; and facilitate monitoring of climate variations and trends. The high data volume generated by the AIRS/AMSU/HSB instruments and the complexity of its data format (Hierarchical Data Format, HDF) are barriers to AIRS data use. Although many researchers are interested in only a fraction of the data they receive or request, they are forced to run their algorithms on a much larger data set to extract the information of interest. In order to better server its users, the GES DISC/DAAC, provider of long-term archives and distribution services as well science support for the AIRS/AMSU/HSB data products, has developed various tools for performing channels, variables, parameter, spatial and derived products subsetting, resampling and reformatting operations. This presentation mainly describes the web-enabled subsetting services currently available at the GES DISC/DAAC that provide subsetting functions for all the Level 1B and Level 2 data products from the AIRS/AMSU/HSB instruments.
Bunegin, L; Wahl, D; Albin, M S
1994-03-01
Cerebral embolism has been implicated in the development of cognitive and neurological deficits following bypass surgery. This study proposes methodology for estimating cerebral air embolus volume using transcranial Doppler sonography. Transcranial Doppler audio signals of air bubbles in the middle cerebral artery obtained from in vivo experiments were subjected to a fast-Fourier transform analysis. Audio segments when no air was present as well as artifact resulting from electrocautery and sensor movement were also subjected to fast-Fourier transform analysis. Spectra were compared, and frequency and power differences were noted and used for development of audio band-pass filters for isolation of frequencies associated with air emboli. In a bench model of the middle cerebral artery circulation, repetitive injections of various air volumes between 0.5 and 500 microL were made. Transcranial Doppler audio output was band-pass filtered, acquired digitally, then subjected to a fast-Fourier transform power spectrum analysis and power spectrum integration. A linear least-squares correlation was performed on the data. Fast-Fourier transform analysis of audio segments indicated that frequencies between 250 and 500 Hz are consistently dominant in the spectrum when air emboli are present. Background frequencies appear to be below 240 Hz, and artifact resulting from sensor movement and electrocautery appears to be below 300 Hz. Data from the middle cerebral artery model filtered through a 307- to 450-Hz band-pass filter yielded a linear relation between emboli volume and the integrated value of the power spectrum near 40 microL. Detection of emboli less than 0.5 microL was inconsistent, and embolus volumes greater than 40 microL were indistinguishable from one another. The preliminary technique described in this study may represent a starting point from which automated detection and volume estimation of cerebral emboli might be approached.
Leung, Lucullus H.T.; Yu, Peter K.N.
2013-01-01
A new version of progressive resolution optimizer (PRO) with an option of air cavity correction has been implemented for RapidArc volumetric‐modulated arc therapy (RA). The purpose of this study was to compare the performance of this new PRO with the use of air cavity correction option (PRO10_air) against the one without the use of the air cavity correction option (PRO10_no‐air) for RapidArc planning in targets with low‐density media of different sizes and complexities. The performance of PRO10_no‐air and PRO10_air was initially compared using single‐arc plans created for four different simple heterogeneous phantoms with virtual targets and organs at risk. Multiple‐arc planning of 12 real patients having nasopharyngeal carcinomas (NPC) and ten patients having non‐small cell lung cancer (NSCLC) were then performed using the above two options for further comparison. Dose calculations were performed using both the Acuros XB (AXB) algorithm with the dose to medium option and the analytical anisotropic algorithm (AAA). The effect of using intermediate dose option after the first optimization cycle in PRO10_air and PRO10_no‐air was also investigated and compared. Plans were evaluated and compared using target dose coverage, critical organ sparing, conformity index, and dose homogeneity index. For NSCLC cases or cases for which large volumes of low‐density media were present in or adjacent to the target volume, the use of the air cavity correction option in PROIO was shown to be beneficial. For NPC cases or cases for which small volumes of both low‐ and high‐density media existed in the target volume, the use of air cavity correction in PRO10 did not improve the plan quality. Based on the AXB dose calculation results, the use of PRO10_air could produce up to 18% less coverage to the bony structures of the planning target volumes for NPC cases. When the intermediate dose option in PRO10 was used, there was negligible difference observed in plan quality between optimizations with and without using the air cavity correction option. PACS number: 87.55.D‐, 87.55.de, 87.56.N‐
A longitudinal study of mortality and air pollution for São Paulo, Brazil.
Botter, Denise A; Jørgensen, Bent; Peres, Antonieta A Q
2002-09-01
We study the effects of various air-pollution variables on the daily death counts for people over 65 years in São Paulo, Brazil, from 1991 to 1993, controlling for meteorological variables. We use a state space model where the air-pollution variables enter via the latent process, and the meteorological variables via the observation equation. The latent process represents the potential mortality due to air pollution, and is estimated by Kalman filter techniques. The effect of air pollution on mortality is found to be a function of the variation in the sulphur dioxide level for the previous 3 days, whereas the other air-pollution variables (total suspended particulates, nitrogen dioxide, carbon monoxide, ozone) are not significant when sulphur dioxide is in the equation. There are significant effects of humidity and up to lag 3 of temperature, and a significant seasonal variation.
1989-04-21
kift rIn FAA AIR TRAFFIC CONTROL OPERATIONS CONCEPTS V olum e V iI:.................... ATCT Tower Controllers AmELECTE JUL 2 11989 21 April 1989 A...01 022.3013209-87-B 11 a FAA AIR TRAFFIC CONTROL OPERATIONS CONCEPTS VOLUME VII: ATCT TOWER CONTROLLERS CDRL Bl 12, VOL. VII CONTRACT DTF-AO1-85-Y...INCORPORATED 7150 Campus Drive, Suite 100 Colorado Springs, CO 80920 (719) 590-5100 DOT/FAA/AP-87-0i (VOL#7) 21 April 1989 FAA AIR TRAFFIC CONTROL OPERATIONS
Cost Model/Data Base Catalog Non-DoD/Academic Survey. Volume 1. Project Summary
1988-10-30
presented in two volumes: Volume 1- Project Summary, and L .JD Volume 2- Final Data Base. J Accesion - For NTIS C R A& Disiji( .. . U, L)~ .6I...218 47I I I I I I I I Exhibit 111-3. COMPLETE CATALOG BREAKOUT I MANAGEMENT CONSULTING & RESEARCH, INC. j 111-6 I IE-I Iu 0 HE-4 X C.) E- Ix UI.n 111...College/EDCCAir University Maxwell Air Force Base, AL 36112 2. AD (Armament Division) Department of the Air Force Armament Division/(subdiv code
Ostebee, Heath Michael; Ziminsky, Willy Steve; Johnson, Thomas Edward; Keener, Christopher Paul
2017-01-17
The present application provides a variable volume combustor for use with a gas turbine engine. The variable volume combustor may include a liner, a number of micro-mixer fuel nozzles positioned within the liner, and a linear actuator so as to maneuver the micro-mixer fuel nozzles axially along the liner.
Using Isotope Ratio Infrared Spectrometer to determine δ13C and δ18O of carbonate samples
NASA Astrophysics Data System (ADS)
Smajgl, Danijela; Stöbener, Nils; Mandic, Magda
2017-04-01
The isotopic composition of calcifying organisms is a key tool for reconstruction past seawater temperature and water chemistry. Therefore stable carbon and oxygen isotopes (δ13C and δ18O) in carbonates have been widely used for reconstruction of paleoenvironments. Precise and accurate determination of isotopic composition of carbon (13C) and oxygen (18O) from carbonate sample with proper referencing and data evaluation algorithm presents a challenge for scientists. Mass spectrometry was the only widely used technique for this kind of analysis, but recent advances make laser based spectroscopy a viable alternative. The Thermo Scientific Delta Ray Isotope Ratio Infrared Spectrometer (IRIS) analyzer with the Universal Reference Interface (URI) Connect is one of those alternatives and with TELEDYNE Cetac ASX-7100 autosampler extends the traditional offerings with a system of high precision and throughput of samples. To establish precision and accuracy of measurements and also to develop optimal sample preparation method for measurements with Delta Ray IRIS and URI Connect, IAEA reference materials were used. Preparation is similar to a Gas Bench II method. Carbonate material is added into the vials, flushed with CO2 free synthetic air and acidified with few droplets of 104% H3PO4. Sample amount used for analysis can be as low as 200 μg. Samples are measured after acidification and equilibration time of one hour at 70°C. The CO2 gas generated by reaction is flushed into the variable volume inside the URI Connect through the Nafion based built-in water trap. For this step, carrier gas (CO2 free air) is used to flush the gas from the vial into the variable volume with a maximum volume of 100 ml. A small amount of the sample is then used for automatic concentration determination present in the variable volume. The Thermo Scientific Qtegra Software automatically adjusts any additional dilution of the sample to achieve the desired concentration (usually 400 ppm) in the analyzer. As part of the workflow, reference gas measurements are regularly measured at the same concentration as the sample to allow for automatic drift and linearity correction. With described sample preparation and measurement method, samples are measured with standard deviation less than 0.1‰ δ13C and δ18O, respectively and accuracy of <0.01‰. The system can measure up to 100 samples per day. Equivalent of about 80 µg of pure CO2 gas is needed to complete an analysis. Due to it's small weight and robustness, sample analysis can be performed in the field. Applying new technology of Isotope Ratio Infrared Spectrometers in environmental and paleoenvironmental research can extend the knowledge of complex seawater history and CO2 cycle.
Wyoming Low-Volume Roads Traffic Volume Estimation
DOT National Transportation Integrated Search
2015-10-01
Low-volume roads are excluded from regular traffic counts except on a need to know basis. But needs for traffic volume data on low-volume roads in road infrastructure management, safety, and air quality analysis have necessitated regular traffic volu...
Llop, Jordi; Gil, Emilio; Gallart, Montserrat; Contador, Felipe; Ercilla, Mireia
2016-03-01
Hand-held-trolley sprayers have recently been promoted to improve spray application techniques in greenhouses in south-eastern Spain. However, certain aspects remain to be improved. A modified hand-held-trolley sprayer was evaluated under two different canopy conditions (high and low canopy density) and with several sprayer settings (nozzle type, air assistance and spray volume). In this study, the deposition, coverage and uniformity of distribution of the spray on the canopy have been assessed. The deposition on leaves was significantly higher when flat-fan nozzles and air assistance were used at both high and low spray volumes. No differences were detected between the reference system at a high spray volume and the modified trolley at a low spray volume. Flat-fan nozzles with air assistance increased penetrability into the canopy. Air assistance and flat-fan nozzles allow volume rates to be reduced while maintaining or improving spray quality distribution. The working parameters of hand-held sprayers must be considered to reduce environmental risk and increase the efficacy of the spraying process. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Air Force Civil Engineer, Volume 12, Number 2, 2004
2004-01-01
Volume 12 • No. 2 • 2004 CIVIL ENGINEERAir Force Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection...Section: USAF Facility Energy Management Program. (Air Force Civil Engineer, Volume 12 , Number 02, 2004) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12 . DISTRIBUTION/AVAILABILITY STATEMENT
Air Force Civil Engineer, Volume 12, Number 1, 2004
2004-01-01
Building the ARRK Volume 12 • No. 1 • 2004 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of...Air Force Civil Engineer, Volume 12 , Number 01, 2004) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12 . DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution
Comparison between Hydrogen, Methane and Ethylene Fuels in a 3-D Scramjet at Mach 8
2016-06-24
characteristics in air. The disadvantage of hydrogen is its low density, which is a particular problem for small vehicles with significant internal...characteristics in air. The disadvantage of hydrogen is its low density, which is a particular problem for small vehicles with significant internal volume...The low energy per unit volume of gaseous hydrogen, however, is a significant problem for small vehicles with internal volume constraints, in addition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2001-12-01
This case study was prepared by participants in the Laboratories for the 21st Century program, a joint endeavor of the U.S. Environmental Protection Agency and the U.S. Department of Energy's Federal Energy Management Program. The goal of this program is to foster greater energy efficiency in new laboratory buildings for both the public and the private sectors. Retrofits of existing laboratories are also encouraged. The energy-efficient features of the laboratories in the Fred Hutchinson Cancer Research Center complex in Seattle, Washington, include extensive use of efficient lighting, variable-air-volume controls, variable-speed drives, motion sensors, and high-efficiency chillers and motors. With aboutmore » 532,000 gross square feet, the complex is estimated to use 33% less electrical energy than most traditional research facilities consume because of its energy-efficient design and features.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2002-03-01
This case study was prepared by participants in the Laboratories for the 21st Century program, a joint endeavor of the U.S. Environmental Protection Agency and the U.S. Department of Energy's Federal Energy Management Program. The goal of this program is to foster greater energy efficiency in new laboratory buildings for both the public and the private sectors. Retrofits of existing laboratories are also encouraged. The energy-efficient features of the laboratories in the Fred Hutchinson Cancer Research Center complex in Seattle, Washington, include extensive use of efficient lighting, variable-air-volume controls, variable-speed drives, motion sensors, and high-efficiency chillers and motors. With aboutmore » 532,000 gross square feet, the complex is estimated to use 33% less electrical energy than most traditional research facilities consume because of its energy-efficient design and features.« less
Development of Probabilistic Rigid Pavement Design Methodologies for Military Airfields.
1983-12-01
4A161102AT22, Task AO, Work Unit 009, "Methodology for Considering Material Variability in Pavement Design." OCE Project Monitor was Mr. S. S. Gillespie. The...PREFACE. .. ............................. VOLUME 1: STATE OF THE ART VARIABILITY OF AIRFIELD PAVEMENT MATERIALS VOLUME 11: MATHEMATICAL FORMULATION OF...VOLUME IV: PROBABILISTIC ANALYSIS OF RIGID AIRFIELD DESIGN BY ELASTIC LAYERED THEORY VOLUME I STATE OF THE ART VARIABILITY OF AIRFIELD PAVEMENT MATERIALS
NASA Technical Reports Server (NTRS)
Skorobatckyi, M.; Cosgrove, D. V.; Meng, P. R.; Kempke, E. R.
1976-01-01
A carbureted four cylinder air cooled 0-320 DIAD Lycoming aircraft engine was tested to establish the effects of air temperature and humidity at various fuel-air ratios on the exhaust emissions on a per-mode basis. The test conditions included carburetor lean-out at air temperatures of 50, 59, 80, and 100 F at relative humidities of 0, 30, 60, and 80 percent. Temperature-humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased. Even at a fixed fuel-air ratio, the HC emissions increase and the NOx emissions decrease at the higher values of air temperature and humidity. Volume II contains the data taken at each of the individual test points.
Poca, Maria A; Martínez-Ricarte, Francisco-Ramon; Gándara, Dario F; Coscojuela, Pilar; Martínez-Sáez, Elena; Sahuquillo, Juan
2017-10-01
Stereotactic biopsy is a minimally invasive technique that allows brain tissue samples to be obtained with low risk. Classically, different techniques have been used to identify the biopsy site after surgery. To describe a technique to identify the precise location of the target in the postoperative CT scan using the injection of a low volume of air into the biopsy cannula. Seventy-five biopsies were performed in 65 adults and 10 children (40 males and 35 females, median age 51 years). Frame-based biopsy was performed in 46 patients, while frameless biopsy was performed in the remaining 29 patients. In both systems, after brain specimens had been collected and with the biopsy needle tip in the center of the target, a small volume of air (median 0.7 cm 3 ) was injected into the site. A follow-up CT scan was performed in all patients. Intracranial air in the selected target was present in 69 patients (92%). No air was observed in two patients (air volume administered in these 2 cases was below 0.7 cm 3 ), while in the remaining four patients blood content was observed in the target. The diagnostic yield in this series was 97.3%. No complications were found to be associated with intracranial air injection in any of the 75 patients who underwent this procedure. The air-injection maneuver proposed for use in stereotactic biopsies of intracranial mass lesions is a safe and reliable technique that allows the exact biopsy site to be located without any related complications.
Code of Federal Regulations, 2014 CFR
2014-07-01
... solvent/air interface, the maximum volume of parts that can be cleaned at one time. In most cases, the cleaning capacity is equal to the volume (length times width times height) of the cleaning chamber. Cold... designed to be easily opened and closed without disturbing the vapor zone. Air disturbances include, but...
Air Pollution Translations: A Bibliography with Abstracts - Volume 2.
ERIC Educational Resources Information Center
National Air Pollution Control Administration (DHEW), Raleigh, NC.
This volume is the second in a series of compilations presenting abstracts and indexes of translations of technical air pollution literature. The 444 entries are grouped into 12 subject categories: General; Emission Sources; Atmospheric Interaction; Measurement Methods; Control Methods; Effects--Human Health; Effects--Plants and Livestock;…
INTEGRATED AIR POLLUTION CONTROL SYSTEM VERSION 5.0 - VOLUME 2: TECHNICAL DOCUMENTATION
The three volume report and two diskettes document the Integrated Air Pollution Control System (IAPCS), developed for the U.S. EPA to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, an eq...
INTEGRATED AIR POLLUTION CONTROL SYSTEM VERSION 5.0 - VOLUME 3: PROGRAMMER'S MAINTENANCE MANUAL
The three volume report and two diskettes document the Integrated Air Pollution Control System (IAPCS), developed for the U.S. EPA to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, an eq...
INTEGRATED AIR POLLUTION CONTROL SYSTEM VERSION 5.0 - VOLUME 1: USER'S GUIDE
The three volume report and two diskettes document the Integrated Air Pollution Control System (IAPCS), developed for the U.S. EPA to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, an eq...
Air Pollution. Part A: Analysis.
ERIC Educational Resources Information Center
Ledbetter, Joe O.
Two facets of the engineering control of air pollution (the analysis of possible problems and the application of effective controls) are covered in this two-volume text. Part A covers Analysis, and Part B, Prevention and Control. (This review is concerned with Part A only.) This volume deals with the terminology, methodology, and symptomatology…
40 CFR 86.1823-08 - Durability demonstration procedures for exhaust emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In... § 86.1801. Eligible small volume manufacturers or small volume test groups may optionally meet the...
40 CFR 86.1823-08 - Durability demonstration procedures for exhaust emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In... § 86.1801. Eligible small volume manufacturers or small volume test groups may optionally meet the...
AIR QUALITY CRITERIA FOR PARTICULATE MATTER, VOLUMES I-III, (EXTERNAL REVIEW DRAFT, 1995)
There is no abstract available for these documents.
If further information is requested, please refer to the bibliographic citation and contact the Technical Information Staff at the number listed above.
US EPA's National Dioxin Air Monitoring Network: Analytical ...
The U.S. EPA has established a National Dioxin Air Monitoring Network (NDAMN) to determine the temporal and geographical variability of atmospheric chlorinated dibenzo-p-dioxins (CDDs), furans (CDFs), and coplanar polychlorinated biphenyls (PCBs) at rural and non-impacted locations throughout the United States. Currently operating at 32 sampling stations, NDAMN has three primary purposes: (1) to determine the atmospheric levels and occurrences of dioxin-like compounds in rural and agricultural areas where livestock, poultry, and animal feed crops are grown; (2) to provide measurements of atmospheric levels in different geographic regions of the U.S.; and (3) to provide information regarding the long-range transport of dioxin-like compounds in air over the U.S. Designed in 1997, NDAMN has been implemented in phases, with the first phase consisting of 9 monitoring stations and is achieving congener-specific detection lmits of 0.1 fg/m3 for 2,3,7,8-TCDD and 10 fg/m3 for OCDD. With respect to coplanar PCBs, the detection limits are generally higher due to the presence of background levels in the air during the preparation and processing of the samples. Achieving these extremely low levels of detection present a host of analytical issues. Among these issues are the methods used to establish ultra-trace detection limits, measures to ensure against and monitor for breakthrough of native analytes when sampling large volumes of air, and procedures for handling and e
Air pollution and fuel vapour induced changes in lung functions: are fuel handlers safe?
Chawla, Anuj; Lavania, A K
2008-01-01
Automobile exhaust derived air pollutants have become a major health hazard. Coupled with the inhalation of fuel vapour, as occurs in petrol station workers, this may lead to significant impairment of lung function. Spirometric lung functions were studied in 58 petrol station workers to examine this possibility. The forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), forced expiratory flow 25%-75% (FEF25-75) and peak expiratory flow (PEF) were recorded and analysed separately for smokers and non-smokers. The workers were divided into 5 groups for analysis of data based on the number of years of work in the petrol pumps. Outdoor air analysis was also carried out. The FVC, FEV1 and PEF declined significantly with increasing years of work in petrol stations in both smokers and non-smokers. Smoking as an independent variable was found to affect the FEV1 significantly but not FVC or PEF. The FEF25-75 was found to be the most affected spirometric value with a significant reduction with increasing years of work. Smoking as such did not affect it. Oxides of nitrogen (NOx), suspended particulate matter (SPM) and particulate matter less than 10 microns (PM10) in outdoor air were higher than the national ambient air quality standards. Exposure to automobile exhaust and fuel vapour impairs lung function in a time-dependent manner. Cigarette smoking appears to accelerate the decline.
Hazrati, Sadegh; Harrad, Stuart
2007-03-01
PUF disk passive air samplers are increasingly employed for monitoring of POPs in ambient air. In order to utilize them as quantitative sampling devices, a calibration experiment was conducted. Time integrated indoor air concentrations of PCBs and PBDEs were obtained from a low volume air sampler operated over a 50 d period alongside the PUF disk samplers in the same office microenvironment. Passive sampling rates for the fully-sheltered sampler design employed in our research were determined for the 51 PCB and 7 PBDE congeners detected in all calibration samples. These values varied from 0.57 to 1.55 m3 d(-1) for individual PCBs and from 1.1 to 1.9 m3 d(-1) for PBDEs. These values are appreciably lower than those reported elsewhere for different PUF disk sampler designs (e.g. partially sheltered) employed under different conditions (e.g. in outdoor air), and derived using different calibration experiment configurations. This suggests that sampling rates derived for a specific sampler configuration deployed under specific environmental conditions, should not be extrapolated to different sampler configurations. Furthermore, our observation of variable congener-specific sampling rates (consistent with other studies), implies that more research is required in order to understand fully the factors that influence sampling rates. Analysis of wipe samples taken from the inside of the sampler housing, revealed evidence that the housing surface scavenges particle bound PBDEs.
Frost Growth and Densification on a Flat Surface in Laminar Flow with Variable Humidity
NASA Technical Reports Server (NTRS)
Kandula, M.
2012-01-01
Experiments are performed concerning frost growth and densification in laminar flow over a flat surface under conditions of constant and variable humidity. The flat plate test specimen is made of aluminum-6031, and has dimensions of 0.3 mx0.3 mx6.35 mm. Results for the first variable humidity case are obtained for a plate temperature of 255.4 K, air velocity of 1.77 m/s, air temperature of 295.1 K, and a relative humidity continuously ranging from 81 to 54%. The second variable humidity test case corresponds to plate temperature of 255.4 K, air velocity of 2.44 m/s, air temperature of 291.8 K, and a relative humidity ranging from 66 to 59%. Results for the constant humidity case are obtained for a plate temperature of 263.7 K, air velocity of 1.7 m/s, air temperature of 295 K, and a relative humidity of 71.6 %. Comparisons of the data with the author's frost model extended to accommodate variable humidity suggest satisfactory agreement between the theory and the data for both constant and variable humidity.
NASA Astrophysics Data System (ADS)
Hittle, D. C.; Johnson, D. L.
1985-01-01
This report is one of a series on the development of heating, ventilating, and air-conditioning (HVAC) control systems that are simple, efficient, reliable, maintainable, and well-documented. This report identifies major problems associated with three currently used HVAC control systems. It also describes the development of a retrofit control system applicable to military buildings that will allow easy identification of component failures, facilitate repair, and minimize system failures. Evaluation of currently used controls showed that pneumatic temperature control equipment requires a very clean source of supply air and is also not very accurate. Pneumatic, rather than electronic, actuators should be used because they are cheaper and require less maintenance. Thermistor temperature detectors should not be used for HVAC applications because they require frequent calibration. It was found that enthalpy economy cycles cannot be used for control because the humidity sensors required for their use are prone to rapid drift, inaccurate, and hard to calibrate in the field. Performance of control systems greatly affects HVAC operating costs. Significant savings can be achieved if proportional-plus-integral control schemes are used. Use of the retrofit prototype control panel developed in this study on variable-air-volume systems should provide significant energy cost savings, improve comfort and reliability, and reduce maintenance costs.
NASA Technical Reports Server (NTRS)
Cliff, W. C.; Huffaker, R. M.; Dahm, W. K.; Thomson, J. A. L.; Lawrence, T. R.; Krause, M. C.; Wilson, D. J. (Inventor)
1976-01-01
A system for remotely measuring vertical and horizontal winds present in discrete volumes of air at selected locations above the ground is described. A laser beam is optically focused in range by a telescope, and the output beam is conically scanned at an angle about a vertical axis. The backscatter, or reflected light, from the ambient particulates in a volume of air, the focal volume, is detected for shifts in wavelength, and from these, horizontal and vertical wind components are computed.
Hardwick, Lisa M; Nail, Steven L; Jarman, James; Hasler, Kai; Hense, Thomas
2013-10-01
A scientific rationale is proposed for the establishment of acceptance criteria for leak rates in pharmaceutical freeze dryers. A method was developed to determine the quantity of air that could leak into any lyophilizer from the outside while still maintaining Class 100/Grade A microbial conditions. A lyophilizing product is assumed most vulnerable to microbial contamination during secondary drying, when mass transfer of water vapor from product to condenser is minimal. Using the void volume of the dryer, calculated from change in internal pressure when a known volume of air is introduced, and the potential maximum bioburden of the leaked air (based on measured values), calculations can determine the allowable leaked volume of air, the flow rate required to admit that volume in a given time frame, and the pressure rise that would result from the leak over a given testing period. For the dryers in this study, using worst-case air quality conditions, it was determined that a leak resulting in a pressure rise of 0.027 mbar over a 30 min period would allow the dryers to remain in secondary drying conditions for 62 h before the established action level of one colony forming unit for each cubic meter of air space would be reached. Copyright © 2013 Elsevier B.V. All rights reserved.
Modeling variable density turbulence in the wake of an air-entraining transom stern
NASA Astrophysics Data System (ADS)
Hendrickson, Kelli; Yue, Dick
2015-11-01
This work presents a priori testing of closure models for the incompressible highly-variable density turbulent (IHVDT) flows in the near wake region of a transom stern. This three-dimensional flow is comprised of convergent corner waves that originate from the body and collide on the ship center plane forming the ``rooster tail'' that then widens to form the divergent wave train. These violent free-surface flows and breaking waves are characterized by significant turbulent mass flux (TMF) at Atwood number At = (ρ2 -ρ1) / (ρ2 +ρ1) ~ 1 for which there is little guidance in turbulence closure modeling for the momentum and scalar transport along the wake. To whit, this work utilizes high-resolution simulations of the near wake of a canonical three-dimensional transom stern using conservative Volume-of-Fluid (cVOF), implicit Large Eddy Simulation (iLES), and Boundary Data Immersion Method (BDIM) to capture the turbulence and large scale air entrainment. Analysis of the simulation results across and along the wake for the TMF budget and turbulent anisotropy provide the physical basis of the development of multiphase turbulence closure models. Performance of isotropic and anisotropic turbulent mass flux closure models will be presented. Sponsored by the Office of Naval Research.
Street-service-level approach towards the calculation of CO emission in Malang City, Indonesia
NASA Astrophysics Data System (ADS)
Utomo, D. M.; Bakkara, A.; Sari, K. E.
2017-06-01
Malang has shown an annual vehicle growth of 15%. However, it is an umfortunate fact that 32% of 44 main streets are identified as having low service level, according to a local transportation ranking report. Such condition results in the decline of average vehicle velocity, approaching to the level of velocity (v) = 0; or in other words, street saturation degree could reach >1. The condition is not proportional to the increase of CO concentration in Malang in 2013-2014 as shown in the result of Evaluation of City Air Quality in 2014 which jumped from 3000 µm/m3 in 2013 to almost 5000 µm/m3 in 2014. This study was aimed at evaluating the extend to which street-service-level variables influence the production of CO emission from motorized transportation activity in an urban street in Malang. Gatot Subroto Street is chosen as a case study according to Multi Criteria Analysis. Furthermore, the street-service-level variables being evaluated include vehicle volume, velocity, side friction, effective roadside width and effective street width. Through a qualitative statistical analysis approach using a multiple linear regression analysis, the result suggests that vehicle volume and side friction are the most dominant factors (Xi) that significantly influence CO emission loads (Y).
The Challenge of Handling Big Data Sets in the Sensor Web
NASA Astrophysics Data System (ADS)
Autermann, Christian; Stasch, Christoph; Jirka, Simon
2016-04-01
More and more Sensor Web components are deployed in different domains such as hydrology, oceanography or air quality in order to make observation data accessible via the Web. However, besides variability of data formats and protocols in environmental applications, the fast growing volume of data with high temporal and spatial resolution is imposing new challenges for Sensor Web technologies when sharing observation data and metadata about sensors. Variability, volume and velocity are the core issues that are addressed by Big Data concepts and technologies. Most solutions in the geospatial sector focus on remote sensing and raster data, whereas big in-situ observation data sets relying on vector features require novel approaches. Hence, in order to deal with big data sets in infrastructures for observational data, the following questions need to be answered: 1. How can big heterogeneous spatio-temporal datasets be organized, managed, and provided to Sensor Web applications? 2. How can views on big data sets and derived information products be made accessible in the Sensor Web? 3. How can big observation data sets be processed efficiently? We illustrate these challenges with examples from the marine domain and outline how we address these challenges. We therefore show how big data approaches from mainstream IT can be re-used and applied to Sensor Web application scenarios.
Two stroke homogenous charge compression ignition engine with pulsed air supplier
Clarke, John M.
2003-08-05
A two stroke homogenous charge compression ignition engine includes a volume pulsed air supplier, such as a piston driven pump, for efficient scavenging. The usage of a homogenous charge tends to decrease emissions. The use of a volume pulsed air supplier in conjunction with conventional poppet type intake and exhaust valves results in a relatively efficient scavenging mode for the engine. The engine preferably includes features that permit valving event timing, air pulse event timing and injection event timing to be varied relative to engine crankshaft angle. The principle use of the invention lies in improving diesel engines.
Nonequilibrium air radiation (Nequair) program: User's manual
NASA Technical Reports Server (NTRS)
Park, C.
1985-01-01
A supplement to the data relating to the calculation of nonequilibrium radiation in flight regimes of aeroassisted orbital transfer vehicles contains the listings of the computer code NEQAIR (Nonequilibrium Air Radiation), its primary input data, and explanation of the user-supplied input variables. The user-supplied input variables are the thermodynamic variables of air at a given point, i.e., number densities of various chemical species, translational temperatures of heavy particles and electrons, and vibrational temperature. These thermodynamic variables do not necessarily have to be in thermodynamic equilibrium. The code calculates emission and absorption characteristics of air under these given conditions.
Equivalent Air Spring Suspension Model for Quarter-Passive Model of Passenger Vehicles.
Abid, Haider J; Chen, Jie; Nassar, Ameen A
2015-01-01
This paper investigates the GENSIS air spring suspension system equivalence to a passive suspension system. The SIMULINK simulation together with the OptiY optimization is used to obtain the air spring suspension model equivalent to passive suspension system, where the car body response difference from both systems with the same road profile inputs is used as the objective function for optimization (OptiY program). The parameters of air spring system such as initial pressure, volume of bag, length of surge pipe, diameter of surge pipe, and volume of reservoir are obtained from optimization. The simulation results show that the air spring suspension equivalent system can produce responses very close to the passive suspension system.
Influence of Social-economic Activities on Air Pollutants in Beijing, China
NASA Astrophysics Data System (ADS)
Li, Xiaolu; Zheng, Wenfeng; Yin, Lirong; Yin, Zhengtong; Song, Lihong; Tian, Xia
2017-08-01
With the rapid economic development, the serious air pollution in Beijing attracts increasing attention in the last decade. Seen as one whole complex and grey system, the causal relationship between the social development and the air pollution in Beijing has been quantitatively analyzed in this paper. By using the grey relational model, the aim of this study is to explore how the socio-economic and human activities affect on the air pollution in the city of Beijing, China. Four air pollutants, as the particulate matter with size 2.5 micrometers or less (PM2.5), particulate matter with size 10 micrometers or less (PM10), sulfur dioxide (SO2) and nitrogen dioxide (NOx), are selected as the indicators of air pollution. Additionally, fifteen socio-economic indicators are selected to account for the regional socio-economic characteristics (economy variables, energy consumption variables, pollution emissions variables, environment and construction activity variables). The results highlight that all variables are associated with the concentrations of the four selected air pollutants, but with notable differences between the air pollutants. Most of the socio-economic indicators, such as industrial output, total energy consumption are highly correlated with PM2.5, while PM10, SO2, and NOx present in general moderate correlations with most of the socio-economic variables. Contrary to other studies and reports this study reveals that vehicles and life energy do not have the strongest effect on air pollution in Beijing. This study provides useful information to reduce air pollution and support decision-making for sustainable development.
ERIC Educational Resources Information Center
Weisburd, Melvin I.
The Field Operations and Enforcement Manual for Air Pollution Control, Volume III, explains in detail the following: inspection procedures for specific sources, kraft pulp mills, animal rendering, steel mill furnaces, coking operations, petroleum refineries, chemical plants, non-ferrous smelting and refining, foundries, cement plants, aluminum…
40 CFR 86.1838-01 - Small-volume manufacturer certification procedures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1838-01 Small-volume manufacturer...
The mathematical model of radon-222 accumulation in underground mines
NASA Astrophysics Data System (ADS)
Klimshin, A.
2012-04-01
Necessity to control underground mine air radon level arises during building and operating mines as well as auto and railway tunnels including those for metros. Calculation of underground mine air radon level can be fulfilled for estimation of potential radon danger of area for underground structure building. In this work the new mathematical model of radon accumulation in underground mines has been suggested. It takes into consideration underground mine dimensions, air exchange factor and soils ability to emanate radon. The following assumptions have been taken for model development. It is assumed that underground mine is a cylinder of length L and of base area S. Due to ventilation atmosphere air of volume activity Catm, is coming in through one cylinder base and is going out of volume activity Cind from underground mine. Diffusion radon flux is coming in through side surfaces of underground mine. The sources of this flux are radium-226 atoms distributed evenly in rock. For simplification of the task it considered possible to disregard radon emanation by loosened rock and underground waters. As a result of solution of the radon diffusion equation the following expression for calculation of radon volume activity in underground space air has been got: 2·r0 ·λv ·Catm-·l·K0(r0/l)-+D-·K1(r0/l)·C0- Cind = 2·(λ+ λv)·r0 ·l·K0 (r0/l)+ D ·K1(r0/l) . The following designations are used in this expression: Kν(r) - the second genus modified Bessel's function, C0 - equilibrium radon volume activity in soil air, l - diffusion radon length in soil, D - radon diffusion factor, r0 - radius of underground tunnel, λv - factor of air exchange. Expression found may be used for calculation of the minimum factor of necessary air exchange for ensuring safe radon levels in underground spaces. With this worked out model expected levels of radon volume activity were calculated for air in the second metro line underground spaces in the city of Yekaterinburg, Russia.
The effect of undissolved air on isochoric freezing.
Perez, Pedro A; Preciado, Jessica; Carlson, Gary; DeLonzor, Russ; Rubinsky, Boris
2016-06-01
This study evaluates the effect of undissolved air on isochoric freezing of aqueous solutions. Isochoric freezing is concerned with freezing in a constant volume thermodynamic system. A possible advantage of the process is that it substantially reduces the percentage of ice in the system at every subzero temperature, relative to atmospheric freezing. At the pressures generated by isochoric freezing, or high pressure isobaric freezing, air cannot be considered an incompressible substance and the presence of undissolved air substantially increases the amount of ice that forms at any subfreezing temperature. This effect is measurable at air volumes as low as 1%. Therefore eliminating the undissolved air, or any separate gaseous phase, from the system is essential for retaining the properties of isochoric freezing. Copyright © 2016. Published by Elsevier Inc.
[Measurement of air leak volume after lung surgery using web-camera].
Onuki, Takamasa; Matsumoto, T
2005-05-01
Persistent air leak from the lung is one of the major complications after lung operations, especially in the latest thoracic surgery, where a shorter hospital stay tends to be necessary. However, air leak volume has been rarely measured clinically because accustomed tools of gas flow meter were types which needed contact measure, and those were unstable in long-term use and high cost. We tried to measure air leak volume as follows: (1) Bubble was made in the water seal part of a drain bag. (2) The movement of bubbles was recorded with a web-camera. (3) The data from the movie was analyzed by Linux computer on-line. We believe this method is clinically applicable as a routine work after lung surgery because of non-contact type of measurements, its stableness in long-term, easiness to be handled, and reasonable in cost.
NASA Technical Reports Server (NTRS)
Bowen, Brent (Editor); Gudmundsson, Sveinn (Editor); Oum, Tae (Editor)
2003-01-01
Volume 3 of the 2003 Air Transport Reserch Society (ATRS) World Conference includes papers on topics relevant to airline operations worldwide. Specific topics include: European Union and civil aviation regimens;simulating decision making in airline operations, passenger points of view on convenient airports; route monopolies and nonlinear pricing; cooperation among airports in Europe; fleet modernizaiton in Brazil;the effects of deregulation on the growth of air transportation in Europe and the United States.
High Frontier: The Journal for Space and Missile Professionals. Volume 7, Number 3, May 2011
2011-05-01
The Journal for Space & Missile Professionals. Volume 7, Number 3, May 2011 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Space Command (AFSPC...Ingols . . . . . . . . . . . . . . 9 Winning in Cyberspace: Air Force Space Command’s Approach to Defending the Air Force Network Ms. Jill Baker
Large volume flow-through scintillating detector
Gritzo, Russ E.; Fowler, Malcolm M.
1995-01-01
A large volume flow through radiation detector for use in large air flow situations such as incinerator stacks or building air systems comprises a plurality of flat plates made of a scintillating material arranged parallel to the air flow. Each scintillating plate has a light guide attached which transfers light generated inside the scintillating plate to an associated photomultiplier tube. The output of the photomultiplier tubes are connected to electronics which can record any radiation and provide an alarm if appropriate for the application.
Software OT&E Guidelines. Volume 3. Software Maintainability Evaluator’s Handbook
1980-04-01
SOFTWARE OT&E " 1 GUIDELINES . VOLUME III SOFTWARE MAINTAINABILITY EVALUATOR’S HANDBOOK APRIL 1980 AIR FORCE TEST AND EVALUATION CENTER KIRTLAND AIR...FORCE BASE NEW MEXICO 87117 C-, -j AfTECP 800-3 AF’r...........3 ...... UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When D.. Entered) RE:PORT...c -. 5 TY!aJ0. PERIOD COVERED SOFTWARE OT& . GUIDELINES, Volume III .of five). -1 softare-R.aintainability Evaluator’s P-IEFnook’ 4ina. i 1980
NASA Technical Reports Server (NTRS)
Schoendorfer, David L.; Morlok, Edward K.
1985-01-01
The cost analysis done to support an assessment of the potential for a small tilt-rotor aircraft to operate in short-haul intercity passenger service is described in detail. Anticipated costs of tilt-rotor air service were compared to the costs of two alternatives: conventional air and high speed rail (HSR). Costs were developed for corridor service, varying key market characteristics including distance, passenger volumes, and minimum frequency standards. The resulting cost vs output information can then be used to compare modal costs for essentially identical service quality and passenger volume or for different service levels and volumes for each mode, as appropriate. Extensive sensitivity analyses are performed. The cost-output features of these technologies are compared. Tilt-rotor is very attractive compared to HSR in terms of costs over the entire range of volume. It also has costs not dramatically different from conventional air, but tilt-rotor costs are generally higher. Thus some of its other advantages, such as the VTOL capability, must offset the cost disadvantage for it to be a preferred or competitive mode in any given market. These issues are addressed in the companion report which considers strategies for tilt-rotor development in commercial air service.
NASA Technical Reports Server (NTRS)
Hailey, M.; Bayuse, T.
2010-01-01
Fluid Isolation in the medication vial: Air/ fluid isolation maneuvers were used to move the medication to the septum end of vial. This isolation may be achieved in multiple ways based on the experience of the astronaut with fluid management in microgravity. If vial adaptors/blunt cannula or syringe assembly is inserted into the to vial before fluid isolation commences, the stability of this assembly should be considered in an effort to limit the risk of "slinging off" of the vial during isolation. Alternatively, fluid isolation can be performed prior to attaching the syringe/vial adaptor assembly. Terrestrial practices for medication withdrawal from a nonvented vial require injection of an equivalent amount of air as the expected medication volume prior to withdrawing liquid. In microgravity, this action is still valid, however the injection of additional air into the vial creates a multitude of micro bubbles and increases the volume of medication mixed with air that then must be withdrawn to achieve the desired drug volume in syringe. This practice is more likely to be required when using vials >30ml in size and injection volumes >10mL. It is felt that based on the microgravity flight, the practice of air injection is more of a hindrance than help.
Volume requirements for aerated mud drilling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, B.; Rajtar, J.M.
1995-09-01
Aerated mud drilling has been recognized as having many advantages over conventional mud drilling, such ass higher penetration rate, less formation damage, minimized lost circulation, and lower drilling cost. In some areas, the use of aerated mud as a circulating medium for drilling oil and gas wells is becoming an attractive practice. Maintaining an optimum combination of liquid and air flow rates is important in aerated drilling operations. However, most drilling operators are unclear on what constitutes the ``optimum combination of the liquid and air flow rates.`` Guo et al. presented a mathematical approach to determining the flowing bottomhole pressuremore » (BHP) for aerated mud drilling. This paper addresses the use of Guo et al.`s mathematical model to determine liquid and air volume requirements considering wellbore stability, pipe sticking, and formation damage as well as the cuttings-carry capacity of the aerated mud. For a formation-damage-prevention point of view, the liquid fraction in the fluid stream should e as low as possible. However, a sufficient mud flow rate is always required to make the hole stable and to maintain the cuttings-carrying capacity of the aerated mud without injecting much air volume. This paper provides a simple approach to determining the liquid and air volume requirements for aerated mud drilling.« less
von Marchtaler, Philipp V; Weller, Julia M; Kruse, Friedrich E; Tourtas, Theofilos
2018-01-01
To perform a fellow eye comparison of outcomes and complications when using air or sulfur hexafluoride (SF6) gas as a tamponade in Descemet membrane endothelial keratoplasty (DMEK). One hundred thirty-six eyes of 68 consecutive patients who underwent uneventful DMEK in both eyes for Fuchs endothelial corneal dystrophy were included in this retrospective study. Inclusion criteria were air tamponade (80% of the anterior chamber volume) in the first eye and 20% SF6 gas tamponade (80% of the anterior chamber volume) in the second eye; and same donor tissue culture condition in both eyes. All eyes received laser iridotomy on the day before DMEK. Main outcome measures included preoperative and postoperative best-corrected visual acuity, endothelial cell density, corneal volume, rebubbling rate, and rate of postoperative pupillary block caused by the air/gas bubble. Thirteen of 68 eyes (19.1%) with an air tamponade needed rebubbling compared with 4 of 68 eyes (5.9%) with an SF6 gas tamponade (P = 0.036). Postoperative pupillary block necessitating partial release of air/gas occurred in 1 eye (1.5%) with an air tamponade and 3 eyes (4.4%) with an SF6 gas tamponade (P = 0.301). There were no significant differences in preoperative and postoperative best-corrected visual acuity, endothelial cell density, and corneal volume within 3-month follow-up. Our results confirm the previously reported better graft adhesion when using an SF6 gas tamponade in DMEK without increased endothelial cell toxicity. The rate of pupillary block in eyes with an SF6 gas tamponade was comparable to that with an air tamponade. As a consequence, we recommend using SF6 gas as the tamponade in DMEK.
Shroff, Prerana P; Patil, Vijay
2009-06-01
We wished to examine the efficacy of different media used for inflation of tracheal tube cuffs. In our prospective randomized, controlled study over 3 months, there were 150 patients of either sex undergoing surgery under general anaesthesia with controlled ventilation with nitrous oxide and oxygen. The patients were divided into three equal groups (air, isotonic saline and alkalinized lignocaine as inflation media) using sealed envelope technique. The volume of the inflation medium, intracuff pressure, duration of intubation, volume of the inflation medium withdrawn from the cuff and complications like tube intolerance, coughing on tube, restlessness, hoarseness, sore throat, breathlessness and laryngospasm were analysed. Continuous data are presented as mean +/- SD, whereas categorical data are presented as frequencies and percentages. A [chi]2, analysis of variance and student's t-test were used to analyse the data. A P value less than 0.05 was considered as statistically significant. Age, sex, duration of intubation, intracuff pressure at the time of intubation were comparable. After intubation at all intervals, the intracuff pressure was higher in the air group with statistical significance at 5 min, 30 min, 1 h and just before extubation when air and saline groups were comparable and at all intervals after intubation up to just before extubation when air and lignocaine groups were comparable. The volume of air increased just before extubation in the air group, as compared with a fall in volume in the other groups. Tube intolerance, hoarseness and sore throat were least in the lignocaine group. We found that alkalinized 2% lignocaine and saline are better cuff inflation media, than air.
United States Air Force Summer Research Program -- 1993. Volume 13. Phillips Laboratory
1993-12-01
Research Kirtland Air Force Base, Albuquerque, NM August 1993 14-1 My Summer Apprenticeship At Kirtland Air Force Base, Phillips Laboratory Andrea Garcia...AFOSR Summer Research Program Phillips Laboratory Sponsored By: Air Force Office of Scientific Research Kirtland Air Force Base, Albuquerque, NM... Phillips Laboratory Sponsored by: Air
USAF/SCEEE Graduate Student Summer Research Program (1984). Program Management Report. Volume 1.
1984-10-01
AFRL -TN-87, Air Force . Weapons Laboratory , Kirtland Air Foce...Mexico Research Location: Air Force Weapons Laboratory , NTATT, Kirtland Air Force Base, Albuquerque, NM 87117 .. USAF Research Contact: Dr. Carl E. Baum...Albuquerque, NM 87131 ... Research Location: Air Force Weapons Laboratory Kirtland Air Force Base Albuquerque, New Mexico 87117 USAF
United States Air Force Summer Research Program -- 1993. Volume 3. Phillips Laboratory
1993-12-01
PHILLIPS LABORATORY KIRTLAND AIR FORCE BASE, NEW MEXICO SPONSORED BY: AIR FORCE OFFICE OF SCIENTIFIC RESEARCH ROLLING AIR FORCE BASE, WASHINGTON ,D.C...Report for. Summer Faculty Research Program at Phillips Laboratory Kirtland Air Force Base Sponsored by: Air Force Offlce of Scientific Research ...Prcgram Phillips Laboratory Kirtland
NASA Astrophysics Data System (ADS)
Galindo Torres, S. A.; Scheuermann, A.; Ruest, M.
2016-12-01
Air blasts that may occur in a block caving mining operation represent a significant hazard for personnel as well as to mining infrastructure. Uncontrolled caving of a large volume of broken rock into a mine void causes compression of the air within, forcing it to flow at high velocities into connecting tunnels such as extraction points beneath the cave or observation points intersecting the cave. This high velocity flow of air can cause injury to personnel and significant damage to equipment. In this presentation, we introduce a simulation engine for the air blast problem. The solid material is modelled using the Discrete Element Method (DEM) and the fluid (air) is modelled using the Lattice Boltzmann Method (LBM). The combined DEM-LBM approach has been introduced by our group at the University of Queensland[1]. LBM allows us to introduce an appropriate equation of state for the air that simulates compressibility as a function of the speed of sound. Validation examples are presented to justify the use of this tool for an air blasting situation. A section view of one simulation is provided in Fig 1. An investigation into the risk of developing air pockets as a function of fragment size distribution is also conducted and described. The fragment size distribution can be assessed during mining and the risk of air pockets forming (and consequently of air blast occurring) can be deduced and mitigation measures put in place. The effect of other key variables that can be determined from geotechnical investigations, such as fracture frequency, are also systematically explored. It is expected that the results of this study can elucidate key features of the air blasting phenomenon in order to formulate safer mining protocols. references 1. Galindo-Torres, S.A., A coupled Discrete Element Lattice Boltzmann Method for the simulation of fluid-solid interaction with particles of general shapes. Computer Methods in Applied Mechanics and Engineering, 2013. 265(0): p. 107-119.
Sperm quality and environment: A retrospective, cohort study in a Northern province of Italy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santi, Daniele, E-mail: santi.daniele@gmail.com; Department of Medicine, Endocrinology, Metabolism and Geriatrics; Vezzani, Silvia
Background: Several studies proposed a relationship between environmental factors and semen quality, as well as the negative effect of air pollution on spermatogenesis and gonadal function. No specific studies evaluated the environmental influence on semen quality in a specific geographical area. Aim: to evaluate the environmental influence on male sperm parameters in a Northern Italian population referred for semen analysis in the National Health System. The objective of the study is the assessment of the relationship of both air pollution and environmental parameters with quality-related sperm variables, during the coldest months of the year when air is usually most polluted,more » due to low ventilation and poor rainfall. Study design: A retrospective, observational, cohort study was carried out in the province of Modena, located in the Emilia-Romagna region of Northern Italy. Methods: Semen analyses (n=406), environmental temperature, air humidity and air particulate matter (PM) measurements from the 1st of November 2014 to the 19th of February 2015 were acquired to the first database. Since spermatogenesis lasts over two months, a second, wider database was arranged, evaluating environmental exposure in the 3 months before semen collection (from August 1st 2014). All data included in the database were registered by geo-coding the residential address of the patients and the site of registration of environmental factors. The geo-codification of parameters was performed using Fusion Tables of Google available at (https://www.google.com/fusiontables/data? dsrcid=implicit), considering the exact time of measurement. Results: Average air temperature was inversely related to sperm concentration and to total sperm number (p<0.001). Semen volume was inversely related only to the minimum (p<0.001) and not to maximum recorded temperature (p=0.110). Air humidity was not related to sperm quantity and quality. PM{sub 2.5} was directly related to total sperm number (p<0.001). PM{sub 10} was directly related to both semen volume (0<0.001), and typical forms (p<0.001), inversely related to atypical forms (p<0.001), but related neither to sperm concentration (p=0.430) nor to sperm motility. The extended analyses considering environmental parameters in the 3 months before semen collection, confirmed the relationship between air temperature and sperm quantity, whereas no influence was found between PM and sperm quality. Conclusion: An influence of environmental temperature on semen quantity is suggested, without a clear effect of air pollution, as assessed through PM{sub 10} levels, on sperm parameter variations.« less
Saenz, Daniel L; Kirby, Neil; Gutiérrez, Alonso N
2016-07-01
Temperature and pressure corrections are necessary to account for the varying mass of air in the sensitive volume of a vented ionization chamber (IC) when performing absolute dose measurements. Locations commonly used to measure the presumed IC air temperature may not accurately represent the chamber cavity air temperature, and phantoms undergoing temperature changes further compound the problem. Prior studies have characterized thermal equilibrium in separate phantoms for Farmer chambers alone. However, the purpose of this study was to characterize the cavity air temperature dependence on changes in the ambient temperature and phantom geometry configuration for a wider and more modern variety of chambers to determine if previously published wait times apply to these chambers as well. Thermal conduction properties were experimentally investigated by modifying a PTW 0.3 cm(3) Semiflex IC with a thermocouple replacing the central electrode. Air cavity temperature versus time was recorded in three phantom geometries characteristic of common absolute dose measurements. The phantoms were (15 ± 1) °C before measurement with an IC at the treatment vault temperature of (21 ± 1) °C. Simulations were conducted to provide a theoretical basis for the measurements and to simulate temperature response of a PTW PinPoint® and Farmer chamber. The simulation methods were first validated by comparison with measured Semiflex chamber thermal response curves before extension to the other chambers. Two thermal equilibria curves were recorded on different time scales. IC temperature initially dropped to the colder phantom temperature but subsequently increased as the phantom itself equilibrated with the warmer room temperature. In a large phantom of dimensions (25.5 × 25.5 × 23.4) cm(3), 3 min was required before the IC temperature reached within 0.5 °C of its equilibrium within the phantom. Similarly, wait times of 2 min were needed for 7.5 and 2 cm slab phantoms. Recording of temperature in the phantom was deemed far more accurate than measurement in ambient air due to the air cavity thermally equilibrating with phantom temperature instead of the vented ambient air. Wait times of 3 and 2 min are needed for a cube and 7.5 cm slab phantom, respectively, to achieve 0.2% dosimetric accuracy (temperature accuracy of 0.5 °C). Chamber volume alone did not determine wait times, as a 0.3 cm(3) IC required a longer wait time than a Farmer chamber, suggesting wall thickness as an important variable as well.
Sperm quality and environment: A retrospective, cohort study in a Northern province of Italy.
Santi, Daniele; Vezzani, Silvia; Granata, Antonio Rm; Roli, Laura; De Santis, Maria Cristina; Ongaro, Chiara; Donati, Federica; Baraldi, Enrica; Trenti, Tommaso; Setti, Monica; Simoni, Manuela
2016-10-01
Several studies proposed a relationship between environmental factors and semen quality, as well as the negative effect of air pollution on spermatogenesis and gonadal function. No specific studies evaluated the environmental influence on semen quality in a specific geographical area. to evaluate the environmental influence on male sperm parameters in a Northern Italian population referred for semen analysis in the National Health System. The objective of the study is the assessment of the relationship of both air pollution and environmental parameters with quality-related sperm variables, during the coldest months of the year when air is usually most polluted, due to low ventilation and poor rainfall. A retrospective, observational, cohort study was carried out in the province of Modena, located in the Emilia-Romagna region of Northern Italy. Semen analyses (n=406), environmental temperature, air humidity and air particulate matter (PM) measurements from the 1st of November 2014 to the 19th of February 2015 were acquired to the first database. Since spermatogenesis lasts over two months, a second, wider database was arranged, evaluating environmental exposure in the 3 months before semen collection (from August 1st 2014). All data included in the database were registered by geo-coding the residential address of the patients and the site of registration of environmental factors. The geo-codification of parameters was performed using Fusion Tables of Google available at https://www.google.com/fusiontables/data? dsrcid=implicit, considering the exact time of measurement. Average air temperature was inversely related to sperm concentration and to total sperm number (p<0.001). Semen volume was inversely related only to the minimum (p<0.001) and not to maximum recorded temperature (p=0.110). Air humidity was not related to sperm quantity and quality. PM2.5 was directly related to total sperm number (p<0.001). PM10 was directly related to both semen volume (0<0.001), and typical forms (p<0.001), inversely related to atypical forms (p<0.001), but related neither to sperm concentration (p=0.430) nor to sperm motility. The extended analyses considering environmental parameters in the 3 months before semen collection, confirmed the relationship between air temperature and sperm quantity, whereas no influence was found between PM and sperm quality. An influence of environmental temperature on semen quantity is suggested, without a clear effect of air pollution, as assessed through PM10 levels, on sperm parameter variations. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Cross, Eben S.; Williams, Leah R.; Lewis, David K.; Magoon, Gregory R.; Onasch, Timothy B.; Kaminsky, Michael L.; Worsnop, Douglas R.; Jayne, John T.
2017-09-01
The environments in which we live, work, and play are subject to enormous variability in air pollutant concentrations. To adequately characterize air quality (AQ), measurements must be fast (real time), scalable, and reliable (with known accuracy, precision, and stability over time). Lower-cost air-quality-sensor technologies offer new opportunities for fast and distributed measurements, but a persistent characterization gap remains when it comes to evaluating sensor performance under realistic environmental sampling conditions. This limits our ability to inform the public about pollution sources and inspire policy makers to address environmental justice issues related to air quality. In this paper, initial results obtained with a recently developed lower-cost air-quality-sensor system are reported. In this project, data were acquired with the ARISense integrated sensor package over a 4.5-month time interval during which the sensor system was co-located with a state-operated (Massachusetts, USA) air quality monitoring station equipped with reference instrumentation measuring the same pollutant species. This paper focuses on validating electrochemical (EC) sensor measurements of CO, NO, NO2, and O3 at an urban neighborhood site with pollutant concentration ranges (parts per billion by volume, ppb; 5 min averages, ±1σ): [CO] = 231 ± 116 ppb (spanning 84-1706 ppb), [NO] = 6.1 ± 11.5 ppb (spanning 0-209 ppb), [NO2] = 11.7 ± 8.3 ppb (spanning 0-71 ppb), and [O3] = 23.2 ± 12.5 ppb (spanning 0-99 ppb). Through the use of high-dimensional model representation (HDMR), we show that interference effects derived from the variable ambient gas concentration mix and changing environmental conditions over three seasons (sensor flow-cell temperature = 23.4 ± 8.5 °C, spanning 4.1 to 45.2 °C; and relative humidity = 50.1 ± 15.3 %, spanning 9.8-79.9 %) can be effectively modeled for the Alphasense CO-B4, NO-B4, NO2-B43F, and Ox-B421 sensors, yielding (5 min average) root mean square errors (RMSE) of 39.2, 4.52, 4.56, and 9.71 ppb, respectively. Our results substantiate the potential for distributed air pollution measurements that could be enabled with these sensors.
Leong, Andrew F T; Fouras, Andreas; Islam, M Sirajul; Wallace, Megan J; Hooper, Stuart B; Kitchen, Marcus J
2013-04-01
Described herein is a new technique for measuring regional lung air volumes from two-dimensional propagation-based phase contrast x-ray (PBI) images at very high spatial and temporal resolution. Phase contrast dramatically increases lung visibility and the outlined volumetric reconstruction technique quantifies dynamic changes in respiratory function. These methods can be used for assessing pulmonary disease and injury and for optimizing mechanical ventilation techniques for preterm infants using animal models. The volumetric reconstruction combines the algorithms of temporal subtraction and single image phase retrieval (SIPR) to isolate the image of the lungs from the thoracic cage in order to measure regional lung air volumes. The SIPR algorithm was used to recover the change in projected thickness of the lungs on a pixel-by-pixel basis (pixel dimensions ≈ 16.2 μm). The technique has been validated using numerical simulation and compared results of measuring regional lung air volumes with and without the use of temporal subtraction for removing the thoracic cage. To test this approach, a series of PBI images of newborn rabbit pups mechanically ventilated at different frequencies was employed. Regional lung air volumes measured from PBI images of newborn rabbit pups showed on average an improvement of at least 20% in 16% of pixels within the lungs in comparison to that measured without the use of temporal subtraction. The majority of pixels that showed an improvement was found to be in regions occupied by bone. Applying the volumetric technique to sequences of PBI images of newborn rabbit pups, it is shown that lung aeration at birth can be highly heterogeneous. This paper presents an image segmentation technique based on temporal subtraction that has successfully been used to isolate the lungs from PBI chest images, allowing the change in lung air volume to be measured over regions as small as the pixel size. Using this technique, it is possible to measure changes in regional lung volume at high spatial and temporal resolution during breathing at much lower x-ray dose than would be required using computed tomography.
Development of Micro Air Vehicle Technology With In-Flight Adaptive-Wing Structure
NASA Technical Reports Server (NTRS)
Waszak, Martin R. (Technical Monitor); Shkarayev, Sergey; Null, William; Wagner, Matthew
2004-01-01
This is a final report on the research studies, "Development of Micro Air Vehicle Technology with In-Flight Adaptrive-Wing Structure". This project involved the development of variable-camber technology to achieve efficient design of micro air vehicles. Specifically, it focused on the following topics: 1) Low Reynolds number wind tunnel testing of cambered-plate wings. 2) Theoretical performance analysis of micro air vehicles. 3) Design of a variable-camber MAV actuated by micro servos. 4) Test flights of a variable-camber MAV.
Static respiratory muscle work during immersion with positive and negative respiratory loading.
Taylor, N A; Morrison, J B
1999-10-01
Upright immersion imposes a pressure imbalance across the thorax. This study examined the effects of air-delivery pressure on inspiratory muscle work during upright immersion. Eight subjects performed respiratory pressure-volume relaxation maneuvers while seated in air (control) and during immersion. Hydrostatic, respiratory elastic (lung and chest wall), and resultant static respiratory muscle work components were computed. During immersion, the effects of four air-delivery pressures were evaluated: mouth pressure (uncompensated); the pressure at the lung centroid (PL,c); and at PL,c +/-0.98 kPa. When breathing at pressures less than the PL,c, subjects generally defended an expiratory reserve volume (ERV) greater than the immersed relaxation volume, minus residual volume, resulting in additional inspiratory muscle work. The resultant static inspiratory muscle work, computed over a 1-liter tidal volume above the ERV, increased from 0.23 J. l(-1), when subjects were breathing at PL,c, to 0.83 J. l(-1) at PL,c -0.98 kPa (P < 0.05), and to 1.79 J. l(-1) at mouth pressure (P < 0.05). Under the control state, and during the above experimental conditions, static expiratory work was minimal. When breathing at PL,c +0.98 kPa, subjects adopted an ERV less than the immersed relaxation volume, minus residual volume, resulting in 0.36 J. l(-1) of expiratory muscle work. Thus static inspiratory muscle work varied with respiratory loading, whereas PL,c air supply minimized this work during upright immersion, restoring lung-tissue, chest-wall, and static muscle work to levels obtained in the control state.
McCafferty, J B; Bradshaw, T A; Tate, S; Greening, A P; Innes, J A
2004-08-01
The effects of breathing pattern and inspired air conditions on the volume and content of exhaled breath condensate (EBC) were investigated. Total exhaled water (TEW), EBC volume, pH, nitrite and protein concentrations were measured in three groups of 10 healthy subjects breathing into a condenser at different target minute ventilations (Vm), tidal volumes (Vt), and inspired air conditions. The volumes of both TEW and EBC increased significantly with Vm. For Vm 7.5, 15 and 22.5 l/min, mean (SD) EBC was 627 (258) microl, 1019 (313) microl, and 1358 (364) microl, respectively (p<0.001) and TEW was 1879 (378) microl, 2986 (496) microl, and 4679 (700) microl, respectively (p<0.001). TEW was significantly higher than EBC, reflecting a condenser efficiency of 40% at a target Vm of 7.5 l/min which reduced to 29% at Vm 22.5 l/min. Lower Vt gave less TEW than higher Vt (26.6 v 30.7 microl/l, mean difference 4.1 (95% CI 2.6 to 5.6), p<0.001) and a smaller EBC volume (4.3 v 7.6 microl/l, mean difference 3.4 (95% CI 2.3 to 4.5), p<0.001). Cooler and drier inspired air yielded less water vapour and less breath condensate than standard conditions (p<0.05). Changes in the breathing pattern had no effect on EBC protein and nitrite concentrations and pH. These results show that condensate volume can be increased by using high Vt and increased Vm without compromising the dilution of the sample.
NASA Technical Reports Server (NTRS)
Kalnay, E.; Balgovind, R.; Chao, W.; Edelmann, D.; Pfaendtner, J.; Takacs, L.; Takano, K.
1983-01-01
Volume 3 of a 3-volume technical memoranda which contains documentation of the GLAS fourth order genera circulation model is presented. The volume contains the CYBER 205 scalar and vector codes of the model, list of variables, and cross references. A dictionary of FORTRAN variables used in the Scalar Version, and listings of the FORTRAN Code compiled with the C-option, are included. Cross reference maps of local variables are included for each subroutine.
Contrasting responses of the extended Gulf Stream to severe winter forcing
NASA Astrophysics Data System (ADS)
Jacobs, Z.; Grist, J. P.; Marsh, R.; Josey, S. A.; Sinha, B.
2015-12-01
Changes in the path and strength of the extended Gulf Stream, downstream of Cape Hatteras, and the North Atlantic Current (GSNAC), are associated with strong wintertime air-sea interactions that can further influence the atmospheric storm track. The GSNAC response to anomalous air-sea heat fluxes in particular is dependent on the location of excess heat loss, in turn related to meteorological circumstances. Outbreaks of cold continental air may lead to excess cooling over the Sargasso Sea, as in 1976-77. Under these circumstances, the Gulf Stream may intensify through a steepening of cross-stream density gradients. An alternative scenario prevailed during the cold outbreak of 2013-14 where excess cooling occurred over the central subpolar gyre and may have influenced the extreme storminess experienced in western Europe. An objectively-analysed temperature and salinity product (EN4) is used to investigate the variability of the GSNAC. Temperature and salinity profiles are used to obtain geostrophic transport at selected GSNAC transects, confirming strong horizontal temperature gradients and a positive geostrophic velocity anomaly at 70oW in spring 1977, the strongest spring transport seen in the 1970s at this location. In addition to observations, an eddy-resolving model hindcast spanning 1970-2013, is used to further characterise GSNAC transport variability, allowing a fuller assessment of the relationship between the winter surface heat flux, end-of-winter mixed layer depth, subtropical mode water volume and GSNAC transports. Preliminary results reveal a significant negative correlation between the winter surface heat flux over the Sargasso Sea and the GSNAC transport in the following spring.
A LES-CMC formulation for premixed flames including differential diffusion
NASA Astrophysics Data System (ADS)
Farrace, Daniele; Chung, Kyoungseoun; Bolla, Michele; Wright, Yuri M.; Boulouchos, Konstantinos; Mastorakos, Epaminondas
2018-05-01
A finite volume large eddy simulation-conditional moment closure (LES-CMC) numerical framework for premixed combustion developed in a previous studyhas been extended to account for differential diffusion. The non-unity Lewis number CMC transport equation has an additional convective term in sample space proportional to the conditional diffusion of the progress variable, that in turn accounts for diffusion normal to the flame front and curvature-induced effects. Planar laminar simulations are first performed using a spatially homogeneous non-unity Lewis number CMC formulation and validated against physical-space fully resolved reference solutions. The same CMC formulation is subsequently used to numerically investigate the effects of curvature for laminar flames having different effective Lewis numbers: a lean methane-air flame with Leeff = 0.99 and a lean hydrogen-air flame with Leeff = 0.33. Results suggest that curvature does not affect the conditional heat release if the effective Lewis number tends to unity, so that curvature-induced transport may be neglected. Finally, the effect of turbulence on the flame structure is qualitatively analysed using LES-CMC simulations with and without differential diffusion for a turbulent premixed bluff body methane-air flame exhibiting local extinction behaviour. Overall, both the unity and the non-unity computations predict the characteristic M-shaped flame observed experimentally, although some minor differences are identified. The findings suggest that for the high Karlovitz number (from 1 to 10) flame considered, turbulent mixing within the flame weakens the differential transport contribution by reducing the conditional scalar dissipation rate and accordingly the conditional diffusion of the progress variable.
Critchley, Hugo D.; Nicotra, Alessia; Chiesa, Patrizia A.; Nagai, Yoko; Gray, Marcus A.; Minati, Ludovico; Bernardi, Luciano
2015-01-01
Controlled slow breathing (at 6/min, a rate frequently adopted during yoga practice) can benefit cardiovascular function, including responses to hypoxia. We tested the neural substrates of cardiorespiratory control in humans during volitional controlled breathing and hypoxic challenge using functional magnetic resonance imaging (fMRI). Twenty healthy volunteers were scanned during paced (slow and normal rate) breathing and during spontaneous breathing of normoxic and hypoxic (13% inspired O2) air. Cardiovascular and respiratory measures were acquired concurrently, including beat-to-beat blood pressure from a subset of participants (N = 7). Slow breathing was associated with increased tidal ventilatory volume. Induced hypoxia raised heart rate and suppressed heart rate variability. Within the brain, slow breathing activated dorsal pons, periaqueductal grey matter, cerebellum, hypothalamus, thalamus and lateral and anterior insular cortices. Blocks of hypoxia activated mid pons, bilateral amygdalae, anterior insular and occipitotemporal cortices. Interaction between slow breathing and hypoxia was expressed in ventral striatal and frontal polar activity. Across conditions, within brainstem, dorsal medullary and pontine activity correlated with tidal volume and inversely with heart rate. Activity in rostroventral medulla correlated with beat-to-beat blood pressure and heart rate variability. Widespread insula and striatal activity tracked decreases in heart rate, while subregions of insular cortex correlated with momentary increases in tidal volume. Our findings define slow breathing effects on central and cardiovascular responses to hypoxic challenge. They highlight the recruitment of discrete brainstem nuclei to cardiorespiratory control, and the engagement of corticostriatal circuitry in support of physiological responses that accompany breathing regulation during hypoxic challenge. PMID:25973923
Wang, Fei; Wang, Xuan; Zhao, Ying; Yang, Zhifeng
2014-09-01
In this paper, correlations between vegetation dynamics (represented by the normalized difference vegetation index (NDVI)) and hydro-climatological factors were systematically studied in Lake Baiyangdian during the period from April 1998 to July 2008. Six hydro-climatological variables including lake volume, water level, air temperature, precipitation, evaporation, and sunshine duration were used, as well as extracted NDVI series data representing vegetation dynamics. Mann-Kendall tests were used to detect trends in NDVI and hydro-climatological variation, and a Bayesian information criterion method was used to detect their abrupt changes. A redundancy analysis (RDA) was used to determine the major hydro-climatological factors contributing to NDVI variation at monthly, seasonal, and yearly scales. The results were as follows: (1) the trend analysis revealed that only sunshine duration significantly increased over the study period, with an inter-annual increase of 3.6 h/year (p < 0.01), whereas inter-annual NDVI trends were negligible; (2) the abrupt change detection showed that a major hydro-climatological change occurred in 2004, when abrupt changes occurred in lake volume, water level, and sunlight duration; and (3) the RDA showed that evaporation and temperature were highly correlated with monthly changes in NDVI. At larger time scales, however, water level and lake volume gradually became more important than evaporation and precipitation in terms of their influence on NDVI. These results suggest that water availability is the most important factor in vegetation restoration. In this paper, we recommend a practical strategy for lake ecosystem restoration that takes into account changes in NDVI.
Feng, Xiaoqi; Astell-Burt, Thomas
2017-05-19
Heavy traffic is a source of air pollution and a safety concern with important public health implications. We investigated whether green space lowers child asthma risk by buffering the effects of heavy traffic and a lack of neighborhood safety. Multilevel models were used to analyze affirmative asthma cases in nationally representative cross-sectional data from 4447 children aged 6-7 years old in Australia. Case-finding was based upon a triangulation of affirmative responses to three questions on doctor-diagnosed asthma, asthma-related medications and illness with wheezing lasting for at least 1 week within the 12 months prior. Among children considered to be exposed to high traffic volumes and areas with 0 to 20% green space quantity, the odds ratio of affirmative asthma was 1.87 (95% CI 1.37 to 2.55). However, the association between heavy traffic and asthma was significantly lower for participants living in areas with over 40% green space coverage (odds ratio for interaction 0.32, 95% CI 0.12 to 0.84). No association between affirmative asthma and green space coverage was observed for participants not exposed to heavy traffic, nor for the area safety variable. Protecting existing and investing in new green space may help to promote child respiratory health through the buffering of traffic-related air pollution.
30 CFR 75.364 - Weekly examination.
Code of Federal Regulations, 2010 CFR
2010-07-01
... and air quality in the area. Air quantity measurements shall also be made where the air enters and... made where air enters the worked-out area. (ii) Measurements of methane and oxygen concentrations and...) Measurements and tests. At least every 7 days, a certified person shall— (1) Determine the volume of air...
Telephone Equipment Installation and Repair Specialist (AFSC 36254).
ERIC Educational Resources Information Center
Air Univ., Gunter AFS, Ala. Extension Course Inst.
This document contains the four volumes of an Air Force correspondence course in telephone equipment installation and repair. Each volume consists of student learning objectives, information, exercises, and answers to exercises; a volume review exercise is included for each volume. The first volume includes information about career field duties…
76 FR 20721 - Notice of Permit Applications Received Under the Antarctic Conservation Act
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-13
... Conservation Act AGENCY: National Science Foundation. ACTION: Notice of permit applications received under the... Diego. The volume of the air sacs and lungs are critical to the diving physiology of penguins in at... total body O 2 stores in various species. And second, the ratio of air sac to lung volume is a potential...
ERIC Educational Resources Information Center
Weisburd, Melvin I.
The Field Operations and Enforcement Manual for Air Pollution Control, Volume II, explains in detail the following: technology of source control, modification of operations, particulate control equipment, sulfur dioxide removal systems for power plants, and control equipment for gases and vapors; inspection procedures for general sources, fuel…
40 CFR 63.457 - Test methods and procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... volume of hydrocarbon in air); and (ii) A mixture of methane or n-hexane and air at a concentration of approximately, but less than, 10,000 parts per million by volume methane or n-hexane. (e) Negative pressure... between 6.95 and 7.05. (4) To prepare the 0.1 normality (N) sodium thiosulfate solution, dissolve 25 g of...
Preconcentrator with high volume chiller for high vapor pressure particle detection
Linker, Kevin L
2013-10-22
Apparatus and method for collecting particles of both high and low vapor pressure target materials entrained in a large volume sample gas stream. Large volume active cooling provides a cold air supply which is mixed with the sample gas stream to reduce the vapor pressure of the particles. In embodiments, a chiller cools air from ambient conditions to 0-15.degree. C. with the volumetric flow rate of the cold air supply being at least equal to the volumetric flow rate of the sample gas stream. In further embodiments an adsorption media is heated in at least two stages, a first of which is below a threshold temperature at which decomposition products of the high vapor pressure particle are generated.
A source of PCB contamination in modified high-volume air samplers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basu, I.; O'Dell, J.M.; Arnold, K.
2000-02-01
Modified Anderson High Volume (Hi-Vol) air samplers are widely used for the collection of semi-volatile organic compounds (such as PCBs) from air. The foam gasket near the main air flow path in these samplers can become contaminated with PCBs if the sampler or the gasket is stored at a location with high indoor air PCB levels. Once the gasket is contaminated, it releases PCBs back into the air stream during sampling, and as a result, incorrectly high air PCB concentrations are measured. This paper presents data demonstrating this contamination problem using measurements from two Integrated Atmospheric Deposition Network sites: onemore » at Sleeping Bear Dunes on Lake Michigan and the other at Point Petre on Lake Ontario. The authors recommend that these gaskets be replaced by Teflon tape and that the storage history of each sampler be carefully tracked.« less
NASA Astrophysics Data System (ADS)
Nasanbat, Elbegjargal; Erdenebat, Erdenetogtokh; Chogsom, Bolorchuluun; Lkhamjav, Ochirkhuyag; Nanzad, Lkhagvadorj
2018-04-01
The glacier is most important the freshwater resources and indicator of the climate change. The researchers noted that during last decades the glacier is melting due to global warming. The study calculates a spatial distribution of protentional change of glacier coverage in the Ikh Turgen mountain of Western Mongolia, and it integrates long-term climate data and satellite datasets. Therefore, in this experiment has tried to estimation three-dimensional surface area of the glacier. For this purpose, Normalized difference snow index (NDSI) was applied to decision tree approach, using Landsat MSS, TM, ETM+ and LC8 imagery for 1975-2016, a surface and slope for digital elevation model, precipitation and air temperature historical data of meteorological station. The potential volume area significantly changed glacier cover of the Ikh Turgen Mountain, and the area affected by highly variable precipitation and air temperature regimes. Between 1972 and 2016, a potential area of glacier area has been decreased in Ikh Turgen mountain region.
Dosage variability of topical ocular hypotensive products: a densitometric assessment.
Gaynes, Bruce I; Singa, Ramesh M; Cao, Ying
2009-02-01
To ascertain consequence of variability in drop volume obtained from multiuse topical ocular hypotensive products in terms of uniformity of product dosage. Densitometric assessment of drop volume dispensed from 2 alternative bottle positions. All except one product demonstrated a statistically significant difference in drop volume when administered at either a 45-degree or 90-degree bottle angle (Student t test, P<0.001). Product-specific drop volume ranged from a nadir of 22.36 microL to a high of 53.54 microL depending on bottle angle of administration. Deviation in drop dose was directly proportional to variability in drop volume. Variability in per drop dosage was conspicuous among products with a coefficient of variation from 1.49% to 15.91%. In accordance with drop volume, all products demonstrated a statistically significant difference in drop dose at 45-degree versus 90-degree administration angles. Drop volume was found unrelated to drop uniformity (Spearman r=0.01987 and P=0.9463). Variability and lack of uniformity in drop dosage is clearly evident among select ocular hypotensive products and is related to angle of drop administration. Erratic dosage of topical ocular hypotensive therapy may contribute in part to therapeutic failure and/or toxicity.
Equivalent Air Spring Suspension Model for Quarter-Passive Model of Passenger Vehicles
Abid, Haider J.; Chen, Jie; Nassar, Ameen A.
2015-01-01
This paper investigates the GENSIS air spring suspension system equivalence to a passive suspension system. The SIMULINK simulation together with the OptiY optimization is used to obtain the air spring suspension model equivalent to passive suspension system, where the car body response difference from both systems with the same road profile inputs is used as the objective function for optimization (OptiY program). The parameters of air spring system such as initial pressure, volume of bag, length of surge pipe, diameter of surge pipe, and volume of reservoir are obtained from optimization. The simulation results show that the air spring suspension equivalent system can produce responses very close to the passive suspension system. PMID:27351020
Description of Latvian Metal Production and Processing Enterprises' Air Emissions
NASA Astrophysics Data System (ADS)
Pubule, Jelena; Zahare, Dace; Blumberga, Dagnija
2010-01-01
The metal production and processing sector in Latvia has acquired a stable position in the national economy. Smelting of ferrous and nonferrous metals, production of metalware, galvanisation, etc. are developed in Latvia. The metal production and processing sector has an impact on air quality due to polluting substances which are released in the air from metal treatment processes. Therefore it is necessary to determine the total volume of emissions produced by the metal production and processing sector in Latvia. This article deals with the air polluting emissions of the Latvian metal production and processing industry, and sets the optimum sector emission volumes using the emissions benchmark methodology.
Kulick, Erin R; Wellenius, Gregory A; Kaufman, Joel D; DeRosa, Janet T; Kinney, Patrick L; Cheung, Ying Kuen; Wright, Clinton B; Sacco, Ralph L; Elkind, Mitchell S
2017-07-01
Long-term exposure to ambient air pollution is associated with higher risk of cardiovascular disease and stroke. We hypothesized that long-term exposure to air pollution would be associated with magnetic resonance imaging markers of subclinical cerebrovascular disease. Participants were 1075 stroke-free individuals aged ≥50 years drawn from the magnetic resonance imaging subcohort of the Northern Manhattan Study who had lived at the same residence for at least 2 years before magnetic resonance imaging. Cross-sectional associations between ambient air pollution and subclinical cerebrovascular disease were analyzed. We found an association between distance to roadway, a proxy for residential exposure to traffic pollution, and white matter hyperintensity volume; however, after adjusting for risk factors, this relationship was no longer present. All other associations between pollutant measures and white matter hyperintensity volume were null. There was no clear association between exposure to air pollutants and subclinical brain infarcts or total cerebral brain volume. We found no evidence that long-term exposure to ambient air pollution is independently associated with subclinical cerebrovascular disease in an urban population-based cohort. © 2017 American Heart Association, Inc.
40 CFR 50.3 - Reference conditions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... SECONDARY AMBIENT AIR QUALITY STANDARDS § 50.3 Reference conditions. All measurements of air quality that... reported based on actual ambient air volume measured at the actual ambient temperature and pressure at the...
La Falce, Sabrina; Novara, Giacomo; Gandaglia, Giorgio; Umari, Paolo; De Naeyer, Geert; D'Hondt, Frederiek; Beresian, Jean; Carette, Rik; Penicka, Martin; Mo, Yujiing; Vandenbroucke, Geert; Mottrie, Alexandre
2017-12-01
Limited studies examined effects of pneumoperiotneum during robot-assisted radical prostatectomy (RARP) and with AirSeal. The aim of this study was to assess the effect on hemodynamics of a lower pressure pneumoperitoneum (8 mmHg) with AirSeal, during RARP in steep Trendelenburg 45° (ST). This is an institutional review board-approved, prospective, interventional, single-center study including patients treated with RARP at OLV Hospital by one extremely experienced surgeon (July 2015-February 2016). Intraoperative monitoring included: arterial pressure, central venous pressure, cardiac output, heart rate, stroke volume, systemic vascular resistance, intrathoracic pressure, airways pressures, left ventricular end-diastolic and end-systolic areas/volumes and ejection fraction, by transesophageal echocardiography, an esophageal catheter, and FloTrac/Vigileo system. Measurements were performed after induction of anesthesia with patient in horizontal (T0), 5 minutes after 8 mmHg pneumoperitoneum (TP), 5 minutes after ST (TT1) and every 30 minutes thereafter until the end of surgery (TH). Parameters modification at the prespecified times was assessed by Wilcoxon and Friedman tests, as appropriate. All analyses were performed by SPSS v. 23.0. A total of 53 consecutive patients were enrolled. The mean patients age was 62.6 ± 6.9 years. Comorbidity was relatively limited (51% with Charlson Comorbidity Index as low as 0). Despite the ST, working always at 8 mmHg with AirSeal, only central venous pressure and mean airways pressure showed a statistically significant variation during the operative time. Although other significant hemodynamic/respiratory changes were observed adding pneumoperitoneum and then ST, all variables remained always within limits safely manageable by anesthesiologists. The combination of ST, lower pressure pneumoperitoneum and extreme surgeon's experience enables to safely perform RARP. Copyright © 2017 Elsevier Inc. All rights reserved.
Variability of the subtropical mode water in the Southwest Pacific
NASA Astrophysics Data System (ADS)
Fernandez, Denise; Sutton, Philip; Bowen, Melissa
2017-09-01
The variability of Subtropical Mode Water (STMW) in the Southwest Pacific is investigated using a 28 year-long time series (1986-2014) of high-resolution expendable bathythermograph data north of New Zealand (PX06) and a shorter time series, the Roemmich-Gilson monthly Argo optimal interpolation for the 2004-2014 period. The variability in STMW inventories is compared to the variability in air-sea heat fluxes, mixed layer depths and transport of the East Auckland Current (EAUC) to assess both the atmospheric and oceanic roles influencing the formation and decay of STMW. The STMW north of New Zealand has a short lifespan with little persistence of the water mass from 1 year to the next one. Deeper mixed layers and negative anomalies in surface heat fluxes are correlated with increased formation of STMW. The heat content of the STMW layer is anticorrelated with inventories, particularly during the El Niño years. This suggests that large volumes of STMW are coincident with cooler conditions in the prior winter and less oceanic heat storage. There is significant seasonal and interannual variability in STMW inventories, however there are no trends in STMW properties, including its core layer temperature over the last decade. The variability of the winter EAUC transport is highly correlated with the STMW inventories and thermocline depth in the following spring, suggesting ocean dynamics deepen the thermocline and precondition for deeper mixed layers.
NASA Astrophysics Data System (ADS)
Somot, Samuel; Houpert, Loic; Sevault, Florence; Testor, Pierre; Bosse, Anthony; Durrieu de Madron, Xavier; Dubois, Clotilde; Herrmann, Marine; Waldman, Robin; Bouin, Marie-Noëlle; Cassou, Christophe
2015-04-01
The North-Western Mediterranean Sea is known as one of the only place in the world where open-sea deep convection occurs (often up to more than 2000m) with the formation of the Western Mediterranean Deep Water (WMDW). This phenomena is mostly driven by local preconditioning of the water column and strong buoyancy losses during Winter. At the event scale, the WMDW formation is characterized by different phases (preconditioning, strong mixing, restratification and spreading), intense air-sea interaction and strong meso-scale activity but, on a longer time scale, it also shows a large interannual variability and may be strongly affected by climate change with impact on the regional biogeochemistry. Therefore observing, simulating and understanding the long-term temporal variability of the North-Western Mediterranean deep water formation is still today a very challenging task. We try here to tackle those issues thanks to (1) a thorough reanalysis of past in-situ observations (CTD, Argo, surface and deep moorings, gliders) and (2) an ERA-Interim driven simulation using a recently-developed fully coupled Regional Climate System Model (CNRM-RCSM4, Sevault et al. 2014). The multi-decadal simulation (1979-2013) is designed to be temporally and spatially homogeneous with a realistic chronology, a high resolution representation of both the regional ocean and atmosphere, specific initial conditions, a long-term spin-up and a full ocean-atmosphere coupling without constraint at the air-sea interface. The observation reanalysis allows to reconstruct interannual time series of deep water formation indicators (ocean surface variables, mixed layer depth, surface of the convective area, dense water volumes and characteristics of the deep water). Using the observation-based indicators and the model outputs, the 34 Winters of the period 1979-2013 are analysed in terms of weather regimes, related Winter air-sea fluxes, ocean preconditioning, mixed layer depth, surface of the convective area, deep water formation rate and long-term evolution of the deep water hydrology.
Open Source GIS Connectors to the NASA GES DISC Satellite Data
NASA Astrophysics Data System (ADS)
Pham, L.; Kempler, S. J.; Yang, W.
2014-12-01
The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) houses a suite of satellite-derived GIS data including high spatiotemporal resolution precipitation, air quality, and modeled land surface parameter data. The data are extremely useful to various GIS research and applications at regional, continental, and global scales, as evidenced by the growing GIS user requests to the data. On the other hand, we also found that some GIS users, especially those from the ArcGIS community, having difficulties in obtaining, importing, and using our data, primarily due to the unfamiliarity of the users with our products and GIS software's lack of capabilities in dealing with the predominately raster form data in various sometimes very complicated formats. In this presentation, we introduce a set of open source ArcGIS data connectors that significantly simplify the access and use of our data in ArcGIS. With the connectors, users do not need to know the data access URLs, the access protocols or syntaxes, and data formats. Nor do they need to browse through a long list of variables that are often embedded into one single science data file and whose names may sometimes be confusing to those not familiar with the file (such as variable CH4_VMR_D for "CH4 Volume mixing ratio from the descending orbit" and variable EVPsfc for "Total Evapotranspiration"). The connectors will expose most GIS-related variables to the users with easy to understand names. User can simply define the spatiotemporal range of their study, select interested parameter(s), and have the needed data be downloaded, imported, and displayed in ArcGIS. The connectors are python text files and there is no installation process. They can be placed at any user directory and be started by simply clicking on it. In the presentation, we'll also demonstrate how to use the tools to load GES DISC time series air quality data with a few clicks and how such data depict the spatial and temporal patterns of air quality in different parts of the world during the past decade.
Porosity control in nanoporous carbide-derived carbon by oxidation in air and carbon dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osswald, S.; Portet, C.; Gogotsi, Y., E-mail: gogotsi@drexel.ed
2009-07-15
Carbide-derived carbons (CDC) allow a precise control over the pore size through the selection of the carbide precursor and varying of the synthesis conditions. However, their pore volume is limited by the carbide stoichiometry. While activation of carbons derived from various organic precursors has been widely studied, this process may similarly be able to increase the pore volume and specific surface area of CDC. Oxidation of carbide-derived carbon in air and CO{sub 2} at different temperatures and times allows for significant increase in pore volume and specific surface area as well as control over average pore size with subnanometer accuracy.more » The effect of activation and associated changes in the pore volume and surface area on the hydrogen uptake are also discussed. - Graphical abstract: Carbide-derived carbons (CDC) provide great potential for sorption of toxicants and gas storage applications. Activation of CDC in air and CO{sub 2} at different temperatures and times is applied in order to maximize pore volume and specific surface area, and control the average pore size with subnanometer accuracy.« less
Factors affecting pollutant concentrations in the near-road environment
NASA Astrophysics Data System (ADS)
Baldwin, Nichole; Gilani, Owais; Raja, Suresh; Batterman, Stuart; Ganguly, Rajiv; Hopke, Philip; Berrocal, Veronica; Robins, Thomas; Hoogterp, Sarah
2015-08-01
An improved understanding of traffic-related air pollutants is needed to estimate exposures and adverse health impacts in traffic corridors and near-road environments. In this study, concentrations of black carbon (BC), nitrogen oxides (NO, NO2, NOx), sulfur dioxide (SO2), and particulate matter (PM2.5, PM10, ultrafine particles, and accumulation mode particles, AMP) were measured using a mobile air pollutant laboratory along nine transects across major roads in Detroit, MI in winter 2012. Repeated measurements were taken during rush-hour periods at sites in residential neighborhoods located 50-500 m from both sides of the road. Concentration gradients attributable to on-road emissions were estimated by accounting for traffic volume and mix, wind speed, wind direction, and background concentrations. BC, NO, NOx, and UFP had the strongest gradients, and elevated concentrations of NOx, NO2, PM2.5 and PM10, as well as decreased particle size, were found at the 50 m sites compared to background levels. Exponential models incorporating effects of road size, wind speed, and up- and downwind distance explained from 31 to 53% of the variability in concentration gradients for BC, NO, NOx, UFP and particle size. The expected concentration increments 50 m from the study roads were 17.0 ppb for NO, 17.7 ppb for NOx, 2245 particles/cm3 for UFP, and 0.24 μg/m3 for BC, and the expected distance to decrease increments by half was 89-129 m in the downwind direction, and 14-20 m in the upwind direction. While accounting for portion of the temporal and spatial variability across transects and measurement periods, these results highlight the influence of road-to-road differences and other locally-varying factors important in urban and industrial settings. The study demonstrates a methodology to quantify near-road concentrations and influences on these concentrations while accounting for temporal and spatial variability, and it provides information useful for estimating exposures of traffic-related air pollutants in urban environments.
NASA Astrophysics Data System (ADS)
Tanaka, N.; Levia, D. F., Jr.; Igarashi, Y.; Nanko, K.; Yoshifuji, N.; Tanaka, K.; Chatchai, T.; Suzuki, M.; Kumagai, T.
2014-12-01
Teak (Tectona grandis Linn. f.) plantations cover vast areas throughout Southeast Asia and are of great economic importance. This study has sought to increase our understanding of throughfall inputs under teak by analyzing the abiotic and biotic factors governing throughfall amounts and throughfall ratios in relation to three canopy phenophases (leafless, leafing, and leafed). There is no rain during the brief leaf senescence phenophase. Daily data was available for both throughfall volumes and depths as well as leaf area index. Detailed meteorological data were available in situ every ten minutes. Leveraging this high-resolution field data, we employed boosted regression trees (BRT) analysis to identify the primary controls on throughfall amount and ratio during each of the three canopy phenophases. Whereas throughfall amounts were always dominated by the magnitude of rainfall (as expected), throughfall ratios were governed by a suite of predictor variables during each phenophase. The BRT analysis demonstrated that throughfall ratio in the leafless phase was most influenced (in descending order of importance) by air temperature, rainfall amount, maximum wind speed, and rainfall intensity. Throughfall ratio in the leafed phenophase was dominated by rainfall amount which exerted 54.0% of the relative influence. The leafing phenophase was an intermediate case where rainfall amount, air temperature, and vapor pressure deficit were most important. Our results highlight the fact that throughfall ratios are differentially influenced by a suite of meteorological variables during leafless, leafing, and leafed phenophases. Abiotic variables (rainfall amount, air temperature, vapor pressure deficit, and maximum wind speed) trumped leaf area index and stand density in their effect on throughfall ratio. The leafing phenophase, while transitional in nature and short in duration, has a detectable and unique impact on water inputs to teak plantations. Further work is clearly needed to better gauge the importance of the leaf emergence period to the stemflow hydrology and forest biogeochemistry of teak plantations.
NASA Technical Reports Server (NTRS)
Zhang, Anming (Editor); Bowen, Brent D. (Editor)
1999-01-01
Issues around direct flights across Taiwan Strait are always one of the hottest topics in eastern Asia transport market. Although the direct links have not been connected yet, they are still highly concerned by different disciplines of politics, laws, and management. Airlines and related business also watch closely to these issues for policy changes will easily affect their interests in Chinese market which the future of the air transportation in eastern Asia is heavily depending on. In the past decades, Hong Kong was the most important hub in this market; it will still be an important one in the future. It is proved, however, traffic on the link between Hong Kong and Taiwan can be shifted to the link between Macau and Taiwan, so can it be shifted to the links across Taiwan Strait. Moreover, outgoing passengers from China transferred in Hong Kong can also find transit services in Taiwan. These movements will possibly cause a big change in eastern Asian air transport system for there are millions of passengers travelling in this area. The uncertainties of direct links across Taiwan Strait are still leaving, some problems unsolved. Whether the direct links will be defined as international routes or domestic' routes are not clear; the selection of hubs and airlines to provide direct services are not yet made; even the type of freedoms and bilateral agreements can also change the market and network quite a lot. A much bigger volume of passengers can also be found if further travelling deregulation for Chinese to travel across Taiwan Strait can be made. All these variables are making issues around direct flights worthy of continuous observant.
Air ejector augmented compressed air energy storage system
Ahrens, F.W.; Kartsounes, G.T.
Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.
Air ejector augmented compressed air energy storage system
Ahrens, Frederick W.; Kartsounes, George T.
1980-01-01
Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.
Documentation of the GLAS fourth order general circulation model. Volume 2: Scalar code
NASA Technical Reports Server (NTRS)
Kalnay, E.; Balgovind, R.; Chao, W.; Edelmann, D.; Pfaendtner, J.; Takacs, L.; Takano, K.
1983-01-01
Volume 2, of a 3 volume technical memoranda contains a detailed documentation of the GLAS fourth order general circulation model. Volume 2 contains the CYBER 205 scalar and vector codes of the model, list of variables, and cross references. A variable name dictionary for the scalar code, and code listings are outlined.
Diaphragmatic fatigue in normoxia and hyperoxia.
Pardy, R L; Bye, P T
1985-03-01
Diaphragmatic fatigue was induced in six normal young men inspiring against a variable alinear resistance. Breathing pattern was rigidly controlled (tidal volume 0.75 liter, 12 breaths . min-1). Fatigue was defined as an inability to continue to generate a target transdiaphragmatic pressure (Pdi = 0.65 - 0.84 Pdimax). Diaphragmatic electromyogram (EMG, esophageal electrode) and perceived effort (PE, open-ended scale) were recorded. Subjects were tested on an identical resistance inspiring air or 100% O2 in random order on different days. They were unaware of the gas mixture inspired. Mean endurance time (tlim) +/- SE for air was 4.1 +/- 1.4 min and for O2 was 8.6 +/- 2.7 min (P less than 0.005). The increased tlim in O2 was associated with a delay in onset of EMG changes heralding diaphragmatic fatigue and a decrease in PE at any time during the study compared with the level of PE in air. Arterial O2 saturation (ear oximeter) remained at the resting level of 99.0 +/- 0.2% in O2 and decreased from the resting level of 97.2 +/- 0.2% by 2.8 +/- 0.7% (P less than 0.01) in air. The end-tidal CO2 fraction increased to a similar degree in air and O2 studies. We conclude that when breathing pattern, minute ventilation, and Pdi are held constant during inspiratory resistive loading, breathing O2 delays the onset of diaphragm fatigue and decreases PE.
da Cruz, André Luis; Fernandes, Marisa Narciso
2016-12-01
The purpose of the present study was to evaluate the morphometric respiratory potential of gills compared to the stomach in obtaining oxygen for aerobic metabolism in Pterygoplichthys anisitsi, a facultative air-breathing fish. The measurements were done using stereological methods. The gills showed greater total volume, volume-to-body mass ratio, potential surface area, and surface-to-volume ratio than the stomach. The water-blood diffusion barrier of the gills is thicker than the air-blood diffusion barrier of the stomach. Taken together, the surface area, the surface-to-volume ratio and the diffusion distance for O 2 transfer from the respiratory medium to blood yield a greater diffusing capacity for gills than for the stomach, suggesting greater importance of aquatic respiration in this species. On the other hand, water breathing is energetically more expensive than breathing air. Under severe hypoxic conditions, O 2 uptake by the stomach is more efficient than by the gills, although the stomach has a much lower diffusing capacity. Thus, P. anisitsi uses gills under normoxic conditions but the stomach may also support aerobic metabolism depending on environmental conditions. Copyright © 2016 Elsevier GmbH. All rights reserved.
NASA Technical Reports Server (NTRS)
Burby, R. J.; Kuhlman, W. H.
1978-01-01
Book 2 of this volume is divided into the following sections: (1) commodities and system networks; (2) future mode choice decisions and commodity air eligibility; (3) comparative cargo transportation costs - air, truck, rail and water; (4) elasticities of demand; (5) operating cost; (6) operating profit, rate making, and returns; (7) importance of rate and service on future aircraft; (8) potential market demand for new aircraft; (9) scenario of events affecting system/market growth; and (10) future study and technology requirements.
Journal of Air Transportation, Volume 9, No. 2. Volume 9, No. 2
NASA Technical Reports Server (NTRS)
Bowen, Brent (Editor); Kabashkin, Igor (Editor); Gudmundsson, Sveinn Vidar (Editor); Scarpellini, Nanette (Editor)
2004-01-01
The following articles from the "Journal of Air Transportation" were processed: Future Requirements and Concepts for Cabins of Blended Wing Body Configurations:A Scenario Approach; Future Scenarios for the European Airline Industry: A Marketing-Based Perspective; An Application of the Methodology for Assessment of the Sustainability of the Air Transport System; Modeling the Effect of Enlarged Seating Room on Passenger Preferences of Domestic Airlines in Taiwan; Developing a Fleet Standardization Index for Airline Pricing; and Future Airport Capacity Utilization in Germany: Peaked Congestion and/or Idle Capacity).
1978-10-01
Force , Navy and Marine Corps. Coverage is less comprehensive on the Army because of work on this topic by the General Research Corporation. Volume I...presents recommendations on an OSD-level LRA data system. Volumes II, III, and IV cQver the Navy, Air Force , and Marine Corps respectively. Each of these...Resource Model/ Force Level Analysis Interactive Language System NAVAIR Naval Air Systems Command NAVCOMPT Navy Comptroller NAVFAC Naval Facilities
Research on Volume Measurement System of Weights with Hydrostatic Technique
NASA Astrophysics Data System (ADS)
Wang, Jian; Ren, Xiaoping; Yao, Hong; Cai, Changqing; Zhang, Yue; Zhong, Ruilin; Ding, Jing'an
According to Annex B.7.4 of OIML R111-1, equipment for measuring volume of weights mass ranging from 1 kg to 20 kg including three methods of hydrostatic comparison is described. The equipment consists of a robot arm for transferring weights, a liquid bath, a mass comparator with 26.1 kg of maximum capacity and 1 mg of readability, glass housing, two weight exchangers including in air and in liquid, two weight holders including in air and in liquid, and a controller. The equipment will enable to perform automatically volume measurements.
Hajiaghaei, Behnam; Ebrahimi, Ismail; Kamyab, Mojtaba; Saeedi, Hassan; Jalali, Maryam
2016-01-01
Creating a socket with proper fit is an important factor to ensure the comfort and control of prosthetic devices. Several techniques are commonly used to cast transtibial stumps but their effect on stump shape deformation is not well understood. This study compares the dimensions, circumferences and volumes of the positive casts and also the socket comfort between two casting methods. Our hypothesis was that the casts prepared by air pressure method have less volume and are more comfortable than those prepared by weight bearing method. Fifteen transtibial unilateral amputees participated in the study. Two weight bearing and air pressure casting methods were utilized for their residual limbs. The diameters and circumferences of various areas of the residual limbs and positive casts were compared. The volumes of two types of casts were measured by a volumeter and compared. Visual Analogue Scale (VAS) was used to measure the sockets fit comfort. Circumferences at 10 and 15 cm below the patella on the casts were significantly smaller in air pressure casting method compared to the weight bearing method (p=0.00 and 0.01 respectively). The volume of the cast in air pressure method was lower than that of the weight bearing method (p=0.006). The amputees found the fit of the sockets prepared by air pressure method more comfortable than the weight bearing sockets (p=0.015). The air pressure casting reduced the circumferences of the distal portion of residual limbs which has more soft tissue and because of its snug fit it provided more comfort for amputees, according to the VAS measurements.
McCafferty, J; Bradshaw, T; Tate, S; Greening, A; Innes, J
2004-01-01
Background: The effects of breathing pattern and inspired air conditions on the volume and content of exhaled breath condensate (EBC) were investigated. Methods: Total exhaled water (TEW), EBC volume, pH, nitrite and protein concentrations were measured in three groups of 10 healthy subjects breathing into a condenser at different target minute ventilations (Vm), tidal volumes (Vt), and inspired air conditions. Results: The volumes of both TEW and EBC increased significantly with Vm. For Vm 7.5, 15 and 22.5 l/min, mean (SD) EBC was 627 (258) µl, 1019 (313) µl, and 1358 (364) µl, respectively (p<0.001) and TEW was 1879 (378) µl, 2986 (496) µl, and 4679 (700) µl, respectively (p<0.001). TEW was significantly higher than EBC, reflecting a condenser efficiency of 40% at a target Vm of 7.5 l/min which reduced to 29% at Vm 22.5 l/min. Lower Vt gave less TEW than higher Vt (26.6 v 30.7 µl/l, mean difference 4.1 (95% CI 2.6 to 5.6), p<0.001) and a smaller EBC volume (4.3 v 7.6 µl/l, mean difference 3.4 (95% CI 2.3 to 4.5), p<0.001). Cooler and drier inspired air yielded less water vapour and less breath condensate than standard conditions (p<0.05). Changes in the breathing pattern had no effect on EBC protein and nitrite concentrations and pH. Conclusion: These results show that condensate volume can be increased by using high Vt and increased Vm without compromising the dilution of the sample. PMID:15282391
NASA Astrophysics Data System (ADS)
Choi, Sanghun; Choi, Jiwoong; Hoffman, Eric; Lin, Ching-Long
2016-11-01
To predict the proper relationship between airway resistance and regional airflow, we proposed a novel 1-D network model for airway resistance and acinar compliance. First, we extracted 1-D skeletons at inspiration images, and generated 1-D trees of CT unresolved airways with a volume filling method. We used Horsfield order with random heterogeneity to create diameters of the generated 1-D trees. We employed a resistance model that accounts for kinetic energy and viscous dissipation (Model A). The resistance model is further coupled with a regional compliance model estimated from two static images (Model B). For validation, we applied both models to a healthy subject. The results showed that Model A failed to provide airflows consistent with air volume change, whereas Model B provided airflows consistent with air volume change. Since airflows shall be regionally consistent with air volume change in patients with normal airways, Model B was validated. Then, we applied Model B to severe asthmatic subjects. The results showed that regional airflows were significantly deviated from air volume change due to airway narrowing. This implies that airway resistance plays a major role in determining regional airflows of patients with airway narrowing. Support for this study was provided, in part, by NIH Grants U01 HL114494, R01 HL094315, R01 HL112986, and S10 RR022421.
Identify the dominant variables to predict stream water temperature
NASA Astrophysics Data System (ADS)
Chien, H.; Flagler, J.
2016-12-01
Stream water temperature is a critical variable controlling water quality and the health of aquatic ecosystems. Accurate prediction of water temperature and the assessment of the impacts of environmental variables on water temperature variation are critical for water resources management, particularly in the context of water quality and aquatic ecosystem sustainability. The objective of this study is to measure stream water temperature and air temperature and to examine the importance of streamflow on stream water temperature prediction. The measured stream water temperature and air temperature will be used to test two hypotheses: 1) streamflow is a relatively more important factor than air temperature in regulating water temperature, and 2) by combining air temperature and streamflow data stream water temperature can be more accurately estimated. Water and air temperature data loggers are placed at two USGS stream gauge stations #01362357and #01362370, located in the upper Esopus Creek watershed in Phonecia, NY. The ARIMA (autoregressive integrated moving average) time series model is used to analyze the measured water temperature data, identify the dominant environmental variables, and predict the water temperature with identified dominant variable. The preliminary results show that streamflow is not a significant variable in predicting stream water temperature at both USGS gauge stations. Daily mean air temperature is sufficient to predict stream water temperature at this site scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Y; Aileen, C; Kozono, D
Purpose: Quantification of volume changes on CBCT during SBRT for NSCLC may provide a useful radiological marker for radiation response and adaptive treatment planning, but the reproducibility of CBCT volume delineation is a concern. This study is to quantify inter-scan/inter-observer variability in tumor volume delineation on CBCT. Methods: Twenty earlystage (stage I and II) NSCLC patients were included in this analysis. All patients were treated with SBRT with a median dose of 54 Gy in 3 to 5 fractions. Two physicians independently manually contoured the primary gross tumor volume on CBCTs taken immediately before SBRT treatment (Pre) and after themore » same SBRT treatment (Post). Absolute volume differences (AVD) were calculated between the Pre and Post CBCTs for a given treatment to quantify inter-scan variability, and then between the two observers for a given CBCT to quantify inter-observer variability. AVD was also normalized with respect to average volume to obtain relative volume differences (RVD). Bland-Altman approach was used to evaluate variability. All statistics were calculated with SAS version 9.4. Results: The 95% limit of agreement (mean ± 2SD) on AVD and RVD measurements between Pre and Post scans were −0.32cc to 0.32cc and −0.5% to 0.5% versus −1.9 cc to 1.8 cc and −15.9% to 15.3% for the two observers respectively. The 95% limit of agreement of AVD and RVD between the two observers were −3.3 cc to 2.3 cc and −42.4% to 28.2% respectively. The greatest variability in inter-scan RVD was observed with very small tumors (< 5 cc). Conclusion: Inter-scan variability in RVD is greatest with small tumors. Inter-observer variability was larger than inter-scan variability. The 95% limit of agreement for inter-observer and inter-scan variability (∼15–30%) helps define a threshold for clinically meaningful change in tumor volume to assess SBRT response, with larger thresholds needed for very small tumors. Part of the work was funded by a Kaye award; Disclosure/Conflict of interest: Raymond H. Mak: Stock ownership: Celgene, Inc. Consulting: Boehringer-Ingelheim, Inc.« less
Temporal variability of selected air toxics in the United States
NASA Astrophysics Data System (ADS)
McCarthy, Michael C.; Hafner, Hilary R.; Chinkin, Lyle R.; Charrier, Jessica G.
Ambient measurements of hazardous air pollutants (HAPs, air toxics) collected in the United States from 1990 to 2005 were analyzed for diurnal, seasonal, and/or annual variability and trends. Visual and statistical analyses were used to identify and quantify temporal variations in air toxics at national and regional levels. Sufficient data were available to analyze diurnal variability for 14 air toxics, seasonal variability for 24 air toxics, and annual trends for 26 air toxics. Four diurnal variation patterns were identified and labeled invariant, nighttime peak, morning peak, and daytime peak. Three distinct seasonal patterns were identified and labeled invariant, cool, and warm. Multiple air toxics showed consistent decreasing trends over three trend periods, 1990-2005, 1995-2005, and 2000-2005. Trends appeared to be relatively consistent within chemically similar pollutant groups. Hydrocarbons such as benzene, 1,3-butadiene, styrene, xylene, and toluene decreased by approximately 5% or more per year at more than half of all monitoring sites. Concentrations of carbonyl compounds such as formaldehyde, acetaldehyde, and propionaldehyde were equally likely to have increased or decreased at monitoring sites. Chlorinated volatile organic compounds (VOCs) such as tetrachloroethylene, dichloromethane, and methyl chloroform decreased at more than half of all monitoring sites, but decreases among these species were much more variable than among the hydrocarbons. Lead particles decreased in concentration at most monitoring sites, but trends in other metals were not consistent over time.
Accuracy and variability of tumor burden measurement on multi-parametric MRI
NASA Astrophysics Data System (ADS)
Salarian, Mehrnoush; Gibson, Eli; Shahedi, Maysam; Gaed, Mena; Gómez, José A.; Moussa, Madeleine; Romagnoli, Cesare; Cool, Derek W.; Bastian-Jordan, Matthew; Chin, Joseph L.; Pautler, Stephen; Bauman, Glenn S.; Ward, Aaron D.
2014-03-01
Measurement of prostate tumour volume can inform prognosis and treatment selection, including an assessment of the suitability and feasibility of focal therapy, which can potentially spare patients the deleterious side effects of radical treatment. Prostate biopsy is the clinical standard for diagnosis but provides limited information regarding tumour volume due to sparse tissue sampling. A non-invasive means for accurate determination of tumour burden could be of clinical value and an important step toward reduction of overtreatment. Multi-parametric magnetic resonance imaging (MPMRI) is showing promise for prostate cancer diagnosis. However, the accuracy and inter-observer variability of prostate tumour volume estimation based on separate expert contouring of T2-weighted (T2W), dynamic contrastenhanced (DCE), and diffusion-weighted (DW) MRI sequences acquired using an endorectal coil at 3T is currently unknown. We investigated this question using a histologic reference standard based on a highly accurate MPMRIhistology image registration and a smooth interpolation of planimetric tumour measurements on histology. Our results showed that prostate tumour volumes estimated based on MPMRI consistently overestimated histological reference tumour volumes. The variability of tumour volume estimates across the different pulse sequences exceeded interobserver variability within any sequence. Tumour volume estimates on DCE MRI provided the lowest inter-observer variability and the highest correlation with histology tumour volumes, whereas the apparent diffusion coefficient (ADC) maps provided the lowest volume estimation error. If validated on a larger data set, the observed correlations could support the development of automated prostate tumour volume segmentation algorithms as well as correction schemes for tumour burden estimation on MPMRI.
NHEXAS PHASE I ARIZONA STUDY--METALS IN AIR ANALYTICAL RESULTS
The Metals in Air data set contains analytical results for measurements of up to 11 metals in 369 air samples over 175 households. Samples were taken by pumping standardized air volumes through filters at indoor and outdoor sites around each household being sampled. The primary...
DeCamp, Malcolm M; Blackstone, Eugene H; Naunheim, Keith S; Krasna, Mark J; Wood, Douglas E; Meli, Yvonne M; McKenna, Robert J
2006-07-01
Although staple line buttressing is advocated to reduce air leak after lung volume reduction surgery (LVRS), its effectiveness is unknown. We sought to identify risk factors for air leak and its duration and to estimate its medical consequences for selecting optimal perioperative technique(s), such as buttressing technique, to preempt or treat post-LVRS air leak. Detailed air leak data were available for 552 of 580 patients receiving bilateral stapled LVRS in the National Emphysema Treatment Trial. Risk factors for prevalence and duration of air leak were identified by logistic and hazard function analyses. Medical consequences were estimated in propensity-matched pairs with and without air leak. Within 30 days of LVRS, 90% of patients developed air leak (median duration = 7 days). Its occurrence was more common and duration prolonged in patients with lower diffusing capacity (p = 0.06), upper lobe disease (p = 0.04), and important pleural adhesions (p = 0.007). Duration was also protracted in Caucasians (p < 0.0001), patients using inhaled steroids (p = 0.004), and those with lower 1-second forced expiratory volume (p = 0.0003). Surgical approach, buttressing, stapler brand, and intraoperative adjunctive procedures were not associated with fewer or less prolonged air leaks (p >/= 0.2). Postoperative complications occurred more often in matched patients experiencing air leak (57% vs 30%, p = 0.0004), and postoperative stay was longer (11.8 +/- 6.5 days vs 7.6 +/- 4.4 days, p = 0.0005). Air leak accompanies LVRS in 90% of patients, is often prolonged, and is associated with a more complicated and protracted hospital course. Its occurrence and duration are associated with characteristics of patients and their disease, not with a specific surgical technique.
STOCHASTIC DESCRIPTION OF SUBGRID POLLUTANT VARIABILITY IN CMAQ
This paper describes a tool for investigating and describing fine scale spatial variability in model concentration fields with the goal of improving the use of air quality models for driving exposure modeling to assess human risk to hazardous air pollutants or air toxics. Region...
Bougas, Nicolas; Rancière, Fanny; Beydon, Nicole; Viola, Malika; Perrot, Xavier; Gabet, Stephan; Lezmi, Guillaume; Amat, Flore; De Blic, Jacques; Just, Jocelyne; Momas, Isabelle
2018-05-01
Although the effects of traffic-related air pollution on respiratory exacerbations have been well documented, its impact on lung function in childhood remains unclear. Our aim was to investigate the associations of prenatal, early, and lifetime traffic-related air pollution exposure with lung function at 8-9 years studying possible effect modification by sex, sensitization at 8-9 years, and early lower respiratory tract infections. We conducted this study among 788 children from the PARIS (Pollution and Asthma Risk: an Infant Study) birth cohort. Lung function tests were performed during the medical examination at 8-9 years. Traffic-related air pollution exposure during each trimester of pregnancy was estimated using nitrogen oxides background measurements. Postnatal traffic-related air pollution exposure was assessed by a nitrogen oxides air dispersion model at both residential and daycare/school addresses. Associations between lung function and traffic-related air pollution exposure were analyzed by multiple linear regression models. Higher prenatal nitrogen oxides levels, especially during the second trimester of pregnancy, were associated with a lower forced expiratory flow at 25-75% of the forced vital capacity, but there were no significant associations between prenatal nitrogen oxide levels and forced vital capacity, forced expiratory volume during 1 second, or the forced expiratory volume during 1 second/forced vital capacity ratio overall. Postnatal traffic-related air pollution exposure was associated with lower lung function among children with early lower respiratory tract infections or sensitization at 8-9 years, but not in the full cohort. In children with early repeated lower respiratory tract infections, an interquartile increase in lifetime nitrogen oxides exposure was associated with both a lower forced expiratory volume during 1 second (-62.6 ml; 95% confidence interval = -107.0 to -18.1) and forced vital capacity (-55.7 ml; 95% confidence interval = -109.5 to -1.8), but was not associated with the forced expiratory volume during 1 second/forced vital capacity ratio. There was an association between greater early postnatal nitrogen oxide exposure and a lower forced expiratory volume during 1 second/forced vital capacity ratio among sensitized children (-0.65%; 95% confidence interval = -1.25 to -0.05). This study sheds new light, suggesting associations between postnatal traffic-related air pollution exposure and reduced lung function may be enhanced by early, repeated lower respiratory tract infections or allergic sensitization.
Direct computation of thermodynamic properties of chemically reacting air with consideration to CFD
NASA Astrophysics Data System (ADS)
Iannelli, Joe
2003-10-01
This paper details a two-equation procedure to calculate exactly mass and mole fractions, pressure, temperature, specific heats, speed of sound and the thermodynamic and jacobian partial derivatives of pressure and temperature for a five-species chemically reacting equilibrium air. The procedure generates these thermodynamic properties using as independent variables either pressure and temperature or density and internal energy, for CFD applications. An original element in this procedure consists in the exact physically meaningful solution of the mass-fraction and mass-action equations. Air-equivalent molecular masses for oxygen and nitrogen are then developed to account, within a mixture of only oxygen and nitrogen, for the presence of carbon dioxide, argon and the other noble gases within atmospheric air. The mathematical formulation also introduces a versatile system non-dimensionalization that makes the procedure uniformly applicable to flows ranging from shock-tube flows with zero initial velocity to aerothermodynamic flows with supersonic/hypersonic free-stream Mach numbers. Over a temperature range of more than 10000 K and pressure and density ranges corresponding to an increase in altitude in standard atmosphere of 30000 m above sea level, the predicted distributions of mole fractions, constant-volume specific heat, and speed of sound for the model five species agree with independently published results, and all the calculated thermodynamic properties, including their partial derivatives, remain continuous, smooth, and physically meaningful.
Dynamics of water droplets detached from porous surfaces of relevance to PEM fuel cells.
Theodorakakos, A; Ous, T; Gavaises, M; Nouri, J M; Nikolopoulos, N; Yanagihara, H
2006-08-15
The detachment of liquid droplets from porous material surfaces used with proton exchange membrane (PEM) fuel cells under the influence of a cross-flowing air is investigated computationally and experimentally. CCD images taken on a purpose-built transparent fuel cell have revealed that the water produced within the PEM is forming droplets on the surface of the gas-diffusion layer. These droplets are swept away if the velocity of the flowing air is above a critical value for a given droplet size. Static and dynamic contact angle measurements for three different carbon gas-diffusion layer materials obtained inside a transparent air-channel test model have been used as input to the numerical model; the latter is based on a Navier-Stokes equations flow solver incorporating the volume of fluid (VOF) two-phase flow methodology. Variable contact angle values around the gas-liquid-solid contact-line as well as their dynamic change during the droplet shape deformation process, have allowed estimation of the adhesion force between the liquid droplet and the solid surface and successful prediction of the separation line at which droplets loose their contact from the solid surface under the influence of the air stream flowing around them. Parametric studies highlight the relevant importance of various factors affecting the detachment of the liquid droplets from the solid surface.
Theoretical Evaluation of Electroactive Polymer Based Micropump Diaphragm for Air Flow Control
NASA Technical Reports Server (NTRS)
Xu, Tian-Bing; Su, Ji; Zhang, Qiming
2004-01-01
An electroactive polymer (EAP), high energy electron irradiated poly(vinylidene fluoride-trifluoroethylene) [P(VDFTrFE)] copolymer, based actuation micropump diaphragm (PAMPD) have been developed for air flow control. The displacement strokes and profiles as a function of amplifier and frequency of electric field have been characterized. The volume stroke rates (volume rate) as function of electric field, driving frequency have been theoretically evaluated, too. The PAMPD exhibits high volume rate. It is easily tuned with varying of either amplitude or frequency of the applied electric field. In addition, the performance of the diaphragms were modeled and the agreement between the modeling results and experimental data confirms that the response of the diaphragms follow the design parameters. The results demonstrated that the diaphragm can fit some future aerospace applications to replace the traditional complex mechanical systems, increase the control capability and reduce the weight of the future air dynamic control systems. KEYWORDS: Electroactive polymer (EAP), micropump, diaphragm, actuation, displacement, volume rate, pumping speed, clamping ratio.
Prediction of stream volatilization coefficients
Rathbun, Ronald E.
1990-01-01
Equations are developed for predicting the liquid-film and gas-film reference-substance parameters for quantifying volatilization of organic solutes from streams. Molecular weight and molecular-diffusion coefficients of the solute are used as correlating parameters. Equations for predicting molecular-diffusion coefficients of organic solutes in water and air are developed, with molecular weight and molal volume as parameters. Mean absolute errors of prediction for diffusion coefficients in water are 9.97% for the molecular-weight equation, 6.45% for the molal-volume equation. The mean absolute error for the diffusion coefficient in air is 5.79% for the molal-volume equation. Molecular weight is not a satisfactory correlating parameter for diffusion in air because two equations are necessary to describe the values in the data set. The best predictive equation for the liquid-film reference-substance parameter has a mean absolute error of 5.74%, with molal volume as the correlating parameter. The best equation for the gas-film parameter has a mean absolute error of 7.80%, with molecular weight as the correlating parameter.
Development of a second generation biofiltration system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleinheinz, G.T.; McGinnis, G.D.; Niemi, B.A.
1999-07-01
Biofiltration utilizes microbial processes which are immobilized on a solid support to biodegrade contaminants in air. Biofilters traditionally have been utilized in applications where there is a high volume of air containing low levels of compounds. There are several operational problems biofilters are currently encountering. Some of these problems include systems which are very large, microbial breakdown of the solid support, cycling of compounds onto the biofilters (uneven amounts of compounds in the air), and very short residence times in the biofiltration units. This project was undertaken to determine the feasibility of using physical/chemical methods to adsorb and then desorbmore » analytes to convert a dilute, high volume air stream to a more concentrated low volume air stream. The chemical/physical (adsorption/desorption) system will also serve to provide a relatively consistent air stream to the biofiltration units in order to alleviate the perturbations to the system as a result of uneven analyte concentrations. The ability to concentrate a dilute air stream and provide a constant stream of VOCs to the biofiltration unit will allow for smaller, more efficient, and more economical biofilters. Two years of laboratory studies and initial pilot-scale trials on these coupled systems have shown that they are indeed able to efficiently concentrate dilute streams, and the coupled biofilters are able to remove 90+% of the VOCs from the adsorption/desorption unit.« less
Engan, Harald K; Lodin-Sundström, Angelica; Schagatay, Fanny; Schagatay, Erika
2014-04-01
Release of stored red blood cells resulting from spleen contraction improves human performance in various hypoxic situations. This study determined spleen volume resulting from two contraction-evoking stimuli: breath holding and exercise before and after altitude acclimatization during a Mount Everest ascent (8848 m). Eight climbers performed the following protocol before and after the climb: 5 min ambient air respiration at 1370 m during rest, 20 min oxygen respiration, 20 min ambient air respiration at 1370 m, three maximal-effort breath holds spaced by 2 min, 10 min ambient air respiration, 5 min of cycling at 100 W, and finally 10 min ambient air respiration. We measured spleen volume by ultrasound and capillary hemoglobin (HB) concentration after each exposure, and heart rate (HR) and arterial oxygen saturation (Sao2) continuously. Mean (SD) baseline spleen volume was unchanged at 213 (101) mL before and 206 (52) mL after the climb. Before the climb, spleen volume was reduced to 184 (83) mL after three breath holds, and after the climb three breath holds resulted in a spleen volume of 132 (26) mL (p=0.032). After exercise, the preclimb spleen volume was 186 (89) mL vs. 112 (389) mL) after the climb (p=0.003). Breath hold duration and cardiovascular responses were unchanged after the climb. We concluded that spleen contraction may be enhanced by altitude acclimatization, probably reflecting both the acclimatization to chronic hypoxic exposure and acute hypoxia during physical work.
1994-11-01
Research Extension Program Phillips Laboratory Kirtland Air Force Base Sponsored by: Air Force Office of Scientific Research Boiling Air Force Base...Program Phillips Laboratory Sponsored by: Air Force Office of Scientific Research Bolling Air Force Base, Washington, D.C. and Arkansas Tech University...Summer Research Extension Program (SREP) Phillips
1992-12-28
Research Program Starfire Optical Range, Phillips Laboratory /LITE Kirtland Air Force Base, Albuquerque, NM 87117 Sponsored by: Air ... Phillips Laboratory Sponsored by: Air Force Office of Scientific Research Kirtland Air Force Base, Albuquerque, New Mexico September, 1992 18-1 PROGRESS...Report for: Summer Research Program Phillips Laboratory Sponsored by: Air
1992-12-28
Phillips Laboratory Kirtland Air Force Base NM 87117-6008 Sponsored by: Air Force Office of Scientific Research Bolling Air Force Base...Zindel, D.: 1963, Z. Astrophys. 57, 82. 29-13 FINAL REPORT SUMMER FACULTY RESEARCH PROGRAM AT PHILLIPS LABORATORY KIRTLAND AIR FORCE BASE...Program Phillips Laboratory Sponsored by: Air Force Office of Scientific
APEX (Air Pollution Exercise) Volume 21: Legal References: Air Pollution Control Regulations.
ERIC Educational Resources Information Center
Environmental Protection Agency, Research Triangle Park, NC. Office of Manpower Development.
The Legal References: Air Pollution Control Regulations Manual is the last in a set of 21 manuals (AA 001 009-001 029) used in APEX (Air Pollution Exercise), a computerized college and professional level "real world" game simulation of a community with urban and rural problems, industrial activities, and air pollution difficulties. The manual…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-05
... regarding the availability of advanced air bag technology. Docket Nos. NHTSA-2011-0030-0006, NHTSA-2011-0006... advanced air bag technology.\\9\\ Accordingly, NHTSA concludes that the expense of advanced air bag... belief that advanced air bag technology has become more accessible to small volume manufacturers in...
Collins, A L; Saunders, S; McCarthy, H D; Williams, J E; Fuller, N J
2004-01-01
To determine and compare the extent of within- and between-laboratory precision in body volume (BV) measurements using air displacement plethysmography (ADP), the BOD POD body composition system, and to interpret any such variability in terms of body composition estimates. Repeated test procedures of BV assessment using the BOD POD ADP were reproduced at two laboratories for the estimation of precision, both within and between laboratories. In total, 30 healthy adult volunteers, 14 men (age, 19-48 y; body mass index (BMI), 19.7-30.3 kg/m2) and 16 women (age, 19-40 y; BMI, 16.3-35.7 kg/m2), were each subjected to two test procedures at both laboratories. Two additional volunteers were independently subjected to 10 repeated test procedures at both laboratories. Repeated measurements of BV, uncorrected for the effects of isothermal air in the lungs and the surface area artifact, were obtained using the BOD POD ADP, with the identical protocol being faithfully applied at both laboratories. Uncorrected BV measurements were adjusted to give estimates of actual BV that were used to calculate body density (body weight (BWt)/actual BV) from which estimates of body composition were derived. The differences between repeated BV measurements or body composition estimates were used to assess within-laboratory precision (repeatability), as standard deviation (SD) and coefficient of variation; the differences between measurements reproduced at each laboratory were used to determine between-laboratory precision (reproducibility), as bias and 95% limits of agreement (from SD of the differences between laboratories). The extent of within-laboratory methodological precision for BV (uncorrected and actual) was variable according to subject, sample group and laboratory conditions (range of SD, 0.04-0.13 l), and was mostly due to within-individual biological variability (typically 78-99%) rather than to technical imprecision. There was a significant (P<0.05) bias between laboratories for the 10 repeats on the two independent subjects (up to 0.29 l). Although no significant bias (P=0.077) was evident for the sample group of 30 volunteers (-0.05 l), the 95% limits of agreement were considerable (-0.68 to 0.58 l). The effects of this variability in BV on body composition were relatively greater: for example, within-laboratory precision (SD) for body fat as % BWt was between 0.56 and 1.34% depending on the subject and laboratory; the bias (-0.59%) was not significant between laboratories, but there were large 95% limits of agreement (-3.67 to 2.50%). Within-laboratory precision for each BOD POD instrument was reasonably good, but was variable according to the prevailing conditions. Although the bias between the two instruments was not significant for the BV measurements, implying that they can be used interchangeably for groups of similar subjects, the relatively large 95% limits of agreement indicate that greater consideration may be needed for assessing individuals with different ADP instruments. Therefore, use of a single ADP instrument is apparently preferable when assessing individuals on a longitudinal basis.
Aircraft Electrical Systems Specialist (AFSC 42350), Volumes 1-3, and Change Supplement, Volume 3.
ERIC Educational Resources Information Center
Savage, Leslie R.
This three-volume student text is designed for use by Air Force personnel enrolled in a self-study extension course for aircraft electrical systems specialists. Covered in the individual volumes are career field fundamentals, electrical systems and test equipment, and aircraft control and warning systems. Each volume in the set contains a series…
Anterior Chamber Air Bubble to Achieve Graft Attachment After DMEK: Is Bigger Always Better?
Ćirković, Aleksandar; Beck, Christina; Weller, Julia M; Kruse, Friedrich E; Tourtas, Theofilos
2016-04-01
To analyze the influence of the size of the air bubble subsequent to Descemet membrane endothelial keratoplasty (DMEK) surgery on the rate of graft detachment and need for rebubbling, the incidence of pupillary block, and the observed endothelial cell loss. This is a single-center, retrospective, consecutive case series of 74 cases undergoing DMEK and fulfilling the inclusion criteria concerning the size of the air bubble at the end of surgery. Based on the medical records, patients were divided into 2 groups (n = 37, respectively). The first group had an air bubble with a volume of approximately 50% and the second group of approximately 80% of the anterior chamber (AC) volume, respectively. Patients who did not comply with instructions to remain in the supine position until complete resorption of AC air or cases in which difficulties in graft preparation (eg, radial breaks) occurred were excluded from data analysis. The central corneal thickness and endothelial cell density were measured 6 months after surgery. Ten of 37 patients (27.0%) in the 50% air bubble group and 3 of 37 patients (8.1%) in the 80% air bubble group needed 1 rebubbling procedure (P = 0.032). There was no difference between the groups after 6 months regarding endothelial cell density and central corneal thickness. No pupillary block was observed. Larger air bubbles of 80% anterior chamber volume decrease the risk of graft detachment after DMEK with no detrimental effect on the outcome and risk for pupillary block.
Retinoic acid-induced alveolar cellular growth does not improve function after right pneumonectomy.
Dane, D Merrill; Yan, Xiao; Tamhane, Rahul M; Johnson, Robert L; Estrera, Aaron S; Hogg, Deborah C; Hogg, Richard T; Hsia, Connie C W
2004-03-01
To determine whether all-trans retinoic acid (RA) treatment enhances lung function during compensatory lung growth in fully mature animals, adult male dogs (n = 4) received 2 mg x kg(-1) x day(-1) po RA 4 days/wk beginning the day after right pneumonectomy (R-PNX, 55-58% resection). Litter-matched male R-PNX controls (n = 4) received placebo. After 3 mo, transpulmonary pressure (TPP)-lung volume relationship, diffusing capacities for carbon monoxide and nitric oxide, cardiac output, and septal volume (V(tiss-RB)) were measured under anesthesia by a rebreathing technique at two lung volumes. Lung air and tissue volumes (V(air-CT) and V(tiss-CT)) were also measured from high-resolution computerized tomographic (CT) scans at a constant TPP. In RA-treated dogs compared with controls, TPP-lung volume relationships were similar. Diffusing capacities for carbon monoxide and nitric oxide were significantly impaired at a lower lung volume but similar at a high lung volume. Whereas V(tiss-RB) was significantly lower at both lung volumes in RA-treated animals, V(air-CT) and V(tiss-CT) were not different between groups; results suggest uneven distribution of ventilation consistent with distortion of alveolar geometry and/or altered small airway function induced by RA. We conclude that RA does not improve resting pulmonary function during the early months after R-PNX despite histological evidence of its action in enhancing alveolar cellular growth in the remaining lung.
The U.S. Environmental Protection Agency (EPA) promulgates the National Ambient Air Quality Standards (NAAQS) on the basis of scientific information contained in air quality criteria documents. The previous ozone (O3) criteria document, Air Quality Criteria for Ozone and Other Ph...
NHEXAS PHASE I MARYLAND STUDY--PAHS IN AIR ANALYTICAL RESULTS
The PAHs in Air data set contains analytical results for measurements of up to 11 PAHs in 127 air samples over 51 households. Twenty-four-hour samples were taken over a one-week period using a continuous pump and solenoid apparatus pumping a standardized air volume through an UR...
U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--METALS IN AIR ANALYTICAL RESULTS
The Metals in Air data set contains analytical results for measurements of up to 11 metals in 344 air samples over 86 households. Samples were taken by pumping standardized air volumes through filters at indoor and outdoor sites around each household being sampled. The primary ...
NHEXAS PHASE I MARYLAND STUDY--METALS IN AIR ANALYTICAL RESULTS
The Metals in Air data set contains analytical results for measurements of up to 4 metals in 458 air samples over 79 households. Twenty-four-hour samples were taken over a one-week period using a continuous pump and solenoid apparatus by pumping a standardized air volume through...
NHEXAS PHASE I MARYLAND STUDY--PESTICIDES IN AIR ANALYTICAL RESULTS
The Pesticides in Air data set contains analytical results for measurements of up to 9 pesticides in 127 air samples over 51 households. Samples were taken by pumping standardized air volumes through URG impactors with a 10 um cutpoint and polyurethane foam (PUF) filters at indo...
Experimental investigation of air pressure affecting filtration performance of fibrous filter sheet.
Xu, Bin; Yu, Xiao; Wu, Ya; Lin, Zhongping
2017-03-01
Understanding the effect of air pressure on their filtration performance is important for assessing the effectiveness of fibrous filters under different practical circumstances. The effectiveness of three classes of air filter sheets were investigated in laboratory-based measurements at a wide range of air pressures (60-130 KPa). The filtration efficiency was found most sensitive to the air pressure change at smaller particle sizes. As the air pressure increased from 60 to 130 KPa, significant decrease in filtration efficiency (up to 15%) and increase in pressure drop (up to 90 Pa) were observed. The filtration efficiency of the filter sheet with largest fiber diameter and smallest solid volume fraction was affected most, while the pressure drop of the filter sheet with smallest fiber diameter and largest solid volume fraction was affected most. The effect of air pressure on the filtration efficiency was slightly larger at greater filter face air velocity. However, the effect of air pressure on the pressure drop was negligible. The filtration efficiency and pressure drop were explicitly expressed as functions of the air pressure. Two coefficients were empirically derived and successfully accounted for the effects of air pressure on filtration efficiency and pressure drop.
ERIC Educational Resources Information Center
American Council on Education, Washington, DC. Office on Educational Credit.
Postsecondary educational credit recommendations for formal courses offered by the Air Force and the Department of Defense are provided in this first of a three-volume guide. (Other volumes cover courses offered by the Army and by the Coast Guard, Marine Corps, and Navy. See note.) Following brief sections on use of the guide, the formal course…
ERIC Educational Resources Information Center
Slebodnick, Edward B.; And Others
Volume 1 of the study reports a work effort to define and give guidelines for the acquisition of cost-effective alternative continuing education (CE) systems to prevent the technological obsolescence of Air Force military scientific and engineering officer personnel. A detailed background survey of the problem was conducted using questionnaires,…
Thio, C L; Smith, D; Merz, W G; Streifel, A J; Bova, G; Gay, L; Miller, C B; Perl, T M
2000-01-01
To investigate an outbreak of aspergillosis in a leukemia and bone marrow transplant (BMT) unit and to improve environmental assessment strategies to detect Aspergillus. Epidemiological investigation and detailed environmental assessment. A tertiary-care university hospital with a 37-bed leukemia and BMT unit Leukemic or BMT patients with invasive aspergillosis identified through prospective surveillance and confirmed by chart review. We verified the diagnosis of invasive fungal infection by reviewing medical charts of at-risk patients, performing a case-control study to determine risk factors for infection, instituting wet mopping to clean all floors, providing N95 masks to protect patients outside high-efficiency particulate air (HEPA)-filtered areas, altering traffic patterns into the unit, and performing molecular typing of selected Aspergillus flavus isolates. To assess the environment, we verified pressure relationships between the rooms and hallway and between buildings, and we compared the ability of large-volume (1,200 L) and small-volume (160 L) air samplers to detect Aspergillus spores. Of 29 potential invasive aspergillosis cases, 21 were confirmed by medical chart review. Risk factors for developing invasive aspergillosis included the length of time since malignancy was diagnosed (odds ratio [OR], 1.0; P=.05) and hospitalization in a patient room located near a stairwell door (OR, 3.7; P=.05). Two of five A. flavus patient isolates were identical to one of the environmental isolates. The pressure in most of the rooms was higher than in the corridors, but the pressure in the oncology unit was negative with respect to the physically adjacent hospital; consequently, the unit acted essentially as a vacuum that siphoned non-HEPA-filtered air from the main hospital. Of the 78 samples obtained with a small-volume air sampler, none grew an Aspergillus species, whereas 10 of 40 cultures obtained with a large-volume air sampler did. During active construction, Aspergillus spores may have entered the oncology unit from the physically adjacent hospital because the air pressure differed. Guidelines that establish the minimum acceptable pressures and specify which pressure relationships to test in healthcare settings are needed. Our data show that large-volume air samples are superior to small-volume samples to assess for Aspergillus in the healthcare environment.
NASA Astrophysics Data System (ADS)
Ten Veldhuis, M. C.; Smith, J. A.; Zhou, Z.
2017-12-01
Impacts of rainfall variability on runoff response are highly scale-dependent. Sensitivity analyses based on hydrological model simulations have shown that impacts are likely to depend on combinations of storm type, basin versus storm scale, temporal versus spatial rainfall variability. So far, few of these conclusions have been confirmed on observational grounds, since high quality datasets of spatially variable rainfall and runoff over prolonged periods are rare. Here we investigate relationships between rainfall variability and runoff response based on 30 years of radar-rainfall datasets and flow measurements for 16 hydrological basins ranging from 7 to 111 km2. Basins vary not only in scale, but also in their degree of urbanisation. We investigated temporal and spatial variability characteristics of rainfall fields across a range of spatial and temporal scales to identify main drivers for variability in runoff response. We identified 3 ranges of basin size with different temporal versus spatial rainfall variability characteristics. Total rainfall volume proved to be the dominant agent determining runoff response at all basin scales, independent of their degree of urbanisation. Peak rainfall intensity and storm core volume are of secondary importance. This applies to all runoff parameters, including runoff volume, runoff peak, volume-to-peak and lag time. Position and movement of the storm with respect to the basin have a negligible influence on runoff response, with the exception of lag times in some of the larger basins. This highlights the importance of accuracy in rainfall estimation: getting the position right but the volume wrong will inevitably lead to large errors in runoff prediction. Our study helps to identify conditions where rainfall variability matters for correct estimation of the rainfall volume as well as the associated runoff response.
Tapping the full potential of geodetic glacier change assessment with air and space borne sensors
NASA Astrophysics Data System (ADS)
Zemp, M.; Paul, F.; Machguth, H.; Fischer, M.
2016-12-01
Glacier changes are recognized as independent and high-confidence natural indicators of climate change. Past, current, and future glacier changes impact on global sea level, the regional water cycle, and local hazard situations. In the 5th Assessment Report of the IPCC, glacier mass budgets were reconciled by combining traditional observations (i.e. results from glaciological and geodetic measurements) with satellite altimetry and gravimetry to fill regional gaps and obtain global coverage. However, this approach is challenged by the relatively small number and inhomogeneous distribution of in-situ measurement series and their often unknown representativeness for the respective mountain range as well as by scale issues of current satellite altimetry (only point data) and gravimetry (coarse resolution) missions. In this presentation, we highlight the potential of air and space borne sensors for (i) validation and calibration of direct measurements using the glaciological method, (ii) assessing glacier volume changes over entire mountain ranges, and for (iii) determination of the representativeness of the field measurements for respective mountain ranges. Whereas long-term in-situ measurements provide the temporal variability of glacier mass changes with annual or seasonal resolution, differencing of high-resolution digital elevation models, such as from airborne (national) surveys or TanDEM-X, bear the potential to assess thickness and volume changes for thousands of individual glaciers over entire mountain ranges on a decadal time scale. In combination, the calibrated field measurements can be used to determine volume and mass changes over entire mountain ranges at high confidence. The spatial-temporal extrapolation can be supported using dense temporal series of snow cover evolution derived from optical satellite data such as Sentinel 2. Finally, these results can be used to reconcile satellite altimetry and gravimetry products. Provided that resources for corresponding glacier monitoring activities are made available (within or outside the scientific funding system), the combination of in-situ with air and space borne measurements will boost the scientific capacity to address the grand challenges from climate-induced glacier changes and related societal impacts.
Personal exposure to metal fume, NO2, and O3 among production welders and non-welders.
Schoonover, Todd; Conroy, Lorraine; Lacey, Steven; Plavka, Julie
2011-01-01
The objective of this study was to characterize personal exposures to welding-related metals and gases for production welders and non-welders in a large manufacturing facility. Welding fume metals and irritant gases nitrogen dioxide (NO(2)) and ozone (O(3)) were sampled for thirty-eight workers. Personal exposure air samples for welding fume metals were collected on 37 mm open face cassettes and nitrogen dioxide and ozone exposure samples were collected with diffusive passive samplers. Samples were analyzed for metals using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and welding fume metal exposure concentrations were defined as the sum of welding-related metals mass per volume of air sampled. Welding fume metal exposures were highly variable among similar types of welding while NO(2) and O(3) exposure were less variable. Welding fume metal exposures were significantly higher 474 μg/m(3) for welders than non-welders 60 μg/m(3) (p=0.001). Welders were exposed to higher concentrations of NO(2) and O(3) than non-welders but the differences were not statistically significant. Welding fume metal exposure concentrations for welders performing gas metal arc welding (GMAW) and shielded metal arc welding (SMAW) were higher than welders performing gas tungsten arc welding (GTAW). Non-welders experienced exposures similar to GTAW welders despite a curtain wall barrier separating welding and non-welding work areas.
Large eddy simulation of soot evolution in an aircraft combustor
NASA Astrophysics Data System (ADS)
Mueller, Michael E.; Pitsch, Heinz
2013-11-01
An integrated kinetics-based Large Eddy Simulation (LES) approach for soot evolution in turbulent reacting flows is applied to the simulation of a Pratt & Whitney aircraft gas turbine combustor, and the results are analyzed to provide insights into the complex interactions of the hydrodynamics, mixing, chemistry, and soot. The integrated approach includes detailed models for soot, combustion, and the unresolved interactions between soot, chemistry, and turbulence. The soot model is based on the Hybrid Method of Moments and detailed descriptions of soot aggregates and the various physical and chemical processes governing their evolution. The detailed kinetics of jet fuel oxidation and soot precursor formation is described with the Radiation Flamelet/Progress Variable model, which has been modified to account for the removal of soot precursors from the gas-phase. The unclosed filtered quantities in the soot and combustion models, such as source terms, are closed with a novel presumed subfilter PDF approach that accounts for the high subfilter spatial intermittency of soot. For the combustor simulation, the integrated approach is combined with a Lagrangian parcel method for the liquid spray and state-of-the-art unstructured LES technology for complex geometries. Two overall fuel-to-air ratios are simulated to evaluate the ability of the model to make not only absolute predictions but also quantitative predictions of trends. The Pratt & Whitney combustor is a Rich-Quench-Lean combustor in which combustion first occurs in a fuel-rich primary zone characterized by a large recirculation zone. Dilution air is then added downstream of the recirculation zone, and combustion continues in a fuel-lean secondary zone. The simulations show that large quantities of soot are formed in the fuel-rich recirculation zone, and, furthermore, the overall fuel-to-air ratio dictates both the dominant soot growth process and the location of maximum soot volume fraction. At the higher fuel-to-air ratio, the maximum soot volume fraction is found inside the recirculation zone; at the lower fuel-to-air ratio, turbulent fluctuations in the mixture fraction promote the oxidation of soot inside the recirculation zone and suppress the accumulation of a large soot volume fraction. Downstream, soot exits the combustor in intermittent fuel-rich pockets that are not mixed during the injection of dilution air and subsequent secondary fuel-lean combustion. At the higher fuel-to-air ratio, the frequency of these fuel-rich pockets is increased, leading to higher soot emissions from the combustor. Quantitatively, the soot emissions from the combustor are overpredicted by about 50%, which is a substantial improvement over previous works utilizing RANS to predict such emissions. In addition, the ratio between the two fuel-to-air ratios predicted by LES compares very favorably with the experimental measurements. Furthermore, soot growth is dominated by an acetylene-based pathway rather than an aromatic-based pathway, which is usually the dominant mechanism in nonpremixed flames. This finding is the result of the interactions between the hydrodynamics, mixing, chemistry, and soot in the recirculation zone and the resulting residence times of soot at various mixture fractions (compositions), which are not the same in this complex recirculating flow as in nonpremixed jet flames.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frenzel, E.; Arnold, D.; Wershofen, H.
1996-06-01
A method for determination of radionuclide concentrations in air aerosol samples collected by the high volume aerosol sampler ASS-500 was elaborated. The aerosol sampling station ASS-500 is a Stand alone, all-weather proofed instrument. It is designed for representative sampling of airborne radionuclides from ground level air at a height of about 1.5 m above ground level. The ASS-500 station enables continuous air monitoring both normal and emergency Situations. The collection of aerosols on the Petrianov FPP-15-1.5 type filter out of an air volume of about 100,000 m{sup 3} (sampling period 1 wk) or of about 250,000 m{sup 3} (sampling periodmore » 3 wk) admits accurate spectrometric low level measurements of natural and artificial radionuclides. The achieved detection limit is 0.5 {mu}Bq m{sup -3} and 0.2 {mu}Bq m{sup -3} for {sup 137}Cs, respectively. A new developed air flow Meter system allows to enhance the collected air volume to about 150,000 m{sup 3} per week and lowers the detection limit to <0.4 {mu}Bq m{sup -3} for {sup 137}Cs for weekly collected aerosol samples. In Poland the CLOR uses 9 Stations ASS-500 at different sites as atmospheric radioactivity control system. On the basis of spectrometric measurements of natural and artificial radionuclides in the collected aerosol samples at the different sites, CLOR establishes a weekly report about the radiological situation at Poland for responsible authorities. The very low achievable detection limit of the Station ASS-500 due 10 the high air flow fate and the long possible sampling period were the key argument for other government radiation protection authorities in Europe to introduce the Station ASS-500 into their low level radionuclide atmospheric monitoring programs (Austria, Belarus, France, Germany, Iceland, Spain, Switzerland, Ukraine).« less
Abe, Kota; Kadoya, Noriyuki; Sato, Shinya; Hashimoto, Shimpei; Nakajima, Yujiro; Miyasaka, Yuya; Ito, Kengo; Umezawa, Rei; Yamamoto, Takaya; Takahashi, Noriyoshi; Takeda, Ken; Jingu, Keiichi
2018-03-01
We evaluated the impact of model-based dose calculation algorithms (MBDCAs) on high-dose-rate brachytherapy (HDR-BT) treatment planning for patients with cervical cancer. Seven patients with cervical cancer treated using HDR-BT were studied. Tandem and ovoid applicators were used in four patients, a vaginal cylinder in one, and interstitial needles in the remaining two patients. MBDCAs were applied to the Advanced Collapsed cone Engine (ACE; Elekta, Stockholm, Sweden). All plans, which were originally calculated using TG-43, were re-calculated using both ACE and Monte Carlo (MC) simulations. Air was used as the rectal material. The mean difference in the rectum D2cm3 between ACErec-air and MCrec-air was 8.60 ± 4.64%, whereas that in the bladder D2cm3 was -2.80 ± 1.21%. Conversely, in the small group analysis (n = 4) using water instead of air as the rectal material, the mean difference in the rectum D2cm3 between TG-43 and ACErec-air was 11.87 ± 2.65%, whereas that between TG-43 and ACErec-water was 0.81 ± 2.04%, indicating that the use of water as the rectal material reduced the difference in D2cm3 between TG-43 and ACE. Our results suggested that the differences in the dose-volume histogram (DVH) parameters of TG-43 and ACE were large for the rectum when considerable air (gas) volume was present in it, and that this difference was reduced when the air (gas) volume was reduced. Also, ACE exhibited better dose calculation accuracy than that of TG-43 in this situation. Thus, ACE may be able to calculate the dose more accurately than TG-43 for HDR-BT in treating cervical cancers, particularly for patients with considerable air (gas) volume in the rectum.
Abe, Kota; Kadoya, Noriyuki; Sato, Shinya; Hashimoto, Shimpei; Nakajima, Yujiro; Miyasaka, Yuya; Ito, Kengo; Umezawa, Rei; Yamamoto, Takaya; Takahashi, Noriyoshi; Takeda, Ken; Jingu, Keiichi
2018-01-01
Abstract We evaluated the impact of model-based dose calculation algorithms (MBDCAs) on high-dose-rate brachytherapy (HDR-BT) treatment planning for patients with cervical cancer. Seven patients with cervical cancer treated using HDR-BT were studied. Tandem and ovoid applicators were used in four patients, a vaginal cylinder in one, and interstitial needles in the remaining two patients. MBDCAs were applied to the Advanced Collapsed cone Engine (ACE; Elekta, Stockholm, Sweden). All plans, which were originally calculated using TG-43, were re-calculated using both ACE and Monte Carlo (MC) simulations. Air was used as the rectal material. The mean difference in the rectum D2cm3 between ACErec-air and MCrec-air was 8.60 ± 4.64%, whereas that in the bladder D2cm3 was −2.80 ± 1.21%. Conversely, in the small group analysis (n = 4) using water instead of air as the rectal material, the mean difference in the rectum D2cm3 between TG-43 and ACErec-air was 11.87 ± 2.65%, whereas that between TG-43 and ACErec-water was 0.81 ± 2.04%, indicating that the use of water as the rectal material reduced the difference in D2cm3 between TG-43 and ACE. Our results suggested that the differences in the dose–volume histogram (DVH) parameters of TG-43 and ACE were large for the rectum when considerable air (gas) volume was present in it, and that this difference was reduced when the air (gas) volume was reduced. Also, ACE exhibited better dose calculation accuracy than that of TG-43 in this situation. Thus, ACE may be able to calculate the dose more accurately than TG-43 for HDR-BT in treating cervical cancers, particularly for patients with considerable air (gas) volume in the rectum. PMID:29378024
Effects on respiratory health of a reduction in air pollution from vehicle exhaust emissions
Burr, M; Karani, G; Davies, B; Holmes, B; Williams, K
2004-01-01
Aims: To determine whether residents of congested streets have a higher prevalence of respiratory symptoms than residents of nearby uncongested streets, and whether their respiratory health improves following a reduction in exposure to traffic related air pollutants. Methods: An area was identified where certain streets were subject to air pollution from heavy road traffic, which was likely to improve following the construction of a by-pass. A respiratory survey was conducted among the residents, together with the residents of nearby uncongested streets, at baseline and again a year after the by-pass opened. Measurements were made of air pollutant concentrations in both areas on both occasions. Results: Initial concentrations of PM10 and PM2.5 were substantially higher in the congested than in the uncongested streets. When the by-pass opened, the volume of heavy goods traffic fell by nearly 50%. PM10 decreased by 23% (8.0 µg/m3) in the congested streets and by 29% (3.4 µg/m3) in the uncongested streets, with similar proportionate falls in PM2.5. There were no clear or consistent differences between the residents of the two areas initially in terms of symptoms or peak flow variability. Repeat questionnaires were obtained from 165 and 283 subjects in the congested and uncongested areas respectively, and showed a tendency for most symptoms to improve in both areas. For chest symptoms, the improvement tended to be greater in the uncongested area, although the difference between the areas was not statistically significant. Rhinitis and rhinoconjunctivitis tended to improve to a greater extent in the congested streets; the difference between the areas was significant for the degree to which rhinitis interfered with daily activities. Peak flow variability tended to improve in the uncongested area. Conclusions: The by-pass reduced pollutant levels to a degree that probably alleviates rhinitis and rhinoconjunctivitis but has little effect on lower respiratory symptoms. PMID:14985515
Monte Carlo modeling of the MammoSite(Reg) treatments: Dose effects of air pockets
NASA Astrophysics Data System (ADS)
Huang, Yu-Huei Jessica
In the treatment of early-stage breast cancer, MammoSiteRTM has been used as one of the partial breast irradiation techniques after breast-conserving surgery. The MammoSiteRTM applicator is a single catheter with an inflatable balloon at its distal end that can be placed in the resected cavity (tumor bed). The treatment is performed by delivering the Ir-192 high-dose-rate source through the center lumen of the catheter by a remote afterloader while the balloon is inflated in the tumor bed cavity. In the MammoSiteRTM treatment, it has been found that air pockets occasionally exist and can be seen and measured in CT images. Experiences have shown that about 90% of the patients have air pockets when imaged two days after the balloon placement. The criterion for the air pocket volume is less than or equal to 10% of the planning target volume in volume. The purpose of this study is to quantify dose errors occurring at the interface of the air pocket in MammoSiteRTM treatments with Monte Carlo calculations, so that the dosimetric effects from the air pocket can be fully understood. Modern brachytherapy treatment planning systems typically consider patient anatomy as a homogeneous water medium, and incorrectly model lateral and backscatter radiation during treatment delivery. Heterogeneities complicate the problem and may result in overdosage to the tissue located near the medium interface. This becomes a problem in MammoSiteRTM brachytherapy when air pocket appears during the treatment. The resulting percentage dose difference near the air-tissue interface is hypothesized to be greater than 10% when comparing Monte Carlo N-Particle (version 5) with current treatment planning systems. The specific aims for this study are: (1) Validate Monte Carlo N-Particle (Version 5) source modeling. (2) Develop phantom. (3) Calculate phantom doses with Monte Carlo N-Particle (Version 5) and investigate doses difference between thermoluminescent dosimeter measurement, treatment planning system, and Monte Carlo results. (4) Calculate dose differences for various treatment parameters. The results from thermoliminescent dosimeter phantom measurements proves that with correct geometric and source models, Monte Carlo method can be used to estimate homogeneity and heterogeneity doses in MammoSiteRTM treatment. The resulting dose differences at various points of interests in Monte Carlo calculations were presented and compared between different calculation methods. The air pocket doses were found to be underestimated by the treatment planning system. It was concluded that after correcting for inverse square law, the underestimation error from the treatment planning system will be less than +/- 2.0%, and +/- 3.5%, at the air pocket surface and air pocket planning target volume, respectively, when comparing Monte Carlo N-Particle (version 5) results. If the skin surface is located close to the air pocket, the underestimation effect at the air pocket surface and air pocket planning target volume doses becomes less because the air outside of the skin surface reduces the air pocket inhomogeneity effect. In order to maintain appropriate skin dose within tolerance, the skin surface criterion should be considered as the smallest thickness of the breast tissue located between the air pocket and the skin surface. The thickness should be at least 5 mm. In conclusion, the air pocket outside the balloon had less than 10% inhomogeneity effect based on the situations studied. It is recommended that at least an inverse square correction should be taken into consideration in order to relate clinical outcomes to actual delivered doses to the air pocket and surrounding tissues.
Using atmospheric 14CO to constrain OH variability: concept and potential for future measurements
NASA Astrophysics Data System (ADS)
Petrenko, V. V.; Murray, L. T.; Smith, A. W.
2017-12-01
The primary source of 14C-containing carbon monoxide (14CO) in the atmosphere is via 14C production from 14N by secondary cosmic rays, and the primary sink is removal by OH. Variations in the global abundance of 14CO that are not explained by variations in 14C production are mainly driven by variations in the global abundance of OH. Monitoring OH variability via methyl chloroform is becoming increasingly difficult as methyl chloroform abundance is continuing to decline. Measurements of atmospheric 14CO have previously been successfully used to infer OH variability. However, these measurements are currently only continuing at one location (Baring Head, New Zealand), which is insufficient to infer global trends. We propose to restart global 14CO monitoring with the aim of providing another constraint on OH variability. A new analytical system for 14CO sampling and measurements is in development, which will allow to strongly reduce the required sample air volumes (previously ≥ 400 L) and simplify field logistics. A set of test measurements is planned, with sampling at the Mauna Loa Observatory. Preliminary work with a state-of-the-art chemical transport model is identifying the most promising locations for global 14CO sampling.
Journal of Air Transportation World Wide, Volume 3, No. 1. Volume 3
NASA Technical Reports Server (NTRS)
Bowen, Brent D. (Editor)
1998-01-01
The Journal of Air Transportation World Wide's (JATWW) mission is to provide the global community immediate key resource information in all areas of air transportation. Our goal is to be recognized as the preeminent scholarly journal in the aeronautical aspects of transportation. As an international and interdisciplinary journal, the JATWW will provide a forum for peer-reviewed articles in all areas of aviation and space transportation research, policy, theory, case study, practice, and issues. While maintaining a broad scope, a focal point of the journal will be in the area of aviation administration and policy.
Journal of Air Transportation World Wide, Volume 5, No. 2. Volume 5, No. 2
NASA Technical Reports Server (NTRS)
Browen, Brent D.
2000-01-01
The Journal of Air Transportation World Wide's (JATWW) mission is to provide the global community immediate key resource information in all areas of air transportation. Our goal is to be recognized as the preeminent scholarly journal in the aeronautical aspects of transportation. As an international and interdisciplinary journal, the JATWW will provide a forum for peer-reviewed articles in all areas of aviation and space transportation research, policy, theory, case study, practice, and issues. While maintaining a broad scope, a focal point of the journal will be in the area of aviation administration and policy.
Journal of Air Transportation World Wide, Volume 4, No. 2. Volume 4
NASA Technical Reports Server (NTRS)
Bowen, Brent D. (Editor); Kabashkin, Igor (Editor)
1999-01-01
The Journal of Air Transportation World Wide's (JATWW) mission is to provide the global community immediate key resource information in all areas of air transportation. The goal of the Journal is to be recognized as the preeminent scholarly journal in the aeronautical aspects of transportation. As an international and interdisciplinary journal, the JATWW will provide a forum for peer-reviewed articles in all areas of aviation and space transportation research, policy, theory, case study, practice, and issues. While maintaining a broad scope, a focal point of the journal will be in the area of aviation administration and policy.
Journal of Air Transportation World Wide, Volume 2, No. 1. Volume 2
NASA Technical Reports Server (NTRS)
Bowen, Brent (Editor)
1997-01-01
The Journal of Air Transportation World Wide's (JATWW) mission is to provide the global community immediate key resource information in all areas of air transportation. Our goal is to be recognized as the preeminent scholarly journal in the aeronautical aspects of transportation. As an international and interdisciplinary journal, the JATWW will provide a forum for peer-reviewed articles in all areas of aviation and space transportation research, policy, theory, case study, practice, and issues. While maintaining a broad scope, a key focal point of the journal will be in the area of aviation administration and policy.
Al-Azmi, D; Snopek, B; Sayed, A M; Domanski, T
2004-01-01
Based on the different levels of solubility of radon gas in organic solvents and water, a bubbling system has been developed to transfer radon gas, dissolving naturally in water samples, to an organic solvent, i.e. olive oil, which is known to be a good solvent of radon gas. The system features the application of a fixed volume of bubbling air by introducing a fixed volume of water into a flask mounted above the system, to displace an identical volume of air from an air cylinder. Thus a gravitational flow of water is provided without the need for pumping. Then, the flushing air (radon-enriched air) is directed through a vial containing olive oil, to achieve deposition of the radon gas by another bubbling process. Following this, the vial (containing olive oil) is measured by direct use of gamma ray spectrometry, without the need of any chemical or physical processing of the samples. Using a standard solution of 226Ra/222Rn, a lowest measurable concentration (LMC) of radon in water samples of 9.4 Bq L(-1) has been achieved (below the maximum contaminant level of 11 Bq L(-1)).
NASA Technical Reports Server (NTRS)
Own, Tae Hoon (Editor); Bowen, Brent D. (Editor)
1997-01-01
The Aviation Institute University of Nebraska at Omaha (UNO) Monograph series has published the Conference Proceedings of the 1997 Air Transport Research Group (ATRG) of the World Conference on Transportation Research Society (WCTR) volume 1, number 3. The topics included in this document are: 1) Industrial Reform and Air Transport Development in China; 2) The Economic Effects of Airline Deregulation and the Open-Sky Policy of Korea; 3) The Economic Effects of Airline Deregulation and the Open-Sky Policy of Korea; 4) "Open Skies" in India-Is the policy succeeding? 5) The Japanese Domestic Air Fares under the Regulatory Regime: What will be expected after the revision of current charging system? 6) The Competitive Position of Airline Networks; and 7) Air Transport and Regional Economic Development in the European Union.
Miura, R.; Imamura, S.; Ohta, R.; Ishii, A.; Liu, X.; Shimada, T.; Iwamoto, S.; Arakawa, Y.; Kato, Y. K.
2014-01-01
The unique emission properties of single-walled carbon nanotubes are attractive for achieving increased functionality in integrated photonics. In addition to being room-temperature telecom-band emitters that can be directly grown on silicon, they are ideal for coupling to nanoscale photonic structures. Here we report on high-efficiency coupling of individual air-suspended carbon nanotubes to silicon photonic crystal nanobeam cavities. Photoluminescence images of dielectric- and air-mode cavities reflect their distinctly different mode profiles and show that fields in the air are important for coupling. We find that the air-mode cavities couple more efficiently, and estimated spontaneous emission coupling factors reach a value as high as 0.85. Our results demonstrate advantages of ultralow mode-volumes in air-mode cavities for coupling to low-dimensional nanoscale emitters. PMID:25420679
NASA Astrophysics Data System (ADS)
Szymanowski, Mariusz; Kryza, Maciej
2017-02-01
Our study examines the role of auxiliary variables in the process of spatial modelling and mapping of climatological elements, with air temperature in Poland used as an example. The multivariable algorithms are the most frequently applied for spatialization of air temperature, and their results in many studies are proved to be better in comparison to those obtained by various one-dimensional techniques. In most of the previous studies, two main strategies were used to perform multidimensional spatial interpolation of air temperature. First, it was accepted that all variables significantly correlated with air temperature should be incorporated into the model. Second, it was assumed that the more spatial variation of air temperature was deterministically explained, the better was the quality of spatial interpolation. The main goal of the paper was to examine both above-mentioned assumptions. The analysis was performed using data from 250 meteorological stations and for 69 air temperature cases aggregated on different levels: from daily means to 10-year annual mean. Two cases were considered for detailed analysis. The set of potential auxiliary variables covered 11 environmental predictors of air temperature. Another purpose of the study was to compare the results of interpolation given by various multivariable methods using the same set of explanatory variables. Two regression models: multiple linear (MLR) and geographically weighted (GWR) method, as well as their extensions to the regression-kriging form, MLRK and GWRK, respectively, were examined. Stepwise regression was used to select variables for the individual models and the cross-validation method was used to validate the results with a special attention paid to statistically significant improvement of the model using the mean absolute error (MAE) criterion. The main results of this study led to rejection of both assumptions considered. Usually, including more than two or three of the most significantly correlated auxiliary variables does not improve the quality of the spatial model. The effects of introduction of certain variables into the model were not climatologically justified and were seen on maps as unexpected and undesired artefacts. The results confirm, in accordance with previous studies, that in the case of air temperature distribution, the spatial process is non-stationary; thus, the local GWR model performs better than the global MLR if they are specified using the same set of auxiliary variables. If only GWR residuals are autocorrelated, the geographically weighted regression-kriging (GWRK) model seems to be optimal for air temperature spatial interpolation.
NASA Astrophysics Data System (ADS)
Zhang, Yu; Chen, Changsheng; Beardsley, Robert C.; Gao, Guoping; Qi, Jianhua; Lin, Huichan
2016-11-01
A high-resolution (up to 2 km), unstructured-grid, fully ice-sea coupled Arctic Ocean Finite-Volume Community Ocean Model (AO-FVCOM) was used to simulate the sea ice in the Arctic over the period 1978-2014. The spatial-varying horizontal model resolution was designed to better resolve both topographic and baroclinic dynamics scales over the Arctic slope and narrow straits. The model-simulated sea ice was in good agreement with available observed sea ice extent, concentration, drift velocity and thickness, not only in seasonal and interannual variability but also in spatial distribution. Compared with six other Arctic Ocean models (ECCO2, GSFC, INMOM, ORCA, NAME, and UW), the AO-FVCOM-simulated ice thickness showed a higher mean correlation coefficient of ˜0.63 and a smaller residual with observations. Model-produced ice drift speed and direction errors varied with wind speed: the speed and direction errors increased and decreased as the wind speed increased, respectively. Efforts were made to examine the influences of parameterizations of air-ice external and ice-water interfacial stresses on the model-produced bias. The ice drift direction was more sensitive to air-ice drag coefficients and turning angles than the ice drift speed. Increasing or decreasing either 10% in water-ice drag coefficient or 10° in water-ice turning angle did not show a significant influence on the ice drift velocity simulation results although the sea ice drift speed was more sensitive to these two parameters than the sea ice drift direction. Using the COARE 4.0-derived parameterization of air-water drag coefficient for wind stress did not significantly influence the ice drift velocity simulation.
Air void analyzer for plastic concrete : technical summary report.
DOT National Transportation Integrated Search
2008-11-01
The best protection against freeze-thaw cycles in concrete is to have a good air void : system. Although microscopic, concrete is a porous material. Conventional field tests, : the volumetric or pressure tests, only provide the volume of air voids in...
DOT National Transportation Integrated Search
2001-01-01
Airport Activity Statistics of Certificated Air Carriers: Summary Tables presents summary data for : all scheduled and nonscheduled service by large certificated U.S. air carriersincluding the volume : of passenger, freight, and mail enplanements,...
Wave energy absorption by a floating air bag
NASA Astrophysics Data System (ADS)
Kurniawan, A.; Chaplin, J. R.; Greaves, D. M.; Hann, M.
2017-02-01
A floating air bag, ballasted in water, expands and contracts as it heaves under wave action. Connecting the bag to a secondary volume via a turbine transforms the bag into a device capable of generating useful energy from the waves. Small-scale measurements of the device reveal some interesting properties, which are successfully predicted numerically. Owing to its compressibility, the device can have a heave resonance period longer than that of a rigid device of the same shape and size, without any phase control. Furthermore, varying the amount of air in the bag is found to change its shape and hence its dynamic response, while varying the turbine damping or the air volume ratio changes the dynamic response without changing the shape.
Short-Term Exposure to Urban Air Pollution and Influences on Placental Vascularization Indexes.
Hettfleisch, Karen; Bernardes, Lisandra Stein; Carvalho, Mariana Azevedo; Pastro, Luciana Duzolina Manfré; Vieira, Sandra Elisabete; Saldiva, Silvia R D M; Saldiva, Paulo; Francisco, Rossana Pulcineli Vieira
2017-04-01
It has been widely demonstrated that air pollution can affect human health and that certain pollutant gases lead to adverse obstetric outcomes, such as preeclampsia and fetal growth restriction. We evaluated the influence of individual maternal exposure to air pollution on placental volume and vascularization evaluated in the first trimester of pregnancy. This was a cross-sectional study on low-risk pregnant women living in São Paulo, Brazil. The women carried passive personal NO 2 and O 3 monitors in the week preceding evaluation. We employed the virtual organ computer-aided analysis (VOCAL) technique using three-dimensional power Doppler ultrasound to evaluate placental volume and placental vascular indexes [vascularization index (VI), flow index (FI), and vascularization flow index (VFI)]. We analyzed the influence of pollutant levels on log-transformed placental vascularization and volume using multiple regression models. We evaluated 229 patients. Increased NO 2 levels had a significant negative association with log of VI ( p = 0.020 and beta = -0.153) and VFI ( p = 0.024 and beta = -0.151). NO 2 and O 3 had no influence on the log of placental volume or FI. NO 2 , an estimator of primary air pollutants, was significantly associated with diminished VI and VFI in the first trimester of pregnancy.
46 CFR 197.310 - Air compressor system.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Air compressor system. 197.310 Section 197.310 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.310 Air compressor system. A compressor used to supply breathing air to a diver must have— (a) A volume tank that is— (1) Built and stamped in...
46 CFR 197.310 - Air compressor system.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Air compressor system. 197.310 Section 197.310 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.310 Air compressor system. A compressor used to supply breathing air to a diver must have— (a) A volume tank that is— (1) Built and stamped in...
46 CFR 197.310 - Air compressor system.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Air compressor system. 197.310 Section 197.310 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.310 Air compressor system. A compressor used to supply breathing air to a diver must have— (a) A volume tank that is— (1) Built and stamped in...
46 CFR 197.310 - Air compressor system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Air compressor system. 197.310 Section 197.310 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.310 Air compressor system. A compressor used to supply breathing air to a diver must have— (a) A volume tank that is— (1) Built and stamped in...
Code of Federal Regulations, 2012 CFR
2012-07-01
... durability groups) that is equipped with unproven emission control systems. (v) The manufacturer must... small volume manufacturers and small volume test groups. 86.1826-01 Section 86.1826-01 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW...
Code of Federal Regulations, 2013 CFR
2013-07-01
... durability groups) that is equipped with unproven emission control systems. (v) The manufacturer must... small volume manufacturers and small volume test groups. 86.1826-01 Section 86.1826-01 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW...
Code of Federal Regulations, 2011 CFR
2011-07-01
... durability groups) that is equipped with unproven emission control systems. (v) The manufacturer must... small volume manufacturers and small volume test groups. 86.1826-01 Section 86.1826-01 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW...
Code of Federal Regulations, 2010 CFR
2010-07-01
... durability groups) that is equipped with unproven emission control systems. (v) The manufacturer must... small volume manufacturers and small volume test groups. 86.1826-01 Section 86.1826-01 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW...
Energy efficient laboratory fume hood
Feustel, Helmut E.
2000-01-01
The present invention provides a low energy consumption fume hood that provides an adequate level of safety while reducing the amount of air exhausted from the hood. A low-flow fume hood in accordance with the present invention works on the principal of providing an air supply, preferably with low turbulence intensity, in the face of the hood. The air flow supplied displaces the volume currently present in the hood's face without significant mixing between the two volumes and with minimum injection of air from either side of the flow. This air flow provides a protective layer of clean air between the contaminated low-flow fume hood work chamber and the laboratory room. Because this protective layer of air will be free of contaminants, even temporary mixing between the air in the face of the fume hood and room air, which may result from short term pressure fluctuations or turbulence in the laboratory, will keep contaminants contained within the hood. Protection of the face of the hood by an air flow with low turbulence intensity in accordance with a preferred embodiment of the present invention largely reduces the need to exhaust large amounts of air from the hood. It has been shown that exhaust air flow reductions of up to 75% are possible without a decrease in the hood's containment performance.
Li, Lianfa; Laurent, Olivier; Wu, Jun
2016-02-05
Epidemiological studies suggest that air pollution is adversely associated with pregnancy outcomes. Such associations may be modified by spatially-varying factors including socio-demographic characteristics, land-use patterns and unaccounted exposures. Yet, few studies have systematically investigated the impact of these factors on spatial variability of the air pollution's effects. This study aimed to examine spatial variability of the effects of air pollution on term birth weight across Census tracts and the influence of tract-level factors on such variability. We obtained over 900,000 birth records from 2001 to 2008 in Los Angeles County, California, USA. Air pollution exposure was modeled at individual level for nitrogen dioxide (NO2) and nitrogen oxides (NOx) using spatiotemporal models. Two-stage Bayesian hierarchical non-linear models were developed to (1) quantify the associations between air pollution exposure and term birth weight within each tract; and (2) examine the socio-demographic, land-use, and exposure-related factors contributing to the between-tract variability of the associations between air pollution and term birth weight. Higher air pollution exposure was associated with lower term birth weight (average posterior effects: -14.7 (95 % CI: -19.8, -9.7) g per 10 ppb increment in NO2 and -6.9 (95 % CI: -12.9, -0.9) g per 10 ppb increment in NOx). The variation of the association across Census tracts was significantly influenced by the tract-level socio-demographic, exposure-related and land-use factors. Our models captured the complex non-linear relationship between these factors and the associations between air pollution and term birth weight: we observed the thresholds from which the influence of the tract-level factors was markedly exacerbated or attenuated. Exacerbating factors might reflect additional exposure to environmental insults or lower socio-economic status with higher vulnerability, whereas attenuating factors might indicate reduced exposure or higher socioeconomic status with lower vulnerability. Our Bayesian models effectively combined a priori knowledge with training data to infer the posterior association of air pollution with term birth weight and to evaluate the influence of the tract-level factors on spatial variability of such association. This study contributes new findings about non-linear influences of socio-demographic factors, land-use patterns, and unaccounted exposures on spatial variability of the effects of air pollution.
Are PCI Service Volumes Associated with 30-Day Mortality? A Population-Based Study from Taiwan.
Yu, Tsung-Hsien; Chou, Ying-Yi; Wei, Chung-Jen; Tung, Yu-Chi
2017-11-09
The volume-outcome relationship has been discussed for over 30 years; however, the findings are inconsistent. This might be due to the heterogeneity of service volume definitions and categorization methods. This study takes percutaneous coronary intervention (PCI) as an example to examine whether the service volume was associated with PCI 30-day mortality, given different service volume definitions and categorization methods. A population-based, cross-sectional multilevel study was conducted. Two definitions of physician and hospital volume were used: (1) the cumulative PCI volume in a previous year before each PCI; (2) the cumulative PCI volume within the study period. The volume was further treated in three ways: (1) a categorical variable based on the American Heart Association's recommendation; (2) a semi-data-driven categorical variable based on k-means clustering algorithm; and (3) a data-driven categorical variable based on the Generalized Additive Model. The results showed that, after adjusting the patient-, physician-, and hospital-level covariates, physician volume was associated inversely with PCI 30-day mortality, but hospital volume was not, no matter which definitions and categorization methods of service volume were applied. Physician volume is negatively associated with PCI 30-day mortality, but the results might vary because of definition and categorization method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Woohyun; Katipamula, Srinivas; Lutes, Robert G.
This report describes how the intelligent load control (ILC) algorithm can be implemented to achieve peak demand reduction while minimizing impacts on occupant comfort. The algorithm was designed to minimize the additional sensors and minimum configuration requirements to enable a scalable and cost-effective implementation for both large and small-/medium-sized commercial buildings. The ILC algorithm uses an analytic hierarchy process (AHP) to dynamically prioritize the available curtailable loads based on both quantitative (deviation of zone conditions from set point) and qualitative rules (types of zone). Although the ILC algorithm described in this report was highly tailored to work with rooftop units,more » it can be generalized for application to other building loads such as variable-air-volume (VAV) boxes and lighting systems.« less
How to design low-noise burners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sams, G.; Jordan, J.
1996-12-01
Frequently, natural draft burner designs used in indirect heaters fail to meet the low noise standard of 85 to 88 dBA three feet from the flame arrestor. Noise encountered with indirect burner designs has been shown to be related to nozzle and firetube gas velocities. Testing shows that when the nozzle velocity is sufficiently greater than the firetube velocity, the low-frequency rumble that accompanies current designs ceases. Data obtained from field testing was used to construct a relationship between burner noise level and gas volume expansion ratio, burner air-to-fuel ratio, mixture flowrate, orifice velocity, burner area, and the number ofmore » burners. The noise from a burner can be predicted if the above easily calculable variables are known.« less
Air pollution health studies often use outdoor concentrations as exposure surrogates. Failure to account for variability of residential infiltration of outdoor pollutants can induce exposure errors and lead to bias and incorrect confidence intervals in health effect estimates. Th...
Measurement variability error for estimates of volume change
James A. Westfall; Paul L. Patterson
2007-01-01
Using quality assurance data, measurement variability distributions were developed for attributes that affect tree volume prediction. Random deviations from the measurement variability distributions were applied to 19381 remeasured sample trees in Maine. The additional error due to measurement variation and measurement bias was estimated via a simulation study for...
NASA Astrophysics Data System (ADS)
Spasis, Georgios
The increasing demand for air conditioning in commercial buildings imposes a serious threat to Europe's CO2 reduction targets. Architects and engineers are therefore in a key position to help reduce the impact of buildings on the environment by taking appropriate decisions concerning the design of the building and the associated heating, ventilation and air conditioning (HVAC) system. The thesis studies the effect of a number of building and HVAC system related design factors on the energy performance of a notional air-conditioned office building employing either a variable air volume (VAV) system with terminal re-heaters, or a four-pipe fan coil unit (FCU) system with fresh air supply from a central plant, using mainly a dynamic simulation tool and the response surface methodology. The evaluation of the energy performance of the HVAC systems is for two types of climate, using typical weather data for London (UK) and Athens (Greece). It has been found that the design variables associated with the solar radiation through the transparent building elements and the internal heat gains should be the main concern of the building designer. On the other hand, the HVAC system engineer should give emphasis to the parameters associated with the plant performance and operation, as well as the temperature control set-points. It has been shown that it is possible to reduce the carbon emissions of the base case scenario by up to 88% depending on the HVAC system and the climate for which it is simulated. The carbon savings, however, are reduced by up to 22% where humidification is provided. This reduction differs depending on the HVAC system and the climatic conditions. The VAV system is more energy efficient than the FCU system, mainly due to the exploitation of the free cooling capacity of the outdoor air. The difference in carbon emissions between the two systems drops when both of them are simulated for the Athens as opposed to the London typical weather conditions. It has been found that it is possible to turn the carbon scales in favour of the FCU system when humidification to a high RH set-point is provided throughout the year, since the adjustment of the RH of the air is particularly energy wasteful for the VAV system.
NASA Technical Reports Server (NTRS)
Chie, C. M.
1984-01-01
The functional requirements for the performance, design, and testing for the prototype Automated Integrated Receive System (AIRS) to be demonstrated for the TDRSS S-Band Single Access Return Link are presented.
DOT National Transportation Integrated Search
2001-01-01
The Bureau of Transportation Statistics (BTS) Airport Activity Statistics of Certificated Air Carriers: Summary Tables presents summary data for all scheduled and nonscheduled service by large certificated U.S. air carriers including the volume of pa...
Automation Applications in an Advanced Air Traffic Management System : Volume 1. Summary.
DOT National Transportation Integrated Search
1974-08-01
The Advanced Air Traffic Management System (AATMS) program is a long-range investigation of new concepts and techniques for controlling air traffic and providing services to the growing number of commercial, military, and general aviation users of th...
Effects of covert subject actions on percent body fat by air-displacement plethsymography.
Tegenkamp, Michelle H; Clark, R Randall; Schoeller, Dale A; Landry, Greg L
2011-07-01
Air-displacement plethysmography (ADP) is used for estimation of body composition, however, some individuals, such as athletes in weight classification sports, may use covert methods during ADP testing to alter their apparent percent body fat. The purpose of this study was to examine the effect of covert subject actions on percent body fat measured by ADP. Subjects underwent body composition analysis in the Bod Pod following the standard procedure using the manufacturer's guidelines. The subjects then underwent 8 more measurements while performing the following intentional manipulations: 4 breathing patterns altering lung volume, foot movement to disrupt air, hand cupping to trap air, and heat and cold exposure before entering the chamber. Increasing and decreasing lung volume during thoracic volume measurement and during body density measurement altered the percent body fat assessment (p < 0.001). High lung volume during thoracic gas measures overestimated fat by 3.7 ± 2.1 percentage points. Lowered lung volume during body volume measures overestimated body fat by an additional 2.2 ± 2.1 percentage points. The heat and cold exposure, tapping, and cupping treatments provided similar estimates of percent body fat when compared with the standard condition. These results demonstrate the subjects were able to covertly change their estimated ADP body composition value by altering breathing when compared with the standard condition. We recommend that sports conditioning coaches, athletic trainers, and technicians administering ADP should be aware of the potential effects of these covert actions. The individual responsible for administering ADP should remain vigilant during testing to detect deliberate altered breathing patterns by athletes in an effort to gain a competitive advantage by manipulating their body composition assessment.
Chronic Hypoxia Accentuates Dysanaptic Lung Growth.
Llapur, Conrado J; Martínez, Myriam R; Grassino, Pedro T; Stok, Ana; Altieri, Héctor H; Bonilla, Federico; Caram, María M; Krowchuk, Natasha M; Kirby, Miranda; Coxson, Harvey O; Tepper, Robert S
2016-08-01
Adults born and raised at high altitudes have larger lung volumes and greater pulmonary diffusion capacity compared with adults at low altitude; however, it remains unclear whether the air and tissue volumes have comparable increases and whether there is a difference in airway size. To assess the effect of chronic hypoxia on lung growth using in vivo high-resolution computed tomography measurements. Healthy adults born and raised at moderate altitude (2,000 m above sea level; n = 19) and at low altitude (400 m above sea level; n = 23) underwent high-resolution computed tomography. Differences in total lung, air, and tissue volume, mean lung density, as well as airway lumen and wall areas in anatomically matched airways were compared between groups. No significant differences for age, sex, weight, or height were found between the two groups (P > 0.05). In a multivariate regression model, altitude was a significant contributor for total lung volume (P = 0.02), air volume (P = 0.03), and tissue volume (P = 0.03), whereby the volumes were greater for the moderate- versus the low-altitude group. However, altitude was not a significant contributor for mean lung density (P = 0.35) or lumen and wall areas in anatomically matched segmental, subsegmental, and subsubsegmental airways. Our findings suggest that the adult lung did not increase lung volume later in life by expansion of an existing number of alveoli, but rather from increased alveolarization early in life. In addition, chronic hypoxia accentuates dysanaptic lung growth by increasing the lung parenchyma but not the airways.
Light Scattering by Ice Crystals Containing Air Bubbles
NASA Astrophysics Data System (ADS)
Zhang, J.; Panetta, R. L.; Yang, P.; Bi, L.
2014-12-01
The radiative effects of ice clouds are often difficult to estimate accurately, but are very important for interpretation of observations and for climate modeling. Our understanding of these effects is primarily based on scattering calculations, but due to the variability in ice habit it is computationally difficult to determine the required scattering and absorption properties, and the difficulties are only compounded by the need to include consideration of air and carbon inclusions of the sort frequently observed in collected samples. Much of the previous work on effects of inclusions in ice particles on scattering properties has been conducted with variants of geometric optics methods. We report on simulations of scattering by ice crystals with enclosed air bubbles using the pseudo-spectral time domain method (PSTD) and improved geometric optics method (IGOM). A Bouncing Ball Model (BBM) is proposed as a parametrization of air bubbles, and the results are compared with Monte Carlo radiative transfer calculations. Consistent with earlier studies, we find that air inclusions lead to a smoothing of variations in the phase function, weakening of halos, and a reduction of backscattering. We extend these studies by examining the effects of the particular arrangement of a fixed number of bubbles, as well as the effects of splitting a given number of bubbles into a greater number of smaller bubbles with the same total volume fraction. The result shows that the phase function will not change much for stochastic distributed air bubbles. It also shows that local maxima of phase functions are smoothed out for backward directions, when we break bubbles into small ones, single big bubble scatter favors more forward scattering than multi small internal scatters.
Allshouse, William B; Adgate, John L; Blair, Benjamin D; McKenzie, Lisa M
2017-09-05
Oil and gas (O&G) production in the United States has increased in the last 15 years, and operations, which are trending toward large multiwell pads, release hazardous air pollutants. Health studies have relied on proximity to O&G wells as an exposure metric, typically using an inverse distance-weighting (IDW) approach. Because O&G emissions are dependent on multiple factors, a dynamic model is needed to describe the variability in air pollution emissions over space and time. We used information on Colorado O&G activities, production volumes, and air pollutant emission rates from two Colorado basins to create a spatiotemporal industrial activity model to develop an intensity-adjusted IDW well-count metric. The Spearman correlation coefficient between this metric and measured pollutant concentrations was 0.74. We applied our model to households in Greeley, Colorado, which is in the middle of the densely developed Denver-Julesburg basin. Our intensity-adjusted IDW increased the unadjusted IDW dynamic range by a factor of 19 and distinguishes high-intensity events, such as hydraulic fracturing and flowback, from lower-intensity events, such as production at single-well pads. As the frequency of multiwell pads increases, it will become increasingly important to characterize the range of intensities at O&G sites when conducting epidemiological studies.
Attic construction with sheathing-applied insulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, W.B.
1995-12-31
Two years of study at a building research laboratory have been applied to cathedralized residential attic construction. Cathedralized attics are rafter-framed or truss-framed attics with flat ceilings in which the insulation is placed against the underside of the roof sheathing rather than on top of the ceiling drywall. The potential benefits of sheathing-applied insulation are considerable and are due to the fact that the attic space becomes part of the conditioned volume. Concern is often expressed that moisture damage may occur in the sheathing. The intent of the current study was to address those concerns. This study allowed an assessmentmore » of the performance of cathedralized ceilings, given the following construction variables: (1) ventilation vs. no ventilation, (2) continuous air chute construction vs. stuffed insulation construction, and (3) opens joints in exposed kraft facing vs. taped joints. The results were compared to a concurrent study of the performance of cathedral ceilings with sloped ceiling drywall. The results show that having an air chute that ensures an air gap between the sheathing and the top of the insulation is the critical factor. Ventilation and the taping of joints were minor determinants of the moisture performance of the sheathing. These results are consistent with the results of normal cathedral ceiling construction performance.« less
Airborne rotary air separator study
NASA Technical Reports Server (NTRS)
Acharya, A.; Gottzmann, C. F.; Nowobilski, J. J.
1990-01-01
Several air breathing propulsion concepts for future earth-to-orbit transport vehicles utilize air collection and enrichment, and subsequent storage of liquid oxygen for later use in the vehicle emission. Work performed during the 1960's established the feasibility of substantially reducing weight and volume of a distillation type air separator system by operating the distillation elements in high 'g' fields obtained by rotating the separator assembly. This contract studied the capability test and hydraulic behavior of a novel structured or ordered distillation packing in a rotating device using air and water. Pressure drop and flood points were measured for different air and water flow rates in gravitational fields of up to 700 g. Behavior of the packing follows the correlations previously derived from tests at normal gravity. The novel ordered packing can take the place of trays in a rotating air separation column with the promise of substantial reduction in pressure drop, volume, and system weight. The results obtained in the program are used to predict design and performance of rotary separators for air collection and enrichment systems of interest for past and present concepts of air breathing propulsion (single or two-stage to orbit) systems.
NASA Astrophysics Data System (ADS)
Tong, Cheuk Hei Marcus; Yim, Steve Hung Lam; Rothenberg, Daniel; Wang, Chien; Lin, Chuan-Yao; Chen, Yongqin David; Lau, Ngar Cheung
2018-05-01
Air pollution is an increasingly concerning problem in many metropolitan areas due to its adverse public health and environmental impacts. Vertical atmospheric conditions have strong effects on vertical mixing of air pollutants, which directly affects surface air quality. The characteristics and magnitude of how vertical atmospheric conditions affect surface air quality, which are critical to future air quality projections, have not yet been fully understood. This study aims to enhance understanding of the annual and seasonal sensitivities of air pollution to both surface and vertical atmospheric conditions. Based on both surface and vertical meteorological characteristics provided by 1994-2003 monthly dynamic downscaling data from the Weather and Research Forecast Model, we develop generalized linear models (GLMs) to study the relationships between surface air pollutants (ozone, respirable suspended particulates, and sulfur dioxide) and atmospheric conditions in the Pearl River Delta (PRD) region. Applying Principal Component Regression (PCR) to address multi-collinearity, we study the contributions of various meteorological variables to pollutants' concentration levels based on the loading and model coefficient of major principal components. Our results show that relatively high pollutant concentration occurs under relatively low mid-level troposphere temperature gradients, low relative humidity, weak southerly wind (or strong northerly wind) and weak westerly wind (or strong easterly wind). Moreover, the correlations vary among pollutant species, seasons, and meteorological variables at various altitudes. In general, pollutant sensitivity to meteorological variables is found to be greater in winter than in other seasons, and the sensitivity of ozone to meteorology differs from that of the other two pollutants. Applying our GLMs to anomalous air pollution episodes, we find that meteorological variables up to mid troposphere (∼700 mb) play an important role in influencing surface air quality, pinpointing the significant and unique associations between meteorological variables at higher altitudes and surface air quality.
Influence of forced air volume on water evaporation during sewage sludge bio-drying.
Cai, Lu; Chen, Tong-Bin; Gao, Ding; Zheng, Guo-Di; Liu, Hong-Tao; Pan, Tian-Hao
2013-09-01
Mechanical aeration is critical to sewage sludge bio-drying, and the actual water loss caused by aeration can be better understood from investigations of the relationship between aeration and water evaporation from the sewage sludge bio-drying pile based on in situ measurements. This study was conducted to investigate the effects of forced air volume on the evaporation of water from a sewage sludge bio-drying pile. Dewatered sewage sludge was bio-dried using control technology for bio-drying, during which time the temperature, superficial air velocity and water evaporation were measured and calculated. The results indicated that the peak air velocity and water evaporation occurred in the thermophilic phase and second temperature-increasing phase, with the highest values of 0.063 ± 0.027 m s(-1) and 28.9 kg ton(-1) matrix d(-1), respectively, being observed on day 4. Air velocity above the pile during aeration was 43-100% higher than when there was no aeration, and there was a significantly positive correlation between air volume and water evaporation from day 1 to 15. The order of daily means of water evaporation was thermophilic phase > second temperature-increasing phase > temperature-increasing phase > cooling phase. Forced aeration controlled the pile temperature and improved evaporation, making it the key factor influencing water loss during the process of sewage sludge bio-drying. Copyright © 2013 Elsevier Ltd. All rights reserved.
Characterization of two passive air samplers for per- and polyfluoroalkyl substances.
Ahrens, Lutz; Harner, Tom; Shoeib, Mahiba; Koblizkova, Martina; Reiner, Eric J
2013-12-17
Two passive air sampler (PAS) media were characterized under field conditions for the measurement of per- and polyfluoroalkyl substances (PFASs) in the atmosphere. The PASs, consisting of polyurethane foam (PUF) and sorbent-impregnated PUF (SIP) disks, were deployed for over one year in parallel with high volume active air samplers (HV-AAS) and low volume active air samplers (LV-AAS). Samples were analyzed for perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs), fluorotelomer alcohols (FTOHs), fluorotelomer methacrylates (FTMACs), fluorotelomer acrylates (FTACs), perfluorooctane sulfonamides (FOSAs), and perfluorooctane sulfonamidoethanols (FOSEs). Sampling rates and the passive sampler medium (PSM)-air partition coefficient (KPSM-A) were calculated for individual PFASs. Sampling rates were similar for PFASs present in the gas phase and particle phase, and the linear sampling rate of 4 m(-3) d(-1) is recommended for calculating effective air sample volumes in the SIP-PAS and PUF-PAS for PFASs except for the FOSAs and FOSEs in the PUF-PAS. SIP disks showed very good performance for all tested PFASs while PUF disks were suitable only for the PFSAs and their precursors. Experiments evaluating the suitability of different isotopically labeled fluorinated depuration compounds (DCs) revealed that (13)C8-perfluorooctanoic acid (PFOA) was suitable for the calculation of site-specific sampling rates. Ambient temperature was the dominant factor influencing the seasonal trend of PFASs.
Marinozzi, Franco; Bini, Fabiano; Marinozzi, Andrea; Zuppante, Francesca; De Paolis, Annalisa; Pecci, Raffaella; Bedini, Rossella
2013-01-01
Micro-CT analysis is a powerful technique for a non-invasive evaluation of the morphometric parameters of trabecular bone samples. This elaboration requires a previous binarization of the images. A problem which arises from the binarization process is the partial volume artifact. Voxels at the external surface of the sample can contain both bone and air so thresholding operates an incorrect estimation of volume occupied by the two materials. The aim of this study is the extraction of bone volumetric information directly from the image histograms, by fitting them with a suitable set of functions. Nineteen trabecular bone samples were extracted from femoral heads of eight patients subject to a hip arthroplasty surgery. Trabecular bone samples were acquired using micro-CT Scanner. Hystograms of the acquired images were computed and fitted by Gaussian-like functions accounting for: a) gray levels produced by the bone x-ray absorption, b) the portions of the image occupied by air and c) voxels that contain a mixture of bone and air. This latter contribution can be considered such as an estimation of the partial volume effect. The comparison of the proposed technique to the bone volumes measured by a reference instrument such as by a helium pycnometer show the method as a good way for an accurate bone volume calculation of trabecular bone samples.
Technical design and commissioning of the KATRIN large-volume air coil system
NASA Astrophysics Data System (ADS)
Erhard, M.; Behrens, J.; Bauer, S.; Beglarian, A.; Berendes, R.; Drexlin, G.; Glück, F.; Gumbsheimer, R.; Hergenhan, J.; Leiber, B.; Mertens, S.; Osipowicz, A.; Plischke, P.; Reich, J.; Thümmler, T.; Wandkowsky, N.; Weinheimer, C.; Wüstling, S.
2018-02-01
The KATRIN experiment is a next-generation direct neutrino mass experiment with a sensitivity of 0.2 eV (90% C.L.) to the effective mass of the electron neutrino. It measures the tritium β-decay spectrum close to its endpoint with a spectrometer based on the MAC-E filter technique. The β-decay electrons are guided by a magnetic field that operates in the mT range in the central spectrometer volume; it is fine-tuned by a large-volume air coil system surrounding the spectrometer vessel. The purpose of the system is to provide optimal transmission properties for signal electrons and to achieve efficient magnetic shielding against background. In this paper we describe the technical design of the air coil system, including its mechanical and electrical properties. We outline the importance of its versatile operation modes in background investigation and suppression techniques. We compare magnetic field measurements in the inner spectrometer volume during system commissioning with corresponding simulations, which allows to verify the system's functionality in fine-tuning the magnetic field configuration. This is of major importance for a successful neutrino mass measurement at KATRIN.
1999 NASA Seal/secondary Air System Workshop. Volume 1
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor)
2000-01-01
NASA Glenn hosted the Seals/Secondary Air System Workshop on October 28-29, 1999. Each year NASA and our industry and university partners share their respective seal technology development. We use these workshops as a technical forum to exchange recent advancements and "lessons-leamed" in advancing seal technology and solving problems of common interest. As in the past we are publishing two volumes. Volume 1 will be publicly available and volume 2 will be restricted under International Traffic and Arms Regulations (I.T.A.R.). The 1999 NASA Seal/Secondary Air System Workshop was divided into four areas; (i) overviews of the government-sponsored gas turbine programs (NASA Ultra Efficient Engine Technology program and DOE Advanced Turbine System program) and the general aviation program (GAP) with emphasis on program goals and seal needs; (ii) turbine engine seal issues from the perspective of an airline customer (i.e., United Airlines), (iii) sealing concepts, methods and results including experimental facilities and numerical predictions; and (iv) reviews of seal requirements for next generation aerospace vehicles (Trailblazer, Bantam and X-38).
NASA Technical Reports Server (NTRS)
1981-01-01
Pioneer Engineering and Manufacturing Company estimated the cost of manufacturing and Air Brayton Receiver for a Solar Thermal Electric Power System as designed by the AiResearch Division of the Garrett Corporation. Production costs were estimated at annual volumes of 100; 1,000; 5,000; 10,000; 50,000; 100,000 and 1,000,000 units. These costs included direct labor, direct material and manufacturing burden. A make or buy analysis was made of each part of each volume. At high volumes special fabrication concepts were used to reduce operation cycle times. All costs were estimated at an assumed 100% plant capacity. Economic feasibility determined the level of production at which special concepts were to be introduced. Estimated costs were based on the economics of the last half of 1980. Tooling and capital equipment costs were estimated for ach volume. Infrastructure and personnel requirements were also estimated.
Manufacture and Testing of an Activation Foil Package for Use in AFIDS
2005-03-01
Miller. Nuclides and Isotopes , 16th ed. Lockheed Martin, 2002. 4. Broadhead, Bryan. Sr. Development Staff, Reactor and Fuel Cycle Analysis ...alternative, the concept of using liquid nitrous oxide inside a reactor to simulate large volumes of air was investigated. Simulation using the...weapon. We analyzed whether N2O could replicate large volumes of air in neutron transport experiments since one cubic centimeter of liquid N2O
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-03
... went into effect, low volume manufacturers now have access to advanced air bag technology. Accordingly, NHTSA has concluded that the expense of advanced air bag technology is not now sufficient, in and of...-0086] Group Lotus Plc, Receipt of Petition for Temporary Exemption From an Advanced Air Bag Requirement...
Apprentice Machinist (AFSC 53130), Volumes 1-4, and Change Supplement (AFSC 42730).
ERIC Educational Resources Information Center
Air Univ., Gunter AFS, Ala. Extension Course Inst.
This four-volume student learning package is designed for use by Air Force personnel enrolled in a self-study extension course for apprentice machinists. The package consists of four volumes of instructional text and four workbooks. Covered in the individual volumes are machine shop fundamentals, lathe work, shaper and contour machine work, and…
AIR QUALITY CRITERIA FOR LEAD, VOLUMES 1-4. (1983) FIRST EXTERNAL REVIEW DRAFT
The document evaluates and assesses scientific information on the health and welfare effects associated with exposure to various concentrations of lead in ambient air. The literature through 1983 has been reviewed thoroughly for information relevant to air quality criteria, altho...
Concept for a Satellite-Based Advanced Air Traffic Management System : Volume 1. Summary.
DOT National Transportation Integrated Search
1974-02-01
The report contains the results of studies and analyses directed toward the definition of a Satellite-Based Advanced Air Traffic Management System (SAATMS). This system is an advanced, integrated air traffic control system which is based on the use o...
Air temperature gradient in large industrial hall
NASA Astrophysics Data System (ADS)
Karpuk, Michał; Pełech, Aleksander; Przydróżny, Edward; Walaszczyk, Juliusz; Szczęśniak, Sylwia
2017-11-01
In the rooms with dominant sensible heat load, volume airflow depends on many factors incl. pre-established temperature difference between exhaust and supply airflow. As the temperature difference is getting higher, airflow volume drops down, consequently, the cost of AHU is reduced. In high industrial halls with air exhaust grids located under the ceiling additional temperature gradient above working zone should be taken into consideration. In this regard, experimental research of the vertical air temperature gradient in high industrial halls were carried out for the case of mixing ventilation system The paper presents the results of air temperature distribution measurements in high technological hall (mechanically ventilated) under significant sensible heat load conditions. The supply airflow was delivered to the hall with the help of the swirl diffusers while exhaust grids were located under the hall ceiling. Basing on the air temperature distribution measurements performed on the seven pre-established levels, air temperature gradient in the area between 2.0 and 7.0 m above the floor was calculated and analysed.
A model for evaluating stream temperature response to climate change scenarios in Wisconsin
Westenbroek, Stephen M.; Stewart, Jana S.; Buchwald, Cheryl A.; Mitro, Matthew G.; Lyons, John D.; Greb, Steven
2010-01-01
Global climate change is expected to alter temperature and flow regimes for streams in Wisconsin over the coming decades. Stream temperature will be influenced not only by the predicted increases in average air temperature, but also by changes in baseflow due to changes in precipitation patterns and amounts. In order to evaluate future stream temperature and flow regimes in Wisconsin, we have integrated two existing models in order to generate a water temperature time series at a regional scale for thousands of stream reaches where site-specific temperature observations do not exist. The approach uses the US Geological Survey (USGS) Soil-Water-Balance (SWB) model, along with a recalibrated version of an existing artificial neural network (ANN) stream temperature model. The ANN model simulates stream temperatures on the basis of landscape variables such as land use and soil type, and also includes climate variables such as air temperature and precipitation amounts. The existing ANN model includes a landscape variable called DARCY designed to reflect the potential for groundwater recharge in the contributing area for a stream segment. SWB tracks soil-moisture and potential recharge at a daily time step, providing a way to link changing climate patterns and precipitation amounts over time to baseflow volumes, and presumably to stream temperatures. The recalibrated ANN incorporates SWB-derived estimates of potential recharge to supplement the static estimates of groundwater flow potential derived from a topographically based model (DARCY). SWB and the recalibrated ANN will be supplied with climate drivers from a suite of general circulation models and emissions scenarios, enabling resource managers to evaluate possible changes in stream temperature regimes for Wisconsin.
Exposure models for air pollutants often adjust for effects of the physical environment (e.g., season, urban vs. rural populations) in order to improve exposure and risk predictions. Yet attempts are seldom made to attribute variability in observed outdoor air measurements to spe...
DOT National Transportation Integrated Search
1985-01-01
This volume is the second part of a two-part appendix to the report on a low variability : tire treadwear procedure and treadwear adjustment for ambient : temperature. This volume contains Appendices F through K, covering the fundamental : statistica...
Fuel Cells Utilizing Oxygen From Air at Low Pressures
NASA Technical Reports Server (NTRS)
Cisar, Alan; Boyer, Chris; Greenwald, Charles
2006-01-01
A fuel cell stack has been developed to supply power for a high-altitude aircraft with a minimum of air handling. The fuel cell is capable of utilizing oxygen from ambient air at low pressure with no need for compression. For such an application, it is advantageous to take oxygen from the air (in contradistinction to carrying a supply of oxygen onboard), but it is a challenging problem to design a fuel-cell stack of reasonable weight that can generate sufficient power while operating at reduced pressures. The present fuel-cell design is a response to this challenge. The design features a novel bipolar plate structure in combination with a gas-diffusion structure based on a conductive metal core and a carbon gas-diffusion matrix. This combination makes it possible for the flow fields in the stack to have a large open fraction (ratio between open volume and total volume) to permit large volumes of air to flow through with exceptionally low backpressure. Operations at reduced pressure require a corresponding increase in the volume of air that must be handled to deliver the same number of moles of oxygen to the anodes. Moreover, the increase in the open fraction, relative to that of a comparable prior fuel-cell design, reduces the mass of the stack. The fuel cell has been demonstrated to operate at a power density as high as 105 W/cm2 at an air pressure as low as 2 psia (absolute pressure 14 kPa), which is the atmospheric pressure at an altitude of about 50,000 ft ( 15.2 km). The improvements in the design of this fuel cell could be incorporated into designs of other fuel cells to make them lighter in weight and effective at altitudes higher than those of prior designs. Potential commercial applications for these improvements include most applications now under consideration for fuel cells.
NASA Technical Reports Server (NTRS)
Rosevear, Jerry
1992-01-01
Given here is a definition of Liquid Air Cycle Engines (LACE) and existing relevant technologies. Heat exchanger design and fabrication techniques, the handling of liquid hydrogen to achieve the greatest heat sink capabilities, and air decontamination to prevent heat exchanger fouling are discussed. It was concluded that technology needs to be extended in the areas of design and fabrication of heat exchangers to improve reliability along with weight and volume reductions. Catalysts need to be improved so that conversion can be achieved with lower quantities and lower volumes. Packaging studies need to be investigated both analytically and experimentally. Recycling with slush hydrogen needs further evaluation with experimental testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schooneveldt, G.; Kok, H.P.; Bakker, A.
Purpose: Hyperthermia combined with Mitomycin C is used for the treatment of non-muscle invasive bladder cancer (NMIBC), using a phased array system of microwave antennas for bladder heating. Often some air is present in the bladder, which effectively blocks the microwave radiation, potentially preventing proper treatment of that part of the bladder. Air can be a relevant fraction of the bladder content and large air pockets are expected to have a noticeable influence on achieved temperatures. Methods: We analysed 14 NMIBC patients treated at our institute with our AMC-4 hyperthermia device with four 70MHz antennas around the pelvis. A CTmore » scan was made after treatment and a physician delineated the bladder on the CT scan. On the same scan, the amount of air present in the bladder was delineated. Using our in-house developed hyperthermia treatment planning system, we simulated the treatment using the clinically applied device settings. We did this once with the air pocket delineated on the CT scan, and once with the same volume filled with bladder tissue. Results: The patients had on average 4.2ml (range 0.8–10.1ml) air in the bladder. The bladder volume was delineated by the physician, that is including air pocket and bladder wall, was on average 253ml (range 93–452ml). The average volume in which changes exceeded 0.25°C was 22ml (range 0–108 ml), with the bladder being up to 2°C cooler when an air pocket was present. Except for extreme cases, there was no evident relation between the quantity of air and the difference in temperature. Conclusion: The effect of an air pocket in the bladder during bladder hyperthermia treatment varies strongly between patients. Generally, this leads to lower temperatures in the bladder, potentially affecting treatment quality, and suggesting that care need be taken to minimise the size of air pockets during hyperthermia treatments. The KWF Dutch Cancer Society financially supported this work, grant UVA 2012-5539.« less
PERIODIC AIR-BREATHING BEHAVIOUR IN A PRIMITIVE FISH REVEALED BY SPECTRAL ANALYSIS
Hedrick; Katz; Jones
1994-12-01
The ventilatory patterns of air-breathing fish are commonly described as 'arrhythmic' or 'irregular' because the variable periods of breath-holding are punctuated by seemingly unpredictable air-breathing events (see Shelton et al. 1986). This apparent arrhythmicity contrasts with the perceived periodism or regularity in the gill ventilation patterns of some fish and with lung ventilation in birds and mammals. In this sense, periodism refers to behaviour that occurs with a definite, recurring interval (Bendat and Piersol, 1986). The characterisation of aerial ventilation patterns in fish as 'aperiodic' has been generally accepted on the basis of qualitative examination and it remains to be validated with rigorous testing. The bowfin, Amia calva (L.), is a primitive air-breathing fish that makes intermittent excursions to the airwater interface to gulp air, which is transferred to its well-vascularized gas bladder. Its phylogenetic position as the only extant member of the sister lineage of modern teleosts affords a unique opportunity to examine the evolution of aerial ventilation and provides a model for the examination of ventilatory patterns in primitive fishes. To establish whether Amia calva exhibit a particular pattern of air-breathing, we examined time series records of aerial ventilations from undisturbed fish over long periods (8 h). These records were the same as those used to calculate average ventilation intervals under a variety of experimental conditions (Hedrick and Jones, 1993). Their study also reported the occurrence of two distinct breath types. Type I breaths were characterised by an exhalation followed by an inhalation, whereas type II breaths were characterised by inhalation only. It was also hypothesized that the type I breaths were employed to meet oxygen demands, whereas the type II breaths were used to regulate gas bladder volume. However, they did not investigate the potential presence of a periodic ventilatory pattern. We now report the results of just such an analysis of ventilatory pattern that demonstrates a clear periodism to air-breathing in a primitive fish.
NASA Astrophysics Data System (ADS)
Zhu, Na
This thesis presents an overview of the previous research work on dynamic characteristics and energy performance of buildings due to the integration of PCMs. The research work on dynamic characteristics and energy performance of buildings using PCMs both with and without air-conditioning is reviewed. Since the particular interest in using PCMs for free cooling and peak load shifting, specific research efforts on both subjects are reviewed separately. A simplified physical dynamic model of building structures integrated with SSPCM (shaped-stabilized phase change material) is developed and validated in this study. The simplified physical model represents the wall by 3 resistances and 2 capacitances and the PCM layer by 4 resistances and 2 capacitances respectively while the key issue is the parameter identification of the model. This thesis also presents the studies on the thermodynamic characteristics of buildings enhanced by PCM and on the investigation of the impacts of PCM on the building cooling load and peak cooling demand at different climates and seasons as well as the optimal operation and control strategies to reduce the energy consumption and energy cost by reducing the air-conditioning energy consumption and peak load. An office building floor with typical variable air volume (VAV) air-conditioning system is used and simulated as the reference building in the comparison study. The envelopes of the studied building are further enhanced by integrating the PCM layers. The building system is tested in two selected cities of typical climates in China including Hong Kong and Beijing. The cold charge and discharge processes, the operation and control strategies of night ventilation and the air temperature set-point reset strategy for minimizing the energy consumption and electricity cost are studied. This thesis presents the simulation test platform, the test results on the cold storage and discharge processes, the air-conditioning energy consumption and demand reduction potentials in typical air-conditioning seasons in typical China cites as well as the impacts of operation and control strategies.
Cheung, Patrick C F; Sixel, Katharina E; Tirona, Romeo; Ung, Yee C
2003-12-01
The active breathing control (ABC) device allows for temporary immobilization of respiratory motion by implementing a breath hold at a predefined relative lung volume and air flow direction. The purpose of this study was to quantitatively evaluate the ability of the ABC device to immobilize peripheral lung tumors at a reproducible position, increase total lung volume, and thereby reduce lung mass within the planning target volume (PTV). Ten patients with peripheral non-small-cell lung cancer tumors undergoing radiotherapy had CT scans of their thorax with and without ABC inspiration breath hold during the first 5 days of treatment. Total lung volumes were determined from the CT data sets. Each peripheral lung tumor was contoured by one physician on all CT scans to generate gross tumor volumes (GTVs). The lung density and mass contained within a 1.5-cm PTV margin around each peripheral tumor was calculated using CT numbers. Using the center of the GTV from the Day 1 ABC scan as the reference, the displacement of subsequent GTV centers on Days 2 to 5 for each patient with ABC applied was calculated in three dimensions. With the use of ABC inspiration breath hold, total lung volumes increased by an average of 42%. This resulted in an average decrease in lung mass of 18% within a standard 1.5-cm PTV margin around the GTV. The average (+/- standard deviation) displacement of GTV centers with ABC breath hold applied was 0.3 mm (+/- 1.8 mm), 1.2 mm (+/- 2.3 mm), and 1.1 mm (+/- 3.5 mm) in the lateral direction, anterior-posterior direction, and superior-inferior direction, respectively. Results from this study indicate that there remains some inter-breath hold variability in peripheral lung tumor position with the use of ABC inspiration breath hold, which prevents significant PTV margin reduction. However, lung volumes can significantly increase, thereby decreasing the mass of lung within a standard PTV.
Shi, Yuan; Lau, Kevin Ka-Lun; Ng, Edward
2017-08-01
Urban air quality serves as an important function of the quality of urban life. Land use regression (LUR) modelling of air quality is essential for conducting health impacts assessment but more challenging in mountainous high-density urban scenario due to the complexities of the urban environment. In this study, a total of 21 LUR models are developed for seven kinds of air pollutants (gaseous air pollutants CO, NO 2 , NO x , O 3 , SO 2 and particulate air pollutants PM 2.5 , PM 10 ) with reference to three different time periods (summertime, wintertime and annual average of 5-year long-term hourly monitoring data from local air quality monitoring network) in Hong Kong. Under the mountainous high-density urban scenario, we improved the traditional LUR modelling method by incorporating wind availability information into LUR modelling based on surface geomorphometrical analysis. As a result, 269 independent variables were examined to develop the LUR models by using the "ADDRESS" independent variable selection method and stepwise multiple linear regression (MLR). Cross validation has been performed for each resultant model. The results show that wind-related variables are included in most of the resultant models as statistically significant independent variables. Compared with the traditional method, a maximum increase of 20% was achieved in the prediction performance of annual averaged NO 2 concentration level by incorporating wind-related variables into LUR model development. Copyright © 2017 Elsevier Inc. All rights reserved.
40 CFR 1065.695 - Data requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... restriction. (v) Charge air cooler volume. (vi) Charge air cooler outlet temperature, specified engine.... (iii) “Dry-to-wet” correction. (iv) NMHC, CH4, and contamination correction. (v) NOX humidity...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nashold, B.; Rosenblatt, D.; Hau, J.
1995-08-01
This summary describes a Supplemental Site Inspection (SSI) conducted by Argonne National Laboratory (ANL) at Air Force Plant 59 (AFP 59) in Johnson City, New York. All required data pertaining to this project were entered by ANL into the Air Force-wide Installation Restoration Program Information System (IRPIMS) computer format and submitted to an appropriate authority. The work was sponsored by the United States Air Force as part of its Installation Restoration Program (IRP). Previous studies had revealed the presence of contaminants at the site and identified several potential contaminant sources. Argonne`s study was conducted to answer questions raised by earliermore » investigations. This volume consists of appendices F-Q, which contain the analytical data from the site characterization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-01-01
This volume is one in a series of manuals prepared for EPA to assist its Remedial Project Managers in the assessment of the air contaminant pathway and developing input data for risk assessment. The manual provides guidance on developing baseline-emission estimates from hazardous waste sites. Baseline-emission estimates (BEEs) are defined as emission rates estimated for a site in its undisturbed state. Specifically, the manual is intended to: Present a protocol for selecting the appropriate level of effort to characterize baseline air emissions; Assist site managers in designing an approach for BEEs; Describe useful technologies for developing site-specific baseline emission estimatesmore » (BEEs); Help site managers select the appropriate technologies for generating site-specific BEEs.« less
High Efficiency Variable Speed Versatile Power Air Conditioning System for Military Vehicles
2013-08-01
MOBILITY (P&M) MINI-SYMPOSIUM AUGUST 21-22, 2013 - TROY , MICHIGAN High efficiency variable speed versatile power air conditioning system for...power draw was measured using a calibrated Watt meter. The schematic of the setup is shown in Figure 5 and the setup is shown in Figure 6. Figure...Rocky Research environmental chamber. Cooling Capacity was directly measured in Btu/hr or Watts via measuring the Air flow velocity and the air
Stratospheric measurements of ozone-depleting substances and greenhouse gases using AirCores
NASA Astrophysics Data System (ADS)
Laube, Johannes; Leedham Elvidge, Emma; Kaiser, Jan; Sturges, Bill; Heikkinen, Pauli; Laurila, Tuomas; Hatakka, Juha; Kivi, Rigel; Chen, Huilin; Fraser, Paul; van der Veen, Carina; Röckmann, Thomas
2017-04-01
Retrieving air samples from the stratosphere has previously required aircraft or large balloons, both of which are expensive to operate. The novel "AirCore" technique (Karion et al., 2010) enables stratospheric sampling using weather balloons, which is much more cost effective. AirCores are long (up to 200 m) stainless steel tubes which are placed as a payload on a small balloon, can ascend to over 30 km and fill upon descent, collecting a vertical profile of the atmosphere. Retrieved volumes are much smaller though, which presents a challenge for trace gas analysis. To date, only the more abundant trace gases such as carnon dioxide (CO2) and methane (CH4) have been quantified in AirCores. Halogenated trace gases are also important greenhouse gases and many also deplete stratospheric ozone. Their concentrations are however much lower i.e. typically in the part per trillion (ppt) molar range. We here present the first stratospheric measurements of halocarbons in AirCores obtained using UEA's highly sensitive (detection limits of 0.01-0.1 ppt in 10 ml of air) gas chromatography mass spectrometry system. The analysed air originates from a Stratospheric Air Sub-sampler (Mrozek et al., 2016) which collects AirCore segments after the non-destructive CO2 and CH4 analysis. Successfully measured species include CFC-11, CFC-12, CFC-113, CFC-115, H-1211, H-1301, HCFC-22, HCFC-141b, HCFC-142b, HCFC-133a, and sulphur hexafluoride (SF6). We compare the observed mixing ratios and precisions with data obtained from samples collected during various high-altitude aircraft campaigns between 2009 and 2016 as well as with southern hemisphere tropospheric long-term trends. As part of the ERC-funded EXC3ITE (EXploring stratospheric Composition, Chemistry and Circulation with Innovative Techniques) project more than 40 AirCore flights are planned in the next 3 years with an expanded range of up to 30 gases in order to explore seasonal and interannual variability in the stratosphere. References Karion et al., J. Atmos. Ocean. Technol., 27(11), 1839-1853, 2010 Mrozek et al., Atmos. Meas. Tech., 9, 5607-5620, 2016
Pal, S; Lee, T R; Phelps, S; De Wekker, S F J
2014-10-15
The development of the atmospheric boundary layer (ABL) plays a key role in affecting the variability of atmospheric constituents such as aerosols, greenhouse gases, water vapor, and ozone. In general, the concentration of any tracers within the ABL varies due to the changes in the mixing volume (i.e. ABL depth). In this study, we investigate the impact on the near-surface aerosol concentration in a valley site of 1) the boundary layer dilution due to vertical mixing and 2) changes in the wind patterns. We use a data set obtained during a 10-day field campaign in which a number of remote sensing and in-situ instruments were deployed, including a ground-based aerosol lidar system for monitoring of the ABL top height (zi), a particle counter to determine the number concentration of aerosol particles at eight different size ranges, and tower-based standard meteorological instruments. Results show a clearly visible decreasing trend of the mean daytime zi from 2900 m AGL (above ground level) to 2200 m AGL during a three-day period which resulted in increased near-surface pollutant concentrations. An inverse relationship exists between the zi and the fine fraction (0.3-0.7 μm) accumulation mode particles (AMP) on some days due to the dilution effect in a well-mixed ABL. These days are characterized by the absence of daytime upvalley winds and the presence of northwesterly synoptic-driven winds. In contrast, on the days with an onset of an upvalley wind circulation after the morning transition, the wind-driven local transport mechanism outweighs the ABL-dilution effect in determining the variability of AMP concentration. The interplay between the ABL depth evolution and the onset of the upvalley wind during the morning transition period significantly governs the air quality in a valley and could be an important component in the studies of mountain meteorology and air quality. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Van Loon, Anne; Laaha, Gregor; Van Lanen, Henny; Parajka, Juraj; Fleig, Anne; Ploum, Stefan
2016-04-01
Around the world, drought events with severe socio-economic impacts seem to have a link with winter snowpack. That is the case for the current California drought, but analysing historical archives and drought impact databases for the US and Europe we found many impacts that can be attributed to snowpack anomalies. Agriculture and electricity production (hydropower) were found to be the sectors that are most affected by drought related to snow. In this study, we investigated the processes underlying hydrological drought in snow-dominated regions. We found that drought drivers are different in different regions. In Norway, more than 90% of spring streamflow droughts were preceded by below-average winter precipitation, while both winter air temperature and spring weather were indifferent. In Austria, however, spring streamflow droughts could only be explained by a combination of factors. For most events, winter and spring air temperatures were above average (70% and 65% of events, respectively), and winter and spring precipitation was below average (75% and 80%). Because snow storage results from complex interactions between precipitation and temperature and these variables vary strongly with altitude, snow-related drought drivers have a large spatial variability. The weather input is subsequently modified by land properties. Multiple linear regression between drought severity variables and a large number of catchment characteristics for 44 catchments in Austria showed that storage influences both drought duration and deficit volume. The seasonal storage of water in snow and glaciers was found to be a statistically important variable explaining streamflow drought deficit. Our drought impact analysis in Europe also showed that 40% of the selected drought impacts was caused by a combination of snow-related and other drought types. For example, the combination of a winter drought with a preceding or subsequent summer drought was reported to have a large effect on reservoir levels and, consequently, on drinking water and electricity production. Snow storage therefore, is an important factor to consider in drought monitoring, prediction and management.
NASA Astrophysics Data System (ADS)
Van Loon, A.; Laaha, G.; Van Lanen, H.; Parajka, J.; Fleig, A. K.; Ploum, S.
2015-12-01
Around the world, drought events with severe socio-economic impacts seem to have a link with winter snowpack. That is the case for the current California drought, but analysing historical archives and drought impact databases for the US and Europe we found many impacts that can be attributed to snowpack anomalies. Agriculture and electricity production (hydropower) were found to be the sectors that are most affected by drought related to snow. In this study, we investigated the processes underlying hydrological drought in snow-dominated regions. We found that drought drivers are different in different regions. In Norway, more than 90% of spring streamflow droughts were preceded by below-average winter precipitation, while both winter air temperature and spring weather were indifferent. In Austria, however, spring streamflow droughts could only be explained by a combination of factors. For most events, winter and spring air temperatures were above average (70% and 65% of events, respectively), and winter and spring precipitation was below average (75% and 80%). Because snow storage results from complex interactions between precipitation and temperature and these variables vary strongly with altitude, snow-related drought drivers have a large spatial variability. The weather input is subsequently modified by land properties. Multiple linear regression between drought severity variables and a large number of catchment characteristics for 44 catchments in Austria showed that storage influences both drought duration and deficit volume. The seasonal storage of water in snow and glaciers was found to be a statistically important variable explaining streamflow drought deficit. Our drought impact analysis in Europe also showed that 40% of the selected drought impacts was caused by a combination of snow-related and other drought types. For example, the combination of a winter drought with a preceding or subsequent summer drought was reported to have a large effect on reservoir levels and, consequently, on drinking water and electricity production. Snow storage therefore, is an important factor to consider in drought monitoring, prediction and management.
Characterizing Air Quality in a Rapidly Changing World
The purpose of this paper is to 1) highlight projects collecting large volumes of unique air quality data; 2) explore how the collection of big data fits into the overall picture of air quality management and characterization; 3) provide an update on the E-Enterprise advanced mon...
INTEGRATED AIR POLLUTION CONTROL SYSTEM, VERSION 4.0 - VOLUME 1: USER'S GUIDE
The Integrated Air Pollution Control System (IAPCS) was developed for the U.S. EPA's Air and Energy Engineering Research Laboratory to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, and ...
Defining Human-Centered System Issues for Verifying and Validating Air Traffic Control Systems
DOT National Transportation Integrated Search
1993-01-01
Over the past 40 years, the application of automation to the U.S. air traffic : control (ATC) system has grown enormously to meet significant increases in air : traffic volume. The next ten years will witness a dramatic overhaul of computer : hardwar...
Aircraft Pneudraulic Systems Mechanic (AFSC 42354).
ERIC Educational Resources Information Center
Air Univ., Gunter AFS, Ala. Extension Course Inst.
This four-volume student text is designed for use by Air Force personnel enrolled in a self-study extension course for aircraft pneudraulic systems mechanics. Covered in the individual volumes are shop administration; fundamentals, materials, and equipment of pneudraulics; pneudraulic components; and pneudraulic systems. Each volume in the set…
Incorporation of air into a snack food reduces energy intake.
Osterholt, Kathrin M; Roe, Liane S; Rolls, Barbara J
2007-05-01
This study investigated how the air content of a familiar snack food affected energy intake and whether varying the method of serving the snack modified intake. We tested two versions of an extruded snack (cheese puffs) that were equal in energy density (5.7 kcal/g), but differed in energy per volume (less-aerated snack: 1.00 kcal/ml; more-aerated snack: 0.45 kcal/ml). In a within-subjects design, 16 women and 12 men consumed the snacks ad libitum in the laboratory during four afternoon sessions. A standard volume (1250 ml) of each snack was served once in a bowl and once in an opaque bag. Results showed significant differences in intake of the two snacks by energy (p=0.0003) and volume (p<0.0001); subjects consumed 21% less weight and energy (70+/-17 kcal) of the more-aerated snack than the less-aerated snack, although they consumed a 73% greater volume of the more-aerated snack (239+/-24 ml). These findings suggest that subjects responded to both the weight and volume of the snack. Despite differences in intake, hunger and fullness ratings did not differ across conditions. The serving method did not significantly affect intake. Results from this study indicate that incorporating air into food provides a strategy to reduce energy intake from energy-dense snacks.
Method for generating O.sub.2-rich gas from air using water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakano, Anna; Nakano, Jinichiro; Bennett, James P.
The present disclosure is directed to a method for enriching an inlet air stream utilizing a number of enrichment sub-units connected in series, where each enrichment sub-unit conducts both a dissolution and degasification cycle. Each enrichment sub-unit comprises a compressor, an aeration unit, a deaeration unit, and a pump for the recirculation of water between the aeration and deaeration units. The methodology provides a manner in which the relationship between the respective Henry's coefficients of the oxygen and nitrogen in water may be exploited to enrich the O.sub.2 volume percent and diminish the N.sub.2 volume percent over repeated dissolution andmore » degasification cycles. By utilizing a number of enrichment sub-units connected in series, the water contained in each enrichment sub-unit acts to progressively increase the O.sub.2 volume percent. Additional enrichment sub-units may be added and utilized until the O.sub.2 volume percent equals or exceeds a target O.sub.2 volume percent. In a particular embodiment, air having a general composition of about 78 vol. % N.sub.2 and 21 vol. % O.sub.2 is progressively enriched to provide a final mixture of about 92% vol. % O.sub.2 and 8% vol. % N.sub.2.« less
Health effects associated with energy conservation measures in commercial buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stenner, R.D.; Baechler, M.C.
Indoor air quality can be impacted by hundreds of different chemicals. More than 900 different organic compounds alone have been identified in indoor air. Health effects that could arise from exposure to individual pollutants or mixtures of pollutants cover the full range of acute and chronic effects, including largely reversible responses, such as rashes and irritations, to the irreversible toxic and carcinogenic effects. These indoor contaminants are emitted from a large variety of materials and substances that are widespread components of everyday life. Pacific Northwest Laboratory conducted a search of the peer-reviewed literature on health effects associated with indoor airmore » contaminants for the Bonneville Power Administration to aid the agency in the preparation of environmental documents. Results are reported in two volumes. Volume 1 summarizes the results of the search of the peer-reviewed literature on health effects associated with a selected list of indoor air contaminants. In addition, the report discusses potential health effects of polychlorinated biphenyls and chlorofluorocarbons. All references to the literature reviewed are found in this document Volume 2. Volume 2 provides detailed information from the literature reviewed, summarizes potential health effects, reports health hazard ratings, and discusses quantitative estimates of carcinogenic risk in humans and animals. Contaminants discussed in this report are those that; have been measured in the indoor air of a public building; have been measured (significant concentrations) in test situations simulating indoor air quality (as presented in the referenced literature); and have a significant hazard rating. 38 refs., 7 figs., 23 tabs.« less
Numerical and experimental investigation of the 3D free surface flow in a model Pelton turbine
NASA Astrophysics Data System (ADS)
Fiereder, R.; Riemann, S.; Schilling, R.
2010-08-01
This investigation focuses on the numerical and experimental analysis of the 3D free surface flow in a Pelton turbine. In particular, two typical flow conditions occurring in a full scale Pelton turbine - a configuration with a straight inlet as well as a configuration with a 90 degree elbow upstream of the nozzle - are considered. Thereby, the effect of secondary flow due to the 90 degree bending of the upstream pipe on the characteristics of the jet is explored. The hybrid flow field consists of pure liquid flow within the conduit and free surface two component flow of the liquid jet emerging out of the nozzle into air. The numerical results are validated against experimental investigations performed in the laboratory of the Institute of Fluid Mechanics (FLM). For the numerical simulation of the flow the in-house unstructured fully parallelized finite volume solver solver3D is utilized. An advanced interface capturing model based on the classic Volume of Fluid method is applied. In order to ensure sharp interface resolution an additional convection term is added to the transport equation of the volume fraction. A collocated variable arrangement is used and the set of non-linear equations, containing fluid conservation equations and model equations for turbulence and volume fraction, are solved in a segregated manner. For pressure-velocity coupling the SIMPLE and PISO algorithms are implemented. Detailed analysis of the observed flow patterns in the jet and of the jet geometry are presented.
Left Atrial Volume Determinants in Patients with Non-Ischemic Dilated Cardiomyopathy
Mancuso, Frederico José Neves; Moisés, Valdir Ambrósio; Almeida, Dirceu Rodrigues; Poyares, Dalva; Storti, Luciana Julio; Oliveira, Wércules Antonio; Brito, Flavio Souza; de Paola, Angelo Amato Vincenzo; Carvalho, Antonio Carlos Camargo; Campos, Orlando
2015-01-01
Background Left atrial volume (LAV) is a predictor of prognosis in patients with heart failure. Objective We aimed to evaluate the determinants of LAV in patients with dilated cardiomyopathy (DCM). Methods Ninety patients with DCM and left ventricular (LV) ejection fraction ≤ 0.50 were included. LAV was measured with real-time three-dimensional echocardiography (eco3D). The variables evaluated were heart rate, systolic blood pressure, LV end-diastolic volume and end-systolic volume and ejection fraction (eco3D), mitral inflow E wave, tissue Doppler e´ wave, E/e´ ratio, intraventricular dyssynchrony, 3D dyssynchrony index and mitral regurgitation vena contracta. Pearson´s coefficient was used to identify the correlation of the LAV with the assessed variables. A multiple linear regression model was developed that included LAV as the dependent variable and the variables correlated with it as the predictive variables. Results Mean age was 52 ± 11 years-old, LV ejection fraction: 31.5 ± 8.0% (16-50%) and LAV: 39.2±15.7 ml/m2. The variables that correlated with the LAV were LV end-diastolic volume (r = 0.38; p < 0.01), LV end-systolic volume (r = 0.43; p < 0.001), LV ejection fraction (r = -0.36; p < 0.01), E wave (r = 0.50; p < 0.01), E/e´ ratio (r = 0.51; p < 0.01) and mitral regurgitation (r = 0.53; p < 0.01). A multivariate analysis identified the E/e´ ratio (p = 0.02) and mitral regurgitation (p = 0.02) as the only independent variables associated with LAV increase. Conclusion The LAV is independently determined by LV filling pressures (E/e´ ratio) and mitral regurgitation in DCM. PMID:25993483
Left Atrial Volume Determinants in Patients with Non-Ischemic Dilated Cardiomyopathy.
Mancuso, Frederico José Neves; Moisés, Valdir Ambrósio; Almeida, Dirceu Rodrigues; Poyares, Dalva; Storti, Luciana Julio; Oliveira, Wércules Antonio; Brito, Flavio Souza; Paola, Angelo Amato Vincenzo de; Carvalho, Antonio Carlos Camargo; Campos, Orlando
2015-07-01
Left atrial volume (LAV) is a predictor of prognosis in patients with heart failure. We aimed to evaluate the determinants of LAV in patients with dilated cardiomyopathy (DCM). Ninety patients with DCM and left ventricular (LV) ejection fraction ≤ 0.50 were included. LAV was measured with real-time three-dimensional echocardiography (eco3D). The variables evaluated were heart rate, systolic blood pressure, LV end-diastolic volume and end-systolic volume and ejection fraction (eco3D), mitral inflow E wave, tissue Doppler e' wave, E/e' ratio, intraventricular dyssynchrony, 3D dyssynchrony index and mitral regurgitation vena contracta. Pearson's coefficient was used to identify the correlation of the LAV with the assessed variables. A multiple linear regression model was developed that included LAV as the dependent variable and the variables correlated with it as the predictive variables. Mean age was 52 ± 11 years-old, LV ejection fraction: 31.5 ± 8.0% (16-50%) and LAV: 39.2±15.7 ml/m2. The variables that correlated with the LAV were LV end-diastolic volume (r = 0.38; p < 0.01), LV end-systolic volume (r = 0.43; p < 0.001), LV ejection fraction (r = -0.36; p < 0.01), E wave (r = 0.50; p < 0.01), E/e' ratio (r = 0.51; p < 0.01) and mitral regurgitation (r = 0.53; p < 0.01). A multivariate analysis identified the E/e' ratio (p = 0.02) and mitral regurgitation (p = 0.02) as the only independent variables associated with LAV increase. The LAV is independently determined by LV filling pressures (E/e' ratio) and mitral regurgitation in DCM.
1977-01-01
art=m The Netherlands 1.0 ] I This volwme concentrates on flight teat instrumentation for determining the position of movable air - craft components...form an integral part of a transducer. The discussion in this volume has been limited to measurements of the relative positions of two air - crft...often cause diffi ties. Special types, for instance, the brushless types, can be used at higher temperatures up to about 3000 C. Chaning the
2016-12-08
RVIL Kirtland AFB, NM 87117-5776 Official Record Copy AFRL /RVBYI/Jeannette van den Bosch 1 cy Approved for public release; distribution is... AFRL -RV-PS- TR-2017-0156 AFRL -RV-PS- TR-2017-0156 IMPACT OF POLARIZING NON-LAMBERTIAN SURFACE AND VOLUME SCATTERING ON POLARIZED LIGHT...3550 Aberdeen Ave SE AIR FORCE MATERIEL COMMAND KIRTLAND AIR FORCE BASE, NM 87117-5776 DTIC COPY NOTICE AND SIGNATURE PAGE Using Government
2012-01-01
published, in all cases involving some form of preconcentration of VOCs from larger volumes of air on adsorbents or cryogenic traps. Researchers in...volumes of air in that case are collected in multiple stainless cylinders and the VOCs are recovered by cryogenic focusing. This approach is...Summa cylinders are directed into a second-stage concentrator (for example, a standard commercial purge and trap (P&T)) and then transferred into a
2012-01-01
published, in all cases involving some form of preconcentration of VOCs from larger volumes of air on adsorbents or cryogenic traps. Researchers in...volumes of air in that case are collected in multiple stainless cylinders and the VOCs are recovered by cryogenic focusing. This approach is...Summa cylinders are directed into a second-stage concentrator (for example, a standard commercial purge and trap (P&T)) and then transferred into a
DOT National Transportation Integrated Search
1985-01-01
This volume is the first part of a two-part appendix to the report on a low variability : tire treadwear procedure and treadwear adjustment for ambient : temperature. This volume contains Appendices A through E, covering data sheets : describing equi...
The sensitivity of derived estimates to the measurment quality objectives for independent variables
Francis A. Roesch
2002-01-01
The effect of varying the allowed measurement error for individual tree variables upon county estimates of gross cubic-foot volume was examined. Measurement Quality Ob~ectives (MQOs) for three forest tree variables (biological identity, diameter, and height) used in individual tree gross cubic-foot volume equations were varied from the current USDA Forest Service...
The Sensitivity of Derived Estimates to the Measurement Quality Objectives for Independent Variables
Francis A. Roesch
2005-01-01
The effect of varying the allowed measurement error for individual tree variables upon county estimates of gross cubic-foot volume was examined. Measurement Quality Objectives (MQOs) for three forest tree variables (biological identity, diameter, and height) used in individual tree gross cubic-foot volume equations were varied from the current USDA Forest Service...
Cargo/Logistics Airlift System Study (CLASS), Volume 1
NASA Technical Reports Server (NTRS)
Norman, J. M.; Henderson, R. D.; Macey, F. C.; Tuttle, R. P.
1978-01-01
Current and advanced air cargo systems are evaluated using industrial and consumer statistics. Market and commodity characteristics that influence the use of the air mode are discussed along with a comparison of air and surface mode on typical routes. Results of on-site surveys of cargo processing facilities at airports are presented, and institutional controls and influences on air cargo operations are considered.
1994-12-01
Research Group at the Phillips Laboratory at Kirtland Air Force Base...for Summer Graduate Student Research Program Phillips Laboratory Sponsored by: Air Force Office of Scientific Research Boiling Air Force Base, DC...2390 S. York Street Denver, CO 80208-0177 Final Report for: Summer Faculty Research Program Phillips Laboratory Sponsored by: Air Force
Dynamic Density: An Air Traffic Management Metric
NASA Technical Reports Server (NTRS)
Laudeman, I. V.; Shelden, S. G.; Branstrom, R.; Brasil, C. L.
1998-01-01
The definition of a metric of air traffic controller workload based on air traffic characteristics is essential to the development of both air traffic management automation and air traffic procedures. Dynamic density is a proposed concept for a metric that includes both traffic density (a count of aircraft in a volume of airspace) and traffic complexity (a measure of the complexity of the air traffic in a volume of airspace). It was hypothesized that a metric that includes terms that capture air traffic complexity will be a better measure of air traffic controller workload than current measures based only on traffic density. A weighted linear dynamic density function was developed and validated operationally. The proposed dynamic density function includes a traffic density term and eight traffic complexity terms. A unit-weighted dynamic density function was able to account for an average of 22% of the variance in observed controller activity not accounted for by traffic density alone. A comparative analysis of unit weights, subjective weights, and regression weights for the terms in the dynamic density equation was conducted. The best predictor of controller activity was the dynamic density equation with regression-weighted complexity terms.
Influence of cooling face masks on nasal air conditioning and nasal geometry.
Lindemann, J; Hoffmann, T; Koehl, A; Walz, E M; Sommer, F
2017-06-01
Nasal geometries and temperature of the nasal mucosa are the primary factors affecting nasal air conditioning. Data on intranasal air conditioning after provoking the trigeminal nerve with a cold stimulus simulating the effects of an arctic condition is still missing. The objective was to investigate the influence of skin cooling face masks on nasal air conditioning, mucosal temperature and nasal geometry. Standardized in vivo measurements of intranasal air temperature, humidity and mucosal temperature were performed in 55 healthy subjects at defined detection sites before and after wearing a cooling face mask. Measurements of skin temperature, rhinomanometry and acoustic rhinometry were accomplished. After wearing the face mask the facial skin temperature was significantly reduced. Intranasal air temperature did not change. Absolute humidity and mucosal temperature increased significantly. The acoustic rhinometric results showed a significant increase of the volumes and the cross-sectional areas. There was no change in nasal airflow. Nasal mucosal temperature, humidity of inhaled air, and volume of the anterior nose increased after application of a cold face mask. The response is mediated by the trigeminal nerve. Increased mucosal temperatures as well as changes in nasal geometries seem to guarantee sufficient steady intranasal nasal air conditioning.
40 CFR 1065.695 - Data requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... restriction. (v) Charge air cooler volume. (vi) Charge air cooler outlet temperature, specified engine... following: (i) Drift correction. (ii) Noise correction. (iii) “Dry-to-wet” correction. (iv) NMHC, CH4, and...
40 CFR 1065.695 - Data requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... restriction. (v) Charge air cooler volume. (vi) Charge air cooler outlet temperature, specified engine... following: (i) Drift correction. (ii) Noise correction. (iii) “Dry-to-wet” correction. (iv) NMHC, CH4, and...
40 CFR 1065.695 - Data requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... restriction. (v) Charge air cooler volume. (vi) Charge air cooler outlet temperature, specified engine... following: (i) Drift correction. (ii) Noise correction. (iii) “Dry-to-wet” correction. (iv) NMHC, CH4, and...
Racine, Stéphane X; Solis, Audrey; Hamou, Nora Ait; Letoumelin, Philippe; Hepner, David L; Beloucif, Sadek; Baillard, Christophe
2010-05-01
In edentulous patients, it may be difficult to perform face mask ventilation because of inadequate seal with air leaks. Our aim was to ascertain whether the "lower lip" face mask placement, as a new face mask ventilation method, is more effective at reducing air leaks than the standard face mask placement. Forty-nine edentulous patients with inadequate seal and air leak during two-hand positive-pressure ventilation using the ventilator circle system were prospectively evaluated. In the presence of air leaks, defined as a difference of at least 33% between inspired and expired tidal volumes, the mask was placed in a lower lip position by repositioning the caudal end of the mask above the lower lip while maintaining the head in extension. The results are expressed as mean +/- SD or median (25th-75th percentiles). Patient characteristics included age (71 +/- 11 yr) and body mass index (24 +/- 4 kg/m2). By using the standard method, the median inspired and expired tidal volumes were 450 ml (400-500 ml) and 0 ml (0-50 ml), respectively, and the median air leak was 400 ml (365-485 ml). After placing the mask in the lower lip position, the median expired tidal volume increased to 400 ml (380-490), and the median air leak decreased to 10 ml (0-20 ml) (P < 0.001 vs. standard method). The lower lip face mask placement with two hands reduced the air leak by 95% (80-100%). In edentulous patients with inadequate face mask ventilation, the lower lip face mask placement with two hands markedly reduced the air leak and improved ventilation.
Airport landside operations and air service
NASA Astrophysics Data System (ADS)
Mandle, P. B.; Whitlock, E. M.; Lamagna, F.; Mundy, R. A.; Oberhausen, P. J.
The following areas are discussed: airport curbside planning and design; analysis of New Orleans airport ground transportation system; time series analysis of intercity air travel volume; economic justification of air service to small communities; and general aviation and the airport and airway system (an analysis of cost allocation and recovery).
INTEGRATED AIR POLLUTION CONTROL SYSTEM, VERSION 4.0 - VOLUME 3: PROGRAMMER'S MAINTENACE MANUAL
The Integrated Air Pollution Control System (IAPCS) was developed for the U.S. EPA's Air and Energy Engineering Research Laboratory to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, and ...
INTEGRATED AIR POLLUTION CONTROL SYSTEM, VERSION 4.0 - VOLUME 2: TECHNICAL DOCUMENTATION MANUAL
The Integrated Air Pollution Control System (IAPCS) was developed for the U.S. EPA's Air and Energy Engineering Research Laboratory to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, and ...
Cargo Logistics Airlift Systems Study (CLASS). Volume 2: Case study approach and results
NASA Technical Reports Server (NTRS)
Burby, R. J.; Kuhlman, W. H.
1978-01-01
Models of transportation mode decision making were developed. The user's view of the present and future air cargo systems is discussed. Issues summarized include: (1) organization of the distribution function; (2) mode choice decision making; (3) air freight system; and (4) the future of air freight.
DOT National Transportation Integrated Search
1975-04-01
The report describes a computer simulation of the Air Traffic Control Radar Beacon System (ATCRBS). Operating on real air traffic data and actual characteristics of the relevant ground interrogators, the FORTRAN program re-enacts system operation in ...
DOT National Transportation Integrated Search
1975-04-01
The report describes a computer simulation of the Air Traffic Control Radar Beacon System (ATCRBS). Operating on real air traffic data and actual characteristics of the relevant ground interrogators, the FORTRAN program re-enacts system operation in ...
40 CFR 86.521-90 - Hydrocarbon analyzer calibration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... apparatus. The methanol is vaporized and swept into the sample bag with a known volume of zero grade air....521-90 Section 86.521-90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... and basic operating adjustment using the appropriate FID fuel and zero-grade air. (2) Optimize on the...
40 CFR 86.1221-90 - Hydrocarbon analyzer calibration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... apparatus. The methanol is vaporized and swept into the sample bag with a known volume of zero grade air....1221-90 Section 86.1221-90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... appropriate FID fuel and zero-grade air. (2) Optimize on the most common operating range. Introduce into the...
40 CFR 86.521-90 - Hydrocarbon analyzer calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... apparatus. The methanol is vaporized and swept into the sample bag with a known volume of zero grade air....521-90 Section 86.521-90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... and basic operating adjustment using the appropriate FID fuel and zero-grade air. (2) Optimize on the...
40 CFR 86.121-90 - Hydrocarbon analyzer calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... sample bag with a known volume of zero grade air measured by a gas flow meter meeting the performance....121-90 Section 86.121-90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... operating adjustment using the appropriate FID fuel and zero-grade air. (2) Optimize on the most common...
40 CFR 86.121-90 - Hydrocarbon analyzer calibration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... sample bag with a known volume of zero grade air measured by a gas flow meter meeting the performance....121-90 Section 86.121-90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... operating adjustment using the appropriate FID fuel and zero-grade air. (2) Optimize on the most common...
40 CFR 86.1221-90 - Hydrocarbon analyzer calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... apparatus. The methanol is vaporized and swept into the sample bag with a known volume of zero grade air....1221-90 Section 86.1221-90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... appropriate FID fuel and zero-grade air. (2) Optimize on the most common operating range. Introduce into the...
50th JANNAF Propulsion Meeting. Volume 1
NASA Technical Reports Server (NTRS)
Eggleston, Debra S. (Editor)
2001-01-01
This volume, the first of two volumes, is a collection of 29 unclassified/unlimited-distribution papers which were presented at the 50th Joint Army-Navy-NASA-Air Force (JANNAF) Propulsion Meeting, held 11-13 July 2001 at the Salt Lake City Marriott Hotel in Salt Lake City, Utah.
Report on Federal Productivity. Volume 2, Productivity Case Studies.
ERIC Educational Resources Information Center
Joint Financial Management Improvement Program, Washington, DC.
Volume 2 contains 15 productivity case studies which illustrate and expand on the causal factors mentioned in volume 1. The cases illustrate many different approaches to productivity measurement improvement. The case studies are: Development of an Output-Productivity Measure for the Air Force Medical Service; Measuring Effectiveness and Efficiency…